

....The pages that are missing were removed because they were advertisements.

THE

TECHNOGRAPH

PUBLISHED QUARTERLY BY THE STUDENTS OF THE COLLEGE OF ENGINEERING UNIVERSITY of ILLINOIS

November 1925

MEMBER OF THE ENGINEERING COI, LEGE MAGAZINES ASSOCIATED FOUNDED , EIGHTEEN • HUNDRED , AND EIGHTY•FIVE VOL. XXXVIII •PRICE•3O•CENTS. NUMBER I

Let Us Send You a Complimentary Copy of Our Data Book on Flanged Fittings

In this data book you will find drawings allod illustrations of stock designs, lists of sizes with dimension tables of stamdard and extra heaty flanged fittings and tlanges. Our book is in reality a combensed cataloge contaning all the information nsmally required of us by users of flanged fittings.
From the large half-tone ilhastrations of musial si\%es amd suecial designs you ran get a sphembid idea of our facilities for meeting the most extemsive specifications.

Jmaneering students interestad in power piping will fimd in this book the kind of informatom that is valnable for reference when sperifying or buying flanger fithing and tlanges. It is the right size for economy

STOCKHAM

Meet all essential requirements for accuracy, strength and finish: made in stock designs or "specials"forsteam.water.gas or air piping

STOCKHAM PIPE \& FITTINGS CO.

fi. (\%. Scombinm, Ex-09. President
(i, Petescif, ex'19. Asst to V. P.
D. W. Stockham, 21, Secretary R. E. Risley, '20, Asst. Fdry. Supt.

General offue and Factory- Birmingham, Ala.
Jistrobuting Warthouses

The TECHNOGRAPH

UNIVERSITY OF ILLINOIS
Member of the Enyineernd Colleve Mayazines Asoblated

Contents for November

CONER

> J I Prouta

IRA Osborn BAKIR5

- . Willums

THE: CHICAM) I AKE FRONT DFVEI OPNH NI
H. E W'essman

ILI.INOIS HMCHWAS INSPECTION 12
I). R. Connor

RADIO SIATHN WOK
Paul I artak
THE NAUY CRUISH IOR EMGINFERS
15
G 11° Luons
FAIEURE AND RIFIFF OI A W'ATI:R SUPPI Y 17
(F Hendrat
THE: SANTA BARBARA EARTHOLAKE 18
J. Russell tizment

Golf Courst EXigNEERIN; 21
Norman Elsu
The Ohio Public St:Rviche Combany 23
Padl 1, letros
EDITORIAI
COEEFGENOIS 20
CONAEMPORARY ENGINLERING NEHES 30
Deparimental Notes 31
Fraternily Arolvities 35
AL(ANM NolES 30
ONCE OUTRS 38

Ita (1) shatm 形ather

In the death of br. Irat Whorn baker, lrofesare emeritus of -ivil rhine ering, all to whom the Inismeity of llinois is dear
 sity has lost a distinguished intellerotual leater: the commmity. a good neighlor and lowahe friemd the profession, an ilhustrions examplar of its leset ineals: and the state, a worthy and valued ritizen. His brilliant ratere of tifterne reats on the faculty constitutes one of the high townes about which the I niversity is
 tion, his latf century of instruetional serviee largely gate form and charabter to enginerering education at fllimis and was more over a putent firtor in natiomal rimes ass well. With a rean conception of the primatr uberetives of reginedring and the ahility, thromgh kindliness and 'harm of manner, and tematity of purpose. te combine others, his views were widely acepted and influenced notably the fondations and framework of the edncational structure. Throngh the press and public addresses as well as by diret personal intercomres. his message of eblics and ideals found lodement : thromsh technital articles, treatises and text-luoks, he contributed larsely to the substame of engineering edncation and practiow: throush the minds and affeetions of his students, he (reated much of that intangible imvisible suirit, which is the exeenere of the profeswion.

A painstaking seholar and scientist, an inspiring teather, an administrater with vision, it "itizen worthy of emolation, a man of stainless pereonal life, an mustlish and losal friend, a devout and reverent Christian. Profesen' labke lived the abmudant life . When present, he had affertion for hiv friends and wivedom for
 friende and emoblement for the poression

THE Technocraph

The Chicago Lake Front Development

11. L. Wemsman, MN.

Ten sears ago the visitor to thicago, who hat wasion to enter the eity wer the lllinois Contral Railroat, saw little of interest in the panomama monfolded to him on the east side from Jatreson lark northward to the Twelfth street terminal. Ho may have noted a casual dreder or pilatriver ont in the lake, engaged in apparently ambess work. or a lone tisherman seated on a pile sromp. If be looked eastward again, just before reathing the station, the visitor probably noted several dump Wagons tratsersing a desolate waste stretching from the tracks to the lake. The picture was anything but beantifnl, and the reartion was often depressing.

Today, however, the observer whatins swme con reption of what the artisity on the South Sinle Lake Front means, and to what end it is pointing. The Fiefl Mnsemm, the Statiom, Hhe drise down to the TwentreThird Street Viaduct, the immer hreakwater winding down to Fiftysernth Stret. He outer breakwater just beginning to take form from Twelfth street down past siateenth streot, and the grading in diant lark, gira some hasis for pietur ing the eomprehensive lake leront lark System Which will be a beatifinl reality mot many feare hernee. It will mot only be a beantifnl reality: it will be immensely usefthl, for it will wffer hew rerres ation areas for Thicagos growing porntation and will opell 1 日, new trathe arterias front the North to Whe south sides, therehy reliwing the eomesestion Which is choking Michigan lombevard at how pere colt time.
'The seope of the rompleted projeet is best eom promated by noting Figure 1. In memeral, the plan propeses a park development mun land ra
 (0) backson lank. There will be all innor drive cast of the lllimos central liailroad rightul was, a lagoon east of the imer drive amb semataling it
from an outor drive localed adjacent th the new shore line whith will be appoximately engot feet ant in the dake from the whe shore line. As indicated on Figure 1, both drives are combected at frequent intervals with intoracting drives across the lagon and Illinois contral rightof way to the strept sys tom of the city boper. It the smoth emd the outer drive closes in to the inner drive which in turn leads to the bouleradd system of dadeson lark. It the morth emal both drives conamet with Roosevelt Road, adsu known as Twelfh Stren, which is to be opened across the bocation of the present lllimos. Cemtral Railread terminal to rembert with Miehi gan Rombevarl in line with East Roosevelt Roma froduced.

Lrives morth throngh that part of tirant Park east of the tratels will discharge into Midhigan Bonlenard via intersecting streets at seventh, Fon gress, Jatkwon, Monroe and Rambloh stoeets, and
 vard system arose a mew link briles at the mouth of the Chicago liver. This bridge is to be baite in the near future.

Figure $\ddot{\sim}$ is an interesting areplabe view show inge the present stathe of the redalmed areat from
 the extreme right and the Bunicipal starlam, mow
 raised area in front of the Foided Masmom is the sitw
 the outlimes of the lagoon lexgiming to take form :and the inner hulkheted winding southward. The immer driae is dimly visible down to the Twerty Thind stred vialuet beyond which point the tilling bohind the inmor bolkluald is just buyinning to

In hribf, the prowese of rerlamation comsists of driviug two parallal rows of tifty foot piles aboht twents fret apart, the pilas in math row being pared
as elowe together as presible．Tha intervening

 bake．Wiakemed shent piling is usmally driven out site of the outhr row allal securdy botted to the
 ly hydratia thedges whirla pomp material from the lake bottom ontside the raclosine Matorial extavaled from the fommations in the downtown distridel is also used．（＇are is taken to kepp heasy Joads wif the till until aller a period of sottlement berallse of a layer of plastice clay maderlying the bake buttom whith is appoximately tifteen teet be low the surface of the water．In sombe rases the fill varios from thirly forey foet above water leval，placing ath momons load upon the old lake betd．Wh ohe wetasion the resulting horizontal pressure was so great that a section of bulkhead 1：at of that Fifed Inselum was moval fifty fect east and lifted vertioally twedre fert．Eightern to twenty miles of bullahead at at cont of \＄100 jer lineal foot in flate．will be required before the project is compteted．About seren miles of this is now com－ plete of undere contract．ISvdraulic till costs 60 comts per cubia yard．

Whes finally completed，the outer park system sonth of lionsovelt hoad will（eontain 11：39）acres of land and ：3ti atores of entelosed waterway．The Waterway in the shape of a long natrow lagoon， from Twelfth steret southe to Jaclisom lark will ofter in addition to the usinal boating farilities，a six mile comre for spexthoat rates and aquatic sports． The land will be developed into heantiful park areas and gardens where Nature will run riot，athletic
fields，pienic gromads，winding walks and drives． severall new beathes will be openet on the lake side and bathing pavilishs areeted．A lamding tield for aerophanes maly be provided in the virinity of Twellth street．

Several struetures of monumental hatmer，exch－ sive of the bridges which are laken up in detail bater on，ronstitute the rewning thatures at the north terminus of the new bake front park．The $\$ 10,000,000$ Ficdd Mnselum of Natural Mistory and the greater piart of the $\$ 6,000,0000$ Dunicipal Stadinm are already completed．The early future will see commencement of work upon the $\$ 2,200,000$ Shedd Aymarimm，an immense，octagonal struetnre of white marble to be located on the cirant lark waterfront，several hundred feet northeast of the Field Mnsenm．It will harmonize with the elassie Greck architecture of the Museum and stadium， and will surpass in size and beauty any other itguarimm in the world todiys．living sea inhabi－ tants from all parts of the glohe will be brought here to take their place among the edneational tea－ tures made possible be this strurture．

The electritication of the Chicago Teminal area and the completion of the proposed new passenger station by the Illinois Central Railroad will add the finishing tonches，ten or iffeen years hence． The station will be an imposing building located just south of Roosevelt Road and harmonizing in architecture with the other structures mentioned abose．Figure 3 shows an artist＇s eonception of the new terminal with the Roosevelt Road Viaduct in the foreground．To the left is the Field Muselum with the Stadium in the barkground．Athough the

FIGURE
tinal plans for the station may be quite different from those indicated in Fisme 3 , vet to one who is familiar with the present station buidding site, the contrast between the old gromp and that proposed is decidedly striking.
(imant lark, norld, of Twelfth Simet, is destined for exceptional aesthetie treatment. As shown in Figure 1 the arehitectmal design is centered on the ontetanding feature, viz., the landingham Memorial Fematain lomated in line with congress street. This fountain, placed in an ornate gartlen setting. will rival the famons one of datomat in the garders of Versailles, France It will be built of marble supporterl bey reinforced concerete. Oser abo teet in dimmeter, it will contain about $i=$ jets of water, arranged so that the ontline of the diselarging Water will form a series of dome-hke terraces conwerging at the center to a great contral colnman of water 95 feet high. In full operation, the fountain will discharge about 5.000 gallons per minute. A mique system of ilhmination will produce beatutiful and striking effects at night.

The main tateway to the burkingham Fomntain is at Congress Street, across the big domble bridge whieh is now in process of comstruetion. The ap, proathes from diehigan Bonlevare will rise in sweeping curves, enclosing a plaza, to meet with the bridge roadway. Two large pylons at the west end of the bridge with main shafts apposimately 24 feet square ame (5a feet high, colonnades on both sides of the bridge at the east end, and the bidge itself have all been designed to make a momumental approach to the fomatain. A formal warlen, ath letic fields to the north and somth, the Art lnstitute.
and several stathes. including one of Ahraham Limoohn, will completo the attistio remondeling of (irant latrk.

It is evident from al litide stury of Figure 1 that
 the bake feont involves a bitles prostam of some magnitule. N'mberons crossinse are rettited oter

 fions and types of the barions bringes ame indicated in the legend, Figure 1 . This article does not prot pose to take ul : aly ond dexign in detail. bat to wive
 to the selection of the partionlar tyes chosple athe the problems involred in the design of those fypes.

Three amel one-balf veats ago the south latik (ommission hat mo structural department of its own. Traftic congestion on Mixhigan Bomberard demanded an opening to the Lake Front as soon ins pessible aldd so the dirm of comblon \& bost, comsult ing engineers, was retained th design the TwontyThird street viaduct, the dirst of the mew bridges. The mamber of popesed bridges low were watranted
 the dieed simerevision of the (hitef engineer of the Somth lark commissionters, so comestumetly all sul,
 tzation only twa allad onelall yeats oht.

Refering to Figure I again, it is seen that eontinuous gimber highway briges, rassimg the

 !th stere There will also he a rontimmen aider highway hrigge wer tha sanitary Distriat intakr

In wrdinather passed by the rity of ('hicater in
 atod bridges ath their apporathes. To conform to
 wath For train operation, meressitatod extromely *hallow wirder spans. Fall development of the trate area limited the width of the supherts within the right of way atme reguided as faw as possible. consistent with salte dexign. Simple pate girder
 athe won with a minimmon spath, replired such ath extromely lefary setion for the shallow depth established. that exeresise deflections resulted Comsepmently they were eliminathed from further consideration. Flat arth spans comblat mot be do sigmed to conform with the establishod grates and areshatie comsiderations barred tross spatms. Thas shallow depth of girder, long spans, and inability to use falserwork betamse of the redued bateral track Flarance, eliminated reinfored womere widers. It some of the there spath rewsings, partionaty borth of Twelfth strent, a cantilewe desion was imestigated. This consisted of a girder span ised at the abotment and cantiluraring ower a columa from vach end. A suspended span was then for bu swong leatween the eantilevered girders with a pin rommertion at one rad and a rowker eonmertion at the other to care for temperature moverment. This imwolved costly details at the pins and rollare an sightly joints in thr conerote rincasing, at or ater

 ite wifored the most rational solutions. They per
mitted longer spans, lightur amd better balathed sertions hecatase of the rednetion of positive mor monts at the span renter amd intraducton of the negative moments at the supports and and a more rigid sfucture with less vibation and dethertion than al serises of simple spaths.

All of the continuons gimhe bridges mentioned liar laren designed or aro mow in process of dexign.
 material reality \quad pren to tratite. This viaduct is the longest one south of loth steme amel consists of threr threespan rontimuons qirders, in all nime spans. The span lengthe vary from : $: 3$ ft. Io !of ft, the total lengit being a:i: feet. The most was

 $\$ 500,000$ amd $\$ 400,000$ respertivels. Forty-Third
 long. Tha bridges morth of 120 h street are all "span contimums aiders "om' $3^{\prime \prime}$ Iong. It is estimated that these loridges. plus the ornamental comerete work in that part of firant Park west of the I. A^{\prime}. R. R. and from 12th Street moth to the Art Institute, will rost se,000,0tor. The bridge at B!th Stret ower the sanitary Distriot latake is a \because span
 All of the bridges are dexigned for a miform live load of lex pommds per sat. forer the roadway. and 100 pommle per sif. fit over the simewalks, in addition to a $\quad 24$ ton track load and in some cases a dontbe strims of zoten street ears.

A brief resuma of the prediminary design progress todate on the Rowsemelt Roand vadurt will illusthate some of the problems involved in the design of these contimumes girder bridges. Widar amd longer than any of the aforementioned hridgess and oxapy

aeross the north facade of the new Illinuis Central terminal, the Roosevelt Road bridge matmally beeomes the ontstanding example of the continuons girder type. The total cost of the briges will be apleroximately \$1, \%50.000. The east poetion of the structure will consist of a $\overline{5}$-pian continuous girder bridge, 3.5 ft. long with span lengths varying from
 west portion involves another contimons section, a flat slab seetion and a that slab appoanch. The length of these sections hawe not yet been established, due to the necessity of temporary construction pending the final design and completion of the terminal building. The Illimois rentral tracks are mot perpendienlar to the lius of Roosevelt Road and since column bents must parallel the tracks, a skew bridge has to be provided.

The city ordinancer reforred to abowe hats sett the elevation of the top of the cuth at the east end of the bridge at phas s3:006. The hothom ancasing line cannot go below elevation plas :3..50. In orter to conform with the horizontal lines of the new terminal, no vertical curve conld be introduced into the grade of the bridge roadway. It had to be level until it interseeted the west apmonaly giadr. (onsequently, the total depth of gitder phes concrete covering on top and bottom conld wot exceed fla ft. at any point. This limited the girder section to $381 / 2$ " back to hack of angles.

A 3-span continuons girder with equal suan lengths ! $6 \bar{h}^{\prime}$ long was first considered. The resulting flange area rednired for this span length amt the establishad depth was so great that seecial rivets were requirad. Field spliers presented further dif ficulties becanse of the extremely long rivets. A 4 -span system having shorter spans was then proposed. This plated tha domble rocker bent for expansion within the track area and increased the brack spacing. To bring the expansion joint at a phssenger phatform where it would not interfere with the tratek lagout, an aspan system was adopted. of lengthe as indicated above. The resulting girder sections were formad to be satisfartary
sereral methods were used in the amalysis of moments aded rations for the 5 span eontimams girder. The three moment aphation, area moments, 'laytom-Fidher"s graphical mothor, amel at method of amalysis developed ly lofofesor Itardy cross, head of the deparment of strmomal aginerings at the Chirebsity of Illimos, were all nsed at vari ohs times. It may be of interest to know that the last method saved considerable time in computation and was the method used in the timal determination of inflome lines for moments and reations. Becanse of streetcar loadings it was necessary to constrmet the influence lines puantitatively to at
tain ant absolute maximmm moment eurve. In frevions designs it was fommen that correcting the moments for variation of moment of inerdia owe the length of the wirder made litte ditterences exper rially where the deprla of erieder wals constant. Consequently a miform moment of imertia was med thronghont.

Colnmas presented sureral intoresting prohlems. Fixing the collums for the gideres there boo moch moment into the colmmes and increased the dimen sions beyond the limits allowed by the lllinois tentral Ratroad fur cloarance. To eliminate this, a

Fig. f Tue 23 m Street Vimblet
ball and socket joint was nsed at the top of the colamos. I ball joint, rather than a pin, was needed hecatuse the bridge is wh a skew with the colmmon lents. Some momont was frameferred into the columen by frietion at the ball, but it was found nesligible. This left moment due to temperature movement, traction, and eccentricity to be prowided for, in addition to the direct lomal. The length of the 5 -span section is too great to rare for all the expansion at one emd, so buth ends were left free to expand. This required the intrion columb bents to take all the traction forees. The center colmm bents which had least temperature moment, were consequently designed to take most of the traction. Beraluse of the skew location, the colmmas had to be analyzed for unsymmetrical bending. Design was further romplicited by the introduction of Iranserse gitders at the colum bents to eliminater altarnate collumas and ferluce the catisen cost. At the expansion bent it is proped to mse a eontint ons transerese box girder, pill contered to simgle colmmes. The box gider will be wide enough to seat two racker mests in line thas cering for the expansion or contratiotion from eith sitle. This ont. lime of the design featheres at lonsevelt Road via duct, flough extremely sketely, will give some impression of the problems encombered in all of the amtinusus bridges noted above.

Two threespan "antilever wirder bridges, cost ing $\$ 1,300,000$ earlt, we to shan the northe end of the lagoon at TO Street and flith street. The owr-all length of each, including anclur arms which ex-

[^0]
Illinois Highway Inspection

 durimg the smmmer months. I thanght that it misht
 (1) know tha reguirements of the department in this
 similar fresitions, and whe may disionter with me Wh somb of my statements, 1 ain whly offor tho exanse that they were the prime iples athered to in the distridet where 1 wis compleyed.

Whan the inspector tirst ques ont the job, and before work is begm, it is his duty to sere thate the "ontractor has all the beressary equigment to carry ont the work, and that it merets the reduimements of Hu state llishwity Dupatment. Thar most impert. ant of these requirements to look ont fur arre: tirst. the sure that the eontractore has ath apmened type of mixer flas suratications sitying that "tho mixer
 match. 'fhe mixar most also be equipered with an antomatio timing devier, for timing rath bation of
 subsrate template which rides the forms ath which discloses ally high spots on the sulorade. Thires.
 per and the strike aft ate set to the proper crown. allad that they atere the the cown wetting on the sub Eratio template. Fonrth, sex that the contratetor has
 bow of spreflications issued by the department.

The contratcon shond not bexin work matil alt of this equipment has been appored, athl in case any of it does not meet the sperificentions, he shomh mot he allowed to commener work matil all of the requirements have bern mat.

 morning, making athy phores wher the surfor

 it is his duty formink these perints and hate the and tractor rub them down. It is alse regnired that thare readinge be tarken obl the sulgrathe cath daty
 determine whether or mot the ratimed thideness is buing abtatmerl. Shombl the wating continnally

 chine athi the pins on the seratell board. A repert
of tha thicklose tests mast be woth in eath day for the district oflice amd to the main oftioe at suming liedd, Illinois.

A reeord mast be kept of the momber of men wowing, delats during the dily, the lineal measure of patsement latid and the mumber of batthes sering throngh the mixer eard dity. It is wer essential that the member of fert latil atm the momber of batelaes mixed be reeorded in ordar to determine Whether or mot the proper amomet of material is being med for the amonnt of comerote bial. Shomd
 etical amomat of coment required to laty a certain momber of feet of parement, the pire of the extra foment is deducted from the money dine him for his work. Iside from these rontine duties, there are many other things on the joh which require constant attention.

The mixer should be timed at latst twice at day in order to see that tha material is luing mixed the reninired length of time. The time the concrete shomblaix after all the material, imbluding water, is in the mixer, is one minnte. Many contractors, in their effort to make record roms, are inclined to shorten this feriod to kess than a minnter: then the insperetor most make an extra dffort to see that no cenderete is laid which has not been mixed the ragrited time.

Amother regnimement which tha contratote is fiable to dexplect is that of kedping the sumpade wet down. On extremety hot dirs the smbiade dries ont rajudly and atombis a gratl deal of water from the conerete. 'To :roid this the inspertor must see that thr shburadu is sprimkied immediatery before liysing the conerete.

A side from these duties, the inspertor must see that gend alignment is obtained on the forms, that the parment is covered with wet burlay just as sewn as it has set mongh so that the surface will mot be marmed, and insist that the pavement laid one day le covered with caleime chboride, for coring furposes, bey trat oblock the following morning. I'articular attention mast be giren to the fact that a well spated edge is exspotial. If this is not done a honey combed edge will result and will raluse a reat weakness al a point where the parement shombl be strongest.

These are a few of the more important daties reguired of an inspector working for the state Highway Department.

Radio Station WOK

The studin of this station is lowated in the tometh west corner of the 'lormace diadrall It is a brilliant ly lighted stige above and to one simpe of the orehestral fit, athl its interion is visible from all parts of the tialden. It is pattitioned att from the main room he a dombe was wall which, thomelt it
 eflectively brembts ally somble from the outside from being heard in the sturlo. The reilines of the
 and this conering. together with the donthe phate
 sirable sounds from atferting lhe mirephome.
 nected into risenit by a witeh on the athommeres desk. Twor are in the xtudion, two outside in the

 before whirl llue ittix stands while fertoming. Wme of the omtside miceroblomes is lams almere the
 the orgat.

The anmomarers rocm is at onte side ot the

 ampliare lefore beine went for the station: the
 romtrolling the modulation, which he is ambled to
 lime athe by ming his amplifitu rontrols to romere variations in tonte. In the athombers foom there arre there phomes athal thare eotored lights. Whe

 these phomes rall by mathe of colomed lights, insteat
 of the stadio, is furnished with emmentable chatis athl divans, allal an ollice is powided for the trams aldon of stulio husimess.

Thas station propre at llomeworl, lllinois, is

bobe corrents pass over this twenty-tive mile bitu alld are sput through athother tive stage amplitior before being put "on the ait." A four wire cable provides eatra lines that may be put into service if tromble mevelops on the ones in use, and carries the dient telephone wies hefwern station and studio.

The athtennas, of the six wire "lo" typer, is located in al clearing, well alw:y from wher strotedures so that absorption will be minimized. The antemat towers, oht humbed foed tall, are of steet, set in
 Fixume 1, which shows the antemal system and the
 perte the external radiatimg sistem, which is compled to the aseillatom ley motus al a tank vireuit. This tank consists of at coil athe a condenser ; it
 (1) to the antemai, tw whiel it is coupled bey only
 ing systrm. This bati rimenit insumes loose, fot

giving stable operation atod freedom form mananted hammonics.

The operating room is housed in atmall staceo buiding of the bungalow type, divided iato the transmitting amd battory rooms. Figure 2 shows the tramsmitting reome. The unit at the right is the oscillator, employing two 5,000 watt water cooled tulus, along with their assoriatorl aplaratus, in the Hatrley eircuit. The large motor alowe and to the left of the oscillator pathel shows the amonnt of rurrent thowing into the tank rircoit, which is housed in the next pathel and tumed lye means of the barge variable air condenser momated on tope. In this panel is located the morlulator, which also eomsists of two $\overline{5}, 000$ watt tuhes. These tubes are of about tha same size as all air coosed fube rated at 250 watts, but can handle twenty times that amomet of power betause the comstant flow of water carres off the territic heat liberated in the tube, and provision ned not be made to dissipate this ly radiation. A mercury pilot may grards agatmst overheating of the tuhes in case of the fallure of the water smphly, the contacts of the relay remaining elosed and allowing plate curvent to pass buly when there is a sufticient flow of water.

The remaining unit is the speed ampliter, divided into two parts. The lower section uses 50 watt tubes and the upper a $2 . \pi l$ watt, mounted in biack of the pranel together with the necessary imperlances and condensers.

A eircuit breaker is provided, which, in case of any trouble in any part of a cirenit, or at the touch of a button on the operator's desk, opens all of the supply lines. This breaker is placed in the steed box shown in Figure \because.

The operator's desk has phaced on it the five stage line amplitier, anmomeing mierophone, spe eially designed receiving set with loud speaker for monitoring the ontput, a telephone control box, amd two telephones. One is the diecet hime to the anmomer at the 'Terace Garem studio, the other a ragutar subscribers phone.

The other reom in the house is lor the batteries. There are two sets, one for the high voltage plate power and one for the diament heatiog. Enomgh " ${ }^{3}$ " batteries are furnished to make 4,000 wolts. and "ald cell is almost a fool high, having a rating of twenty four amprere hours. Atter a mormal dayes rum, these cells reduire about ten homes charging to get them up to full "harge. The "A" batteries are very hage. Larlh fwo volt cell is rated at mol ampere hours, and the batuk is comberted in series parallel so that thonampere homrs may be ohtaimed with a sterilly potential of righteren volts. These batheries must lue charged oner a work for about

The Navy Cruise for Engineers

(i. II. LAONA, reer. $\because 1$

Sbout next April, when the semiors are wating For the groal jobs that will not "tum "up", there will probably be a notice anmouncing a tifteron day ronise with the theet for the purpose of studying maval installation. The boys would be enthasiastic lout for the line reading as follows: "The Nary bepartment regrets that there are no funds amalable for this purpose lont the apmontees are privileged to pay for their rations at $\$ 1.50$ per day:" 1 signed the appliation dmring my senior year, and when dune rame around my problem was to get to Newport without a ticket. I rode the "rentral" to Allang with stop-offs here and there, offen by mrent reguest. The service on the N. Y. 1 . js very good but 1 did wish they had roofs between the hageage cars When they took water on the dy.

From Mhany to New York ('ity, via the Indeon, the passage was legitimate which means there is no Way to ribe the boats withont tiekets. The trip down the ILadson was worth being honest, howerer, becanse of the sernery. There were the restates of the butch patroons, the cottage of John Burromghs, West loint, with its chapel way \quad up on the boft, the new loughkepse loridge, and hastly the electri tiod disision of the $\mathcal{N} . \mathrm{Y} . \mathrm{C}^{\prime}$. It was great to see long trains "tearing" atong the mas bank of the river, silently and without smoke. The trip to Newfort was by way of Longe Istimd somod. I reached there in lime to sere the 1 . A. S. Colorado, pride of the Nary, weigh anehor and leave for the oriant. The following deseription of her is foum in a hand book: "Majestio monster, sto,000,000 worth of defense: le,000 toms; Slit" ghms."

I was sent aloard the lolorida, Figure I, for
 usually placed on this type of ship. As it is one of the secend on third dass battle ships dating from 19月1, it was comsidered olsolete and Was to have been scrapped that liath. Theree is a great doal of work to be done on such a ship, as they are forerer srouring the most remote corners of the double botom. I "Fiedd lay" was in progress when 1 went aboard which meant sermbling everything from stacks to the rmming boats and from the eyes to the counter. A party of Naval Reserve ofticers, to-gether with two stmdents came aboard amd a general introducing fest followed. One student was from lrincelon, not an engineer, and what was worse shook hands with his tingers only. The other civilian was from Remmselar loblyterh, ant togerher we three represented the bulk of the response to the student eruise offer. Commander Mumn of the Florida was rather disappointed with both the fuality and guantity of the appointeres.

The party inspected the Fionida and in relating this 1 mast betray my lack of data. I took mo notes, but athonte who is interested will find handtooks in any library which contalin this infomation. 'Ther two things of particular interest were the gyro scopic compass of a new improwed type and the fire (gumery control rooms. The improved gyrocom pass has two spiming emments which form two sides of an equilateral triangle whose verese is at the morth of the eommbes ratel. This methed of mounting eliminates the periodid motion on tomson pendulam affert which is always noticoable in the Spery type with single moter. The gro is alwas (rontratued on Paffe \{?)

Fig. 1
The Fiamidad

Finis e
Tombrios Tumis of the Finsthas

F14., :

Failure and Relief of a Water Supply

The drought of the past smmere, which ralused a creneral loss of crops thombhent the south and rast, brought on a severe water shortage in Ashas sille, N. C., at a time when the dily was hosi to thonsimels of smmmer visitors.

Conservation meantres were takral barly in the smmer ley prohibiting the bise of water for sprink ling lawns or Wrashing cars, while the municipal fonsumption was at the salme time reduced to the minimum. The distriloting mains and all phmb ing fixtmes were inspested and leaks were stopjeded wherever fombl. These measmes hetped, bat the situation datly grew more serions. The initiat action was followed immediately by restrictions Which stopped all wnecess:ly mse of water ; shops manufactmoing sodafop were rlosed and all soda fombtains were made to use paper copsend saturers in order to sate the water hesed in washing: construction works were alt off the city mains: abl the people were prohihited from indulging in either tub or shower baths.

The tragedy of the sithation was that the city was not in the least prepared for an emergency of this sert. The supply had always berom ample amd of grod quality, requiring nother filtration bor treatment. By the middle of Augnst the nomemat daily suldfy of seven million gallons of char, ires cohd water had dwintled to littla more than a million gallons of tepicl, umpotable flulad.

The somme of sulply is at watersherl high in the

 to the natme of the combtre The drationge area of
 valley in Figume 1 . It is heasily timbered, femed thoronghly patrolled, amd minhabited. The streams rome together at the intake Figure 2 , where at an
 dast irm main that combluels it almose semptern miles to at five million tallon ronerete reservor located on the momatainsith almer the eity.

The annmal rmofie from this area is about thirty there incles from a mosmal precipitation of be tween sixty tive and vomply infles. With impound ing farilities able to take cale of the semanal varial tion this watershed would hase at eress capacity of twentrefight million wallons daly. In anticipation of the fature temathat the eite began last geat the construction of an imponding merronir on abw
 avalable in the persent rexis.

It had twen fully molerstand all along that a Watersbed. mo matter how gomal. wold not function propery withont ralln, alld mall there was not. The Weather buran stated that it would probatly rain wentually: hat they condant sily jusi when. Somethines had to be dome enickly. The relief work Which started abond the midtle of Angust pro Eressed rapidly and fored gnite ellective. The plan was for install temporary pemping plants at fonr independent sobrems and foree water into the distribating mains of the city. One plant was to
 \because, pumping from a temporary dam below the watershed, and the rentaining mits were to be phaed at artifiriald lakes at few miles 10 the west and north of the rity. An emerberwe orranization formed

 and started work. The conatiry for miles around
 all kinds: rlaterinators atm wher sereial mpipment wore urderd; and romstruction work was carried oll hight and day.

The arrangernent of a typical pomping plant ans installed here is show in figure ? The min com

 Thu fereder pump is a l" centritugal pamp with a

[^1]
The Santa Barbara Earthquake

．1．Kしゃ心！

 Is I lomkind ont of thr window to determint the rallse I was dimown violemtly alyallst the wall． liequrring my balather，I stome with my lex．e ont

 rest of the laonse remmblimg to the gromble in the midst of at elomel of dust．Thar tiost fuake then © alld many smallor ons in the stmeereling homrs．
 has oremred at whe fime wr amother in almost erery

 Hote of these requons is the Wiest（xast amd in par－ liculatr，（aliformia，where the most reeent guake ocrorract．
 the callswe of the tremblings of the rath or the

 by the shifing or settlinge of at portion of the fallla＇s frost，the shilting bring dowe to what is

 as was lherase in this partiontare ombe

 those jmelividmak who．by thoir quick work in shmt

Herenter all otherwise grant loss．Lass al life for tamately Was small，duc to the time of tha day at which the ghian oremrert，there bejng rery lew ferote in the hasituss distriets where the major amount of diamatge wiss dome．

Ther motion of the ararth variad with the different tremblers．＇The first slook，which wias about the hamdest of all．was mianly a motion sideralys，ip

 age dome．Thu socomal shoek was almost as hard and of an long a dumation．In addition to the previ ons motions，flais onte also latd a fwisting motion． It bronght down a eroat deal that had been loosened by the first shock but had remained in plater． Practioally all the damawe done comld be laid to flese first two shonks．Inmmmerable lighter fuakes followed and conld be felt for several werks．These gradlablly beralme less frequemt amd lighter as time Went on and did litter or wo damage．

There are many storios as to the actions of the atroth and ocean at the time of the big distmrantere． The quake to ombookers seremed to alphotele them with a motion of the gromed like that of a wave． Several of the tremblers twisted violently，while whers were all aboblt drap or dip．Some people say that the orean aretod peembiarly thring the dis． furbancer Earthanakes sometimes eallse tidal wares，but there was thore itt samtar Rarbata． Early mornime hathers say that they wore able for touch bottom ont where it nsually is at at depth orev their heads，then the ocean bed sermed to tall agatin giving the efled of a rising and linlling wavelike motion．It is sadid by some that the tiale went out aftor the tiast hige shotk and it is rumored that at larese hole of ereat depoth opened wpe in the weran herl a mile or two wif shore the water rushing in to fill this，but the froth of this statemant has not lerem established．Some tishermen reported ronghness of the orean ind peenliar aedion．

In ereneral，after the dixtimbatere of the eathes
 itself except in a few eases．At first there was
 after the earthymake．I elarek in difterent lacalities proved that in most rases there was mot emongh error to reeomb，excopt alomin aterion of the oroan front．Lere there is an asplath lomevame and in the preliminary survey hore was fommal an errors，l helieve，as wrat as thirfeen inches in plates．The
road was fairly well cracked and broken ap. At places, seetions of the road were offset several inches. The effect of gromd shifting was best illns trated at a comotry bridge, a few miles ont from the dity, which was built on piles driven into a slightly jelly-like soil. The shack threw these piles ont of line, zigragged them, ant left them all disordered and of different heights. I reservoir, used for stor age and for equalizing the thow of water to the city from the main water supply, was broken up by the rarthquake, sending a barge phantity of water down the canyon, tearing amd cutting it way to the ocean.
high off the fommtation, without having suthecent bracing. bophed off theis piers.

The greatese dextruction was in the bminess distriet where the quake left things lonking mores desobate. amd latit to waste than in athy othere fart of the eity. It was only the down-fown, or business section that showerl signs of destrobetion, at the tirst glame The tyres of romstruetion in which the greatest damage wobred were briok and masome? structures. The father of those tope of eomstruc tion was in the bersening of the hrick amd stome the (rombling of walls amb wimes the falling atway

Views of Destrectuon Carede by Santa Barbara Evithoq ake:
'The main wator supply, a large dam atorose a river in the momatains hatek of the eitg, was modatmod by the shock.

The residentiad district of the eity, as at whote Was only shichtly harmed; the greatest pin being in the busimess district. The printiple damage done to homes romsisted mainly of chimmesis beaking ub. in most rases braking wff at the roof line. Chimmeys on the outsile of homes which weme not well tied to the structure fell away and ermmberd to the wround. In some instances where there was fuer phaster or else the house was shaken very hatol, the baster was torn loose. In the residemtial district the homes which suffered the most damage. were those which were promly built, in most rases due th poor foundations and mulerpining. Quite at mumber of old fashioned houses which were built quite
of brick and stome walls, and the hreaking and fall ing of firewalls amd comences. The amomat of
 of this comstrmetion, Fige St, heing practially rom pletely wreked. Nomeroms tirewalle broke off and went drashing down, and in the case of higher
 thromgh the rowf of the buihlinge next the them which were mot as tall. The tirewalls allat comices on the fronts of the haidinges failed guite sumerallys. aven more than the sides of the walls, washing to the sithewalk below. This womblate caused a great lose of life if it hat happerted all a time when there were many peophe on the streds.

The chief callise of the wreat destruetion of brick structures was tha fallure of the mortar. Trying to satice by using (hatap mortar cost many dollars. The

 members of the strtoture

 morely sal moright with mothing holding flem.

 these firllares slow that tuetter morlat illat bretter

comstraction wis lamased omly on the first flemr, the fillins laring wrerked here, while the upper floors were whly slighlly latmed. In stame bulaling the

 froper loomd.
 builalise was almost compledely werked as shown in foie. 1. The hathing as "l" shaped. Tho cormer of it was leveled for the wamd leavine the fwo embs

 l:uildinge. In other catses builaline of this tyere were
 all rxtent that they will have for be forn down. On the whole, rexnforeed eonereote buildings ledd ut bettre than other typer of healy eomstrotiont.

So filr, this attiole maty give tho impression that notrly all the mildinss amd structures were wouked byg the eatolhynatke. This is not so, ats I hater meroly attemperd to describe amel illustrate a few of those that were wrevered to try to show the
 there whirll were bromeht ont by the qualse. The
 omly minom ditmagers, as las berem mentioned before In tha lasiness distriel, there were a llmmer of hajldings of semi-1rame and masomry eonstruction which werr well built amd woll fied tugerher and withetomi the slanek with moly slight lamate. Insontry comstration which wats well comstructed
 the efferes of the shotk quite well. othere type of haildines that had laeron more rexemtly hailt, with

 siblo Workmanslaj into the jobl.
 tolally or partially, these alre riabially luing torn

[^2]
Golf Course Engineering

A new tield has been opend for men entrerime the engineering professon in the last few yours. 'ountry clabs and monicipal golf courses are being baid out in increasing mumber all owe the somintre

Large salaries are being baid to men who san do this work, and at present the supply if traned men is far short of the demand.

The young man or student who is planniug his life work at this time, if he has any of the requisites for a golf engineer, will do well to book into this profession for it offers a pleasant and protitable lield of work.

A sthenent with golf enginearing in viow ran register in either the agricultural or engincering college and by the frobuer arrangoment of his comrses cover the ground necossary w tit him for the work. Of conrse the prime reduisite for a wolf rogineer is a liking for the game, and the ability to play fairly well. Aside from exprielle pertaining didectly to golf, a good deal of rivil emginering knowledge is needed to do the work in an efticiont manner, but no set rules can be laid down as th pror cedure. The work is really more like lamd sursey ing and the student should alwats remember what has beren said so many times ahout survering, "it is an art, not a seience." and that wood judement :nd common sense are of more value than text fook formalas amd jron bound rules.

I think the best way to show jusi what the golf enginerer has to do in havine wot a comese is 10
describe the comstration of the st. Andrews dialf -lab that wis sarted hast smmmer hear Wers Chicago. Hllimois. This comres was layed out by Fred heary of (hisasu and the smo eying amd engi neering was done loy the Geo. (i. Nelson bingineering Company of Elgin.
st. Andrew is adsertised as the ondf elub with at prateral plan. Thes rluh owns two handred forrs arres of land amd when the buithing prentam is finisherl there will lo (wo romphete dighteren hole courses. Bhe rondse will be for yearly or daily
 righte only. The where aightern holes and the elab holuse will be for tha ase of fill members. That platn is to have the fevernue from the fee comese mathtata the farmats and armern in both phay ing areas. The
 tion has beten provided by the "hicago. Anrota and Elgin Latilradd and it is just al shot distature from two praved hishways.
I. I'. Tuthill '1T was in chatre of the tiedd work amd ran the instrument for the stadial parte. Another man rath the (mansit and latid out the traverse that was used in making the toperemphical matp. Alden Fork, now of the rlass of " \because - William
 did the chainine.

Tor get atr ideal of the laty of the latud amd alat In able 10 plan the lowatom of the werems and faire Ways a topmgraphisal maty drawn to whe foot. coll

 Hallore of xiv! llore stationc was extablixhed.

I tallomal ybike driven in at tran at the highest

 matiked oft ante side of tha stake. 'The momber al the station was ako marked an the stake to atomid mistakes when the stadial work was bebing dome.
 west enther the statial patty startend in to "showt"

 ine down the readings, vallal bẹ the transit man, athl raming the roal. In this wily rath man got a
 tillor oin the roxt.

 Araftine was dome by Mavin Fiorke mow of the
 It "all be easily seron lown these ligures that at top"

 finishad in alome ont wedk of working time.

laths, Hax highest point was marked and atwo by fom drivert to gralde at that pmint. Thar leature of the wrent is lhat worked Mr, the high point being Hesed as a romborl.

 that will wash out the grass. The watar is usatly Araimel off the vides of the greens in latrals and

Is somen as the greats wore started the 1 raps and bankers wore latid wht. The hatzards were staked (1at with baths in tha same mather as the greens. The lome were matkerl with a simple lome hy fent, the top of which wats sell at the peopesed clevation.

The ention are: ineladed in the romese was planed and dised and in some pares itregulatities were ironed ont with drags. The disertug was kept II) all summer su that the lat sum conld kitl the puate wlase. Two Fordeons ware used for this work and they berfomed wey wedl. Toams with

 10:3:
 wall dratimet. If water stamds in puddles or the

 AI St. Andrews the surface water wats dratined in 10: a bern on the west side of the eromuds. A main bine was fan, bollowing a gully, frem the thisd

 Were in low spots. pielal tile was phated throngh wit allal latid will olloll joints.

Is samb is Hadel for the bothome of all traps

 (1ontimuch on Pate

Smoking on the Campus

 merely a regulation, it's a fine old tradition that loyal lhini hame institntad and upheht for
 Mathews arenue and Wright strest, deeen street and sprineriph awome.

So smoking on the camphe adds dignity to whr institution and emmmands respect from our visitors. No smoking is also a business matter that is wital wery one of ms, for this
 more courses, and higere and better builtinge for wh. It is for wis and the responsibility of making this insurance poliry sood or bad lies in our hamds. Lets make it a wome ome. follows, and while we are taking onr smoking off the camples, hets deposit fewer "dmeks" on the edge. Jo the present condition of the campus ont minht truly deseribe it as beine a targe and beantiful lawn entirely surwomed by "igarete "durks".

The Shaeter Prize

 protive ergineering prafers. This antest, known as the shaterer lrize competition, was
 rate observation. logical thinkins. and the nse of erome English.

It is generally admitted that we are devoting ton lithe time tor the whe of and Eng.

 altogether unsatisfactorer.
 nse of good Engrish. So it has prowed for a few in the past. hut only for a raly few. Wore
 thinking. and use of trom! English.
 leqe of Euginering. Let’ 11 y ont:

I'elcome

 been appointed as their repmesmatiow.

COLLEGE

 NOTES
Annual Senior Inspection Trip

Architecture

Tlon splions wrot ont the ammal insperetion trip the werk of waber er. Practically all of the time Was spent in (hiteso. where at lome of inspection Wats mande of the more important new buidings malere constiotion. The Finrmiture Natt was the sorne of a stmily of prepiod furniture. Among the buildings visited were the Tribune Tower. the Staths holding. and the bur Palmer llouse. A stody was made of the lagomt of the lake Front developmant umber the disertion of E. II. Bemett, Wairmath of the ('hicago ('ity leamning rommis sion. Whe of the most interestime fatheres of the Irip was the visit to the oftice studio of benjamin 11. Marshall, the well known (hisabo arelitert. His oftiere, which is the mest midue ame most eostly in the coblutry, is rephted to represent, incluting the clabratate furnishings, a cost of about \$1,000,000. In Mr. Natwall's cobleretion are many proceless antignes, many of whith are the only ones of the ir kind in existence. Among the whighe feathers of his witer ate at dining room for the ortiere forere and ath atultorimm with a combrorthle stage for produrions.

The featile of the trip was a bamquet given at the 'hic:agn Arehiteres ('lut, where in aldition to

 Indean, `il, who is one of the best known remberes in this conntry. The inspection frip, besides being very enjoyable, was highly instrontive and beberlistial.

Ceramic

 fllimoses at rixht biclock Wertnesday morning.
 'Ther Illinotis ('linat 'ompany at Litucoln was the first plant visited, where the att of ehinat making Wita shown by the romplatere entides.

The gromp left Lincoln at noon for springtield. Rrepresentatives of the loston briek company med the party at the train and entertained them at a lumeheon given at the Abralam Lincoln Itotel. Cars were furnished by this company for the drip to thoir phant and atso to the springtieh clay broducts ${ }^{\text {company }}$ which was the next plant visited. The members of the party were entertained that night at a dimes given by the springtield (lay Products (ompany, after which they laft for st. Louls.

The Evans and Howad Vire briok Company was visited Thumstay morning, after which the party proceded to the elay mine operated by the sime company. Aftor lancla the sewer piape plant of the same company was visited where the various Moblems arising in sewer pipe manfathere were explained. The Quick Mad stome Company was the next factory visited, where the gromp was shown the varions professes used in emameling sheet metal.

Fridiy morning the Ilydranlie I'ress Brick Combany's phant was inspeted, followed by that of the St. Lonis Terra Cotar Company. Due to a late of time, the party was mable to sere the newest pant of the St. Lomis Terra Cotta Company, which is muler construction at present and is one of the most modern pants in the terma cotta industry Fibday aftermoon was spent at the Lat lede plant and the ('hristy pant of the Lat lede ("hristy Fire Brick Company, where the mamfactmo of all sorts of refractory goonds wasexplaned the the guides. The Momm City Cooting Tile Compmy was the last to be visited frimay. All kinds of tile and all colors used in the industry were shown and the process of mannfacture expabined to the party.

Saturday morning the group assembled at the Ithons diass Company at Altom, Illinois. dinides were provided by the company and the party was hroken of into small groups of three or four sthdents and one witide. The processes nsed in making and resting the ware were explatined and many
 paty dispersed at mown in Whom, the sturleme to
 atmics department. who wal in dhat of of the trip. to return to st. Lomis, where he attemad the dirick convantion statimes Nomber $\ddot{-2}$, in that rity.

Civil

 has hatd sine the atmand tone wats tirst baken. Wra started from rlatmpaign Tuestaly afternown. (het
 Wedmestary morning in the hod of of the Port bear born Hoted. Thicater whe set forth for datry, lal. Where we wemt throngh the himt of the thimes

 we proxeceded to insure the fatherating jhatht of the Americall Bridge fompany at rurtis, wherein the stapers whith we had sed rollend at diary were beting made into tridges amd buldinges. Wia dimed in

 mathacer.
 aboug the line of the lake Front imberemente of

 promping station. In the afternoon we weat to

 sewiter treatment phant, : l: million dollare im-
 We heard a kerture tey Sr. Thelor in the rowns of the Western sumbty of lamineme on the (himate Plan fommission amt its worls.
 tailding conctraction in the lowh and the Wiaker

 and the Eitel Bork, alfore which Nr. Vixans athl Mr.
 ments, conducted as wer the Wiaker brive doutane

 Mr. (imetr. Mr. Whtior, alld wher ottirials of the Illimoin Cemtral latilmand.

 tomk a ride on the brider. Wia "rere forthate in

 briders.

Electrical

 visiterl on Wertuestat! The electricals were the guests wi Western Electrid for hand

 Was hatioler of ceremonios.
 visiting the W"estimehomse lamp works, an atoto

 plant, and the Allis ('hatmurs Manfatedring lom pany: 'Through that eometes of the Milwamker Ratway amd light Company a sereat stred rat was placed at their dispesal. The Allis Chalmers

Rednening to Chicago Friday wening, the Cen-
 (ontrertor shlstation of thr rhicigro, North Shore amd Jibwanke Railroad was visited.
saturday morning was spent at the Illinois stre] [ompany"s pant in Nonth rhicago.

Mechanical

 bebediet, Polson, and lemtwiler, made visits to valous angineering works in Chicago and Mil Wanker.

Wh Wednesday morning the (orwith plant of 1hu C'ane ('ompany was inspected. This platht, locater] in rhicago, has one of the most moternly mapped fomatries in the world. Everything is Aome on the move: monds are woighted, pomed. and heken apati while in motions. A red stream of moltern thetal is continumsty sparting from the
 lathes are filled from this perpertall reservoir of lignial ifon with sarmely an intermption in their foblomes to and from the taveling mondds.
burime the afternows the dass inspeeted the
 Her were treated to a little of the spectardate they board the brom and roar of exiant rollings: and the sal the myrialls of shootine sparks athd the blind ing thame of liesspolmer convertors.
'lhmsalisy and bar of Friday were spent in Mil. Wamker visiting imbustrial plants there. The Allis 'halmers plant was the dirst to low inspeeted. Mare the rhicl attrationt wits the immente size of the machinery llatuly it satid, "lig thinges mast be 1]ntr in at big Wily." lator, the plath of the Falk Corporation, the makers of the famons herring bone

Another object of interes was athage qear redne tion constructed expecially for a large Argentine battlalij).

The last phant visited in Milwanker was that of 1he d. (). smith (orperation, probatby the most singular phant of its kind in the worlal. Autome bile frames arre stamped wht of patin sheel sted and assembled by profechy syobronized antomatiamachimery with pratioally no aid from human hamms.

W" the way bark to Chicage, a stop was made at Kenosha in order to inspert the pant of the Sish Jotors (ompany. luformately parte of the plant were chosed on accoment of an inventory Which was being taken, lat in spite of this the D. E.'s were given a good idea of antomobile production.

The last phace explored was the Crawford Ave mot station of the Commonwealth bilison Combany: the chass distanded after going though this gigntutie power phant.

Railway

Wednesday morning this department, repre sented by tifteen seniors and acompanied by Professors King and Tuthill, visited the plant of the lllinois Steel company at dary. In the afternoon the eivil and mechanical men inspected the pant of the American Bridge Comprany at Curtis, the electrical men retmrning to Chicago and going through the crawford Arembe generating station of the Fommonwealth Edison Company. On Thursday the railway freight and passenger terminal yads along Romserelt hoad from state Streed ter dabl street were insurected, also the lomion station and the Baltimore and whin liailroad freight station at look street. The lathaly Eleetrical semiors sernt this day in Milwanker visiting the works of the Westinghonse Electric Rallay and light ('ompang. On leridis the Slechanical and civils inspected the Burnside shops of the Ihinois Pentral and the Termiabl lmprovement betwern Burnside and Homeword. The Ehectrical man on Friday went through the works of the Allise 'halmers Alanfaturing Company in llilwatake afterwards tak ing a serial Norbla shore Train to "hiago stopping euronte at kenosha to inspeet an antomatic substalion. On Saturday morning all thee groups went thromgh the loullman Cas Works at l'ullman, thereafter dishathding.

Phỵsics Colloquium

The lhysice colloguium is an informal gathering, open to all interested. for the diserussion of recent developments in physies and allied branches
of sejence. Most of the embribumbans are in the form of original researel hy members of the factity and advaneed students. It is well that there ber such an ageney for it is valuable mot only as a means of disseminatims new fatco fresh from the laberatories of the insestisalor, but also is a sollrer of inspiration to those who are thamselves emeaged in such work. The l'lysires tollowimin merets Thursday everings from seron until right.

Some of the spealiers amd thedie topies of past athd finture collorquinms arre:
 Netal Laboratory."
 Bnglish Eniversity."
 ('ondurtivity of solids."

 verberation in Amditorimms."
 of Air Veloedies with the liolemoh loisk."

November 19——r. E. 11. Williams, "Thr lindr of Magnetism in Valence."

Derember t-Report on Thanksiving Mertin! of American l'hysical Seriery.

Experiment Station

Bulletm I憂. 'Ratio Telephome Morlulution." by Inuth . . Brourn amf C'. A. Kechor.
The furpose of this halletin is forestut amb inlerper the results of ath rexprimental invostian tion of the degres of modnlation obtained with the systems now in use, and also sumte modifis:ations of
 The first part of the bulleotin is deqoted to at disers sion of the chamaterisiles desired in all idnal mondalation system, amd to an explanation of the mothonk nsed in measuringe the degree of mothation obs. tainol. In the batamer of the report the difforent systems now in ose are disetresed. abd the results

 formance emores show the ferformance of tha rib enit mader different combitions, atol, the writers think, shonld emable the radion eloginere to makr an intelligent chaiere of the equibument sutumb his partiendar neods.

Bulletin No. t名, " 14 Inrestigation of the Eflcitency alld Iurability of sipur Gettrs." by I. W. Ham amal J. W. Huckert.

Thr objece of this bullatin is to abtain |l| reli able information on the efliorenty of spur eraring

 Their lubriations.

The fosts worr divilet into fwo relasses
 tooth friotion rorves are giver for the varions tests performed amb also the datal amel diagramatio chamges in tomth protile for the dmablility fests.

 portions, allat irmewnlat sparing of teath on the
 1)nrability Tests, factors which attert dmyability,
 on the shape of tooth protiles, atal thany of fallure of gear leath are stmelind.

 Historical leview of the lrincepal Investigations

 lomability, amd strongth of lione 'reoth.

Rulletin fint. "A Thermorlynamie Analysis of Gites Englan Trests." by ('rantall \% Rosecratis and Geor!er T. Ficlbeik.
This hallutin lats for its purpose the analysis of

 proformanter.

The tirst fart of the halletin bakes the the

 linal slatom.

 monts, is complete in लerly wity
 allal the allthors lime that the thtieromes latwerll the
 Vilrions rherite Joseses.
(rontomucd on Pat! io

Contemporary Engineering News

Cold Weather Hints.

Molorists arr begiming to disoover interesting fossibititites in the ases of glyervine in antifire\%t solutions. It does not waporath as does alrohol, so that its greater tirst cost is cons pensated for by the latel that one tilling is phonely for a whole winter. Pesides. an wonomically minted person could peor the whole solation into a can when spring cames stove it away, and hate it to use the next winter, and the mext, ad infinitum. Thes kind of glyeerine to use is the 3+llow distilled variety. Proctor and (Gamble Company has plated on the market a correct glyerint solution ralled tro, which is suitable for use in all cars.

The advantages of this solution are many. It has no odor, there is no injury of metal or rubber hose connections, no fire bazard, and the first cost is the only one. Need we say more?

Dream of One Hundred

Years to Be Realized.

Lonisville. Kienturky, has completed plans for a new hydro-blectric plant, to be one of the six largest in the I'nited States. The initial eaparity will be Iox.0ete H P. with provision for an ultimate of $135,000 \mathrm{HP}$. The hydroelectric plant will be located at the site of the dam for raising the level of the river tor the canal and will he supplompnted by an adjacpnt steam Hant having a capacity of $250,000 \mathrm{H}$. l' The dam and waterpower plant have been started at the present time but the stean plant will not be begun until 192x, as the installed power plants ate sullicient to take carte of the present demand.

Tha* Corps of Enginters of the IT. Army is in charge of the comstruction of the dam, which will be g,001 feet long, will require st, ono yatds of comcrete, and cosi $89,254,41+1$. The power plant will require 125, 9 den yards of concrete. and with the gewerators and switching equipment will tost $\$ 7.500$, nous.

This profert is the rulmination of a seria's of phdeavors, dating back ower 101 yetars, to use the thio for power. The ronsideration that kupt the patas from bring exequted brtore hais time. however, wat the fact that the installed stoam flants where suffiont
10) lake cart of the demand, would be regulard ats amxidaries eron if lhare were a hydro electric platit, and reyresented a larep investment that would be idhe whenever there was sullicient water to run the turbines in the water power plant. The neressity of rebuilding the canal dam, how+rer, offered an opportunity to install a hydroelectric phant without an excossive amount of extra labor, and as flee steam plants would need consolidation and enlargement in a few sears at any rate. in order to take calw of increased loads. it was derided that a waterpower plant would be a paying proposition. It has been caltulated that the investment of severl and one-hatf million dollars would be justified by 1930; that is, power may be genwrated at that time at about the cost of that generated by steam.

Rah! Rah! Rah!

There is a real reason why college yells so frequently contain the word "Rab". Acrording to studies made by fr. Hovige B Crandall and Nr. C. F. Sacia of the Bell Teltephone Laboratories, men ordinarily sperk this somed louder than any other vowel. If the value 50 be assigned to the amount of energy delivered by a man's vojee to the air for this particular sound, then its nearest rival, the sound of "a" as in "tay", rome's next at 4t, and as in "talk" at 37.

Women's voices presellt quite a contrast to men's in that there are lour vowel somnds of practically the same londness. Thess are the vowels in "lont," "talk," "ah," and "rah,". "Ah" is the easifst somed to moduce breause fowest month and throat museles are tensed; hernce it is the basir vowtl sound in most languages

"The Mule of the Farm is

 More Deadly than the Plane"Hespite newspaper reports to the vontrary, atmbane accidents am less in number and filtality than those due to other caluses. speaking belore a renference of arematieal and bonsinuss otlicials at the Ford dirport. Wearborn, Michigan, Najor R. W. Srbroetler, A. S., IT. S. A., former whied tust pilot of th* Army Air Service at Mreook Finld, rectratly said:
" I man in a mant engaged in ordi-
nary straightaway flying is sater than on the gromme I lave noted that during a recent year eight persons lost thrir lives in the entire Inited States while engaged in civilian flying, while during that same year, in the Slate of Missouri alone, eighty persons-just ten times as manywer kicked to death by mules."

"I's a Comin' "

(The Terhnograph will mut wourh for the truth of this. Howerer, it af prated in Powem, and has that muguzime to burk it. It is pressented becrasee it may brimg to someone the rembiaution of what kind of men these en!ineers be.)

At a recent meuting of one of the enginerering societies, a group of men were discussing the difficulties of "bringing in" an oil well. One of them told of a well that came in with the liberation of a large volume of gas. A small gasolernc engine running near the well found the atmosphere suffeitntly rich to propel it, and promptly ran away, notwithstanding its governor hat shut off its legitimate source of firel. In an effort 10 stop it, the man in tharge pulled the ignifion switch. drew a spark, and ignited the atmosphere. When those present "ame to and ealled the roll, they found everyone accounted for but one negro. Some few minutes later he appeared; when asked where he had bren, he replifel, "I bew comin' back."

The Future of National Electric Service.

Ther conceptions of the imagination. scientific or speculative, are always interesting. Jules Verne foresaw the submarine, H. Gr. Wells the aeroplane, and kipling the dirigible air service long belore these things became realities. Dellamy, in his famous book, "Looking Backward," described a system of bringing music and aducation into the home which closely resembles ratio broadcasting. Following the lead of these eminent writers, 1 , foo, am going to risk mentioning one or 1 wo tuture possibilities in the electric tield and 1 shall infulge in noth. ing more extravagant than the examples I have just cited were hought to be in theit time.

Thr widest known electrical appli(continued on Paye Bh $^{\prime}$)

Architecture

Each new year sees new members on the faculty of the architnctural de－ partment．This year the new addi－ tions to the staff are 0 ．M．Olsen． Phillmore Jacobson，Keith G．Reeves． and Clayton I．Meirs．Mr．Olsen is in charge of the jnnior design class．Be－ fore coming to the Eniversity of Illinois，he was in the office of Henry Hornhostel，the well known Pittshurgh architect．Mr．Olsen．who is a gradu－ ate of Carnegie Institute of Tech－ nology，was the winner of the much coveted Stewardson Prize，which gives the winner a year＇s study in Europe． Mr．Jacobson，Mr．Reeves and Mr． Meiss，have charge of the fresliman architectural design．and the sopho－ more architectural engineers．

On October Sth，the Architectural Society held its first meeting of the year in the Union Building．Short talks were given by the new members of the faculty and by Professors Pro－ vine and Dillenbach．The new sta－ dents were weldomed into the depart－ ment，and mide acquainted with the activities of the department．The meeting concluded with the serving of refreshments．

In the first Beaux Arts design prob－ lem of the year，＂A Dam，＂the seniors were highly surcessful．Clayton Meirs was awarded a second Medal，while First Mention was given（1）d．H． Chance．J．W．Ciregg．L．R．Berner．L． T．Hedrick．K．W゙．llelms．Wm． Kramer，H．J．Neǩee．11．Sobel．and Mary Worthen．This is an umusnally good showing since the rompetition in the Beaux Arts work is very kren and of a very high standard

Ceramics

The first meeting of the student branch．American ceramic soujety， was held at the Tinion Butading at $\bar{~}$ o＇clock，Thursday evening．October $1:$ President Jack Baer＇2t，presided． Several talks were given by members of the faculty．Professor larmeter． addressed the Soeiety and welommed
the freshman stuhents．
（i．Roeshe＇26 was appointed chair－ man of the cammittee to take charge of the Annual Pig Roast to be held in the Kiln House in the early part of Devember．

1r．A．R．Andrews，formerly a mem her of the facult y^{*} of New York School of Clay Working and Ceramics． Alfred．N．Y．．has joined the depart ment here as an instructor．In Andrews takes the position ouruped by Mr．Ray Watkins last year．Mr． Watkins resigned to take a position with a jewelry enameling company in Ohio．

1r．Andrews．who is a Wisconsin graduate，was formerly with the Burean of Minfs．

Civil

FW11IY
The Civil Eng neering lepartment is fortunate in having for this semes－ tor the same staff as of last year with two promotions．Mr G．W．Pictiels． assistam professor drainage engineer ing．now being associate professor． and Mr．T．C．Shedd，associate in structural fagineering，promoted to assistant professor．

Nembers of the staff have hoen quite active the past year in technimal writing．At this time mimengraphed notes tor（＇．E．An，Plain Conerme by Mr．Baner are being used as a text： a trook on fraibage Engineering by l＇rof．Piekels is with the publishers： atud rrot．Rayner＇s wark on Surveying is rapidly nearing rompletion．

Prof．Wilson is now ranning a series of tusts on Concrete and Rein． forext Cons rete Archess ats committee work for the $A \quad S . C$ ．E with the
 R．（；Sturm．graddate studemis．

Sいがスな

The Civa！Engineering Department hats parolled for this semester tifteen grisuluate students，three of whom．L ． F．（irinter，I M．Hatrelesty，abd I．（i． Strauts，are preparing tor their dow tor＇s degrew．A． 11 Finlay and J．E

Keranem，graduate assistants，are be ginning a two year resparch on earth． gravel，and maradam roads in con－ junction with fermillion county，the Austin Janutacturing Company，and others：while W．K．Brown，Tniver－ sity of Texas 24 ，and E．C．Hartmann， c．e．＇ 23 ，graduate assistants，are en gaged in experiment siation work with Prof．Wilson．

The total undergrablate enrollmont of the（ C ．Wepartment for the and rent semester is 2St，distributed as follows：seniors 65. junjors．$i 2$ ： sophomores， 70 irmshmen， 7 It it interesting to note that the semiot class represents almost one fourth of the total．

A．S．A． E ．

The student chapter of the A．S．C E．in its first business meeting of the school sear elected the following ofleers：President．B．C．Bray；vice president，J．1）．Voorluers：sergetary，S （．Bean：treasureq，K．W．Wiles．

Open meretings are to be held on the first and thind Thumsidys of eath month at tour o＇rlok in koom 220． Engineoring lyall The first of these． oct．15．was well attended and short talks by graduate students，Findloy and Mavis，wpor enjosed lof all．These meetings．while primaraly for stu－ dents of Civil Fuginearing．are owoll 1o all．and a cordial invitation is ex fended th those interested in hearing a good latk on a vital topice

Chemical

 Hine of the Western Eitedrif Com patny of chicako．spokt on＂smokes： The Colloids of the ．Wir＂before the first meeting of the Smerican（hem ial Sorfety this year＇The first soi－ entifie stady of smokes was made dur ang the war when it was employed ats a camonalage athel a toxie agent．Lake many other sobentific studjes．the study of smokes thourished during the war．but practically epased after the sighing of the armistice．The chiof

Work in this fiedtl is being done at present by the chembeal Wartate Serviot at fidgewond Arsonal of whish for Hine wat the head previous to his acceptance of his present position With the Wistern Ehectric Company
smokes are suspernsions of solids (1) liquids in the air. The size of smoke farlides varise from 111 : to if a centimeters in diameter, but the average is 1 rom 101 to 10 erentimeters in diameter. These particles (h) ment settlo rapidly and ate easily 'arritel by air currents. Many attempts were made to spray smokes from airalanms, bat these failed beGathe the rush of air from the propellor atomizod and dispersed the particles too rapidly. After some experimentation. Dr. Hine hit upon the idea of shooting the smoke to the rear of the airplane with the same velocity as that of the airplane. whith would give the smoke particle a zero velocity. Today it is possible to lay lown opaque eurtains a thousand feet high and several miles long in a few minutes.

It is generally considered that a smoke whicla will olssure an object at a distance of twenty meters from the observer is a dense smoke. We have often heard the expression that a smoke was so dense that you could cut it with a knife, yet if the particles of a smoke so dense that we could not see our land at arm's length were magnified to the size of a football, they would be $15 \pm$ feet apart. An obsouring smoke, to be most economical, should utilize some constituent of the air. Phosphorus talkes oxygen out of the air to form phosplarems pentoxide which reacts with the water vapor in the air to form tiny white droplets of phosphoris acid. Concentrated sulphoric aceid is an excellent tog produceq as it readily absorbs moisture from the air. During the war. concontrated sulphurie acid was sprayed down the fummel of a battleship and the dratt from the boilers carried it out into the atmosphere to form a dense curtain of smoke. lur. lline suggester that someone inserut a cheap method. which could he carried out on a small soale, of manufacturing sulphatic adid from sulphar on the sepne of action as sutphur is very Theap amd not as dangerous as the atcid to handle

Very fow prople know of the organ ization or importance of the American ("homical Society. The American rhemical society was organized in 1siti, and today it is three times as large as any other organization of
chemists in the world having 14.500 metmhers. "Chemical knowldge and industry are fostered in erery possible way, and the members are offered Every ofportonity to keep abreast of the advancement of ehemisal sedence." To this end the Society publishes two monthly journals, a semi monthly abstrant journal and a semi-monthly news edition. The tirst serious attempt to build up a chemical literature in English, without primary regard to commereial consitlerations, has begun in a series of selentifie and teclunological monographs now heing issucd by this society. The members in various seetions of the country are organized into loeal settions of which there are sixty-seven located in thirtynine states.

The next meeting of the Society will he held on November 23. James F. Norris, president of the American Chemical Society, has accepted an invitation to speak at this meeting although he did not state the subject of his talk. An election of officers for the coming year will also he held at this meeting.

Departmext Notes

The registration in elementary courses of chemistry this year is the largest since 1918-1919 when chemistry had a boom according to Prof. Hopkins, head of the lnorganic Division. At present there are ninety-seven graduate students majoring in chemistry. Last year ninety-six degrees in chemistry were conferred with the following distribution: bachelors, 45 ; masters, 33 ; doctors, 1 s.

Have you purchased a "Chemrule"? These rulers are sold by the American Chemical Society as a part of a campaign to introduce metric units as a standard in this country. They are 40 centimeters in length and have a very compact and accurate atomic table on the back of the rule. They ean be purchased at the general office of the ehemistry laboratory for ten cents.
"The metric system is legal in all of the nations of the wortd and compulsory in all but the United States and Great Britain. It is used here in foreign trade, in electricity, chemistry, physics, biology, medicine and to a growing extent, in domestic trade and industry.
"Chemists use the metric system by proference, even carrying it over into manufacturing to great advantage is certain instances. By bnying chemicals and apparatus according to metric specifieations and dispensing them similarly to students and publishing
all experimental results in metric equivalents, it is believed that there is offered to the general public a demonstration that the metric system is thoroughly practical and that its adoption will be attended by no hardships whatever."-Eugene C. Bing. ham, Journal of Chemical Education (Jan. 1925).

General

Depalmment Notes
The enrollment in the General Engineering Department is greater than that of last year.
There have been two changes in the curriculum. Sophomores find Ec. 2 substituted for Ec. 1 in order that their schedules will not be overloaded by the new four year Physical Education system. Geology and Ec. 41 are now required in the fourth year, thereby decreasing electives.

G. E. Suciety

The G. E. Society held its first meeting September 29 at which the following officers were elected: President, H. C. Stearns, '26; vice president, J. J. Brownlee. '26; secretary, J. L. Pertl, '27; treasurer, G. E. Beverly. '26; chairman of program committees, H. P. Arkema, '26.

Plans were laid for a smoker and for a general get-together of faculty and undergraduates in the near future.

Mechanical

New Instructors

Three new instructors have been added to the department this semester.
G. A. Gafvert from Wooster Polytechnic institute, where he taught engineering subjects for two years after graduating there in 1922 with a B. S. in mechanical engineering. Last year he received his M. S. degree. Mr. Gafvert is an assistant here in machine design.
C. H. Caughery is also teaching in the machine design department. He graduated from the University of Colorado, and for several years afterward he was an instruetor there under Prof. F. S. Bauer, a L ${ }^{\dagger}$. of 1 graduate of the elass of 1911. Mr. Caughery received his M. S. degree last year.
Paul E. Mohn is the third addition to the M. E. faculty. He is a graduate of Penn State. During the last three years, he tanght mechanical engineering subjects at Renssalaer Polytechnic Institute, Troy, New York.

New Equipment

A recording controller has been recently installed in the Forge Laboratory. It keeps a dot and dash record of two thermo-couples having a temperature range of from $200^{\circ} \mathrm{F}$, to $1800^{\circ} \mathrm{F}$. Besides, the device is used for the antomatic temperature control of a Westinghouse electric furnace. Leeds \& Northrup are the manufacturers.

The Forge Laboratory also boasts a new type FH crucible heat treating furnace, together with an electric transformer. This equipnent was purelased from the Hoskins Manufacturing Company. The furnace is one of the modern electric pot type. It will be used for instructional purposes.

Several new appliances have been lately bought for the foundry. One of these is a l'niversal sand ridule. Another is a Tycos Thermopyre. This is a pyrometer for controlling temperatures of molten metals. It was purchased from the Taylor instrument Company.

A number of non-reversible plug and adjustible templet thread gauges have been added to the equipment of the Machine Shop inspection department.

Other recently purchased equipment includes two $\mathrm{B} \& \mathrm{~L}$ metallurgical microscopes, two convertible lamps, and two No. 1848 resistances. Departmental Notes
An investigation concerning the measurement of air flow through orifices is being conducted by Mr. B. G. Wilson. Mr. Wilson has been just recently employed by the department as a special research man. He holds a degree of M. S. which he secured at Bushnell University. In his present investigation he is endeavoring to find a simpler way than the ofd weighing method of accurately measuring air.

Mr. Whitten, an instruetor in machine design here last year, resigned in June, and is now engaged in engineering sales work for the Brown Instrument Company, His headquarters are in Pittshurgh, Pennsylvania.

Prof. C. W. Ham gave an address on October 2 before a general session of the A. G. M. A. on "Recent Developments in Gear Research." The meeting was held at West Baden Springs in the beautiful resort town. West Baden, Indiana. Men of national prominence were on the program. Among these was Brigadier General J. F. Fechet, assistant chief of the air service.

Prof. Ham has been prominently
engaged in gear researcll work for a number of years. in conjunction with Mr. J. W. Huckert he got out a bulletin this summer entitled, "An Invest i gation of the Efficiency and Durahility of Spur (iears." The men were two and a half years in collecting the data for it. Prof. Ham directed all the research work, while Mr. Huckert performed the necessary experiments.
Prof. Goodenough spent a month this summer with the General Electric Company at Schenectady. New York. He also made an extensive automobile tour during the vacation period of Northoastern United States and Southeastern Canada, visiting places of interest in Maine, Vermont. New Hampshire, and Quebec.
The twist drill investigation being directed by Prof. Benedict has not yet been completed.
F. E. H.

Mining

The Mining School opened its new year of activities with a smoker given on september 9 at the Union Building. All members of the Mining Faculty spoke on subjects concerning the Mining Society of the I'niversity, in which they urged all of the students to join that organization. Professor A. C. Callen, head of the Mining school also urged the members to join the Ameriean Institute of Mining and Metallurgical Engineers.
A meeting of the Mining Society was held two weeks later in the Union Building, showing a very large attendance, in fact, a greater percentage of mining students late joined the society than was expected. Professor Callen gave a very interesting talk on "The Relation of Education to the Practical Life," in which he emphasized the advantage of "ultural studies as an aid to the engineers in their work. Mr. C. Borror, President of the Mining Society has plamed a meeting for avery two wetks during the following year, when some momber of the faculty will speak on a subject pertaining to Mining and to add more spice to the mectings, the student members of the socicty will tell of their personal experiences in mining camps doring the summer months.
During the summer months, Prof. A. C. Callen, head of the Mining school, spent most of his time organizing and preparing for the new school year. This fall he attended the International First Aid and Mine Resene contest which was hold at

Suringtield, Illinois, on September 1 ll to 12 .
Prof. A. E. Drucker spent the summer in researd for a suitable process for treatment of ceylon and Madagascar graphites for the Chicago Cruthe company: A means of refining was successfully develonped, enabling this company to put a letter grade of graphte crucible on the market.
Professors A. J. Hoskins and C. M. Smith spent two months this summer conducting experiments in mine ventilation at two of the largest mines in the southern part of the state. A l'niversity of fllinols Bulletin No. 151, "A study of Skip Hoisting all Minois Coal Mines," by Prof. A. J. Hoskins hats been nublished, and is now ready for distribution.

Prof. I. M. Marshall spent tast summer in exploration work for a well known mining compans in Canada. Mucla of his time was spent in visting lhe large, new gold districts of Gow. gonda, Lake Loida, and Rouyn.

Railway

Insbleten of Tras Cab
The staff of the department of railway engincering and the students in the mechanical division this week in spected a test car now rady for $\mathrm{d}^{\text {w. }}$ livery to the Kansas City Southern Ranway: The car was designed and equipped by the Burr Company of Clampaign, the sole makers of this class of apparatus in the country. This firm has madre many of these dynamometer ears for American and South American railways. The present car is the most elaborate of any that have been buil there including not only the regular installation of instruments for determining the performance of locomotives and trains, but also a complete track inspection equipment.
The car will be used fer the purpose of determining the most ethecient make up of tranas for difforent divisions of the railway eompany as woll as to tpst the effeet of sperial equipment now avaitable for improving locomotive performance. The tratls insper. tion equipment will emable the company to test out the ghage and aligument of the track itseli merely by raming the car ower it. Automatio deviees paint siguals at spots where the track needs repair.
Since the pionter work in ralway dynamometer design in the jointly owneal car of the Illinois rentral Railroad and the lonicersity, the railway dynamonnter car has foumd
wider and wider uses amd is recoms nizend as the une suientitio instrument arailable for a method of detomining Fobomical meatas of train oferation

Thu N゙ansizs C'ity southern catr is fiftyotwo feet long insides. is equipped with an amplt ollice and shop, with berths for eright operitors, a comblete kitehens alnd separate berth athel wash room for a porter. The rat is built of sterel, representing an inverstment of arare \$7 10.800^{4}

The elepartment of railway engi nerering has just added a new air compressor to its demonstration air-brake rath whith was tinished last spring. The compressor was furnisbed by fonntesy of the Peorial \& Eastern (lig. Four I Railroat, Hhrought the oflice of Mr. A. A. Armer, master mechanie. in Indianapolis. 11 is a Westinghouse machine, eleven inch, single stage, replacing a No. I New York compressor.

The air-brake rack has been in the process of design and erection for some time, including an assembling of parts from a variety of makers of this equipment. It is intended primarily for demonstration purposes, with special duplicates of many valves showing the operation of their internal mechanism. With it the drpartment can demonstrate to its students different lraking arrangements as used in practice. It was put up in conformity with the demands of practice, inasnuch as its has appeared that mastering the intricacies of the airbrake presents a serious practical difficulty to the railway graduate lacking sperial instrution. It is possible to operate the rylinders, analagous to those on freight trains of some length. by various paralled types of controls in the Westinghouse and New York makes.

The equipment was designed by brof. E. C. Schmidt and Mr. H N. Parkinson. and is now in charge of Mr: 11 J sehrater, successor to the latter it is lorated in the brake shoe laboratory which has reeently been improved by the installation of at comsrete flow

The railway depattment weleomes a now math on its staff this year. Ho is Mr. W J. Nefranler, a graduate of Purdue l nixtersity in the rlass of 1923 (romathe department of rallway moWhanical enginering since his gradwation and before coming hore Mr. selarather was workine in the merhanisal *heincer's oflier of the Chitago Indiana athl Lamisville Rathoat (Monon Romber at latiayple, Indianal. He
will tearl here lowomotive and var design. Mr, schataer will till the vacancy left by Mr. H. N. Itarkiuson, Wha is returaing to the mechanacal department of the chic:go. Milwat kew ama St. I'aul Railway at Milwall ker. Mr. l'arkinson will have charge of a group working on the drsign of sars and locomotives. It will be remombereal that he came from that whice in 1921 to leach here

Nows from some of the alamni indicate their present vocations: Lekoy Tuektre 23 is working on the construction of a new bridge across the Mississippi River at Fort Madison, lowa. for the Santa Fe Railroad; F. H. Matterhawsen 21 is with the Cuban RatlWay Company at Camaguas: Cuba; F . 13 Shaw ' 11 has resigned from bis position as chiof enginerer of the Cuban Railway Company and has refurned to the Inited states: L. R. Lamport '2:' is on a Missouri Patific Railroat lucating party; H. Groth ' 20 is in the office of the American Bridge Company at Gary, Intiana; S. Forsythe '2t is in the operating department of the rhicago Surface Lines; M. 11. Genena 25 is with a Rock lsland locating party in oklahoma.

The Railway Club hekl its regular meeting Nov. 3 in Room 117 Transportation Building. Officers for this yoar are: president, J. 11. Smith 26 ; vice president. W. 1. Hlunt ' 26 ; secre-tary-treasurer, 31 . G Mason 26 .

The enrollment in this department has dropped to 43 students this term against 46 last year and 53 the year before. Fifteen of these arf taking railway civil engineering, 21 railway electrical enginuering and 7 railway mechanical engineering.

Prof. J. M. Snodgrass, of the department of railway mechanical engineeding, spent the past summer in doing sperial research work for the Commonweath Edison Company of Chicago in regard to the operation of several subsidiary raibroals controlled hy the Insull Interests. What will come of his results is not publicly known.
(i. Buchanan, Jr., mine.., 22. is employed by the Oha Ben Coal Corporafiom in its expromental coke plant at Waukexan, Himois.

Earnest Alartinson. e.e.. '2f. is in the Engincering Depariment of the fity of diary lndiana.

1. W. Hubrer, mine., '21, is emphoyed ly the B. F. Startevant Company of Chieagn as an expert in their dine Ventilation Equipment bepart minnt.

Contemporary Engincering News
 (fontinucd from Page Bo)

ance is, perhaps, the incandescent lamp, but it is a most wasteful and "xtravagant form of the conversion ot - lectricity into light. Only about five ber cent of the force which is expend-- d in an incandescent lamp is conbefted into light. Therefore, there is pratically a cloar field lor research in this servict alone, concerning which I B. S. Hatane-the great English scientist of the University of ('ambrillge—says, "To light a lamp as a source of light is ahout as wasteful of ehergy as to burn down one's house to roart one"s pork. It is a lairly sate mophecy that in 50 years light will cost about a fittieth of its presHit price, and there will be no more night in our eities. The altarnation of day and night is a check on the freedom of human activity which must go the way of other spatial and temporal cliecks."

Thes most modern and efficient steam turbine engine turns out about sixtern per cent of the theoretical power contained in the heat units of coal. Here is pighty-four per cent of a field in which science may work, and who can say that sometime, even in the near future, wectricity may not be produced direct from heat, thus doing away with the use of the stram for that purpose. Even tomorrow there may be discovered a cheap foolprool and durable storage battery which would revolutionize the electric light and power indusiry by enabling it to store electricity as gas is now stored in a gas-holder or oil in a barpel.

Conctrning the wind as the chief source of power, llr. Haldane says that he thinks the power question in England ultimately may be solved somewhat as follows: "The country will be covered with rows of metallic wind-mills working electric motors Which in their turn sumply current at a bery high voltage to great electrie mains. At suitable distances there will be great power stations where. luring windy wether, the surplus power will be used for the electrolytic decomposition of water into oxygen and hydrogen. These gases will be liquetied, and stored in rats-vacuum jacketed reservoirs, mrobably sunk in the ground. It these resevoirs are sutliciently large, the loss of liquid due to leakage inwards of heat will not be great; thus the propertion (rontinued on Payf is)

Fraternity Activities

Tau Beta Pi

At the first husiness meeting helf this year by Tau Beta Pi. the honorary scholastie fratemity, plans for the coming year were laid and a program outlined. This includes a banquet and a "get-together" in Noyem. ber. The latter affair is to be in the form of a ireshman smoker. Its purpose is to afquaint the new student with Tau Beta Γ iand its functions, the value of high scholarship, and especially the importance of the literary side of an enginers's education. This last meeting. hedd at the home of Mr^{r}. W. N. Espy, was concluderl with pumpkin pit and eaffee. R. E. Peterson, with his record-braking appetite upheld his former reputition.

The national convention of Tau Beta Pi, which met October 15, if and 17. was attended by delegates l . E. Peterson and W. E. bynch of the boal chapter. Officers of the presebll semester are: W. E. Lynch, president; P. E. Soneson, vicepresident; I. I). Fetterolf, recording-secretary: N. J. Alleman, corresponding secretary; E. M. Sobota, associate editor of "The Bent"; and J. C. Vorhees. treasurer.

Eta Kappa Nu

Eta Kappa Nu began the year's work with a business meeting held Octuber S. Activities for the emming year were discussed. A program committee was appointed for the semester and instrutted to report at the second regular meeting of the year on ortuber 2:. The officers eleetod last June for the current semester are as follows: B. M. Sohota, president: L . O. Askey, vice president; 1. W. Fimley, recording secretary; W. S. Duncan, corresponding speretary: Wayne Hickman, treasurer: W. T. King, atsso"fate editor of "Tlue Bridge" ; F. B Powers, master of intiation: and W. L. Branch. surgeant at arms.

Phi Aphai I ambda

Phi Alphat lambla, honorary general engineering fraternity. Was offici. ally installed at a banduet given May 19 at the Southern Tear Room. 'The main speaker was lrot. R. A. llall. who in his talk trated the develop-
ment of engintering from andient times. The graduating seniors alsor gave short lalks.

Since all the janiors of last year hate vome hatek. Wrospects for an artive year are very bright A bass will be initiated heth tirst and seemad semmesters. Plans have leeen made for kepping gradnates in touch with the attive chapery hy means of circulatimg foters.

Delta Mu Epsilon

Delta Mu Epsilon, honorary mining fraternity, has pladged throe jumbors this tall. B. H. Atpin, R. E. Lager, and 1. S. Voltz. Professors A. (. C'allen and 1. M. Marshall were pledged honorary members. Officers for the year are: E. R. Martin, president: (' 1:. Nelson, vice president: C Borror. sectetary: and C. (1. Stevens, treasurer.

Theta Tau

Theta Tant started wat the new sehool year by having a smoder at the llus house. As a result righteen men were pledged, all departments boing represented Arrangemonts are heing made for a chapter damee on berember 11. This dance is to be in the hature of a charistmas party.

Several prominent men haw been obtaiterd to speath al some of the mentings to be ladil this fall. The bithers for the ensuing semester are as foblows; E. 11. Taze president; W.
 secretary: E. I) Ponzer, treasurer: A. 3. Compdige, corresponding semotary.

Gargoyle

The officers of daldgoyle for this semester are: P. F. Somesom, presidont: d. W: Cragex. vier-president: W: Bdholm, corresponding secotiary: 1 . S. Borner, recording secretary: J F sill. Irmasures.

Among the main imeldents of the coming gear will he the award to the freshman stment of arehitocture or architectumal enginequing who has made the best record durine tha last geir. the freshmati smoker. and the bi-werkly meevinks an whirh interest ing papers atre prosentod.

Mu San

Mus Satn. protessional municipal amd sanitary engintwing fraternity, has elected the following officers for this Frar: 11 d. Vagthorg 26, president: J. r sager ${ }^{2}$ © vicepresident and treasurer; 11. E. Schlenz '27, seque tary: and E. L. Hopper '27, historian. A sumker was held in the early part of Nervember followed by a meeting at which phans were male for the year.

Chi Epsilon

Chi Epsilon, lomorary rivil Angi. neering fraternity, resumed artivity this fall under the able leadership of president E. (. Bray, and a vary successitul year is predieted. Eight men hate heen pledged to active member ship this fall: C, F. Hendrick 'eb, V. E. Gumlork '27, 1), H. Pletta '27. W'. S Cook '27. H. W. Aeroy, '27. E. 1). Ackeague '27, R. A. Niles, '27, . I. I. (a vallagh '27; and to homorary membership; brot. F. B. Seely, and Prof. T. C. Shedd.

Sigma Epsilon

Sigmat Epsilon, professional railway engineering fraternity, has rected the following officers for this year: II. (i. Hason, presidebt. T C. Stressor. vice president; J. II. Smith, sedretary; and W. 1. Hunt, troashmer. At a recent meqting mans were definitely made for the year's work.
 with the Mississipp Bridge and loon Works at theqatur. lllimens.
(i. O. Bates, ce.. $\because 2$ t. is working as framsitmath for the Hlitatis Tration System.

Waltev 13. Worshatim, Pe.. ('11), is with the Illmois state livision of Highways in the Wepartment of l'uh Lir Works and Buiddings
\&. 11 Altison, minc... थ2. hats

(․ U' Hablart, winc.. 'Is. is chict

 "nter the lombertial bepartment of Har Westinghouse Electrid and Manu fitturine fommany at his comblotom of that company's stadent contse

Wourtery lllmis Alummi Sewa)
Thats as Wexsel. Morayd, efe, '7S, standoci besiog the RIVER Jordan. He's a GREAT TRATELAER SINCE DE HEHetele from wotive buininess. No GOONEL DOES HE RETURX FBOM ONE TRIP THAN HE'S GFF OX ANOTHER.
E. E. Orr, areh. ' 36 has retired and is taking care of his estate at Quincy.
A. C. Hobart, c.e. ${ }^{4} 4$ is a construction rugineer in Boston.
M. V. Stewart, e.e. 'ol has been appuinted commercial engineer for the (ieneral Electric Company, at Schenectady, New Fork. He recently returned from alexiso where he has been for 12 years.
A. C. Martin. c.e. '62, in his capavity as member of a committee of Los Angelts engineers, is making a sur. sey of the effect of the recent earth. quake on the buildings in Santa Bar. hara, Califormia.
d. A. Datley, m. \& s.e. ${ }^{1 / 2}$ is assist. ant engineer for the Sinitary District of Chicago.
E. J. Wheeler, c.e ' 11 is in balti. mort, Marydand, where he is building a plant for Montgomery Ward \& Company: Ile experts to finish sonn and
return to the home office of his firm, The Wells Brothers Construttion Company.
(i. Gloyd, arch. '12 is practicing in Kansas City, Missonri.
H. O. Dany, m.e. 'It is chief draftsman for the American Blower Company of Detroit, Nichigan.
W. L. Parish, c.e. ' 16 is structural engineer for Clausen, Kruse, and Klein of Davenport, Iowa.
C. L. Pitts, arch. '16 has taken over the office of the late (i. H. Washburn at Inrlington, Iowa. Ife came to Burlington as supervising engineer on some bigh school and stadium work for Temple and Burrows of Davenort.
C. E. Sargent, ry.e. ' 86 is vice-president in charge of the operating department of the lllinois Central Railroad. He began as a track apprentice for that company.
A. C. Martin, a.e. ${ }^{\prime} 02$ is an architect in Los Angeles.
L. B. King. c.e. '03 is a partner in the firm of King and Petry, contractors and structural engineers, Champaign.
C. A. Petry, c.e. 'll is the other member of the firm of King and Petry. C. P. Turner, e.e. ' 04 is with the General Electric Co.
J. Matonsek, c.e. '05 is engaged in general contracting at La Grange. llinois.
M. B. Case, c.e. '06 is a bridge engíneer in Philadelphia.
A. C. Brancher, c.e. ' 84 is a civil engineer aud surveyor in Lincoln. lllinois.
W. L. Abbot, m.e. 'S4, chief operating engineer of the Commonwealth Edison company, Chicago, has been nominated for the presidency of the American Society of Atechanical Engineers. The election will be held in I ecember.
II. I. Blanchard, a.e. ' 8 ' ing in St. Louis.
J. H. Eno, nı. \& s.e. '91, is professor of municipal engineering at Ohio State University.
(.) A. Grenn, arch. '92 recently re-
turned from the Philippines, South China, and Hawaii where he was a mission architect. He started east by anto from Los Angeles, but wrecked the car by a blowout in Arizona. He proceeded by train to Champaign and Chicago where he bought another car and continued his journey.
H. R. Linn, m.e. '96 is an engineer for the Antrican Radiator Company of Chicago.

B. H. Prater, ry. ' 03 has recently been promoted to assistant chief engineer of the Union Pacific Raihroad and chief engineer of the Oregon Short Line Company with headquarters at Salt Lake City, Utah. He began his career as an instructor in surveying and masonry laboratory and assistant in bridge design at the University in 1903 and 1904. He left the University to become a transitman on the Panama Canal. Later he became division manager for the Chester Shipbuilding Company of Chester, Pennsylvania, and just previons to his promotion, was chief of maintenance of way for the Oregon Short Line.

Gilbert Smith, min.e. '24, is mining engineer for the American Smelting and Refining Co.'s coal mines at Rosita in Coahuila, Mexico, where the company has completed a million dollar coking plant. Gilbert has a staff of laborers, draftsmen, and assistant surveyors to aid him in his work.
N. Tolch. min.e, ' 24 is doing mill work for the I'tah Consolidated Company at Bingham Canyon, Utah.
A. G. Cadaval, mine '24. is in Mexico City with his father in charge of his father's mining interests.

R．Fleming min．e．＇24，is full in－ structor with the Maryland Mining Burean．

E．F．Carpenter，min．e．＇23，is assist－ ant－superintendent and II．Gjssing， min．e． 23 ，is chief assayer of the Tomboy Gold Company，Ltd．at Tel－ luride．Colorado．

C．Butters，min．e．＇23，is taking the one year training course given at the Sullivan Machinery Company，manu－ facturers of mining machinery，which will enable him to sell the products of the company．

Albert Koenan，min．e．＇23，is acquir－ ing mining experience at Neciill． Nevada with the Nevada Consoli－ dated Company．

J．Blair and George Morris，both min．e．＇2？，are working in Great Falls， Nontana，for the Electrolytie Zinc plant of the Anaconda Company． Morris has been promoted to a plant foreman＇s position．

A．Coltu．min．e．＇23，is a mining en－ gineer in Oklahoma，doing develop－ ment and prospecting work for the Nining and Petroleum Company of Oklahoma．

W．E．Bull，e．e．＇18，is supervisor and telephone equipment engineer at the Western Electric Company＇s Haw－ thorne station．Chicago．

E．J．Guardia，c．e．＇21，is designer of bridges for the highway department of Panama City，Panama．

R．E．Spangler，arch．＇21，who was formerly an architectural draftsman in the supervising architect＇s office．is now teaching in the architectural de－ partment of the Lniversity．

D．A．Branigan，c．e．＇22，is connected with the state highway engineering department at Amboy．llinois．

R．W．Morton，m．e．＇23，is instruct－ ing in the merluanical ngineering de－ partment of the Colorado school of Mines at Golden，Colorado．

M．S．Angier，e．e．＇24，Olympic jave－ lin thrower，is doing electrical engi－ neering work in Edgewomd．I＇ennsyl． rania．

C．H．Dodge，min．＇24，received the degree of Master of Arts from Car－ negie Institute of Technology and is now assisting superintendent of the Palmer mine of the 11．C．Frick Coke Company，Antram，Pennsylvania．

W．H．Pfeiffer，cer．e．．＇24，is an dx－ sistant in research at the Ceramics Department at the University

R．H．Louden，cer．e．，＇2t，is with the National Tile Company． 11 e is mar． ried to Franees Kurtz，＇24．

J．Grout，cer．e．．＇25．is assistant to the general manager at the Aome Briek Company．

F．W．Mueller，m．e．，＇24．is in Spring． field as a meedanical engineer for the central lllinois Public Serviee Com－ pany．

C．（i．Fels is at Perth Amboy，Now Itremy．with theatlantic Terra cotta Company．

W．I Whitney．cere．，＇2．5．is with the Lancaster brick Company：at Lantaster．Jennsylvania．

Arthur I3．Durhatm，m．e．，＇23．is with the department of industriat eneri－ neering of the Joseph T．Ryerson \＆ Son Co．，at Kenilworth．Hllimois．ble is engaged in standardizitton of piece work．

John K．Ilolmes．m．e．，＂2：？is main－ taining the fllinois reputation agminst thee assaults of Wochigan．Roser and Purdue men at Marion Crant Co．．of Barion．Ohio．tle is in the engines r － ing department and states that his work varies from electrical engineer． ing to heating and ventilating．
（＇．E．K゙siazek，m．e．．＇23，has changed his name to＂Kazek．＂He is ass stant superintendent of the gas，water and light plants for the southern lllimois Gas Co．He states that he will visit the campus the latter part of Feh． ruary．
．Whan 11．Anderson，w．e．．＇11．smper－ intendent of construction for the H ． F．Culbertion Co．Cleveland．Ohis． visited the campus recently．Ile is in charge of a four milkion doblar track elevation job at cleveland．

Ira W．Fisk，e．e．＇09．has resigned ats instructor at the Lniversity of West Virginia and is now with John Bithler．Consulting Enginter，of New York．He is engaged in sumbial in－ restigation of street rallway probl lems．

1i．E．Lawrenst，cere．，22，recently athmonded his marriage 11 ．is with the Beaver Falls Art Tile co．．at Buaver Falls．l＇a．．tomether wath V．K゙． Haldemen，cer．e．． $2: 3$ ，and（ B ．H．Siadrk． cer．e．，17．
12．S．Bradles，wer．e（＇23）．is מuw at Mrvion．Ano．with a Fire Brick（on． Ile was at the lonibersity for the sere ond wrek of the（eramias Sheme Course．
 Taketa，e．e．．＇15．are candidates for tho professional degree of Fhemtiat Engineer．They are engaged in hy－ dro－edetria developmont near Tokyo． Jaban．They both were in the aftect． ed region at the time of the retert catastrophe．
 1．Wagner．Consulting Enginurss，at Kansas City，Mo．
（．）A．Hughes．U \because ．．＇06，is assistitht congineor of the Nissouri Parific R．K at K゙ansats City，Mo．
 sur of Meehanses at lourlut has rreently revised his beok＂Applied Aechanics．＂The sale of the first edi－ tion was remarkable ant the new edi． tion promises evere more．

E．J．Mehren．＇A．．．＇ith，has resignedi as editur of the E：ngmotring News A ford to devote his full time to his duties an vicenpres dont of the Ale fraw Hill Publishing（ownpany
 for of ebectrieat ageineering at the Cise Aswhowl of Applied seience of

Contemporary Engineering News

＊apoatine dally from a reservoif lon yatds squatre by fill twet de＋f would not be 1 lown of that lost from a tank morasuring two foet each way． In times of ralm． $1 h^{2}$ ．gases will be fecombined in explosion motors work－ ing dynamos which probluee edectrical shergy once more or more probably in o：idation cells．＂

L＇f to this paint I have mentioned only the possibilities which are wow being hopefully songht ly reseateh ors and seimtists，but these possi hilities are by no means the ultimate The imagibation van concere a cold light obtatinct by attivating cortata substanees by eln rical influmere：as
 bur watls of a room by radio watus Possibly the ait may be so treated that it might lake the plate of prose thit ronductors of altertricits and magnetism．

As the pepulation increases athe presses buon the means of subsist
 ing lood form the nitrogen in the atir of from ather substances mas raserb Inture（rivilizaton trom sinking to the
 conntrics

Thlar moductaon of electricity difect foum tha hata of the sun or the int twior of the tath may．by the wims in：t1ion of wastroful steam tengines． solve the hoatine problem of the future And to 上o the limit，light． heat and rentery mas．in the distant furure．be stared in some form athel Abetrieity not used at all．Phosphor． escenct．the glow worm and radium are imdiations of the ser possibilities．

Another on Commerce

Headline: "Billboard seored by Commerce head."

Yes, this confirms our oninions about the Commerce sthool.

Brother: "What are you taking the mirror out of your "ar for?"

Soph: "Oh, just to be on the sate side."

Brother: "How so?"

Soph: "My girl is going to drive the car today."

On Those Field Trips

A Frosh on his tirst field trip had caught a buttertly in his net and had straightway ran to the Professor who was on his Iobth field trip.

Frosh (excitedly): "What do 1 do now?'

Prof. (sareastically): "Climb up the poler and stab it."

Lamdlady: "I think you had better board elsewhere,"

Student: "Yes, I'll admit frequently have."
landlady: "Have what?"
student: "Had better" board elsewhere."

Here's Elsie Again

little Elsie says that she is strong for Enginter dates-she has to be.

Judge: "I'm going to tine you five dollars."

Facetions Fred: "Iudge, if you find five dollars on me J'll split it with you "

Judge: "W"ell, if 1 don't find it on you you'll split rails and stone here for the next thirty days."

Oh Harold
13ad: "Who sat on that newly painted bench in the garden?"'

Sweet young thing: "Harold and 1."
bad: "Well, you must have ruined your clothes-hoth of you."
s. Y. 'T.: "Not both-only Harold's."
"What have you in the shape of automohile tires?"

Salesman Sam: "Funeral wreaths, life preservers, invalids cushions, and donghnuts."
bortor: "The hest thing for you to do is to give up late hours, wine, women. and

Stude: "What's the next best thing?"- C"aliformia Enyineer.
"I hear you have an addition to your family, Mrs. Cat; was it a boy or girl?"
"oln, just six of one, and half a dozen of the other, Mrs. Tabby."bitro.

Joke Editor of the Technograph: "l "an't think of a joke to save me."

Helpfit chorus from the rest of the staff: "That's easy. Call in one of the university firemen."

1. A. \& S. student: "I suppose you play Mah Jongg?"

Engineering student: "Say do 1 look like a guy that would play with blocks?"

Sometimes when two people think of the same thing at the same tinge it is either mental telepathy or a coinvidence. At other times it is quite embarassing.- Cougur's Pow.

Foaming Youth

He: "Please come ont in the garden with me."

She: "Oh, no. I mustn't go out without a chaperone."

He: "But we won't need one."
She: "Then I don't want to go."Columbia Jester.
"Yes." said the Theta, "We call our dog Coffee because he keeps us awake at nights."

Grad: "What salary do you think I'm getting now?"

Undergrad: "Oh, about half."
Grad: "Half of what?"
Undergrad: "What you say."- Cougar"s Pau.

He: "We're coming to a tunnel, are you afraid?"'

She: "No, not if you take that cigar out of your month."-Buffalo Bison.
"The dirty crook," mattered the Frosh, when he got up one morning and found that a burglar had stolen everything from his room except a cake of soap.

Missus: "Has the Professor had his breakfast?"
Maid: "I don't know, mum."
Missus: "Well, ask him!"
Maid: "I did, mum, and he don't know either."-sanford chaparral.
"Sure, I like talkative coeds," said the junior: "What other kinds are there?"

Waiter: "Where is that paper plate, l gave you with your pie?"
Frosh: "Plate? I thought that was the lower crust."

Oenkins Valves

Electric furnace melting

 T
 Thant of Jenkine Eros att amone trs いEes：if America．Iempera－ute du －an．J：of tee：exclus or of fut：ane etmospheric Eases．pouring and other fecturs efretire into the mas：rg of EOO V Vite me：e：are uncer absolute
\qquad thoro－gh testing art osher important teasu：why gexant Jer，Lins Ye？ves eat．in deperdee wot is met：the seletest coritutions of servile．
\qquad
 and isecting reらuitement．

Ceseriphte finki：dive：or

Ohio Public Service

 ＂）lamp tilamems．With the load entire］ C off，and hothe darried loy the Jowal purer plamt．The static
 lemonitect－Jrew an ejeht incls are．The－namping munne the conductore wav resy umticealle aud at night it made one feet a though the air were alite

A constin qation of thin transmis－ion line ras

 －al．－tations at that phace is ofsw of the lateret in the

 shat A hlamd．Whan．From thear rition jutaranuec
 has ge of fonmer aud exempally these oratems mill
 thin intercminection hat had a ereat rffect on con тimom－service since Alfiamer，fors example．draw－
 Tont．I－milk－away：aud the turline unit－can lo

ham＊ax Emqiufer

A Self-Starting Power Plant

GENERAL ELECTRIC

The \an！Cruise for Engincers

montiter at the＂enter of bolyancy of the ship． Which is the proint of least distmothere from the

 （1）the hrifea at the wherl．These eompasses are dectricall！symehronizal with the math grom．

The fire control stations wore locatad far bay
 many complicatal insirnmenis lor allowing amyrand of valiables in range dotermination．The Ameriana
 is me womber when whe rensiders the gains they take in hetting gat it whe of the projactiles．No donht yon hawe motied in 1 He mowies a sort of clork
 This inctroment is al tage indicator ased in batte formation．The fisures read in thousamds of yards． bolore learnity aboll this．I onere wothered why a

I Was assigued th the destroyer bratinbridge and lised with the oftio ors its thoir quarters．Besides the ＂aplatin who was a lwo amd ome hallf striper（lien－ fenant commander by rommissiont，there were a doctore，two lientenamts，and thre elosigns，fellows about my ewn age．I d，not know the suecitica－ fobse of a destrosere．That too is to be loumd more atcolately in in handbook．They are howerer，wer two homderel and tilty foet longe wil horning and will make thirty thme kotse at whirh sered the forbines develop dise llonsimblarsebower．The

 two fome inch olms make up the armament．The

Thar bainbridge burnt ont a fan monor arma－ bure jus before I ame aboidd．This gave me a Whate to take it wer th the temder shif Vestal and Ans sume praticall work in ant of the most widule repar shops．The l．A．S．Vestal is a thotimer

The Corner Drug Store

（）バッド

Prescriptions Carefully Filled
fommery and mathime shop，in liact a complete far－ fory．Imarime a fommery half as large as ours at Illimois．a Curge with a steam hammer that would make Mr：Lamham＂s look like at loy and othere shops of all kinds carried ont on the same seale．Ther moll wore all basy ：sa mon mare interested thats divilian workers seem to be．Promaps I only imagined that．

Whring the ernise there were inspertion trips to the gevermment torpedo plant，amd to the l＇atoka， the tember of the ill fated shemamban．There was a trip in a bombing pane，during which the planes shot at wach other with camera gins．We hat an Ofportmity to inspert the seont rusers Raleigh athl Milwanke with their are⿻日禸 Were which therew the phanes from the deck．These planes took the atr after one bonme noon the water．All these thimgs were fascimating thongh I haven＇t the space for a suitable deseription．

Fon will agren I think after reading even so （rude an acoont as this that the cruise is an oppor－ tmity that comes hat onee in a life time．If I have been rather vague，plase remember that it is mome than a year since the cruise and that I have at－

＂My，isn＇t he womberful．I simply cant dram my reve away from him，esperially his tie．＂

＂The rente hine，ame what a bovely silk swe：ter．＂

＂The simp with the pimply necktie hats fallen for the dumbell with the stringy blomse．＂

In the grather there were there She，the partor latime and he． Two is a company theres no donbt． suthe litfle lamp went ont．
－Kinnsas．Eingilurar

WRIGHT SIVEET SHOP

The Home of Malts

The only store we have on the bampers
TRYYUS

Look for बIUPONT

 and the Orange bandon every powder keg

T"HE du Pont "oval" trade mark and the orange band identify every keg containing blasting powder made by the du Pont Company.
In the selection of raw materials, manufacturing procedure and supervision of production, every action has this purpose-to produce blasting powder of the highest quality.

The extensive use of du Pont Blasting Powder and the highly satisfactory results obtained are proofs of its superiority. There is a granulation adapted to every blasting operation-but only the highest grade of powder comes out of the keg marked with the du Pont "oval" and the orange band.

The engineering student will find in our Blasters' Handbook valuable information relating to selection and application of various types of du Pont explosives required in mining and construction operations. The Blasters' Handbook is a most useful reference and should be among the text-books in the student engineer's library. A postal request and mention of this advertisement secure a copy of the Blasters' Handbook without cost. Send in your request NOW!
E. I. du Pont de Nemours \& Co., Inc. Explonires Department
WILMIINGTON, DELAWARE

DAYLIGHT ILLUMINATION.

The angle of refraction being equal to the angle of incident, it is a simple matter to determine the correct angles to use in manufacturing glass which will give grood illumination. But for proper industrial plant illumination, there is more to be considered than mere deflection of light. The direct beam of light must be eliminated in order to prevent sun glare, which is objectionable on account of its causing heavy shadows and strong contrasts which decrease the efficiency of employees and necessitate the use of shades which in turn reduce the light to such an extent that daylight illumination any distance from the light source is not sufficient. Therefore, in order to produce a glass which when used in the windows of industrial plants will produce as near to ideal illumination as possible, we must first eliminate the direct rays of the sun by deflecting the light to the ceiling and side walls which re-deflect it back to a distance 25 to 50 feet from the window throughout the entire working area. To accomplish this. we have scientifically designed a type of glass which is named "Factrolite."

Factrolite consists of 30 ribs to the inch, running at right angles, forming 900 pyramidical prisms or 3,600 light deflecting surfaces which completely disintegrate the direct beam of light from the sun. Furthermore, the depressions in the surface of Factrolite are so slight that the accumulation of dirt and dust is minimized and can be perfectly cleaned with an ordinary dry scrubbing brush. Incidentally, the eleaning of windows is most important for keeping up production and increasing the efficiency of any industrial plant and should be given more consideration in plant management.

If you are interested in the distribution of light through Factrolite, we will send you a copy of Laboratory Report-"Factrolited."

MISSISSIPPI WIRE GLASS CO., 220 Fifth Avenue,

St. Louis.
New York.
Chicago.

I ake Front Development

(rontinured from Pa!re It)
tend batek into the approathes, is slot teet. The end spans arr $111^{\prime} B^{\prime \prime}$ long alld the conter span is 1 : 8 fere long. The bridges will the remased in concrete and when romplete will aperate to be arehes. True aroles were eliminated from consitheration, becalase of the depth to which fomblations have to be rave ried, bed rock heing apmoximatoly all s.s.0 feen.

There are several feathres of interest in the dexign of these hritges. Nuspented phate giraters 12 $2^{\prime} 0^{\prime \prime}$ long in the emd spans athe $4 t^{\prime} 0^{\prime \prime}$ in the center *pall neressitated extreme are in the design of
 Withont detracting from the beanty of the structure. The wirder sartion in the ramiterer arms, valise from $t^{\prime}: 3^{\prime \prime}$ to the extreme depth of l^{\prime} ($\mathrm{F}^{\prime \prime}$ at the supports. This required horizontal as wedl as rertical wed, splices, and also meressitaterd the nse of diagonal stiffeners to reinfore the weh against the extremely high diagonal compressive stresses.

Figure f indicates the locations of seven contimons arch hridges spaning the lagoon. These will he 3 -xpan bridges appoximately shat feet in werall length. It is proposed to eary the prers and aboments to hed rock which varies fom elevat
 rather than mse pile fombation. This may reguire a continnoms ard analysis to determine the efteet of deflection of the top of the piers moter unequal lobdings. There are several methods of amalyzing fontinnons arders. hant in all polability the one developed by lerofesor Itardy Crose of the Coniver sity of lllinois will be used in this particolar work. llowerer, these bedges are in the tentative state as fet, and forther investigation may warmat entirely different types.

Todate contratets have bern lat on the :31st Street viadmet, Oakwoud bomberatl viadure amd fise of the bridges north bi leth street. It is esti mated that dive rears will be required for the eam phetion of all of the continnoms bridges crossing the Hllinois ("phtal Railroad and that ton roats will sere the completion of the entire fremam.

The total cost of the completed Lake Front im provement and diant lark imurewement is extimated at sso,000,000). The work is being rarried on lọ the sumth Park Commissioness a municipal cor priationt, athorizad bey the state of lllinois. The gonerning body eonsists of a loard of tive commis somers apmonted by the judyes of the cirenit comet of Cook lomety, for terms of tive years. This hatad eleets its own mesident, the present incombent hoing Edwatd I. Kelly, who is also rhiof engineer of the samitary Wistrict. Work is thanced by bond
issues retired by tax lerios on the property within the south Park district. The chief enginese for the South Park Commissioners is Limn White. The structural department is hatalet hy ('. R. Hoyt. structural engineer.

Radio Station WOK
 (Continued from Pater 1i)

ten hours. It is meressary to have these latge bat teries beratase eath tive kilowatt than romites twenty-fice amprose for dimment heating: this dis (harge mate requines that the cells be pht on chature for about tern homrs once a week.

A motor generator set, Focatod in a separate building. supplios the darginge current. Its rating
 and "lo", are comered in series fratalled for chatre ing. so that the eharging whage wh the bank is abomi sil colts.

The whole station was desisned su that most efficient opration would be hatl at har assigned
 for a change of wave lengtla, and it semems matikely that any will be reguired for sume time, as any new wave allocations made in the future will prohahly take this waw bength into the broadeasting hand.

To sum me, the voice curtents are jidked me hy the starlan miarophone, ampliterl, aml semt the the station, where they are further amplitied, impressed on the high frequency wave, and sent on the air, lof anyone to pick up.

A PANTOMIME IN MATH

Let $\mathrm{N}=$?
Her serias extemald from at 1 l .
llis path was $\mathrm{X}^{2}+\mathrm{K} \mathrm{S}^{2}-1$.
They intersexded at a print in common.
He then chathged his hase to function of base
Interpolating, she assumed an irrational number.
"Von are variahbe" lu detrmined, trying llorn er"s method.

She immediately shlred for his ranfticionts and real roots.

She dedued them to the imaginary values that he had assmmed.-Th, Tramsit.

Mary: "ls dohu rourting yont".
 step by step. When he tirn called on mine he kal all

 buther in his lat. And mext salmoliy night is my. thrn."-

HIGH GRADE IMPORTED DRAWING INSTRUMENTS

These imatromends hate that ease of "pration amd muchanical relimemont only rombodiad in hieh aranle drawiner instruments. Irecision is lhe les? note af their
 Gepmany, thas are himbly limished and ame made of the

 ASK FOK CATAlK: D25
The C. F. Pease Company

WNE FBTMER

 of ble road withont any attention on my firt."
she Wombant it be a lot bettex to mase the brake?

 majority":"
 1014 Womath jrexent."

Gifts and Greetings

for Christmas
and All Occasions
Strauch Photo Art House

Still in Service After 250 Years

AHUNDRED years before Napo. leon was born, before his wars scourged Europe, before the French Revolution raged, this Cast Iron Pipe was laid, in the reign of Louis XIV, to supply water to the fountains of Ver. sailles.

To the patient researches of M. Blanc, Chief Inspector of the Water Service of Versailles and Marly, into dustcovered volumes in the garrets of the Palace of Versailles, we owe the proof of its antiquity.

A report from the Director of the Water Service, M. Blanc's chief, says: "From their actual state of preservation, which is excellent, excepting the assembly iron bolts, these conduits seem to be able to furnish service for a very considerable time longer."

The high resistance of this Cast Iron Pipe to corrosion may be judged from the clearness of the fine "parting line" produced by the old horizontal method of casting.

The Cast Iron Pipe Publicity Bureau
Peoples Gas Building, Chicago

CAST IRON PIPE

Columbus was a man of vision

BUT not even he could have foreseen the great industrial development of this country which would come about through improved methods of manufacture and transportation, and the important part that would be played by Hyatt roller bearings.

Modern industry requires and far sighted engineers demand that rotating parts be mounted on bearings that will roll instead of rub.

Raw silk, wool and cotton are transformed into the fruit of the loom; deeply hidden coal and metal ores are brought to

the light; ribs of steel are fabricated for the backbone of modern construction. In fact every phase of industry is speeded up and assured uninterrupted output by the use of Hyatt roller bearings which, with their rugged durability and unfailing dependability are serving the needs of the nation faithfully and well.

When designing or purchasing mechanical equipment, remember that the combined experience of the Hyatic Roller Bearing Company's engineers and specialists is always at your disposal to help you solve your bearing problems.

HYATT ROLLER BEARING COMPANY, NEWARK, N. J.

Golf Course Engineering
 （（＇onflaued from I＇u！f．？．．）

tile lines and callse trombla in alsort times．Somer
 stomses malise at motre hathral top alld are memally
 stomes hate to he remowed and the hasin eleamed

 sides．Sut whly has the exeess water to lat ralred for but some provision mast be mate for irigate the
 N1．Andrews is almost molversally msed for water－ ing grolf rombes．I woll was sumk on the edge of
 water．The water is pumped from the wedl into flae porme durjes the mormines．It might，as soon as the ploying is ower，the pumps are shifted and the water is pumper from the pond to the sprinklers． The willer has been in the sun all day ant is warmod amd is muth better for the grass than cold well water．
＇There are fwo systems nsed on woll comrses to present the water that is stambling in the pipers in the fall from freerzing and shliting the pijes．The oht way is fos sink the pipes helow the foost line as is slone in eity water works．but digesing miles of

＂HWore situdents Mart to C＂hat and Eut＂

The Rendezrous

 Ineatititst．
（ins lis．Cirext st．
（hamplixin，Ill．
ficeroot diteh is a costly process and the（alifornia systom of irrigation has been adopted ont all the Hew（ontrses．We dieln＇t know that＇aliforniat was lothered with fost and were under the imperssion that meither fosl，ran mor wind blighted the peace－ lul existene of the endfars of the doblen State．

In the（ialiformia stratem the pipes are laid to a set orrale as meal the shrfare as possible．

It arery break in the lime a bleader value is titted in the piper When these are＂pened the watere is drained ont at the low points，air to relieve the Vatcomm going in throngh the air vents at the peaks． Fionme 1 shows a protile of a line fitted in this way． A protile of the sumken system is also shown for eomparison．

W＂ith the comre thas finf along the engineer has usmally tinisted his part of the work．All conrses will not present the same problems to the engineer． In either a hilly or extremely flat rommtry a ereat dral of exeatiatiog maty be neressatry to form the featmes of the comrse．Alsu in bat ponntry it is somedimes a prohleme to locater an ontlet for the dramage system．This is mshally dome by digeing ont some low soot in the lairway which is used as a drainage damp，to warm thr invigation water ama sombr times serves as a hazalred．

Mr．James Allan wias in chare of the eonstrus－ （Continued on Page is）

LETNばざけ IT

ERNIE＇S

There monst be a reason why so many stadents cat heres
Tr！！（\％ия Jomblr Thick Jime Ilalts
ERNIE＇S 1．2．3

This＂Ad＂is Good for $+0 \%$ DISCOUNT

on 12 Photos

\T
WEBER＇S
Wust be presented at time of sitting

ADD THESE TO YOUR TECHNICAL LIBRARY

 taking advantage, during their college days, of every chance to learn about the materials they will use when they get on the job. The publications of companies who make the materials are an important aid in acquiring this knowledge.We have prepared a number of booklets that tell about explosives - the different kinds, their characteristics, and how to use them most effectively. Get these publications now and start a catalogue section in your own technical library. They are free; check the ones you want.

Tear out this coupan and

 mail it todayHercules Powder Co. 941 King Street W'ilmington, Del.
Please send me, without charge, the publications checked:
\square Eliminating Waste in Blasting
\square Galvanometers and Rheostats
\square Hercules Blasting Machines
\square The Manufacture of
Dynamite and Gelatin
\square Safety in the Use of Explosives
\square Modern Road Building and Maintenance \square Hercules Explosives and Blasting Supplies
\square Scientific Quarry Beasting
\square Hercoblasting
\square Land Development with Hercules Dynamite \square Conquering the
Earth
\square Dynamite-The New Aladdin's Lamp
\qquad

STREET
allentown, pa.
birmingham
buffato
chattanooga
chicago
Denver
DULUTH

HAZIETON, PA, huntington, w. va.
JOPLIN, MO.
Los ANGELES
LOUISVILLE
NEW YORK CITY

HERCULES POWDER CO.

NORRISTOWN, PA.
pittsbleg , kAN
PITTSHURGH
pottsville, pa.
ST. LOUIS
SALT LAKE CITY

SAN FRANCISCO
wilkes-barre:
wilmingiton, del.

The Differential Eliminates Unnecessary Calculation

WINNING feature of the Brown \& Sharpe No. 44 Spur and Spiral Gear Hobbing Machine is the differential. With the introduction of this device

Hobbing a Spur Gear tures of the No. 44 Machine.

The Brown \& Sharpe No. 34 Spur and No. 44 Spur and Spiral Gear Hobbing Machines are representative of the highest development in machines made for the rapid production of accurate gears.

If you are further interested in the design, operation or production possibilities of these machines, send for "Brown \& Sharpe Gear Hobbing Machines," a well illustrated booklet covering both.

Hobbing a Spiral Gear

BROWN \& SHARPE MFG. CO. PROVIDENCE, R. I., U. S. A.

Golf Course Engineering

(romtinutal from. Patle 倸

tion at sit. Andrews, and the writer feels that he would be glatd to show an fome the second comrse, Which will be mater monsturetion mext smmer near West 'hicago. Thre writer womld also low what to go into forther details with any olle that might be intorested in this kime ol work.

Santa Barbara Earthquake
 (contimued from Petle ? 3)

down, remored and replaced with better built and more beatifns lewking louidings and the gaake will soon be only a metmory, white a mull mote beantiful city will apmar. The Spanish style of architerture is being carried out almost entirely in this reoonstruction. Sianta Barbara is an ofd Spanish fown and, inciffentally, it has one of the oldest and best preserved of the OJd Missions, built by the Francisean ladres in the early Spanish days. spanish arhitecture already predominated and after the rebuiblang is tinished, the city will have even a greater Sbanish atmosphere. And so, out of the havo and ruin rallsed ly the eathorakt. there will rise a bether, more permanent and more beautiful city of santa Barbara.

He: "swertheart, lid gor though allything low yon."

Nhe: "har"s start on your hank areomat."

There may low thonsands of matmegs lout there is alwits one grater.

With some porble it innt so mand that they wouldnet. but that they hate fur yon to think they wonld.

It was the emt of the serne the heroine was starving. "lbredt," she cried. "dive me bread!"
-amid then the antain amm down with a roll.

NO MO. 111 NOMII

A hatel liftle bey was Noah,
fle drank one night till twalh. A call in the night
Hit him just right,
Sud now he rall drink no moah.

THE

T- THE ECHNOGRAPH

PUBLISHED QUARTERLY BY THE STUDENTS OF THE COLLEGE OF ENGINEERING UNIVERSITY $\mathscr{o f}^{\prime}$ ILLINOIS

January
 $$
1926
$$

FOUNDED, EIGHTEEN • HUNDRED , AND•EIGHTY, FIVE VOL. \simeq XXXVIII •PRICE•3O•CENTS.

STOckHAM

Quality is demonstrated by their performance

Technical Men Appreciate the Difference in Fittings

ALL Fittings look much alike. But on the job, true alignment, accurate threads, chamfered faces that make them easy to put on - in other words, careful manufacture make Stockham Fittings save time, trouble and money.

Over twenty years ago, when we started to make STOCKHAM Fittings, we decided there would be no holding back anywhere in insuring highest quality. Our modern chemical and research laboratory is constantly testing and checking for the purpose of maintaining the degree of perfection which we have attained.

11 C STOCKHAM. ex.OM
President
G. PETESCH. ex'19 isst Sales Mer

StOCKHAM
 PIPE \& FITTINGS COMPANY

D. W. STOCKHAM '21 secretary R. E. RISELEY ' 20 Asst. Fdry. Supt.

BIRMHNGHAN, ALABAMA

The TECHNOGRAPH

UNIVERSITY OF IL.LINOIS
Member of the Enamerma Colleve Mavazmes is an ated

Vol XXXVIII	1ANLARY 1920	
(MB)R		

Contents for Jamuary

```
CONER
    1 () Pru:at
```



```
    f () !'routw
    APPARATUS FOR STANDAROM&NC,1 \IF \̌OMH TIRS
    H / .Hmus.
```



```
    Hardt (rme
HMOHWAY SMsNG
    K.l (al%
```



```
    k l: Peterwary
GRADUATE WORK N ENGNNFRHN%
    1. F Citmyter
    THE C!RAMIC INDLSTRY ()] INInIS
    I |I I wlutuls:
    TlIF ATOOL A\ & MAMN|T
```



```
Conibul NOHIS
[DITORIAIS
DFPARTMFNTAL NOIFS
    AILW!N Nor!s
ONCL ()NFRS
```


Therum Vinz
F.n.4 Emblace
Nethashat blue I'rme

Ruse lathon
Rove Rethen

$\begin{array}{cc}\dot{n} & n \\ \text { in } & n \\ i n\end{array}$

-
$\xrightarrow{9}$

The

 TECHNOGRAPH
Color in Italian Romanesque Architecture

 thre, as a whole, even when the chamatic interest aromring through the nse of the natment colotint materials is Eramed Exery slourture hats a folor seherme, but the pavaluere of ome or two colors camses a sonse of lamiliarity athe all observer dismisses a bilding as mot imblative of any rhon matie seheme when it is areetarl in whe of the com mon holding matorials. What is meded is a comhimation of materials that will leme rolor to a builat ing atme give a change in texture of surfaces. The inceasing tendency to introdnce color into archi tertirre gives rise ba problem of how to maintaill a sincerity in the use of materiale allad stitl attain a Aelinite athe intriguing (hromatir interest. The mase of color in tatian liomanespur architecture is presented hore to show how this has lered ateomplishere.
 wur rlimate and it is in the hambling of coloned materials of this stybe that we call time at somtere of inspiration which will enliven our amhitecture.
 exived in flat tomes al omer proluces at entiflet of form and rolor. An intelligent nse al ealor allows form to remain dominalll and romphasizes and sha
 tion of the color to the surfater on which it is pared.
 as to preserve the wall surfice and not make holdes in if by inticating more than can takr platere on this 1 wo dimensionad surface. The latian liomanesyme wall tratments in painting and mosalio aro sumers ful in matataining the charather of the surfine ber eanse there was lithe kowndedge of perspection to tempt the dexigners to digress lirom liat treatments.

In the derra retta work whieh began in this period and aftained its height in the I mella limblaia

 delaneation of form ley it and by light and shatow. Fomall was hare moditied to weribe Her colors alld rediefs were made lower in lator of it. Further. mildings desigum for atplation of color show a distinct flattoning of projeroloms. This is rampli fied in the lalat\%o del fomsiglion which will bo dix "Ossed latcor
 The birst oreme inclades hoose mildings in whid
 were neressatry for the stability of the whole fabride The second arder intlathes these stredtures in whith the walls were revered with decotations sumb as mosalic, tiles or verners which hatd mothing whatorer

The emeal varime of ases of colen it the lammall
 Milan, in hridk amd sall Jhometion at (omo, in stone are madombledty of the liset odere. The mentastary

 Verola, Figure … with its striperl walle splits the

 combination heinge exterions of the tirst order atml introine of the soond orders. The lithatitu (latuel

 in loixules 10 and 1.
L. V. Solma in his ". Irfhitertmal folyhrom!"

 till its fondeton.
b. Spllatation at molor lo a simportorl item is

 the alyatront eravilational throst. with the
 imwersoly lomeliflerl.

 -pamdrols, the walls thoy folry and the reiliose and

 aspirallon which in religions strumbers is excerd ingly dexiralhor.

 Viobation is mot so motiorable. It is when strijud
 'The piers in the rhoit of the Gathedral of Jisa whirlo
 arm the pires of tha friforiam wathery in the same
 by this usp of color.

 Howrove, mot su lagrant at viohalion of the rule as it al tirst might serm. The rebative rehromatic values of the wolmon and the hiehly elaborated work above is sudeh that the supported mombers atre lixhtemed,
 Wright beariog semse to the colamm. In this way rule one is mondified.
'Ther matrrials in which the whating chroltatio

 Clay of woml puality was ple'miful for tilas and

The inthroner of proveliner styes is, as mory

 hood of the Romanostute examptes. The Byzantine

 Honrished.
 lablian las of color hhan did two rarly christian rxamples: The (lumeh of St. Marks in V'enice, and
 of sit. Marks is moled for the most rlahorate mosales in the world. 'Tler sonth lransent of the chureh is filmeleil in marble slals of red. oratore, green, and gray chosern for harimarkings. The south donrway has a tympanmmen of greern marble with inserts in red and hark real. The arrhivolts are of wrom and real mathose Thas eobamms are gray and white Vatiogited, rratm, rad, and grern. l'anels of mosair insert in walls have incrustafions of lapis lazoli, arate and eormetian. The west facade, riente 6 , is compledely incrusterd will mosaics. Nll tympani ate tilled with mosilies on gold grommls. The cenfral gable has a panel with the gold lion of st. Marks on a blue ground with gold stars. The great celloal doorway is flamker ly colnmos amd has a mosalic intrissted tympammm. Tha mathles of grey.
 1]ne fo the weathoring of the surfaces.

Mosilics are exervohere on the interion The

 bits gives a blombing that is rery watisfactory, Tho
 mosilios, ropicting the virein and child flamked ly fwo amgels. lits of the mosaie of the parement are stown in Figutes lis and 16.

Un the experior the gilded hronze borses aboxe

 of liyzathine inthemer.
'The tombly of (ialla l'latida near Ravenna dating

 budak with witle mortar joints. 'The intarior is resplendent with eolor. Sn orange marble wains robing with erey velabig linesthe walls. The barrel valles alowe are emertsted with mosales in dark
 Figure 12 shows the pattorn and cobloritu of one of
 wotk is of ernass. The low elomb is alson ineronsted
with mosalics alld the natrow windows pieming it alle filled with thin trallsherent kahs of brange marble. A rery inspiring interion which was m doubtedly the sourece of inspiration of many of the fine examphes of the nse of rolot which oremer nearlyy.

Of the Lambandie examples the first is the what
 1. 1). The ratereor combines "ram and pink bey

Xear l'avia is found the old ('arthasian menals tery of certosis, the rhmelt of which is the men highly decomated and colorfal ol all Europe. Tho interion is of white mather The sime altals are of colored mathes elatorated wiah intays of poremos
 garnet, amd romeliath. The exterior is of biek, terea eotta and sture on the thanks. The fac:ade is of (armara marble inhad with rich colomed marble

 medallions are exeented in white marher with crepe markings.

In the court vard white marthe ewhums carty terat cotia arelues in pink. The font in the romer is greell with water moss. The whole composition blends into a ruddy ghow in the lalian smanime. In the ohd saleristy there is a marble mosatio parement, a dade of mathle with pamels of mosate insert in al sullor he pattern. Thiss struthre cembines the 1 wo ofders of color was in al wer sumessful was. A Wealth of rich matrerials skillfully rombined sive a
 a Wext lor the modern use of intrinsie and applied coper.

At Bolugnal wr fimd an example of at vinela

 of rolored hrick. The octagonal baptistry on the west and of the interior cont is of brick. The walls have mosaise of stome amd mathle amd patterms in the briek werli of graat varioty of patmons. sume times the patterns oremb it hathe melosed betwed

 are applied at randem with a delightful inlormality and the chatacter of the work is sumb as of be all mirably sutted to work of torlats. This hese of collot falls within the second ordere.

The choreh of lawhe and lienen is amother of

 sed intw the brick wall. Withe colowed matrole in

inserts in the wall arries the colore of at the height
 and fich composition in a good refinement of lime. form :nd andor.

Thar "cross wimbow" of this salle "hame is another ofneting of rare beanty amd workmanship. I wall of alfornate bands of hrick and stome frames

 White mathle. The eatming is lace like the entoped surfares math, alle with the varied surfiar festures
 "aimple af gatal fotm and color composition of the scoond order.

 tympanmm is callod in alow retiof aml is high

\because. has complad colmman of ted mathle catrying a plata wall. The bila rowt is real. This rhard is of
 color acentring both insilde and umt. The whole

 arthes of the natre artate ate white mathle the
 the triformm wallery are striped, batk amb white mathle rontses altathating. The spandrels of the arman ham insels of varions medallion patherthe The repestory wall is of white matrob batmed with

 eolor and wilt high lights. The hemidome of the

The Mterior is a remarkably delicate amd com

 ity. Within there al the arehes are hernze dows.
 of the arohes and the walls they carry are dexerated with latambint and delicate intays of cotored mathes. This entire strmetme is all essaly ith the
 pme white building. Where the fomality and at

 dishity by fullowing fle example of color reliof set for Is int the \{'atherla:t of Pisat.

 the intmion lise of eoldere The eatorion of the ehaper has lithe enteriog waression. The mathe mosatid incerts ill the bath commes of what exterion there is

 oxrasional portratir medablions. The wall atome is alse patutad. T'lae collumse of the have ate antigur.
 and :ramite. The wall has a matble dato with

 ately alefosed wilh mosaices. The moseries of the fleme atre intriathe in dexigh athe of splendid ablor combilations.

The choir steps, the pulpid, Hoe choir mila, allul The altal are lavishly wrought in losmani work,

 F'urther than this they are not lowated as to theit
 lionabla and as inspiration for foor patterns, bathe
 they ate of artat vatue. Thromghont the (latery
 Norman inthormes.
 fiat the mast intoresting pat of this stronture which
 ames the broat andhivolts of whirh are inlatid and printed as ate the spathens and the dorestory wall.
 patuted. loigutw f. The walls of the have have a matrole date with a mosatie emernstation abowe

 are of perforated matho with mosaices atul inlay.

 Hosalies. 'The similarity of the serolls atod coloriner of the llowe mosatic. figerer l:3, and that of the intaid window reveabs in the labatinater rlater is great rombly to sity withont further aremment that the mosalie of the Prablamate ("hater) formished the motif for the thow pattern in lare ('athedral of Nomeate.

OH the exterion of the (atherdand the enveratest interest is on the east end and in the emistere. The there apses on the rast rathe ar in there stotios of inferlated athes. Bambe of mathe mosalies athl
 Hixh the decoration.

In the elonster we tilld interestime valations of Solons" ruld for the appliation of color to support
 rarved. twistes, compled. amd inlaid. Tha inlaid
 Which rum ropically or ascend mimally. In some (:ases the zigzate motif is mad horizontally lout here
 10 wereome any tembency to heak the vertical feet-
 pointed stat motif in al kriaty of rolor jatlerms.
 sutfor : ipprediably form the lightening of the mem bers hy this use of erolor. Exceph for eloisters athd
arades of this same lightuess this nse of color is not adrixalle.

In conchading the disenswion of the exampers the Palazo del Comsiglio at heroma is mentionded as a good example of a structure of the secomal order. It was built for an all wer applicalion of "wher and the surfaces and projections are so adoped as to allow the appled ornamont foll phay. This cometh hath, Figure 1, is a study in white. orange, , whd, and greengraty: The pilasters of the sectom stage are decomated with aralexgues in low reliof. pirked out
my of large armas, fimetural simemity was uen
 styr- was a trannitional styde there is a mave expres. siom and a matiantioty of motifs from which to
 color to our :trhiternme.

The nse of muxaicx in har framing of anminge
 Where strmetural trath dmamds an indiation of Heor leveds womld mon a simple hathe of ocrasinimal hite of coldor, ats in the wherime hand commes of the

Dolmetsch
FLOOR MOSAICS MONREALE CATHEDRAL.

13.14,15,16-Jomes

Grommar Ornamerte

MOSAICS F゚ROM PALATINATE CHAPEL PALERMO

in color ambly. The comine is painted. The walls
 predominamer with merasional inserte of atere gray marble. The wom ceiling ix of nathal brown
 and bolle. This civil example "all well invire ne twaral the nse of chenmatic sehermes on our stome fromts and will furnixh malny motil's for surd a we:1ment.
 aneseque style was contribution to arehitwomat
 diwe interest and low aromtating the qualitios of delicacy and elegane in the members whish hawn this arelitertmal rhatacteristic. 1 ehamge in guality of sumfere thengh a variation of matropials was nsed 1o lend interest and th reliow the mums.
 with box imbermone of the wrial anpration

 Heture.

 wals. "It is likely hall futmer whor in arelitecture

[^3]
Apparatus for Standardizing Extensometers

II. F'. Monnt:

 : 111 in llitgram with the rige in
 atla itvelf by motas of dohamasoll
 "amperal to the erad of tha sermes s^{\prime} s". Ther urron s' has at thial motion of 1 10 uf :11 inch amb is
 the externsomeler which is beins

 Mise as in Fig. 1 , a slight tumbur is Eisch tor the extelnsometrer by thrating the where $W^{\prime \prime}$:and the as frasomator dial is ratd This mores the print I' and the ll : l lever 1 . () there rat of the lot: is : "linst

 molil rontary is matre with the ほmint F' of har "last worly dial

 that miarometers is taken. The misemeter

引!g of ©

 itw therion. Berwern the nowe of the dial 1 , imb
 . Whalmem borevs . I. The wheol If^{\prime} is aljusted matil the leser L is at the lower limit of its 1 amed. alled then the wheel $W^{\prime \prime}$ is formed matil the dial I indicatas some dal
 division on diall ll repesemtal 10 . not inch, it is possible to reprexher if \%ero reading to I 1010,00\% of ath
 adjustarl to stamdard comtare with F'and it reading takens. After this realitug his leen taken the Johame son bocks are chatued for amother sel having a different known thick mess and at realing of the micerme for serew is taken lor has seeond sed of books. Ther difference in thickness befween the dirst set of blocks and the seemen set of blocks Hives the acthal motion of the
 micrometar ferting for the two sels of latergs give the instrmbert reading for this komwn distimere. By nsing a mmber of blocks, it is passible foralibate the instrument itwalf throughomiturange.

With the instroment, there are need a set of 11 Johammen blacks varying in thickness from 0.1000 inth to 11.1 lom ind . These blocks hate heroll retitied log the l's.
 ally patt of amy block was six momemillomthe of an inch. Trests mande with the atplathos indicate that

 inth. This alphratus is experted to be of service in
 Lathoratony in gowd catibration, and in calibmating Whensemeters from other latomatories. The appar altus wase dexighed by the writer of this atroble atht

Thoughts on the Education of a Civil Engineer

11.ntis ('Buss
Profossen of setructurnl lingineriug. I nirersit!! o! Ilfineis

At one time engimers were elassitied as rivil and military Today most engineers may bottor be Lromped as rivil engineers, who deal largedy with forces imposed by mature, and as medamical ebgineets, who deal with marhines largely of thoin own reation and with formes at least partly within their control. White the dassitication is by moras eomplete and is hased on a distinetion mot rapy fund:mental, it gives rise to rertain minor differences in vew point and training which jostify the limitation of the title abowe.

From several distimed sumees the civil enginerer do rives his education: from his swh observation of the artion of natural formes and from records of suth observations: from experiments on the prob reties of materials as malde ley himself and hy whers: from training in waghing. inter preting, corrating and using his information. Of these the last is the rarest, tha most valnable, the most difficult. This training camot be got from books, though beoks may wide one in its attain ment, no teather can gharan tre it thongh he may hasten its development, it will not automatically come with any length of variety of sehooling or of experionce. 1 man mast give it to himself and if he gets it it will bear the mark of his own indi vidnality. The insistent and constant med which a civil enginer feels for ans sorals of fate from which be may predict matural phemomerna, tomals to develop in him an insistent honger for anything that looks like a fact and maly lead 10 a woltish and ghttomous attiture of mind, a gobloling at of emery statement or opinion, tigne or fummbatimerimi mately and incessantly. The result is ofton intel lectual autointoxieation from "hank and gobs" of maselected, undigested and undigestihn matroial.

Rather the eivil emgineer beeds to solent wery dis ariminatingly his montal diet and when he goes a-tishing after facts, he wants a tisla fry and mot a

Phomemsok Hamy Cbuss
(howdre. His lishing trige are oftem hong and atoln bus and it is impertant that he take alonge onty the

 mental journays. Whtinition of terms are bike the mames of towns atong the way, mathemational mata
 for enginuring facts drive himon. It last he dimhe his comotry: a banl of lakes and rivern terming with fishfilets of balure berme of byy
 1al fhemomenal all shlts of [itcts, sumb bisefol and shme aseleses for him. And he smade his bet and ratthes them and solects what ha Watuls and mese them. And later he witen tells abom it affor the manner of all tishormeng.

Thar net which ratteher ment tal tish is mathe of questions Braring on 1has subjert stodied. Honce a traimed man in emblecting information be gins firsi wor collections fions bather blath loy collow ing datit. Judeme at mam":
 Ganged berter ly the thes tions whid he aske than hey tha answers that he gives, and thore is no smer mitrli af

 the manher of questions is few, the mexh al the met is large and many very impertallat fats stij, thomeh
 bew firl adds mew questions, and ans the datal ane
 in the mesh. It tirst the met is mot wery well madde athl at this stage tow many fate maty be badd for the met rammot hold al later nomber of fish mot if it ratches them. lint if the threads are made stronger, if the questions berombere meatr and
 hange earh lithe fact lye jts gills and all the tront or perch of rattish can be strung on sejarate strings and exollailly pht in the frying jan of dexign. If

 live some other dise.

 sertal batrels of assorted lish and sere how yon like Herm: they may be spoiled if rom donit know the man who sold them. And yon ran, if yon like, go to a restanallt: bat we were talking alout how 10

Tor elop his motithor, these last horee wass of hating a lishfor morexponding in reverse order to threr delinitu temdencias of our mimes all based

 Whach is eharacteristic alld importatht. Nost of

 frated flonght: atud fal we know that mo tronble
 of it. Smes from lear of mental exerome we be [कm expoxed to the maladiex of formmaritis, tran chatis, abll experimentalitis.

Formalarilix appeats al mory age, in expry "lime in exery firld of thomght. $1 t$ attempts to

 "ase abll do hor have to think alout them any more
 by and so anoid the need of thinking every think ont
 rulas sulply exallant matarial from whirla tor sin the skein of guestions whiel make a mental tish med.
 comelosions in symbols of eatch phatases withom adding al list of all the dedalad limitations amd

 thar of print paner fully ratized all this: but a sufterer from formularitis a anmon materstand it. A

to him a formala for bond in a rantored fonmedr

 phemomenal is recommender.

Translatilix is importerl. 11 ronsixas in exils Peraling the valur. importane and emalibility of facte bexamse they rame from a considarable dis tance and were imported into linglish with cont
 all lacts buating on ond work shonld be al ham from the latmoatorios amd literatmes of all rame thes: it is not always fossible. but it is very desit

 ly referring to the ravers of foreign literallow in

 rule, we are inclined to mestare the value of infor mation by the distathe from which it rame allet the effort devotel to its tmastation, as if anginerotion bore any simibarity to postage stampor or mixal orehids. The weiter readoty tried to fime the basis for atm important rale formalated by a commitome and al variance with usial pratice but was able to lation only that one mombrer had sexth at statement in a revtain lorrign book that tests supperted that riole, Fant comblat tind the tests.

Perlapls the arase just rited was complicated by
 work in a wall koown institution onee foll the Writer thal il he wathed to know all about rein-
forced roncrete beams-lus was a mechaniral engi need-he would 玉o down into his laboratory and test some. Sow suth experiments are very ledg fal, but wo one at Illinois would aver maintain that a few or exen many experiments on conerete heath: would tell a matn all there is to kumw atomat themor even all he needs to know for dexign promoses. There is mo beld of study that reghimes more care fal training or a rarer infellect than devising and interpreting experiments. But there exists at the present time a rague but prevalent idea that the shortest road to a tish fry of engineering facts is pomisellous, indiserimitate experimentation-a proess of dyamiting the pernd of knowledge. lant many tests may give few facts and molese well de Vised they give nome that athyone call be sure of. allod it is bot desimalate to eat lishlall "anessed m, " with mad athd drift-womb. Earelt for the work of a few men of perentiar gatins in the intergretation of lest dala, it is trum that the lasast valuable pate of ally repert af tests is the coblelasions. Tor salfely tase those data earll man shombla draw his own romela sions. I more general tendency to do so wonld dis "omage the amatemish ideat that this is an dasy Way to actuire kowledge and would further dix combage the very ohjertionathe enstam of merely stating that tests imbicate thas and sn withome ex plating how the texs were malle or how they showed it. The wrier oftern fimbs stodents prome

them or eren imatine at test apable of proving the alleged fact. What they really motal is that they have seem or heard it stated that tosts prowe it and that they know nothing else atront the mather. The
-tatiatical methert in mernatzel by crionlint an an

 alld its mixate han leal to many ermor Tlase who

 that ain't su."

Much of an maineers best work is the result of "humeltes." vatur amalogios tor other rases with which he has worked. It is muthoubtotly true that
 stangely true that they oftern come from hatel work done alt sume other time ons some other froblem. llard work has a shrprising way of paying mose gected dividends thongh later inypinations. How

 atre dangerons and that ant athalogey is mot a reasom mon dors similarity comstitute ithentity. The iblea shgersted may pote trme or it mas lx monsernes:
 shond now be treated lighty. Whe dom in time

fommon semse, matese it is wery emmmon, is only the applieation of theories which have grown and been formulated momerionsly as a result old experiener. He who : assmmes that the tirst thing to be done with all engimmering prohlem is themen industrionsly
 an allomed as did the litthe jurers in "Wier in

Wonderland" wher laxam so husily to add up all tha dates in the evidener and reduere the sum to promds, shillings athl perer.

The reader, geting a lithe tired, with here comphan that the writor has not get satid anthing about enginerping colleges. he was, howerer, writ. ing of an mgine er's mocation, and not whotly of his sedoobling. Howerer, the sehool has much to do with it. Tha fumetion of the instromer is more imbortant than the writer ane thonght. He cannot comphotely ruin a good man wor ran he make a barrel out of a buns-hole. but he cam aceomplish
 invalmable in indieatines those metheme of thought and shay which are commonly moprotitable or acto ally harmont to a rivil rasineer. IIr wan hell the man to grasp the idea that rivil ememerering is mot a brameh of mathematios, thongh mathematios is
 ly suernlative studies which hate no purnese: he "athere his ment to realize that the enginere asks "What of it?": as quirk! as "What is it "."

I'pitaps the most valuable training that the con lage can give is in the mase of books. Few students knew how do nse them. Fiow rall reali\% how hesi datingly a diseriminating athor selects his material amd flat the aluthor. last of all, would say that all this is to bee swallowed amb that": all to the sult
jert. The information in books is second hand to the student and second hand information carries the same dangers of disease germs as seoond hand rlothes. Few students know that at best books can fumish only a perishable met of large mesh through which they may begin to strain their information and that every fibre of that met mast he reworen omt of man's own thinking and many new strands added if it is to be fermanemt and reliable in holding the setected data of forty years of engineming practice.

The rivil engimer meds ratarater and colthre and hamm-and so does every man. Stevenson satys "There is only one road to bohesty and the name of that is thrift." Stevenson was sootch but he no doubt included thrift of mental fowers as well as of material things. There is probathy mas surer foad to the development of character than stamight hatd conrageous thinking. Is for sorial chatm, the robleges hate wo monoply: any student who will fatily eompare himself or his dassmates with men of equal mental endowments and social adrantages Who entered bosiness from the high schonl will at once realize this fact-a matler of common kowl edge in the business wortal. He who lives without colture, withont a knowledge and apreceiation of the beautiful in the past and in the present will only half hive, lont it is a very common ertor to assmme that cultured mon of eminonce are groal becanse of their culture, whereas they are cultured becanse of that cosmopolitan interest which helps to make themereat.

In writing of his grandfather, Stevemson deseribes civil digine $\begin{gathered}\text { ming as that calling which car }\end{gathered}$ ries a man intu fiodes out-ol domes and then tinally takes him and shuts him mi in an oftice. But hos fated fally to materstand that the anginerer takes the out of doors into the oftion with him. Artist and wrientist, experimenter, investigator, hanker and plamor, sometimes a dreamer, often a driver, the civil agineer tomds his precedents back to the feramids and the possibilities of his art stretching 10 the millemame. The writer wonders that he spotmred to write on so eomplex and important a subjeet as his edncation.
 Pemplirution.
 ethere athiere it for the matres.

Highway Signs

The study of the proper methorl of markine the hatd surfare foad system, now monder construction in many of thr states is one of very ereat impory athere and cleserves considerable thought athe starly for a froper solution. The rat of antomotila transportation is now mon us and in order to mert it sucessfally there mast be aloptal at sablardized system of road markers, warning, and direrelional signs.

A frew yeats age the daily travel of the vehicele was short, the atho homrist was manwh, amel the volume of traflic on our highwass wats eomparatively smatl. There was, herefore, lithle meeessity for any extensive seheme of diretting or eontrolling trallie. At the present time. howerver, beraluse flat volnme of traflic is so great, the distanee traveled ly individual vehicles so lomg, and bec:anse of the fact that many of the drivers are traversing the wad for the first time it is imperative that there be some adeguate mexhod of furnishing dhe drivers with information whirla will enable them to nse the highways with maximum convenience, speed and safety.

This problem is not at all molike the rontrol or operation of trains on the raitroad: lint, of eomeren it does not involve, ajther liy neressity or possibility, the extreme rentralization and standartizalion de. manded hy railroad oleration. There soberme em ployed for controlline movements of the hishway rablice is that of a system of sigus.

Mighway signs must furnish hle driver with two Kituls of information. First, They should inform him as fo the rembe for follow alll as torertain im portant fealures and lowations. Sceond, they shombl furnisl him with information eoncerniog the con tom of his vehiela. 大ighs for thr tirst pripose may lee divided into thase whiels imbleate the leirtirnlat
 (rss" amd signs of Jocal directional rhalateler whirla masy be ralled "informational signs," thr two to gether eonstituting "olirectional signs." Signs for

 roald for the tiast time, it is hishly desirabla that the

 marking athat litle attempt has beent matre to eont neet diem with dhose of otherestates to ene athromgh ronte marliad in a moform manmer. It is almost
impussible fo mark all rembes in the combley as a wnit. bat the principal through rontes rand lar marked as such and the seeondary romtes by at sys teme arlaptod for the lexal eomelitjons.

Ronfre marking is not tha only phase whicla should be stameladized. (of "ven more importane for thes satety of the travelling pulble is the stand andization of thr warting signs. Thore have heren several codres propmed for warninge amd aich has its propornots who believe it to be the best. If is the writers opinion that the partienlar eorde is not of moneh importane but that the alopetion of some code is of wreat importance.

Code, as hero used, may be defined as anty sut of shapes of sigus or symbols imposed thereon, whirh *mphasizes the fartientare information the signt is to convery For example, onte corle which has gatural consiblerable fitur is bhe onf reaommended by the Mississippl Valleg llighway Assmeiation. It is as follows:
 mationt.

(hetagonal signs to designate points where traltie mast stopl.
'irembar signs to indieate railrome erade crossings.

This system is simple and mot expernsive of installation, and lais been fommd for offerefore in the instances of its use.

Lowever, to make any code of the most value, it
 bot only the combe itself but alxo a stamlarel location wi the signs with rexperd for the point indirated atme the roadway. That last point is one in whioh *-treme
 signs will bre very detrimental for the ettertiveness of the romb alld the markiner stictem in general.
'The perpose of this stmaty is tor ambetsor to for
 adeylator systom of highw:y vicms jacluding erombi
 moter mormal comalitions of ilfmmination : and larck

 mation conceqning prexent pratelice ame lasty to make surla maperimental investigations as might

 mak" a sumper of all the literature at hand. After matime amd raseifying all of this material, it was fomme that, althomeh the sulogeret was a pepmbar whe.
 rentle phblinhed. It was also foumb that there laal bextl oftereal manys solntions th the problem late all cenemed to be lased on the peremal preferemee of the "ritar or on olsemation and sturly of existing - atems. The lattere solution is of some value in that
 athl hatl points ath improwing hair systems eath sear.
 lise, a letter of imgniry was sent out to wath of the *ate highway departments asking for a description of the marking system in use in eatela state and any other information which cond be furnished. The resonke bo the lettor was very satisfactory and at reniow of the material sa collected furnisbed somm intomesting facts that are of considerable value and samb: a tasis oll which to levise some experiments of tests. Some of the primetipe facts are as follows:

First: Somb states do not have a stambardized ?-lom of sigrs. The! afe Mississippi. Iowa, Okla
 l'aliformia, New Mexion, Montanar. Vtah and Idaho.

Necomb: some states have no ponte markers bot hate a system ol warning signs. They are delaware New Kork. lemmstrania, Maroland and New Jersey. In somb cases these states have incorpor ated :t route marker with therir warning sign, but the syitcm cannot be walled a stambard complete - isterm.

Third: Some states have a standard, complete sytem of route matking. They are Alabama,

 baknta, Ternmssee Treas, Virginia, Washington, West Virginia, Wistomsin, Wyoming and Oragon.

Fometh: Some states either dial mat reply wr conld not ex we the information requested. They are Lanisiana, Cohrado. Somth larolina, Iomecticut. Cormont. Maine. New llampsime and Arizona.

Fith: Nearly all statex which have a system of signs hate based theme upon the recommendation of some other states or some suctidy interested in the -uhipect.

Nisth: In the dases where a cadde has herm used. the whe most wemerally adopted is that described abow as the Mississippi V'alley llighway Association code.

Serenth: The color combinations in most gen "ral use are hate latemes on a whet hategrouml.

Watk lethers on at lemon vellow batkgromal amd white lefters on a blate fatekground. In some in stances other colors have bern used; but, as yet, only two states hate ventured to use other than black on some light hatrkgroumb.

Sighth: As regadds location and size of signs and the lethers used thereon, each state seems to has followed its own prefereme and only few have sueritied dentitely the becation of the sign with ref wence to the road. All of the states specified more of lexs memerally the exate shape alld size of the integral parts of the sign itself.

A tatulation of the standard route markers in ase at the present time is shown in Fig. 1. and is lare wiven as a representative outline of the varions systems.

The nerexsity lor wabrimental insestigation con croning the prineiples of highway signs is very greal

| TABULATION OF STATE R OUTE MAR MAERS |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

due to the fart that, ats far as is known there is very little acurate data on which to lase detinite con -lnsions. It was thought, therefore, that the material ohtamed from experiments would assist in forming
some detinite eomelasion or indiate the lines of fothre investisation.

The ghestion of lomation of signs was not tonehed ypon in these experiments as the comblions are toen variahle. Nome reommendations are oflored. law aver, alld it is thomght that bley meresant the best pratetice of the present. All other eomelasions are baserl on al cevain athombt of experimentation alll
 bamber of experiments were comparatively smatl.

It is to be moted that in at stolt ot this kimel the
 (hataterer that the results will meressarily depermel on the arroigr of the opinions of the oberomers. In
 vible in thes particmbar phases maler observalions. It is for this reasol that Hae roblellasions cammot ba. exatel, bat hatre a bey latge "perstatal mpation"

 "fation lateor will he redued tha minimum.

Fiom the tests described below, it is bomed that the forlowing resultax mat be ohtalled:

F'inst: The most satislar-mer entor ambia Hation for highway signs mater the comditions dexrribert.

Nefond: A mate oll shates ol sions.
Third: The proner sizso of hatekymund amd hetars for the signs mater ordinaty romditions.

Ftometh: The dexiralole lenalion of the sign as pertaining to the point of dange or interes.

 might driving. The alpataths for these lests eon sisted of a redangular hos four by sis fort in size mounter on at pertexial so that the boa combla be swong in a complete horizontal rimete. The interior of the bes was painted a dead batek su hat the reflection of light womld be the least possible, which is atount the eondition of the actual trackeromad of highway signs. A sporlight was atrangerd on throw
a diret raly into blue bos and thas illmminate the sigus phaced therein. These artiberial tests were rom docterl mon there sets of signs, abl were twelve. twelly five alll ton in mumbers. The signs were eoll
 wenty inches long and hat momated on them the

Flitire 1.
 impossible form iny fommon word or sylables ly a combitation al these. The lethers used ware K. U, K, A. W, K, II. The letters int the thirel set matle 开 the word ('AlTTON and the combination of coloss were selected from those of tha second set.

All texts of this mathe were eomblueted for the froperse of selecting from the many eombinations pexsible a momber which proved to be the best and to bese these in raad tests. The tirst fest was con
 logether with the mexnlto of the lesa.

The observers were instrueted to try tor ratd as many of the lethers as pessible th the time the sign was ilhminalad. They were then tor remod this result and the sign was lighted for a longer perion of time. This was rejeated a third time and ther dach obeveror was lor gradre each sign as the their respertive merit. All observations were taken with sildere in the remon wh that the results af ome man
 The last test was comblucted mpon tell signs having the wond cil'TIUN on them. This text was entirely an opinion test as the obowors wern given thre views of bath sign alll asked th give thre grades for eath. The lengtles of time that the signs were illaminated were whe there and tive somond athl
 illmminated by the headlights of all atomohile
 per home rexpetively. This time ratr he only al proximate as the variation in the quality and tuan tity of light whatined from allomobile heatlights is

 hishllay sign (:an be serm.

The seromel set of experiments in this insestiga
 patine them alone a pated road. ohservers were then driwn ly the lime of sixme vatring from la to

 might be meted. Tha appatatus for hive test coll sisted of lightweight standards to which the signs

 from the edge of the pasement on the right of the小riser Flise set of exprimente romsisted of two texts on the same sighs, onte of which was eotholloter Guring the daylight homes alld the wher at night.

In Ho stoty and myndimatation pertaining to the suhgert of highway vighs. there have heen hanelat to the witters altention many points which are of interest. One of the most important of these printe metiered in ble dirst texts is the fand that the Elame oft the signs ralled by the reflection of light from the headlighte redured the remalibity of the
 light twa it was follad that the observerse comb platume of a comstant glare which upoiled the effer of the sign. To weroome this. the bux in which the
 the whate was romered. This position was fonmd to late the salme for all color combimations. An estimate of this ample plated it at 15 degrees. The amgle referme to here is the one whish the plate of the sign makes with a tion perperndicular to the ray of light. 'This inclination of sions is partially aceont plinded by setting the sigus for the side of the ramb. alld itl some cases has beed incerased by wivige the flate of the sign a slight angle to the litue berpers diontar to the centor line of the roate.

Sor exampe of the photos raphie proprote of the vistre med in the tests is shown in Figr er and

 of tho fact that batck and white alperar exatety to
 colors do mot. This photomaph shows another im frotant perint and that is the fart that blatk letter ou a white harkeremmel low smaller that white let Hot oll a hatk hatkeromm when in reality the

 mental the the valle of the sigh. It may he salid that in this rexeret datis condomed lefters on a lizht hatkermand have at lewided alvantage wer wher combinations.

From an amalysiv of the tabmated data ohtaimed from lhe "xperiments. and from at review of atl
 - lusions have been drawn.
 way signs buthe the abolitions diseribed is blate fetters on a white batekeromblatereally at night when sighs are of greatest value.
Nocond: Tha corle of shapes of sixns foret suited for highway signs is als follows:
A. Roctamsular siges to give information and divertion.
B. Sfmare shated signe to indicate arations.
(${ }^{(}$. Diamom shaped signs to indicate stop points.
 Alluger:
 "rossings.

It is th low moted that the diamome shaped sign which matal highest is to lee used for the
 must important sign of the code and therefore the shape which reereved the highest grade Whuld he nseld for that phenose.

The ectagonat shaped sign is made the "Hanger" sign beramer it received the second highest gride.

The rertalughtar signs are need to comsey information and direction becanse it is possible to get more information on this shape and be. "allase it remised the lowest made in the exprombents.
Thirl: The proper sizes of batkyromad and lat ters best sulted for highway signs are:

 his cat mader control by the time he wets to the sigu.
B. The betters shath be of such a sige as to be visible for aboat thee semols. the lemoth of fime neressill? to read the ordinary sion. To meet this regrimement it is the writers opinion that the bethers be at least six inchere high with the limes of the lettere from whe half to theres gloaters of an inch widu.

1. Liness shand be lativer with dark letters an a light hatcigrombed than for light letters on : dark batekymund. but in bo case should they be hatry armong to make that lethers appear bimred.
Frath: The boration of hithway sions cambot br latid down as a detinite rale hat pequires some
 is Inelieved that for most cases the signs shombla the set alout form bio six hadred feet in advane of the print of danger. infomation or diree

The Virginian Railway Electrification

One of the comtambing mondorn embinming atherements is the dewerpment of ratway elabtio
 tion was completed in tha Baltimome ambllan tom bed at batimore. The development has not been

The heatry initial investment feghimed has fansed ralway exerotives to be very antious in consiber
 blentifnh, and its eost has tamen so bow, relatively. that it has mot hem comsidared wise in mest rases (1) werthow existing rombitions lom the resultime

 rable refertitieation womb not la pootitahle at present. For light traffic, the internal combustion rugine is postponing electritaration.

The ene tric locomotise protitably suphants the steam benomotive where very heary tratfic is cotr ried wey a ratd involving severe topographical eon ditions. Ederetritication hats jn some instamers bem

Sork (ity, where, dur (t) the Kimfman Latw, all steam uneration must be atamemed by 1920. Any increase in proxperity and tavoralle sentiment will resent in inereased elecedidiations.

Amone the rerent electritications are tha lemon symala: the New York, New Haren, and llart
 athit the Virginian projerts.

Tha Virenatan hailway eloctritication, whith is now heing modertaken, is the largost of its lime in the wortel. It insulves flae electitication of own

 Comblions are wory severe. involving exades of as
 twolve degrees.

Tha domble the eaplatity of the railroal without eleetritication would mean a rery harge expense in
 increase in spere maing more statm foromotives. With enertric lacomatives tha aparity of tha train

"ath be inmerased imbethitely, and the spard bewemes whetly : probleom of merhatimeal patts.

 (ransformer sthistallons, transmission fines, and

The wreater perontate of all the alectritication work in reremt gears has bede carried ont by meatus of high whatge single phase alternating evorent
 Waty eledritimation ate using this methonl of pewor distritation amm utilization.

It maty lo interesting to mote that switzerlamb. Nwoden, Norway, dermany, and Anstitio, have deti bitely standardized on simgle phase altemating sys foms at lfatoto wolts. It the presemt time one single phase sistem is being extended in linglathe In the fonited states three existing single phase systems
 malrar constrmetion.

The aldantages of high voltages are mumerons. In wemeral the mumber of sulstations maty be -w reatly reduced, athe the distandes leetwen them extembed. The size of the leeder wire is insatiably perlueed, athd oreasionally it may be disprased with entirely.

The wemeral plath of the Vitginian transmission and distrbaton system is shown in Fis. \because. Far the perselt the ogreating potential bew wern trodes amat the tails will be ll,000 volth. hat this may be
 conditions warmat sufll measures.

The perwer demame neressary to start al !,000 ton

 half times the antire pewer loat of lorbana and 'hamprignt combined.

Tor supply these emormons dralts of perver a Wham wemerating station has been installed at Narrows, Virginia, on the New livir. This plant eom vists of fom twentredie cyele, therephase [1,000 wott turbosemerators. These ernerators whem ofrrating on single phase strviee hate a catatity of
 suffiebent to earry the maximmon load at the present times and provision has bern mande for expansion When the load conditions of the railrated demand surth measumes. Poblerized coald equipment is ased thronghout in this gemeratimg station.

The lowomotives 10 be nsed on the Vinginian kallway are the largest and most powerful in the
 feet in temgeth and can exat a pull of $\because \begin{gathered}-7.000\end{gathered}$ poumls. The locomotives are symmetrical and may he boll equally well in either direetion

Eirch lecomotise is composed of three semi-per mathently compled buits, wery mit being a fomplete plant in itself. By means of a moltipte-mit comtrol alparaths, the three units ate made to funce tion as ante complete loeomotive.

The single phase ferwer is requived from the fobley wirs thra the pantagraph. By meatms of a stepdown tamstormer and a phase ronterter the high voltage singlophase power of the trolley is fhanged to low voltige therephase porev.

The tration motors are of the wemmetrote indmetion type. The wombloter pronits the inser tion of mexistame in the rotor rimuit. This gives the motors at high starting torgue which is very (Continued un Po!!e!!?

Fhi. 1 Thate ["xit Lam mabrive:

Graduate Work in Engineering

\author{

1. L. 1mantis

}

Gratuate work is looked upon ly tha moler gratuate stament in engineering in mon the same Way as this stmant looked upon a forme valr and lege comse during his high sehood days. To him it is something rather vague and moknown, and therefore almost farsome, besides othoring ouly an increasing agony of study to his alreaty saturated system. In addition, what information he artailly has, probahly canses him formsider it as a highly theoreticat, high hrow faining which may be all right for fature instructors in enginering, but Whith has litale place in the life of che whos interns to beeome a pratical enginerer. His annertion with the engineering profession throngh summer employment, and in some rases his contant with in stroctors and professors who are men with censider able pratical experience, luats him to the eond la sion that the thing to do in order to attain a hight place in his profession is 10 rinsh blintly into the first position offered and hold it for a promel of years so that he may some day walk into the olfier of the chief engimed of any organization he may
 I have a bathelor's deyree and tive years of angi neering axperitnee, and I want at good position."

The witar does not wath to lelithle in any mas
 is swmething he mast have. On the other hatal the yomer man who helieves that age ame experienere are the only essentials is likely to somb bereome sadly disilhasioned. A ghance into the "fositions Watuted" section of any enginerering periorlical will show him an astombling list of men wibl tive to twenty years of emgine ring pratioe who are andous to get posi fioms bat litule better than he can hold immediately alfor gradnation. What is the logital comelnsion? $1 t$ is that there is athother sequiremath besides a degree allal the years of expremer which ath engi neer must have betore he becomes a highly valmable man to his proflessions. ('all it a combination of
 athe any ol the other much talled alout desitabla qualitiations, whe eomes bate for the plain fact that there is a ghality which sume ment pessess atul whers do not, and withond whieh one is doomed th till mediore pesitions in the anginmoring liold. or ally other field.

The writer feare that an artiele like this maty tend to give the impression that he wishes bo hokl

IIf aradnald work as the grat institution fion the therepoment of thene exsential analities, the feremet panalear for all eminmering ills. Allow him to go orn record then as having an such illusions. I great maty mon with the B. A. degere womblo simply Wasting thatir time in talking gralnath work, white

 -hathel of the dexigning form of ath "hginerering organizalion. Wh the other hand. many men will
 10401 it gradnale work.
世raduate work the allthor will quote in rather ran

 Huderoraduata stumy, by the natme of the latger p:at of the work, which shomld he derp rather thatu Datensive. indepembent rather thath mimately di
 fons of the sulhion and involving an wamination
 thatn at mere stady of emrent pration ame of the metheres of attatek in aperial protersional lines."
 stmbent is expered to know a litte about mant things that some of the instrotion tembe tor her

 : mahnate stmely talken riblow immediately alow his Lralluation or a little latro."

 from dehing into the whlorlate primiples of an

 addition, from forming vesers rathtats with thens
 athl with thone lamper men who will smerti! la. conme leaders in their patioular liols.

 (quite ubionsly antorn wha has the ambition th

 work wempial. Ameng the ment whe intend formor
 (1) Haser introtesmed in pestrell work. Mrehtanical

 for reseamy wotk which mat later hatd to all ell vialble jusition.

The allew er for the student in the other hratheres

 a pertiol of traning for thase whe alre expered to berome leadere in the in professient, it is matmat that

 obly thase stodents with ath mbdergradnate selow lastir standing in the "pher quarter of their class

 le: a hard worker, shomld enjoy respemsibility, and should have sume detinite aim in life whiad work will help him atormplish. For instanere the

in the rapacity of draltamath, deximber, of sombe -imilar fresition. In obtaining such a position he
 the xtatement that hats hat whe or mome reate of © Howere bhe writer believen that the additional
 Hental principhes of 小exign, the respomsibility he
 "omk almost emtirely maler his own ditection, the bander view of whe when mally materstames the themere and methonk whirh he puts into dally nse.
 hipher plames in his pratesxion.

The ghextion of the stambats by whirls all

more dexise tor a mistor* or doctore degme simply Bratuse of the distimetion at carries is not sulticient
 into sisudnate work.

This ontline of quatilicalions protably gives the impression that the eraduate whool demands that Wha aheady have tha quatities whim the writere surg Easided that ismalate work would belp develop. Tu swher extent this is trole betallse the tremembors
 sary lor the meal in diatere of this work for demand that the stment have a certain amount of matmal ability which will altow him to readily develon under thair direetion. It is simply to raprosire th
 ate work.
(Continural on Pa!le ! (o)

The Ceramic Industry of India

Heary rlaty I'rodmets

 any other eomatry. Ninety peremt or more of the honses are buils of bitk, and most of theoll set in clay amb mastered with rlay as well. Tha floms in most of the bonses are of eliy, and elay tiles are used almost exelmsively for rooting. The kitabon
 affair alld the drimking waller storige is menally a
 Watar cool). Phidren's toys add comsiderably to the trade in daty ware alat.

 village or town has a brick fard combloded hy a family. prohably a poresson they own by beritate ami lake cate of lar lowal demamls. In amit alout the fities the siturtion js athout the salme, only that more families are rmployed in the tratle. The cities

 carts, is available al ramsomable lates.

Very litfle matital is invested in such mateprises. The "falelory" is msually situated in the orron. on

 Clay is removed or semmetmes mixed with the yellow Clay in small proportions. The clay is dus by math

 hriek. 'lay is dumper into these to about two
 Water. Dlter at day or su the water will have perme bater throush the

 then the mass is progen woll and is reaty bor be

 of it, and is lowated at onte "at al the dryine yard.

 the mold from at height and then the exeren is fer

 of doying the brick are latid flat and then turned on the sieles. The only contmol in shed hryiner yards is
 strieted bo form or itwe montles a rear, the brick makire is mot takine very many fhatmes att all in lating the briak in the operl. As the drying for
 piled uly in rows. The rooting tiles are mate in a similar minmer. The ware is then ready for burnins.

The bumbers of brick ant tile is a very simple matter. There is moliln struthre as surh. Kihn
 is su lomated that the wind will not bhow on it以epp from the top. Woed or chancoal is used for
 ":als of settinge the kill. F'irst. the brick is piled (1) make at revtangular shapu kihn wibh arehes run Hing from side to side. The outsile is pastered

 sufliciont time be giarn for oxdation there shombly

 and su onf. In surh kilus the lire is stalled at the

 briek is memally used wh the viles wh the smemerting kiln w:all.

 For the sapital in the stork. The miaterial pant ant
 Mreymory can alford is. Them is ho athor himbline matroial that ratl rompele with briok: for hrick

 iner brick. on Hows.

 making what is lomally éallad * Alangalomer Kanl"

the spanish type mate by simpler proresses. bat therir repatire cost bexing low. they ate lexginning to altain popnlarity.

Hoblow lile and drain tile are almost moknown 10 the perople, althomgh some attermets were mate to put on market a patented hollow tile, withont any sureres. Drobahly these intustries may have a Eratit finture to them if worked ont poperly. The sewro pipe mambatiturer is in the hamels of an English conferm and mudoubterlly that industry also has

Ibriner bainy seasom (flume to steptembert the -lit worker must work muldr the roof ant during these digs he thrms ont homshold ntemsils, toys, pte. 'lhrowing methorl is med fommonty ant oneasion ally coisting is resorterl to.

The (ilass Imdustry

The erbass industry of the morern type has det initely passed the experimental statge and is winning steadily the rontidenee of both the rapitalists and the publire 'The art of making glass bangres
 gather their own materials, melt themb amd mold into hangles, amblecrasionally into other shapes. Jowerer alass has never beren hsed as extensively
 Wrati bangles and that abome makes some trade witlo a jopmbation of some :3, million people. The banglemakers now buy therie glass in hmps. and remelt it for their own use in smill furnaces.
()ur domestic mannficetnres's are workiny against ulds. In the first place the governmont is not help-
ing them by enforcing protertive tarifls. Not only that no help is given them but their legitimate right. the cooperation of the Geological Survey and Institution of leseareh bureans is denied them. Ctrdonbteally there are a number of deposits of tire -lay, sumd stone, ete., that would be of interest to the ghass maker hat who is groing to do the surver ing? As it is the frtass makers import the soda from
 from soms .ollu miles and their refrarotories from Tot miles. Thar transprtation system is working arainst the manllilcturse in wery waly, amel to add to his misfortuns he monst rontend with the poor banking system allol the warm weather. In spite of all this
 Mr. s. P', (Gale atmd others who have come out of all storms sureressfolly amd steadily with firm deter. mination are galining wrollarl.

There are some dozen olass factorios now in the conntry all wing direqt fired pot furmates, woth hitmminons coal for fuel. Hand blowing methods aro emplosed thronghont. The grass is of medinm frablity in general. The illnstration shows some of the prodncts.

There is plenty of soope for these factories for expansion if the resomeres of the conntry are better invostigaterl.

A eonsiderible momber of varioties of limestones are fonmal all wer the country. Amongst them the most jmpertant are marble deposits near Jabalpoor. These are salid to be of a thetter quality than the

Italian. The famoms Taj Mabal is built of marble foume in this region. A considerable amonnt of cheaper limestones are used as buthding stones, and certain railroads have even used them for fence posts. Lime mortars are nsed necessarily whenever
the wall is in dired contat with watre and option
 brick and lime plaster. When limestone is used as a buiding stone the chips are saved and burnt ats the collect, for lime.

The limestone quatring pratices vary, denemi ing on harthess of the partionar deposit. Mest of the work is done mannally. Ther stone is fhen crushed to ${ }^{1}$ e inch cubes with a hammer. Tluese are then burnt either in wertial shaft kilus or in open piles, charool of word being the forel used. The
 \therefore feet in diameter with quenings in bothom for dia charge baraing in open is alsa ghite commonly prationd. Either chanemal wreme is mixerl to
satiofillotry to ase in mathy vases. I The mads atw mathe neither of biok mor cement hat of crosiond -tomes.
byjerm of the highest yhatity is khown to orour

 is madouhtedly a lot mome rown for allathement in this tiond.

The lidformorios lmlustry
 berallese of the limited low of sterel low whith it $1 \times$ imdire- lly related.

-
 of stone.
 bity of high wrade callefum waide is sold for haman consmbtion. It is nsed in commerion witl a "p:an
 served after meals.
 patis bat sime the riplather indmetry is male
 value as a sumperm (on for making prop is also limited allul we ammut todily expeet to be able to

 rotary kilas, etre. The imbetry is at posem are porlucing. Vement is being mad mote amd more but climati" ronditions the not make it alowhtaly
 ite are also whatable. Formadum and silmanite
 Statres. tha rertall extent.

The tratu has been lithe buitt ag and whatemer

 benally have hatl somur sumess.

The Atom as a Magnet

 Howd of the Hirision of Ih!siand (Homish!!

In spite af the liat that the :1forn is - somall that meloesty rate hope ever to sere it, it has lateome pose sible to collut the nomber of electrens it cembatis. The mefloms by which the momber is arrivel at are
 mity state with great antidenere the momber of eler tronse per atom of ans elament. Thas the eloments
 gen Which hals ome electron per atom and ehaling
 in the somes. but emontally ements will be dis rovered to till all these gaps.

If will the seen that about half of the emements have all odd mamber of electrons per atom while the remalinder hate ath even mumber. These ele ments may be combined to form componats in vari ons ways, the molecotes of the compound being agereatios of one or more atoms from earlo of two (1) more clements so that the number of pessible combinations is pratetically momited. Aetmatly, fomists hase prepared in the babratory several humdred thensamd different rombinations.

When wo come to eonsitley the waly in which these compounds are matre up, we tiond atery remarkable situation in reysild to the mamber of

 to be stmetimes odd and sometimes even. In cortain chasses of eompermbe al least the probability is that Where would be more compulunds with all odd mam ber of elextons per molecule than with ath exon muntrer : thet the fiact is that out of the humbereds of thonsamde of dilteront combinations of atoms which form the molerentes of the dillerent eompenteds, the

 "pon the fingers of whe hamd. Fewthermere these
 moleroles ate for the most pird very rearotion and *P品
 is datat there is ne deviation from the wheral latw "f poobability withomt raluse. There mast be some H:acon why all atom containing an what monter of Flothons preters to combine with athother atom

 In diacusing the mumber of electoms per atom wa hatho had in miad tha aleotrons external to the
murlens. It the mullens, whith is the mimberenter of the atom where most of the mass resides, there are chedrons imbedded, and in all lmt a fay atoms the mumber of reotrons here is an even mumber.
 by two :As the animals went inte the ark.

All this of emarse shosests the infer of the pairime of Mectroms. A stable atome is one which has its pledrous paired. But why should electrons tend to form pairs: We are tanght in elementary physics that mechoms romel each other and paring surely implies attratelom. This phestion is indeed a poser. The anly hypothesis which olters a reasonable explanation is thal the attrattion is of a magnetire nallure. It is a fald familiar to most people that a loop of wire cartying an eledre current will if suspemded in such a manner that it can turn freedy bake up a pexition normal to the earth's mannetirdithl. A lowp of wire carrying in curent is then so fat as its manhetic properties atre roncerned the muivalemt of a har manet pated perpendicularly to the pante of the low, Now an electron moving rapidly in a rlosed wrbit will give a good imitation of a comtinams loop of current. Two such electrons rotaling in orlats misht be expereded to attract one another if poprerly oremted. liefore we should attempt to carry sublh a hernhesis very far, however, we onght to have dired experimental proof that the dectrons possess magnetir poperties. This experimental prosi we now have.

The tirst demonstration of the magnetic proper ties of the rotating electron was mate abomat these
 tirst worked with silver atoms. Ther formed a narow beam of siber atoms bey exarating monten silver ath cansing the vapor to pass throngh narrow slits. This heam of atoms was passef between the poles of a powerfol electromagnet, and it was found that the atoms were defleced strongly by the matuetic tield giving comelnsive prot of their mas. netic poproties. They experimented mon several "ther metals athd came to the general comelusion that the atom with an ond momber of electrons is magnetic and the atom with an eren mamber is net. Recemty, Mr. I. B. Taylor, working in the Laboma fory of Physieal chemistry here at the Eniversity of lllimois has demomstrated that the sodinm atom is magnetie. The sodinm atom has an odd mumber

[^4]

Prof. A. N. Talbot Elected Honorary Member of A. S. C. E.

The American sociely of Civil Engineprs has honored Prof. Talhot, head of the department of theoretical and applied mechanies, by electing him to honorary membership in the society, a rank held by only 20 ongineers of world-wide reputation.

The honor will be formally bestowed at a meeting of the societs which will be held in New lork City January 20.

Whils an active member of the organization, Prof. Talbot held the posltion of member of the board ol directors for many y*ars, and in 191 he was its president. The society was founded in 1×52 and now has a membership of 12,000 . The membership of the local chapter is 35 .

On the list of honorary mombrrs are inchoded: Marshal Frrdinand Foch. France: Herbert C. Hoover. Secrutary of Commerce; J. F. Stevens, chief engineer of the Panama Canal: Samuel Rea, president of the Punnsylvania railroad, retired; and Willitht Crathorme, England.

The Ceramics Short Course

Fifty-three men and women from various parts of the L'nited states throlled in the ceramies short course which started January 11th. The course. which was under the direction of Prof. C. W. Parmele, head of the department of ceramic angineering. dealt with the work and problems of superintendents, managers, foreq1 +n , burners and others interested in the manufacture of ceramite products. The course consisted of leetures, labora tory work, and informal disenssions The lectures given the first was k of the course were given by men of thr ceramic engineering droartment and other departments in the University Three lectures of the second week of the course were given by men outside of the University. The visiting lec-
 ther A. J Lindemann and Horrerson Compans, Milwanktr, Wiscomsin; M. C. Booze '15. Mellon Institute. Pittsburgh. Pa.: Prot. A. S. Watts of the drpartment on (*atame enginerering. Ohio state University
lean Mitos. Ketrhum dolivered the opening address of the short course. In his address of weleome lewan Ketchum outtined the work of the +n gintering school and the Experiment slation and also explained the r e. search work which is now in progress. some of the lectures delivered during the earls bart of the first week arre: "1 roprties of Clay," by Prol. Parmefop; "('eramic Chemistry," by Prot. d. I. Andpens, of the deprarment of ceramics; "Prospecting and sampr ling." by T. N McVay of the ceramics delartmont: and "Engines and BoilHis," by Prot. A. P. Kiatz also of the ceramics department.

Conerete and Re-enforeed Conerete Areh Research

Professor W il Wikon of the de batment of divil engintering has been fongaged 1 or somt thme in doing re search work on conclete and reathfored eoncrete arches. Recontly ohe Abrriwan socity of civil Engintors has posibed two part timp assistants for Professor Wilson to help him on H-sts on prenforeed condrate arehus which he is mating for the Commathe. (1) Contrete and Reentormed Arches of the sociely. Mr. R. G. Sturm. I'nirersils ol Norbaska 'ef, and Mr. F. T Havis $\because 2$ have buwn obtaintd tor the fusitions.

Irmessar Wilson will comtinme the surtus of fosts startad last year to delerminh the effere of the shendurbess ratio apon the strength of an arch. Last year her tested arches having spans of $1: 4$ teen 3 inchers and widthe ot 16.12 . 9 , and \mid inchess r rspectively This yetat he experets 10 text spans of 17 teeet 6 inches and widths of 8.6 . and 4 inches respere

Experiment Station

Bulletin 152. "An Investigation of the Fatıgue of Metals." by H. F. Moore and T. M. Jasper. This bulletin is the fourth report of the progress of an investigation of the fatigue of metals farried on at the Eniversity of Illinois in eooperation with the National lesearch Council, the Engineering Fommdation, and several manufacturing firms. Previous reports are given in Culletins Nos, 124, 136, and 142 .

This bullestin is a summary of the work done since the completion of that recorded in Bulletin No. 142. It deals with the following subjects: (1) Fatigur strength and the static strength of steel at elevated temperatures, (2) the effect on fatigut strength of stress intensification at a small hole, (3) magnetic analysis as a twat for latigue strength of steet. (1) fatigue strength of non-ferrous metals, (5) latigue strength of case-carburized steel. (6) twsling machines tor re peated stress, and (6) miscellaneous texit results for metals. The results of the numerous intestigations are clear ly shown bs means of graphs or lables. The experiments are described in detail acoomqaniod by drawings of fhr varions machines ust d in making the tests.

Notes

At the lasi meting of the Ameritedl
 Was hell| rewtuly in New Vork City. Prof F: (C . Achmidt, head of the de. patmont of railwat pogithering was -Hected "hairman of the thels division of the nociely.

Thb work or the turls division of the sociot? ronsists of rusearch, and *xperimental work in the use of coal. and of the furomotion of economy in (onssumption.
tively. The first arrh of thet 926 series was mournd lathary 51 h and will be testad about the sirst of February

THAL TEOHNOMR，NPI NTAFF

ASSISTANTS

F．E．Hohmstrand，＇2ヵ，A．G．Davis，＇27，E．F．Todn，＇2s，J．Murphy，＇2s，W．L．（＇ollins，27． H．W．Krasberg，＇29，E．F．Bicknell，＇27，K．N．Hull，＇2S．H．C．Vagtborg，＇29 E．J．Herzog，＇28，（i．B．Keck．＇2s．C．A．（iertles．＇2s．R．H．Landon，＇2s． P．E．Seepe，＇2s，W．T．Durham，＇28，A．J．Harrison，＇2！． J． $11 . C^{\prime}$（ohn．＇29，J．L．Mohun，＇29．F．M．Collins＇28．

K．A．Larsen，＇2！，

1）EPARTAENTAL REPRESENTATIVES

Inter－College Debating

 complistord in the past，of the things that we are responsible for originating，pushing and
 that of the inter colleger delates．

 right teams from tive colleges，was orathize land these teams romperted in as series of elim－

 membership in a formsie fraternity ：and last but probally most impertant，the offortunity

Professor Mardy Cross

The Proctor System

l vilelsity of lof, Nols.
beva Sir:
 mominal in the Enginering sehool, is fore righly followed in the ruming examinations.

 foward mitigating this wit. I do mot belien bewerat, that the rigid enformome of the proctor system will areomblish the result that is desired.

 lomast man lhath explonater

$$
\begin{aligned}
& \text { tomis trul!. }
\end{aligned}
$$

Mechanical

l S. M. E
The student bramblu of tha A. A M. B. hats been doing somb excertingty valuable work this semester. A good mumber of interesting and instruttive probrams have alreaty heen givea; and ,I. A Tomasisek, presilent of the sondoty promises more equally enter taining and edheational ones in the futher.

I'mber the aluspices of the society. two moving pittures were brought to the campus: both depicted a little of the speqtacular in medsanical engineering. One of them, shown Parly in the fall. told. as no other mediam "all terl, "The Story of Petroleum." It omitted nothing. The glamor of the oil fields was there; also the Wonders of the modern refinery. The other picthre, "From hon Ore to Steel Pipe." secured from the National Tube Combany, hat sperial appeal to merhanioal enginters. Still, anything dealing with the making of steel is alwavs somewhat sensational: and this pisfure was no exception. The showing (1i it was actompanied with siotelights and explanations given by Mr. R. W Wire, a National Tule Company lepresontative

In one of the upening meetings of the soriety: a number of stadents spoke "n "sinmmer Experiences." These aro always interesting, if only for the simple reason that they afford an upfortunity to compare notes and reations on enginerring work done during thr summer. R. W. Shute gave an ateobunt of wire drawing as practiocd at the Western Electrie Company: 1. 11 smith presenter some of his experiences in rugetrl to steel inspection: (: Zatnoter gave a short talk on die dosign, iblustrating it with diagrams of some of the dies with which he had worked: and J I. Tomasck outlined atnd illustrated the whief promesses tmonlved in the mann dature of shotark watlbotal

Figimers are comstamtly giving more attention to luquid fot consump tion Accorting to sientists, the sup.

Why of surh fuel is limited: theremore it is adrisable to nse what there is as *etomomically as possille. Fverything having (o) do with developments in liquid tuel apparatus is as a result interesting to the mechanionl engineer: At a recent meating of the society E . F. Bieknoll. jumior in Ml E., gave a valuable letture on "Oil Burners." Other talks on fuel apparatus are planned for the future.

Several weeks ago Dr. Newkirk, prominent investigator and engineer of the Citneral Electric Company. gave a highly instructive and entertaining lecture on "Shaft Behavior." accompanying it with demonstrations on a morlel shaft.

Serording to 1)r. Newkirk, it is possible to balance a shatit so that it can be ran at its critical speed without noticuable vibration. Vet, despite the furt that a great many machines are leing operated at and above their critiatl speeds. people are still skeptival that sueh things can be safely done. They must see to helieve.

Not long ago it was commonly supposed that the radins of distortion of a shaft at the uritical speed was infinite: br. Newkirk, by means of sev. fral simple mathematioal equations. convibuingly proved that it is not.

Pnfortunately, large machines do not hehave as momels or as present theories would have them perform. For one thing, lubriation has a big effect on models: and for another, theory assumes it weightless shatt. dencrally vibrations ofeur away ielow valeulated speeds. These vibrations, however, actorting to Br. New kirk. should be thought of only as being twonant a very small stimulus is all that is meqessary to set it shaft in motion.

1) Fr.AMMENTU. Noter

Acrording to latest information, there art 226 merhanital engincers cmosled in the Iniversity. Seventythe of these are freshmen, for are it esophomores, 3s are juniors. 5: are se: iors, and one is unelassified.

Mining

MINAs; Suctery
The Alining Society held a metting in the Chinn Building on Nov. 24, during which frof. A. E. Drucker gave an intrresting illistrated talk on mining operations in South Ameriea. Mr. Drucker. together with other members of the London Mining Company, landed on the northern shore of Colombia. S. A.. at Santa Marta. one of the oldest Spanish cities in the Americas. From Baranguilla, for seven days they sailed south on the Magdelina Riser in a wood-hurning steamer. erossed the Andes on pack horse, and finally reached their destination near Bogota.

Protessor: Drucker told of the beautifully colored birds, the animal life. and the jungles of the lowlands. He also described the living conditions on the platean region. Archeological records of the ancient Aztee and Inca civilization, and the old Spanish cathedrals of Bogota were some of the points of interest mentioned. Many novel and interesting problems were encountered on this assignment. After completing the task of designing, constructing, ant putting into operation a cyanide plant for the eompany, the party returned to London. A better dlea of the various phases of the work of a mining engineer was given to the members.

NEW Apramates

The denartment has felt the need of small-scale machinery for use in the maning laboratory; consegnently a set of coal and ore machinery has been designed and constructed for use, by the coal and metal mining students. By using small scale apparatus. smaller amounts of ore power, ete., may be used to demonstrate the purpose and operation of the apparatus without sacrificing any of the instruction value.

The Plumb pneumatic jig for purifying graphite was installed to show the students the operation by which graphite is mechanically separated from unawoidable foreign material that is carried along with the graph-
ite when mined. A disk vibrating : \quad mo times a minute separates the material so that it will collect into separate compartments.

The two mechanical agitators for leaching copper-yanide solutions are upright shatts with smatl paddles that are immersed into the solution and re volved by a belt and pulley method have also been added.

The Case Floation machine was installed for concentrating lead ores. The ore is fed into a hopper at the top of the machine. It passes into the Hoatation chamber, where four times its volume of water is adfled, together with the required amount of floatation oils. The "rich" ores adhere to the oil globules that float at the top whil the gangue is carried off at the bot. tom. The concentrated ore is retained for refining. The new futh Hoatation machine is not as large as the Case. but operates on the same principle. It separates various grades of lead wre by foatation.

Apparatus for testing ores and cleaning roal, the Hark Jig, is also in operation. There are 2 2-rompartment and 1 3-compartment machines, mechanically operated by electric motor. shaft. helt, and pulley complete the power transmission. The ore as mined contains considerable gangut* which has t the separated from the purer ore before the ore can ise worked. It is charged into the tirst compartment which has a copperscreened bottom and the top of whicht is located a little higher than the top of the second compartment. Eraentrically driven pistons force a large volume of water upward through the compartment, producing a beaving effect to the material. The ore heing heavier than the gangue collects at the bottom and is washed out through an opening desigued for that purpose. The gangue collerts at the top and is carried over the top at the side into the next compartment for further concentration and finally is passes into the waste leap.

Two Wifley testing tahles for conrentrating ores have been installed The macline has a water feed and an ore hopper at the upper right hand corner of the table. The table, which is slighty inclined, is covered with fine strips of wood placed about une inch apart paralled to the longer axis of the table. The table is vibrated rapidly in simple harmonic motion parallel to the direction of the longi. tudinal axis. The ore is fed to the table and washed down over the strips. Due to the vibration of the table and
its specitio gravity, the ore collocts tarthest to the left falling into a container at the lower left hand romer. while the middling drops inte a container next to the ore vats. At the lowe center of the table, the gangut passes into a (ompartment where it is disposed of. A Burbart Table is also in operation. It is similar to the W'il. they Tathe in construction, operation, and principle, namely, concentrating by sperifie gravity. Another and mors etomplicated two compartment llarz Jig is ready for use. It operates on the same principle as the others described.

A threewompartment hydratulic "lassifier of the spitzlutten type has heen designed and constructed for sizing by water gravity methods. Three compartments are arranged, all on successively different levels. The compartments are arranged, all on successively different levels. The rompartments are parabolic in shape with a small hopper set in the middle of each. The current of water passing through the compartments carries the lighter gangue with it while the comfentrated are is collected at the bot. tom of earh compartment.

Chemistry

Amertan Cumaleat. Sompty
The following officers for the combing yarar were elected at the regular meeting of the American Chemical Society held on Nov. 23:

Prof. A. M. Buswedl, (hairman: Ir. S. A Braley, vire-rhairman; lor 11 A Neville, semetary; 1Hr. M. M. Austin. treasurer: Prof. B. S. Iopkins. Prof. S. W. Parr, councillors.

Prof. James F. Norris of the Massal. chasotts Institute of Technology and president of the Amerisan Chemical Socifty spoke before the meating on "Chemistry and World Problems." Basing his illustrations and arguments on the assumption that the diston tented man is the sources of our grtat est problem in the present day. Prot Norris explained how chemistry by re lieving the press of population surbed to make more perople happy. Fivery man has a right for food, shefter. labur. play, health, and other things essen tialto his happiness. Chomistry has benefitted everyone by giving them many things which were formerly ron sidered luxuries.

In solving our food problem, fhemistry has played a leading role 'The process perfected by llalur for the fixation of atmosplarie nitrugen gives an unlimited supply of tertilizer. In old
ent timps, man raised animals for therir wool which was used to make cloth. ing: today, we can manutacture arti firiall silk in large guantities with a spered that far surpatsies that of the silk worm. Mans petople of Germany are chothed with materials made nut of wookl. In this way we may kothe more peophe an a given area of land

Chemistry has helpod to rednce the hours of labor by eliminating waster Wherever there is waste, chemistry Cin beilize it to mambiacture sombthing usctul: "hemistry is as essential to industry as accomntancy. More loyal support of onr ehemical industries is neerled in America at the press ent time.

Since this meeting Prof. Norris has heen reetected president of the American (hemiat suciety for the year $1: 26$.

On berember 21st an informal din net for the chemistry faculty and wives, in honor of lrofessor S . W. Parr wats beld at the Inman llotel. Professor Roger Abams was toastmaster and Professor IV. A Noyes and Mr. .J. M. Lindgren were the prin. ripal spoakers. lrofessor larr received an honorary degree from Lebigh Iniversity recently and has gained recognition throughout the rountry for his research work on coals.

Anyone wishing to contribute art icles of general interest on somet phatse of chemistry or to contribute to cheme ical notes please ser the ehem repro somitative

Civil

Onez lkerne
That Engineering Open House wats Well attented despite the intlement weather. it is estimated that betwern fiftem hundred and (w) thousiand parsple visites the Civil Enginearing ex hihits in Engineering Hall and the Structural and Hixhway Laboratorias. Mr. Wilson and Mr. Williams ran thair experimental work on movable bridge rolleres and vihratory stresses in maswhry full time during the one ll house and their testine work wats of groat inturest tor the visitors. The Highwaty laboratory held an exhibit (masisting of equipment for making "omeretr athe testing the materials used in streats and parmoments, and in addition presented at display of the highway signs in use in the difforent statms. 'Tha' displays in bingintering Hatl consisted of photh⿰raphs and sur reying instruments. There wer" photograplis of construction work in
 the collection of suldrying instrumonts was comblete and 10 to date. Fatrulty tawmbers were there at all timus to atot as guides tor the visitors.
A.S. ${ }^{\circ} \mathrm{E}$.

The stument ('hapter of thes A. S. (* Fi has hata georl attendame at its ofern meetings this semester. Within the last two monthes they have heard Mr. Alilies, of the Ambriban lastitute of Sted Construbtion. Proti. King. on Railway Torminall Dexign, and Prof. Wilsons in an illustrated lecture on movable hridges. A cordial invitation is agialn extended to all to come to the lectures given in room 22 Eng. neering llall at four serlock on the first athd thime Thursdays of the month. The prograni for the rest of this semestor includes Mr. loweth, vice president of the C. Al \& St P. k. K.. athd bean l'rovine of the siduol of Arehitecture.

The equipment of the undergraduate concrete and highway laboratortes has been considerably angmented since last year. The funds avabable were not as boundiful as they might have been, but the additions are of the best material and workmanship and represent the latest development in srientitir equipment. lerbaps the most interesting pieces of the new eduipment are the Constant Temperature Elpotrit Oven and the Chainomat. ic Analytical Balance. In the Chatnomatic balance the use of weights smallpe than I0 mg. is obviated by means of a vernier adjustment. This feature shond warrant an inspection by those of us who have spent many weary hours using and losing the tiny Weights that are used in the ordinary balanes. A new drill press of improved type. complete with diamond core-drill; a driving-motor; and renewal parts for the sutiltesting appar atus form the major part of the remaining additions. The highway laboratory has a sot of 24 steel individual equipment lockers ordered. Whixh they hope to have installed in time for the spring semester work in f. E. 54. and if the plans of the department tre reationd anothor year should see the concrete laboratory equipped with an whetric refirigutar for performing frewting and thawing tests on eonrete sperimens. This artion bas a de videdy detrimental effeet on comerete. in fath. It has calused, most of the con -rete fatures of whirh there is record. astl yet throw is little actually known ahout the phetwomena It would spom
that the blace and the time in whieh to investigate this suhject are here and now.

General

Few men realize the value of a gencral mentuering education. It is the "ommon impression that specialized courses should be taken by everyone along the line in which he is most interested. Fur a man who is not quite sure of just what field of engineering he wishes to enter, it is only logical that the course offered in genaral engineering is the best for him to chooss. Dean Jordan has received the following letter, from an ahmons, which well illustrates this point.

Der. 17, 1925
lean H. H. Jordan,
Iniversity of lllinois.
Urbana. Hllinois.
bear Mr. Jordan:
Your letter reminded me of the intontion 1 have had for some time of writing to you about my work and how the general engineering rourse prepared me for it. So before 1 tell you about some of the boys with whom I am in tollh, I will take this opportunity to include the other matter also.
aly work has from the first been of a general nature, while in the Doherty Training sshool in Denver, it covered not only engineering practire in elee. trital, gats, and steam heat utility operation. but also acrounting, new business, and general ofrice training. I Was transferred to the Industrial Gas Sales department of the Kansas City (ias company in September, and the work have is of a very general nature also. Our duties here are to sell gas, and the proper equinment for burning the gas, to industrial users. This brings us in contact with almost every type of industry. Each industry has different prohlems to solve and differant economir and mechanical difficulties to be averoome. To sell a highter priwed fuel for replaring a chosper frel we must become efficiency rngineers and shaw that although futal costs are increased, the unit rost of the finished proshet is decreased due to the reduction of overhead and the like. In many of my problems 1 am helped materially by the combses in eromomiacs 1 took at Illinoms

For may partioular work. the general - mgine ring currianlum is the hest 1 could have chosen. I need every day the bastic fundamentals of enginerering 1 rexerived in the different branthes. but hawe as sot never needed a highly speciatized training in any one branch.

In fact 1 find that most of the executives 1 have come in contatct with prefer to train their own men on the higher points of their business, preferring a good general education on fundamentals to one more highly specialized.

You might be interested to know which particular subjects that I studiad at lllinois have proved most valuable to me. Among the first I wonld put M. K. : and its corresponding theory comse, Mathematics of Finance, Business Law, B. O. \& O. 4, and Ec. I. Perhaps, however, had 1 gone into another line of work others would have taken the places of these. The one subject 1 regret having missed is accounting, and so important do the exerutives in our organization think this that eath Junior Engineer was compelled to lake a correspondence course in accounting unless he had taken it in college.
l have given you these details concerning myself hecause it oceurred to me that if you had at hand the experiences of a number of graduates in a certain course of study it might help you in designing and changing future courses.

Best wishes from one who is greatly indebted to you.

> C. C. Yoover. g.e. '24.

Electrical

Preparations for the 1926 E. E. Show, which will be held April 8, 9. and 10 , 1926, in the E. E. Lab and Gym Annex, are progressing nicely under the direction of Ingram Jones 26, manager. As in the past the show will consist of student stunts and eommereial exhibits of new and interest ing developments in the electrical industry within the past two years. The large number of new and important clectrical developments will be well represented in the commercial exhibits and will be of general interest.

The student stunts will be operated entirely by E. E. students. Among the more notable features will be the model electric railway with full automatic control of trains. All details of a lailway system witl double trarks and yards will be included. Nany phases of electric heating will be shown, from electrit cooking to the melting of steel. Artificial lightning will be produced. This phenomenon has been seen by few people ontside of latomatory workers and is produced with special equipment of gigantic size.

G．W．Lyons，ry．te．＇24，is working for the Department of Gas and Elec－ tricity of Chicago．

R．E．Welton，e．e．＇23，is with the General Electsic Co．at schenectaty． New York．

B．R．Herr＇，g．e．，＇25，is doing rivil \＆ngineering work in Florida．

A．L．Levystein，cer．ex＇ebs，is assist ant research chemist tor the Univer－ sal Gypsum Co．ot Chicago．

H．S．Magid，cer．e．＇23，is chief engi－ neer of the standard Sanitary Ham Company＇s Kokomo，Indiana plant．

IV．H．Seals，arch．＇1t，of the firm ol Batchelder and scales of Indianapolis． is now in Florida where he has opened a branch office and is in charge of the building of an eleven story hotel at Haines City．He has made his home in Winter Haven．

L．Sclimidt，arch．＇13，C．F．Dorcher． arch．＇II，and H．G．Overend，arch． ${ }^{17}$ make up the firm of schmidt． borcher，and overend，architects at Wichita，Kansas．
（8．Hartwell，arch．＇1s，now operates his own office as an architect．

F．W．Panhorst，c．e．＇15，resident bridge engineer for the state of Wash－ ington and is located at Everett．
（．H．Mottier，ret＇＇10，is engineer of design for the Illinois Central Rail－ road．He says that the comprany has 113 1llini in its employ．

W．L．Steel，arch．＇96．has contrib－ uted an essay to a symposium＂pla－ giarism as a Fine Art．＂published in the American Institute of Architeets．

C．II．Hockall，arch． 77 ，is the de． signer of the now Eniversity Theates which is being built at，Yale Univer－ sity．It will be the first modern theater of Gothic design．

J．V．Scharffer，c．A．＇ss，president of the Cement Gun Construction com－ pany，is the doner of the schaeter prize lor paters on eugineering sub． jerets．

A．（．Phelfis，arch．＇94，is protessor of architecture at Cornell Lniversity He spent the last summer in Europe with a party of architectural stu－ dents．

As disector of the school of Archi－ tecture at Columbia University，Wil－ liam A．Boring＇ 45 is not generally known as an Illi－
 nois man．How－ ever he was a stu－ dent of architec． ture here from ［sis］to 1sse．Pro－ fessor Boring has built up at Colum－ bia，one of the leading schools of architecture in the United states．In private practice，he has designed many importann build ings in various parts of the country． Among these are the Iniversity of southern Calibornia，ten buiblings of the Jacol，Tome institute，and the United states Immigration station at Ellis Island．He practiced as an architwet in Los Angeles for three years alter leaving the University of illinois．

Born Suptember 9，Ins5 ，at Carlin－ villu，Lllinois，lie attended Blackburn follege before coming to the Lnives． sity，and tor a time was a student at Columbia．He also attended the Ecole des Beaux Arts at Paris．In 1syt he was married to Florenee Kimball of Garlinville．They now have homes at New York and Now Cavaeer，Con－ necticut and he has an office in New York．

Professor Boring received gold medals at the Paris Exposition in ［you），at Buffalo in 1901，and at st． Louis in 1914．Hr is a member of the Municipal Art Commission of New York and a charter member of the American Acalemy in Rome．

F．L．Thompson．c．e．＇96，is written ul，in a recent issur of the＂south Shor＊（＂ountry（＇lub）＂under the tither The article deals with the planning of＂Interesting People About Chicago＂． and construction of the new soutli shore station．

13．1．Lewis，arch．＂obe died suddenly in Grant＇s Pass，Oregon．His deatla oceurred as he was returning home from San Franciseo where he taught
mechanical and architectural drawing in the Lincoln High school．

I．L．Irwin，m．esset．＇lI，is Sanitary District engin＋ur for the water pipe ＋xtension，of the city of Chicago．

IR．R．Lundahl，m．esse．＇11，is assist ant for the Milwanket spwage Com－ mission．

P．G．Ganger＇，c．t．＇ 13 ，is a contract ing enginepr in Germantown，Tenn

Tsingtu Woo，H．ゃ．＇13，is an rnginepr for the ministry of communications． Peking，China．

George Mattson，g．e．＇24；Paul B． Ferris，ee＇ 24 ；James W．Hart，e．t． ＂ど，Len M．Kandulin，ge． 25 ；and M．A．Rowley，g．e，＇25 are all Junior Engineers in the foherty Training school at the Public Service Company of Colorado at benver：

R．J．Rutherford．m．e．＇2t，was re－ cently transterred trom the boherty Training school to the suriace Com－ bustion Comurany of New York City Jamme R．scott，me．＇24 is also in Now lork City，in the Budget Itrpart－ ment of Henry L．Woherty and Com－ pany．He was married leec．24， 10 Miss Jennit Louise strike of st Joseph．Mo．Niss strike was a stu－ dent at lllinois in $1924-25$ and is a sister of Clifford Strike．（．e．＇2t．

Thomas Ormiston，e．e．＇2t，is with the Gemeral Eleetric Company in schentetady，N． X ．Fred Gilpin．e．t． ＇24．is an electrical enginetr with the Kansas C＇its，Mo．．Light and Petwel Company．
J．W．Pringle，e．e．extr．dided re rently at Perry，lowa．

L．II．Christen，m．t．＇I ，has gont to Richmond，Virginid，as chitel engiturey for the Virginia Stex Suphty（＇om－ pany lle was formerly with the Truscon Stent Company at Nordoll Sirginia．

13．B．Shaw．r．e．＇II，has returnted from Camagues，Cuba，where be spent two yeats as chite mginter of the cubat Railroad．Hu imtended only tak． ing a leare of absence but finally de－ cided to remain north．Ht now resides at Canton．Mlinois．

（）n Jokes

Getting out the jokt stection of THE ＇letr brint jokes at all folks say wo arte silly；if we don＇t they sily we have no swhst of humor．It we publish original kngintwring jokes they say we lack sariety：if we publish things from oher farers they say $W+$ are to lazs to write．What in thander is ther ＂ditor to do，anslow＂．Like as not somtont will say that wr swiped this from all＂xrlanen W゙せ did．

Prol．Brown：＂Mr．Black why art fou looking at your watch so oftern？ Black：＂l was afraid that you would mot have time to finish your intorest－ bug lecture

Men flave Been Shot For Less

She．＂Aly hands ale cold＂
Hs：＂llert ar＇t my glowes．＂

Ther wild ass is hunted in somt ＂ountries，but ox＋4 herte they don＇t ＊＊＊！takt awals his intomobile licensu．

Prof：＂．Ind in final moon of tha theory of evolution we now hate the ＂Intelligentia＂instectel on！thar oht fashioned＂smart $11+\ldots$
（＇oreal at fonthall game＂Holl him． lirorer．I know your ean＂

C＇alilornia Engineer

He Knew Jack

latek Beatty in reE．T末 Colass：＂Werll． 1 don＇t undrestand all about the staff vele but i＇ll sleen on it alld san it 1 ＂an＇s gat it：＂

Prol．Williams：＂\ddagger ll rizht，but wait mutit ranight＂

Photographer＂：＂Watch，and you＇ll str a protty littlr dickey bird come out．＂

Modern Child：＂Oh．don＇t be an ass expose the plate and let＇s get this oser with：＂

Problem in Math． 2

I yonng woman goes upstairs at $7: 45$ to dress for the reving．shr is 19 swars old and weighs 1112 pounds． state the wait of the young man down statirs．
son：＂ls it true about the ass dis guising himstlf with a lion＇s skin？＂

Father：＂so the fable gows：but now the collegges do it with a shrepskin＇ Bison．

Jones：＂I sent a dollar for an ab pliancer to kerep down gas bills．＂

Bones：＂What did they send you？＂
Jomps：＂． 1 paper weight．＂
California Engineer
she（just introdured）：＂Somehow you swom familiar．＂

Senfor Engineer：＂（iood lleavens！I haven＇t started yet．＂

Prot：＂Ilid you read the lesson to－ day．＂
stude：＂Nor all of it．＂
Prot．（after questions）：＂llid you wat athy of it？＂
stude：＂No．sir．＂
－Pbunsylyania Tiangle

Post Mortem

＂What slid that doan want to swee you 10r？＂．
＂Nothing at all．＂
＂What do yout metin？＂
＂． 1 zero in N．E．s． 5 ．＂
－Pennsylvania Triangle

In a Freshman＇s Eyes

I senior stood on the railroad track． The train was coming last．
The train got off the railroad track． And het the strnior past．
－Princeton Tiger．

Encyclopedia lllinica－Absent－mind－ ＋d professor，one who forgets to come to his eight o＇clock．
＂Did you makr the Engineers＂ show？＂
＂Yep．＂
＂C＇ast or chorns？＂
＂Neither．just the scenery and stage．＂－Peminsylvania Tiangle．
＂I hear your wife had an accident with the car．＂
＂oh，it was not serious．＂
＂Anything damaged？＂
＂No，just a little paint seratched off both．＂

Co－ed：＂Oh．do they wear those track pants out in the open？＂

He－ed：＂Naw，in the seat．＂
－Ohio State Engineer．

Moonshiners

Else：＂Why are all senior law stu－ drants like the moon？＂

Jane：＂Breaust they shine best at night and are usually down to their last quarter．＂

Mask：＂What character do you have in the next act．＂

Bauble：＂r＇m not supposed to have any tharacter；l＇m in the chorus．＂
－Uisconsin Engineer．
＂That runs into money，＂said the grocery store cat after upseting the ink bottle on the open cash register．

Contemporary Engineering News

Motors Made by Students

Similar to the two cylinder engine made in the Shop Laboratories here at lllinois, is the outboard rowboat motor which the stadents at the Iniversity of Mimnesota build.

Each student. if possible. makts one complete motor, and when completed, the motors are sold tor the cost of the material, which amounts to about Iwonty dollars, as against the eighty to one hundred chollars charged by a manufacturing concern for a similar engine. The machin weighs sixty pounds, resembles the ordinary tybe ot outboard motor, and develops about two and onehalt horswower, which is sufficient to drive a small boat at twelfe miles por hour. All of the parts are made in the various shops as a part of the regular course of instruction, and the heat treating, machining, and final assembling are done in the machint shop. just as is lont with our motor.

The engine is being redesigned; the urw tope will have a vertical cylinder and inclined propetlor shatt, thus doing dway with gearing and giving a direct drive. This will decrease both the weight and the total number of parts required, and will make is possible for every student to make one complete machine. The water pump on this rngine is novel in that it uses the crank case compression of the two stroke cycle engine to drive the piston of the pump, eliminating the neressity for a gear or other drive

Developments in the Electrical

 Industry in 1925The electrical industry, as its habit suems lo have heoome did a larger business last year than wer before The total sales, in dollars, only slightly +xacesed those for the year lyot, but when this is considered with due regard for the price redurtions. the actual growth of output is rather largt.

First, of course. comme the machines tor making the "juic." that we use. Power plants are installing increasingly larger units in turloo- and hydrogenerators, one of which is shown in atother article on this page. New expedients and changes in design are constantly being brought out in an effort to cut down the amount of energy required to produce a given amount of
electricity, and to approach a little closer to that still-very-far-off one hundred percent efficienery

In the last year the use of electric drives on all sorts of locomotive apparatus increased very markedly. The largest ships, the lowly tugboats, industrial hauling engines, and the motorbus, are all using this drive. Simply stated. it consists of a prime mover (steam turbine, Diesel, or gas engine) driving a generator. The current from this is fed into a driving motor which is directly connected to the propellor shatt. The advantages lie in the smoothness, convenience and ease of control that the system affords.

Motors for industrial purposes have bern greatly improved during the last year. Large synchronous machines, inymored and simplified controlling and protecting apparatus, induction motors having speed flexibility, electrically operated excavating shovels. and new drives for printing presses are some of the things that have been developed. It is now possible to start and put on the line a large synchronons motor simply by pressing a button; the switching is all done automatically.

In the high temperature field. high frequency furnaces have been increased in cafacity and etficiency; re sistors for all sorts of purposes, from IHad melting to bread baking, hatro been made arallable for nse, and in the refrigeration line newer and smaller typs of machines have bewn made.

Rescareh in all lines has progressed greatly: The new tools made available to the experimentar are enabling him to Jearn more abont the structure of mattor, and each new discovery gives him more fools to work with. The vacuum tube has aided ereatly in the discovery and investigation of hew phenomena.

In the radio field. so much has been done in the past fow months that it is difficult to pick out the things which are most important. One of the chiel developments has been along the line of larger and more fowerful varumm tubes. which enable continuous wave telegraphy to be put to work on a commercial scale. The high trequency generators used betore the vaeumm tube wry wasteful. expensive, and
ondy practical in the larger sizps. Transmitters for commercial work in all sizes from the smallest up to 100 k.w. are being put into service, with advantages of stabibity, small space. and convenience over the older ares and alternators. In some cases, the new methor of controlling the trequency by means of a crystal is used. giving great steadiness of output. The set in its usual form uses a master oscillator, and power amphifier combination, the high voltage being supplied from a kenotron rectifier set. superpower broadcasting and carrier current telephony are receiving their share of attention, and several instal. lations of the latter have been made. This is a method of telephoning over transmission lines by mwans of high frequency eurrent impressed on the line, and may be used with portable sets as well as from station to station.

In the lighting field there has been some progress also. A type of lamp hats been put on the market in which the frosting is on the inside of the globe.

Builders of Muscle Shoals

standing hefore ont of the great : 5.600 horsepowfor Westinghouse generators. Which is now delivering pow

er 10 the industrixs and homes of the sontla, are from latt io righl-Colon+1
 vising engineer; feneral llarry 'as 6or. Chinf ot Enginters, L'. A. Arms. and Major M. C. Tyier, Corps of Vonei neers 1'. S. Army, bistrill Engine er Wilson Wam.
Generator in operation delivering
 Power Company

VilGinian Railwal
(fontunuer from litit ij)

 mothers come 10 the shed, the rexistanere is remored. this hering beressaty for the elfiedent oprotion of 1 hor sivterm.

The tram-misxinn of fancer from the moter to the
"mergency storage battery of the beomotives

 which is in tom cooled by a hast wit ammelmed from a hower driven by the same motor as the ail "irubating pomp. This spare thas reguised by the

wheers is acomphished by meathe ol a pinion, Hes. ible-walr. sideroul arrangement. The sping
 Pathalizes the loads coming from eath side. The lattor romsideration is very importath as the trans mission system is a "losed merhaticat (hatin.

The two rumbing sueds of the train wibl be lonteren and twentereht miles per homr. The draw har perlf of the becomotive will be b, 000 horsebewner at the higher sued. thas making the Vir witiall locomotive mome powdfal that any other - teath or elerdrif beromotive in existance.

The induction tration motors berome allomati dally resernerative on the down drades, thas provid ing a powerfal braking atton which loble the train
 hakes are nesessary only when bringine the train 10 it amplete stop).

Bandore the 1raction motors ain he startad the
 the phase comberter is syblhomems in mathere it
 is self operative. This starting opration is aroom
 rent matro which is mometer on the shaft of the phase combertar. When the phase converter is in
 motor changes for a shateaded diaed farment metor which fumbins the chatrying rurent lom the

 Hese of the strubtures themselses. Not anly has ome attention been commanded bey the physical aspects of this mudertaking. but also toy the mprecedented conmomiat romditions that hatw made this electriAication pessible.

The Vispinian projed has attrated wide-spread attention and is considered as an emsineering mile. stome in milway rectritication.

| Dighway Signs
 (Comtommed fram Patle ii)

from the eitere of the parement. In eities no streel shond interame lee wand the sign and the movement it controls. The toje of the sign shomad nor ber mone Han five feet abowe the rown of the rathaty and preferahly shombld be sumbehat less. The plate of the sigh should "ither be furmed out or in at an angle to a line perpendicular to the center line wit the mad in atder (o) minimize the whate of the velicle lights on the sign. This angle shomble berent 1.5 deames if the sign is thened in ar alome five to len denges if it is thromed ont. The first is about the ange madde bey ronte matrese on the telephome joles.

Color in Romanesque Architecture
 (C'ontinurat from Pat/f (i.)

will be artitireally obtained by tire aren as the colnrs of the most beatutiful mathes were obtained by natural tires in byoume days." dilass mosalics, clay tiles, eoloned butks, trem rotta with the fall tex. thed surface of the firee play of thames, offer suthstitutes for marbles, and in themselves are the materials used by the Italians to arhiere their charming schemes.

With surh a stybe forer rater preatent. inspiration, and motifs athe with the colorfal materials just mentioned wa have everything with which to enhamer our stone brick and roncrete architecture.

Of the successfol examples of the use of color in arehitecture the colliformia biniding in Balloma Park, San Itago, Calilomia by Berlram (i. Goorl hue has been the most diserussed. Here a structure of concrete is emerosted on dome surfares and other areas allowing such troatment wibl colored tiles. There has come to my untice a shop fromt at bos-diot loavis Streot, Exanstoh, Illonos which is entirely of terral cotta but which makes use of this material in the dallan manner. The dieh of the buibling is cram in two shades. The dow jambs, lintels, and the dises and modallions of the spanderels are of bhatk metallic glaze. The imeised lothering and raised ornament, the borders of medallions and dia monds, ant the bed monh of the cornice are ateren thated in gold. The trim of small wimdow, lhe grif fin brackets of the seromd story openings, and the cornier are done in pale green. This is a sood example of what ean be in the way of brightening "1F onr commereial arrhitecture.

St. C'atherimes College Chapel at St. l'aul, Min. meseta, cower design of this issule, is a merent strobture which follows but does not ropy the example set in the Romanespue Arehilectmer. Hare the Italian ditermation of brick and stone coumes is moditied to a happy and intrigning promblure of outlinitg the ratulom travertine hoeks of the walls with a single brick romrse. Windows are thamod in briek arehes with tile inseres. A batul eonese of colored tiles ties the wintows togerher. Itere indered is a hapy relid of surface ly elange of materials.

The ampanille eatature is dome in loblyehtome tile, shot cut travertar weathered and rusted tor Fram with siemat streaks, hown lime mortar, amb
 concerved, athe weaboring will lurther tome and solten the structure which stands well to rival the best examples of the stylo to whith the buidders tumed for inspiration.

How Do You Hold Your Pen?

> Of course there is a right and a wrons way. But why try to correct carly formed habits: II e fit you with a point as yout hold it maturally.

6!日 Wasi dimen strem Plome ! ! ! 1

". Mh sas, Mary, womld yon yes's somb-"
"lank here, dim . Jackson, don't yousit frosl wif mus. Jall mames miss smif, mot Miry. Jh don' ‘low only mah hese friphds to sall me Many."
". Dh hems yo paholon. Miss smit. Jont saty, Mise smil, would you jerse soon shif to the mber kore?

Roll, Brudders, Roll

 for butco or worse ? "

Rasius (from hubit): "I:asom, Ah shome da worls:"——"uide l'ost.

BRESEE BROS.

Cleaners and Invers

ELECTRIC EQUIPMENT

 For All IndustriesIbroumb mammont rlocirical mints installud in many lar\&4 ('th tral stations and thousatuds of in stallations in monicipal, mining, in dusirial and other pants. .lllis chalmes's equipment is lurnishimg power and light 10 a multitude oi findustrial establishmemts throush(114) the whole world.

Complete mats having gemerators driven hy water power, stoam, gas or oil wre built hy the dhis chat mers factories.

Nlis ('halmers rededicat products include the standard commerefal lint's on motors, generators, trans formers, convertirs, wte, and many sperial lines of apparatus developed tor pattixular service conditions.
Complete motor and control equipment is also pro vided for the Campany's latgo and varied lines of machinery, such as motor drive with mining, crush ng and cement machintry, bumps, condensers, four mill and saw mill machinery, hoists, etc.

Thus Allis-Chalmers customers hate not only the assurance of high-grad, equipment, but of harmoni ous working in every detail, of highest efliciency and undivided responsibility.

T. M. Bacon \& Sons, Inc.

Paints, Glass, Wall Paper

(or. Walnut and Taylor Sts. ('hampaign

Final test

 of complete valve

Fig. 106 Soreatid. Jinkins Standerd brool lioule lalž.

Q EFORE it leaves the Jenkins factory, each valve must pass a test that allows a wide margin of service and safety.

This test, which [is preceded by other tests during the manufacturing processes, is in line with the Jenkins policy of minute thoroughness and precision in manufacture. Skillful design provides for even distribution of metal throughout the valve, and constant analysis assures uniform metal.

Jenkins Valves are made for pracically every power plant, plumbing, heating and fire protection requirement.

JENKINS BROS.

Send for Booklets
80 White Street
New York, N Y. 524 Atlantic Avenue Boston. Mass. 133 No Seventh Street. Philadelphia. Pa 646 Washington Boulevard Chicago. III.

JENKINS BROS. LIMITED
Montreal, Canada London. England

descripsive of Jenkins I'alves for the type of building in which you may be interested

Graduate Work
frontinued from Put!e os,
Thar yomber man who ferds an interest in wraduate shady shond therefore eive himsall all raminalion.
 shomble colsult his matior poresson of the heald wh his department. These men will impartially romb sol hill as to the adsixahility ol centiming his studies athe reommend : stitable shand for surla work. Dhe to the expernse of offering :hathate

 a few maversities. If he is advised to rontime ley his major protessors, the writer beds bu hesitamey in silying that it will be th his nltintate allathtay (1) elo) Sor.

In romelnsion the witar wishes to offer : bit
 awakening within him an interes in er tallatte work.

 very protitable ohe and the writer has ere to meer a stadent whotwerndered the time sjent in his thesis

Something (o Do

 Aharh?": axket l'astor limown.
 bikes to bake all actise farl, an' I wsed to pase de
 firen, when be resturnel from wah thatiah."

she: "l atalit light thin matroth. my fome in tom small."

When You Have That Party Order Vaky's

ICE CREAXI

[^5](hamblilign

The Standard for Rubber Insulation

RUBBER COVERED AND VARNISHED CAMBRIC WHBES and CABEDS
are made with especial regard for Quality
All OKONITE products are carefully inspected and tested at each step in the manufacturing process so as to insure a perfect finished result.

Full details in Handbook-Send for it.
The Okonite Company The Okenite-Callender Cable Co., Inc. Factories, PASSAIC, N. J.

PATERSON,N.I.
Sales Offices: New York, Chicago. Pitisburgh. St. Luuis, Atlanta, Birmingham, San Francisco, Los Angeles

Pettingell-Andreus Co, Boston Mass. Novely Electric Co. Philadelphia Pa. F. 1). Lawrence Elec Co.. Cincinnati, O.

Canadian Representatives: Fingineering Materials Ltil, Montreal Cuban Representatives: Victor C. MendozaCo. Ilavana

Kandy's

12 Chair Barber and
Bobbing Shop

GO. FA, GREEN ATRERT
(i. ('. "handy." 1rof.

THE HISADV゙ANTAGE OF POOR LIGHTING.

As thousands of our industrial plants are operating to-day with poor lighting and in some cases with extremely lad facilities, it would seem that the importance of the subject of lighting has not been given the serious consideration by those responsible for such conditions.

Poor lighting is one of the most serious handieaps under which a manufacturing establisiment can operate. first of all, poor lighting is the cause of a large number of accidents in industrial plants; and it is singular that :accident reports do not yet properly classify the hazards of poor lighting, which in many eases is the primary cause of an accident attributed to what is really a secondary cause. Safety engineers and other officials who make accident reports should always consider the condition of the lighting when working up a report of accident causes, for it plays an important part in a great many casualties and is apt to be overlooked. All accidents due to poor lighting are accidents of neglect, and are preventable. The poor lighting accident hazard is clearly chargeable to management and not men. It is a difficult matter to make such progress with Safety First in a plant which has neglected to provide one of the fundamental requirements of accident prevention-good lighting.

Probably no one single faetor connected with the equipment of a plant so directly affects the efficiency and inefficiency as the quality and quantity of the lighting. The curtailment of production of all working under the disadvantage of poor lighting represents a big loss each day; the poorer the lighting the less able is the working force to function efficiently. Quality and quantity both suffer, representing a preventable loss wholly removable by improving the lighting.

Under poor lighting condition, we cannot expect and rarely do we find an orderly, clean factory. Darkened places encourage careless habits and workers are often led to deposit discarded articles or material which should be deposited elsewhere. The eyesight of those who attempt to use their eyes continually in insufficient light, below nature's demands, is often affected. Too much light, such as is furnished by bright, unprotected lights, is as harmful as too little illumination; both are fundamentally wrong. Nature's own illuminant, daylight, is unequalled for our requirements of lighting.

The eye is best suited to daylight in the proper quantity. Sun glare should be avoided, and in the darkened hours proper artificial illumination provided. Daylight should be utilized to the fullest extent. It is supplied free in abundant quantity for our use. Modern invention has supplied a means whereby the interior of buildings can be lighted by daylight, and all the advantages secured which is furnished by good lighting at the smallest cost.

Industrial buildings should have as much wall space as possible devoted to windows fitted with Factrolite Glass, which insures the maximum amount of daylight and which prevents the direct rays of the sun from passing through as it properly diffuses the light.

If you are interested in the distribution of light through Factrolite, we will send you a copy of Laboratory Report-"Factrolited."

> MISSISSIPPI WIRE GLASS CO., 220 Fifth Avenue,

ITT is difficult to comprehend the tremendous changes made possible in theworld by the introduction of practical precision tools. The astounding mechanical progress of the past 50 years, which has completely changed man's environment, would have been impossible without them. They place within reach of all the standards without which working methods in the metal trades would be primitive.
The vernier as a mechanical principle of indicating very small dimensions was invented by Pierre Vernier in 1631. The first practical application of the principle to a measuring tool for metalworkers was not made, however, until 1851, when Jos. R. Brown invented the Vernier Caliper.
The manufacture of this highly useful tool by the Brown \& Sharpe Mfg. Co., dated from that year. Today, hundreds of styles and sizes of tools embodying the vernier, and measuring to one thousandth of an inch, are made by this company and distributed all over the world.

The first and original Vermer Caliper, so far as is known, invented in 1851 by Jos. R. Broun, the founder
of the Broun of Sharpe Aifs. Co. of the Broun © Sharpe Mfg. Co.

A^{s}much as we have urged contractors to study Koehring construction, few Koehring owners seem to care much about how the Koehring gets results. They seem satisfied to know that between the man on the operating platform, and the concrete on the subgrade is a responsive, smooth, speedy functioning unit that delivers a greater yardage to the subgrade than is ordinarily expected from the drum capacity! That's what means extra profits for them!

Of course they know Koehring Heavy Duty Construction is "there" -must be because of Koehring record of low maintenance, reliability on the job-and long service life!

SIZES

Pavers-7-E, 13-E, 27.E. Auxiliary equipment andchoice of nowertosintindividual needs. Complies with A.G.C. Standards. Construction Mixers-10-S, 14-S, 21-S, $28-S$. Stearn, gasoline or electric nower.
Mounted on trucks or skids. Rubber tised Mounted on trucks or skids. Rubber tised wheels ontional. $28 \cdot \mathrm{~S}$ on skids only.
Complies wlth A. G. C. Standards. Complies with A. G. C. Standards. Dandie Light Mixer-107-S. Two or four cyllinder gasolne engine. Power charging skip, or low charging hopper and slatform. Rubber tired steel dise wheels er steed rimmed wheels. Complles
with A. G. C. Standards.

Write for Paver Bulletin No. P.
KOEHRING COMPANY MILWAUKEE. WISCONSIN

Sales Offices and Service ${ }^{[10}$ "arehouses in all

Ceramic Indusiry in India

(conthuct from Patre si)

ink pents, logs and thower pots atre amonis the fom mon atticles of sille. High class work surla as Buglish chinat toas sets, ate., is patronized by the richer folk. Floor athd wall tile is gamime some polmlarity.

Katolin of the highest grate fethejpard thint wottr at varions phaters. some of thest lorations hate heren shown on the maty. The great hindrame (1) prowess of the intustry is the high cost of transfortation hotlo of the horly materials amel coat. I pullary cempany in C'alentat is well established now bolt some others elsewhere are still in an experi montal stage. No meliable tata is ohtainable as to domestie produets.
llistorially spaking the potery art is not mew 10 Ins. It is sald that we got it fom Persians lones aso. There has existed for a lons time a rlass of peoper ralled "Kashigats" who produre ghated wame
 optaples, tin oxide were produced frequently. These mon, it is interesting for mote, gathered their own materials and treateal them in fropre mather to get them in former forms. They may mot have moler stowl the romplete artion in this wame some de
tailed aceobuts on the subject will be formd in Balls Exonomic E icologry of India.

Cramic Education

Pottery art schools are conducted by the government at Bombay and Madras. Some remarkable pieces of art work have come ont of these sehooks amd their in radnates. No college contse is offered anywhere.

I school for thating ghass blowers, ete., is main tained on altruistic hasis ly the people at Tategao. This was a pionerer in that lield but is now looked "pon as a mother factory. Besides training the beys. the selood is also condocting research in all ceramic lines, particularly in refractories.

So attempts have been made to traill the large mass of people ragiged in these trades. A demonstration sehool was plammed for lambay distriet hat sommerere it seems to have died out.

A man in a hospital for the insame sat dangling a stick with a piece of string attached over a flower beal. I visitor approtehed, and, wishing to be af table, remarked:
"Inw many have fom ranght?"
"You're the ninth," was the reply.
—litts. ('homialr-Thergaph

The Vilter Manufacturing Co.

1020 Clinton St., Milwaukee, Wis.

Ice Making and Refrigerating Machinery Corliss and Poppet Valve Engines

Branch offices in all principal cities
If interested write for bulletins

A sidelight on N. Bonaparte

$\left[\begin{array}{l}\text { which your course in European His- } \\ \text { tory quite probably failed to give you }\end{array}\right\}$

EVEN though his life was filled to overflowing with wars, politics and intrigues, Napoleon wasn't too busy to be a shrewd and far-sighted judge of paving materials.

There are paved roads in Holland built at his command which are still

A Bookfor Roads Scholars

If" The Construction of Vitrified Brick Pavements" is not already a text-book in your courses, let us send you a personal copy. It is an accurate and authoritative handbook of 92 pages which you will want to preserve for reference after graduation. in use after a hundred years' resistance to traffic. Napoleon knew good paving-he specified Vitrified Brick.

National Paving Brick Manufacturers Association Engineers Building

Cleveland, Ohio

PAVEMENTS

Engineering Practices in India

 brieks, often with laborions decorations.
\because. Solling hrick in "lay and then tilling the semms with morlar athd then lim fraster or oreasionally wilh rament.
: Thar Hows : wre made of tiller matorial sime as

 last ahomi live yatre of so after which time another

1. Nearly always absemee of ally hasememt as sumb exepp in somblammast part of the romatry.
\therefore. As fill as posible, the tembenty roes, make the seams between briok of stome as thin as pes sible. which is in contrast with the American prate tice of making them boid and conspictoms.

1i. I'se of mund phaster with straw, and white Washine later.
7. Arindine linu and platro torether sometimes with some fibrous material when it is to be used for phastring. Thst wherler ghartz atels like a tiller or the action is similar to that in sand lime briek is not known. gnite often varions organie materials ate added to it while grinding.

Valentine Candies $\left\{\begin{array}{l}\text { IDWELL'S } \\ \text { ETTER } \\ \text { CANDIES }\end{array}\right.$

Made Fresh Daily

b19 S. Wright, Champaign 515 S . Goodwin. Urbanat

Complete Outfitters to Illini Men for:kum Flo.
 Downtown-Champaign

Why we advertise to you

To you technical students, the future "greats" of the engineering world, Crane Co. in this and succeeding advertisements, in a manner of speaking, presents its card. Realizing that the friendships formed at school are important and lasting, Crane is glad of the opportunity to bring before the men who will soon be engineers, the name that has guided previous graduates in their choice of dependable and durable fixtures, valves, fittings, and piping.

CRANE

GENERALOFFICES:CRANEBUILDING, 836 S. MICHIGANAVE., CHICAGO Branches and Sales Opices in One Hundred and Fiftr.give Cittes Nattonal Exhibif Rooms: Chriago, Naw York, Atlantic Ciry, San Francisco and Montreal
Works: Chicago, Bride efort, Burmingham, Chuttanooga, Trenton, Mentreal and St. Johns, <2uc.
crane export corporation: nelv york, san francisco, mexico city, shangear crane limited: crane butlding, 386 beaver hall square, montreal Crane-bennett, LTD., Londos

RHOADS
 Tannate Leather Belting

It Pays to Use Tannate

A mid-west gas plant about four years ago bought a Rhoads Watershed Tannate Belt to try out in the place of a well known waterproof belt that had proved short-lived and troublesome.

The first report a few months after installation says the Tannate has rum more than twice as long as previous belt "and shows no sign of strain or wear."
About sixteen months later tirey bought a second Tannate Belt, for another drive - the one shown above. The two belts have made the superintendent "a firm believer in Tannate."

The great wearing qualities and grip of Tannate increase output. And it is output that counts.
And when in neded of lace leather
use Phoats Timmate Lace. It often
oullusts raubule from thate to the
time's, specially in wet or hot plawes.

J. E. RHOADS \& SONS

Philampluhia 35 N . Sixth St. Chicago. 322 W . Randolph St. New Surk, lit berkman st. Atlanta be. Forsyth St. Factory Inti Tanncry: Wilmintion, Jet.

The Atom as a Magnet

(C'ontinued from Prige R?)

of electrons. The conchasion appears to be war ranted that all atoms containing an ord number of eleetrons are magnetie while all atoms with an exen mamber of electrons are mot.

Aplarmbly the electrons in their paring nem tralize each otheres mannetic diedd perhaps in the same way as two har magnets placed with their apposite poles together. The magnetic moment of the ofld mombered atom is simply that dhe to the extrat muatred electron it combatins.

It will be asked: why if the silver atom is mas netic is not a bar of silver attracted to a magnet? The allewer is that when the atoms of silver come fogether to form the massion metal, the magnetie moment of one atom is nentralized by an adjaternt atom. The iron atom is not magheric. which seems vary surprising at lirst thought. If we remember. howrere that the irom atoms are waporated from the surfare of molten iron and that molten iron is not a rey mandetie substance. hhis does not seem so strange. The remakatbe magnetie woperties of iron in the mass are as yet something we eannot explain.

Chesterton has salid that athing hecomes more wonderful by being explained: sometimes it becomes harder to materstand. The magnetic atoms hehave in a rery peruliar mamer when they are passed through the intense manetic fielly. The dithd is diverging, and the atoms are passed neate one of the pole pieces of the electromanet. I Brder these cit comesiances we should expect the atom to tend to orient itsedf in surb a way as to he attracted. What haploms apparently is that half the atoms thrn so that their magnetie diehd comeides with the field of the electromagnet, and half tom in exactly the opposite direstion. The first half are repelled and the seromd half are attracted. When one rallizes that these atoms are being shot through the tient with the speed of a ritle bmblet, it is diftientt to see how dhey ran shap into me or the other of these two positions so quickle, and it is equally mysterions why they de it. Aplarently, we have here some more mysteries to ber expaines lyy the "quantmon theory" when or it it really beromes a real theory.

Riff: "Do you know Bill?"
haff: "Yes. I used to sleep with him."
Riff: "hoommates?".
latff: "No. classmates."

Bill: "Wherne the hack eye, ohd dear?"
booley: "oh, I went to the phmbers ball last night and was struek by the heally of the phate."

THE

TECHNOGRAPH

 PUBLISHED QUARTERLY BY THE STUDENTS OF THE COLLEGE OF ENGINEERING UNIVERSITY $\mathscr{\mathscr { \prime }}$ ILLINOIS

> March 1926

Figure 1-View of Dan at Honci-Koni:

The ТесНпOGRAPH

Glimpses of Engineering Abroad

．．．1．（＇HIE，IR．，1．er．$\because \because 6$

It was through friendship amd asworiation that the writer wats imelated in a gromp of four men，to whom was presented the opportmity of an extended four．Sexdless to sily the opportunity was wreted with open arms．The arrangement was that the four mern were to act as ordestra on thes．s．Pexs dent Monrore．The work consisted of playing from 1 till \because for lnnch， 7 till \＆for dimner and ！till 10 for daneing．The remainder of the time was ent tirely af their own disposal．

The tome was to last marly five monthe amd would extend one and athird times aromad the world．The start was made from New lork rity om Jnly 10,19 t．whence the ship salled to sian Fran－ （isen riat the I＇anamar＇anal．The l＇alditur stops were lfonolula：Kober．Japan：Shamohai：Honge Kong and Manila．Three of the party had previons ly risited these ports so the thrill of the trip wias redonbled when the prow was printed for singal pore Enroute thre came bews that at dameroms floating island was somewhere near the ships comber but the captain fortmately was able to arnid eal lision with it．Ifter 大insabure came Pembing．an island pert，Colombo on C＇exlon，amd then t＇aire． Engpt．At the eastarn end of the sue\％eanal the party was allowed a three days vacation which al lowed them to visit Cairo．inland，and Horn wain the ship at Alexandria．Latalig Alexambta，the next ports were Naples．dienoa and Marseilles－the last foreign port．Then a fobrtem day sail hornght the ship to Boston and exted ohd［nited Staltes onere more．The stop at Sew lork was sevell dals and then the boat sated to Sian Francisen as deseribed before．Thas the itimerary embrased at total of 2 Z different ports which attombed a virw of some wit the most interesting eities of the varionc commtries．

The paratraphs that foblow contain a fow glimpses of andineering intorest，whirl were ob tained at some of the ports visited．The momber of things seen was great considering the fare that stop

Were mostly from one for fliree days：lont the fratty had wo dutixe formerm from the time of arrivine in prot motil saliner time．whith mathe thinge ex tromely nice．

Knowlodg atomt the Panama ramal is rather
 be instructias In woing from the Athantir to the
 fass through a mathe harrow stream to the diatum locks．Aloner the way，the old firenely ramal is to be seen with rusting efoipmont hearly cowerd with growth．The sides of the canal are limed with dense tropical growth athla seamath with a semse of hamor tells the pasengers to watther monkers in the treses．As the lowk are approwhed．noweres come aboadd to hambla tha tow lines．the rables are at－ tached to the electria mates athel the shipe is towed into the tirst luck．

 weird explatnations maty be heard as to low the berks worke lerem the forks，the loats sail into datan lake．which is quite a latree expanse of water． with the teps of derd tres protroding abowe the surfiace．Tho great dam which makes the lake may be seen in the distamere．

As the ships leave tha lake for the camal asaint，
 －loser inspudion revals atmall prolian perched

 hamorons emarli of a ymors lady from lower Now
 hardles．＂

Alongside，white peramids．supported on tri－

mssery is hater explatasel when it is moticed that the prow of the ship is direetly in line with lwo of
 and twists the pointers pass by on the site. They stand ahomit when feet high.

Figure ?-A Famoes Ancient Eeyphan Stre embe
There are quite a few miles of namow eamal, the sides lined with slopes owe which flow small waterfalls and streams. Shortly a linge mountain looms in the distance and the ship approaches coulelna eut. This ent has been made so well that it is abmost impossible for the spectator to apprectiate the vast amomnt of work and energy which has been put into it. l'assing on, amother streteh of (alnal brings the ship fo ledro Mignel locks. Along the side of the locks lage steel thasses may be seen. They seem to suppert nothing and their function is not obvions to the traveller. It was later explained Hat these structures are swing ont across the locks allul atct as tempenaty lock gates, while the regular gates are repaided or painted. The trusses support collapsibse patels which may be dropped down and
whicls interfock with one another to make water light joints.
fossing through this loek, it is but a shont dis. bance to the Miratlores lorts and down into the l'arific-perdaps a hatf a mile. The time daben to pass through the eatal is about ia homs if there are bo delats. The charge for passige of ships is aceorting to their tomange and for the latiger ships rims into thomsamels of dolans.

A visit to the contren tower of the Pedro Migued locks reveals serpal fatets of interest. Shipes dexiring to enter the canal are siguabled to proseed ow slop ly a large eonspienoms arrow which is operated from the tower. The 80.000 ton leck sates are opened and alosed hy a $2 . a$ horse power electric motor. The water nsed in the locks is not promped but lows entirely by gravity from ratun lake. The level of the water in the locks is chearly shown by illominated ganges on the control talle and the entire operation has been simplified as much as possible to avoid atedents. Tumels below run the full length of the locks giving access to the electoical machinery. All illomination both above and below is by indiret lighting.

Daring the past few rains the calall has been quite protitable and shombthe demand for passige increase materially, it is plamed to raise the water level in (atm lake to increase the available lead of water for the locks. Then a new set of locks, identical with the ofd wonld he billt alongside the old.

No material has bern fomed to date which is snit. able for the lock silts. I wood from Now (iniana which has the same effect upon math as proisoned arrows was thonght impervious to all attack, hat whan

[^6]taken up showed the same divinteryation as any other wood.

The engincer in chatge whe it as his opiniou that the samitation of the (amal Zone was the oreat est engineering accomplishment of the entire work.

One of the present difternllies of which this man sooke was high smrge pressures. When water is drawn for rasing the ships, a surge wave follow: Which makes high pressures on the look wates. It has heen proposed to eliminate this bey installing a surge chamber which would diminish or stop the wave.

On the thirteren day ernise from the Canal Kone 10 Los Angelps about the only kind of enginedring which can be seen is that which takes phace aboard the ship. The two things which require some engimering knowledge on a ship are the emgines and the loading derricks. The latter are rather simple and call be operated with great sped. There is just one point which deserves mention, as fon cerms them. Nearly everghody has moticed the unsightly stepl frames that tower alowe the deeks of most of the shipping board vessels, and womdered why they ware there. Their function is to hold the leading jibs in the proper position while

ratog is handled. These jibs are hinged to the frames at the bottom and are held ins at the top by cables which pass over pullegs to the frames. When not in use the fils may loe matle fast the the fomes
in at vertiath pusition, lat if the latrometar indi (athes atorms apmath they are let down amd mande fiast to the dereks.

The real magerering prohbm ahoatel at sho. thomgh, is to be sure that the ship will rettoh its

 Note the Bumbeos Supodmais.
pert on time. When the ship is het all home from a port and the rodder breaks, the engineer must know What to dos. and do it quickly. In a certatia cater the ship weaved ambessy about while patsomgers were widdy fornsing hinoculars on Vasusins. Ten Fili
 10) Hu avail. Finally the chiel mosine der aerged from below, wrime from head to foot, ind amomed that all was well.

But ewer more impertant than this is the emonsal aration that there mily be serabl million dollars worth of ratro alouad amd, if the ship is late wath dars interest ont the eargo is at hig ligure. Also it the ship can be latuted alheal ot time the valptath

 most of the rement work has hem dome by the Eng lish. There are a fow intoresting things o noto abont ('hinat howerer.
 the work is done log luman labors In fiat if a ron

might well expert to lind their genestring font in a day or so. Stome bhere and stem members ate trams porten to the rentituction on carts drawn by man
 side hy side. A hamd drisen pile drimer is artatinty an ammeing sight. The obe serol chasisted of a plat form "pon which atozen or more coolies stomd. raising and dropling the hammer. The amosing part is that the coolies fall, rath to his own liking. When they strain to raise the hammer.

At Shanghat and llong kong modern roads and parments are to be fommd, as well as the best of hosiness buibling consturetion. The Wing Onstore at Nimughai is "omprable with Marshall Field"s. The white stome hildings of llong Kong make it ane of the mose beatilulatere of the orient.

Gioing now to Deypt, it is woll known that the stotetmes of that comatry have made it a mecoal for tonrists for many years. Gur may well ask why there sems to be no construbtion of suld things 9 . inge on, tomaly. The answer is that the construetion of Expet tomay is dome by the English and the Eigy tians lark either privilege, incentive ore rapital to resume the alluchet prostams of constrinetion.

Most people are familiar with the l'yramids and the Sphinx but as to the methers used in construebon there are few who have any detinite knowledge. An interesting hit of information was rolmonered be a dragoman, be it true or bot. He stated that the copering was remosed from the dirat l'yamid and taken to a spot within the city of ('airo. It was to be insed for the constration of the Masplue of lief:a but funds ran low and the stome lay : :0n
 stanke now, bhe of the most leantifnl in the eityand not far from where the stome was originally fluarment.

Thure are a few prims alout earthomakes, in gemaral, which might well be brought wht here-ble Writer hatsing seen the resulte of the quake at Vokar. hamatam actually beem in the ond at simtal Bartatia. Niturtures may oftom be seen in at ditterent light after an arthquake than before. A chareh. lor instance might :ppear to be a hessing before Sut afterwadde maly low like the "wrath of tiod." sums perple hate warn stated that the charen that
 ghestion low wore

An earthymake peobably reeks as complete devas afion as any known disaster inasmaly as it is fras ghontly followed bey tises, bexides having its own refeeds. The qualke at Vobehama, followed by tiere. Was probably the world's greatest disastery Stome pralled and fell, reinfored conerete tumbled and bent, briek showered, sted fell. Struchures that stow were the exeption. The acompanying illus trations hetp to tell the story.

The sialutal larlantal quake was bedieved to be the most viotent ever felt in this comntry. bat was mot fonlowed by tire. The attendant at the fower honse Was giver crealit for having silved the town from tire by pulling the main switel, as the lomilding fell atont hims. But engineers koww that gromuded wises bew the arenit breakere at the power honse.

After this gratio most of the reinforced "omerete and steel frames remained intact, the buibling tile and bitt falling, however. The quality of constrontoms wats given a complete test and showed up woll except in a few instances. A city water reseronir was cataked and drained and many water mains were broken. Survers showed that lamd lines and marks did not change position apprectably.

The importance of engincering was fercibly im pressed upon the pepmation by their having to do withent heilt, light, and water. The entire communty was reduced to the living stambards of the datys of ' $4!$ athl those who enjoyed camping ont surn $\begin{gathered}\text { gnt their fill. }\end{gathered}$

In comelnsion it might be wed to saly, as so many have said before, that ohe appreciates this country much more when he has been away from it. This conntry surely desempes the name of one of the conginetring wonders of the worth, if for wo wther reasen than the mumber of edncated enginecers who practice hare. Add to that that we have the mosi dependable and efliciont system of rablway thans protation tor the size of the conntry, of any mation in the world. and the rest will take calre of itself.

It takes but a few glimpese of engineering in foreign combtios to convince one of the tonth of therse statements.

A Mountain Water Supply for Flagstaff

\author{

1. 13. stival: •••:

}
 supply of pure solt wathe which is matle atralahbe in ohe of Americals most arid tortituries is well hamed the oasis of driznhat. This stathe. Whieh has all arerage antulat rainfall of torn inclues is comulubled 10 spemb more mothey pros (ajpitat for its manirijatl water smpules than any where state in the linions. Jt is not uncomben for wator med bey railmades, botels. allotos and damestid uses to be hatiled whe handred miles or more. The anto tombist traversing the state finds the reserve water bank as mespatial as the Wasolite sulply. Herme, the Wallor users are alochstomed (o) paying about thre times as murl for water in Ari\%ona as they womld comsider reasomable in lllinois or wher Contral statfes.

The fown of Flagstati was incorporaterd in 18.94 allal has steadily grown siner this date. Rerrat esimatios indiate that the pepmbation is abrent 1.200 . Which is mearly three dimes the remsus of $1: 900$: and 1,100 more fhath that of 1! 20.

The lure of tha pure. Flear, sparkling sumply of water devoloped by this town has donte murh to Warl increasing its ratment
 rand is sumplied with water
 ial lank rats to the (aramb

 these mills. 6 ald atollt of the shemtige of wather, is
 That the domestir ase is melatively a small pation

 forly tive berent, the lumbre mills thilt? pereent, domestic consmmers twenty peremt, and busi mesconsumber live perent.

Tha derelopmothts of Flatsalf's present water

 s:allong resemoir was ron strubled. This surfly las. catme intarleplatte athi in 1S日l commonl interpsis af the town alll the situtal Fe Railmand resulted in a com tract wherely the ratrond asmed to constrinet the neressaly impomaments while Ha town jemided for their
 stipulating the amombt of "atry to lue allowed the railenatd and the athenmet tor lan patid lor the watter. It this time ahlitional flow lines were lad athe : so. 1000,01001 sallem reservoir Wise construmed neale the smaller resproir.

In recent vales water *hortage in dry seatsons has ag: in hrought the town ant Har tailroad twether tor worli but a mbluthe for littater nexded impone munts. Thr larms amh
 (omblay of Kithsak Pity
 availatle s"pllare alld du -ign : mhtitions th the pres
 an mader constration amd "ill bre ampluted in thas

 prosimatoly mas half millon dollats the town will
 "at". surply.

The somere of the waller shpply is from spring in the jnterion valley on the ealst ville of the sith
 thae in momber, ate abent ten miles dirextly morth of the twate They were originally patto of ome bot

 known as the interion balley. The matern wall of hhis come was broken ont and the intorior valley

 maded lana.

The anmall prepipitation in the interion valley
 is aceumblated to ereat depthe in the winter months

 romoff is frolonged and infiltalion intor the slatial deposile is fostered. The elacial deposit is a vast
 rumstf from raills and medting shows and lator re-
 at the mate rom of the valley.

The nathmat proteretion of the dramage arom,
 spring water of exerlant grality with mo midence of pollution and with a very low hamdness and mineral (ontent.
 tmande. Diagram 1. which arre sempal humded feet

 the elimatior ennditions: and the ammont of preeripita

 stups the flow from tha springs. Comsepmently, a
 bly wor sations of bow tow.
 the springs, the wator is condured his miles down the montatu side thrombly gravity tow lines to the stomge reservoirs. 'Two of these thow liness, whith were put in some veras. past, are made mp of six. seren athe "ight inch vitritied pige. The growih of Willow trees whith are noar the pipe line was and mented by serpate of water form erment joints (:asing roots to arow and enter the interion of the vitritiod pipe limes: lemer, has ramed fredgent fromble be reduring the pipe calpacity. The maximame caracity of the two lines is bat litale ereater that the normat meets of the town. A thited bow line of 11 in.. ISin. ant lli in. concerte piper. the laying of whith was starterl at the reservoir emt Fisure 1., is being added to owereme this diffenty. With this addition, at storase of $100.000,000$ galloms (:an be ardmmbated in one month at the same dime that water is comsmod at a mormal rate. Concrete sumps with oferlows are spated abong the lines atoont loon feet apart. The stades of the lines vary from \because procent to 4 pereont.

The comerete pipe wis mamufactured and stored in Flastatt, Fixure ${ }^{-}$, and hated to its place along the existing fipe lines, being distributed in position la lity.

A madway welw feet widd has heen comstructed alonse the pipe line for purposes of tramspotation Anring constrmedion amb for mantenance after com stroction. The examation ithong this road was laneely loose rowk but some soliol roek was ancomb treed alld soveral short dumels were bailt Figure \therefore-hons a part of the concere pipe line before beting laid in the vicinity of one of the shorter of the flomels which were drilled throngh solid rock.

The pipe lines from the springs wind aromed the bast side of the momatains to the largor storage resere mirs which lis abont two miles north of the fown. When constrow tion is completed there will be three
 lons. As has alrealy beren explained two of these. whe hating a calpacity of $2.500,000$ gitlons, the other 50,000,1000 gatlons, were construeted seme yerss aso. The smaller, whieh is asphalt lined, is out of serviere most of the time except when the laterer reservore is boing domed. The existing large reservoir is a
 Watere to the depeth of e? ft. 18 ill. $1 t$ is "omerete limed with fwo layers of stabs on the thom antion in side sopes, water prowting buing inserted between the baypes. A view acrose the ohd $80,000,000$ gillon reservoir showing the three sim Frabriseo Momatain praks in the hatekgrond is shown in Fixure 1.

In rement years the water shortage has beeome
so serions that water fatmines Werr not macommon during the dry seasoms of the yart Last winter. allter several bad fires had werorred in Flatsstatf. the resemoir supply became almost pxhatheted while at the same dime there was prationally no flow from the spriugs. As a precation the peswer water was restricted to its most essential uses, while the sulp bly for the santa Fe and the homber mills wats cortained to the print where opration was serionsly hamdic:aprerl.

An addition 50,000.0100 wallon reservoir which is hearing completion will add in meroming blase

In+ing used at an atorage rate of approsimately
 - Stereted to increase al the rate of almat two for "onf per yeald.
bafore reent imporements were started the
 distribution systrm ansisted of two lines of ast
 ference in elevatian betwern the reservoifs and the downtown district is appoximately e: the frietion in the suphly line delembs mun the ratt of nsing the water there is at limit to the almonnt of

difticulties. $1 t$ is similar to the wher larger reser wir in shape and dimensions and has a amorete
 tion athe the side slopes a slath comstruetion cos ered with membrane watorprobling amd at late of reinfored gunite.

The combined capacities of the remernirs is he liaed to be ereater per rapita that in anty othor rity in the world, it heing more than :0, 0000 willons for each inhabitant. This large reserve smplys, of
 mombse of the rear, due to a deep fermetration of frost into the woldanir ash formations, the thow from the sumere of supply is very mond lase than the normal rate of consumption. It present water is
 pressmer in the distribution solem. When nsimes Watrer :lt the memall anerage rate of ont miltion

 tiablly zero when baing wathe al the bate of 1 wa millom wallons frre dily. Is maty all ut the water

Frontier Electrical Engineering Developments

Tomby the longest how of permer in the world are lexing gemerated and hated in the form of olow trical conergy athd those blowks of pwor atre aich feat beroming larger. With this demelopmont in the
 thilization of electric permer taking blate it is intar

 has bern mathe in the design and alplication wh
 sarily briet deseription of sothe of the outstathling pothete ol the rear in this tidth, maty malke it pos

 wesponding.

This development will be disensed with magal to mathinery for the generation of atternatime cols rent power, He switching and transmixsion of this

 wortly of comment.

In the semeration of altornatise emont pater

 lation and winding mast be formb very diehtly into

 Hollor W: allug muit which is the latses exer hailt in this

:11 thall spand.

 (0)
more forlow form which will meed the varind amd

 - theresaflal.

Vantiation amblatat fow form far wintings

 Pommalas quite satisfactory ion the design of these alternators. The rifiects of short riment and transmission lime surges have also beon catefolly stadied
 timang opration duritus the periarl when frombe wh whe sertion of the lime is being remed.

These mathituse cotasidered imperssibla at few Wears :

 mont. If is with these problems that the men in power engimering dexign and aphlicalion are doal. ings, amd thatir work is tmilt on the fommation of

In the switching and tramamission of this permer
 bataks fratheformers amb tramsmission lime proh

withont shating lown a line or portion of the syem for mone than al fow mimutex. llatay bil riment breakros which rath be used in met works hambling lage amonats al prower have been de veloged, the math foature of such breakers loting Halt thay meommed at high fomsion feeder to its

 fenlarly in ratway work the newl of at quick acting

 at the commontalore without ansing hashower such a breaker buill loy dhe Westinghonsa fompany is shown in Figure :3.
sfeel switrlowarls are fimbing grmeral usage कwing do dheir lightmess, durability amb better :
 visory control is a forward step based primarily on the perfection of the varions forms of relay. This tyme of development has matily for do with the nsual By lermed suphly enginerering. i

The development of the thathemission line and a study of the surges whith it sometimes comsers hats beroll holpel in at later way by arent instrment.
 hatis of deretriat sherss thrown an the ammasom of all ordialsy photographar batte. On developing the plate in the orelinary way, ligures apرrar which give aletalits of the vollage impressed on the plate. The instomment reconds valtages of extremely shond dura tion allod the intaremation ol these plate tigures furnishes the che to many line strges.

(bompany. They will fom a hamk having at capacity

 will be plated in spover, obl lexing rotained as :

cooling which ate whlying of the wit. wr., atm buing overeme by the use of fored circulation. Wather fonling, and the lureraite transformer.

In the Inertaire trastormer nitwen is nsed above the oil surface and air is explade This per venfe the formation of shatges and also premente ex. phosions due fomixtures of vapen and air. The nitro gen nsed is chatined loy drawing atir in through at breather containing denxidizing chamiats. I "hreathing regulator" comsemes the nitmenen whon it is oner formed. Tramsommers of this tylu have been builf ul to $14,1000 \mathrm{kVa}$.
A large ammen of altemating coment power is being comerted inte diret curremt before wilizal tim, largely by means of synchomons comwerters. Converters are being used quite extensively in anto
 for this purpose have bewn rewnly built for the Imperial covernment haihways of dapath, and are shown in Figme 4. The tirst combertor wipmont with step regulator tramsformer tap changing pro visions maler load used on Didison :? wite xytom hats inen an achievement of the past year. Along the bine of the converter considerable work has been done with the frequency danger and symehomens comblenser. The taroes fregnemey whamer are
 structed in the last rear by the Westimghomsion 'om pany. The design of the bith eycle and of the mal "hine incomprafes an arrangement ly which the
 vixion is for the purpuse of adjustment of whas pesition and hence load aldinstment. Aumber smaller set has lweal built with a spring momothen

 revilting station vihatjon.

The latgest xymbromenc comdenser exar hill, at
 beent patere in service. One of the interestime
arhinerments of tha rogituers of this dewigh is that
 The bating of the latreest comblemers of torlat is : 31

 The drive of this motor is throlghat masmetid elath with the result that the inhorent high permer liaton
 motor are combined with hish startimer horgur atm low starting rument. In the line of dieed dment
 ho. contimans ratile revering motor, the laterst

The Vireinian hatronl, now ryuiperd with the most pwerful beamotives in the work. is the ont

 Hhase romertar amb as soll two of there phase

 with the elowtial problems. sumb as matters of
 ather olectritication of at diflerent mature was that of
 homalcastins. Foading of sienals is atmother problem Which is lexing solved by using ghate erystal fire queroy smbilization.
'flat exlleational system whith is moulaling the
 a littla rexisal. Siveral colleges atr making a six
 polpose to alon time for the trathing of more that fumbamentad primeighes and also allow the insertion of a lew prome cultural subjewts. Thdustry, which

 comser the power to diede chrrent motore ly mathe
 motors is extremely flexible ambleriont. This is the
 toresting develnoment in maltiple wit tratins is at

 toll imblules 1 wo booster motors, all aif operated

In the lime ol ratio fremembens :rowilt is still baking place Wiad wireless commoniation wer

 theme commonication is shown in figure fi. Com-
 pheneme is being develaped. Stere lighting owe ther Jines of the New Sork lidisen Company is com

 beste halle imbirated the emtime feasibility of at
mans retainly didate the meds which the college most fill, is potting away from the subjeet matter
 ing a functionall classitication. Imanstry deals with dexign, researeh, :pplication, sales emginemping and the like. Reports of teateres societies indicate 1hat the same altitule is being retheted in the eol lages. Two sears ago a report was presented to the Society for the l'montion of Engineering Edncation Hexing surh a fometional basis.

The diftiently in the way of the undereraduate - motying anginoring is for him to visuatize clearly the tield he is antering and the work he witl do in that tioll. If he is able to pereede the real nature of the phases of engimering work athd also obtain a Erasp of the inspiration and foture of the intustry the problen of his future will be ereatly simplified. The complefe functional classitication is pure researeh, dexign, mandacturing, wection, application alld salmeuginering. When it is remembered that deth of these is neerssiby to eath branch of the elentrical industry, such as power, motor agincering, milway, switchbard. control and suphy enginerering, whe eath apreriale the real complexity of the enginerering thed as it actually exists.

There is a sreat amomit of inspitation in elece frablaginering as soon as the enginer hegins (contmuerd on Patge 1.j1)

The Cheat Haven Dam

 liser aboul thre miles above its mouth. It is at hydroverotrid development.

The Theat lijer is a mombtalmens stmalm

 River al Point Marion, lia. Jorine the spring. wher the show is thatwing in the mombitins. the rmatr is puite large whike thas stmmer for is small. 'Thus
 sagiag station on the lece forry Bridge abont than

 of the samb patr showed 1:is ser. fr.' Whring 1 ! 17
 11,000 sere. ft. 'The water sibed, fomprising 1,116
 dimber lamb. Nome of the villates bse the river as a sonrer of water suppry hat the whole drainato
 bathing beaches. The rainlall for at porm of :

The dam was orinimally started in lan: hat the work was susperded in the fiall al lat: The reason for har suspelsion was mot math publia. It
 the diver amd aldonamately :000 fore ol the dam and the fommation for the pown hanse were conn

 whe comerete work had weathered batily hom was

 shops. pomplay honsps. fime office alld at late con 1mere mixing phat. buring the past summer, a bigh way bridge at laers forey was rased is ledel at one
 of this bridege is maly 10 fore alowe mombal pool
 built almf mamy smamer houses mover.

Exaliation for the completion of the dath Was stalded in Mily l!e: wh the west side of the biver.
 work wis completed allid water rombing mer has
 Worked day ath night in otder to perme all comeretr
 alt oble time.

The total herosth of the dim in approximitely

 dom. The wator is divered throtgh fome intakes at

 loblise which is built into dre dath. Sore Fig. I. After

 deph betow the hed of the perd. Whath the dam is fille. to the fol of the Tiriturer willes, it will batek

 \&

 11 honlos.

 altateherl to at flatform whinh was fastroned ont the

ligum s--Puwela Hot ar: finm Nomith
down strabla face of the dam athd semed ly a ley track also at tad hef to the downstream fiace.

Whethe the construelion of the dam the natural
 therogh the west pillwaysertion of the dam. These were eloned with comerne lefore the datm wats filleed.

Fig. : shows the perwor vation which is lomated It the west end of the dam. It is of stem alld briek
 feed high. The turbines ate berated in the bisement

 lonking the firat flares. A 100 ton ceater for handling
 (eontinued on tonte tiz?)

Spiraled Super-Elevated Curves

 wit the cerve. Wh this job, nember the contraters, the
 क. the mixer insperor (myself) hat evel sern ome
 in luse of the joh porle on the side forms whith served as at track. The wide flanged wheres of this mathime condal take carr of at ratiation in winth of patement of not more than ${ }^{2}$ inches.

It was the contratore illeat to put in parement
 of the slath. This was whecterl tor becallise of the joint betwern the two sertions. ame becalse of the Wrakness of the thin potion to les ahtent at the lat

 wontrator ser the neressity for plating the entire sab at the samb lime.

It was the rogimerers itlea for bate ont form line at the onter edge of the eurve and athother

 Humb of the proper wilth at all prints on the rame The distane bernorn the temperatry form lime and thatt at the insite of the renve increatad from zero at the print of spiral th at miximmon of ב.: feret at

 point of suial wase moly (wo inches. With rarefint altontion, the lininhing mathine wis mach on forms
 point (froint A on sketela). Here, howeror, the rate of alepartare foom tha is font width berame more
 (No. : s, se sethl was started. Owing to the fitel
 the two form lime conld not lie mate to conterge
 form line Xo. \because, the form line at the inside of the curve. This gill was mate ath exall mamber of form
 from 1 bast ${ }^{\prime}$. , then removing enough forms so that the widening at 1° Waks it in hese therely allowing

 proary forms A^{\prime} werr vid wer athl fastemble in platere as part of lime No. \because. Stakes at the form

temporaty fermblime at at distame ol is fort from
 that the finishing thathine cond be operatsel aromul

 OH tha - piral.
 was placed immediately :matnst the insible of the

 (10) ・リ1)

 leserilual alf 1^{\prime}.

 the miser in lö gharl homekts lỵ sis mem. This

 1)14\%

 as the joint combl mot loe madre at at right angle to

Complaterl om Patge lift)

Begg's Mechanical Solution of Statically Indeterminate Structures

"Whes not the layman extimathe the werily of
 distortion mader latt? Why then fhomld mot the

 Whe abowe statement* har but maly explatere what surt of considerations lay behimel hiv interent in the mestanimal solution, but in at way heremeted thet Whole medhod whirlo wrew olt of that intorest. The Beges methanical sultion of at staticalls indeter

 Herorem of peciprocial dixplamememe these call then
 parpore of this artiold for she how relative dis

 at Chicago.

 framed bent with pin maled conlums will be usel.

 mine the hori\%ntal rateton actine on the pinat a

 the rese of the eqplations of statice alome siller it
 first step in the almalysis is to imatime that point i
 dethered side wise freely witholl amy verical mone

$$
\begin{array}{ll}
11 & 11 \\
1 & 1
\end{array}
$$

$i=1$,
suhstitaling in llar first formotion
II 11
1' il

 reatetion requited lor lasla atorionless whell the
 for "fives

$$
\frac{11}{1}=\frac{1}{1}
$$

 is sulved.

 momble The therry hatek of the derormination of

 il : pins.

 of those mompare quitu introteling Ilis lires momblel was atik of woorl will mals as sulports

 "Alt sels of phes into the motednes f the relative per
 shown with a pair of mormal phags in persition so

Fighte 1 Monel Room
Follion of side monement. Similarly if the smaller set of thrusi phese be introblared into the notehes. the fwo pieeres will mon loward eirlt othere. All phes are so machined that one hall af each fotal
 pesition whied is desimble both lon chereking read ing atml for preventing exressive bending in the mondol. The shat phess are inserfed tirst as shown, and then in the dothed pexition, fexmbing in at side wise monement of 1 with respert to l, but with 1
 momont fues ate inserted tirst as shown and then in reversed jesition whids cithese I to rotate with

 the pins so that at model maty rither lar allmper
 that parpose, of may be pin comberted. The small

 baser whon it is lesed at a print of teaction on the moder. Tha fotal relative movement of the pins at I), due to either the shear phass or the therest phess,

 With momeds. 'They late heany hases so that they may be set down at batmos plates with litale risk of

they have a pair of movable cross hairs that measure movements as small as . 0002 of an inch. They cill be userl lo calibrate the wages aud phags with Which they are nsed bey mory measmeng the displacement of these genges for the ditherent sets of phes.
fiardboarl furnishes an exeellant material for the models beramse it is lably miform, easily cat allal inexpernsive. Sime the thickorss is constant for at model, the widthe of the members are properfoned aceording the the enter roots of the moments of inertia of the members of the real structure. The dimensions of the mendel along the center limes of the members should be made to some consenient scale of the real dimensions and further, the widths of the members in the model shonded seate very Hearly the sime as those on the structure. This last comblitom can only le aproximated due to the
 sets, kuedraces athe other iompularities require some stady before the mondel is ant lont if they are made abont to sala mo surous error is likely to be intronluced.

For the pimpose of illustrating the use of the beggs appatathes, comsider that a model has been (ont from al camboard to represent the bent in Fig. : A. This model is laid fat on a drawing board alld a gage with mormal phugs in place is set at the foot of each colum at right angles to its center line. Ond half of eath gage is serewed securely to the lowad and the foot of each column is pherced to receive the pias from the movable piedes. In order Hhat the model may deform freely it is "floated" on small steel halls robling on glass. A microserope is set

wer print 13 and the cross hats ate adjusted to read displacements in the direetion of the lead a be in-
 furber, use the shear ghags at I as described before allal real the microserpe for eatch of the two posi
tions. The difference of the fwo mirroseope readings corresponds the value of b while the movement of the gage as determined by (alibration is t. The lomizontal reaction wh the real structure at a due to a load of say I los at l is equal to $\bar{j} \times$ b'a.

If it is desired to theat the bent as having fixed ended colmuns the model wonld the clamped to the movable part of the gages instead of being pinned. Otherwise there would be no ehange in the proce doure for tinding $/ I$. The vertical reatetion would be fonnd hy using the throst phase but the microseope readings womblat measime the displacement of B in the direction of the load. 'to determine the moment at the base of the coltom the moment phers wonld be used and instead of a linear dis placement, \quad. there wonld be used the angular rotation of the gage in raliams.

To show another use of the gate suphese it is desired to ohtain the moment at I due to a load at b. Nommal phiss would be used in the gages at the column bases and the mored would be cut at D. A thigl gage with nommal phgs would be placed at this cut at right angles to the center line of the member, each half of the gage being clamped to oure of the rut ends. Aftor this sage hat been phaced on steel halls so that it might roll freedy, the moment phass wombl be used in it and readings takell on the mitroseope at l : as beriore. The moment at I, dure to a loat sity of a the at h, wonld then be equal to $\bar{i} \times$ W 0 , where 0 is the rotation of the gage due to the moment phase as determined by eabibation. If might be stated hare that while delinite rules may be set up fur determining the disections of the momente and reatetons, it is msually easier to do it hy inspertion.

The foregoing examples of the use of the Bergs apharatus have dealt with simgle loats. lerhaps the greatest value that this method has is its amplit

ration to inthemer lines for stresses and reatoms. letmen once mere to fies \because. When it is under stood that the foint l male le ally fuint on the strocture and that the dixplaterment b is alwats measumed in the dirertion of the latal umber consid.
(ration the nse of the alparathe in drawing infle race lines follows rasily. For exampe if point I is given the regular horizomal dixplacoment with the shear phass and the borizontal dicplatements of al momber of prints on the contore lines of the members of the model are read with the microseope alld foterol with resere to the conter lines as a basp, the resulting corver will be intheme lines for hori\%ontal reations at 1 due fo al moving horizon

Figure;-Sthrobtina Striemine I. C. R. R.
lal load of $\mathrm{P}^{\prime}=\mathrm{a}$. In other words, a piothre is ploted of the dedected structure showing only one romponent of the dethertions. The bows solution is then mothing lont the merhaniarl appliation of
 structores, athd to the reator who js familiar with blis pribe iples the writer wwes ath apolay lor having se long defirterl this simpla explatation of the whente method.

As an acthat case of the use of beges alybar allms in the analysis of statially interominate stratures some dexign work for the lllanis Contral li. R. with which the writer was identitied will be dexpibed. An exellemt general artide on this thi fagn terminald elowtitiation will be fommed in the
 werbeal a aterary system of power sumply was adopted alld it was the supporting sprotures for this stextem that were analyad by the meehanical mothod. These supporting strowtures are of rathere light constrowion and may be descritued as long

 strachare. It was necessaty to investigate these stretures mot whly lan the deall load of the war heal equipment, but alse for varions combinations of ior toads, wind toals, sigmals, "ume pmall and tromprather watres. The prominary dexighs wore
 were stambadized to simplity falorication and erod
 angles and the sertions for various sem lengthe were oblamed by varime the thitkmes of these angles and by using truss dephe of there fomr, or

 colmom was mally : fate of the trass. Sime the
 :

 Aphatmed by the liar that it is matly pate of at fanmer atronsion.

 refored to. Tha mombern of the models were beams
 moments of inertia of the hailt mombers of the

 we datme of dethetion hate trimming them ont.

Thase suly
pletely hes statios if whe the reaterons of the bases of the roltmos are khown, so it wits deaded to the
 limes for lorroontal and vertial mantions at the

 mondels twatase this womlad spal the moded lor fillloe work.
 these intherne dines was semewhat dithernt from What ont might expert alter wating the explathation
 that the movernents at thre peribte roblat be matas
 allal throst phogs wrop bed at the bases of all and Hmas for eath setting of the mieroseopes so that

 This method had the dobble advathage of incerase sped and of allowing a check ly statios for every sel of readings. In hhis mather readings worm laken alf a momber of points along the lind beloth
 Wivided by the catibration fallom of the phese and potted as intheme lines, those for the thes beine potted sejarataly from thase on the colmmes te

 the realling and roplat the penint. Ilaving these intlacere limes pooted it is but a matere of statios
 Ia rases where surb ath analysis slowed a decided watkhese or exerse of material in the original deNigh, the morlel condol be trimmed to suit the changes or : mew mondel ent to cherk the mew design, bat this was ratroly meresealty. When the entive momber of spans of a strober were not to be erected
 out a bew model by simply semowing the genges from
 extemsion pat al the modal to ride fremy on the halls.

Knowing how the mothod is ned ond might wed
 forats to be ghestioned: I. Wores the mondel gives the

 will the rlastie theory appled in the ordinary way.

 (contimletal on Pa!ta 1.5?)
leg. debate pretiminary was hold Tu*sday, Pwhruary 23, 192t, and ol the then candidates renternd from the college of Enginer ring the lollowing mon ware ehosen: (\because. E. Eickhorn 27.
 P. Cromwnll '2n, and T. A saddam 29. 1I. A. Vagthorg '2f was student reprosenative of the student-laculty fommittee and served as the chairman

The camlidates who shrvived the meliminary elmmations will be al lowed two woeks in which to prepar* for the college finals. In this dubate two men will be chosen from the abow five to represent the college in the interecollege debates. Each of these mon will be awatded a frize of Wenty-five dollars. The date of the all-lniversity dobates has as yel not been set.

Each nember of bla team wint ning the all lniversity debate will we ceive litty dollats and the members of the losing leam will each rowetw twenty-five dollars. \ln addition 10 these prizes a silver cup, upon which Hes names of the dehaters and the years will be inscribed, will be presented to the college whose team wins the final debate.

The American Physical Society

The Novermber moximes ol pho Amrican Jhysical sorjety was hold ill chitago. It this mowinge several papors writter by nembers of the physies dwartmont were prosembed The following is a list of the papres Which were read: "Enerey listribur tion in the Continuons X Rats spece tram," by (". N. Wall: "Lintar Smali.

 Null: "Th" Electrical Conduchata" of the Hatides of sodium," by T. E. Phip!s. W: 1) Lansing and $\%$ (i. Pookr: "Oplimam Ronorbertation in

COLLEGE NOTES

Suditorimms," by fruti. F. R. Wialson: "rote Rold of Magntelism in Vialeoner." by F. 11. Williams: "Investiqalion of Photo Electric Valves Coatrd with botatsimm," by V. M. Aburis; ".In Gpital and lilectrical studs of the strialed bischarge in . Nkali Viapors." by S. J. Mo. Mastay: Moblity of lons in the ("mona Discharge," bs W. N. Soung: athe "Spectrum of Berryllitm," by R. F. Paton and W. H. Sanders.

Thor anmat moting of the soretery Was leeld in kinnsas City, Missomit, luerember 24, 29, and 30. It this

 b) Mratis of a Raytoigh lisk." Mr. Wall was futroduced by Prot. F. If W:atson.

Experiment Station

Bulletin No. 153, "The Effect of Temperature on the Registration of Single Phase Induction Watthour Meters," by Abner R. Knight and Max A. Faucett. This bullelin comtains the refort of an investigation which was madrataken to deftrmine the reffere of trmperature ubon 1 las registation of fwo-wire, singlewhas. wat 1 hour thetors. sine surh metars are oftern locatud in manes subject for wide chatges of temprotary. it was vons siderad inhmatam to asequatallow the legismation is afforetod thereby

The effere was investigated for thren cascs, matmely, with tot mor whl
 lactor, carrent lather, and with int fer crat pown lactor. charent lagging. tach wibl lom different hads-:3.5 bolt amperts, 2501 voll-amperes. Som vall.
 fively.

Ther results atm fresentral in H14. form of ram vos, and also in at table of
 summarizad as lollows:
(at) In the "ase of oht metert ilt reatse of lempryatmer 1allasd all in
 forms alld latal

J. II. (Sreene 26 Appointed Dance Chairman

 (ommithew were appointed at the FebFatry mustang of the faginvaring fountil. The dather was held on fri day, Natreh 2ti. in the lism Smbex

 26. II. W: Lockiter. 27, P. II. Tarlak,

 and N. A. Klorup, 27 .

The dance was proclaimed at eteal suceess and proved to be one of the lobitime sociat revents of the yar.
(•) J. Hendrick. Ee ett. Who has
 sombe lime, hats beth appointed associate editor of thw T". chnogarph to fill the vacancy caused by the resignationt wf 12 i. Morrill, ry.e. قati. Hendrick will till this pustion tor the remander of tha samestar His appointment Was anpored by all who ate familat with his work.
(b) In that "asw of two m+10rs. inrreats of $1+$ mbtrather of regispation

 Inadimg, for all loatds, while lor Sill fer (\%) -ffol Was nu.glieibl.
(1.) In the vase of two mollots in

 loads, and at dewreater of regixialion
 latoging. for all lowal:

 |"'ral|11T"

THE TECHNOLRADH STAFE

11. A. Vimiturat, $\because=1 ;$
C. F. Hendrick, '2b

1I Riuw ㅇ.. 7 - Assistant

R. J. Solomon, '27

ASGISTANTS

C. E. Swift. '2S, F, E. Holmstrand, '2S, E. F. Todd '2s, K. A. Larsen, '2s, J. Murphy, '2s. 1. W. Shoeninger, '2s, E. F' Bicknell, '27, (i. B. Keck, '28, C. A. Gerdes, '2s 12. H. Landon, '2s. 1’. E. Seepe, '2s. W. T'. Durham, '28, J. H. Cohn. '29,
A. J. Harrison, '2!, J. L. Mohum, '29, F. M. Collins, '28

JHEPARTMENTAL REPRESENTATIVES

心. 1. RoTTMAYER, $\because G ;$
R. K. Huper, '26_-_-------Associate Business Manager 11. J. Anderson, '26_----------Associate Business Manager

1. R. Linnard. ' 28 _

. A. Braker, ‘26
H. L. (H iger, ${ }^{27}$.

Do You Sell Your Textbooks?

 it is owers. It the herimning and at the end of bach semester the serond hand book market does a lively hosiness. The med of the desire lor a few extrathillins seems to hind the stadent to the realization that he is making an awtulty sory trade. . 1 the end of a semesters work

 for at mess of prottage.
 wotk as his ratere. If this be so, he will most certamly need a reference bibrary. Just a tise or tell font sheff of assefted books wont suffice: they mmst be books with which he is
 Phe books that an enginere can have. The freshman and sophomore texts on chemisher
 and the junior and senion texts. withonf exeention, will alwas be handy and oftell essential in the cogineers library.

A Plea for the Student Chapter

 the past that we are prone to beghert that which is being done now. The change from stadent

 more simple when you enter tishld work.

 vestment. . Inin now ant get lined up for next year.

The Ensineers and Debatins

Our Little News-Reel

Reall it alld makr une of it.

Contemporary Engineering News

Largest and Smallest Electric
Locomotives in the World

 pated at the Fiast loits burgh Works of the Wtestmehosust Eientrid athd Mathu lataring (ompabyy ricently

With a capacity of $1^{1} 2$ botsopowel the Alager stras ther furposp of a mornanirat mala in varions mining 0p-1ations.

Thor (iatat of the tath designted for tha. Vigginian Railwas, with a capacity (a) 11, (tull horsepower, is the world's firgesi atad mast peowertul lowomotive. It will be hatd for hat11 a loaded train foraty two milos Jong orer one ot the hadiest gratles in the country
 loromotive athd its smaller prototype of the industrial firdel is indieated by the following figurts: midget, $11^{1} 2_{2}$ forlors long: its larex brother. 152 trat in traghla: wetight of midget. - ome and chathall tons: weight of eiant-18:\%-5 luns. Nidget's drawbar pulltom [rounds: Viremian locomotiva's
 smaller one dr-jates its power from a fin volt storagu batros: tha latger How from at 11.1481 on 22.004 volt trolles.

Efficiency of Oil Electric Locomotive is Demonstrated

 bocomotive, the most fecethl duvelope
 Hmw all assurn sumetss altor ypars of exprintmathon. was strikingly domonsiratod in a serios of tosts mady by the ('entral Railroad of New dersts daring Juerember.
it fla, Broms Tryminal in New lork Coity a sivty ton wil +hetric.
 ber. in : Fli besure ot locomotive servien

 boromotive sperating batery almost

 and dandey this time moved atonnatg"
 8.. $1: 1614$

 Fatad will the "tath , Hgint

 as compatitd with \$tise for the statam locomolive.

Th". saving in lutl costs is only oll. of the mant romomit's made possible bs ther oil metride. It will makt pros. sible rlimination of tealing plants, ash
 houstes and bostline servires. Vory lithe. Watpl is nomessary, thas niminating costly watering stations and twothes due to bad water conditions.
f'se of the oil-atectide locomotita "ould reduce locomotive matintanamer rusts by onehalt; path oil-rempic. during the course of a year. womld bet able to render twite ats many hours of swrice as are now obtainable from the stadm locomolise.

Another noteworthy example of the Whieirnes of the new locomotive was gin+1l by a lobeton oil-electric which was recently bought by the Lone Island Ratiboad company. A few days priar to its delivery to the compans this loeomotive made the longest run +rer made by ath engine of this lyer hauling a loaded freight train. The rum was math from the phatit of the Goberal Flectrio company at Etio. lemnsylvania, to Now York (ity-a distamer of 537 mitws. No furl on Water was taken on during the trif: and the fotal cost wit both furl and lubriating oil lor the 537 miles was (101) \$2. 6. 15. That aterage tut cost per locomotive mila was 4 si truts. The fotal kilowat hours gemerated was 品sha, and the futel cost pere kiloWatt hour gelleratel was fis cents. Ther furl enst per 1001 lom miles was 12:0 chats

Is is well known, the wiletectrie. locomonty comsists of ath imfermat rombustion ragine which drives a gen--rator, the current trom which is applied to moters getared to ther axhes of the Weomotise. The low-10n locomofife which made lha lrip trom Etio. Io Nuw lork is aboul the fere long. The nomimat rating of that tration
 (or som H P. for the fom motors. Tlit
 inturnal rombustion ragines msing
 (InTent, compound wound. Fommontal
 For lest murposts. the wil ragints

 ing eomld, of course, bate beren atfained by shuting down during long stojs.
'lohis locomotive was first fublicly put hrough its pates farly in fremer bur of 1925. when it was demonstrated at the fand of the Genural Flectrice Company at Etit for the benefit or a visiting palls of ratroad officials, "ngineers and transportation allthorifits. starting from standstill at the tame of at one pereent grade, wilh a trating load of 1,315 tons, the lowmotion acerlerated up the gtade to at sperd of if miles fri hour. Inother test showed that the oileleatric locomolive. with two cylinders cut out of ohe of ther rogints, balaneed proffectly bey wewn the motors.

This phgine was first demonstrated (1) the public at an invitation-demon stration given by the, Vice-President 01 the Long lsland Railroad. The* gutsts, mort than 161 in all. included m+mbers of the New York public servich alul transit commissions, members of the legislature railroad officials, newspaper men, motion picture opetators, and representatives of the (itneral Electric, Imerican Locomotive. and lngersolf-kand companies, joint buillar's of the wil "ltectric locomotive. Ther uniform smoothness of the performance was ther smbject of much fanorable romment, and all atong the line of travel the silent, invisible power of the engint, withour smoke and einders, and with "no visible means of stipport" wats the canse of some futerested perplexity from the (rowds that gathertal to sew the new. fashionted womder:

Principle of Central
 Propulsion of Vessels

('thtral populsion of vesstis is a n*w principle devisted by an Italian inventor to fliminate the vibration in modern high speed liners and warships due to the last ferolution of the propetlors. Ite proposes to place the propullors in sperial recesses formed in the sides of ther bessel medrly. amidships. makimg it pussjble to have tham in direct rombertion with the以"ard lubbines, atad thereby elimimat Hog the long lines of shating. willt thoir bearings. thantls. tailhalts. and lubriadion diflicultios. This is a wery importath leatare of flo system. in

That the efficiency of the powe trans mission is increased, and more spate is made availabla for (argo. ofher important advantages of the system are: (1) It is impossible for the prop+lloms to latave the water due to pitching of the ship. (2) The handling of the vessel is facilitated in that a ressel of this type can turn about almost on her own center, thereby ob viating the necessity for tugs when manerureting in harbors or narow chamels, (3) Two propellors of the new lype amidships can replace the three or four now placed at the stern
H. M. Byllesby Memorial

Research Fellowships in Engıneering

The announcement by Lehigh riniversity. in Bethlehem. Pemnsylvania, of two reseath lellowships in Engineering brings to light an interesting pxample of the activities of publice service industries in research. The funds alw 10 be administered and the work directed by the institute of Re. seareh of Lehigh Liniversity, and in common with all other activitios of flew Institute, the work will tollow lines of purt research and the results will be immediately available 10 the engineering protession.

The two Henry Marison Byllesby Memorial Restareh Fellowships will be awarded lor a period of two atademic years, with an annual stipend of $\$ 751$ and freedom from Lniversity tres. Half of the time of the tellows must be devoted to researeh work on some problem in efectrical. mechan ical. or hydratulis engintering. Hhw other halt to graduate study. Appliea tion or lequestis for inlormation should be addressed lo President 'harles Russ Richards, of Lehigh Unitersity.

West Point Admitted to Engineering Institutions

At the recent anmual merting of the Association of Amerisan Iniversitios in New Haven, the admission of the lonited states Military Acatlemy to membership under the class of Terfsnologital lnstitutions was formally approved. This approval was voted allor careful investigation bs a representative of the dssociation had established satisfartorily the breadth of the sur rismlum and the high rollegiate standards maintained in the edocationst maining at Wiost Posint.

The immediath uffent of the atili baty Academy's momberthip in tha. Association will be 10 kive fo any of its graduates who may be selected as Rhodes sechohars a regular senior standing when they report at oxtord

Th" Association of Smerican ['niversi fits is reeognized by the athertitios of the Finglish loniowsitins as the pre mier body accrediting the best institutions of colloge grade in this count 1ra. Sindents whe arr graduates of institutions that dres on lhe list of acoredited moiversities, collegess, and twingeal swools qublisbed by the Association are granted swnior standing withont qusstion and are in a posifion to elecet individual courses adaph ta to their own desites and to to graduate work for honors.

Thires recent graduates of the Seatemy were selected as Rhodos scholars and atw now throllod as resid+nt students all ford. They are: lieutenant Francis Rariok Johnson. 'lass of l!as?, S901 North Aullon Altwel, Tacoma, Washington; Lieutenallt Charles Eskridge Saltzman, Class of 1925, o o Chief Signal Officer, War lhepartment. Washington, 1). ('.: Lieu1+nant Standish Westom. Class of 1925. 1titit Columbia Road. Washinglon, 1). 1 .

World's Largest Single

Condenser Completed

Another world's record in phgintering achievement was altained with the completion July $2 t$ of the latgest single steam condenser ever built, al the South Philadelphia Works of the Westinghouse Electric and Nanulas luring t'ompany.

Weighing almost $1,0106,1000$ lbs. ard rising to a height of nearly 30 ft., this colossal piece of machinery when "plfating at maximum rapacity mpon its. installation at the new Rjelimond Station of the Phaladelphat Elpatio Company, will be able to circulate ap proximately 150.166×1140 gallons ol water per day. This is equivalent to hall of thiladelphia's daly watrer con

"has main condernsel which has a
 in a ftamte of 55,100 square fort fatha cits, was oryeved last winter for the lhiladdphia Filectrid Compans's nen bower plant at Poul Richmond, which mpon its completion will be the targest simpla stam power buit on the word. llow great lhis plant will we maty be kathered from the bate frot vision has bewn made for the ultimate instatlation of 1 welw condensits ol this gi:ath ly pe.

1nside the shell. Which alone woighs: eonsiderable above hali a million
 tubes, :ll, lowt in womght This is "quivalent 10 at total longth an mor"

dabl stantute milas of condenser tubers The tumetion of these tabers is to con Wey the exhalust steam from the ture bines indo water. Their total weight is approximatly $15+0,001$ pounds.
 comsists of two eirculating pumps "arb with a maximum fapacity of T. "till gallons per minute, or l, f6til,omil Fatlons bur hour. This in turn os
 galloms per day. H, however, both pumps are onvated simulameonsly, their joint capacity will be lou, (004 galtons of wator per minute, correspond ing to 6,0th, onf gallons per hotr, or a lotall of lif.tmatomo gatlons wery ol hours.

By way of comparison, it is inter fsting to nowe that the combined waltorworks and pumping stations of the City of Ihiladelphiat during the IWenty foll hour furiod, under normal conditions, pump a total of $300,0010,0014$ galloms of water to supply the city's needs. To operate the two circulating pumps, the condeliser when arected will be tquipled with two $500 \mathrm{H} . \mathrm{P}$. Wrestinghouse motors, the weight at ther condenser and auxiliary equipment totaling 9a5.000 pounds.

The wotk of dismantling the huge pipes of machintery is now under way, preparatory to shipuing it from the South Philadelphia Works to the Pore Richmond plathe of the Philadelphia Elatric Compans Amosi a dozen of the laraviest 19 me stem Hat fars will be required for the transportation of the "quipment from ont point, around thos eity boredets. ios the place of iltstallation.
\therefore S. Leer, for., '21, is employed by the Ogden Enginewing Company at ()Hatwa, Hlimois
F. \&. Markut, rer.. こat, js now at (leveland. This, worlitue for the Ferro Enatmel supply (ompans

11 F. Borlamal, rer.. 23 , is employed by the "fhurbor Brick fompany at Thumber. गex:s
 ater for the lllimois diass Company at \therefore itull lllinols.
 eqnimator at dorton, lilimois.

1. I'. Hotif, ata. '0ti, is vief presi.
 sherman-lloff lompany of phita felphia IJ, makes his homme at Cubwhり, J'enmsylvamia
2. I Edwatras. met 'uti, hats head quathors in New lork ats manager of the rock drill diviswon of the Thicast fremmatic Tool fompans

Architectural

The srehitectural society at a meoting held in Ricker Library, on Thursday evening, February 19. was addressed by William Jones smith, prominent arehitert of Chicago. He gatre a very interesting and instructive talk on "The Relation of Arehitectural Education to Office Practice." Mr. Smith is a member of the firm of Childs and smith, who are the arehitrets for the new Y. M. C. A. which is to be built at the corner of Chalmers and Wright stretts. They were also the arehitects for the new Chi Beta fraternity house.

Work on the final exercise in the thirternth annual blym Fellowship is now in progress. The three meu picked to compete in the final drawing were Arthur Gallion, A. R. Eastman, and Lincoln Abbot. The subject is "A Municipal Building." The winner of the competition is awarded a prize of $\$ 1200$. Whiel is to be used in dev traying the expenses of a year's study in Europe.

On February 27, students of the department for the first time participated in the preliminary pxercise for the Paris Prize. Thes subjects was "An Entrance to an Art Exhibit." Any sturlent of architecture in the country is "higible to compente for the prize.

In the recent Beaux Arts Institute of Design competition, Ralpla Kloppenburg. '26, received the award of second Medal on the problem "The Main Floor of a Large LIotel." First mentions were given to llarley McKee, 26; C. T, Miers, 25 ; Le Roy Berner. "26, and William Kramer, '2t. At tha' present time the seniors are working on "A Municipal Carillon Tower." The Municital Art Soriety of New York is giving a prize of $\$ 50$ for the best solution and $\$ 25$ for the second best. In addlition. (i. Broes Vian Dort of Chi(agon is offereing $\$ 15$ wortli of books to the leyst local solution, and \$10 in books as a steond mizn.

Ar. Yan bort is atso offering a similar prize to the juniors on their prob1t.m, "A Community Concert House."

He has been offering this frize annually to the seniors, but this year he is also giving the prize to the juniors.

The architectural department has liad the good fortune to add to its faculty Mr. Vivian Javis to instruct the junior and senior classes in free. hand drawing. Mr. lavis is a graduate of the Ecole des Beaux Arts in Paris, and has also studied at the worldrenowned Julian Art Academy in Paris. Three of Mr. Davis' paintings were exhibited in the 1924 Paris Salon. Mr. Davis is a very valuable addition to the teaching stafi of the department, and through his pleasing personality and exceptional ability has become very popular with the students.

The entire department is rejoicing over Professor Rexford Newcomb's decision to remain at Illinois. Recently Protessor Newcomb was offered the chair vacated by the retirement of Professor A. D. F. Hamlin at Columbia University. Professor Newcomb is assistant head of the department, Architectural Editor of the "Western Architect," President of the Central Illinois Chapter of the American lnstitute of Architects, Architectural Advisor to the National Tile Manufacturers Association, and an authority on spanish and Mission styles of architecture in this country.

Electrical

The now laboratory in the E. E. department is practically completed. As soon as some delayed materiais arrive it will be put into use. Wlion finished. it will accommodate two sections of thirty men each. One section will work with alternating current apparatus and the othrer with direct current machines.

A now thousand volt storage battery has just been receired and is b+ing ustd in the restarch laboratory. Other new equipment ordered includes a new lathe for the department shop. a small converter to change 3 whase to 6 phase A. C. for the laboratory and a motorgenerator set for
battery charging. This set has an automatic overload release and reversing current switch. In charging witly this set there is no loss due to a series resistance. The set of 260 volt storage batteries will have every cell fused for protection against short circuits.

The new radio broadcasting station WILL is under construction. The fower and studio will be located on lllinois field.

All the meetings of the senior seminar course this semester have been addressed by outside talent. Prof. slater of the college of commerce discussed the economics of electrification of railways. Mr. Moloney of the Cut-ler-Hammer Mig. Co., Mr. Chandlee of the Century Electric Co., and Mr. Ludwig, ' 25 of the Westinghouse Co. brought to our attention various facts relating to their respective companies. Prof. Willard of the mechanical engineering department explained certain investigations made here at the University to solve the problem of ventilating the vehicular tunnel under neath the Hudson River.

Chemical Notes

At the January meetiug of the American Chemical Society, D. B. Keyes. director of research of the U. S. Industrial Alcohol Co., Baltimore, Ad., gave an interesting talk on "Sol. vents for Lacquers." Not only was the subject well presented from a technical and practical viewpoint, but the speaker interspersed his talk with well chosen stories of humorous incidents relative to the subject, pleasingly characteristic of Dr. Keyes and his likable personality.

Lacquer solutions contain nitrocellulose, solvent, resin, plasticizer, diluent, and pigment. Solvents for lacquer from the standpoint of chemical constitution may be grouped into alcohols and esters. The esters dissolve the nitrocellulose and the atcohols and some esters dissolve the resins. Ethers, aldelydes, and ketones are not commonly employed. Lacquer
solvents are divided into three physical types:

1. Low boilers-as ethyl alcohol and ethyl acetate.
2. Medium boilers-as butyl alcohol and butyl acetate.
3. High boilers-as ethyl lactate and butyl propionate.

The function of the low boilers is to dissolve with a resultant low viscosity so as to make application easy : but the low boiler must not have too high a vapor pressure or evaporation will take place too rapidly leaving a weak film; acetont for this reason is unsatisfactory.

Medium boilprs impart How. Jiethyl carbonate ranks fery high in this class and is used for some purposes in place of butyl acetath

The high boilers serve to mroduce a nonblushing film and give gloss to the final flow. Ethyl lactate being both an alcohol and ester and a remarkable solvent for resins or nitrocellulose is a very desirable solyent in this class. As little as 5 percont gives marked peffects on the final film.

Considerable emphasis was phaced on anhydrous ethyl alcohol and acetate, for they are extremely good solrents for lacquer components; there is an abundant source of raw material for their manulacture; dry etlyy aleohol plus dry ethyl acetate is very near a universal solvent for all resins; and finally, both solvents can be pro duced at a low pree.

Plasticizers also closely related 10 the lacquer solyents proper impart final flow, nonblushing, blending of solid romponents, and gloss to the lacturer film. A goud plasticizer must be a solvent for nitrocellulose and must mix with resin. Diamylphthalate and tricresylphosplate are examples of satisfactory plasticizers.

1h. Keyts recommends florough drying of earh roat of lasquer applied to a surlate to insure the complete evaporation of those solvents such as the modium boilers which if allowed to remain will finally break down and disrupt the film catusing failure, A forcea drying temperature is desirable where focasible.

Each new lacquer product but on the market for a scientife purpose naturally differs from lacepurs for other uses, and so we have the most highly developed athtomobile latquers. brushing lacquers, floor lacquers, wt: each having a different formula.

Dr. Keyes prediets that tho future of lacquer will be in the liad of interior decorations, and that coal and petroleum will be the basic raw ma
terials for the production of lasques solvents for latequer coatings: and a ntw "lacquer" or motective coating for surtaces will in all probability be a condensation produet trom two solutions using a suitable powertul catalyst which when mixed just before using will then chemically reate after applieation and unite to form a fer fect permanent and beautitul finish for ryery surlace.

Civil

HIGHWAY SHORT COURSE

The llighway short Course was so well attenderd this year that the meet ing mace was moved to the Auditorium. As there was plenty of room, students, residents of the Twin Cities. and other interested persons wert invited to the meetings. Monday morming was tak+n up with registration and the first session of the course officially onent at $1: 30$ oclock in the Anditorimm when lean Alilo s. Ketrhum of the College of Engineering welcomed the visiting dulegates. ('. R. Miller, director of the lllinois department of Public Works and Buildings, gave a response to the welcome, and the session began with addresse's by litrid R. Forgan, vice chairman of the Natioual Bank of the Rwpublic. ('bicago, Frank T, Sheets '11, chief highway engineer for hlitnois, and l'rofessor C. C. Williams, heatl of the department of civil engineering. Mr. Sheets explained how the state road program for 1926 has b+rll blockerl by an insignificant clause in the $\$ \mathbf{1 0 0 , 6 0 6 . 0 0 0}$ Hllinois road bond issue. This clause requites that all contratets for the past $\$$ bro,0010, onm bond issur shall be let before contracts on the new bond issut catl lee granted. Howeyer hos satid that belore the year was over the old contracts would be granted and the difficulty overcombe On Thusday the metting wats presided over by R. F. Fisher suptrimendent of himhays of Champatign county. Irol. 'T. W. Mstrea feat tured the frostam with ath illustrated Lerture on "rhas beronomiatal besign of Highwaty bridges." He stated that the days of reckhes and unscrupulous bridge design wrom gothe and now the whold crossing mans be taktol into consideration in building a brider and dur weiglal gisen to eost, lift. and maintenance.
G. F. bureh of the thimois loivision of highways gatw a talk on "Tha ln ferderendenes of lasizn and ('onstruction of leridges and Culverts." in which he emplasized the nefessity of field measurements and supervision ol
construttion, On Hiednesday the terature addresses were given by Prof. C. (${ }^{(}$Wiley, director of the course, and (i. E. I'atterson, general manager of the lllinois ('entral katroad. Their respertive topics were "The Design of . Trurial Highways Through Municipalities" and "Recent Progress in Transportation." Prof. C. L. Stewart, (hief of agricultural economies, gave an address on Thursday afternoon on "'The Relation of mproved Highways to Rural Wealth" in which he stated that when average prosperity returns to corn belt agticulture it will be due in a large mrasure to our modern highway system.

The next day brought the close of the short Comrse with talks by F. B. Letonatd, attorney, Champaign, and II. F. Lodge. Past President of the Hlinois Municipal and Highway Contractors Association. Mr. Leonard gave an address on "Contract Bonds and Liens in Highway Work" and Mr. hodge told what h+ had learned about eneinetrs in twonty yrars of contract ing. Prot. Wiltay and Frank T. Sheets made the contluding remarks and Prof. C. C. Williams made a short address telling of the work of the late Prof. 1. O. Baker and praised the man who wats so well known to the engincering profession. The total en collment was 312 which is a new rece ord and great cerdit is due to prot. Wiley and mombers of the civil engiHerering department for the suceess of the llighway Course.

A. S. C. E.

The Contral Illinois section of ther I \therefore ('. FA. held a joint meeting with flat student chapher on the wening of Wedmesday, Fefruary 2 Ith, at thu Inman llotel. Atter at dinner which was of the lmman standard of axerllepere. N1. Chates F. Lowth, fhiti engi
 was introduced by prof. Enger. Ilr Loweth gaver a fory interesting address on "Railway Mergers" Dfter a historical sketell on the development of malroads, he told of the elanging opinion in regard to rallway mergers and deseribed the presemt plan for mergers which is before congress The' proposition is to separate about 95 perement of the railroalls into 21 districe divisions in arder to ent down oxerbetad rxpense and to minimize oprodting charges. Mr. Loweth advo. salled the plan ankl pointed out the phasts of the simation which were (o) esperial interest to engint+rs.

Notes

Mr. (. F. Smith of the Eniversity
（1）l＇tah is a math graduate assistatal 10 respatrolt．He is taking the phate of J E：Kir．anto on lhw Austin sphol arstip and will coopmoter with Mr． fombay in reswareh on ：＂bathth and （fatwl Roads．＂

Protessors Hands（oross and T．IV． Mshea of the depatmont of cisil rits

 lafld in Chicatan．

Cermmics

THE SHORT COURSE

The short courses in clay working and thanwling were held from dann－ ary 11 do danary $2: 3$ in the erramics department mader the direetion of Prolessor（P．F．Parmeloe．

The folfowing eourses which write bery interesting becathst of patctablat vabut wer given during the two We＋tis of insaruction：
＂Whe Origin and Properties of （＂ays，＂by Prolessor Parmalew．
＂Ceramic（＂hemistry，＂by Professor Andrews．
＂Explosions and Blasting．＂by I＇o． 1＋ssor Callert．
＂Business law，＂ley Probessor llarker．
＂The Composition and Properties of （＇oal，＂by I＇rofessor Parr．
＂Stoam Engines and hoilers．＂by Professor kratz．
＂Boiles Waters，＂by Prolessor lbus－ woll．
＂Dynamos and Motors，＂hy lrofes． so！Paine．
＂Drying，＂by lrofessor Hursh．
＂Burning，＂by Jrotessor Hursh．
＂Maximum Produetion from Equip－ ment，＂by Mr．Benodict．
＂ly rometers．＂by lor．Westman．
＂Glazes，＂by Professor Parmelter．
＂Prosperting and sampling，＂by Mr． MrV゙ay．
＂Puriodic kilus．＂by rimonsor Hursh．
＂Continuous kilns．＂by Prolassor thursh．
＂Car Tunnel kilns，＂he Protessor Hursh．
＂C＇are and Maintenance of Mitchin－ ＋ry．＂by Mr．（＇as Bberg．
＂Winning of Clays，＂by Mr．MeVay．

＂Burning brick lor Color，＂by Mr リיリンy
＂Find Eronoms．＂by Prolesson Hursh
＂IPland Problems，＂by Prolassor hursh．
 Hessor 11meh．
＂Refractors Matr－rials．＂by Mr． 1360zo
＂Viareonts Fomamels．＂bs Ma．Hamiol soll．
＂Borles，＂be l＇motrsion Walts．
＂＂tionding，＂by Mr．MeVias

Along with these roursens thath
 ginwering．katr ath adders．

Tha．Short（＇ourst in＇lay Workine whielt has bow givert by the depaty mant of cerathic ngementug from time to time sime $1: 91 \%$ has burn at．
 vatrous parts of the commers．It has beren hishly commended by ibose what have attended The batest and bror haps the most intoresting statemont fegatding its valur has beron contrib． Ulod by Mr．Mitlin llood of Manta， （inotgial in ath attion＂Jioneering in Soulhern Burnod Clas Produels＂puts lished in dammateturers Retord of a ferent issuts．

Ar．Liood stathes that as a result ol lis attendance at the session on 1911 ＂I started a new industry in the south called Hood＇s Pottery Clay l＇roducts Company，and built a now plant at the base of Wialden＇s hidge，where the first quatry hoor tiles wer mad，in that south wete manmactured．It was this phant that was the first to furn the tide and ship burned clay prod－ wets from the somth into the Norb and bring batek Watl sturet cash．＂

Futhatmore lat states＂the great bem－ efit derived by me from the intensive conerse in ceramies at the l＇niversity of lllinois raused m． 10 wish some＂ southern miversits would offer such a course to southern boss，and 1 Whapere knorked all the door of the （boorgia school of Terhmology．

The plan of Mr．Hoorg was inter ruptod by the war．it culminated in 1921 in the ampoptiation hy the （ieorgia state Legislature of mones for the maintrmance of such a course．

Notes

Irot．K K Hursh spent that first wrek of March in Now York＇ity at a mueting of the（ommitere of Amor iran Socjets of Mochanieal Ensthers． The tyem of revratories used in boilev plames was the subject of dis． russion．

The ceramos department has phr chased an antomatic carben doxid recorder whith operates on the pribe cinde of the varying thermal comduc tivily of gasses．

Prof．C．W Finmolen and lat．Sad rews altend the atratall metting of the Amerioan revamios socioty which was helal fecontly at ithatia，（intortia Thes also visjed the city of Nactu
athd semeral of the chay deposits in that vicinits．It Mefntirn and（sor－ don，Gororgia，thay insported refining plants and flay pits．On the return 16ip Prof Parmelew stopered off at ＇hattanooga，Temm，in order lo inversi－ Eate the＂lay industey in that locality．
flas cromatics deparment has taken wow 1 bu rooms ont the thind foor sif Har Coramies Euildine which were for－ murly orchitiod by the bureatu of Hin＋

Mr．T N．Mc Vay is at prestat very much intrested in the＂Mictoscopic Examimation of White Clay．＂lle is doing considerable researeh including The dxamination of kaolins，secondary kaolins，and all other white burnitg chays．

Railway

A most interesting series of tests is being carried on by the railway engi－ neering research department and the lllinois Central Railroad under the direction of Prof．Tuthidl and D． 1. Fiske．An effort is being made to de． termine which train offers the great－ est resistance，one with loaded freight cars next to the engine or one with the loaded freight ears at the rear of the train and the empties next to the engine．To the casual ohserver it would seem logical to place the loaded fars behind the engine but there are many conditions which may make the other the better way．The tests are made with the llinois Central and Iniversity Test Car，the freight train being furnished by the raitroad，and run from Rantoul to Ludlow，as there is a maximum grade between the two stops．

The Railway Test Car presents an interosting operating plant．The mo－ tion of the train is relayed from a set of wheels droppetl upon the rails when the train is in motion to a revolving roll of paper，bver a yard wide．By means of ruling pens twenty－nine dif－ ferent things are recorded on the paper during the operation，of the car． such as draw har pull，distance．time， chrvature，wind velocity and direction． spered of train，apslitation of air－ Wrakes and locomotive operation in general．The interpreter then takes the roll of paper and deduces results whien give us the efficient train opera－ tion we have today

Mechanical

A．S．M．E．

First，a glimpse into the finture It combes on Wednesday，Ipril 1！－a tath by Wh．（＇．Anthony on＂Eum
pean Aerophant [hereiopmerns Now there's some real romance about Mt Anthons: Not only is he an tminent mechanical engin+er. being president of the Anthony Company. Ince of streator, lllinois, manulacturers of stli-dumping Ford truck bodios: but he is also a distingolishod traveler as well south and Central dmeriat hate been until recemtly his favorita foreign hamm: however, last summen he spent seseral months abroad rov ing over the Europtan continemt iu an aeroplane. Incidentally, through the courtesy of personal friends in the Eritish fir service, he was able to investigate thoronghly the lates de. bropments in Europtan atronathis Heinmering. Finally, M. E.'s, Mr Anthong is a 1911 graduate of 1ht University of lllimois $1 \mathrm{et}^{\prime}$ s b^{+}al the M. E. Lab. lequre room at $1: 64 \mathrm{P}$ II on Wednesiay, April 14

I new systen of arranging pentry taining regular mertang frogtams was initiated at the end of last semester something entirely originat. The blanning, directing, and giving of these programs has lewen put into the hames of differemt selected groups of M. E. seniors. In this way vallety and nowetty of subject matter. lively talks, and anmated discussions an always assurtd.

At a reqular motetiag on danuars 20. ․ . Roltmater gate a short balls on "High Jrpssur" stoam." lhatues tionably the foture of this desiable item in power production is at pres ent particularly aptimistic Foblow ing Mr: Rottmater's talk. J. II Mr Culloneh told of his pxperience in connection with the constmetion of locks and dams on the Illimois water way mojret at Lockport amb Mar willes.

As an instance of a varited fogram,
 ternath: R. Wikoff Rave a review of fha remarkable Lite of Juter diaty the steral king; 11 if. Ablifeting brought up some matresting prime fontroning internal grindme and grinding wheqts: athel 18 II sionte + a pained the methods used in somberat lllinois coat mitung. could a brje. hour's wogath of an "ugimerrine na fum hatdy for more fhammarls di vorsifited?
 the sperial moneting antal smoker of
 ruary 14. missed 1101 ohls at eromt smokr and an inspiring illustrated leq. ture but also some rexerllent efolet and doughnuts, as well as the lathes M. E. gossif. l'uloubtedly Frank B
'hasp with his hotures on "Thar sill tival of the Fit" |tomished the ont standine pertormance of the rybulaz Wr. Chase is ? her hoad of a Chisazo tirm of pheintras and arohireets which designt modern indostrial plants Here ale it fow of the proints he brought but.

Han can'l work for a dr-feit." said Mr. Thase: "at margin of profit must be edrmed. Presemb conpetition is kepn, at times riven destructive only the fit survive Molemen industrial phants must be located right, they must be properly laid out, and they must be so planned as to take rare of possibte tutore wxpansion or they will be erushed out of existence."
"Buildings must fit," Mr. Chast Iur ther explained; "bether bater is mo shth thing as standardization of luilding design. Although the plants (hemselves mas manutacture identical products, localitites differ: controlling natural and artiticial eonditions are nryer the same.
In addition to bring an illustrious enginetr. Mr. Chasp is also somewhat on a molalist and philosopher. "It you don't love your job," he said. "get out of it. Immediatrly:"
"Consistenlly pas lite"s same on the stuate If you are ever ratled upon (t) bu a saltsman -as most liktly for will be-don't misprererseolt thr product of s.rmiets sold. Deceril bexter pays.
Is a conclusion to his hecture, Mr. Chase exhibited at number of slides showing the desizn and interior ar rangement of a modern newspaper hant in Milwakke phanned and huilt under his supurtision.

Mining

11 thex latit mereting of the Mining

 ober an umbibally latge allendather. Prot I. Al Marslatl spokn lo lho sociers on al subject of unisersal ime pertanct of all fremares. . The Hu man Factor in lmanstr\}." ith whioh ha sumatod hat his "xpromers and gab. out mathy pointras it hathding mint labor as a shilt boss

Proi Marshall dowes met believe it

 cood mathager. but lat does bedieve that the "xpertiolte and knowleder atquired while wome thtongh that stages 10 wathaternho is "Mrembly helpul in bringing ont the fibe ghati fications of a minima Hath 'The min ing engineer must

1 Know his wotk
\therefore Inderstand hmman mathe
: Be able to distribute the work among his men with tha ereatast rthionnc?
4. Be loyal to his fomprany always
\therefore Command the respitet ot his workers.
some men are nalurally gitted with Heses quatifications while others must strive hatd to attain them. As a gen rral rult a "boss" should nwvel make promises unless he intends to keep rhem. No matter how small the momise may setm, a broken promise is hard tor the workers to torget. A boss should be firm, yet nol dominewer. ing. and in mining where a rough eltment must be handled. hit should never fight unless struck first. He must take mains to br courteous 10 his men, hut should never peatronize or lrateraize with them. Last but not least he should keelt himselt morally

Ar rivities:

After some effort on the part of the mining faculty and students the department succeded in seruring a film from the Bureau of Mines entitled, "When a Man's a Miner." The picture Was shown Thursday afternoon, 4 : 6 , I.A., 2es N. H. and was witnessed by a goodly number. It was not, as ont Would expect, a purely technical pieture. but had a bit of a love story woven into the plot in a mining set. ting. The pictare showed how a care less miner was dronght to grief by his own foolishness in his disregard for the satety of his working place. This acrodent made him an invalid for a timt: and turing his convales cence he realized the full meaning of the slogan: "The Best Safety Device Kıown Is a Carefol Man." Ite began sudy.ng the sately bultetins; and the climax shows the same man as a rool hedaled leatler of a gronp of men who hate been trapped in an +htry follow ing ath explasion, The bictare shows rlearly the method of barrieating an entry dgainst the entrance of poison gasess sot that the gomd air remaining may the used to the best advantage in sustaming life until ressuth is pfietted Finally the men were resaded by the reselue team and thus a happy end.

The Bining smoker, the first meretine of the second semester, was held Fieh. 16. 1926 in the Fthion Building. and an ample "gang" phjoyed cidur and donglabuts not to mention fha smokers.

Sines variety is the spiee of lite. 1her members and gllosts were enter tainell by a threepound boxing ban berwern doe Iarson and la R lloff

Fraternity Activities

Tau Beta Pi

T'an Beta l'i, as the majority of empiatering students know, is an honorary emgine rering fraternity which sponsors high scholarship. The organization was founded for that purpose by Edward II. Willians, Jr., B. A., A.C.,
 mont. The first chapter was established at Lehigh l'niversity, South Bethle ${ }^{2}+{ }^{2}+11$, Pa., in Junt 1×55. The chapter at fllinois was the fifth to bee added to the roth, being given that honor in 1897. At this time forty-five chapter's, ostablished at the leading universities, complete the chapter roll together with six alumni chapters establishted in various frarts of the country wherever the neseds fon such an organization warranted its establishment.

To best state the principles and ideals of Tau Beta Pi, it might be well to quote the preamble from the constitution:
"To mark in a fitting manner, those who have conferred honor upon their Alma Mater by a high grade of scholarship as undergraduates, or by their attainments as alumni; and to foster a spirit of liberal culture in the kingineering Schools of America; we do hereby ordain and enact the following:"

From this preamble it may be seen that Tau Beta Pi recognizes the fact that an engineer in order to be successful must have a certain amount of culture. An engineer should know something of music, of art, of litera ture, of history, aud of the various other cultural subjects in which he is known to be very much deficient-deficient not because he wants to be, but because his eurriculum is limited in these subjects. With this in mind. Tau Beta Pi has tried, and is trying to raise the engineer trom "boot, pick and shovel" level to that of a respect© techmically trained man.

Delta Mu Epsilon

The honorary mining fraternity held its formal initiation hanquet at the Inman Hotel on Sunday evening, Bee. 6. The pledges were B. Melvin, 1 . Volyz, and 12. Lager. The honorary members are Professors A. C. Catlen and I. M. Marshall. Further initiation activiting will he held later.

Phi Mpha I ambda

"The fotlowing offerers for the ensuing yeag were efected at the regular moteting of Phi Mpha Lambda honorary genemal engincering fraternity held un March 2, I926: M. E. Johnson, '27, President; D. M. F'ritts, '27. Vice President: J. L. Pertl, '27, Treasurer; R. G. IItury, '27, becretary.
some very good work has been done by this organization since its vstablishment, and although its name has not been tlaunted in the headlines or its deeds shouted from thes housetops of the engineering school, yet it has won its place as an organization on the Engineering Campus.

Phi Nipha Lambda, since it is purely general engineering, faces a somewhat peculiar problem inasmuch as the enrollment of this department is comparatively small. Yet few organizations can boast of a more representative group of men or of a more practical code of ideals on which it chooses its men. The aims and purpose's of Phi Alpha Lambda take it ont of that class of super-academic honoraries that justify their existence on the samewhat narrow, egoistic and +mpty ideal of pure scholastic attaimments

In keeping with the scope of the Gemeral Enginetring Department, the activities of Phi Alpha Lambda members is about as diversified as the g.e. curriculum itself. Among other things, the work it has taken for the immediate future is the reorganization of the now more-or-less dormant General Engineering society.

Chi Epsilon

Chi Epsilon, honorary civil enginewring fraternity, installed the following officers at a meeting held January 19, 1926: President, D. R. Conner; V'ice-President, O. 'T. Parker; Secretary and Treasurer, F. A. Dollinger; Corresponding Secretary, Reno Niles.

Following installation, short talks were given by C. S. Hendrick, J. C. Voorhees, and D. II. Pluta, regarding the work in which they had been enganed during the summer months. These talks proved to be very interesting as well as giving the members an idea of some of the problems to be met upon their entry into practical work.

Pi Tau Sisma

The eighth anmual convention of Pi 'Tau Sigma was held at the Lniversity of lltinois on November 5, 6 and 7 . The local chapter made every effort to show the visiting delegates around the University of Allinois Campus and buildings, and to make their sojourn at llinois a pleasant one.

The grand officers, Supreme President fr. A. Young, of Purdue, Supreme Vice President G. L. Larson, of Wis consin, and Supreme Secretary J. V. Martenis, of Minnesota as well as two delcgates from each of the chapters: University of Wisconsin, University of Minnesota, University of Missouri, Purdue University and Armour Institute of Technology were present.

The program as outlined by the committee on arrangements was a worthy attempt to fulfill the desire of the local chapter, namely to extend a real brother greeting. The program began with a smoker at the Warm Air Research Residence on Thursday evening. The convention was held at the War Air Research Residence, a privilege allowed by Professor Willard. The opening session of the convention was held on Friday morning, the delegates were entertained by the faculty memhers of Pi Tau Sigma at a 1:00 o'clock luncheon at the University Club after which a tour of the campus and University buildings was made.

The golf championship was won by lllinois Alpha represented by Professor Goodenough. Although Professor Martinis assisted nobly in the capacity of caddy, he declared that the victory was in no way due to his own efforts.

A model initiation was held at Wesley Foundation on Friday evening. Initiatory work was conducted by Julius Muller. The chapter was honored by the presence of Mr. W. L. Abbott. chief operating engineer of Commonwealth Edison Company, who was initiated as an honorary member into the fraternity. The candidates for active membership were: E. H. Taze, C. U. Smith, H. J. Anderson, and E. E. Veihl of the senior class and G. H. Zenner, K. D. Knoblock, C. C. Baumgardner and J. R. Connelly of the junior class. The initiation was fol lowed by a hanquet at the University Club. Dean Ketchum was the guest

af bomb Prolassob A (Wiblard atterl as loastmaster. Fiarh of the hat tiontat otlicers as well ats a delngate trman eath chapter were the speakers. The closing address was delivered oy Vr W 1. Ablott.

Fhe limal sexsion of the comvention was hatd on sathardaly morning. "The delestlem were glows at the loxal - hatpler at the ('latago-1llinois gatme Saturday athernown. The ronvention wats wery sucesssind and hoperind for Hee fature of the fraternity. Several pettions for new thapters thronghons thu tast and middle west were voted apon fabarably. I very constrvative polley of expansion was adophed. The organization adopted the publication wh the local chapter kowwn as the Condenser as its official magazine the paper is to be published by the suprembereretary
'lote lecal chapter phans al series of lumheons for the combing stomester and as hats heretolure will continue to give the stadent hatach of the A. S. M E. its rull support. Hlloois Alpha will attembt to bring closer asseriation among the soplomores, the juniors amd the members of the Aerhanicat Fingineering Fitculty as well as to strengthen the homds of iriendship and loyalty within the Mechaniral Finginuering bebartment.

Sigma Epsilon

sisma Epsilon raternity was or qanized ats an honorary railway buginepring ratronily in 1923 and was incorporated under the laws of the states of Hlinois in Fobruaty of that yeats. Atombership in the fraternity is confincal to jumbors and senjors in the rajlway department and ils laculty. From the eligible eurollment a few men are pieked ratch ytat on the batis of scholarship, collogiat, activi fins and generat interest in their chos--n butwsion. With the organization (1) the liaternity cabu the thought of atdeling other collentate chapters but as there ate no other distimet ratway whools. as we hat at hllinobs, the fraternity has bern locally contined. Lhesides the atduablages the Imalornity offers its own nembers, it works 10 the fromuletion of all the ardivitites ot lhw railway department, ant spon -rrine the Rallway Club

The prestont otheres of the frathe
 or Stmesser ebi, Vice Presidellt: J 11. smith "2ts. Netrolary: IV: L. Hunt
 (1) the raternity are 11 l. Kunz 26 .

Eat Kappa Nu

Vat kiabla Nu is an elecorial Mn gineering lratrmits organized bor - Hosere conperation amd mutual benefit (o) students and others in the protession Whata rhatpery founded hate at the lonversty of thinois on Oefober ${ }^{\circ}$
 Kappa Nn bow has lwenty active chatores located at leading techaical buivensilies throughout fla coundry as woll ats alevern alummi chapters patablished in the more important citios. The members of the artive chapless dre chosen beqduse fley have shown +ateptional interest and marked abili is in mectrical magesting. Naturally flest, scholarship is ont of the requirements of membership. It is ont of the aims of the Iraternity to stimulate in wety possib) way the intrerest of undergraduales in the at tamment of scholarshig.

Thas offcial mblication of Ela Kappat Nu is, "'lop Bridge," which appears quarterly. The magazine conbains news of the various chapter's, fitems of interest to the protession. and notes on the aetivitits of various alumni and active membets. Through this medium undergraduates come in choser contact with the men who are the real leaders in electrical enginewr ing and hence cannot help but be bent plitled.

The bocal chapter has twenty-four ative members at the present lime. The main artivity letore the members now is of comse the electrical engineering show whicll is to be held this swing.

The othicials who are learting 11 KN bhis semester are:

President, W. T. K゙ing: Vice-President, W. W. Emby ; Recording Secre. tary, J. O. Epheraxa; Treasurer, J. E. Batudino: Sergeant at Arms. E. A. Sobota: Corresponfling Stacratary, W* S. Duncan: Associatt Rditor al "Th" Brikge', W. 'T King.

Sigma Tau

Sigmar Tin was founded at the l'nivorsily of Nehraska in February 1904 with the express purpose of binding bognher enginering stuments of merit by fraternal ties as well ats the tips of alastrom friendshig.

In its membership reduirements and folations on othtre sorietids. it wats formaled strictly ats an homorary fratermity Belitying that scholatshity aloue wats not the only mark of at sur. cessinl engineer. tha fombders meor peralled two other qualities on which to test the proburative members. Ther
first of lhwse sociability. detimed fur sur furpose to mean the art of mixing Pasily and making bastiog friemals (bublicespiritedness). These cond, pras locability, the ability to put theory on a Working hasis and to apply it in the sulation of practical problems.

These thres qualitios, rightly at plede, seloct for Sigmat Tall the best to he had in a real. all-around, follow. Bngilletr.

Theta chapter was founded at the Iniversity of lllmois in February 1414. It is the custom of every chapter of Sigma Tau th recognize earh year that sophomore who made the lighest grades during his first year of engineering work. On December \&t. 1425: Theta chapter awarded the Sigma Tan Scholarship Nedal to Peter V. Jensen for an average of 4.93 in Civil Engineering.

Membership is from among juniors and seniors only selected in the upper onethird of their rlass with a minimmm average of 3.4 . Our new men of this year are:

> Hoxoksky
> J. A. Goft
> Actores
H. E. Schlenz R. T. Reichel
J. P'. Breen
b. 13. MeJvin

1I. (i. Moore
J. J. Koland
C. 1. Thompson

Jos. Pertl
N. A. Kleerup

I'. (. Smith
H. W. Lothater
k. P. Wells
11. A. Vagtborg
('. F. Hendricks
O. T P'arker
(.) A. Butts
J. A. Volkmann
M. .1. Crosett V. Ciunloch I. J. Thoma

The news and attivities of the pres*nt eighteen chapters of Sigma Tau are published in a quarterly magazine. the peramid, a national publieation edited by the Grand council.

Sigmat Tan encourages and welcomes active interest from the honorary and faculty brothers in the running of rhapter business.

Mu San

Hu san is the protessional Municipall and sanitary engineering frater. nity. It was organized in f911 at the I'niversity of lltinois for the purpose of creating a closer relationship bef ween students and between students and facultr of the department. The organization also bints floser the friendships of post college bife. Thas was evillenced by the extremely surressful banquet held in chicago during the inspection trip period being attended by many of the alumni of the department. Even though the depart. ment is small the fraternity chooses farerully.

Leadership is measured by service.
For nearly a century and a quarter, the du Pont name has signified leadership in explosives manufacture on this continent.
Paralleling the rapid growth of American industry, the du Pont Company has developed explosives to mcet new needs and solve new problems that industry might be served.
Practical and authoritative information on modern explosives is embodied in the "Blasters'Handbook"-now usedby instructors and students in many leading technical institutions throughout the country. A copy will be sent free upon request.
E. I. DU PONT DE NEMOURS \& CO., Inc.

Explosues Deparment WILMINGTON, DELAWARE

']he oldest living graduate of lha

 ag+d 91. For many
 Sar's he lived in Sbeatish, south bakulat, where he was at city romgi 110\&r, but his beallo failing. his bhoughts furned back to the days o) his boyhood, so ha. returned to liamilton to live with his sister. He had never married.

Mr. Gates was iwier as old as tho ayerage student when he first came to the Crniversity in 1879 , he was only tour years younger than Regent Prabody. He had picked up what education he possessed in home study, in the public schools, and in two yrars at linox College. At lllinoms attre a year in the ofd acadrmy, hw was enrolled in ("ivil Fngineqring and gradnated with thto class of "as. There years later he receited the degre of c.e. On the ving Hlinois he took hu mineral surveying among the silver mines of south bakoia, which was to be his lito work. 17. Wats 1 . S deputy mineral surveyor and state athe founty survesor of foltte colloly Then he berame city thginter of the ranyon lown of speatr ish, suoblh Dakota, a pesition her hevel af 10 within a few yenars of his death. fly took actixt lati in Masonry at spedrtish and at headwood, having achervent the 32 m degree de had tableded extensively, both in this (ounntry and abroad
11.. continued his fnginereing stuatios by entolling in the Internat tional correspondence schools. Ht atways rebained great affection for the Iniversity of lllimois, though he setdom it "ror canle bark to the re-
unions. While a student here he lived at the old Page Club on Wright strent. Ilta was something of a rechnse taking no part in student activities, and attending diligently to his studies.

Mr. Gates was born in Cass comety, Michisan, November 17, 1834: his fatlier canm from connecticut and his mother from Pennsylvania. They settled at Montbello, Illinois, where his father had the first mill.

WV. L. Abott, e.t. 'St was initiated into Pi Tau Sigma, honorary mechanical rngineering ifaternity, at the national convention of that organization on the campus recently. While on the campus Nir Abbot presided at a meeting of the state Public Utility Restarch Committer of which he is chairman. He is also chief engineer of the Commonwealth Edison Company of Chicago.
A. W. Gates, cer. '92, is president of the liates Fire Clay Company of Calchester, hlimois, and lives in Monmonth, lllinois. The firm specializes in dile for flues, but also produces considerable potiery.

Nfred Fellhoimer, a.t' '95, is an architect and engineer in New York ('ity.
H. ('. Este, ref. 96 , is office angineer in the office of the chief engineer at the Chicago and North Wゃstern Railway.
G. Boyd, ce. '46, is etlitor of the rugnuatring department of the Railway review.
J. F. Sheets, c.e., 'll, chitet of the lllinois state Highways Department, reeently addressed the student branch of the 1 . S. C. E. on the location of hatd roads.
('. 11. Shook, c.e., '15, is a member of the firm of Shook and Belliter, gen--ral contractors, of Wayton, Ohio
11. W' Orr, e.e., 'li, is an electrical froginver at Ft. Thomas, Kentucky.
J. R. Fletemryer, e.e, '16, is presidenl of the Frank N Coopwr Company, gerneral contractors, of Eetroit, Michigan.

A. L. Pllinisthy

The American lnstitute of Architects recently held a memorial meeting in honor of A . L. Pillsbury, arch. ' 95 , who was killed in an antomobile accident on Oetober 2t. An address. "pillsburg-the Man and Architect," was delivered by Inavid Felmley, president of the Illimois state Normal School. Rextord Newcomb, '11 and J. W. Royer ' 95 wert also on the program.
C. J. Bowsen, r.e., '20, has opented an ottice as tramsportation engineer in New York City.
H. H. Reeves, Pe., '10, is merchandize representative in Japan for the International General Electric Company.
M. Stem, m. and s.e., '03, died rocently in Chicago after a meriod of illness. He was working for the Sanitary District of Chicago and had written a text on the operation of rapid sand filter plants. He was a member of Sigma Xi and was graduated from the University with pretiminary honors.
V. L. Glover', c.e., '20, is engineer of materials for the lllimois State Highway Commission. He was formerly a road engineer.
(Continued on Patle IVi)

PREPARE FOR YOUR JOB

The Explosives Engineer Is Devoted to the Technology of Drilling, Blasting, Loading and Transportation of Coal, Ore and Stone

The Explosives Engineer, now in its fourth year, is taking a higher place every month in the industrial press of the country and of the world. Its circulation is spreading wherever there is mining, quarrying, or construction. Each issue contains practical, usable information for the man who expects to take his place in the explosives consuming industry.

In February, for instance, there is an authoritative article on blasting in the construction of the Philadelphia subway. Another article describes a new seismograph which, with explosives, is used in determining geological structures. From his twenty-four years of explosives' experience around mines, the
author of "Advice to Coal Blasters" has compiled some practical blasting information. "Road Building Above the Clouds" tells why and how Continental Divide highways are drilled without the aid of modern equipment. There is a portrait and a biography of S. A. Taylor, the next president of the American Institute of Mining and Metallurgical Engineers. And, of course, a Blaster Bill cartoon and the usual bibliography of all articles on drilling and blasting and a list of new patents, digested from the technical press of the world. You can see it in the college library, but you will want a complete file of your own. Send in your subscription on the coupon.

THE EXPLOSIVES ENGINEER

WILMINGTON

NEW OFFER—LESS THAN THREE CENTS A MONTH

THE EXPLOSIVES ENGINEER, 941 Delaware Trust Bldg., Wilmington, Delaware.

SUBSCRIPTION RATES
United States-3 yrs. - $\$ 1.00$ yr. 50 c
Other Countries 3 yrs. - $2.00 \quad 1 \mathrm{yr} . \quad \$ 1.00$

I am enclosing $\$ 1.00$ for a 3 years' subscription to The Explosives Engineer, to begin with the current issue, if it is not already exhausted. (This rate applics only to the United States.)

Name.	
College	
Course.	Class
City	State

\square
Please send me entry applicarion and rules of the National Safery Competition for The Explosives Engineer Trophy, conducted under the auspices of the Lnited States Bureau of Mines. Check if desired.

We Slan Ourselves

First (roed: "Whew! my laundry bill last wetk amounter to $\$ 4.97 .{ }^{\circ}$
serond Co-ed: "rimarious, that's five limtes as much as mine was."

First ('o-rd: "Yis, but you don't no With all Engintar."

Full ITress

(ooed (answering the door bell): "Time for the danere"

Fithoh (beholding an evening gown for (har first timn : "Ves, put on your dress and comp on."

Sou can't kiss a girl unexpertedly. The best you can do is to kiss hey soontry than she fapected.

Wasting Time

Night Watchman, on the south (ampus: "Young man, are you going to kiss that girl?"

110 (straightening ap): "No, sir."
Night IVatchman: "Here then, hold my lantern."

The aretage cored has a difficult timb trying to decide the question of Whether it is wise to be foolish, or foolish to be wise
"bidn't know you had met Harry befora."
"Oh sus, we slept togethert in acolb"gr."
"haommates?"
"Nop. "lassmatws."
Littl" Willit: "Mother where do 1h+y kreet the eross.ryed beat in sunday schuol?"

Mother: "What in the world do sou mean?"
litll. Willit: "Why, we'r" always singing about the holy cross l'd beat:"

First Maid: "How did you like working for that wollege protessor?"

Stwond Aaid: "Aw, it was a rot ten job. He was all the time quarreling with his wile, and they kept me busy running betwewn the keyhole and the dictionaty."-Punch Bowl.
"What's the last thing the doctor does when he operates on your lather?"
"loll bite"; what is it?"
"sew: your old man."

Yea Chieago!

(suggested yells for Chicago:)
Fiseball! Feethall: svimming in the tanks?
Veve got money, but fe keep it in the banks.
Collerh! Collech! ()i, ()i.
Hooray. Hurray! Ye von! Ve von!
Vat? VH lost?
Hey cheated:
Sorority sister: "Alice has bem wwaring a strange pxpression lately, hasn't she?"

Ditto: "Yes, she's trying to resemble her photograph for the Illio."

Artist: "How do you like my bicture of an Arabian donkey?"'
. Admirer: "Wonderful! You put so much of your self jnto it."
-Virginia Reel

A Motto

Latr to bed and nally to rise, makes the college boy sleepy but wise.
-Centre Colonel

Too Fast

\because Is Barbaya tast?".
"Fast? Why, her mother won't wen let har accompany a young man on the piano maless she is well chap "routd."

A Sure Road To Wealth

An Enginetr started as poor as the proverbial church mouse $2 t$ years ago. He has now retired with a fortune of s.50. $6+10.010$.

This money was acquired through conomy. conscientious effort to give tull value, indomitable ferseverpace. and the death of an uncle, whe le!t the contractor $\$ 49,490.50$.
lnquisitiye old gentleman: "And what are you digging for my good man?"

Digger": "Money."
"You don't say so! And when do you "xpect to find it?"
"saturday might!"

She's Done Gone

A salesman bringing his bride south on their hontymoon, visited a hotel where he boasted of the fine honey:
"sambo," he asked the colored waitet. "Where's my honey?"
"Mh don't know, Boss," replied sambo, eyeing the lady cautiously. "She don't wak here no mo"."
"Is he a nice boy?"
"No, dear, l think you'll like him."

It Will Happen

He took her hand in his and gazed proudly at the diamond engagement ring he had placed on her finger three hays before.
"Did your friends admite it?" he inquired temilerly.
"Thry did more than that," she re. plied coldly. "Two of them recog. nized it."

Mique: "I bear your roommatt has a baby saxaphone."

Tque: "Yeh, and it'll be an orphan suon."

Water－Supply for Flagstaff
（C＇ontimuet from Pate 11：）
much too small to deliver the reflitiod amount of Water from the supply main．

Tor obviate these dithiculades a 1 finch cast imon pipe line，biatram 1．has bern latid from the reser voil to town（1）replace the six－inch and ofyht inch limes which are leejne taken up and rechamed．The pipe reclaimed from the flow line will he relad in the distribution symen for renforcing the pressure in the parts of town where most neaded．

Artor scaming the hisfory of the Flatestatif water supply，the project appears to be whe of sumble eot ：bmir developmont as well as one fussessing migue fererds in water supply problems．Insuranere com panies have promised a redurtion of tis prevent in batos how existing in most patte of the lown when propmad improvemants are compheted．In andition． the suphly being brought to the hase patirely by gravity and requiring no treamment for purifisation， opreating expernses ate megligithe and interest an the investment will be more dan combertalamed by the sate of water ter commereial consumars．

Frontier Electrical Development （continued from Page 1 ？＇$)$

frontier work on new problems when answers and but in texthooks．The industry is not rat and dried．hat a matully balanced system liable tore
 develognal thenery．It is an alnsive industry slowly urvatilizing into whal may berome mitimatr form． The exterme ilexibility of electrieal prower is hardly realized．but has throughent been the hasis of this magnitiont pregress．

 imales of hix dathly．
 ＂口以：＂

は1：E W＂11\％\％10．

 wreks，she bexath signing all her lotteres bome． ＂．Inssic：a．＂

Brothrr Tom repled as follows：＂dear dessidea．

 mathiniea，but he dosest know whether to get is

Still in Service After 250 Years

AHUNDRED years before Napo． leon was born，before his wars scourged Europe，before the French Revolution raged，this Cast Iron Pipe was laid，in the reign of Louis XIV，to supply water to the fountains of Ver－ sailles．

To the patient researches of M．Blanc， Chief Inspector of the Water Service of Versailles and Marly，into dust－ covered volumes in the garrets of the Palace of Versailles，we owe the proof of its antiquity．

A report from the Director of the Water Service，M．Blanc＇s chief，says： ＂From their actual state of preserva－ tion，which is excellent，excepting the assembly iron bolts，these conduits seem to be able to furnish service for a very considerable time longer．＂

The high resistance of this Cast Iron Pipe to corrosion may be judged from the clearness of the fine＂parting line＂ produced by the old horizontal method of casting．

The Cast Iron Pipe Publicity Bureau
Peoples Gas Building，Chicago

CAST＇IRON PIPE

Steel Sheets that Resist Rust!

The destructive enemy of sheet metal is rust. It is successfully combated by the use of protective coatings, or by scientific alloying to resist corrosion. Well made steel alloyed with Coppergives maximum endurance. Insist upon

KEYSTONE Rust-Resisting Copper Steel

Black and Galvanized

Keystone Copper Steel gives superior service for roofing, siding, gutters, spouting, culverts, flumes, tanks, and all uses to which sheet metal is adapted - above or below the ground. Our booklet Facts tells you why. We manufacture American Bessemer, American Open Hearth, and Keystone Copper Steel Sheets and Tin Plates.

Black Sheets for all purposes
Keystone Copper Steel Sheets
Apollo Best Bloom Galvanized Sheets Apollo-Keystone Galvanized Shects Culvert, Flume, and Tank Stock Formed Roofing and Siding Products Automobile Sheets, Electrical Sheets Deep Drawing and Stamping Stock Tin and Terne Plates, Black Plate, Etc.

Our Sheet and Tin Mill Products represent the highest standards of quality, and are particularly suited to the requirements of the mining, engineering, and general constructionfields. Soldhy leadindmetal merchants Write nearest District Office.

American Sheet and Tin Plate Company
 General Offices: Frick Building, Pittsburgh, Pa,

The Cheat-Haven Dam

will he lewated an the comside of the minding on the down stream side ol the dam.
'The station will contain fons ls, 1000 horse powno thrthines eath directly combered to generators with a combined eapacity of about $\overline{3} 1,000$ kilowats. The turbines will rewhe at tha rate of 1 a: ; reohlations
 ol Water.
(6mpletion of the project is assmed for sep bember of this ratr. This hydrodevelomment will
 Wise Virginial and will he intercomected by high boltage steed tower transmission lines with the Rivestille, West Virginial Power station, of the

samderson and Porter are the engineers and (contartors amb the witer is indebfed for them for mumb of the material used in this artiche.
FOMT NOLES
U. S i_{i} S. Water Survey Butletin No. 4 th.

I: S. Weather Bureau I limatological Data 3910

Begss' Apparatus
 (rontimued from Payr 1.3:)

of the instrmments there is bittle to be questioned berather they are rogerel and may be easily reatio hrated at ally time. The persomal alement ean hatedly affer the readings molese the operator is very rateless. Temberathere and moisture changes will atfeed the radings muly in case there is an masmal lipse of time berwern the two hatres of ome reading.

It may be of smme interest for kow that bery
 by takins matings on a mondel and by andying the
 in Fig. \because. Beges reports that the ralues of H fomma by the two methods dilter les sor for a verticall loadd at the center lime hy l.t'r for a horizontal laded on a collom, and by 0.5% for the combined loading. For a mondel of a fixed ended arel with a comern trated load near the erown the differences in the momeltat and thrust at suringing as detemined beg the two methods were $: \frac{7}{6}$, and 1%, respertively. of conder such considerations do mot tell has how Closely the computed stresses are to the real stresses that will exist in the strmothe after apetion.

While not a particularly speedy method of analysis, the begres apmaths offers several adranthases where it is desired to ohtain a complete set of jabuene limes. Tt allows at routine to be established in an office. it dows net requite technically frained men for its operation, and the work can be maily checked. It inko offers an interesting means of in(Contimued om Page 1:8s)

Brothers in the Jenkins fraternity

THE small inch-and-a-quarter bronze globe valve and the large iron body gate valveboth are Jenkins. Jenkins Valves range in size from eighth-inch to valves so large that a man could walk through them.
There are Jenkins Valves for practically every requirement, for controlling the flow of water, oil, gas, air and other fluids-in power plant, plumbing, heating, fire protection and other service.
These valves are built to do their jobs and do them well-designed, made, tested and guaranteed for the maximum service, not merely the average.

You can tell a member of the Jenkins fraternity by the Jenkins "Diamond" mark cast on the body of the valve.
 the type of buldong in which
you may be interested

SPLICING MATERIALS Make Dependable Joints

OKONITE fape is an unvulcanized rubber compound in tape form for insulating cable splices or joints. Joints properly made with OKONITE are impervious to moisture and are as strong as or stronger electrically and mechanically than the insulated wire itself.
MANSON tape is a true friction tape having adhesive and weathering qualities far superior to any other commercial tape.
DUNDEE " A "' is a high quality friction tape excelled only by MANSON.
DUNDEE " B " is a good medium grade friction tape at a competitive price.

> Send for booklet "Splices and Tapes"

The Okonite Company
The Okonite-Callender Cable Co., Inc. Factories. PASSA1C.N. J.

PATERSCN゙.N.J
Sales Offices: New York, Chicagn. Pittsburgh. St. Louis,
Atlanta, Birmingbam, San Francisco, Los Angeles

Pettingell-Andrews Co., Boston. Mass.
Novelty Electric Co. Philadelphia Pa. F. D. Lawrence Elec. C'o., Cincinnati, O.

Canadian Representatives: Engineering Materials Lid.. Montrea Cuban Represcolatives: Victor G. MendozaCo. I Iavana

Spring Suits

We have
COLIEEE CUTS
and
COLLEGE FABRICS

Zimmermann

When you shave you tilt the razor so that the blade will shear off the hairs. It cuts a great deal more smoothly that way than if you drew it straight down on your beard.

The Brown \& Sharpe engineers built this easier cutting, shearing principle into a milling cutter by "tilting" the cutting edges of the teeth, with the result that they shear easily into the metal.

Note the alternate spiral angles of the "staggered" teeth and their sub.
stantial backing. stanezal backing.

To further improve the efficiency of the cutter they alternated this "tilt" or spiral angle and "staggered" the teeth. Also, the teeth were well undercut and furnished with a rugged backing. The result is a cutter with plenty of chip clearance that will take easily and rapidly deeper cuts, especially in steel.

This cutter is called the Brown \& Sharpe Staggered Tooth Side Milling Cutter. It will remove a large amount of metal without de-

Deep cuts in stecl like the abote are conclusice evidence of the supenority of Broun er Sharpe Staggered Tooth Cutter Design. structive vibration and chatter, the enemies of high production milling.

There is considerable information about cutters and their designin theNew No. 30 Small Tool Catalog. A copy will be sent free at your request.

BROWN \& SHARPE MFG. CO.

 PROVIDENCE, R.I., U.S.A.
BRINGING MORE DAYLIGHT INTO INDUSTRIAL BUILDINGS.

Dr. George M. Price, writing on "The Importance of Light in Factories," in "The Modern Factory," states: "Light is an essential working condition in all industrial establishments, and is also of paramount influence in the preservation of the health of the workers. There is no condition within industrial establishments to which so little attention is given as proper lighting and illumination. Especially is this the case in many of the factories in the United States. A prominent investigator, who had extensive opportunities to make observations of industrial establishments in Europe as well as in America, states: "I have seen so many mills and other works miserably lighted, that bad light is the most conspicuous and general defect of American factory premises."
"My own investigations for the New York State Factory Commission support this view. In these investigations it was found that 36.7% of the laundries inspected, 49.2% of the candy factories, 48.4% of the printing places, 50% of the chemical establishments, were inadequately lighted. There was hardly a trade investigated without finding a large number of inadequately lighted establishments."

Inadequate and defective lignting of industrial buildings is not confined to the establishments in New York State alone. The same conditions prevail in most sections of the country.

Such conditions as mentioned above are entirely opposed to the laws of health, sanitation and efficiency. Wherever poor lighting conditions prevail, there must be a corresponding loss of efficiency and output both in quality and in quantity. American industry is not using nearly enough daylight and sunlight in its buildings. Every endeavor should be made to use as much as possible of daylight for lighting purposes. To obtain this it is of course necessary that the rays of daylight and sunlight are permitted to enter the interior of the buildings as freely as possible, with the important modification that the direct rays of the sun must be properly diffused to prevent glare and eyestrain. A glass especially made for this purpose is known as Factrolite, and is recommended for the windows of industrial plants. Windows should be kept clean if the maximum amount of daylight is to pass through the glass, but the effort will be well repaid by the benefits secured.

In the presence of poor lighting, we cannot expect men to work with the same enthusiasm as when a well lighted working place has been provided. The physical surroundings have a deep effect upon the sentiments of the employes, and where bad working conditions are allowed to prevail, there is invariably a lessening of morale and satisfaction created thereby. Neglecting to utilize what nature has so bounteously provided, daylight, and which is so essential toward industrial efficiency, we have an instance of wastefulness, but now that the importance of good lighting is becoming recognized, undoubtedly more attention will be given by progressive industrial employers to furnishing the means which are essential for their workers to secure and maintain the efficiency, which counts for so much in the success of any industrial concern in this competitive age.

If you are interested in the distribution of light through Factrolite, we will send you a copy of Laboratory Report-"Factrolited."

MISSISSIPPI WIRE GLASS CO.,
220 Fifth Avenue,
St. Louis.
New York.
Chicago.

Standardized Concrete

This illustration of the Kochring escapement type batch meter shows the method by which the discharge chute is automatically locked as soon as the charge enters the drum. The discharge chute cannot be moved until the regulatedmixing time has elapsed, when it automatically releases the dis. charge lever and signals the fact with a bell. The meter also registers each batch that enters the drum.

> Patent Nos.
$1,321,460 ; 1,282,558,1,338,76 \mathbf{1}$.

THE Koehring Company long ago foresaw the value of standardizing concrete, foresaw and provided for it before the tremendous volume used in constructing roads and permanent structures made standardized concrete a vital necessity.
One of the most important means of insuring a uniform strength and quality of concrete is the Koehring Batch Meter, -a positive means for timing each batch and measuring the thoroughness of mix. This device, upon being set for the specified mixing period, automatically locks the discharge chute as soon as the drum receives the materials; the discharge chute cannot then be operated until the full specified mixing time has elapsed.
Every state highway department requires, in its specifications for concrete highway construction, the use of batch meters. This

Koehring development is an integral unit on practically every paving mixer today,-a Koehring contribution to the industry. The Koehring mixer, with the Koehring batch meter, Koehring five action re-mix ing principle, and the Koehring automatic water measuring tank, provides the most positive mechanical means yet developed for producing standardized concrete of unvarying uniformity.

KOEHRING COMPANY
PAVERS. MIXERS - GASOLINE SHOVELS. CRANES. DRAGLINES MILWAUKEE, WISCONSIN

Nammi Notes

(ontinuct frome latle lifis)
 fisine expert and anthom of several widely riteulated adrertising booklets. formmitted suicide last June by hutt ines himself off a somfoot diff at belk Roork into the Willamethe river mear Portand. Oregon, so we learn from the "Palm" of dhat Tan ommea. Ho" was missing lone 3, and his body was found two days later in the bivers. It had bern in a highly nervous condition for several werks. 1H, was strongly temperammat, with imati nation and vivid boyaltiess scores ol hall burned cigarattes and a lither of lorn betters on the elift indicate that the seme remsiderable time theres. where his atomobhile coat amd hat were found.

Berm February 11, 1579. at Elburn. Hllmois, he attonded the Elgin atad $+m y$ before coming to the lniversity. where he was a member of Alpha Tian Ombga, Sigma Xi. Phi Pi Epsilon and was manager of the Illio. Nter grad wation he was with bolese d sheprard Company, Chicago, for a yoar, then sernetary and later atssiatant onginter of the state highway rommission. springfordd. In 1907 he held an wi-
forial position on the Enginotring Record, and mext year was semetary of thr New Vork state highway rommission. In 190s ho (ook up farming and sterd protucing and mowed 10 Oregon, but in 1910 roturncel lo EIbum, lllinois, whore be was a member of the Ebburn Coal and Lamber Company. In 1911 hes seturned to Mtedtord, Oremon, and was commertod With the Northwest Finamee $l^{\prime} o m$ many of Portland until a year ago, when he resigned to open an advertising otlice.

Benjamin Bruce shaw, fe., '11, newIy appointed contracting engineer with the Robetw de Shaffer Company, (licagg, ol which Warren R. Roberts, (.,., 'ss, is president and E. E. Bartott, c.4., '93. vice president. Shaw has been mixed up pretly generally in railroad work ever since his graduafion, his last comection having heen as rhiel engineer of the cuba Rail. road on the island of Cuba. His big (o) thele was the building in record time of a 61 mile branch line from Camaguey 10 Santa Cruz del Sur on the south coast. M1. Shaw told entwtainingly in a jerent issule of the "Railway Age" of his adrentures in building this road. Berore going to Cuba in 1922, shaw had heen rodman, assistant engineer, and division engi-
nerer of the Arkansas-Louisiana division of the Chicago, Rock Istand \& Paetife. lfo was born in 1886 at Canfon, lllinois.
d. E. Plelfer, m.e., 96, has offices as a consulting enginewr in Chicago.
J. F. Kable, m.e., '99, is chicf engineer for the Pacifie Iron Works of Portland, Oregon He taught enginewing drawing at the lniversity from 1×39 to 1901.
C. L. Eddy, r.e., '00, professor of rallway engineering at Cleveland, ohio, will probably be chosen president of the athletic association there. lle has been chaimman of the laculty committer on athletics for several years.
W. P. lreland, c.e., 'i63, is a civil engineer in Chicago.
S. Thompson, min.e., '01, is chiel' engineer for the llinois Zine Comprany of Peru, filinois. He makes his home in La Salle.
C. L. Comp. c.e., ' 05 , is engineer of construction for the Anthracite Bridge Company of Scranton, Pennsylvania.
E. R. Troche, m.e., ' 25 , is in refinery design work with the Standard Oil Company at Whiting, Indiana. He says that the engineering department at the Whiting plant is about 80 per cent fllini.

The Vilter Manufacturing Co.

1020 Clinton St., Milwaukee, Wis.

Ice Making and Refrigerating Machinery Corliss and Poppet Valve Engines

Branch offices in all principal cities
If interested write for bulletins

Some day YOU future engineers will be the men to be praised or blamed

ONE of the greatest nuisances in city and country life today is the incessant blocking of streets and highways for repairs and repaving. You hate detours just as much as the next man-and it won't be long before you can do a big job toward minimizing them.

In the meantime, whenever you are confronted by a "Road Closed'’ sign, make a mental note of why it is there. You'll soon be decidedly amazed to discover how rarely a brick-paved road requires a detour.

When the choice of pavements falls to you, keep that fact in mind - do your part to give us detourless roads.

A Book for Road Scholars If "The Construction of Vitrified Brick Pavements" is not already a textbook in your courses, let us send you a personal copy. It is an accurate and authoritative handbook of 92 pages which you will want to preserve for reference after graduation.

Long Malts Rich Malts

and that's not all
THE WRIGHT SWEET SHOP

Onr lrinks are Cold;
Will hervice is llot:

Begos' Apparatus
 (contimued fiom l'affe l.in)

bextigting very romplex structures. The writer likes: He following statement made by tr. R. Richart in his dismension of Begges p:ipere.
"This method, in showing the atetalal deformat tion of a miniathor stometure appeak diacety to the physical semse, and emables one to vismalize the atem of the stloteture."

```
*Proctodings .tm. Concrete Institute. 1922. p. }58
```


Two men, P and $\mathrm{Q}_{\text {, are seated at a fomp place }}$ table, in at cafe, (a driaking twice ats much as I'. It follows that f s path will deviate more from a stralight lime than J's. Why?

St a given moment, at one extremity of the room, Cosine, the dancer, appeats. She rotates on her axis and perolves about the room, dismbing as she geos. As she removes rach parenthesis, she exchanges sigus with the men located at difterent points in her locus. With each shecessibe prohtion she ap. proadeses nearer and nearer to the table where 1 ' and (a we pared. P is in his normal form, but \mathbb{C} has an moknown expression on his face. Suddenly Cosine photing all the time, reathes the maximmen point in her dance, remains stationary a moment and then disappears. O rises and traterses the same path, but with more thequal stope, atod comes to her dressing room. He knows (u) times and then projects himself into the room.

Anotha mall whom we will call Y^{-}is standing motionless at the point of intersection between Cosimes glance and (c's. He has a ravolver in his hand whose angle is such that if the trigser were pressed, the projectile would interept 0 .
"h," mutters (9. "What's this man's function?"
"He is my husband," crime Cosime "(ia'"
"1," mutters ! asain, ". 1 retative arror!" Bnt instead of going la moves forward toward cosine one mit.

It is left as an rxemise for the pmpil to tinish.
-The Transit
"Whatis the matter, little boy ?"
"Ma's golle and drowned all the kittens."
"brall mé! That"s tow had."
"Yop, she-boothoo-promised me I conld do it."

Two students were laboring in the fombry. The instruefor went up to obe of them and said: "Lawk here you! your partheres cutting form times as murh s:and :1s yon ato."
"Well," rame back the student, "I on't bame me. for told him about it a half a down times abrady."

Finish, Aceuracy and Balance are the three carelinal features of dease "'hicago" Drawiner Instruments. Exery process known the the pating art is used 10 insure the finest nickle finish ohtanable Carefnlly gauged dies duplicate each part to an exact size. so thoroughly are the standarels maintainesl. that any part of any instrument is interchangeable with the like part of any like instrument. Months or vears may intervene between the time of manafiare ture but each part will be a duplicate of every ahber one like it.

Balanee-that important featire which makes rapid accurate work pusible, has heen secomed in Pease "Chicago" Drawing Instruments by seientitis Gesigning and cerreet promemime of woight.

Our neu Drauing Inslrument Catuloy trlls the complete story-just ask for Cataloy I-3l

The C. F. Pease Company
831 No. Framblin st., (hisaso, 111.

Toilet Goods

SPAULDING'S DRUG STORE

Green and Sixth Sireets

Magazines Imported Perfumes
Prescriptions

18hte I'tultus Eiquipment 1) mivine Instrabebls 1)rawine Table
 Dratt-meth - (torla Trateine I'aper and (loth l:he l'rint Prame F-aliner Cathinats. Drathine limem -uplias - Hirbesuré Itatrumedt-

depends to a large extent on your books and supplies

We always carry a sood stoch of the best materials for engincering students. Notrash or untried brands -just the good standard mahes. guaramteed the best.

THE CO-(OP

Rhoads Tannate Leather Belting

THE above picture shows a cone lrive in a large paper mill with an S-inch heavy double Tannate Belt. lt runs the main shatt and lower cone pulley of stark drive on a Fourdrinier machine situated on the floor below.

In October, 1!924, this paper company gave us an order for an 18inch heavy double Watershed Tannate Belt fifty feet long. Since then they have installed sixteen other Tannate belts. Two were 6 -inch light doubles, the others were Sinch and 10 -inch belts, all regular or heavy cloubles.

They find that it pays to use Tannate. It saves trouble and in(ruases output.

J. E. RHOADS \& SONS
lhuladelphia, 35 N . Sixth St.

[^7]
Elevated Curves

(comtinurd from Pa!fe İ\&)
 juint.

The sterel conter strip was set hy masmring from one of the outside forms a distanere enflat to S feet plus one hatf the widening at that point: a simple problem, hut ond which could bat trusted to Ho one whon I hallo jet fomm on shell a joh. Dalf : distance in feet amb inches, added to ! feet (phas a correction for a broken tapren mant tronble maless thes inspector diat it.

The consistency of the conerete is the most ime portant single item alfecting the labor involved in such a curve and the quality of the finished joh. The mix shombl be as dry as possible athe still be workable. The consistency should be ats miform as pussible as one wet batch will calase matold trouble with a steep 'ross-stope. The mixer operator has a most important part to play, and a diflicult one,
 gate varries.

To ohtain a ross seetion even appoximating that required, means continuons and consciontions effort on the parl of the finishers. The concrete must the draged ul from the low side by trats where shmpp cocers. Where the rate of shereremevation is apreciable, comorete must be cartied bark and phaced against the uper form-line. fare must be baten to remow the ridge at the center of the pavement 'allsed by slmop against the equter steel. UnJess considerable rare is exerefised. the lower half of the pavement will presint a concave upperesmface instead of ome which is comes.

Haring the fatsi stammer, the paving ouffit with which 1 worked used a muel botter method of filling the widened portion of the emre than that al "arrying back andere in buckets. On this job, the mixer phated concreto for the full width of the pavement. This was moll mome rapid than the other metlow and, consequently, a bedter bond was serured between the Is foot pertion and the wideming. Men with shoveds carried back what little concere was needed to fill the spare left when the temporaty forms wer ramosed. On one chro having a sherer Abration of dure fomells inch pere foot, it was necessare to place a plank trark alout \& inches high for fhe lower tread of the mixer. This was made necessaly hey the lose of material from the lower side of the skip as it was raised, and alsor thy the mixer "peratores inability to swing the boom up the slope.

As you drive oner one of thanos spiraled smere elerated abres. do not eriticize too severely the riding qualitios of the linish of the slath. The dfifi rultias met in the construction of sum a eme exfuain and makre exensable slight superficial fants.
－CRANE VALVES

Your future and ours

Crane recognizes that the fu－ ture of engineering depends upon you engineering students of today．Everywhere Crane men desire to keep in constant touch with your new ideas and fresh viewpoints．The manu－ facturer and the engineer must always march together，and the sooner the acquaintance be－ gins the swifter will be the progress of both．You will be cordially welcomed at the Crane Exhibit Rooms，located in 103 cities in the United States， where the latest developments in piping materials are on dis－ play．For mutual information， Crane men are glad to discuss the technical points of valves fittings and specialties．

CRANE

Power Generating and Distribution Equipment

[^8]ALLIS－CHALMERS MANUFACTURINGCO．
MILWAUKEE，wis．U．S．A．
 was when the lerof．called the pollo．＂

＂Shers veryphotometphic．＂
＂hatally＂＂

 ron ran’1kiss me．＂

 1hs raptain of the bam．＂
seromal：＂Yes：．＂
＂．s．re the pifu in his month？＂
＂l\％），hulı．＂
＂s．e．1he smoke＂oming ont：lis lit．＂
＂ぶいre．＂
＂W゚ロI，lar did that witl my milloll．＂
－R：

[^9]

The world's largest producer of electric furnace steel is the Timken Roller Bearing Company. A complete steel mill is part of the marvelously self-contained Timken Bearing plant.
Timken Tapered Roller Bearings are produced on a scale so large, because of their large importance throughout manufacture, construction, mining, agriculture, transportation, and every field in which machinery is used.
Timken Bearings are being designed into every sort of machinery to eliminate excess friction, to save labor, power and lubricant, to increase quantity and quality of output, and to lengthen machine life.
These economies are so important to all the industries that 132,000 Timken Bearings are being added daily to the $150,000,000$ Timkens already successfully applied. Each day - each year - Timken Bearings become of still greater interest to all concerned with machinery. As a potential engineer you have a direct interest in obtaining the valuable little book on Timken Bearings. It will be sent free on request.
THE TIMKEN ROLLER BEARING CO., CANTON. OHIO

THE

 PUBLISHED QUARTERLY BY THE STUDENTS OF THE COLLEGE OF ENGINEERING UNIVERSITY of ILLINOIS

May 1926

 OUNDED • EIGHTEEN • HUNDRED , AND E EIGHTY FIVE TOL. XXXVIII •PRICE•3O•CENTS• NUMBER IV

STockHAM B

 FITTINGS

 FITTINGS} Quality is demonstrated by their performance

Time Saved on the Job Means Money

$\mathrm{H}_{\text {with }}^{\text {AVE you ever figured out how much time is lost }}$ go on and pull up tight easily because the threads are clean-cut and even, the faces chamfered and the alignment absolutely true. Every one fits. That's why they save time - and time means money.

StOCKHAM
 PIPE \& FITTINGS COMPANY
 D. W. STOCKHAM '21 Secretary R. E. RISELEY 20 Asst. Fdry. Supt.

BIRMINGHAM, ALABAMA

The TECHNOGRAPH
 LNIVERSATY OF ILLINOAS

Member of the Enginecriny Colleme Mauazines Associated

Contents for May

Coxstructuon LNuハitaR1Nij，1－2

THE ELLMENT I1．1．NXLM 175
H C Lamsur？

ILLIN：ENGINLTRS 18＋

［：DITORIALS I 5 is
DEPARTMLN1ALNU1」 IUN
COLLEGE NOLL $\quad 143$
1．RATIRNITY A HINH $\quad 145$

ALじNIN Noltン 148
ONCl．OUtRS $\quad 211+$

Th: duknio Offict. Ph himivi

THE TECHNOGRAPH

The Jackson Office Building

 being, in a sense, the highest bulding of its type "ast of the Mississigpi, siner its hase rests high in
 level. The buiding was designed ly lamald farene an arehtere of Asherille, and the strmethral stere frame was desiguth, fabriated, amd erected by a

 combtry late commented lavoratoly on this builaties as an example of the alaption of Gothie Arwitere the to the dexign of oftice buidings of shember pro portiont, ame it is almost mique in that its annstrotion is fireroof, there being wown or other inflamable matrrial in the whime billing. The exforme walls are hailt of fare lirick, forat entil, amd bollow tile, and the windows hater steme sats. The
 ennerete with metal lath and juists, and the par
titions are comstrumed with stmds of pressed sterd Chamels athl metal lath. All of the interion limish work such as stairs, doors, amb mombling is also of steel construction. A photograph ol an arrhitece fural rembering ol the completed structure is slown on fromtespioce. In it the ficeate and the gemeral vew of the builalige ine fathfully shown. Attention is called to the fatel that the bulating is some What wider lelow the temth flower

The writer was rimploged by the Asheville Nap

 roginerer and it was during dhis perime that he

 ings, of Lonisville, Kry.. Whon was al ohe time com neeted with the ofthe of the V'miversity of thinois Arohiteret, allel the work of detabling, werking, ams delail dexigning was done hey Mr. Hutchings, ble writer, and whers. The hlore prints sumithed with

Finithe 1

F16:1 16

Fuit ise 3
this p:aper were selded by the writer as beding typ isal of tha more intoresting pats of the design and detal. Thery are liom the tiles of the Astreville

Figule 4
the set of one homded and seventy-fise sheets that were drawn for this job.

As is shown in Fig. If her Jarckson Building is rertagular in fan, measming e9's" by $60^{\prime}-0^{\prime \prime}$ and is : 1 phomimately 20 of high. It contains "2ti tons of structural sted and hatote rivets. The columns are 11 sections manolactured hy the bethlehem Steed (ompally and all exerpt the minor beams were rolled by the same mill. The bethlehem shapes Were solected beraluse bey are lighter than stand ards shapes fur a given strength, and hecanse the beams have wider flanges which fiacilitates the detating where brackets are used for wind bracing. The cost of the strubtural steed work on this joh W:as sint a tom, distributed atrout als follows: stom, sial ; rextion, \$10; falmiation, s:30; enginerering and worbead. sin.

The structural stere work on this lmibling was mansual in several respects. The frame was so very मatrow in propertion to the height, the propertion luing almost $1: 10$, that wind stresses became of reat importance. 'Then there were a nmmber of eompli (ations dar to the arehitectural requirements, amb a mistake in extimating the reduired lengith of the tirst tier of colnmas ransed tromble in detailing.

The dexign alle ronstroction ol the wind brace ing presents, perlaps, the most interesting fe:ture of the joht. Sieveral methoms of powiding his brace ing were insestigated, but the only sultable method was the nse of brackels. The arangement of the oftioes wise so irmantar that it was ont of the phes tion to employ thes batcing and there was not suf tiefont rleatrance at the heids and sides of the

braces. The amalysis lor wind stresses in the eolumms amd beams was made graphically, comsitering the holding as at catilever foss. The writar dows bot know how the buatets were designed or by whit mehorl the wind stresses were distributed fo the varions bays, bat the photograples, pige $1, \because$ and :3, and the detail drawing, Fig. $\boldsymbol{\pi}$, ilhstrate the tope of brading that was used. Brackets, top amb botiom clipangles, amb a varioty of sperjal comnertions were nsed. The provision ag:inst wind stresses was made complex by the erembrice spacing of the cohmms. Looking at lige. if it is seen that the eohmmes are ont of line both the length and breadth of the batding. This camsed, in the case of the matin floor beams, an erentric connection at one and, :and in order to bednee the moment in the cohnmms these were stagereded one above the other. Fig. t shows this arrangement in the phans amd Fig. 5 is a detail of a cohnmon provided with connertions tor these stagered beams. It will be noted that the beams framing into this partionlar colamm are on renter at the basement, side connected at the tirst thome, and on center again at the sedond thoos. This selheme is carried ont for thirtedn stories. Wind bracing by means of hrarkets is the most expensive of all the methods that were studied. The clearances for riveting are small and the rivets are momerons. And where the work js contractod at at tixed price per tom as was the rase on this jot, the momber of rivets and the shop fabor reduired for fabricating a tom of brackets runs to a high figme. As bacing, thongh, the bracket is good. There is no peraptible vibration in the tower of this bilding even when the wind is blowing a saile.

As mentioned before, the tirst tier of columns was ortered too short. This brought about a peroliar sithation where the hasement flow-beams con

Figure 7
vected to the colnmms. The clearance between th: beotom of these heams and the the of the colom footings was so small that the beam eommection, the wind bating, and the cohmm base and andere
 Hertion is shown in the right forex mand of Fix. 1.

 files willd hraring, and it arts as a suat and still
 colmm, bately discernable in lix. 1 hat slasw on the detail in Fig. it the bow beam comberts on the

 provision for a floor he:m rommering on the side of a rolmon is seen just almese this conloretion, at the serombl dowr line.

Another mansuall amition was meonmtered on this joh at tha tenth blom where the bilating lar comes smatler. The exterior rollmons all aromat the frame were moved inward atome nime inders.
 would transmit to the lower sertion not only the - G.5l kije compression hat also the moment dur for the merntricily, and at the same time le within the limits of the ontside wall and the offiee romm wall. No detail photographe were mate ol this perint

 al mome interest that the wher herallse it is a

 to do so the flour lue:ms were connered to the lower

Facil fir if

 Hem wall al wah thom.

Therertion of the stractural steel frame of the

 *-

 (rantin"tll onl lit!e ! Iti)

Construction Engineering

I．II．Vルルハーハ
 （Before student（hapter A．A．（．F．，May（i．199f）

1 prosume that fon all know that Comstrution is pobably the ohlest，amblermanty next the the
 surpasises it in the mumber of persons comployed and

 therefore，makes it donlt！important that its werk should be well dones and that its volaries shombld be both qualitiod amd pliadent．Incidentally，don＇t make the mixialke of helieving that these two adijere tives are symorots．

Pomstrurtion has there dired agents：the Arehi teet，the Enginerer，ame the Constrmeter．The last
 title whicls does not at all detitue his fometion，int heme leabes much to be desied in that resered．Let Us hape that the word＂obltruetor will ere long

 last．boremte．

 whly in comparatively rexent yatrs that wo of the

 ing to aldeghately neme the reptimements the to the immensity amd complesity of mach of ont montion work．

1 ran watil the time when the highest rating

 low stacial rating were silpered to be rate Jont
 ＂erooks．＂This simation has ratically ehamged in went prats the＂rongh nerk＂hats pratically dis

 in ally wher important indmatry．

 athrwise idlo lorms．

Thu at of puthing into tanghber Form，the vision
 a profersion as that wh afher of the dexigners．it is true that there is stme werlapping in the distri Bution of the rexponsibility for perferting the strme the or work．The dexigner ambly survisor most work hamd in hathe with the buldare if the dinished joh is one to which either or bohl rin pwint with pride．

For the furthry furpose of this lalk，I shatl the whly the terms＂Eugineme＂and＂onstruthr＂in refermen to the trimmitalle of constration．When
 arhited or rasinere as the partionlar rase do－ mambs．Monmments to tha ability of that rrimmir－ ato to complater most of the known forees bl matare atm harmess them for the bermetit of mankind are distributed in ridh proftesion owe the motire divi lized world．It is the finterion of the enginerer to visualize the progert as a dimisherl whate．Ile mast passese the reflisita skill th trameribe that vision on palper，in the form of dratwings and speribat tions－so thatt others caln reall and matherstand．It is the prowine of the censtratore thatusiate that vision，thas depided，into al latuible and material where nsefol for the promer for which it wis
 Heer，wer little anerernd with methoms：what he sorks is pesults．The（＇onstoretor is also interester
 with mellome heramse blis is lis part of the jols．
 indivillal of aseln？which furnishere the fumds far

 mbly in two thines：－Fitst，what will it cost？ samonl，will I be ahla to milize or qurate it when

 comsultation with the lomstretor，mast be abla for

 alswey for the seromal．

Many impurant properts are intagurator allad atried to satistactory completion torlay that would

 matre this posable. Takre one illantration-the dr

 wits prohihitiva.

 strator for the prosent athd for the futury is in the
 doins the wark that lies lefore wa.

There is tomar, and alwals will hes. an insistort domand for ment, atml particularly for yombay mon, of exerotive ability-mon who have mot only the ahility to visualize the right comserntive proweses
 know :111] handlo men athl invirie them with at leact
 (r)alion tur their chasen work.

 forest that yon are mertping the porition of an Hompire-that in yonr requiremments ame lerisions

 ored in the hreatell than in the wharrather" hy the wher and experionewd enorinerrs. I repeat that

 sions in alror-dillow with thatt yirit.

 is limol . Whlomenll."

 in fome derisions. gon will whetimes make mistakes Wr all do: hatt forl will he hsing that whirlo is

Thofo atr twa type of mon who hatr vivions-

 abled one who is able for trastate his dream into a

 tre may not alwiss le of the tiret watere hot he mast

 -roms to be liwking. Ilistory is reflete with pronfs
 nincty per ront of lhose who cmbark in at reventar

 that title in this plate intemtomally lemanse many of

 of the ronstantly intreasing vill and intelligence among constructors tomay, wo hopre that tha death falte will somel he malerially redneed.

 whom yonr work brings fon in erontact. They wibl

 the typr af man lhey want, will they kerp yon in mint, alml the ont who in theit mental examination lais the hightet matkings will wrot the tirst offer of

 for his stafle somme of the principal ones are:tirnt. those of rhalaterar, such as homesty, hoyalty,

 drewemdabilits.

 (continuch on Patge ?I!)

Significance of Municipal and Sanitary Engineering

 the perity amb quality of the driakitur wator he use

 bakes motice allal gives some thonelat of the smberet. Wheh less time is spent lay the atwater person ill romsidarime what is stone will wasto mattor after it

 take cara of a murh mederl sathitary imponement.

 If he were ble hatith commissioner, it was his lmsi
 - Heal a heathey emsifonment. At that time wher

 at a lase to fultill a position of sathitatian of at latice

 litted for the job. This where the trataitu of a

lat commmontios of 10,0100 on lexs. pmblems of

 hility. Tluey are mot hatheially able to hite a sat tariant who is fally qualitied and that is party the
 rommmatios in the beller simitation movement which is in fregress. bed me rite al rase of sullo a -mall commmully.

 water sumply is drawn leom atere well for rather Was a derp well as it has sinere bern tilled in with salmel lirem the sides 10 suleh an extent, that the yidd of the well is so redtued that water servere is limited
 hambered feet fiom the rathal. The water is pomend into al small respouir which is in a bad state of

 Working fore of as men and womell with driakin:wallop lemm well on its own pmanses. This well

 the well is not more that orn handred lene from the old Hllusis amd Mirhigath lathal which is a semmm.

 reperten within al perion of three werks, and dilty peremt of these cases were latal amed most of these drank from the fadery well. Alter these deathe oredreded, the wathe was rhborinaterl. Ilere is my
 nity wha wis folly lither low the joh, it is very likely Hast there wonld not have herolather tymid rases reperterl, hat as it was. hataral heallh oftier was
 demire sinch is the smatl town health offiere-a person who batis ay the platatels on homes indi

 donts. This is very gerel in its wily hat dons mot
 ithlieated by the poremess of the mation as a whole. Tha state Weparment of Publir Heath is the only motalse al firesent of reathin! these small commoni ties bat I heline a combty simitary entimer womb

[^10]
The Element Illinium

H. 1. W. Whan, rhem. \because

It wata dirst suruested in lind that when the elde ments are arranged in a soribs in the order of their increasing atomie weights begiming with I for lye drogen and !e for manimm, the mumber entexpond ing to carla cement in this sories is examolly equal to the momber of amentaly positive charges mits atomic maleles. The mamber al an element in this sortes is eatled its atomid mamber. The poobathe truth of this ideat was bousht wht her the remark able results of lloseleys work on rhatrateristia Stays. When the athode in an X-ray thbe, against which the eathode rate of reedrons ate drisen hey the applied whatare is mate of different metals it is found that thar realting X rays emitted from
 are called ehararederistir wave lengths. Doseley foumd that the frepueney of viluation of the char
 the stinare of its atomic number. Aecording for this arrangement the atomice mumber of the new element. Ihlinimm, is di, and was so designated prior to its discosery. The existence of element tit was con firmed loy a modilieation of the I lay analys methorl mentioned alowe.

In 1903 the Bureat of standands maperd the are spertiom of the elements, and in doing this work, data oll some of the rare carth elements was takell from whervations on samples which had beron pres. colred from the latmathery of the l'niversity of llli nois. These samples had leed obtained by extensior fratelonal revstallization of salts obtained from monazite satur residnes. Io the cobrse of the inves ligation it was fonmel that the samples of berolym
 were suppesedly very pure, showed fallat an sur from lines whirh were rommen to toth samples and Which could ly attribuled to mo kown element. 'These stray lines, which wore abont ond handred thirts in momber, ware reatide amd appormed in the serentitie leapers of the limean of stambards.
 madde that these stamge limes in the speretrom of nerdyminn and samarinm might be indications of the undiseovered doment, momber dil.

Following this lath, Prationation of samples of neotyminm and samarimm was continluel in tha

 tions were earriad out on varions salls of the bate

 romerntration of the new elament was, at that tims. less than bue tenth of one peremt. Buring the conese of this work, tive additionat limes ware fomal lowat the violet end of the are seretrom.

The froblem of comeentration was taken mp

 element dil in the material prepared by lot. Voltemal. The fathere provions to this dime strgested there possibilities of whith the following seremed the most frobable: the deuble magnesimm nitrate of clement fil collemtrates with whe of the more phentifin elements on either side of it. In order to tex ont this theory, it was assimmed that in the rase of the domble magnesimm nitrates it was the meotrumim with which the dil salt was conerntratine Aceres ingly a serides that had herel worked wer eatensively by F. Il. Jriges was daken and only those factions rich in samarimu were taken for rontinle as the donble magnesinm nitrate. Thas, (well though the magority of the missing elament minht be left in tha mone strongly neorlyminm frations, it was possible in this way to throw whateres amonnt there might

 neordymimm in the least soluble fration was ob tained, but any alsorption bathes dae to the exist अhe of a masked tye the wher suedta.

A seconal series taken from the alome mentioned materiat was alsu laken, this being romsiderahly more rich in ment!minm thath the one pervionsly taken. In oreler tor obtain al separation of the dit from the nembminm it was noressary to time a salt

 apart leatiag 6 with ath emment on rither sidu of it grivine littar or motsontion in the visual suectrim.

On flatetionation of this salt. Harris amd llop

 to ally ehated line for the two meishbering elfo ments. but whath hath been assigheal as a wak lime

 hatl sume previntis work along this lint at Sals. latrk of fomds pheventad al mosi modern mpuipment

 simples of maturial. Tha limes valry fomm the rallen

 atte prints al exidence.

1. "The prax dreal thirty tive limes whose watce lomethes dar mot

 (il slomald allesir.
 fractions in the position corvespondins, within the
 caleulated for the I alphat line.

 elemunt is "lllinimm," with thes symbil "ll."

 for the seiontilic datat and material prexented in this articte.

The Significance of Municipal and Sanitary Engineering (Contumucd trom I'tye IVi)

tit the were whore it single rammonaty romblat alforel to hite onte. I lived in the fown eitad aloove.
 atsy aftioial action turing taken for the removal of
 is complerply sumered. 'This is only an indiontion

 ath amthorizold dreartmont. In rition this is al me

 seforlew hat mater thix pussible.

The wiltse sufply of a rity is orne of its most Parmitial meds. l'lenty of water is mexded hot only

 the porilication and suttening wit water and the

 has warraluted has experditure. The value of this intestment was fisst matized durins the choteraters

 Ilamburg

 filtratton the momber of deathe wals liar bexs than int

[^11]
Present Investigation of Engineering Education

11. 11. . Iomos

 lor the lromorion of bingineresing lidutalion held al

 the sumiets, that a thoromeh examination of the staths of engimering edncation in the I nited states
 pesal fetme as all answer to the wer ehallenging y

 fanls athd shorteomings of mginerring edncation at the ammal medings of the somedey hatd alwats leen hased on mere robjeetare athd opiniom as to just what the facks really were in combetion with some of the matters disellssust. It was felt that ats a matter of emginering proedme only it would be the helter part of wishom to get the latis before bringing the defendent before the bar.
 carried on mater the direst smervision of the soridy with funds to be obtained from suggeserd
 Emginerring Ehatation is compeneal of teachers of roginerering, mathematies. English and allied shb. jerts and of these in industrial and eommereial lite

 Was to be harombly introx wher Words. it was to be "ot". for amd by the people" Whose imberests are most jusolved and thrombla Whom only rall come danges for the bether. Fixperi
 tional promene of "Whitewiaking": an ativity or in
 the way of permanme rexthes. It has emongh of the impersmal in it to ghallathex that it will bre falio and
 comerrmed.

I batard of luvestigation and lommitation, so ralled, was formed by theseriety to have foll rhater

 Fommation for the d小amernem of 'reathing for
 Pars. Mr. W. L̇. Wiakenden, formor poofeson af

 committors of the siobery were appointed to assist in tha work. latal conserning the reminering

 Contarets with industry have herel made themph the
 sional eminers of the combley hate assisted in the
 izations.

In projecting this hoodd and well timated in quiry, the Sociely tor the lromotion of lingimerime
 mgine ering whation as at whe hat bren cont ducted in the past pon an exsentially sombl fomblat fion. Emphasis has always herellat bun the prin

 highly skilled attixalus. Valike colloge of medirine
 the bexinnine primatily madergathale in chatatere. ('ommerialized sehosis of angineromg similat to

 Which to oprota. The long rigomons path of prate tical experience which an enginerring grahlato mas treal lefore he mas fome into responsible pores sumal chatere ol chointering work, in matked rou 1rast to the beximine of the profossinnall tifo of the

 No one is antiripating that the tindings in the pres (ont inwestation will result in allything like as revolabinary danges in thgine ering education as Was the rase in medialal wheation following the

Tha investianton in its mathy ramitiations hats
 there rexital of which mast serve lo wive the scope al 1ha motermaking:
. D. Relating to the past expertionces and present promions of the colloges.
 aluation to industry.
('. Latations with profosembal orgatikations of

1). Sumders and projerts in edncalional per (halosy.

 Here ate ten distinct piedes of work to be dome
 study of Emtering situlats, the Study of Ahmis sions ambl liminalions, the stuly of Gimalnales amd Pormer students, Teathing lersommel, Costs of En

Ghls a lew of the more intresting things homght
 in this bride deseription. Those partirularly inter exted in the details of the investigation may read with protit the laret and l!os mombers of the dome nat of Fingintering Edatation, the oliarial monthy publication of the semelely.

If has hean diswormed, contrater to prevaling

 whool Pradnates, bot pereent of thest heing in the
 the lower thime. These stodents are rated as doing Wedl in the subjowts of the high schowl emrerenta Which ate thonght lo be exsential formers in stadies of the bugineremgen college.

Whly three ont af exery ten stadents entering
 an mgintering conts in four rars athl mot wry forr of the ten wer graduate froms atny rollege comrse. This heary mombality sotems on tirst bomght, formatato, all alarming romdition of atialars. It has bot get heen shown, howerd that ally lessening of the rate would have oerormed hat the same students
 Sremer collages. The most serions aspert of the matter is that at thide of the students who do mot
 Hes whild in colleger.

 in terfhiaral work than has lowen assmand hey mang.

 cent respertivery. The lighres mast he regarded as
tomative only sime less than sill percent of the gladnates comsassed hatwe furnished the desired in fommation.
 attes varies but litle for different institations and
 median low salirios at \$1f0 fur month amd median high salaries al \$17. jus month.

The gert al the investigation which has attrate ad murh allantion and the interest of the teathers of empintering is that remang to "Teathing per sommel." I fuder this heading murh aremoate intor mation about the enginerering tarlare has been eome piled athd presented to the Sow iety in the forme of
 the statfs of the ratrions institutions, methods of गreparation of the yomger learlores, and other in faresting fircts for momarons to mention heres. It does not alylear from the datal eodreded that teath-
 moth of the worlds sumply weath. The sollores of information refored to marler in this arride with lurnish thase interested with dirst hand informafion conceming these mathers. The salary charts atr partioularls interestime and informational.

Ohe of the mast worth while things of the investigation has developed from the stuly of agimerbing edncation aboad. In Mr. Wickemben's keen amatysis of the sifuation in Emgland and on the ronfinent, there is prestuted a most illmminat ing picture of emginering edoretion in thase rome firs. I ndembtedly, the shrprising incranse in the number of terhnical sthools in litumat as well as the eomorrront increase in arollment in these shools sime the World War atures well for the comfinmed leren competition botwern engimers of that comatry alld omr wwn.

When the Society for the Promotion of Vingimerting EAncation meets in ammal amomtion at lowal city mext dme, there will he persented limal reports of all the rommittees mow engaged in the investigation. Enginerring Educalion will have profted greaty from this introspective sfody. Many desirahbe chamges will have been suggested hat unI'ss a delinite 1 remd toward professional edncation is starterl it is hatrl to sem how anything revolutionary will rexult. lmporement in details are bemod to take phare oner prevaling conditions are disGosed aderorately and in their froper setting with attondant modern eomblituss of our whote social Md.

Bronze Welding

liy the wednang processes in use today mently all of the metals, at lease ali of these in common bse.
 high ropler allogs, and almminmm fan be jointed fuickly, eromomically, and with stremethe approxi mating those of mondoken sections.

These froresses maty be identitied as the hammere

The hammer proese of wedting is renturites ohl
 romsists in heating the embe of the parte to ber welled to a white hat and forging them together wh the amvil.

The second welding proses, the oxy adelybere is the result of the arecidental diseorery some twenty

 bow fire for burning :cotyde will oxtern. The
 friokly melt all commonly nsed metals, and it bronght about devolopments in the allogerome weld ing of each metal that resulted in an amazingly
 aro, before the present development of the atatomo. bile amd ail indnstries, the mannfactume of wedtinge
 fourth larges industry.

The thid wedting proess, the refetric, began in a small wily frion to the diseowery of the oxy atedy leme proxess amb matil reephty its developmemt has bed slower than the oxyacelylene but now bich process is advancing rapidly, the partionlar work that can be done hest hear patsing to it with a texalting interase in efticiency highly bemedicial to
 done with ather dirad or alternating rarrent, and
 Whish with the dieret corrent is madre the gositive and the weddeng wire the merntion 'The wire is

 and medes the rend of the wire whirh bmiks of : deposit on the phate that soliditios as wedding for cerds.

Electrie wedding of steel with sherl rods has always produced hated britto welds berallas as the streel vapor is projected thrmugh the atir it is at

athel nitarles formad serionsly affer the quality of the wedd metal. Recently an andine of of the lien
 a hedrogen tamk to his electrode and does the weld
 ditions a fitster and softer weld was mate. As a共: ate nsed. The amonial is ran throngh a eot over a ratalyzer which breaks ap the ammonia into hydregen :nd hitrogen and this is flowed atomad the well, the hitrougen doing wh harm.
 aren that that weld is made in ath atmosphere of
 fore hydronen which emvelopes the weld and is later ronsumed bex oxyen from the air. That is why a
 tage af the electrix welding is a morator romerntra tion of the heat and now taken with this welding in a hydremen bath it will make ony ace tylene wolling of steel with stere all whentete process muless its barkers are aldert aldi in stride with these reerent de vopoments. So althomgh this is mow josi a latmoa fory process it maly in two or three pears end to a pratedeal stage of development which would then (olt the oxy-ateleme welling of steed down to : minimum.

The fomblh welding proesses, the thermit, was perhaps known hafore eithas the electrice of the acotyleme. The peress is hased on the heat re sulting fom the chemical reation when iron oxide in intimate contalel with almombm is ignited. A mold is formed ahome the erads of the parts to her waldad, all open hottom remeible is positioned abowe the mold atme lilled with iron oxide and almmimm.
 tills the molle ame heats the emses of the sted parts to a whllime bronerature which solidify with the
 wolding of stom that some stomess has remently beed allumumed in the welding of anst irom.
 atol thermit proersers, the weld areats of the hase metal atreromplotely melterl. 'The expathsion and contration accomb:aybing the making of these weds intronluce in mathy case wor dificult problems. This is experially so in tha welding of rast imon parts

 welal. 'the possibility lhal surd parts would he ont of aligntment when the pirer hat coment is so grat

 Courtesy of the Aretylen' Journol.)
is not to attrmph to weld shell parts in thein own Welting shop hat to semd them out to at shop that suectializes on dilticult welding jobs, alla in matny plats the common practiare is to maintain duphicate parts of all mathines or equipment lable for be troken. In the welding ol steed many weldos he "ome poticit+nt and combl make welds apmoximate ing follere cell stemgh, but as a role the intense hatat remined bromght abot surh damges in strucfore of the metal adjacent the weld that hae wedded parts wre lable to break noar the wolls.
buring all these years, howarer, that the welding of metals has bexth dewoloping the the waydeevleme
 Wedt matleable from, berallse oner malleable iron is meltal only a raty por quality of rast itom remains.
 malleable iron parts be bazing during which the
 This poress has. howerte, whing tw the use of Tohin

 ammatine tempratime for malleahbe iron and has and stength aptalling that of malleable iron, apmoxi matimes that of milal sterl and form two tor there times thar strmoth of tast itom.

Tobin bronze has bexth one of the outstanding allogs of the prast foum decades, perhapes the most

 it melts at the ramakahbe low tempreatme of lates
 It is ductide alld ran low worked hat or cold. Today, as it has low the gast lorty years, it serves whereme grat strains are likely for bermed, as in shalling. on high sumed bolts, amd valse stems alme seats, amd

 mont of imdustry a worker stmmbles on a phesical fiat of tremembons importatere surh as the dis

 dation for the great welling indestry of todas. the
 and mummbered by poducts.

I discomery of almost embal importance the the Welding industry was that molten Tohin bronze would surface allog with clean stere, cast irom, mald

 Welobe ivo Panter-as Goob is New-Afyer Berna Bmosze Welmen。
loable irom, coplere abd high comper alloys at a dall red heat. So lomger is it meressary to preheat the ribled or webled or large rast iron parts before Welding, hat in mang cases now it is prosible fo makr wedds in flate withont dixmanting, machining and reassombling. No longer need the muluky allomobilist furn his engime bonk with rateked
water jarket wer th the welder wha bitully tells him that the joh will require perheating and then regrinding and will probably cost fom sill in sill. but, muless he has at wer batl break imbed, he rath have it repaired in phace in two or there homes in-

A few monthe ago the fratisportation world was keeply interested in the arcomm of at bonnotion Which had hambed a throe million dollar tratingad of silk from seattle 10 sis. I'anl withome dhame amd then throwd atomad and hambed atratnload of valnahla marlinery from st. I'all to seatlle atuin with wit chamer This beromotive made ther romad trig
 then a hostler attemperd tor run this beromotive into the romms homse withom theininter the relimders, therely removing the fromt rote of the piston and value eglimbers amost as chalmy as il home with a Sreat knife. New rolinders would have cost Sl, aloo. There edere of the herak were ehipherd oft, the hroken emds sed batek in plater, and weded with bronze and
 forming gitite as wedl as before the actidem. Our wobler elfored this repair in

 'onporation hats sel aside af fund in memory of hix father who hateked with all his comes and all his resomeres the development of the dirst mandiad fore "f earbile in the eledrif firnares the interest foom
 medat to la atwarded beg the International Acetylent Assereiation to the unt what has done the most daringe the ferions twelve months for the allvancement of Welding. At the elene of the there lity session of tha atmolal meeting of the members of the laternational

 stale the most motable arlvancerment in wellinge of
 and withont dismambling of two largo ail fomping

 moving this rogine from the fommation amd with. out prehealing, hais hering wats hill of with Tobin hronze. Tha other remine land the air rushiminas GVlinder with i wall ${ }^{1}$ sin. thick then off and with ont dismantling or prematime it was wet plan amd welded with brotze. Th hate welded thexe

 fire and reassembling, all al which womld hate takell
days of 1ime athd would hate cons passibly athout sallal dollats or more hat with Tohin hronze, the repaise in bath rase were made in a fex homras sats

In the ereat cal bulding amd repair shops of

 Instratd of dismanting his press, plating the extindre in at chamal fire and welding with cast itom rouks, the ratick was chealled athd the weld mande in
 dohars.

Instames of repairs of large eas iron mathine parts with Thbin lawhe similar to these just moded
 steatm ships. in mines, in laten bilload shops, oil reftaries, in fact wherever large mathine lows amb
 The ereat adrantane of the Tobin bronz wedring of rast iron is that the bronze having two to fhree times the stremght of the rast ifon and being andied While the surfices onty of the weld anders of the ceast iton are momentarily at at dall red heat, it is mot meressaly to lever the broken edges their ratime tharkness hat substatiat protions of the thitkness
 bronze flowed on, ame when it combe the broken parts will be in all reverets as furmoly. 'The sitime in the lise of 'Tolin bronze rotl owe rast iton rod in such eases as where the bse of the later would able fer the dismantling, proheating, mathinim, and re

The bronge wedring of rast iron pipe is all atot

 the onts methoul of jointing the pipes. Tlia methor

 all wher rases of bronze welling on eats iton the lironze is fommat tor have fermedtaled the rase iron to al depth of 1 lf im . or more, as is shown in the phato.
 the brotme for pill away from ther rast irme The

 nowlimble.

 compited results streneted the following rules for Welaling aline of rats irom pipm:

Welal oll fast irwn pipe shothl vary in direre pro
 fore a maximum strengtt the weld shondat fot be less
 ness of the pipe．

 Hess of ther．
 of ayplying the lowat mast be su rexnlated as to
 fines withont showing exressivererbor of leat rither
 athe amd stomgest wols have bern frobluced on pipe where the arrrage time of welaling was limiter in minntes to less that fwior the outside diameter of

 fres that apponaimalely for limear inthers fur minnle．
 ＂roms eonstantly stronger op 10 two or there homes from the lime it is eompleted．l＇are shombl，flare fors．be fakerl forexent werstrains in the metal， expereially during the tirst short interval of time direvty shereadines the completed work of makines the bronze wold．It this time the bromze is weak： after tive lowns the weld hats maximums strength．

 the soil is excessively wralk aldidet to settle greatly
 fatoe letwown flexible joinls．lastallations where For so preent of the total number wi joints were
 where the lownze welded joints were fiom ！as lo 100
 ［rombles．

Withont question the wfore on the weltines of

 millime is now procurrud．Jtratly in the wreat
 atrl Somtlurn liaritie Ratreats not only are the brosken rast ifon parts of the lowomotive wedred with Tohin loronze rorls bot also all other vast iren parts

 latest mothorls athe their use of Tobin bronze ronds
 makes rertain that this protrtioe will in time be whi versal in all shops doing welaling arooraling to the latest amb most \quad（ornomical methods．
＇The ase of＇Tobin bronze rods for the weldine of

 sterol，fot has the remarkable advathtage of making it possible to wolle stex at a luw red heat only and lhas aroill all possibility of eontratotion indmring or rninimes the falds welded and of altering the phality of the stew being welded．It has been well known for some time that Tobin bronze sheface－alleyed pre fectly with clean stere at a red heat amd that liownze lats a strength afproximating that of milat sted， which strongth moler fropere dreatment romber be in
 it has remalined for hat at comparatively few to exter fise the eothage and intiative reguited to make so fadical a lepartume in the wehling of locomoshive

 stere ronls，and thernit welding to welding thess framos with Tobin bromze．This is mot smrprising as there is no wehl known to the art whieh is shbjeeted to greater stresses and stualins of all kinds than the Welal of a lowomotive frame．Dependiner on their foration in the frome these welds have to withstand Ha repeated flomste of the pistoms or the proll of fifty to one hamdred loaded cars of tifty to bue him

 nine or fon lowomotives with hronza welded fiames，
 molle of these homaze whlds have larokell in at serviee which is bow estembed sombe mine to twelve months in some instances．The tireat Northern has two
lecomotives with hronze wedded fammes one of which has bern rumbing nime months and the ather two months sine being welded.

Alr. J. Il. ('laincy, of the Georgial hailroad, re ported to the spriner meeting of the New York sere tion of the American Wrading surndy that this rat road had several bocomotives with bromze welderd frames and that belore porereding with the bronze wedding of their logomotive liames they hat com
actual time of ranning in the branze varid from filly to tilly tive mimbes. Ilow very remarkable this is maty be judged from the fart hat it rempires fwo skilled welders from foll to six homs tor make a leeromotive frame wedd with stere roels lay the way aretylene promes. The arerage rhatere for the wele matde with steel ronk is for toll home as agatust for loons for the weld made with 'Tohin boonze reals

 American bioss (ompony.)
ducted a seriens of tests, welding $\mathrm{l}^{\prime \prime} \mathrm{x} \mathbf{f}^{\prime \prime}$ sterel sections with steet rosk both by the oxy acetyteme and edece tric processen and with Tohin hronze ly the wx aretylene process and in breaking these wells the Tobin bonze welds held in exeess of l. bons ane "ither of the others. The results from the benar welds in atotual servier beare ont those of the tests, as the railroads report that mome of these Tobin bronze focomotive fatme welk hase is ret brokedn.

An examination of the time adras revering this
 wede was made in less than two hours, mal the

The procednre followed in welding with 'Tobill bronze is exsentially the same as when wedting with "ast inon except that when using bromze the surfiac only of the weld areats of the base materiald nered he heited momentarily to only a dall red. Fiorsa, thore Whaly "le:an the weld arois, wrinding or tiling of

 fods. Noxt. nse at reliable preprad flan or athex contaning atont seven parts borie arid to one pat boma: mix a lidhe thas with water and mint the

[^12]
ILLINI ENGINEERS

－NRTIER（iERALJ ROESKE，cer．e．，＇26
Ohe of the best kotarn entimers thout the cemmus is＂Jory＂Rorster．He is＂ Mrmber of scablord and Blade．Th Mas，and froomos．In his jumion yrate he vies a Liew－ fenant－rolonel in the＇aralry nuit．He has been chatrman of the e＇ramices opern house committer，the ceromiss Ememinterm！bath－ quet．and the lith ltellenic Firment（ommit－ tere Rosester has who bern＂member of the Hobor Parate committer and the sicniar In－ formal Dance eommitter．

 bon is another outstandine！man of this
 meterst in extraforrialum aflirtiss．Its has brat a mamber of thr lllimi Boerd of
 staff as alreshman amt sophomorr．and his beren＂momber of the Iumior C＇als rommit． ter，the thamerominty ．Lecommodations（＇om－ matter，ltatts loay（＇ommittre，the semior Hat fommitlec the Inion Eleftams rom－ mitlics．the＇ap and fiourn commille and （＇hatrmath of the N＇mior Joformal（＇ammittre． H1 is alse a member of Theta Than and the 1．ぶと。

ALLEN MARSHALL CAMERON，M．e．＇ 66 ＂． $1 /$＂is amother of the revy fore entmones who has remesenterl the（＇wheffe of Limiti－ nerom！in maion artiritios．${ }^{\circ} 1 /{ }^{\prime \prime}$ is wrll knomen betane his atwitues éoter a field on which em！imers dare renture．He wos＂ atrimber of the scmion Informal Committre． the semior lant（＇ommitter，the semor（＇top C＇ommitles，the Jumiar Jrom（＇ommittec，the Janior（＇ap）Commilles．the Somphomore c＇otilo laon formmittat，athll the firidgraph（tommit－
 fommittere wom for him thr pasition of ihatrmath of the seme ecommittee ill his semion yerar．Fror the past tero yoars he has bretl a member of thr llimi Bored of rontrol．

ILLINI ENGINEERS

(bue ot the mest wutstemtin! men ot thes

 maty the post wt statlout ratomet for the
 gotel soldters. Franti is a member of the Stulent fonaril and uras theirman of the Whltary Einll (rommitter. thr sumess of

firm" bealy is amother arfore "momes

 cil. and Fits whe bf the thitr studtents ant

 E゙ngincers. H, is alse a membr of chl
 l'atromit!.

ENGRA』 JONEA, E.e. '26
 trade rm!ther who is in a lume wall re sponsible for the aroat sucerss of the Eilere tracel Enamerrima shome. He did at efrot
 tha position of mamager of ther l!t दt show
 !feat dial of work liut not too mach for hitu. Joners is alse " member of Theta Tall ant

Fig. 2

Diagrams for Designing Open Ditches

The eomphexitios of many hyalrable cale oulations have led to the constration of numerons diagrams： amal tables lo redner the time and work insolved．
 limomala

$$
V=\frac{11.154+\frac{1 . N 11}{n}+\frac{.012 x}{n}}{1+\left\{11.67+\frac{.012 x}{N}\right\} \frac{11}{11}} 1 \mathrm{li}
$$

womble repure a prohibitive amomot of time were it bot for tables which（an be fommd in almost ally book an hedramlics．Additional tables and dian
 fions for open diteloes with trapumbilal aross see foms．Bellaisis＂hydrablas with Working Tables＂
 lics＂arre remesemtative of the tables and Sorita ＂Working Jita for Irrigation linginems＂of the diagrams for this parpose
 stronger foothold among Xmprican rigineres blan among congitere in continental burore Vingincers in this comatry think of the romehness or triction
 altempts to replate the kinter formalal ly a simpler papression have mot with only farlial sumess．
 has fwo important ad小alliones：（l）lt is so in
 form，that many tables and diagrame hatw heren pres pared whid make its has as tasy and satiofatory as any man may dreire（：丷）It has at comvincing

 sinch pipe line by his facite hamblane of such a formidible mathematiat sioge genn，in at repret in tembed for the comsumption of the green operer，milk
 must not be considered lizhtly；juggling with suld things manifestly ramires skill amd traning which
 formola，poperly printer，with ample leatlitg in italies，alfords an atsy means of drmonstrations ome＇s skill ${ }^{1}$ ．

The Manning formala has wote formber than ance
 comutry．This formola is

1．1！）
v ———s
n

y the mant velocity，in fert per semond．
li hue hydrablic radius＝
rroses sectionall armal
Wraterl protmetry
s—he lexdratia arationt，or stope of water surfiler
n－the romghtess robeficient，approsimately marl 10 K゙॥ttrors 1 ．
A comparison of the two formalas is bot within the serge of this bilper．There eall lat little donlst． howerar，that for chamme of ordinary popmotions （exopting lage rivers）Haminge formolat is as
 givell rhamel at diffornt stages very oftom show that Maming＇s n is subjeat tor less variation blam Kuttrers $1 /$ ，while in abom aftally as matuy aises the reverse is trome．

In the dexign of diteles the fiactors nemally given are：（1）the quantity of water to bratried，（シ） the slope of the loottom，（is）the depth of thew，（ 1 ） the shater af the thatmed i．e．the side volope in chan mels with traporoidal eross sections，amd（in）the ronghmess factor or friction raetidient．The prob lem hatially resolses itself into the seleetion of a suitalda bettom width athd depth of How to airs？ the required quantity of watter at al satisfaterory remety．The inter relation of the factors atherting the design of ditelose is fally envered in lidkels
 ter l＂ll and will not be trated here．

The accompanying diagrams are hased on lan ning＇s formmat and are arranged for ralloulating

 mining the proportions of the ditals serton whell tha rapacity，hydramia gratient athe ronghess

 of dow atre desimed．Tha sates of bothom width： athl deptles in Figure I are compliated to the extent that a seale of areas or veleritios wits doemed mesat

 ＂hartare of at rhatmel when the buttom width and ＂＇ontomuch on P＇t！t！？（ハ）

THE TECHNOMRSPH STAFF

	Ėdilar
	Assoriate Editor
I．（1）Ephgravio＇a゙	Assistant Editor
d．Fraske， 27	Assistant Editor
J．11．Kirschl． 27	Assistant Edlitor
d．I）Prouty，＇26	．．．－Art Editer
R．J．Solomon，${ }^{2}$	Copy Manager

c．I．Rom＂IMAl ER，	
R．K．Dupee＇26	－Assuciate Business Manager
H．．I．Anderson．	Associate Business Manager
B．K．Johnson，＇9	－Circulation Manager
P_{4} 11．Tartak，${ }^{\text {a }}$ 2	Advertising Manager
F．A．Miller．＇27	－Copy Manager

ASSISTANTS

（＇．E．Swht．＇2s，F．E．Ilolmstrand，＇28，F．F．Todd＇2S，K＇．A．Larse＇n，＇29．J．Murphy，＇2s． 1．W．Schominger，＇2n，E．F．Bicknell，＇27，（i．L＇，Kerk，＇2S．C．A．Gerdes，＂28 R． 11 Lamdon，＇2S，P．E．Seepe，＇2s，W．T．Hurham，＇2S，I．II．Cohn．29，

A．．Harrison，＂29，J．1．Mohun，＇2！，F＂．M．Collins，2s
円だPARTAENTAL REPRESENTATIV゙ES

Appreciate Your Technosraph

Get in the Game

Summer IV'ork

Sime wer

A Suggestion for the Summer

 alld write conatroins it.

 *
 of Emglioh.

 the effort.

DEPARTMENTAL

Mechanical

For the last sevell yotars at careful investigation of warm-air furnaces has been condueted under the supervision of Prol, A. (. Willatd. In fact, work is still going on in this field. Rereently. however, the scope of heating in rostigation was materially widened. Now it incfudtes also the study of direet team und hot water heating sys froms. Work on these systems is beince supported by the Nationa! Boiler and Ratiator Manutacturers and the Hllinois Plumbers Association; and its comdition is subect to the same genwal lerms as were presoribed in the 'ase of the warmait furnaces.
Another addition has been made to thr standard M E. curriculum. It is M. E. v9. a course dealing with the heat treatment of metals. Seniors will be its vietims. The department has long recognized the importance of the heat treatment of steel in modern industry, and it ferels that it is making a much notded stejn in the right direefion by introducing the new course.
several bulfetins of espreial interest will be published by the Experimutht station in the near tulurt. One of them, ". T Thermodynamic Analysis of Intwinal combustion Enpines" by Proí G. A. Goodenough athd J B, baker will contain in addition an aypendi: on the" "Analysis of the C'om-Hetr-Expansion Engine Cycle" by A. [i. llershy. In his analysis. Mr. Hurshy will explain the fossible adap fion of the sargent complete "xpansion idea to the automobile engine. A seeond bulletin will be entitled "An tovestigation of the Propagation of Flame in a closed leassta," and is ber. ing prepared by c. Z. Rosecrans. Atso. the results of the drilling imvestigation being condtueded it the shop Laboratorites under Prot Benediet's direvion assisted by A. E. Hersley. will be ready in bullutin form sometime this stmmer.

Prot. Polsoat is directing lhree ex feriments in the Power I aboratory. One of them is the rexat motasure ment of air flow through meazoes and
orifices. Mr. IS J. Wilson is carrying on the work. lle is using the air weighing tank as a fundanental basis for the measurement of the weight of dir flowing.

Mr. H. E. Deggler is doing graduate work on a Ifvid oil rngine. Special attention is being paid to the rffeet of changes in compression upon the efficioncy and capacity of the engine. Timing of the fuel valve with respect to its influence on the ruel rate is also being studied.

Mr. N. J. Alleman, a strior M. E.. is testing a Reo six atutomobile engine. He will incorporate the results of his work in the form of a Thesis. One of the items to be considered is the ofleet of heating the intake air before it reaches the carburetor.

For the third conspeutive time the College of Engincering scholarship award has gone to an M. E. senior This time the honored one is R. W. shields.

NEW Eqithatert

The following additions have been made to the equipment in the Power Laberatory:
(1) An $\mathrm{N}^{3} / 2$ in. by 11 in . Worthing. ton air compurssor driven by an ele:trie motor. This eompressor, as now installed, pertorms three ristinct services: First, it acts simply as an ordinary compressor: second, it owrates is a vacuum machint; and third, it functions as a booster or second stage compressor, Finally, the machine sup. plies rompressed air for starting oil and gas engints.
(2) A number of eatorimeters for determining the heating value of solid, liguid, and gastous fuets.
(:) Adtitional dynometer equipment. This equipment will be employed in furnishing power to a new simocen fan donated by the Ameriean Blower Company. II will also be used to sumply the necessary power for a froposed study of absorption brakes. automobile brakes, variable speed tansmissions, elutehes, and geared reducine units.

Mining

The L'niversity of Illinois Mining soevety forld a mevting at the Lnion Building on Tuesday, April 6, during which Mr. W'. J. Putnam of the depart. ment of Theoretical and Applied Mo. chanjes spoke on "Pumps". Mr. Putname traced the history of pumps in some drtait from the old Egyptian mine pumps, up to the precent day equipment The pump at Jostrph's Well was described and later pumping equipment in mining aliscussed. Mr. Putnam described and illustrated with lantern slides the European pumps of the seventeenth and eighteenth conturies and their use in mining opera. tions.

After diseussing the history and drvelopment of pumps, he procecded to classity them under two main grouns. the suction and centrifugal. These two kroups were subdivided into Hunger, piston, and turbine types since pumps are of vital importance to mining operations, Mr. Putnam's illustrated talk was of more than usual interest.

Another meeting was hetd on Tuesday, April 20, at which two students of the mining department spoke. Mr. L. S. Voltz told the members of his expersence as a practical mine surveyor. Mr. Young diseussed "Tha* Mining situation."

The Mining society presented a moving picture of minithg and metatlurgical operations in southeastern Missouri. The picture, "The Story of Lead." shown at 221 Engineering Hall on Friday, April 16, gave to the audifnce an idea of the underground mining methods used in the Flat River district oi Missouri. Views of the slopes, drilts and tumels were shown, while the mine was in operation. Methots of loading: hauling by weetric locomotives; and mechanical means of dumping ore cars followed. Ther mext sermes duphed the method of carrying the brokrn ore to the surface wher it is charged into a large bin betore being crushed. The broken
ore which was erushed by larges gyratory grinding maehint \times y, is mechanieally separated from gancue material and the lead and silver minerals are eoncentrated and refined. Other pictures of mining operations shown this year by the Mining Society wore the "story of Dynamite" and "When a Man's a Miner."

New Aprematts

A Sink and Ffat Maehine has been originated, devoloped, and constructed in the mining department laboratory for the purpose of investigation of coal eleanings. In this machine, zinc chloride solutions of various sperific gravities are used ranging from 1.37. 1.50. This mathine is used for separating bone state. and pyrite high ash bearing materials) from the cleaned coal. It is used for small tests only, varying from five to ten pounds of foal.

The department has purchased an ore dressing mieroscope for the purpose of making qualitative and quantitative determinations of various minerals within ores and coals. It also aids in determining the plysical strueture of the various minerals which is so important in determining suitable cleaning and dressing operations.

An Auns roal cleaning table using air as the cleaning agent will be installed during the summer vacation. It will le used on lllinois coals in conneetion with experimental work on coal eleaning prior to using jrof. Parr's low temperature coking process.

The Pennsylvania Crusher Company has given the department the ust of the small sale Bradford Coal pulverizer that was on exhibit at the chirago power show in January. The der partment will have the use of it until the emt of the year.

On Sunday afternoon. May 2. in the Enginering library, formal memoral exercises were held in connertinn with the presentation of the Steek Memorial Tablet.

The tablet was presenterl to the university by Prof. A. C. Callen head of the department of Dining The tablet Was recpived by Prof. A. P. Carmen of the department of Physios as the rep. resentative of President Kinley The speakers were Elmar Allen Holbrowk. dean of the school of Mines and Metal. Jurgy of Pennsylvania state Colloge. and Samuel Wilson l'arr, professem of Applied Chemistry at the Lniversity of lllinois. Eean lyolbrook was a
member of the staff of our llining de. partment from 1913 to 1917.
l'rofessor Talbot of the department of Theoretical and Applied Mechanies presided over the exereises. The memorial tablet was made by Lorado Taft.

Railway

Last month a test was made by a group of students and instructors from the Railway Enginetring Devartm+nt on the stationary plant of boilet and engint room equipment of tho Peoria and Eastern Railroad Com. pany shops at Lrbana. The purposes of the test were to deturmin the purformane, of the boilers, first as expressed in pounds of water evaporated per pround of coal, second. as expressed in efficiency of the boiles, turnace and grate; and to make suel determinations eoncerwing the use of steam in the engine foom that. first. rough estimates may be marle regard ing the distribution of the total steam usid at the shojs, sefond. rough estimates may be made regarding the ferformane of the engines and the air eompressor.

Thw equipment tested eonsisted of two loeomotive type boilers, two Euckrye engines, one Buffalo Forga *ngine operating a tan, and an air compresinor which ran continuously during the test. Ther coal and water used was weighed on platform seales. The beilers were fod cold water. The exhatnst steam from the engints and air comburssor was eollected. condensed and woighed. Indicator diagrams Wwte taken from the two Buckeye engines and these diagrams were used as a basis for sitimating the amount of steam used by the tengines and bs the dit compressor. I stroke countrer recorded tha number of revolutions made by the atir eompressor.

The principal results treme the boilus room showed 5.1) pounds of watre wert waporated fier pound of coal tired during the 21 bour run, thes efficiency of the boiler. turnace and grate being 51 per eent. It was coneluderl that it should be possible 10 equip this plant with equipment. otherwisw satisfactory, hat wombl per. mil operation at an etheriencs of in preent. The valu+s wxpressing the friformance of the builers are low in comparison with good practiere.
scroent d lump coal trom a strip mine west of banville was used. An approximate athatysis of the roal as firell was made by the (hemistry low partment. I complete report, eover
ing the operation and results of the tost, has been semt to the Master Merhanic of the Big Four Railroad. The test was directed by Prot. Shoderass. assisted by Mr scherader of the Rail way ferbartment. Stulunt assistants were, bu lling, '2b; T. C. Stressor. -2t; and J. H. smith, 26 .

New equipnent has been purehased and is being installed in the brake shot laboratory that will enable test motors and machinery to be run with current from the Cniversity Power plant. Intil recently the power has been furnished by the Illinois Traction system trom their lines adjacent to the Laboratory. I new under ground lead will be run trom the Power plant carrying 2364 volts, 10 a transformer in the Laboratory, where it will be stepped down to geo volts to run a motor generator set, genesating bon volts direct eurrent. This new system will enable more comflete and etheient tests to be run by the personntl of the Railway Enginepring Derartment.

Architectural

The latulty and the members of the architectural department were greatly ploased with the Beaux Arts Instituto of 1resign judgments of Amil 26 . I: \therefore Keith $\because 2$, received First Mention Plated on his design of "A Concert Ilall." whilw W: C'. Jon+s "2t. and R B. Witehell 2π, receired first mention on the same design. Mr. Krith is the tirst student to receive an award of First Mention Flaced in "Class B Project" since the department has been phrolled in the Ewaux Arts Institute of lesign W. B. Parks '22, receired a serond Medal on his areheologs problem.".A bouis XV Pavilion." In the Class D. analatiques. P'. K. Leth-
 awarded First Mentions. Ju this judgment the department made a won deriul slowing, and the members are to be congratulated upon their wesel lent work.

In the recent sunior Intaux Irts judgmernt of the problem. "A Carillion Tower," Fiast Dtentions were given to Roberson, Sobel. Berner. Hall. Helms. diregg. Kramer. Chance and Jacoheon.

The Van lort Prize in the senor rlass was won by F B. Reberson, $2 b$, and seconel l'rize by llerb sobel, "26. In the junior class (i. A. Keith won the First Prize. The First Prize in pach class is twentyfive doltars in books. While the siecend I'rize is fittorn dollars in books. This is the tirst soar that the juniors hatw beren
 atwated ot the batis of tha Botas SIt Judgutals．

WIt April lith Hh Arehitwothal sio
 the Rickere librars with a talk has Nomman Bmankow，of tha afliow of Gahham．Tudersum，Probst，and White． arehiterts in（hioden．His subjere Was：＂The ghesign and construction of
 wat watedilagly inforestum and wry instrutis．

The Plym F゙\＆llowship was wom this

 pal buildine．＂The tollowshif tan cists of xi2（m）which is lo be uavel by
 war．Mr．Bastman is at puresell emb ployed in tha sether of lork and satw－ Yor，promintm New fork arehileq4s． hue her aquets to leabr for his Funo bith studies betore lone．

Thar American Insifitute ot Are fid teds medal，which is awarded eath yerar to the swaior having the bust racord thring the lour geats，was won by Maly Thye Wortherl．＇2t Miss Wormbur is the seqond womath in the departmotht to feceive lhis medal． 1 he whof the loping Aboria Raff ，ese Wuring her four suats Miss Worthtll matmatimed a echotarshig avorage on （1） 15.5.

The Jost Giraduate lustitute of Smbiterume and Landscape Arehitem． fory，which has its brallugaters at Lakt Forest，Hllinotis，las invited the
 sumblef rourse．The Institule offers a there month cobarse in collaboratia． work betwern atchitedure and lathe stapu arolitocture．「he stuhbits live ath wotk twathore and during the shmmer takr an fextmed trip visit inc．tor the purpase of studying．ther maputathl fities of the middle west．

 trom the I＇nistrsits of lllinots，Ini x＋9sity of Wichoran．Inibersits ot lowat athd Who stat．I hivorsits atr s．lewted to takt this work，the at pointmonts beink mathe on a basis ot
 monts．The holders are provilned with boadel lodgring and sludions，and all

 bitken，upent whith hlo studentio work．

 batd iat deratying that＂spertimes of a Du10］wat1 studs

Elcetrical

 Aptil A ！！ 10 in the chetrital magi－
 and tha woorlshon In kerpiug with the idnas sot by its prederessors this Staw was biggor and belter than evor

An elaborate system of thond lighting thrmed the merth campas inter at great ＂W＇hbe Wiay．＂（one hamber and tweaty exhibits wore prepared by stu－ dents．mevelants，amb mathatambing ＊mmpanios．These were edncational． meresting．and amusing．Anst spere bacular of thess wat＂man matle bohthage whem the discharge of 1．000．0日6 polts arross a nime－Foot gilp W：As showit．

The lirst talking movie arer exlibr itent，attrated a great deal of atten （bons．The promess and apparatus by means of which this was atcomplished Were developed here at the university hy I＇rotessor Tykociner athd Professon К゙unz．

The show was well attended，there being a total of thirty－six huadred per sums．Receipts from the slow werr about seventeen hundred dollars．After ath experses wert paid．there rematnod seven hunctred doblars to be placed in the stubent loan fund．This fund Which has been aceumulated by the proceeds from the E．E．Shows of the past．Bow totals twenty－six humdreal dublars．

This shaw is knowhl all wer tha U＇niterl states and graduates of lllimos say that it setms to hate attrated mores attention to sur bigineering selowal than anything else fothe amb thternational news－reel monluers sent ＂almeramen to Illimois to take pictures of this show．

The splentid sumess of the show Wats slue to the eoveretation of stu－ dents finculty merhants，and the manatacturers，who contributed what evore they rould to the show．The batrd of matagers moter the diretions of Jngram Jontw titl a wondertul piece of work

Civil Engincering

St Hable：Plitr．
 awatided the subater prize for this featr．This prize is witereal almballs by Mr．．I．V schatefer of of（＇hiotago a grathate of the Engineering Collegn． Eath Han compeling for this awatal mast shbmat ath rigindering essaly moll sumbe work be hats betw romatedel with illust maten with phothgraphe athe sherdas．Tht articla which worl the ＂ompetition was wh＂The L．I：Jinck．
son lataling，Ashville，North（＇aror lina＂．This building was a small strow－ tural stme sky－scraper with whith Mr Hendricks was commeeted in a tech－ Hical（eapacity．

1．S．E．
Thr Contral lllinots suction of the
 and © C° F．Hendricks，seniors in the depatment，With an award for sebol arshin abd work in the staulest chat til．This award consists of the ini tiation ree and one years dues ats a Junior member of the A．S．© E．It has been through their efforts that the program of the student chapter has bend sor good this yeat．Nearly every meeting was wedl attemed and the talks were always very interesting as well as instructiver．Now is a gatal fime for the freshmen，sophomoms and juniors to get binel br with the stmont rhapter and help make next year＇s program as sureessful as the muetings have been this year．Join now！

Sulls

Professur Vawler recently attronded a metring of the Ameriath Railway Engineers Assokiaton in（hisago．Mr Vawter is a member of the rommitter on＂Roathays＂．

Professor T．In，Myhrea has rementhy presented an article on＂Hond in Re＂ intormed Condrete＂before the Western soriety of Enginerers．This article Was published in the January issue of the Western Suriety＇s Journal．
l＇rofessor Wilson made a trif to Madison．Wisconsin，to carry on somm experiments in the laboratory of for estry
d．I）Voorltees＇2hi，alma A．Master san 26 ，Were the winmors of the 1 ．G baker prize this year wimning first and sewnel respertively．The prize is awarded annually to the two best ali aromal students of the department by the bate 1 o Baker，Professor Emer itus of Civis Engineering．

General

The fitneral Engincering Surioty beld a mevting and election of otheres in（he Inion lailaling on March 10 Thu following otfirers were chosen for He stanhl semester：president（．．It Kreider．＇27：vice presidicht，1．N．Lin
 thestures．H．J．Neberk，＇es

H．C．Stearns，retiring presiblent． sonke of the plans for the future and of the work which the（ieneral Engi－ moring Sociats has beture it．It was dended that the meetings should be

[^13]
COLLEGE NOTES

A. I. E.E.

The first meeting of the school year was a joint meeting of A. 1. E. E. and the Fi. E. Society. It this merting Professor E. H. Paine, head of the department of electrical engineering. presfelted a praper entitled. "Recent ber velopments in the Public retility Field." In this paler, Professor Paino discusced the contrntional designs of cables used in the wast lar the transmission of electrical power through moderground cables, the special problems which arise in the design of cables for high roltages, and gave i x panations of somit of the features of the eables tor 133.000 voll three phase curent which are soon to be installed in Chicago.

The second meeting of the years Was also a foint mepting with the E . E. Socioty. The address at this mete ing was by Mr. W. D. Jurgin, the director of public redations for the Commonwealth Edison Comprany ol ('hicago, amb was entitled, "A Mussage from Herberr Hoover." Ilr. Durgin Was formorly associattd with Mr. Hoowre in Washington, and in his baper he told of the important work done by Ar. Hoover's department in dotormining the factors t+mding to ineffriency and waste in important in. dustries . Many diagrams and eurves were shown to illustrate hte great savings have alroady been made in mally of the cases which have bewn

The third metting of the year, at which Atr. R. b. Ibohtry, consulting
 pany at schernectady, New lork, spokt. was held jointly with the Physies Colloquium, At this mereting Mr. Woherty sfoke on the subject, ".hochanical Fores Between Filectric ('imuits." In his talk, hr outlinud the method ol analysis by which it was possible to derbmint variations in mechanical lorcas existing betwo.n olectrical circuits during ther cyedie change's of curront The amalysis wats sutherently genwral (th include the eir. cuits on rotating machinery as well as circuits that ates not connected with moving maclinery.

Notes

Several members of the College of Enginworing latoulty attended the mextings of the American Concrete Institute which were held in the llotel Sherman. Chicago on the 21th, esth alld Dtith of February.

I paper "utither "Formulas for the Wrsigen of Rectangular F'loor slabs and supporting girdurs," was read by 1'rot, 11, 31. Westergard of the defartmont of theoretical and appliod me"hanios. The others who attended the maeting were: Prot. A. N. Talbot, head of the department of theoretical and aphlied mechanies; Plof. M. 1. Finger, Brof. R. L. Brown, Prof. F. E. Richart. L. J. Larson, and A. Brandtzat of the department of theoretioal and atilied mechanies; and prot T . 1 . Hshea of the department of civil engitherering.

Prot. II. F. Hoore, restareh prolessor in the department of theoretical and applied mochanics, recently returned to the campus after making at spaking and business tour through the eatstern states. While on his tour he spoke belore the Anerican society for steel 'lreating in syrachso and Schenectady, Now lork, and attended a meetimg of the committow of mechanital testing of the American Sten Troating Association in Phila. delphia.

1'rot. J T. Tykuciner, of the depart. bowt of wettical enginerring, read at paprer +htilled *shomt Wase Transmithers and Anternatr Aoblels" at a rocent mexting of the Chicage setetion ot the Institute ol Radio Engineers which Was beld in the hatl of the Wiesternt sompety of binginewts in the Alonad nowk lailding. Chiatas. Prof. Tykn. -indre will be assistrat by L. I' datmer of the department whe elotral enginerembe in mestonting anothor baper Wh a 11 Wh Watemetry

Prot' Hardy frosis of tha depart

 "ntorend conctete. spreifications.

Which was held at the Bureatu of standards in Washington, I.C. While l'rolessor fross was in the wast. het also attonded a mationg of a commat. fee on strus-lural Engineering at Vale 19niversity.

Prof. A. N. Tabloot, head of the deparmment of theoretical and appliod mechanics was recently honored by the Illinois society of Enginewts by Hection to honorary membershite in that organization. Prof. Tadbot, who is ond of the three living charter momforss, wats secretary of the soriety for several yars 'The oller living char tor members are C. A. Elliost 7 T. Washingon, I). C.. and A. 11. Bell. Bloomington.

Prof. Fi. IS. Paine, head of the dre
 Prof' (). . I. I'utwiler of the depart metht of merhanical theinowring, and Pron. Dorgan lirooks of the depart ment of eleqerical enginefring attend - d the muting of the Milwest Fown Conlirrence whoh was hold in Chitages in Janluary.

Prol. A. (C. Callen, lead of the department of mining anginerving, hats also recently returned (o) the campus after a visit ju Now Yotk whater ho spoke at a mewting of the American Institutw of Mining athe Motallurgial lenginters.
brof. (d. A Goodnaough of the dre partment of mochanical tonginewting gave a series of four feetures at the Shefledd selows of Science at Yale fniversity during the third wetk of April.

Two of his letures were on the subjuat of ehemiat equilibrium and the blate two dealt with the effert of Water partioles on the flow of steam in turbine meazhes.
fle alsel spert part of the werek at the (acheral Photria' Company plant at Acholewtaly, New York. Prof. Coust nough is a consulting enginear for the (xmp)any

St at dinncr merting of the membres of the Fratoktin lustitute held in the Bollevaestratiord botel. Ihaladelphial. Eat. I'rof. 11. F. Abote of the laiver sity kive a talk on the fatigute of metats.

Heath Milo S. Ketchum of the College of Enemberting, Irot. (*. (x. Nit liams. lead of the department of rivil engtneering and brot. A. N. Talbot, head of the department of theoretiata and applied moehatias represented the L'niversity at the ambual spring meeting of the American society of eivil Enginerts which was held April 11.16 in Kiansin City. Missouri.
prod kesford Newemmb of the tepartment of arrhiterture and also cond frolling atrelited for the the Assoriated 'Tile Manufacturers was in l'itts. hurgh. Pi., the week end of Mareh 27th where te held a consultation on the associatton's parilinn and exhibifion at the Sesqui-e entennial Exposi fion which is to be held next sinmmor in Pooria.

Prof. F. R. Watson of the depart ment of physics went to chicage the first work in Apria to assist in the designnge of the acoustics for the new stevens Hotel there.

Prof. (. T. Kinipp of the department of physirs has been appointed by tho lllinois State Arademy of Seience as their representative in the Conneil of the Ameriown Asseriation for the Advabcement of secen:e. Il, has also been appointed ats representative in the section committee of the assoriat tion for section Is for this yedr.
(' F': H1 Hdrick '2ti and F. (. Braty have beed eleoted to student momber slop in the Amerixan socity of ('ivil Hominerers.

Aetivity in tha stado ht rhapter and high shoharship is tho basis on which the society makes these yearly a waths.

Hendrick is president of the student branch at the loniversity this semest or atul is also assoriatte editor of the Terhnograph. Bray was president of the stumbent waptor last semestor ant has alsa surved at president of the angiataring sturlent commeil.

Illinois Clay Manufacturers Association Comsention

Fha fortyerighth collvention of the
 tion at the loniversity "pened April
a:3th with at lameheon at the fatwo sity ('luh).

1'rof. 11. 11. . Iorian, assistant dean of the college of baginering delivered the opening address. In his talk he toll of the resedreh work being done in the Cobllage of bingineering. Jrot. ('. W. Parmelee, head of the depart. thont of coramios, and Prof. R. K. llursh of the department of reramies also spoke.

The convention, whies inelnded members from the fllimois laving Brick Asseriation, visited the Wiarm Air Heating Research Residence and the Fatigue of Shetats Jeseareh Latir. oratorits during the tirst afternoon it was in session.

On the second day of the convern fion. wfirers for the following year wore elcoted. John M. Mamer, Chitago. wats clected mesident; John M. Kleymeyer, Evansville, Indiana, vice president; and Prof. C. W. Parmelee. head of the department of reramios, se"potarytreasurer.

Experiment Station

Bulletin No. 151, "An Investigation of the Transluceney of Porcelains." by ("ullon W: Patmoler and Pierer W' Ketchum. This bulletin gives a rebort of that investigations made by the Engineering Experimont Station of the Cliniorsity of llimois for the purperse of studying the causes of translucency and for the development on an aceurate method for the determination of absolute translucuncies in poreslain bodias.

Somo of the conclusions reathed as the result of measuring over four hundred speremens hy means of various methods ato as follows:
(i) Transbucency is not inversoly moportional to the thickness of tha sperimu'n.
(:) The relation botwern transluroury and thicknoss is not a linear one ats was formorly supposed, but an exponential one.
(3) In bodies composed of chay. lelld spar, and tlint. those with the highest feldspar content have the highest translucency amo those with the high-- st elay rontent the least
(1) himerease of limining to mperature sives incteas of transhecency.
(5) Fine grinding of hodies givers a bery strihing increatse in translue ney al fho tomparatures usid.

If was ferund. howorer that variation among individual streimens of the same composition is so large that it is noressary to takt the mean results
from several specimens in order to obtain irustworthy values of transluceruey.

E. E. Show

The Electrical Enginecring Show closid April foth after a highly successtiul threeday run. The show was held in the Electrical Engineering laboratory, the University Wood shop, and the liym Annex. The exteriors of the buildings in which the show was held wor illuminated by batteries of powerlul thond lights, and Burvill Avenue. on which most of the buitdings are locatod, was made as light as day by the tomporary addition of many bright street lights.
some of the features of the show Which at racted considerable attrntion Werr, the taking movies, the manmade hightning, and the model radio station.

A large number of out-of-town utility rompanies and electrical concerns leased booths in the Gym Ammex for the display of thrir products. The Hlinois Traction System had an at. tractive whibit on a spur of the short line tracks consisting of a train of spueial cars pulted by one of theit new electric locomotives.

The money earned liy the presentation of the E. E. Show is to be added to a fund. which is being saved by the Electrital Enginerring Society, for the establishment of a stubent loan fund. When the savings reach $\$ 5.000$ they will be furned over (1) the University for the heginning of the fund.

Synton

A n+w suciety bearing the name of "Synton" has been wrganized on the rampus. Those pligible ate radio amatrurs or men with an equivatent knowledgn of radio. The officers for the semester are: 1). H. Vance 27 , President; J. Franks 27 . Secretary; R. C. Ballard ' 27 , Vice President; P. H Tartak 27 , Treasurer. The charter members are F . Morf ${ }^{2}$ 6, P. 11. Tartak ${ }^{2} 27$, R. J. Sclomon ${ }^{2} 7$, T. Woodrich ${ }^{2} 7$, J. Franks ${ }^{2} 27$, D. 11. Sance ㅇ, R C. Ballard $27, F$. Tarborsky シ27. (;. R. Green '2s. E. O. Krueger 27, 11. E. Goldenberg '27, I. Ross 27.

The purpose of the socinty is to get the radio amateurs together in order to promote the interest of radio at mlinuts. The plans for the future inclute severral talks by some well known authorities on radio.

Fraternity Activities

Eta Kappa Nu

soon after the nerveracking finals breame a thing of the past and the second semester had been started on its course, Eta Kappa Nu began looking for pledges. After a careful investigation of the senior and junior electrical engineering classes, the 10 . Jowing men were picked to wrar the blue and scarlet pledge ribhon: $H \mathrm{E}$. Keneipp, '27; G. W'. Puterson, 27 ; J. F. Jirousek, ${ }^{2} 7$; R, E. Morrison, 27 ; C. G. Ketel, ${ }^{2} 7$, and A. II. Ihmmer, -26. An incloer informal was lowle April 22 and the outdoor informal on April 29. The formal initiation ban. quet was given May 6 at the UrbanaLineoln hotel. Initiation activitios had to be postroned to this late date bes cause of the Efectrical Engineering Show, to whieh both the members and pledges gave their whole hearted support.

Pi Tau Sigma

For the seconel semester Pi Tau sigma has chosen two seniors and sis juniors. The seniors chosen are R. A. scepe and L. H Clarkson. Tho juniors atte B. Pruden. W. R. Irwin, H. V. Slexander, G. B. suphle, S. () Janson, and F. IV: Johnson

Prof. A. P. Kratz will b toastmaster at the format initiation to be held Tursday wening, Nay 4 at the Ir-bana-Lincoln. Prolessor G , S. Good "nough and 1 . O. Leutwiler will sprak as will each intiate.

The lact that Pi Tau Sigma is fast beroming reeognized is evidenced by the lact that chapters have bewn or ganized at three colleges during the past yrale. At present there ale two more potitions for chapters moder eonsideration.

Phi Alpha Lambda

Phi Slpha Lambda, honorary general engintering fratwinty, rosumad activitirg this s'mester by giving a banquel at the Phi kappa houst on March 11.

A large nomber of getheral engineris turned out and enjosted an exerellent dinnor which was followed by steveral short spepeches.

Five men were pledeed in the soce ond semmester: (i. E B+everly. '2f; FO,
 Todd, '2s; and K. H. Lanton. 르.

Na San

Mu satn. honorary Munieipal and Sinatary Engineering fraternity hats in the last semester added three new namber's to its organization. These are (i. H. Turner 28. R. B. Plummer '2s. and (i, L. DeMent 2 - An inform. al initiation was hedd at the Cham-pagn-l'rbana Sewage Treatment plant. This was later followed by the formal initiation at the Tan Delta Tau house and the bamper at the frbana-Lincoln hotel. H. A. V'agthorg '2f. President, was toastmaster and gate the addrass of welonme which was followed by in teresting talks on "aly Most Interesting Experjente" hy Itr. A. M. Buswell. brotessor br. R. Fleming, and Protesson 31. L. Enger.

On April $\mathrm{A}, 1926$, an elertion of of ticers was held at whieh were uleeted. I. ('. Sager '2t, president. C. L. Hopper $\quad 27$, vite-president and treasurer, H. B. Thummer '2s, secretary and (3. H. Turner 'ex, historian.

Theta Tau

'Thetat Tan, under a new reximu of Ohlocers, is holding its rank long estal thehed, the only strittly professional fraternity in the engineering world. The offecers. who were clected in Jannary. are 11. M. Matsen, 2- Jegent: C. IS Supple, :2T, Vire Iogent: II. W.

 \because. Corresponting Serretary.

Thetal Tan holds its moetiogs ther tirst and lairel Thursdays of emeh month 'The tirst moteting of rath month is set aside for the transatition of the chapter's husinests, white the second mooting is one of at stricisy sorial mathre. Jn recent sorial meet. ings. 'rlieta Tatu hias been host to many interesting and entertaining glessts.

Kappa thapter of Theta Tan recent ly received at visit fom lrof. Holmath. of the L'uiversity of Blunteseta. who came as an inspector from thr Exach
 - Wapter to be in execolent remblition in all considerations.

Sa explanation of her poliey. Thatat Tan seltets her mend for what they are ['nlike other ongineering fraternitios. 'Ihetal Tan has no so holarshiprequire ments. althomgh a man's avorage is enthsidered to some dighere all estimat tion of his worth. Thet: Tath ment
are primarily selected for their prominenore in attivities and thetir seriat bility.

The regular semi-anmual initiation bancuet, for this semester was beld Nay 2 , at the I rbana-Lincoln llotel. Ster ats fight course dimmer, H. W. Mr coy '27 presided, as toastmaster. 11. 31. Matsen. '2t weleomed the newly initiated men, the response to whied Wats given by L. S. Voltz. 27. sperbes were made by profossors Vawter, King, Lentwiler, and Mar. shall Theta Tall is pleitsed to an nonnte her now members:

1. S. Voltz, '27; 11 V', Alexamber,
 - 2 : R. E. Morrison, 27: (i. F. l'auley, '27; (; H. Kenyon. 'es; I'. R. Bush.
 '2s; R. B. Sawtell, '2s; E. W Gifford. "2n; (i. W. Janmay, '2s.

Keramos

Koramos Fraternity was ortanizod at the I'niversity of fllinois in 1955 by (oramie binginterine students with a viow to entouraging scholaship, practicability and sociability among the students of their department. Jundors mooting erptain scholastice requiremellts ats well ds the two homor sophomores are clisible for mexmber ship.

The lratornity was imomporated in 1925 under the laws of that stater of ththois. The same yar a "hapler was instafted all Hho U'niversity. It is tho phan to expatad lathere ats som as the
 become sutficiently large to warrant the instablation of chaphers.

The tollowing man were racelaty intiatad.

> Honarians

> T. N. Mr Vay

Sellotis
に. F ('reory 11 K゙leerup
R. (a. Firman liohert lat\%

VF Hollser W. N. Nobly.
() L. Hammond 11 bi. Irimm
(c. IV I'lame Re 1). Rutal
B. T. Wherler
'llat present officers of the wraniza fiob are:

1. I) Fietteralt. Fresitablat
2. WV. Horgan. V'ine tresident

Fi. A: Mills, Sieretary Treasumer (Fontinutal on l'u!! ? ? ?)

Contemporary Engineering News

Gas heating cheaper than coal for insulated homes.

This winter at serra room house. heathed by gas has attrated thomsathes of Chicaky peoplr, who hate berell intratestad by the saving in forl bills whint it maknes possibles. Thw housu is insulated with a patented matrerial Which afcomats for the eonserlation of thar lacat, making possiblet at saving of from 3ut to 5h frement in the lat bill "boll when gas is usud, imsteath of roal. Thn insulatille matorial foms in bags. like semont, and is mixed with wathe. pormed down inside the walls, and atmwed to sta. It hatdens into a sponerlikr forous mass. filled with millions (1) li:ts ait \{olls. The thutside walls att covered with sheatilig amt shingles, and the inside with a fireproof eypsum wallboard. The spatw betworn the root ratters is tilled with the insulation the same ats the sid* walls, and there is a two inch layer of the material bencath the lowtr flour 10) kerp tha thoor warm and the hastmint cool.

The house is locatod in onn of cha"amos lorest prestrves. where the temperathres are sureral degrews low wh than in the crowded city distrixts. In at horough test made this vintol, ata omatie thermosiatic control maintained a constant temperature of 71
 and 60 dugrews during the night. With gats selling at is cents a homand rubie towt the tuel cost from oretobers 1 to Fwhuary 1 was $\$ 111$. with ath "slimated anst for the whole winter of slfo. Gas "nginvers claim that it Would hasw cosi \$3.5 morr to hat the houses hate it not bewth insulated

The intrresting batt of the test wats that that insulation made it possible to heat by gas at a lower cost than that of wod tor the ordmary houst. There Was no furnate teutling, ashes ditt, or semot. Fuel bins were eliminated and the Hoor of the basement waxell and usta for daturing. The gis boiber ocouphed only a small amoum ol spate Tho misinters estimalled that (1) heat an uninsulated hersse of the samb sizu. 2!a: f11 fl.. with fix. romms downetars and two upstaise would raquire a boilut wihl a ratting of 1150

 Latage of watri latatre with a ratine
(1) :2.5 in. t and a direct radiatam
 fonlese at a fonstamt tomperallum of Fo degrees. Thu insulation proved so sucressful that show remathed on the rouf for days. until melted off by the sun. While the roofs of nearby houses Wrop eloated by the heat loakage.

An insulated house will mere than Wey the cost of the insulation through fuel satred in the first three years, ace cording to a report ol the Iniled States hureau of Industrial lieseareh 1heat, the report states, leaks homugh lumbert. brick, stont and plastrr just as it does through glass. thongh not quitw so last. while the lwakage through the spacial insulating material was almost zero. The cost of thas in sulation was $\$ 185$, and apmoximately that same amount was saved at the start on the cost of the heating plant, since it was possible to install a smaller plant than would have betn itw quitad to $\mathrm{ki}+\mathrm{j}$ an uninsulated house warm.

Use of Gas in Industry Increasing

That gats tuel call be used extmo sively to take the place ol stema for commercial and industrial drying is |rewly predieted by futl enginters who are studyine new beating methods.

Thanks to the use of rity gas. Laper manufacturers have finally eaugh up with the demand for finished paper cansed by the enormous inctrase in advertising circulars and other printod matter of a similar nature. The installation of gas-fired dryurs has res sulted in a lower cost of finishing baprex. as welt as increased production, according to enginers who have iw ported thatis findiags to the American lias Association.

When bapetr is timished, in order to Live it a lustrous surtact, a thin eoating of varnish is apllifd, whirh was lormirly drited by stedm. The new mothod drens the varnish by the radiation of gas heat reflefted from the sides of a box into the dryer propers. 11 has also bern foumb that a mort. mitorm result is thus obtained.

Anothe I "ample of the lest of gats in fulustry is fumishnd by a sas ! tur Hatt fosstasine all the rontrol adran-

 a thati manulacturing connern in Now Engand The gas industry has bewn

Working to this thd for some limer and hat doweloped similar turnacts for other industrits on a scalt which, it is predicord, will effect economis's it partically every manutacturing mocosss in which heat is used. In caning ehatiss, a continuous, uniform, but small amount of stram is repuired for softening the glue by which the strips ot cant are attached to each others. As there was no equipment on the market which exactly filled the requirements, the gas company was apperaled to for het)

Gats enginters workel out a stheme by which a gas-fired steam boiler "quipped with automatic water lowl and a low water cutoff was desighed to do the work. It is reported that this installation works with even less trouble and att+ntion than an electric motor, becallse there are no switches and no oiling is necessary.

WGY International
 Intercollegiate Night

sessions ol a collegiate Ladagu of Nations werp broadeast recently by Why when natives of twenty-ont countries, represunting sevrnty-five universitits, a total of a thousand men. sang and cheered into the microphons of the schenectady station. The second ammal International Intercollegiafe Night of the Edison Club was not all college theers, however: The proerams whrt produced and broadcast on twe suctrssive saturday evenings. Perhaps in no other city could as many college men, representing as mans colleges and countrips be as srmbled for a similar affair. With very tew rxeptions, the men arm engineers or student enginters of the bene Fral Eltetric Company. All tote slict rulus and most of them wear that amhot of scholarship, the Tan Beta li K+y

W'GY used its ā kilowatt transmitter for the octasion and it is reasonable to dssume that these progtams of many nationalities were burled beyond thu botwey lines of the [aited states. Trybyams came from all parts of the country, usually from alumni who thrilled to the songs and cheers of their follegt days. Many of the colHege shmes, as well ats the theers, were fimbiary to radio listeners but othes. songs, particularly those by lhw for-rign-graduate bodies were new and of
special interest．
One of the notaltirs of the secomsl program was the offering of six Chmese pheinpers，graduates of four Chinese rolleges and two Ameriban universitites．Thes sang native college songs atht cheered in six different Chinese dialects．A teature was a mu sical number on a Chintse instrument that looks like a wathedral，fothe tikt a miniature organ，（bering about twetve inches long，and sounds like a Ifute，It is called a＂sen＂．The Bril－ ish Empire group made up of men from Englame，seothand．Ireland，（＂an－ ada，and south Africa，Aistralia， India，and New Yoaland，gave an ex ceptionally fint program of singine The Indians＇college song was at rom bination of song and sell．＇Twelte craduatos of as many（iuman lonion sities reprotured a might in it（ierman tratornits．Thes leader anmouncos ＂ath now somg by raphing on th．${ }^{2}$ table with his sword．A toast lol－ low ed eath song athe appoximata b＋r－r was aonsumed in stein quantitios． A featmre was tha seandinavian mor glam produred by graduates of Nor Wegian and Swodish dechnical sehools The songs of this group produced the heraviest volume of fan applanse．The Edison Cluh quartet and the club or chestra took part in both programs but the lutay work，the ilcoompani mollt to pight hours of song．Wats ad miably providen by＂Troc＂Femalles loivelsity of ktntucks．

New Magneto Drive for Electric Locomotive Tachometer

A buw rorm of magneto drive has beed recerntly developed by the Elas－ trie Tachometer（＇ompany of Phila delphia in conjunction with tho Wisat fing house Electrir and Manufacturing （＇ompany for the applicalion of the trice sperd imparators to locomorives fhis new drive permits the installa tion of an enertric tachombter outht in al fow minutts time，ant pliminates the use of special g＋ars，pulless or hellis．

The outstanding lieature of the new design is the melhod of drivine the magneto trom the loenmotive whetel and that fart that this spend indienter oprates indeperdent of all other ap paratus whtre as provious dexighs Were essentially attarchmelots for us with frain contron．It has formetrly bern heeessary to use special gears or a beet for this type of drive．The men drive eliminates the use of special at tebemonts and also timinates the pos sibility of lost motion in a sliphimpe
bett It ean be attached tos any loce ＇motive by use of ordinar！hand tools． No＂extras＂arre required for the in slallation．The outtit is completr it itseli．

Ths maghete is mounter（with shalt vertical on the frameworli ahose or adjacernt of ont of the lexal fing wheres on the loconotive A small gear bo：is altached to the rimb of the lowemotive axta，outside of the Wheed only harese small tapped holses In the axle arw necessary for momat－ ine d short lerneth of flexible shatt ＂onnewts the getar box to the magneto The erar box comtains a pair of bexol fetars．Ont of these is attached to the loromotive axte The other is monuted in a housing which is freq on reroluw around the birst beref getre as a center The thexible shaft is at lached to the second bevel exat ant mownts atelual fotation of the hous ing．although a small amount of mor tion is permissible．In attion，the housing rematins stationary and the getres revolve transmitting motion through an angle of ninety drgipes to lhes llexihle shatt and magneto．This ronstruetion reduces the thansmission problem to its simplest form and takes cale of all morempnts of the locomos tive wheths with respetet to the loco motise framo．It allows the magneto （1）be rigidly mometed，as its heity renstruetion rendmires，and at the same timb provides a positive dyjue whirh is moderement of varions whtel posi tiens．

The develogmont of this drive is a deribled lorwart step in the desigh of lowomotive spered imatiotors．It solves at the same time the prohlems of eats installation，interehamerability，and in dependent oneralion．It eliminatms the foressity ot an pogillery gutssing as to wheller of mot he is going at the spend neqe⿻sesary to knetp on selacflate．In addition 10 this it alsu hats been atmoans of savine $14+1$ dar
 judge allid regulate the sperd of ：atl ＇ngin＂whell keing up it erade ：and throw opert the throtht soon propush so that it will ber moneresary fo：ans ＂xtra effort lo be＊xtended to makt th＂．eradt．

Future of the Oil－Electric

Locomotive

 mer chatimen of the lout i whon＇tll of L い 「＇or
 fachor in industrial life throughout the womld beday su much in molls mituls
so important and forentially so be me fiefal in its pesults as weonomy in for duttixt＋ffort．This is true whether it be individual of collective ofloll
 Thay alld devolop the most wommont usi of his facultion and his timo 10 10wer the rombles dutjes that hes $\%$ （allad upon to perform；governmentis
 ＂ath wnly he bemetiedent is a constant
 res：t obtains：the Chiof Fxere ive in amy great mamanstrative capacits tand onby ferservi his health，strenglis and？
 thal reomomy of his effort：mennlat turing indusiries can only be protit able ant survive to the degye Ihat traw sedatitife weonomy powneatura all the－if oferalions．
tt is a wrll－known axiom that rapi tal is created only out of savings and it is inserasingls true that profits and prosprets are thendent unon at roth－ tilnous development of tecommay in froductive fifort，whether it ber in the unit of mampower，of mathine worli or of alministration．
＂There is berlats no other single fitld in whirl this prineiple is as vital as in the production ot power．super． power organization has berome a topit of atmose daty comment in the publir pross and grat strides towats its arcomplishmernt hate alyedad been matle．The vision and combage of man bring thens things 10 pass，but beo nomic law and mectessity is the monder． lyine forer whirh spars men to inven fion and atmomplishmment and gives the owners of eapital the contidenere to fomplos it in sur developments
＂Therer is partapis no field in the use of purwer ats important to the lifes athl progress of humanity as fhe puwar－mblested in transportation，and of all lorms of transportation the ons at mosi fital importance in the Chated
 tury and its industrial development．is railroad transportation．There is，
 where＂conenny in its modurlon is of such vital impmetance to the whol nation as eqonoms in ratroad power．
＂Wherer is no ablerg body of men in the Iniled states than the trathed railtoad＂xtequives who in their sers ＋ral departments have sperialized in
 info lransportation operations and thoir ateomplishments ate withessed by mot only the most extensive rat forad sustems in the womb，but by

$x-7$ 而

1). (. Dumlap, e.e ith of New orleans has atequired cousiderable. fame as a vivil enginee: He has fone a great deal
 of work as a rail. road mginem in combettion with Which he mader sey eral well kncwn in ventions including the continnous rail joint now uxet on all lines. If a alsu invented the Hum(at) (combint.d manhole and catcl:basin, it seltereaning device for cits sewer systems. Furing the World Wiar loe stadied engineering frohtems allul stopl (ronstruction and designed various towners, switches, pte. for the monorail system of railways. He spent threq ywars as chiel engineer of the south side Elevated Raihroad of ('hicugo and three more in charge of building 1 he l)rainage Canal H had charge of the work of reconstructing a line over the summit of the Rocks Dountains for the Union Pacific Combany, made many railroad surveys and reports, and represented a number of Cliosage contractors on deep fomudations for steel buildings.

Just after his graduation. he began working on railroad surreys, his firi one in in 1hitifor the Chieago, lekin, and soubwestern, then the Quincy and Mason City Railway

In 1579 hw was transit man and com sthation remginter for the 'hicago and Northwestern Railway, his first work beting lir milez from Eyota to Ptain view, Minmesota. Between 1479 and 1!n) hr was with the Chicago athe Northwestrm, the Chicago. Milwat kow and Si. Paul, and the fuion foreffe as lewating and ronstruction -ngine. r.
1). Marsh, e.t. '04, is established as at risil rmgineer and licensed surveror in Los tngeles. Ilis activity is chiefIf rentered in the making of topeEraphical mapls for Iublic utilitits. arehiterts, real estafe operators, t.te. 11, hats dont monside rabthe work of this kind in 1] 1 . state of California

H. A. Brown

Hugh dle:ander Brown, e.e., '11 was recently married to Carre Isabul Nevdham '12 of Lrbana. He is well known in electrical ringintering cirches and is an assistant professor of elee. trical engintering at the thiversity In 1911. Protessor Brown received his bachelor's degree from the Iniversity of Illinois and for the next two years was engaged in the service of the (ieneral Electric Company and the Illinois Traction Aystem He received the degree of master of science from the I'niversity and the professional degree of electrical enginter in 1920.
llis activities as a teacher began. with a teachers course with the Westinghouse Eltctric and Manulacturing fomprany which has been followed bs a wide and varied traching experi nhee. luring part of 1919 Profensor Brown taught physies and electrical - ngenerring at Ottawat Colltge in Ot. tawa, Lansas. Sinee hen he has spent lwo years with the Thiversily of Arkansas, one year with Pemn Slate Inipersity, and tive yゃars with the Iniversity of fllinois. He is particularly well known for his researeh work in which hu deveroperd at nuw
allalli rapor radio tube with Proft ssor © T. Knipp and a non carrier ware systrm of radio telephone transmis. sion with C. N. Keentr.

Professor Brown is a member of Lappa Delta Rho, Sigma Xi, Epsilom Chi, and Eta Ǩappa Nu.

Als. Brown received the degrees of bachelor of arts from the lniversity of lllinois in 1912 and attended the school of Languages of Middlebury College in 1922. She was a teacher ol French, Latin, and piano in the Urbana Iligh Schcol betore her man riage.
. N. Gonsior, c.e. '14, is manager of the Virginia and Rialto theaters in Champaign. For two and a half years alter his graduation he was employed by the Illinois Eell Telephone Com pany. Following this be spent two yoars in the World War and bentwo and a half years with the Sinclair Res. fining Company atter which he anfered the show business.

E. E. Burmeitt
E. E. Darrett. c.e., 93 , is a candidate for the board of trustees of the Iniversity. He has a long list of acfivities among which are president of the Jlumni Association in 1922 and 1423, member of the stadium Exerutives Committee, president of Alelphir

1)on "t think that a college "sing" is the only place for close harmony. The clectrical communication industry, too, has applied the big idea.

Four men put their heads together in the research laboratory-and there evolves a new and scientifically accurate basis for the measmrement of speech and hearing.

Construction engineers, whose pole lines stride across conntry, work hand in hand with purchasing engineers who look forty years ahead for the pole supply of the fiture.

In the factory, engineers and craftsmen together develop new processes and almostluman machines to increase prodnction and effect economies.

Combinel ability-that's the thing! In the words of the song. "along pull, a strong pull, and we"ll all pull together."

Western Electric Company

Litreary sompay masident of his - lase and busimess mamamer of the Ter-hasegraph. Itre is fresident of the Robrems and seltalofor comptans of

 for jumpormments in soall hatuding小川ices

M. 1. TueEs
M...J. Trats, er, "OT, is prosidenl of lla. Board of Trustees of the Eniver sity and hass beren a m+mber of this beard sinco 1929. la private life he is vierepresident of the Chitago Bridge and lron Wharks and a member of sev"ral prot+ssional and social organiza fions. Mr: Trenes is one of the most ontstanding alumni of the L'niversity of tllinois for the work he has dome for that institution sime his gradua1ion. In 1911 he rexeived the degres of ('E. lor a thesis on the "llesign of Flvated Stera Tanks."
\therefore Wialker, e.t' 'l2, hats recrutly benn appointed head of the bewly orzanized chgintering and researeh division of the National sand abd (aravel Issoociation Hu has beren do ing concrete resurch for tha last nist gears umber the direction ol I) A. Abrames at llat lawis lastilute at Chi (:ate. In 192: he conducted some forid

 wh concrepts betar his name as athor or robathore buriner his sublent days. In was an assistant for frof A x Tiallet.
(• 1. Fddy, ra' 'In , bolessor of railwat - heginterine at the Cast Selaon
 bewn appointad athletic mantager of that institutions. Ht hats bern acelive int lat intorest of ('ase athlutions tar

How past lew soars durimg whith times lee has hate chatge of the freshman (amp and the ('ase Club. Hut rapore serthed the sehool at that ohio confortheo mowtinks and had ehatge of elisibility guestions.
IV. L. Abbot1. UP. isl, recently as sumed the duties of his new ollise as 1r+sident of t to
 American soriery of Mechanical Enkinters This is his stecond position of this nature ats he was previonsly president of the American Institute of Eleactrical Enginters. Mr. Dbbort has always bern closely commected with electric lighting work. and is an authorits on the subject of lighting. St prespent he is chief opreating enginew. of the Commonweath Edison Company of Clicago.

Contemporary Engineering News

(1'ontimued from Patue 15i)
transportation costs and charges per ton mile-the lowest in the world.
"For a number of years past much lats bern lesedrd in that harine field of a $11+\mathrm{w}$ form of power which has beth rapidly growing and supplanting the fommer types of rewiphocating and tho later typus of turbine steam engines. I refer fo the well known liestel type ol oil burning engine.
'In still more rectul times, within only the past few years, invention has made it possible to build the oil-huming engine of much lighter wright per horse power and therebory of tese cost than formerly, and through the skiil, phergy, invention and conage of three associated companits this principle hats now been suecessfully applied in the develonment of what is known as

"It is remarkable how quitely this development took place and that those concorned in and responsible for it sata mothing about it and made no prodictions for it until they were prepatred to put upon the rails for mace tieal demonstration the oiletretrie Iocomorive.
"It is nut my purpose and 1 am not qualified to mater into any terbonical daseription of this labrest product of invention and sejence. Ub to tha. limit of size and power so fiar pro dued femonstrations hate already bewn giverll which have so convinced
the best experts in malroad operation of its eronomy and usefulness hor ece lain fith s and character of rmploy ment lhat numbers of these rengines have already beren ordured. It is atways roady to go, no time is rew quitud to be lost in fatiling un slown. no waste in blowing ott or in banking fires. If its development in higher bower mils than at yol producerd gises equally favorable results for long distance hauls, it will challonge Hfe attention of railroad optrating men wherever tio steam locomotive is now the main drpendence
"If, as 1 belfeve, the dratught eflicien. ry of this fagine ${ }^{1+4}+\mathrm{b}$ unit cost of turd pur ton moved preatly exereds that of the steam locomotive. it would serem as it the oilereltectric engint had the potential futur of supplanting the present type of stram locomotive as fast as those weat out or as the rate roads could afforit to serap them.
"Thure is, howner, on the other site of this question an important consideration which may place some limitation upon the future of this inVention. That entustion is the quantity and permanency of the stupply of !usl oil if a vast and rapid increase in the the of the oiletectric engine should phsue, and the wffert upon the wien of ons of suth increased demand Judging from recent reports in the public press experts differ vastly in their restimates of the oil supply some insist that it is capable of great expansion and of supplying all possibe neveds for grenerations $t o$ come. Others state that in a few youts the available quantilies will begin to deCline rapidly. With the enterprise of oil prospectors and operators it suems lair to assume that they will be discovering and devtloping new sourcos of supply as rapilly as it will be muchanically possible for the developers of the oilerestric engine to product them in sufficient quantities to seri busly affect the oil situation.
"Th+ whole transportation world will watch the exploits of the oilecter tric locomotive within the nest rew years. Wiblout doubt it is a great contribution and has come to stas. Timp muly can twll wherbre it will brome paramount."

James: "see that woman with the" difty face daddy ?"

Father: "why, James her face is not dirty. shes that way all ovor."

James: "Ger Pa, sou know everyHing,."

In 1803, the flat boat carried du Pont pouder to setritrs along the Ohio.

Chemical control is superseding rule-ofthumb methods in industry. When the first du Pont powder was made nearly a century and a quarter ago-chemistry was not an exact science.
Today, the chemical engineer with the vast resources of modern science at his disposal controls production from raw material to finished product.

To chemical control, through research and experiment, is due that unvarving quality which makes the "Du Pont Oval" a symbol of excellence everywhere.

Under the du Pont name is published a practical and authoritative workthe "Blasters" Handbook." It is being used by instructors and students in many of our leading technical institutions throughout the country. A copy of the "Blasters" Handbook" will be sent free upon request.
E. I. DU PONT DE NEMOLRS \& CO., Inc. Exploszies Defursment WILMINGTON, DELIWARE

 hold al frogumt interats during the

 Bume of interest to all gemeral magi nowrine students．
smother short hasines meeting was

 perment the Gemeral binginering －Whlathe as sophomore member of the
 il Control．

Chemical

W．．barsily wateom．lir．b．1；

 －hw in industrial chamistr？to become effection int s．permber，and will sme wed lral．\＆M：Barr，who is experiod to beremed in statember under the new patn of retiring pretussars．br． Keyns was praduated lrom Now llamp －htw Colloge in 191：atmeremed his． masturs degrep trom columbia toi－ wreity．1h－was given a doctors de L．PW from the I＇nimersits of Califurnia in 19th．Hu has worked with the \boldsymbol{r}° \therefore Industial Alewhol Cos．sincer $1: 33$ ．

Prof．\＆Il Parr，heal of the dive sum of industria\} chemistr? has berold analded the righth annual Chandmer entil medal for achitwement in chom－ isurs．This award is in tecognition of 1＇rof．Parres discovery of the method of cokine Illimois cuat，his invention of the Parr Peroxid Catorimeter，and his disemery of the allos．Illium．If d．livered the 19：26 Chander lecture on April 13 at columbia loniversity at whicle time the medal was prezented． The Chandlus medal and leetureship was sucuref through subsertiption bs the alumni and students of the sithool （0）Mants al folumbia loniversits in 1，＋1＂in homm of Charlas F^{5} ．Cander， land of the department of ehamistry： The original medal was presented to I＇rof．Chander at a hanquet in his lumor when he retiand trom the staff in 1914 The balane was to provide that a replita of the medal be given （0）eath chander lecturer．
（）n April i Prof．B．A．Hopkins and ．Alloh llatris prosented their paper，
 grneral sussion of the Americat Ahernieal socit＋J at Tulsa，Whabomas． With tha atal ot sides athd charts the two rhemists enplained their work． and kall amphe proot of therxistenee of Homent bl in the samplas with whirh they worked

It the Nateh mesting of the Ameri a an Chemical socinty Prof．Tis lor of

Pbinowon laivelsity gate a vers in thresting lalk on＂rha Theory and Nr－4．hatism of Catalysis，＂At the April moxting Prol Willard of Miehigan spokt＂ons＂hadorn Analytial Chemis． try．＂slidus ware embuleyed to slow the latest and most wificient types of －4tuipment for abecrometrie，colori－ furbrit，and spectromotrie analysis．

Coramic Notes

Keramos Fraternity gave a smoker for the Junar ceramists in the l＇nion
 moloce gave a short talk on work in the ceramic industrios．The Stulent brancle of the Ameriean Ceramio So－ riety ludu a regubar meeting in the （rammies lataling．Mareh 11 ．l＇res． Sark beter presuded 10r．Andraws dis－ russud researeh in a general way as to the methods atm purpose and cor relation of results．

The feramic Department has pur－ ［hased sperial eytuipment in wraler to ＂arry on the sturly si the coefficiont of expansion of eeramic materials at high tomperatures．

Clumel Abney，＇25，who is now em－ whyed hy the Columbia Brick and Tile Company，has beon promoted to super antembent of the plant at cobumbia，Ga

A．V．bleninger，former head of the Ceramic bwpartment of this school and now dhef ceramis engineer for the bomer lataghtin China Company gave a very interesting lesture re rently win the production of tha＂le－ srable l＇roperties of Pottery Borlies．＂

Tha suplomore class of ceramic Engineers visited different reramic plants located at lanville．They in－ spected the Wrestern Brick Company＂s Plant Nos．1，Danville Brick Plant，and the Gemmal Refratory Plant．

J．R．Greene，$\because 2$ ，gate a talk on Pyometry，on April s，at the regular moeting of the 5 B．A．C．S．He ex． plained the different temperature mea－ suring instruments and the use best suited for each．Atr．Grfene is em－ phyed by the Brown Instrument Com－ pany，br．Westman puhlished an article on Thermocbertric Pyrometry in the April issue of the Camadian Chemical and Hetallurgical Magazine．

Twn very interesting talks on Enam－ els wero given by H．F．Staley of the Netal and Thermite Corporation on April 24．The Illinnis Clay Manufac therers dssuriation inspetted the Cer－ amic bepartment on April 13．H．B． Gray，of the Vitreous Enamel Com－ pany of Clevelath，Ohio，was lere in－ toryitwing the sonjors concerning juls．
（Comluned from Patye 19．i）

Searab

＇The annual searab Competition is now being held．the subjoet being＂A （ ${ }^{\text {ampanild }}$ for a smoke stack．＂The －ompetitors on the final pxercise ar＊ John R．Sweet，＇ 27 ；C．C．Lraun，＇27； （＇．J．Pillow，＇2x；Arthur Wupurr，＇27； and 11．R．Buckstrom，＇2八．The final drawings are lue April 16，at which time they will be judged and the scarah Bronze Mrdal awarded to the winner．
searab was tounded at the Thiver－ sity of thinois in 1912．Since that time it has grown into a national areh－ itectural motessional fraternity，has ing chapters now at Washimgton Uni versity，Massachusetts Institute ol Terhnology，Pemsylvania State Col le＇ge，Armour Institute of Technology． and the University of Kansas．

Ther scarab traternity also sponsors a national rompetition for a silver modal every year，as well as an an－ nual sketch problem．

Gargoyle

gargoyle was founded in 19n2 at Cornell University，Ithata，New Vork． The local chapter was established here in January 19：7．The soeioty is strictly honorary and selects its mem－ hership trom men of high seholastic ability in the arehitfetural depart－ ment．The aetivitios of the organiza－ tion eonsist chittly in monthly meet－ ings at which papers are reall by the active members．Gargoyle prouoses to award a errtificate to the treshman in arch．and a．e．who makes the high－ est average，beginning this yoar．The mrmhers from the faeulty are Prof． Lalmer，Prof．Newcomb，Jrot．Previne and R，E．spancler．

Delta Mu Epsilon

The Honorary Mining fraternity， during its last m＋eting，held an elee－ tion of offieurs．Mr．L．S．Voltz was elected presidtat for this semester， L．R．Voung，viep－president，B．H．Mel－ vin，secretary，and R．Loger，treasurer． The pledges this semester are J ． Seidel．H．Ilumister，and M．Hart－ man．

Mr．II Moses，general superincen－ dent of the t．S．Stepl Coal lline at Bunsenville．Illinois，was pledged as an honorary member．
The formal initiation banquet was held May first at the Inman Hotel． On April 25 an informal initiation was beld for the new members at the Eunsenville mine．

MANY discerning engineering students are preparing themselves for future promotions now by reading The Explosives Engineer, regularly. And they are finding that this foresight does not involve arduous effort. Anyone wishing to learn more about mining, quarrying and construction will derive pleasure as well as profit from the carefully edited, authoritative articles and from the many photographs, drawings, paintings, and other illustrations Prove this for yourself by writing for a free sample copy.

The Explosives Engineer is devoted to the technology of drilling, blasting, loading and transportation of coal, ore and stone. It is edited by engineers; many of its articles are written by experienced, well-informed operating executives. Each issue contains a bibliography of everything published in the technical press of the world, relating to drilling and blasting.

For less than three cents a month you can supplement your classroom instruction with this wealth of useful information from men who are now occupying the jobs to which you will some day aspire.

Just pin your check or a dollar bill to the coupon. You will then receive The Explosives Engineer for the next Three Years.

The Explosives Engineer

Wilmington
Pablished Montbly
Delaware

THE EXPLOSIVES ENGINEER,
941 Delaware Trust Building, Wilmington, Delaware

Enclosed is one dollat for my three years' subscription to The Explosives Engineer, starting with the current issue.
Name
Street
City State

We Call This a Dirty Dig

First Enginerer: "To you know anything drier than chewing on a new blottri?"'
siecond fitto: "Sures thing-reading the TECHNOGRAYH joke section."

Before the Flood

"It will alt come out in the wash," said the contractor as lit looked at the bridge he had just built.

- lowa Frivol.

Welcome

"so 1 told the freshman to indorst the check his lamily sent him."
"bid he do it?"
"Yes. He wrote on the back, 'I beartily indorse this check'."
-Princeton Tiger.

Calories

Batty: "Betly, do you smoke?"
Betty: "Almost."

Hat Check Girk: "Aren't you going to give me a tia? Why, the champion light wat of the town gives me a dime.

Old Gent: "Wrill, gazu upon the new champion."-lowa Transit Tremens.

A eertain railway engineer who had made a complett study of the oil losses on his particular run, made it his first duly to instruct new firemon in the cart of oil so as to eliminate therse losses. On one occasion he was quizzing a new fireman on the duties of bis post.
"What would be the most important thing to do in rase of an unavoidable buddon collision?" he querried.

Without a moments thought he shouted, "l'd shut off the" lubricator. grab the oil can, and jump."

Automotive Engincering

Axle-Swedish name, mate.
Clutch-Term for affectionate posfurt taken by spooners and midnight joy riders. Known as "flali Nelson" in wrestling.

Flat Tires-People who get panicky when you do twenty-five and want to get out and walk when you hit thirty

Bolt-Action taken when you heat a cop's whistle.

Nut-Onp-armed driver, speedrr, ete.
spark I'lugs (obs.)-Term formerly applind by youthiul Romeos to the old gray mare of the days of the buggy.

Brake-Faus Pas, such as calling your triend's car a "hunk of tin," ote. -California Engineer

Post Grad: "How are your brothers?"

Young Brother: "Just fine."
Post Grad: "What are they domer now?"
 ginetr, and the other one works."

Interviewer: "Nand so you made your gigantic fortune mandafturing just simple rubber bands. Surely you must have a business motto. What is it?"

Rubher Band King: "Make it snaply."

Aptilicant: "I am a graduate of the Collegr of Enginerring at the rini versity of tltinois."

Employer: "Wrll, 1 guess l'll give" you a rhance anyway."

Critic: "What does this picture represent?"

Artist: "Satan's laughters."
Critic: "Oh, Hell's Belles, eh?"
-Oregon state Tech Record.

We I lope No One Gets This One

She (alter riding thre hours): "Don't you ever stop to look at your remine?"

Ht: "Oh. no. This is a Packard, you know."

Vassar Grad: "Statistics show that the Harvard graduates who are married have an average of two children." llarvard Grad: "That so?"
V.G: "Y'us, and statistics also show that the Vassar graduates who are married have an average of three chiblrth. What to you sumpose that shows?"
H.G.: "Why that simply shows that womrn have more children than men."
-Transit Tr\&mens.
"What doess the protessor of Chem istry get?"
"Oh, about $\$ 3,900$ a year."
"And the toothall coach-"
"About $\$ 12.000$ a year."
"Quite a discrepancy"
"Wrell, did you hyer hear 10,1001 people cheering a racitation in chemistry ?"-Bison.

Cutting Comments

Any woman will look betore she leaps-if there is a mirror handy.

In marriage, he who hesitates-is bossed.

The silk stocking was introduced in the 1 tith century, but it was onty re. contly that all of it has been discovered

Everything comes to him who tips. - Canadian Magazine.

Fxamination question-Who chased who around the walls of what and why; if not why not? Answer yes ol no.

TNHIS HANDBOOK is for steam power plant engineers and operators. It contains condensed data, well indexed for ready reference. Superheat Engineering Data is not intended to displace standard handbooks. But it is different. Much of the information it contains can be found in no other single publication. For instance, practically all types of stationary boilers commonly made in America are illustrated and brief comparative data is given as to sizes, tube sizes, arrangement of tubes, etc. In fact, much of the data has not hitherto been published and because of its character, one would have difficulty in securing it unaided.
the proper design and performance of superheaters.
Superheated Stean for Heating.
Cylinder Lubrication with Superheated Steam.
Superheater arrangements are illustrated for all types of boilers for stationary, marine and locomotive services, including waste heat, portable and separately fired superheaters.
Data required to design stationary superheaters.
Steam Tables covering pressures from below atmospheric to 600 lb ., absolute, including properties of superheated steam from 50 to 300 deg. F., superheat.
Specific heat of superheated steam.
Reduction of superheat due to moisture.
Complete information for figuring piping for handling water, saturated and superheated steam. Piping data includes proposed American Standard for high pressures. Also velocity and pressure drop of water and steam flowing through piping.
Engineering data on coal and oil fired boilers, including tables giving heat value of gaseous, liquid and solid fuels.
Data on bolts and screw threads, including recent work of American Engineeriag Standards Committee and National Screw Threat Commission.
Conversion Tables.
Many miscellaneous tables commonly used by stcam engineers.
studcuts "Fishin! copics may apmly to The Ter hno!rorph

Printed on good quality paper and bound with a flexible Keratol cover. 85 illustra. tions and diagrams. 69 tables. Size, $41 / 2 \times 7$ in. 208 pages.

$$
\text { Price }{ }^{\dot{s}} \mathbf{1} \mathbf{o o o}^{0}
$$

> Send for your copy today.

THE SUPERHEATER COMPANY

Canada: The Superheater Company Limated, Montreal

Why Tie Up Capital?

Is your capital working in your business or tied up in a fuel supply?
Your local gas company will supply fuel as you need it. You don't pay for gas till after it is used. There are no tie-ups, or traffic delays in the delivery of gas-a dependable supply always available at the burner.
The manifold advantages and economies of gas as a factory fuel are explained in our new book, "Gas-The Ideal Factory Fuel".

Write for your copy today-no charge.
$\overline{\text { American Gas Association }}$ 342 Madison Avenue :: New York City

YOU CAN DO IT BETTER WITH GAS

Steel Sheets that Resist Rust!

The destructive enemy of sheet metal is rust. It is successfully combated by the use of protective coatings, or by scientific alloying to resist corrosion. Well made steel alloyed with Copper gives maximum endurance. Insist upon

KEYSTONE Rust-Resisting Copper Steel

Black and Galvanized

Keystone Copper Steel gives superior service for roofing, siding, gutters, spouting, culverts, flumes, tanks, and all uses to which sheet metal is adapted - above or below the ground. Our booklet Factstells you why. We manufacture American Bessemer, American Open Hearth, and Keystone Copper Steel Sheets and Tin Plates.

> Black Sheets for all purposes Keystone Copper Steel Sheets
> Apollo Best Bloom Galvanized Sheets Apollo-Keystone Galvanized Sheets Culvert, Flume, and Tank Stock Formed Roofing and Siding Products Automobile Sheets, Electrical Sheets Deep Drawing and Stamping Stock Tin and Terne Plates, Black Plate, Ete.

Our Sheet and Tin Mill Products represent the highest standards of quality, and are particularly suited to the requirements of the mining, engineering, and general construction fields. Sold by leading metal merchants. Write nearest District Otfice,

American Sheet and Tin Plate Company
 General Offices: Frick Building, Pittsburgh, Pa.

Chicago	$\begin{array}{r} \text { Cincinnati } \\ \mathrm{Ph} \end{array}$	Denver lphia	Detroit Pittsburgh	New Orleans St. Louis	New York
Pacific Coast Representatives: United States Steel Products Co., San Francisco					

Eiport Representativen: United Sitates Steel Products Co., New York City

Open Ditch Diagrams
 (rontinural from Polge N (C)

depth of dow alle known fiacors.

 $\mathrm{s}=.00 \mathrm{~B}:$. Nide slopes $1: 1$. To fimd the bottom width ambl drpht of ehammel repuired.

Figure 1 is aronged with a surial sate for dis "hatge when $10=0 ; 30$ and one step in the gemeral solntion of this tỵ of problem is eliminated. I'rojoct at straght lime llarough the points s=.000); amd ' $?^{\prime}=100$ sere. ft. ($?^{\prime}$ ' is the seale of diseharge when
 This lime interserts the 12 referenee line at abont - 2.5 second fert. Through this last point, ally straght linc intersecting the scale of bottom widths, B, amblagent to othe of the depth comes 1 gives values of bottom width athd depth which satisfy the

 and depth of chamel required.

On Figure 1 draw a straight line throngh the proints $(?=t 50$ seromd feet (on the seate in the center of the diagrams and $n=0: 3: 5$. On the seate of dis-

 $x-.0006$ th to an interseetion with the 12 seate in the renter of the dagmom at : is: second feret. Through this last proint, any straight line intersecting the sarale of botom widthe, lb, and tangent to ont of the depth romves, 1 , gives values of bottom width and deph which satisfy the comblitions. For exampla
 athl so m.

Exampate: Given bottom width 16 ft . depth of
 the velority and diseltarge.

Figure 2 is arranged with a seredal sate of velocities when $n=0.0: 5$ so that whe step in the geveral problem is moneerssiry in this rise. Buter the dianram at the point 1 comresponding to a bottom width of 16 ft . Prowed wertically 10 the solid line correxponding ta a depth of 6.0 it. at the pint 1 ? At the print 5 , interperate besween whe dotted
 st. ft. Jraw a lime lorizontally from the foint B to the seale of hadrande radia at the proint 8 . Jrem the perint ${ }^{\prime}$ draw a lime through the hydrande

 rent and pad the verocity for $n=0: 0: 5$ at E equal to O. 61 ft. per ser. The disematere is then erfalal to $\because .61 \times 1: 3=: 341$ sere ft.

The above are value index puges from Jenktns Booklets

Make use of the information Jenkins Bros. furnish. Let it help you in learning the types of valves which are best suited for each servicepower plant, plumbing, heating and fire protection.

We shall gladly mail to you, on request, a booklet which describes and illustrates Jenkins Valves for the type of building in which you may be interested.

JENKINS BROS.

80 White Street New York, N. Y. 524 Atlantic Avenue Bos،on, Mass 133 No. Seventh Street Philadelphia, Pa. 646 Washington Boulevard Chicago, 111 .

JE'KINS BROS., LIMITED
Montreat, Canada London, England

OKONITE

 OKONITE-CALLENDER PRODUCTSWE are well equipped to manufacture large and small single and multiple conductor cables insulated with rubber, varnished cambric or impregnated paper for any service, any commercial voltage and with any type of covering or armor.
FLEXIBLE CORDS AND CABLES
All types, all services
WIRES FOR RAILROAD SERVICES
Signals, Locomotives. Cars

POWER WIRES AND CABLES SPLICING MATERIALS

The Okonite Company

 The Okonite-Callender Cable Co., Inc. Factories. PASSAIC, N. J.Saks Offices: New York. Chicago, Pitisburgh. St Inuis, Atlanta, Birmingham, San Francisco, Los Angeles

Petlingell-Anilrews Co Boston. Mass.
Novelty Electric Co. Pbiladeldha, Po, F. 1) Lawrence Elec Co. Cimimani, O.

Cinadian Representatives: Engineering Matcrials Ltil. Montreal Cuban Representatives: Vítur G Mendozalo. Llavana

Open Diteh Diagrams

 \because exmper that $n=0: 30$. To tind the veromy and diadhares.

 sere. Italw a line thromy the point bi (volocity for 11 (0:3) allad $n=0: 0: 0$ on the n seale aldal raill the

Dingrams of the kind herein bresemterl offer at sultionemtly aternalle and excerdingly rapid method of defomining popmotions of ditehes when (:ibatif ties, slopes and roughoess finctors are kinown. They are equally comenient when applied to masteat 4 thow calculations where backwater of drop down - meres are to be determimed. With remat to their ale euraty in these problems the writur hats come to

 arams, that the ditterences in the results are within
 roushomes contiament values.

More cuts per minute by adding more good cutters

IN the endeavor to achicve quickerand more cconomical methods in milling, the number of cutters used in a single set-up has tended to increase. This is particularly true of automotive shops where high production is the watchword.
Two automotive jobs are shown. Above is a Brown \& Sharpe Automatic Milling Machine which fairly bristles with cutters. Eight Brown \& Sharpe cutters-four Coarse Tooth End Mills and four Spiral Shell End Mills-are used. Below is a view of an operation on a Brown \& Sharpe No. 13B Plain Milling Machine in which six Brown \& Sharpe Coarse Tooth Side Milling Cutters and three Spiral Shell End Mills (in back) are used.
The advantage of such operations depends largely on the durability of the cutters. Too frequent stops for sharpening or changing cutters are disastrous to the production schedule. As the best insurance of durability, long life, and long service between sharpenings Brown\& Sharpe Cutters were chosen for these and many similar jobs.

BROWN \& SHARPE MFG. CO. PROVIDENCE, R.I., U.S. A.

Boom and Bucket Distribution

"Concrete - Its Manufacturi and Use" is a 2 io page trea. tise on the uses of concrete, including 26 pages of tables of quantities of materals requred in concrete pating work. To engmeerng students, fuc ulty members and others interested we shall gladly send a copy on request.

THE Koehring Company provided means for producing Standardized Concrete long before its importance was generally recognized. At the same time the vital importance of operating speed and the saving of time on the job has always been a fundamental consideration in designing Koehring Pavers and Mixers.
One of the basic units of the standard paver, produced in conformity with these principles, is the boom and bucket system for delivering mixed concrete from the drum to the subgrade, developed and perfected by Kochring Company.
This unit because of its many automatic actions cuts down to a minimum the time for placing the mixed concrete on the subgrade; and because it is possible with this method to maintain a uniform and proper consistency of the concrete from the drum to the subgrade without separation of aggregate, the Koehring boom and bucket is an important factor in producing standardized concrete of dominant strength.
Today, the Koehring boom and bucket, Koehring batch meter, Koehring five action re-mixing principle, and the Koehring automatic water measuring tank provide the most positive and accurate means for producing standardized concrete of unvarying uniformity yet devised.

Consiruction lingincerins
 （r＇onltmutal from Pator IT，）

 knowledge applied to the rate in print allad comes mom largely from experiture dhan from learning be i川いましかっ。

 as the fimal comb al juristietion in all furstions Which may aldise as bo the ferformane of the con Wrat．This system has given dise to mathy disputes， mithy of them restlange in suits al latw．It is com ing for latite semerally ledieved that the interests
 constration contratels for some reasomable methorl of arhitration．Fontratet form A．I．A．No．I，which contains all athithation clatuse．hats been adopted by the Americatl Insitute of Arehiterts，and is memm－ membed ty its members to the dir chents for use．

Finally，lot me saty thal fome sumess in any line of＇meteaver will be predieated largely on intelligent work．Set uf your matk amd kerp shooting at that

 of sutcess，but the end．No ：Seney，institution， strathere or efort vall permanemtly sucered that is nat fonmatal in riyhteonsmess．The highest type of
huilding is rharater halding．Son are the arehi
 Has short perm：
＂Nall that stamds hetwren yome goal And the deeds you hope for do．
 1s．you！

The wity is rongh and the wite is loms Snd the rom is hial from view．
batt the ome bo say if yom shatl hese strong 1s yoll：

Oh，the word maly smile of the worlat may frown And the skiex le gray or here
 Is youl

Thoush far it werms to the whaning lop And the day brings damgers mew，
The umly we whe can bid you stop 1s youl：

For whether gom work or whether you phay， Are fialse fo porm best on true．
Fersts mot with rome trients or lows to sity－ 1311 $y=01$ ！＂

Hr－＂What would yom nay if I shondal kiss yon？＂ Nhe－＂入। las！！＂

The Vilter Manufacturing Co．

1020 Clinton St．，Milwaukee，Wis．
Ice Making and Refrigerating Machinery Corliss and Poppet Valve Engines

Branch offices in all principal cities If interested write for bulletins

An Open Letter to John P. Senior

Dear Senior:-

Your campus days are very nearly over but don't let anyone mislead you into thinking that the "gladdest years of life" have also passed. Tackle the job of living with a little gumption and you'll find each succeeding year more enjoyable and satisfying than the year that preceded it.

Your big job in the next few years is to set your standards and erect your reputation. What the world wants to know about you is the soundness of your judgment and the dependability of your performance. Don't take chances on those two points. A clean reputation for solidity, trustworthiness and dependable performance is the goal to aim for. (Your dollar-income at first probably wont total very much under the best of circumstances, so be sure your reputation-income is the biggest possible.)

Team up with the best in everything that you handle. Stand for, advocate, fight for the best materials, the best designs, the best construction methods. Don't let your name come to get associated with second-bests, makeshifts and could-have-been-better-with-a-little-more-work-and-thought.

Build your reputation now - your fortune will come later.

The world doesn't owe you a living but it's ready and willing to pay you handsomely when you have justified it. It's a great world once you have made it respect you

I've seen a lot of it and I know.
Sincerely yours.

Municipal and Sanitary Engineering (c'ontinued from Potele Tifi)
llamburg. Jhating the epidemise the whathe fer
 $2: 3$ per 10.000 diat of the disease. Filtration mot only rellures the death rate of water horne diseases
 calses, reperially infant dispases is apparent from at stmely of morbinlity tables.

The lied al Whaicipal ant santary (rngimering has broademed whe ramomsty in the past tifteren
 of santation; agitation for the protection of tish amd animal lifr in the streams has bonghat dites to bolld sewalge 1reatment plants: state amb national logislation has compulled dibes burmild romplete

 dill many ol these persitions.

This artiolo has beren limited by spare and hat nut intanded to in any way renor har fiold ol sani tary seleme. It is intended to comere a fow fats athl intras whirl will dive the realle the signif

 flar proterdion of its larilth.

Be1l and Spigot Joint

THE Bell and Spigot Joint for Cast Iron Pipe, adopted over one hundred years ago, is the preferred joint today.

It is tight, flexible, easily made and non-corrodible. There are no bolts to rust out. It makes changes of alignment or insertion of special fittings a simple matter. It can be taken apart and the pipe used over again, without any injury. It is not subject to damage in transit. In fact, it embodies practically all of the desirable qualities in an underground joint.

The use of this type of joint, together with the long life of Cast Iron Pipe, makes for extremely low maintenance costs.

The Cast Iron Pipe Publicity Bureau Peoples Gas Bldg., Chicago

CAST TION PIPE

(1) nerv bnoklet. "Plannine a " "ater ronnks Sy tem" which cosers
the proilitem of toater for the promem of trater for sent on request

Send for booklet, "Cast Sron Pipe for Industrial Serrice. showing interesting installutions to
meet special probiems

G.R.GRUBB ε CO. ENGRAVERS CHAMPAIGN, ILLINOIS.

Sonly dohnstom $\because 4$

Complete Outfitters to Illini Men

Downtown-Champaign

RHOADS Tannate Leather Belting

THE above high speed grinder is belted with a 7 －inch double Tan－ nate，and the overhead cross belt is an S－inch double Tannate．
This plant began using Rhoads Belts a little more than five years ago．They are now largely equipped with＂Rhoads．＂
They use many feet of Tannate Round Belting which they find as dependable as the Tannate Flat Belting．
Tamate，by its grip and life，often increases output．It is output that comets most．

> NEW BELT LSERS BOOK
> SBCBNTH EHOTHON NOW RFADY SENH FOR A OOPY. FREF.

Smal what in nead of lame leather use llasads Tannate Lace．It often ontasts ratwhid．from three to five finess，esper cially in wet or lant platers．

J．E．RHOADS \＆SONS

Bronze Welding

（Continucd from Puge 18．3）
wehl areas burore heating．Then heat the surfaces of the weld atede of the base material to a bow red

 Keep the imme cone of the fane from coming in contare with the bronze，as $\mathbf{i t}$ will burn the bronze ：mbl weaken the joint．Aphly the as usual white Wehling ；that is，after healing the surlares of the Weld aras to a dull red．sprinkle on at little flux and Wrasionally dip the het end of the forl in the thax． When sealing a long erack with Tobin bronze，soon at the extreme rads and in the center，filling in be－ twan the spots matil the werd is complete，stapting at the center of the rasting and working toward the alge．Aroid werlatating ly mot applying the flame continnomsly to the same phace and 1 y y do completely till wath section of the＂r＂oproning with whe aphli cation of the Tohin hronze．

The alvantages of using Tobin hronze wedting rods can be smmed of biedly as follows：1．Tobin hronze welds have the steregth of mild steed athd from two to three times the stremgh of east irom． \because Wedse are mate with bronze ill abome one－quater the time and propertimally less gas than is requited when wehling with steel or iron．：3．Wedding with the mild heat required for Tolin hronze does not ax－ pand the hase material sutticiently to callese watponge or cracking．Consequently extensive preating is moneeressary and the weld can usnally be mate with－ ont the expernse of dixmantling and reassembling． 4．With ordinary care the base material need not he burned．\therefore ．Tobin bronze wedds will not rost and provide musmal rexistance to rorrosiom．

The Jackson Building
 （Comtinurd from Page 1it1）

this joh had to be driven in the fieh beratuse of Cleatance limitations．Two good examples of the sort of combertion that reguires died riveting mas． be see⿻口卄 in lig．1．The stifleming angles on the shoper of the brateret that is sed bemeath the main flowe beath had to the died driven heotanse the bracked ronld not be connerted te the heam with the stiff rning athles in place．Then．in the extreme lower loft，the shelf ：mghe wh the lithle spminel be：m hat 10 be shipped bolted so that it conld be taken off while the wind bracket was being riveled．

The structural frame in this particular case mor ressented abom nibuly proment of the job in so far as trial and tribulation were roncernerl．

[^14]
CRANE VALVES

Wedge Gate Valve NO． 437
Subjected to hydraulic pressures closed from 700 to 3000 lbs．and open from 1000 to 3000 lbs．without leaking． Recommended f．r steam pressures up to 150 lbs ．

Through YourWorking Career

When commencement is over and your working days begin， Crane stands ready and glad to advise with you regarding numberless problems of equip－ ment．Crane will co－operate with you as it has since 1855 with the engineers who have preceded you．It was Crane that first began the systematic testing of metals to determine their reaction under varied con－ ditions of pressure and tem－ perature．It pioneered in the chemical control of raw ma－ terials．Into the valves，fittings and piping materials now of－ fered， 71 years of experıence has been put．This experience is devoted to your service．

CRANE

Addrest all inquiries to Crane Co．，Chleago GENERAL OFFICES：CRANE BUILDING， 836 S．MICHIGAN AVENUE，CHICAGO Branshes and Sales Offias in One Hundred and Fifty－jive Cifie． National Exhibut Roemsz Chisago，Nrw Yert，Atiansic City，San Fransiso and Monemal Worh：Cheago，Bridgeport，Birmingham，Chattanoga，Trenton，MontrealandSr J hni，＜ L ， CRANE EXPORT CORPORATION：NEW YORK，SAN FRANCISCO，MEXICO CITY，HAVANA Crane hmited：crane buildinc．sab beaver hall square，montreal CrANE－BENNETT，LTD，LONDDN
Cl caane：parts，brussels

TEXROPE DRIVES

Flexible and Positior，Multiple Belt Drives for Close Centers

The Balloon Tires of Industry

Like Balloon Tires，Texrope Drives carry the loads without transmitting the shocks and jars． They are smooth and flexible，yet slipless．power． ful and durable．In addition，they are silent， clean，simple，troubleproof and not afferted by moisture，dust and hirt．

Just as Balloons are replating high pressure， unyielding tires，Texrope Drives are ruplacing unflexible short center drives and spate wasting long renter drives throughout indastry．

Write for Pulletin 122がC

＂My girl called me down for kiswing her．＂
＂Weal，I wembln＂take any of her lip．＂
＂Homit flather rommelf．She womblait wive you the＂pipertmity．＂－1．I．Hadry．
＂Lep reminab bie of the will seal wares．＂
〔ured？＂．

No．Berallas rivu are all wed and som malke me sirk．＂

SAFETY FIRST

＂What＂Ya mean woin tily miles an homr＂＊
 home herfore I latal an aceodent．＂
＊
 see youl in hativer．＂

－e＇alifornial Eim！inar

Wife－－This is peritively shorking．If it hate
 I comduit two．＂－Th Tich ourl．

Buckets of Bramn for Bearings

ery there is a point of hard service. That's just why each bearing is there.
For sery vital reasons Timkens are awarded tough jobs in motor cars, trucks, tractors, machine tools, electric motors and other mechanical devices throughout transportation, agriculture, manufacture, and all other divisions of Industry. Timken Tapered design provides for the inevitable "side-thrust" on bearings, which best engineering dare not ignore. Timken positive roll alignment, exclusive, adds to bearing speed possibilities. And only Timken, in its field, produces its own electric bearint steel.

Finest material for the worst work in machinery is assured by the complete, extremely modern Timken steel plant which is part of the great self-contained Timken Bearing industry.
Such resources and facilities could be reared on nothing but the engineering success of some $150,000,000$ Timken Bearings. Facing an engineering career, you will be facing the universal preference for machinery designed around 'Timken Tapered Roller Bearings. It will be well to know Timkens. The little stiff-bound Timken book, sent gratis upon request, will tell you much.
THE TIMKEN ROLLER BEARING COMPANY C A N T O N , O H I O

There's a Hyatt Answer to Your Bearing Question

Hyatt Roller Bearings are used the world over. They are installed in numerous types of equipment-manufacturers representing over forty different industries include them as standard in their products.

A large majority of all American made gasoline tractors and power farm implements depend upon Hyatts for efficient bearing performance. Nearly all the better grade of passenger cars and trucks are equipped with them.

Their application in lift trucks, trailers, etc., has increased the load pulling capacity of workmen.

In steel mills where bearings are subjected to terrific thumping service, Hyatts
guard against breakdowns and delays.
Textile machinery, line shafts, contractor's equipment, conveyors, etc., operate at maximum capacity for longer periods and at less expense when easy turning Hyatts are substituted for the rubbing friction of ordinary bearings.

In nearly every country on the globe, Hyatt equipment is selected when constant dependable service must be assured. For thirty years and more, the use of Hyatt Roller Bearings has been expanding. You, perhaps, will some day assist in extending their use. When that time comes, the resources of Hyatt are at your disposal. Hyatt Roller Bearing Company, Newark, N. J.

$$
\begin{aligned}
& \text { HYATT } \\
& \text { ROLLER BEARINGS }
\end{aligned}
$$

Three Unusual Public Servants

Sargent and Lundy Engineers of these Power Stations

These public utility power stations, constructed by The Foundation Company, are now contributing to the welfare of the communities they serve.
The Power Station of the Columbia Power Company, near Cincinnati, Ohio, contains the latest developments in steam and electrical generation. It has a present capacity of 120,000 H.P. which will be ultimately increased to 480,000 H.P. Ground was broken February 14, 1924, and power was generated December 10, 1925,-such the record for construction.
In the heart of the Kentucky coal fields a steam power plant has been constructed, designed to utilize fuel near its source and transmit electrical energy to nearby industrial centers, including the mines from which the fuel is taken. This $\$ 3,500,000$ station of the Kentucky Utilities Company, near Pineville, Kentucky, is a link in a chain of super-power stations in this region.
At Philo, on the Muskingum River in Ohio, is situated a power plant of the Ohio Power Company which has become noted for its economical operation. Located where a navigation dam makes a considerable difference in level in the river, water for condensing is taken above and discharged below the dam without pumping. Unusual efficiency is obtained with the most modern fuel handling machinery in both wet and dry storage.

Power plant construction is a specialty of this organization.

THE FOUNDATION COMPANY

CITY OF NEW YORK

Office Butdmgs . Industrial Plants . Warelouses . Railroads and Terminals . Foundations Lnderpinnıng . Filtratoon and Sewage Plants . Hydro-Electric Developments . Power Houses Hightuays . River and Harbor Developments - Bridges and Bridge Piers . Mine Shafts and Tumnels

CHICAGO

R, T, PIERCE

When the class of'is at Maine was being graduated, the name "Pierce" meant no more in the field of metering than Sweeney or Jones. Today, however, if you'll talk to such companies as the Detroit Edison Company, The Southern California Edison Company, the Duquesne Light Company, or the United Verde Copper Company, you'll learn that "Pierce" means a type of remote metering, which enables a man in a central dispatcher's office to read the condition of a sub-station several miles away.

Superpower brought in the need for an improved method of remote metering, and R. T. Pierce, Maine 's 5 , in the employ
(0. The questron is sometrmes asked: Where do young men get when they enter a large industrial organization? Hare they opportuntry to exercise creative talents? Or are they forced into narrow grooves?

Thus series of advertsements throzes light on these questions. Each adererisement takes up the record of a college man who came suth the Westinghouse Company zuithun the last ten years or so, after graduatton.

of Westinghouse, devised it. He designed a system that operates on a new and different principle, and that has met with general acceptance in the Central Station field. He also was active in the recent re-designing of the entire Westinghouse instrument line.

It was only a few months after Pierce had completed the graduate student course at Westinghouse that he was given an assign-
ment in the instrument section of the engineering department. He took it merely as a "fill-in" job. Soon he saw that instrumente play a vital part in every electrical operation. As an instrument engineer, Pierce spent several weeks on the U.S.S. Tennessee and the Colorado during their trial runs. He has ridden in the cabs of electric locomotives. He is in closer touch with radio than anyone not a radio engineer.

A design engineer comes contimuonsly in contact with sales negotiations, and Pierce's contact with them proved so beneficial that he was lately made head of the Instrument Section of the Sales Department, which means that he really has charge of the sale of all instruments to Westinghouse customers.

For Your Summer Recreation

We Recommend a

WILSONIAN GOLF SET

4 GENUINE WILSON CLUBS IN A GENUINE WILSON STAVE BAG

These three months will be pleasant ones if you will indulge in some form of healthful invigorating sport. Better stock up on your equipment before leaving sehool. Our dividend plan conables you to save on all your supplies. We paid 5 \% eash dividend last year. And you can't overlook 5 $\%$.

THE NRAT

Illinois' Only Co-Operatite Bookstore

Phorograph by courtesy of Captast R. R Belknap, U. S. N.

Fighting Submarines with Elevators

When the American people answered "War" in 1917, no matter was of more importance than the readjustment of the great industries to the conditions of war, and no contribution to national defense was more exacting than that of the Otis Elevator Company.
It was a long way from the ordinary operations of business buildings throughout the country to the North Sea in war time, yet strangely enough Otis automatic leveling or micro-drive elevators proved one of the most valuable innovations in connection with naval warfare.

Up to the time the American Navy became a factor in the World War, it had been impossible to lay, in the North Sea, the contemplated mine barrage, which it was hoped could be used to prevent submarines from skirring the north end of the British Isles. This had been impossible, because the time required to get the mines overboard prevented successful results. The Otis Elevator Company cooperated with the American

Navy and provided automatic leveling elevators for the delivery of the mines from the hold of the mine layers to the main deck, where they could be put overboard at such frequent intervals as to make the laying of the barrage a success.

In an article published several years ago, Captain Betknap, U.S.N., who was in command of the mine laying squadron at the time, stated that in the nine months or more of operation, in which sixty thousand mines were handled in and out, as well as many more in the course of drills, there was only one occasion in which any one of the thirtytwo elevarors was shut down. This was the fault of the operator, not the clevator, in that it was run too far up and jammed there for a few hours, but without causing any delay in the mine laying operation.

In wat as in peace, the Otis Elevator has become one of the indispensable parrs of our civilization.

[^15]

Electricity, which can release woman from her burdens, has already created a revolution in American industry. Wherever mankind labors, General Electric motors can be found carrying loads, driving machincry and saving time and labor. And there is no branch of electrical development today to which General Electric has not made important contributions.

A series of G-E advertisements showing what electricity is doing in many fields will be sent on request. Ask for booklet GEK-1.

In a field in sunny Spain stands a stone mortar. Crows hover around it, picking up bits of grain and chaff-cawing.
Here Marcheta, in the fresh beauty of her youth, will come to pound maize. For years she will pound maize. The stone will stand up under the blows; not a dent has the muscle of three generations of women made upon it. But the crows will hurl their black gibes upon a woman aging early and bent with toil. Old Marcheta-still in her thirties.

The American woman does not pound maize. But she still beats carpet; she still pounds clothes; she still pumps water. She exhausts her strength in tasks which electricity can do better, and in half the time.
The high ideals of a community mean little where woman is still doomed to drudgery. But the miracles which electricity already has performed indicate but a fraction of the vast possibilities for better living and the tremendous opportunities which the future developments in electricity will hold for the college man and woman.
-

[^0]: (Continuter on Patic it)

[^1]: (comtinutal on Patge iti)

[^2]: (contmoned on P'ut/e \therefore :)

[^3]:

[^4]: (continued on Patge 10')

[^5]: 3 Minin Stren

[^6]: Fimme 3 Flectrical Communication (note telephone pole) and Irimitive Raw Rubber Transport. Figkic of A River Bridge in Amgapore, Fioure 5 street Scene in lokshama After Earthumake (note reinforced concrete remains). Fionere 7 - Looking

[^7]:

[^8]: Prime movers of all types，Steam Turbines，Steam Engines．Hydrambia Turbines，（bas and On Engines．together wath a tull line of generators for each type．
 Auxiliary equipment，consisting of Transformers． Motor－genemator sets，Converters，Switchbords．ete． Motors，both Direct and Altermating Current，for every kind of application．
 A complete line of high－grade Transmiss on Ma－ chinery；Pulleys，Shafting，Hangers，Couplings．ete．
 semal for bulletins

[^9]:

[^10]: (Contanucl on Pathe ITi)

[^11]: (comtinuch an Prtige ? 1\%)

[^12]: crontenucd on Paffe 21ti)

[^13]: （rontinueqt on I＇t！！en ？

[^14]: ＂．My sister＂s likn a radio prostam．＂
 ＂llow＇s Hat1？＂

[^15]: Otis Micro-Drive Elevators, as developed for che mine laying ships and for the great Army and Navy Bases at New lork and Buston, are now in constant use throughout all parts of the country in office buildings, horels, department stores, warehouses, terminals and factories. The automatic levelong feature elimnates "inching"at the floors, obviates the stumbling hazard in passenger elevators, as well as saving time in operation, and increasing the lite of the apparatus. On treight elevators it also provides an exacely levet tanding to facilitate the handling of fretght.
 OT I S E L E V A T O R C O M P A N Y

