

THE UNIVERSITY OF ILLINOIS

LIBRARY

${ }_{6}^{620}{ }^{2}{ }^{5}$
v. $9-10$

ALTGELD HALE STACKS

CENTRAL CIRCULATION BOOKSTACKS

The person charging this material is responsible for its return to the library from which it was borrowed on or before the Latest Date stamped below.
Theft, mutilotion, and underilining of books are reasons for disciplinary action and may result in dismissol from the University.
TO RENEW CALL TELEPHONE CENTER, 333-8400
UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN
BULUNG USE ON/V
APR APR 9 9 99992

When renewing by phone, write new due date below previous due date.

('kINTERS ISH ISNDERS.
1st5.

620.5
 $v .5-15$
 University of Illinois.

President, Andrew Sloan Draper, LL.D.

COLLEGE OF ENGINEERING.

FACLLTY AND (URIN UF INTRTCTIN:

NATHANCLIFFORD RICIVEIR, M.Ar心に.,
Dean of Collese of Engineering. Professor of Architereture.

[^0]
ENGINHRPING SOGIHTHES

（F）THE

UNIVENSITY OF ILLINOIS．

l＇resident．A．N．Musin．
Viee President．F．W．Howists．

MECHANICAL AND ELECTRICAL ENGINEERS＇SOCIETY． organtzed Nov．8，14s3．

Presictent．J，A．（ineEN．
Vice President and Treas．，F．A．Beene．

secretary，J．E：PFEFFER．

ARCHITEじTが Cリ」リア。

President．E．S．IIA1．1．
Vier Presibent，W．L．Stemer．
Sece and Treas．，d．L．I＇AlR⿸．

The Technograph.

No. 9.
UNIVERSITY OF ILLINOIS.
1894-95.

. EDITOR-N-CHIEF.

ASSISTANT EDITORS.

EFFICIENCY TESTS

Of the Urbana and Champaign Electric Street Railway.

By C. H. Tretio. '94, and O. E. Goldschmidt, '94.
Description of the Rallivay Systen.
The present electric street railway is the outgrowth of a horsc railway built in 1860. The change to the electric system was made in 1890. In making the change, nearly all of the ofd road was abandoned and the line was greatly extended.

The mad now consists of a main line comnecting the cities of Champaign and Urbana, in the state of Illinois, and of several hranches extending into different parts of Champaign.

Begiming near the west boundary of Champaign, the man line roms in an easterly direction by the West End Park, through the hest residential and business quarters of the city and past the Unirersity Athletic Park, and, entering Urhana, passes the buildings of the University of llinois, rons throngh the residential and lmsiness portions, and terminates in the east part of the town.

One hranch extends sonth on New street, throngh a good resjdential quarter. Another branch runs morth on Neil street to the (ar ban, passing the stations of the Wabash and Big Four raitroads. A loop learing the main line at Third street roms to the (hampaign comety fair gromed and thence to the main line at the comer of Wright and Green streets. A short loop of old track in Urbana comects a point of the main line on Wright street and
amother peint on (ionedwin areme. This loon is maly used in case of emergener.

The length of the main line is about $4 \frac{1}{3}$ miles, the length of the
 mils's.

AII the chmedes, hotels, places of ammsement, baidroal stations, finctories and puldie haildings are on, or near, the man line or its brathes. Plate l. shows the location of the road. The track extends ahout two-thirds of a mile west of the limits shown in Plate I. I curve comecting tracks on Neil and Clmech streets was put in just hefore the general test was made.

The whole length of road is single track. I'urnouts are placed at convenient distances apart. A T-rail weighing 18 pounds to the yard is used. The rails are laid on 6 inch $x 8$ inch oak ties, 8 feet long, and placed so that their centers are \geq feet apart. The streets are pared with brick along most of the line in Champaign, and along part of the line in Urbana. Some of the remaining portions of the track are ballasted with cinders; others are yet without hallast.
'The rails are bonded with $\frac{5}{16}$ inch tinned copper wire. Most of the track has alternate pairs of rails cross-bonded. Two grounds are provided at the power house. One consists of a number of car wheels at the bottom of a well with comnections of copper and iron wire; the other of a large coil of iron wire in a bed of charcoal. firounds are made along the line by burying rails in permanently wet places, and using copper and iron wire for comections. The water pipes are also made use of.

The orerhead construction is mostly of the ordinary side-pole, span-wire type. A few short pieces are of the side-hracket type. In the residential part of Champaign octagonal posts are used. The poles are placed 125) feet apart along the line. The trolley wire is No. 0 in Champaign and mostly No. 1 in Urbana. A main No. 00 feeder comects with the trolley in Champaign at corner of Main and Neil streets, at corner of Third street and University arenue, and at romer of Wright street and Springlield arenue. A No. 0 sub)-feeder rims from the latter point to North street in Urbana, A No. 1 subfeeder runs in Champaign from corner of Main and Neil streets to New street. All feeders are "Shield Brand" wire.

Three "Keystone," six "Wirt," and six "swinging ball" lightning arresters are distributed along the line.

The road has no heary graties as may be seen from the profile shown in Plate 11.
'The maximum grade is 4.1%, but is for a distance of 200 feet only. The longest incline is 2200 feet; the grade, however, is only about $1 /$.

The power station, comprising a power house and boiler house, and the car barn are located together in the northern part of Champaign. These buildings are all one story structures with brick walls and slate roofs.

The length of the line from the station to the extreme west end is 1.97 miles, to the extreme east end $3.3: 3$ miles, to the extrom" south end (on New street) 1.50 miles.

The power house contains not only the engines and generators for the railway, but also engines and generators for the are and incandescent lighting circuits for both Champaign and Urbana.
'The railway generators*, Nos. 1 and 2 on Plate III., are Westinghouse compound wound machines run at 525 revolutions with a normal output of 90 amperes at 520 volts or capacity of 46.8 K . W. cach. The two machines are rin in parallel with an equalizing wire comnecting them at points between armature and series coils. On the switch-board, between each machine and the bus bars, is an antomatic circuit breaker set to operate at 125 amperes. A number of lightning arresters of different types protect the machines.

The engine used to drive the railway generators is a l'orterAllen 16x16 high-speed antomatic engine, run at 28.) revohtions. It has a 6 -foot driving pulley of 20 -inch face. 'I'his engine' is No. 1 on the station plan (see Plate 1II.) It is belted to a section of the line shaft which serves the entire lighting and power station.
'The boiler house contains three Babcock i Wilcox water tube boilers, rated at en $0 \mathrm{H} . \mathrm{P}$. each, carrying steam at from 90 to 12.) pounds pressure. The feed water is ohtained from the C'lampaign city water works, and is heated by an exhanst steam feed water heater. A duplex pump is used to feed the boilers.
'The steam is carried into the engine room by a 10 inch main at feet long. From this main, hranches lead to the several engines. 'The branch supplying the railway engine is 8 inches in diameter' and 40 feet long.

The car ham has a capacity of 20 calrs. 'Ihere are ot tracks (onnnected by a tramsfer table. 'Jwo of the tracks have a pit mader them.

[^1]The cal outlit comsists of 7 single motor（atrs alld several trabl－ ers．＇lhe electrical equipment was made by the Westinghonse Co． Brill trucks are used on all cars exeept one（No．16）which has a Mo（inire truck．The wheels of car No． 12 are 3ifinches，all others are 38 inches．Some of the car bodies are from the Brownell d Wight Co．，others from the Laclede（＇ar Co．At time of making the general test the armagement of motor calrs was as follows：
（＇irr No．10， 16 foot，closed body．2i）H．I＇single reduction motor．
（＇in No．11， 16 foot，closed body．1t H．I＇．domble reduretion motor．
 motor．
（＇ar No．13， 16 foot，cosed boty． $16 \mathrm{H} . \mathrm{I}$ ．donble reduction motor．

Car No．14， 16 font，（losed body．2．H．P．single reduction motor．
（＇ir No．15，e．foot，open body．．2．H．P．single reduction motor．

Car No．1ti，： 0 foot，elosed body．30 H．I＇．single rednctiont motor．
（iar No．17，en foot，closed hody．2；H．I＇．single reduction motor．

Several stationary motors and a few lamp circuits are operated hy current from the trolley wire．

The scheme for operating the road is as follows：
Four motor cars are in regular service．One of these cars plies back and forth on New street．The other three make round trips from the west end of line in Champaign to the east end in Urbana and back．One hom is required for the round trip．At the even hom and at twenty minutes after and twenty minutes before the hour two cars leave Neil strect，one for the west end，the other for Ur－ bana，and one car leares Urbana for Champaign．The car which leares Champaign at twenty minutes before the hour makes its trip via the fair ground loop，the other two cars go by the way of Wright street．The first car leaves Champaign at $6: 20 \mathrm{~A}, \mathrm{~m}$ ．The last car＇ leaves Urbana at $10: 20 \mathrm{r} . \mathrm{m}$ ．Trailers are used whenever occasion requires．

I＇reliminafy＇Tests．

These tests were made in order to obtain information as to the best method of taking the observations which it wonld be necessary to make during the general test．

Spectal Cale Test No．1，Jantary 12， 1894.
This test was made at a time when the ground was covered to a depth of 3 inches with fresh dry snow，the day being selected as one on which more than the ordinary dilficulties of operating woutd be encountered．

The car used was No． 16 above described．Readings were taken every 10 seconds of the total electromotive force，current，speed，and focation．Weston electrical instrmments and a Schaeffer and Buden－ burg tachometer were used．

The voltmeter was comected between trolley and ground，and the ammeter between motor and gromid．＇The tachometer was belted to the free axle．This test may be divided into two parts，A and B， ats shown in Plates IV．and V ．Part A was made at the west end of the line where the show had not been distmbed．Part B consisted of a run orer into Urbana and lack to the power house．

In the plates the time is plotted as abscissoe and the E．M．F＇．， current and speed as ordinates．In attempting to rmo throngh the dry snow，it was fomd that the can would only run a short distance before the wheels wonld begin to slip．The snow between the wheels and rails to which the shipping wats due cansed a marked drop in roltage．I＇he wheels，contiming to revolve，would wear through the snow in a few moments；the roltage would immediately rise and the car move ahead，mly to stop again a few moments later through the same callse．

In this commection it might be observer that the motor is in danger of a bmonot if the controller is turned on full，and the wheels，revolving slowly，suddenty make good contact with the rails．

The second part of the test was made in orler to obtain ralues at rarions parts of the line，of the quantities mentioned abore．The results plotted in Plate V ．show an average current of 25 amperes， forresponding to about $17 \mathrm{H} . \mathrm{P}$ ．The comrent taken by the car at－ tained a maximum of 70 amperes．This occurred in going around the Wright and Green street curve．The maximum E．M．F．was 520 volts，the minimm 430 ．The latter was at the extreme end of the line，and was at the moment when two cars，near that end，start－ ed simultaneonsly．The speed attained a maximum of 23 miles per hom：The areage was 13 miles per hom．

Special، Car Test No．2，Apral 15， 189 t．
＇I＇his test was made on a clear dry day when the conditions of uperating were better than the a verage．The object was to get fuller＇
and more atcomate information concerning the performance of a car than was obtained in the first test.

The observations were made on car No. 16 , the car used in test No. 1. Measurements of total electromotive force, current, speed and location were made every 10 seconds as in the previons test, ind, in addition, measurements of volts lost in the controller. Weston electrical instruments were used. The tachometer was belted to a pulley on the free axle, of such diameter that measurements of speed down to $1 \frac{1}{2}$ miles per hour conld be made with accuracy.

As in the preceding ease this test may be divided into two parts. 'The first part consisted of a run orer the whole line; the second part, made on Johm street, consisted of several rums back and forth in order to get measmrements with the controller at different notches.
'I'he results of the first part of this test, consisting of direct ol, servations of cmrent, electromotive force, speed and location, and of computations of total applied E. H. P., lift and propelling H. I., are shown by the curves of llate VI.* I'he first part of the run, i. r. that from Neil street to the west end, is shown as the last part in order to represent a round trip from the west end. 'The part of the curves for the run going east show a break for the time the car was on Johm street. It is to be noted in plotting the curves in this test that distance (instead of time, as in test No. 1) has been taken as abscissie. 'The profile is drawn under the curves in order to show at a glance the relation of the abore mentioned results to the grades.

By the applied E. H. P. is meant the total power taken from the line. The lift H. P. is that power which will be required to orercome the grade at any time. It is obtained from the formula:

Lift H. P. $=\frac{\text { Wt. of car (in pounds) } \times \text { lift (feet per minute) }}{33000}$
The lift H. P. is positive on an up grade and negative on a down grade, and will obviously depend upon the weight and speed of the ear and also upon the grade. By the propelling H. P. is meant that power which at any time is actually cansing the car to move; it is the summation of the lift H. P. and the applied E. H. P. after deducting from the latter the losses in the motor. It may be expressed by the following formula:

Propelling H. P. $=$ applied E. H. P. \times efticiency + the lift H. P'.

[^2]I＇his does not take into consideration the power required to ac－ celerate the car，or that given out in stopping．

It would be natural to suppose，on account of the low efficiency of street railway motors in general，that the propelling H．P＇．shouh be considerably lower than the applied E．H．P．，even on an ordin－ ary decline，and this，it appears from the curves，is the case．

The current ran up to more than $f 0$ amperes several times at start－ ing and in going around curves．The arerage was 17.5 amperes．The average electromotive force was .500 volts ；the highest value was 560． The maximum speed attained was 22 miles per hour；the average was 17 ．The maximum applied E．H．P．was 43 ；the average was 11．7．This maximum applied E．H．P．was at starting on a curve． The maximum lift H．P．was 9．This was required in running up it grade at high speed．The propelling H．P．is largest at start－ ing；it may be large also in going down hill at a high rate of speed． It should be remarked，however，that in the latter case the applied E．H．P．is comparatively small，the lift H．P．being negative and therefore increasing the propelling H．P．

In the second part of the test，besides readings as taken in the preceding part，the fall of potential through the controller resist－ ance was ohserved．The piece of track on John street was selected on account of being very level．The car was run the entire stretch on one notch，back on the next，and so on，the controller being placed on the notch desired after the car had been brought up to speed．

The observations and some of the computations are giaphically represented hy the sets of curves in Plate VII．，with the profile shown under each set．On account of the shortness of the run and the variation of the speed，this part of the test is rather unsatisfactory． By reference to the plate it will be observed that the vertical dotted lines enclose in each case the parts of the curves to be compared． The fiftll notch readings were not plotted because of the great varia－ tion in speed．Through an oversight the values of the H．1． lost in the resistance were not plotted．They have been computed， however，and are shown in the following table：

Table I．

Notch	1	\because	3	4	5
Imperes	16．019．320．3 20.016 .0				
F＊all of Potential through resistance．in volt					
speed in miles per hour	$\begin{array}{ccccccccc}15.5 & 13.8 & 10.5 & 14.0 & 18.5 \\ 9.2 & 13.0 & 13.5 & 15.0 & 10.0\end{array}$				
Total applied \＆．H．P					
E．H．P．lost in resistance．					

It will beobserved that the power lost in the resistance is not large at :uy time. However, the per cent. loss of the total applied E. H. l '. is large on the lower notches, being $17 / /$ for the first notch. It is only ${ }^{2}$ ', for the fourth noteh. 'The apparent anomalous increase in current with decreased resistance is due to the fact that the speed of the car was being accelerated. 'This would also affect in the same mamer the total E. H. P. 'The small H. P. for the first and lifth notches is due to the fact that the speed was decreasing.

Sbechal Stathen Ouppt Test, Apria 28, 1894.

This test was made in order to obtain such information ats would enable entire preparation for taking observations of the station output during the general test. On account of special attractions offered at the West End Park during the evening, this day was decided upon as one which wonld show the plant rumning at more than its ordinary load. Readings of electromotive force and current were taken with Weston instruments every minute for the entire time of the run, from 6 A . м. to $11: 30 \mathrm{p}$. m.

In general the electromotive force did not differ much from soo rolts. Occasionally it rose as high as ti00 volts. 'These high values were caused either by the speed rumning up when the load was surddenly diminished by a considerable amount or by the over-compounding of the generators when a heary load was retained for a sufficient time for the engine to regain its normal speed under that load. The latter occasions were rare as the load was generally reduced before the engine regained its normal speed. The electromotive force fell but once below 500 volts and then only for a short time.

The current was very irregular, often instantly changing lou amperes. This excessive change was due to several cars starting at the same time, and was noticed particularly at intervals of 20 minutes, corresponding to the schedule for departure of cars from certain points of the line. The current varied from 0 to 250 am peres, being largest in the evening when all the cars, including trailers, were pressed into service.

$$
\text { The (ieneral 'Test, May } 17,189 \text {) } 4 .
$$

This Wath a complete test of all parts of the system. Nimmeroun tests, in addition to those which have beem briefly discussed, and extensire preparations had been going on during the winter and spring. The two or three days immediately preceding that on which the test Was made were spent in putting into position the devices and instru-

WLATEI.

RAILWAY

[MIDT

COAL EINS
$250 \mathrm{H} . \mathrm{P}$.
OCK \& WILCOX
BOILER
U.\& C. E

STORE ROOM
,
$=-$ -
\qquad
\qquad

PUMP FIT
heater
 BOILER

250H.P.	250H.P.
BABCOCK	BABCOCK
\& WILCOX	\& WILCOX
BOILER	EOILER

POWER PLANT
OF
U. \& C. ELECTRIC STREET RY.

111

ミミ	＝：	\because

HIFTHST．－ $\int_{-1,20}^{20.50}$

－

FIFTIIST．

SIXTIIST．．

WRIGIIT
ST．

HOユON 7S：
SAHOLOX LNABLASIU LY HETTOALNOD

$\overleftrightarrow{H O \perp O N \text { PAE }}$

HOLON Y7t
umue of THE
THE LisBany Mily meitr of lumpos
$\overleftrightarrow{H O \perp O N ~ P u Z ~}_{3}$

PLATEVII.

GENFTR, II, TEST
ments which experience had shown to be lest suited for the purpose. Observations began at $6: 00 \mathrm{~A}$. a. and were made thronghont the day at intervals of one minnte montil $\delta: 00 \mathrm{P}$. m., every precaution being taken to secure simultaneons readings at the rarions points. The day was clear, warm and dry. The test proceeded from beginning to end without serions intermption of any kind.

The observations taken during the general test may be classified under the heads, A, those taken on the line ; B, those taken in the station.
A. Obshifations Taken on the Line.
'Lhis group of observations consister of measurements made on the cars and measurements made at the stationary motors.

Each car and each stationary motor was equipped to measmre the total applied E. H. P., a Weston roltmeter and a Weston or a Whitney ammeter being used, except that one voltmeter served for several stationary motors where these were near one another in a group.
'The results in terms of E. H. P. are shown graphically in Plate VII. The electromotive force and current curves have been omitted since they would show nothng beyond what has heen already brought ont in the plates for the special car test, and they are fully accounted for in the H. P. curves.
'I'he curves representing the total E. H. P. for the cars and also for the stationary motors were umintentionally omitted from the plate.

The arrangement of curs that had been decided upon for the day was as follows: Cars No. 10, 15 and 17 were to make round trips and No. 13 was to ply on New street. In taking car 15 out of the barn the trolley pole was broken. This accident necessitated sending out for a short time car No. 11 which was without electrical measuring instruments. The performance of car 11 is so similar to that of 13 that it was possible to compute rery closely the power taken by the unequipped car for the short time it was in service by making the assumption that the average E. H. P. for 11 and 13 are the same. The computed E. H. P. is shown by the dotted line in the group of curves for the car motors. As soon as possible car $\mathbf{1 6}$ was equipped and put into service in place of 11 . About 9 o'elock A. Ir. car 15 took the place of $\mathbf{1 6}$.

Car No. 10 took its maximum power at $4: 40$ p. m., the instruments indicating $47 \mathrm{E} . \mathrm{H} . \mathrm{P}$. It was then heavily loaded and was
Table 11.

$\underset{\substack{\mathrm{Car} \\ \hline \\ \hline}}{ }$	$\begin{aligned} & \text { Length } \\ & \text { of ear in } \\ & \text { feet. } \end{aligned}$	$\begin{aligned} & \text { strle } \\ & \text { of } \\ & \text { car. } \end{aligned}$	$\begin{gathered} \text { Type } \\ \text { of } \\ \text { motor. } \end{gathered}$	RatedH. P. of motor	AverageE. H. P. taken.	$\left\lvert\, \begin{gathered} \text { Max. } \\ \text { E. H. } \\ \text { taken. } \end{gathered}\right.$	Total H. P. bours.	Conditions under which maximum power was taken.					Minutesper hourthat mo-tor wasnot inuse.	$\|$Average E. H. IP during time thit motor took current.
								When.	Where.	Track.	Profile.	Load.		
10	16	Closed.	Single Reduc tion.	25	8.7	+6.0	91.3	$\begin{aligned} & \text { P: }: 111 \\ & \mathrm{P} . \mathrm{M} . \end{aligned}$	Church to Main streets.	Curve	Level	Heavy	15	11.6
11	16	Closed.	Double Redue tion.	16	9.9	\ldots								
13	16	Closed.	$\begin{aligned} & \text { Double } \\ & \text { Reduc- } \\ & \text { tion. } \end{aligned}$	11^{1}	4.9	36.5	$51+$	$\begin{aligned} & 11: 30 \\ & \mathrm{~A}: \mathrm{M1} \end{aligned}$	$\begin{aligned} & \text { South } \\ & \text { end New } \\ & \text { street. } \end{aligned}$	Straight.	$\begin{gathered} \text { Up.3 per } \\ \text { eent. } \\ \text { grade. } \end{gathered}$	Light.	37.5	13.1
15	\because	Open.	Single Redue tion	第	10.8	50.0	113.4	$\begin{aligned} & 9: 10 \\ & \text { a: M. } \end{aligned}$	$\begin{aligned} & \text { Neil to } \\ & \text { Main } \\ & \text { street. } \end{aligned}$	Curve.	Level.	A verage.	± 0	16.2
16	20	Closed.	Single Reduc tion.	:0	11.8	5\%,	\ldots	A. 8.11	Neil to Chureh strcet.	Curve.	Level.	Average.	18	16.5
$1 \hat{1}$	20	Closed.	Single reduc tion	\%	10.4	11.5	109.3	$\begin{aligned} & \text { 4:010 } \\ & \text { P. M. } \end{aligned}$	Neil to Church street.	Curve.	Level.	A verage.	15	14.0

going east on the curve from Church street into Main street. The average for the nine hours was $7.9 \mathrm{E} . \mathrm{H} . \mathrm{P}$.

The H. P. taken by No. 11 being estimated, it is impossible to state what the maximum was. The arerage was $9 \mathrm{E} . \mathrm{H} . \mathrm{P}$.

Car No. 13 made romad trips at 20 -minute intervals, starting south as a-car passed New street going west, and returned in time to make connection with the same car going east. The maximum power required hy No. 13 was 36.5 E. H. P. This was at $11: 30 \mathrm{~A}$. M., on the start from the soutl end of the line where the grade is considerable. This car was at no time heavily loaded. 'The average was $4.5 \mathrm{E} . \mathrm{H} . \mathrm{P}$., the car being operated only about half the time.

No. 15 required 50 E. H. P. to start on the curre from Neil street into Main. This maximum occurred at $9: 10 \mathrm{~A}$. m. The average was 9.9 E. H. P. The power required for No. 16 attained a maximum of t5.5 E. H. P. at $8: 40 \mathrm{~A}$. . . . in going around the curve from Neil into C'hurch street. The average was 10.8 E. H. P'. The maximum power taken by No. 17 was also on the curve just mentioned. It was 41.5 l . H, P. and occured at 4 p . м. The average was s. 3 E. H. P.

The above mentioned data are brought together in Table 11.
It was not deemed necessary to make any observation of the power lost in the controlling resistances, since it was possible to compute the loss. In special cal test No. 2 it was found that the loss in the resistance is about $0.8 \mathrm{E} . \mathrm{H} . \mathrm{P}$ '. in starting the car in the ordinary way. The areage time taken by motormen of this line to start a car, i. c., to turn the controller notch by notel until the resistance is all cut out, is ten seconds. The average number of starts per car during in round trip, on the day of the test, is given in the following talle:

Table 111.

Car No....	10.	13.	15.	17.
A serage starts per round trip.	1%.	9.	15.	14.

Average starts per round trip for the four cars -5%.
This would give a loss in the resistance of the four cars of about $0.11 \mathrm{E} . \mathrm{H} . \mathrm{P}$. continuously during the test, or about $1 \mathrm{E}$. . . P. for one how in the 11 hours during which the test lasted.

It was intended to take the speed of each car, (1) in order to be able to determine whether or not the distribution of the cars along the line was satisfactory with respect to lift and propelling H. P ; (2) to have sufficient data for accurate computation of the efficiency of the system. The special test of station output, how-
ever, had shown that the great variations in the load of the enigine were due to all the cars starting together at the twenty minute intervals, rather than to a bad distribution with respect to grades. F'urther it was found impracticable to determine accurately the efliciency for the rarious motors at all speeds aud loads. Therefore readings of speed were omitted. The location of the cars and the number of passengers at the minute intervals have not been given, since these would be of little ralue if the speed was not known.

There were in use for rarious power purposes, on the day of the test, eleven stationary motors. 'lwo of these were in Urbana near the business center of that city; the remainder were in Champaign, all near its business center, with the exception of two at the elevator which is near the power house. In addition to the motors above mentioned there were in use several small fan motors. Data concerring the motors and the results of the measurements made on them are shown in the following table:

T'able 11.

$\begin{aligned} & \text { Type } \\ & \text { of } \\ & \text { motor. } \end{aligned}$	Rated H. P.	$\begin{gathered} \text { Maximum } \\ \text { H. P. } \\ \text { taken. } \end{gathered}$	$\begin{gathered} \text { Average H. P. } \\ \text { taken during } \\ \text { run. } \end{gathered}$	$\begin{aligned} & \text { No. } \\ & \text { hour. } \\ & \text { run. } \end{aligned}$	Total H. P. hours.
'T'.11..........	('Two) 16.	91.5	12.0	3.33	10.
T. II.	15.	14.0	4%	$\because 2$	34.
Fester ${ }^{\text {r }}$	3.	35	1.26	2.64	3.35
Viester........	\because	3.5	2.93	8.5	34.9
Welison	4.	1.5	1.0	38	$\because .8$
C. \& C	3.	1.5	0.95	9.9	S.
Maro..........	1.	2.0	0.94	2.33	\because
Nester.......	$\because .5$	\because	$\because .00$	2.3	4.5
Belding.......	1.	5. 0	3.80	4.0	15.5
liester	7.5	3.0	1.60	84	13.
Jenny	5.	35	3.00	8.8	94.5
Fan mot ors...			0.46	11.	5.1

The measurements on the motors are exhibited graphically by the curves in Plate VIII. It will be noticed that most of the motors take very little power. 'The motors at the grain elevator, however, take considerable, the arerage E. H. P. during a run being about onethird of total E. H. P'. taken by all the motors, if in operation at one time. The grain elevator motors are, however, in operation only a small part of the day, while several of the smaller motors operate
almost contimonsly. 'The total mmber of E. FI. P'. hours for the stationary motors is about one-half the total for the car motors. It will be seen from the eurves that the load for the small motors is almost miform, while the load for the grain eluator motors changes greatly, and canses more variation in the station ontput than all the other stationary motors together.

The average E. H. I'. for all the stationary motors during the 11 hours is 17.3 . The Beris llaning Mill started at ti.01 instead of at (i.18 and it should have been so shown in the plate. 'Jhe power' taken by it is shown in curve for station ontput. The arerage l . H. P'. for all the motors (both car and stationary) is ide.

It is to be regretted that time and meams did not permit of making efficieney tests of all the motors.

It was armaged that no lamp circuits should be in operation, so that power should be taken by the motors only.

B. Observatoos Then at the Stathon.

These observations may be subdivided as follows:
(1) Observations taken at the generators.
(2) Observations taken at the engine.
(3) Observations taken in the boiler room.
(1) Observations taken at generators.

As abore stated the two generators are compound womnd and are commected in parallel. The output was measured by comnecting a Weston voltmeter between trolley and gromed bus bars and placing a Whitney ammeter in circuit with each machine. 'The results are graphically represented on Plate Vlll.

- The engine and generators were started a little before $6: 00$. . . . As stated above, the Bevis Planing Mill started at $6: 01$ instead of at i:18 as represented. The curve representing the ontput of tho generators is very characteristic of power stations in whicl the load changes sudilenly by great amoments.

The maximm power giren ont hy the generators was 121 fi . H. P. and ocemred at $11: 24$ A. M. At this time three of the ears started suddenly and the two largest stationary motors were taking their maximum power'. 'The power taken from the generaters exceeded 100 E. H. l'. several times, noticeably at the twenty-minnto intervals, when the cars started simultatously. The minimmm power was 13.5 E. H. I'. On several occasionis the instruments indicated less than $1.5 \mathrm{~L} . \mathrm{H} . \mathrm{V}$ '. 'These eases were when none of the ars were taking current, the power heing taken by stationary motors only.

The maximum sudden change was $71 \mathrm{E} . \mathrm{H} . \mathrm{P}$. , which occurred at $10: 24 \mathrm{~A}$. M., when the E. H. P. rose from 21.5 to 92.5 . At this time all four cars started simultaneonsly, producing the great variation observed. The stationary motors were working uniformly at the time. The average power delivered to the line by the generators is in. n E. H. P.

Obsfrvations Taken at the Engine.

I Porter-Allen engịne 16×16 rmming at 285 revolutions per minute fumshes power for driving the generators. It is run non-condensing muder a boiler pressure of 110 pomuds. It is situated about 100 feet from the boiler that was nsed during thes test, the comnecting pipes being well corered with a non-conducting corering. In Plate IX. is shown a cut of this engine made from a photograph taken at $3: 35$ p. m. on the day of the test. Arrangements are shown for taking the following ohservations:

1. Revolutions per minute.
\because. Position of goremor.
2. Steam pressure in pipe abore throttle.
3. Moistmre in steam pipe abore throttle.
a. Indicator diagrams from each end of the cylinder every minnte.

An inspection of the cut will render any detailed description of these arrangements monecessary.

A reading of the rerolntion comnter was taken on erery halfminute while indicator diagrams were taken at the even minntes, so that the revolutions obtained in this way are the revohtions which held for the mime that the indicator card was taken.

A graduated are set up back of the engine enabled the position of the governor to be read hy the same alserver that read the revolntions.

The indicator rig used was the drop lever and comnecting link type withont a sector, althongh the photograph makes it appear that a sector was used. This is due, howerer, to the fact that the picture was taken with the engine in motion. Two Tabor indicatoms were used on the engine cylinder, a string from each indicator leading straight to the drop arm of the rigging. A small strip of almmininm about $\frac{3}{8}$ of an inch wide and 4 inches long was attached to this string, and in the strip 3 holes were drilled. into either of which a hook attached to the string from the drop arm conld he placed.

N1 : $4 . \boldsymbol{N}_{1} 1$

The length of the card taken was 3 inches. By placing the hook successively in the 3 holes indicated 3 diagrams conld he drawn on each card without removing it each time for a new diagram. This greatly facilitated the rapid taking of diagrams, and no trouble was found in taling carls as frequently as erery minute. Ln order that the diagram should be taken exactly on the minnte, the observer at the revolution comoter called "time" just ats the second hand pointed to sixtr.

A commection was made to the steam pipe just above the throttle valre, and to this comection, the calorimeter was attached. This instrument is shown with the observer reading the thermometer placed in the oil cup, in the top of the instrument. It is a throttling calorimeter of the type manufactured by Schaeffer \& Budenburg Manufacturing Company: Observations were taken every 30 minutes from this instrument.

A Crosby indicator was attached to the extension of the same pipe and the use made of this indicator was to record the pressure in the pipe as well as to show the rariation in this pressure. The methorl of using it was simply to turn on the steam and while the pencil was moring slightly up and down, due to rariation in the pressure, the string was pulled along by hand for about $\frac{1}{2}$ inch. The time was then written down above this record, and about 8 records were placed on each card. A sample of the cards thms taken is shown in Plate X., as well as sample indicator digrams taken from crlinder.

The cards taken from the steam pipe were all carefully measured and the rariation in pressure recorded as well as the arerage pressure, which was taken to be half-way between the highest and lowest points recorded by this method.

All of the instruments seemed to be in good condition, and it is probable that the series of observations were taken as carefully as it is possible to do this lind of work.

A total of about 1300 diagrams were taken from the engine. Each of these diagrams has been planimetered by two persons, and an extensive table of results as well as a graphical record has been prepared by the mechanical engineering department. Space would not permit of the publication of this table of results and only the deductions and arerage values are reported. See T'ables V., Vl. and VII. and Plate XI.

Observations 'laken in the Boller Room.
The boiler used during this trial was that designated by the

	H6, 4 H-		HHHWM		
4untita	$3,7$	Whthe	3:45	nitur:	Whitsst
3 P.M.	110165	. 30	112 lbs		4:15
101765		104 lbs			00 L

```
SAMPLE CARD FROM STEAM PIPE.
```

im.

BOILER PRESSURE.
nitwh

CRANK END CARDS.

power eompany is No. 3 , being the one situated at the east rad of the boiler honse and finthest from the engine.

This boiler Was onte of the Babeock of Wilcos boilers used at the Colmmbian Exposition, having heen erected at this plant in the spring of 1894 omly a short time before it wats tested.

For weighing feed water, a new e-inch injector was set up and used for handling all the water fed into the boiler. Steam for running it was taken from the boiler tested.

A tank holding 4 barrels of water was provided and into this the suction from the injector extended. On this tank was momed a scale carring a barrel. Uniform amomets of 400 pomuds of water were weighed and dropped into the tank below. The temperatore of the water was taken while it was in the bamel on the scates.

A special box was provided for weighing the coal. Uniform (harges of $: 300$ pounds were delivered to this box and after each firing the scales were halanced.

The usmal observations were made every 15 minntes dming the test.

All ganges used were tested hy the "("moshy weight gange tester" and all scales were tested by a comparison with a set of U. S. standard weights helonging to the govermment and deposited at this miversity.

The coal nsed wats "Odin Lmmp." An amalysis is given in the lollowing table:

> Table I.

100.00

The more important ohservations and results are represented in Pate XI.

The plate shows, in addition to the more important values of the angine and boiler test, the calculated values of engine H. P. hours, generator, and motor H . P. hours. The eurves are plotted with time as abscissie. In those for the coal burned and water evaporated the ordinates give the total quantities up to the time to which the ordinates correspond. The same holds true concerming the engine, generator and motor H. P. homrs.

The average values of some of the quantities shown in the eurves， tngether with some total values，are given in the following tahle：

Table：\1．

Arerage steam pressure in boilers．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．104．2 lls．
Average draft in inches of water．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 3 in．
Average temperature of flue gases ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．7tio． 0 I．
Arerage temperature of steam ．．． 310° ． 1 ド．
Average temperature of external air．．．．．．．．．．．．．．．．．．．．．．．．．stio．si F ．
Average temperature of boiler room ．．．．．．．．．．．．．．．．．．．．．．．．． 83° ． \mathfrak{H} ．
Arerage temperiture of feed water．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．iso．．．．．．．．
Average per cent．of moisture in steam．．．．．．．．．．．．．．．．．．．．．．．．．．．．．3．．．．．．．．．
＇Total quantity of coal lmrued ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．T ！！（10）llos．
＇lotal quantity of water evaporated．corrected for quality of
steaint．．3ヶ lins lbs．
Water evaporated per pount of dry coal．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 1. ．s lbs．
＇Aable VII．contans the most important results of the general test．It shows the quantities of water and coal consumed in the operation of the varions parts of the system．Some facts concerning the mumber of passengers carried and distribution of cost are also giver．

$$
\text { Tamide } \ 11 .
$$

Total water evaporated．．．liss lbs．
＇Total coal burnerl．．！！ou lbs．
＇Total engine II．I＇．hours．． 833.1
＇Iootal dynamo II．l＇．hours．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． ．
＇Total motor II．l＇．hour＇s．．．
｜Tootal ear motor II．l＇．hours．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．3（i．）．f
†Tutal round trips of cars．of s．li miles cach．．．．．．．．．．．．．．．．．．．．．．．．． 31. ．
＇rotal ciar miles run．．． $3!$ ．
＇Total mmber of passengers carried（entimated from daily areratre of
1 тои．）．．． 1 1111．

l＇assengers per round trip）．． ． 3 ．
Wiater evaporated by゙ 1 pound of cobal．．．．．．．．．．．．．．．．．．．．．．．．．．． 1 lb lb．

Water evaporated per dyatmo II．I＇．homr．．．．．．．．．．．．．．．．．．．．．．Sis ．00 Ihs．

（＇oal per motor II．I＇．homr ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 11 ．．itllo．

[^3]| （＇oal pere car \quad l | （1i．\％） 16 sm |
| :---: | :---: |
| Coal per passenger carried | 4．is llos． |
| Cost of coal per ton | － 1.50 |
| Total cost of coal bm | \％． 1 |
| rost of coal pere pound of water eve | 0．01ら゙しく |
| Cost of coal per engrine II．I＇．homm | 0． 5.510 e |
| （＇ost of coal per dirnamo H．I＇．hon | 1． 31306 |
| （ ont of coal per motor H．1＇．hour． | 1．300060 |
| Cont of coal per ear round trip | －0．61006 |
| ＇＇ont of eoal per car mile | $\because .390 \%$－ |
| Cust of coal per passenger earrie | ． 1 fisoc |

The Efficievcles．

The rated capacity of the boiler used is 2．50 H．P．and the rate of craporation clamed liy the maker is about 9 lbs ．of water per tb．of coal bumed．On the hasis of $11 . \overline{\text { r }}$ square feet of heating surface per H．I＇．it was found that the H．P．was only 193．The quantity of water eraporated per lb ．of coal burned during this test was found to be only 4.88 ths ．This indicates a very low boiler efficiencr．The coat consumed is about the proper amount so far as area of grate surface and area of heating surface are concemed．The boiler was worked rery much betow its rated capacity．This makes the quan－ tity of water eraporated too low with respect to the amome of grate surface and heating surface，and to the coal burned．

The low boiler efficiency may also be partly attributed to ex－ cessive rariation in the load．The boiler must be ready to supply a large quantity of steam at any time，and the fires are kept to furnish this，while during a considerable part of the time only a little steam is uned．Under such conditions a high boiler efficiency can not be at－ tained．
＇I＇lhe engine and generator efficiencies were not separately de－ termined．From the known station efficiency，however，it is eri－ dent that they are pretty high．

The arcrage engine I．H．P．was 79．3．The average E．H．P．de－ livered to the tine by the generators was 5n．The station efficience， i．c．the ratio of E．H．P＇．delivered to the line by the generator＇s to the 1．H．I＇．at the engine，is then 69．4．＇Ihis is to be regarded ats a high value when compared with values obtained in tests of rail－ ways in other ptaces，and when it is considered that rery few cars are in operation at one time and these muder conditions that cause excessive variations in station output．

The arerage E．H．P．applied at the motors was 20．2．The average station output was in．E．H．P．The line efticiency，com－

puted he finding the ration of the aremge L . H. I'. applied at the motors to the average station witput is, therefore, 94.6.

From the lanwon distribntion of the ears along the line amd the

 lonses almd rary little ean he due to leahatge. Insulation tests made both hefore and after the chliodeney test graw a ver? high insulation resistanter.
 The commercial etticeney for the tratenn system, i. r., the ration of the powser delivered at the ear axde, to the part of the empine I. II. l'. due to the cars, cam he estimated approximately by assuming that (i.)', of the power delivered to the motors is in turn delivered to the car axle (i. é, that $35^{\prime} / \mathrm{f}$ is lost in motors and gearing . 'This give a rommereial efficience of $42 . \overline{7}$ for the traction system.
'The total commereial elferency for the entire system, i. e., ther ration of the sum of the power delivered at the palleys of the stationsary monors ame the puwer delivered at the rar aslen tor the II. I'.

 this to he above the average. It spealis well for the performance of
 bronght tore ther in the following table:
'TABLに: Vll.

'lhe students of the department of electrical congineering and of the department of mechanital engincering made the greater part of the readings in the general test. It is to their faithfnlness and patient and intelligent observation that the sucress of the test is largely dine. The work wats carried on under the general supervision of Professor Breckempidge of the department of mechanical engineering, and of Professon Shea and Mr. Swensom of the department of electrical engineering.

T's Mr. B. F'. Hamis , lro, president of the railway, and to Mr. H. .l. Pepper, superintendent, our thanks are due for their kindness in permitting the varions tests, and for the chereful assistanee given and miform conrtesy hown lis.

R.DILROAD (ROSSING FROGS.

The measmrement of the angle for a railroad crossing frog is usinally a comparatively simple matter. Yet it is fom that under conditions which prevail in most large railroad centers, the collection of complete data required in ordering a crossing frog may demand special skill and experience on the part of the engineer. Among the complicating circumstances encomtered in most large cities are crowded railroad or street traffic, curved alinement of the tracks, and contiguity of other crossings. In preparing the order for a crossing frog, it is the custom of some engineers to provide at more or less elaborate drawing showing the details of the frog. This procedure is doubtless necessary in many instances, but in a large majority of cases it is sufficient to prepare a simple and clear centerline drawing, supplemented by a tabulated statement of the data required by the maker of the frog. In collecting the data to accompany the order for a crossing frog, the following items require due attention:
 cases the intersecting tracks will be of the same gage, but this point should be carefully tested by actual measurement. Among the most probable sources of error in this regard are the confusing of the standard gage of 4 ft . $8 \frac{1}{2}$ ins. with the less common gage of 4 ft . 9 ins., and the failure to observe the widening on sharp curves.
(2) The !linement ai soull Truml:-In newly located crossings, exact refinements in the matter of alinement may properly be given precedence orer the question of economy in cutting rails, but in the renewal of old crossing frogs the latter consideration is msmally given the more weight, particularly where connection with or close proximity to other frogs may serve to fix in a rigid manner the position of one or both of the tracks. Where the center lines are not to be disturbed in renewing the crossing, it is necessary to consider the alinement little, if any, beyond the outermost limits of the set of frogs concerned. In fact, with crossings on curred tracks the use of centers as much as 100 ft . distant from the intersection to determine the direction of the tangent line, may lead to a perceptible
mistit in the frog, owing to a lack of mimifomity in the curvature within the limits taken. Ordinarily the alinement of the center lines need not he considered more than 20 or 30 ft . cither way from the point of intersection. In exception to the abover rule is fomul occasionally where the old frog has been dragged ont of lime on one or both lines of railroal by the "creeping" of the rails, a phenomenon which is nsmally, and no doubt correctly, ascribed to momblanced traftic. T'he last named defect of course looks most unsightly: on tangent track, lat it may be sulficiently aggravated in curved tracks as well to demand periodical correction by driving the rails hate or substituting rails of other lengthes as may he remnired. In chronice eases of worn-ont crossing frogs, which it must be admitted are far too common in this comntry, it may of ten be the wisest plan to re-adjust the alinement regardless of rail comections, especially if rail renewals are in contemplation on cither road.
(3) T'le Imyle a!' Intersection of the ('ruter Limes.-The angle required is that made by the tangent lines at the point of interseetion, and in the case of curved tracks this angle is, of conrse, equal to that between the radii to the common point. In taking the field notes, a sketch should be made showing in an mmistakible mamer the position of the measured angle with relation to the cardinal points and survonding objects and also indicating distinctly the curvature of the tracks, if the tracks are not on tangent. It is an excellent practice, and certainly a safe one, to measure supplementary angles with the transit and to check these measurements ly means of a metallic or steel tape hefore leaving the site, the two values to agree within a minute or so. The degree of curve should also be verified by measuring the tangent offset, and centers shond be established within the limits considered, for subsequent use of the trackmen in putting in the frog. These centers may also serve a valuable purpose in case of a dispute in relation to the litting qualities of the new frog after its delivery at the site.
(4) lacil Comurefioms.- 'This point is obvionsly affected be the action taken in relation to the alinement (2). In new erossings, the lengths of the wing rails may, as a me, he fixed arbitratily, hut nsually in renewing crossings the whl length of rail, ont to ont in cach direction, is taken as a moling dimension to aroid cutting rails. The last named rule is observed with special strictness in treference to the rails on the foreign road. One reason for its observance is that it prevents or reduces ponsihice delay to traltice when the now frog is put in place.
（i）laril surtion．Where the weights of rail differ in the two fracks，it is the usual custom to manufacture the crossing from rail to lit the heavier section．When the sections are widely different in height，it is good practice to insert a mal ol the heavier section ad－ joining the frog in either direction on the road having the lighter mil in order to reduce the effect of the wheels passing over this joint． It is necessary to provide shims and perhaps special chats and com－ promise splices where the difference of heights of the two rails is considerable．It is，of comse，desirable to secmre an exact section of the ratil from which the frog is to be made，bint it is often neces－ sary and usually sutticient to give only the principal dimensions of the rail and its weight，with perhaps its brand．
（6）Sjucin！！of Bolt Holes．－The bolt holes may，of course，be spinced to conform to different requirements on the two lines．
（7）Inside Fhom！c（int！e of the Whecls．－It is mmecessary to give consideration to this item unless one of the lines of road concerned in the crossing has rolling stock of an momsual type as regards the wheds，for the reason that the maker always constructs the crossing with the wheel flange clearance to conform to adopted standards． I＇he minimumr clearance between the wheel flanges on the motive power and cars ordinarily used on logging and similar tramways is considerably less tham that on the usual type of rolling stock．I＇he differnce is not so great，however，as to prevent the use of a cross－ ing frog ordered for such a tramway in which this point wis orer－ looked；for，as a rule，sufficient clearance may be gamed hy trim－ ming or chipping off a strip of the head of each guard rail on the tramway side of the crossing．

In most cases the engineer is not called upon to determine any angle，except that of the intersection of the center lines，which he does instrumentally．It sometimes happens，however，that a new set of frogs arrives at the site of the crossing，and owing to the di－ lapidated condition of the old crossing or other canse，a preliminar？ trial by superimposing the new over the old，leads the trarkman to helieve that an error has heen made in the new frog．Natmally and properly the burden of the proof and responsibility falls upon the person who measured the angle and secured the data whichac－ companied the order for the crossing．In such cases of dispute it is highly essential that the enginere be able to compute promptly and positively the angles of the several mal intersections and the other rasential dimensions of the set of frogs；for in his investigation of the matter the engineer is called upon to rerify，not only his own
measurements according to the centers which he is presumed to hare established, but also the work of the frog maker. If one or both tracks chance to be on tangent, the latter operation is of an obviously simple character ; but there is reason to beliere that aside from those engaged directly in the manufacture of crossing frogs, comparatively few engineers are famuliar with the more complex problem of a crossing of two curved tracks. 'I'he writer therefore ventures to transcribe from his private notes the following solution of the problem, which was envolved and frequently used in the exigences of railroad service some rears ago. For the sake of completeness, the simple case of the crossing of two tangent tracks will le givell.

1. Botil Tracks on Tanehent. Fig. 1.

Let $r^{\prime}=$ the angle of intersection of the center lines.
$F_{1}, F_{3}^{\prime}, F_{3}^{\prime}, F_{4}=$ the respective gage-line intersection angles.
If, $(i=$ the respective gages of track.
Then, in Fig. 1, $F^{\prime}=F_{1}^{\prime}=F_{3}^{\prime}=F_{i}^{\prime}=F_{+}^{\prime}$

$$
\begin{align*}
& \mathrm{F}_{1} \mathrm{~F}_{0} \mathrm{~F}_{+} \mathrm{F}_{3}-\frac{!}{\sin F^{\prime}} \text { ! } \text { cosec } F^{\prime} \\
& \mathrm{F}_{\because} \mathrm{F}_{3}=\mathrm{F}_{1} \mathrm{~F}_{3}=\frac{(i}{\sin F^{\prime}} \text { (in cosece } F^{\prime}
\end{align*}
$$

II. One or Buth Trachs on Curve. Figs. 2,3 and 4.

With the view to simplify the solution of the problem and to facilitate the application of the resulting formulas in practice, the figures have been constructed upon the assumption that the center, B, of the flatter curve, lies always to the right of the center, A, of the sharper curve. The symmetrical duplications of the crossings shown in the figures above and helow the line $A B$, serve to illustrate all possible cases of the problem and thus assist in the comprehension and use of the method deduced. With such relative positions for the centers of the two circles, the length, BF, of the longer radius may be conceived to vary between the two limits $I=r$, and $I_{i}^{\prime}=\infty$. The latter limit is illustrated in Fig. 2 , in which the center, B, lien at an infinite distance to the right. Fig. :3 shows the case with the two tracks curved in the same direction, and Eig, t shows the curratine in contrary directions. By considering always the interior radial angle instuad of the corresponding tangential intersection angle, the two being equal, andusing the auxiliary guantity V^{\prime}, a set of comparatively simple formulas may be ohtained, which covers the two rases alike. It should he ohserved in Fig. I that according to the
hasis hore assimued, the angle of the internection of the two corres in opposite directions is greater than !o, while the angle is less than a right angle when the curvatures agree in direction.

For the sake of simplicity, the sweral parts of the Hatter curve are represented in the figures and the work holow by capital letters, and the corresponding quantities for the sharper curve are indicated hy lowre case letters. 'Thus, the onter gage-lines are represented hy. () OO" and o^{\prime} no', the inner gage-lines hy I^{\prime} II" and $\mathrm{i}^{\prime} \mathrm{ii}^{\prime \prime}$, and the renter lines ly (" ($\mathrm{C}^{\prime \prime}$ and c^{\prime} cce", respectivel!.

Ammanchattles.

Let I ratius of center line of the Hatter curve.
$I_{1} \quad l_{i}=$ ratins of outer gage-line of the flatter come
$I_{i:}=I_{i_{1}}=$ " " imner
r radius of center line of the sharper curve.
$\therefore \quad i: s$ radius of onter gage-line of the sharper curve.
$r_{1}=r_{1}=$ ". \quad inner
$I^{\prime} \quad$ angle of intersection of ("($\left({ }^{\prime \prime \prime}\right.$ with $c^{\prime} c c^{\prime \prime}$

- ". includerl between li and 1 .
$I^{\prime}{ }^{\prime}=\quad$ of intersection of $0^{\prime} 00^{\prime \prime}$ with i'in"
- - \quad included between l_{1} and r_{1}.
$\because \because \quad{ }^{\circ} \quad$ of intersection of $0^{\prime} 00^{\prime \prime}$ with 0^{\prime} os ${ }^{\prime \prime}$
- " included between R_{y} and $\begin{array}{r}\because . \\ .\end{array}$
$\digamma^{\circ}: \quad$ " of intersection of I'II" with o'oo"
" included between l_{s} and $\mathrm{r}_{:}$.
$I_{+}=$" of intersection of I' LI" with i'ii"
.. included hetween R_{4} innd r_{1}.
V^{r} - (${ }^{\prime} \mathrm{c}=$ distance between left rertices (on the line joining the centers) of the circles which intersect in the point F .
$\mathrm{J}_{1}=\mathrm{ni}_{\mathrm{i}}-$ comresponding distance lor the point F_{1}.
$\mathrm{I}_{2} .110$ - \quad.

$\mathrm{I}_{1} \mathrm{Ii} \quad$ " $\quad . \quad$. \quad. \quad. F_{1}.
(i - gage of the Hatter curre.
".
The designations of the following ingles were omitted from the tigures to a roid confusion :
" $\mathrm{FAB}=$ interior angle between r and the line AB .
$\|_{1}, n_{2}, n_{3}, n_{1}$ corresponding angles for the radii $r_{1}, r_{0}, r_{:}, r_{1}$.
I, F'BA-interior angle between R and the line BA.
$l_{1}, h_{1}, l_{3}, l_{1}$ corresponding angles for the ratio $l_{1}, l_{1 .}, R_{i,}, l_{i_{1}}$.

'The track (" C(" leing on tangent, qives $l_{i} x$. Having dutemmed the angle of intersection l°, of the center lince, we hare

$$
\begin{align*}
& \mathrm{I}^{\prime \prime} \quad \text { vers } I^{\circ} \tag{.i}\\
& \begin{array}{lll}
\text { rers } & r_{i} & r_{1} \\
& r_{1}
\end{array} \tag{li}\\
& \text { vers } \begin{array}{ll}
\because & 1 \\
& \\
& \\
\end{array} \tag{T}\\
& \text { vers } F_{i}=\frac{1}{r} \tag{s}\\
& \text { vers } r_{i}=\frac{r_{1}}{r_{1}} \tag{!}
\end{align*}
$$

:and

The values of the respective radii r_{1}, etc., and distances Γ_{1}, etc., to be substituted in (6), (7), (8) and (9) are determined hy inspection from Fig. 2. Table l. gives thene terms for megnal gages of track, and Thable II. for equal gages.

TABLEI.

 (iages mequal. $\quad(=$-gage of tangent track: $\|$ =gage of currel track.

Angle.	Intersecting Lines.	Padius.	Auxili
F	$\mathrm{C}^{\prime \prime}$ ($\mathrm{C}^{\prime \prime \prime}$, c^{\prime} ce' ${ }^{\prime \prime}$	$r=r$	$V^{\prime}=1$
	$O^{\prime} O O^{\prime \prime}, \mathrm{i}^{\prime} \mathrm{ii}^{\prime \prime}$	$r_{1}=r-\frac{1}{2}!!$	$V_{1}=1-\frac{1}{2}(i+9)$
\because (1)	$)^{\prime} 0 O^{\prime \prime}, \mathrm{o}^{\prime} 00^{\prime \prime}$	$r: m+{ }_{3}$	$\mathrm{V}=1-\frac{1}{3}(6-19)$
$\cdots(8)$	l' LI', O' oo's	$r=r+\frac{1}{3}!$	$\left.1: 1+\frac{1}{1}(1)+!\right)$
$1 \therefore 191$	I' II', $\mathrm{i}^{\prime} \mathrm{i}^{\prime \prime}$	$r_{1}=r-\frac{1}{2}$	$\mathrm{I}_{4}-1+\frac{1}{2}\left(1 i^{-}\right.$(1)

'I'ABLE II.

Intersecting lines and radii as in l'able 1.
(iages of track equal. $\quad(i=!/$

Angle.	Ansiliary listance.
I^{\prime}	$1-10$
$F \cdot(1 i)$	1.11
$\because \because$ (丁)	1.1
$\cdots ;($ (r)	$1: 1+11$
1% (!)	1.1

Having computed the ralnes of the several gage-line intersection angles, the distances between points of intersect ion are olstained by the following formulas:

Also, the bending ordinates for the carved rails may be determined ly
mid-ordinate of $\mathrm{F}_{2} \mathrm{~F}_{3}-r_{0}$ vers $\frac{1}{2}\left(F_{3}-F_{0}\right)$. . . (1t)
" " $\mathrm{F}_{1} \mathrm{~F}_{1}-H_{1}$ vers $\frac{1}{2}\left(F_{1}-F_{1}^{\prime}\right)$
2. Both tretehis oll catrer. Figs. 3 and 4.

In the triangle F'AB, l'igs. : and 4 , the angle F and the radii $I i$ and r are determined instrumentally. Then

By trigonometry, $\quad \tan \frac{1}{2}(11-h) \frac{l i}{l i+1} \tan !\frac{1}{2}(11+h)$

Then

$$
\begin{aligned}
& 11+b-180-F^{\prime} \\
& \frac{1}{2}(11+b)=10-\frac{1}{2}
\end{aligned}
$$

$$
\begin{equation*}
\tan \frac{1}{2}(11-h) \frac{l i}{l}-r+r \cot \frac{r}{2} \tag{1ii}
\end{equation*}
$$

and

$$
\begin{align*}
& 11-\frac{1}{2}(11+h)+\frac{1}{2}(11-h) 1 \tag{17}\\
& 1-\frac{1}{2}(11+h)-\frac{1}{2}(11-h) 1
\end{align*}
$$

Having determine the angles of the triangle, the distance between the centers is found by

$$
\begin{equation*}
A B=\frac{\sin I \cdot}{\sin b}=r \sin F \cdot \operatorname{cosec} b \tag{18}
\end{equation*}
$$

By inspection of Figs. 8 and 1 , it is seen that

$$
\begin{equation*}
r^{r} \quad A B-r-I \tag{19}
\end{equation*}
$$

Are $1^{\prime}=$ ormados\%. Although the angle of intersection of center lines will orionarily be measured only to the nearest minute. the computed values of angles to be usme in fixing the rail intercepts should be determined at leat to the nearest tenth minute. particularly when the ratii are large.

$$
\begin{align*}
& F_{1} F_{2}-r_{2} \sin F_{3}-r_{1} \sin F_{1} \quad . \quad . \quad . \quad(10) \tag{10}\\
& \mathrm{F}_{3} \mathrm{~F}_{1}-r_{3} \sin F_{3}-r_{4} \sin F_{4} \tag{11}\\
& F_{0} \mathrm{~F}_{3}=-000291^{*} r_{0}\left(F_{\because}^{\prime}--F_{0}^{\prime}\right)^{\prime} . \tag{10}\\
& \mathrm{F}_{1} \mathrm{~F}_{4}=.0(1) 2!1 r_{1}\left(F_{+}^{\prime}-F_{1}^{\prime}\right)^{\prime} . \tag{13}
\end{align*}
$$

By trigonometry, vers $F=2^{(x-l i)(s-r)} \frac{l i r}{\prime}$

> in which $\because-\frac{1}{2}(l i-1 B) \quad l-\underset{2}{1} I^{\circ}$ $s-l i \frac{1}{2}{ }^{\prime}$ $\therefore-r \quad l-r-\frac{1}{2} r^{r}$
so that

$$
\begin{equation*}
\text { rees } r=\frac{r\left(l^{\prime}-r+\frac{1}{2} H\right)}{l_{i} r} \tag{20}
\end{equation*}
$$

The retation expressed in ($2(0)$ is true of each of the intersections if the terms involved be assigned proper valnes. Hence the following may be written for the several gage-line intersections:

$$
\begin{align*}
& \text { *vers } F_{1}=\frac{r_{1}\left(l_{1}-r_{1}-\frac{1}{2} r_{1}\right)}{l_{1} r_{3}} \tag{21}\\
& \text { vers } F_{2}=\frac{l_{0}\left(l_{1}-r_{2}-\frac{1}{2} I_{0}\right)}{l_{0}} \\
& \text { rers } F_{3}-\frac{V_{3}\left(l_{3}-r_{i,}-\frac{1}{2} I_{3}\right)}{l_{i, i}^{r}} . \tag{23}\\
& \operatorname{rers} r_{1}=\frac{I_{i}\left(I_{1}-I_{i}--\frac{1}{2} I_{+}\right)}{I_{+} r_{4}} \text {. } \tag{2t}
\end{align*}
$$

The respective values of the radii and the anxiliary distances to le smbstituted in (21), (20), (23) and (24) are given in Tirlles IH. and 1 V .

'IABLE IV.

Intersecting lines and radii as in Table Ill. (iages of track equal. $\quad(i=!)$

An		
1	$1-1$	$S=R-r \left\lvert\, \frac{1}{2}\right.$
$F_{1}(21)$	$\mathrm{I}_{1}=1 \mathrm{l}$	$S_{1}=S \quad \frac{1}{2}!1$
$F \cdot(22)$	1	S'S
$F_{3}(23)$	$13-\mathrm{r}+\mathrm{l}$	$S_{3}=S-\frac{1}{2}$!
$F_{1}^{\prime}(2+)$	$\mathrm{I}=1$	$S_{1}=S$

In order to determine the distances between the points of intersection of gage-lines, and the ordinates for bending the rails, it is necessary to compute the ralmes of the angles $\left\|_{1}, h_{1},\right\|_{:}$, b_{3}, etce.

Note that when the eurvatures are in opposite dinections. Fir. t. that value of F exceeds 40° : - the values of the several angles in that coan maty be ohtained by rememberingr that ver? $50^{\circ}-1$ and vers 1 ar $)^{\circ}=$?
 aro kinmon，－ 0 that

$$
\begin{align*}
& \sin \mu_{1}=I_{i} \frac{\sin I_{1}}{\lambda 13} \tag{2}\\
& \sin \pi=\operatorname{li} \cdot \frac{\sin \mu^{\circ}}{A B} \tag{i}\\
& \sin 11:=I_{i}^{\prime}: \frac{\sin I^{\circ}}{\lambda!} \tag{27}\\
& \sin \mu_{4}=l_{1} \frac{\sin F_{1}}{\lambda B} \tag{28}
\end{align*}
$$

In like manmer，sin $\nu_{1}=r_{1} \frac{\sin l \sigma_{1}}{A B}$

$$
\begin{align*}
& \sin l_{0}=\frac{\sin F}{A B} \tag{30}\\
& \sin l_{3}=r_{:} \frac{\sin F}{A B} \tag{31}\\
& \sin l_{4}=r_{1} \frac{\sin F}{A 1}
\end{align*}
$$

And，as a cherk，

$$
\begin{aligned}
& \left.\mu_{1}=h_{1}-F_{1} 180 \text {. (3:) }\right) \\
& \text { (1.)-1月, } 180 \text {. (:3) } \\
& 16 .-15=-18=180 \text {. (35) } \\
& H_{4}-H_{4} \quad F_{i}-180 \text {. (36) }
\end{aligned}
$$

Then he inspection of Figs． 3 aml 4.

$$
\begin{aligned}
& \mathrm{F}_{1} \mathrm{~F}_{2}=.000^{\circ} 01 \mathrm{I}_{1}\left(b_{0}-h_{1} r^{\prime}\right. \\
& \text { (37) } \\
& \text { F゙った: . (1) (1) } \\
& \text { (38) } \\
& \mathrm{F} \mathrm{~F}_{\mathrm{t}}=.0100292 \mathrm{li}\left(\mathrm{l}:-\mathrm{l}_{1}\right)^{\prime} \\
& \text { (39) } \\
& \mathrm{F}_{1} \mathrm{~F}_{1} \text {. } 1 \text { (1)291 } r_{1}\left(\mu_{1}-\|_{1}\right)^{\prime} \\
& \text { (} 40 \text {) }
\end{aligned}
$$

And the mid－orthates are as follows：

$$
\begin{align*}
& \text { " " F F } \quad \text { Li: vers ! (} 1,-h_{1} \text {) (} 43 \text {) } \\
& \text { * " } F_{1}, F_{t} \quad r_{1} \text { rels ! }\left(1,-11_{1}\right) \tag{14}
\end{align*}
$$

3．I isconssiom of Formulus．

It may be shown as follows that Fig． 2 is merely a special case of the general problem：Eq．（20）may be written thus

$$
\text { vers } F^{\prime}-\frac{V^{\prime}}{r}-\frac{I^{\prime}\left(r-\frac{1}{2} I^{\prime}\right)}{R i r}
$$

Substituting in above the value $l i=\infty$

$$
\text { vers } F^{\prime}=\frac{1}{r} \text { which is eq. (5) tramsposed. }
$$

Putting $l=r$ in（19），it is found that $l^{\prime}=A B$ ，and the same value substituted in（20）gives

$$
\begin{align*}
& \text { vers } F^{\prime}=\frac{I^{\prime \prime}}{2 r^{\prime \prime}} \quad \text { But rers } F^{\prime}=2 \sin \frac{1}{2} F^{\prime} \text {, so that } \\
& r^{\prime}=A B=2 r \sin \frac{1}{2} F^{\prime} \quad . \quad . \quad(45) \tag{-5}
\end{align*}
$$

In this case of equal degrees of enrve，the two radii to the point of intersection of the center limes are the equal sides of an isoceles tri－ angle，and the line bisecting the radial angle F^{\prime} is a line of sym－ metry to the crossing，passing through the points F, F and F_{1} ，and bisecting AB at right angles．

The condition for a right angled crossing is found by plating vers $F^{\prime}=1$ in（20），from which

$$
\begin{equation*}
r^{\prime}=\sqrt{ } l^{\prime \prime}+r^{2}-(I i-r) \tag{46}
\end{equation*}
$$

If $h i=r$ ，（46）becomes

$$
\begin{equation*}
r=r \sqrt{2}=2 r \sin 15 \tag{47}
\end{equation*}
$$

かTREN(iTHOF ICE

The comparative scarcity of published records giving expertmental data conceming the strength of ice suggested the desimbility of further investigation of the subject.

Experdamats hi Others.

Only two records of compressive tents and one of temsile tests could he fomm after an extended researeh in the files of technical perionticals and society proveedings. The first and more elaborate of these was executed by Col. Wm. Ludlow in 1880 and 1881 in connection with the construction of an ice harbor in the Delaware river, at I.iston's Point, and the second tests were made by Friillling, a (ierman experimenter, abont 188:).
('ol. Ludlow's experiments,* consisting of only eighteen comprensire tests, gave a crushing strength viaying from 100 to 1000 pomnds per square inch, with an arerage of aboutsin. 'The ice used by hinn was of poor quality, a considerable portion being frozen now or frozen show and ice combined. The temperature of the ice during the time of testing ranged from 2.5 to 31 F ., while the temperature of the room varied from 29.6 to 68 F . The distribution of pressure was equalized by placing smatl blocks of white pine between the faces of the cubes and the upper and lower surfaces of the press.

Col. Lndlow concludes as follows: "As preliminary inferences to be drawn from these experiments, it may be said that the maximum pressure requisite to crush ice of the clearest and most compact structure is 1000 pounds per square inch; that ordinary clear ice, such as we get from the upper Delaware River, would, under certain conditions, resist a pressure of 700 pounds per square inch, and that ice in the condition that we should be likely to find it in the l)elaware River at Liston's Point would crush with 400 or 4.0

[^4]pounds per square inch or less, from its gradual disintegration by exposure to the sun, air, and salt water."

Frihling's experiments* were made upon clear block ice testerl at 23 F . He observes that "as the pressme was increased the cracks became more numerons montil they went all through the test piece. As the pressure was further increased the height of the blocks began to diminish and their cross-section to increase until ultimately they were flattened ont, never, howerer, giving way suddenly. The only stage in the flatteming-out process at which the pressure was accurately noted was that at which the height of the block began to dimmish." The pressure at which the height hegan to diminish perceptibly varied from 216 to 380 pounds per square inch, while the pressure at which cracks began to form raried from (i0 to 200 pounds per square inch.

In the light of experiments by eminent European authorities dose consideration of the results of Col. Lullow's tests suggests forcibly that a higher crushing strength would have been obtained by him had the temperature of the air and ice agreed more closely. with actual conditions in exposed localities.

As stated above, the temperature of the ife cubes in Ludlow's tests ranged from 2.5 to $31 \mathbb{F}^{F}$., while that of the air in the room where the tests were made raried from about 30 to 68 F . Pfaff, a German physicist, has fomndt "that even the smallest pressme is sufficient to dislocate ice particles if it act continuonsly, and if the temperature of the ice and its surroundings be near the melting point," and Andrews, a British experimenter, has shown' that "if the plasticity of ice at - 35 F . be taken as mity, that at 0 J . will be 2 , and at $28 \mathrm{~F}^{\prime}$. will be 8 ."

Experiments by The Authors.

It was with a hope of throwing some light mpon these points, and of obtaining a value for the ultimate crushing and tensile strength of ice, that the following tests were undertaken :

> Crushiu!! Tosts.

The crushing tests of ice exeruted hy the writers were made with a 100000 -pound Piehle testing machine. The test pieces wert

[^5]salw from blocks of ice and their surfaces were planed down by means of a straght－edge made from a thin bar of iron．The cubes were crushed between sheets of heary ardboard which served afleretually to rashion the compressed surfaces．To prevent eon－ centration of pressure due to non－parallelism of opposite faces of the chbe or of the testing machine，the adjustable compression plate： shown in Fig． 1 was used．

This device consists of two thick circular plates，six inches in diameter，the top face of the upper and bottom face of the lower heing true planes．On the lower side of the upper piece is a solid spherical segment which fits into a spherical socket in the top of the lower casting．The surfaces in contact are smoothly and ac－ curately shaped．By thorough lubrication of the segment an ex－ ceedingly delicate equalization is secmed，even muder the heaviest pressures．

At the time the experiments were undertaken natural ice had not formerl of sufficient thickness to afford test cubes．A cake of artificial ice 14×14x30 inches was procured．From it were prepared fonnteen finch and thirteen binch cubes，hesides a number of smatl slabs．＇Ihis ice was mamufactmed in the nsual mammer，that is，hy immersing cans filled with water in cold brine．＇The ice first forms on the sides and bottom of the can and gradually freezes to the center．Nost of the impurities of the ice are thus concentrated
at the center of the cake, together with the air contained in the water.

The natmal ice was obtained from a pond near liy and was quite free from air bubbles and impurities.
lee, when subjected to pressure, is resolsed into colnmns whose direction is normal to the surface which was in contact with the water while freezing. In natmal ice these columms are parallel, hence the pressure is always applied perpendicular or parallel to them. By examining T'able II. it will be seen that those pieces tested with the pressure parallel to the colnmes developed about 77 per cent. greater strength than those tested with the pressure perpendicular to the column. 'Test piece number to gave a very high result - 2818 pounds per square inch. This piece was remarkably clear and free from air bubles. Rejecting it, the percentage is reduced to $\{i 3$.

In artificial ice the columns extend from the side toward the center and from the bottom up. In cubes cut from the corners of a cake of artificial ice the columns were found to cross or intersect at right angles, and in such cubes the fracture is always in a plane cutting the diagonally opposite erges, the one half sliding on the other. It is possible, therefore, by selecting test pieces from different parts of the original cake to olitain widely varying results for the crushing strengtl. The great difference between the average crushing strength of natural and artificial ice is thms easily explained.

It was found that in homogeneous ice the phenomenon of failure by crushing is similar to that of cubes ol sandstone tested in a like manner, that is, a cone is forced out from each of the fom vertical sides.

A few small pieces of ice were crmshed at :32 F . manly for the purpose of observing the phenomena due to crushing at that temperature. In every such case the ice gave way gradually and changed form slowly. Ice at this temperature possessed quite a degree of plasticity and exhihited scarcely any of the phenomena shown by ice crushed at lower temperatures.

It would be of interest to make a series of tests through a great range of temperature and plat the results so as to show the relation between strength and temperature.
'LABLE 1.
Data on phe: Chesming Sthengeth ob Ice ('xbes.
Experiments Made at the 'I'esting Laboratory of the I'niversity of Illinois.

			Temperature.			$\left\lvert\, \begin{gathered} \text { Dimensions } \\ \text { of specimens } \\ \text { in Inchers. } \end{gathered}\right.$				CTItimate Crushiner Strength iu l'ounds		REMA1tKs.
	$\ddot{\square}$					我	$\begin{aligned} & \text { İ } \\ & \vdots \\ & \vdots \end{aligned}$			$\begin{aligned} & \stackrel{1}{5} \\ & \vdots \end{aligned}$	$\begin{aligned} & \dot{\bar{K}} \dot{\Xi} \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	
1	1ee. 2\% 94.	Artiticial..			F.	1×1.1	$11 / 4$ 1	$\begin{aligned} & \text { Parallel....... } \\ & \text { Perpeudicular } \end{aligned}$	4006			f Gave away mradually: piree lilled with irom ract and air bubles.
\because		..							3 Hax	12300	T*	Broke suddents with loud report: split in di- aronal plane.
3		..	.				1		$15(x)$	12(kN)	76	Gatve way gradually: broke into small piecon when struck light how with hammor.
4		¢ xl^{1}.	4		33300	'is $\mathrm{S}(\mathrm{k})$	48	Broke suddenly with repert.
5			41.4×4	1		$3(1) 0$	1050 ke	564	
${ }^{1}$;		..			1×14	41.4	l'ara!	1500	15.00	394	One side Lave way before the other.
\because		$\because 3{ }^{\circ}$	23^{0}	$1^{1} 8 \mathrm{Xl}^{1 / 2}$	1		? 0 (1)	13:\%	\%34	, the piece ant extending throurh it.
\checkmark		.	.			$4^{1}{ }_{4} \times 1$	11/2		$\because(x)$	12 $1(H)$	712	Broke suddenly with report. specimen from eorner of block: axe of column-
1	1					$3{ }^{3} \times 5$	11/2		1 MH	SOCO	12 K	on one side werd vertical and on the other side herizontal: diagonal line marking end of end umus ulainly visible.
:	Dece 3! \%at.	.	$11^{\circ} .9$	$311^{\circ} 2$	14°	${ }_{3} 3_{1} \times 1{ }_{1}$	$: 3_{8}^{7}$	Porpendicular	5200	17200	1080	gams blainly visible.
	Dec.					4×4	${ }^{1} 8$		7000	15400	966	One corner chipped off: cruched suddenty.
						$3{ }^{7}{ }_{8} \times 4$	4		1500	$1+5000$	1032	i Center and sides crashed out: broke suthenty with report.
33		¢	1×1	33^{7}	1'aralk	1200	$5 \mathrm{f}(\mathrm{OH}$	32.	Broke sutdenly on one corner with report
34		..	\cdots		.	$3^{7}{ }_{8} \mathrm{X}+{ }^{1}{ }_{8}$	4		$5: 200$	15,400	969	Gave way mradual3s.
:			\cdots	\cdots				Perpendicular	10 (h)	$3-3600$!ht	Gave way gradually.
-3i			..	\because		is ${ }^{3} \mathrm{x} \times 1$	6	Parallel.......	f: 20	2 Sa 200	\%	Broke sudde nly with loud report.
3				.		${ }^{5} \mathrm{~F} \times 5$	$5 \%_{8}$	Prrpendicular	11200	300 (\%)	$\times 34$	13poke suddenly with loud report.
34						$5^{1}{ }_{8} \mathrm{x}+\mathrm{i}$			10250	25.0M	1395	One side chipped of at 15\%00: brokr with remort
39						6. ${ }^{5}$		Paralleldo...	8400 12001		241	Broker sudtenly with report. Broke suddenly with report.
111	Dec. ${ }^{3}$.	$1 \% 0.6$	\%			管	Prpendicular	12006	(T19	Broke sudtemy with report. Broke suddenly with reporr.
1:		$6^{1} \frac{1}{2} \times \mathrm{Cl}^{1 / 2}$			10.401	2¢	Sis	ciave way pratually.
	3		$6{ }^{5} \mathrm{x} \times \mathrm{t}^{3} \mathrm{~F}$	1		$1: 300$	[31 330)	-12	Broke sukdenly with report.

Broke suddenly: piece failed at point where iast Oue half the block failed. the other half did not Broke suddenly atong diatronal plane from corner of origimal block to opposite. Line of failure if phatinly visible while under pressure. Broke suddenly with report.
Broke suddenly with report.
Broke suddenly without warning. llroke suddenly.
o Ko pounds on.
Similar to No. 43.
f Broke suddenly with lout report. The boards Cobatbly eatused premature fandre. Evidently the hearing surface was imperfect. Broke Onddenly with oud report. Broke suddenly with report.
Broke suadeny with porning. 3roke suddenly with report. Broke suddenly with report.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 14 \& Doce. exi. '94 \& Artiticial.. \& $16^{\circ} .6$ \& 230 \& 43° \& ${ }_{6}{ }^{1}{ }_{4} \times 13^{1}{ }^{1} 8$ \& \& Parallel......

\hline 15 \& -* \& . \& . \& . \& . \& 612×6 \& 6 \& -

\hline 16 \& - \& \cdots \& . \& . \& \cdot \& $6{ }^{6} \times{ }^{1 / 4} 4$ \& $6^{1} 12$ \& .

\hline 1.10 \& \cdots \& . \& \cdots \& . \& " \& ${ }^{6} \times \times 1 / 2$ \& 61/2 \&

\hline 10
41 \& Nov. 31.94 \& Natural... \& 210.2 \& .. \& $120 \cdot 3$ \& $1 \quad \mathrm{X} 4$ \& 4
3
3
7 \& $$
\begin{aligned}
& \text { Perpendicular } \\
& \text { 1'arallel........ }
\end{aligned}
$$

\hline 42 \& -* \& . \& .. \& . \& \& $4 \mathrm{X}^{1}{ }^{1} 8$ \& 4° \& Perpendicular

\hline 43 \& - \& . \& . \& . \& " \& $4^{1}{ }_{8} \mathrm{XH}^{1}{ }_{8}$ \& $33^{7} 8$ \& Parallel......

\hline 44 \& .. \& . \& . \& . \& * \& $4 \mathrm{x} 33_{8}$ \& 1 \& Perpendicular

\hline 45 \& -• \& , \& .. \& . \& .. \& $4^{11} 4 \mathrm{x} 4$ \& $3{ }^{7} 8$ \& Parallel

\hline 16 \& . \& . \& \cdots \& . \& * \& $4 \quad \mathrm{X} 4^{1} 8$ \& $3{ }^{7} 8$ \& Perpendiculir

\hline 47 \& .. \& . \& \cdots \& . \& \cdots \& $3{ }_{8}{ }_{8} \mathrm{XH}^{1}{ }_{8}$ \& \& Piurallel

\hline 45 \& * \& . \& . \& . \& . \& $4 \mathrm{X4}^{1{ }^{8}}$ \& \& Perpendicular

\hline 49 \& Dec. :31. 31 \& \because \& ". \& \cdots \& \cdots \& ${ }_{11}{ }_{4} \mathrm{x} 4$ \& \& Parallel

\hline 50 \& \& .. \& - \& \cdots \& \because \& $3{ }^{7} 884$ \& \& Perpendicular

\hline 31 \& \because \& .. \& 23° \& .. \& ". \& $1{ }^{1} \mathrm{x} 4$ \& \& Parallel. ${ }^{\text {Pabio. }}$

\hline - \& \because \& \cdots \& \because \& \cdots \& \because \& 4
4
4

Xf \& \& Perpendicular

\hline $$
\begin{aligned}
& 23 \\
& 54 \\
& i 4
\end{aligned}
$$ \& \cdots \& \cdots \& . \& \ldots \& \because \& 4 Xt \& \& Paranelo......

\hline $$
55
$$ \& - \& - \& . \& - \& . \& , \& - 3.3 \& Perpendicuiar

\hline
\end{tabular}

TABLE 11.

$$
\text { Somahe of Thame } 1 .
$$

Jounts－1＇er syu：tre lncb．

Mean stremgth of live t－inch cubes of artilicial ice tested
at 2.5 .7 F 。
Mean strength of three 4 －inch cubes of artificial ice，tested at 23 F ． （i．．．）
Mean strength of enght 6 －inch cuhes of artilicial ice，tested at 23 F 1617
Me：m strengtlo of all cubes of artificial ice，tested at 23 F ． （i2） 1
Mean strength of fon tinch cubes of artificial ice，testerl at 14 F ． 1111
Mean strength of fire 6 －inch cubes of artificial ice，tested at 14 F ． $8: 2$
Mean strength of all cubes artificial ice tested at $1+\mathrm{F}^{\prime}$ ． 9016
Mean strength of all cubes artificial ice tested 564Mean strength of seven t－inch enhes of natural ice withdirection of pressure perpendicular to colmmus，testedat 12.2 F 。1070
Mean strength of eight t－inch cubes natural ice with di－rection of pressure parallel to colmmms，tested at12.185%
Mean strength of all cubes of natmral ice tested 14.51

Experiments were made mpon the aushine strength of slabs of ice．The results are shown in＇lables $1[1$. and $\mathbb{I V} .$, pages to and 46. ＇The phenomena and results do not materially differ from those already noted for culies．
'TABLE II.
Experiments Made at the 'lesting Laboratory of the University of Hinois.

TABLE N．

Treage of all matural ice slabs tested ．．．．．．． 70
Average of the fom most nealy perfict slabs of matural
ice ．．．．．．．．．．．．．．．．． 932
I rerage of all slabs artificial ice tested ．．．．．． 718
Average of nine most nearly perfect shas antificial ice tested 763

＇Tensile strentth．

The tests for tensile strength were made with a Riehle cement testing machine．The briquettes were made by placing the brass cement briquette molds in a shallow pan of water and allowing it to freeze．The briquettes were easily removed from the molds，by al． lowing a stream of water to flow over them for a short time，their （ross－section not being sensibly reduced by this operation．Nmm－ bers $21,22,23$ and 27 were shaved to a less cross－section than one square inch．By reducing the cross－section and thereby the ulti－ mate strength，a greater and more neally correct value of the unit tensile strength at that temperature was obtained．A large per cent． of the briquettes broke in the grips，due to cross－stresses induced by partial crushing．It would seem from the experiments that a slight difference in temperature makess considerable difference in the tensile strength of ice．

From these experiments the following conclusions may be drawn：

1．lee，when subjected to pressure，is resolved into columms nomal to the natural surface．
\therefore ．The greatest emshing strength is oltained when the direc－ tion of applied pressure is parallel to the columms and least when perpenticular to them．

3．lee subjected to pressure at 32 F ．readily changes form．
t．Variations in temperature proluce a perwptible influence on both compressive and tensile strength of ice．

TABLE 1 ．

Data on Tensile Sthength of Natural Ice．
Experiments Mate at the Testing Laboratory of the University of Hllinois．

	\＃	Temperature．					Remamк
$\begin{aligned} & \dot{y y y} \\ & \frac{\ddot{y y}}{2} \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$							
	Dece es． 91.	$\stackrel{\mathrm{F}}{1}$	$\frac{\mathrm{F}}{190} 4$	1×1		110	Broke in center．
$\begin{aligned} & 1 \\ & 3 \\ & 3 \end{aligned}$		\cdots					Broke in grip．Imperfect
3	．．．．．	＂	＂		169 163	169 163	Broke in center． Broke in center：
，	．．$\quad .$.	．．	．		39	239	Broke in center．
$\stackrel{6}{6}$	．．$\quad .$.	．．	．＂			\％	Broke in upper grip．
$\dot{4}$	．$\quad . .$.	．	．		191	191	Broke in lower arip．
	＂．．．．	．	\cdots		Suli	200	Broke in lower grip．
111	＂．$\quad \cdots$	＂．	．．		${ }^{215}$	－118	Broke in lower grip． Broke in lower trip．
12	＂	＂	．		315	315	Broke in center．
113	＂	＂．	．．	．	18	$1{ }^{165}$	Broke in center．
15	．	．	．		gix	318	Broke in center．
	．．$\quad .$.	$\stackrel{.}{\square}$	＂．		12\％	126	Broke in center．
1%	\cdots ．．．．	＂	＂		$1: 8$	$1 \% 8$	Broke in center．
18 19	Dec．31．94．．．．	3	33°			120	Broke in lower grip． Broke in center．
\％）		．	．		110	110	Proke in lower grip．
？18	\ldots	．．	．．		167 196 196	145	Broke in lower grip， Broke in lower（rip），
3	．．$\quad . .$.	＂	\cdots	$1{ }^{1 \times 2}$	$1: 38$	15 S	Broke in lower grip．
\％	．．\quad.	＂．	．．	1×1	123	120	Broke in upper arip．
等	＂	＂	．．		1204	106	Broke in center． 13 roke in center
2i	＂	．	＂	$1 \mathrm{x}^{\text {\％}}$	120	139	13roke in center． Broke in center：
28	－	\because		1×1	134	124	Broke in lower grip．
39	．＂．\quad.	＂	＂．		$\underset{\substack{160 \\ 16 \%}}{ }$	11^{160}	Broke in upper grip．
31	－$\quad . .$.	．			159	159	Broke in lower grip．
32		＂．	．		118	118	Broke in center．
					118	118	Broke in lower gr
： 1	．...	＂	．	．．	1：2）	120	Broke in lower grip．

TABLE 「I．
Somatiy uf Table V．
I＇ounds l＇er Syuare lneh．

A rerage of briquettes tester at a temperature of 19 ．t F ．

which broke in center

Average of briquettes tested at a temperature of 23 k ．

which broke in the center

Average of briquettes tested at 19 ． 4 F ．that horse in the
grips
Srage of briquctes tested at $23 \mathrm{~F}^{\mathrm{F}}$. that broke in the ET1) 150
Tremage of all hriquettes tested that hroke in the center 16i)
Treage of all lmiquettes tester that broke in the grips 16.9
Wremge of all briquetters tested at 19.4 F 18:"
Aremge of all brimuettes tested at 23 F $111 i$
Treage of fonr pieres tested with a less cross-section than one square inch at 23 K'. 18:
A rerage of all hriquettes tested 16:
The results of five tests made by Fribling at a temperature of$2: 3 \mathrm{~F}$. gave an arerage tensile strength of 189 pounds per squareinch. 'The cross-section of his specimens was 0.77 square inches.

. ARCHITECTTRE.

```
13Y (% H. BLACKAls. `゙̈.
```

Fivery yar carnest, enthusiastic young men are graduated from the Department of Architecture who are looking forward to wimning a position in their chosen profession. They are graduated in several senses of the word, alligned, divided into degrees, and with the freezing and the boiling point clealy defined, having aims and purposes which are real to themselves if to no one else, and are reaty for the hard experiences and the keen, relentless polish which contact with the unsympathetie business world will give them and which is so necessary for their final career. And not only from this lniversity, hut from other arehitectural sehools thronghont the
country，as well as from miumerous architects＇offices，young men by the hundred are annually turned loose on the current of business affairs．Some are full of enthusiasm，others are earmestly practical， some are poetic by mature，and some are ready to take their places as wheel horses in the hard fug of professional life；but all have one common purpose and one very decided aim，and that is to make money－to make it artistically，with proper regard for the esthetic proprieties if they can，but to make money somehow．Disguise it as we may，impute as much earnest enthusiasm is we please to onr motives，the fact remains that the man who expects to become an architect must have an opportunity to earn money，and the bread－ and－butter side of architecture is one to which young men look for－ ward with a great deal of apprehension．Their schooling may make them feel confident of their powers in solving esthetic and practical problems，they may know that they have in them the germs of talent and may feel assured beyond any doubt that they are fitted to win a place in the world，but very few can calmty con－ template the possibility of being unable to even get the oppportu－ nity to show what they are worth．The painter or the sculptor who desires to make a mark for himself can quietly go to work in his studio，can elaborate a tine art production without the help of any one sare himself，suddenly exposing it to the critical view of fellow artists，ath springing Minerva－like full fledged upon the artistic world．An architect，however，no matter what his degree of talent or capability may he，must first of all have opportunity to show his worth．He can not create the opportunity，for drawings do not constitute architecture，and until he has found some one confiding enough to take chances and entrust an important building to a young man of untried capabilities，he is unable to demonstrate that he can win even his bread，much less his butter．I know of no profession which is more ennobling，if pursued rightly，which will lead to a higher degree of culture，or is more truly self－contained， holding within itself the opportunities for study and recreation，for practical industry and enthusiastic enjoyment，than architecture． And，also，there is scarcely a profession in which the rich prizes are harder to acquire or demand such a combination of talent．Every man looks forward to winning these rich prizes．Few really get them．It is worth a young man＇s while sometimes to sit down quietly and look at architecture from a purely mercenary view，trying to see how he can get the great opportunities and in what way his work will command the highest pecuniary rewards．＇The science of getting work is something which is not tanght in the schools．There
is as yet no Department of Applied Money Making, and while each boung man generally has to work out his own lines and can not depend very largely upon the experience of others, there certainly are some general possibilities which have been made manifest as Her result of experience as aids to a young man in accomplishing the rery important factor of bread wimmeng.

I'he yoting architect, when released from school, first enters the large army of dranghtsmen and undergoes the ordeal of contime. ous office drudgery. This is a rery thorough sifting process ly which the serviral of the fittest is aptly illustrated, for of the thousalnds of young men who are toiling in arehitects' offices, a small percentage ever reach the dignity of architect. But in the course of time, the young man whose staying powers are sutficiently: strong finds some confiding friend or relative who entrusts to him the erection of some building, usually a small dwelling, rarely an important pulbic building. Then he hires a sign painter and blossoms out ans an architect. He finds the dirst year hard, the second year exceedingly hard, and it is only after at least two years and cometimes more, that he feels sufficiently established in lis prolession to be sure of remaining in it through seasons of mild depression. Then comes the real experience in getting work. To the sulperticial observer, the most potent factor in helping an architect to his opportmities is rich and numerons relatives. When riewed in the light of the success of some architects, a second important clement seems to he bluff, pure and simple ; the ability of imposing onc's self on would-l)e clients, the faculty of making people think you are a good lellow and understand your business. A third help, which is often advised for yomg men, is the cultivation of social relations, hringing one's self into prominence before one's fellow beings in social intercourse. And a fourth way is ly persistent adrertising, either in the way of pullished drawings or notices in the papers through kindness of friends. Now, architecture would indeed be a mercenary profession and worthy of little real honor if individual adrancement depended upon such unworthy factors as these. There is no questioning the adrantage of all of these as adjumets. Each has its proper place, each contributes to the architect's personal adrancement as well as to his pecmiary advantage, and hats its proper function in self development and professional growth. But arelitecture is more than these, and the man who is really to receive the rich prizes must have something more to recommend him than relatives, must possess more intrinsic qualities than bluff, ame must have a stronger hold mon the commmity
than can be acquired by social intercourse. He who means to rise to the top of the profession must, first and last, continually, at all times, follow the adrice that was given the young man who asked a celebrated speaker as to what were the secrets of success, and was told that the first was preparation, the second was preparation, and the third was preparation. I'he man who depends npon extraneous or adrentitions helps will sooner or later find that he is left in the race, and that the rich chances are not going to him but to the man who is thoronghly prepared, the man who is able to handle a large problem because he knows how, not hecause he has friends. There are plenty of opportunities everywhere, and when a young man is really ready for them he will not fail for lack of the chance. Therefore in architecture as in every other department of industry the first bread-winning requisite is thorough preparation.

Now let us consider what preparation means, and understand we are speaking now in a purely mercenary spirit and are riewing architecture simply as a means of wimning bread and butter. And let it also be understood that many are called but few are chosen, and that the personal equation always counts for a great deal in an artistic pursuit. By mere volition a man may not necessarily become an architect. There is an essential spark which is found to enter into the composition of every successful architect, and achievement is pretty fairly measured by the extent to which that spark is nurtured and tended until it develops into a thame which can fire men's sonls. So that preparation means more than mathematics or the handling of a jack-plane, and simply as a matter of dollars and cents, the architect who would be successful must be, first and always, an artist. If he is not, if his preparation impels him to in any measure disregard his art, he may have irreproachable business. methods, he may he the best constructor in the world, and may be able to hire all the artists in christendom to lend him ideas wherewith to clothe his dry bones, but sooner or later the public will find him out, will measure him for his just worth, and when the great opportunities arise they will be given to the men who are able to do their work themselves. This is not sentiment ; it is fact. Witness Tiolet-le-Duc, who was everything but an artist in his profession, and who, notwithstanding his brilliant success as a writer and a dranghtsmim, was not able to earn a living as an architect, and never had the creation of a single important building intrusted to him. Witness on the other hand the World's Fair last summer. The architects who were specially honored and giren the largest commissions were not the men who had the largest social comections or the greatest amount
of personal magnetism, nor were they the most suncessful constructors, but were a selection of the hest artists that this country hats produced. I'here is no more common mistalie made by young men entering architecture than to suppose that real artistic ability, as such, does not comet in a purely mercenary way, that it does not pay first and foremostly to be an artist in one's profession.

But while art is the first necessity of architectural bread-winning, there are other qualities which are very essential. The architect who expects iarge commissions must also lave good business habits, be able to keep up the odds and ends of the tiresome minutire which is so inseparable from all buidding relations of any magnitude, must be able to lieep the financial side of architecture in proper order, and be able to handle and direct his employees, whether actually in lis oftice or indirectly employed around a huilding. And then, last in economic necessity, the successfnl arehitect must have a thorough scientific education. There is seldom a lack of this on the part of graduates from schools. Its absence is a very common failing with the so-called self-made men who have graduated from architects' offices. A hand-book and tables of beams and columns are not sufficient to teach construction, and a young architect who is to serionsly compete for the great prizes, must know how to scientifically construct his buildings.

Then beyond these three, which are really indispensable, there comes a fourth element, sometimes and in some emergencies quite as mecessary, which is always displayed in a very marked degree by the successful architect, and that is common sense; that indefinite quality which is so hard to define and yet which is so thoroughly appreciated by everyone, whether applied to pure art, to dry business methods or to practical construction. The faculty to do things as they ought to be done, to design in a reasonable, appreciative mamer, to carry on business in a logical, systematic way, to construct sensibly ind whont waste, all these are involved in common sense as applied to architecture, besides which there is the common sense which should be developed in intercourse with clients and with men, the common sense which makes a man feel the importance of giving his client what he wants, rather than only what he thinks he wants.
'Therefore, still considering architecture in a purely mercenary way, it pays to do the best work. It pays to be thoroughly prepared and equipped. Honesty is the best policy in every respect as a financial investment, and he who wins the most money in the profession and plans the most important buildings is not he to whom
most has been forgiven, is not the man whose sins against good taste are pardoned becanse he is a good fellow, or whose badly-constructed buildings are condoned because of his relatives' intluence, hut is he who best serves the commmity. That this is fact and not theory, is becoming more apparent every year. The community is not composed entirely of fools. The general average of intelligence is quite equal to that of the average architect, and though bluff and influence may seem to comit sometimes, in the Iong run the public will find out the difference, and with very few exceptions, looking orer this country, it can be seen that the great buildings, the great opportunities, have fallen to the architects who are the hest prepared in their profession.

It is not always easy, however, for the young man just out of college, or just entering architectural business life, to know how to begin his post-graduate preparation. He may have his own ideals and it may take some time to have them adjusted and straightened to the necessities of business and of practical art. Let it be remembered in this comnection that the line of progress in art or science is always along the line of least resistance. If we find in dealing with the world that our way is hard, that we are not received as we think we ought to be, it lehooves us to look very carefully to see if we are right ourselves, and in most cases I will venture to assume that the trouble has been on our side rather than with the world. We need the world a great deal more than the world needs us, and it is no use for us to try to impose our ideas upon others unless those ideas are right. Don't give up ideals. Don't surrender any part of one's individuality, but be sure that the ideals are real and earnest and that our individuality is not a selfish one. Be ready to give the world what it wants, not necessarily: what it thinks it wants, but strive in dealing with other men to find what are their real wants, and to fit art, science and business to those necessities. Business success is not incompatible with high ideals, but is often in a direct pecmniary sense an immediate result of them.

But all natures are not alike. Some men seem to be particulanly adapted for artistic pursuits, others for business, and others again are of scientific bent, but if a man has to choose between the three sides of professional life, it is financially better for him to devote himself to art first, because that camot be hired; his second choice might be the business side, but if circumstances or personal limitations are such that one element must be neglected, the architect's bread and buttor will suffer least in the long rmu ly entrust-
ing to subordinates the scientific side of his profession．There are， however，matures which can not fully develop any one of these lines， and there are others which are absolutely mable to take care of more than one．All men can not be ideal，neither can all be sur－ ressful，I mean in a fimancial sense．Is，therefore，the pure artist to starve，and the scientist to stagnate，while business tact raken in the shekels？Most assuredly，if the artist or the scientist sit， down and bemoans his sad fate，and does unt try to infuse common sense in his art or practical business in his science．Fortune ahways was a lay goddess，and the architect who would win her greatest rewards must be wide－alwake，keenly alive to all the possi－ bilities of his profession，ami must try with all the powers within him to be not only an artist，not only a good business man，hat a good all－around architect．

The question naturally suggests itself，after all the labor and hard work of preparation，the years of preliminary toil when thr－ architect has no career behind him and everything is in the future， are the prizes；after all，worth the effort？No，most decidedly，if any one enters the profession with the idea of acquiring a fortune， most assuredly not if a man considers architecture simply as a means of satisfying his personal wants．Yes，emphatically，if the architect is the artist he might be．There are thousands of half－way， poorly equipperd and very poorly remunerated architects in this country．On the other hand，there are hmmeds of bright，smart men，who have good opportunities，are able to show every year what they are worth，can gratify reasonably their esthetic tastes， and are possessed of comfortable incomes．These are the mell who are to be snccessful architects in a pecmiary sense．They are gen－ erally also the ones who win the broader success and who at the end of their careers have the satisfaction of looking hack on a life well done，a race well rmm ，and a task accomplished in a man－ ner which has bronght its own reward．

A techmical school shop to attain the greatest success must be operated under modern shop systems, and the more perfect these systems the better the results obtained. The requirements of a modern school shop do not necessitate many of the intricate systems needed in manufacturing shops where hundreds of men are employed; but many of the simpler systems are well adapted to the school shop, which, in connection with those systems specially suited to the adrancement of the student, can not fail to add materially to the educational value of such a shop.

The equipment of any school shop should be kept up to dato by continually adding new, improved tools. The tools of twenty rears since are unfit for purposes of instruction to-day. So, too, with the instructors; they must keep up to date ly reading, travel and observation.

Attention should be paid to the proper arrangement of tools in the shop. All tools of a certain class should in general be grouped together. The tools for operating on the heavier parts of machines muder construction should be so placed, relative to each other, as to necessitate moving these parts the shortest possible distance. The tool room shonld be placed in a position as convenient as possible to all parts of the floor. 'These, and many other points along the same line, are important considerations in planning the arrangement of a school sliop. In fact such a shop should be a model one, embodying the best modern practice in matters of arrangement as well as equipment.

A tool room is a necessity. 'I'his room should be of ample size and provided with suitahle racks, shelves and drawers "for holding the finer tools, stock and blue prints. All tools should be in sight when possible, and a separate phace provided for each tool, so that it may readily be returned to its proper place after being used. By arranging the small tools in classes and sets, the foreman can doscover at a glance the absence of any tool, and thus he takes, almost unconscionsly, an inventory of tools each day.

I good rack for holding such tools as drills, reamers, taps and arthos is shown in ľig. 1. The horizontal pieces CC are supported on the inclined pieres A.A: CC' should he of hard wood, preferally maple, about three inches by three inches in section by any desired length, depending on the mumber of tools to be held. In the upper fatee of C'straight or taper holes are reamed to receive the shanks of the tools to be placed in the rack. On the face of CC immediately in front of each tool is stamped the size of the tool to be held in that place, and under this number is placed a hrass hook to rereive the workman's check when he takes that particular tool. In the figure, E represents a two-inch arbor in place and D) the lirass check hook. One of the pieces ('C may he deroted entirely to drills,

Fig. 1.
another to reamers, a third to arbors, and su m. When arranged according to size the tools look well, are not liable to injury, do not hold dust readily, and, most important of all, are convenient. By inclining the supports AA as shown the pieces CC are not immediate-
ly under each other, thus preventing a tool striking the under side of the bar above when removed from its socket.

Some system of checking out the tools from the tool room is necessary. The brass check system, common in many of our leading shops, is well adapted to the purpose. With it each student is provided with a ring of ten checks, each check bearing a number which corresponds with his number on the class roll. When the student reports for work he is given his checks, and for every tool or article taken from the room by him during the exercise, he leaves a check which is placed by the tool-room keeper on the hook, provided for the purpose, under each tool. The student is held responsible for the tool as long as his check remains in its stead. Should the instructor wish to use some particular tool that had been checked out, he can readily find, from the number on the check, who has it, and thms locate it without inquiry or loss of time. At the end of each exercise the student is required to hand in all tools and receive his check, which he places on the ring and returns to the check board.

When there is an occasional call for a tool from the room by some one not regularly comnected with the shop, and when the use of the brass check is not practicable, the following blank serves the purpose well:

> Meplamical Eingineeriny liplailimill, [. of I.
> MACHINE SHOP TOOL ROOM CHECK.
> liticle
> The undersigned has received the above described article and agrees to be responsible for its prompt and safe return.
> (Signed)

It is found convenient to print these on $1 \frac{3}{8}$ inch by 23 inch Dennison's shipping tags. This blank is filled out hy the person borrowing the tool and is destroyed when he returns it.

In the University mechanical engineering shops the check system has recently been adopted in the wood shop tool-room with very gratifying results. Some misgivings were entertained as to the advisability of putting all the tools in the tool room and doing away with bench cases. It is found, however, that the system works well. One man in the tool-room can easily attend to giving out tools for a class of from twenty to thirty students. The general appearance of the wood shop is much improved by the adoption of this system,
and it is fomm that the liability of lose and injury of took is rery much deereased.

Students are detailed to tend the tool-room, each man servmathout three week at the work during his comrse. It has adrantages to the student from the educational standpoint, ats it rapidly familiarizes him with all the small tools in the shop.

In order that a student lose no time after reporting for work. some system of giving out work is necessary, and for this purpose. the following blank is provided.

Mech'l Eng. Dep't, University of Illinois.

$$
\text { 1):ite } \quad 1-!
$$

Retain this check and return with work when finished.
These blanks are filled out by the instructor hefore the exereise begins and placed under the checks, so that each student receives instruction as to what his work is to be immediately after reporting for work. The instruction on the slip is sufficiently explicit in most cases to enable the student to proceed with his work without further immediate instruction. The instructor can readily handle the balance of the students, and thus the entire class is at work within a very few minutes after the exercise begins. On completing a piece of work the student returns the blank to the instructor.

The question of systematic and equitable distribution of work in of great importance in techmical school shops. To accomplish the best results, a well defined course of work should be laid out for the student to follow, and then means provided, not dependent on the memory of the instructor, to follow it. On page 59 is shown to) reduced seale a form for use in the machine shop; similar forms. are applicalle to fomdry, wood and forge shops. It represents the contire conse corering three hundred and forty-five hours. Work

PRESIDENT'S OFFICE

on the principal tools forms the main heads, which are subdivided into classes of work, and umder each class is given the number of hours to be deroted to that particular lind of work. 'The "threehomr units" are used becanse in this shop the exercises are of three homs dmation. 'I'he student's name is written together with his class number on the left hand side of the sheet, and for convenience of observation, may be duplicated on the opposite side. 'The sum of all the (3)'s equals 345 , the total mmber of hours required of each mechanical engincering student in the machine shop.

At the end of each exercise the instructor goes through the list, rossing off the time worked hy each man under the class of work he has been workmg on. In case the student puts in two hours instead of three, a (3) wonld be cancelled and a (1) placed after it. In case of working four hours, cross ont two (3)'s and place a (2) after them. In this way a perfect permanent record may be kept of the work done by each student, and at the end of the course each student will hare done approximately the same amount of work under each class.

The sheet should be mounted on a wooden drum, and the whole enclosed, so that only one student's record may be in sight at one time. This is readily accomplished by having an opening in the casing about equal in width to the colnmn containing a record and parallel with the axis of the drum. A duplicate heading should be pasted orer the slot. The whole will somewhat resemble one of the common forms of casli registers. When so arranged it requires only a few moments of the instructor's time each day to make ont the record.

The use of this system prevents the possibility of a student doing more of any class of work than an equitable distribution of his time would allow.

Much value is derived by a class in shop work from lectures given at regular intervals on Mechanical Technology. In this way an instructor gives his class much information concerning the construction and use of tools which it would be impossible for him to give individually to each man. One to two hours per week deroted to this work shows good returns.

The work in a school shop must, to command the interest of the student, he made practical. Not that we can dispense with exercise work, but that we must take our exercises from actual practical articles, and that the exercises when completed go to malie up the finished machine. For example, the building of a steam engine or a wood lathe emborlies chipping, filing, scraping, turning,
planing，milling，drilling and in fact all the ordinary machine shop operations．The instructor in the work must have the necessary good judgment to properly select and distribute to a class the multitude of exercises which when completed and assembled form a machine of value．A student has no real interest in a piece of work which will be of no value when finished．

When possible it is much better to build a number of machmes， or articles，precisely alike，as in that case the necessary special tools and jigs may be made for the rapid，systematic and accurate con－ struction of the same．

All work should be done from accurately made drawings and bhe prints．These drawings should be so mumbered that any figure on any drawing may readily be referred to．

Students should be made to realize the value of an hom．In these days of close competition and narrow margins in all lines of manufacture it will not do to allow the student to fall into eas． going ways．He must learn what a machine is capable of doing， and then push it to its full capacity．

MATIIEMATECH AND（CONSTRC＇TION IN＂THE ECOLE DES BEAUX ARTS．＂

lis Jambin M．White Assistant Professor of Arohatw turk
＇I＇he reputation of the Architectual Departinent of the Ecole des Beanx Arts at Paris is basel almost wholly on its strength in design．＇The curriculum，howerer，necessarily inchades a fatily thor－ ongh course in mathematics and construction，because graduates of the school are granted diplomas permitting them to practice archi－ tecture．Nominally they are also required to have had two years of office practice but in reality a few weeks suffice．

The students are divided into two classes，known as first and second，and to pass from the second to the first fifteen mentions are necessary．They are one each in mathematics，descriptive geom－ ctry，stereotomy，construction perspective，modeling and archeology，
twoin drawing and six in architecture. A bright student will accomplish thas work in abont two years but it is possible for one who enters in March to do it in sisteen months. The first five mentions, which represent rather more than half the work, are the subject of this paper.

The instruction is given entirely hy lectures which are an hour in length and usually come no oftener than twice a week in any subject. A French lecturer inchudes much more in a lecture than do our professors and the result is that the subject is less thoroughly grasped by the pupil. It is hoped that the reader will be able to form some conception from the mmber of lectures in a course and from the problems and drawings required during it and on examination of how carefully the ground is covered. The examinations will serve as the best criterion of the thoronghess attaned. Merely outlines of the problems are given and without the details the reader will be apt to conceive them as simpler than they really are.

Of course any wording offers considerable opportunity for diflerent interpretations of the amount of work expected, but there is such a spinit of competition pervading the school that the fullest interpretation usually results. In forming an opinion of the course the reader must bear in mind that all subjects are taught from the standpoint of their application to the study or practice of architectire, and everything not having a direct bearing on the subject las been eliminated from the curriculum.

The examinations are oral, but are supplemented by problems worked "en loges," which means that the student is assigned to an alcove and reguired to work out a problem in a specitied time, varying usually from six to twelve hours.

The comse in mathematies comprises about thirty-six lectures and inchules the subjects of algebra, trigonometry, conic sections, allalytical geometry and mechanics. T'he algelra inchules equations as far as the solution by successive approximations of mumerical equations of the third degree, decreasing geometrical progression, lograrithms and interest.

Trigonometry includes the solution of plane triangles in general, the calculation of triangles hy logarithms and the relation between a plane in space and its projection.

Conic sections receises much more attention than the two precoding loranches. (onite a careful study is mate of the curves resulting from the internection of the cone and eylinder by a plane, and of practical methorls of drawing them, and tangents to them:
also of methods of measming surfaces and volumes frequently met with in construction.

Analytical geometry is only touched upon and is tanght mainly for its application to the curves of tlexure of beams. It includes the durves of the second degree except the hyperbola, equations of the line and circle referred to polar coordinates, and in geometry in space, the equation of the line and plane and the angle between two planes.

Mechanics includes only statics and simple machines. L'uder the first are considered parallel and concmrent forces, composition of forces, parallelogram of forces, couples, moments, general equations for equilibrimm, centers of gravity and resolution of forces; under the second, the lever, balance, pulley, tackle, windlass, gears, inclined planes, the wedge, screw, and various applications.

I'he examination on this course in mathematies and mechanics is hoth written and oral. The written one usually consists of two questions, one of which is almost always the solution of a triangle and the other on mechanics. The oral is about three questions chosen at random.

As a course in mathematics it is certainly very incomplete; Whether as a course specially designed for students of architecture it is also incomplete is a subject affording ample opportunity for discussion. Enough is included to suffice for the conrses which are to follow, and the deficiency seems to be more in drill than in sub)ject matter. 'Though the French seem to have found it sufficient to answer the actual needs of an architect, the American practice of adding a little more for the sake of the mental drill is a most excellent one.

In contrast with it is the course in descriptive geometry, which is very thorough, being the principal basis of stereotomy and perspective. 'The course inchades filty or sixty lectures of which about ten are a review of the part required for entrance and ten on the finding of the most common shadows.
'The best conception of the romse is to be ohtained from the examination questions, a list of which, divided into six series, is furmished to the students. The oral examination, part of which comes at the middle of the course, is on questions from this list, one being chosen at random from each series. The first series contains about twenty-fire questions on the line and plane; the second, thirty on the sphere, cone and cylinder of revolntion, problems of angles, the solution of trihedral angles and regular polyhedrons; the third, thirty on cones, cylinders, pyramids and prisms: the fourth, twentr-two questions on surfaces of revolution; the lifth, twentr-
live on ruled and helienidal surfaces，and the sisth，twenty－fise on shiddows．

T＇wenty－two plates of about forty of these problems mast be drawn and constitute part of the examination．＇The problems om the first six phenes are to be chosen from the linst two series，on the secoml six plates from series three，four and five，and the remanings ten on shadows．

One prohlem must be drawn＂en loges．＂for which six home is allowed．The problem given last year was：A culse stands with its diagonal vertical，a second cube of the same size has its diagonal comeding with the first，but is tmmed throngh an angle of $2 \cdot 2$ ！． fraw in plan and elevation the intersecting colses and find the shadows at 4．on the solid and on the plane of projection．Pillet＇s text hook on J escriptive（reometry is closely followed in the lectures．

The course in stereotomy is also a thorough one and inclurles all of Pillet＇s text except the scew arel．Under the dwision of masomry the lecturer treats of the methods and instruments used in stone cutting，the principles of jointing and of raults，nitches， domes int cupolas；the arranging and proportioning of treads of stairs，also ranlted and suspended stairs．Under the division of woodwork，the general rules of framing are considered，the methois of assembling pieces，general principles of roofs and the special iron work of carpentry．This comrse also includes the methods of tinding patterns of stomework and bevels of rafters，and two prohlems are given，the one in wood and the other in stone construction．Of those given last year the first was a small rallway station which in－ volved the design of the building，the framing plan of the roof and the principal bevels，also the framing of the stair and the patterns for the［ront string；the second was a hulding entirely in stone，to be ereected in a public market square and to contain a fombtain and other sources of water supply for the market．It was to be a vaulted structure with the ranlting visible both inside and ont，and al decorative motive hased mon the structural form of the vaults．In the center was to be a large stone hasin and around the Walls small hasins supplied with both warm and cold water for washing purposes．Outside were to be troughs for the watering of animals．The basement was to be used for store rooms and was also to contain the apparatns for heating the water；a stone stair－ Way was to serve as a means of commmacation with it．Drawings were required of the plan，fatade and section，showing the jointingr of the stone work，besides patterns of thee vomasoirs，one of which
was to le from the vaulting of the stairway. A course in surveying, consisting of six or seven lectures and three days' practical field work, is appended to the above course.

The work in construction comprises twenty lectures on theoretical and thirty on technical construction. Brun's text on C'onstruction is followed in outline, but in a condensed form, and the formulas which are given are demonstrated whenerer possible by means of the mathematics already enumerated. The following outline is very general and the reader is expected to supply many headings which are necessarily preparatory to some of those emmerated. The lectures include internal and extermal forces acting on beams, application of formulas to all usual cases, beams of equal resistance, also beams subject to inclined pressures, columns, lattice girders, roofs, calculation of strains and deformations, curred roofs, metal ribbed raults, expansion, friction, effect of wind, stability of masses and distribution of pressures, retaining walls, problems of stability, application to foundations in general, reservoir walls, stability of raults and their supports, curre of the center of pressure and its application to raulting.

The teclmical part inchudes a description of the materials of construction, methods of handling and transporting them, foundations, rules for masomry work, walls subject to thrust, Inttressing, shoeing, piers and colmmns. Yaults are treated first historically, after which follow descriptions of different kinds, methorls of construction, centerings, piers, abutments and buttresses, stone stairs, pasing with flagstone, brick and asphalt, and the draining of rainwater. The lectures on wood working include descriptions of woorls, methods of preservation, general principles of woodworking, assemblages, walls, thoors, scaffolding, roofs, dormers, spires, towers, cffect of wind and snow, roof coverings, stairs, joinery and sperial iron work. This is followed with lectures on metal work, descriptions of the useful metals, commercial shapes, iron walls and floors, masomry work of tloors, roofs, trusses, arches, amnings, glazed roofs, water pipes, gutters, iron blinds and shutters, elevators, grilles, balconies, hardware, plumbing and gas fitting, heating and rentilating, electric bells, and lightning conductors.

Three problems are worked en loges during the lectures on theory and three general problems are required durmg the latter part of the course. Besides these problems there is an oral examination on each of the two parts of the comse of ahout three questions. The nature of the problem to be worked en loges is known before hand so the student may be supplied with whaterer datal and
formulas that may he necessiry. (One of these problems called for the design of a lattice 1 girder of equal resistance throughout and to sustain a miformly distributed load and two concentrated loads. at eyual distances from the end. Given the size of the angle irons, height of web, wilth and thickness of eover plates and diameter of rivets. Calculate the momber of cover plates required at the center and at what points they may be successirely discontinued, also the spacoing of the rivets for the cover plates and the lattice bars. . Inother problem was the design of a six panel triangular triss, sustaining dead load only, by both andytical and graphical methods.

The thrce required during the lectures on technical construction involve design as well as construction. The first usually includes the investigation of a vanlt such as: design a grand stairway leading up to a terrace, the principal landing of the stair being vaulterl. Calculate the ranlt and its buttresses. The second in one rase called for the design of one hay of a riding school, the wallis to be of hall timbered work, trusses 38 meters centers and 20 meters span. Submit plan, elevation, details of framing and the calculations of the principal parts. I'he third is called the general problem and inchudes ahout all the ordinary problems of construction which can be centered in one huilding. The following one will serve as a stmple: Design a museum Juilding, consisting of a central glass covered court, surrounded hy galleries, three stories and basement high. On the third floor is to be a library. The hasement ceiling is to be ranlted, the other floors to be of iron and masomry, the roof of the court to be of iron and glass while that of the galleries is to be of wood and metal. There are required complete general drawings, problems of the stability of the vaults and notes on the calculations. These drawings are quite elaborately worked out and rendered in color, even the construction details having the shadows all cast at 45 . The feature of design enters every mooblem that requires drawing, $n 0$ matter what the study.

The course in perspective consists of twenty lectures and is very thorongh. Three problems are required besides one en loges. The following may be considered as samples: Design a pedestal hearing a statne, the base to be about 1.5 meters across and either square or circular. Make a drawing of a public place, smrounded ly arcades and with a monmmental fomntain in the center. No side of the square is to be parallel to the picture plane.

Make a drawing from nature of an ensemble or architectural detail, the drawing to be at least 0.25x0.35 meters. The problem given to be drawn en loges last year was the capital, achitrave and
frieze of the Greek Doric Order without triglyphs．＇The shadows were also required．

The above is， 1 helieve，a fair representation of the work of the school not classed mader the head of design，except the diplomat drawing，which is a thesis design and involves details of construc－ tion and specifications．A candidate for a diploma is also required to pass quite elementary examinations in physics，chemistry and building law．

The usmal problems in design do not include any calcutations of construction as no construction is expected to be shown on the drawings．

1\} Whillam Esty. Instructor in Electrical, Fngineering.

The design of an electro－magnet for exerting a definite pull on an armature in contact with its poles is a comparatively easy matter ； but in practice it often becomes necessary to make calculations for a magnet which is to attract its armature with a given force，when the two are separated by a given distance．Althongh the general prin－ ciple which guides us in the solution of the first case is of service in the second，still，as will be shown later，new variables enter to complicate the solution，so that no general formula can be applied．

It was for the purpose of obtaining some actual experimental data to faciliate the calculation of a special form of electro－magnet that the writer mondertook this investigation while in the employ of the＇Thomson－Houston Electric Company at the company＇s factories at Lyum，Mass．

Electro－magnets in general may be classified into two groups， according to the uses for which they are designed ：
（1）Magnets whose armatures can exert a powerful effort through a small distance．
（2）Magnets whose amatures exert a weaker pull，but over a consilerable range．

Fon contain purposen all electro-magnet is required to put forth at tomporary lifting puwer. In this case the amature is dram to the magnet and tighty loch there at long as the exeiting current is matintaned, and is detached only ly a stronger opposing pull. The forec exerted hy a magnet thus in contact with an amature is eonsiderath! greater than would be the ease if the magnet was acting on its ammature at a distance.

The fore d lne to an amature in direct contact with a magnet is catled the fromtior force of the magnet. On the other hand, when the force is due to the magnet acting on its armature at a distance, it is called the attrutire force of the magnet.
'The Lall of Marinetre Traction was stated by Maxwell amd is af follows :

$$
\text { Pull }(\text { dynes })=\frac{B^{3}}{8 \pi},
$$

where B is the number of magnetic lines of force per square centimeter, and A is the polar area, or surface of contact, in square centimeters.

If English units are used the formula becomes

$$
\operatorname{Pnll}(\mathrm{llns.})=\frac{B^{2} A_{1}}{7213+000}
$$

The above statement of the law of traction assmmes that the distribution of the magnetic lines of force is miform thronghont the cutire area, but this is ravely the case. If the density is not minform the formula may be written

$$
\text { Pull (dynes) }=\frac{1}{8 \pi} J^{\prime} \mathrm{B}^{\prime} \mathrm{dA} .
$$

But eren this last formma gives no useful information about the pull of a magnet on its armature at a distance, i. r... it is not a statement ol the law of "ftroction.

Let us consider brietty the law of tromforn apsplied to the design of electro-magnets, and then take up the various factors entering to modify any simple general statement of the law of margnetic uttrurtion.

The general expression for the Hux of magnetic lines in ans circuit, is

$$
\begin{gathered}
N=\frac{\text { Magneto-Motive Force }}{\text { Relnctance, }} \\
\text { Int } \mathrm{M}=\frac{ \pm \pi \mathrm{C} \mathrm{n}}{10} \text {, and } \mathrm{R}=\mathrm{I}, \frac{1}{\mathrm{~A} \mu}, \\
\therefore N=-\frac{4 \mu \mathrm{C} n}{10,} \\
\mathrm{~A} \mu
\end{gathered}
$$

Where $\mathrm{M}=$ magneto-motive force; $\mathrm{C}=$ magnetic rehactance; $\mathrm{C}=$ current in amperes ; $n=$ number of turns of wire on magnet $; l=$ length of magnetic circuit in centimeters; $A=$ cross-section of magnetic circuit in square centimeters: $\mu=$ permeability $=\frac{B}{H}$

Sotving for the ampere-turns (('1), we have

If $l^{\prime \prime}=$ mean total path of the magnetic lines atl aromen the chosed magnetic cirenit, and, since $N=B A$, or $=$ density \times area. then will

$$
\left(n=\frac{B_{n} l^{\prime \prime}}{\mu} 0.3132,\right.
$$

and

$$
\mathbf{B}_{\| ،}=\frac{\ln \mu}{.3182 l^{\prime \prime}}
$$

But from Maxwell's formula-

$$
\mathrm{B}_{1}=s+49 \sqrt{\frac{\mathrm{P}(\mathrm{llis.} .)}{\mathrm{A}(\mathrm{sq} . \mathrm{ins.})}}
$$

Equating these two values of B_{1}, and solving for $\mathrm{C}^{\circ} \mathrm{n}$, gives

$$
\left(\mathrm{n}=2\left(\mathrm{iti1} \frac{l^{\prime \prime}}{\mu} \sqrt{\frac{\mathrm{P}}{\mathrm{~A}(\mathrm{sq.ins.})}}\right.\right.
$$

Which is in a form convenient for the desimer.
Here again is an ideal case; for the value of co given abore, absumes:- that there is no leakage, and therefore perfect contact
hetween armature and poles, and further, that the area of crosssection is the same all aromud the eircuit, in the armature as well as in the core.

To the designer of an electro-magnet which acts on its amature at a distance, a formula like the precerling will not be of much value. Magnetic leakage increases with the air gap, and varying with the form of the magnetic circuit, will complicate the calculations. The greater the leakage, the wider the departure from the ideal formma, so that it becomes necessary to investigate the law of magnetic attraction.

The law of force governing a magnet, acting at a point some distance away from it, is commonly given in text-books as the Law of Inverse Syuares. This law, thongh correct for certain cases of mannetic attraction, riz., where the force acts at a point, is not true for ordinary magnets.

Owing to inregular leakage, the magnetic force does not emanate from mere points; hence one of the essential conditions under which the law of inverse squares holds is not fultilled. Again, becanse the distance through which the force acts is not great compared to the pole from which the force proceeds, another condition on which the truth of inverse squares depends is violated.

Hence, whatever may be the law of attraction, it is not that of inverse squares.

With a given form and winding of electro-magnet, the introduction of an air gap into the circuit will, as a first effect, decrease the momber of magnetic lines flowing throngh the circnit. The mag. netic resistance to lines of force, or reluctance, of the circnit is increased, hence for the same magneto-motive forcu, the flux is diminished.

The second effect is it corollary to the tirst; if the flux is lessened the permeability of that particular iron is increased, which means that the air gap offers a greater relative resistance to the Hux.

I third effect, clue to the presence of an air gap, is that of lerli r!ur. Becanse the magnetic lines in passing up through the roke hare to eross an air gap before entering, and after leaving the armature on their way back to the yoke, some lines will take a shorter path and leak across from limb to limb. As the gap lengthens, more relnctance is offered, and hence more lines will leak across, and even with the armature in apparent contact with the poles. there will be some sideways lealiage. Thms the number of lines which get into the armature will be less and less, the greater the gilp).

'Ihe object wi the experiments which follow is to aseertain the pfinet of air gaps on the magnetie Hus and hemee on the attratert. ive force of the mannet.

It was proposed to take a special form of electro-magnet, and los sonding through its eoils different exciting corrents, find the corresponding pulls of the ammature, and to do this for a number of different air gaps.
[n order to get the magnetic Hus at different points in the rircont, and hence an indication of the magnetic leakage, test roils and a ballistic galvanometer were employed.

When the magnetic induction throngh any one of the test conils, whose positions are shown in Fig. 1 , undergoes a change, c. !. , by a reversal of the primary curvent, a throw of the ballistic galvanometer needle will occm. This thow is proportional to the whole quantity of electricity which passes in the transient current, and this in turn is proportional to the change of magnetic induction within the coil: or

$$
()=\mathrm{li} l,
$$

where $($) - the total quantity $; k=$ the constant, and $I)=$ the deflection of the ballistic galvanometer cansed by Q.

If E is the E.M.F. induced in the secondary at any instant during the change of imbuction, the quantity of electricity which flows in the time dt will be

$$
d \varphi-\left(d t=\frac{E}{R} d t\right.
$$

When $=$ current, and $\mathrm{P}=$ total resistance of the secondary circnit, including, of course, the hallistic galranometer. 'The whole quantity () Wheh flows thongh the ballistic gal ranometer in the time t is the summation of all these elementary quantities, or

$$
\text { Tootal }()=\int_{n}^{1 "} d Q=S \int_{n}^{1} \frac{E}{\text { Ridt }}=\frac{S}{R} \int_{n}^{\text {t }} \text { Edt }
$$

where S equals the number of tums on the secondary. But since E hy definition is the rate of rlmm!re of induction $=\frac{\mathrm{dN}}{\mathrm{dt}}$, therefore $\int_{0}^{\text {te }}$ Edt is the integrated or total change of induction taking place in time t.

$$
\therefore \text { I'otal } Q=\frac{S}{R} \int_{N_{2}}^{N_{1}} \frac{d N}{d t} d t=S_{R}^{S}\left(N_{1}-N_{2}\right)
$$

Where N_{1} is the original induction when $t=0$ ，and $N_{0}=$ final induc－ tion when time $==t$ ．

Hence $\left.S\left(N_{1}-N_{2}\right)=l_{i}\right)$ ；but () is proportional to the deflec－ tion 1），it prodnces，i．（．（）$=\mathrm{k} 1$ ），therefore

$$
\left.S\left(N_{1}-N_{0}\right)=l(l)=k l l\right)=S N, o r N=\frac{k l i l}{S}
$$

where $N=$ change of induction（ $=\triangle Q$ of Ewing）．If，howerer，the change of induction be cansed by a recersal of the primary current， so that $N_{1}=N_{0}$ but of opposite sign，then the total change will be

$$
N_{1}-\left(-N_{1}\right)=2 N
$$

We have thus seen that a given change of induction can be measured in terms of the deflection it produces on a ballistic gal－ ranometer，the resistance and turns of the secondary circuit．But in order to make absolute measurements of N ，we must first know how much induction it takes to produce a deflection of mit scale division，i．e．，we must find the constant $=k$ of the galvanometer．
＇To standardize the galvanometer，i．e．，to find k ，the following method was employed：A long magnetizing coil was uniformly wound on a brass tube whose diameter was small compared with its length．On this primary coil at the middle of its length，a short secondary coil was wound and put in cirenit with the ballistic gal－ vanometer．

C＇onstant of Balhistic Galvanometer．

Let $\mathrm{k}=$ constant．
$N_{1}=$ total lines enclosed by secondary calibrating coil．
$N=$ total change of induction（unknown）to be measmred．
$Q_{1}=$ total quantity of electricity which flows in the calibrat－ ing secondary coil，caused by N_{I} lines．
$Q=$ total quantity caused by N lines．
$\mathrm{S}=$ number of turns on secondary calibrating coil $(=890)$ ．
$d=$ deflection of galvanometer due to N lines $(=114.8)$ ．
$r=$ total resistance of secondary circuit（when deflection $=d$ ）．
$=6.020$（galy．）+14.25 （secondary）+60 （res．box）$=$
80.27 olims．
$s_{1}=$ number of turns per centimeters of length on primary of solenoid，$(=11.27)$
$a=$ mean area of primary $=23.6$ square centimeters．）
$c=$ primary current（c．g．s．units）$(=.2=\underset{2}{2}$ amperes．$)$
$\mathrm{S}=$ number of turns on test coil $(=2$ ．）
$1)=$ deflection due to unknown lines N ．

. $=$ areat of test conl.
 the roalihrating solenomil is

$$
\mathrm{S}_{1}=4 \pi \mathrm{~S}_{1} \cdot \because \mathrm{l}
$$

'l'he quantity of electricity whirln flows in the recondary on broaking the primary roment is

$$
\left(_{1}=\frac{\sum_{1} s}{1}=\frac{4 \pi s_{1} \text { cals }}{1}\right.
$$

therefore $k=\frac{Q_{1}}{1}=\frac{1 \pi s_{1} \text { cols. }}{(l i}$, which is the constant sought.
To evinlnate an maknown indnction N having k, I), S, antín.

$$
I=\frac{k l()}{S}=\frac{\left.4 \pi s_{1} c i s i l\right) l}{(l i}
$$

and the density $\mathrm{B}=\frac{\mathrm{N}}{\mathrm{A}}=\frac{4 \pi \mathrm{~s}, \mathrm{c} \text { a }}{(\mathrm{H}} \mathrm{f} \quad \frac{\mathrm{J}) \mathrm{P}}{\mathrm{SA}}$

For these experiments

$$
\left.\left.\mathrm{N}=\frac{1.2(i \times 11.3 \times 2 \times 23 .(i \times 8!0)}{114.8 \times 8(1.27 \times 2}, 1\right) \mathrm{~h}=32.3751\right) \mathrm{h}
$$

anld

$$
\mathrm{B}-\frac{5!66(690 \mathrm{D}) \mathrm{R}}{\mathrm{ASdr}} .
$$

from which formulie the inductions given in 'rable II. were computed for the several test coils used in the experiments.

As of is caused hey a reversal of the calibrating current, sol) also corresponds to a reversal of induction in the test coil.

When N is only increasing or decreasing but not reversed, only half of the calibrating detlection can be used for comparison ; that is. the mumerator of the preceding fractions must then be multiplied by !.

In applying the ballistic method to large electro-magnets, as for example to dynamo magnets, having conviderable self-induction amd therefore a large time ronstant $\left\{\frac{L}{P_{i}}\right.$, where ! is the conefficient of self-induction and R the resistance of the circuit, care mmst be taken to select a galvanometer having a long period, at least 15 or 0 0 seconds, otherwise the needle will tend tomove before the induced sec-
ondary current（whose delay in rising to its maximum value is caused by the self－induction of the primary）has passed．

A practical limit to the period of a ballistic galranometer har－ ing been reached，the following method of reducing the error due to a large time constant may be applied to magnetic measurements．

The formula，time constant（in seconds）－$\frac{L}{R}$ shows that if L re－ mains fixed，the time constant will be reduced if l is increased．

Suppose for example that we are testing the induction in a dy－ namo field magnet，where $R=50$ ，magnetizing current $=1$ ampere and assume $L=500$ hemries，（when curent $=1$ ．）

The time constant will then be

$$
\mathrm{t}=\frac{500}{50}=10 \text { secouds. }
$$

Which means that the current takes 10 seconds to rise to $\frac{\mathrm{e}-1}{\mathrm{e}}=.634$ of its maximmm value．See Thompson＇s Electro－ magnet，page 222.

Now insert a non－inductive resistance of say foll olms in series with the magnet winding and apply ． 00 instead of 50 volts to the terminals．The current will be the same as before or $\frac{.000}{500}=1$ ampere， but $t=\frac{500}{50+450}=1$ second，that is，we have reduced time constant from 10 to 1 second and could thus use a ballistic galvanometer having a shorter period if necessary．

The type of electro－magnet used in these experiments was one of the form termed by S．P．Thompson，＂Stopped－Coil－and－Phun－ ger．＂The nature of its action is intermediate between the weak long－range pull of the ordinary coil and－plunger，and the powerful short－range pull of the electro－magnet having a fixed core．

The two spools are arranged with short fixed cores extending part of the way through them，and a double movable core or arma－ ture to be sucked into the coils，and finally into close proximity with the fixed cores．＇Ihis form of magnet has been largely used where a strong pull over a considerable range of action is desired for a shor＇t time．

The force with which the morable part of the core is drawn into the coil is somewhat greater，owing to the concentrating effect on the
lines of force of the fixed part, than wonk be the case with an open coil. And when the morable part has so entered it is drawn in by

Fig. 2.
a pull at first fairly miform (see Fig. 10) and then increasing greatly as the gap in the magnetic circuit diminishes.

The particular form of magnet experimented on is used by the Thomson Houston Electric Co. to act through a lever on a
＂toggle＂arranged to apply a brake on electric cranes，elevators，and hoists．This style of magnet is well adapted to this purpose，since the brake which it operates is intended to be applied at first gradn－ ally，and then with its full strength．

One set of spools used were womd for 220 yolts，and had the following dimensions：

Winding：－
Spool No．1， 30 layers ．0：32－inch wire（ $=$ No．20 B is S）\＆ 176 tums $=16 \mathrm{ll} \mathrm{s}$ ．

$$
\text { twins }=16 \mathrm{ll} \mathrm{~s} .
$$

Total turns -8945 ．
Inasmuch as the＇T＇－H．standard brake magnet has cores 61 inches long，the minimum air gap is only ${ }_{3}^{3}$－inches；so，in order to try the effect of gaps less that $\frac{3}{8}$ inches，a new set of fixed cores was made，having a length of $1 \frac{1}{2}$ inchess instead of the normal 1 inch． Cold resistance by bridge，Spool No． $1=-50.383$ olms．

```
" " " " " " 卫-49.683 "
```

The spools when in series across 220 －volt mains will then take a maximum current of

$$
\mathrm{C}=\frac{220}{100}=2.2 \text { amperes (approx.) }
$$

The heating loss is then $C^{2} \mathrm{R}=2.2^{2} \times 100=484$ watts，and the watts radiated per square inch of spool surface $=\frac{48 t}{241}=2+$ The temperal－ ture rise corresponding，according to Forlhes＇rule is $2 \times 223=44 ;$ $\mathrm{F} .=230 \mathrm{C}$ ．It is evident that the watts radiated per square inch of spool surface are fully four times as great as ordinary deniguing practice would warrant；hut it should be remembered that the con－ ditions here are very different from those ordinarily obtaining．Brake magnets are in action only intermittently，and then for hrief inter－ rals of time，so that this apparently excessive heating is cutirely justifiable．During the experiments，however，the current was kept flowing in the windings an hom or more at a time，with the result that the spools would hecome dangeronsly hot，especiatly for cur－ rents greater than the normal 2.2 amperes，This difliculty was
avoided by setting up two fan－motor＇s，one close to each spool，thus causing strong currents of air to blow on the heated surface of both spools．This methorl of artificial cooling was very effective．
＇The form and dimensions of the magnet yoke，armature，and so forth，are shown in Fig． 2.

This magnet in practice is arranged to have its fised core and

Fig．：3．
yoke uppermost，so that the movable core will be attracted upwards； but for these experiments the normal position was reversed．

The material of the yoke，armature yoke，and cores is wrought iron thronghont．The weight of the movable cores with yoke，i．e．， the armature，was 31．5 lbs．

A saturation curre（No．1，in Fig．S）of the iron used in the magnet rores was obtained hy using a modification of the method of Hopkinson．Curve \because represents the relation lectween B and（＇n cal－ culated from the pounds pull for no air gap by the equation used in rommertion with the＂permeameter＂method of testing iron，vi\％：

$$
\mathrm{B}=1317 \sqrt{\frac{\text { Pull }}{\text { area in sq.ins. }}}+\mathrm{H}^{*}
$$

Is is to be expected，the latter curve falls le elow the true satur－ ation curve，since contact hetween cores and poles（thongh thoy were nicely surfaced）was not perfect．Moreover，the magnetic cir－ euit contains fom joints，besides the preceding，where the upper ann lower magnet cores are screwed into the movable and fixed yokes re－ spectively；the effect of these joints being to reduce the permeability of the circuit as a whole．It might be remarked，howerer，that the lower curve approaches the upper more closely at the higher mag－ netizing forces．This is due to the fact，as Ewing lias pointed ont， that the pressure between the two surfaces increasing with the mag－ netizing force，tends to eliminate the effect ol joints and to make the magnetir circuit more perfect．

1）ata fur Saturation Curves．

Curve 1.		Curse 2.	
B．،	$\frac{\mathrm{Cn}}{l^{\prime \prime}}$	B	$\frac{\mathrm{C} 11}{l^{\prime \prime}}$
10000	2.1	800100	（i）
20000	－． 3	97000	16i．
83000	8.19	106500	218
［10） 000	（6．）	112 ！ 100	371
50） 1000	8.5	$12+100$	（i1）
（i） 0000	11.0	126．500	76
70000	11.5		
801000	2S． 2		
90 0100	58		
100000	94		
111.500	200		
11600	800		
119.300	398		
124000	S0）		
12901100	73311		

[^6]
Apparates.

For measuring the pull of the armature four spring dynamometers were nsed and the downward force measured direetly.

$$
\begin{aligned}
& \text { 1) Snamometer No. } 1 \text { read to } 100 \mathrm{lh} \text {. }
\end{aligned}
$$

'These instroments were all calibrated by standard weights or standard phatform scales.

In calibrating Nos. 3 and 4 an armature truck of known wei ght was placed on standard platform scales and loaded with blocks of iron, and the total weight recorded. The dynamometer being tested was then attached to the truck and its contents and part of the weight remored by a chain hoist. The indication of the balance and the reading of the scales were recorded. More weight was then taken off the scales hy pulling on the hoist, and the readings again recorderl, the process being repeated till the truck was lifted clear of the scales.

On changing from one dynamometer to another, with the magnetizing current kept constant, the last reading on one was repeated on the next as a check.

For orercoming the magnetic attraction of the armature, a chain differential-pulley block was fastened to a heam immediately over the spools, and the dynamometer attached between the hook of the hoist and the eye in the armature. Care was taken that the pull of the dynamometer should be vertical, otherwise the friction of the morable cores on the spools would have introduced an error.

The magnetizing current was measured by a Weston ammeter having a scale reading from 0 to 5 amperes. The ammeter was calibrated by a standard Thomson current galranometer.

To obtain the desired range of currents (.25 to 4 amperes) three electromotive forces were used, viz: 110, 220 and 500 volts.

A double-pole double-throw switch was used for reversing the current through the spools for the purpose of getting the desired realings on the ballistic galvanometer.

In order to comect the rarious exploring coils in succession to the ballistic galranometer, without disconnecting their terminals, a special switchboard (see Fig 1) was employed. It consisted of a solid Fectangular block of slate, having two concentric semi-circular strips of hrass " and b (see Fig. 1) riveted thereto, and were connected b swires underneath to r and d whence leads were rim to
the ballistic galvanometer；e and f are circular contact pieces or studs to which the terminals of the several exploring secondary eoils are fastened．A contact－making arm of ebonite，pivoted at＂，is provided with sliding contact pieces or springs，which slide over the several studs；！／serving to connect studs e with a and hence with r，while h does the same with f and d ；！is long enongh to bridge from α to c ，and similarly h from b to t ．Of course ！ and h are well insulated from each other．In the position shown in Fig 1，the con－ tact arm is in a neutral position，and no exploring coil is in cireuit．

The Bablistic Galvanometer was in an adjoining building， and wholly encased in a heary cylindrical cast iron box， whose walls were two inches thick．A small aperture cut in the front permitted the beam of light from the reflecting mirror to pass through the enclosing case and fall on the ground glass screen．

The box containing the gitranometer rested upon a number of hard rubber huffers，which in turn were supported on a massive brick pier．＇The above arrangement，as will be seen，rendered the instrument especially free from all sources of disturbance both magnetic and mechanical．

The galvanometer，whose resistance was 6.020 legal ohms at 20 degrees centigrade，had a period of 15 seconds．In the earlier ex－ periments an air gap coil wound on a grooved dise of hard woorl about 2 inches in diameter was placed in curle air gap（see Fig．1，）lont since they gave approximately the same induction，the two were after－ wards comected in series，and the combined inductions in right and left air gaps divided by 2 ，giving thus the mean value of the induc－ tion．

An additional test coil aromed the middle of the fixed yolie would have given interesting information concerning the magnetic induction at that part of the magnetic circuit，and were similar experiments to be undertaken in the future，the writer would include such a coil．

Methon of Thaing Oiserinathons．

To avoid complications it was thonght best to take the electrical and mechamical readings first，and afterwards to make the mag－ netic observations，the same conditions being reproduced as far as possible in the latter set as in the former．

For each length of air gap a series of magnetizing eurrents from ． 25 amperes to about 4 amperes was used，and the pull corre－ sponding to each strength of emrent noted on the spring balance．
＇The current at any given point was kept constant by means of suitable rheostats，and was at all times，read in the same direction，
i. i., progressively imereased or decreased. The effects of hysteresis were eliminated as far as possible by frequently reversing the current in the coils and by always reading from lower to higher valnes of the current and rice versa, and finaliy by repeating the readings, proceeding lrom higher to lower currents. The pull of the armature recorded was the maximum reading observed at the point when the pull applied just began to orercome the magnetic attraction. This point was well defined, especially for large magnetizing curvents. the index of the balance slipping back ten or twenty pounds as soon as the armature core had moved ont of the strongest lield.

For varying the length of the air gap er quantity of hard wooden disces 2 inches im diameter and of thichnesses $1, \frac{1}{2}, \frac{1}{1}, \frac{1}{x}$ inches, were used to block the armature rores away from the fixed eores. The dises were carefully turned in a lathe and surfaced up and then ralipered with a micrometer.

Explanation or Tables.

Thale I. contains the values of the pull in pounds corrected for errors of balances and the weight of the ammature which was suh)tracterl from the gross pull, to give the net or useful pull, for currents rarving from .25 to 3.85 amperes and for different air gaps rayying from (0 to is inches.

Table II. gives the total magnetic inductions (N) in the movable soke (calculated from ballistic readings on exploring coil No. 1, see F'ig. 1, in spool (coil No. 2, , and in air gap (coil No. 3) and ralues of $\mathbf{B}_{\text {I, }}$, the density per square inch in the air gap, for air gaps varying from 0 to $\overline{5}$ inches, and for currents from 1.0.) to 3.00 amperes.

The varions inductions (N) are calculated from the formula belore given : $\mathrm{N}=32.375 \mathrm{D}$ R

Where D is the mean value of at least fon galvanometer detlections, and R the particular valne of the resistance in the secondary circuit, which was found to give a convenient deflection. Thus every set of four deffections observed wonld have its corresponding ralue of H , but for brevity the observed values of D and P are omitted and simply the calculated ralues of N given.

I'he several areas of the exploring coils used, are :

$$
\begin{aligned}
& \text { For Yoke (coil No. 1) } \mathrm{A}=8.7 \mathrm{~F} . \mathrm{sq} \text {. ins. } \\
& \text { " Spool (" " 2) } \mathrm{A}=20.88 \quad \text { " " } \\
& \text { " Airgap (" " 3) } \mathrm{A}=2.76 \text { " " }
\end{aligned}
$$

-Not observed but interpolated from curves.

The density of lines in the air gap has been computed from the total induction thas: B per square inch $=\frac{\mathrm{N}}{2.76}$ where $2.76=$ area of air gap coil in square inches. The density in the movable yoke is not calculated because the cross-section is not miform throughout, and were we to divide the total induction in the yoke by the area of exploring coil No. 1 (tiz: 8.7.5 square inches) we would obtain the minimum yoke density, for by reference to Fig. 1 it will be seen that coil No. 1 encloses a maximum cross-section. To obtain therefore the arra!e yoke density it would be necessary to divide N by the average area which may be taken $=3.75$ square inches.

The density in the movable cores cannot, of course, be directly found by dividing N for the magnet spool hy the area of coil No. 2 (riz, 20.88 square inches) for part of this space only is filled by iron, the rest being copper and insulation. If the mean area of one magnet spool is $A_{\text {, }}$, and the area of cross-section of one core is A, there will be (A, - A) H lines enclosed by the secondary test coil, but outside of the iron, so that the true induction within the iron is

$$
\mathrm{N}-(\mathrm{A},-\mathrm{A}) \mathrm{H}
$$

where $\mathrm{H}=\frac{4 \pi \mathrm{C} \mathrm{n}}{10 l}=\frac{1.26 \mathrm{Cn}}{l}=1.26 \times$ ampere-turns per centimeter of length, whence

$$
\mathrm{B}=\frac{\mathrm{N}-(\mathrm{A},-\mathrm{A}) 1.26 \mathrm{Cn}}{\mathrm{~A} l}
$$

The above calculation of $B_{\text {, }}$, is correct only when there is a practically continuous magnetic circuit of iron, that is, when the air gap is zero. It camot be applied when there is an air gap interposed, for H camot be computed by the regular formula $H=\frac{4 \pi \text { C } n}{10 \%}$, since owing to the end effect or demagnetizing tendency of short magnetic circuits (including air spaces) the value of H is not uniform at all points.

The 5 th, 10 th, 15th and 20 th columns contain the values of the coefficient of leakage obtained by dividing N for the spool by N in the air gap, the mean ratios being plotted in Fig. 12.

$$
\begin{gathered}
\text { Disclission of Curies. } \\
\text { Fi!g. t; un . Lir Giti. }
\end{gathered}
$$

Inasmuch as the cores were in contact with the pole pieces, there was no room for the air gap coil (No. 3) and consequently the curves for coils 1 and 2 only appear. 1 and 2 exhibit the well

TABLE 11.

Currents．	$1.05=9384$ Ampere Turns．					1．45＝1290 Ampere－Turns．				
Air Gaps．	N－＇Total Irduction．			$\begin{array}{cc} N \\ 1 \% & 13 ., \\ \text { Air } & \text { (iilp. } \end{array}$	v	N－Total Induction．			$\frac{N}{2.76} 13_{1}$ Air Gap．	r
	Yoke． （Coil 1 ）	spool． （Coil 2）	$\binom{\text { Air ga], }}{(\text { Coil } 3)}$			Yoke． （Coil 1）	Spool （Coil 2）	$\begin{aligned} & \text { Air gap } \\ & \text { (Coil 3) } \end{aligned}$		
0.	364600	3 Sis tilo				354200	40：300			
	335501	334000	197550	11 tou	1.65	365000	375	220	$80:(x)$	1.64
－	8		$\begin{array}{r}136150 \\ 45850 \\ \hline 250\end{array}$	498301	\cdots	346100	$? 46500$ 319200	161650	58.500	\％ 1.1
． 510	$246: 200$	－3：301		2×350	2.9	309560	景	1033 ¢¢0\％	$4+$	2． 81
－605		204500	64 tivo	23 ＋100	31	290 609	273 （kn	565	31505	3.11
（15）	：206 600	$13^{\circ} 100$	53 ※50	$19 \% 00$	3．53	2 C 600）	2 F 5000	\％ 5 2 25	20，200	3．39
． 5%	196500	12.180	48180	15.40	3． $6: 3$	$\because 611000$		658010	29810	3．tif
1.250	16.500	$1: 36100$	33700	12210	4.03	21550	191000	4690	$10^{\prime \prime}(4)$	1．10i
1．5M	13 S 900	114000	20	9360	4．191	18： 140	15： $4(0)$	374	13500	1．31
1．20］	1 ± 30	99000	2． 200	9130		169740	137700	$3: 35014$	12160	
$\because 125$	11160	88.500	22.200	$8(10$		1ごき 200	121 T（0）	$30 \div 50$	11050	
？ 3175	99000	Tit Ons	20 900	570		111006	118980	2 LCtan	103640	
\％6\％	（k） $6 \times(0)$	169200	19000	${ }_{6} \mathbf{5 8 5 0}$		125 5000	875000	25． 810	9350	
	\％${ }^{\prime \prime}$	5． 100	$1{ }_{15}^{12} 960$	6 ± 30		$\underline{108} 8$	TY 800	$\because 43(4)$	Şフ）	
3.500	（6e3 3048	$4{ }^{4} 100$	15600	5 ¢\％${ }^{\text {a }}$		Stiol 600	¢й3 800	21 \％00		
\％．	18．00	40300 301×1	$\begin{array}{r}14500 \\ 13 \\ \hline 14\end{array}$	58.3		（69：30	55300	20 19000 1900	7390 165819	
5.	24 424	SE（N）	$\underline{13}+1(1)$	18%		（1）938）	44410	19000	6 ¢f：	

I＇ABLE II．－Continuer．

Currents．		5030	04 Amper	e－Turns．			60－2－5 ¢	33．）Impe	re＊＇Turns．	
Air Gupヶ．	$N=$ Tutal Induction．			$\begin{aligned} & \frac{N}{2 H}=13, \\ & \text { Air Gap. } \end{aligned}$	V	$N=$ Total Induction．			$\begin{aligned} & \frac{N}{2.6} 13 ., \\ & \text { Air Gatp. } \end{aligned}$	V
	$\begin{aligned} & \text { Yoke. } \\ & \text { (Coil 1) } \end{aligned}$	Spool． （Coil 2）	$\begin{aligned} & \text { A ir gap } \\ & \text { (Coil B) } \end{aligned}$			Yoke． （Coil 1）	Spool． （（＇oil ¿）	$\begin{aligned} & \operatorname{Air} \text { inp } \\ & (\mathrm{Coil} 3) \end{aligned}$		
0.	423140	44.2030				$4+4100$	$46 \% 4(x)$			
．125	41300	4310 Mc	256500	422（4）	1．159	＊ 418000	＊ 151000	＊Ftition）	＊： $1+104$	1.70
$\therefore 0$	$4(0) f(x)$	$42: 3010$	202450	735010	2.08	＊ $10 \% 000$	＊ 1355000	＊ $30:$（x）	＊	1．64
35	3865	411100	161.300	54500	3.50	413.00	436800	$17 t 7 \%$	（is Org	$\because .17$
． 510	351980	303900	144000	5160	2． 21	394300	413300	152 304		2.11
His）	376	33650	12 E 800	4.5100	＊．tis	332100	$401: 200$	$1: 3100$	18.600	2.94
－ 310	$3 \sin ^{\prime \prime}(x)$		11425	＋133： 4	3.15	3 Sl 504	3850	121150	H1（xH）	3.1%
． 85	359	S115000	102850	$3: 200$	3.11	3 BE 004	3 3 209	110 ict	41） $1(6)$	3．3i
1 3 （\％）	3245000	30450	\％	$\because 550$	3.85	3190 Or．0	333000	． 86.501	$31: 810$	3.81
1．50）	30． 4 e（ro		65.501	3）	1.0 i	$3: 5050$	$33^{3} 2(0)$	72850	－6：301	1．1）1
1．73）	3－1］（0）	？ 416	（81） 400	$21!(0)$		$31 \% 0(x)$	S188 800	（67） 500	$245(1)$	
$\because 1.125$	Y＇1 天no	$\because 19: 3 \times 1$	55 tax	$\because 0 \mathrm{l}(\mathrm{x})$		2391！\times k	\％ $143(0)$	（t） 500		
－3\％	$247^{\circ}(6)$	198：301	5180	18 （ith）		$23^{\circ} 6$（ 00	2゙っl（n0	58100	$\because 1000$	
－ 6.65	285（0）	$1 i 1500$	4i＇s04）	17210		35\％）(kx)	198100	53.8 siou	1：1 $4(K)$	
3.		11560	44500	$16.10 x$			163＇3（\％）	$4!8(0)$	$18(\mathrm{KH})$	
3.50×0	1515000	118301	40.400	14 tix）		180 troo	13.4100	$15.5(x)$	15.50	
4.	1235	101810	37401	13550		1.43 mm	115 J0，	$12 \operatorname{lin} 0$	15480	
$\overline{5}$ ．	动 350	830 O（H）	$34.5 \times 4)$	$1 \because 500$		865\％	9：3 400		14310	

[^7]linown characteristics of saturatiou curves，first，a rapid rise along a straight line nearly，then a gradual bending increasing more

rapidly as the density of the iron is forced up，and for the ligher magnetizing forces ruming off in a straight line again．

Curve 2 is higher than curve 1 throughout，as is to be expected， for the leakage is not sufficient to increase the induction through 1 at the expense of \because ．

The curve of ampere-turns and pull resembles somewhat the saturation eurves 1 and 2, but the bend is more exaggerated and occurs earlier. 'Ihis is due to the fact that the curve of pull represents a function of $B^{\prime \prime}$ "and hence of $N^{* *}$. As the length of the air gap increases and the ratio, $\frac{\text { Air lielnctance }}{\text { hon Relnctance }}$ hecomes greater, the curves 1,2 , and 3 all become straight lines. - And because pull varies as a finction ($B^{\text {a }}$) we shall find that the curve of pull becomes a hyperbola.

It will be noticed that the maximum pull obtained was $1: 270$ pounds with a magnetizing force of 27300 ampere-turns, while to get half that pull the ampere-tmms needed were 3700 , or only about $!$ of 28000 .

It might be added incidentally that commercial considerations would suggest that the cores be worked at a point below the bend.
'The density of lines ($B_{\text {. }}$) in the core calculated by the formula

$$
B_{.,}=\frac{N-(A,-A) H}{A}
$$

rums up to abont 134000 lines per square inch, showing that the core is satmated, eren dedncting a liberal percentage of leakage.

$$
\text { Fii!. o) : } \frac{1}{8} \text {-imch (inf). }
$$

With an air gaf now in the circuit we have a true saturation curve no longer, becanse the effect of both the air and the iron reluctances are combined. The total reluctance of the circuit is now

$$
\frac{l_{1}}{A_{1} \mu_{1}}+\frac{\underline{l}}{A_{2} \mu_{2}}
$$

in which the first fraction is the iron reluctance, $l_{1}=$ mean length of iron circuit, $A_{1}=$ arerage area of iron circuit, and $\mu_{1}=$ the perme: ability; $\mu_{1} \propto \frac{1}{\text { density }}$ and the second fraction is the air reluetance ,$(\cdot) l_{2}=$ length of two air gaps; $A_{y}=$ area $\left.; \mu_{0}=1\right)$.

As the length of the gap increases, for the same densities, the effect of the dirst fraction will he less and less and finally become nil at arr gaps of abont 4 inches, but is we shall see, the relative positions of curves 1, 2 and 3 for the different air gaps depend on varying amounts of leakage.
 stant in a given magnetic circuit becanse the amount of leakage depends on the relative permeance $\frac{1}{\text { reluctance }}$ of the wath
through the iron and the stray pathis ontside. The permeability of the air being constant at 1 , and μ for the iron varying inversely as the density, we should expect to find greater leakage with higher excitation. Again, for a given air gap, when the density is low the irou reluctance is small compared to the air reluctance (constant,)

Fig. 5.
therefore the "neutral line," or place of maximum magnetization, will move away from the air gap toward the yoke. For high densities the iron reluctance is considerable, and the ratio between the air and iron reluctances is therefore less, and the nentral line will
shift backward toward the air gap. A high density in the iron then has the same effect as an additional air gap.

Applying these principles to the discussion of the plots we see that for ${ }^{1}$-inch gap, curve 1 is higher than curve 2 at low densities, but that the two curves cross at about $\mathrm{N}=325000$ after which point 2 is higher. The reason is plain. With low magnetizing forces, as we have seen, the nentral line has shifted upwards towards

Fic. (i.
the yoke. Coil 2 therefore will not eatch all of the lines induced ley the spool, for the position of coil 2 is fixet. Had the coil No. 2 , howerer, heen moved op on the spool till the nentral line was
reached，it would hare included more lines than coil No．1．At high densities，on the contrary，the iron reluctance bearing a greater relative proportion to the air reluctance than at low densities，the neutral home moves hack again toward the air gap．This latter fact acrounts for coil No．\because becoming higher than No． 1 at 8 ono ampere－ turus．

The curve of pull for $\frac{1}{\infty}$－inch gap is apparently steeper than the

Fig．$\overline{\text { it }}$
same curve for no gap，but in reality it is less steep，because the scale of ordinates has been doubled．A noticeable feature about this curve is the sudden curvature at its commencement，and the later change from convexity to concarity．This is due to the fact， already stated，that the curve of pull，being proportional to B ，will become a hyperbola when the curves of induction for the same anr
gap become straiglit lines．By reference to F＇ig． 8 for en－inclı air gap this state of things，as will he seen，has been realized．

$$
\text { Fit!. 6; } \frac{3}{n} \text {-imrll (int). }
$$

Where are the same characteristics present in this set of curres， as for the preceding．We note in addition that the crossing point in curves 1 and 2 is higher up the curves，and that the slope of all the curves is decreasing．

Fig． 8.
The curves for $\frac{1}{2}$－inch， 5_{3}^{5}－inch and $\frac{3}{4}$－inch air gap，if plotted，will show the genemal tendencies remarked above，but to an increasing degree．

F＇i！！．i；\hat{i}－inurlh（írl）．
Here for the first time curve 1 is higher than 2 thronghont its sutire length．＇The iron relnctance，eren for the higher densities，is
small compared with the air reluctance, so that the nentral line has shifted upwards and has remained practically at the top of the spool. 'The leakage of magnetic lines has also increased, so that the coil No. 2 has less induction through it than has No. 1.
F'i!, s; 凉-iuch (ial).

Curves 1,2 and 3 are now straight lines, the effect of the iron being almost nil. The leakage around coil 3 has been increasing the while, and the smaller inductions through all three coils cause them to rake orer more and more.

Fi!!. 9; j-inrh (ít).
This was the last and longest gap used in the experiments, and the movable cores are now within an inch of the top of the spool.

The most interesting feature of this plot is the relative position of curves 1 and 2 . With a t-inclı air gap, No. 1 was higher than No. 2 , but here the situation is reversed. Somewhere between 4 inches and 5 inches the curves crossed. The effect of a 5 -inch gap is similar to the effect that would be produced had the morable cores been entirely withdrawn and removed. In this case some of the lines would have passed through coil 2 , and bending around would have returned to the fixed yoke, thus completing a closed circuit. So with a gap 5 inches long, more lines will pass through coil 2 than through coil 1 , for the leakage between coil 2 and the upper yoke is almost as great as though no iron were present. In short, the pres-

Fin. 11).
ence of the iron armature and yoke does not appreciably lessen the spreading of the lines after passing through the spool coil.

> Fi!!. 10; C'urves of (itif)s durl Pulls.

These four curves show the effect on the attractive force of varying the air gap, the magnetizing curreut being kept constant at . $65,1.0 .5,2.05$, and 3.00 amperes for curves $1,2,3$, and 4 , respectively:

The general form of these curves suggests the rectangular hyperbola. If they were genuine hyperbolie, they would be asymptotic to the axes, which would mean that for an infinite air gap the pull would be zero, and also that for zero air gap the pull would be infinite. As a matter of fact the curves intersect both axes with finite intercepts. The intercept on the axis of air gaps is limited by the sensitiveness of the balance used to measure the pull, while the other intercept depends on the contact between core and pole-piece.

In the foregoing discussion it has been assumed that the air gap was zero when the surfaces were in contact, but of course this is not strictly true. The conditions under which with zero air gap the pull will be infinite are given below. In the general formula

$$
\text { Magnetic flux }=\frac{\text { Magneto-motive Force }}{\text { Reluctance }}
$$

we may have an infinite pull (since Pull $\propto \mathbf{B}^{2} \propto \mathrm{~N}^{2}$) when 1. Magnetic flux $=\infty$. 2. Magnetomotive Force $=\infty$. 3. Reluctance $=0$.
since reluctance $=\frac{l_{1}}{A_{1} \mu_{1}}+\frac{2 l_{3}}{A_{2} \mu_{2}}$, to reduce it to zero, one of the three conditions following must be fulfilled: $1 . l_{1}$ and $l_{2}=0$. 2. A_{1} and $A_{2}=\infty$. 3. μ_{1} and $\mu_{2}=\infty$. Should any one of the last three cases be true, we would have $\rho=0$ in $\mathrm{N}=\frac{\mathrm{M}}{\rho}$; therefore N would $=\infty$, hence \mathbf{B}^{2} and hence Pull would be infinite.

It might be added that the tendency of higher degrees of magnetization is to flatten out the curves.

> Fi!!. I1; ('urves of I'ull cumd lensit! in Air Giup.

Here the pull in pounds is plotted as a function of the density in the air gap. The full line curves are first plotted from the data sheets on $\frac{1}{3}$-inch, $\frac{1}{1}$-inch, $\frac{3}{8}$-inch, $\frac{1}{2}$-inch, $\frac{3}{4}$-inch, and $\frac{1}{2}$-inch air gaps.

As is to be expected, the full line curves are discontinnous becallse the sideways leakage from the pole pieces is increasing with
every increase of air gap. 'The induction through the air gap coil (No. 3) then is decreasing and hence, also the density.

The dotted curre lies to the right of the full curves for this reason, that on account of the leakige referred to above, we are getting a certain pull with a less density apparently than is actually tha
case, and this discrepancy becomes more marked for the lower full curres (with larger air gaps. than for the upper.

The equation to the hyperbola represented by the broken line curve in Fig. 11 is Pull $=\frac{B_{" / \prime}^{3}}{11740000}$, which is eridently a rectangular hyperbola whose equation is $\mathrm{y}=\mathrm{K} \mathrm{x}^{2}$. The points for the hyperbola are obtained by taking the densities of the points along the curve of $\frac{1}{8}$-inch gap, squaring them and dividing the result by the corresponding value of the pull, using the mean of these ratios to obtain the points for the lower portion of the broken curve. For example, at B ، -96000 , the pull $=785$ pounds. Since the equation to the curve is L'ounds $=\mathrm{K} \mathrm{B}$ ', we have $\frac{(96000)^{2}}{785^{2}}=11740000=\frac{1}{\mathrm{~K}}$ Similarly at $\mathbf{B}=8.5000$, the pull $=6.5$.

$$
\therefore \frac{1}{\mathrm{~K}}=11740000 .
$$

and again at $\mathbf{B}=80000$, the pull $=545$, and $\frac{1}{\mathrm{~K}}=11740000$ as lefore. The value of the constant $\frac{1}{\mathrm{~K}}$ is thus found for different points along the curve of $\frac{1}{8}$-inch gap, and the mean value taken.

It is of interest to compare the two hypertole; the one represented by a broken line having, as stated above, the equation $\mathrm{P}=$ $\frac{B^{* \prime}}{11740000}$; while the other, represented by the dotted line, is
 $=(5,284$ square inches $)$.

Data for Hyperbol e.

B, for air gap.	B",	$\mathrm{P}=\frac{\mathrm{B}^{2}}{1174000}$	$\mathrm{P}=\frac{\mathrm{B}}{11182000}$
100000	$100 \times 10^{\circ}$	8.52	871.
90000	$81 \times 10^{\text {c }}$	690.	70\% 4
80000	$64 \times 10^{*}$	5,5.	505.1
70000	$49 \times 10^{\text {s }}$	417.	4213.8
60000	36×10^{4}	307.	313,5)
50000	2.5×10^{5}	213.	218.0
40000	16×10^{6}	136.	139.1
30000	9×10^{4}	76.7	78.4
201000	$4 \times 10^{*}$	34.1	34.8
10000	$1 \times 10^{*}$	8.52	8.71
0	1	1	1

The dotted curve then, as will readily he seen, is the theoretical curve of the pull in pounds for different densities, being in fact, plotted from Maxwell's formula given at the begimning of this article. It will be noticed how closely the theoretical and the experimental curves agree for small air gaps of $\frac{1}{8}$-inch and under; for longer gaps, as already pointed out, the agreement becomes less and less close on account of the increased leakage, of which the air gap coil per se takes no account.

If then it is desired to know what densities will be required to produce a given pull at different air gaps, say up to 1 inch, we may apply the formula P'ull $=\frac{B}{117+10(0) 0}$, thence the density $=B_{a}=3426 \sqrt{\text { Pull. }}$

In Fig. 12 a curve showing the relation between length of air gap in inches, and corresponding coefficients of leakage, is plottesl.

Fig. 12.
The coefficients of leakage were obtained by taking the mean of the values $\frac{\mathrm{N} \text { in spool }}{\mathrm{N} \text { in air gap }}$ for four or more magnetizing forces. This ratio is in reality too large to represent the true ralue of v for the leakage of lines from the core in the observed values of N in the air gap.

As already stated, the normal minimum air gap used with this brake magnet in practice is $\frac{3}{8}$ inch, for which from the curve the coefticient of leakage is 2.5 . In order to compare this experimental value of v with the theoretical value, the writer has caleulated the
leakage coefficient for several cases by S. L'. 'Thompson's method as given on page 177 of the "Electromagnet."

Coefticient of leakage $=\mathrm{V}=$

$$
\frac{\text { total magnetic Hux in magnet core }}{\text { useful magnetic Hux throngh armature }}
$$

but these fluxes are proportional to their respective permeances, (permeance is the reciprocal of reluctance). If $n=$ permeance of useful paths through armature, gaps, yokes, etc., and $w=$ permeance of waste leakage paths, then we may write $\mathrm{v}=\frac{\mathrm{u}+\mathrm{w}}{\mathrm{n}}$.
'The value of u is easily found for a given case, but it is w that gives difticulty. However, S. P. Thompson has greatly simplified the task and has given values of wer unit length of parallel cylinders for different ratios of $\frac{b}{p}=\frac{\text { least distance apart of cylinders }}{\text { perimeter of } 1 \text { cylinder }}$.
'I'o apply the method to the case in hand we have $b-6_{\alpha}^{3}$ inches, $\mathrm{p}=\pi 2$ inches $=6.28$ inches

$$
\frac{b}{p}=\frac{6.375}{6.283}=1.01
$$

T'able XIV. for $\frac{b}{p}=1$, relnctance per inch length of cylinder = 0.2003 and permeance $=4.777$. But length of parallel cores $=6 \frac{1}{4}$ inches, hence reluctance becomes $\frac{.2003}{6.25}=.082$; and permeance $=29.350$. This last valne should be divided by 2 as the arerage difference of magnetic potential orer the leakage surface is only about half that at the ends of the poles. The true ralue of w then $=14.9$. 'The value of u is found by estimating the reluctances of the several parts of the magnetic circuit, taking the reciprocal of their sum. The total permeance of the useful paths thus calculated is $\mathrm{u}=12.4$.

The calculated value of $\mathrm{r}=\frac{\mathrm{u}+\mathrm{w}}{\mathrm{u}}=\frac{12.4+14.93}{12.4}=\frac{27.33}{12.4}=2.2$, which is in fair agreement with the experimental value, riz., 2.5. It should be added that the value of v calculated as above is only approximate, for the method assumes that leakage occurs in but one plane, while in reality leakage takes place ont of the plane considered. I'his method then makes v smaller than is actually the case.
'The foregoing results, though directly relating to a special type of electro-magnet may nevertheless be applied to the design of different sizes of magnets having the same general form as the one
described，mrovided the iron used gives approximately the same sat－ mation curve and that the ratio of $\frac{1}{p}$ is 1 or thereabouts．

As to the relative length of the morable and fixed cores it might he thonght that the results would depend on their ratio，but a num－ her of experiments were made expressly to determine this point and it was found that even for the case where the fixed cores were equal in length to the morable cores，rirtually the same results were ob－ tained．

If by the aid of the data given herewith the design of a new magnet can be more successfully predetermined and rendered less a matter of trial and guess work，than before，the object of the writer will have been attained．

W゙オNHIN（iTON FIR．

An architect is to some extent an educator and a pionecr．It times his better judgment leads him to specify a new article in his work，though it requires some courage to do so．Changes from materials long used to those that are new and unknown to a com－ munity，are not made suddenly．The dealers are slow to invest in a stock of materials not specified by the architects and that are nnknown to the consumer．To help bring about such a change，it is necessary to convince those most interested that the character and quality of the new material are all that is desired．

When the writer came from Illinois to the new State of Wash－ ington nearly five years ago，the use of Washington fir as a building material in the Mississippi valley was practically unknown．The lumber commonly used in that locality was，and is still，largely of white and yellow pine．So scarce has clear white pine become that it is no longer an inexpensive finishing wood，and as a result，hard woods are now used in finishing the best buildings．Yellow pine is unsatisfactory as a finishing limber，consequently there is now a
much felt want prevailing for an inexpensive framing and finishing lumber in the middle western states.

Knowing the superior quality of Washington fir, the writer prepared the drawings and specifications for the new Engineering Hatl to have it used in the construction of the lnilding. Government tests have shown this wood to have a strength greater than oak, and more than twice the strength of white pine. For this reason it is not only the best wood that can be used for heary floor beams, but is, approximately, as inexpensive as any other wood. While the lumber costs more on the building site than white pine, the fir beams were specified one-fourth less in size than if white pine lad been used. 'The beams of the latter wood would have to be built up of two-inch joists spiked together, which would add considerable expense for labor, while the fir beams are putin of solid pieces, thens saring an item of material and labor that made the cost no greater than that of white pine, and secured a stronger and better building. It may be of interest to the reader to know that the splendid timbers in the floors of this building were furnished with four sides surfaced, at the low price of eight dollars per thousand feet at the mill, and yet the writer knows this was not the lowest bid for furnishing the material. The contractors preferred to secure the lumber from a Tacoma mill, so the architect could inspect it before shipping. It is but justice to say that the above price is less than the same material can be bought for in this city or state. To furnish lumber for a state luilding in llinois was an opportunity that Washington lumbermen never lefore had, and the competition was rery close, and the bids low in price.

There are but few architects in the midde west who know that choice strictly clear Washington fir lumber can be put on the market at Chicago and St. Eonis at prices lower than clear eastern white pine; that it makes a finishing wood as firm and durable, and almost as rich in grain and color as oak; that it can be worked almost as easily as white pine. As a finishing lumber for residences, office and business buildings, it is practically equal to oak and other hard woods. It is far superior to yellow pine and receires a natural finish equal to any wood.

It was a great pleasure to the writer to plan a luilding for the Engmeering College of the University in which he was educated. It was also a pleasure to use so excellent and noble a wood in its construction as the Washington fir. By using it in this building a pioneer and educational work has been started that will lead to its use in many buldings in Illinois and adjoining states. It is the

Writer's desire that the young men who study architecture or engineering in this hoilding may have a practical knowledge of the excellent qualities of this wood from a personal ohservation of its use in comparison with other woods. This woorl will fill a much felt need in that locality, and will be much used as a building material as snon as the dealers and the consumers learn to know its price and quality, but it remains largely with the architects and the engineers to bring the people to a knowledge of it.

Much might be said further pertaining to this wood, but I will only add that this wood is used for deck Hoors on the United States war ships on the Pacific Coast, and is being used by a number of the leading eastern railroads as a framing timber. It is also used largely by fire apparatus mannfacturers for making ladders. Besides the many car-loads shipped to the eastern part of the Union, there are ships being loarled at this port with lumber for not only all l'acific Coast ports, but for Australia, New Soutlı Wales, China, Japan, South Africa and other distant lands.

THE PRONIMATE ANALSNG OF (OOAL.

by s. W. Jalir. Professor of Applien Cimamistry.

For the purposes of the engineer, especially in boiler tests and relative work, it is necessary to have the data to he obtaned by a Proximate Analysis of the coal and ashes. This includes the determination of moisture, rolatile products, fixed carbon or coke, and the ash.

Accorting to the standard methods, the following, in brief, is the ontline of procedure: For the moisture, the finely ground sample is dried for one hour in an air bath at 10:\% to 110 ('. For the other constituent, a fresh sample is taken, about a gramme in quantity, and in a platimum crucible with the cover on, heated for 3 ? minntes over a Bunsen burner and followed immediately with the highest temperature of the blast lamp for an equal length of time. The loss in weight, less the moisture obtained, equals the rolatile combustible matter. The fixed carlon is next bumed off by removing
the crucible corer and heating in the Hames of a Bunsen burner with access of air, till all the carbon is burned off. 'The loss of weight equals the carbon ; the residue is ash.

Owing to the cost of platinum and its rapid deterioration under the conditions imposed, as well as the impossibility of supplying platinum crucibles for extended class work, it became necessary to

Fits. 1.
devise some substitute if possible and make such morlifications as would produce concordant results which conform to those obtainable hy the regular method. It was thought that satisfactory results would be obtained with the ordinary porcelain crucibles, provided a
sufficiently high temperature, corresponding to that obtained with the blast lamp and platinum crucible, could be reached.

To this end, the principles of the Hempel furnace shown in Fig. 1 were adopted as follows: (11) is an ordinary iron stand or tripod and resting upon it is the plate (h) ahout 10 or 11 American gage in thickness with a $1 \frac{1}{2}$-inch hole in the center. Over this hole is placed a sheet iron or fire-clay cylinder or tube having three bearings at the upper edge upon which may rest the porcelain crucible (r). Orer this is inverted an ordinary assayer's crucible (d) of such size and shape inside as shall allow of free circulation of the hot gases and having sections cut away at the edge, so as to allow the escape of the gases, thus giving the inverted crucible three short legs on wheh to stand. Over all is placed the sheet iron pipe (e) about 18 inches in height and about 4 inches in diameter, depending somewhat on the size of the crucible (1). The effect of this arrangement, as may realily be seen from the cut, is to compel the flame and hot gases from the Bunsen lamp to return upon themselves and so heat the walls and surrounding parts as to prevent radiation away from, but rather direct it towards crucihle (r). The effect further of the chimney (r) is to make a draft and secure a good circulation, this making it easy with proper bumer and gas supply to raise the crucible and contents to a heat quite equal to that obtained by the use of platinum and the hast. It should be noted, howerer, that much depends upon the character of the Bunsen flame. A tripple bumer giving flames that would reach to a height equal, say to that of the top of the crucible (r), proves perhaps the most satisfactory. With proper adjustment of such a burner it is easy to secure a white heat and this should be accomplished if the results are to be trustworthy. In any event it is well to put the whole apparatus near the edge of the desk so the crucible can be riewed from beneath, and the flames regulated to suit the case. Two necessary variations from the standard method are at once obrions, first the time element and second the reducing, rather than oxidizing atmosphere, for that part of the operation which burns off finally the fixed carbon.

For the first modification it was at first supposed that about double the usmal time would proluce the same distilling effect as the customary 7 minutes with this platinum crucible, but that time gives results somewhat low muless the parts of the limate are well heated up before the crucible with the coal is inserter. Liepeated experiments in which time of heating was exactly 15 minntes were made and checked by parallel determinations in platinum in the ordinary way with quite satisfactory results as indicated below. It
should be moted enpecially, however, that the arrangement was such as to easily and readily give to the crucible a white or sery lnight red heat.

The second morlification is necessary in burning off the fixed carbou. Here the use of the fumace is impossible becanse an oxidizing atmosphere is essential. The complete Hempel arrangement of parts provides for the conducting into the crucible of a current of superheated air and it was thought possible to effect the combustion by this means. A more satisfactory way, however, is to remore the outer parts and conduct directly into the crucible a slow current of oxygen from a glass tube of two or three centimeters internal diameter or sufficently large to avoid a jet of gas, the purpose being to awoid carrying away any light particles of ash.

The gas should pass through an ordinary wash bottle so that its How may be easily watched and regulated. This methol of burning off the coke proves far more expeditions and satisfactory than the customary one of heating the platinum crucible in a current of air. Of course a good flame should strike the crucible, keeping it at a good red heat while the oxrgen is being conducted into it, otherwise the process will be a long one. Occasional stirring may expedite matters, but care must be taken to aroid loss. Below are given some results obtained with comparisons by the standard method.

The column marked A gives percentages obtained by the usual method with platimm crucibie and the blast lamp. C'olumn B gives the results as obtained by the methods above described:

Corls.	Volatile Mutter.		F'ixed Cumbu.		. 5 \%	
	A	B	A	B	${ }^{\circ}$	B
Dutnoin	. 42.06	$4 \cdot 3.88$	44.60	13.72	13.34	13.40
Odin Lump	4.8 .38	4.42	± 2.31	48.30	12.31	12.28
Moweaqua Lomp	. 44.17	44.41	42.01	41.62	13.74	13.97
Niantic Nut	3s.6f	38.6i)	10.55	40.18	$\because 0.79$	21.20
Odim Ash*	. 15.27	16.52				
Duquoin Aslı.	7.75	-. 06				
Moweaqua Ash.	. 8.36	8.29				
Odin Ash	- 14.69	15.01				
Niantic Ash	8.67	7.85				

[^8]

By I. O. Baker. Proresisur of ('IVH, ENGineerrint.

It is thought the following notes on the work in the Cement Laboratory will be of some interest to students as a record of their work, to instructors as information concerning the methods employed in instruction, and to practical engineers as showing the degree of accuracy attained. The work was done without the remotest thonght of its being made public. Owing to the temporary condition, the work was done under serions disadrantage, which is sufficient reason for not publishing the results and at the same time is the excuse for so doing. In the new Engineering Hall just completed are two commodions rooms which are fitted up as cement and masomry laboratories, and the University of Illinois now offers most excellent facilities for this class of work. It is to advance this work that this article is written.

In this as in all technical work the proper ideal is to give the student just enough practice to fix clearly in his mind principles and methods. It is not expected that he shall become an expert in mere manual mamipulation, that comes only after long experience and can be maintained only ley continued practice. This principle should not be forgotten in judging of either the absolute value or the uniformity of the following results. 'I'hey are valuable only as showing what ean be done under the particular conditions.

The work in the cement laboratory is a part of the instruction in masomry construction, each student giving each week five periods of one hour each to the recitation room work and one period of two hours to the laboratory work. The major part of the laboratory work is given to testing cement. A few days preceding the laboratory work, the student is given a sheet containing the instructions for the particular problem; and after performing the work, a written report is submitted to the instructor. Owing to the crowded condition of the laboratory two students work together, but each sub)mits his own report. The following pages contain a copy of the instructions for each excreise and atso a summary of the several reports. There were twenty in the class, but all the work of one pair of students has been misplaced, and owing to the pecaliarities of
the details of the program, all of the students did not have all of the problems here reporterl. The cement was bought on the market, and except the P'ortland had then been in the laboratory a year.

Problem 1.

Test limeness of C'ement.

1. Weigh ont 100 grammes of Portland cement. If there are any lumps in it, erush them with the fingers or a trowel. Then pass the cement through the No. 50, No 80 , and No. 100 sieves, and weigh the portion left on each, and also that passing the last.

Repeat the preeeding operation for three other brands of cement.
2. Tabulate the results so as to show the per cent. retained by each sieve, and also the error of the experiments.

The scales used nominally weighed to tenths of grammes, lut really only about to fifths. The students did not all use the same sieves, and those of like numbers were not exactly of the same mesh. The sieves were used separately and not in an enclosed nest. The results are given in Table I., page 114.

Problea 1 I.

Weight of 'ement.

1. Determine the weight per cubic foot of four samples of cement, by sifting each into a standard measuring box.
2. Compute the weight per bushel of each cement, and tabulate the weights per cubic foot and per bushel.

The cement was shaken through a No. 20 sieve into an enclosed tube at the bottom of which was a cubical box having a capacity of approximately one tenth of a cubic foot. Each student measured the box for himself. The results are given in Table [1., page 115. It will be noticed that the results are somewhat divergent, which is partially accounted for by the fact that the apparatus was not fastened to the floor and that in shaking the cement through the sieve the cement in the measuring box may have been jarred and thus have been shaken down.

Problem III.

I'er C'ent, of Water for Neut C'oment Montar:

1. Determine by experiment the proper per cent. of water to be used in mi xing neat cement mortar for experimental purposes. Weigh out, say, 200 grammes of cement, and add the estimated amount of water (see foot note on page 58 of Baker's Masonry Construction and also the first paragraph of section 95). Work the mortar thoroughly and vigorously with a

Figi. 1.
tensine strength of neat portland Cement Mortar with Various per cents. of Waler
trowel on a slate table for three to five minutes. The inexperienced operator is very likely to use too much water and too little work.

To determine whether the mortar is of proper consistency, apply the four tests mentioned in section 99 , page 71 , of the text book. If the mortar is too dry and has not begun to set, more water may be added, as a fur-

Fig. 2.
Tensife strengti of Neat loutistille Cement Mortar with Varioun per cents. Water.
ther preliminary test; but for the final test weigh out a new portion of cement.

How definitely can the proper portion of water be determined, i. c.. what is the estimated probable error of the experiment?
2. Tabulate the resnlts, and state the estimated probable error.

The results are given in Table III., page 11.\%.

Problemil.
 Sounturess of ('ement.

1. Make two pats of neat cement mortar, having a diameter of two or three inches, a thickness at the center of about a quarter of an inch, and thin edges. Mold the pats on a sheet of glass. Cover one with a wet cloth,

Fig. 3.

'IENSIIE STRENGTI UF PORTLAND CEMENT Mortar with Vitrious Froportions of standard Sand.
and allow it to set in the air. When sufficiently set to bear it, place the other cake in water.
2. On returning to the laboratory for suceeeding class exercises, curefully examine the pats. and make note of the conclusions to be derived from the experiment.

The results of l'roblem IV. are not of a nature to permit their tabulation. Apparatus is provided for making hot test for soundness, but the crowded condition of the room then used as a laboratory did not permit an attempt to use it.

$$
\begin{gathered}
\text { Phoblem } \mathrm{V} \text { : } \\
\text { Test of Actirity of Cemem. }
\end{gathered}
$$

1. Weigh out sol grammes of Lonisville cement, mix a mortar of the proper consistency (see Prob. 1II.) using water of fro.n $15^{\circ} \mathrm{F}$. ($14.65^{\circ} \mathrm{C}$.) to $\mathrm{in} 0^{\circ}$ F. ($31.1^{\circ} \mathrm{C}$), and noting the temperature of both the air and the water. Note the time of adding the water. Make two pats, one of which shall be upon a sheet of glass; and also fill the metal ring with the mortar by pressing it in with the fingers or the point of the trowel.

Place the pat on glass, in water having a temperature of $6.5^{\circ} \mathrm{F}$. to $\because 0^{\circ} \mathrm{F}$., and allow the other to remain in the air. Note the time respec. tively when the two Gilmore wires are supported.

Note the time when the standard German needle ceases to penetrate the mortar in the ring, and also the time when the needle is just supported.
2. Tabulate the results, and state the time for the Gilmore test, and also for the German test, elapsing from adding the water until the cement began to set, and also until it had "fully set." State the estimated probable error of the several intervals.

The temperature of the room was usually between 60 - and 70 and hence no other note is here made of it. The time arailable for a class exercise was too short to permit the determination of all the data asked for. The results are shown in Table IV., page 116. The pancity of the results was partially due to the crowded condition of the laboratory. The most noticeable thing about the experiments is the wide difference in the results; for example, compare lines 3 and 4 of Table IV. This shows that the test is not very precise.

Probreat VI.
Teusile Sterenthth of Xeat C'ement Mortar.

1. Mold six neat briguettes of each of four brands of cement. Before beginning see that the molds are clean and well oiled. Note the per cent. of water used and the intervals elapsing from the time of adding the water until the first and last briquettes are molded, respectively. Cover the briquettes with several thicknesses of damp cloth.

After 22 hours the attendant in charge of the laboratory will place the briquettes in water. Break the briquettes when seren days old.
?. Determine the tensile strength with * a cement testing machine, using rubber-tipped grips. Note the approximate time of applying the stress. Tabulate the results, and show the strength of each briquette, and the mean for each bragd and also its probable error.

The results are given in Table V., page 117.

In conection with the results for Problem VI. it is necessary to remind the reader that the purpose of their publication is to show the variation in the results obtained in any one experiment and also the difference in values obtained liy diff erent experimenters. Ordinarily one man filled all the molds, but sometimes each filled part.

Filr. 4.
 Standard Sind.

The probable errors in the last line of the table, are the probable errors of the averages adjoining, and not the arerages of the probable errors above.

Problam Yit.
 'T'ensile strem!th of 1 to 3 ('ement Montar.

1. Use (ierman f'ortland eement and sifted river sand, and mould fire briguettes by hand and five with either lBoehme's hanomer apparatus* or Russe!l's lever machine.t Record the temperature of the water and of the air, and the time from adding water (1) until beginning to mould the first briquette, and (:) until the completion of molding the last briquette.

Cover the briquettes with a damp cloth, and when twenty-two hours old the attendant will place them under water.

Hreak them when seven days old.
2. Report all the facts and show the mean for each method of moulding and also the probable error of each mean. Specially mention any important fact connected with the experiments.

The results for Problem VII, are given in Table VI., page 118. After commencing the experiments it was discovered that the linssell machine needed repairing, and the repairs were not completed in time for many of the students to use this machine.

Problem Cill.

Effect of F'incomess of Samd on Tensile Stremoth of C'ement Mortar.

1. Use (ierman Portland cement and make five briquettes with each of the following kinds of sand: (1) German standard erushed quartz, (3) standard river sand, (3) river sand passing a No. 30 sieve and not passing a No. 50, (4) same passing a No. 50 and not a No. $\% 5$, (5) same passing a No. 75 and not a No. 100, and (6) same passing a No. 100 sieve. Be sure that the sand is clean.

Record the temperature of the water and of the air, and the time from adding water (1) until beginning to mold the first briquette, and (\because) until completing the molding of the last briquette.

Break the briquett,es when seven days old.
2. Report all the facts and show the mean for each kind of sand and the probable error of each mean. Specially mention any important fact observed in making the experiments.

The results are shown in T'able Vil., page 119.

I'roblemi LX.

Efficet of ('ushions on the Crushin! strmeth of stome.
I'he details of the "instructions" are too long for reproduction here. Different sections of the class tested cubes of stone with different pressing surfaces. The cubes tested each year were all prepared at the same time from the same block of Indiana limestone,

[^9]by sawing and rubling. The surfaces were perfectly Hat. The specimens were nominally 2 -inch cubes; but they were carefully measured and the actual dimensions were used in computing the results. All the specimens were crnshed between self-adjusting parallel steel surfaces, the "cushion" being placed upon these surfaces. With the wood cushions, apparently the relative direction of the fibers at the top and bottom of the specimen makes no appreciable difference in the strength.

Miscellaneors Prioblemis.
In addition to the preceding problems, which all members of the class have, each student has one or more problems which are somewhat of the nature of original research. Figs. 1, 2, 3 and 4 pages $107,108,109$, and 111 show the results of some of these prob). lems.

Several observations concerning the experiments suggest themselves, hut limitations forbid a further discussion.

Trables referred to in this article are given on following pages.
' 'ABLE I.
liestuts for l'robfeme 1.
Fineness of Hydratulic Cements.

	Students Initials.	Greman Porthanst.					French Portland.					Black Diamond Louisville.					L'tic:a.				
		$\begin{aligned} & \text { Per cent. } \\ & \text { retained by } \\ & \text { sjeve No. } \end{aligned}$			Per cent. passing sieve No. $1(k)$	P'el cent, of error.	Per cemt. retained by sieve No.			Pereent. passing sinve No. $1(k)$	$\begin{gathered} \text { Yer } \\ \text { cent. of } \\ \text { error. } \end{gathered}$	Per cemt. retatined by sieve No.			Per cent. passing sieve No. l(k)		Per cornt. retained by sieve No .			Per cant. passing sieve No. $1(\mathrm{H})$	Par cent. of nror.
		51)	$81)$	(0)			50)	(4)	100)			50	81	1(4)			51)	SII	160)		
1	B. \& C,	0.1	2.8	6.3	(\%).11	0.8	0.5	4.5	6.4	*if. K	1.2	23.3	11.5	5.9	5.4 .1	2.2	4.5	14.11	8.6	(in. 0)	1.8
\because	13 \& 5 .	0.0	2.5	96	93. 3	11.7	0:	4.2	8. 1	Mi.5	0.0	21.6	13.1	6.1	63.94	0.1					
:	13. © M	0.0	1.9	5.3	93.0	10.0	0.1	3.8	(6.5)	49.1	11.2	18.4	11.4	4.5	4is. 0	11.3	6.5	11.1	(6.5)	71.5	11.9
1	13. \& ${ }^{\text {d }}$	0.8	2.1	1.8	94.9	1.0	0.2	4.4	5.9	¢ 4.3	0.2	$\because 2.1$	11.0	3.4	61.9	1.1	6.9	11).i'	5.11	\%1.\%	1.4
5	H. \& H.	0.0	4.11	9.0	ni. 0	1.1	0.:	4.8	10.\%	43, 5	13	19.9	11.1	1.i'	(33, 31	11.4	8.11	15.9	24.	+4, $¢$	1.1
6	K. 心.	1.1	2.5	5.0	92.11	0.1	0.1	4.6	3.9	$90 . \%$	(1.)	19.1	10.8	3.8	titio	0.3	B.5	11.5)	15.5	71:	1.3
7	S. 心S.	0.0	2.:	7.7	9.1 .4	0.9	0.2	3.9	5.4	(4) 12	102	21.\%	9.7	5. 0	(i3).1)	0.15	fi. 3	11.3	5. 9	is):	1.4

TABLE II.

liestlts for Problem 11.
Weight of Hydraulic Cement in Pounds per Cubic Foot.

	Stulents' Initials.	German Portland.	French Portland.	Black Diamond Louisrille.	Utica.
1	B. \&	76.3	7. 41	59.0	.7.9
\cdots	13. \& L.	73.0	73.0	88.1	57.i)
3	13. \& 11.	75.\%	70.2	\%8.3	F9.1
\pm	B. is Q	$74 . \overline{7}$	70.2	-8.4	20.4
5	H. © H.		71.0	59.6	62.7
1	R. is s .	79.9	74.3	633.8	57.7
7	M. © li .	73.1	fi8.f	-7. 1	的. 1
8	S. is S.	75.4	71.4	59.7	57.7
	Mean,	75. 4	T2. 11	59.2	58.0
111	*'robable error of single result,	2.3	3.1	2.11	2.2

*For an explanation of this term. see Baker's Engincer's Surveying Intrnments, page

TABLE 11 .
Resiluts For Problem IIf.
Per Cent. of Water lor Neat Cement Mortar.

TABLE IV．
liesulfs for Problem \backslash ．
Activity of Black Diamond Louissille Cement．

	Students Initials．	Standird German Test．				（iilmore＇s＇Test．			
		In Air．		In Water．		In Air．		In Water．	
		Began	Set．	Began	Set．	Begatn	Set．	Began	Set．
	13．d C．	31	43			12	4	43.5	， 4
	B．\＆L．		37					42	55．5
	B．\＆M．	2．）	3.7			35	4．）		
	1B．d 9 ．	35	4			13	16		
	）H．\＆II．	29	$\because 2$	3！	19				
		24				≥ 8	17		
	S．\＆S．	26.5	：33			36	48		

TABLE 1.

TABLE VI.
Pesults for Probiem V11.
S'fifert on Tensile Strength of Different Methods of Moldium.
Mortar, 1 part Portland Cement, 3 parts Standard Sand, and 0.4 part of Water.

	Students' Initials.	Hand Molded.		Machine Molder.			
				Bcehme Hammer Apparatus.		Pinssell Lever Machine.	
$\stackrel{4}{4}$		Strength lbs. per sq. in.	Prob. Error	Streugth lbs. per sq. in.	Prol). Error	Strength lbs. per sq. in.	Prob. Error
1	B. \& C .	46.0	0.3	127.0	2.4		
2	B. \& L.	48.0	17.0	176.0	31.0		
3	B. 心 I	62.8	7.6	175.6	1.3		
1	B. ©	84.0	0.9	11\%.0	7.5		
5	H. \& 11.	54.7	3.7	148.0	3.7		
1	IV. is S.	88.0	1.0	169.8	2.7	66.0	1.)
7	M. \&R.	76.4	3.2	173.8	9.0		
8	S. is S.	59.8	10.9	186.0	2.5		
9	H. \& 1 .	54. 6	6.0			13.8	2.9
	Mean,	63.8	"3.2	1.58 .5	\%6.4	54.9	* 7.3

[^10]TABLE VII.
liesults for Peoblem VIII.

\%	$\begin{gathered} \text { stu- } \\ \text { efrnts } \\ \text { initial } \end{gathered}$	German standard crushed quartz.	Prob error.	Stitndard river simd.	1'rob error	Sind passing No. 20 sieve ind not pass. ing No. 50 .	$\begin{aligned} & \text { Prob. } \\ & \text { error. } \end{aligned}$	Sand pascing No. 50 sieve and not pasis ing No. 35.	Prob eiror.	ciad passing No. is sieve and not pans. ing No. 10%.	Prob error.	Nand passing No. 100 sleve	$\begin{aligned} & \text { Proh } \\ & \text { error } \end{aligned}$
1	13 c	\%3.2		※!		60.4							
?	BSEL	100.65 40	8.5	97.8	11.2	90.0	8.4	53.6 64.4	0.fi	20.0		54.11	
1	13 心	97.8	4.0	43.4	1.9	94.4	1.8	hil 8	5.5	$4{ }^{4} 8$	1.1	4.8	0.5
$\underline{1}$	13 \&	89.6	1.9	13. i_{6}	1.6	36	1.9	41.8	3.1	34.5	\because	83.6	1.5
if	H 心	108.2	8.0	114.8	1. $\frac{\text { \% }}{}$	(33.0)	5) 4	11.2	1.10	36.8	1.7)	41.	$\because 6$
1	A\& R	110.0 \% 5	+1.1	90.5	\%. 5	! ${ }_{\text {¢ }}$. s	$\stackrel{3}{2}$	-0.0	1.9	45.0	\%	20.0	2.0
	- ${ }^{\text {¢ }}$	10%	3.1	24, 5	3.1	A-s.	$\because \because$	\% 0.1		54.0	10 2.0	21. 41.8	0.6 3.01
		-	*: 2)	90.3	*3.0	ใT.1	*5. ${ }^{\text {a }}$	5. 1.4	* ${ }^{\text {P. }}$	39.3	*9.8	35). 1	*9.!

TABLE VIII.

Resiots for Phomem \mathbb{N}.
Effect of C'ushions on C'rushing Strength of Stone.

$\begin{aligned} & \circ \\ & \% \\ & \ddot{シ} \\ & \ddot{y} \end{aligned}$	Kind ofCushion.	Results in 1893.			Results in 1×9.		
		Crushing strength lbs. per sq. in.		$\left\lvert\, \begin{aligned} & \text { Per cent } \\ & \text { of } \\ & \text { strength } \end{aligned}\right.$	Crushing strength lbs. per sic. in.		$\begin{aligned} & \text { Per cent } \\ & \text { of } \\ & \text { strength } \end{aligned}$
		Individual specimen.	Mean.		Individual specimen.	Menn.	
1	Steel,	$\begin{aligned} & +500 \\ & +400 \\ & 3.950 \\ & 4800 \end{aligned}$	$+412$	100	$\begin{array}{r} 6361 \\ +!64 \\ 47.25 \end{array}$	5) 350	1011
2							
3							
4							
-)	Strawhoard, 1-16in.thick,	$\begin{aligned} & 4982 \\ & 3050 \\ & 497 \\ & 6187 \\ & 435 \end{aligned}$			(i) 190		
6					- 842		
7					5 $3: 31$		
8						i) 750	107
9			1700	107			
10	Wood, 1-1 in.	3937			-) 245		
11	thick,	362.5			(i) 10%		
12	189:3-hard,	(1000			- 131.5		
13	1894-soft,	3.50	4264	96		5 13,2i	1114
14	Leather, 3-16	+945			470.5		
1.5	in. thick,	3750			3992		
16		$43: 5$			4104	-	
17		-2950					
18		417.5	1029	91		$+267$	79
19	Lead, 1-8 in.				1:37		
20	thick,				- 000		
$\because 1$					4817	1731	88

TESTS OF THREE BABCOCK \& IVILCOX BOLLERS AT THE CHAMPAIGN ELECTRIC LIGHT AND POWER CO.S STATION.

By R, 1. Wouth, Assistant in mechanical Encinelming.

Aiter the test of the Champaign Electric Light and lowei' Co.'s plant on May 17, 189-t, by the department of mechanical engineering, Professor L. l'. Breckenridge thought it desirable to make thorongh tests of the plant under varions conditions, and accordingly arrangements were made with the company for the following tests. 'Ihese tests were made after the close of the spring term.

The olservations were made monder the direct supervision of the writer, by Messrs. Busey, Junkersfeld, Williams, Funston, Capps and Mcliae of the class of '?\%.

The eight tests are divided into three series. Series A consists of comparative efficiency tests of the three boilers whieh romprise the plant; series B consists of economy tests of tive different kinds of coal; and series C is to determine which of the two different grate areas under the same boiler gives the higher evaporative efficiency.

The Plant.
The plant consists of three Babcock is Wilcos boilers mmbered from west to east, 1,2 and 3 . 'Ihey are comected to the same steam main and also to a common horizontal tlue leading along the Hoor to the stack. Lsually the feed water is pumped through an exhanst steam feed water heater and introduced into the boiler at the front end of the drums. In these tests an injector was used.

The boilers supply steam for an 18x18 Porter-Allen engine which furnishes power for the street railway and small stationary motors, two Ideal engines, one 12×12 and one 14×14, and one 12×18 Jussell engine. The last three supply power for electric lighting. A detailed description of the three boilers is given in Table V., and
helow are tabulated the principal dimensions in which the three hoilers differ.

Number of Boiler.	1	\%	\because
Horse power*	242	226	226
Number of shells	:	$\stackrel{\square}{2}$	2
Diameter of shells (in.)	30	36	36
Length of shells (ft.)	15.16	17.08	17.08
Grate surface (sq. ft.)	54	51	38.5
Heating surface (sq . ft .)	2216	2464	2464
Area of draught between tubes (sq. ft.)	20	15.5	15.)
latio of grate to heating surface	1 to 44.7	1 to 44.4	1 to 58.7
Ratio of grate to water space	1 to 4.6	1 to 5.6	1 to 7.5

Originally there was no difference between boilers No. 2 and No. 3, but the length of firnace of No. 3 had been reduced eighteen inches by means of an extra wall built in front of the hridge wall, thereby reducing the grate area from .11 square feet to 38.5 square feet. Nos. 2 and 3 had been in use only two months, while No. 1 had been nsed for one year. One of the principal differences between boiler No. 1 and the other two is in the length and arrangement of the tubes. In No. 1 there are 126 4-inch tubes 15 feet 8 inches long, arrauged 7 tubes high and 18 tubes wide. Nos. 2 and 3 each contain 108 tubes 17 feet 6 inches long, arranged 9 tubes high and 12 tubes wide.

In No. 1 there was a double bridge wall, the front one being laid on the back end of the grate bars. The tirst test of this boiler was made with this supplementary bridge wall in position, giving a grate area of 54 square feet; but in the second list of series C it was removed, thereloy giring an area of 6.5 square feet.

1)escription of Instrumexts and Methods Used.

The scales used for weighing water and coal were carefully calibrated at the end of the tests by means of U. S. standard weights. Both scales were found to be practically correct.

The steam ganges in regular use on the hoilers were used. They were calibrated by means of a Crosby weight gange tester and corrections made in the pressures for the errors in rearling.

The draft gange consisted of a U tube containing water with one end open to the atmosphere and the other comnected at a point just

[^11]above the opening from the setting into the horizontal flue leading to the stack.
${ }^{4}$ The thermometers were high grade instruments made by H. J. Green of Brooklyn, N. I.

The pyrometer used to measure the temperature of the escaping gases was a Queen instrument containing eompressed nitrogen above the mercury. The pyrometer and draft gange were both inserted at the same place in the brick work. The part of the pyrometer exposed to the escaping gases was 36 inches long.

The calorimeter was of the throttling type and for all of the tests was attached to the horizontal steam main between the engine and the boiler nearest to the engine, and about three feet from the comnection of that boiler to the main. The collecting pipe was $\frac{1}{2}$ inch in diameter, closed at the end, and extended horizontally into the steam pipe five inches. In the pipe were a number of holes $\frac{1}{x}$ inch in diameter, whose combined area was about one square inch.

The injector was a Pemberthy and was run almost contimually while the boiler under test was generating more than 150 horse power, but below that rate numerous startings and stoppings were necessary. 'lhe water line in the boilers was not allowed to vary more than one inch. Steam for operating the injector was drawn from the steam main and was supplied by the boiler being tested.

Method of Starting and Stopping Iests.

The method of starting and stopping tests was as follows: Jnst before starting the test the fire was cleaned and allowed to burn low and as the test began the fire was closely inspected, the amount of coal on the grate estimated, the steam and water gauges read and the height of water in the feed tank recorded.

In closing the test, the amount of coal on the grate, the amomnt of water in the feed tank and in the boiler and the reading of the steam gange were all made to conform as nearly as possible to the conditions under which the test was started,

Observations.
Olserrations were made every twenty minutes with the oxception of calorimeter observations. These were made every hour.

Coal Mensurement.
Coal was weighed in a box placed on platform scales, 300 pounds of coal being weighed at a time. The fireman shoveled direet-

Iy from this box into the furnace. The coal remaining was re-weighed after each firing and thus a record was lept of the rate of liring, ind accuracy insured as to the total amount of coal used in imy test.

A sample of coal collected from each wheelbarrow load as it Was dumped into the weighing box, was weighed, dried on the top of the boilers for twelve hours and then again weighed in order to detemine the amomet ol moisture contaned in the coal.
Hater Mertsmermernt.

Water wats drawn from the city water-pipes into a barrel whose capacity was about tou pounds and which rested on a pair of platform scales. I'he water was then allowed to run into the feed tank which held about $3 \frac{1}{2}$ barrels and from there injected into the boiler. All valres in the feed and blow-off connections were carefully examined in order to detect any leaks which would introduce errors into the results. As the water was allowed to rum into the lower tank a record was made of the weight and of the time at which the outlet valve in the weighing baxrel was opened.

Restets.

$$
\text { Sories. } 1 .
$$

'The result of the tests in series A was the selection of boiler No. 2 in heing the most efficient with the kind of coal used, Pana Slack.
'This boiler showed an evaporation of 7.51 pounds of water at and from 212 for each pound of combustible hurned and developed 14.9 horse power for each dollar's worth of coal used.
liefering to Table I., it may be noticed that the temperature of Hue gases is lower in the test with No. 2 boiler than in the other tests. This may be due to the fact that less coal per square foot of grate area was humed. There was also a greater amount of moisture in the coal. But on the other hand there was a greater percentage of ash which wonld tend to lower the economy.

TABLE 1.

Sbries A: To Deternine tie Mosq Efflenent Bohler, Using L'ina Slatck Coal.

Number of boiler	3	2	1
Date 1894, June	11th	12th	13 th
Total heating surface (sq. I't.)	$2 \cdot 264.00$	2264.00	2416.00
'Total grate surface (sq. ft.)	38.50	51.00	51.00
Ratio grate to heating surface	1 to 58.70	1 to 44.40	1 to 4.7 .7
Coal burned per sq. ft. of grate surface per hour (llos.)	19.50	12.36	13.70
'J'emperature of the gases (deg.)	5) 4.00	480.00	494.00
l'ercentage of ash	20.70	23.60	19.10
l'ercentage of moisture in coal	10.00	10.50	7.00
Percentage of moisture in steam	1.00	2.9%	2.80
Water ercipurnted per peumbl of com. Instille at and fiom : 1 ? I^{\prime}. (lls..)	-. 233	\%.j) 1	(i.0\%
fiar :2t honers	13.14	11.90	1:.90
I'ercentate of $I I . I$ '. dererboped bedone rutin!! (10 siq. itt. !frate $=1 \mathrm{II} . \mathrm{I}^{\prime}$.)	5.5.30	1.9.50	5.1.

Surirs B.

The principal results of the tests of five grades of coal are arranged in Table II. and for convenience of comparison are plotter in lig. 1.

Other conditions heing equal the curve representing the number of horse power for $2 t$ hours developed for one dollar is the one which decides as to the relative economy of the different coals.

The prices quoted were the combined cost of coal, freight and of handling at the time the tests were made.

Pana Slack at $\$ 0.92$ per ton gives 14.9 horse power for 24 hours. It is to lie noted that as the size or price of coal increases in classes $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and 1 , the economy decreases, and in A, B, and C , the number of pounds of water evamorated per pound of coal and per pound of combustible actually decreases as the price and size of coal increase.

It will be seen by reference to Table Vl. that the capracity at which this boiler was operated is lar below its rating. It was impossible under the conditions of draft, liring, and so on, to obtain much more than tifty per cent. of its rated capacity with Pana slack.

The test of lune 29-30 was made at night, at which time for about two of the 10.18 hours the boiler was forced to its greatest capacity, and from the rate of feeding water it was roughly estimated

Fig. 1.
that it was developing 220 horse power, the arerage for the entire test being 196, or $13.3 / \mathrm{c}$ below rating.

The percentage of ask which is plotted in Figure 1 allows for the moisture, determined by drying a sample of coal in an open pan on
top of the boiler for 12 hours, and for all material that passed through the grate bars.

T'ABLE II.

Series B: To Detimune the Most Ecoxomeal Kínd of Coal, Using Boller No. 2.
Date of 'I'est, 1894, June

12th	14 th	16 ith	18th	29-30th
A	B	C	D)	E
Pana	Pana	Pana	Odin	${ }^{1} \mathrm{P}$.Lump
Slack. is;	Pea. $0_{i 6}^{3}$	Scr'gs. 119	Lump. 11 is	$\frac{1}{2}$ 1'.Slack.
23.600	17.90	15.70	11.80	12.500
13.500	13.80	14.90	15.20	20.400
180.000	181.00	414.100	482.00	529.000
. 178	. 22	. 20	. 21	.32:
5. 710	5. 43	5. 20	5.73	6.510
7.470	6.62	6.18	13.51	7.430
. 920	1.10	1.1;	2.0 \%	1.360
14.900	12.00	10.81	6.1.)	11.500

Coal A contained the highest percentage of ash. This was due in a large measure to the air spaces leing $9-16^{\prime \prime}$ wide, to hand firing, and to thin fires. It was found impossible to carry thick fires, with the low draft pressure.

The coal analysis, T'able [Y., shows that a large proportion of what passed through the grate hars was combustible. The large pereentage of ash, shown in 'lable I. as 23.6, and the analysis of that ash, which shows that it contained $\mathbf{1 9 . 4 9}$ per cent. of rolatile matter and 14.83 per cent. of tixed carbon, would both tend to lower the evaporation. But in spite of these drawbacks, Pana slack did better than P'ana pea coal or l'ana screenings, in pounds of watereraporated per pound of coal. When we consider pounds of combustible and horse power developed for 24 hours for $\$ 1.00$, its advantage is more apparent.

One object of the night test June 29-30 was to increase the efficiency by working the boiler more nearly up to its rated capacity. In this regard the test was a failure, for while the average horse power was 196, 13.3 \% below rating, the evaporation at and from 212 per pound of combustible was 7 . 43 , which is practically the same as when on Jone 12 the average horse power was 114 , or $49.1^{1} / \mathrm{k}$ helow rating.

Series ('.

These two tests show in faror of the small grate area, riz: using int square feet instead of 6is square feet. The eraporation of water at and from 212 was 6.07 pomnds and 5.51 pounds respertively.

The rate of combustion and the horse power developed were ahout the same in both tests. The analysis of coal shown in Tahble $I V$. shows no radical difference, and since care was taken to keep all other conditions as nearly the same as possible, it is fair to decide in faror of the smaller grate area.

The lower temperature of escaping gases with the small grate area withont doubt conduced to the higher evaporation obtained. A higher temperature of escaping gases might be expected, since the horse power developed by the boilers was about the same in each ease, lont it will be noticed that the number of pounds of coal burned per square foot of grate surface was about the same in each case. This gave approximately the same amount of heat liberated per square foot of grate area, but a difference in the total amount of heat, due to the difference in grate areas.

Tables V'., VI., and VII., which are appended at the close of this article, give the results of series $A, 13$, and (1 in full.

'TABLE III.

Series (': 'To Determine the Relative Economy of 'Tho Differ-mext Grate Areas witi the Sime Class of Cond, P'ina Slack.| 1) ate of test 1894, June 13th | 19th |
| :---: | :---: |
| Area of grate (si. . ft.) 54.00 | (6.5.00 |
| Ratio of grate to heating suriace 1 to 44.70 | 1 to 37.20 |
| Force of draught in inches of water 23 | . 26 |
| 'Temperature of escaping gases, F . (deg.) . 194.00 | .116.00 |
| Percentage of ash 19.40 | 29.00 |
| Water eraporated at and from 212 f. per pound of dly coal (lbs.) 4.90 | 3.91 |
| Water eraporated at and from 212 F. Fer pomal of combustible (llos.) (6.0it | 5.51 |
| Coal burned per sq. ft. of grate surface per hre (Hbs,) 14.20 | 14.89 |
| H. P. obtamed for 31.00 for $2+$ hin. 12.90 | 11.26 |
| H. P. dereloped ($34 \frac{1}{2}$ los. at and fomile F.) 169.00 | 110.00 |

TABLE IV.
Analysis of Coal.

Kind of Coal.... Pana slack.			Pana Pea.		Pana	er'ngs.	Odin Lump.		Pana Slack.		I'ana Slack.		Pana Slack.	
1894, June	12 th		14 th		16 th		18th		11th		13th		29-30th	
	Coal perct.	Ash perct.	Coal perct.	Ash perct.	Coal perct.	Ask. perct.	Coal perct.	Ash peret.	Coal perct.	Ash perct.	Coal perct.	Ash per ct.	Coal perct.	$\begin{gathered} \text { Ash } \\ \text { perct. } \end{gathered}$
Moisture	4.70	. 98	5.00	. 34	5.79	. 37	6.13	. 34	4.70		4.07	1.09	5. 59	5. 59
Volatile Matter	33.69	19.49	$3 \mathrm{s.cs}$	7.83	37.79	8.31	40.20	11.85	33.69		33.69	19.85	30.55	11.56
Fixed Carbon...	41.17	14.53	40.85	(i. 44	38.69	7.15%	42.20	$20.11{ }^{\circ}$	+1.1\%		41.17	14.97	43.14	29.68
Ash.	20. 44	64.70	15.8 \%	S5.39	17.73	83.67	11.47	$6 \% .69$	20.44		20.44	(64.09	20.7\%	56.17
	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.0)		100.00	100.00	100.00	100.00

$\begin{aligned} & 00^{\circ}+9 \% \text { \% } \\ & 00^{\circ} \\ & 40^{\circ}+9 \approx \text { \% } \\ & 00^{\circ} \mathrm{I}: \end{aligned}$	
$10 \% \%$	$00 \% \mathrm{I}$
09cs	$00 \cdot 81$
$00^{\circ}+5$	10%
00 - 1	00 O\%
00\%\%	110%
eqs ulbld	Kiteuoifeqs uicld
8¢:	ع¢ ${ }^{-}$
$00^{\circ} \sim$	0 OC
0 OCO	0e\% 1
99%	$9)^{\circ} \mathrm{t}$
$100^{\circ}+$	$00^{\circ} \mathrm{\square}$
$00^{\circ} \mathrm{COI}$	00.801
00% \%	00% \%
60\% 5	80:2I
$98 \cdot O M \mathrm{~L}$	$98.0 M_{\text {d }}$
วุดา เขายด	
π	
0 I	901
47\%	¢7\%
$\cdot \%$ (INY	7. 'I sxatiog


```
#二8
% %
O@@E=
```



```
OEEEESE
    ## = %
BEEEE
```


(e) Area of draught through or between tubes (sq. ft.).
(d) Ratio of grate to heating surface.
(f) Ratio of least draught area to total beating surface
(g) Water space (cu. ft.).
(h) Steam space (cu. ft.).
(i) Ratio grate to water space
(j) Ratio grate to steam space
Water heating surface (s(1, it.)
Superheating surface (sq. f't)

AVERAGN PRESGLRLS.
r. Steam pressure in hoiler by gange (lbs)
Absulnte steam pressure (liss.
Atmonpheric pressure (lbs.)
Force of dranght in inches of water

\％．Steam pressure in boiler by gance（lbs）．
$\because \dot{x} \dot{E}$

Dry coal consimined (ibs.).
'Total refase dry (pal refnse (ry (per cent)
Total
Total combuntiblu--item 1 s less item 1! (lls.)

AVERAGE TEAHDERAMBES，KAHR
11. Temperatme of external air (deor.)..
lemperature of escaping gases (deg.)
Temperature of feed water (fleg.).

F゙UEL (KINっ)
 FUEL（KIN」）

Cost of coal per 2 （0） 0 lbs．at boilers（dollara）

$00^{\prime \prime} 1$	$00^{\circ} 8.1$	08\%
116	$\mathfrak{f 6}$	80%
	$\begin{aligned} & 1 \because \because \\ & 1 \because \because \\ & 008[1 \text { eil } \\ & 8 \sim 1 \end{aligned}$	$\begin{aligned} & \because \% \\ & 60 \% \\ & 00 \because 0011 \\ & 6 \pi \end{aligned}$
$00^{\circ} 19 \sim 8$	00.18:0 \%	00'165 ${ }^{\text {a }}$
```00%606 0c& 9% 00%48!28 00`0!+ 1&: 00*\|&&得```	  $100^{\circ} 1 \mathrm{I} \& \mathrm{~g}$ 6:   00 s!   $00: \% \mathrm{~s}$ 8:	```00+569 S6& !%  00`90!) !%: 00)&%!% 0&: 00%%%* 18:```
$\begin{aligned} & 00^{\circ} 0 \\ & \because 5^{\circ} \% \\ & \because 1 \approx 15 \end{aligned}$	$\begin{aligned} & 00^{\circ} 0 \\ & 06 i \% \\ & 01^{\circ} 2 ; 6 \end{aligned}$	$\begin{aligned} & 00^{\circ} 0 \\ & 00^{\prime}+ \\ & 00^{\circ}!9 ; \end{aligned}$
$\begin{aligned} & 00 \operatorname{cil} 9 \\ & 0085 \% \end{aligned}$	$\begin{aligned} & 00 \cdot 6 \% \\ & 0,58! \end{aligned}$	(0) 0 (0)   (0) $0 \cdot 9$ !

RESATLTS OR CALOHAMETRIC TESTS.

## Yuality of steam (dry steam tatken as unity) Percentage of moisture in steam

WATER.

ECONOMIG EVAIOHEATON゙

Commencril, EVAPOHATION.
34. Equivalent water evaporated per lb. of dry coal with one-sixth refuse

Dry eoal actually burned per sq. ft. of grate surface per hr. (lbs.)



TABLE VI．
No．$\because$
空
－

里
see Remark

三突 xt
$\pm$
1）． 1

NE
品





13 th
\＃


I＇ana Pea．lana Screen．Odin Lump．
으읓
91
11
14
듣


Total amount coal consumed－includes wood $\times 1.1$（lbs．$)$ Moisture in coal（per cent．）
Dry coal consumed（lbs ）
Total refuse dry（lbs．）


Date of test．．．．．．．．．．．．
Duration of
$\dot{-i}$
$91.006)$
610.0009
330.000
150.000
59.300
lana Slack

FUEL，（KIN）
$\because$
a！
 ． ：• ：
2（1－30th




'I'ABLE Vl.-CONTINtED.

## H.ITE OF EV゙AIOR.ITION

Water evaporated from and at $21 \partial^{\circ} \mathrm{F}$. per sf. ft. heating
$\dot{\square} \dot{\square}+$

 COMMELCLAI, MORASE MoW

On a basis of 30 lbs . water per hr. evaporated from a tem-
 Number of H. Y. obtained for $\$ 1$ (per $\because \nmid$ hrs.) 114.010
14.90
.296 .60
4.91
$\qquad$ (
'IABLE VII.

Hfmis.		
1. Date of tests	13th	1:!th
Buration of tests (hrs.)	111	11
Atheage phesethes.		
7. Steam pressure in briler by gatare (1)s.)	9\%.60	Stio.0)
$\therefore$ Absolnte steam pressure (lbs.)	1111.36	1010.18 .4
(1. Atmospheric pressure per birometer (lbs)	11.69	11.1:9
10. Force of draught in inches of water. .	$\therefore 3$	$\therefore 1$
11. 'Semperature of external air (deg.)	(10.19)	41.061
1:. Temperature of fire room (deg.)	(11.00	83.1011
13. ''emperature of steam (deg).	335.00	32-601006
14. Temperature of escaping grases (decr)	194.00)	二16.06)
15. 'Temperature of feed water (deg.)	\% 0100	59.00
FUEL (KIND.)	l'ana Slacis.	
151.3 Cost of coal per : 000 lbs at boilers (dollars.)	0.52	
15. Total amonnt coal consumed (includes wood $\times 0$ (1) (1hs)		10.sss.000
17. Moisture in coal (per cent)	7.00)	s.fiok
18. Dry coal consumed (this)	\%1833.060	¢ 1atis 000
1s. ${ }^{\text {S }}$ Total refuse dry (lbs.).	$1+97.00$	$2 \sim 5.5000$
19. Total refuse dry (per cent)	1!1.10	8!1.000)
3). Total combustible-item 18 less item 1! (bs.)	(i) 1stig. 10	15.511000
21. Dry coal consumed per hr. (lbs.).................... a.	76\%.00	!1\%.000
$\because \because . \quad$ Combustible consumed per hir. (lbs.)..	(115100	
23. (?uality of steam-dry steam taken as unity (per cent.)	9\%.15	970.0


里	
	○- ¢-


$\begin{aligned} & 3.85 \\ & 0.00 \end{aligned}$
- 3:311.00
$3111!1.18$
3 ( 3 3! (0)
$3 \mathrm{3C} 3.50$ 309 60
: 7161.60

$$
\begin{aligned}
& \begin{array}{l}
888 \\
8.8 \\
8 \\
8
\end{array} \\
& \text { 'IABLE VII.-Continued. }
\end{aligned}
$$

# HINTS RELATING TO THE IRAC'TICE OF RAIIROAD SURVEYING. 

By A. C. SCHWART\% 'it.

The writer is not assuming to instruct the engineer of experience, although the practical knight of the tripod may scan these pages not altogether withont interest and perhaps with profit. 'Their' perusal may bring to his memory pleasant and peculiar circumstances in his own experience, and by a comparison of ideas with those of others, it often occurs that there is suggested to the mind better and improved methods of practice.

These words are addressed more particularly to the young engineer and to him who is considering the matter of preparing limself for the practice of the engineering profession. If they shall prove a benefit to the latter, by assisting him in the choice of a profession, or to the former by contributing to his success and adrancement in practice, the highest expectations of the writer will have been fully realized.

Being limited to the space of an ordinary magazine article, we can slietch but brietly a few of the experiences and methods of practice, of these itincrant rovers of the forest and plain, and cannot even mention the various problems and difficulties that the engineur may expect to meet in the Jocation and construction of an important line of raihoad, much less attempt to give instructions for their solution.

The determination upon the choice of a profession is a very im. portant matter. The future of the young man depends upon it. Success in life is less certain and failure is more probable if a choice is made of a profession for which the person is not adapted in mind, in disposition and in temperament. Wach profession requires some special mental qualification ; and each, in its practice, has its attractions and oljejections which should also receive consideration. It often occurs that the young man sees the former and is allmed ly them, while he does not discover, until too late, the latter.

One determines to be a physician. His success in the study of anatomy, physiology and materia medica gives him great encouragemont. At the dissecting table he is as indifferent with the scalpel
as the butcher is with his eleaver．But at the bedside of suf－ fering hmmanity he becomes nervous and excited，and discovers what he did not know before，that he is not suited in temperament for the practice of medicine．Another endeavors to be an artist， but，after he has produced heaps of rubbish，he finds that his inven－ tion is only ol the order out of which mechanics are made．He who hears only the martial music and sees only the dignity of command， but does not consider the engagement and its dangers，the forced march with its exposures and privations and the humility of dumb obedience to superiors，will likely be dissatisfied with military life．

The young man should learn as much as possible of the require－ ments and environments of his contemplated profession，and when he has become familiar with these，let him equate them with him－ self．The first requirement of all，then，is＂Know Thyself．＂

All agree that the engineer should have an aptness for mathe－ matics．But it is quite donbtful if the practical engineer in the field ever again knows as much about mathematics as he did on the day of his graduation．I would not，however，subordinate the study of mathematics in an engineering course．How much is retained will depend upon what the daily practice requires．

The writer was much astonished to find that engineers，almost without an exception，used the natural，instead of the logarithmic functions．But he was more astonished to find that after a few years he，also，gradually dropped the use of logarithms until he has entirely discarded their use．The only reason that can be given for this practice among engineers is that the greater part of their cal－ culations is of such a nature that the use of logarithms is not prac－ ticable，and after a time they cease to use the tables，even when they could be used to adrantage．

Quickness and accuracy in the ordinary use of figures is a neces－ sity．He who cannot accurately add ten columns of ten figures each within sixty seconds，should，by no means，call himself quick， and he certainly can not call himself an expert．The study of alge－ bra，geometry and trigonometry should be done with the greatest care and thoroughmess．The student should become familiar with their application to the solution of practical problems．He who has not the faculty of original and independent demonstration will not be long in practice before he will have to call upon others for assist－ ance，or will be eompelled to resort to fudging，and thus expose himself to ridicule by attempting ia practical solution of his problems in the lield，insterd of making a mathematical demonstration in the office．Whea his blundering has been discovered，he will be called
apon for an explanation, which will usually end with the information that his services are no longer required ; or, he is humiliated $\mathrm{l}_{\mathrm{y}}$ y being offered a position commensurate with his ability. The principles of mechanics and strength of materials should be kept well in mind, so as to be able to make a ready application of them to building construction. Preference will he given to the graphical methods of the determination of stresses on accont of their general application, simplicity and convenience, as well as for the intelligent representation to the eye that they afford.

But the engineer must be something more than a mathematician. A knowledge of the sciences will be useful in his practice and will contribute much to his pleasure. A sound body is as necessary as a well trained mind. He must have energy, and possess endurance under long continued exposure and hard labor. (food judgment and well developed powers of observation are necessary. He must he certain of his opinions and quick in perception. He must be willing to exchange lixury, comfort and society for hardship, toil and isolation. He must accept a pile of brush as a substitute for a spring mattress and a pair of cow-hide boots for a pillow. The tarantula, scorpion and centipede will be frequent bed-fellows. Eren the skink has come, an uninvited gnest, to share the engineer's conch. Choice cuts of porterhonse and delectable pastries may be unknown to his palate for months, while he makes a forced acquaintance with slap-jacks, beans and dried apples.

The experiences of the engineer are as raried as the views of a kaleidoscope. Encouragement and disappointment, security and uncertainty, safety and danger, ure so closely associated as to be strongly contrasted. While you are in the enjorment of one you may discover the approaching shadow of the other. He who thinks that on account of some valuable service rendered, he has made himself solid with his company, may have his contidence studdenly shaken. He may also find that superior intelligence is not always the stepping stone to adrancement. There is always more or less unscrupulousness in corporation management and this quality in a person has been too often recognized by preferment. Expect adrancement and strive for it, but do not prepare a disappointment by being over assured. The warming, "Let him that thinketh he standeth take heed lest he fall," may be quite appropriately applied to civil engineers.

The writer at one time received a telegram from an official, instructing him that if a certain land owner from whom the right ofway had not been oltained, interfered with the construction, to
"sloot the stuffing out of him." 'Then, when he did not learn of a fineral within the time reasonably expected, he inquired why his orders had not been obeyed. But since the days of speculative railroad buikling are past, all departments of the service are being (ronducted upon more legitimate business principles and with a much greater show of respectability.

The engineering prolession offers one of the most attractive fields to the energetic young man. So extensive is its scope, so raried its demands, so great its opportunities for inrention, that it is always interesting in its practice. There is no tiresome repetition. Each day brings some new problem for solution. Its requirements are about equally balanced hetween the mental and the physical. The exercise of one affords rehef and relaxation to the other.

Many are attracted to the engineering profession on account of the opportunities for travel which it affords. No tale of the traveler has erer been told that did not incite a desire in the mind of some hearer to experience something of adrenture and sight-seeing. When an engineering party is to be organized there is never a lack of applicants for the positions to be filled, eren when the proposed surver leads through countries where roring bants of hostile sarages may be expected.

The sublime and the ridiculous are often viewed from the same point of observation. The engineer may stand emraptured as he riews the towering cliffs, chiseled with nature's bold hand, and the rushing, foaming waters leaping and bounding among the rocks as they hurry throngh the magniticent gorge of the grand canon, and while his soul is being filled with ecstasy at the awe-inspiring scene hefore him, he is suddendly attracted by a cry of alarm. It is caused only by a pack mule, laden with blankets and other camp equipage, having fallen from the trail blasted in the rocks fifty feet or more above the water's surface, and it now floats rapidiy downward upon its back, vainly endearoring to adjust its pedal extremities as nature had intended them.

Again, he ascends the serpentine trail as it vinds among the trees and around projecting ledges of rocks, until he reaches the mountain's summit. Upon this divide of the waters of the oceans he views the towering peaks and the deeply cut chamels of two great water sheds. He is just in time to behold the indescribable scene of a gorgeous sunset. The illumined and gilded clonds, the Learens with tinted blended hues more delicate than ever given to the canvas by the most reverenced limner, the monntain sides with their foliage showing every shade of the red, the green and the gold,
and presenting every effect of light and shatow, which is ever shifting and changing: all tend to till the soul with emraptured awe. Surromaded ly this eridence of creative power and these seemes of nature's art, he seems to stand in the rery presence of Divinity. The highest opimons he has ever held of himself or formed of man quickly ranish, and he faintly realizes the state of that inspired one who inquired, "What is man that thou art mindful of him?" Then, suddenly, the scene changes. The face of the momtain grows darker, hack clouds show their ominons heads over the distant ridge and peer aromd the olstructing peak. The iow mutterings of thunder are heard; the clouds adrance; the roaring and the darkness increase, mint every mountain side and intervening gorge is reflecting and echoing the somed, and all mature is reiled in the blackest gloom. Now, the lightning's rivid flash frequently illumines some towering peak as it seems to play at hide and seek among its capping rocks, in bright and hlinding scintillations. But, with thonght of the duties of to-morrow, this pioneer of civilization, with weary limbs, now wraps himself in his blankets and, sheltered by the sprealing branches of a neighboring pine, the sighing of the wind and the tranquil noise of the falling rain soon lulls him to a somnd repose. Such was the experience of the writer, with his muleteer as only companion, on Marshall's Pass, in the antumn of 1877.

There are also occasions which may suggest some lines from a lavorite anthor. He was pleased with the thought of the poet who wrote of the beautiful dew drops hanging like clusters of sparkling jewels from the forest foliage, But he has different feelings as he goes cronching throngh the willows and these precions jewels drop down his shivering spine until they fill his iron-shod, cowhide boots. His thoughts are recorded only upon his conscience and in the ears of his companions.

When a man prepares himself for a special service tre expects to make that a means of support. The engineer is only fairly remmcrated for his services, and this must he considered with the fact that the demand for engineering service is very fluctuating and uncertain. Being an expensive service to corporations, it is the first to feel the shock when retrenchment becomes necessary. It is affected by every financial panic and even by the seasons and local conditions of the crops. The young graduate is also put in unjust competition with the so-called practical man, who has been taught to carry a chain and has leamed ly observation which is the eye end of the telescope, as he has learned, by a long folt experience, which is the lonsiness end of a ricious mule, and who thinks the sine is
determined by the phases of the moon and that the focusing of an instrument is the remoring of a covering that concealed the crosshairs. But this should not discourage the young engineer who has, by bard study and at great expense, prepared himself for the practice of his profession. There is a limit beyond which the meducated camot pass, and there are responsibilities that they dare not assume and duties that ther cannot discharge.

But, even if this hindrance to his progress were wholly eliminated, the graduate should not expect to take an adranced position in an engineering party. As in lis college course he began with the elementary studies, so in his practice he must again take a place near the lower end of the ladder. The solution of his problems will now have a more important significance than merely obtaining the correct answer. His calculations now have a time and money valne. If he errs in the measurement of an earth embankment or of an irregular rock excaration, some "one is defrauded. A mistake in judgment of the classification of materials has the same result and often leads to expensive litigation. The loss of property and life are also involved in his higher calculations. Whatever confidence he may have in his ability he will feel the pressing of this additional responsibility. Eren the adjustment of an instrument in the field will appear different from what it was in class practice, and there will be many occasions when he will be much embarrassed in the presence of his chief, and under the merciless gaze of an old time party. Experience alone will give the required confidence and put him at his ease.

The chief of the party is held responsible by the management for the work done under his direction, whether it be a stake wrongly marked or carelessly driven, an error in the reading of an angle, or a bunder in the location. Hence, he will select his assistants from those who have had experience and who have been proven competent in their work. He will also have a kind consideration for the desersing, and will take pleasure in adrancing them whenerer he has opportunity. Careful attention to details is an element of success worthy of cultivation. It will require a long time to restore contidence after a blunder or an act of carelessness. The opportunities for error are as mumerous as the increments of his practice. We cannot enumerate them or point them out. The only safe rule is, know for yourself that you are right.

The first step in the location of a railroad is the recomoissance. The recomoissance is notalways made by the person who is expected to make the survers. All engineers are not adapted to recomoissance
work, and there is an advantage in having the survey made ly another person, for by so doing the management has the benefit of the judgment of two engineers.

A careful map study of the comntry orer which the line is to be rum should first be made. Sectional maps which show the drainage systems fairly well can now be had of all subdivided comentries. The maps of the mountain districts are deficient. in detail, but general information only, in such cases, is required. A rery careful study of the drainage systems, water divides and other physical features should he made. The map study should lee supplemented with such information as can be obtained from persons who are acquainted with the country. Note upon the map all points to be touched loy the survey and join the consecutive points by a light pencil line. It should be a straight line unless the topography clearly determines its course. This gnide line will be of value in the determination of a choice lietween two or more possible routes, as the line which deflects least from the guide line will be preferred, other conditions, such as cmrature and bridging, being the same.

The location of a line is more difficult and the cost of its construction more expensive, when its direction is across the drainage of the country, instead of following the course of some large stream. Especially is this the case when the streams to be crossed are of considerable size, for in such cases the divides are usually high and the comntry much broken. The roughest country may be expected on the side of the divide toward the larger stream. 'I'he most farorable crossing of a high divide is likely to be found where small tributaries to the principal streams heal at the same point on the ridge.

In momtainous comtries where long distances of heary grade are required, advantage must be taken of that route which affords the best opportunity to derelop a line. The saving of distance is not a consideration when extreme elevations are to be orercome. In mountainous comtries where much snow and ice may lee expected, preference should be given to the slope most exposed to the sum, but generally the dramage will be deeper cut unon the sun side of the slope and the cost of bridging will be greater.
'The engineer, having made a careful map stndy and supplemented it with such other information as he has been able to obtain, (an now indicate upon the map the rarions routes which he wishes to examine mpon his recomnoissance. He should procure township, atlases, or make tracings from them, for use in the lield, upon which he should show the topography of special places and trace the
proposed location more definitely than can be done on the sectional state map. In a pocket memorandum book he should enter full explamatory notes of all matters pertaining to the location, construction and maintenance of the road. The height and lengtlo of bridges; the length and depth of summit cuttings with classification of material ; the supply, cost and quality of local building material; the mineral, mamfacturing and agricultural products; the ralue of real-estate and the sentiment of the settlers toward the proposed undertaking, are all matters of importance which should receive close attention. The difficulties of making a reconnoissance are often very much increased when the engineer is enjoined not to make his business known.

The instruments nsually taken upon a reconnoissance are, a tape line, pocket compass, a pocket level and an aneroid barometer. No suggestions are required upon their use, except the last named. The aneroid is a rery useful instrument but exceedingly treacherons. It should be looked upon with suspicion. It may be highly recommended by its maker, and the "compensated" npon its face may give it a very honest appearance, yet it should be closely watched. The writer once made a reconnoissance unassisted by any means of instrumental measurement and he reported that the proposed ronte wonld require a grade of seventy-fire feet per mile. As the line was to be located upon a ruling grade of forty-two feet per mile, this was unfarorable to the parties who had a pecmniary interest in the adoption of that route. They requested that a more carefnl examination be made. Assisted by a "compensated"aneroid from one of our hest manufacturers, I went over the ground again. The readings taken showed that the country could be crossed on the ruling grade. Snbsequently, an instrumental survey was made, which proved that the eye was very much more accurate than the aneroid and the ronte was abandoned. Many instances could be given where the umelialility of the aneroid barometer has been proven hy instrumental measurements. Readings taken at different times at the same point show a great rariation with no perceptible change in the meteorological condition, except, perhaps, a few degrees in temperature.

The recomoissance should be made with great care. An error' in julgment may cause many miles of the recomoissance, and even many miles of the surveyed line, to be abandoned. If the engineer assumes that a summit can be reached at a certain place and he continues his examination of the country beyond with reference to that point, but the subsequent instrumental survey proves that he
was so much in error that the additional distance of maximum grade required to gain the summit, has thrown him so far from the line of recomoissance that he can not return to it, he will then have to make a new recomoissance of the country ahead, or in case the selected summit crossing is a governing point on the survey, he may have to back up, perhaps five or ten miles, and change his surveyed line so as to arrive at the point designated.

The reconnoissance being completed, the engineer makes his report to the projectors of the modertaking. If the report is satisfactory to the management, a prefiminary survey is ordered. A field party is then organized, which, under ordinary circumstances, consists of a locating engineer, who is chief of the party, a transitman, levelman, topographer, rorman, two chaimmen, flagman, marker or stake artist, axemen, as many as may be required, and usually two teamsters and a cook. The topographer is sometimes allowed a tapeman and the cook an assistant. When the work is being crowded, extra men and teams are required to move the camp and to furnish supplies. Formerly, on frontier work, a squad of soldiers were added for protection, hut it is a question if they ever demonstrated their usefulness, except to consume supplies and occasionally furnish sport for some gang of horse thieves who surprised them, robbed them of their outer clothing, arms and mules and sent them to camp on dishatille.

Too great care can not be taken in selecting men for the party. There is no position in the party that "any man" can fill. An engineer corps is not a hospital for invalids who want to rough it for their health. It is not a tomists' experition to offer one an opportunity to see the country. It should not be made the dumping gromed where your friends can unload some worthless ward. It is not a reformatory to cure men of the drink habit by taking them ont of reach of intoxicants. Whoerer associates himself with an engineering corps, in any capacity, must expect to render hard service and to discharge every duty with conscientions faithfulness if he expects to retain his position.

The transitman, who is first assistant, must be a person of good judgment, quick and accurate with the use of his instrument, and reliable in his mathematical calculations. He should have good command of men, for in the absence of the chief he will have charge of the party. His notes must be so plain and complete that they will require no explanation or tilling out in order to be understood in the oftice. He must give close attention to the details of the work on the line. The chainmen and axemen are under his immediate
direction, and he is expected to observe the work of the topographer and level party as he has opportunity and to adrise and assist them whenever it may be necessary. He should give careful attention to the chopping and clearing and see that no more be done than is necessary. Unnecessary work is useless labor and much loss of time is caused by inattention to this matter. But whaterer is required to be done should not be neglected or slighted.

The ralue of a preliminary survey depends very much upon the work of the topographer. The position of luildings, the course of streams, ledges of rock and other obstacles within the limits of a possible location should be carefully noted. On hillsides the contours should be accurately drawn for each fite or ten feet of difference in levels. If he is not an accurate pacer he should use a tape line. In specially important places he must have a rodman. He should have a pocket level and a small compass with a Jacob staff, and he should work one day behind the level party, that he may note on his book the crossing of the contour lines taken from the profile. He is also expected to plat the survey and show upon the map the contours and other notation made in the field.

Accuracy and quickness are the necessary qualifications of a levelman. He must have good judgment, so that on irregular ground he will not hare to set his instrument a second time in order to get a rod reading. On hillsides his back-sights should come within the last foot of the rod, and if going down the slope, an expert will scarcely ever read above the 0.5 mark on back-sights. The adjustments of the instrument should be tested each morning and noon, and more frequently if he has reason to believe that the adjustments have been affected by the weather or by handling. His notes must be neatly kept and his figures must be so plain that they can not be mistaken. He must keep his calculations up with his work by recording the eleration of the point immediately after the rod reading has been entered, and must not keep the rodman waiting, though he ran between stations. He should rerify his calculations before platting the profile, which must be done at the close of each day's work. His notes should give accurate contours of the ground, and at the crossing of streams the high water mark, the water surface at time of the survey, and if possible the cross-section of the chanmel should be given. The elerations of ledges of rock projecting from hillsides should be taken, as it may be a matter of importance in adjusting the grade line.

The rodman, also, must have good judgment and an accurate eye, to quickly determine where readings should be taken in order
to give the information required. He must be active in his movements and shouh be able to follow the line and find the stakes, eren when concealed by grass. He should be an accurate pacer, so ${ }^{\circ}$ as to locate his plus distances quite closely without the use of a tape line. He must keep a peg book in which he notes the position and elevation of a!l turning points and benches. The levelman and rodman must compare elerations at each setting of the instrument and for all benches. They should have a system of signals by which to commmicate numbers when they can not do so with the roice. When plus readings are taken between stations, the rodman can note the distances on a piece of paper and hand them to the levelman when passing instead of taking time to communicate by signals. A Philadelphia self-reading, thirteen-foot rod is the best for general purposes. In rough comintries where the hollows are not rery deep and the ridges not too far apart, much time may be sared if the rodman will carry an extension eight or ten feet long made of window stop, which can be quickly attached by means of a socket secured to the end of the rod. As all readings on benches and turnng points must be taken from the target, this extension can not he used for such purposes. For special readings the rod must be held rertical. 'To do this, the rodman must stand directly behind the rod and ware it in the vertical plane of the instrument while the levelman notes the shortest reading. Rod levels are of no adrantage, except in rongh rock work where the rodman can not take his correct position. There are many time saving methods practiced by expert levelmen which we can not mention here. It is the duty of the rodman to assist the levelman in platting the profile by calling out the elerations.

The importance of having a good head chaimman is not always recognized. The progress of the survey depends sery much upon his ability to efficiently perform his work. On tangents across open country, by selecting a fore-sight, he should keep his direction so closely that when he arrives at the chain's length he is well in lime for setting his flag, and as soon as he receives the signal of "all right" from the transitman, he should at once move rapilly forward to the next station. Knowing the degree of the curve and the last two stations being in riew, he should so closely determine the position of the stake that no movement of the body will be necessary. In timbered comntries he must direct the axemen in their work, that they may not delay the progress of the party by doing unnecessary chopping. This he can do by holding his flag pole horizontally in the direction of the line and sighting along its top side, or better, by
haring the transitman set the flag in line as far in advance of the instrument as the clearing will permit; then by taking a position ahead of the axeman he will be able to discover all obstructions to the sight. He must exercise good judgment in selecting transit points, that the transitman may have a good riew of his back-sight and of the country ahead. He must be accurate in setting off fractional distances on the chain, and every precantion against error should be taken in this matter, as well as in the numbering of the stakes. The fractional number upon the stake set shonld be called aloud by the rear chainman, and the fractional distance to be set off for the next station will be called off by the head chainman, which should be verified and repeated by the rear chaimman. If the rear chaimman makes the division upon the chain, he must rerify his position by counting from both ends of the chain. If the transitman is within hearing and seeing distance, he should give close attention to the whole matter. At every station the rear chaimman must call out the mumber upon that stake, which will be answered by the marker calling out the number upon the stake about to be chiven. The head chainman must observe that the numbers called are consecutive. These precautions may seem umnecessary to the novice, but he who will not observe them is an unsafe man and not qualified for the position. The stake must be marked and ready to set the instant its position is determined by the head chainman.

The cook is by no means the least important member of the party. Men will always render better service when the stomach is well filled with properly cooked food. Hence, the cook must be a baker and not merely a mixer. He should know that cooking is something more than boiling, that flow starch is neither pastry nor grary. He should know enough about fruits so as not to spoil a good sauce to make a very poor pie. He must be prompt with his meals, cleanly in person, and obliging in manners. He should mederstand his rights and privileges as well as know his duties. He should have the courage to insist upon having the former and the disposition to willingly and cheerfully perform the latter.

In all well conducted parties, each member will have some special duty assigned him, for the performance of which he will personally be held responsible. But it is expected that each will assist the others as may be necessary in order to advance the work. Even the chief of the party will not lower his dignity by assisting his axemen through a brush tangle, or by bringing them a cup of fresh water.
'The camp and field equipment should receive close attention. Experience alone will qualify one to properly outfit a party. Even the reteran engineer who has been assigned to frontier work, will not load his ontfit until his camp has been set up entire and it has been examined in every detail of its equipment. Many useful suggestions could be given, but we will only say that nothing essential must be omitted, and that which is not necessary must be discarded, even to surplus clothing.

Though great care has been exercised in the organization of the party, yet discipline in camp and field is necessary. At the first call 'of the cook all must arise and be ready for breakifast at the second call, twenty mimutes later. No laggard who requires a second call, or who is habitually late at breakfast, should be retained, whether he be axeman or transitman. All should sit down at the table together and should not forget that they are gentlemen. Boorishness at the table will rob the best prepared meal of its power to satisfy or to please. We do not feed swine from a silver platter, neither will the most tasty and competent cook prepare a gentleman's table for a company of unbred boors. The chief should occupy the head of the table and his fom assistants should have seats upon his right and left, and the others should have regular places at the table.

No one shonld have an oppportmity to get drunk twice while he is a member of the partr: Intoxicants, as a beverage, shondid not be permitted in camp. Card playing and smoking are so generally associated with camp life as to be regarded a part of it. But gambling must not be allowed in camp, and the office tent should bo kept free from the fumes of tobacco. İt is an offensive act to senud notes to the general office which are saturated with the smell of tobacco.

It is a sad reflection upon the engineering profession when public opinion is such that the people expect to meet a set of hoodlums when they learn of the approach of an engineering corps. 'This heing the case, the first persons to meet a party upon entering a new place are, generally, the vagrants and bums, who expect the boys to "set 'em up," while the respectable citizens will keep at a distance and, except lor matters of business, they wonld mot seek to makie four acquaintance.

The writer, in his practice, has endeavored to correct puhlic opinion, and many times he has been highly gratified when taken by the hand hy good citizens and warmly comgratulated upon the gentlemanly conduct of the members of his party, and for having
demonstrated that engineering parties can be respectable. Some very amusing incidents could be given of the slinking away of disappointed bums, upon their discovery of having met the wrong men.

Courtesy, like charity, must begin at home; hence, the members of the party must be courteous to each other if they expect that recognition among strangers. Courtesy among fellows is necessary to a pleasant companionship, and a lack of it is certain to engender strife. An insufficiency of well cooked food and the habit of keeping a party out late at night, as is the practice of some, are causes of discontent. Give the men no just reason to grumble at the table, and listen to no complaints about hard work. By making good use of the regular working hours of the day, more will be accomplished, and more pleasantly too, than by loitering along for twelve or fourteen hours. A party will not work up to its full efficiency under unfavorable circumstances, no more than an engine will derelop its rated horse power with poor fuel and an adjustment of parts that will cause excessive friction in every bearing.

There is a difference of opinion among engineers concerning the proper scale of wages to be adopted. It is the practice of some to have an equal rating for all below the levelman. Others make the wages commensurate with the qualifications required and the responsibility assumed. The latter plan is certainly more just and satisfactory. Upon a basis of $\$ 100$ per month, a fair rating is.as follows: Transitman, \$100; topographer, \$85; levelman, \$85; rodman, $\$ 50$; head chainman and cook, $\$ 45$; all others, $\$ 3.5$. Many companies, however, adopt $\$ 90$ as the maximum and $\$ 30$ as the minimum. This is in addition to boarding and traveling expenses, and some companies furnish blankets also.

One of two general methods may be followed in making the surveys for a line of railroad. First, the preliminary survey of the entire line, or a considerable section of it, may be completed before the location survey is commenced. Second, the preliminary and location surveys are sometimes so combined as to be made by the same party and at the same time, but in an alternating manner.

Likewise, a raihoad company may have either one of two general purposes in riew when they put a party in the field to make a survey. It may be the bona fide intention of the company to build a line of road. But it frequently occurs that the purpose is to obtain more farorabe terms with a connecting road by making a show of building a competing line; or, perhaps its object may be to discourage and intimidate some independent enterprise which miglt be fostered by a competing company.

It would not be advisable to keep the location up closely with the preliminary survey on mountainous work, or where a long distance of maximum grade is required. It frequently occurs that in such cases some obstacle is encountered, which it was not possible to foresee and which will require such a change in the surveyed line as to involve considerable expense in case the location had been made. If the purpose of the survey is to bluff, a location is not required unless it becomes necessary to play the game very intensely.

When a considerable extension of a line is proposed, it sometimes becomes necessary to establish a priority of right to a mountain pass or a narrow canon far in advance of the regular work. A preliminary survey will hold the right of way, although the location may not be required for some years afterward. When two great companies are contending for the same advantage, then we have the dirersion of a railroad war. The contention between the Santal $\mathrm{F}^{\prime} \epsilon^{\prime}$ and the Denver and Rio Crande companies for priority in the (irand Canon of the Arkansas, is probably the most notable instance upon record.

When the conditions and circumstances will permit, there is a a great advantage in making the preliminary and location surveys jointly. The party is handled to much better advantage with a consequent saving of time and expense. The camp should be pitched five to ten miles in adrance of the terminus of the location and the preliminary should be run to a distance of five to ten miles beyond the camp, or to some governing point from which it can be extended. When the preliminary has been run as far as necessity and convenience may require, the party, without moving camp, can resume the location. The preliminary line having been platted as before directed, the chief can now plat in the line as he wishes to locate it and instruct his assistants how to proceed with the survey. This will give him an opportunity to attend to a multitude of other duties, which is not within our limits to define, while the work on the line can proceed without his personal supervision.

If the engineer who is conducting the survey has also mate the reconnoissance, he will be able to project the line with the knowl. edge he has already obtained. But if he did not make the reconnoissance, it whll be necessary that he look up the country well in advance of his party. Neither must he confine himself to the route mapped out by his predecessor, but must examine the country upon both sides of this line within the limits of a possible economic location. He knows that as the unaccounted-for possession of stolen
property is an eridence of gnilt, so he who is last upon the ground will be Seld responsible for the condition of the work. Sometimes two or more routes covering a distance of five, ten, or even forty miles will be discovered, the choice of which can be determined only by a preliminary survey over each route.

On preliminary work, it is necessary to run an angle line only. Along bluffs and rock cliffs the line should be so run as to form a base from which the topography may be accurately taken. In camon work, triangulation can sometimes be used to adrantage. But if the inaccessible gorge is of considerable length it may be necessary to take adrantage of the winter season and run the base line upon the ice. In mountain regions where a great amount of preliminary work is sometimes required in order to find the most feasible way of crossing the range, the stadia can be used to very great adrantage. This will furmish accurate information of distances, but the elerations of stadia stations only will be given. This, however, will be sufticient to determine where transit and level lines should be run. In mountainons work the grade line must be run from the summit. In all cases the angle line should approximate as closely as possible to the line of location, lut I have not much confidence in the location made by an engineer who claims to have run his preliminary so exact as to require only the curves to be put in, to complete the location. When an obstacle is encountered on preliminary work, it should be passed as speedily and as easily as possible. It may be a tree, a house, a haystack or a bend in at stream that is difficult to cross. And it is sometimes prodent to make a flank morement on a colony of belligerent hornets. Deflecting ly an angle is the preferred practice on preliminary work. If the obstactie is discovered in time, the deflection should be made at the distance of a full sight of the instrument. In timbered countries, an angle of five or ten minntes may sare much time in chopping. On location work, it is better to make two square offsets on each side of the obstacle. They should be two hundred feet apart, and farther if possible. Deffecting by acute angles and measuring distances, to get around an obstacle, can not be recommended on a located tangent.

A record should be kept of all side lines run, whether they were found favorable or not. Unless this is done, the locating engineer is apt to lose much time with his party in finding out for himself that what seems to be a probable improvement is not at all practicable. The same route has probably been examined by his predecessor and rejected. Much time has been wasted on pre-
liminary work by rumning lines that ordinary judgment shonld have condemned after a careful reconnoissance．The engineer is ex－ pected to obtain the very best route possible and he shorld take sufficient time to discover it．But he is also held responsible lor any wanton waste of time and of money that is not his own．He must be a conscientious agent of the parties who have intrusted to him this great responsibility．It has been stated that God has pre－ pared a way，but it is the prosince of the engineer to discover it．

All the information reported hy the engineer on reconnoissance should be rerified and added to as far as possible．On the profile he must note the classification of material in every excaration． The examination and other excarations in the vicinity will assist him in this matter．Definite information must be given about hridges and dramage．The amount of drift in a stream in time of flood has much to do with determining the length of the spans and consequently the cost of the structure．The cost of diverting a stream from its natural chanmel must be compared with the cost of two crossings．The expense of protecting an embankment with rip－rap must be figured against that of excarating a road－bed in the bluffs．His information must be complete，so that a close approxi－ mation of the cost of construction can be made．

The preliminary line is the base from which the location sur－ rey is to be made．Its value is measured by its efficiency to serve this purpose．If the locating engineer is not the person who con－ ducted the preliminary survey，he must make a careful and thorough examination of the ground in connection with the in－ formation furnished by the maps，profiles and other notes of the preliminary survey，before projectug his location．This examina－ tion must not be confined to the ronte of the preliminary，but it must include all possible routes suggested by the topography of the comntry which has not been examined and reported upon by his predecessor．

As before stated，in momtainous countries the principal object to be attained is an eleration．The elevation to be overcome is a lixed quantity for which the engineer is not responsible．He call modify it only by a summit or tumel crossing of the range． Upon any ruling grade a definite distance will be required to overcome this elevation．But this distance will be affected by the curvature．Each degree of curvature will necessitate an increase in the length of the line equal to the rate of compensation divided by the rate of grade per one hmodred feet．Hence，curvature has a two－fold effect upon the operating expenses of the road．But
curves are necessary to decrease the cost of construction. The problem of the engineer, then, is to determine how much curvature he will be justified in using, to cheapen the construction at the increased cost of operating the road.

There is also another important factor to be considered in mountain districts. Any increase in the lengtlo of the line above that required to orercome the elevation, adds to the distance requiring heavy engine tonnage. Again, the further the heary grade is continned down the slope, the shorter will be the aggregate length of the whole line. While no rule can be given by which to locate the junction of the heary and lighter grades, it is generally best to continue the lreavy grade as far as the slope of the country will permit. Other conditions, such as water and station grounds, may justify the use of several miles of an intermediate gradient beyond the point where the country requires a maximun. If there is a great difference between the two rates, the use of this intermediate grade is further justified by the distance saved in not requiding the line to be developed upon the lighter grade in order to reach the elevation required.

When the survey crosses an undulating comntry, where direct and adrerse grades are used altemately as the topography of the ground requires, the principles of economic location are the same, but somewhat modified. The compensation for curvature will not operate to increase the length of the line in the manner above noted, unless it should occur upon a considerable stretch of maximum grade. With a light gradient and ligh equating values for curvature and distance, it is better to talie excessively heavy work across a ralley, rather than deflect and develop the line along the blufts.
'Io properly lay a grade line requires good judgment, which is attained only by experience. Where the maximum grade is used contimuously, the ground line must be adjusted to the grade line. But where a continuous use of the maximum grade is not required, or where the ground is undulating, the grade line is to be adjusted to the ground line in a manner to give the most economic construction consistent with good drainage. 'Ihe grade line should not have the appearance of scooping out a cut, or of putting a hump on an embankment.

Using the preliminary line as a base does not mean that any considerable portion of it will be adopted on location. The roughest country is often so densely covered with young timber and brush that it is impossible to determine on a course more than a few
hondred feet in length. In such eases the preliminary he becomes so angular as to resemble upon the map the plan of a worm fence with rails of rarious lengths. But with accurate topography and with the assistance of a string and a lew pins, the proper line of location can be readily determined. At each adjustment of the string the new ground levels should he lightly dotted upon the prolile and ex. amined with reference to the adjustment of the grade line. When the line has been traced upon the map it must be run upon the ground. It will require very great care to do this. If the preliminary and location lines hare points in common which can be accurately determined upon the map, the angle of intersection may be calculated and the course of the tangent will be determined. If one point selected is not upon a tangent already located upon the gromed, it will be necessary to produce the line backward to an intersection with the located line. It is generally more satisfactory to determine the position of two points upon the proposed location by latitules and departures, assuming any course of the preliminary as a hase, and from this data calculate the angle of deflection. But for long distances it is better to determine the course of the tangent by offsets from the hase line rather than liy angular deflection. It is the experience of the writer that a line can be projected in this mamer between points distant five or six miles with an error not to exceed three-tenths of a foot, even when three or four angles are turned on the preliminary line. In one instance he projected a line sixteen miles and came within fifteen inches of the point sought. There were not less than six angles turned on the preliminary line. Hence the necessity of accurate work on the preliminary survey if you expect to use it with any confidence on location.

No part of any survey should be done in an indifferent mamer. No transit point must be taken without reversing the instrument, and the transitman should be able to see the point of the flag pole. When it is impossible to do this the plumb boh must be used in setting points. Every angle upon transit points must lee twice measured. The deflection angle of two tangents must he measured from their point of intersection, unless it is inaccessible. The begimning and ending of a curve must be set before the curve is run in. On a curve of two thousand feet in length, orer hills and hollows, the chaining should agree within one foot with the points set off on the tangents, and the angular measurement within one minute of the angle of intersection. The magnetic bearing of every conrse on the preliminary, and of every tangent on the location, must be read and recorded. The calculated hearing of
each course, determined from the magnetic bearing of the first course, must also be entered and compared with its magnetic hearing, as a check against an error which might otherwise occur by making a wrong record of the direction in which the line was deflected. Every mathematical calculation affecting the work must he verified. All copies of motes from the office record, for use in fiehl, must be carefully compared with the original. The levels on location must be compared with the preliminary levels at every bench mark. A variation of more than . 03 in a distance of two thonsand feet must be verified before extending the levels.

He who thinks these precautions too exacting will learn liy experience their value. It is no recommendation to a man to claim that he never makes a mistake. The true estimate of such a person is, that he is very conceited and has not intelligence enough to discorer a mistake when he has made one, nor the courage and honesty to acknowledge and correct it. The man to be trusted is he who knows that he sometimes makes blunders, but is erer on the lookout to discorer and correct them.

There are many opportunities and inducements for an engineer to he dishonest. Land speculators will try to influence him in the location of the line. Contractors will ask for favors in the classification and measmement of material on construction. Others will offer a commission on the amount obtained for them as damages for trespass and right of way. Merchants will wish to hestow gilts and farors, to secure influence that would benefit their trade.

Honesty is not always rewarded. But the consciousness that you have been faithful and true to the trust confided to you, and honest in all your motives and transactions, will be of greater satisfaction to you than any success of renown, or accumulation of wealth, that you might have otherwise achieved.

## TEST OF A HEATIN(: SYSTEM.



Lípont of a test, mate on Iterember 2sth amel s?th, 1s9.j, of the

'Io the Committee on Bulldings and Grouniss, University of [lfinols.
Genthemen:-I take pleasure in submitting to you the following report concerning an examination and test of the heating system recently installed in Engineering Hall by the Malthy di Wallace C'ompany of ('lampaign, Ill.

The heating system of Engineering Hall was first put in my charge December 19, 1891. A careful inspection of the entire plant, including the f-inch main leading from Natural History Hall, was made hy. J. Morrow and myself, and a list of mimportant defects was sent to the contractors. 'These delects have all been made good, or measures taken for so doing.

There are some points concerning the system that it seems to me should be changed. The most important one is that of providing some means of shutting ont the cold air from the indirect stacks. Considerable trouble has been experienced with these stacks from the freezing up of the air valve comnections, and this would be avoided if provision were made as suggested. It was a mistake to comect the trap discharge to the drain pipe from the down sponts, as steam fogs up these spouts might canse trouhle by melting snow at the top and cansing it to freeze and to stop up the down sponts. Besides the two points mentioned there does not seem to be anything about the system that conld be changed for the better. 'These may easily be remedied.

Ton have in this building an excellent heating system. The materials of construction are all first-class. 'The work done by the contractors is rery satisfactory, and the whole system works well ; it is noiseless and circulates on a pressure of two pounds with perfect freerlom. It will heat the entire building to 70 degrees in zero weather, and most of the rooms can be heated to 7.5 degrees with an ontside temperature of 15 degrees helow zero.

## 'I'est of the System.

Arrangements were made on December 27 th for a test of two days duration to begin on Friday, December 28th. Thirty thermometers were hung side ly side and a series of readings taken from them for comparison with a standard thermometer. Twenty-four thermometers were then hung in as many of the leading rooms in the building, six on each floor, and six were kept for moving from room to room. Ererything seemed to conspire to make the conditions for a test farorable. On the morning of the 28 th the thermometer stood at 3 degrees below zero and only areraged 11.1 degrees for the day. Steam was kept on the building over night on a part of the radiation, and early Friday morning all the radiators in the louilding were turned on, and the test started.

Observations were taken every thirty minutes throughout the day, of the temperature of the twenty-four rooms having thermometers in them, and of the external air temperature ; the steam pressure on the building, and on the $f$-inch main in sub-basement.

Readings were also taken of the temperature of every room in the building not included in the twenty-four rooms mentioned above at some time during the day.

The results of this test are recorded in the tables on pages 164 and 165, each floor being reported in a separate table. The pressure on the building and on the main is only reported with the table of the fourth floor. It may be seen by inspection of these tables that the average temperature of the four floors is ly floors as follows:

Fourth Hoor, . . . . . . . . . 84.1
Third Hoor, . . . . . . . . . . 79.3
Second tloor, . . . . . . . . . 73.1 i
First floor, . . . . . . . . . . 64. 5
Average for luilding, 301.5 $\div 4=75.4$ degrees approxmately. All the radiation was turned on. Arerage external air temperature, 11.1 degrees. Date, December 28, 1894.

On the following day, December 29th, a further test was made as follows: An attempt was made to hold the temperature of all the rooms at 70 degrees by shintting off radiators. This proved to be an interesting and raluable-test. The outside temperature was not low, only varying from 19 degrees to 40 degrees during the day, so that the arerage was 31 degrees, or nearly at the freezing point. The results of this test are shown on pages 166 and 167 , each floor being in a separate table.

At $8 \mathrm{a} . \mathrm{m}$. every room on the fourth floor was above 80 degrees, and between $8: 30$ and 9 every radiator on this floor was shut off and remained so during the day. On the third floor nearly all the indirect and at least one half the direct radiators were shut off. On the second flour most of the radiators were ruming; in three rooms only was any radiation shont off. On the tirst floor all the radiators except three were rmming.

Under these conditions the results were as follows:
Fourth floor, . . . . . . . . . S2.3
Third Hoor, . . . . . . . . . . 77.2
Second Hoor, . . . . . . . . . Tt.t
First Hoor, . . . . . . . . . . (i9.3
A rerage for bnilding $303.2 \div 1=75.8$ degrees.
It is evident from the results of these two trials that there wats much more radiation on the top floor than was needed, while the amoment on the first Hoor was not enongh. In accordance with sug. gestions made to the contractors, they moved some 400 feet of direct radiation from the top to the first floor.

Since these changes were made we have had two mornings when the temperature was below zero, and the rooms where changes were made are moch improved, and satisfactory. There are three rooms, however, that need more radiation and the contractors are now arranging for this.

FIRST FLOOR.


'Time.	Number of Roob					$\begin{aligned} & \text { External } \\ & \text { Air } \end{aligned}$
	Corridor	105	109	11\%	121	
$4: 20$.	$1 ; 7^{\circ} \mathrm{F}$	$11^{\circ}$	8i9	$61^{\circ}$	sio	$1^{\circ}$
S:45.	$16 ;$	(50)	(ii)	(i):	5if	,
! :15	(if)	(6)	(ia	(i)	Sif	1
!1:10.	19	(i2)	bij	(i)	St	3
10:00.	(ii)	(93)	[ij	$6:$	.if	1
10:30.	(is	(;)	(i)	(i:	if	.
11:00)	(is)	(iti	(is	(i:	\%	!
11:30.	$\%$	(is)	(is	(i)	5*	!
11:00.	\% 0	159	(is	(i)	5!	111
1::30.	70	$\%$	(is	(i:3	(i)	11
1:00.	\%)	7]	(i)	(i) ${ }^{\text {a }}$	(i)	13
1:30.	\%)	70	(is	(i)	(50)	11
$\because: 00$.	\%)	\%)	(i)	(i)	$1 ; 1$	11
$\because: 30$.	$\%$	\%11	(i)	(i)	19	1.5
3:00.	$\because 1$	(ifi	63	1it	13.3	16
3.30 .	71	(56)	(i)	(i)	(i3)	119
1:10).	71	(5)	61	1.4	(6.3	115
4:30.	\%	154	(i0	(i)	13.3	1.5
5:00.	$7:$	154	160	(i)	(i3)	16
Averas	199.2.5	(3.). H	(i.)	(i3)	$5!1.5$	11.1

Average temperature for the lloor 151.5 . All radiators on this fioor were turned on.

## SECOND FLOOR.

Temperation December 2s, 1s:4.

|  |  | External |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Air: |  |  |

Average temperature for the floor 33.6. All radiators on this lloor were turned on,

## THIRD FLOOR.

'Temperatire December: 24, 1s!4.

'I'ime.	Number of lioom.						$\begin{aligned} & \text { External } \\ & \text { Air. } \end{aligned}$
	31.5	3(4)	$3 \times 1$	$31!$	Corridor	$3_{1} \cdot 31$	
$8: 20$	$80^{\circ} \mathrm{F}$	T	$\therefore 1$	7t	$7{ }^{7}$	[; ${ }^{\text {] }}$	1
- 15.	-1	"	81	71	\%	(it)	1
! 1:15.	-゙	\%	$\bigcirc 1$	\% 9	\%)	194	1
!1:40.	! 1	50	S1	Ti	70	(i.)	3
10:00.	Si	s)	40	\%	$\% 1$	(iti	4
10:30.	$\therefore$	$3 \%$	81	$\because$	73	15.5	5
11:100.	-	90	$\therefore 3$	is	\%	$1 i \%$	$!$
11:30.	! 0	915	4	T)	it	(is	$!$
1:3:00.	9	99	83	(i)	\%	1;!	11)
1:2:30.	!\%	!s	4.3	41	7	70	11
1:00.	91	S?	-3	81	7.5	71	$1: 3$
1:30.	90	8 \%	- 1	$\stackrel{\text { - }}{ }$	7.5	$\because 1$	14
?:0)	! ?	8.5	St	$\bigcirc 3$	75	$\because$	1.1
: $: 311$.	$!!!$	8.7	- 1	83	\%19	73	1.5
3:00).	91	84	-1	4.3	\%is	7	16
3:30.	sir	at	$5 ;$	8.3	71	\% 5	16
1:00.	81	81	sis	54	$\%$	71	11
4:30.	-!	$3!1$	<1	8.5	$71 i$	$\cdots$	1.7
5:00.	$\pi$	~	s:	81)	76	$\%$	16
Averag	Sis	-1.is	42.5	\%! \%	71.5	(i)	11.1

Average temperature for the Hoor $7!3$. Atl radiators on this floner were turned on.

## FOUR'TII FLOOR.

## 

Time.	Number of Room.						xternaid	P'rensure on Building(1)s..)	Pressurt   Matin 11
							Air.		
	H61)	[2]	$1: 1$	$41 \%$	415	Corricor			
- : ${ }^{\text {a }}$ (1)	- ${ }^{\text {F }}$	$20^{0}$	*1)	$-1{ }^{\circ}$	$410^{\circ}$	\%i	$1{ }^{\circ}$	--	-
$8: 15$.	s?	ง2	4i)	$-1$	(\%)	\%	1	$3!$	12
! $1: 10$	$\because 2$	- 4	-11	$\cdots$	Si	is	1	$11)$	1.15
!: 111.	St	-1	-1	<	-	7	3	3	${ }^{1} 1$.
10:0)	-15	8.5	8	* 3	-1	\%!	1	3.	111
111:31.	S3	8.5	83	-3	$\cdots$	(1)	i	3.4	1.1
11:04).	s!	¢.	$\because$	-3	4?	-	$!$	3.9	$51)$
11:30.	(1)	-i	S.3	-1	41	-	$!$	111	.ti
Noon.	91	$\bigcirc$	4	$\rightarrow 1$	- 1	(1)	11)	$1:$	$\therefore$
1:3:311.	$!2$	$\rightarrow$	-1	5.	84	S1)	11	4.11	(i:
1:00.	$!8$	$\therefore 7$	si	8.is	at	(1)	$1: 3$	1.1	11
1:30.	$!13$	ss	85	5.5	215	*)	11	10	11
: $: 00$ )	(1)	88	$\therefore 5$	85	-	41	11	111	$1 ?$
-:30.	$x$	8 S	4i	85	5.5	-1	1.5	$1:$	11
3:00.	ss	8!	2i;	m.)	4.5	S1)	$11 i$	$1:$	5:\%
3:30.	31	2!	+ ${ }^{\text {a }}$	-	85	(1)	11	13	$\therefore$ -
1:00.	S4	8!)	si	(15)	st	\&1	$11 i$	1.3	is
1:31).	21;	- 3	$8 \%$	8.5	8.5	$\therefore$ ?	1.5	1.1	5
\%:10).	Si	90	ง\%	8.5	8.5	※゙	$11 i$	17	it
Average	Мั. 5	S6.j)	4.40	¢3.9	8.3 3	\%! \%	111	4.1	$1!$

Arerage temperature for the lloor at.1. All rarliators on this floor were turned on.

## FIRS＇FLOOR．

Temperathe：Decembere 2！，wat．

Time．	R					$\begin{aligned} & \text { External } \\ & \text { Ait. } \end{aligned}$
	Corridor	124	10.5	$11: 3$	$10: 3$	
$5: 00$.	$\cdots{ }^{\circ} \mathrm{F}$	－${ }^{\circ}$	$133^{\circ}$	－＂	． $55^{\circ}$	$1!$
\＆：30．	\％ 1	66	（54	（is	$5!$	$\because 0$
！：00．	\％ 4	（5）	（i）	66	130	$\because$
！1：30．	\％．	65－	6.5	6\％	（i）	$\because 3$
10：00．	7t	（19）	$6 \%$	（is	（i）3	9
－11）：30．	if	19	らい	6if	（i．）	$\because 6$
11：00．	\％ 4	\％）	6s	（if）	（\％）	？
11：30．	it	71	$\%$	（it）	（15）	30
12：00．	\％ 4	$\because 1$	\％）	67	fir	3：
1：3：30．	it	$\because$	$\because 1$	64	（i9	3.4
1：00	\％ 4	$\uparrow$	$6!$	136	（i）	31
1：30．	\％$\%$	$7 \%$	69	187	（i）	36
2：00．	\％ 5	T2	（6）	（is）	\％ 0	$3 \times$
2：30．	\％	73	71	69	70	$3!$
3：00）	76	7	70	69	$\%$	39
3：30．	\％	T4	71	69	$\%$	40
4：00．	\％	i4	（i）	（i）	\％）	10
A verage	$\because+.5$	71	（is ：	tifi．\％$\%$	615	31

Arerage temperature for the floor h9．3．All radiators on this thoor were turned on except one in corridor．

## SECOND FLOOR．

Traprerattre December 2！ 1 a 94.

Time．	－Number of Room．＿I					$\begin{aligned} & \text { External } \\ & \text { Air. } \end{aligned}$
	205	$\because 1$	319）	Corridor	110	
ベ：00．	\％$\pm^{\circ} \mathrm{F}$	$\because \overbrace{}^{\circ}$	$83^{\circ}$	$7{ }^{\circ}$	$\% 0^{\circ}$	$19^{\circ}$
s：30．	\％	72	7	73	$\because 1$	30
！1：00．．．	－	73	if	\％	71	32
9：30	\％！	73	\％	73	\％：	$3: 3$
10：00．．	－	$\cdots$	\％	\％3	\％	： 1
10：30．	Q3	if	74	73	$\because$	31
11：00．	s：	3	71	73	73	Os
11：30．	st	\％4	73	73	73	30）
1？：00．	$8:$	it	33	\％ 4	\％3	$3 \times$
1：3：30．	¢	7.5	\％ 3	\％ 4	$\%$	：31
1：00．	75	\％	33	73	\％	31
1：30．	\％	\％ 5	\％3	33	\％1	36
：$: 000$	\％ 6	\％ 5	73	\％ 4	\％	34
$\therefore: 30$ ．	$\%$	\％	73	\％ 4	73	$3!1$
3：00．	75	\％ 5	$\% 3$	\％ 4	\％ 4	3！
3：30．	it	\％	$\pi$	\％ 4	\％	10
4：00．		$\pi$	$\pi$	if	it	$41)$
Arerage	78.4	$\because 1$	73．4	73.3	$7: 4$	31

Averagn temperatmre for the floor $\because 1.1$ ．All radiators on this floor were turned on except three．

## THIRD FLOOR．

## Temprature Deqember 29，1494．

＇Time．	Number of Rooms．						$\begin{aligned} & \text { Sxternal } \\ & \text { Air. } \end{aligned}$
	： 36	809	Ccrriclor	310	$\because 1 \%$	319	
－：00．	ぶ゙F	$37^{\circ}$	\％${ }^{\text {\％}}$	～0	$\because 3^{\circ}$	\％9 ${ }^{2}$	$11^{\circ}$
E：30）	7！	24	－	\％	T1	\％	？ 0
（1：00）	－1	$\therefore 3$	\％	7	$\div 1$	\％	2： 2
（1：30）		－1	$\because$	73	$\because 2$	$\because$	23
10：00．	$8 \cdot$	4	$\because$	T1	\％ 0	$\because$	$\because 1$
1）：30．		41	71	（i）	（i）	\％ 19	29
11：00）．	s！	S（）	$\because$	\％i	\％ 1	77	？
11：30．	st	4）	71	«， 3	$\because$	$\%$	30
12：00）	al	s\％	\％	20）	\％3	$\pi$	$7:$
12：30．	－4	40	T	－\％	\％ 1	$\because$	31
1：00．	40	$81)$	7	74	74	\％	31
1：30．		411	\％	73	5	\％	319
2：00	Ts	50	$\%$	～	71	$\%$	38
2：30．	s0	So	\％	71	71	\％	39
3：00．	\％	\％！	\％	～	\％1	\％19	$3!1$
3：30）．	17	81）	\％	$\%$	ii	Ti	411
4：00．		\％！	is	\％	$\pi$	$\%$	10
Averag	41.1	81）． 3	$7 \%$	7．8． 1	$\because$	\％	31

Average temperature for the Hoor $7 \% .2$ ．All indirect radiators and abont one－half of the direct radiators on thim floor were turned off．

## FOLRTI FLOOR．

## Temperathee Dergmber $2!9,1$ n！ 4.

Time．	Number of Room．						$\begin{aligned} & \text { Exteru:l } \\ & \text { Air. } \end{aligned}$	Pressure on Build ing（lbs．	$\begin{aligned} & \text { Pres } \\ & \text { sure } \\ & \text { ont } \\ & \text { M Maitu } \\ & \text { (11)s. } \end{aligned}$
	＋193		（2）	109	Corrider	415			
¢00．	$1.5 \cup \mathrm{~F}$	$\therefore t^{\circ}$	！ $1{ }^{\circ}$	－	$\cdots{ }^{\circ}$	8.5	$1!1$	1．7	$\because 1$
－：3u．	！ 1	55	！ 1	4！	s：	4．j	$\because()$	$\therefore 1$	3.5
！1：01．	0.1	－	¢1	s？	－1	$\therefore 1$	\％	， 5	50
（1：3）	14	－1；	¢ ¢	－1；	40）	$\because$	23	5：	511
10：0）	91	sif	4.5	5.	（1）	81	$3 i$	3 k	if
11：：31．	（11）	815	4.3	－1）${ }^{-}$	Sil	T！	$\because 1$	37	11
11：（1）	s！	$\triangle 7$	\＆1	\％！	¢ 11	Ts	$\therefore$ sis	3 i	12
11：30．	Sis	sif	S1	$\because$	（i）	7	311	$31 i$	111
Nurn	$\cdots$	8.5	411	75	S\％	iti	$\because$	$3 \times$	Si
1：2：31．	$4 ;$	$-1$	\％！	811	－11	iti	31	$3 \%$	10
1：01．	8.5	8.5	－4	81	－1）	$\cdots$	31	34	：11）
1：30．	4	－ 7	T	（！）	（1）	$\cdots$	36	3 －	10
？：01）	－1	4 4．3	$7 \%$	\％！	\＆ 1	7.7	： 3	$\because .1$	S）
？：30．	4t	53	$\because$	80	－1	73	3：1	$\because 11$	$1: 3$
3：00．	4.1	－4	$\because$	s1）	S0	7． 5	3！	$\because .2$	13
3：30．	$4: 3$	41	$\because$	s（1）	sil	7.5	411	\％．：	11
1：011．	41	4	\％ 4	Sir	S1）	71	111	？ 01	111
Avera	$\therefore$	－4．a	－1 \％	$\therefore 1$	（0）． 1	$\because 7$	31	3.5	1：3

Average temperature for the Hoor s？．3．All radiators on this Hoor were thrmed otf．

In addition to the resnlts of the test here recorded, every room in the building has been examined and the radiation now in the rom has been checked up and compared with the space and wall and glass surface. 'This data has been properly recorded for future reference and will be of considerable value to the heating department. It did not seem desirable to add all of this matter to this report, but below are giren the totals for the sereral items for the entire building.

Data from heating system of Engineeriug Hall:
Space leated (cu. ft.) . . . . . . . . . . . . . Tt7 207
Outside wall area (sq. ft.) . . . . . . . . . . . . 43 ;ess
(ilass area (sq. ft.) . . . . . . . . . . . . . . 7286
Direct radiation from radiators (sq. it.) . . . . . . . is 908
birect radiation from pipes (sq. ft.) . . . . . . . . 1 (i.5)
'I'otal direct radiation (sq. ft.) . . . . . . . . . . . T 5.5T
Total indirect radiation (sq. ft.) . . . . . . . . . . B1:7
'Total radiation (sq. ft.) . . . . . . . . . . . . . 10642
Total area of direct and $\frac{3}{1}$ indirect (sq. ft.) . . . . . . ! 699
Heating surface required by Mills' rule (sq. l't.) . . . . ! MiG
latio of heating surface to space heated . . . . . . . 1 to T
'The above items have heen worked ont for each room in the milding.

## Actual Surface in Padiators.

I'he actual surface in the direct radiators was measured and found to agree with the surface as given in the catalogue of the makers, 'The American Padiator Co. The actual smrface in the indirect radiators is not as given in the catalogne, being something hike 20 r/r short. Each section of these intirects contains 2.ns square feet of surface; the amomnt in the catalogne ratings is 3.2 : square feet per section.

## Registers.

The registers admitting warm air into the rooms from the indirect radiators are of the Tuttle \& Bailey make, most of them being $16 x^{2} 0$ inches. The proportion of air openings in each register is 58.7 '/ of the nominal size. The "Ideal" pattern of direct radiators is used, and the Western Tube Co.'s pipe radiator for indirect radiator's. Each radiator is four sections wide by different lengths, all $=4$ inches high. The radiators are not painted. The Marsh No. ${ }^{2}$ automatic aur valves are used on all radiators.

The length of the 6 -inch main connecting this building with the 8 -inch main at Natural History Hall is about 7ol feet. In this
main are two expansion joints and six elbows, an angle valve at Natural History Hall and a gate valve in Engineering 1 Lall. 'I'he loss of pressure between these buildings is about two pounds for it pressure of forty pounds on the main. The loss from the boiler honse to Engineering Hall is ahout 3.5 pounds. This loss of pressure should be made the sulject of a more careful test and comparison of ganges. It seemes small, but is not lar from correct.

Hoping that this report may meet with your approral, I remain, lours respectfully, L. '. Brectientione, Superintendent of Heating Department.

Additional Aotes.
The system of heating used in Engineering Hall is what is known as the Mills orerhead system. The steam, which is delivered into the sub-basement of the building at about 40 pounds pressure, is passed throngh an 8 -inch Davis reducing pressure valve and the pressure reduced to $1,2,3,4$, or $\bar{j}$ pounds, as the extermal temperature demands. F'or three weeks of this winter, $189+-$, , the temperature was down to zero nearly every night, and on this occasion was 22 degrees below. During this severe weather the buiding was easily wamed with 5 pounds of steam. With the temperature between 10 degrees and 32 degrees above, 3 pounds is sufficient to warm the huidding, while for warmer weather 1 to 1.5 pomds is all that is required.
'I'he steam, after passing the reducing valve, is camied through an 8 -inch main to the attic of the building, where it divides into three equal branches 4.5 inches in lliameter, and is thus distributed to the three wings of the buidding. The overheal mains in the attic are covered with asbestos tire proof covering. From the mains ron the smaller mains to the sides of the building and then drop to the sub-basement in one straight rum. From these drop pipes comnections are taken one to each radator. Liberal provision is made for expansion of all pipes and comections.

Nearly all the direct radiators are comected to the drop pipes by a tee in the pipe near the ceiling of the rom below; while the indirects are comnected mostly by tees in the pipe at the floor line of the room in which the radiators are placel.

The indirect radiators are in all cases placed under the windows and in a recess left for them in the brickwork. The air supply comes throngh openings in a cast iron phate which forms the lintel of the window below, passing up to the radiator through a space

Left for it in the wall. l'rovision has now been made for shatting off the air from the outside by means of a slide damper operated from the room in which the indirect is placed. Air is induced to flow through those radiators loy rentilating shafts distributed throughout the buikting. These shalts are of two kinds; one is, heated by pipe coils entending from the top to the bottom floor, and the other is aranged to be connected to an exbanst fan phaced in the basemont of the hinding.

On Febraty 20, 189.5, all the stean used to heat the building from $10 \mathrm{a} . \mathrm{m}$. to $4: 30 \mathrm{p} . \mathrm{m}$. Was weighed as discharged from the traps, being mixed with a known amount of cold water for convenience in weighing. The following results were obtained:

Average temperature of extemal air (deg.) . 37.0\%
Steam condensed in building per hour (lbs.) . 3 ( 120.010
Water discharged by trap at end of 6 -inch main per hour (lls.s.) . . . . . . . . . . . Si. 1000
Arerage pressure on building (lls.) . . . . 3.000
Arerage pressure on main (lls.) . . . . . 4.5.000
Heating surface in use (sq. ft.) . . . . . $7 \geq 200.0100$
Condensation per square foot of heating surface 0.412
External conditions: moderate wind, sun shining about one-half of the time.

Arrangements have now been made so that further tests of the different radiators may be made and the condensation per spuare foot of surface determined with the radiators in position. It is believed that this arrangement of the indirect radiators is new and credit shonld be given to the architect, Mr. (i. W. Bullarel, for introducing into the plans for the heating and rentilating of the building.

#  



In 1870 instruction in engineering branches was finst offered at the Lniversity of Illinois. Since that time mmch attention has been given to this part of the work of the University. From the first this department gradually increased and later was recognized as one of the fom distinct colleges of the Lniversity. During the last few years the growth of the College of Engineering has been remarkahle and it now stands among the leading techmical colleges of the country.

It has been the am to teach such branches and to give such training in the mechanic arts as will promote liberal and practical chlucation and fit young men for the special duties of the enginecring profession.

Under the organzation of the College of Engineering there are fire departments, each of which offers courses leading to degrees. The departments are architectnre, architectural engineering, civil engineering, electrical engineering, mechanical engineering, and municipal and samtary engineering.

The rapid derelopment of these departments and the large number of students attending made a demand for better and increased facilities. In 1893 the legislature passed a dill appropriating \$1fioooo for a building and equipment to be used exclusively by the College of Engineering. Competitive designs for such a building were asked for by the trustees, and prizes offered. (i. W. Bullard of the class of ' 8 '2 was the successful competitor' and was made architect of the building. December 10, 1893, the corner stone was ladi, and November 15, 1894 , the building was formally dedicated.

Engineering Hall is located on the north side of (ireen street, midway between the north and sonth gromps of buildings, and facing University Hall. It has a Irontage of 200 feet, a depth of 76 feet at the wings and 138 feet at the center. The building is fom stories in height and contains $60(0) 0$ square feet of tloor space. 'I'he arrangement and numbering of rooms and the purpose to which each is deroted are shown by the accompanying floor plans. The building is heated by゙ a syistem of direct and direct-indirect steam radiators.

The direct－indirect radiators are placed in the walls and directly m－ der the windows．Much care has been exercised in the lighting of the luilding．In crery room，provision has been made for an alomdance of matmal light and also for gas and electric light．The salnitary requirements have been looked alter with great care，both as to utility and convemence．A large collection of drawings，pho－ tographs and engravings serve to enrich the interior of the buidding．
liooms．for the use of the engineering faculty are located on the third Hoor and include a parlor in which the faculty holds its meet－ ings，a business office for the dean and a reading room．In the reading room the computing instruments and similar apparatus are kept．A I＇homas 10－place arithmoneter，Amslers integrator，Corar－

dis rolling and radial planimeters，a large pantagraph，numerous tahles and other aids in computation may be mentioned．

A room has been provided for the use of engineering societies． The room is funished with a business desk，look cases，pamphlet cases，tables and chairs．It is fitted up as a reading room and is provided with the leading technical jourmals．It is also used as a general office by those in charge of the publication which is issued by the societies．

In the assignment of rooms，each department was provided with an office，private studies for instructors，a seminary room，class and drafting rooms and a calinet room．The offices are equipped with
curtain top desks，Shamon filing cabinets，letter presses，card in－ dexes and cabinets designed especially to meet the wants of each de－ partment．

The methods of instruction in use in the College of Engineering may he classified as lecture amd recitation，drafting and designing， shop and laboratory，and seminary work．The lecture and reciti－ tion work is arranged not only with a view to acquiring facts but for the disciplining of the mind and the training of the ability to sermre and use the information needed in engineering work．The drafting work is made to conform as nearly as possible to the best practice． The shop and taboratory work is adapted to the repuirements of the different courses and receives considerable attention．The seminary

system of instruction has been used to some extent since 1878 and at present is in use in all the departments．References are given to standard engineering publications and from them the student is re－ ynured to gather information on some particular subject．In some departments weekly meetings are held in the seminary rooms for the discussion of techmical literature．In each of the seminary rooms are kept on tile all the leading American and foreign tech－ nical journals pertaining to the work of the department．

## 

The department of architecture was organized in 1si：3，under the direction of l＇rofesson N．Clifford licker，at present dean of the

College of lingineoring．Since that time he has been at its head， and it is chiofly throngh his labors that this department has attain－ ed its present high standing．In 1873 there were but two institu－ tions in the combtry giving instruction in architecture but at present there are right．The mmber of stadents receiving instruction in this department exceers the nmmber attending any other school of architecture in this country．

The fundamental aim is that the arehitect shonld be first a safe and economical hmilder，second a man of business capacity，and third an artistic designer．The object is to give the young architect it thorongh preparation for the whole ronnd of his protessional

duties．Among the graduates of this department may be found many of the most successful architects of the country．

The department occopies the entire fourth floor of Engineering Hall，comprising about 15000 square feet of floor space．This is divided into drafting rooms，class rooms，private studies for in－ structors，a blue print laboratory，a photo studio，a seminary room and a lecture room．

The drafting rooms are lighted from above，thas giving an ex－ cellent distribution of light．T＇he adjustable drafting table shown in the cut was designed especially for use in this department by Pro－ lessor Ricker．The drafting rooms are equipped with these tables and with small lockers for hoards and drafting materials．The senior and junior drafting rooms are each provided with a portfoho
case．＇The fomer is supplied with $\overline{7} 000$ and the latter with Sono momited plates．In the sophomore drafting room full sized details we used instead of momed plates．

The lecture room is fitted up with a stepped floor and has a seating capacity of seventy－live．The cabinet contains 1200 lan－ tern slides．By means of a ceard index the use of these slides is Ireatly facilitated．The electric are lantern is of the latest and most approved pattern．The photo studio is equipped with a 1 um－ bre of cameras and a dark room．The hue print laboratory con－ sists of an office，a sensitizing room and a printing room．The last mentioned room is equipped with a printing frame，developing sinks and drying frame．The museum contains many valuable ex－

hibits of raw and finished materials．Among these are a fine series of moulded press bricks，and panels of mosatic floor and pressed lirick work which were donated to the department．

The architectural shops occupy ahont one－hatf of the first lloor of Hachinery Hall．They are equipeed with thirty benches each supplied with a full set of tools，ten power lathes having the neces－ sary tuming tools，a large planer and a number of power saws．
＇The liussian system of shop practice was first introduced in this country by Professor licelier，and is still in ase in the shops．

## Cinil Engineming．

Instruction in civil engmeering was lirst given at the University of Illinois in the fall of 1871 mader the direction of Prolessor ．I．Bur－
litt Webl). The present incumbent of the chair, P'rofessor I. O. Balier, was placed in charge in 187s. He has done much toward bringing the department to its present standing and especially to-


Abhitectural Drafting Table.
ward establishing the very cordial relations that exist between it and the engineering profession of the state.

An aim of the instruction is the training of the mental powers to greater activity and of the power of the student to apply the knowledge already acquired. Instruction is given by lectures, text book work and assigned reading, to which are added numerous problems ind exercises. Many practical problems in field work requiring the use of the different instrmments are also given.

The department occupies the first and second floors of the east wing, a seminary room on the third floor of the east wing and a muserm on the second floor of the west wing.

On the first floor two large well lighted rooms are devoted to the masomry laboratory. The equipment consists of cement testing and briquette moulding machines, a number of slate tables, briquette moulds, scales, sieves, a rattler and a stone grinder, the two last mentioned being driven by electrical power. The laboratory also contains samples of cement, samd, Jrick, stone and several piers of masonry that have heen testel. Great care has been taken in se-


Doctile Drawinc Desk.
lerting the equipment for this lalooratory. It is said to rank second to none in the United States.

The instrument room contains a large momber of wall lockers where the field instruments are kept. In this room may also be found the tables used in the computations, and the drawings pertaining to field work. The equipment consists of five engineer's transits, two solar transits and two mining transits, tive compasses, live ordinary levels, two levels of precision, three common and two fine plane tahles, stadia boards, lining rods, chains, tapes and other
necessary apparatus. Each instrument is placed in a separate locker and only the person using it has access. Adjoining this room is the workshop, which is equipperl with tools and supplies for repairing instruments.

The drafting rooms are equipped with donble drawing desks. The musemm contans a large number of models of bridges, elevated railroads, full sized iron joints of hridges, and samples of all kinds of merchant iron. The cases contain drawings and details of many actual works now in use.

I'he engineering observatory is located in a separate building. Here are mounted, on brick piers, an astronomical transit, an altazimuth instrument reading to seconds, two polar chronometers, one sideral chronometer, two sextants and several barometers.

## Physics and Electrical Engineering.

The department of Physics and Electrical Engineering was created six years ago. Prof. S. W. Stratton, now of the L'niversity of Chicago, was placed in charge. Previous to 1888 physics had been taught br professors in other departments, and some instruction in electrical engineering had been given incidentally in the mechanical engineering course. l'or the past two years 1)r. 1). W. Shea has been at the head of this department. The growth of the department has been very rapid and it is now one of the largest in the Unirersity. The work in physics presented for all students in the College of Engineering is intenderl to give such a knowledge of the more important laws and phenomena of physical science as to enable the student to profitably pursue his subsequent technical studies. More extended comses for scientific research are also offered. The work in electrical engineering is given with special reference to the neers: of those who are preparing for work in the practical applications of electricity.

In Engineering Hall the department occupies the first floor of the west wing and the first, second and third floors of the north wing. The rooms include an olfice, private studies, a lecture room, a large laboratory, cabinet rooms, preparation room, testing rooms, a constant temperature room, class room, dralting room, seminary rooms and a work room.

The lecture room is in form of an amphitheatre and has a seatmg capacity of 200 . The lecture desk is composed partly of thin masonry pieces, thus permitting the use of apparatus in demonstration which could otherwise be used only in the testing looms. The facilities for experimental demonstration and illustration are rery
complete，gas，water，steam and electricity being arailable．Nany phenomena may also be shown by the use of an electric lantern． The curtains of the room are controlled by means of an electric motor so that the room can be easily aud quickily darkened．

The general laboratory occopies the third floor of the north wing．The equipment consists of apparatus carefully selected with special reference to quantitative laboratory work．Most of the appa－ ratus used by students is kept in the adjoining store room．By means of a small freight elevator，this room is in direct commanication with the cabinet room on the serond floor and the testing rooms on the first floor．In adranced work the apparatus for special investiga－ tions is set up permanently or kept in specially provided eases． The testing rooms are all provided with masomy piers and dark curtains．

The dynamo laboratory is located in the basement of Univer－ sity Hall．The rooms are：a direct current dynamo room，an alter－ nating current dynamo room，two general testing rooms，a battery room，a photometry room，a store room and a work room．＇The laboratory is supplied with power from a 50 －horse power steam engine．The equipment in direct current machinery inchudes a Brosh 10－are light plant，a Thomson－Houston 3－are light plant，two Edison and a Thomson－Honston incandescent dynamo，and a Jemm ． 0 ol－volt power plant．The alternating current machinery comprises a Thomson－Houston $300-1 \mathrm{gh}$ ht plant，two small single phase West－ inghonse machines and a number of transformers．The measur－ ing instruments are of late design and from the best makers．＇I＇here are very complete sets of Weston and Whitney ammeters and of Weston voltmeters and voltmeters for direet and alternating cur－ rents，electrostatie roltmeters，condensers，electro－dynamometers， Thomson balances，portable testing sets and galvanometers of all kinds．The laboratory is also supphed with much accessory appa－ ratus，such as eradle dynamometers，prony brakes，contact makers， non－inductive resistances，are and incandescent lamps and an clec－ tric light photometer．A mumber of lathes and a large variety of tools constitute the equipment of the work room．

## Mechanical Evidneering．

＇lihe department of Mechanical Engineering was established in Jannary，1870．Professor S．W．Rohinson，now of Ohio State Uni－ versity，was placed in charge．He immediately set to work and with an appropriation of only $\$ 2000$ secured a small boitur and engine，a lathe and other necessary tools and began instruction．This was
the first distinctively technical school shop instruction given in this country．From time to time many valuable additions in buildings and equipment have been made．Since September，1893，Prof essor L．P．Breckenridge has heen at the head of the department．

The instruction is intended to give the starlent it thorough train－ ing in the fundamental principles underlying the science of ma－ chines and mechanics and thus enable him to become familiar with some of the mmmerons applications．

The department occupies the third flom of the east and west wings of the building．The space consists of an office，private studies， drafting rooms，class rooms，a cabinet room and a seminary room．

I＇he drafting rooms are equipped with desks designed especially for this purpose $\boldsymbol{6}$ Professor Breckenridge．The desk，as may be seen from the cut，contains the necessary drawers，drawing hoards and places for＇I＇－squares to accommodate four students and may he used by two students at any one time．It has been adopted by all of the departments of the college except that of architecture．

In the cabinet room may be found sets of the kinematic models of Penlanx and Schroeder，machine models，specimens of lefective boiler plate and sectioned steam specialties，many of the last men－ tioned lating been donated by the manufacturers．

The mechanical engineering laboratory is located in the hase－ ment of the Chemical building．It contains engines，boilers，pmups， surface condensers and a large assortment of indicators，ganges， scales，thermometers，dynamometers，calorimeters，reducing mo－ tions，planimeters，measuring tanks and apparatus for the calibra－ tion of instruments．The engines may be run with or withont con－ denser，with plain slide or expansion valves and with antomatic cut－ off or throttling governors．The heating and power plant of the Uni－ versity contains eight boilers．two Root，one Sterling，three horizon－ tal tubular and two Babcock \＆Wilcos，aggregating 800 horse power． These，together with the power plants，pumping station and factories of the two cities，furnish additional opportmnity for tests and investi－ gations．

The mechanical engineering shops occupy the entire second Hoor and the west half of the first Hoor of Machinery Hall．They comprise four distinct shops：machine shops，wood shops，forge shop，and foundry，each of which is in charge of an instructor．The equipment of the machine shop consists of fourteen lathes ranging from 14 to 27 inches swing，two planers（one being $30 x 30$ inches by 8 feet，two shapers，one miversal and one plain milling machine，a miversal grinding machine，three drill presses，numerous small
machine tools and a supply of small hand tools. In the wood shop are fourteen new wood benches, a universal trimmer, a 34 -inch band saw, a 20 -inch wood planer and a full line of hand tools. The forge shop is equipped with sixteen forges, a blower, an exhanst fan, and tools for general light work. A small traveling crane and a cupola with the necessary saud, flasks and ladles comprise the foundry equipment. 'l'he boiler room adjoining Machinery Hall contains two 40 -horse power horizontal tubular boilers which furnish steam for a 25 -horse power Ball atomatic engine and for the heating of this building and of Military Hall.

## Municipal and Sanitary Engineering.

The department of Municipal and Sanitary Engineering, the last to be established, was organized three years ago with Professor Arthur N. Talbot in charge. It was established in response to a demand for the training of young men who intend to make a specialty of city engineering work. The course as now offered is a modification of the civil engineering course, but includes also the study of chemistry, botany, and bacteriology with special reference to their application to water supply engineering and sewage disposal. The sulject of road and street engineering, water supply engineering, and sewerage are given special consideration. The head of this department also has charge of the department of Theoretical and Applied Mechanics.

The department occupies the west wing of the second Hoor of Engineering Hall. This includes a private study, a drafting room, a thesis room, and a seminary and lecture room. 'There is also a recitation room and an oftice and computing room for the work in theoretical and applied mechanics. 'lhe drafting room is equipped with double drawing desis similar to the one shown in the cut, but modified slightly to meet the special requirements of the work of this department. A large collection of plans, prints, specifications, reports, and photographs covering municipal and sanitary engineering subjects belongs to this department.
'I'he laboratory of applied mechanics is at present located on the first Hoor of Machinery Hall. It includes the materials testing laboratory, and the hydratic laboratory. An Olsen testing machine of 200000 pounds capacity is arranged for tension, compression and flexure tests. 'Ihis machine will allow the testing of beans up to a length of 20 feet. At present a series of tests are in progress on wooden timbers, 10 inches in depth. A Pichle testing machine of 100000 pounds capacits, a litehle wire tester, and a machine for
testing small beams are among the equipment. A large collection of extensometers, deflectometers, scales, micrometers, calipers, and other measuring derices are in use. The hydraulic laboratory has an elevated tank and stand pipe connected with the water-works and with a steam pump. A pit containing tank, scales, together with weir boxes and other necessary appliances, allows experiments on orifices, tuhes, weirs, pipes, etc. A collection of meters, weighing scales, tanks, weirs, and ganges are among the equipment. The quarters for this laloratory are very crowded, and allow little room for the equipment. The trustees of the Lniversity are asking for an appropriation for enlarged quarters, and it is hoped that more room may he obtained in the near future. The work is now required of all students in the Engineering College.

## BOOKS REVIEWED.

 Edwin J. Honston. The IV. J. Johmston Co., Limited, New York.

The anthor traces in an interesting manner the progress of electrical seience from the time of Thales to the present day: Epoch-making discoveries and insentions are treated at some length and numerous interesting abstracts from original papers are given. The ontlines of inrestigations are concise and clear, and the discussion concerning the effects and relations of discoreries and inventions show careful study and somed thinking. The author is perhaps too sanguine concerning the future of clectrical science.

## BOOKS RECEIVED.

 Parkhurst. The W. J. Johnston Co. Limited, Niw York.

## EDWARD M BENSON.

Edward M. Benson was born near Carlock, McLean county, Ill., March 25, 1865. He was reared on a farm with only such educational advantages as were offered by a district school. In 1886 he entered the University of Illinois, took a course in civil engineering, and graduated in 1890. After his graduation he spent two years with the Northern Pacific Railway in Idaho and Washington, and one year with the Spokane Falls \& Northern in British Columbia. In the fall of 1893 he again attended the Unirersity, taking some special work in the municipal and sanitary and in the electrical engineering courses. Last autumn, while sojourning in central lowa, he was stricken with typhoid fever and died after a brief illness, on October 8, 1894.

Mr. Benson was an industrious and thorough student and an energetic and trustworthy engineer: The years after graduation had developed his powers even beyond the promise of his student work. While in charge of railroad construction, his executive and constructive faculties became apparent, and with his high character, his success as an engineer was assured, if only his life had been spared.

# THE TECHNOGRAPH 

## NO. 10

## UNIVERSITY OF ILLINOIS.

## CONTENTS.

PAGE.

Construction of a Railway Tmmel at llamilton. Ontario. Peter Mogensen 11
Design of Top Work for Coal Mines ….......................... F. Wichert 2 D
Strain Sheet and Estimate of Cost for a Pratt Truss Highway Bridge.
A. T. Lemmis 3:
Chemical Survey of the Water Smpplies of Illmois ….... Armur W. Pulmer 40
Inspretion of Water Pipe Laying ....................................... Relph P. Broner 4?
Flow of Water Through Siphoms ... .................................... Milos. Kictchum 48

Altermate Current Tramsormers ....................... J. J. Monse umd J. E. Pfeffer fis
An Investigation of the Relativesitrenghth of Hydranlic Cements. H. ('. Eatce St
Effect of Grimbing Mixed sand and Cement …............................ H. E. Recres 90
Impact and Abrasion Test of Paving Brick ............................. . . II. J. Burt 43
Street Improvements at the University of Illinois .................... Fohn ''. Quabe 10)
The 'remperatmre Entropy Diagram................................. B. A. Gourlemom! 105
Romanesque Arehitectmre .... .......................................... Grout C. Miller 11s
The Railway Transition Spiral on Old Railway Curves....... Sillur N. Tallot 141 Degree of Curve $\qquad$ . ....... ................ ..... . . ..........
Hilliam O. Pence 1t氵

> Heating abd Ventilation by the llot blast siystem
> F. H. Green and 'T'. Weinshenk 159

R. (Y. Vial 154
The Kiampsville Dam....
S. 'T. Monse 16is
Accurate (haining in City Snrveying .... .... ... ........................... L. E. Fischer 170
A Deseriptive lndra of Some Typieal Electrical Light and Power Contral Stations, and Isolated flants
H'illiam Est!! 1\%3

## THE TECHNOGRAPH

. OF THE . .

## ASSOCIATION OF ENGINEERING SOCIETIES.

The Technograph is a scientific publication issued annually by the Association of Engineering Societies of the College of Engineering of the University of Illinois. It is essentially technical in its scope, and contains articles of permanent value in the various departments of scientific investigations carried on at the University or by its graduates.

The price of The Technograpii is fifty cents per copy, or by mail (post paid) sixty cents.

Address all communications to
THE TECHNOGRAPH, University of Illinois, Urbana, Illinois.

Andrew Sloan Draper, Ll.D., President.

## COLLEGE OF ENGINEERING.

## FACULTY AND CORPS OF INSTRCCTION.

NATHAN CLIFFORD RICKER, M. Arch.<br>Dean, and 1'rofessor of Architecture.

S. W. Silattuck, C. E., Profeswor of Mathematics.

Ira O. Baker, C. E., Professon of Civil Engincering.
Ahthur N. Talbot, C. E., Professor of Muniripal cend Sanitery Engincering, rend of Mechanies.
Lester P. Breckenbinoe, l'h. B., Professor of Merhanical Eugincering.
George W. Myers, M. L., Assoriate Professor of Mathematics.
James M. White, B. S., Assistent Professor of Architecture.
Wilidam H. VanDervoort, M. E., Assistant Profersor of Mechanical Eu!inecring.
William D. Pence, C. E., Assistent Professor of Civil Engincering.
Bernard V. Swenson, B. S., Assistant Professor of Electrical Eugincering.
William Esty, A. M., Assistant Profeswor of Elcetrical Engincering.
Fred A. Sager, B. S., Assistent Professor of Physies.
Cyrus D. Mctane, B. S., Instructor in Architceture and Mechrmics.
J. D. Pimliaps, B. S., Instructor in General Emgincering Drawing.
A. C. Burvilam, IB. S., Instrurtor in Mathematics.

Robert A. Wood, M. E., Instructor in Mechemieal Engineeriut.
George A. Goodenough, B. S., Instructor in Mechanical Eugfincering.
Oscar Quick, A. B.. Instructor ill Physies.
Burton E. Moore, A. M., Instructor in Ihysics.
Robert C. Vial. B. S., Assistant in General Engincering Drawing.
Charles A. Gunn, B. S., Assistant in Architectuce.
Milo S. Ketchum, B. S., Assistent ill Civil Enginecring.
Paul Chipanan, B. S., Assistant in Theorctical ant Applicd Mechunics.
A. L. Almy, M. E., Assistant in Elcetrical En!juccrin!.

Cyril B. Clark, Foremen in Machine Shops.
Albert R. Curtiss, Forcman in Wood Shops.
Henry Jones, Foreman in Jlucksmith Shop.
Joseph H. Wilson, Fercman ill Foumdry.

# ENGINEERING SOCIETIES 

OF THE<br>UNIVERSITY OF ILLINOIS.

## CIVIL ENGINEERS' CLUB.

Organized Jan. 8, 1883.
H. C. Estee, ©o. Prcsincut.
II. E. Eckles, `os, I'ice-Presideut
C. G. Anderson, ?s, Sccretory and Tretesurcr.

MECHANICAL AND ELECTRICAL ENGINEERS' SOCIETY. Organized Nov. 8, 1883.

Don Swener, orf, President.
W. Zhmebman, oqu, Vicc-President oud Trcusurer.
W. W. Sarers, 'gT, Scerctary

## ARCHITECTS' CLIJB.

Organized Jan. :23, 1 s91.
S. Van Meter, ©r, Prcsident.

E H. Brandt, © 9 , Vice-President.
A. E. Fuldeniwider. 9s, Sectctary ud Trcusurcr.

## THE ASSOCIATION OF ENGINEERING SOCIETIES

(H'Tll

## University of Ilifinois.

## OFFICERS 1895-96.

Frank II. (ibeen, ©of, President.
II. C. Estee, `の, Vice-President and Librarian. F'. J. Plym, '97, Secretary and Tıeasurer.

## BOARD OF PUBLICATION TECHNOGRAPH NO. 10.

Mechemaral and Elcctrical Enginecrs’ Society.
JOHN E. PFEFNEIR, 'OG, Editor-in-Chicf:
Don SWeney, '9f, Assistant Editor.
Theodole Wefnschenk, ${ }^{\circ} O$, Assistant Editor.
C. V'. Crelfin, '97, Assistant Business Manager.

Civil Engincers' Cluh.
H. J. Jubrt, ${ }^{9} 96$, Associate Editor:
R. P. Brower, 'r, Assistant Elitor.

Fren. W. Honens, 'eff, Assistant Editor'
R. IB. Ketcuum, $\boldsymbol{O}^{(1)}$ Assistant Business Manager.

Architcets• Cluh.
W. L. Steele, 'Of, Associate Editor.
J. L. PAER, `)r. Assistant Editor".
H. J. (ilaten, $0 \%$, $\Lambda$ ssistant Editor.


## ADVISORY COMMITTEE.

1ha O. Baker, Prolessor of Civil Enginorring.
L. P. Brackevmbak, Professor of Mechanical Engineerhge.
J. N. Wintra, $A$ ssistant Professor of $A$ rehitectmed

## PREFACE.

ALTHOUGH the Association of Engineering societies of the University of Illinois has only just completed the first year of its existence, it has quite conclusively shown that it fills a long-felt want in the University, in furnishing an opportunity for the different societies to co-operate in their efforts, and thus further advance the interests of the engineering student. But the field of nsefuhess of the Association does not end here. If the Association existed soleIy for the mutnal advantage of its members, it wonld only half fullill the object of its establishment, which, according to its constitution, is the promotion of the sciences and art. In order to accomplish this, it is necessary to place before the public a publication; and in so doing it furnishes a medinm, so to speak, through which the stndent and professor studying upon some special line of technical work, can commnnicate directly with those who are actively engaged in the engineering profession, and who are consequently placed in a position to best utilize the results of this study.

It is with no little satisfaction that, in consequence of the active interest in the Association manifested by its members, and the hearty co-operation of the professors, the Association is enabled to make this Technograph, No. 10, a book which not only maintains but distinctively elevates the standard,-a book which we hope will be of value to the student, the physicist, and the engineer.
J. E. Pfeffel.

## THE LIPRAGY OF THE LWVEReITY GF ILIMOMS

$$
5
$$

## THE TECHNOGRAPH

No. 10.
UNIVERSITY OF ILLINOIS.
1895-96.

## NATHAN CLIFFORD RICKER.

By Cybus Daniel Mclane, ©2, Instructor in Architecture.
The subject of this sketch, Nathan Clifford Ricker, was born on a farm near Acton, York county, Maine, in 1843. He is of Scotch-English descent, though his father's ancestors came to this country about 1660 , settling near Dover, New Hampshire.

The early years of his life he spent much as other boys, wandering among the hills surrounding his rugged New Englatd home. At the age of thirteen he began work in a mill owned by his father, and here, for the eight years following, he spent the greater part of his time laying the foundation of the strength which was afterward to carry him through his college course. The winters of the first five years he was employed in the mill, he spent in the district school, but the winter in which he was eighteen he made his first attempt in the profession to which he has since done such credit, and for the two following winters conducted a country school. At the age of twenty-one he felt the necessity of a better education and left home to begin work for himself. In order that he might obtain the means of accomplishing his purpose, he learned the trade of piano casemaking, at which he worked for two and one-half years. The evenings of this time he devoted to the task of preparing himself for college-a task which, after years of hard study, he accomplished by his own courage, energy and perserverance.

In 1867 he came to Illinois, spending three years in the western part of the state working at carpentry aud wagonmaking. His desire for an education was in no way lessened by his change of location, and his studying was continued with unflaggring zeal. The ability to do hard, steady work, which so
characterizes his life, was early shown in these efforts to prepare himself for college. His untiring energy and the faithful way in which he performed the mental tasks which he had allotted to himself reveal something of his true character. The manner in which he studied French was, to say the least, unique and might with profit be adopted by students to-day, having perhaps, better advantages. He set about his task in a thorough and systematic manner, lessons were assigned to himself and prepared as regularly and as faithfully as though they were to be recited to the most exacting task master rather than to himself. Two evenings were given to each lesson, one to the preparation, and the other to the recitation or review, and a lesson was not considered learned if it could not be satisfactorily recited to himself the evening following its preparation. Latin was studied also in a similar way, so that when he entered the University in 1870 he was able to obtain adranced standing in these two subjects.

In the early history of the University each student was required to do manual labor a certain number of hours a day, the chief mitigating circumstance being that he was slightly remunerated for his services. Mr. Ricker's skill in woodworking thus proved helpful, both to himself and to the University, and it was early in his course as a student that his first architectural work was designed and executed. In the annual report of the Board of Trustees for 1870 is found the following, which explains itself:
" A proposition of students Ricker and Cantrell to make a spring wagon for the use of the Horticultural Department was referred to the Regent and the Professor of Horticulture (Dr. Burrill)."

The action of the Regent and the Professor of Horticulture must have been prompt, for in the Business Agent's report for the same year is found after a date four days later than the above, the following:
"For material for wagon, $\$ 70.00$." The wagon was completed sometime that year at a cost of $\$ 140.00$, Mr. Ricker doing the wood-work and Mr. Cantrell the iron-work. For the next ten years this product of the embryo architectural department withstood the vicissitudes of University life and proved itself worthy of its creators. Only in very recent years has it been retired from active service.

During the year 1871 Mr . Ricker was foreman of the architectural shops. The first six months of 1872 were spent in the office of J. W. Roberts, architect, Chicago. He returned to the University the next year, and was graduated at the end of the second term, having finished a full course in a little over three years. During his last two terms at the University he had temporary charge of the Architectural Department. Immediately after graduation he started for Europe, where he spent six months in study and travel. While there he attended the Vienna Exposition, and visited Paris, London and other cities for the purpose of studying their architectural monuments. The greater part of his time, however, was spent as a student in the Bauakademie in Berlin. He returned home in September, 1873, to take the position of Instructor of Architecture in the University. It was at this time that he introduced the Russian system of shop practice, so that to him must be given the credit of first introducing in American Universities this system, which has now become almost universal. Two years later he was made Assistant Professor of Architecture. It was in the same year that he was married to Miss Mary C. Steele, who had just graduated from the College of Literature.

In 1877 he received the title of Professor of Architecture, and the next year was made Dean of the College of Engineering.

Evers year since he took charge the Architectural Department has witnessed improvement in the character of the work done, as well as in the method of doing it. The whole energy of his life has been directed toward the advancement of his department. For seventeen years he was unaided in his work of instruction, having personal charge of all the strictly architectural work in the University. In 1890 an assistant was appointed, so that in recent years he has had more time to devote to the upper classmen.

In addition to the regular work of the Department he has designed and built the Chemical Laboratory, Military Hall, and Natural Science Hall. In all of this work he has given his personal supervision to the preparation of the working drawings, as well as to the erection of the buildings. The roof of Military Hall, which is a monument to his skill, covers a floor space one hundred by one hundred and fifty feet, and is carried entirely on the walls by means of graceful trusses, which are silent but ex-
pressive witnesses of the quiet yet sufficient power of their designer. At this writing he is engaged as one of the architects of the New Library Hall to be erected this year on the campus of the University at a cost of one hundred and fifty thousand dollars. The structural part of this building is being designed either by himself or under his personal supervision.

Professor Ricker has been too busy a man to give much of his time to writing for publication. He has, however, published a text book on "Trussed Roofs," which has received flattering recognition among prominent architects, and is largely used in architectural offices. He has also written a series of lectures on Architectural Construction, which are published in blue print form and are used by students as text-books in construction. In addition to this he has found time to translate for the use of his own classes the following works: Lubee's Geschichte der Architeltur; Redtenbacher's Architehtonik; Pianat's Chouffuge et Vphtilition; Thiersch's Proportion in Architektur, and the following articles from Viollet-La-Duc's Dictionuaire de l'Architecture: Mennserie, Serrurerie, Peinture, Flore and Construction. He has made partial translations of numerous other German and French works.

It is the untiring devotion of such men as he that has made the University of Illinois what it is to-day. At one time when remonstrated with for working so hard he replied: "It is better to wear out than to rust out." The spirit that prompted this reply is what sustained him during his boyhood and early manhood while struggling alone to fit himself for college. It was this same spirit that carried him through his college course and gave him that hungering for knowledge which caused him to forget all other feelings, so that he would often do without a meal rather than take the time necessary to go for it. It is the same spirit that has characterized all his life in the University since his connection with it, and has enabled him to accomplish the work that he has in his department.

Professor Ricker is a thoroughly broad-minded man-broad in his culture and in his sympathies. With history, literature and art he is as thoroughly conversant as with the more technical studies of his own department. So generally is this recognized that it is often said that if one wants to know the latest
information in these subjects he has but to ask Professor Ricker.
No instructor in the University is more highly respected or more warmly loved than he. The student who has ever been in his classes is forever afterward his ardent admirer and his friend. No matter how busy he may be, he can always find time for the student who needs advice or help or encouragement. It is that kindly unselfish nature that has so endeared him to all with whom he has come in contact.

Few-very few men are so thorougly unconscious of themselves as is he. Modest and unassuming, forgetful of himself and his attainments he is devoting his unselfish life to the progress of the University and to the greatest good of the students who are under him.

## THE CONSTRUCTION OF A RAILWAY TUNNEL AT HAMILTON, ONTARIO.

By Peter Mogersen, `94. Sciool of Civil Engineering.
The Toronto, Hamilton and Buffalo R. R. extends from Waterford, through Hamilton, to Welland in the province of Ontario, Canada, a distance of 81 miles, and connects with the Michigan Central R. R. at both ends. The principal offices are at Hamilton, 43 miles from Waterford and 38 miles from Welland. A branch, about 40 miles long, joining the Canadian Pacific R. R. at Toronto, Ont., has been surveyed and will probably be constructed in the near future. When the system is completed the Michigan Central R. R. will be given track privileges over these lines to Toronto, and the Canadian Pacific R. R. will, by a similar arrangement, perhaps obtain access to Buffalo, N. Y.

In the fall of 1894 the city of Hamilton passed a by-law granting a bonus of $\$ 225000$ to the railway company, provided, among other things, that the road should be open to the public by De-
cember 31, 1895. The contract for the tunnel contemplated the completion of the work not later than that date.

The work is mostly of a light nature except at Hamilton, where the tunnel was constructed, and for some distance east and west of that city where the line ascends and descends the "Mountain," a continuation of the Niagara bluffs.

The railway follows the street grades from the southeastern limits of the city to Hamilton Station, and runs west on Hunter Street on a nearly level grade for a distance of 550 ft . It then descends on a 0.75 per cent grade and at Park Street, about 1000 ft . from the station, it enters the tunnel. The tunnel extends to Queen Street, approximately 2900 ft . from the station. West of Queen Street is a large open cut spanned by substantial wooden bridges at the street intersections.


Fig. 1. Cross Section of Tunnel.
The tunnel carries two tracks of standard gauge, spaced 12 ft. between centers. The cross section, with all dimensions, is shown in Fig. 1. This section was employed the entire length except at the east portal, where for a distance of nearly 80 ft . the arch consists of steel deck beams and buckle plates. The
latter construction was adopted to reduce the height, and thus make lighter grades for a street which crosses at that point.

Hunter Street, on which the tunnel is located, is 66 ft . wide and lined with private residences on both sides nearly the whole distance. It was intended to keep the sidewalks open as much as possible, requiring a width of from 6 to 8 ft . on either side for this purpose. As the extreme width of the tunnel is 37.5 ft., it will be seen that an open cutting of sufficient width would require nearly vertical banks. The tunnel is 1905 ft . long and the excavation varied in depth from 13 ft . at the east end to 46 ft . near the middle, averaging 44 ft . for about 400 ft ., and then decreased to 24 ft . at the west end. The height of the tunnel is 25.79 ft . It thus rises above the street surfaces at the ends and has a covering of 20 ft . near the middle.

Excavation. The excavation was commenced at the east end in June, 1895. The material at the surface was earth and sand, but at depths varying from 8 to 15 ft . cemented gravel was encountered. This material required blasting, and, being in the heart of the city and surrounded by dwelling houses, much care had to be exercised to avoid damaging adjoining property. The refractory nature of this material retarded the work, but the slow progress was compensated for to some extent by the strength of the banks, which made shoring unnecessary. The excavated material was removed by teams hauling through the end of the cutting. A stratum of blue clay of unknown thickness follows the grade of the tunnel in a general way, rising from 5 to 9 ft . above sub-grade, except at the east end, where it falls rapidly below the foundations. On the top of this clay is a layer of waterbearing sand. To remove this water direct-acting steam pumps were employed, the steam being supplied from the boilers of hoisting engines attached to the various derricks on the work.

In July a steam shovel was put to work at the west end. The material here was mostly gravel and sand, well suited to be excavated by this means. Fig. 2 shows the machine loading a train of flat-cars under the first line of shoring. The steam shovel did not excavate to sub-grade, a considerable amount of material being left to be taken out by other means and used for back-filling. The work of excavating was carried on day and night with few interruptions.

In Fig. 3 is shown a steam derrick, erected in August, and
used for excavating at the point where the teams and the steam shovel met. The buckets used held 25 to 26 cu . ft. After being raised they were swung over a hopper and there unloaded into wagons. In the background are seen the abutment walls and the arch of the tunnel in course of construction. The excavation was here in cemented gravel, and it will be noticed that the banks stand without shoring. The top of the clay stratum is seen in the bottom of the cut. The pump located to the left was supplied with steam from one of the boilers of the traveling derrick at the end of the masonry.

The excavating derrick was of the common stiff-legged type, with $30-\mathrm{ft}$. mast and $45-\mathrm{ft}$. boom, operated by a doublecylinder two-drum hoisting engine rated at 18 H. P., with 80 lbs. boiler pressure. Under the most favorable conditions, when the buckets were loaded within easy reach of the derrick, the out-put was from 275 to 300 loads of 25 to 26 cu . ft., in ten hours during the day, and 200 to 225 loads in the same number of hours at night. But when the buckets had to be brought a considerable distance on cars, and when limited space above ground required the location of the hopper in such a position as to necessitate the raising and lowering of the boom for each load, the capacity was often reduced by one half of the above quantities. Several similar derricks were used in various places along the cutting, after the steam shovel stopped working.

When the construction of the tunnel had proceeded into the deeper portions of the cutting where considerable backfilling was required, a traveling cableway was erected by the Lidgerwood Manufacturing Co. Fig. 4 shows the tail tower, carriage, and bucket of this cableway. The buckets were similar to those used at the derricks, but somewhat larger, containing from 1 to $11 /+\mathrm{cu}$. yds. The excavation was carried on under the shoring in the back-ground. The method of working can be readily understood from the picture.

The span of the cableway was 450 ft ., with a sag of 20 ft . when loaded. The head and tail towers were 50 and 70 ft . high respectively, and were built of pine timber with posts $12 \times 12$ in., trussed with $3 / 4-\mathrm{in}$. iron rods. The horizontal bracing was $3 \times 12 \mathrm{in}$., and the diagonals $2 \times 12 \mathrm{in}$. The cables were all of steel wire with the following dimensions:Main cable $11 / 2 \mathrm{in}$., fall rope $5 / 8 \mathrm{in}$., carriage rope $5 / 8 \mathrm{in}$., button


Fig. 2. Steam Shovel Loading Fiat Cars.


Fig. 5. East Portal.



> The lomany (i: PIE
rope $1 / 2 \mathrm{in}$. The power was furnished by a double-cylinder, twodrum hoisting engine of 20 H . P. with 80 lbs . boiler pressure.

The engine-man was guided by a system of electric-bell signals given by a man conveniently stationed so as to watch the motion of the buckets among the shoring.

The capacity of this cableway varied from 150 to 175 loads in ten hours during the day, and from 125 to 150 loads at night. This output was considerably less than anticipated. The cableway was therefore discarded when the excavation had proceeded to the tail tower and derricks were employed for the remainder of the work.

The system of shoring first adopted is seen in Fig. 4. This gave fairly satisfactory results during the summer and in dry weather, but proved entirely inadequate in the deeper parts of the cutting during the fall and winter when the rain and frost made the ground unstable. The banks caved in in numerous places, causing much delay and the loss of many thousands of dollars.

A very serious cave-in occurred at the point where the tail tower of the cableway is shown in Fig. 4. The shoring farther ahead gave way shortly after and the foundation walls of the buildings on the right were exposed. Later the banks caved in on both sides nearly 150 ft . farther; a part of the foundations of the houses then fell in, causing the end of the building to setthe badly. It was rebuilt after the tunnel was finished. In January, 1896, another cave-in occurred whereby a part of a brick building fell in on the arch which was then under construction at that place. Similar accidents, though not as serious, took place in other parts of the excavation.

Much time was lost in removing the earth which thus caved in. Nevertheless, by strenuous efforts new and substantial shoring was erected, and the excavation cleared sufficiently to allow of the tracks being laid on December 28, the official inspection taking place on the same day; two days later the government license was obtained, and the road was opened to the public. There still remained several hundred feet of the tunnel to build, but as the traffic was established within the time specified by the Hamilton by-law, the principal condition for earning the bonus had been complied with.

Concrete Foundations. It was intended to make the
foundations of concrete throughout, but when the excavation could not be completed sufficiently in advance of the abutment walls, the foundations were made of large flat stones laid in cement mortar. By this means the time required for the concrete to set was gained. However, the greater portion of the tunnel rests on concrete, consisting of limestone broken to the usual dimensions, cemented by mortar made of one part Portland cement to two parts clean sharp sand. The amount of mortar was such as would, in the judgment of the engineer, properly fill all voids in the stone. The resulting mixture usually consisted of one part cement, two parts sand and four parts stone. It was placed in layers 8 to 9 in . thick and thoroughly rammed. The qualities of the cements used will be discussed later.

Abutment Walis. The straight and the curved batter lines of the abutments shown in the section are those of the tunnel and the portals respectively: The transition from curved to straight batter was made in a distance of 15 to 20 ft ., and, the walls being rock-faced, this change was almost imperceptible. The masonry was broken range ashlar work of superior quality. It was built of a hard flinty limestone quarried at Longford Mills, Ont., with mortar made of one part natural cement and two parts sand. At least one third of the stones in the face work were headers evenly distributed throughout the walls. No stones were permitted in the face having a length less than 3 ft ., a width less than $1 \mathrm{I} / 2 \mathrm{ft}$., or a thickness less than 9 in . The least bond permitted was 8 in . No mortar joints were allowed to exceed $3 / 4 \mathrm{in}$. in thickness within 8 in. of the face of the wall. The backing was made of large stones well bonded. The coping was one foot thick extending unbroken across the wall.

Niches or manholes, 100 ft . apart and alternating on the two sides, were made to give shelter to workmen from passing trains.

Two traveling double derricks, operated by steam, were used for building this masonry for a considerable distance at both ends of the tunnel. Near the middle, derricks similar to those used for excavating were employed as the presence of shoring near the bottom made the use of the former machines impracticable. In the background of Fig. 3 is a rear view of a traveling derrick whose principal features were as follows: Car plat-
form, 20 ft . long by 15 ft . wide; four wheels 18 in . diameter; gauge, $13 \mathrm{ft} .9 \mathrm{in} . ;$ masts, $12 \mathrm{x} 12 \mathrm{in.}$,14 ft . long; booms, $10 \mathrm{x} 10 \mathrm{in}$. , 24 ft . long; legs, $8 \times 10 \mathrm{in} ., 17 \mathrm{ft}$. long; two double-cylinder, twodrum hoisting engines rated at $14 \mathrm{H} . \mathrm{P}$. with S 0 lbs . boiler pressure; fall and boom ropes $5 / 8$-in. steel wire cables.

Under favorable conditions two gangs of masons could build, by means of this derrick, 20 to 25 ft . of wall on both sides in a day of ten hours.

Arch. The arch was built of carefully selected bricks with mortar of one part Portland cement and two parts sand. The bricks were well soaked in water before being laid, except in freezing weather. The inner and outer rings were carefully laid with pushed joints, and the intermediate rings were grouted.

In Fig. 5 is shown one of the centers used under the arch. They were made of three thicknesses of $1-i n$. pine boards, and were placed 3 ft .8 in . apart. The centers rested on posts standing on the concrete foundations. The lagging was of pine 2 x 4 in., 14 ft . long.

Spandrels. These consisted of ordinary rubble masonry with stones laid by hand in natural cement mortar, the latter containing one part cement to two parts coarse sharp sand.

Asphalt Covering. For the purpose of preventing water from percolating through the arch the latter, and the upper surfaces of the spandrels, were covered with a layer of asphalt one in. thick, made as follows:-A thin coat of hot coal tar was first applied; a layer of asphalt $3 / 4$ to $7 / 8$ in. thick, containing 16 per cent asphaltic cement and 84 per cent sand was then put on and rolled ; and, finally, this layer was covered with a coat of pure asphaltic cement $1 / 8$ to $1 / 4$ in. thick. In several places the layer of asphalt mixture was omitted and two coats of asphaltic cement were used. The Trinidad asphaltic cement was employed, and this was mixed with a sufficient amount of heavy oils to make it of the proper consistency.

Portals. Fig. 5 is from a photograph of the east portal and adjoining retaining walls. The west entrance is similar in construction, though the retaining walls are there somewhat different. These structures are of strictly first-class material and workmanship. The stone is from Beansville Quarries, Ont., and was furnished, cut ready for building, by Mr. William Gibson, M. P. The mortar used was made of one part Portland
cement and two parts fine sharp sand, and all joints were $1 / 4$ in. thick.

In the background of the picture will be seen a stone ring which terminates the brick arch, and between this ring and the portal the steel arch was placed.

Steel Arch. As previously noted nearly 80 ft . of the tunnel at the east end is covered by a steel arch. This consists of ribs made of deck beams $7 \times 5 \frac{1}{3}$ in., weighing about 25 lbs . per ft ., spaced 3 ft . $1 / 2 \mathrm{in}$. between centers, and buckle plates $3 \times 3 \mathrm{ft}$., $1 / 4 \mathrm{in}$. thick, riveted to the flanges of the deck beams. The longitudinal edges of the plates are covered by a $T$ section $3 \times 3$ in., weighing about 7 lbs. per ft., and are riveted to form butt joints. The arch is supported on the sides by spandrel walls similar to those on the brick arch, and is covered on the top with Portland cement concrete extending one inch above the deck beams. The ribs were bent to a radius of 3 in. larger than that of the brick arch, and were placed in pockets 2 ft . deep in the abutment walls.

Cements. The Portland cement was supplied by the Owen Sound Portland Cement Company. A series of tests made of this cement at the School of Practical Sciences, Toronto, Ont., gave the following average results: Specific gravity 3.10 ; fresh pats kept in air at $150^{\circ} \mathrm{F}$. remained sound; retained on a No. 100 sieve 21.40 per cent, and on a No. 50 sieve 3.30 per cent; tensile strength of neat cement 190 lbs ., 346 lbs , and 474 lbs. per sq. in. when 2,7 , and 30 days old respectively. As might have been expected, the coarser samples gave a higher tensile strength than the finer ones. The weight of a barrel of $4 \mathrm{cu} . \mathrm{ft}$. was approximately 350 lbs .

This is an excellent cement for mortar of one part cement to two parts sand, but for mortar mixed with a larger proportion of sand it could, in the writer's opinion, be considerably improved by finer grinding.

The natural cement was of the class known as Queenston cement, and was furnished by Messrs. Usher \& Son, Queenston, Ont. With the exception of a few laboratory tests made when the masonry was commenced, no tests of the cement were available, but from rough experiments made on the works, and from the opinions of persons who have used large quantities of this cement, it was deemed to be of a fairly good quality, and,
though rather slow setting it will attain considerable strength at an age of from 6 to 12 months. The weight was 240 lbs . per barrel. The inability of the writer to have proper tests made of all the cement is much regretted.

Provisions for Building Masonry in Freezing Weather. The paramount importance of completing the work with as little delay as possible made it necessary to build a large portion of the masonry in freezing weather. To do this especial precautions had to be taken to insure a high grade of work.

The requirement that the bricks slould be thoroughly wetted before using was discarded, and none but dry bricks, perfectly free from ice and snow, were accepted. The mortar for all classes of work was made with hot sand and water, and when the temperature fell below $10^{\circ} \mathrm{F}$. about 3 ounces of salt were added to each gallon of water. With each gang of bricklayers was a man constantly tempering the mortar on the boards with hot water, and hot water was used for grouting the intermediate rings in the arch. All unfinished brickwork was covered with tarpaulins at night, and all surfaces of frozen uncompleted masonry were thoroughly thawed and cleaned with hot brine before fresh work was added. Ice and mud frozen on stones were removed by thawing over a fire, or by steam from the boiler of the nearest derrick, or by sprinkling with salt and then cleaning with hot water.

It is needless to say that work under such conditions required an efficient corps of inspectors, and close and constant supervision.

Drainage. Referring to Fig. 1, it will be seen that at the back of each abutment wall is placed a 3 -in. tile ; this is covered with 6 in . of broken stone, not shown in the drawing. The water collected by this tile is carried to the inside of the tunnel by weep-holes made of $2-\mathrm{in}$. tile, placed 100 ft . apart. All water inside the tunnel is drained off by 8 -in. vitrified pipes laid with open joints at the bottom of the foundations and on the same grade as the tunnel.

Ventilation. It was not thought necessary to make any special provision for the ventilation of the tumnel. The smoke and gases from the engines of passenger trains do not ordinarily cause any annoyance to passengers, but at the passage of slowly moving freight trains the tunnel is of ten completely filled
with dense smoke, which, however, usually clears away in 20 to 40 minutes.

Back Fiiling. In the spaces between the banks and the abutment walls and spandrels the material was placed in suitable layers and rammed, but above the arch the earth was not compacted except partially by the movements of teams, wagons and men. The street was provisionally covered with cinders, it being intended to make a macadamized surface after settlement had taken place.

Cost. In the following table is given the cost of labor for building, and the amount of cement used per cu. yd., in the various classes of masonry. These elements of cost remain nearly constant in similar work. The prices of the materials, freight charges, etc., which vary considerably with the location and attendant conditions, and which for this work are of little or no interest to the reader, are not given.

Labor and Material Required for Different Classes of Masonry.

CLASS OF WORK.	LABOR.	CEMENT.
Concrete	\$ 0.93	1.25 to 1.40 bbl .
Abutment Walls	1.32	0.55 ".
Brick ${ }^{\text {arene. }}$	1.95	0.95
Spandiels	1.90	0.80

The above cost of labor was for work under ordinary conditions. When the progress was impeded by shoring, passing trains, etc., these values were often increased nearly 50 per cent. Masons received $331 / 2$ cts. and laborers 15 cts. per hour. The amount of cement used in freezing weather was somewhat greater than as given in the table.

The stone for the portals was delivered f. o.b. cars at railway station nearest the quarries for $\$ 12.00$ per cu. yd.

The cost per lin. ft. of the tunnel of regular section, including the drains but not including portals and excavation, was $\$ 87.00$. The total average cost was about $\$ 120.00$ per lin. ft.

The contract price for the steel arch with spandrels and concrete covering was 33 per cent more per lin. ft. than for the brick arch and spandrels as shown in Fig. 1, but on the basis of actual cost the former would, perhaps, be 55 to 60 per cent more expensive than the latter.

Quantities. The total quantities of the various classes of work were as follows :-


As before stated, the tracks were laid on December 28, 1895, when but little excavation remained to be done, and after that date trains passed daily through the tunnel. The masonry was finshed early in February, 1896, and the back filling was completed later in the same month.

The structure thus briefly described is owned by the Toronto, Hamilton and Buffalo Railway Company. Mr. E. B. Wingate was chief engineer, the writer was engineer in charge, and Mr. John Chalmers assistant engineer. The contractor for the work was Mr. Andrew Onderdonk, who was represented by Mr. William Doheney as general superintendent and Mr. W. R. Northway as consulting engineer.

## THE DESIGN OF TOP WORK FOR COAL MINES.

> F". W. Richabt, `91, School of Mechanical, Engineering

The design of a modern mining equipment requires technical knowledge belonging to the professions of mechanical, electrical, civil, and mining engineering. It is the purpose here to discuss matters pertaining to top work only, and not to consider underground systems of mining, or ventilation, the subjects to be considered in this paper pertain more particularly to the province of the mechanical engineer.

Location. We will suppose the existence of a good vein of merchantable coal, and the necessary shipping facilities.

The first questions to be settled are the depth and the pitch of the vein. A considerable number of bore holes are made, and a set of levels run to determine the elevation from some datum level, of the coal at these points. By this means the pitch or inclination of the vein are determined. These holes are usually made with a diamond drill, which takes out a core showing the formation of the various strata passed through, the quality and thickness of the coal, and the character of the overlying roof.

If all other features are favorable, the shaft would ordinarily be located about the center of the field to be mined, so that the length of underground haul would be as short as possible. But if there is any probability that much water will be encountered, the shaft should be so located that the drainage of the coal stratum will be toward shaft. If other conditions do not permit such a location for the main shaft, an auxiliary shaft should be sunk. It is very easy to provide for pumping water directly up a shaft, but the placing and operating of the necessary fixtures for moving water a long distance underground are difficult and expensive. Water collecting at the face of the workings is decidedly disagreeable to the miners, besides wet coal is difficult to screen, especially the smaller sizes, and presents a dirty appearance on the cars. When the workings slope toward the hoisting shaft, a down grade is available for hauling loaded cars.

Deep mines are not as likely to be troubled with water as

shallow ones. Sometimes workings are so dry that it is necessary to sprinkle the roads to keep the air free from dust for the workmen, and also to reduce the danger from dust explosions where open lights are used.

Output. The quantity of coal to be handled is one of the chief factors in determining the size of the plant, and the cost of operation. The greater the output the less the relative cost of production, and hence greater profit per ton. There is, of course, a limit to the number of cars that can be hoisted and dumped from a given depth, with a given hoisting outfit. From shallow mines, say 150 ft . or less in depth, with "first motion" engines, a rate of two cars per minute can probably be kept up for the day, if the top and bottom are properly arranged and no delays occur. For a short length of time cars can be handled faster than this. A mine in southern Illinois (shown in the half tone) 112 ft . deep, with a $150-\mathrm{ft}$. hoist, and 3 -ton pit cars claims to have hoisted and dumped four cars per minute for a short length of time.

The capacity of pit cars varies from one to three tons each, two tons being an average size for shafts having an output ranging from 1000 to 2000 tons per day, and one to one and one-fourth tons for shafts of 500 tons capacity. The greatest difficulty to overcome in handling a large output is the manipulation of the cars at the bottom. Four or five hundred tons per day is a small enough amount to figure on for a commercial mine, and 3000 tons per day is about the safe limit in the other direction.

The coal should be graded so as to realize the most for it. Sometimes but one grade is made, and occasionally as many as seven or eight grades are made. When all of the coal is dumped together it is called "mine run." Usually at least three grades are made, lump, nut and slack. A very nice run of sizes is lump, egg, nut, pea and culm. Slack fires reasonably well, as it contains not only the very fine but some of the coarser coal. Culm can be fired very well where the boilers are equipped with mechanical stokers, but it is very hard to fire by hand if boilers are steamed to their rated capacity. The slack is frequently thrown away, but it is a cheap fuel for those near the mines who are properly equipped to use it. Lump is not so salable for a steam coal as the egg and nut, as it is harder to handle in firing and
the large lumps must be broken up. Lump coal is sometimes crushed into smaller sizes, and in fact this is the general practice in the anthracite regions.

Methods of Grading Coal. The three ordinary forms of screens for grading coal are bar, revolving and shaking The bar or fixed screens are made of iron bars, rolled to a shape suitable for the purpose and set edgewise and parallel at a fixed distance apart. The distance between the bars is fixed by the size of the coal that is expected to pass between them. The slope of screens of this kind depend slightly upon the momentum the coal receives before striking the screen. A slope of one to two, or an angle of about $261 / 2^{\circ}$, will usually be about right for screens 20 to 30 feet long, including aprons; but when the screen is longer the lower part of the screen may be made flatter, i. e. it may be about $20^{\circ}$. If the slope is not flattened in long screens, the coal attains such a high velocity that the large lumps are often smashed into fine coal when they strike the car. On the other hand, should short screens be flat, or long ones flat at the upper end, the fine coal would check, or even choke, the flow of coal entirely. Fine coal will not slide down as flat a slope as large coal, and especially is this so when any of the coal is wet. In this connection it may be well to say that chutes from bins containing nut and the smaller sizes, should have a slope of $40^{\circ}$ or more. Culm, if damp, will of itself hardly slide at all, and always cakes if binned. All coal slides more readily on bars than on plates.

Since coal nearly always slides in a body when dumped, the bar screen is sometimes stepped, that is at each 10 to 14 ft . of length, there is a fall of 8 to 12 in. to compel a break up of the mass so that the fine coal may not be carried beyond its part of the screen. This is a good plan with the fine sizes of coal, but is hardly necessary with the larger ones, and may even cause an undue amount of breaking of large lumps, and a consequent increase in the smaller sizes.

Revolving screens are built in two forms, one turning upon an axle, and the other rolling on friction wheels. Both woven wire cloth and perforated plates are used in these screens. In the first form the screen is bolted to the outside of wheels having thin wrought-iron rims, keyed to a shaft. As the load to be carricd is not very heavy, the axle is often made by welding a
short piece of shafting to cither end of a gas pipe. In the second form, the screen cloth is bolted to the inside of cast or heavy wrought iron rings, which roll in two sets of grooved wheels, and by which the screen is driven. Only the finer grades of coal are run through the revolving screen, the lump having passed off over a bar screen.

These screens do excellent work with dry coal, but when the coal is wet the fine particles stick to the screen and clog up the smaller meshes. To overcome this difficulty, steel wire brushes are used, but they are of little advantage except in the second form of screen, where they can be placed both inside and outside if necessary. Possibly a better way of keeping revolving screens clean lies in a different form of construction, that is, making the cross section square or hexagonal instead of round. This gives a more sudden fall to the coal, and jars the wet coal loose. A principle to be observed in revolving screen construction, especially with round screens, is that the wetter the coal to be handled the greater the diameter the screen required to keep the meshes open. With dry coal a small diameter screen, four ft. for instance, works admirably.

The screening capacity will depend upon the size of the meshes, size and speed of screen, and dryness of coal. A screen making three grades of coal, having a diameter of four ft., length 12 ft ., meshes $1 / 2$ and $1 / 8 \mathrm{in}$., and making about 12 to 15 turns per minute has a capacity of about 200 tons per 10 hours. A slope of 1 ft . in 12 or 14 is about the right inclination for the axis of the screen.

A revolving screen is usually set above a row of bins, each holding a car or more of a particular grade. In this way one track, or at most two, can accommodate all the grades made. Some form of elevator must be used and usually also a conveyor. Ordinarily the link belt with steel buckets is employed as the elevator, and the conveyor is of either the screw, rope or traveling trough type. Probably the rope conveyor will be most satisfactory under ordinary circumstances.

Shaking screens are usually made of flat steel perforated plates, bolted to an iron or wooden frame suspended by iron rods. The plates are $i^{3}$. to $1 / 4 \mathrm{in}$. thick and the width usually from 6 to 8 ft . There should be a drop of 6 or 8 in., near the center of the finest screen, to break up the mass of coal and
cause a thorough separation of the fine coal. Still another method of separating the fine coal without having an excessive length of screen, is to place a short bar screen in the shaker and 4 or 5 in. above the perforated plate at the upper end. This will keep the large coal off the perforated plate till the small sizes are pretty well worked out. The shaking screen has an advantage over other forms, in that the coal is spread out and moves slowly so that slate may be picked out.

The slope of shaking screens is usually 1 to 3 or 1 to 4 . An angle of $17^{\circ}$ is good. The experience of at least one coal company has been that the upper end of the screen should be flatter than the lower end, as the coal flowed along too rapidly at first to completely separate the fine sizes. The stroke may be from 4 to 6 in. and the speed 90 to 125 revolutions per minute.

As the weight of the screen is considerable and the weight of the coal sometimes much more, the question of a suitable supporting frame is a serious one, as is also the consideration of methods for reducing the vibration due to the rapid shaking of such a heavy weights. In the first place, the supporting frame should be entirely free from the tipple, so that vibrations will not be transmitted to it. The framing should be such that there shall be no tendency to a separation of joints. Mortice and tenon work should be entirely avoided. The structure should be builtup of smaller timbers, and thoroughly bolted together, using large washers to prevent the bolt-heads and nuts from sinking into the wood. Mortice and tenor work is comparatively weak and has the further objection that it offers a place for the collection of water which rots joints, and also when built of unseasoned timber will shrink, leaving loose and unsightly joints that cannot be tightened up. Judgment should, however, be used in this as in other parts of the work, for sometimes a solid timber of the required size can be used to advantage when it can be obtained at a reasonable cost.

Where heavy and long screens are used, it will be found decidedly advantageous to cut the screen in two, and drive the two parts in opposite directions, thus greatly reducing the vibrations. Both screens should be driven from the same shaft, and that the connecting rods driving the two parts ought to be as nearly parallel as possible.

Tipple. The tipple, or headgear, as it is sometimes called,
is worthy of close attention and study, because it must be strong to resist its everyday use and high wind pressures, for it is not infrequently a structure of considerable height. The material ordinarily used is wood on account of its cheapness. Of recent years some tipples of steel have been erected. They have less surface to catch wind, and if properly constructed may be easily taken down and removed to new shafts. Great care must be exercised to protect the steel from the corrosive action of the mineral water that is usually present in coal mines.

The half-tone illustration (opposite page 22) shows the side view of a modern equipment, and a few remarks about its peculiarities may be of interest. The winding drums are 6 ft . in diameter, the sheave wheels are 12 ft ., and the rope used is $11 / 2$ in. in diameter. At first thought it would seem useless to have sheave wheels so much larger than the drum, but a glance at the construction of the tower will show that in order to keep the weight directly over the post timbers and for the rope to reach the center of the shaft, the wheel must be large. This tipple is made on the built up plan. The height is 68 ft . to the center of the sheaves. The braces running back to the engine house and also the posts, spread out at the ground to nearly three times the distance they are apart at the top, thus obviating the necessity of side-bracing. A peculiarity of the posts is that they are built of four timbers, separated by several inches, so other framing timbers may be bolted between them in either direction, as may be seen in the view. Each of the four timbers consist of two timbers $5 \times 8$ in. bolted flat together.

In designing a tipple 10 to 15 ft . of headroom should be allowed when the cage is at its highest dumping point. This allows a margin in case of accident, and is sometimes convenient when adjusting the hoisting ropes. The method of dumping the cars will have considerable effect on the general design, and will be mentioned later. The diagonal bracing may be of iron rods or timbers. The timbers should be painted before the tipple is erected. It is well to dip all bolts in a mixture of linseed oil and plumbago. This will preserve the bolts, and the shrinkage of the wood may be easily followed up with the nuts. The cage guides are made of various sizes from $4 \times 4$ to $6 \times 6 \mathrm{in}$., of hard wood to prevent wear, and are fastened every 6 to 10 ft . to the other timbers, either with bolts or lag screws. The
heads of the bolt must be counter sunk to prevent the cage catching.

The Hoisting Outfit. The hoisting outfit consists of steam plant, engines, cages, ropes and sheaves.

Mine water is usually abundant, and sometimes it may be found necessary to use it temporarily for boiler purposes. As it usually contains large quantities of mineral salts, especially lime sulphate, some form of live steam purifier should be used. Cylinder or flue boilers are most frequently used, they being more easily cleaned from scale and sediment than other forms. Notwithstanding the fact of comparatively cheap fuel, the use of inefficient boilers, and then allowing much scale to accumulate, makes the ordinary mine steam plant a considerable running expense. There is no doubt but that well designed boiler plants, with water tube or tubular boilers and facilities for purifying the feed water, would be a profitable investment in many places.

Hoisting engines for shallow mines have heretofore usually been geared, but of late the tendency has been to use "first motion" engines for shallow as well as deep mines. Single engines have been used, but are giving way to double engines, as they are more prompt in starting, more easily handled, and requiring no fly wheel. A hoisting engine is sometimes subjected to very severe strains by reason of large lumps of coal falling from the pit cars and wedging between the shaft timbers and cage. It is necessary to select an engine heavy enough to withstand such shocks. The proper size of cylinder depends on the weight of cars to be hoisted, height of hoist, size of drum, and output per day. One prominent manufacturing concern figure a double engine so that one cylinder is large enough to do the work. This gives an abundant power to make the engine prompt acting. The valves should be balanced so that the reversing gear may be easily handled.

The size and kind of winding drum is of considerable importance. The ordinary straight drum, consisting of two spiders keyed to the shaft and lagged with wood, is very commonly used. This drum is usually 6 to 8 ft . in diameter, except in deep mines, and long enough to hold one rope; if both ropes are wound on one drum, it must be long enough to hold all of one rope and part of the other, for as one rope unwinds the other winds, and they may overlap each other on the central part
of the drum. Cast iron drums, with a spiral groove cast in the face, are also frequently nsed. In deep mines where the unbalanced part of the rope makes a considerable difference in the starting load, tapering cast iron drums with a spiral groove cast in the face are used. The ropes are so attached that the loaded cage at the bottom begins to wind on the small end of its drum and the empty cage at the top begins to unwind from the large end of its drum. There is but one disadvantage to this drum, the cage is moving fastest (relatively to the engine) at the top of the lift, thus making it more difficult to handle. This objection is most serious when self-dumping cages are used. The "camel back" drum overcomes this difficulty. A continuous rope is used for both cages. Beginning at one end, two or three wraps are made around the drum, then as one rope winds on the drum the other side winds off, the wraps crossing from one end of the drum to the other. This drum is cast iron, with grooves in the face, and is considerably larger in the center than at either end, so that as the cage starts from either top or bottom it moves slowly, runs rapidly at the middle of the lift and slow again as the cages approach "landing" and "bottom." Thus the engine has great starting power at the beginning of the hoist and also permits the cage to be easily handled at the top. Its only disadvantage is that a break anywhere in the rope compels the whole to be discarded while if two ropes are used only one may be damaged. This disadvantage is offset, however, by the fact that a much shorter length of rope is required with the "camel back" drum than where two separate ropes are used.

Steel wire rope having 6 strands of 19 wires each on a hemp core is generally used, the diameter varying with the weight to be lifted. Some of the sizes used in Southern Illinois are, for 3 ton cars $11 / 2 \mathrm{in}$. rope, for 2 ton cars $1 \frac{1}{4} \mathrm{in}$. rope, and for $1 \frac{1}{4}$ to $11 / 2$ ton cars $11 / 8 \mathrm{in}$. rope. The breaking strength of these sizes are 154000,104000 , and 84000 pounds respectively. If the cage and car weigh as much as the coal the factor of safety is in each case about 13 or 14 , neglecting the weight of the rope. This large margin of safety is necessary on account of the sudden strains to which it is so often subjected.

Sheave wheels should have a diameter great enough to prevent too short bending of the rope. Good practice is to have the sheave diameter and also that of the drum, 60 times that of the
rope. It is not uncommon to see but 40 diameters used, and occasionally almost as great as 100 . Sheave wheels are sometimes lined with wood or leather to prevent too great wear of the rope, but it is questionable whether this adds materially to the life of hoisting ropes, as the cast iron drums of the engine are rarely, if ever, lined with either of these materials.

The modern mine cage is built in a great variety of forms, but may be divided into two general classes. First those used for hoisting only, and second, those used for dumping as well. It is a requirement of the mining law that at least one cage shall be equipped with a hood that will protect men from any object that may fall down the shaft while they are being hoisted or lowered, and also that the same cage shall be provided with safety catches that will hold the cage from falling in case the rope should break.

Some form of "keeper" is used to prevent the car from rolling off the cage while being hoisted, and when self-dumping cages are used, it must hold the car to the cage bottom while being dumped. Some keepers automatically stop and hold the car when it comes to the right place, while others must be operated by hand. The former admits of more rapid "caging" of cars, and for that reason are preferable.

There are two general methods of dumping coal. By the usual method the car is pulled off the cage and run to the dumping place, usually 10 to 30 ft . away. Here the car is stopped on a pivoted platform, which is tilted far enough to cause the coal to slide out of the car, the end of the car being automatically opened at the same time. This method is used at the mine shown in the illustration (opposite page 22). But the most interesting feature at that place is that the empty cars are not pushed directly back to the empty cage, but take another track back to the shaft, and are elevated by a movable platform on an inclined track to the cage level, and pushed on from behind by a steam pusher, which shoves off the full car at the same time. Thus no time is lost in waiting for the car to be dumped. Cars are sometimes run into a frame that turns completely upside down, either on a pivot or by rolling along a track. The novelty of this arrangement is in the fact that the center of gravity of the car and frame is above the turning point, both when the full car
has run into the frame, and when the car has been emptied, so that the car automatically dumps and then rights itself.

The second general method of dumping is that in which the car remains on the cage, but the cage bottom is automatically inclined and the car door opened, so that the engineer does the dumping. This method saves some cost in labor, and also requires less material in the tipple. The most important consideration in selecting a self-dumping cage, is to be sure that no loose coal can fall down the shaft from the car while it is being dumped, for it must be remembered that the men below are likely to be exposed while putting on a loaded car.

# THE STRAIN SHEET AND ESTIMATE OF COST FOR A PRAT'T TRUSS HIGHWAY BRIDGE. 

By A. B. Loomis, ${ }^{9} 93$, School of Civil. Engineering.

We shall assume that our data include the span or distance center to center of end pins, width of clear roadway, and width and number of sidewalks. The panel length of the trusses will depend upon the kind of joists used-steel or wood. Steel joists permit of longer panels than do wood joists, and long panels are more economical than short ones. Given the number of panels and the span, the economical height of truss may be obtained from Prof. DuBois's table.* The economical height of truss has been found to be such that the weight of the web system about equals the weight of the chords.

The capacity of the floor system varies with the nature of the traffic on the bridge. If not specified, it is usually taken at one hundred pounds per square foot. For a city bridge a road roller should be provided for. Road rollers will usually govern in the design of floor joists, and with short panels will also determine the floor beams.

The live load per lineal foot equals the capacity per square foot multiplied by the width of roadway and sidewalks. It may be somewhat less than this if the bridge be of considerable span, as such a bridge is less likely to receive its full load.

## DATA.

The following data will be used for the case under consideration:

Length of span. ..................... . 160.2 ft.
Width of roadway .................. 16 "
Live load. . . . . . . . . . . . . . . . . . . . . . . 80 lbs. per sq. ft.

[^12]The span will be divided into 9 panels. The depth, determined from DuBois's table, is 24 ft . From these data the following deductions are made:

Panel length	17.8
Length of posts.	24.0
Length of ties	29.88
Live load per lin	1280 lbs .
Live load per pa	11392
Sec $\theta$.	1.2449
$\operatorname{Sin} \theta$.	0.5957

## DETERMINATION OF WEIGHT OR DEAD LOAD.

Before we can calculate the stresses in the truss it is necessary to determine approximately the weight of the bridge. The weight of the flooring, joists, and hub guards may be arrived at directly, and will be calculated per lineal foot of bridge. The details of the weight are as follows:

Lumber:
flooring, $3 \mathrm{in} . \times 16 \mathrm{ft} \ldots . . . . . . . .48 \mathrm{ft}$.
wheel guards, 2 ps. $5 \times 6$ in...... 4 "
spiking pieces, $7 \mathrm{ps} .3 \times 5 \mathrm{in}$...... 9 "
61 " (a) $4 \mathrm{lbs} .=244 \mathrm{bs}$.
Joists, five $7^{\prime \prime}$ I beams ( 1 ( 15 1bs. . . . . . . . . . . . . . . . . . . . . . 75 1bs.
" , two $7^{\prime \prime}$ channels (は, 91⁄2 1bs. ......................... 19 . 19
Hub guard. .................................................. . . 16 "
354 "
Weight of trusses, floor beams, and lateral bracing (roughly estimated).................................... 376 "

$$
\text { Total. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . } 730 \text { ، }
$$

Where a record of former estimates is kept, the weight of iron in a new bridge can easily be approximated if a bridge with about the same span and with the same number of panels can be found. The loading need not be the same. The method assumes that the weights per lineal foot of the trusses for like spans are proportional to their respective total loads per lineal foot. Suppose for our case we find a similar bridge whose truss
weight is 374 lbs . and whose total load is 3130 lbs . per lineal foot. We have for the total load of the given bridge:

> | Live load per lin. ft. . . . . . . . . . . . . . . . . . . . . . 1280 lbs. |
| :--- |
| Weight of joists, guards and lumber. . . . . . . |
| 354 " |
| Assumed weight of trusses, etc. ............. |
| 376 |
| Total................................... 2010 |
| 010 |

By proportion, truss weight : 374 :: $2010: 3130$, from which the weight of the proposed truss equals 240 lbs . per lin. ft . To this add 25 per cent for weight of details and the equivalent weight, per lin. ft. of bridge, of the cross beams and lateral bracing. These latter are estimated to be 42 and 34 lbs . respectively. The result is 376 lbs . As this total weight of iron agrees with our original assumption, we can proceed. If it did not agree with the assumed weight, we should modify the assumed weight and repeat the process.

## CALCULATION OF STRESSES.

Chords. For the chords the maximum stresses occur with the bridge fully loaded. The center moment equals $\frac{W^{l} l^{2}}{8}$, in which $l$ equals the length and $W$ the load per foot. The live and dead loads per panel per truss are 11392 and 6497 1bs. respectively. Calling these quantities $L$ and $D$, the expression for our center moment becomes $\frac{9(L+D) l}{8}$. The moment at any point varies as the square of its distance from the center. As the chord stress in any panel equals the bending moment at the adjacent panel point nearer the center divided by the height of truss, we can say that the chord stresses vary as the squares of the distances from the center.

The value of the center moment divided by the height is

$$
\frac{9(11392+6497) 160.2}{8 \times 24}=134335 .
$$

The stress in $E F$ (Fig. 1, next page) equals the stress in $D E$, $=\frac{\text { moment about } e}{24}$.
$e$ is distant $\frac{1}{9}$ from the center to the end of the span. So we subtract $\left(\frac{1}{9}\right)^{2} \times 134335$ from 134335 to get the stress in DE. For
the stress in CD we subtract $\left(\frac{3}{9}\right)^{2} \times 134335$ from 134335 , or $\left(\frac{8}{81}\right) 134335$ from stress in $D E$. In like manner the stresses in $B C$ and $a b$ are found.


Fig. 1
Tabulating, we have: Center Moment $\div 24=134335.0$

$$
\begin{aligned}
& \text { Stress in D) E................. }=\frac{1658.5}{{ }^{\frac{1}{8} 1} \times 132676.5} \\
& \frac{8}{81} \times 134335=13268.0 \\
& \text { Stress in C } D \text {. .................... }=\overline{119408.5} \\
& { }_{81}^{16} \times 134335=26536.0 \\
& \text { Stress in } B C \ldots \ldots \ldots \ldots \ldots \ldots \ldots=92872.5 \\
& { }_{8}^{2} 4 \times 134335=39804.0 \\
& \text { Stress in }{ }^{\prime} b \ldots . . . . . . . . . . . . . . . .=53068.5
\end{aligned}
$$

It will be seen that the above fractions are such that all the quantities may be obtained from the first one.

Webs. The stress in a diagonal member equals the shear in the panel multiplied by sec $\theta$. The stress in a post equals the shear in the adjacent panel which is nearer the center. The live load shear in panel $a b$ is greatest with all panels from $b$ to the right end of truss fully loaded. This shear equals 4 panel loads, equals $\frac{36}{9}$ panel loads. In the same manner the maximum live load shear in panel $b c$ equals ${ }_{9}^{28}$ panel loads, etc. The numerators of these coefficients are written just below the diagram (page 35). The lower row is for maximum live load shears and the upper for minimum live load shears. The former are used to determine the stresses in the main diagonals and the latter the stresses in the counters.

The shear due to the dead load is zero at the center of the truss and increases by $D$ at each panel as we move from the center. If the above truss were of an even number of panels, the dead load shear in the first panel from the center would equal $\frac{1 /}{2}$ and increase as before.

Counters. The stress in the counter of any panel is found by subtracting the dead load shear from the minimum live load shear and multiplying the difference by sec $\%$. Thus:

$$
\text { Stress in e } F=\frac{10 L \sec \theta}{9}=15760 .
$$

Stress in $d E=\left(\frac{6}{9} L-I\right) \sec \theta-1368$.
Main Diagonais. The stress in the main diagonal of any panel is found by adding the dead load shear to the maximum live load shear and multiplying the sum by sec $\theta$. Thus:

$$
\begin{aligned}
& \text { Stress in } D e=\left(\frac{15}{9} L+D\right) \text { sec } 0=31728 . \\
& \text { " " } C^{\prime} d=\left({ }_{9}^{21} L+2 D\right) \sec \theta=49272 \text {. } \\
& \text { " " } B c=\left(2_{9}^{8} L+3 D\right) \cdot \sec \theta=68392 . \\
& \text { " " a } B=\left(\frac{36}{9} L+4 D\right) \sec \theta=89088 .
\end{aligned}
$$

As the maximum stress in " $B$ and the maximum stress in the chords both occur with the full loading on the truss, we have by resolution of forces:
a $B \times \sin \theta=a b$, or $89088 \times 0.5957=53069.7$. As our stress for $a b$ was 53068.5 this is sufficiently accurate.

Posts. For the stresses in the posts the simplest method is to divide the stress in the diagonal intersecting the post at the top, by sec $\%$. This is easily done with a slide rule. Otherwise the stresses may be obtained in the same manner as the diagonals, using $\frac{L}{9}$ instead of $\frac{L \sec \theta}{9}$ and $D$ instead of $D \sec \theta$.

Lateral Rods. The stresses in the upper bracing are calculated for a wind pressure of 150 lbs . per ft . of truss, and in the lower bracing 250 lbs . per ft . of truss. The stresses and the method of obtaining them will not be given.

## ESTIMATE OF MATERIAL.

We shall not go into the method of proportioning material, but will show how having done this the estimate is completed. The distribution of the metal and the resulting weights are shown in the bill of material on page 38.

The unit stresses used are:
Tension.... 12500 or 10000 lbs . per sq. in.
Compression......... 10000 " "
Bending
16000 " ، "
Truss Members. For the lengths of tension members we add enough to the center to center lengths to cover the extra material in the eyebar heads. In this case 3.5 ft . were added. This much was also added to the length of the end post to cover the material in the shoe. The length of the intermediate posts will depend on the manner of detailing the connection with the top chord. If the post extends only to the under side of the top chord, its length center to center pins will be sufficient.

Pins, Batten, Etc. Having the weight of the trusses it is necessary to add something to cover weight of pins, pin plates, rivets, lacing on compression members, splice plates, batten plates, etc. The weight of these details will vary with the specifications, but 25 per cent for panel lengths up to 20 ft ., and 20 per cent for longer panel lengths may be taken as a fair basis for estimating.

Beams. The weight of one floor beam with connections as it will be shipped is figured; and this, multiplied by the number of times it occurs, is inserted with the other material.

Lateral Rods. The lateral rods may be tabulated as is most convenient. Their length will vary with the detail of their attachment. In the present case we have used the diagonal length of a right triangle, one side being the panel length of the truss and the other side the clear distance between trusses. To this was added 2.5 ft . for nuts, upsetting, etc.

Top Lateral Struts. The upper struts are all made alike, as it is usually not practicable to proportion them for the small stresses they receive. Where standard struts are used it is well to have their total weights calculated for different weights of angles.

Portals. Certain standard portals may be used, the weight of which will depend on the span and on the width of roadway. This weight may be roughly estimated without designating the portal.

Joists. If steel joists are used their weight should be kept separate from that of the other material, as the shop cost on them is different.

Hub Guards. Certain standard hub guards may be used, and the weight may be assumed without designating the details of the design.

Lumber. For this item we have only to multiply the amount per lineal foot, previously estimated, by the full length of the bridge.

Bili, of Material.

Member.	Material.	Area	$\left\lvert\, \begin{gathered}\text { Wt. } \\ \text { per ft. }\end{gathered}\right.$	Length.	No.	$\underset{\substack{\text { Total } \\ \text { wt }}}{\text { cta }}$
Lower Chord.		8q. in	lbs.	$f t$.		lòs.
(l-c	$2-21 / 2 \times 7 / 8$	4.38	14.6	21.3	8	2488
$c-d$	2-4 ${ }^{716}$	7.50	95.0	21.3	4 4	494 ?
$d-c$	$\cdots-4 \times 13 / 4$	10.00	33.0	21.3	4 4	495
Upper ${ }^{\boldsymbol{c}}$-f	$2-5 \times 1 \frac{1}{16}$	10.63	35.4	21.3	2	
UPPER CHORD. $B-C$	? $9^{\prime \prime}$ Channels @ 14 th, $14 \times 1 / 4 \mathrm{Pl}$.	11.90	39.9	17.8	$4)$	
C-D	$z-9 "$ " (6) 14.5 tb, $14 \times \frac{5}{16}{ }^{\text {¢ }}$	13.07	43.9	17.8	$4\}$	9448
D-E		14.55	48.9	17.8	4	
$E-F$	2-9" " ( 15.5 th, $14 \times 3 / 8{ }^{3 / 8}$	14.55	48.9	17.8	2	1741
Webs. $a-B$	2-9" Channels @ 14 1b, $14 \times \frac{5}{16} \mathrm{Pl}$.	12.77	429	334	4	5731
$B-C$	2-3 $\times 15$	5.63	18.7	33.4	4	5731
C-d	$2-21 / 2 \times \frac{18}{16}$	4.06	13.5	334	4	
$D-e$	$2-2 \times 5$	2.50	8.3	33.4	4	6306
$E-f$	$1-1 \frac{1}{4}$ square	1.56	5.2	33.4	4	
$E-d$	1-3/4 round	. 44	15	334	4	
B	$2-184 \times 5 / 8$	2.19	7.3	27.5	4	803
C	$2-8^{\prime \prime}$ Channels (1011 11 th	6.60	22.0	24.0	$4)$	
I)	"-7" " (\%) 9.51t,	5.70	190	24.0	$4\}$	5472
E	2-6" ${ }^{\prime \prime}$ ( 8 tb	4.80	16.0	24.0	$4)$	
						38439
Details.						9610
F'Lour Beams.	I beams $@ 850 \mathrm{tb}$				8	6800
Lateral Rods. $a-b$	$11 / 2^{\prime \prime}$ round		6.0	28.4	4)	
$b-c$	13, " ${ }^{\prime \prime}$		5.0	28.4	4	
$c-d$	11/8" "		3.4	28.4	4	
$d-e$	7/8" "		2.0	28.4	4	
$c-f$	3/4", ${ }^{3 /}$		1.5	28.4	4 ¢	2692
$A-B$ $B-C$	$17 / 0$		2.7	$\stackrel{28.4}{ } 9$	4	
$B-C$ $C-D)$			2.0	28.4 284 28	4	
$D-E$	$8 / 4.1$		1.5	28.4	2	
Top Struts.	$4-1 \mathrm{~s}, 21 / 2 \times 2 \times 2.8 \mathrm{nb}$				6	1404
Portals.					2	1255
						60200
Joists			94.0	162.0		15228
Hub Guards ......					2	2560
LUMBER............	$9880 \mathrm{ft} .1 \mathrm{~B} . \mathrm{M}$.					

## ESTIMATE OF COST.

Cost of Truss. Having the amount of the material, it remains to estimate the cost. To find the cost of the material, determine the percentages of I beams, channels, bars, plates, and angles in the structure.

These percentages are:
I beams. . . . . . . . . . . . . . . . . . . . $11 \%$
Channels....................... . $28 \%$
Bars ............................ . . $31 \%$
Plates and angles ............ $30 \%$
From these data and the market price, the average price per pound may be computed as follows:

I beams and channels, 3 ) \% (ce. 1.68 cts. per lb. f.o.b. shop . 6552
Bars, $31 \%$ (ie 1.35 " " " " . 4185
Plates and angles, $30 \%$ (11. 1.88 " " " " . 5640
Average price " " " " $\overline{1.6377}$
The cost per 1b. of the truss is then found thus:
Cost of steel, f. o. b, shop, per lb. ................ . 1.64 cts.
Shop cost per lb...................................... 0.55 "
General expenses per lb ..... ........................... 0 "
Freight to destination per lb...........................16 "
Total cost of truss per 1b.......................2.85 "
Cost of Beams.
Cost of steel f. o. b. mill, per lb. .................. . . 1.68 cts.
Shop cost per lb....................................... 0.10 "
General expense per lb ............................. . . 0.51
Freight to destination per 1b...........................16 "
Total cost of beams per 1b....................2.45 "
Total Cost of Bridge.
Trusses, 60200 1bs. (11 $2.85 \mathrm{cts} . . . . . . .$. . . . $\$ 1715.70$
Beam, 15230 "، (، 2.45 " ............ 373.14
Hub Guard, 2560 " (11 3.10 " ............ 79. 36
Lumber, $\quad 9880 \mathrm{ft}$. B. M. (e $\$ 20.00$ per M.. 197.60
Erection ........................................ . . 250.20
Total cost of bridge . . . . . . . . . . . . . . . . . . $\$ 2616.00$

## CHEMICAL SURVEY OF THE WATER SUPPLIES OF ILLINOIS.

By Arthur W. Palmer,'s3, Professor of Chemistry, University of Iflinols.

Since the middle of September, 1895, there has been under way at the University a series of examinations of the water supplies of the state. With funds appropriated by the last legislature for this purpose, special quarters have been fitted up in the Chemical Laboratory and the work is now fairly under way. The original plan contemplates making a complete chemical survey of the waters of the wells, streams, and lakes of the state. That this undertaking is of considerable importance and magnitude is obvious, and although the investigation is now as far advanced as practicable, yet it is much too soon to make any but very general statements concerning it.

Since September we have been making analyses of water from various streams, and particularly the Illinois river and its tributaries. Each week we have samples taken from the Illinois river at Morris, LaSalle, and Havana; from the Spoon river at Havana; from the Kankakee river at Wilmington; from the Des Plaines and also from the Illinois and Michigan Canal at Lockport; from the Big Vermilion at LaSalle. Also we frequently have samples from the Fox river at Ottawa and from the Illinois at Peoria; and occasionally samples from the Illinois and Michigan Canal at LaSalle and at Ottawa.

Our purpose in the investigation of these waters is to determine the sanitary condition throughout the seasons of the year with a riew of acquiring additional data concerning the effects of freshets, local contamination, etc., and especially for the purpose of studying the influence of Chicago sewage upon the waters of the Illinois river before and after the opening of the new drainage canal.

One of the most important objects of our survey is the deter-
mination of standards of purity for well waters. In most sections of the state the only available source of general supply consists of wells of greater or less depth. The water taken from the lower strata, as is well known, is quite different in character from that coming from near the surface. In many cases the water from wells ranging in depth from 60 to 200 ft . has an unpleasant taste and is otherwise objectionable on account of odor, color, or turbidity. Nevertheless these waters frequently are to be preferred from a sanitary stand point to the more palatable, clear and apparently pure waters of shallow wells, which, although general appearances are strongly in their favor, yet frequently are unquestionably unfit for use because of contamination with surface water or sewage. It is undoubtedly true that in nearly all thickly populated towns shallow wells are as a rule contaminated with refuse matters of animal origin. Wherever we have had to make examinations of well waters from towns or villages, we have found it necessary to condenn many of these sources because of the evidences of contamination and pollution.

The standard of purity for both shallow and deep wells must depend on the character of the soil in the localities whence the waters proceed. Standards usually accepted have been originally determined for localities where the conditions have been quite unlike those which prevail in Illinois and generally throughout the Mississippi Valley. For the purpose of acquiring data whereby we may rationally judge of the purity of water supplies from wells we are making periodic examinations of water taken from certain shallow wells and also of water taken from certain deep wells, the wells being selected because of their being representative of general conditions and above all suspicion of contamination.

A feature of our work which may appeal more immediately and directly to the individual citizens of the state, consists in the examination for private parties of any well waters which are suspected of inducing or favoring disease. Whenever such cases are brought to our notice we send clean bottles and directions for collecting samples, and analyses are made at once and reports sent to the interested parties. We prefer that requests for this sort of work should come through the local health officer, but such analyses are made for any citizen of the state who applies
either through the health officer or directly to the chemical department of the University.

Since beginning the work we have made about 650 analyses, a large proportion of which have been for private citizens as above indicated. The work upon the Illinois river and tributaries may be considered as supplementary to that conducted by the State Board of Health in 1888 upon the same waters.

The problem concerning the ground waters of the state as indicated by analyses of the waters of wells of greater or less depth, is a problem which has not hitherto received such attention as the importance of the subject deserves, and while the progress must necessarily be slow, yet the outcome will undoubtedly be of benefit as furnishing a more certain basis for judgment concerning the condition and suitability of waters from these sources.

## INSPECTION OF WATER-PIPE LAYING.

By Ralipi P. Brower 9\%. School of Civil, Enginemering.

Most of the water works plants which are being constructed are comparatively small ones. The inspection of such work is often placed in the hands of inexperienced men who are also frequently required to do much of the engineering work. It will be the purpose of this paper to offer suggestions to those who may be so placed.

It is not expected that the methods here given will apply to all cases. Nearly every contract will present conditions for which special methods and devices will be required. To become proficient in this, as in any other line of work, close observation of details is necessary.

In staking out the work, the method of procedure will vary with the local conditions. Water mains are usually located a fixed distance from the center lines or from the curb lines of the streets. If the street intersections or block corners are marked by monuments, the transit will not be needed in giving lines; if curb lines are marked or curbs set, the work can be laid off from
them; but if street intersections, block corners, or curb lines are not marked, a survey will be necessary. Stakes should be set about one hundred feet apart, and one or two feet from the edge of the proposed trench. In order that they may be accessible for checking the alinement of the trench, stakes should be placed on the side opposite to that on which the dirt will be thrown.

Water mains are not usually laid with regular gradients. When the streets have no established grades, it is customary to lay the pipes four and one-half or five feet below the surface, varying the depth at critical points in order to avoid air pockets and abrupt changes in gradient. Where street grades are established the pipes are usually laid at a constant depth below street grade, except where the surface of the ground is below such grade, when they are placed this same depth below the surface.

In giving depths for trenches, the method of using a level and computing the grade elevation and corresponding rod reading for each station would be a waste of time. Such accuracy is not necessary. The gradienter comes into use here very nicely, the method of procedure being as follows: The transit is set up at a street intersection or at a break in grade and the height of intrument determined by a level reading on a bench mark. The target is set for grade at the instrument and the gradienter adjusted to correspond to the rate of grade. The rod is then held on the ground on the line of the trench, the target being left clamped. If the line of sight is below the target the rodman adjusts his finger to it, and notes the difference between this reading and that of the target. This difference is added to the depth of trench below grade and the cut marked on the stake. If the line of sight is above the target, the surface of the ground is below grade and no correction is necessary. In this case the man at the instrument gives the "all right" signal without waiting to find the difference between ground and grade elevations.

If levels have been taken on the streets and the notes are available, they can be used for this work. Grade and ground elevations at each station are compared, and the cuts thus determined.

Stakes locating valves, hydrants, and specials should be set at the time of laying out the trench. Such stakes should have witness stakes telling what they locate.

As soon as the work is staked out, all cuts should be recorded and all stakes locating valves, hydrants and specials should be carefully referenced from trees, light-poles, fence or curb corners. All of the delay and work caused by the loss of stakes is thus a voided.

Water pipe is often purchased without any test or inspection at the factory. It must be admitted that this is very poor practice; especially so in the case of large contracts. As foundry inspection is usually done by one of the companies which make a business of such work, it will not be dealt with here. This inspection however, does not insure perfect pipe. Cracks due to rough handling during transportation are not uncommon.

If the contract for pipe is a separate one, the weights should be checked and a careful inspection made at the car while unloading. If the contractor for the work furnishes material also, the inspector takes care that no defective pipes, or pipes that are under weight, get into the trench. After pipes are delivered on the ground they should be carefully inspected for cracks and sand holes. Each piece should be sounded with a heary hammer. The spigot end should be examined with great care, for it is here that cracks are most likely to be found.

The special castings should all be delivered before the work begins or as soon thereafter as possible, each piece being checked off on the map when delivered. Missing castings may then be ordered at once and much trouble and costly delay avoided. If the contract is a large one, the work of checking off pipe and specials will take quite all of one man's time.

It is the work of construction that requires the most attention. Each pipe should be swabbed and all dirt cleaned from the bell before it is laid. Small boys take delight in hearing stones rattle through iron pipe. These and many other things not intended for use in a water main, are often brought out by the swab. If the end of pipe already laid is not securely plugged at night, small stones are almost sure to find their way in; and they cause no end of trouble in the operation of valves and hydrants. An ordinary cast-iron plug, yarned in, will prevent this trouble.

The depth of the trench and the bedding of the pipe should
receive special attention. The latter requires more care when, as is nearly always the case on large contracts, three or four lengths are calked together on the bank and lowered into the trench by means of derricks. If left to follow his own inclinations, the average foreman will have bell holes dug only where joints are made in the trench, leaving the other bells resting on the bottom and carrying the whole weight of the pipes. The settling of some of these bells and springing of joints is the inevitable result of this practice.

Some engineers insist that every joint should be made in the trench, giving as a reason that the joints are sometimes sprung in lowering two or more pieces which are calked together. This objection, however, is more than counterbalanced by the better opportunity for getting a well-calked joint than can be obtained in the ditch. If the lowering into the trench is properly and carefully done, very few joints will be sprung, and such joints can be readily detected and the opening easily calked.

The work of the yarners and calkers will at all times bear close watching. The condition of their tools should receive especial attention. The yarning irons should not be allowed to become sharp, or to have sharp edges that will cut the yarn. The calking tools, on the other hand, should have sharp corners, and the faces should be beveled slightly, but not too much. A little bevel on the face allows a straighter tool, and consequently less elasticity and a greater blow. The bevel should be such that the face of the tool, during, use, will be perpendicular to the axis of the pipe.

The yarner should not be allowed to use a hammer on his tool until he has nearly the required amount of yarn in the joint; but he should get each strand well home as he puts it in. Then the hammer is used and the yarn driven back until it is solid. If it is not solidly packed it will permit the lead to be driven back further than is compatible with good work. When finished the yarn should be at a constant depth below the face of the bell around the entire circumference. No lumps or kinks should be tolerated. The depth to be left for lead is usually fixed by the specifications, but should in any case be a quarter of an inch deeper than the back of the lead ring, or groove in the bell.

Before running the lead the joint should be clean and dry. The hot metal will convert any water in its way into steam
which will blow off the roll and ruin the joint. The temperature of the lead should be noted occasionally. This is determined by its color, a knowledge of which can be gained only by observation. Suffice to say that when it has a dull color the lead is too cold to run joints properly. If only enough lead is carried to fill the joint the last that is poured from the ladle will have cooled beyond the proper limit. The joint should, therefore, be run from a full ladle and at a single pouring.

The coldest lead is of course at the top of the joint, or the "gate," hence the density of the lead is least at this point. In order to equalize the density the calking should be commenced at the bottom and done toward the place of the gate. The lead is first loosened from the pipe with a chisel; then the calking tools are used in order, beginning with the smallest and finishing with one that completely fills the joint.

When setting a hydrant, much care should be exercised in getting the barrel plumb. One who has seen a hydrant which is not vertical will testify that it is a very unsightly object. There are to be found any number of men who can sight in a hydrant perfectly "by eye." When the piles of loose dirt are removed from the vicinity the hydrant is usually found to be out of plumb. An ordinary carpenter's level is easily adjusted to fit the side of the barrel, and should always be used. The working of the valve and of the drip should be tested before the hydrant is put in the ground.

Sewers and house drains are an endless source of trouble. No small part of the inspector's work is caused by the difficulty of properly replacing then. It is always best, when possible, to leave them undisturbed; but should it be necessary to remove them, they should be replaced with great care. This work should not be left for any common laborer to perform. A man skilled in this class of work is required in order to have it properly done. To replace a broken sewer and to do it well is a much more difficult task than laying a new one.

The prevalent method of testing water mains after the trench has been filled is not to be recommended. It is generally adinitted that a large amount of invisible leakage accompanies most systems of water supply, the cause of the difficulty being the impossibility of securing perfect workmanship in the joints. Absolutely tight water conduits can be obtained only after test-
ing in the open trenches. In nearly all cases this can be done with no great inconvenience or cost. If the pumping plant is not completed at the time of laying the mains, the pressure can usually be obtained from some factory pump, or fire engine, and transmitted to the mains through small pipe or fire hose connected with a hydrant nozzle. The leaks, large and small, can all be readily detected and repaired before the pipe is covered, and a perfectly tight conduit is secured.

If rock excavation is encountered in the trenches and it is desired to plat the surface of rock on the city's profiles, a convenient method of measnring it is as follows: Use three columns in the note book. Record in the first, the station numbers, in the second the depth of surface of rock below the ground, and ip the third the difference betwsen this depth and the total cut, or the depth of rock excavation. The first and second columns are used in platting rock on the profiles, and the first and third in computing quantities.

The relations between the contractor and inspector should be frank and pleasant. The inspector should be considerate of the interests of the contractor in so far as is consistent with the proper conduct of the work. Surall concessions, when they are not detrimental and save money for the contractor, work no harm and lead to pleasanter relations. They should be made with considerable discretion, for if carried to extremes, they will prove the foundation for larger askings which will be hard to refuse.

Much confusion and annoyance always results from dealing with sub-contractors, mechanics, or laborers. Of course there are many exceptions, but it is generally best to hold one man responsible for the work. If the contractor so desires, orders may be given to sub-contractors or laborers, but in this case it should be clearly understood that the orders will be considered as having been given to him.

All questions should be carefully weighed before being decided. When a decision is once given it should be firmly upheld, unless it is proved to be wrong, in which case the mistake should be frankly acknowledged. Nothing is gained by arrogance. Tact and good judgment will lessen friction and thus aid in securing superior construction.

# FLOW OF WATER THROUGH SIPHONS. 

By Milo S. Ketcium, ${ }^{\circ} 95$, Assistant in Civil Engineering.
In waterworks and irrigation systems it is of ten found necessary or desirable to conduct water over a divide or summit by means of some simple, reliable, inexpensive method. Where the height of the summit, or rise, is not large, and the difference between the level of the water at the inlet and outlet, or head, is sufficient to give a fair velocity, the siphon has been found to satisfy all the above requirements. Considerable difficulty has been encountered, however, in obtaining satisfactory results in a siphon having a head sufficient to give a velocity of only 2 or 3 feet per second, where the rise was more than 15 or 16 feet. The partial vacuum at the summit causes the air in the water, due to leaky joints or carried in suspension from the inlet, to expand and check the flow, thus making it necessary in many cases to recharge the siphon at intervals. The best example known to the author of a large siphon working under severe conditions is that at New Rochelle, New York, described in The Technograph No. 6 by J. N. Chester, ' 91.

In view of the small amount of data available on the subject, the experiments, which form the basis of this article, were made in the Laboratory of Applied Mechanics under the direction of Prof. A. N. Talbot, by C. V. Seastone, '95, and the writer, in connection with the preparation of their graduating thesis for the degree of B. S. in Civil Engineering.

Apparatus. The siphon was made of 2 - in. wrought-iron pipe. The inlet and outlet legs rose vertically to the top, where 162 ft . of horizontal pipe connected them at $B$ and $D$ (see Fig. page 49). The air chamber was made by capping one end of a 6 -in. pipe 10 ft . long, and reducing it to a 2 -in. pipe at the other. It was placed 8 in. above the horizontal pipe. The outlet and inlet valves, $O$ and $I$, were gate valves; all the others were globe valves. Water-gage glasses and pet-cocks were placed as shown. All joints and connections were thoroughly coated with white
lead before beginning the experiments, and no trouble was experienced from leaky valves or joints.

Water was obtained from the city waterworks. A $5 \times 7 \times 10-$ in. duplex pump was used to pump the water back to the inlet


View of siphon showing vertical projection.
tank when sufficient water could not be obtained directly from the waterworks. The water from the waterworks or from the
pump flowed into a supply tank, holding 1400 gallons, placed four feet above the air-chamber. The tank was connected by a 4 -in. pipe with a 12-in. standpipe. From this standpipe the water ran through a 2 -in. feed pipe into the inlet tank. The water in the inlet tank was kept at a constant head by gaging the feed water with a globe valve placed near the end of the feed pipe, and by means of the overflow pipe in the inlet tank.

Charging and Starting. The outlet and inlet valves being closed and all pet-cocks opened, water was metered into the airchamber from the supply tank. When the water spurted freely from all the pet-cocks, the valves and cocks were closed and the siphon was ready for action.

This method did not remove all the air from the pipes and considerable difficulty was encountered at first in starting the siphon. With a rise of 21.5 ft . and a head of 8.43 ft . a flow was obtained by turning on the feed water suddenly at the instant of opening the outlet valve. With the same rise and a head of 4 ft , and also with more extreme conditions of rise and head, in order to start the siphon it was found necessary to force water through the apparatus at a considerable velocity by connecting the rubber hose $H$ with the inlet pipe. When the water had run long enough to drive out all air bubbles, the hose was removed and siphoning began.

Experiments. Twelve experiments were made. Experiment 9 , the longest one, is given in full, as it shows all of the most interesting facts developed during the series. (See p. 51.)

Discussion of Experinents. The experiments will be briefly discussed under 4 heads: 1. Vacuum; 2. Flow; 3. Amount of Air; and 4. Stoppage.

1. Vacuum. The vacuum was measured in inches of mercury by means of a Crosby vacuum gage, and for purposes of comparison was reduced to feet of water.

The head should, of course, be equal to the sum of the various resistances: viz., the loss or head due to entrance, the loss of head due to friction, and the loss of head due to velocity.

The rise, plus the velocity head, plus the friction head in the inlet leg, plus the loss of head due to entrance, should be equal to the vacuum at the top of the inlet pipe. The rise plus the head, minus the friction head in the outlet leg, should be equal to the vacuum at the top of the outlet leg.

Experiment IX.

Time.							Remakks.
$8-50$ 9	25.5	(Full.	0.150 0.196	30 240 24			
9-00	26.5		0126	240	260	2.25	Rise $=2.5 \mathrm{Ft}$.
$9-15$ $9-30$	26.6	Empty.	1.124 0.123	24.0		2.25	Head $=4.33 \mathrm{Fr}$.
10--10	-.		0.125				
10-31)	"		0.122				Both of the air-chamber valves
11-10	"		0.125				N and S in Fig. were open at
11-50	.،		0.124				the beginning of the experi-
12-30	$\cdot 6$		0.123				ment; at $8: 55$ the valre N was
$1-00$ $1-20$	".		0183				closed and remained soduring
$2-30$	"		0.121	23.5		2.22	the remainder of the experi-
3-00	"		0121				ment.
$3-30$ $4-10$	"		0.122				The siphon started at 8: 75 A. M.,
6-15	6		0.122				April 11, 1895, and rant until
8-00	"		0.122				12:30 P. M., April 12.
9-30	$\cdots$		0.120				
10-30	"		0.120				Amonnt of air in air-chamber at
$1:-35$	-6		0.119				the end of the experiment was
$2-30$ $4-30$	"،		0.119 0.116	22.5		2.14	1.0 cubic foot, 7.5 gallons.
6-30	" 6		0.116				
9-00	"		0.116				
10-30	'6		0116				
12-30	'6		0.117				
12-30	Tlie	iphon sto	preed	Hden			

The difference between the vacuum at the top of the outlet pipe and the corrected rise plus the head, as shown by the following table, was probably caused by the abrupt turn in the pipe at the top of the outlet leg after the water had run through the

Table Showing Difference Between the Theoretical ani) Observed Vacuen.

$\begin{aligned} & \dot{\hat{\prime}} \\ & \text { 亲 } \\ & \stackrel{y}{c} \\ & \dot{\hat{y}} \end{aligned}$							$\begin{array}{r} E \\ 0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0 \\ 0 \end{array}$			苍
$3^{*}$	\%1.5					29.92	1.05	28.80	2814	0.73
7	21.5					$2+.25$	0.36	23.89	8373	0.16
8	27.5	0.30	278	$2 \% .8$	0.00					
8	27.5 27.5					31.83 29.32	0.54	31.29 29.05	30.04 28 (i)	1.23 0.48
11	27.5	0.45	27.95	27.91	$0.0 \pm$	30.43	0.36	30.06	29.38	068
12	27.5	0.33	27.83	27.65	0.18	29.33	0.23	29.10	29.10	1000

*Experiments 3, 4, 5, and 6 gate the same results.
horizontal pipe at the summit. The abrupt bend would tend to cause an increased velocity and a decreased cross-section at and
just below the bend. The water in this contracted section would not fill the pipe, but would leave an air space. The reading of a gage placed above this point would be in error an amount equal to the difference between the weight of a column of water and a column of air having a height equal to the height of the air space. The variation is practically equal to the height of the air space, since the weight of the air may be neglected at the vacuum considered.
2. Flow. The flow was gaged by means of a 4-in. Cippoletti weir. The flow for short intervals was also determined by weighing. In computing the theoretical discharge the resistance of elbows, return bends, valves, and the velocity head was reduced to that for an equivalent length of straight pipe, using coefficient for an average velocity of 2 ft . per second.

The tables for flow of water through pipes given in the report of the City Engineer of Providence, R. I., for 1890, gave values which were uniformly 6 per cent. in excess of the measured flow. The formula $* Q^{\frac{11}{6}}=\frac{I}{C^{\prime \prime}}$, in which $Q$ equals the discharge in cu. ft. per second, $I$ equals the friction head in feet per foot, and $C^{\prime}$ equals a coefficient varying with the size and roughness of the pipe, gave results uniformly 15 per cent too small. These comparisons show that the flow of water through siphons may be computed by means of the ordinary formulas for flow of water through pipes.
3. Amount of Air. The rate of accumulation of air was quite uniform as long as observations could be made, which was as long as water remained in the air-chamber. After the airchamber became filled with air, nothing further could be determined in that direction. The siphon appeared to run as well and as long when the air-ehamber was disconnected as when it was connected. The above facts, in connection with the fact that the siphon with a rise of 27.5 ft . and a head of 4.33 ft . ran continuously for 27 hours after all the water had been lost from the air-chamber, caused the attempt to make a systematic determination of the amount of air which would accumulate under different conditions of rise and head, to be discontinued in the later experiments.
t. Cause of Stoppage. In all cases where the siphon

[^13]stopped flowing the change in flow was rapid. This decrease in flow was immediately shown by the inlet tank running over. In no case was it longer than 5 minutes from the time this overflow took place until the flow had entirely ceased, and in most cases the overflow and stoppage occurred almost simultaneously. This was quite different from the manner in which the New Rochelle siphon stopped its flow. In that, the flow decreased gradually from the time the air-chamber became filled with air until it stopped.

To see if the stoppage could be caused by the accumulation of air or by an air bubble, the following experiment was made: A bottle was connected to the pet-cock at the top of the inlet leg by means of glass and rubber tubing. On opening the pet-cock, air was drawn from the bottle into the pipe. This air would expand to 6 times its original bulk with a vacuum of 25 in . and thus completely fill the pipe for a considerable length. With a bottle having a capacity of 50 cu . in. the water in the inlet tank overflowed at the moment of admitting air, but the siphon recovered itself and the flow continued as usual until the air bubble had had time to reach the horizontal pipe at the top of the outlet leg, when the inlet tank again overflowed and the flow entirely ceased. The experiment was repeated several times with the same results.

The fact that the same phenomena were observed when the siphon was stopped by an air bubble as when the siphon stopped under ordinary conditions led the experimenters to conclude that the cause of the stoppage minst have been the same in each case. In a working siphon the air bubble might be formed by a small bubble starting from or near the inlet and growing by the addition of successive increments until it reached the summit when the siphonage would be broken, or the air might collect at the summit and throttle the flow, causing it to decrease gradually as in the case of the New Rochelle siphon. Where the pipe at the summit is smooth it is believed that for ordinary velocities the air will not collect, but will be carried over in suspension when the bubbles are not large enough to fill the entire cross-section of the pipe.

Conclusion. The experiments seem to show that the following conditions should be fulfilled as nearly as possible: (1) There
should be a summit at which an air-chamber, connected with the siphon by two vertical legs having, preferably, as great a crosssection as the main pipe, shonld be placed to facilitate the removal of the air in the siphon in charging, and to act as a storage chamber for air due to leaky joints or air taken up from the water under the negative pressure; (2) The siphon should have no abrupt turns or bends; (3) The siphon should not have an inclination less than the friction gradient at any point between the summit and the outlet. The pipe should in no case be horizontal; (4) All valves should be of such a design and so placed as not to interfere with the passage of air along the top line of the pipe nor form air pockets. Gate valves placed sidewise more nearly fulfill these conditions than do any others.

After making a careful study of all the available data on the subject and the foregoing experiments, the author is of the opinion that where the design is properly made and the material and workmanship of the very best quality, using every precaution to obtain smooth pipe and guard against leaky joints, there is no reason why a siphon will not give satisfactory results even under the most extreme conditions.

# ALTERNATE CURRENT MOTORS. 

## By Bernard V. Swenson, '93, Assistant Professor of Electrical Evginefirivg.

Although Faraday, as far back as 1821, discovered that it was possible to produce continuous motion by the agency of the electric current, it was not until after the discovery that a conductor cutting lines of force would have an electric current generated therein, and after the substitution of electromagnets for permanent ones in the dynamo, that it was possible for the electric motor to exist in any other than an experimental form.

Up to the time of the Industrial Exhibition at Vienna, in 1873, the current from the dynamo had never been used for energizing a motor, it being supposed that only a prinlary or secondary battery was capable of furnishing the requisite kind of current. But at the Vienna Exposition, where two Granme generators were on exhibition, either by accident or design, (a disputed question), one of the generators was connected with the other and for the first time a dynamo-electric machine operated another as a motor. The subject of the transmission of power has occupied for many generations the attention of engineers and scientists, but it is only within the last twenty years that the problem of transmitting power in large quantities over great distances has met with even apparent success. The greatestadvance in this branch of engineering has undoubtedly been made since the introduction of electricity for commercial purposes.

When the dynamo had ceased to be a laboratory machine, and the electric motor had become an assured success, the scientific public at once jumped at the conclusion that the problem of the transmission of power had reached its ultimate solution. But they were destined to disappointment, for as in the case of transmission of power by means of wire ropes, compressed air, and steam, great losses were encountered along the line, not to mention those losses due to the transformation of energy, which are inherent in all systems. The loss due to the heating of the conductors at once presented itself as a serious objection to the use of large currents. It was therefore necessary to increase the
E. M. F.. bint it was soon found commercially impracticable to use very high pressure with direct currents. It was at this juncture that the alternating current system was pushed to the front, and because of its great flexibility and the ease with which the E. M. F. can be transformed up and down, it soon surpassed its direct current rival as a means of transmission of power. The extensive introduction of alternating currents has consequently caused an imperative demand for efficient, and at the same time, commercially convenient, alternating current motors. In the twelve years which have elapsed since a motor capable of working with alternate currents was first in demand, great progress has been made, and to-day there are several varieties of alternate current motors which are much simpler in design, easier to care for, and more efficient than the best direct current motors.

Commutating Motors. Any direct current motor may be operated by an alternating current, provided the fields are laminated sufficiently to prevent the destruction of the motion by Foucault currents. Hysteresis losses are large and commutator troubles are liable to be severe in motors of this class operated at ordinary frequencies. When the frequency is very low they may be operated with success and with a fair degree of efficiencr. A large number of motors of this type have been built and are in operation at the present time. For the most part, however, they are small sized and of low efficiency, being used principally to operate small fans from the ordinary lighting circuits.

About nine years ago a large number of experiments were made upon motors of this kind. At that time serious difficulties were met with in the attempts to produce motors of fair output at a reasonably high power factor and with a good commutator behavior. The results obtained were not satisfactory, and since that time but little has been done in this direction.

Synchronous Single Phase Motors. *Dr. Hopkinson in 1884 was the first to show that the ordinary alternating dynamo, if first brought up to speed, would run as a motor synchronously with the generating dynamo. It is a well-known fact that the current in the armature coils of a direct current dynamo is being constantly reversed, although because of the commutator the

[^14]current is rectified in the external circuit. It is also easily seen that when a direct current enters the armature of a motor it is transformed by the commutator into an alternating current. Suppose now, that there are two similar direct current machines and that one is driven as a motor at exactly the same speed as the other which acts as a generator, it is evident that if this be the case there is no need of the commutators, as the current being alternating is rectified by the commutator of the generator and transmitted to the commutator of the motor, and is again transformed into an alternating current wave of the same frequency as was first generated, the flow of current in the armature of the motor, corresponding exactly to the flow of current in the armature of the dynamo. It is therefore evident that when two similar single phase alternate current machines are running at such speeds that the frequency is the same, one may be made to act as a generator driving the other as a motor.

The motor E. M. F. will always be nearly $180^{\circ}$ different in phase from the generator E. M. F., and the current which flows

in the armature circuit will always be due to the E. M. F. which is the resultant of the generator and motor E. M. F's., the relat tive phase angle of the current depending whon the atmount of self-induction in the circuit. Let us designate by $\mathrm{E}_{1}$, the generator E . M. F., by $\mathrm{E}_{2}$ the motor E . M. F. and by $\mathrm{E}_{3}$ the resultant E. M. F. Take the case of the motor having the same E. M. $F$. as the generator and consider the circuit as having both resistance and self-induction. At the instant that the circuit is closed (which would be at the point of true synchronism) the motor E. M. F., represented by OB, woutd be $180^{\circ}$ behind the generator $\mathrm{E} . \mathrm{M} . \mathrm{F}^{\prime}$. represented by OA . As $\mathrm{E}_{1}$ and $\mathrm{E}_{2}$ are equal, the result would be that no current would flow and consequently the motor would tend to slow down and would drop back to some position as C such that the line OC would represent its E. M. F. A resultant E. M. F., OD, would then be formed and the current in the armature would be represented by some line OE lagging
behind OD on account of the self-induction in the armature circuit. The product of this current and the generator E. M. F. multiplied by the cosine of the angle of their phase difference is the amount of power given out by the generator. The projection OH of this current upon the line of motor E. M. F. (produced) multiplied by the motor E. M. F. $\mathrm{E}_{2}$ is equal to the total mechanical power developed, the negative sign showing that the motor is doing work. It will be found that this value will, at a certain position, attain a maximum, beyond which it will again decrease. The consequence is that if the motor is loaded beyond this point, it will be thrown out of synchronism and will quickly come to rest.

If we took $E_{1}$ equal to $E_{2}$ and considered that the circuit containing resistance but no self-induction, it would be found that at no position could power be developed by the motor, and consequently it would immediately fall out of synchronism. If we should consider the case of resistance but no self-induction with $\mathrm{E}_{1}$ greater than $\mathrm{E}_{2}$, we would find that the motor armature would take up a position slightly advanced in phase and the maximum load would be that which would retard its armature to the point of true synchronism beyond which the motor would promptly come to rest.

If we take $E_{1}$ equal to $\mathrm{E}_{2}$, and neglect resistance, but assume self-induction to be present, it will be found that at the instant of synchronism, no current will flow and the motor armature will immediately lag in position to such a point that the resultant E . M. F. $\mathrm{E}_{3}$ will establish a current ( 90 degrees behind itself) which will have a component which is negative with respect to $\mathrm{E}_{2}$, showing that the motor is developing mechanical power. It will be found that the motor will operate well up to a certain maximum load, at which the angle of lag has become so great that the projection of the current upon the $E_{2}$ line (in a negative direction) has become a maximum. Berond this load the motor will immediately drop out of synchronism.

If we take $\mathrm{E}_{1}$ greater than $\mathrm{E}_{2}$ and neglect resistance but assume self-induction to be present, we will find that at the moment the circuit is closed, although current will flow, no power will be developed (the current being at 90 degrees from $\mathrm{E}_{\mathrm{g}}$ ) and the motor will act as in the case just considered.

By taking up a number of different cases in this way, assum-
ing certain conditions and constructing the diagrams, the complete theory of the synchronous motor may be easily deduced. In all cases in which the notor will operate at all it will be found that it will run in absolute synchronism with the generator up to a certain maximum load, beyond which it will immediately fall out of synchronsm and come to rest.

In the practical operation of synchronous motors the E. M. $F$ 's., $\mathrm{E}_{1}$ and $\mathrm{E}_{2}$ are determined by the field excitations and the current established in the armature circuit, producing reactive effects upon the fields, which tend to equalize the E. M. F's., E ${ }_{1}$ and $\mathrm{E}_{2}$.

The old style alternator with smooth cored armatures and flat "pan-cake" armature coils made very poor synchronous motors, but the later alternators with toothed armature cores and the armature coils wound in the grooves of the core, have been found to make very good synchronous motors, largely because of the increased self-induction of the armature and the useful effect of the armature current on its own field. A synchronous motor having the same number of poles as the generator, will run absolutely at the same speed as the generator. The motor may be designed to run at a different speed from the generator by altering the number of poles, a motor having twice as many poles as the generator running at one-half the speed of the generator. That is, the speed of the motor will be to the speed of the generator as the number of pairs of poles of the generator is to the number of pairs of poles of the motor.

It is well known that if the current of an alternator is not in phase with its E. M. F., there will be two short intervals in each complete period during which the machine will act as a motor. In like manner we will have the sychronous motor, during two short intervals in each period, acting as a generator. The only source of this power is the fly-wheel effect of the motor armature and its load.

Synchronizers. It has been stated that in order to operate a single phase synchronous motor it must be brought up to the proper speed before closing the armature circuit. It is also necessary that the motor E. M. F. should be exactly opposite in phase to the generator E. M. F. In order to accomplish this result various methods have been devised.

Figure 2 shows one form of synchronizer. It consists main-
ly of two small transformers, the primaries of which are connected to the terminals of the generator and motor respective-


Fig. 2.
1y. The secondaries of the two trausformers are connected as shown, and into the circuit are placed some incandescent lamps. By following out the connections it is easily seen that if the E. M. F's. of the machines are in such phase relations that the machines would be short circuited upon each other, the lamps will be brightest, and that when the E.M.F's. are at $180^{\circ}$ from each other, the lamps will be dark. But complete brightness or complete darkness will only occur when the frequencies are absolute$1 y$ the same. Generally the frequencies will be different and the lamps will flicker. Thus, suppose the generator is running at its normal speed, and the motor is started. At first there will be rapid flickering in the lamps, and as the speed approaches to true synchronism the flickering becomes less rapid, and regular beats occur which get longer and longer. The switch $S$ must be thrown in the middle of a beat when the lamps are dark. The machines are then so nearly in synchronism that the first rush of current throws them dead into step, and they remain, as it were, interlocked in that condition.

In single phase synchronous systems we have several prominent and distinguishing features. (1) The motors are usually separately excited to serve the complications of commutators. (2) The motor must be raised to a synchronous speed before the generator circuit can be closed. (3) There is always a certain maximum load beyond which the motor will immediately fall out of synchronism. (4) Motors must be designed with regard to the frequency of the current as well as the E. M. F. of supply, and hence are only suitable for working on particular circuits.
(5) Motors may be made to run at different speeds from the generator by altering the number of pairs of poles. (6) Motors have dead points occurring in each period and the fly-wheel effect must be sufficient to carry the armature past these points.

Synchronous Polyphase Motors. An ordinary single phase alternator may be run as a synchronous motor if placed across two of the mains of a polyphase system; but preferably the polyphase synchronous motor is identical in construction to the polyphase generator and connected to all the lines. It is identical with the synchronous single phase motor in that its field magnets are separately excited by means of a continuous current, and that when the armature of the motor is in synchronism with the generator and the circuit closed, the motor tends to run absolutely in perfect synchronism with the generator. The ordinary single phase motor must be run up to speed by some independent source of power; but in a polyphase system the rotary field set up in the armature, acting upon eddy currents in the poles of the field magnets, is sufficient in most cases to start the motor. It is thus possible to so far combine the principle of a polyphase asynchronous motor with a truly synchronous motor, that it will be capable of starting itself, and after running up to speed, will keep its speed at all loads as constant as the periodicity of supply. However, synchronous polyphase motors are not always self-starting, and like single phase synchronous motors, may require some external source of power to bring them up to synchronism.

Induction Motors. The production of rotation by means of a rotary magnetic field was a discovery of no recent date, but the real beginning of induction motors probably dates back only to 1879 , when Baily exhibited his polyphase motor to the Physical Society of London. In 1880 Deprez brought out an interesting device for effecting the synchronous rotation of two armatures electrically connected. This apparatus bears a remarkable resemblance to the later induction motors. It was operated, however, by commutated direct currents, and it is not clear that Deprez ever realized its possibilities or even had any definite idea of the nature of its action. In 1887 Professor Ferraris described an apparatus for producing a true rotary field by combining, at right angles to each other, two alternate currents, which differed by a quarter-period from one another. This is believed to be the
first time the principles of the rotating field were definitely stated.

The work done by Tesla between the years 1887 and 1891 is of itself sufficient, had no other workers been occupied in the same field of research, to have established the rotary field motor upon a solid basis. In 1888 he constructed and described the first operative induction motor, He also described the application of two and three phase currents to his apparatus. The development of this class of motors was not rapid for the next three years. In 1891 the Frankfort-Lauffen three phase transmission plant, exhibited during the Frankfort Electrical Exhibition, gave a great impetus to the development of multiphase power apparatus, and during the last five years the subject has been so rapidly developed that to-day large numbers of induction motors, working upon two and three phase systems, are in practical and successful operation.

Under the term induction motor should be classed all those alternating eurrent motors in which either the field or armature current, as the case may be, is derived, not directly from the working circuit, but by induction from that member of the motor, whether field or armature, which does receive current directly from the line. In other words, induction motors differ from all other motors in that the E. M. F. of the line is applied to but one of the elements, the primary, the E. M. F. that generates the current in the other element, the secondary, being produced by the magnetic flux due to current set up in the primary by the resultant E. M. F. at work in that winding. The induction motor combines then the functions of a direct current motor and a static transformer.

One might state with accuracy that the rotary field motor works in virtue of the Foucault currents of which it is the seat. The Foucault currents would be zero if the armature were stationary with regard to the field. That is to say, if the armature rerolved at the same speed as the field; and it is to fulfill this condition of relative immobility that the armature turns within the field and in the same direction.

Let us consider a two phase motor having for the primary its stationary or field part, and for the secondary its rotary or armature part, and let the windings be exactly similar in both primary and secondary, and of very low ohmic resistance. Let the
armature be wedged so that it cannot revolve. When the motor is thrown into circuit the currents flow in to the two circuits of the primary just as into any transformer. The secondary coils (or armature conductors) are either short circuited on themselves or through a starting resistance. Therefore the primary currents will flow in amount not only sufficient to bring up the magnetization, inducing in the armature conductors an E . M. F. equal (less magnetic leakage drop) and opposite to the primary E. M. F., but enough to balance the ampere turns, which this secondary E. M. F. will at once establish through its closed circuits. If the secondary is short circuited upon itself, then with low ohmic resistance, the self-induction component of impedance will be the principal limit to the secondary ampere turns, and if this is not sufficiently great, an excessive current will flow in both primary and secondary and they will burn out. If the starting resistance is in, only the maximum safe currents will flow in the primary and secondary circuits.

The efficiency of transformation depends upon three important factors, viz:--the self-induction of the armature or secondary coils, the magnetization of the motor, and the self-induction of the field or primary coils. On account of the air gap in the motor between armature and field, the transformer action is similar to that of an open magnetic circuit transformer. A certain primary current is required for magnetization. Its phase position is therefore $90^{\circ}$ behind the primary E. M. F. The current flowing in the secondary will lag behind the secondary E. M. F. due

to the self-induction of the secondary or armature coils. The primary work current, flowing to supply the opposite ampere
turns of the seconday current, will be bonded to the secondary and exactly opposite in phase position. It will therefore lag by the sane angle as the secondary current. The total primary current will be the resultant of the magnetizing and the work current. The impressed E. M. F. necessary to overcome the self-induction of the primary will be $90^{\circ}$ in advance of the primary current. The primary will therefore be advanced in phase from its normal condition. This may be made more clear by reference to Fig. 3.
$\mathrm{OA}=$ Effective $\mathrm{E} . \mathrm{M} . \mathrm{F}$. of the primary.
$\mathrm{OB}=$ Magnetizing component of primary current.
OC=Work component of primary current.
$\mathrm{OD}=$ Primary current.
$\mathrm{OE}=$ Secondary E. M. F.
$\mathrm{OF}=$ Secondary current.
$\mathrm{OG}=\mathrm{E} . \mathrm{M} . \mathrm{F}$. to overcome self-induction of the primary.
$\mathrm{OH}=\mathrm{E} . \mathrm{M} . \mathrm{F}$. of self-induction established by the secondary.
$\mathrm{OK}=$ Resultant of OG and OH .
$\mathrm{OJ}=$ Resultant of OK and OA and is the impressed E . M. $F$. on the primary.
$\varepsilon=$ Angle of lag of the primary current behind the primary impressed E. M. F.
$\theta=$ Angle of lag of the secondary current behind the secondary E. M. F.

The primary impressed E. M. F. must compensate for the E. M. F. of self-induction in the primary and also for the E. M. F. of self-induction in the secondary. Consequently, in the diagram this compensating E. M. F. for the primary is drawn $90^{\circ}$ in advance of the primary current, and for the secondary this compensating E. M. F. is drawn $90^{\circ}$ behind the secondary current. The primary E. M. F. will be divided into two components, viz:- the resultant of these two self-induction E. M. F's., and an E. M. F. effective in producing the secondary E. M. F. The primary impressed E. M. F. will therefore be represented by the line OJ and will be in advance of the effective E. M. F., as stated above. The current flowing in the armature coils is most effective in producing torque when it is in phase with its E. M. F. This can be shown to be true from any view we take of the induction motor, either two or three phase. The lag of the armature current causes a like lag in the primary work current. This is always detrimental, because it necessitates an increased
current in the lines and generators, with increased $\mathrm{C}^{2} \mathrm{R}$ losses, besides taking up the capacity of the plant.

The ampere turns necessary to establish the field magnetizattion are determined from the fundamental equation of the transformer:

$$
B(\max )=\frac{E \times 10^{8}}{1^{2} \pi \pi^{\prime} a}
$$

They will, of course, vary as the reluctance of the magnetic circuit varies. It must also be evident that the magnetization current should be as small as possible, both because of the current consumed when running light, corresponding to the "leakage current" in a static transformer, and because of the bad effects of a lagging primary current under all conditions of working.

Self-induction in the primary cuts down the induced E. M. F. in the secondary, and the more the primary current lags the greater will be this injurious effect. It also advances the primary E. M. F. from its normal position and thus lowers the power factor, and for a given power delivered, increases the line current with all its bad effects. Self-induction in armature coils, reluctance in the magnetic field circuit, and self-induction in the field coils should all be made as low as possible with grood mechanical construction.

The induction motor resembles in a way the ordinary direct current shunt motor in that it requires a certain current from the line when it is in circuit, but not developing any power, and that at starting from rest, a rush of current in the armature conductors may take place that would burn them out if a starting resistance were not used. Induction motors tend to run very nearly up to synchronism, or at the speed of the rotary field. They cannot run at synchronisin, because at that speed the induction threading the armature coils is constant, and there is no induced impressed E. M. F. on the armature coils, therefore no current flowing in the armature and no torque and work developed. Successful regulation for varying speed has not yet been obtained for commercial motors, but it is possible that some method of changing the periodicity of the rotary field from that of the line current may accomplish a successful regulation for varying speed.

Induction motors may be designed to start with any desired torque. It is quite customary to make induction motors, which have a starting torque of about 50 per cent more than the full
load running torque. The great advantage in the use of the induction motor is that it may be operated with no movable contacts whatever, either in armature or field. Consequently, these motors can advantageously be used in places where, due to fire insurance restrictions, no continuous or alternating current motor with collector rings would be allowed, on account of the danger due to sparking.

The Monocyclic System. The monocyclic system was brought out about two years ago for the purpose of running induction motors from single phase mains. The monocyclic generator is simply a single phase generator with a slightly different armature, the monocyclic armature having a small winding, called the "teazer" winding, connected midway between the main coils. The object of this teazer winding is to supply E. M. F's. of different phase for use in starting and running motors. The lighting circuits are run exactly as in any other single phase system. The teazer coils contain only one-quarter of the number of turns of the main coils and consequently give only one-quarter the E. M. F. One end of the teazer winding is connected to the middle of the main winding and the other end is connected to the third ring as shown in Fig. 4. With this arrangement the teazer current has to return over the main coil, and thus meets, besides the self-induction of the teazer, also the self-induction of the


Fi申. 4.
main winding. This feature, in combination with the higher impedance of the teazer line as compared with its voltage, is made use of to limit the flow of current in the teazer circuit, by dropping the voltage of that circuit as soon as the current is taken off, and thereby to maintain the flow of power fluctuating in the same way as in the single phase system. To run induc-
tion motors from a monocyclic generator, the E. M. F"s. generated by the machine are transformed to three other E. M. F's. of approximately three phase relations, it being however unessential to have the three phase condition. Two phase, or in fact any multiphase condition of E. M. F's. can be grotten in a manner similar to that of obtaining the three phase relation. To get three phase E. M. F's. two transformers are used. These have the primaries connected in series across the mains, and the secondaries reversed in their relation to one another. The common terminal of the primaries is connected to the teazer line, and the three secondaries go to the motor terminals.

This system is used where the power generated is mainly intended for lighting purposes. This however does not imply that only a limited number of moters can be operated from a monocyclic generator, but the full current capacity of the latter can be used for motors, for instance, as day load. Where, however, only power distribution is intended, the two or three phase systems are preferable.

The subject of alternate current motors is far too vast to be treated fully in an article of this nature. The writer regrets that he has been compelled to omit diagrams and descriptive matter which would have set fortly the theory and operation of alternating current motors much more clearly. As alternating current motors become more generally used they will constantly be looked upon with more and more favor on account of their simplicity of construction and operation.

## THE ALTERNATE CURRENT TRANSFORMER.

liy J. I). MuRse `of, And J. E. l'feffer `ob, School of Electhical Engineering

During the past twelve years there have been extensive developments in the use of the electric current for the transmission of energy for lighting and power purposes. One of the fundamental requirements for success in the extension of these uses of the electric current consists in the use of a limited amount of copper in the conductors. To meet this requirement it has been necessary to adopt methods that enable electric currents to be used that are transmitted at high pressures. Energy developed in the form of the alternating current is best suited for transmission over great distances because of the simplicity of the transforming apparatus, by means of which the proportions of current and pressure are arranged in any position in the working system to suit the requirements of transmission and utilization.

The fundamental phenomena of practical inportance in alternate current working results from the pressures produced in closed circuits in which the currents vary from instant to instant, causing corresponding magnetizations that in turn produce the required E. M. F. Upon this principle depend all induction coils, and therefore all the different forms of alternating current transforming apparatus.

The modern alternate current transformer for electrical lighting is an induction apparatus in which the primary coil is of high, and the secondary of low resistance consisting of two ring coils of insulated copper wire enclosed in iron so subdivided as to prevent the formation of local currents in the iron when subjected to the influence of the alternating current in the coils. The terminals of the primary are kept at a constant mean difference of potential.

The secondary circuit includes the lamp circuit, and is of varying resistance. The iron is so situated with respect to the coils that there is no free magnetism. Modern transformers all hare a closed core so as to compel, as far as possible, all the lines of the magnetic circuit to pass through the electric circuit, consisting of the primary and secondary coils.

The action of the alternate current transformer depends upon the mutual action between two circuits in no way electrically connected, this mutual action taking place through the agency of the intervening medium, i. e., the magnetic circuit of the transformer.

Lines of force are conventionally used to indicate the intensity of a field of force at each point, as well as its direction; we consider that the number of lines of foree which pass through each sq . cm . of area at right angles to the direction of the lines of force represents the intensity of the magnetic field.

Iron is used in a transformer to increase the influence of the primary upon the secondary, i. e., to increase the number of lines which the primary current will set up in the magnetic circuit, so as to thread the secondary circuit of the transformer ; the E. M. $F$. induced in the secondary being directly dependent upon the amount of magnetic induction, which is thus caused to pass through the convolutions of the secondary circuit. The secondary E. M. F. is likewise dependent upon the number of secondary turns or conductors and the frequency of alternation.

When a current is flowing in the primary a magnetic field is set up consisting of a definite amount of magnetic flux threading the circuit and forming closed curves. If the permeability of the medium is constant, the magnetic flux is directly proportional to the current, any change in the current being accompanied by a corresponding change in the induction. If there are $S$ turns in the circuit, the flux $N$ passes through each one of the $S$ turns, and consequently there are $S N$ lines threading the circuit. The quantity $S$ ' $N$ is usually termed the number of "linkages" or "flux turns."

If the magnetic induction through any circuit be changed, due to any cause whatever, an E. M. F. is developed in the circuit proportional to the rate of change of magnetic induction, as first shown experimentally by Faraday. The change in the induction to which this induced E. M. F. is due, may be produced by a change in the current flowing in the circuit itself, in which case the induced E. M. F. is dependent upon the time rate of change of the current, i. e.

$$
e=-L \frac{d i}{d t}=-S \frac{d \lambda^{r}}{d t}
$$

Here the coefficient $L$ is a constant of the circuit, termed the
"coefficient of self-induction," depending on the form of the circuit. I'his E. M. F. is called the counter E. M. F. of self-induction, and always (as indicated by the sign) opposes any change in the value of the current, in accordance with the principle of the conservation of energy. The coefficient of self-induction is constant when the permeability of the medium is constant, as is generally assumed in theoretical discussions.

In the case of the transformer we have two coils to consider, the primary and the secondary, with $S_{1}$ and $S_{2}$ convolutions respectively; if a current $i$, is flowing in the primary, which is changing, lines of magnetic induction will be set up through the secondary, and in accordance with Faraday's law an E. M. F. will be set up in the secondary. The E. M. F. is also dependent upon the time rate of change of the current in the primary which produces it; and we may write

$$
e_{2}=-M \frac{d i}{d t}=-S_{2} \frac{d N}{d t}
$$

Here $M$ is the coefficient of mutual induction of the two circuits, and is also constant when the permeability of the medium is constant.

Evidently where no induction from the primary circuit of a transformer threads the secondary circuit, there can be no E. M. F. induced in the secondary due to a change in the primary current. The relations between the two circuits is strictly a mutual one, the coefficient of mutual induction having the same value with either circuit as primary or secondary.

Wery closed circuit transformer consists then of one or more coils of copper wire interlinked with one or more cores of laminated iron. Suppose the primary connected to the alternating current mains with the secondary open. The action of the transformer is now the same as though the secondary were entirely removed. Take as a starting point an instant when the E. M. F . is zero. As the E. M. F. rises a current flows in the primary and magnetizes the core. The increase of magnetic induction in the iron induces an E. M. F. opposing the main E. M. F. and thus opposing the increase of the primary current. Assuming for the moment, that the primary coils have no resistance, the core induction at any instant is then such that it increases fast enough to produce a back E. M. F. just equal to the main E. M. F. The current at any instant would be just enough to produce
that induction in the iron. The instantaneous current thus depends on the induction of the core at that instant. If the iron is never nearly saturated the mametizing current in'a closed magnetic circuit transformer is trifling. As the primary coils do have resistance, the core induction, consequently, does not increase quickly enough to give a back E. M. F. exactly equal at each instant to that of the main, but less than it to the minute extent needed to pass the magnetizing current against the resistance. This small correction may be disregarded.

As the primary E. M. F. gradually increases from zero to its maximum, the core induction also increases so as to produce the necessary counter E. M. F. This back E. M. F. is not proportional to the induction but to the rate at which the induction increases. When the main E. M. F. begins to fall from its maximum value the induction does not begin to fall but goes on increasing at such a rate as to produce the proper back E. M. F. It will thus go on increasing till the main E. M. F. is zero. The core induction will then be at its maximum. The main E. M. $F$. now begins to have a negative value, causing the iron core to be demagnetized at a rate which produces an opposing back E. M. F. The induction thus decreases, its rute of decrease at any instant being proportional to the negative E. M. F. on the primary. When the primary E. M. F. is at its extreme negative value, the rate of increase of the core induction will be greatest, but the induction will go on decreasing till the main E. M. F. again arrives at the zero point, at which we started. If the main E. M. F. follows the same curve in both halves of the period, it is clear that at the end of the period, the induction is the same as at the beginning. The induction has, therefore, its maximum and minimum values at the instants when the main E. M. F. is at its zero values.

In the case cited above there was at any instant a current sufficient to produce the induction in the core found at that instant. We may thus call the current absorbed by the primary coil, to produce a field sufficiently strong to balance the voltage of the primary the "magnetizing" or "core" current, and it is of course necessary to have this current small.

Suppose now that the secondary circuit is closed on a group of lamps. The primary current alters the induction of the core, and this alternation produces a back E. M. F. in the primary
circuit ; but it also produces an E. M. F. in the secondary circuit. Now that the secondary circuit is closed, a current is produced, whose effect on the core is opposite to that of the primary current. The excitation of the core now no longer depends only on the ampere turns in the primary, as there are opposing turns in the secondary. The core is thus magnetized by the difference. Leaving out the resistance of the primary, it is clear that the back E. M. F. is equal to the main E. M. F.

If the secondary coils have the same number of turns as the primary, the internal or whole E. M. F. of the secondary will be equal to that of the mains, but there will be a loss over the resistance of the secondary coils, so that the terminal E. M. F. will be less by the product of the secondary resistance and the secondary effective current. As the primary coils also have resistance, whose effect, though negligible when considering the magnetizing current only, is not so when we consider the full load primary current; the back E . M. F. due to the alternation of the induction in the core does not need to be quite equal to the main E. M. F., being just sufficiently below it to allow the current to How. The back E. M. F. of the primary is thus less than the main E. M. F. by the product of the effective primary current and the primary resistance. These two products may be written $I_{2} I_{2}$ and $I_{1} I_{1}$. As the total secondary E. M.F. is equal to the primary back E. M. F., if the turns are equal, and is proportional to it and to the ratio of their turns if not, the secondary terminal E. M. F. is:

$$
E_{2}=\left(E_{1}-I_{1} R_{1}\right) \frac{S_{2}}{S_{1}}-I_{2} R_{2}
$$

Where $S_{2}$ and $S_{1}$ represent the number of turns in the secondary and primary respectively.

At no load, neglecting the effect of the magnetizing current as inappreciable, the terminal E. M. F. is proportional to the turns in the coils. At full load there is a fall in the secondary E. M. F. due to the copper resistance and the leakage of magnetisn across the air space of the primary, this leakage being proportional to the strength of the primary current.

With reference to magnetic leakage it is well known that the action of a condenser and of magnetic leakage are opposed, and that magnetic leakage may be thus compensated for. In fact, the secondary circuit may be given a capacity which will
over-compensate for magnetic leakage, and thus cause a rise in the secondary E. M. F. when the transformer is loaded, despite the "drop" due to magnetic leakage and olnmic resistance.

If we neglect the primary current which is the difference between the instantancous primary and secondary currents, the primary and secondary E. M. F's. increase and diminish simultancously, and correspond exactly. When the secondary is working on resistance, the current and E. M. F. vary together, while if the secondary is on a motor, or work with self-induction, the secondary current does not correspond with the secondary E. M. F., but the primary and secondary E. M. F's. correspond, as do also the primary and secondary currents. For practical purposes we may assume the secondary to work on resistance so that the primary and secondary E. M. F's. and currents all vary together, if we leave the magnetizing current ont of the question.

We may thus call the primary current at any instant less the instantaneous magnetizing current, the useful current, as it may be considered to be converted and given out by the secondary. The useful primary current thus corresponds with the primary E. M. F. and has its maximum and minimum at the same instants. The magnetizing current has its maximnum and minimum when the primary E. M. F. is at its zero values. The magnetiang current maty thus be considered to lag a quarter of a period behind the useful primary current and the whole primary current is compounded of the two. A closed circuit transformer may thus be considered to transform the primary into an exactly similar secondary, with different E. M. F. and current, the effeet of the resistance of the coils being represented by a resistance put into one of the circuits.

Iron Losses. Besides the variable losses due to the resistance in the coils known as "copper losses" we also have the "iron losses" originating in the magnetic circuit, and like the magnetism, are constant for the whole range of the transformer capacity. However while the ase of iron proves of a great advantage in increasing the induction, we shall find that there are objections to its use in too great quantities.

There is a loss of energy in the iron itself caused by the repeated reversal of its magnetism, which is known as the loss of energy due to "Hysteresis." This energy appears in the form
of heat and causes a lagging of the magnetic induction with relation to the magnetizing force as the iron is carried through a cycle of magnetization. This loss is a definite amount for each alternation, depending very considerably, upon the quality of the iron.

In selecting iron for transformer cores Prof. Ewing has shown that the first consideration is smallness of hysteresis losses; high permeability being comparatively a secondary desideratum. These two good qualities do not necessarily go together, as the curve of the $\mathbf{B} \mathbf{- H}$ cycle may have a relatively easy slope, and yet enclose a relatively small area. The loop depends upon the degree of magnetization to which the iron under consideration is taken. Mr. Steinmetz has emphatically shown this loss thus:

Hysteresis per cycle for each cu. cm. of iron $=n \mathbf{B}^{1.6}$
The coefficient $n$ being a quantity depending upon the quality of the iron, varying from .002 to .003 , for sheet iron of good quality, such as used in transformer work.

There is also a loss of energy in the iron, even when it is carefully laminated, due to the so-called "Faucault currents" which are merely currents set up in the iron itself. The iron, being a good conductor of electricity, forms within its own body many little closed circuits which act as secondary circuits, and allow electric currents to circulate around them and thus cause a loss of energy due to heating, which may be minimized by careful lamination in the plane of the lines of force, as can-not the Hysteresis loss.

For the calculation of the core losses in a transformer Dr. J. A. Fleming has modified a formula given by Prof. Ewing, viz:

$$
T=\frac{0.88 n 13^{1.55}}{10^{8}}+1.4 \times 10^{6}\left(\frac{t n 13}{10^{8}}\right)^{2}
$$

Where $t$ is thickness of sheet iron in inches, $n$ the frequency, $l$ the induction per sq. in. of iron and $T$ the total loss in watts per $1 b$. The first term of this equation represents the loss due to hysteresis and the remainder that due to Faucault currents.

With reference to laminating the iron, Prof. Ewing and J. J. Thomson have shown that it is no use to employ a thinner iron sheet than 0.001 of an in., and that it is no use to laminate the core at all unless the lamine are at least as thin as 0.04 of
an inch. The thickness to which makers of transformers confine themselves almost entirely range between 0.012 and 0.016 of an inch.

Because the use of iron is in some ways such a great advantage in the transformer, and in others has its disadvantages, there have been many conflicting opinions advanced by men of greatest ability, as to the proper proportion between the iron and copper in a transformer.

Efficiency or Transformers. The cardinal virtue of the transformer is unquestionably its high efficiency. Butefficiency, when applied to transformers distributed in installations or in central stations, has a different meaning to that usually accepted in the case of dynamos and motors.

The loss which takes place in a transformer must be distributed over the whole daily working period, probably 24 hours, during only a reiative short portion of which time, even in winter, does the full load come on. By the average efficiency of the transformer we are to understand, then, the ratio of the all-day useful output in watt-hours, to the watt-hours delivered to the transformer.

By this mode of computation the efficiency will depend upon the curve of current consumption during the day, the unfavorable effect of which the transformer builder cannot help. It is, however, possible to plot a curve of mean all day consumption for separate localities or towns, and on that basis to determine the all-day efficiency of the transformers.

The efficiency of the transformer at ally output is given by the expression:

> Secondary watts

Secondary watts + watts lost in copper + watts lost in iron.
Where secondary watts stands for the actual power supplied to the circuit from the secondary terminals.

Since the copper losses increase as the square of the output, it follows that the most economical load for a transformer is that which makes the copper losses equal to the iron losses. This is why, in a transformer with comparatively small iron loss, the maximum efficiency frequently occurs before the full load is reached.

A rise in temperature, if not sufficient to soften or injure
the insulation, does not necessarily make the transformer inefficient. It has the disadvantage of increasing the resistance of the copper circuit and consequently the copper losses; but the Fancault current losses are reduced by the heating of the iron core on account of the increased resistance of the iron.

Design. In designing a transformer, its cost, efficiency, and durability must always be borne in mind. In getting out cost of material it must be remembered that copper costs about $21 / 2$ times as much as iron. By sufficient weight of material in a transformer, almost any efficiency can be obtained; but it is a mistake to go too far in this direction, as the cost increases very rapidly for a comparatively small gain in efficiency. No transformer should be considered by itself, but always in connection with the whole system of which it forms a part. If this is done it will frequently be found that a considerable reduction of the open circuit losses in the transformers, will really produce very little change in the all-day coal consumption at the central station. It is, therefore, a mistake to reduce these losses beyond certain limits.

In beginning the design of a transformer we have merely to select the section of the core and the induction. Having done this, and knowing that the whole induction in the core of the transformer cuts the coil 4 times during each period we have

$$
E(\text { volts })=4 A B S n \times 10^{-8}
$$

Where $A$ is the cross sectional area of the core in sq. cm., B the effective induction in C. G. S. units, $S$ the number of turns in the coils and $n$ the frequency. This really gives the back E. M. F. in the primary, or the internal E. M. F. of the secondary, which may be taken here instead of the terminal E. M. F.

If the induction is taken very low the result is that a great deal of iron must be used for a given number of turns of wire, each turn of wire must be longer and consequently a loss of power in the extra length of copper. Moreover the extra iron is expensive, so is the copper. On the contrary, if the iron be subjected to a high induction there is great loss of power in the reversal of magnetization. At high induction the magnetizing current is increased, due to the decrease in the permeability of the iron. In closed circuit transformers, however, on a contin-
uous supply system, the question of heating is of much more importance

The loss from Faucault currents varies as the square of the frequency, and as before stated, can be made rery low by sufficiently laminating the iron.

In regard to the relation of induction to the loss in iron, Prof. Ewing has shown by experiment, on iron bars that if the induction be increased the loss in the iron is increased somewhat more rapidly; so that with a given number of turns, if the core is decreased and the induction increased to make up for it, the total waste of power in the core is greater unless the alternation in dimensions reduces the volume of the iron more quickly, in proportion, than the cross section.

The design of a transformer is like most other designs, a sort of a compromise. The highest efficiency combined with the lowest cost of manufacture and the greatest durability are the ends we wish to obtain. The last requirement means that the transformer must be of a shape that admits of perfect insulation and it must be well enough rentilated not to get hot.

The dimensions of the transformer are, to a certain extent determined by the punchings of thin soft iron generally used by makers, for it would be too expensive to make a different set of punches for erery type of apparatus made. The punches are designed so that the coils can be wound separately, and the punchings then slipped over them; but though they differ in the ways in which this is allowed for, they may all be divided into two or three classes. When put together they either make punchings with a rectangular hole for the coils, the coils, returning on one side or on two sides or they make a double hole with a tongue between them, the coils being wound over the tongue.

With a given cross section, of iron core and copper coil, and a given induction, it is obviously best to have the copper and the iron circuits as short as possible, provided always, that the surface of the transformer is not made too small to get rid of the heat generated. The double link is therefore better than the single so far as the iron is concerned; it has, therefore, to be settled, whether the transformer should be made with the double iron link or double copper link, and this in turn depends on which gives the largest saving.

The almost universal practice, it seems, is to make the cross
section of the iron core the same all around. There would undoubtedly often be a slight gain in efficiency by using a higher induction in the part of the core that is within the coil. The loss of power in the iron is of much more importance than that in the copper, even if the transformer were never on except at full load. We may therefore conclude that the double iron link type is the best in general.

Distribution. It is quite as necessary to arrange the transformer for any particular distribution so as to obtain the most economical performance at all times as to secure transformers of high efficiency in the first place.

The drop in the secondary voltage due to leakage and ohmic resistance of the coils must be compensated for at the station to insure good service. A good transformer, however, supplied with constant E. M. F. should give very nearly constant E. M. F . on the secondary for all loads within its capacity.

The loss of energy in distribution by alternating currents is remarkably small and is proportional to the square of the current employed, while the weight of copper required varies inversely as the square of the E. M. F.

It is evident that a small converter will not be nearly as efficient as a large one, because the magnetizing circuit cannot be as short, relatively speaking, or the copper coils as compactly arranged, and will heat far more; it is also plain that a small converter will cost more per lamp than a larger one. From these two most vital considerations large transformers are both cheaper and more economical. The regulation of large transformers is also superior; they are much lighter for their output and cost less to install.

Summing up the conclusions arrived at, it is apparent that to fulfill the requirements of most economical operation, transformers of the highest all-round efficiency under varying load should be used and so far as circumstances permit, let them be large in size and few in number.

Testing. In order to obtain independent data representing all the different American transformers of moderate capacities a long and carefully carried out series of tests was made by the authors in the electrical laboratory of the University of Illinois. For these tests, transformers of 1500 watts capacity, as nearly as possible, were procured directly from the manufacturers
within about a year, so that the tests may be presumed to represent the latest and best design which are now on the market. These transformers are from the most prominent makers and, in fact, include all important makes of American transformers.

The transformers were in all cases supplied with current from a $T-H$ alternator at 132 periods per second. The machine was driven by a high speed automatic engine, that has a very fair speed regulation.

The drop of secondary pressure due to load was observed by taking simultaneous readings of the effective pressure at the terminals of the primary and secondary when the transformer was under different loads, with a maximum of one-third over load. In this way any errors due to drift of speed of the engrine are eliminated. Two voltmeters, a Cardew, and an electrostatic, were used to indicate this effective pressure at the secondary.

As single transformers only, of each type were at our dis-

posal, we entered on a preliminary investigation on the degree of accuracy to be obtained with using such methods as the 3 voltmeter, and the two circuit wattmeter, for measuring the power taken up by transformers with open, or ioaded secondary circuits.

The connections employed for the latter method in measuring the power taken up with loaded secondary circuits is diagrammatically shown in Fig. 1 and was the method which grave the most reliable results.

In each case the Weston wattmeters, which were used, were
standardized on a non-inductive resistance and the readings taken as when placed on the circuit of the transformer.

The transformers had gradually increasing loads of lamps put upon their secondary circuits, and while the power supplied to the primary was measured by a wattmeter placed in circuit, that given up by the secondary was also measured by a wattmeter placed in the secondary circuit. The value of the primary current in amperes was also measured for each corresponding definite load on the secondary circuit.

We obtained therefore, for every transformer, the volts,


FIC. 3.
across both terminals, the ampere current, and the watts output of the secondary circuit, and at the same time the ampere current and power absorbed in watts by the primary circuit; and hence the power lost in the transformers is also known for each secondary load. Finally, also, the ratio of the power given up to that supplied, in percentages, can be calculated and gives us the efficiency. In all these experiments the potential difference on the primary terminals was kept carefully constant by varying the excitation of the alternator.

From the measured valut of the resistances of the copper
circuits (taken when the transformer was warm) and the measured currents, the copper ( $\mathrm{C}^{2} \mathrm{R}$ ) losses in botll circuits were calculated separately and together; and from the primary volts and current, the value of the "apparent watts" given to the transformer at each stage was obtained; and from the "apparent" and "true" watts given to the primary circuit we could deduce the "power factor" corresponding to any secondary output. The values of the secondary terminal volts gave us also the "total

secondary drop" at each load, and from the resistances and currents could be found the "copper drop" or volts lost by ohmic resistance.

Some of the principal observations and calculations are given in the Table on the following page, which sufficiently explain themselves.

The results of these numerous observations are set out graphically, and thus represented to the eye, in a series of diagrams. Two diagrams are here given; one containing the efficiency, primary current and regulation curves of two different transformers (designated by number as in the table) as shown in Fig. 3, and another containing the "total lost watts" curves and the curves showing the total copper losses in the transformer
Summary of Results.

					Division of drop in per cent			Resistance in Ohms.			$\left\|\begin{array}{c} = \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	Losses at   full load		Per Cent. Efficiency.						
							$\begin{aligned} & \dot{\Delta} \\ & \stackrel{y}{E} \\ & \stackrel{y}{E} \end{aligned}$		تin			$\begin{aligned} & \dot{\sim} \\ & \text { ٌ̈ } \end{aligned}$	B	$\begin{aligned} & \text { + } \\ & \text { - } \\ & \text { - } \end{aligned}$			$\stackrel{\stackrel{y}{0}}{\substack{0}}$	\%		
1	1500	50		1040	4.84	. 97	1.08	2.79	7.03	018	. 09334	50.	9.		.	92.2	91.8		3.0	81.8
2	1500	50	1010	3.9	. 96	1.66	2.62	7.007	. 0277	. 06946	50.	139.		1.	91.6	89.5	85.	64.5	82.02	
3	1500	50	1025	2.76	. 79	1.46	. 51	5.889	. 0243	. 2427	125.	204.	37.	87.4	86.0	83.0	71.5	51.0	68.74	
4	1500	50	1030	3.0	1.46	1.38	. 16	9.96	. 023	. 0433	31.7	125.	44.	92.1	93. 0	91.4	87.3	78.0	85.93	
5	2000	50	1025	4.0	1.18	1.22	1.6	6.0	. 0153	. 0919	50.	236.	50.	89.	90.08	92.0	88.	77.8	82.44	
6	1500		1028	3.0	. 76	1.41	8.3	4.63	. 0235	. 0892	61.	108.		92.	92.6	91.9	83.5	67.0	81.5	
7	1500		1020	4.3	1.36	1.38	1.56	9.7	. 023	. 1187	54.	138.2	43.	90.8	90.0	89.8	83.	68.0	81.4	
8	1500		1030	3.8	1.21	1.5	2.09	8.5	. 025	. 0893	62.2	157.	42.	90.	90.02	89.0	82.6	67.5	79.2	
9	1250		1030	3.7	. 98	1.02	1.7	8.038	. 0204	. 065	48.	104.		91.	91.2	89.5	82.	69.5	81.4	
10	1250	50	1000	4.2	1.48	1.38	1.34	11.3	. 0275	. 04175	28.	105.	38.	92.	92.2	91.1	87.6	75.5	85.5	
11	1500	50	1030	2.9	. 73	1.2	. 97	5.248	. 02	. 1005	72.	134.	30.	91.	91.0	89.4	82.8	64.0	78.6	
12	2000		1030	2.2	. 78	. 89	. 53	4.259	. 0111	. 176	95.	166.	19.7	92.	92.6	90.0	83.	69	79.	

in both circuits together is shown in Fig. 4. The difference of the ordinates of these two curves gives the value of the losses other than those due to ohmic resistance in the transformer.

The regulation curves give the "total observed drop," the "drop" due to secondary and to primary resistance, and the surplus or "leakage drop" due to leakage of induction.

The "magnetizing" or "leakage" currents given in the Table were carefully determined by means of a Thomson centiampere balance, which was previously calibrated by the deposition of copper method, and found to be accurate to within . 2 of one per cent.

All the current measuring instruments used were standardized with Thomson balances at different times throughout the test.

In Fig. 2 is shown the plan of connections for the method employed, to determine the power of the transformer at no load. As is seen two transformers were used with their low pressure coils connected in series, and a wattmeter so placed in circuit as to measure the power supplied to the secondary of the transformer under test. The auxiliary tranformer being used, simply, to permit using the normal voltage of the alternator.

For the determination of the all-day efficiency, when the primary pressure is kept up at all hours of the day, as given in the table, it was assumed that the transformer would have a working output equivalent to the rated capacity in watts for 5 hours out of every 24 .

Conclusion. There are very many derivative matters which, if space permitted, might be discussed as consequences of facts observed in the course of the above described researches. It is evident, for instance, that the last word has by no means been said on the subject of design of transformers. From the relation between iron loss and regulation, it follows that what is best on one plant may not be the best on another, and consequently when station managers in general begin to inquire for a transformer suited to their particular needs, manufacturers will put on the market transformers of different iron efficiency, much as we now have lamps of different efficiencies to suit different conditions.

In the matter of transformer testing, the experience gained in obtaining the facts brought before you has established, in the
writer's mind at least, that the character of the measuring instrument must bestrictly examined before trusting too implicitly to the results obtained by it.

The facts and measurements thus obtained have in all cases been sifted and repeated with great care, with the desire to arrive at conclusions which should be worthy of confidence, and useful to those interested and engraged in transformer work.

# AN INVESTIGATION OF THE RELATIVE STRENGTH OF HYDRAULIC CEMENTS. 

By II. C. Estee, '9G, School of Civil Exgineering.

The datal used in this investigation consists of reports of tests made by about twenty city engineers and by several cement dealers. The reports by the dealers give results of tests of their cement as compared with others, showing their own at a good advantage. The reports by the city engineers are apparently impartial. They agree with each other as closely as could be expected, with the exception of the reports by the city engineer of Toronto, Canada, for '94 and 'リ5, which agree very well relatively with the values given in the other reports, but are about 20 per cent. lower. This is probably due to peculiarities of the conditions under which the tests were made. These reports are not considered in this discussion.

The Portland cements are classified as German, English and American. The Rosendale, or natural, cements are classified according to the locality of their manufacture.

Porthand Cemfents. Fig. 1 shows the relative strength of Portland cements; and also the effect of time upon the rate of increase in strength. The curve for each class represents a mean of ralues given by ten or more of the best known brands. There were not sufficient data on the strength of all the mortars to warrant a curve for each class, and hence the curves which are desinnated simply Portland represent the mean for all the brands
of Portland cement irrespective of class. In all cases where a mean was taken of the results by several experimenters, attention was given to the relative reliability of the data.


1゚IG. 1. THE RELATIVESTRENGTH OF PORTIAND CEMENT MORTARS.
A comparison of the above curves shows that as the mortars increase in age, the tensile strengths of the different classes become more nearly equal. This is still more evident in the two year tests, which are not shown on the diagram. When judging the value of a cement it is better to consider the curve showing the strength of the sand and cement mortar, rather than the curve showing the strength of the neat cement mortar, because the former more nearly represents the conditions ander which the cement is actually used. The diagram shows that for the first few weeks the mortars made from the German cements attain a greater strength than do those of the other classes. This is a property which would recommend the German cements for
all places where the load comes upon the mortar as soon as laid. These German cements, however, do not attain quite as great ultimate strength as do other Portlands. The curves show a much greater range in the tensile strength of the one to two than of the one to three mortar. This variation may be accounted for partly by the scarcity of data on the one to two mortar, and partly by the fact that the one to three is not so strong and hence may have a less number of pounds range and still have as large a per cent variation as the other. All the mortars, especially those mixed with a large proportion of sand, acquire considerable ultimate strength but gain it very slowly.

Rosendale Cements. Fig. 2 shows the relative strength of Rosendale cements and the effect of time upon the rate of increase of their tensile strengths. The curves in the diagram were obtained in the same manner as were those in Fig. 1.


FIG. 2. THE RELATIVE STRENGTH OF ROSENDALE CEMENT MORTARS.
The curves for the strength of the cements manufatured in Pennsylvania, Illinois and Colorado were omitted in Fig. 2 because of the confusion that wotuld be produced in the diagram by the use of so many lines. The Pennsylvania cements run a little higher, and the Illinois a trifle lower than the Washington
cements. There was but one cement from Colorado. It averaged about fifteen per cent higher than the Washington cements, thus making it appear the best of all Rosendales. The cements manufactured near Washington appear to give the best general results, although the New York cements give results a trifle higher when tested neat.

Portland and Rosendale Cements Compared. Several interesting facts may be brought out by a comparison of Figs. 1 and 2. The groups of Rosendales show a much greater relative variation than do the Portlands. This is because the chemical constituents of the Rosendales vary greatly, and because the method of their manufacture has not been brought to as high a degree of perfection as has that of the Portland. 'The Rosendales gain very little, if any, in strength after the first year, while the Portlands increase in strength till the third or even the fourth year.

An inspection of Figs. 1 and 2 shows that the mortars increase in strength less rapidly as they grow older. It also shows that the richer mortars require a longer time to develop their ultimate strength than do those mixed with large quantities of sand. This is true of both Portland and Rosendale cements.

Fig. 3 shows the relative tensile strengths, at four different


Fig. 3. The Relative strexgth of Rosendale ani Pobtranid Cement Montais.
ages, of Portland and Rosendale cements. The curves represent mean values from all the different experiments previously used.

They are similar to those found on page 90 of Baker's Masonry Construction.* The lines in both diagrams have the same relative direction, but Fig. 3 makes Portland about 200 pounds, and Rosendale about 100 pounds stronger than the diagram in Baker's Masonry Construction. The reason for this difference may be that the cements used in these experiments are better than those from which Professor Baker deduced his diagram, or that the later experimenters use methods that produce stronger briquettes, or that the data from which Baker's curves were plotted was by different observers.

The table on page ${ }^{99}$ gives the average strength, plus or minus a probable error, of each class at different ages. The probable error is the number of pounds that the strength of a cement may be expected to vary from the mean of its class. It is computed by the formula: Probable error $=0.845 \mathrm{~F}$, in which $F$ is the mean of the differences between the tensile strengths of the different brands of cement and the average strength of the class. For an example of the application of the table, take any orlinary brand of German cement. The tensile strength to be expected of it at the end of seven days would be the mean strength of the class at that age, 495 pounds, plus or minus a probable error of 42.5 pounds.

The probable errors of the strength of the English and German cements as given in the table are about the same, while that of the American cement is much larger. The cause of the larger variation in the American cements is due to the fact that, although the majority of the cements in this class are of excellent quality, there are some of poor grade. These poorer ones make large differences from the average value of the class, and thus increase the probable error. The same reason applies to the high values given for the Washington cements. That of the Louisville cements runs the lowest because all cements put under this class are made from practically the same quality of rock by mills located in the same vicinity.

[^15]Strength of Cement Mortars at Various Ages.


## THE EFFECT OF GRINDING MINED SAND AND CEMENT.

By H. E. Reeves, 9 9, School of Civil Engineering.

A Swedish experimenter has asserted that if sand and cement be mixed in the ordinary proportions, then ground very fine and mixed with more sand, the resultant mixture will be stronger than the same proportions of sand and cement mixed in the ordinary way.

To determine the truth of this assertion a series of experiments was undertaken in the Cement Laboratory of the University of Illinois during the spring term of 1895 . The plan of the experiments was to mix sand and cement in various proportions, grind the mixture, add unground sand, and if practicable grind a second time, and mix with another portion of unground sand. Briquettes were tested from each mixture, both before and after grinding. The main consideration while conducting the experiments was to secure uniformity of conditions, so that a proper basis of comparison would be secured. Care was taken to thoroughly mix all materials before dividing into the portions which were to be treated differently.

The cement used was a good German Portland. The sand was standard crushed quartz, passing a No. 20 sieve and retained on a No. 30 sieve. The quartz was pulverized by the use of an ore crusher, which consisted of a semi-cylindrical casting weighing about 100 pounds, having a handle fastened on the upper or flat side at right angles to the axis of the cylinder, and resting on a heavy cast-iron plate $24 \times 36 \mathrm{in}$. having flanges one inch high on the sides. The grinding was done by spreading the materials upon the plate, and rolling the crusher backward and forward. In this manner almost any degree of fineness could be obtained; but after a certain limit had been reached, the results were not commensurate with the extra time and labor required. The fineness of grinding was determined by sifting through the ordinary cement sieves, -No. 50, 75, and 100 .

The briquettes were molded with a Russell lever molding
machine.* In this machine a plunger, operated by a lever and working through a casting, forces the cement mortar into the molds. A briquette mold is placed on top of the casting. The plunger is depressed by raising the lever, and the mold and space in the casting above the plunger are filled with cement mortar. A cast-iron arm is then swung over the top of the mold and clamped. This closes the top of the mold and holds it firmly in position. The mortar is then forced into the mold by depressing the lever.

To secure a uniform pressure, a weight of 60 pounds was hung on the end of the lever. As the ratio of power-arm to weight-arm was as 1 to 7 , this made a pressure of 420 pounds on the plunger. This pressure was applied four times for each briquette.

After molding, the briquettes were covered with a wet cloth, and after 24 hours were placed in water.

The briquettes were tested with a Riehle cement testing machine having rubber-tipped grips.

A summary of the results is presented on the following page. In the table the term "sand-cement" is employed to designate a mixture of cement and sand which has been re-ground after mixing. For example, the term " $1-3$ sand-cement" means a mixture of 1 part cement and 3 parts standard sand which has been re-ground. The percent of the fineness after re-grinding is omitted for brevity.

There are three reasons why grinding sand and cement and then mixing with more sand, should increase the strength of the mixture: 1. Crushing of the sand grains makes them more angular, and therefore the cement adheres more strongly. 2. The sand is then of different sizes, having less voids and thus requiring less cement to fill them. 3. The cement itself is ground finer, which increases its covering power and also its strength when used with sand.

The time available did not permit the completion of the experiments on the plan contemplated, and consequently the data are too meager to warrant any valuable deductions. However, the following conclusions may be drawn:

1. With ordinary proportions, a mortar having all the sand re-ground is weaker than one having none re-ground.
[^16]This agrees with former experiments in which it has been found that a fine sand makes a weaker cement than a coarse one.

2, With large proportions of sand, a mortar in which part of the sand is re-ground is stronger than one in which none of the sand is re-ground or one in which all the sand is re-ground.
3. The most striking results from the experiments are that

Suminary of Results.

a mixture of 1 part cement and 15 parts sand has a strength at 7 days of 40 lbs . per sq. in.; and that a mixture of 1 part cement and 63 parts of sand has a strength at 7 days of 8 lbs . per sq. in. These results show clearly that re-grinding the cement and sand adds strength.
4. An increase in the proportion of sand much beyond that contained in the 1 to 15 mortar is certainly not practicable.
5. The question of cost still remains to be settled. It is very probable, however, that under ordinary conditions the cost of grinding will nearly or quite neutralize the extra strength gained by re-grinding.

## IMPACT AND ABRASION TESTS OF PAVING BRICK.

By H. J. Burt, '96, School of Civil. Engineering.
Tests of paring brick are frequently made at the Laboratory of Applied Mechanics of the University of Illinois for manufacturers, contractors and engineers. In many cases no specifications are furnished, so it has become necessary to establish some standard for the laboratory. There is little variation in the requirements for absorption and cross-breaking tests specified by engineers, but there is a great variation in the requirements and in the methods of conducting the tests to determine the ability of the brick to withstand impact and abrasion.

Most engineers require a rattler test for this purpose. This test is made by putting the samples of brick in an ordinary foundry rattler or tumbler together with an amount of scrap iron or foundry shot, and revolving for a specified time. The details of the tests required by different engineers are widely at variance. Specifications from 15 cities show the following ranges:-

Length of Rattler............................ . 24 to 54 in.
Diameter.......................................... . . 15 to 40 in.
Speed, revolutions per minute................. . . 15 to 55.
Duration of tests....................... . . 30 to 360 minutes.
Weight of iron . . . . . . . . . . . . . . . . . . . . . . . . . 50 to 800 11s.
Loss permissible in one hour........... 3 to 10 per cent.
The above exhibit emphasizes the necessity of establishing standard specifications for general use. It was to assist in the selection of such standards for impact and abrasion tests that experiments by the writer were made.

In making these experiments a 13 -sided rattler 24 in . in diameter and 36 in . long was used. The inside was smooth, there being no ribs on the inner surface of the staves. The shaft did not extend through the barrel. Instead of the ordinary foundry shot or miscellaneous scrap iron, the shot used consisted of two sizes of cast-iron bricks. The larger size was $21 / 8 \times 31 / 8 \times 51 / 4 \mathrm{in}$. with the corners rounded to a radius of about $1 / 2 \mathrm{in}$., and weighed approximately 8 lb . each. The smaller size was $1 \times 11 / 2 \times 21 / 2$ in. with rounded corners, and weighed 1 lb . each. In one or
two tests scrap iron in pieces ranging in weight from $1 / 8$ to $31 / 2$ li., was used.

The bricks used in most of the experiments were a good quality of repressed paving bricks, selected from material for a pavement near by. In outward appearance they were quite uniform.

The first series of tests was made to determine the relative effect of different amounts and kinds of shot. In each test 12


Fig. 1. Effects of Different Kinds and Amounts of Shot.
bricks were used. The results are shown in Fig. 1, and mar be summarized as follows:-

1. The 1-lb. shot gave a maximum loss when 200 lbs . were used. The losses from 100 lbs . and 400 lbs . were nearly equal.
2. The 400 lbs . of $8-1 \mathrm{~b}$. shot gave a greater loss than 200 lbs. of $8-1 b$. shot. Whether the rate of loss would continue to increase with an increase in amount of shot was not determined.
3. Charges, each containing 200 lbs . of shot, gave losses nearls equal for $1-1 b$. shot, 1 and $S-1 b$. shot mixed, and scrap iron. The $8-1 b$. shot alone gave a loss about 25 per cent greater than the others.
4. A charge containing 100 lbs . of $1-1 \mathrm{~b}$. shot and 200 lbs . of $8-1 b$. shot gave a loss nearly 40 per cent greater than a charge containing 200 lbs . of $1-\mathrm{lb}$. shot and 100 lb . of 8-1bs. shot.
5. Tests using 400 lbs . of shot gave a maximum loss with $8-1 b$. shot, and a minimum with a mixture of $1-1 b$. shot, scrap iron and a half dozen $8-1 \mathrm{~b}$. shot. A mixture of 200 lbs . of $1-1 \mathrm{~b}$. and 200 lbs . of $\mathrm{S}-1 \mathrm{~b}$. shot gave a result near the maximum, and 400 lbs. of $1-1 b$. shot gave a result near the minimum.

The rates of loss at different times during tests are shown by the curves in Fig. 2. These indicate a loss during the first half hour about twice as great as that during the second half hour. In all cases the rate becomes nearly constant after the


Fig. 2. Losm at Different Times Dubing Test.
first twenty minutes. The two sets of curves in the diagram are for two kinds of brick, quite different in character. The results are similar for the two kinds shown, and for a third kind not shown in the figure. The reason for the excessive loss at the beginning of the experiment appears to be due largely to the chipping off of the edges and corners.

Tests were made to determine the effect of using different numbers of brick in the rattler, with a given amount of iron. The results are shown in Fig. 3. In each test 200 lbs . of


Fig. 3. Effects of the Number of Bricks in a Test.
$1-1 \mathrm{~b}$. shot and 100 lbs . of $8-11 \mathrm{l}$. shot were used. Within the limits of 2 and 12 bricks, there did not seem to be any material
variation in the rate of loss. Similar tests using bricks alone showed an increase in the rate of loss with the increase in the number of bricks used, as far as the experiments were carried.

To determine whether different tests would give the same relative results for different kinds of brick, tests were made with four different makes. The kinds used were: $a$, repressed brick $21 / 2 \times 41 / 4 \times 8$ in. ; $b$, side-cut brick, $21 / 4 \times 4 \times 8$ in., used locally for paving, very hard burned, and badly cracked, square edges; $r$, end-cut bricks, $33 / 4 \times 21 / 4 \times 8$ in., long edges rounded by die, very hard burned; $d$, repressed brick, $41 / 8 \times 21 / 2 \times 8$ in. Each kind was tested (1) without iron, (2) with 400 lbs . of $8-1 \mathrm{~b}$. shot, and (3) with 400 lbs . of $1-1 \mathrm{~b}$. shot.

As shown by the diagrams in Fig. 4, the general effects


Fig. 4. Effects of Different Makes of Brick.
were quite similar. In the test without iron 24 bricks were used and the loss was about the same as that in the test with 400 lbs . of $1-1 \mathrm{~b}$. shot. Neither of them availed in determining the character of the kind designated $d$, which was a very brittle brick and lost heavily by chipping when rattled with 8-1b. shot. In all cases the loss when tested with 400 lbs . of $8-1 \mathrm{~b}$. shot was much larger than when tested with 400 lbs . of $1-1 \mathrm{~b}$. shot. An experiment with a mixture of 1 and $8-1 b$. shot showed results between those of $1-1 \mathrm{~b}$. shot and of the $8-1 \mathrm{~b}$. shot.

The difference in the manner of testing makes a decided
difference in the ranking of the different kinds. This is shown very plainly by arranging them in the order of the least per cent of loss:

24 bricks with no shot................................... $c, d, b$.
12 bricks with 400 lbs . of 8 -1b. shot............... $a, d, c, b$.
12 bricks with 400 lbs . of $1-1 \mathrm{~b}$. shot................e, $a, d, b$.
12 bricks with 200 lbs . each of $8-1 \mathrm{~b}$. and $1-1 \mathrm{~b}$. shot.... $d, c$.
In most cases rattler tests are used simply as comparative tests for the selection of the best brick submitted for a certain work. It might have seemed that the details of the test would make little difference, but such a presumption is not borne out by the above discussion. There is as much reason for having standard and accurate specifications for comparative tests as for absolute tests.

The action taking place in the rattler is two-fold; viz., im1pact and abrasive. By impact is understood the blows which the specimens receive in falling against the sides of the barrel, and in being struck by the other bricks and by the filling material. By abrasion is understood the wearing due to sliding along the surface of the barrel and the sliding of the filling material over the bricks. The loss due to impact is, for the most part, in the form of small chips or spawls. The loss due to abrasion proper is of course in the form of a fine dust. The former is a maximum with hard, brittle bricks, and the latter with soft ones. These facts are clearly shown by examination of specimens after being tested.

Tests made with the $8-1 \mathrm{~b}$. shot give losses due largely to clipping away of the edges of the brick and are essentially impact tests. They are effective in discovering the brittle specimens, but are not certain, nor in fact likely, to discover the softer ones. For impact tests the $8-1$. shot are quite satisfactory.

The loss from the use of $1-1 \mathrm{~b}$. shot is much smaller than that from the use of $s-1 b$. shot. The examination of specimens thus tested, shows them to be worn away as by rubbing or grinding. There is very little chipping of corners and edges. Hence, this is essentially an abrasion test. It would be interesting to know whether its results are parallel to those of abrasion tests made with grinding or rubbing machines. It seems probable that they would be.

In tests made with bricks alone, no shot being used, the loss is due to both clipping and wearing. The relative amount due to each will depend upon the character of the bricks tested. The test is neither purely an abrasion nor an impact test, but is a combination of the two.

This test of brick alone has been proposed for the standard rattler test, but does not seem to be altogether satisfactory. In a test of 24 brick without shot there was about the same per cent of loss as with 12 bricks tested with 400 lbs . of $1-\mathrm{lb}$. shot. The loss in the first instance was due to both clipping and wearing and in the second, chiefly to wearing. So although the two tests gave nearly the same results in the experiments made, the losses may not have been due to the same physical properties of the brick. The curve in Fig. 3, showing that the larger the number of bricks used in this test the greater the rate of loss, indicates the importance of specifying a definite number of bricks to be used in such a test. It also suggests the possibility of variation when different kinds and different sizes of bricks are used together. If large and small bricks were tested together, it is probable that the heary blows of the large brick upon the small ones would cause undue loss of the latter. Hence if this standard were to be used, it would be necessary to test each kind by itself, and even then there would be a doubt as to its fairness of a comparison between large and small bricks. In order to get a considerable rate of loss it would be necessary to use quite a large number of bricks in each test. The use of a large number is also necessary to eliminate the effects of accidental loss, for it was noticed that in these tests quite large pieces frequently were broken from the corners. The above conditions require the use of about 25 bricks, but the use of so many bricks makes the test cumbersome, and is another objection to it.

A rattler 24 in . in diameter and 36 in . long is of convenient size. Foundry rattlers are frequently of this size. A slight variation from the dimensions given, probably would not have a noticeable effect. A change in length could be compensated for by a proportionate change in the amount of shot used. Any city constructing brick pavements can well afford to own such a machine. Since it is not always easy to get a certain speed it is better to state the duration of the test by prescribing the total number of revolutions required. Though the basis for this is not
well established, it is believed that for speeds ranging from 20 to 30 revolutions per minute, there will be no appreciable change in the per cent of loss for a given number of revolutions.

It frequently happens that one or two bricks will lose much more rapidly than will the others of the set. This effect may be due to a poor sample or to the accidental losses which may occur to a particularly unfortunate specimen. To partially eliminate this effect, not less than six bricks of a kind should be tested together. It is not desirable to use more than 12 bricks, since a larger number might affect the rate of loss.

In order to have standard tests, it is necessary to adopt kinds and sizes of shot that can be easily duplicated. The castings used in these experiments meet this requirement and are recommended for standards. The loss in the abrasion tests occurs rather slowly, hence it is advisable to use am amount of shot that will give a maximum rate of loss. This amount for $1-1 \mathrm{~b}$. shot has been found to be 200 lbs . The rate of loss in the impact test made with $8-1 \mathrm{~b}$. shot is much larger, so it is not necessary to use an amount of shot giving a maximum loss. For this test the amount can be fixed arbitrarily at 200 lbs . in order to conform to the amount used in the abrasion test.

The duration of the abrasion test should be long enough to wear into the soft interior of the brick. A speed of 25 revolutions per minute, for one hour making a total of 1,500 revolutions is sufficient for this. The impact test being much more severe, need be continued only half as long.

Examination of bricks in pavements shows that they lose by clipping off of the corners and by grinding off of the tops. Probably the former is responsible for the larger part of the loss. It would then seem advisable to have tests showing the resistance of the bricks to both these actions and to be able to distinguish the one from the other. 'This leads the writer to recommend the two tests above described, believing that in that manner a safer estimate of the value of the paving material can be made.

The following specifications are recommended for these tests: The writer does not feel qualified to insist on the above limits of loss, since he has not experimented with enough kinds of brick. The limits set may also vary with loeal conditions, depending upon the quality of brick required.

1. Impact and abrasion tests shall be made in a rattler 24 in . in diameter and 36 in. long.
2. Not less than six specimens of a kind shall be used in a test. Not more than 12 bricks shall be placed in the rattler at one time.
3. The speed of the rattler shall not be less than 20 nor more than 30 revolutions per minute.
4. The shot used in the abrasion tests shall be 200 lbs . of castings, $1 \times 11 / 2 \times 21 / 2$ inches, having rounded edges and weighing about 1 lb . each. The samples shall not lose more than 12 per cent. of their original weight in 1500 revolutions.
5. The shot used in the impact tests shall be 200 lbs . of castings $21 / 4 \times 3 \times 51 / 4$ inches, having corners rounded to a quarterinch radius, and weighing about 8 lbs . each. The samples shall not lose more than 15 per cent. of their original weight in 750 revolutions.

## STREET IMPROVEMENTS AT THE UNIV ARSITY OF ILLINOIS.

Bi John C. Quaine, ©ō, Sciool of Civil Engintering.

During the past summer considerable work was done in improving the grounds of the University of Illinois, chiefly paving Green street and buikding cement walks. The work was under the direction of A. N. Talbot, Professor of Sanitary and Muncipal Engineering, and the writer was inspector.

Paving. Green street in front of the University, is divided into two parts by a row of shade trees through the center. In improving the street a $32-\mathrm{ft}$. pavement was built through the south part, and the north part was parked. The street railway track was shifted to the middle of the north lialf.

The length paved, from Mathews avenue to Wright street, was 860 ft . The pavement is brick on a $6-i n$. concrete foundation. The cross-section is circular, with a 6 -in. crown (Fig. 1).


The curbs are Cleveland sand stone 20 in . deep and 4 in. thick, set in 6 in . of sand. 'The top of the curb is $7 \frac{1 / 4}{} \mathrm{in}$. above the gutter. The pavement is drained by means of McDonald curb inlets placed at intervals of 300 ft . on each side. At the principal foot-crossing, cast-iron plates were used to span the gutters. These plates are $1 / 2 \mathrm{in}$. thick; one end rests on the pavement curb and the other on a short false curb set parallel to and 10 in . from the pavement curb (Fig. 2). The pavement along the crossing is brought up to the level of the crossing plates, across the entire width of the roadway.


Fig 2. Gutter And Crossing Plate.

The roadway after being excavated to sub-grade, was rolled with a seven-ton roller, all soft spots being carefully filled in and re-rolled. Directly upon the earth roadbed was placed 6 in. of concrete, which was thoroughly tamped and surfaced. The specifications required that the concrete should be of such consistency that, when tamped, free mortar should flush to the surface. In some instances this clause was fulfilled by tricks of the trade which it would be desirable to prohibit. By one method, the soft cement mortar adhering to the mixing board was so shoveled as to appear on the top and, of course, did not require much tamping to make it show up. Again by shoveling the concrete $11 p$ higher than the finished grade and bringing it down witl a rake, the stones were raked ont, leaving the mortar on top. In order to protect the concrete from too rapid drying by the sun and wind, a 1 -in. layer of sand was spread upon it as soon as it was tamped This sand covering was surfaced to form a cushion for the brick. The bricks were laid closely and rolled with a seven-ton roller in order to make the surface even and to give them a firm bearing in the sand cushion. The joints were filled with fine dry sand, well broomed in.

Utica cement was used for the concrete. In laboratory tests this cement proved to be of excellent quality, twenty-four-hour briquettes giving an average tensile strength of 65 to 70 Ib . per sq. in., and seven-day briquettes giving an average of 125 pounds per sq. in.

The stone used in the concrete was liard Kankakee limestone with a limit of $21 / 2 \mathrm{in}$. for the greatest dimension. It was clean and of good quality.

The bricks were repressed paving brick, $21 / 2 \times+1 / 2 \times S$ in.

They were furnished by the Clinton Paving Brick Company of Clinton, Indiana. A series of tests in the Laboratory of Applied Mechanics gave the following result: Three specimens when tested on edge developed an average modulus of rupture of 2600 tbs . per sq. in. When revolved in a 16 - in. rattler for one hour at the rate of 27 revolutions per minute, with 200 lb . of smoothly worn foundry shot, the loss by abrasion was 3 per cent. The absorption in 48 hours averaged $11 / 2$ per cent.

The contract prices were: Pavement $\$ 1.35$ per sq. yd., curbing 35 cts. per lineal foot, and excavation 25 cts . per $\mathrm{cu} . \mathrm{yd}$.

The following was given by the contractor as the cost to him of various items:

Laying brick, per sq. yd........................... . $\$ 0.0546$
Water for concrete per sq. yd...................... . . 0.0023
Laying concrete per sq. yd........................ 0.1085
Brick per thousand delivered on ground......... 9.75
Brick per sq. yd. of pavement................... 1.54
Broken stone per cu. yd. delivered on ground... 1.95
Cement per barrel................................... . . 0.70
Sand per cu. yd..................................... 0.75
Cement Walis. About 15000 sq . ft of cement walks were constructed. The contract price was 15 cts. per sq. ft., which included all excavation, material, and labor. The walks consist of an 8 -in. cinder foundation, 3 in . of concrete, and a 1 -in. wearing coat (Fig. 3). With the exception of a small quantity of "Ger-


Fig. 3 Cross-Shetion of Cement Walk.
mania" and "Laegerdorfer," Alsen's German Portland cement was used. The gravel used was of fair quality. The voids in it amounted to 20 per cent.

After excavating to sub-grade, cinders were dumped in and thoroughly wetted and tamped to a final thickness of 8 in. The form for the concrete was made by setting two t-inch scantlings firmly to grade and line of each side of the walk. The 3 -inch
layer of concrete was then filled in and tamped. This layer consisted of 6 parts of screened gravel and 1 part of cement. On it was spread the wearing coat, consisting of 2 parts of sand and 1 part of cement. The surface was carefully finished by floating and troweling. This was done with great care in order to give a dense wearing surface. As soon as laid the concrete was cut into blocks which were usually 4 ft . long, and for a 6 ft . walk were 3 ft . wide.

In the construction of a good walk it is extremely important that the wearing coat be applied as soon as possible after the concrete is put down and before it has set, in order to secure a flrm bond between the two. About 15 lineal ft . of concrete were laid at a time, after which the wearing coat was added and thoroughly troweled.

A gang of twelve experienced men well organized and managed, laid about 900 sq . ft. of walk per day.

Concrete Bridge. The cement walk is carried across Boneyard Branch on a concrete bridge. The bridge is built in the form of an arch; it is stiffened with four light 6-inch I beams bedded in the concrete. The arch is a segment of an ellipse. It has a span of 16 ft ., a rise of 1 ft , and a thickness at the center of 9 in . The bridge is $61 / 2 \mathrm{ft}$. wide, and is built on a skew of 1 to 2 . The abutments are 2 ft . thick and extend to a depth of $21 / 2 \mathrm{ft}$. below creek bottom. Gas pipe railings were fastened to the outer I beams.

# THE 'TEMPERATURE EN'TROPY DIAGRAM. 

By Gr. A. Goodenough, Instructor in Mechanical Enginerring.

Several recent English writers on the stean engine have paid some little attention to the representation of thermal relations by means of the temperature-entropy ( $T \varphi$ ) diagram; among these we may mention Macfarlane, Gray, Ewing and Cotterill. In this country, detached papers bearing upon this subject have appeared from time to time in the technical journals. Perhaps the most pretentious effort in this direction is an article of some length entitled "Notes on the Refrigeration Process," by Geo. Richmond. (Trans. A.S. M. E. Vol. XIV p. 183).

There is no question that the $T \varphi$ diagram materially aids the student of thermodynamics in obtaining a clear idea of complex interchanges of heat; and it would be a desirable thing if our text books on heat shonld use this diagram more freely. It is the purpose of this article to give a brief resume of some of the most interesting properties of the 'T' diagram; to show how the ' $T$ ' curves may be obtained from the corresponding $\rho v$ curve; and to show some of the practical applications of the diagram. Some of the demonstrations have been suggested by Mr. Richmond's article; other portions of the article have been developed by the writer.

Most thermodynamic questions concern the changes of state of a working fluid. 'The change may be an expansion or compression of a gas; the change of a liquid to a vapor upon the addition of heat; the expansion of a vapor. Usually the object of the investigation is to find: (1) the external work done during the change of state; (2) the quantity of heat transferred during the operation.

The work done by an expanding fluid is a function of the pressure and volume of the fluid. If $W$ represents the work of expansion, we have the following general equation:

$$
\begin{equation*}
W^{\top}=\int v^{0} d v \tag{1}
\end{equation*}
$$

In any given case, the expression (1) can be integrated if we.
know the law of expansion, that is, the relation between $p$ and $r$. If, for example, the pressure $p$ is constant, we have

$$
\begin{equation*}
W=p \int_{v_{1}}^{v^{2}} d v=p\left(v_{2}-v_{1}\right) \tag{2}
\end{equation*}
$$

The graphical representation of this operation is shown in Fig. 1. The line $a l$ represents the constant pressure $p$, and the area $a b c d$ the work done. It is to be noted particularly that there must be a change of volume in order that work may be done. If the pressure is increased at constant volume the operation is represented by the vertical line $m \mu$, and the area included between this and the $V$ axis is, of course, zero. This graphical method of representing the work of an expanding gas on the $p v$ plane is so familiar that it need not be further considered.

It is of interest to find the quantity of heat transferred during a change of state of the working fluid. This heat will be a direct function of the temperature of the fluid, but will be only indirectly related to the pressure and volume of the fluid. We should be able therefore to express the heat transferred in terms of temperature and some other property of the fluid in somewhat the same way as work is expressed by equation (1).

Experience shows that heat may be added to a body at constant temperature; also, we know it is possible to raise or lower the temperature of a body without the addition or abstraction of heat. Usually the addition or abstraction of heat is accompanied by either a rise or fall of temperature.


Fig 1.


Fig. 2.

To represent these changes graphically draw a pair of rectangular axes $O T, O \varphi$ Fig. 2, and let the ordinates represent absolute temperatures; the function represented by the abscissa as is yet undefined.

If a change of state occurs in which the temperature remains contant, this operation will be represented by a horizontal line $a b$ at a height $T_{1}^{\prime}$ above the axis $o \varphi$. We may consider the heat added as proportional to the length of $a b$ and it may be represented therefore by the area $a b c d$. A rise in temperature unaccompanied by addition or abstraction of heat wonld be represented by a vertical line $m u$.


Fia. 3.


Fig. 4.

In Fig. 3, the line $a b$ represents a rise in temperature accompanied by an addition of heat shown by the area $a b c d$. The operation $b$ would indicate a fall in temperature accompanied by an abstraction of heat. In Fig 4, line $a b$ represents a fall of temperature accompanied by an addition of heat, while line $b$ a represents a rise in temperature accompanied by an abstraction of heat; the area ${ }^{\prime} b c d$ representing the transfer of heat in each case.

We have not yet defined the abscissa $\varphi$ in Figs. 2, 3 and 4. It is evident that $\varphi$ must increase when heat enters the body. In Fig. 2, the heat added is

$$
\begin{equation*}
H=\operatorname{area} a b c d=T_{1}\left(\varphi_{2}-\varphi_{1}\right) . \tag{3}
\end{equation*}
$$

In general, when $T$ and $¢$ both vary

$$
\begin{equation*}
H=\operatorname{area} a b c d=\int^{\prime} T d \varphi \tag{4}
\end{equation*}
$$

It is apparent that $\varphi$ is a function which bears much the same relation to the heat added as volume does to the work done. To this function the name "entropy" is given.

Equation (4) may be written

$$
\begin{equation*}
d H=T d \varphi \text { or } d \varphi=\frac{d I}{T} \tag{5}
\end{equation*}
$$

Entropy may be defined as that property of a substance which must change when heat is added to or abstracted from the body. Equation (5) shows that the increase of entropy is directly proportional to the heat added and inversely proportional to the absolute temperature.

It is evident that the $T<$ diagram is particularly useful when we wish to observe the heat transfers during the change of state of a working fluid. We will first turn our attention to the perfect gases, and endeavor to transform the $p v$ curves into corresponding curves on the $T \&$ plane. The $p v$ diagram will give information concerning the work done during any change of state, while the $T$ diagram will show graphically the transfer of heat during the same operation.

The change of state of a perfect gas can usually be represented by an equation of the form

$$
\begin{equation*}
p x^{n}=\text { const } \tag{6}
\end{equation*}
$$

The exponent $n$ may have any value, fractional or integral, positive or negative. The experimental laws of Mariotte and Gay Lussac are expressed by the equation

$$
\begin{align*}
& \frac{p r}{T}=\text { const. }=R^{\prime}  \tag{7}\\
& \text { or } p e=R^{\prime} T
\end{align*}
$$

Finally, we have for a perfect gas

$$
\begin{equation*}
d H=C_{v} d t+A v d v \tag{S}
\end{equation*}
$$

that is, if we add a quantity of heat $d H$ to a gas the portion $C_{r} d t$ goes to perform internal work, while Apdv is the heat equivalent of the external work done.

We have now to combine equations (5), (6), (7) and ( 8 ), eliminate $p$ and $v$ and find the relation between $T$ and $\varphi$.

Dividing (6) by (7),

$$
\begin{gather*}
T r^{n-1}=\text { const. }=\mathrm{B}, \text { say. } \\
v=\left(\frac{B}{T}\right)^{\frac{1}{n-1}}=\left(\frac{T}{B}\right)^{\frac{1}{1-n}}, \\
d r=\frac{1}{1-n} \frac{T^{\frac{n}{1-n}}}{B^{\frac{1}{1-n}}} d t \\
\frac{d v}{r}=\frac{1}{1-n} T^{1} \quad d t=\frac{1}{1-n}-\frac{a^{\prime} t}{T^{\prime}} \tag{9}
\end{gather*}
$$

From (7) $\mathrm{p}=\frac{R T}{v}$, Substituting this in (8),

$$
\begin{gathered}
d H=T_{r} d t \times A R T \frac{d v}{v} \\
\text { But } \mathrm{C}_{p}-\mathrm{C}_{r}=A R, \\
\text { and } \frac{\mathrm{C}_{p}}{\mathrm{C}_{r}}-l=1.41
\end{gathered}
$$

Substituting in the above,

$$
\begin{align*}
& d H=C_{r} d t \times\left(C_{p}-C_{r}\right) \frac{T d v}{v} \\
& =C_{v} d t+\frac{\left(C_{p}-C_{v}\right)}{1-n} d t \text {, from (9) } \\
& =C_{v}\left(1+\frac{k-1}{1-n}\right) d t \\
& a H=C_{v}\left(\frac{k-n}{1-n}\right) d t  \tag{10}\\
& \text { From (5). }  \tag{11}\\
& d \varphi=\frac{d H}{T}=C_{r}\left(\frac{k-n}{1-n}\right) \frac{d t}{T} \\
& \text { Hence } \\
& \int_{\varphi_{1}}^{\varphi^{2}} d \varphi=C_{v} \frac{l-n}{1-n} \int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{d t}{T^{\top}} \\
& \text { or } \varphi_{2}-\varphi_{1}=C_{r}\left(\frac{k-n}{1-n}\right) \text { log nat. } \frac{T_{2}}{T_{1}} \tag{12}
\end{align*}
$$

For the sake of brevity put $C_{r}\left(\frac{k-n}{1-n}\right)=m$. Then (11) and (12) become respectively:

$$
\begin{align*}
& \qquad d \varphi=m \frac{d t}{T}  \tag{11a}\\
& \varphi_{2}-\varphi_{1}=m \log \text { nat. } \frac{T_{2}}{T_{1}}  \tag{12a}\\
& \text { From (11a), we have } \\
& \qquad \frac{l t}{d \varphi}=\frac{T}{m} \tag{13}
\end{align*}
$$

Equation (13) shows that when $m$ is positive, the entropy and temperature increase simultaneously. If $m$ is negative, the entropy decreases as the temperature rises. An inspection of
the coefficient $m$ reveals that it is negative for all values of $n l y$ ing between 1.0 and $k$ or 1.0 and 1.41 . This shows that for these values of $n$ heat must be abstracted from the gas as the temperature rises.

For all other values of $n$, the coefficient is positive, and heat is added when the temperature rises.

Below are tabulated some of the more important values of the exponent $\%$.

Name of Curse.	Exponeut $n$.	$m=C \cdot\left(\frac{k-n}{1-n}\right)$	T $¢$ Equation.	$p v$ Equation.
Adiab	1.41 (=k)	0	$\varphi=$ Const	$p v^{1 / 4}=$ Conse.
Isothermal.		$\infty$	$\varphi=$ Const. $T_{2}$	$p \mathrm{p}=\stackrel{ }{ }$
Isopiestic.	0	$k C_{v}=C_{p}$	$\varphi_{2}-\varphi_{1}=\mathrm{C}_{\mathrm{p}} \log \mathcal{E} \frac{T_{2}}{T_{1}}$	$p=$
Isometric.	$\infty$	$C_{v}$	$\varphi_{2}-\varphi_{1}=\mathrm{Cv} \log \varepsilon \frac{T_{2}^{1}}{T_{1}}$	$v=$

That the equation of the curves is $T=$ const., in the second case, is readily seen from (12a). Since $m=\infty$, the other factor,

$$
\log \text { nat. } \frac{T_{2}}{T_{1}}=0, \text { or } T=\text { canst. }
$$

Differentiating (13), we have

$$
\begin{equation*}
\frac{d^{2} t}{d \varphi^{2}}=\frac{d t}{d \varphi} \frac{1}{m}=\frac{T}{m^{2}} \tag{14}
\end{equation*}
$$

Since the second derivative is positive in all cases, the curve is always convex to the $\varphi$ axis.

In Fig. 5 several curves are shown plotted accurately to scale. It will be noticed that the curves approximate very closely to straight lines, and in practice it is sufficiently accurate to draw a straight line. The direction of the line is obtained from(13); that is, the tangent of the angle which the line makes with the $\varphi$ axis is equal to $\frac{T}{m}$. It is necessary to choose different scales for $T$ and $\varphi$; in Fig. 5, one of the larger divisions represents a rise of $10^{\circ}$ of temperature; on the $\varphi$ axis, the same division represents ${ }_{100}^{10}$ of a unit of entropy.

It will be noticed that for $n=1.1$ and 1.2 , heat is abstracted as the temperature rises; it is also of interest to note that the area under the $p v^{\infty}$ curve is less than that under the $p v^{0}$ curve for the same rise of temperature, showing that less heat is $\mathrm{ex}-$ pended in raising the temperature of the gas when the volume is constant than when the pressure is constant.


Fig 5.
For a practical application of the $T$ ' diagram for perfect gases we will study the action of an air compressor with a water jacket. Suppose the air is taken in at 141 bs . pressure absolute and compressed to say 70 lbs . per sq. in. absolute. Assume the temperature of the entering air to be $40^{\circ} \mathrm{F}$. or $500^{\circ} \mathrm{F}$. absolute.

If there is no water jacket, the air will be compressed adiabatically, the equation of the compression curve being $p v^{1.41}=$ const. If, on the other hand all the heat could be removed as
fast as generated, the air would be compressed isothermally and the water jacket would be perfect. In practice the curve lies somewhere between these two limiting cases; the exponent $n$ is usually about 1.3 , though under favorable conditions it may be made smaller. With the data given it is easy to find the final temperature at the end of compression for any value of the exponent $n$ we have.

$$
\begin{align*}
& \left(\frac{p_{2}}{p}\right)^{\frac{n-1}{n}}=\frac{T_{2}}{T_{1}^{\prime}}  \tag{15}\\
& \left(\frac{70}{14}\right)^{\frac{n-1}{n}}=\frac{T_{2}}{500}
\end{align*}
$$

For $n=1.1, T_{2}=578.8^{\circ} \mathrm{F}$.

$$
n=1.2, T_{2}=653.8^{\circ} \mathrm{F}
$$

$$
n=1.3, T_{z}=725.0^{\circ} \mathrm{F}
$$



Fig. 6

The curves for these three values of $n$ are shown in Fig. 6 . For $n=1.3$, the line $a a^{\prime}$ represents $T_{1}\left(=500^{\circ}\right)$, and line ce' represents $T_{2}\left(=725^{\circ}\right)$, while ae ${ }_{1}$ represents (to a different scale) the decrease of entropy. The area $\quad$ ee' $a^{\prime}$ represents to a different scale the quantity of heat abstracted by the water jacket during the compression. Similarly add' $a^{\prime}$ represents the heat that would be abstracted by a water jacket if the compression should follow the law $p c^{1.2}=$ const. For the isothermal case, equation (12) becomes indeterminate; we know that the isothermal is a horizontal line through the point $a$, but we do not know the length of the line, that is, the decrease of entropy. We may proceed as follows: If $T$ is a constant, formula ( 8 ) becomes

$$
\begin{align*}
& d H=A p l v  \tag{16}\\
& \text { But } v=\frac{I T}{\prime}
\end{align*}
$$

and $d v=-\frac{R^{\prime} T^{\prime} d p}{\rho^{2}}$ remembering that $T=$ const.
Substituting, $d H=-A R T \frac{d p}{p}=-\left(C_{p}-C_{v}\right) T \frac{d p}{p}$

$$
\begin{align*}
d \varphi & =\frac{d H}{T}=-\left(C_{p}-C_{r}\right) \frac{d p}{p} \\
\varepsilon_{2}-\varphi_{1} & =-\left(C_{p}-C_{n}\right) \log \text { nat. } \frac{\mu_{2}}{\mu_{1}} \tag{17}
\end{align*}
$$

In the present case,

$$
\varphi_{2}-\varphi_{1}=-(.2375-.168 t) \log \text { nat. } \frac{70}{14}=-.1112
$$

This value gives us the length ab, on the scale adopted; hence $" b b^{\prime} a^{\prime}$ represents the heat abstracted by the water jacket supposing the compression to be isothermal or the water jacket to be perfect. It is evident that the fraction, $\frac{\operatorname{area} a \rho e^{\prime} a^{\prime}}{\operatorname{arca} \| l b^{\prime} a^{\prime}}$ is the efficiency of the water jacket when the exponent $n$ is 1.3 . Similarly the efficiency of the jacket can be found for any other exponent.

It may be of interest to note that the mechanical equivalent of the heat abstracted during compression is

$$
\frac{I I}{A}=\int p d r \cdot \text { from }(16)
$$

But $\int^{\prime} p d r$ is the work of compression. Hence, when air is compressed isothermally, all of the work done by the piston upon the air is immediately abstracted by the water jacket.


Fig. 7.
In Fig. 7, let $m n$ be any T¢ curve. Draw a tangent $c$ at any point $c$ of the curve; drop the perpendicular $c b$ on the $\varphi$ axis. Then $a b$ is defined as the subtangent of the curve.

$$
\begin{gathered}
\qquad a b=c l \tan a c b=T \frac{d \varphi}{d T} \\
\text { But } \frac{d \varphi}{d T}=\frac{m}{T} \text { from (13), } \\
\text { Hence } a b=m=C_{v}\left(\frac{k-n}{1-n}\right)
\end{gathered}
$$

When $n=\infty$, the $p$ ecurve is $v=$ const. and $m=C_{x} \quad$ The operation consists in adding heat to a gas at constant volume. In this case, the subtangent to the $T_{r}$ curve represents $C_{r}$ the specific heat under the given conditions. Similarly, if $n=0, p=$ const., $m=C_{p}$, and again the subtangent is the representative of the specific heat under the given conditions. Whatever may be the character of the change of state, the coefficient $m$ is the specific heat of the gas under those conditions and the subtangent of the curve is the linear representative of this specific heat. The subtangent of the curve is the linear representative of this specific heat. 'The subtangent is constant when the specific heat is constant; it is well known that the curve whose subtangent is constant is the logarithmic curve as has been shown.

The Te diagram may be profitably applied to the case of saturated steam. Suppose we have one pound of water in the

condition represented by the point a, Fig. S; the temperature is $T_{1}$, and the entropy may be represented by the distance $O K$. Heat is applied and the temperature rises to $T_{2}$, the increase of entropy being represented by a $b$. This increase is

$$
" b=\varsigma_{2}-\varphi_{1}=\int_{T_{1}}^{T_{2}} \frac{d H}{T}=\int_{T_{1}}^{T_{2}} \frac{C d t}{T^{\prime}}
$$

Suppose $c$ to be the boiling point: if any more heat is added the water will vaporize at constant temperature and the operation will be represented by an isothermal cel parallel to $O \varphi$. If the water is all changed to steam there must have been $r_{z}$ heat units added; hence the increase of entropy is $\frac{r_{2}}{T_{2}}$ where $r_{2}$ is the latent heat of steam at the temperature $T_{2}$. Suppose now the steam expands adiabatically from the point $d$ : the operation is represented by the line de parallel to O T'. If, on the contrary the steam expands so as to remain continually saturated the operation may or may not be adiabatic. Let us assume for a moment that during such an expansion the steam gives up heat;
that is, loses entropy. In this case the expansion will be reprerented by a line $d / h$ lying to the left of $/ \rho \rho$. When the expansion has proceeded to the temperature $T_{3}$, the decrease of entropy is $y \approx$ Call this $\%$.

$$
\text { Now } y z=\mathbb{w} x+c d-\mathbb{r}!
$$

The distance $w, x$ represents the increase of entropy due to heating the water from $T_{3}$ to $T_{2}$, or

$$
\begin{aligned}
& a \cdot x=\int_{T_{3}^{2}}^{T_{2}} \frac{C^{\prime} d t}{T} \\
& c \cdot d=\frac{r_{2}}{T_{2}}
\end{aligned}
$$

Similarly $\mathbb{C} y=\frac{r_{3}}{T_{3}}$ considering $T_{3}$ the boiling temperature.

Substituting these ralues:

$$
\begin{equation*}
\theta=\int \frac{T_{2}}{T_{3}^{2}} \frac{C l t}{T}+\frac{r_{2}}{T_{2}}-\frac{r_{3}}{T_{3}} \tag{18}
\end{equation*}
$$

If the line $\mathbb{N} z$ is made to approach line $c d$ until only an infinitesimal distance separates them, $T_{2}$ and $T_{3}$ will practically coincide, and we may pass to the differential votation and write (18),

$$
\begin{gathered}
d l=\frac{C_{1} l t}{T}+d\binom{r}{T} \\
\text { whence } \frac{d l}{d t}=\frac{c}{T}+\frac{d}{d t}\binom{r}{T}
\end{gathered}
$$

The specific heạt of the steam is represented by the subtangent to the curve $d / h$. Call the spcific heat $/$.

$$
\begin{gather*}
\text { Then } h=T \frac{d \theta}{d t}=C+T \frac{d}{d t}\left(\frac{r}{T}\right) \\
=C+\frac{T}{d t} \cdot \frac{T d r-r d t}{T_{2}} \\
\text { or } h=C+\frac{d r}{d t}-\frac{r}{T} \tag{19}
\end{gather*}
$$

Equation (19) is the general expression for the specific heat of any saturated vapor. In the case of steam, this expression may be simplified as follows:

$$
v=H-\eta
$$

where $I I$ is the total heat of vaporization and $\eta$ the heat of the liquid.

$$
\begin{aligned}
& \text { For steam, } I I=1091.7+.305(t-32) \\
& \quad r=1091.7+.305(t-32)-q . \\
& \frac{d r}{d t}=.305-\frac{d q}{d t}=.305-C, \text { since } C-\frac{d q}{d t} .
\end{aligned}
$$

Substituting this in (19),

$$
\begin{equation*}
h=.305-\frac{r}{T} . \tag{20}
\end{equation*}
$$

For ordinary temperatures, $h$ is negative; hence our curve would be $d h$ on the right side of $d e$ Fig. 8 , the area $d m n^{\prime} h$ representing the heat added to keep the steam saturated, while the temperature falls from $T_{2}$ to $T_{1}$. At some temperature, the tangent to the saturation curve $d h^{\prime}$ hecomes vertical; this is the so-called "critical temperature." Above this temperature the tangent will incline to the left and be positive in sign, and the specific heat $h$ will at the same time become positive.

Interesting applications of the $T \varphi$ diagram to the cycle of the steam engine may be found in Ewing's Steam Engine and in Cotterill's Steam Engine. There is also an instructive article in London Engineering, Oct. or Nov. 1894.

# ROMANESQUE ARCHITEC'TURE. 

By Grant C. Millele, '94, School of Abchitecture.
The word Romanesque means Roman-like. According to Quicherat: "Romanesque architecture is that which has ceased to be Roman, and though not yet Gothic contains much that is Gothic." It was inspired mainly by the monuments of Rome which covered the land and were remodeled under the Byzantine influence to suit the new customs and forms of religion. The Byzantine style certainly took its elementary details and its fundamental forms from Rome and on the other hand there are to be found in the Romanesque style elementary details from Byzantium, though the two styles are different in their general character. The Byzantine style was more local while the Romanesque became the style of the whole Christian world.

Very early in the middle ages commercial relations existed between the east and the west, and Byzantium became so powerful that ambassadors were sent there from France, Germany and Italy. Many people from all nations were making pilgrimages to the Holy Land and as they passed through Constantinople and other important places of the Byzantine empire they were inspired to rival the east in art. In consequence of this, their aspirations and ideas were spread into Italy, France and Germany, and Greek monks who had established themselves in these countries also assisted materially in developing the influence. For several years the south of Italy was connected by religion, government and language with the empire of Constantinople. Venice, to the north, maintained her independence, but her merchants continued to carry on trade with the Byzantine empire and brought back many ideas on art.

Just as languages formed from the old Latin were national transformations from the original language, so the Romanesque style varied considerably in different countries. It was more like the Roman buildings in the vicinity of Rome, had more of the Byzantine influence in the neighborhood of Venice, and showed most originality farthest from Rome, as in Germany and France.

The ancient Christian Basilica, Fig. 1, is the starting point for all the Christian architecture of the middle ages, and it in turn was derived from the old Roman basilica, which was used for the market and judgment hall. It is not the intention, however, to trace out each step of the development and alteration of the

simple primitive form, or to prove that it had an independent origin, but to accept its examples as we find them in the Romanesque edifices from the eleventh to the thirteenth century. It certainly would be useless togo back farther than the tenth cen-
tury to study this style, for the first buildings were made only of wood or with wooden ceilings, and were, from the nature of the material, soon destroyed. It is true, that history tells us of basilicas of a much earlier date, but only the buildings belonging to the eleventh, twelfth, and thirteenth centuries can be studied with certainty.

The typical basilica is similar to the Latin cross in plan, the short arms being called the transepts, and the long arm the nave, with an aisle on either side. The part lying beyond the transept is called the choir. The nave extended from west to east and the transept from north to south, which brought the choir facing the east. This orientation was invariably practiced at this period. The nave was broad and high, the side aisles half as broad and half as high, with the transepts of the same breadth and height as the nave. These proportions were retained, with four exceptions, in all the buildings of the period. Rows of columns or piers separated each aisle from the nave, being spaced a distance equal to or half the width of the nave. Semi-circular aisles united every two adjacent columns and supported the side walls of the nave, which in turn supported the roof. Churches with two aisles on either side were sometimes used, but not very frequently.

The east ends of the nave and side aisles were terminated by three semi-circular arches, that of the nave being of a much barger span than the other two. Each side of the square space formed by the intersection of the nave and transept was bounded by arches of the same span as the nave arch and supported by piers at the four angles. Over this was placed some form of a tower. The clerestory walls of the nave and transept were supported by these arches and were visible on the exterior. On the right and left, or north and south of this square, was a similar square of the same height and enclosed by three walls and one of the large arches.

The choir was generally several steps above the level of the nave and side aisles, and sometimes the raised portion extended farther, including all of the transept, as in the cathedral of Parma, which was built in the eleventh century. In the rear of the choir and in front of the apse was placed the altar, and the priest stood behind it facing the congregation. The choir,
which frequently extended forward into the square space formed by the intersection of nave and transept, was enclosed by a screen or balustrade. Behind this were placed two pulpits from which the grospels were read.

This is the plan of the simplest basilica as we find it in the earliest stages of its development, but it was considerably changed before being superseded by the Gothic style in the thirteenth century, especially in the choir end of the church. The first modification was the addition of small apses (Fig. 2) intended for side altars, to the east side, as well as the ends of each arm of the transept. Sometimes the side aisles were continned beyond the transept (Fig. 3) on each side of the church and terminated in small apses, which were used for side chapels. In a few cases we find this plan simplified by the omission of the apses, especially the end ones. There were also small apsides for altars adjoining the chapels which were at the extremities of the side aisles.

A very pleasing arrangement of the choir was attained by continuing the side aisles as corriders around the choir and apse, the walls of the apse being supported by columns or piers, and the ceiling vaulted. A still more pleasing plan, and one which was very common in the Gothic period, was the addition of small semi-circular radiating chapels, extending out from the corridor around the main apse (Fig. 5). Another derivation from the simple plan of the basilica, which was used chiefly in the Rhine districts of Germany, was the adding of another choir to the west end of the church, and sometimes, also, another transept with chapels (Fig. 6). Towers were placed on the exterior at both ends of the churches.

The crypt was a vaulted apartment constructed under the choir and main apse of the church, and was used as the burial place for bishops, abbots and persons of high rank, and also for the preservation of the relics of the saints. Perhaps it was also retained as a remembrance of the catacombs in which the early Christians were obliged to secretly hold their meetings. The vatulted ceilings were supported by coltunns or piers which divided the plan up into aisles of equal height and an apse which contained the altar. Sometimes the erypt extended farther than under the choir and apse, and included all of the space under the transept. The entrance to the crypt was generally piaced in
front of the choir, between the steps leading up to the same. In some of the larger churches the side aisles were surmounted by galleries opening into the broad, high, central nave. This was brouglit about by the requirement for more space in the populous places. A gallery or loggia is sometimes found at the west end of the nave, resting on columns or piers, with a vaulted roof, and was occupied either by nuns or people of note. The space under it was generally used as a vestibule or entrance hall. In a few cases galleries were built in the north and south ends of the transepts.

The vaulting of churches is one of the principal characteristics of the Romanesque style. Page after page has been written to prove when and where the first vault was used in Romanesque architecture, but that does not matter to a practical architect though he should be familiar with the vaults used from the eleventh to the thirteenth century. History tells us that the vault was known to the Egyptians, the Assyrians, the Greeks, the Etruscans and the Romans. The cylindrical or barrel vault is the simplest, and the most ancient, for it was used at Rome from the time of the Tarquins. The conical vault was used in Greece, before the time of Homer, in the tombs and treasuries at Mycenae. There is also the groined vault, which is the intersection of two cylindrical vaults at right angles used by the Romans in the baths of Titus and Caracalla at the beginning of the third century. The baths of Caracalla were the last expression of Roman art in its highest development and were an inspiration to many of the early Christian architects. The Greeks knew of the dome constructed of horizontal layers in corbels, the true dome being perfectly developed later in the Pantheon at Rome. The bacilicas were at first ceiled and roofed with wood, but as history tells us, they were constantly being burned, thus destroying the walls and the christian altars. They were either set on fire by the torches of the processions in the churches or by lightning. To prevent these oft-recurring fires which destroyed the holy relics and Christian altars, they gradually developed the system of vaulting until we find it in its perfect form in the Gothic style. All attempts at valting were at first timidly made and did not at once come into use in the churches. First they used the old Roman system of vaulting and confined it in the beginning to the choir, apse and side aisles. Then
they included the transept and finally the nave, but this was not successfully accomplished until the close of the Romanesque period, or during the period of transition into the Gothic style. In the vaulting of the nave the height and breadth were so great as to render the thrust of the vault exceedingly dangerous. This made it necessary to reduce its width and to strengthen the supporting walls and piers of the lower arcade. This was accomplished by increasing their size.

A very ingenious method of buttressing the barrel vault was employed in the church of St. Savia, in France. The nave was formed of two rows of cylindrical columns, and the side aisles were groin vaulted. The barrel vault of the nave sprang from a point just above the crown of the arches, turned between the columns in the direction of the nave, and the wall which in the later churches was called the clerestory was continued above the springing line so that its weight tended to neutralize the thrust of the vault and it also served to support the roof. The cylindrical vault, thus resting through its entire length on the walls, was found to be too heary, and it was impossible to use the bays for lighting the interior. The groined vault, resting on four points of support, was employed to overcome these difficulties, and to give greater stability to the vault, a transverse rib was thrown across on its under surface from one engaged column or pier to another. The next great step was the addition of wall and diagonal ribs, each set supporting itself. By this system a frame work was obtained for the vaulting, which formed four spherical triangles which could easily be filled in with light material, thereby making a much more stable vault. The ribs could be made as heary as desired, while the vaulting or filling could be light, as stated above, thus making the covering of larger areas possible. When once this system came into use it was necessary to buttress the points of support, which was done by lessening the width of the openings and increasing the thickness of the walls and piers. This gave a crowded appearance to the interior, the acoustic properties were bad, and lighting through such thick walls was practically inpossible. Common sense called a halt. To oppose the thrust of the central vault, half tunnelled valults were turned over the side aisles to the springing line of the central vault; the walls of the side aisles being buttressed on the exterior. It is quite probable that from
this came the flying buttress. $\mathrm{U}_{\mathrm{p}}$ to the last few years of the period only the semi-circle had been employed, but a further development came in the use of the pointed arch. The groined vault had been used mainly for covering square areas, the diagonal ribs being semi-circles, but when the pointed arch came into use these diagonals could be either pointed or semi-circular in form. Thus a rectangular area could be vaulted by arches of the same radius, the diagonal rib having the same height at the apex as the arch spanning the greatest aisle.

A further development was made in the way of vaulting a square area by raising a dome over the middle square of the transept, which appears outside in the form of an octagonal tower. The transition from the square to the octagon was made by vaulted niches, i. e., snall arched pendentives in the four corners. The large apse and semi-circular niches were vaulted over with half domes which were covered externally by conical wooden roofs.

In covering the outer aisle around the apse the groined vault was used, but this necessitated the stilting of the inner arches, or the use of segmental arches on the outside, to bring their crowns in the same horizontal plane. Neither of these looked well, but the former was preferable and most commonly employed.

The star vault was also conceived by the Romanesque architects, but more fully developed by those of the Gothic period. It is similar to the groined vault, except that the diverging arches spring from each angle of the bay instead of one, their ends intersecting the transwerse and longitudinal ribs, thus forming a four pointed star on the plan.

All this being accomplished, the next step was to transfer the buttress from the interior to the exterior, so as to clear from the interior the mass of masonry which was placed there by the Romanesque architects, and to place it on the outside in the form of flying buttresses.

The exteriors had at first a very heavy and massive appearance, but became lighter and more refined until, at the close of the twelfth century, as the transition period drew near, they were much more delicate and harmonious. The horizontal lines, such as water tables, cornices, belt courses and friezes, diminished and gradually disappeared, while at the same time the vertical
members, such as buttresses, pilasters, engaged columns and arcades, began to predominate and attract attention.

On the whole the general expression of the exterior was one of repose. The windows were small in proportion to the size of the buildings, but the masses were proportionate and well treated. The principal facade and also the facades of the tran-


septs, were terminated by gables the inclination of which varied with the locality and the system of construction. The principal facade contained the main entrance and sometimes a porch. A round opening or bull's-cye window was used in the gable, and served to light the nave, and was the origin of the beautiful rose window of the Gothic style. A tower was nearly always attached to the church, excepting in Italy, and it was built up of several stories of arcades or windows, which were separated by string courses.

Slightly projecting pilasters were used to a considerable extent on the exteriors, and were connected at each story by horizontal moulded string courses (Figs. 14-25 inclusive) or by rows of semi-circular arches supported by corbels of various forms (Figs. 7, 8, 9) and sometimes in the form of heads grotesquely treated (Figs. 21, 22, 24). Occasionally half-columns or pilasters, with capitals, were placed on the exterior wall, and connected at the top with semi-circular arches forming blind arcades. The projecting pilaster strips supported by string courses were used mainly on the side walls, the arcades being employed mostly on the facades and choir. The apse is generally covered externally by a conical or octagonal wooden roof.

The open arcades or galleries formed in the frieze nnder the cornice and composed of detached columns, connected by semicircular arches, are an excellent feature of the style. The galleries were not found all around the church, but in those places which were intended to be most highly ornamented, as the choir and transept, when ending in a semi-circular or octagonal apse, and in the octagonal tower over the intersection of the nave and transept. This feature is found mostly in upper Italy and along the Rhine in Germany.

The bays which were formed by the pilaster strips or engaged columns were pierced by semi-circular-headed windows which were sometimes grouped in twos or threes, separated by small engaged columns.

Towers for the first time became an integral part of the church, but continued detached in Italy. It is thought by M. Viollet-le-Duc that the tower was at first a work of defense intended to protect the church from possible attack, but during this period we know of their being used as a place to hang the bells for calling people from a distance to worship. Generally
towers were square and had pyramidal wooden roofs of different inclinations, varying with the country. Many different forms of towers were employed in the Rhine districts of Germany, sometimes round; as in the Worms cathedral, or octagonal, as in the Church of the Holy Apostles at Cologne, or square, changing to octagonal and then to round. In Germany the roofs covering these towers varied greatly.

The principal entrance was generally placed in the center

of the west facade excepting in the double ended churches found in Germany. Owing to the very great thickness of the walls it was necessary to employ recessed doorways, placing tangent columns in the angles, the number increasing with the richness of the style.

The full semi-circular arch is always used in spanning the doorways and openings, its archivolt being ornamented by mouldings (Figs. 26-31 inclusive), and geometric carvings. These doorways, therefore, give opportunity for the richest decoration. In the first part of the eleventh century the arches were very simply treated, but became more and more ornamental as the style was developed. The semi-circular space above the door was filled with a stone slab set flush with the inner surface of the wall and was called the tympanum. This space was nearly always ornamented with bas-reliefs representing the saint of the church. The door was composed of leavy planks dowelled together and hung on large metal hinges in the form of scrolls.

Window openings were usually semi-circular at the top, and at first quite small, being splayed on the inside to allow the light to enter more easily. They became larger as the style was developed and were splayed on both sides. Small columns were sometimes used in the steps of the recessed jambs, as in the doorway, the arch mouldings springing from the capitals of these columns. When the columns were omitted, these mouldings continued down the sides and stopped on the sill course of the window. The windows are often grouped in twos and threes and separated by columns supporting the arches. In the later period when groups of three were used the central one extended higher than the others.

The wheel window was a large circle placed over the front entrance way for the purpose of lighting the interior of the west end of the nave. These were at first simple openings, more or less ornamented, but toward the close of the twelfth century they were divided into several parts; such as lobes, trilobes, quatrefoils, etc. It is evident that the Romanesque architects understood the decorative motive which the Gothic architects sofully developed in the beautiful rose window. The windows were sometimes, at first, left entirely open, but later they were filled with circular or diamond shaped glass, leaded together and
stayed by wrought iron bars. In a few cases, in the west, the openings were filled with designs of intersecting circles in perforated stone.

In the design of the cornice the Romanesque architects left the classical traditions, thinking the entablature was not necessary for each repetition of the orders, and used a single entablature at the upper part of the building, employing only a plain belt course to separate the orders. It was this custom of suppressing the horizontal and accenting the vertical lines which gave such a powerful influence to the Gothic style.

The cornice was at first quite simple, being only a plain moulding (Figs. 18, 19, 20), but to add to the effect an arched frieze or a row of corbels supporting a projecting table was employed. The arched frieze consisted of a row of semicircular arches, arranged one after the other and connected continuously (Figs. 7, 8, 9), and received the greatest variety of treatment and refinment. The ends of each arch either terminated in rectangular projections, or the single arches rested on corbels of alternating designs. These arches were often formed of richly profiled mouldings. Sometimes there was added to each arched frieze another frieze (Figs. 10, 11, 12, 13), or broad horizontal bands of square projections and hollows, arranged like a checkerboard; or a band of scale-like ornaments; or, more frequently, a zigzag band.

The Romanesque cornice is generally composed of a row of stone corbels supporting a projecting table (Figs. 17-23 inclusive). According to Viollet-le-Duc the sculptors of the tenth, eleventh and twelfth centuries understood that the corbel was the place most proper for displaying sculpture. These corbels were sometimes carved into heads grotesquely treated. Corbels were also employed to relieve the lintels of the doors. Heavy projecting corbels (Fig. 70) were sometimes used to carry columns which supported arches.

In upper Italy and along the Rhine in Germany the arcade gallery was frequently introduced instead of the corbel-tables of the frieze. These galleries consisted of small detached shafts connected by arches which made a dark shadow under the cornice and afforded a pleasing effect. In Italy these arched friezes extended parallel to the inclined cornice of the gable, but were not always detached.

The pier was employed to separate the aisles and to support the vaults and roof. These piers exhibited a great varicty of form. At first they were perfectly plain and square. (Fig. 49). Their angles were then chamfered (Fig. 50), or rectangularly in-



dented, ending in grooves a little distance from the top and base (Fig. 81), or small three-quarter columns were inserted in the rectangular recesses (Fig. 76). Half columns were sometimes attached to each face of the square pier (Fig. 51), the square corners still being recessed (Fig. 53). A more beautiful

form was obtained by introducing a small half column in place of the center projection (Fig. 54). In this way the whole pier, instead of being plain in form, became moulded. The large column on the face of the pier towards the nave supported the transverse ribs of the vault, while the smaller shafts at the angles supported the groin ribs.

Hand in hand with the development of the pier came that of the ribs of the vault, which were at first perfectly plain, then grooved out at the angles and quarter rounds inserted so they appeared to spring from the abacus of the capital of the pier (Figs. 32-42). Wall piers or pilasters, which likewise served as supports for the groin ribs, were developed in conjunction with the aisle piers.

The Romanesque architects abandoned the proportions established by the Romans and proportioned their columns to suit the needs of their new construction. The proportions were more slender than those of the classical style, there being no fixed relation between the length and diameter of the shaft. The columns were usually built of small blocks of stone, rarely of drums or monoliths. The shafts were circular in section, never diminished and rarely fluted. 'They were usually plain, but were sometimes decorated in various ways, such as twisted rope mouldings, chevron or zigzag ornaments, and by lozenge shaped panels (Figs. 112-116 inclusive). In order to avoid the heary appearance of the column when it was required to support a great weight, clustered columns were employed. The middle of the shaft was sometimes also relieved by an annular band or moulding, especially when several columns were grouped together.

The capitals of the Romanesque period varied greatly. In the early epoch of Christian architecture the art of sculpture had declined and the capitals of the heathen temples were borrowed, or new capitals were carved in rude imitation of the antique. After some time the Christians began to invent capitals, the first of any importance being the cubic or cushion capitals (Figs. 73, 74,75 and 80 ). If we conceive the lower corners of a cube to be more or less rounded off so that each of its sides presents a semicircular form, we have the cushion capital (Figs. 75, 80, 91). Along with this was introduced the bell shaped capital (Figs. $87-89$ ), and towards the close of the twelfth century a finer and
richer transformation of the ancient capital occurred. The cushion and bell shaped capitals, however, were used to the close of the Romanesque period. The scalloped capital (Figs. 73, 74), is another form which was used in England more than elsewhere and appeared like a series of cushion capitals placed side by side. It was employed mostly for the capitals of clustered colunnns and massive piers.

The capital really consisted of two parts, the upper or


square portion called the abacus, and the lower portion or bell. The necking was generally omitted, there being just a small ovolo or torus separating the shaft from the capital.

The ornamentation was at first similar to the Roman Corinthian, and Byzantine capitals (Figs. 82 and 85). During the twelfth century antique plant forms were abandoned and geometric plant forms were introduced (Figs. 83 and 84), as also were patterns of plaited ribbon work (Fig. 87) and grotesquely treated animal forms (Fig. 90). Towards the end of the twelfth century antique forms were again imitated (Fig. 86). In cases where they predominated the Corinthian style is often called to mind, although no exact imitation was intended. During the late period of the Romanesque style the bell-shaped capital is covered with foliage of a more natural and graceful character, the stems being carved with ornaments in imitation of jewels, pearls and small geometric figures (Figs. 77 and 88). The late Romanesque architects used many varieties of capitals, but still a certain similarity prevailed which was quite pleasing.

Often when two or more columns were placed side by side their capitals were cut out of one block of stone (Figs. 78 and 79 ), the ornament continuing from one to another, or they were united by grotesques.

It would be well to note that the nature of the material had a considerable influence on the ornamentation of the capitals. Where the stone was fine and compact the carved work was more finely treated, but where the stone was soft and coarse grained the carving was accordingly ruder.

The abacus was at first quite simple, being merely a square slab or block with its lower edges bevelled (Fig. 47h), but later decorated with mouldings, such as the inverted attic base (Figs. 47(1, $c, d$ ).

One of the chief distinctions of the late Romanesque capitals was in the peculiar form of the abacus. It was much higher and less projecting than in the classical styles, its mouldings consisting of alternate fillets and cavettos, or vertical side faces with decorations (Fig. 108). When a column was connected to a pier the moulded abacus was continued around the pier.

The base of the column is merely an imitation of the classic base resting on a square base or plinth (Figs. 55, 60, 61, 62). It consisted usually of a small upper torus and a larger lower one
separated by fillets and a scotia. In order to accomplish the transition from the square corners of the base to the round part of the torus the corners were rounded off and a claw-like ornament, head of an animal, or a leaf was used to conceal the angle of the

plinth (Figs. $69,72 \pi, b, c$ ). This was a truly characteristic feat ture of the Romanesque style, although not always employed. Wherever the corners of the base are rounded off it must be regarded as work of the early period, for it was only in the beginning of the twelfth century that the spur ornament first appeared. Sometimes the torus projected beyond the plinth ( Fig . 68 ) and the corner was left square, entirely omitting the spur ornament. The profile of the base was sometimes quite flat (Fig. 65) and at other times nearly vertical, the torus and fillets being very simple and projecting scarcely beyond the line of the shaft of the column (Figs. 63, 64, 66, 67).

Romanesque ornamentation was, in principle, only a new interpretation of the Byzantine ornamentation. This origin is perfectly established, even by examining a few forms of capitals. decorated shafts and the manner of employing alternating courses of materials of different colors. From the twelfth century the architects depended upon the arrangement of materials as a means of decoration in a manner similar to that employed by the Byzantine architects. In certain countries, as in Anvergrne, materials of different colors, such as the brown and volcanic stones, composed large geometrical mosaics on the faces of the walls. This checkered work was also applied to the ornamentation of certain other portions, as the tympanums, gables and string courses, in the form of lozenges, stars, polygons, equilateral triangles, serrate patterns and geometrically divided circles. This ornamentation was mainly used in countries where materials of suitable colors were easily obtained. Scale-like patterns were also found to a great extent in Romanesque architecture, as in the tiles of the roof, the copings of the buttresses and the spires of the towers.

In southern France the roofs were constructed in patterns of stone and plain and enamelled terra cotta of different colors.

The mouldings of the Romanesque style were generally composed of large hollows and rounds, decorated by geometrical patterns but rarely by plant forms. The ornamentation of the mouldings was for the most part simple and rectilinear, and calculated to produce a regular alternation of light and shade. The serrate ornament (Fig. 102) was used to a great extent and the nail-head ornament (Fig. 99) was used in the decoration of the bants of arches. The fillet moulding (Fig. 92) was obtained by

cutting out a part of a round or square moulding at regular intervals and sometimes two or more adjacent mouldings were treated in the same manner. The cable ornament (Fig. 103) is similar to a rope and was used in the arch mouldings. The zig\%ag ornament (Fig. 95), angular, rectangulai and triangular, is formed of a semi-circular moulding making angles with the direction in which the surface to be decorated extends (Figs. 95 , 96,98 ). The disc ornament is a circular figure, either projecting or sunken into the band. The button ornament is a small spherical bur (Fig. 117) partly opened on the head and used in sunken paneis (Fig. 118). Lozenge ornaments were usually formed on a flat surface by half-rounds intersecting so as to form a panel (Fig 105) with opposite angles equal, in pairs. The chess-board ornament is formed by decorating a surface with small squares of stones of different colors, arranged in checkerboard pattern. Sometimes the courses were arranged horizontally (Fig. 97 ) and sometimes diagonally. The star ornament (Fig. 93) is a series of star-like forms produced by sinking inclined planes into a flat surface.

The sculptured ornament was very beautiful in the late period, there being greater liberty left to the sculptor, which resulted in a flood of strange compositions, where queer animals and human figures were interlaced with the foliage. After the Byzantine and even after the Saxon influence, they commenced to imitate the floral ornament which soon resulted in its complete development. The fern leaf was considerably used in flowing ornament, the recurving of its leaves and the adding of bunches of grapes giving it decorative forms. From this modest flora the Romanesque artists composed some magnificent foliage which harmonized well with the recurving of the leaves, and produced beautiful shadows.

# THE RAILWAY TRANSITION SPIRAL, ON OLD RAILWAY CURVES. 

By Artiur N. 'Talbot, 'st, Profespor of Municipal and Sanitary Enginefring.

Transition curves of some form are now generally accepted requrements for our best railroads. The railway transition spiral, which was described in an article in The Technograph No. 5 , has met with favor and the method therein described has been adopted by many lines of railroad. In answer to queries in reference to its application to curves in existing railroad track, the writer presents the following as a method which will permit easy computation and little disturbance of the old roadbed. The nomenclature will be the same as that in the previous article, (see The Technograph No. 5, p. 78).

The general case of a compound curve will first be considered.

## Case I. Compound Curves.

To insert a spiral between the two curves of an existing compound curve by first replacing a part of the sharper curve with a curve of slightly smaller radius.

In Fig. 1, let AB be a $D_{1}^{\circ}$ curve and BG a $D_{3}^{\circ}$ curve, B being the P. C. C. and the $D_{3}^{\circ}$ curve having the smaller radius. It is desired to go back on the $D_{3}^{\circ}$ curve to a point D and there compound with a $D_{2}^{\circ}$ curve which shall be run to a point $E$ where its tangent shall have the same direction as the tangent to the $D_{1}^{\circ}$ curve produced backward to F has at F . The radial distance EF corresponds to the offset of the usual spiral and will be called $o$. It is desired to locate D and F so that a selected curve, $D_{2}^{\circ}$, will give a calculated or assumed distance EF as $o$.

The distance EF is made up of FK and KE, the first being the divergence of the $D_{1}^{\circ}$ curve from the $D_{3}^{\circ}$ curve in the distance BF and the second the divergence of the $D_{2}^{\circ}$ curve from the $D_{3}^{\circ}$ curve in the distance DE. Call the distance BF (measured in stations, or 100 -ft. lengths) $L_{1}$, and DE, $L_{2}$. For the small angles used these divergences may be calculated accurately enough by the approximate formula for tangent offset, $y=.87 D L^{2}$, and we shall have

$$
\begin{align*}
\mathrm{EF}= & .57\left(I_{2}-H_{3}\right) L_{2}^{2}+.87\left(D_{3}-D_{1}\right) L_{1}^{2}=0,0 r \\
& \left(D_{2}-D_{3}\right) L_{2}^{2}+\left(D_{3}-D_{1}\right) L_{1}^{2}=1.150 \tag{17}
\end{align*}
$$

Since the amount of $D_{1}^{\circ}$ curve in $\mathrm{BF}^{\circ}$ plus the amount of $D_{2}^{\circ}$ curve in DE (total angle) must be equal to the amount of $I_{3}^{\circ}$ curve taken out, we have

$$
\begin{align*}
& D_{2} L_{2}+D_{1} L_{1}=D_{3}\left(L_{2}+L_{1}\right) \text { or } \\
& \left(D_{2}-D_{3}\right) L_{2}=\left(D_{3}-D_{1}\right) L_{1} \tag{18}
\end{align*}
$$

Combining (17) and (18) and solving,

$$
\begin{align*}
& L_{1}^{2}=1.15 \frac{\left(D_{2}-D_{3}\right) 0}{\left(D_{3}-D_{1}\right)\left(D_{2}-D_{1}\right)}  \tag{19}\\
& L_{2}^{2}=1.15 \frac{\left(D_{3}-D_{2}\right)^{\prime}}{\left(D_{2}-D_{3}\right)\left(D_{2}-D_{1}\right)} \tag{20}
\end{align*}
$$

Having $L_{1}$ and $L_{2}$, the points D, E and F may be located, and the $D_{2}^{\circ}$ curve may be run in from $D$ as far as necessary. The

problem is then identical with that of putting a spiral between two curves having an offset $o(E F)$ between their parallel tangents.

The principles governing the placing of a spiral between two curves are given on p. 91 of The Technograph No. 5. It is there slown that the length of the connecting spiral $L^{\prime}$ is that of a spiral for a curve of degree equal to the difference of degree of the two connected; that is

$$
L^{\prime}=\frac{D_{2}-D_{1}}{a}
$$

The offset is equal to that for a $\left(D_{2}-I_{1}\right)$ degree curve from a tangent or

$$
\begin{equation*}
0=.0725\left(I_{2}-D_{1}\right) L^{\prime 2}=.0725 \pi L^{3} \tag{21}
\end{equation*}
$$

Half of this spiral will lie on one side of the offset and half on the other, hence in Fig. $2 \frac{1}{2} L$ to the right of F will give the beginning of the spiral H , and $\underset{2}{1} L$, to the left of E will give the end of the spiral I.

The method of field work will then be as follows: Measure from B, the P.C.C. back on the $D_{1}^{\circ}$ curve a distance $\mathrm{BH}=\frac{1}{2} L^{\prime}-L_{1}$ to locate the point of spiral $H$. Measure from $B$ on the $D_{3}^{\circ}$ curve the distance $\mathrm{BD}=L_{1}+L_{2}$ to D , the new $\mathrm{P} . \mathrm{C} . \mathrm{C}$, run in the $D_{2}$ curve to I, DI being $L_{1}+L_{2}-\frac{1}{2} L^{\prime}$. The spiral is then to be run in from $H$ to $I$.

The field work for the spiral is simple. The spiral may be run in by offsetting from the $D_{1}^{\circ}$ curve HF (Fig. 2), knowing that the offset from the curve to the spiral is the same as that of a spiral from the tangent using the distance from $H$ as the distance on the spiral. Likewise the remainder of the spiral may be offsetted from the $D_{2}^{\circ}$ curve IE using distances from I in the calculations. See The Technograph No. 5, p. 83.

If the field work on the spiral is to be done by deflection angles, the spiral may be run in from $H$ by using as deflection angles the sum of the deflection angle for the circular curve HF and the spiral deflection angle from a tangent for the same distance; or the transition spiral may be run backward from I in a similar manner. In either case the work will be no more difficult than for spirals for simple curves. See The Technograph No. 5, pp. 83 and 88.

As an example let us consider that a $2^{\circ}$ and an $8^{\circ}$ curve are compounded at $B$. Consider that the degree of the new curve to be run in is $8^{\circ} 30^{\prime}$, and that the value of $a$ to be used is 2 . Then $\|_{1}=2, D_{3}=8, D_{2}=81 / 2$. For a spiral from $2^{\circ}$ to $8^{\circ} 30^{\prime}$, the value of the offset $o(\mathrm{EF})$ is the same as the $o$ for a $6^{\circ} 30^{\prime}$ curve from a tangent. Hence $o=4.99$. By formula (19), $L_{1}=$ .271 and by formula (20) $L_{2}=3.255$. Hence the point $D$ will be back on the $D_{3}^{\circ}$ curve $325.5+27.1$ or 352.6 ft . from $B$. The length of the spiral to be used will be $L^{\prime}=\frac{81 / 2-2}{2}=3.25$. Of this 162.5 ft . will be to the left of E and 162.5 ft . will be to the
right of F . Hence H and I , the ends of the spiral, may be readily located and the spiral may be run in.

By this method the value of $a$ may be chosen beforehand, the value of $o$ may be easily calculated, and the preliminary field work is small. It may be stated that the limiting values of $D_{z}$ will be, on the one hand, a value so near $D_{3}$ that the resulting $L_{0}$ will carry the new point of compound curve back to the end of the old curve, and on the other hand such that the length of the $D_{2}$ curve shall be at least equal to half the length of the transition spiral, a value which may be shown to be $D_{2}=\frac{1}{3}$ $\left(4 D_{3}-D_{1}\right)$.

## Case II. Simple Curves.

To insert a spiral between a tangent and curve in existing track by first replacing a part of the existing curve with a curve of slightly smaller radius.

The demonstration for compound curves is general and may be made to apply to simple curves by making $I_{1}=0$. The point B then becomes the P. C., as in Fig. 3, and Formulas (19) and (20) reduce to

$$
\begin{align*}
L_{1}^{2} & =1.15 \frac{\left(D_{2}-D_{3}\right) \varrho}{D_{3} D_{2}}  \tag{22}\\
L_{2}^{2} & =1.15 \frac{D_{3}{ }^{\prime}}{\left(D_{2}-D_{3}\right) D_{2}} \tag{23}
\end{align*}
$$

$L^{\prime}$ is the length of spiral for the $D_{2}$ curve. H, the point of spiral, is to the right of B a distance $\frac{1}{2} L^{\prime}-L_{1}$, and D , the point of compound curve, ( $D_{3}^{\circ}$ to $D_{2}^{\circ}$ ) is $L_{1}+L_{2}$ left of B. The end of the spiral is $L_{z}-\frac{1}{2} L^{\prime}$ to the right of D . The spiral may be located in the usual manner.

Thus, for an $8^{\circ}$ simple curve, using $a=\mathbf{2}$, replace a part of the curve with $8^{\circ} 30^{\prime}, 0=9.30$. By (22) and (23), $L_{1}=.280$ and $L_{2}=4.488 . L^{\prime}$, the spiral for an $8^{\circ} 30^{\prime}$ curve, is 425 ft . The $8^{\circ} 30^{\prime}$ curve will compound with the $8^{\circ}$ curve at $D$, (Fig. 1), $28+448.8=476.8 \mathrm{ft}$. from B, the original P. C., and will connect with the spiral at a point $448.8-212.5=236.3 \mathrm{ft}$. from $D$. The - beginning of the spiral will be at H, $212.5-28=184.5 \mathrm{ft}$. from B.

The limiting values of $D_{2}$ will be on the one hand $\frac{4}{3} D_{3}$, and on the other a value which will make $L_{\mathrm{a}}$ one half of the length of the original curve.

In the field work there will be slight variations in length between the old and new lines, but these differences may easily be divided.

## DEGREE OF CURVE.

By Wm. D. Pence, Assistant Professon of Civil Engineering.

Degree of curve may be defined as the angle at the center subtended by 100 ft . at the circumference. Established usage in this country recognizes two conceptions of this definition, viz: (1) the single-chord definition which assumes the $100-\mathrm{ft}$. unit, called the station, to be measured always on a single chord; and (2) the short-chord definition which assumes the station to be measured on one or more chords, depending on the sharpness of the curvature. To these may be added (3) the arc definition which assumes the distance to be taken on the actual arc, but which for practical reasons has not been applied in its strict sense to railroad curves.

The single-chord definition was evolved from usage which dates from the inauguration of railroad construction in the United States. It is applied by different authorities with varying degrees of strictness according to the importance attached, on the one hand, to accuracy and consistency, and on the other, to simplicity and facility in the several steps of laying out the curve. Those authorities who adopt the more precise interpretation employ corrected sub-chords in establishing fractional stations on sharp curves. The others assume the arc and its chord to be equal, and thus introduce an inconsistency which occasions a discrepancy in the closure of the curve that is distasteful to the careful field engineer.

The natural remedy for this conflict between consistency and economy was first perceived and applied in Western mountain railroad location, where the very sharp curvature required the adoption of simple and rapid methods. This remedy consists in the restriction of the $100-\mathrm{ft}$. chord to flat curves, and in the use of $50-\mathrm{ft}$., $25-\mathrm{ft}$. and $10-\mathrm{ft}$. chords as the curvature sharpens. The short-chord definition which is derived from this practice by the assignment of limits for the use of the several chord lengths,
may be stated as follows:* Degree of curve is the angle at the center subtended by 100 ft . at the circumference measured on a single chord for curves $\mathfrak{u p}$ to $7^{\circ}$, on two $50-\mathrm{ft}$. chords thence to 14 , on four $25-\mathrm{ft}$. chords thence to $28^{\circ}$, and on ten $10-\mathrm{ft}$. chords thence; or in any case on shorter chords without sensible difference.

These definitions will be discussed with reference to ( 11 ) the radius, (b) the excess of arc over chord, and ( $f$ ) sub-chord corrections.

## Nomenclature.

Let $D=$ degree of curve, i. e. the angle subtended by a $100-\mathrm{ft}$. station,
$n$ ratio of length of assumed unit chord to 100 ft ., " its subtended angle to angle $D$,
$m=$ " angle subtended by any sub-chord $c$, to angle $D$,
$r_{1}=$ radius of curve due to the use of $100-\mathrm{ft}$. chords, i. e. $n=1$,
$r .5=6 \quad ، \quad$ " $60-6 \quad$ " $" n=0.5$,
$r \cdot{ }^{25}=6 \quad$ " $" \quad$ " $25-6 \quad$ " $" n=0.25$,
$r \cdot 1=" \quad$ " $\quad$ " $\quad$ " $10-\quad$ " $" \quad$ " $n=0.1$,
$r_{n}=6 \quad$ " $6 \quad$ " $100 n-6 \quad$ "
$r_{a}=" \quad "$ by the arc definition, i. e. when $n=0$,
$r$ (approx. $)=$ radius by approximate formula,
$d_{t}=$ difference between radius by arc definition and that due to the use of $100-\mathrm{ft}$. chords,
d.5, $d_{.25}$, etc. - differences corresponding to the respective radii,
$d($ approx. $)=$ difference between radii due to the are definition and to the approximate formula,
$c=$ anly sub-chord subtending the angle $m D$,
$\rho=$ excess of any actual arc over its chord $c$,
$E=$ excess, per station, of the actual are over the combined lengths of the unit chords,
$s=$ correction to be applied to the length of any sub-chord $c$, to preserve the true curvature.

[^17]The Radius. The circumference of a one-degree curve by the arc definition is exactly 36000 ft . in length, and the radius is 5729.58 ft . Since the circumference varies inversely at the degree of curve, and the radius as the circumference, radius and degree of curve are exactly inversely proportional by the arc definition. Hence

$$
\begin{equation*}
r_{a}=\frac{5729.58}{D} \tag{1}
\end{equation*}
$$

An approximate formula commonly used for the determination of radii is

$$
\begin{equation*}
r(\text { approx. })=\frac{5730}{D} \tag{2}
\end{equation*}
$$

The radii corresponding to the chord definitions are determined by the following expressions, the second forms being particularly advantageous for simple computation:-

$$
\begin{align*}
& 1.1=\frac{50}{\sin 1 / 2 D}-1 / 2 \times 100 \times \operatorname{cosec} 1 / 2 D  \tag{3}\\
& 1.5-\frac{25}{\sin 1 / 4 D}-1 / 4 \times 100 \times \operatorname{cosec} 1 / 4 D  \tag{+}\\
& 1.25-\frac{12.5}{\sin 1 / 8 D}=1 / 8 \times 100 \times \operatorname{cosec} 1 / 8 D  \tag{5}\\
& \ddots_{1}=\frac{5}{\sin 2^{1} 0}=2^{1011} \times 100 \times \operatorname{cosec} 2^{1} 0 D  \tag{6}\\
& r_{n}-\frac{100 n}{2 \sin 1 / 2 n D}=1 / 2 n \times 100 \times \operatorname{cosec} 1 / 211 D \tag{7}
\end{align*}
$$

Table I. gives a comparison of radii determined by equations: (1) and (3). The differences between respective radii are shown numerically in the fourth column of Table I and graphically in Fig. 1. It is of interest to observe that the excess of $r_{1}$ over $r_{\text {a }}$ increases practically in direct ratio with the degree of curve for usual values of the degree. This relation and others of like practical value may be expressed algebraically in the following manner:-

$$
\text { In the sine series, } \sin x=x-\frac{x^{3}}{6}+\text { etc., placing }
$$

Table I- - Compabison of the Lengths of Radit and of Actual Ares by the Single-Chord and Arc Definitions of Degree of Curve.

Degree Curve.	Kadius by the Single-Chord Definition.	Radius by the Are Defintion.	Difference between Kespectiv Radii.	$\begin{gathered} \text { Excess of } \\ \text { Actual Arc } \\ \text { over ar } \\ \text { 100-ft. Churd. } \end{gathered}$
	Ft.	Ft.	Ft.	Ft.
1	5729.65	5729.58	0.07	0.001
2	2864.93	2864.79	. 14	. 005
3	1910.08	1909.86	. 22	. 011
4	1432.69	1432.40	. 29	. 020
5	1146.28	1145.92	. 36	. 032
6	955.366	954.930	. 436	. 046
7	819.020	818.511	. 509	. 062
8	716.779	716.197	. 582	. 081
9	637.275	636.620	. 655	. 103
10	573.686	572.958	. 728	. 127
12	478.339	477.465	. 874	. 183
14	410.275	409.256	1.019	.249
16	359.265	358.099	1.166	. 326
18	319.623	318.310	1.313	. +12
20	287.939	286.479	1.460	. 510
22	262.042	260.435	1.607	. 617
24	240.487	238.732	1.755	. 735
26	222.271	220.368	1.903	. 863
28	206.678	204.628	2.050	1.002
30	193.185	190.986	2.199	1.152
35	166.275	163.702	2.573	1.572
40	146.190	143.240	2.950	2.060
45	130.656	127.324	3.332	2.617
50	118.310	114.592	3.718	3.245
55	108.284	104.174	4.110	3.945
60	100.000	95.493	4.507	4.720
65	93.057	88.147	- 4.910	5.570
70	87.172	81.851	5.321	6.501
75	82.134	76.394	5.740	7.513
80	77.786	71.620	6.166	8.610
85	74.009	67.407	6.602	9.795
90	70.711	63.662	7.049	11.072
95	67.817	60.311	7.506	12.445
100	65.270	57.296	7.974	13.918
120	57.735	47.746	9.989	20.920
140	53.209	40.926	12.283	30.014
160	50.771	35.810	14.961	41.779
180	50.000	31.831	18.169	57.080

$$
x-\frac{1 / 2 n D}{57.2958},
$$

substituting in equation ( 7 ), and relucing,

$$
r_{n}=\frac{2400(57.2958)^{3}}{24(57.2958)^{2} 11-u^{2} 1^{3}}
$$

and

$$
\begin{aligned}
d_{n} & -r_{n}-r_{a} \\
& =\frac{5729.58 n^{2} 1}{24(57.2958)^{2} u^{2} 1^{2}}
\end{aligned}
$$



Frg. 1.
Dropping from the denominator the term $n^{2} J^{2}$, which is relatively small for usual values of $l$ ) by the single-chord definition, and for all values by the short-chord definition,

$$
\begin{equation*}
\left.\left.I_{n}=0.0727 n^{2} D-0.07 . n^{2} I\right) \text { (nearly }\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{n}=\frac{5729.58}{D}+0.073 n^{2} D \tag{9}
\end{equation*}
$$

Fig. 2 is a graphical representation of equation (S). The curved line, designated "approximate formula," represents the difference between the radius by the are definition and that by the approximate formula (2). Subtracting equation (1) from (2),

$$
\begin{equation*}
d \text { (approx. })-\frac{0.422}{11} \tag{10}
\end{equation*}
$$

Combining equations (8) and (10), the approximate formula is found to give exact values when $D=\frac{2.41}{n}$. The simultaneous values, shown by the respective intersections in Fig. 2, are $2.41,4.52,9.64$, and 24.1 degrees for $11=1,0.5,0.25$, and 0.1 , respectively.

The limits above adopted for the use of the several unit chords in the short-chord definition are indicated in Fig. 2 by


Fig.:
bold lines. Radii may be determined readily by equation (9), the corrective term being taken from Fig. 2. Results obtained by this method agree very closely with those obtained by trigonometrical means, i. e. by equations (3) to (7) inclusive.

The Excess of Arc over Chord. Again assuming the arc definition as a basis of comparison, it is evident that if the measurement of the $100-\mathrm{ft}$. unit be shifted from the actual are to unit chords, the increase in the length of the actual are subtending a fixed central angle is merely that due to the increment of the
radius. Hence, the excess for any unit are $n l$, subtended by the unit chord $100 n$ is by equation ( 8 )

$$
\begin{gather*}
\left.e-0.0727 n^{2} D \times 0.017+5 n \rho\right) \\
-0.001271^{3} I^{2} \tag{11}
\end{gather*}
$$

Equation (11) has a very wide range if $\|$ be assumed to represent the number of stations in either the chord or the subtended arc. The coefficient is readily applied by noting that it is practically equal to $1 / 8$ of one per cent. Applying equation (11) to the short-chord definition of degree of curve, the excess of actual arc over the unit chords in one station is

$$
\begin{equation*}
E^{\prime}=0.00127 u^{2} I^{2} \tag{12}
\end{equation*}
$$



Frg. 3
The excess per station of the actual are orer chord by the single-chord definition, given in Table I. and Fig. 1, was determined trigonometrically. That for the short-chord definition, shown in Fig. 3 by the bold lines, was computed from equation (12) by substituting the several values of $n$. As seen in the diagram, the values of the ratio are so adjusted with relation to each
other that the excess per station does not increase beyond a value slightly more than .06 ft .

Sub-Chord Corrections. The leng th of the actual arc corresponding to the angle $m D$ subtended by the sub-chord $c$, and having a radius $r_{n}$ is

$$
\begin{aligned}
\text { actual arc } m D & =0.01745 m D r_{n} \\
& =0.01745\left(\frac{5729.58}{D}+0.073 n^{2} D\right) m D \\
& =100 m+0.00127 m n^{2} / j^{2}
\end{aligned}
$$



Fig. 4.
Subtracting the excess $e$ of this arc over its chord, as determined by placing $n=m$ in equation (11), the length of the subchord subtending the angle $m D$ becomes

$$
\begin{equation*}
c=100 m+0.00127 m\left(n^{2}-m^{2}\right) i^{2} \tag{13}
\end{equation*}
$$

But 100 m is the value obtained by assuming the chord to be proportional to the angle, so that the sub-chord correction is

$$
\begin{equation*}
s=0.00127 m\left(n^{2}-m^{2}\right) D_{2} \tag{14}
\end{equation*}
$$

which is a maximum when $m=0.578 n$, and becomes negative when $m>n$. When the two ratios are equal, i. e. when $m=n$, $s=0$. Fig. 4 gives values of the coefficient of $D^{2}$ in equation (14). The limiting value, $n=0$, corresponding to the are definition of degree of curve, when substituted in equation (14), reduces it to the form of (11) with reversed sign.


Fif. 5.
Fig. 5 represents the maximum positive value of the subchord correction,

$$
\begin{equation*}
s(\text { max. })=0.000489 n^{3} D^{2} \tag{15}
\end{equation*}
$$

which corresponds very closely to the correction to be applied when $m=0.5 n$. However, it may be seen in Fig. 5 that the maximum correction on any sub-chord is within the limits of accuracy usually assumed for laying out curves, so that, as a general rule, sub-chord corrections need not be applied when the short-chord definition is employed.

## RELATIVE ECONOMY OF DIFFERENT HEIGH'TS AND STYLES OF FREE-HAND LETTERS.

By R. C. Vial, '日3, Assistant in General Engineering Difiwing.

It is well known by anyone who has done free-hand lettering that different heights and styles of letters require different lengths of time for execution. The writer, not having seen any data on this subject, made a series of experiments to determine the relative time required to form letters of different styles and sizes. These experiments comprised the formation of $1200 \mathrm{al-}$ phabets or over 31000 free-hand letters. The work is the outgrowth of a paper on free-hand letters read before the Civil Engineers' Club of the University of Illinois. The experiments were undertaken for the writer's personal benefit and satisfaction, and were not originally intended for publication. It is unfortunate that the samples presented herewith were made upon paragon paper, since the waviness of the lines in the reproduction is due to the roughness of the surface of the paper.

The object of the work was to determine the relative economy of letters of different heights and styles. Two styles of letters were used, viz:-inclined small capitals (single stroke Gothic letters) and inclined lower-case letters of "Engineering News', style. In the execution of the work it was desired simply to do fair work combining quantity and quality. In each experiment greater quantity could have been obtained by sacrificing quality, or better quality of less quantity might have been shown. The rate of work was somewhat faster than ordinary office work of similar character. Nothing was permitted to interrupt the work during an experiment. In each case the length of an experiment was one hour, i. e., 60 consecutive minutes, the pen not being laid down between the time of the beginning and the end of each experiment. For uniformity throughout the tests, the letters of each experiment were made in alphabetical order. The number of alphabets per hour, as well as the number for each quarter hour, are tabulated on the next page. Guide lines for

Table Showing the Number of Aiphabets Made per Hour.


* Work of poor quality.
$\dagger$ Talked during experiment.


Fig. 1.. Reifative Speed of Forming Different Alphabets.
top and bottom of letters were penciled previous to the beginning of an experiment but none of the letters were penciled. With each alphabet the work began with letters $\overline{\sigma_{0}^{\circ}} \mathrm{in}$. high, the height being increased $\frac{1}{50}$ in. for each succeeding experiment. A Keuffel and Esser lettering pen was used on the smallest letters. The remainder of the work was done with a Spencerian No. 1. The quality of work was kept as nearly uniform as possible.

The samples on pp .156 and 157 are reproduced full size, from the original paragon sheets upon which the work was done. The letters have not been retouched nor cleaned but are exactly
abcdefghijklmnopg abcdetghijtlmnop abcdetahijklmnop HEIGHT $2 /$ /SO" $_{0} 93$ ALPHABETS
iklmnoparsturwxy 3 ifklmnopgrsturwxy 3 ikImnopgrsturwxy HEIGHT \%/\%" 104ALPHABETS


HEIGHT 450 " 104 ALPHABETS


HEIGHT $\%$ /SO 93ALPHABETS


HEIGHT $6 / 50$ " 89 ALPHABETS


HEIGHT $7 /$ So $_{O} 68$ ALPHABETS

 ABCDEFGHIULMNODQGS AOCDEFOHIJKLMNODQRS HEIGHT E/So 70 ALPHABETS \begin{tabular}{|l|}
\hline KLMNOPQRSTUVWXYZ <br>
UKLMNOPQPSTUVWXVZ <br>
KLMNOPQPSTUVNXVZ <br>
\hline

 HEIGHT $\% / 50$ TRALPHABETS 

DEFGHIJKLMNOPC <br>
DEFGHIUKLMNOP: <br>
DEFGHINKLMNOÖ <br>
\hline
\end{tabular} HEIGHT 4/50 68ALPHABETS DEFGHNKLMNOPA

2FFGHISKLMNOPQ.
DEFGHISKLMNOP
DEFGHISKLMNOPQ HEIGHT $50150^{\circ} 52$ ALPHABETS
TNOPQPSTUVV
INOPQRSTUVN
INOPQRSTUVW
INOPQRSTUVN HEMGHT G/50" 33ALPHABETS
DEFGHINHLM
DEFGHN
DLMI
DEFGHL HEIGHT ZO" 35ALPHABETS

	SHIKLMNO SHIJKLMNO, GHIJKLMNO
abca	3CDEFGHIJKL
abcdefgh	SCDEFGHIJK
abcdefah	3CDEFGHIJA
Helerwe	
	O-50
rsturwxyz	9STUVWXYZ 9STUVWXYZ
resturnxyz	9STUVWXYZ
resturwxyz	PSTUVWXY
ABCDEFGHIJKLMNOFABCDEFGHIJKLMNOFABCDEFGHISKLMNOF	

as left at the end of the experiments, with the exception of the sample ${ }_{\overline{5} "}^{7}$ in. high of the "Engrineering News" style. This experiment was made with ink not suitable for reproduction and the lines of the sample have been retraced with India ink.

In Fig. 1 the results of the tests are graphically shown. The leights of letters, in fiftieths of an inch with equivalents in sixteenths and in millimeters, are platted as abscissas, and the number of alphabets formed per hour as ordinates. The curves passing through the points thus located show that of the two alphabets used the "Engineering News" style is much the faster; and that in each case the most economical letter for the writer is one about $\frac{3}{50} \mathrm{in}$. high. The difference in speed for the two styles is accounted for by the different number of strokes in each alphabet. In an alphabet of the small capital letters there are about 60 strokes, and in the "Engineering News" alphabet less than 35 . In other words it takes about half as many strokes of the pen to form an alphabet of "Engineering News" style as it does to form one of small capitals. In forming a letter the most care is required at the beginning and at the end of each stroke.

Probably no other person would, in a similar set of experiiments, get the same results as those here given, nor is it certain that the writer hinnself could produce exactly the same data a second time. The actual results given apply to him only, but it is believed that the comparative results are farther reaching. It is with the latter point in mind that this paper has been presented.

# HEATING AND VENTILATION BY THE HOT BLAST SYSTEM. 

By F'. II. Green. '9G, and 'T'. Weinshenk, '96, School。 of Mechanical Engineering.

In these days when our public buildings are crowded to their utmost capacity, when the size of our school buildings and the perfection of the workmanship render natural ventilation impossible, artificial ventilation is essential. We find as much attention paid to artificial ventilation and to the general comfort of the occupants of such buildings as is bestowed upon their external appearance.

Air and heat are two necessities of life. How to secure the first in a pure condition and the second most economically, constitutes the problem of heating and ventilation. The problem is complicated by the fact that it is not only necessary to secure pure air in a proper quantity, but that it is equally important to dispose of the foul air.

The various methods of heating and ventilating may be divided into two classes, viz: by gravity, i. e. by the difference between the weight of a column of warm and of cold air; and by mechanical devices. In the first class are: (a) the hot air furnace, ( $b$ ) indirect steam or hot water, and ( $r$ ) direct-indirect steam or hot water heating apparatus. The hot air furnace consists substantially of a large stove located usually in the basement and surrounded by an air chamber, with flues leading to the different rooms; a supply of fresh air being furnished to the chamber from the exterior. They are quite expensive in fuel, need frequent repairs, and it is difficult and often impossible to secure a uniform distribution of heat throughout the building.

The distant rooms and those most exposed to winds are the ones to suffer.

In the indirect steam or hot water system, the radiating surface for the different rooms is all located in the basement. The fresh air from outside passes over the coils and is distributed throughout the building in the same manner as from the hot air furnace. It is to some degree open to the same objection as furnaces regarding the distribution of heat.

The steam or hot water direct-indirect system consists of a radiator for each room provided with an independent cold air supply, It is to some extent dependent for its best efficiency on the direction and velocity of the wind. It furnishes good ventilation when the wind is not too strong, otherwise the air supply must be shut off to prevent cold air from entering the room.

The second method, the hot blast system of heating and ventilation, which is now extensively used, represents, perhaps, the most efficient plan yet devised. In large buildings containing large numbers of people, it is undoubtedly superior to all others.

Recognizing the fact that very little data is to be found relating to this system a series of tests were undertaken on a plant erected by the B. F. Sturtevant Co. in the High School building


Fig. 1. Plan Showing Arrangement of Heating Apparatus.
of Champaign, Ill. Fig. 1 gives the basement plan with the arrangement of distributing ducts. The heating plant is located in the southwest corner of the basement and consists of a $41 / 2 \times$ 16 ft . horizontal tubular boiler rated at $55 \mathrm{H} . \mathrm{P}$.; of a $13 \times 7 \mathrm{in}$. B. F. Sturtevant rertical throttling engine; of a $66 \times 30 \mathrm{in}$. steel plate fan; of a corrugated sectional base, steel pipe heater, containing 3723 lineal feet of one inch pipe, and of an automatic Standard duplex pump. The steam is carried from the boiler
through a $21 / 2$ in. pipe to the different sections of the heater. Each section is provided with a valve so that one, or more, can be cut out. The section nearest to the fan is supplied with steam from the exhaust of the engine. The condensation of the heater is carried through a $11 / 2 \mathrm{in}$. pipe to the receiver from which it is returned to the boiler by means of the pump, while the condensation from the exhaust coil flows to the sewer.

By reference to Fig. 1, the relative positions of the boiler, engine, fan, heater and distributing ducts may be seen. The arrows indicate the direction in which the air is moving. The air is taken from out of doors through the opening A shown on the plan, and is forced by the fan, partly over the heater, and partly through the cold air duct. The latter is located above the hot air duct, and a damper placed in each, These ducts lead to vertical flues in the walls, through which the air is delivered to the rooms. At the bottom of the flue where the ducts enter, a mixing damper is placed which is regulated by a chain in each room. The air enters the room through a register located about eight feet above the floor in an inside wall. The foul air is removed through a register at the floor line on the same side of the room as the hot air register.

Several trials were made, during each of which, a regular boiler and engine test was conducted, and readings of air velocity, and temperature of each room taken at different levels. Table I gives the average results of forty readings for each room on the dates indicated.

Table I.-Average Temperature of Different Rooms in High School Buifding on Certain Days.


The water actually evaporated, corrected for quality of
steam, on December 13th, 1895, the day of our first test, was 6400.4 lbs . This is equivalent to $6400.4(\mathrm{H}-\mathrm{h})$, B. T. U., H and $h$ being respectively the total heat-units in steam of the average observed pressure and in water of the average observed temperature of feed, as obtained from tables of the properties of steam and water. This gives the total number of heat-units delivered by the boiler equal to $6400.4 \times(1166.6-129)=6641055$ B. T. U. Comparing the number of B. T.U. delivered to the heater with the number taken up by the air, we are enabled to determine the efficiency of the heater. The total number of $\mathrm{cu} . \mathrm{ft}$. of air delivered by the fan in eight hours was $2830464 \mathrm{cu} . \mathrm{ft}$. as measured by a carefully calibrated anemometer. This amount gives $1572 \mathrm{cu} . \mathrm{ft}$. per pupil per hour for 225 pupils, which was the total number of children in school.

In order to determine the number of units of heat given up by the heater to the air, it will be necessary to know the weight of air in pounds passing through the heater during the test: the specific heat of air under constant pressure, and the rise of temperature of the air in passing through the heater. The weight of air passing through the heater during the test may be found from the following formula, deduced from Gay Lussac's Law:-

$$
G=\frac{.080744 V}{1+.002038(t-32)}
$$

In this formula $V=$ volume of air in cu. ft. passing through the heater and $t=$ the temperature of this air.

Substituting the values of $V$ and $t$ obtained from the experiment, in the above formula, we get

$$
G=189641 \mathrm{lbs}
$$

The rise of temperature of the air in passing through the heater was found to be $100.5^{\circ} \mathrm{F}$. From the definition of specific heat, it requires .2375 heat-units to raise one pound of air one degree, then for a rise of $100.5^{\circ}$ it will take $.2375 \times 100.5$ for one pound, and for 189641 lbs . it will require 4526733 B . T. U.. The amount of heat lost in wasting the exhaust from the engine and pump was estimated in the following manner: A cold water meter was used to measure the amount of water required to replace the loss from these sources. On the first day it took $28.8 \mathrm{cu} . \mathrm{ft}$ of cold water at $60^{\circ}$, to replace the amount wasted at a temperature of $160^{\circ}$. Therefore the loss in B. T. U. is:

$$
28.8 \times 62.5 \times(160-60)=180000 \text { В. T. U. }
$$

Table II．－Data Showing Distribution of Heat and Efficiency of Heater．

I）ATE．									BKITISH THERMAL UNITS．				
								ぎ近			$\dot{+}$		
								き	－	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{5}{3}$		
								4	$=$	－	\％		
								－	\％		¢		
								号	O．	$\Xi$			
								マ					
Itecember 13	967	$6+60.4$	2830404	189641	1572	$22.6{ }^{\circ}$	123.1	100.5	$66+0.115$.	4526733.	18） 000.	70.0	0.78
January $2 \times$	769	51405	1913707	124390	1701	$30.0{ }^{\circ}$	149.0	119.	5297990.	3517776	230100.	70.7	1.00
January ${ }^{\text {Ja }}$	800	6.326	3021481	207274	1678	$39.0{ }^{\circ}$	117.8	78.8	6755168.	3878083.	$36 \times 160$ ．	62.8	0.7
Jamuary 30	715	5.24	3526234	2501362	1959	$43.8{ }^{\circ}$	99.3	55.5	${ }_{6} 239160$ ．	$32 \times 979$.	438016.	60.	0.70
February 20	1760	12189	3517440	22159	1953	$3.5{ }^{\circ}$	169.0	165.5	12833798.	8708829.	＋6， 760.	70.6	1.40
February 21.	1＋20	$10 \times 199$	3148109	210293	1749	$16.2^{\circ}$	134.4	118.2	10533257.	5902944.	＋9＋208．	60.7	1.20

This loss subtracted from the total number of B. 'T. U. delivered by the boiler will give very approximately the number of B. T.U. delivered to the heater. The efficiency of the heater will be the ratio of the heat imparted to the air, to that delivered to the heater, which gives

$$
\frac{4526733}{6641055-180000}=70 \%
$$

The results for the other days were obtained in the same manner and are given in Table II.

The high efficiency of the hot blast system of heating, comes undoubtedly from the bringing of cold air with great rapidity into such intimate contact with the heating surface as is done in the one-inch pipe coils, usually used, and the corresponding rapid conveyance of the absorbed heat by the air to the spaces to be heated. The velocities of air passing over the surface in such heaters vary from 600 to 1800 ft . per min. We thus see that the natural law does not determine the velocity at which air can absorb heat. The ability of this system to heat a building thoroughly and efficiently even in the coldest weather, together with the attention it has received from eminent engineers, places it undoubtedly, in the front rank as a means of heating and ventilating for large buildings.

# THE KAMPSVII,LE DAM. 

By S. T. Morse, '96, School of Civil Evgineering.

Some years ago the United States government undertook the work of constructing a waterway from the Gulf of Mexico to Lake Michigan, such that the largest steamboats might go directly from the Gulf to Chicago. The project involves a large amount of dredging in the Mississippi river, the canalization of the Illinois river and the construction of a ship canal from the Illinois river to Lake Michigan.

In the construction of the canal, the government has been directly aided by the Chicago Sanitary District. The drainage canal is primarily intended to answer the sanitary requirements of Chicago, but all possible measures have been taken in its construction to render it a suitable channel for navigation, on the assumption that the government will eventually construct the necessary link from Lockport to La Salle. It has been estimated that the cost of constructing this canal constitutes nearly two thirds of the cost of the entire improvement.

At times of low water, the shallowness of the Illinois river has prevented navigation. To raise the low water stage, several dams have been constructed; but a large amount of dredging is yet required. From La Salle to the Mississippi, a distance of 225 miles, there is a fall in the river of but 29.6 ft ., which gives a slope of 0.132 ft . per mile. Thus a navigable channel could be obtained by the construction of a reasonable number of dams and locks.

Before the government engaged in the work, the State of 11linois had constructed a dam across the river at Henry, and another about midway between Pekin and Havana, at the mouth of Copperas creek. It was found necessary to construct two more dams farther down the river. One was placed at La Grange, 75 miles from the river's mouth, and one at Kampsville, 30 miles from the mouth. The dams greatly decrease the amount of dredging necessary to produce the required depth. In this way the river has been canalized for two thirds of its entire course. Much dredging has been done so that at present there is a channel about four feet in depth up to LaSalle.

Location of the Kampsville Dam, The most favorable
site for the location of the dam was found to be one third of a mile below Kampsville, at a point just beyond the beginning of an easy curve in the channel of the river. At this point the river flows nearly south. The lock was placed against the inner or western bank, as shown at $b$ in Fig. 1, and the L shaped abutment was put at the eastern bank as shown at 1 . By this ar-


Fig. 1. rangement the lock gates are protected from the current carrying drift materials, thus insuring that logs or other large bodies will not lodge against the gates at night and cause delay in their operation. At the same time care was taken not to place the dam so far below the beginning of the curve that the current would be thrown against the abutment and the revetment at the eastend of the dam, and so render it difficult to prevent scouring. The dam thus situated backs up the water to the La Grange lock.

Design of the Dam. The dams at Kampsville and La Grange are much alike in general appearance; but as the one at Kampsville was built last, it has several minor improvements.

The Kampsville Dam is 1200 ft . long, and its crest is 7.4 ft . above low water. It is built of sheet piling which is supported by pile bents. On the up stream side of the piling, earth is filled in to the width of 44 feet. This filling is sloped back to the river bed and paved for a width of 20 ft . back from the crest of the dam, as shown in Fig. 2. Stone riprap is filled in between the piles. Two plank aprons are built on the caps of the pile bents. The one next to the crest is 24 ft . in width and has a slope of $11^{\circ}$, which brings its lower edge two feet above low water. The second apron, which is a horizontal one 10 ft . in width, begins here. The sheet piling and the aprons are nailed and driftbolted to a system of horizontal and sloping wales, the arrangement of which is fully shown in Fig. 2. The wales are drift bolted to five rows of 28 ft . piles. The piles are spaced 6 ft . apart in the rows. The first four rows are 7.5 ft . apart, and the fourth and fifth are 9.5 ft . apart.



Fig. 2. The Kampavilite Dam.
From United States Public Works, by Capt. W. M. Black
Reprint by permission of Wiley and Sons.

The abutment at the east end of the dam is 17 ft . high, 6 ft . wide at the top, and 40 ft . long. At the upper end it has a wing which extends back 40 ft . at right angles to the bank.

The chamber of the lock, which is built in connection with the dann, is 350 ft . long and 75 ft . wide. The walls are constructed of ashlar masonry; they are 24 ft . high, 7 ft . wide at the top, and 12 ft . wide at the bottom.

Method of Construction. The site of the dam was dredged to a depth of 3 feet in order to obtain a firm foundation. Round oak piles 28 ft . long were driven from 14 to 18 ft . in to the bed of the river. Three drivers were kept constantly at work, and 160 piles were driven in a single day. At first the piles were driven with 3000 -pound steam-hammers, but owing to the difficulty of procuring sufficient steam, these were abandoned and 3500 -pound drop-hammers substituted. In all, 104 piles were driven.

The drivers were placed on barges which, as the work progressed, were secured to the piles already driven. The rows of piles were alined as fast as they were driven and slanting wales bolted to them. Horizontal wales were also bolted on a little below low water mark.

The sheet piling used was the Wakefield triple lap, made of $2 \times 12 \mathrm{in}$. oak planks, 16 ft . long, spiked together so as to give a tongue and groove $21 / 2 \mathrm{in}$. in depth. It was put together on the ground. This sheeting could be driven to any desired position by properly shaping the points. The driving was done by a 3500 lb . drop hammer, which gave the best results with a fall of from three to four feet.

In the LaGrange dam, a single row of sheet piling was driven, but as might have been anticipated, the last of it was driven with great difficulty, owing to the increased velocity due to the increase in the head and the contraction of the waterway by the sheeting previously driven. This increased velocity also caused serious scouring of the bed of the dam. In order to avoid this difficulty at Kampsville, two rows of sheeting were driven. The first one was driven to a height of 7.4 ft . below the proposed top of the dam, and spiked to the wales previously placed at this height. The second row was then driven to the full height of the dam, and spiked to two $10 \times 10 \mathrm{in}$. stringers, which were drift-bolted to the top of the first row of piles. As fast as the
sheeting was driven, rubble was placed in the crib thus formed, in order to prevent scouring of the bed by the water which flowed over the crest of the dam.

Upon each side of the four rows of piles beneath the upper apron, was drift-bolted an $8 \times 8$ in. pine stringer 18 ft . long, and in each of the three intervals between the rows, a $6 \times 8$ in. stringer, 18 ft . long, was drift-bolted to the wales. These timbers were all arranged to break joints, thus giving maximum stiffness. The apron which is made of $4 \times 12 \mathrm{in}$. planks, 25 ft . long, was placed on these stringers. Oregon fir being comparatively easy to obtain, and having been found very strong and durable, was used for the aprons. In constructing the lower apron, $4 \times 12 \mathrm{in}$. wales extending from the fourth to the fifth rows of piles were drift-bolted to the piles as shown in the crosssection of the dam in Fig. 2. To these wales, $S \times 8$ in. stringers 18 ft . long, were drift-bolted, the joints being broken. The $2 \times$ 12 in. apron was spiked to the stringers.

The entire space around the piling was filled with stone which was closely backed around the piles and stringers. In all there were 9144 cu . yds. of stone thus placed. The bed of the river below the top of the dam was filled with stone to a width of 16 ft . This required 1404 cu . yds. of stone. It was thought that this filling would not only strengthen the dam, but that it would also aid in preventing the formation of channels beneath the sheet piling. The dam was completed by placing the earth filling in front of the sheet piling. The earth used was dredged from the bed of the river.

Time Required for Construction. Dredging and piledriving began in October, 1892. This work was continued until January, 1893, during which time the piles for 60 bents were driven, and the waling put on. Owing to the high water, work was suspended until July 30, 1893, when pile driving was resumed. The work was then pushed, and being favored by an extremely low stage of water, was finished in 60 days. The first boat passed through the lock on September 30, 1893.

Cost. A statement of the amount of labor employed, the materials used, and the cost of the structure is given in the following table. The material for the table was taken from the report of Mr. C. V. Brainard, class of '83, University of Illinois, engineer in charge of construction.

Cost of Labor and Material.s for the Kampsvilife Dam.

Item.	Unit.	Quantity:	Price.	Cost.
ABUTMENT.				
Labor.....................................				$52262.16$
Materials, including stones, piles, etc Tota1				
DAM.				S5 +99.42
Labor, including subsistence, dredg-				
ing. .......t.				\$3144.66
Earth filling ..........	cu. ${ }^{\text {chd }}$	3332	$\bigcirc 0.17$	566.44
Ballasting with rock Framing lumber		11795	0.404	$+761.30$
Framing lumber .....	$1000 \mathrm{ft}$. B. M.	313212 1104	13.22	+040.96 1704.62
" ${ }^{\text {c }}$		2600	0.482	1253.58
Making piles-sheet.	$1000 \mathrm{ft}$. B. M.	$1 \quad 235463$	$\begin{aligned} & 1.83 \end{aligned}$	432.00
Transferring coal and ice				81.25
Care and repair of plant.....				203.74
Care of buildings and ground				105.58
Total.				\$16395.53
Material.				
Coal.				1276.72
Pile		1391		12x.
Lamber				+12.tr
Oak for sheet piles...	$1000 \mathrm{ft}$. B. M .	302136	............	9482.93
Pine for stringers, etc	".	74891		1408.14
Oregon fir for decking		171648		4377.02
For bakery				53.06
Rubble	cu. yd.	11795		10615.50
lron, bolts, etc				1050.82
10 dump cars		10		810.00
Total.				\$34 178.11
Total cost per round pile			4.59	
Total cost per sheet pile ..............			3.66	
Total cost of abutment and dam				550071.06

Durability. Although wood enters prominently into the construction of the dam, it can never decay, as it is constantly submerged. The greatest, and almost the only, danger lies in the fact that the water may undermine the structure. The possibility of this was shown during the summer of 1895 , when the water passed beneath the sheet piling near the east abutment and washed out a considerable amount of rock filling. A portion of the decking was removed and several car loads of rubble were dumped into the cavity. No further trouble has been experienced. With the exception of this breach, the dam has stood perfectly for two years. The design of the dam is to be recommended for its comparative cheapness and ease of construction, and its probable durability under conditions similar to those at Kamprille.

During the removal of the apron for repairing the leak above mentioned, an interesting fact was developed. It was expected that considerable difficulty would be found in starting the first plank, on account of swelled wood, but it was found that the plank had not swelled, and on sawing and cutting the wood, (Oregon fir) it was observed to be as dry as when placed in the work, although it had been in the water for two years.

# ACCURATE CHAINING IN CITY SURVEYING. 

By L. E Fischer, 98 , School of Civil Engineering.

The lines of work most generally met with in city surveying are street and property improvement, lot surveying, and subdividing. In all of these, chaining is a very important factor, much of the accuracy of the survey depending upon it. In locating the boundary lines of a lot valued at several hundred dollars per front foot, it would be inconsistant to use a Gunter's chain.

Rigid short rods, resting horizontally upon supports, have often been used with good results in determining the lengths of base lines, but these could not be used in cities unless the surveyor had the privilege of closing the streets while measuring across them. Another method of chaining, frequently used on base lines, is that of measuring with a steel tape of from one hundred to three hundred or more feet in length. Good results will be obtained by using a spring balance to regulate the tension, applying the ends of the tape to stakes set directly on the line, finding the elevation of these stakes, taking the temperature reading, then applying the necessary corrections. It is very evident, however, that no such laborious method could be used in the midst of the traffic, and in the slush, of large cities. A method of chaining that is precise and rapid, and avoids the slush is essential. Chaining with a fifty-foot etched steel tape, held horizontally, the ends being transferred to the ground by means of plumb-bobs, is undoubtedly the best method.

In this method of chaining, the rear chainman holds the string of his plumb-bob on the fifty-foot mark, then steadying the tape as much as possible by resting or drawing his fortarm tightly against some portion of his body, he allows the point of his plumb-bob to hang precisely over the point previously fixed by the front chainman, or over the starting point. When in this position and the tape is steady, he calls out "right." The front chainman, after having taken the line given him by the rear chainman, clears away any obstruction at the point to be marked, determines the horizontal position of the tape, and then
holds the string of his bob tightly against the end of it. He must also brace himself in some way, for by the unequal pulling of the chainman the tape is very apt to sway. At the signal of the rear chainman, the fore chainman lowers his plumb-bob quickly so as to make a slight indentation in the ground or a mark on the pavement, the case may be. If it can be done a pin is stuck at this point, making an angle of about forty-five degrees with the surface of the ground, and at right angles to the line of measurement. The pin is thus stuck to allow the rear chainman to hold the point of his plumb-bob over the exact point. The tape can be accurately leveled by a third man standing opposite the middle point of it.

When there are no obstructions and the slope is sufficiently great to allow one end of the tape to be held on the ground while plumbing at the other, it should be so held, since the tape is then more steady.

The sag of the tape requires careful attention. There are formulas for the correction of errors due to sag, but owing to the difficulty of applying them they are not extensively used. If a tape be compared with the standard by the chainmen who work together, with the same tension and consequently the same sag used in their regular chaining, sag will not materially affect the result. Unless a spring balance is used the same tension can not be liad at each application, but two chainmen will soon find that there is a certain pull at which the tape is easily steadied and will therefore tend toward a constant tension. However when the sag is suddenly eliminated, as by holding both ends of the tape down on a plane surface, an error will be introduced. Wind will of course tend to increase the sag, but as the tension or pull required to steady a tape on a windy day is greater, this tendency will be overcome. On very windy days it is useless to try to obtain good results as the plumb-bobs will not hang still. When the curb stone is free from obstructions, it is well to measure alongside of it, as the error due to alignment will then be slight. However it is not deemed advisable to measure directly on the curb stone when it is level, for then the sag will be eliminated, thus introducing an error.

The usual correction for expansion and contraction due to temperature, is necessary in this as in all other methods of accurate chaining.

To have skilled field hands or chainmen is of the utmost importance. "Common every day chain stretchers" will not answer. Men who have been trained to the quick and accurate use of the plumb-bob are required. Three or four weeks may easily be spent in becoming proficient in this work. The advantages of this method over that of measuring directly on the ground and applying a correction for the slope is very evident when the difficulty of accurately determining the rise and fall of the ground is considered. With a tape of standard length, two good chainmen, and fair conditions of temperature, the degree of accuracy attainable in this way is very high. The only just causes for error are: the effects of temperature which may easily be eliminated by a correction for the expansion of steel, and the error due to sag which is difficult to eliminate but easily reduced to a minimum by good chainmen. The accuracy of this method of chaining thus depends wholly on the chainmen. In work on which the writer has been engaged, two measurements of a line one thousand feet long were made in this manner, with an error of a quarter of an inch, which is an error of 1 in 48000 .

# A DESCRIPTIVE INDEX OF SOME TYPICAL ELECTRIC LIGHT AND POWER CENTRAL STATIONS, AND ISOLATED PLANTS. 

By Wm. Esty, Assistant Professor of Electrical Engineering.

Some wise man once said that the next best thing to knowledge is the ability to find it. The object of the writer in preparing this index was primarily to aid his senior electrical engineering students in finding descriptions of typical electric plants. to be used as guides in the design of similar plants. A full course in the design and installation of light and power plants forms an important feature of the work in electrical engineering at the University of Illinois. To carry out this instruction in an ideal way, would require a number of visits by students and teacher to various plants where careful study could be made of local conditious, and of the good and bad features of the installations. When however, frequent trips are not possible, the next best thing is the critical study and examination of the plans and equipment of various types of stations as published in the journals. This information, unfortunately, is widely scattered, how widely, the writer never fully realized until the task of hunting it up and running it down, confronted him. Some help, to be sure, was obtained from existing indexes, but the greater part of the articles had to be painfully searched for, one by one, among the indexes of the individual volumes of the journals consulted. If more care was given to the compilation of the indexes of this latter class, a great deal of time and annoyance could be saved those who consult them.

It may not, perhaps, be out of place to give below a list of published indexes, which are of great value to the engincer.

A Descriptive Index of Current Engineering Literature, Vol. I, 'St-'91, published by the Association of Engineering So-
cicties, J. C. Trautwine, Jr., Secy., 419 Locust St., Philadelphia, Pa., $475 \mathrm{pp} .$, of which $40-50 \mathrm{pp}$. are devoted to electrical topics. \$2.50.

Vol. II, '92 to '96, of the above Index, published by the Engineering Magazine, Times Building, New York City, contains the Index material which has appeared in the monthly numbers of the Journal of the Association of Engineering Societies during the past four years, 400 pp . \$4.00.

The Engineering Index with descriptive notes published monthly in the Engineering Magazine. Price of the Magazine, $\$ 3.00$ per year.

Synopsis of Current Electrical Literature for 1895, Max Osterberg. Published by D. Van Nostrand Co., 23 Murray St., New York City, 143 pp. \$1.00. Contains the synopses which appeared monthly during 1895 in Electric Power.

Digest of Current Technical Electrical Literature by Carl Hering. Appears weekly in the Electrical World, 253 Broadway, New York City. Electrical World $\$ 3.00$ per annum.

Index to Engineering Periodicals, F. E. Galloupe, published by Engineering News Pub. Co., New York City. Vol. I, 188387, 599 pp., Vol II, 1888-92, 396 pp.

No attempt has been made to make the Index which follows exhaustive, as it dates back only to 1889 and only such journals as were readily accessible have been consulted. The list of stations chosen is not intended to include only the best or the most important examples of design, but is rather a collection of stations representing American and foreign practice, good, bad, and indifferent.

Abbreviations Useid.
E. E.-Electrical Engineer, N. E. W.-Electrical World, N. Y.
L. E. E.-Electrical Engineer, London.
W. E.-Western Electrician, Chicago.
E. R.-Electrical Review, N Y.
L. E.-Electrician, London.
L. E. R.-Electrical Review, London.
St. Ry. Jour.-Street Railway Journal, N. Y.
E. T. Z.-Electrotechnische Zeitschrift, Berlin.

CENTRAL STATIONS.
*WEST END RAILWAY POWER PLANT IN BOSTON. 2 pp . Description of the temporary station and the one then building. The largest units then available were $1000-\mathrm{H} . \mathrm{P}$. triple engines (Allis-Corliss) belted to 4 T-H 200 KW .4 -pole generators. 13 of these units were installed in their new station taking the place of 300 H. P. McIntosh and Seymour 300 H. P. engines driving 3 T-H "D" $62 \mathrm{~K} . \mathrm{W}$. machines. Details. E. W. 15:44,114, Jan. 18, Feb. 15, '90.
*WEYMOUTH, MASS., ELECTRIC,LIGHT STATION. $\frac{2}{3}$ pp. Cut of interior and brief description of equipment, circuits, etc. Station is $75 \times 40 \mathrm{ft}$. and two stories high. I Ide compound, condensing $13 \times 22 \times 18 \mathrm{in}$., 1 Ide single $10 \times 14 \mathrm{in}$. engines. 3 LD T-H 50-1200 c. p. are light dynamos. 2 T-H 650 light alternators. Plant supplies 52 are lamps, 169 series incandescent 32 c. p. lamps. E. W. 13:177, Mar. 8, '90.
*NEW STATION OF THE SALEM, MASS., ELECTRIC LIGHTING CO. 2 pp . Sectional elevation, plan, and views of two floors. Engines: Two $350 \mathrm{H} . \mathrm{P}$. double tandem compound condensing McIntosh and Seymour; one 150 H. P. Fitchburg. These engines drive by countershafting, clutches, etc., 4-30-light T-H 2000 c. p. arc dynamos, 2-400 light incandescent dynamos, 2-650 light T-H alternators, and 1-1300 light T-H alternator. E. W. 15:191, Mar. 15, '90.
*STATION OF MUNICIPAL ELECTRIC LIGHT CO., BROOKLYN, N. Y. 1 p . Building $75 \times 80 \mathrm{ft}$., two stories. 1st floor, engines, boilers, coal; 2 d floor, dynamos, which are driven from an overhead main shaft, to which the belts pass from the engines below through the floor. E. W. 15:221, Mar. 29, '90.
*NATICK, MASS., ELEC'TRIC LIGHT STATION. 2 pp. Some novel features are described and illustrated. E. F. 10:127, Aug. 6, '90.
*NEW UPTOWN STATIONS OF THE EDISON ILLUMINATING CO., New York. Gives details of building and arrangement of steam and electrical apparatus. E. W. Jan. 19, '89.

[^18]*THE LARGEST ARC LIGHTING STATION IN THE WORLD. A full description of the central station of the Municipal Elec. L. and P. Co., of St. Louis, together with details of the organization and method of conducting the business. Contains many features of interest. 5 pp. E. W. 17:4, Jan. 3,' 91.
*NEW ELECTRIC LIGHT AND POWER STATION AT LOWELL, MASS. A. C. Shaw. 3 pp. Arc and incandescent lighting and railway service. T-H apparatus. Total output 3000 H. P. Gives section of engine and dynamo room and plan of whole station with dimensions from plans of the designer, H . C. Patterson of the Thomson-Houston Co. E. E. 11:39, Jan. 14, '91.
*NEW STATION OF THE CLINTON, MASS., GAS LIGHT CO. A. C. Shaw. 2pp. Employs the Evans friction system of driving. Gives plan and sectional elevation of station with dimensions, and cut of switchboard from plans of the designers, the Wright Elec. Eng. Co. of Boston. Both arc and incandescent lighting is furnished, the dynamos being T-H and Schuyler. E. E. 11:568, May 20, '91.
*THE BUFFALO ELECTRIC RAILWAY. LARGEST DEVELOPED TYPE OF ELECTRIC ST. RY. PRACTICE. C. J. Field. 6pp. Gives map of route, plans, elerations, etc., with full dimensions. Equipment includes 6 units. Ball engines 250 H. P. each, direct belted to Edison 225 H. P. dynamos. Underground conduit system described. Contains many valuable hints. E. E. 11:99, Jan. 28, '91.
*ELECTRIC LIGHTING IN COLUMBUS, O. 1p. Brief description of plant of Columbus Electric Light and Power Co. The Company supplies 800 are ( $\mathrm{T}-\mathrm{H}$ ) lamps for street, and 400 for commercial lighting, and 1160 incandescent lamps. T-H dynamos are used, and are direct belted in pairs to $100 \mathrm{H} . \mathrm{P}$. engines. E. W. 17:70, Jan. 31, '91.
*NEW HAMPSHIRE LIGHT AND POWER STATION. 2pp. A description of the combined water and steam power plant of the Dover (N. H.) Electric Light and Power Co. Power is supplied by a 500 H . P. turbine, and two McIntosh and Seymour $250 \mathrm{H} . \mathrm{P}$. engines, the latter being used when the water

[^19]supply falls off, or on account of repairs. A cut and end elevation of the power house are shown. The installation presents several interesting features. E. W. 17:90, Feb. 7, '91.
*A MODEL, PLANT. 2pp. NARRAGANSET'T ELACTRIC LIGHTING CO., PROVIDENCE, R.I. A description of the large station and its equipment. Output 1450 arc lamps, and 10500 incandescents. Allis engines, 500, 1500 H. P., 35 T-H arc dynamos, and 5 Westinghouse alternators. E.W. 17:126, Feb. 21, '91.
*THE ELECTRIC LIGHTING OF ST. BRIEUX, FRANCE, 1p. A description of the installation taken from the London Elec. Rev. Power is developed at a waterfall at Ponts Neufs, 13 km . away, by two 150 H . P. turbines running at $250 \mathrm{r} . \mathrm{p} . \mathrm{m}$. These drive $2 \mathrm{~T}-\mathrm{H} 70 \mathrm{KW}$. alternators giving an E. M. F. of $2100-2600$ volts, in order that the voltage shall be 2100 at St. Brieux. Gives diagram of connections at the St. Brieux station, and details of method of connecting alternators in parallel by the use of reactive coils. E.W. 17:359, Mar. 16, '91.
*ELECTRIC LIGHTING PLAN'T AT GARDNER, MASS. $\frac{2}{3}$ p. Gives brief description of station, its arrangement and equipment, including a cut of dynamo room, showing belting, switchboard, etc. Dynamos include 2 T-H 50 light 1200 c . p. arc machines, and 2 T-H 650-light alternators. E. W. 17:303, Apr. 25, '91.
*LARGEST ELECTRIC POWER STATION IN THE WORL_D. 4pp. Description of work on West End Ry. Station, Boston. E. E. Oct. 15, 90. (See next reference).
*CENTRAL POWER STATION OF THE WEST END STREET RY. CO. OF BOSTON. 19 pp. A. C. Shaw. Very complete. Detailed dimensional drawings of plant and machinery. E. E. 12:443, Oct. 23, `91. *CEN'TRAL STATIONS OPERATED BY WA'TER POWER. 1 pp. ( r . A. Redman. A paper read before the Nat. Elec. Light Assoc. at Montreal, Sept. 10, `91. Describes plant at Rochester, N. Y. Gives valuable information and suggestions. E. E. 12:300, Sept. 16, '91.

[^20]*NEW STATION OF THE BROOKLINE GAS LIGHT CO. 2 pp. Robert Amory. Abstract of a paper read before the New England Ass'n. of Gas Eng's., Feb. 38, '92. Plan and sectional views. E. E. 13:284, Mar. 16, '92.
*ELECTRIC LIGHTING AT TOPEKA, KANSAS. A description of this plant, which is owned by the city. Gives cost of operating. Trans. A. S. C. E., Vol. XXVI., Apr. '92, pp. 427-32. Discussion, pp. 430-8. Abstract in Eng. News, June 16, '92.
*EAS'T CLEVELAND ELECTRIC RAILWAY. Descripof plant. St. Ry. Jour., Apr. 92, pp. 200-4.
*THE SPRINGFIELD, ILL., ELECTRIC LIGHT AND STEAM DISTRIBUTION PLANT. 5 pp . L. W. Collins. Gives full description of station and equipment. Details of Holly system of stean heating by exhaust steam from engines, with full page plan (dimensioned) of steam distribution connections. E. E. 15:327, Apr. 5, ‘93. (See also brief description ( 2 pp .) of same plant by W. F. Collins in E. E. 13:545, June 1,'92).
*POWER HOUSE OF THE NEVERSINK MOUNTAIN ELECTRIC ROAD. 2 pp. H. S. Hering and W. S. Aldrich. Forms Part II. of a long serial on a test of the above road. Detailed description of the turbine and dynamo plant, with plan and elevation, dimensioned. E. W. 19:379, June 4, '92.
*ELECTRIC RAILWAYS OF MILWAUKEE, WIS. Description of the electric railway system of Milwaukee, the power plant, etc. St. Ry. Rev., July '92, pp. 351-6.
*NEW STATION OF THE EDISON ELECTRIC ILLUMINATING CO. OF BOSTON. 16 pp. A. C. Shaw. Very full and detailed description of the entire plant. Gives detailed dimensioned drawings of sections, elevation, plans, etc.; also details of steam fitting, switchboard, etc. E. E. 14:119, Aug. 10,'92.
*THE ELECTRIC STREET RAILWAY SYSTEM OF LITTLE ROCK, ARK. 5 pp. Full and detailed description, giving plans, elevations, cuts, etc. The station was designed by B. J. Arnold of Chicago, and admirably illustrates the adapti-

[^21]bility of engineering skill to peculiar local conditions. W. E. 11:97, Aug. 20, '92; also E. E. 14:203, Aug. 31, '92.
*C.ANTRAL STATION OF THE CONCORD GAS LIGHT CO., AT CONCORD, N. H. $11 / 2 \mathrm{pp}$. A. C. Shaw. A Reynolds Corliss $18 \times 42 \mathrm{in}$. engine drives, by countershaft, the following dynamos: $3-50$ light T-H arc machines for public lighting, 3 ditto for commercial lighting, and $1-1.350$ light T-H alternator. The use of L. P. and D. transmitters reduce the floor space occupied very greatly. E. E. 14:169, Aug. 24, '92.
*NEW STATION OF THE LOWELL AND SUBURBAN ST. RAILWAY CO., LOWELL, MASS. 4 pp. A. C. Shaw. 3-500 H. P. units installed. Each unit consists of 1 Cooper-Corliss 500 H . P. engine driving by direct belting 2-200 KW. T-H tpole ry. generators. Gives plans, elevations, etc. E. E. 14:345, Oct. 12, ‘り2.
*NEW POWER HOUSE OF THE CENTRAL ELECTRIC RY. CO., BALTIMORE, MD. 1 p. H. K. McCay. Gives plan and elevation of station (dimensioned). 3 compound McIntosh and Seymour 240 H . P. engines each direct belted to 3 T-H multipolar ry. generators. E. E. 14:432, Nov. 2, '92.
*NEW PLANT OF BIDDEFORD AND SACO, ME., RY. CO. 4 pp. A. C. Shaw. Designed by W. L. Church. 2 Westinghouse comp. non-condensing $130 \mathrm{H} . \mathrm{P}$. engines, each direct belted to 1 T-H 4-pole 90 KW . ry. generator, thus giving two units; these are placed obliquely to the walls of the station to save floor space. Plan and section of station given, also results of tests made by the Mass. Elec. Eng. Co. of Boston. T'otal rated capacity of plant is: boilers, 200 H. P. at 100 lbs . steam pressure; engines $260 \mathrm{H} . \mathrm{P}$. ; generators, 240 H . P., thus giving ratios of 80:10t:96. Full description. St. Ry. Jour. Dec. '92, p. 760. E. E. 14:494, Nov. 23, '92.
*THE LIGHTING OF WASHINGTON PARK, CHICAGO, MLL. 3 pp. F. A. Scheffler. Description of plant, wiring, details of lamp post switches, man-holes, etc. Plant consists of 3-110 H. P. Frazer and Chalmers Corliss non-cond. comp. engines belted direct from $6-10 \mathrm{in}$. pulleys to 6 Brush 50 arc light (2000 c. p.) dynamos. There are 29 miles cable (No. 5) lead

[^22]covered, and laid in underground conduits. E. E. 14: 513, Nov. $30, ~ ` 92$.
*ELEVATED RAILWAY, THE LAKE ROLAND, BALTIMORE, MD. 5 pp. A. V. Abbott. Full description of station, line, etc., with section, elevation, plans, etc. 2 Corliss tandem comp. $20 \times 36 \times 60 \mathrm{in}$. engines drive by countershaft and clutches + T-H +pole 400 KW . ry. generators. 2-150 H. P. Ball engines drive by direct belting Edison No. 32 dynamos. E. E. 14:549. Dec. 7, `92.
*CHICAGO CITY RY. CO. Description of entire plant. Use Mohr tubular boilers and Wheelock engines. Boilers prorided with mechanical stokers. Ropes will be used instead of belts. St. Ry. Jour. Dec. '92, p. 723.
*POWER STATION OF THE NEW HAVEN AND WEST HAVEN ST. RY., NEW HAVEN, C'T. 6 pp. A. C. Shaw. Full description, with section, plan, and view. This is the first power station in the U. S. to use direct coupled slow speed dynamos throughout. Ultimate capacity is 1000 H. P. Present equipment:-3 Manning 150 H . P. boilers furnished with mechanical draft by blower run by a 5 H . P. Westinghouse engine. 3 Westinghouse comp. $160 \mathrm{H} . \mathrm{P}$. engines direct coupled to 160 H. P. Westinghouse multipolar ry. generators. Each unit called a "Kodak" occupies a floor space of only $6^{\prime} \times 16^{\prime} 4^{\prime \prime}$. Entire plant area is less than 5 sq. ft. per electrical H. P. E. E. 15:111, Feb. 1, '93.
*'THE ELECTRICAL SIDE OF ST. LOUIS, MO. A description of the stations of the following Cos. St. Louis and $\mathrm{Su}-$ burban Ry., Lindell Electric Ry., Benton and Bellefontaine Ry., Southern Ry., Missouri Electric Ry., Union Depot Ry., Cass Ar. and Fair Ground Ry., Mo. Electric Light and Power Co., Municipal Arc Light and Power Co. Numerous illustrations of exteriors and interiors. E. W. 21:99,119,135, 151. Feb. 11, 18, 25, Mar. 4, 1893.

LIVERPOOL, ENG., ELEVATED ELECTRIC RY. 4 pp. H. Scholey. Details of construction and full description. 4 horizontal comp. engines each of $400 \mathrm{H} . \mathrm{P}$. drive by ropes 4 E1-

[^23]well-Parker shunt-wound 238 KW. 500 volt bipolar dynamos. Total cost including equipment about $\$ 425000$ per mile. F. E. 15:165, Feb. 15, '93.
*ELECTRIC TRACTION IN THE CITY OF PHILADELPHIA. 2 pp. R. L. Warner. Gives description of station and equipment with plan, section, etc. 3 Corliss engines 250 H . P. each belted direct to 250 H . P. Westinghouse 4 -pole generators. 36 in. idlers set beneath belts near dynamos to prevent flapping of belts. E.E. 15: 286, Mar. 22, '93.
*MUNICIPAL ELECTRIC PLANT IN BERNE, SWITZERLAND. 1 p. 3 Turbines, ( $120 \mathrm{H} . \mathrm{P}$. ), 3 Oerlikon 6-pole S4 KW. 120-volt dynamos, belt driven. 144 Tudor accumulators ( 690 amp . hours). (Gives diagram battery connections. Capacity of plant 300016 c. p. lamps. E. W. 21: 275. Apr. 15, '93.
*THE FIRST ELECTRIC RY. IN NEW ORLEANS, 5 pp. A. L. Johnston. Gives map of route, details of track, car barn, work-shops, cars, etc. Describes equipment fully. 3 Corliss comp. tandem cond. engines each of 300 H . P. belted by 34 in. double belts to $5 \frac{1}{2}$ in. line shaft, with clutches, etc. 3 G. E. 4-pole 200 KW . dynamos at $425 \mathrm{r} . \mathrm{p} . \mathrm{m}$. belted by 22 in . belts to line shaft. E. E. 15:381,406, Apr. 19, 26, '93.
*THE COLOGNE, GERMANY, MUNICIPAL LIGHTING STATION. 4 pp. C. P. Feldmann. Full description of station and equipment. Diagrams of mains, current distribution in mains, and scale of rebates to consumers. Detailed description of the switches used for connecting the alternators in paralle1. In August '92 there were $13000-16$ c. p. lamps connected. Total cost plant $\$ 465000$. E. W. 21:5,30, Jan. 7, 14, '93.
*ELECTRIC PORTAGE BETWEEN LAKES ONTARIO AND ERIE. 8 pp. T. C. Martin. Full description of the combination water and steam power plant. Gives profile of road, plan of power house, $(100 \times 62 \mathrm{ft})$. E. E. 16:121, Aug. '), '93.
*INTRAMURAL ELECTRIC ELEVATED RY. AT THE WORLD'S FAIR, CHICAGO. 3 pp. Description of power house and equipment, with details of the G. E. big 1500 KW. gen-

[^24]crator. E. E. 16:221, Sept.6, `3. Eng. News, Sept. 7, `93, pp. 190-1. See also another article in St. Ry. Jour., Sept. "93.
*CITIZENS' S'T. RY. OF MUNCIE, IND., WITH NATURAL GAS AS FUEL. 2pp. L. W. Collins. Station $621 / 2^{\prime} \times$ 125', 2 stories high. 2-150 H. P. Ideal engines each belted direct to a 100 KW . T-H ry. generator. Additional room for 2-200 H. P. dynamos, and 2-300 H. P. engines, and 2 more boilers. Gives plan of pumping plant with description. E. E. 15:623, June 28, `93.
*ECONOMY IN SMALL CENTRAL STATION LIGHTING. TRANSFORMERS ON A 3-WIRE SYSTEM. 1 p . Describes the equipment of the station at Petersboro, N. H. using transformers on a 3 wire system, giving connections. A Rod-ney-Hunt turbine + miles from centre of distribution runs a G . E. 2000 volt alternator. Secondaries of transformers have $10+$ volts each side. Valuable hints given. E. E. 16: +2t, Nov. 15, , 93.

EASTERN POWER STATION OF THE BROOKLYN CITY R. R. Description of the plant designed by F. S. Pearsontaken from the St. Ry. Jour. 6 Allis-Corliss cross comp. engine s each of 2000 H . P. direct connected to $6-1500 \mathrm{KW}$. G. E. multipolar ry. generators, the same type as was used in the Intramural power station at Chicago. Condensed description of equipment. E. E. I6: 490, Dec. 6, '93. St. Ry. Jour. Dec. '93.
*ELECTRIC RAILWAYS OF SAN FRANCISCO AND NEIGHBORING TOWNS. Short description of plants of different roads. St. Ry. Jour. June '93, et seq.
*POWER STATION OF ATLANTIC AVE., BROOKLYN. ELECTRIC RAILWAY. Use Babcock and Wilcox boiler, and comp. cond. Corliss engine. Condenser worked by small Corliss engine. St. Ry. Jour., May '93, p. 275.
*THE JERSEY CITY AND BERGEN ELECTRIC RAILWAY. Description of the plant. Uses water-tube boilers and cross comp. high speed engines. St. Ry. Jour., Dec. '92, p. 720.
*THE NEW ORLEANS AND CARROLLTON ELECTRIC RAILWAY, NEW ORLEANS, LA. Description of entire line

[^25]and power plant with plan of car house and buildings. St. Ry. Jour., May '93. p. 283.
*THE ROCK CREEK RAILIWAY, WASHINGTON, D. C. $2 \frac{1}{2}$ pp. P. A. Draper. A concise description of the entire plant. Uses 2 Babcock and Wilcox boilers each 1St H. P., 1 McIntosh and Seymour tandem comp. cond. 250 H. P. engine; 1 Ball and Wood cross comp. cond. engine of 250 H . P. There are $4-90 \mathrm{KW}$. T-H t-pole ry. generators belted direct in pairs to the flywheels of the two engines above mentioned. E. E. 15:264; Mar. 15, '93.
*THE CALUMET ELECTRIC RAILWAY. A good description, showing the method of wiring and road bed construction. St. RY. Gaz., Feb. 27, '93.
*AN AMPHIBIOUS RAILIVAY, THE CAMDEN GLOUCESTER AND WOODBURY. 3 pp . The railway is called "amphibious" because so much of its route is over trestles erected in the swamps and creeks near the sea-coast. Gives a good description of the track construction, and of the station which furnishes current for both light and power, including plan of station, cuts of engines, etc. Equipment includes 3 Babcock and Wilcox $400 \mathrm{H} . \mathrm{P}$. boilers, 3 Westinghouse comp. $250 \mathrm{H} . \mathrm{P}$. engines direct coupled to 3 Westinghouse 250 H . P. generators. E. E. 17:6. Jan. 3, '94.

## *HUDDERSFIELD (ENG.) CORPORATION WORKS.

 6 p.p. A full description of a modern English lighting station. Equipment includes 1-50 KW. 2-100 KW. and 1-250 KW. Nordey alternators (200) volts) driven by cotton ropes direct from Brush engines. Interesting details are given with cuts, of system of low pressure ( 100 volts) distribution from secondary mains, the synchonizers for coupling the alternators in parallel, high pressure mains (concentric cables) and Brush dry joint boxes. The station is especially desigued to facilitate future extension. Section of station given, and numerons illustrations. Lon. E. K. 34:87, Jan. 26, '94.*BURNLEY CORPORATION SUPPLY STATION (ENG.) 2 pp. Brief description of a station possessing many interesting features. System is the low-tension 3-wire, distrib-

[^26]uted from a point in the centre of the town a quarter of a mile away. 2 Elwell-Parker 90 KW. 230-volt dynamos are driven direct by ropes ( $8-1 \frac{1}{4}$ in.) from horizontal comp. cond. Corliss engines. Each dynamo connected across the two mains of the 3wire system, while it is left to compensators and 120 E . P. S. accumulators ( 80 amps. for 9 hrs., or 125 amps. for 4 hrs .) to maintain the balancing of the circuits. Sketch of connections given. Only three men required to run plant, as the batteries furnish the light all but 7 hrs. each week day. Lond. E. R. $34: 146$, Feb. 9, '94.
*SCARBOROUGH (ENG.) ELECTRIC SUPPLY CO.'S WORKS. 2 pp . Description of an interesting station with some unique features. System is high pressure ( 2000 volts) alternating one with street and house transformers, 2 Parsons' cond. steam turbines, each of $250 \mathrm{H} . \mathrm{P}$. direct coupled to 2-pole $150 \mathrm{KW} .2000-\mathrm{v}$ alternators giving 80 p. p. s. at 4800 r. p. m. Cuts showing section of junction boxes, transformers in substation, are given. Total number of lamps connected about 5000 . The entire cost of plant is about $\$ 100000$. Lond. E. R. 34:303, Mar. 16, '94.
*NEW WESTINGHOUSE COMBINED DIRECT AND ALTERNATING CURRENT GENERATOR AT ROCHESTOR, N. Y. 2 pp. J. Dennis. Jr. Description and cut of combined generator which gives direct current at 550 volts, or 2 -phase alternating current at 385 volts. Plant can be run by steam or water power. E. E. 17:245, Mar. 21, '94.
*NEW 5000 HORSE POWER WATER POWER PLANT OF CONCORD (N. H.) LAND AND WATER POWER CO. + pp. A. C. Shaw. Detailed description of station and equipment, giving plans, elevation, section, etc. Rodney Hunt 39 in. horizontal turbines of $209 \mathrm{H} . \mathrm{P}$. each belted through shaft to 7 T-H 50 -light arc dynamos, and $6-250 \mathrm{KW}$. G. E. tri-phase generators. Voltage of transmission is 2500 . Line is No. + silicon bronze triple braided wire. E. E. 17:270, Mar. 28, '94.
*ELECTRIC STATION OF THE CITIZENS' LIGHT AND POWER CO. OF ROCHESTER, N. Y. R. Cartwright. A paper read before the Am. Soc. Civ. Engs., Mar, 7, `94. An

[^27]elaborate description of the development and utilization of the water power, with numerous details of construction. The plant can be run by both water and steam. The paper is written from the standpoint of a civil, rather than an electrical engineer, almost no mention being made of the electrical equipment. Trans. A. S. C. E. Vol. NXXI, Mar, '94; Eng. News, Mar, 8, '94; Cond. E. K. 34: 627, 692, June 1, 8, 15. '94.
*ELECTRIC LIGHTING, HEATING AND POWER PLANT NEW BOSTON AND MAINE AND FITCHBURG R. R. UNION STATION, BOSTON. \& pp: A. C. Shaw. Full description, with plan of station, engravings. etc. 4 Westinghouse "Kodak" comp. cond. engines $14 \times 2+\times 14 \mathrm{in}$. direct connected to 125 KW . generators. 2 of 125 volts; 2 of 500 volts. Another similar engine is belted to a 2200 light Westinghouse alternator, and a $11 \times 19 \times 11 \mathrm{in}$. engine is belted to a 1100 light alternator. T-H 62 KW . bipolar generator giving 220 volts runs the elevators. E. E. 17:485, June 6, '94, Eng. Dec. June 2, '94.
*PORTSMOUTH CORPORATION WORKS. 13 pp. A full and detailed description of a station which is said to have departed more than any other in England from the recognized engineering practice. Uses Ferranti combined engines and alternators. 212 KW . at 2100 volts at 50 p . p. s. Ferranti the first to use commutated currents for arc lighting in commercial work. The rectifyers are described and illustrated. Parsons' cond. steam turbine, 150 KW . alternators, 2-pole giving 2000 volts at a speed of 300 revs., frequency is 50 . Lond. E. R. 34:662, June S, `94; Lond. E. E. June 8, `94; Lond. Elec., June 8, ‘94.
*DERBY (ENG.) MUNICIPAL SUPPLY WORKS. 3 pp. Description of station and equipment. 3 units of the following: Siemens' 40 light constant current are dynamo direct coupled to 35 H. P. vertical engine. 3 units of 50 H. P., Siemens' alternator ( 2000 volts) direct coupled to vertical comp. engine; 3 similar units of 100 H . P. Substations contain 8-21 KW. and 6-10.5 KW. transformers. L. E. R. $35: 67$, July 20, ‘94.
*MANCHESTER CORPORATION WORKS (ENG). + pp. Full description of plant, wiring, etc. Uses the 5 -wire system, diagrams of wiring being shown. 4 Elwell-Parker 240 KW.

[^28]and 2 Mather-Platt bipolar 240 KW . dynamos belted to vertical comp. engines. L. E. R. 35:69, July 20, '94.

BURTON' (ENG.) CORPORATION WORKS. 3 pp. Description of station and equipment. The alternating current at 2000 rolts is used with a street transformer system distributing at 100 volts. $3-125 \mathrm{H}$. P. Fowler horizontal comp., non-cond., engines drive direct by ropes 3-66-KW. Hall alternators. L. E. R. 35:76, July 20, `94.
*ELECTRIC RAILWAY AT ASHLAND, WIS. Short description of the power house and line equipment. St. Ry. Jour., Feb. 94.
*ELECTRIC RAILIVAY OF EVERETT, WASH. Short description of power plant and line equipment. Ball cross comp. engines and return tubular boilers are used. St. Ry Jour., Feb. -94.
*ELECTRIC RAILWAY PLANT OF THE MILWAUKEE ST. RY. CO. Description of the power plant for the electric railway and the illuminating plant. E.E. 17: Mar. 14, '94.
*A WESTERN TWO PHASE PLANT. Brief description of the plant of the Twin City Gas and Electric Light Co. of La Salle, Ill. 2 Ide engines, one drives $2 \mathrm{~T}-\mathrm{H} 30$ light arc dynamos, the other a 60 KW . Stanley two phase generator, W. E. I5; 231, '94.

THE ELECTRIC LIGHT PLANT OF HAMDSTEAD, EXG. 2 pp. Description of station and equipment. Willams' comp. engines direct coupled to Siemens' alternators of the following outputs: 1 of 200 KW .2 of 100 KW . and 1 of 20 KW . L. ER 35:410, Oct. 9, ‘St

ELECTRIC LIGHTING AT WORCESTER, ENG Victor turbines drive by ropes Mordey alternators of $1 \cong 5 \mathrm{KW}$. Description of station and machinery. L. E. R. 35:441, Oct. 12, 94.

ELECTRIC SYSTEM OF PHILADELPHIA TRACTION CO. H. S Hering. Very complete and detailed description of the entire system. Gives map of route, tables of data, plans, etc. Westinghouse engines direct connected to Westinghouse generators 4 power stations included. E. W. : $4: 383,4: 1,-$ 453,491 : Oct. 20, `94, et seq. St. Ry Jour., Jan. '94.

[^29]*POUGHKEEPSIE CITY AND WAPPINGERS FALLS, N. Y. ELECTRIC RY. 2 pp. Description of station and system. Gives map of route. The feeding point is 8 miles from the station, and the spur line to New Hamburg is 10 miles. 2 G. E. 200 KW . generators are direct coupled to $300 \mathrm{H} . \mathrm{P}$. Ball and Wood engines, (comp. cond.) Grades are numerous and heary. An interesting feature of this system is the application of the "booster" method of feeding, enabling "-0000 wires to supply the motor cars at the end of a track 8 miles away, where the grades are unusually heary, E. E. 18:360, Oct. 31, '94; E. W. 24:479, Nov. $3,{ }^{9} 94$.
*ELECTRIC RAILWAY SYSTEAI OF TORONTO, CAN. 3 pp. Description of system. E. E. 18:409, Nov. 21, '94.
*THE CASS AVENUE AND FAIR GROUNDS RY. ST. LOUIS. A description of the power plant. Has an Allis-Corliss engine, $18 \times 36$ in. making 150 r. p. m. Gen. Elec. system. Down-draft boilers. Has 31.5 miles track ( $+^{\prime} 10^{\prime \prime}$ gauge) 78 and 80 lb . girder rails, and 140 cars, 70 being motor, and 70 trailer cars. St. Ry. Jour., Dec. '93.
*THE DOUGLAS AND LAXEY ELECTRIC RAIL WAY. Description of this English tramway of about 7 miles in length, with maximum grade of per cent, and of the electrical equipment, including accumulators. St. Ry. Gaz., Sept. 8, '94, E. R. Aug. 24, '94.
*ELECTRIC RAILWAY AT ITHICA, N. Y., with $101 / 2$ per cent. grades. By J. C. Trautwine, 3d. St. Ry. Rev., Nor. '94.

Description of the system of Ithica, N. Y., with special mention of the power station and its use of water power. St. Ry. Gaz. Dec. 1, '94.
*POWER PLANT OF THE LYNN AND BOSTON R. R. CO. An article describing the building and power equipment of this road. Corliss engines and 4000 H . P. of Babcock and Wilcox boilers. Gen. Elec. system. 153 miles of track, 11 of which are operated by horses, 142 by electricity. $60-90 \mathrm{lb}$. rails, tram, T, and girder. 475 cars, 112 being horse. St. Ry. Jour., Jan. '94.

[^30]*POWER PLAN'T OF THE WORCESTER (MASS.) TRACTION CO. Short addition to description published in St. Ry. Jour., of July ‘93. St. Ry. Jour., Jan. ‘94.
*NEW POWER STATION OF THE LINDELL RY. CO., SL. LOUIS. 2 pp. Description of plant. 3 units, each consisting of a Soutwark tandem com. $22 \times 26 \mathrm{in}$. engine, direct belted to $750 \mathrm{H} . \mathrm{P}$. Westinghouse generators. W. E. 16:1, Jan. 5, '95.
*THE ELECTRICAL STATION OF ARGUES-LABATAILLE. J. A. Montpellier. A municipal lighting plant fully described and illustrated, the principal feature being a turbine. L'Electricien, Jan. 5, '95.
*THE FRANKFORT, GERMANY, MUNICIPAL ELECTRIC LIGH'T S'TATION. $3 \mathrm{pp} . \mathrm{R}$. Haas. A description of the mechanical and electrical features of the plant, with details and illustrations of the transformer pits, underground work and oil insulated transformers. 3 units consisting of 750 H . P. horizontal comp. engines, and 500 KW . alternators ( 3000 volts) from Brown, Boveri \& Co., direct coupled. E. E. 19:23, Jan. 9, -95.
*THE HESTONVILLE, MANTUA AND FAIRMOUN「T PASSENGER R. R. CO., OF PHILADELPHIA. 4 pp. Description of the station and system. The power house has an ideal location. A map of the route, plain riew, switchboard, etc. are shown. $4-750 \mathrm{H} . \mathrm{P}$. Greene tandem com. engines are direct coupled to G. E. 400 KW . ry. Generators. E. E. 19:34. Jan. 9, `95. Also St. Ry. Jour. Nov. '94.
*THE ELECTRICAL EQUIPMENT OF THE ORLEANS R. R., NEW ORLEANS, LA. 4 pp. Fine example of modern engineering. Allis-Corliss comp. cond. tandem engines, 2 of $300 \mathrm{H} . \mathrm{P}$. and 1 of $600 \mathrm{H} . \mathrm{P} .1 \mathrm{G}$. E. 200 KW . generator direct connected to each of the smaller engines now installed, and each one, owing to the absence of grades is expected to run 25 single motor cars, an average of only 8 KW . per car. E. E. $21: 329$, Apr. 1, ${ }^{\circ} 96$.

[^31][^32]photograph, plan and section of station. A fine example of a modern plant. Westinghouse 300 KW . generators direct connected to Allis-Corliss comp. engines. 36 motor cars. Total capacity of plant 2000 H. P. E. E. 19:48, Jan. 16, '95.
*THE CHICAGO EDISON COMPANY. Its history and work. 19 pp. T. C. Martin. A very complete detcription of this immense incandescent lighting plant with illlustrations, plans, sectional views, etc., of every essential part of the plant. E. E. 19:63, Jan. 23, ${ }^{9} 95$.
*THE FRANKFORT ON THE MAIN MUNICIPAL, LIGH'T AND POWER PLAN'T. 6 pp. G. J. Melins. Full description of plant, and distribution system. Gives plan, sectional view, map of feeders, mains, etc., and other important details. E. W. 25:97, Jan 26, '95.
*THE MUNICIPAL LIGHTING PLAN'T OF SOUTH NORWALK, CT. 1 p. Description and statistics of plant. During '94, the average cost per lamp per year, including interest and depreciation, S59.29. The station supplies 120-2000 c. p. arc lamps. Equipment: $\mathbf{1 - 1 2 5}$ horizontal tubular boiler; 2 Western Electric 60 light arc dynamos direct belted to a 100 H. P. Ideal engine. E. E. 19:97, Jan. 30, '95.
*THE ELECTRICITY WORKS AT YARMOUTH, (ENG.) A municipal electric lighting plant, high pressure alternating current generator with transformer stations for incandescent lighting and direct current series machines for supplying street are lamps. A very full account with a number of diagrams. Lond. E. E. 19:97, Jan. 11, `95; abstract in E. E. Jan. 30 , '95.
*DIRECT CONNECTED ARC LIGHTING S'TATION. $1 / 2 \mathrm{p}$. Brief description of the first direct connected arc plant in the U. S. installed by the Mutual Elec. Lt. and Power Co., at 89th at Loomis Sts. Chicago. 3-125 light Brush are dynamos direct connected to 3 Bullock-Williams high speed engines. 23000 H. P. Water tube boilers. E. W. 25:16t, Feb. 9, '95.

Description with numerous illustrations. Elec. Industries, Feb. '95.
*IIlustrated
*THREE CENTRAL ELECTRIC LIGHT WORKS. A full description with good illustrations, of three new municipal plants at Halifax, Nottingham and Drewsbury. Lond. E. R. Feb. 1, '95.
*THE EDDY STREET POWER STATION AT PROVIDENCE, R. I. 2 pp. G. T. Hanchett. 8 Babcock and Wilcox 500 H. P. boilers, 2 Stirling 500 H. P. boilers. 3 Greene tandem comp. engines are direct belted to 3 G . E. 500 KW . generators ( 500 volts), 2 Greene cross, comp. engines direct coupled to 2 G . E. 750 KW . generators. Units are so chosen that outputs from 500 up to 3000 KW . by steps of 250 can be obtained. E.W. 25:133, Feb. 2, '95.
*THE MUNICIPAL LIGHT AND POWER PLANT AT BREMEN, GERMANY. F. Jordan. The works are laid out on the three wire system, comprises four stations, one principal station with boiler and machinery, and three accumulator, booster and regulating apparatus, sub-stations. One of the characteristics of the plant is that the two wire system is used between main and sub-stations, and the three wire distribution onlystarts at the the sub-stations. A number of good illustrations are given. E. T. Z. Feb. 7, '95.
*NEW PLANT OF THE CLEVELAND ELECTRIC ILLUMINATING CO. 4 pp . A complete description of a large arc and incandescent lighting plant with plan and cross-section (dimensioned.) E. E. 19:167, Feb. 20, 95.
*BUFFALO (N. Y.) ELECTRIC LIGHTING PLANTS. 2 pp. F. C. Perkins. Describes station and equipment of the plants at Elk and Court Sts. The Elk St. station and the Black Rock station supply the street arcs, while the other station furnishes commercial arcs and incandescents. Machinery at Elk St. includes 2 Allis-Corliss comp. cond. engines, 1 of 1500 H . P., and 1 of $1000 \mathrm{H} . \mathrm{P}$., both belted to a long line of shafting. 39-50 light, and 5-125 light Brush are dynamos. At Court St. there are 8 comp. cond. engines from 110 to 400 H . P. 11 T-H 50 lght arc dynamos belted in tandem to Noye high speed engines. $2-300 \mathrm{KW} ., 3-70 \mathrm{KW}$. and 2-60 KW. alternators; 1 G. E. 200 KW. 500 volt generator for power. A number of Small photo-

[^33]graphs showing interiors and exteriors are given. E. W. 25:229, Feb. 23, '95.
*NEW POWER STATION OF THE CONSOLIDATED TRACTION CO., OF NEW JERSEY. The station will have a capacity of $8000 \mathrm{H} . \mathrm{P}$. Each engine will be direct coupled to a Westinghouse multipolar generator. The plan of station and track, general plan of piping, plan and elevation of engine piping shown and described. St. Ry. Jour., Jan. '95.
*THE SYSTEM OF THE PEOPLE'S TRACTION CO., PHILADELPHIA. 14 pp . A full description, with views and diagrams, the principal ones being a coal elevating plant, the Delaware Ave., power station, with sections, engine room, plans of boilers and engines, car houses, sections of track, Sperry motor, plan and section of man-hole, etc. St. Ry. Jour., Jan. '95.
*THE SYSTEM OF THE BINGHAMPTON R. R. CO. (N, Y.) This company now owns all the street railway lines in Binghampton. A complete description of this plant, with various views, is of especial interest, as this city installed the first electric railway in New York State. St. Ry. Jour., Feb. '95.
*ELECTRIC STORAGE BATTERY CO'S. PLANT FOR LIGHT AND RAILWAY, AT MERRILL, WIS. 2 pp. Description of a small plant divided into two, one operated by water power, the other by steam. Growth of business made enlargement necessary and a storage battery was installed. Curve and data given. Railway built for 2 cars. Length road, $13 / 4$ miles. E. E. 19:247, Mar. 13, '95.
*BUFFALO STREET RY. POWER PLANT. 2 pp. F. C. Perkins. The latest additions to the equipment comprise 2-1250 H. P. vertical, comp. cond., Lake Erie engines direct connected to 2 G. E. s00 KW. ry. generators. W. E. 17:141, Mar. 23, '95.
*A MODERN ELECTRIC LIGHT STATION. 2 pp. Description of the First District station of the Edison Elec. Ill. Co., at Pearl St., Brooklyn. 2-150 H. P. vertical, com. Willians engines, each direct connected to $2-400 \mathrm{KW}$. G. E. generators, and 2-750 H. P. comp. Lake Erie, each direct coupled to similar

[^34]dynamos. 3-wire system used. Two sets of "boosters" illustrated and described. E. W. 25:445, Apr. 13, '95.
*A COMBINATION ALTEREATING AND DIRECT CURRENT PLANT. BUDAPEST, HUN. 4 pp. 3 vertical, triple, Schichau engines direct connected to 3 Schuckert 2-phase 1800 volt generators. At a sub-station continuous current dynamos direct driven by two phase motors, deliver current directly to the distributing net-work, and also charge a battery of accumulators (Tudor type) in this station. The alternators are rated at 300 KW . at 51 p . p. s. Several cuts are given including dynamo room at primary station, and at sub-station, accumulator room, and ground plan of primary station. Detailed account. E. W. 25:653, June 8, 95.
*COMBINATION OF LIGHTING PLANT AND WATER WORKS, AT MUNROE, LA. $11 / 2 \mathrm{pp}$. Description of plant and equipment with special mention of the pumping machinery. E. E. 19: 544, June 12, 95.
*MUNICIPAL WATER WORKS AND ELECTRIC LIGHT PLANT OF NORTH ATTLEBORO, MASS. 4 pp . This plant uses the same building for its water works and lighting plant, and furnishes incandescent instead of arc lamps for lighting the streets. C. O. Milloux of New York was the designer and engineer. The plant cost $\$ 49000$. Fitchburg tandem comp. cond. $175 \mathrm{H} . \mathrm{P}$. and 100 H . P. engines are belted to countershaft. 1 G. E. 60 KW . and $1-120 \mathrm{KW}$. alternator furnish current for the lights. $1-250 \mathrm{H} . \mathrm{P}$. boiler. Detailed description. E. E. 19:579, June 26, '95.
*NOTES ON THE RECONSTRTCTION OF A SMALL CENTRAL STATION, F. L. Pope. Paper read before the Ain. Inst. of Elec. Engineers, June 27, '95.

The plant described is located at Great Barrington, Mass. Various changes, described in detail, were introduced, such as the substitution of 126-32 c. p. incandescent lamps for 35-1500 c. p. arcs for street lighting. A turbine located 5 miles away replaced the old steam plant, and Westinghouse 2-phase generators ( 2100 volts) took the place of a 3 -wire direct current system, etc. These changes with others put the plant on a paying basis.

[^35]The paper, full of valuable ideas and suggestions, will repay careful study by electrical engineers. Trans. A. I. E. E. Vol. XII, June '95; Electricity, July 3, '95; E. W. 26: 41, July 13; E. R. July 10; E. E. July 17; W. E. Aug. 24, '95.
*POWER PLAN'T OF THE BALTIMORE AND OHIO R. R. AT BAL'TIMORE, AND ELECTRIC LOCOMOT'IVES. 5 pp . Detailed description with plan of station, and numerous views. Equipment of station given in detail. E. E. 20:40, July 10 , '95.

WILKESBARRE, PA., ELEC'TRIC LIGH'T CO'S. NEW STATION. 6 pp. J. H. Vail. Full details, plan, elevation, se:tions, etc. This plant well illustrates the use of the "booster," in practice, as it causes the saving of 50 per cent in copper. E. E. 20:293, Sept. 25, '95.
*NEW S'TATION OF THE BRUSH ELECTRIC CO., BAL'TIMORE, MD. 1 p. Equipment of station is of the most modern type. 4 Westinghouse 2-phase A. C. dynamos (each of $15000-16$ c. p. lamps capacity) directiy coupled to Westinghouse vertical comp. engines. 18-65 light Brush aredynmos, and 5-80 light Westinghouse are dynamos and belted to simlar engines. E. E. 19:365, Apr. 24, '95.
*NEW ME'THODS IN CENTRAL STATIONS AT BEL_FAST AND LEICESTER. In Belfast gas engines have been adopted, being the largest installation of gas engines in the world. A 200 volt system is used and distributed on the 3-wire plan, in conjunction with a set of accumulators. Lond. E. R., Apr. $26, ~ ' 95$.
*A 300 KW. TWO PHASEINSTALLATION AT FITCHBURG, MASS. 1 p. H. M. Floy. 1 Vestinghouse 2-phase 300 KW. generator (2250 volts) direct connected to 6 Pelton water wheels. Current carried 2 miles over 4 stranded conductors, and reduced from 2150 to 220 volts by $2-100 \mathrm{KW}$. transformers, and then supplies a number of Tesla motors. E. E. 19:386, May 1, '95.
*THE CHICAGO METROPOLITAN ELEVATED ELECTRIC R. R. $\quad 2 \mathrm{pp}$. Description of station equipment, etc. 4

Allis-Corliss 1000 H . P. engines direct connected to 4-800 KW. G. E. 12 -pole KW. generators, and Allis 2000 H . P. vertical engines direct coupled to $2-1500 \mathrm{KW}$. G. E. generators. Mechanical stokers, ash removers, etc. E. E. 25:525, May 4, '95.

For a well illustrated and most careful description, see St. Ry. Rev. May 15, '95.
*TYPICAL CHICAGO RAILWAY POWER HOUSES. 2 pp . A description of the plant of the Chicago Elec. Transit Co., at California Ave. Fireproof construction. 4 Fraser and Chalmers cross, comp. cond. 800 H. P. engines direct coupled to 4 Siemens and Halske 620 KW. dynamos. W. E. 16:213, May 4, ${ }^{\circ} 95$.
*LOCK HAVEN, PA., ELECTRIC RY. CO. 2 pp. Description of a small country road. 2-125 H. P. boilers, 2-100 H. P. Phoenix engines, 2 Westinghouse 60 KW . generators. Track ( 6 miles single) runs on one side of highway. The combined station and car-barn is of fire-proof construction. Describes track and line construction, and a home-made snowplough. E. E. 19:415, May 8, '95.
*THREE PHASE PLAN'T OF THE VERMONT ELECTRIC CO., AT WINOOSKI, VT. 1 p. Brief description of equipment and line, illustrated by photographs of dynamo room and exterior. 1 Westinghouse three-phase generator, rated at 46 amperes at 2500 volts, running at $450 \mathrm{r} . \mathrm{p} . \mathrm{m}$. and a frequency of 60 , can be either belted direct from turbine, or from a countershaft driven by turbine or engine. E. E. 19:431, May 15, '95.
*PORTLAND, ORE., LIGHT AND POWER DISTRIBUTION FROM THE WILLAMETTE FALLS. 5 pp. Transmission line is 14.3 miles long. A full and detailed description of the station, line and equipment. 3-450 KW. G. E. 3-phase 6000 volt generators are connected to Victor turbines. The current is transmitted to Portland and reduced to a voltage of 400 . For power purposes, rotary converters transform to 500 volts direct. E. E. 20:341, Oct. 9, '95.

For a six-page article with map, sections, etc., see E. W. 23:457, Apr. 7, '94.

[^36]*THREE PHASE RAILWAY SYSTEM, A'T LOWELL, MASS. 2 pp . Full description of a very interesting installation. E. E. 20:375, Oct. 16, '95.
*MUNICIPAL LIGHT AND POWER PLANT AT READING, MASS. $1 / 2$ p. Brief description of plant and equipment. Plant cost $\$ 62$ 000. E. E. 20:448. Nov. 6, '95.

NEW ELECTRIC LIGHTING PLANT AT INDEPENDENCE, IA. 1 p. Brief description. 1 Corliss cross comp. 325 H. P. engine drives by ropes a 180 KW . Standard alternator furnishing 32 c . p. incandescent lamps for strect lighting, as well as commercial lights in conjunction with transformers. E. E. 20:449, Nov. 6, 95.
*ELECTRIC LIGHTING OF EDINBURGH. $4 ½ \mathrm{pp} . \mathrm{H}$. R. J. Burstall. Abstract of paper read before the Inst. of Mech. Engs., giving details in condensed form. E. E. 20:493,521, 543, Nov. 20, '95 et seq.
*EDISON ELECTRIC ILLUMINATING CO. OF NEW YORK CITY. 25 pp. J. Wetzler. A most complete and claborate description with detailed drawings, and numerous good illustrations of the several huge stations of this company. E. E. 21:25, Jan. 8, '96.

## ISOLATED PLANTS.

*LIGHTING PLANT FOR NEW HOTEL WALDORF, (New York City). 8, 6 -pole 50 KW . Gen. Elec. Co.'s generators coupled direct in pairs to $150 \mathrm{H} . \mathrm{P}$. straight-line engines. 22 H . P. of Crocker-Wheeler motors besides fan-motors are intsalled. Wiring on both 2 - and 3 -wire systems; interior conduit. 6200-16, c. p. lamps actually installed. 2 pps . E. W. 21:259, Apr. 8 , '93.
*AN IDEAL ISOLATED ELECTRIC LIGHT PLANT (Society of Savings Bldg. Cleveland.) One story building $50 \times 50 \times 20 \mathrm{ft}$. high. $2-25 \mathrm{KW}$. G. E. generators direct connected to Lake Erie engines; 1-50 KW. coupled direct to Lake Erie engine; 1-45 KW. to Case engine. 1 p . Brief description. E. E. 16:43, July 12, '93.
*ROPE DBIVEN ELECTRIC PLANT OF THE RACQUE'T CLUB (New York City). Bricf description of a novel

[^37]and interesting plant. Output is $1000-16$ c. p. incandescent lamps. Available floor space, $9 \times 38$. ft. 1 p. E. E. $14: 594$, Dec. 21, ‘93.
*ELECTRIC LIGHTING COMBINATION FOR THE SOUTHERN HOTEL (St. Louis). Brief description of the electric equipment consisting of 3 direct coupled units. Each unit comprises an "Ideal" $125 \mathrm{H} . \mathrm{P}$. engine direct connected to a G. E. Co. 6-pole dynamo, and drives by belt from governor pulley other dynamos. $1 / 4$ p. E. E. 17:20, Jan. 3, '94.
*STORAGE BATTERIES FOR PRIVATE HOUSE LIGHTING. A description of the private plant of B. L. Sinith at Lake Forest, I11. W. E. 15:169, Oct. 13, '94.
*LIGHTING PLANT AT COOK COUNTY HOSPITAL. (ILL.) Equipmentincludes 2 "Ideal" 125 H . P. engines and 4 National incandescent dynamos each of 600 lights capacity. Each engine is belted direct to a pair of machines thus giving a duplicate set. W-E. 15:219, Nov. 10, '94.
*STORAGE BATTERY FOR LIGHTING APARTNENT HOUSES IN CHICAGO. Equipment includes 2 Ideal engines of 80 and $50 \mathrm{H} . \mathrm{P} ., 2$ Waddell-Entz dynamos of 60 and 30 KW., and a battery of $56-400$ ampere-hour Pumpelly-Sorley cells. W. E. 15:49, Aug. 4, '94.
*ELECTRICAL PLANT OF THE NEW STATE HOUSE OF MASSACHUSETTS. By W. S. Keys. 3 pps. Description of the lighting, heating and ventilating plants. Former consists of 3 tandem compound non-condensing McIntosh and Sesmour $13 \times 19 \mathrm{x} 15-\mathrm{in} .10 \mathrm{H}$. P. engines direct connected each to 2 G. E. 50 KW . 6-pole dynamos. Total output about 8000-16 C. P. incandescent lamps. E. E. 20:27, July 10, '95. Elec. Rev. Dec. 12, '94.
*BOSTON NEW PUBLIC LIBRARY. W. S. Key. 3 pp. Various interesting devices are described, such as the ventilation fans driven by G. E. Motors of 50 H. P., the book carrier service, switchboard, wiring and fixtures, the steam and electric plants, etc. Engines are 2 tandem compound non-condensing $150 \mathrm{H} . \mathrm{P}$. Learitt machines direct connected to 2 Siemens and

[^38]Halske 5-pole 220 volt 92 KW. dynamos. E. E. 19:503, June 5, '95.

ELECTRIC PLANT IN THE NEW PLANTERS' HOTEL, St. Louis, Mo. One 160 H. P. Southwark engine coupled direct to one 8 -pole G. E. 100 KW . generator, at 275 r . p. m. Two 135 H. P. Fitchburg engines direct connected to G. E. 75 KW. generators; and one $45 \mathrm{H} . \mathrm{P}$. Fitchburg engine direct connected to G. E. 25 KW . generator to carry the day load. Hotel is wired for $4000-110$ volt incandescent lamps. W. E. 16:165, Apr. 6, '95.

LOUISVILLE AUDITORIUM PLANT. $11 / 2 \mathrm{pp} .3$ engines; 2 Ball and Wood, 75 and 100 H. P.; 1 Bass Foundry 100 H. P.; 6 dynamos; 2 Wood are machines supplying a total of 65 arc lamps; 4 Ft . Wayne incandescent machines supplying a total of $1800-16$ c. p. lamps. Plant is installed in duplicate. W. E. 16:224, May 11, '95.
*ELECTRICAL EQUIPMENT OF A. M. ROTHSCHIL,D AND CO'S. STORE. (Chicago, State and Van Buren Sts.) 2 McEwen $15 \times 16 \mathrm{in}$. engines direct coupled to 2 Thompson-Ryan 100 - KW. 10 -pole, 110 -volt dynamos. The dynamos are furnished with the Ryan compensating field series windings, and are absolutely sparkless from no load to a large overload, and maintain a perfectly constant potential at all loads. An especially interesting installation. W. E. 16:249, May 25, '95.
*STORAGE BATTERIES IN MAYWOOD, ILL. 1 p. Description of the private plant of E. Norton, who lights his house from batteries in the basement, charging them from dynamos located at his factory. W. E. 16:165, Apr. 6. '95.
*ELECTRIC LIGHTING PLANT OF THE AMERICAN TRACT SOCIETY'S BUILDING, (New York City). 1 p. 2125 H. P. water tube Root boilers, banked into a battery, and 1 Root 250 H. P. boiler worked singly. McIntosh and Sermour engines direct coupled to multipolar G. E. generators. Three units, one of 100 , one of 50 , and one of 25 KW . are installed. Switchboard adapted to 3-wire system. E. W. 26:617, Dec. 7, '95.
*LIGHTING PLAN'T IN N. Y. METROPOLITAN MUSEUM. 1 p. 4 Rutzler and Blake boilers., 2-135 H. P. straight-

[^39]line engines each driving, by belting, 2 Edison No. 16 compound dynamos. Switchboard adapted for either 2 or 3 -wire system. E. W. 25:384, June 7, '95.
*AN OFFICE BUILDING LIGHTING PLANT. $11 / 2 p p$. Fidelity and Casualty Co., New York City. 2-50 H. P. Ames simple non-condensing engines direct coupled to 2 G . E. 25 KW . 110 volt generators. 3-wire iron armored conduit. Switchboard details, etc. Fine plant. E. W. 25:477, Apr: 20, '95.

## BOOK REVIEW.

MECHANICAL ENGINEER'S POCKET-BOOK. A reference book of rates, data and formulas, for the use of engineers, mechanics and students. By William Kent, A. M., M. E., 1087 pages. Price $\$ 5.00$.

In this age of rapid progress so much is expected of an engineer that he finds it absolutely necessary to have convenient and reliable reference books which contain not only the standard tables but also a well classified and indexed collection of the latest and best data. In every respect this book fills this want for mechanical engineers in a far more satisfactory way than any work of its kind. The portion devoted to electrical engineering contains much valuable matter. It is, however, principally a compilation and makes no pretense of covering this branch.

In summing up, we may say, that this book is undoubtedly invaluable to the mechanical engineer even though he may already have others on the same subject. The same also applies to many electrical engineers whose occupation requires some knowledge of mechanical engineering.

WATER SUPPLY FOR CITIES. Mr. Joh11 W. Hill, C. $\mathrm{F}_{1}$, of Cincinnati, O., delivered a lecture on the above subject at the University of Illinois, January 21, 1896. The problems involved in securing wholesome water supplies for cities were carefully considered. Especial attention was given to the con-
sideration of harmful bacteri known to exist in polluted water. Typhoid fever, being the best known and the most fatal of the water carried diseases, was discussed in detail. Comparisons were made of the typhoid death rates in 66 cities, and attention was called to the sources of water supply of these cities. The methods of purifying polluted waters were compared by showing their efficiency in removing bacteria.

Perhaps the most striking feature of the lecture was the discussion of the economic advantages of good health. By assuming a value of $\$ 10,000$ for a human life and allowing for medical attendance, it was shown that the annual loss from typhoid fever in the United States is greater than would be the cost of establishing purification works for every city in the country.

The address has been published by the University in pamphlet form for distribution, and will be sent to the graduates of the University of Illinois or to others interested, upon application to A. N. Talbot, Professor of Municipal and Sanitary Engineering.
"The Animal as a Machine and as a Prime Motor, and the Laws of Energetics." By R. A. Thurston, Director Sibley College, Cornell University. Published by John Wiley \& Sons, 53 East Tenth St., N. Y.

This is a little book of 100 pages, but it contains as much information as many books of double the number of pages. The concise and clear manner in which the relation between matter. and force, and energy is brought out is gratifying. The discussion on the efficiency of the animal system and its comparison with motors of human invention should be read with pleasure and profit by all.

The tables of "Energy Values of Foods" and their relative values as muscle, brain and "heat givers" are in convenient form for reference, and could be used to advantage by persons intercsted in athletics, either in our college or elsewhere. After reading the chapter on "Final Deductions," we are disheartened at the past success of human inventions and again inspired by the perfection of the transformation of energy as illustrated by the animal organism.

## ANNOUNCEMENT.

The Wisconsin Engineer. The engineering students of the University of Wisconsin are about to begin the publication of a semi-annual magazine. One of its special features will be an index of the engineering literature published in the technical periodicals for the preceding six months. The magazine will contain about 140 pages of technical matter. The first number will be issued June 1. The subscription price is 50 cents per number, or $\$ 1.00$ per year. W. H. Williams, Madison, Wisconsin, is Business Manager.

The Technograph is indebted to the following publications for exchanges:

General Exchanges.
The Technic of the University of Michigan; Year Book of the University of Minnesota; Annual Report of the Illinois Society of Civil Engineers and Surveyors' Society; Transactions of the Ohio Society of Surveyors and Civil Engineers; The Michigan Engineers Annual of the Michigan Engineering Society.

Single Exchanges.
Transactions of the American Institute of Electrical Engineers; Technology Quarterly; Proceedings of the Electrical Society of Cornell; Journal of Association of Engineering Societies; Journal of the Elisha Mitchell Scientific Society; Bulletin of the University of Wisconsin; The I. A. C. Engineer of Iowa State College; Fifth Annual Publication of the Colorado College Scientific Society.

## IN MEMORIAM.

AMOS GABLE GLARK was born September 17, 1871, at Petonica, Ill., and died at his home in Urbana on January 20, 1896, of typhoid fever. He removed with his parents to Urbana, and entered the Urbana High School, but did not graduate. He entered the University in 1890 and graduated with the class of ' 94 . The following year he took post-graduate work in his chosen subject-architecture. He then went to Chicago and entered the employ of the Chicago Architect, Henry Ives Cobb, in whose service he was at the time of his death.

Of his remarkable athletic achievements we need say but little. He took up athletics, as all other matters, seriously, and allotted a portion of each day to his gymnasium work. But it was not Amos Clark the athlete who was so endeared to the whole student body, but Amos Clark the man. His sterling individual worth drew forth an admiration that is lasting and enduring. He was modest, never discussing his own deeds nor mentioning his achievements. Somewhat slow in choosing his friends, but having once chosen he was true and unswerving in his loyalty to them. His innate modesty and unassuming honesty completely disarmed any incipient jealousy, and it could truly be said of him that he had among the whole student body no enemy, nor one who harbored for him an unkind thought.


## Brown \& Sharpe $\mathrm{M}^{2}$ nufacturing Co .

PROVIDENCE, R. I.


300 VARIETIES OF ACCURATE TOOLS FOR
En§ineers, Drau§htsmen and Mechanics.
New Catalogne of 256 Pages Mailed on Application.

```
 ORGANIZED) 1866.
```



## THOROUGH INSPECTIONS

And Insurance Against Loss or Damage to Froperty and Loss of Life and Injury to Persons Caused by

## STEAM BOILER EXPLOSIONS.

J. M. Aliekn, President.

Wa B. Franklin, Vice-President.
F. B. Alfen.

2d Vice-President.
J. B. Pierce, Sec'y and Treas.

## STARRETT'S FINE TOOLS



SEND FOR CATALOGUE.

## The L. S. STARRETT 60., BOX 44.

ATHOL, MASS., U. S. A.

# CHICAGO <br> <br> BRIDGE Ano <br> <br> BRIDGE Ano IRON CO． 

HORACE E．HORTON，President．

## ENGINEERS and CONTRACTORS．

1）ESIGN，MANUFACTULE AND FLFCT A！I，KINDS OF

## Wrought Structural Work IN IRON AND STEEL．

Bridges，Turntables，Roof Trusses，Plate Girders，Box Girders，Columns，Truss Rods，Bolts，Stand Pipes， Water Towers，Riveted Water Pipe，Etc．

PRINCIPAL OFFICE AND WORKS，WASHINGTON HEIGHTS，

CHICAGO，ILL．

# Paeifie Flush Tank ৎo., 

Room 6ı3 $_{3}, 84$ LaSalle Street, CHICAGO, ILL.,
The Miller Automatic Siphon
For Intermittent Flush Tanks.

$\Delta$

USEI FOR
Flushing
Sewers
and for
Subsoil
Irrigation.

No Moving Parts.
No Joints.
No Little Traps.

Received the Highest Award in its Class at the World's Columbian Exposition
FROIR

Simplicity of Construction, Effectiveness and Reliability.

## INDEX TO ADVERTISEMENTS.

PAGE.
Hartford Steam Boiler Inspection \& Insurance Co.-Insurtmee...... 2ud page cover
I. S. Starrett Co.-Tools 2nd page cover
Chicago Bridge \& Iron Co.-Wrought Iron Structural Work ..... i
Pacific Flush Tank Co.-Flush Tauks. ..... ii
Chicago Varnish Co.-Arehiterturul F'mishes ..... iii
Brown \& Sharpe Mfg. Co.-Tools ..... iv
Athol Machine Co. - Tools ..... iv
C. Sidney Norris.-Sash Pulleys ..... $v$
Battle Creek Steam Pump Co.-Pumis ..... vi
B. F. Sturtevant Co.-Blowers, etc ..... vii
Trantwine's Civil Engineer's l'ocket Book ..... viii
The Railroad Gazette ..... viii
Chicago Photo Gravure Co.-Photo Engrovilu! ..... ix
J. Lelond FitzGerald.-Flush Tankis ..... $x$
Flush Tank Co.-Flush Tunkis ..... xi
Schaffer \& Budenberg.-Pressure Gratyes. ..... xii
Crosby Steam Gage and Valve Co.-Stcom Siperialties ..... xii
G A. Gray Co.-Plamers. ..... xiii
Mracham © Wright.-Cement ..... xiv
Buckeye Portland Cement Co.-Cement ..... xiv
A. P. Cunningham \& Son.-College Supplies ..... xiv
Grafton Quarry Co.-Stome ..... xv
Evens \& Howard.-Scuer Pipe. ..... xV
Isaac Sheppard \& Co.-Fumuces ..... xvi
Malthy \& Wallace Co.-Lathes. ..... xvi
American Architect \& Building News ..... xvii
Heine Safety Boiler Co.-Brilers ..... xviii
Abbendroth \& Root.-Boilers ..... xix
Wm. Jess ppp ..... xix
Weston Electric Instrument Co ..... xix
Crescent Steel Co.-Stecl ..... $x$.
F. E. Reed Co.-Lathes. ..... $x \mathrm{x}$
J. G. Alexander.-Drawing Tables ..... $x x i$
J. Manz d Co.-Enyrouiny ..... xxi
Ottenheimer \& Co.-Gents' Fumishers ..... xxii
D. H. Lloyde \& Son.-College Supulies ..... xxii
University of Illinois ..... xxiii
Rand Drill Co.-Rock Drills ..... xxiv
J. H. Hutchinson.-Radiator Valves ..... 3rd page cover
Western Coment Co.-Cement ..... 4th page cover

## CHICAGO • VARNISH • CO.,

MANUFACTUIEERS OF HIGII-GRADE

## ARCHITECTURAL FINISHES.



Chicago Office Building of the Company, erected 1895.
Our Special Productions.-Supremis Floor Finish. Shipoleum, for interior work. I vory Enamelite, for white interiors and natural woods. Crystalite Finish, for tinm polished interiors. Exterior Oak for front doors, etc. Architectural Coach, for high Instre finish,

Offices.-Dearborn and Kinzie, Chicago. Pearl and High Sts., Boston. 215 Pearl St, New York. North John St., Liverpool, Eng.

ESTABLISHED 1865.

## Norris Patent Sash Pulleys



Are Conceded by All to be the Best Sash Pulley in the Market. For Prices and Catalogues, write to

## C. SIDNEY NORRIS \& CD.,



##  <br>  <br> Drying and <br> Heating Apparatus by the <br> Blower system.



## STEAM ENGINES.

Vertical and Horizontal. Single and looulble.

Simple and Compound.
5 to 100 Horse lower


Fans, with Direct Connected Lingines or
Electric Motors.


Complete Islectric
light Sets.
Sngine and lyynamo. special Fians
for Boiler lialt.


## SENI FOR CATALOGUES.

B. F. Sturtevant \& Co.

Works: Boston, 「lass.

34 Oliver St, Boston, Mass.	Th Queen Victoria St., London, E. C., Eng.
131 Liberty Si., New York, N. Y.	21 West Nile St, Glasgow, Scotland.
135 North Third St., Philadelphia, l'a. si Zimmerstrasse, Berlin, Germany.	
16 Sonth Canal St. Chicago, Ih.	2 Knugsholmstorg, Stockholm. Sweden.

## Trautwine's

# Givil Engingepr's Pooket Book. 

. * * The best general text-book on civil engineering in the English Language."-Enginecring News.

Railroad Curves, Excavations and Embankments.
John Wiley \& Sons,

E. \& F. N. Spon,

## For Engineers

Or others engaged in, or expecting to do railroad work of any kind, The Railroad Gazette is necessary. It is the largest, best and most complete railroad journal in the world. It is published every Friday, and its departments of engineering, rolling stock, administration and general railroad news keeps its readers fully informed of practical railroading. Price, $\$ 4.20$ a year. We publish many standard railroad books, such as Catechism of the Locomotive, price \$3.50; Car Builders' Dictionary, price $\$ 5.00$; Roadmaster's Assistant, price \$1.50; Elements of Railroading, price \$1.00; Switch Layouts and Curve Easements, price $\$ 1.00$, etc.

THE RAILROAD GAZETTE,
32 Park Place, NEW YORK.

* CHICAGO
* PHOTO-
* GRAVURE
* COMPANY,

Sole Manufacturers of Photo-Gravure Album, "Official Views," Published by the World's Columbian Exposition. Our World's Fair Exhibit Received the Highest Award.

## College Work a Specialty.

358 Dearborn Street,

CHICAGO, ILLINOIS.

## The VAN VRANKEN

## Automatic

## Flush Tank

## Fop Seweps and Sewage Disposal Wopks.

FOR CATALOGUES, DISCOUNTS AND
OTHER PARTICULARS, ADDRESS
J. Leland FitzGerald,

SCHENECTADY, NEW YORK.


PROVIDED WITEI
Automatic Siphons

IIAVING NO MOVABLE PARTS.

## KEEP SEWERS CLEAN

$+\quad$ WITHOUT EXPENSE.
$\qquad$


## RHOADS = WILLIAMS

## IMPROVED

Is the Only Siphon (withont movable parts) Having a Clear Water-Way. No Dam Inside to Stop the Flow of Water when Siphon Acts.


Incorporated 1887.

17:3 Lake Street,
CHICAGO, ILLINOIS. Formerly Richmond, Ind.

## SCHAFFER \＆BUDENBERG，



No． $2 \boldsymbol{2}$ W．Lake Street，） CHICAGO．S

SALES ROOMS．
$\{$ No． 66 John Street， （ NEW YORK．

## CROSBY <br> Steam Cage and Valve Co．

MANUFACTURERS OF

## High CLass STEAM SPECIALTIES．

Crosby Pop Safety Valves and Water Relief Valves．
Crosby Improved Steam Gages，Safe Water Gages： Gage Testers，Pressure Recorders． Revolution Connters，Original Chime Whistles．
Ammonia Gages，Vacuum Gages，etc．

Gold Medal Paris Exposition， 1859.
Ten Highest A wards Columbian Expo－ sition， 1593.

## BRANCHES：

New York，Chicaga，and London，England．

## MANUFACTURERS OF <br> Pressure Gauges

## For All Purposes．

Improved Thompson Steam Engine In－ dicator．
Stroke Reductors，Plainmeters，Engine Connters and Registers．
Professor Carpenter＇s Calorimeters， Indicating and Recording Tachome－ ters，Thermometers and Pyrometers
Traction Dynamometers，Test Pumps， and Boiler and Engine Appliances in general．

Works and General Offices，
BROOKLYN，N．Y．
$\qquad$

Now Yok，Mixen，wh


Crosby Steam Engine Indicator，with Sargent＇s Electrical Attachment，by which any number of dia－ grams may be taken sim－ ultaneonsly．

Main Oftce
and
Wrors，
Bostorn，
Mass．，U．S．A．

## THE G. A. GRAY CO., CINCINNATI, O. . . MANUFACTURE . . <br> 

AS AN EXCLUSIVF SI'ECIALTY.

TIIE FOLLOWING EDUCATIONAL INSTITUTIONS IIAVE

```
呂GRAY PLANEERS范
```

The University of Illinois, Champaign, Ill................................... ......................... $30^{\prime \prime}$ x $8^{\prime}$
The Technical School, 'incinmatı, O...................................................................26"x7'
Cleveland Manual 'raining School, Cleveland, O. ....... ....................................... 24" $^{\prime \prime}$ x5'
Case Scliool of Applied science, Cleveland, O.......................................................... $24^{\prime \prime} \times 5^{\prime}$
Uníversity School, Cleveland, 0 .......................................................................... $24^{\prime \prime} \times 5^{\prime}$
Chicago Manual Training School, Chicago, Ill ..... ................... .........................26" $26^{\prime \prime}$
Armour Institute, Chicago, Ill ................... . ............................................................. $30^{\prime \prime} \mathrm{x}^{7}$
Kansas Agricultural College. Manhattan, Kansas ........................................... $26^{\prime \prime} \times 6^{\prime \prime}$
Thiversity of Kansas, Lawrence, Kansas............................................................. $26^{\prime \prime} \times 6^{\prime}$
Colorado Agricultural College, Fort ('ollins, Colorado....................... ................24" $\times 6^{\prime}$
Agricnltural and Mechanical College, Logan, Utah .............................................. $\mathbf{2}^{\prime \prime} \times 6^{\prime \prime}$
Michigan Agricultural College, Lansing, Michigan ...................................... 26" $25^{\prime}$
Maine State Agrienltural College, Orono, Maine ................. ........................... 24"x6'
Delaware College, Newark, Delaware .......................... ...... ..................................... $26^{\prime \prime}$. $\boldsymbol{x}^{\circ}$
Virgimia State College, Blacksburg, Virginia ..................................................... 24"x5'
Manual 'Training High School, Lonisville Kentucky ..................................... $22^{\prime \prime} \times 5^{\prime}$
West Virginia University, Morgantown, West Virginia, (spiral geared) ...... $30^{\prime \prime} \times 7^{\prime \prime}$
State Agricultura! College, Lake City, Florida…............................................ $24^{\prime \prime \prime} \mathbf{x} \mathbf{0}^{\prime \prime}$
Oregon state Agricultural College, Corvallis, Oregon ......................................24" $\mathbf{x} 6^{\prime}$
University of State of Missouri, Columbia, Missouri .......................................... $2 \mathfrak{o n}^{\prime \prime} \times 6^{\prime \prime}$
Manual Training Iligh *ehool, Denver, Colorado .......................................... 29" $\times \boldsymbol{f}^{\prime \prime}$
Balto Colored Manmal Training School, Balto, Mo ... .......................................... $24^{\prime \prime} \times 5^{\prime}$

$30^{\prime \prime}$ x' ※piral-Geared IPlaner.

## MEACHIC \& WRIGHT,

 MANUFACTURER3' AGENTS FOR
## Utica Hydraulic Cement,

## Portland and Louisville Cements, Lime.

## Michigan and New York Stucco.

98 Market Street, TELEPHONE 434.<br>Ghigago.



Unequaled for all purposes for which Portland Cement is used.
Tests and Testimonials of Engineers, and a Useful Pamphict sent free on application.

BUCKEYE PORTLAND CEMENT CO.
BELLEFONTAINE, OHIO.

THE STUDENTS' HEADQUARTERS


We make a specialty of FINE DRAFTING INSTRUMENTS, DRAWING PAPERS, INKS, SCALES, Etc. Agents for A. G. Spalding \& Brothers' Base Ball and Athletic Goods. Tennis Rackets and Nets, all at Manufacturers' Prices. PHOTOGRAPHERS' SUPPLIES. NEW 5 DEPOT. Students' Trade Solicited.

CHAMPAIGN, ILLINOIS.

JAmes Black,
lresident.

Cifas Brainard,
Superintendent.

Joinn s. Roi'er,
Secretary.

# Grafion Quarry Co. 

(QUARRIES, GRAITON, ILI.)

# Dimension, Footing, Rubble and Rip-Rap Stone. 

OFFICE, NO. 415 LOCUST STREET,
ROOM504. ST. LOUIS.

SEVVER PIPE



## FIRE BRICK <br> AND ALL

FIRE=CLAY GOODS.
"न्ब?

## BUILDING BRICK

In Buff, Gray, Mottled and Black Colors.

## HEALTHFUL HOUSE WARMING



You will knuw what that means
if you use
-1115

## Paragon Furnace.

6 Special Points of Superiopitu:

1. Fewest Joints.
2. Equalized Draft.
3. Largest Radiating Furnace.
4. Absolutely Self=Cleaning.
5. Ball=Bearing Grate.
6. Perfect Adaptability to Any Kind of Fuel.

FOur book, "Hints About Heating," will cost you nothing. It will interest you. It may help you.

## ISAAC A. SHEPPARD \& CO.,

PHILADELPHIA, PA., and BALTIMORE, MD.

## MALTBY \& WALLACE C0.,

MANUFACTURERS OF

## Technigal School Wood Tulpning Lathes, <br> CHACIPAIGN, ILLINOIS.

## To Our Patrons:

We present herewith a Lathe, designed by the Mechanical Department of the University of dlinois. and which we are manufacturing. This novel form of wood lathe we liave styled a "Technical School Wood Lathe," as it has been designed especially for use in technical school shops, yet wonld be found highly efficient for any class of light turning.

The Lathe swings 10 inches over bed, and takes 18 inches between centers. The cone runs on a quill, thus removing all belt tension from the spindle. which is of steel, running in an accurately ground taper bearing forward, adjustable to compensate for wear. The tail spindle is ground and accurately fitted to its bearings. The face-plate is removed by means of a wrench fitting a milled hexagon on the hub. The rest is of a convenient form, being locked in both of its principal adjustments by a singic screw operated by a dixed wrench at the back. The Lathe is accurately constructed, and nay be used to good advantage as a hand the for light metal turning, posishing and drilling.

These Lathes can be arranged back to back in pairs of five pairs in a row, and each row of ten lathes may be driven with a single belt from the line shaft by using an anx lliary shaft carrying all the drive cones, which will be supplied with friction clutches so that each lathe may be stopped or started at will. This makes a compact arrangencut. These Lathes were designed and are being used ln the Machine Shops of the University of Inlinois, and are especially adapted for the use of Technical Schools and Universities.

We will carry a stock of Lathes on hand, so all orders can be filled promptly.
[Extruct from a lecture om Architects* Librarizs h! Prof. T Renlyer Smith, F. I. I. B. A, at University Colleqe, Lomelom, Oetoher 10, 1893.]
"Lastly, let me recommend the buck volumes uf the professionul jourmuls. In the course of years all sorts of architectural topics come up in the public press and before the profosional societies, and if you hunt through the indexes of these publications when you are seeking for information which eludes yon in books, sou will of tell be rewarded."

Jantari 15, 1895.

## Begin to Form Your Working Library.

Being desirous of reducing our surplus stock of back numbers of

## THE AMERICAN ARCHITECT

and being willing to do a kindness to young men, we offor to provide pupils in arehitectural schools such back issues, of date carlicrethan 1894 , of the Jonrual as wo can supply, at these disconnts:


We suggest that you confer with your fellow pupils, "pool your issues" and make onn transaction with us through a committee.

The offer is made only to pupils of Arehitectural schools. rogularly entered on the books of the sehool, and rolates solrly (o) mbomme eonies.
 miserllaneons numbers will be furnished for the priens quoted.

The American Archictect and Building News Co.,
211 TREMONT STREET, BOSTON.


## The Root Impproved Watep Tube Boilep.

 Safe,
Economical, * Durable.

A Rapid Steam Generator.
Send for Catalogn..

## ABENDROTH \& ROOT MFG CO.,

28 CLIFF STREET, NEW YORK.
1793. Established Over a Century Ago. 1896.

## JPSOPCS STPM

Gold Medal, Paris, 1886. Medal, World's Columbian Exposition, 1893. ITS SUPERIORITY UNQUESTIONED FOI

## TOOLS, DRILLS, DIES, ETC.

 WM. JESSOP \& SONS, Limited.Manufactory: Sheffield, Eng.
Chief American Office: 91 John St, N. Y.

## 'ГIIE NES'MON LABORATORY STANDARD



WESTON ELECTRIC INSTRUMENT CO., Newilk, N. J 114-120 WIJAIAM STREET.

# คigh $=$ Grade Crucible Stect. Crescent-Crescent Ertra- Crescent $\mathfrak{w p c c}$ - 

 . . FOR . .PUNCHES, DIES, MILLING TOOLS, TAPS, REAMERS, DRILLS, SHEAR BLADES, LATHE AND PLANER

Bar and Sheet Spring Steel.

Machinery Steel and Forgings. TOOLS, COLD CHISELS, ETC.

## Crescent $\mathfrak{F p c c}+\mathrm{a}^{2}$ [Polisbed Drill $\mathbb{R o d s}$

are accurate to size, straight and annealed soft for Taps, Reamers, Twist

Drills, etc. Harden at low heats. Are very fine.
CRESCENT STEEL CD.
works at pittsburg, pa.
CHICAGO, ILL.
6.4-66 So. Clinton St.

NEW YORK CITY,
480 Pearl St.


SPECIAI, LATHE FOR EDUCATIONA1, INSTITUTIONS
 Manufacturers of Lathes from $10^{\prime \prime}$ to $30^{\prime \prime}$ Siwing Inclusive. Correspondence Solicited.


## Fry's Patent Draughting Table,

MANUFACTUKKD BV
J. G. ALEXANDER MFG. C0.,

GRAND RAPIDS, MICH.
It is the best and most practicable table on the market; it is strong, rigid, easily and quickly adjusted to any desired position, thoroughly built, nicely finished, and reasonable in price. They are put up in three styles, and seven different sizes, from $32 \times 42$ inches, to 4 ft . by 10 ft . tops.

Prof. W. H. VanDervoort is using one in his private office. See what he says of it.

Send for circular and price lists.

## J. G. ALEXANDER MANUFACTURING CO., GRAND RAPIDS, MICHIGAN.


. . . . J. MANZ \& COMPANY, . . . .
. . 183 Monroe Street, Chicago, Illinois, . . have supplied us with engravings for several years past. We have always found them thoroughly reliable, and their work has given perfect satisfaction.
. . . . . Publishers of The Technograph.

Correct Things for Men's Wear at


## OTTENHEIMER'S.

## $\underset{\text { for }}{\text { Agents }}$ Manhattan Shirts.


E. \& W. Collars.

Burt \& Packard Shoes.

## D. H. LLOYDE \& SON.,

-DEALERS IN-

## UNIVERSITY TEXT BOOKS, AND ALL COLLEGE SUPPLIES.

Stationery, Sheet Music, Miscellaneous and Standard Books, Sporting Goods, Etc.

## PIANOS AND ORGANS

To Rent, or Sold on Monthly Payments. NO. 9 MAIN STREET, CHAMPAIGN, ILLINOIS.

## UNIVERSSTTY or ILLINOIS.

## COLLEGE OF ENGINEERING.

This College of the University has 34 Professors and Instructors, and over 400 students. If offers Undergraduate and Graduate Conrses of Study in Arehitecture, Arehitectural Engineering, Civil Engincering, Electrical Engiucering, Mechanical Engineering, and Mnnicipal and Sanitary Engineering.

Each department is furnished with a large and constantly growing equipment for practical, experimental, and laboratory instruction, so that theoretical investigation and practical application mutually aid each other. Among the special features may be enumeratel the large collection of computing instruments, planimeters, etc.; the Machine Shop with examples of all forms of machine and hand tools, lathes, planers, drills, ete.: the Black-mith Shop, the Foundry, the Pattern Shop; the Architectural shop, fully equipped for instruction iu wood work, joinery, turning, carving, inlaying, ete.; the Electrical Laboratory, furnished with independent power, dynamos, motors, and a collection of the most improved apparatus for testing and measurements, arranged in special rooms. The civil engineers have an exerflent selection of all forms of field instruments, including a 12 inch alt-azimute instrument, transits, levels, plane tables, compasses, all apparatus being of the latest and most approved construction. Bridge designing a specialty. Construction of railways, highways, streets, paving. waterworks, sewerage, ete. Laboratory of Applied Mechanies includes testing machines and experimental apparatus for strength of materials and hydraulics. Architecture specializes construction, history, drawing, and design, with exeeflent facilities, and Arehitectural Engincering adds a year of advanced construction.

The College amnually sends out a considerable mmber of men who tind remunerative employment in their professional lines, and the reputation of its older graduates creates a demand for the younger men of similar training.

The other departments of the University are the College of Agrienlture, the College of seipnce, the College of Literature, the School of Industrial Art and Design, and the School of Military Science.

For further information, address

W. L. PILLSBURY, Registrar, Urbana, Ill.

## Work of Compressed Air in and About

## Chicago, by the Rand Drill

## Company Machinery.


$3,600,000$ cubic feet of air furnished to Machine, Boiler and Railroad Shops per day.
$15,000,000$ gallons of water pumped from deep wells daily.
Over $9,000,000 \mathrm{cu} . \mathrm{yds}$. of rock excavated from the Chicago Drainage Canal in 3 years.
Over six miles of Intake Tunnel being driven.


## RAND DRILL COMPANY,




## . . Louisville Cement . .

The undersigned is agent for the following works:

> HÚLME MILLS, Producing star Brand
SPEED MILLS, Producing star Brand.
QUEEN CITY MILLS, Producing Star Brand.
BLACK DIAMOND MILLS (river), Proancilis Diamond Brana.
FALL CITY MILLS, Produciry Anchor Brand.
BLaCK DIAMOND MILLS (railroad),
Producing Diamond Braud.
SILVER CREEK MILLS, Producing Acorn Brand.
EAGLE MILLS, Producing Eagie Brand.
FERN LEAF MILLS, Producing Fern Lear Brand.
PEERLESS MILLS, Prouncing Crown Brand.
LION MILLS, Producing Lion Brand
MASON'S CHOICE MILLS, Producing Hammer and trowel Brand.
UNITED STATES MILLS,
Produciug Fias Brand.
These works are the largest and best equipped in the United States. Orders for shipment to any part of the country will have prompt attention. Sales in 1890-2,145,5tis barrels.

Thín Unane - TME

UNIGEIOIIY OF ILLINOIS



[^0]:    simucl Wialter Shattuck. C. F.. Professor of Mathematies. Ira Osborn lkaker. C. La. Professor of Civil Enginerring. Arthur Newell Talbot. C. Fa. Profescor of Municipal and Sanitary Fugincerins. Frank Forest Frederiek. Professor of Industrial Art and Design.
    Lester Paiger Breckenridge. Ph. J.. Professor of Mechanical Engineering.
    Daniel William Shea. Ph. D.. Professor of Physices. [Electrical Engineering].
    George William Myers, M. A., Assistant Professor of Mathematices (on leave).
    James MeLaren White, B. S.. Assistant Professor of Architecture (on leave).
    Willinm Kumphres VanDervoort. M. E.. Assistant Professor of Mechanicial Enginsering.
    Willimm Divid Penee. B. S.. Assistant Professor of Civil Enginerring.
    George Wrashington Parker, Instructor in Wood-working and Foremins.
    (firn Daniel McLane. B. S.. Assistant iu Arehitecture.
    CYril Balfour C'lark. Foreman in Machine Shops.
    ILervey Edwin Parker. Assistant in Architectur:al Shops.
    Jimes Divial Phillips. B. S.. Instructar in General Enginecrinar brawing.
    Chatrles Alextmeler Ciunn. IB. S.. Assistant in Arehitecture.
    Willian Eaty. B. S.. A. M.. Instruetor in Electrical Engineering.
    Bernard Victor Sweuson. B. S.. Instructor in Electrical Engincering.
    Albert Root Curtiss. Foreman in Meehanical Woor Shops.
    Jorin William Peabody. B. S.. Assistant in 'Testing Laboratory
    Ifenry Jones. Foreman in Forqe Shops.
    leter Mogensen, B. S.. Assistant in Mathematics.
    Kobert Clarke Vial. 13. S.. A ssistant in General Fngineering Drawiner.
    Alton Cyril Bumham. B. S., Assistant in Mechanical Enginereingr.
    Fred Anson Sager. I3. S.. Assistant iu Physics.
    Robert Alvin Wood. 13. S.. Fellow and Assistant in Mechanical bincrineeriner.
    Grant Clark Miller. 13. S.. Fellow ind Assistant in Arehitecture.
    Lather Divid brode. Assistant in Fuundry.

[^1]:    *These generators are now used for the stationary motor circuit. A large multi-polar Westinghouse machine supplies the railway.

[^2]:    * I few parts of the courve for lift $H$. $P$. have heen plotted. by mistake, positive instead of negative, and vice versa.

[^3]:    ${ }^{4}$ Figual ths．sper cent，of total mutor 111 ．
    ＊Thlrd sireet ear reduced to round trips of s．ti miles eatels．

[^4]:    *Proc. Eng. Club of Phila. Vol. IV゙.. pp. 43-4\%.

[^5]:    *Proc. Inst. Civil Engineers. Vol. LXXXII., pp. 391-99. Also Zeitnchrift des Vereines Deutscher Ingenieure. 1885, p. 35ĩ. (May 9.)

    + Nature. Vol. NII.. p. 31ヶ.
    ; Tature. Vol. XLIİ., p. 213.

[^6]:    

[^7]:    ＊Not observed．but interpolated from curves．

[^8]:    *Taken from the furnace of a boiler that was being tested.

[^9]:    *For an illustrated description. see Engineering News. Vol. XVII.. p. Bto.
    For an illustrated description. see Trans. Aner. Shoc. Civil Engineers,

[^10]:    *Indicates plus or minus.

[^11]:    *Rated at ten square feet qrate area per horse power.

[^12]:    *The Strains in Framed Structures, by A. J. DuBois. Table V, p. $45 \%$.

[^13]:    *Proposed by Wm. E. Fossin Journal of Assoc. of En!\%. Soc., June, 180t.

[^14]:    *"On the theory of alternating currents, particularly in reference to two alternate-curr-nt machines connected to the same circuit,"- Journal Society Telegraph Engineers, Vol, XIII, p. 496.

[^15]:    * Professor Baker has frequently told his students that the curves in his book were probably not correct, and it was at his suggestion that this discussion was nudertaken.

[^16]:    *For an illustrated description, see Trams. Am. Soc. C. E., Vol. 27, p. 441.

[^17]:    *The first iuthority to assign definite values to these limits was Wellington, "Economic Theory of Railway Location," New York, 1587, p. 258 ; also "Manual of Railway Field Work," Engineering News, Vol. XXII., p. 451, (Nov. !. 1859 ), and Vol. XXIII., p. 321, (Apr. 5, 1890). The values above adopted are somewhat lowor than those proposed by him. They were first suggested by Talbut, "Railway Transition Curves," The Technograph, No. 5, p. 79, (1890-9i), and have since been accepted by Carhart, "Field-Book for Civil Engineers," Boston. $1893, \mathrm{p} .32$.

[^18]:    *Illustrated.

[^19]:    *llustrated.

[^20]:    * HIlustrated.

[^21]:    *Illustrated.

[^22]:    *Illustrated.

[^23]:    *Illustrated.

[^24]:    *Illustrated.

[^25]:    *Illustrated.

[^26]:    *Illustrated.

[^27]:    * Illustrated.

[^28]:    *Illustrated.

[^29]:    *Illustrated.

[^30]:    *Ilustrated.

[^31]:    *SYSTEM AND POWER HOUSE OF THE FAIRHAVEN AND WESTVILLER. R., NeW HAVEN, CT. 3 pp. Gives

[^32]:    *Illustrated.

[^33]:    *Illustrated.

[^34]:    *Illustrated.

[^35]:    * Jllustrated.

[^36]:    *IInstrated.

[^37]:    *Illustrated.

[^38]:    *Illustrated.

[^39]:    *Illustrated.

