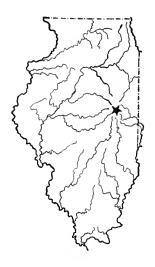


UNIVERSITY UNIVERSITY

UNIVERSITY OF


UNIVERSITY OF ILLINOIS

Agricultural Experiment Station

BULLETIN NO. 128

TEN GENERATIONS OF CORN BREEDING

BY LOUIE H. SMITH

URBANA, ILLINOIS, SEPTEMBER, 1908

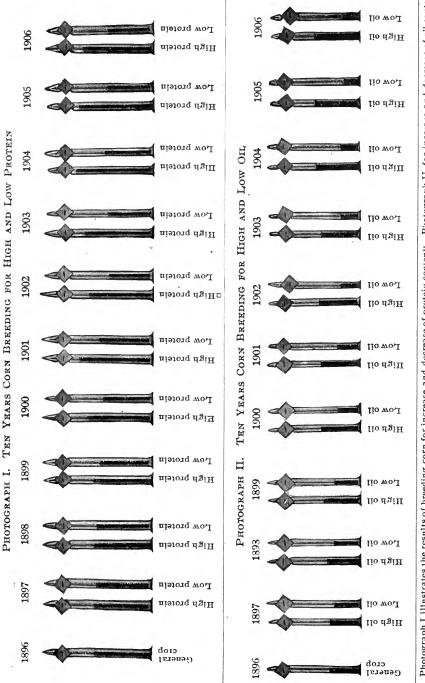
SUMMARY OF BULLETIN No. 128

- 1. The results of ten years experiments in breeding corn to modify the composition of the grain and thereby adapting it to various special purposes are here reported.
- 2. Starting with a variety of average composition, it has been possible by selection and breeding, in ten generations: (1) to increase the average protein content from 10.92 to 14.26 percent; (2) to decrease the average protein content from 10.92 to 8.64 percent; (3) to increase the average oil content from 4.70 to 7.37 percent; (4) to decrease the average oil content from 4.70 to 2.66 percent. In other words, out of a single variety of corn two strains have been developed of which one is now almost twice as rich in protein as the other, and two other strains have been developed, one of which is now nearly three times as rich in oil as the other.

Page 468.

- 3. Variations among individual ears have been found ranging in protein content from 6.13 percent in the low-protein strain, to 17.79 percent in the high-protein strain, and in oil content from 1.60 percent in the low-oil strain to 8.59 percent in the high oil strain.

 Page 489.
- 4. Climatic conditions exert, in certain years, a marked effect upon the composition of the corn crop as regards its protein, oil, and starch content.


 Page 469.
- 5. Altering the composition of the grain has produced no very marked effect upon the composition of other parts of the corn plant.

 Page 476.
- 6. Continued selection appears to have induced a certain correlation between protein and oil content. Page 483.
- 7. Selection for the composition of the grain has resulted in characteristic types of kernel. Page 484:
- 8. Perceptible modifications in the type of ear have likewise been wrought.

 Page 485.
- 9. Selection for high-protein is evidently accompanied by a reduction in yield. In the other strains the yields for the most part have been maintained in spite of the rigorous selection for the special chemical characteristics.

 Page 485.
- 10. The detailed plot records of each of the four strains and the analytical results of nearly 5000 individual ears which have been analyzed during the ten years' work are placed on record in the appendix to this bulletin in such arrangement that the maternal pedigree record of every ear is shown.

 Page 490.
 - 11. These four breeding plots are still being continued.

Photograph I illustrates the results of breeding corn for increase and decrease of protein content; Photograph II, for increase and decrease of oil content. The bottles show the amount of protein or oil contained in one-tenth bushel of corn from the crop of the different strains each season for the first ten generations.

INTRODUCTORY NOTE

By Cyril G. Hopkins, Chief in Agronomy

In 1896 the Illinois Experiment Station began the improvement of corn by varying the composition of the grain through selection and breeding. The results of the first two years of these investigations were published in Bulletin No. 55 "Improvement in the Chemical Composition of the Corn Kernel." This same work has been carried on continuously since that time, and although several publications have been issued in the meantime bearing upon different phases of the subject of corn improvement as it has been developed, including Bulletins 82, 87, 100, and 119, there has, however, been no complete report published of the results obtained in the progress of this original line of work described in Bulletin No. 55.

It is the present purpose therefore to present the results which have been obtained, in the first ten generations, in improvement in composition in various directions, namely, for high protein, for low protein, for high oil and for low oil, of the single variety of corn from which these four different strains have been produced, and which is known as "Illinois" corn.

Since the discovery of the possibility of improving corn for special adaptation and the general recognition of its importance, this Station has extended its work to other standard varieties of corn best adapted to different sections of the state, applying the methods and principles worked out in the original experiments with the "Illinois" variety. This work of improving the other standard varieties both for yield and for special adaptation is being carried on largely in co-operation with seed corn breeders of the state. A large amount of data relating to this later work has already accumulated, but it is proposed to reserve this for future publication rather than to attempt to cover in this report all of the corn breeding work now in progress believing that such a division of the subject will allow a clearer presentation.

Inasmuch as the editions of Bulletins 53 and 55 are already exhausted and the demand for the information contained therein is still unsatisfied, it is proposed to make the nature of this report as complete a presentation of the investigation as is possible without making too great repetition of material already published.

For several years Professor Louie H. Smith has been largely responsible for the conduct of these investigations, valuable assistance having also been rendered during recent years by Doctor E. M. East, now agronomist at the Connecticut Experiment Station, Mr. R. W. Stark, now chief chemist for the Cuban Experiment Station, Mr. H. H. Love, and Mr. C. H. Myers.

TEN GENERATIONS OF CORN BREEDING

BY LOUIE H. SMITH, ASSISTANT CHIEF IN PLANT BREEDING

IMPORTANCE OF CORN IMPROVEMENT

Aside from the purely scientific interest attached to this work, the practical importance of improvement of corn to adapt it for special purposes as well as for increased yield is now becoming generally recognized. The significance of improving the chemical composition of corn has already been pointed out in Bulletins 55, 82, 87, and 100 of the Illinois Experiment Station, and it is scarcely necessary to dwell upon this phase of the subject further than to refer briefly to some of the demands for corn improved along these particular lines.

No other crop is made to serve such a variety of purposes as corn, and in consideration of these many different uses is suggested the question of special adaptation.

Purpose of increasing the protein.—In the nutrition of man and beast protein is the most expensive nutrient. Of all of our American food stuffs corn is the cheapest, because of its economical production. But because corn does not contain sufficient protein for most purposes of feeding, it must be re-inforced by other more expensive food stuffs in order to obtain the proper ratio of this important nutrient. It is from these considerations that farmers, and especially stock feeders, recognize the importance of breeding corn for increase of protein content.

Purpose of decreasing the protein.—On the other hand, there is a demand from the manufacturers of those products which are derived from the starch of corn such as glucose, gum, dextrine, syrup, and alcohol, for a corn having a large proportion of carbohydrates and not so rich in protein. The practical effect of decreasing the percent of protein is to increase the percent of starch; therefore, for such purposes there should be a place on the market for corn which is bred for decrease of protein content.

Purpose of increasing the oil.—The oil of corn has in recent years found such a wide commercial use that under the present market conditions, it has become, pound for pound, by far the most valuable constituent of the grain, and whereas formerly in the glucose factories and corn mills the germs containing the oil were

almost a waste product, there is now an actual demand on the part of these industries for corn which is richer in oil. It is proposed to meet this demand by breeding corn for increase of oil content.

Purpose of decreasing the oil.—There is also a practical use for corn with a low oil content. It has been found by investigation that in feeding swine, the oil in the corn tends to produce a soft, flabby quality of flesh which is very undesirable, especially for our export trade where the demand of the market is for a hard, firm product. A remedy for this lies in the reduction of the oil content of the corn which is fed. Thus here we have a very important practical object for breeding corn for decrease of oil content.

These special purposes mentioned for which corn is being improved suggest the possibility of many others demanded by the various industries which utilize the corn crop and which require different qualities in it.

Corn improvement should, of course, embrace quantity as well as quality and in all practical work of selection looking toward improvement, the matter of increased yield per acre should be given first consideration. Recognizing the importance of this principle, the methods used in these experiments have been chosen with the view of maintaining or increasing the yield, and productiveness is made the basis of the first selection, even sometimes at a sacrifice in percentage of the desired chemical constituent.

FUNDAMENTAL PRINCIPLES

Before taking up this work of the improvement of corn by systematic selection and breeding, it was necessary to make a preliminary study of the subject such as is reported by Doctor Hopkins in Bulletin 53 "Chemistry of the Corn Kernel." In this study a large amount of valuable knowledge was gained which bears upon the technical side of the work, such as the chemical principles involved and the laboratory manipulations upon which the success of the entire work so intimately depends. Further, important data were obtained from which were derived the principles of selection upon which all of this work in improvement of the composition of corn is based. All improvement by selection and breeding depends, of course, upon variation, therefore it was necessary to make a preliminary study in order to learn how corn varies with respect to its composition. As the result of such an investigation the following data were obtained:

Analysis of parts of the ear.—In studying this question 30 duplicate analyses were first made on different parts of ears. Five ears were divided lengthwise into 3 samples each in the following

manner: If the ears were 12-rowed, 3 samples of 4 consecutive rows each were made; if 16-rowed, 3 samples of 5 consecutive rows each were made, one row being left, etc., etc.

Duplicate analyses of 15 samples thus prepared from 5 different ears gave the results shown in Table 1. The different ears are distinguished by the letters (a), (b), (c), (d), and (e).

Table 1.—Variation in Composition in Samples from the Same Ear and from Different Ears

Sample & Ear.	Ash.	Protein.	Oil.	Carbohydrates
1 (a)	{ 1.42	10.79	4.57	83.22
	{ 1.43	10.75	4.58	83 24
2 (a)	(1.48	10.97	4.54	83.01
	(1.47	10.94	4.51	83.08 <u>*</u> *
3 (a)	{ 1.50	10.66	4.53	83.31
	{ 1.51	10.72	4.55	83.22
4 (b)	${1.51 \atop 1.52}$	12.00 11.98	4.60 4.59	81.89 81.91
5 (b)	{ 1.49	12.01	4.57	81.93
	{ 1.48	12.05	4.57	81.90
6 (b)	{ 1.48	12.19	4.85	81.48
	} 1.47	12.08	4.80	81.65
7 (c) •	1.37	10.09 10.10	5.24 5.17	83.30 83.36
8 (c)	(1.31	10.14	5.08	83.47
	(1.34	10.18	5.18	83.30
9 (c)	1.36	10.15	5.20	83.29
	1.37	10.20	5.17	83.26
10 (d)	(1.39	10.46	4.28	83.87
	(1.38	10.46	4.29	83.87
11 (d)	(1.43	10.25	4.22	84.10
	(1.42	10.27	4.20	84.11
12 (d)	1.43	10.09	4.16	84.32
	1.45	10.06	4.15	84.34
13 (e)	(1.34	11 19	4.80	82.67
	(1.36	11.20	4.78	82.66
14 (e)	1.30	10.66	4.91	83.13
	1.28	10.62	4.89	83.21
15 (e)	1.36	10.81	4.83	83.00
	1.36	10.92	4.79	82.93

These results indicate uniformity in the composition of different parts of the ear. The following shows the greatest total variation in the 6 single determinations of each constituent in any one ear; and also the total variation between the different ears.

	Ash.	Protein.	Oil.	Carbohydrates.	
In any single ear.	.09	.58	.28	.55	
In five ears	. 24	2.13	1.09	2.86	

Another lot of five ears was selected and each of these was divided crosswise into 3 samples of approximately equal amounts, which for convenience are designated "tip," "middle" and "butt," the ears being lettered (f), (g), (h), (i) and (j). The results of the duplicate analyses are given in Table 2.

It is observed that in every case the tip is the lowest in protein and that usually the middle is lower than the butt, the average total difference in the ear being 0.73 percent and the widest 1.13 percent as shown in the total variations following Table 2.

The variation in ash and oil is small and shows no such peculiarity. The carbohydrates, being determined by difference, appear, of course, as the complement to the sum of the other substances and show in the opposite direction approximately the variation of the most variable determinable constituent.

Partial analyses of single kernels.—For the work on ash content several ears of corn were selected, and from each a sample of corn, consisting of a number of rows of kernels and believed to fairly represent the ear, was taken and its percentage of ash in the dry matter determined. Then for special investigation of ash content of single kernels four ears from the lot were chosen, of which two were high and two low, comparatively, in percentage of ash as previously determined. From each ear 10 kernels were selected at approximately equal distance throughout the length of the ear, the kernels being numbered from 1 to 10 and the order running from tip to butt. The data from the ash determination in single kernels and also percentage of ash in the large sample from the same ear are given in Table 3.

Table 2.—Variation in Composition in Butt, Middle and Tip Portions of the Same Ear and of Different Ears

	SAME LA	AR AND OF DIFFE	KENT LARS	
Sample & Ear.	Ash.	Protein.	, Oil.	Carbohydrates.
16 (f),	{ 1.58	11.78	5.09	81.55
Tip	{ 1.59	11.76	5.10	81.55
17 (f)	1.58	12.22	5.13	81.07
Middle	1.57	12.26	5.03	81.14
18 (f)	§ 1.56	12.36	5.04	81.04
Butt	{ 1.58	12.42	5.03	80.97
19 (g)	{ 1.49	11.99	4.86	81.66
Tip	{ 1.49	11.97	4.84	81.70
20 (g)	{ 1.51	12.49	4.77	81.23
Middle	{ 1.51	12.49	4.76	81.24
21 (g)	${1.50 \atop 1.51}$	13.02	4.57	80.9 1
Butt		13.10	4.59	80.80
22 (h)	\ 1.37	9.72	3.90	85.01
Tip	\ 1.35	9.67	3.93	85.05
23 (h)	§ 1.37	10 07	3.98	84.58
Middle	(1.35	10.08	3.97	84.60
24 (h)	{ 1.51	10.49	4.01	83.99
Butt	{ 1.49	10.46	4.00	84.05
25 (i)	§ 1.47	10.58	4.58	83.37
Tip	{ 1.48	10.61	4.60	83.31
26 (i)	{ 1.45	11.05	4.56	82.96
Middle	{ 1.44	11.03	4.60	82.93
27 (i)	{ 1.47	11.03	4.48	83.02
Butt	{ 1.48	10.96	4.46	83.10
28 (j)	§ 1.77	10.87	4.36	83.00
Tip	{ 1.74	10.78	4.37	83.11
29 (j)	\ 1.65	11.35	4.56	82.44
Middle	\ 1.62	11.31	4.58	82.49
30 (j)	(1.71	11.32	4.28	82.69
Butt	(1.72	11.28	4.29	82.71
		1		ł

The following shows the total variation:

	Ash.	Protein.	Oil.	Carbohydrates.
In any single ear	.16	1 13	.30	1.06
In five ears	.42	3.43	1.23	4.25

Table 3.—Variation in Ash Content in Kernels from the Same Ear and from Different Ears

Kernel No.	Ear No. 1	Ear No. 2	Ear No. 3	Ear No. 4
1	1.50	1.64	1.10	1.14
2	1.57	1.64	1.08	1.23
3	1.61	1.63	1.09	1.13
	1.56	1.65	1.10	1.17
4 5	1.67	1.59	1.07	1.13
6	1.69	1.63	1.09	1.22
7	1.71	1.68	1 07	1.25
8	1.64	1.65	1.10	1.19
9	1.64	1.70	1.21	1.11
10	1.74	1.60	1.11	1.10
omposite of ear	1.73	1.65	1.10	1,11

These results confirm those of the previous experiments in indicating uniformity in the composition of the ear in all parts, although, of course, slight variations are found.

In the work on the protein content of single kernels, 5 ears, 3 of which were high and 2 relatively low in protein, were selected from a number of ears in a manner analogous to that described in the previous experiment. In Table 4 are shown the results of these protein determinations.

Table 4.—Variation in Protein Content in Kernels from the Same Ear and from Different Ears

Kernel No.	Ear No. 1	Ear No. 2	Ear No. 3	Ear No. 4	Ear No. 5
1	12.46	12.17	11.53	7,45	7.72
2	12.54	12.94	12.32	7.54	8.41
3	12.44	12.51	12.19	7.69	8.37
4	12.50	13!42	12.54	7.47	8.31
4 5	12.30	13.12	12.14	7.74	8.02
6	12.49	14.59	12.95	8.70	8.76
7	12.50	13.21	12.84	8.46	8.89
8	12.14	13 43		8.69	9.02
9	12.14	13.16	12.04	8.86	8.96
10	12.71	14.05	12.75	8.10	8.89
Composite of ear	13.06	13.87	12,96	7.59	8.40

Here in the protein content, as in the case of the ash, we find on the one hand comparative uniformity among different kernels of a single ear and on the other, marked variation among different individual ears.

The results of these analyses of different ears from a single variety together with analyses of different parts of single ears establish beyond question two important fundamental facts upon which all of this subsequent work of selection and breeding is founded.

The statement of these facts is as follows:

(1) The ear of corn is approximately uniform throughout in the chemical composition of its kernels.

(2) There is a wide variation in the chemical composition of

different ears of the same variety of corn.

With these two principles established, we have a working basis for the chemical selection of seed corn. With uniformity in the individual ear, it is possible to determine very approximately the composition of the grain by analyzing a sample consisting of a few rows of kernels, and this is the actual practice in the examination of individual ears. If the ear represented by this sample is found to be desirable for seed, the remainder of the kernels of the ear may then be planted.

The wide variation in composition between different ears of the same variety is a very important factor in the selection of seed; as a starting point is thus furnished in each of the several lines of desired improvement.

It is to be observed that this principle of uniformity within the individual, and variation as between different individuals within the variety, holds not only for the chemical composition of the kernel but it applies as well to other characteristics such as the structure, for example, and whenever any such characteristic is related to productiveness or other utility of the crop, it should be taken into account in the breeding.

GENERAL PLAN OF THE EXPERIMENTS

In the general plan of these experiments, it was proposed to determine the influence upon the chemical composition of corn by selection and breeding in the four directions namely, (1) for increase of protein content, (2) for decrease of protein content, (3) for increase of oil content, (4) for decrease of oil content.

The method employed was as follows:

For the first selection a large number of cars were analyzed both for protein and for oil. In the high protein breeding, for example, the 24 ears highest in protein were selected for seed and planted in a plot isolated from other sorts of corn, each ear in a

separate row.

These rows were harvested separately and the seed for the next planting was selected from ears of this crop which were found to be highest in protein, repeating this process each year. The breeding for low protein and for high oil and low oil was conducted on the same plan. Under this system each selection rapidly gave rise to a "pure" strain. As each original ear had its own register number and as all succeeding ears bore corresponding numbers the exact pedigree of each row (on the female side) was at all times fully known.

This general method has been maintained from the beginning, although some minor modifications of details have been made from time to time during the progress of the work as experience indicated as being desirable or as necessity demanded.

THE BREEDING PLOT

The size of the breeding plot has varied in the different plots and in the different years. The number of rows included in any plot is always given in the plot records.

The locations of these breeding plots have always been chosen with reference to their isolation from other corn fields in order to prevent cross fertilization from other kinds of corn. It is quite difficult with so many corn experiments as are carried on at this Experiment Station to obtain conditions that are ideal in this respect, but by taking advantage of tall hedge rows, and other barriers, prevailing winds, and other corn fields of the same strain, there has been but slight, if any, admixture in these breeding plots. A system of alternating the locations of the breeding plots of the opposite strains has been carried out. For example, after the first two years the locations of the high-protein and the low-protein plots were reversed; that is the high-protein plot was planted on the same ground that the low-protein plot had occupied the two preceding years and vice versa. After two years more these plots were shifted back to their original locations. The high-oil and low-oil plots were managed in the same manner. The design of this alternation of location of the plots was to provide something of a check upon the possible influence of soil upon the composition of the crops. The plots have been changed to other locations in later years but this system of alternating has been maintained. For each of these breeding plots there is now provided a double area which makes possible a crop rotation system including clover and other legumes, for maintaining the productivity of the land.

CULTURAL CONDITIONS

The cultural methods, including the preparation and cultivation of the soil, planting, harvesting, and handling of the crop on these breeding plots have been such as is considered good practice in ordinary corn growing. The seed has always been planted in hills in preference to drills. The present practice is to plant the hills three feet apart each way and to allow two stalks to the hill.

Attention is paid to the matter of preventing the distribution of pollen from weak, barren or otherwise undesirable plants by detasseling all such plants at the proper time.

After discovering the great advantage to be gained by the method of detasseling alternate rows and taking seed only from such detasseled rows, as pointed out in Bulletin 100, this system has been applied to all of our regular breeding plots.

The method of harvesting has been that of cutting and curing in the shock.

SAMPLING AND SELECTING

In the earlier years of the experiments a sample from each of all of the rows was reserved by selecting a certain number of the choicest ears as judged from their physical appearance. But as the possibility of improvement became more clearly established, a system was adopted by which seed ears for the next year's planting are taken only from those rows which prove to be most productive as determined by the weight of ear corn produced, all other rows of the plot being rejected as a source of seed, and since the introduction of the system of detasseling alternate rows, only the best of the detasseled or "dam" rows have been selected. This method of selecting the choicest ears to represent the plot-row has been followed throughout the work although details of the system as regards the number of ears taken have been somewhat modified in the different years, as will appear in connection with the data which follow in the appendix.

The ears, thus chosen on account of their physical superiority, are then subjected to chemical analysis and from the results of these analyses is made the final selection of seed for the succeeding season.

In the sampling for these analyses two rows of kernels are taken lengthwise of the ear to represent the composition of the individual ear. At the same time composite samples to represent the selected plot-rows are taken by mixing together one row of kernels from each selected ear of the respective plot-rows. Each seed ear thus selected is given a permanent "Register Number" which designates that ear for all future reference.

REGISTERING

By our system of numbering the "Register Number" shows at the same time the number of the ear and the generation of the breeding. This is done by starting the first year in the 100 series numbering the ears to be planted in succession from 101, and the second generation starting with the 200 series running up from 201 and so on, starting each succeeding year of the breeding with a higher hundred. Thus Ear No. 1018 shows that this ear belongs to the tenth generation and was planted in row 18 of the breeding plot of that year. The "Dam No." is the register number of the parent ear and is useful in tracing the pedigree record from year to year. The "Annual Ear No." is simply a temporary number given to each ear to be used during examination for selection and as soon as the selection of the seed ears has been determined and the arrangement for planting has been decided the ears are given their permanent register numbers.

A description of the physical as well as the chemical characteristics of all the seed ears is kept on record including length of ear, tip circumference of ear, butt circumference of ear, number of rows of kernels, number of kernels in row, weight of ear, weight of cob, tip circumference of cob, and butt circumference of cob. Besides this numerical description a photograph record is also kept of every ear planted.

The performance record of each seed ear is shown by the weight and number of ears produced as well as the average composition of its progeny.

For a more detailed description of the system of registry used in our corn breeding work the reader is referred to Bulletin 100.

VARIETY

The variety of corn selected for this investigation was one of medium size and of safe maturity for this latitude. It has been grown upon the Experiment Station farm every year since 1887. Previous to that time it had been carefully grown for several years

by Mr. F. E. Burr of Champaign county, and it was known locally as Burr's White; and this name was used in our records until 1903, when it was decided to change the name to "Illinois." The fact that these strains of corn are no longer typical Burr's White, and the fact that this corn was carefully grown for several years prior to 1896 by the Illinois Experiment Station and that since that time it has been most carefully bred by this Station for improvement in both yield and quality, so that there have been developed from this variety four different strains of corn each of which has an established pedigree now covering ten generations,—these facts have seemed to justify giving this corn a name which shall be distinctive and which shall also show its Illinois breeding; and now it is known in the records and publications of the Illinois Experiment Station as "Illinois" corn, the four different strains being designated as:

- I. "Illinois High-Protein."
- 2. "Illinois Low-Protein."
- 3. "Illinois High-Oil."
- 4. "Illinois Low-Oil."

FIRST SELECTION OF SEED

From the 1896 crop of Burr's White corn grown upon the Experiment Station farm about two bushels (163 ears) of good sound ear corn suitable for seed were taken. From each ear a sample consisting of three rows of kernels lengthwise of the ear was taken for analysis. The results of these analyses are given in the first table of the appendix (Table 15). The data obtained show remarkable variation in the relative proportions of the different constituents. The ash varies from 1.10 to 1.74 percent, the protein from 8.25 to 13.87 percent, the oil from 3.84 to 6.02 percent and the carbohydrates from 78.92 to 85.70 percent. This is a good illustration of the variation in composition existing among individual ears of the same variety and indicates something of the possibilities for selection.

According to these variations there were taken from the 163 ears four groups,—(1) a set of twenty-four ears whose percentage of protein was comparatively high, (2) a set of twelve ears each of which contained a low percentage of protein, (3) a set of twenty-four ears high in oil content, (4) a set of twelve ears low in oil content.

These ears were taken as indicated in the last two columns of Table 15, for the seed with which to start the four respective breeding plots.

It is believed that the interest in this investigation is such as to demand the publication of a complete record of the results in detail, but this data forms such a mass of material as to make it seem advisable to place it in an appendix to this bulletin and to summarize here only the yearly averages which show very well the general results of the work. The reader who may be interested in further detail of the experiments at any point is therefore referred to the appendix (pages 489 to 575) where will be found the complete data recorded in systematic arrangement. (If not attached to this copy, the appendix will be sent upon request).

BREEDING TO INFLUENCE THE PROTEIN CONTENT

In order to obtain a general survey of these experiments to influence the protein content of corn the following table is compiled from the general averages obtained each generation from the corresponding tables given in the appendix:

Table 5.—Ten Generations of Breeding Corn for Increase and Decrease of Protein

Year		High-protein plot, average percent protein.		Low-protein plot, average percent protein.		
	In seed planted.	In crop harvested.	In seed planted.	In crop harvested.	percent.	
1896		10.92		10.92	.00	
1897	12.54	11.10	8.96	10.55	.55	
1898	12.49	11.05	9.06	10.55	.50	
1899	13.06	11.46	8.45	9.86	1.60	
1900	13.74	12.32	8.08	9.34	2 98	
1901	14.78	14 12	7.58	10.04	4.08	
1902	15.39	12.34	8.15	8.22	4.12	
1903	14.30	13.04	6.93	8.62	4.42	
1904	15.39	15.03	7.00	9.27	5.76	
1905	16.77	14.72	7.09	8.57	6.15	
1906	16.30	14.26	7.21	8.64	5.62	

From this arrangement of the data we may compare the results of the different seasons and at the same time observe the relations between the two plots, thereby enabling us to follow the progress of the breeding from year to year.

Starting with the crop of 1896 with an average protein content of 10.92 percent, as represented by the original 163 ears, the average of the seed ears selected for the high-protein plot of 1897 was 12.54 percent while at the same time low-protein seed ears were

selected which averaged 8.96 percent. The crop harvested from the high-protein plot in 1897 gave an average of 11.10 percent of protein while the average of the corresponding low-protein plot was 10.55 percent. Then selecting again the highest-protein ears out of this year's crop from the high-protein plot, seed for the following year was obtained which averaged 12.49 percent. Selecting the lowest protein ears from the low-protein plot, the seed for this plot in 1898 averaged 9.06 percent.

Repeating this process each year the effect has been in a general way to gradually increase or decrease the protein content in the corn according to the selection.

In glancing over the records there are a few irregularities to be seen. Comparing the results of the season of 1898 with that of the preceding year we seem to have lost a little ground in the high-protein breeding, and in the low-protein plot there was no advance made.

The next year however, following a more favorable seed selection in each case, good gains were made in both directions in 1899, and the same is true of the year 1900.

In 1901 the results are abnormal and here we have a striking illustration of the effect which may be produced by the climatic conditions of the season upon the composition of the crop. This year the protein rises abnormally high in the high-protein crop gaining 1.8 percent over that of the year before and in the lowprotein crop, instead of getting the expected decrease this year the protein content rises to over ten percent, thus reverting back to a point higher than it had been for two generations. The season of 1901 was an extremely dry one and from the lack of sufficient moisture much of the corn did not properly "fill out." In the formation of the kernel the proportion of protein is greatest in the younger stages of growth and this proportion gradually diminishes as the carbohydrates are deposited. If the conditions are such that this deposition of carbohydrates is checked, as they were this season, the corn comes to maturity with an abnormally large proportion of protein.

In the case of the high-protein plot the damaging effect of this drouth was so pronounced as to render the crop almost a total failure. The yield of ear corn amounted to only about six bushels per acre and consisted mostly of mere nubbins. On account of the scarcity of ears, it was impossible to follow the regular system of sampling, so the entire product from each plot-row was collected and all of the sound ears and even many nubbins were selected for

analysis in order to obtain the results of the year and to get any sort of seed with which to maintain the experiment. The composite samples representing the high-protein crop are therefore not obtained from the best twenty ears from each plot-row according to the regular system but they were taken from all of the corn fit to analyze from each row. Thus there were altogether only 60 individual ears from which only five were chosen for seed as being fit to plant. Fortunately it was possible to supplement these with some seed ears from our "Special High-protein" plot which was being carried on for another experiment but which was planted from the same strain as the regular high-protein plot so that these ears could be substituted without disturbing the pedigree record. The low-protein plot did not suffer so badly from the drouth, so that here the sampling and selection were made as usual.

During the season of 1902 the climatic conditions as regards rainfall were just the opposite to those of the previous year and we observe in the results obtained precisely the opposite effect. With the very wet season this year we have a great diminution of protein content in the corn in the high-protein as well as in the low-protein plot.

This seasonal condition which seems to have such a marked influence upon the composition of the corn is quite significant. The season of 1901 was very dry and it was attended by an abnormally high protein content in all the corn examined that year. The season of 1902 was unusually wet and the general tendency was to produce corn low in protein. These results are in accordance with those of other investigations, particularly in irrigation experiments where it has been observed that the quantity of water supplied has a direct influence upon the composition of corn, wheat, and oats, the protein content of the grain decreasing as the water supply increases. These results support what seems to be a general principle namely, that a lack of moisture tends to increase the proportion of protein and abundance of moisture reduces it, due, of course, to the effect of water supply upon carbohydrate formation.

With a fairly normal season in 1903 the high-protein crop made a notable advance, but the low-protein in spite of the extremely low content of the seed this year did not go down to the point attained in the low-protein season of the previous year, and in fact we have never been able since to bring it back to the extremely low point reached that year.

The season of 1904 appears to have been another one favorable to the production of protein, for the high-protein plot made a gain

of two percent this year and reached its maximum figure, 15.03 percent, a point which has not since been attained. The low-protein plot shows a similar effect, for instead of decreasing this year, it goes up to 9.27 the highest average percentage in the last five generations of the breeding.

In 1905 as might be expected the content in the high-protein crop was not so high as in the preceding high-protein season. In the low-protein plot a good gain was made this year for low-

protein.

In 1906 the percentage in the high-protein was still lower than in 1905 while in the low-protein crop, the percentage was a little higher than in the year before although the difference is not great.

The figures in the last column of the table showing the difference between the percentages of protein in the two crops produced each year are perhaps most instructive because they show the real progress attained in the breeding. They enable us to appreciate more fully the scientific value of breeding for high protein and low protein simultaneously and thereby obtaining a control upon the work which serves to eliminate the question as to the effect of seasonal tendencies in either direction.

These figures practically show a continuously increasing separation between the high-protein and the low-protein strains as the breeding advances up to 1906 so that with the exception of two slight regressions, whether the tendency of the season has been toward the production of high-protein corn or low-protein corn, the force of an hereditary influence is demonstrated always to have been in operation.

It is to be recognized of course that there are practical limits both maximum and minimum to which this matter can be carried and we should expect to finally reach a state where we would interfere with the normal physiological functions of the seed.

As to whether this last year's result in which no more gain was made in the difference between the high and low, is to be taken as indicating that we have reached these limits cannot yet be positively decided. It seems scarcely probable that with seed still unimpaired in vitality and developing into normal healthy plants furnishing otherwise normal crops that the ultimate limits should be at hand. It is proposed still to keep up the selection along these lines and the outcome of the next few years will be awaited with interest.

The results of these experiments thus far show that starting with a single variety of corn, it has been possible in ten generations

by these methods of selection and breeding to increase the protein content from 10.92 percent in the original to 14.26 percent, thus making a gain of 3.34 percent, and at the same time by breeding in the opposite direction it has been possible to reduce the protein content from 10.92 percent to 8.64 percent, making a reduction of 2.28 percent, thus producing a total difference between the two strains of 5.62 percent. In other words the composition of this variety of corn has been so modified that two strains have been developed, one of which is now nearly twice as rich in protein as the other.

MIXED-PROTEIN PLOT

In order to eliminate the question as to whatever influence the soil might exert on the protein content of the corn an experiment was undertaken in which high-protein and low-protein seed were planted together in one plot, our so-called "Mixed-Protein Plot," where the two strains must develop under identical surrounding conditions.

The description and results of the first year of this experiment are given in Bulletin 55. The first year this mixed-protein plot contained five rows of ten hills each. In each hill were planted two kernels of high-protein corn on one side and two kernels of low-protein on the opposite side in such manner that the resulting plants could be identified.

When the crop was harvested eight to ten ears were selected from each kind of corn from each row and from these ears composite samples were made for analysis. These analyses showed that the average protein content of the corn from the high-protein seed was invariably higher than in that produced from the low-protein seed.

This same experiment was repeated in a somewhat larger plot in 1899 and also in 1900. (See Tables 96, 97 and 98 in the appendix for details).

The differences in protein content between the crops from highprotein and low-protein seed were 1.25 percent in 1898, 2.58 percent in 1899, and 2.86 percent in 1900.

Besides these composite samples there were analyzed from the mixed-protein plot of 1899, 137 pairs of ears in which each pair consisted of an ear produced from a high-protein kernel and one from a low-protein kernel and growing together in the same hill. The results of these analyses are given in Table 99 of the appendix and they show an average difference of 2.58 percent to be attributed positively to the influence of the seed selection. But with still further interest, it is to be noted that among these 137 different

pairs, there are only ten cases in which the higher percentage of protein is not found in the ear produced from the high-protein kernel. The most notable of these exceptions occurs in case of Row No. 2, Hill No. 11 where the low-protein kernel produced an ear 3.73 percent higher in protein than the ear resulting from the high-protein kernel. However, these abnormal individual variations are to be expected and they have frequently been observed throughout all of these experiments.

The results of these experiments with the mixed-protein plots during these three different years establish beyond question the fact that the protein content of the corn crop is influenced directly by the seed planted, independently of soil, seasonal, or cultural conditions.

BREEDING TO INFLUENCE THE OIL CONTENT

Summarizing the results of the ten generations of breeding to influence the oil content in the same manner as we have considered the protein breeding, there are brought together from the detailed records in the appendix the general yearly averages of the high-oil and low-oil plots as arranged in Table 6.

Table 6.—Ten Generations of Breeding Corn for Increase and Decrease of Oil

Year.	High-oil plot, average percent oil.		Low-c average p	Difference between	
	In seed planted.	In crop harvested.	In seed planted.	In crop harvested.	crops, percent.
1896		4.70	••••	4.70	.00
1897	5.39	4.73	4.03	4.06	.67
1898	5.20	5.15	3.65	3.99	1.16
1899	6.15	5.64	3.47	3.82	1.82
1900	6.30	6.12	3.33	3.57	2.55
1901	6.77	6.09	2.93	3.43	2.66
1902	6.95	6.41	3.00	3.02	3.39
1903	6.73	6.50	2.62	2.97	3.53
1904	7.16	6.97	2.80	2.89	4.08
1905	7.88	7.29	2.67	2.58	4.71
1906	7.86	7.37	2.20	2.66	4.71

The results show that the response to selection for oil has been even more pronounced and more regular than that for protein as indicated by the total relative increase and decrease and by the changes from year to year.

In the percentages representing the crop produced each year in the high-oil plot there has been with but one exception, namely, in 1901, a constant increase in oil content as the breeding proceeds. Likewise in the low-oil plot there has been a steady decrease from year to year with the single exception of the last year.

We have noted the marked effect which the abundance or scarcity of moisture may have upon the protein content of corn, and in these experiments the oil content appears also to be susceptible to some peculiar seasonal conditions. What these conditions are have not been determined, but that they exist is made apparent if we compare the increase and decrease in the percentage of oil in each generation in the two plots. It would appear as though certain seasons were particularly favorable to the production of oil, while other seasons may be normal or unfavorable in this respect. This effect is particularly apparent in the first two years of the breeding; thus, the season of 1897 seems to have been very unfavorable, while the season of 1898 appears to have been very favorable, to the production of oil.

From the last column in the table which shows, by the differences in percentage between the high-oil and the low-oil crops each year, the real progress accomplished by the breeding, we see that there has been a continuously increasing difference between the percentages of oil in the corn from the two plots up to the tenth year where this difference remains stationary. The high-oil corn has increased from 4.70 percent to 7.37 percent of oil, and the low-oil corn has decreased from 4.70 to 2.66 percent, the difference between the two strains having grown from nothing in 1896 to 4.71 percent in 1905. Curiously enough the oil breeding resembles the protein in the fact that there is constant progress indicated until the tenth year when in each case this progression ceases. In the protein experiments it will be recalled that the figures in this "difference column" show actually a slight regression in the tenth year while here in the oil breeding the differences between the averages of the high-oil and low-oil crop stands exactly stationary in the last two years.

As has already been remarked in the discussion of the protein breeding results, it would be rash to decide at this time from these figures that the limits to which the breeding can be carried are now determined.

Summarizing the results of the ten years' experiments to influence the oil content into one general statement we may say that starting with a single variety of corn and breeding in the two opposite directions, there has been a constantly widening separation between the two strains as the breeding advances until finally after ten generations there have been produced two kinds of corn, one of which is almost three times as rich in oil as the other.

MIXED-OIL PLOT

In order to eliminate any question of the influence of the soil upon the oil content in these experiments, a third plot was planted called the "mixed-oil plot," after the plan of the "mixed-protein plot" already described under that heading. In 1898 there were planted in this plot 50 hills arranged in five rows of ten hills each. In each hill two kernels of high-oil corn were planted on one side and two of low-oil on the opposite side and when the crop was harvested composite samples were made to represent the corn of each side of the row.

This same experiment was repeated in 1899 and also in 1900 the details being given in Tables 100, 101 and 102 of the appendix.

From the results it is to be noticed that never in any of the rows has the percentage of oil in the crop of the low-oil side approached that of the high-oil side. In 1898 the average difference in oil content in the corn resulting from the two kinds of seed was 1.11 percent, in 1899 it was 1.35 percent and in 1900 it was 1.97 percent.

From the mixed-oil plot of 1899 there were taken besides these composite samples 85 pairs of individual ears in which each pair consists of one car produced from a high-oil seed kernel and one from a low-oil kernel, both ears from plants growing in the same hill. Each of these individual ears was sampled and analyzed and these results are given in Table 103 of the appendix.

The average of all of the individual ears from high-oil seed is 5.22 percent and from low-oil seed it is 3.82 percent. But the point of most interest, perhaps, in connection with this table is the regularity with which the oil content of the crop responds to that of the seed planted, for among the 85 pairs there are only four cases in which the oil in the ear, resulting from low-oil seed happens to surpass in percentage that from the high-oil seed.

The results of these three years' experiments with the mixed-oil plot are all in accordance and they establish beyond dispute the possibility of influencing the oil content of corn by the selection of the seed, showing conclusively that heredity has been responsible for the results obtained quite independent of soil, climatic or cultural conditions.

SECONDARY EFFECTS PRODUCED BY SELECTION TO CHANGE THE COMPOSITION OF THE GRAIN

As is always the case in investigations of this sort, the work had not proceeded far before a multitude of interesting side questions arose, inviting investigation in all directions from the main issue. What secondary effects are produced by this intense selection for these special chemical characteristics? What, for example, is the effect of changing the proportion of protein in the grain upon the other constituents? How is the composition of other parts of the plant affected? What influence has it upon the physical type of the kernel and of the ear? And, what is of especially practical importance, how is the yield affected?

Having established the possibility of influencing the composition of the kernel in this way by several years of breeding and after having actually produced the different kinds of corn to work with, it became possible to take up the study of some of these important secondary effects. The results of the investigation of some of these questions are given in the following pages.

Effect on the Composition of Other Parts of the Plant

After the breeding plots had been under way for five years and marked changes had been produced, a study was begun to ascertain how the composition of other parts of the plant was being affected by altering that of the grain.

Beginning in 1903, there have been collected every year at harvest time representative plants from each of the four "Illinois" breeding plots. These plants were divided in the following manner into three parts, namely, upper-stalk, lower-stalk, and leaves. The leaves were first stripped off from the stalks and these, including the husks, constituted the sample designated here as "leaves." Then at the joint where the ear was borne, the stalk was divided and the part below this point comprised the sample called "lower-stalk," and all above including the tassel, made up the sample designated as "upper-stalk."

It may be observed that the condition of these samples is just as it would be in the ordinary handling of corn stover on the farm. It was cured in the field in the ordinary manner, the stalks having lost some parts of the leaves and tassels. Then this rather arbitrary division into parts follows somewhat in the natural way in which the stover is eaten by animals as fed entire without cutting or shredding. The leaves and husks are entirely consumed and usually a portion at least of the upper stalk is eaten. If any is refused, it is the coarser part of the stalk corresponding somewhat to

our sample of "lower-stalk." With this practical bearing in mind, there is lent something of an added interest to the analyses.

The results of the analyses of these samples are brought together in the tables that follow. For convenient comparison each constituent is considered by itself in a table showing the percentages found in the several parts of the plant in the different strains each season.

In the first two years of the work these samples were taken from every individual breeding row in the four plots so that the results shown here really represent averages of several hundred analyses, but these data form such a mass of material that lack of space forbids presenting them here in detail.

EFFECT ON THE ASH CONTENT

We will consider first the effect produced by the breeding upon the ash content as shown in the following table:

Year.	Strain.	Upper-stalk.	Lower-stalk	Leaves.	Grain.
1902	High-ProteinLow-Protein	5.25 5.82	4.08 5.09	8.21 8.64	1.57 1.45
1902	High-Oil	5.65	4.89	7.59	1.54
	Low-Oil	4.91	3.72	7.11	1.42
1903	High-Protein	5.23	4.52	9.66	1.52
	Low-Protein	4.86	4.28	7.98	1.34
1703	High-Oil	5.20	3.98	8.23	1.47
	Low-Oil	4.75	4.27	7.27	1.47
1904	High-Protein	4.38	3.95	6.56	1.60
	Low-Protein	5.14	4.57	7.51	1.41
1904	High-Oil	5.05	5.80	7.66	1.56
	Low-Oil	5.59	5.53	8.12	1.43
1905	High-Protein	4 30	4.02	6.52	1.54
	Low-Protein	5.00	4.61	7.47	1.50
1903	High-Oil	5. 2 6	5. 92	8.06	1.58
	Low-Oil	5.69	5.47	8.34	1.28
1906	High-Protein	4.77 4.28	4.93 4.15	9.08 8.85	1.48 1.41
1900	High-Oil	5. 0 5 5.67	5.61 4.84	7.72 7.01	1.64 1.46

TABLE 7.—ASH CONTENT IN DIFFERENT PARTS OF PLANT

Comparing the percentages of ash in the high-protein and low-protein strains in the upper-stalk, there is no regularity apparent. In two of the seasons the percentage was greater in the high-protein plot and in the three other seasons it was smaller. The lower-stalk varies in the different seasons in accordance with the

upper-stalk, and the same is true of the leaves. In the grain the differences are very slight but they show every season a little more

ash in the high-protein corn.

Comparing the samples of the various parts from the high-oil and low-oil strains, we find no regularly concordant variations except in the case of the grain where usually the percentage of ash has been a trifle higher in the high-oil than in the low-oil corn. In regard to the distribution of the ash over the plant as a whole we find, as we should expect in accordance with what is generally observed in plant studies of this nature, the lowest proportion of ash in the seed and the highest in the leaves where it amounts sometimes to almost one-tenth of the dry substance.

EFFECT ON THE PROTEIN CONTENT

It is especially interesting to note how the change in the proportion of protein in the grain has affected this constituent in other parts of the plant. For example, does the increase of protein in the kernel mean an increase of this substance in the other organs of the plant, or is this higher content in the kernel the result of an accumulation produced at the expense of other parts?

Table 8 shows the results of the protein determinations in the

various parts of the plant.

Table 8.—Protein Content in Different Parts of Plant (Protein derived by multiplying the nitrogen content by the factor 6.25)

Year.	Strain.	Upper-stalk.	Lower-stalk	Leaves.	Grain
1902	High-ProteinLow Protein	3.31 2.90	3.28 3.21	5.00 4.99	12.34 8.22
	High-OilLow-Oil	3.70 2.78	4.72 2 83	5. 1 3 4.86	10.83 9.31
10.2	High-Protein Low-Protein	4.00 3.80	3.20 4.26	4.92 5 28	13.04 8.62
19 3	High-OilLow-Oil	3.20 3.50	3.28 3.58	5.04 5.04	11.04 10.22
	High-ProteinLow-Protein	6.52 3.06	5.68 3.46	5.34 4.77	15.03 9.27
1904	High-OilLow-Oil	4.53 4.00	4.08 4.94	4.86 5.10	12.29 10.88
1007	High-Protein	6.13 3.59	6.03 4.59	6.46 5.81	14.72 8.57
1905	High-OilLow-Oil	4.38 4.41	6.32 4.09	6.42 5.74	12.12 9.86
1906	High-Protein	5.99 5.61	4.94 6.48	5.27 7.13	14 26 8.64
	High-OilLow-Oil.	5.38 4.37	6.56	5.57 5.03	11.81 10.54

Upon comparing the protein content of the upper-stalk samples we find that the percentage has always been greater in the high-protein plot varying in the different seasons, from only a slight difference to over double the amount.

The lower-stalk follows the upper-stalk in this respect in three of the seasons but in the other two years the protein runs higher in the low-protein strain. The leaves agree quite closely in every case with the lower-stalk.

The wide differences in the protein content of the grain are, of course, the direct result of the selection which have already been considered so that we need not discuss them further in this connection.

Turning now to the oil breeding, there seems to be a lack of any significant regularity in the parts of the stover. In the upper-stalk the percentage of protein runs higher three out of the five seasons in the high-oil strain. In the lower-stalk it is three times out of the five higher in the high-oil strain but corresponding only three times with the upper-stalk. The leaves correspond with the lower-stalk in this comparison.

But a very marked correlation appears in the grain where there has been every year a notable increase in protein in the high-oil strain over that of the low-oil. This is indeed significant and is of such interest that it will be discussed more fully later on.

Regarding the general distribution of the protein in the plant, the data show; that in the other parts, the proportion of protein is never as high as it is in the grain; that among the other parts, the leaves have averaged somewhat higher than the stalks although this condition has not been constant in every year; that, as between the upper and lower portions of the stalk no regular difference can be established.

EFFECT ON THE CRUDE FAT CONTENT. (Ether Extract.)

It will be noticed that the term "crude fat" is used here for designating this determination rather than "oil" as has been used in the rest of this work in which only the kernels were concerned. It should be considered that while in the kernels the substance extracted by ether is practically all oil, in the stalk and leaves it consists to a considerable extent of other constituents besides true fats, or oil, such as coloring matters, waxes, organic acids, etc. On this account these results of the ether extraction are not to be taken as necessarily explicitly expressing the relations of the amount of oil or fat in the various organs of the plant to that of the kernels. However in the chemical analyses of food stuffs, the ether extraction is the best practical method that we have at present of classify-

ing these substances, and in view of the fact that it is usually made and reported in fodder analyses this determination was made in this study with the idea that the information would be of interest and might prove suggestive. The results are given in Table 9.

TABLE 9.—ETHER EXTRACT IN DIFFERENT PARTS OF PLANT

Year.	Strain.	Upper-stalk.	Lower-stalk	Leaves.	Grain
	High-Protein	0.98	1.31	1.02	4.85
1000	Low-Protein	0.82	0.95	1.02	4.15
1902	High-Oil	1.08	1.27	0.99	6.41
	Low-Oil	0.87	1.21	1.02	3.02
	High-Protein	. 0.92	1.42	1.04	4 83
4000	Low-Protein	0.77	0.88	0.90	4.08
1903	High-Oil	0.69	0.86	0.98	6.50
	Low-Oil	1.18	0.98	0.98	2.97
	High-Protein	0.77	1.23	1.16	5 07
1001	Low-Protein	0.78	0.81	1.00	4.17
1904	High-Oil	0.67	0.87	1.10	6.97
	Low-Oil	0.69	0.90	0.98	2.89
	High-Protein	0.95	1.20	1.21	5.04
1905	Low-Protein	0.88	0.95	1.28	3.85
1903	High-Oil	0.82	1.00	1.24	7.29
	Low-Oil	0.72	0.82	1.09	2.58
	High-Protein	1.02	1.69	1.25	5.28
1906	Low-Protein	1.62	1.89	1.46	3.86
1900	High-Oil	1.07	2.05	1.32	7.37
	Low-Oil	1.29	1.46	1 23	2.66

The proportion of ether-extract in the stalks and leaves is not very large ranging mostly around one percent and there are no apparent relations among these results that would indicate any significant influence of the selections either in the protein or in the oil breeding.

In the case of the grain, however, there is an interesting correlation manifested. We have already seen how the protein content of the grain is influenced by the oil selection, and, just as the protein rises and falls with the oil content, so here the oil follows the protein selections, and in every season there is a decided increase of oil in the high-protein strain over that of the low-protein.

The figures show in regard to the relative proportions of etherextract in the different parts of the plant, that the crude fat in other parts scarcely ever approaches in percentage the oil in the kernel and also that it is generally greater in the lower-stalk and leaves than in the upper-stalk.

EFFECT ON THE PHOSPHORUS CONTENT

On account of their especial bearing upon questions pertaining to soil fertility a knowledge of the phosphorus and potassium contents in these different strains of corn is of interest. Accordingly determinations of these two elements in the samples of the different parts of the plants have been made since 1903. The percentages are given in Tables 10 and 11 being expressed in terms of the elementary substances.

TABLE 10.—PHOSPHORUS CONTENT IN DIFFERENT PARTS OF PLANT

Year.	Strain.	Upper-stalk.	Lower-stalk	Leaves.	Grain.
F	High-Protein	0.19	0.19	0.15	0.36
1002	Low-Protein	0.12	0.10	0 14	0.30
1903	High-Oil	0.10	0 08	0.10	0.34
	Low-Oil	0.10	0.09	0.13	0.31
	High-Protein	0,26	0.24	0.18	0.38
1904	Low-Protein	0.14	0.10	0.12	0.33
1904	High-Oil	0.21	0.12	0.16	0.38
	Low-Oil	0.17	0.17	0.18	0.35
	High-Protein	0.26	0,22	0.18	0.32
1905	Low-Protein	0.12	0 09	0.12	0.30
1905	High-Oil	0.18	0.11	0.12	0.34
	Low-Oil	0 17	0.14	0.17	0.25
	High-Protein	0 28	0.32	0.21	0.34
1000	Low-Protein	0.29	0.21	0.24	0.30
1906	High-Oil	0.25	0.22	0.19	0.35
	Low-Oil	0.19	0.14	0.15	0.31

Comparing the high-protein and low-protein strains it is interesting to note that with only the exception of the upper-stalk and leaves in 1906, the phosphorus content is always somewhat higher in the samples representing the high-protein plot both in stover and grain.

In the breeding for high and low-oil, however, such a correlation does not appear in the stover but in the grain we find regularly a higher phosphorus content in the high-oil corn. Taking the plant as a whole the grain is decidedly the richest part in phosphorus thus conforming to what has been generally observed.

EFFECT ON THE POTASSIUM CONTENT

Comparing the high-protein and low-protein plots the different parts of the stover show agreement in three out of the four years in being somewhat richer in potassium in the low-protein strain. The other season all parts were richer in this element, in the highprotein strain.

TABLE II.—POTASSIUM CONTENT IN DIFFERENT PARTS OF PLANT

Year.	Strain.	Upper-stalk.	Lower-stalk	Leaves.	Grain
	High-Protein	1.47	1.64	0.90	0.35
1903	Low-Protein	1.52	1.64	0.97	0.32
	High-Oil	1.34	1.10	0.76	0.36
	Low-Oil	1.33	1.54	1.25	0.36
1904	High-Protein	1.07	1.10	1.02	0.37
	Low-Protein	1.67	1.67	1 31	0.35
	High-Oil	1.63	1.70	1.48	0.39
	Low-Oil	1.55	1.74	1.56	0.39
1905	High-Protein	1.03	1.07	1.05	0.34
	Low-Protein	1.61	1.62	1.35	0.37
	High-Oil	1.65	2.36	1.39	0.36
	Low-Oil	1.81	2.08	1.60	0.37
1906	High-Protein	1.17	1.54	0.88	0.36
	Low-Protein	0.89	1.17	0.82	0.40
	High Oil	1.59	2.14	1.22	0.39
	Low-Oil	1.59	1.79	0.92	0.40

In the grain samples the comparisons show conflicting results but the differences here are so small as to be scarcely significant.

As between the high-oil and low-oil breeding no regularity among the stover samples can be made out. In the grain the percentages are just a trifle greater in the low-oil corn but the differences are too slight to be considered seriously.

These results likewise accord with the usual observance that the stover carries a much larger proportion of potassium than the grain. The stalks and leaves do not vary greatly in this respect.

Conclusions

The preceding data afford material for numerous other comparisons and a critical study would doubtless reveal many other suggestive facts, but it is our present purpose only to derive as direct an answer as possible to our main question regarding the effect produced upon the composition of the plant as a whole by altering the relative proportions of the constituents of the kernel.

Summarizing the results of this study and putting them into the form of a general statement we may say, that aside from the correlation developed between protein and oil in the grain, there has not been produced any very marked effect. The ash in the grain appears to be influenced very slightly by the protein as well as the oil selection, following these selections in direct correlation. The same is true of the phosphorus content. Further there is seemingly a tendency toward an increased phosphorus content in the stover resulting from high-protein selection, but this observation needs further confirmation.

CORRELATION BETWEEN PROTEIN AND OIL IN THE KERNEL

At the beginning of the breeding the correlation between the protein and oil content in the kernel was only very slight. The result of the mathematical calculation of this correlation in the original 163 ears from which the first selections were made, as given in Bulletin 87, shows only 3.81 percent of a perfect correlation.

But, although this correlation is insignificant at first, it seems to have advanced with the breeding so that, as we have just observed, after five years it became very prominent both in the protein and in the oil selections.

It is interesting to trace the development of this correlation in the progress of the breeding as may be done in Table 12 in which are given the percentages of oil in the high-protein and low-protein strains each generation excepting the second and third years when these determinations were not made.

TABLE 12.—OIL CONTENT IN HIGH-PROTEIN AND LOW-PROTEIN STRAINS

Average percent oil.							
Year.	High-protein crop.	Low-protein crop.	Difference				
1897	4.52	4.35	0.17				
1898							
1899							
1900	4.75	4.31	0.44				
1901	4.82	4.30	0.52				
1902	4.85	4.15	0.70				
1903	4.83	4.08	0.75				
1904	5.07	4.17	0.90				
1905	5.04	3.85	1.19				
1906	5.28	3.86	1.42				

The last column which shows the difference in oil content each year brings out the principle in a most interesting way. This difference between the two plots begins with a very small figure which gradually increases as the breeding goes on corresponding to the differences in the protein itself, until in the tenth generation this difference becomes so significant as to amount to about one-third of the total quantity of oil.

In like manner the behavior of the protein in the high and lowoil strains is shown in Table 13.

TABLE 13.—PROTEIN CONTENT IN HIGH-OIL AND LOW-OIL STRAINS

484

Year.	High-oil crop.	Low-oil crop.	Difference	
1897	10.76	11.03	- 0.27	
1898				
1899				
1900	10.83	11.00	-0.17	
1901	12.32	10.03	2.29	
1902	10.83	9.31	1.52	
1903	11.04	10.22	0.82	
1904	12.29	10.88	1.41	
1905	12.12	9.86	2.26	
1906	11.81	10.54	1.27	

Although the differences in protein content in the high-oil and low-oil plots have not been as regular or constant as in the case of the oil content in the high-protein and low-protein plots, yet the same principle is evident, for, whereas in the earlier years the protein actually averages a little higher in the low-oil strain as indicated in the table by the minus signs, in later generations after the breeding had advanced and greater differences in the oil content had been induced, the correlation appears and remains, although fluctuating in intensity from year to year.

EFFECT ON THE TYPE OF KERNEL

That the selection for certain chemical constituents has a very noticeable effect upon the physical charactertistics of the kernel was observed very early in the work and in Bulletin 55 descriptions with photographs were published showing the possibility of distinguishing between high-protein and low-protein corn as well as between high-oil and low-oil corn by the mechanical structure of the kernel. The matter has been mentioned again in Bulletins 82 and 100, and Bulletin 87, "The Structure of the Corn Kernel and the Composition of its Different Parts," deals especially with this phase of the subject, treating it in considerable detail. Therefore it is not proposed to discuss this matter at length here, but only to call attention briefly to the facts observed in this connection.

Selection for high-protein has developed a type of kernel having a relatively larger proportion of that part characterized by its horny structure, the soft starchy part which immediately surrounds the germ and runs up into the crown of the kernel being less prominent. In the type of kernel resulting from low-protein selection

this condition is reversed and here the soft starchy part predominates. Viewed externally the high-protein kernel has a somewhat glassy appearance while the low-protein presents a milky effect.

Following the fact that about four-fifths of all the oil in the kernel resides within the germ, the selection for high-oil has resulted in a kernel having a relatively large proportion of germ, while the low-oil selection has produced a kernel whose germ oc-

cupies a relatively small proportion of the space.

It should be borne in mind that a reduction of the proportion of germ does not necessarily depend altogether upon a decrease in the absolute size, for the same effect would be produced by increasing the size of the endosperm, and in our low-oil strain this is what has really taken place to some extent, so that the selection has resulted in a large broad type of kernel admitting fewer rows on the cob.

The question is often asked as to whether there is any difference apparent in germination on account of this effect upon the size of the germ. In laboratory tests under carefully controlled and comparable conditions a difference in the rate and vigor with which the germination starts off has been observed, the first signs of growth appearing about twenty-four hours earlier in the high-oil corn. This difference, however, becomes less apparent as the development of the young plantlet proceeds and in the field there is as yet no detrimental effect noticeable due to impaired vitality in the seed brought about by the selection for low-oil.

Effect on the Type of Ear

That the selection in these different directions has likewise had its effect upon the physical characteristics of the ear is clearly shown in Bulletin 119, "Type and Variability in Corn," in which Dean Davenport and Doctor Rietz have made this matter the subject of a special study.

In this investigation ears from each of the four "Illinois" strains from the crops of the ninth and tenth generations were subjected to measurements of their length, circumference, weight, and

number of rows of kernels.

The variability of each one of these charactertistics was studied by the statistical method in which are determined mathematical expressions showing the "mean," or average value of the character in question, as well as its tendency to vary from this average, expressed by the "standard deviation" and the "coefficient of variability." Taking from these tabulated results those figures which are of especial concern in this connection, the following interesting facts are brought out.

Selection for high-protein has produced an ear averaging somewhat smaller than the low-protein ear as shown by a comparison of the length, circumference and weight; the number of rows of kernels also averages slightly less on the typical high-protein ear.

Similarly the high-oil selection has resulted in a smaller type of ear than has the low-oil, the length, circumference and weight being less in each case in the high-oil strain. However, in spite of the fact that the typical low-oil ear is the largest of any of the strains, the number of rows of kernels is the least, this being due to the broadening of the kernel as previously explained.

EFFECT ON THE YIELD

One of the first questions to be taken into consideration from the practical standpoint is, of course, the effect that selection for

these various characteristics has upon the productiveness.

In this connection it should be borne in mind that during the earlier years of these experiments in the selection of seed no special precaution was taken against in-breeding. If the pedigree lines be traced back in the high-protein plot it will be found that they all converge in a single ear grown in 1901. The low-protein strain as it now exists is the progeny of two of the original ears and the same is true of the low-oil. The high-oil strain traces back to three original ears. Thus the pedigree records show that there must have been a considerable amount of rather close in-breeding which has probably exerted a more or less detrimental effect upon the yield. It was not until the ninth generation that we started our present system of taking seed from detasseled rows only and arranging the planting of the seed ears with reference to their relationship, in order to prevent as far as possible such close in-breeding.

Neither was there in the earlier years of the breeding any selection based upon productiveness other than the choice of the largest, finest seed ears. In the sixth generation a system of rejecting a few of the lowest yielding rows was begun but it was not until the ninth generation that our present system was adopted of selecting one-half of the detasseled rows according to their performance as regards productiveness.

Therefore in speaking of the yielding propensities of these several strains of corn, these handicaps which they have undergone in

the breeding should be taken into consideration.

In order to test this matter of yield, seed has been taken every year since the sixth generation from each of the four breeding plots and planted in our variety test plots where they are given conditions of soil and culture as uniform as possible for securing comparable results.

In this variety test there are planted at certain intervals socalled "Standard plots" from one of the best standard varieties of this region the purpose of these being to serve as a check for comparison in different parts of the field. In Table 14 the yield each year in terms of bushels of shelled corn per acre is given for each of the four "Illinois" strains along with that of the standard variety.

Year.	High- protein strain.	Low- protein strain.	High- oil strain.	Low- oil strain.	Standard variety.
1903 1904 1905 1906	27.3 32.1 56.6 65.1	37.7 55.5 60 7	32.7 41.9 58.4 66.3	41.3 40.5 58.1 83.2	40.9 (Boone Co. White) 53.7 (""") 68.4 (Silvermine) (75.7 ("")

Table 14.—Yields of "Illinois" Strains in Variety Test Plots

In looking over these results there are some irregularities to be seen and it is still too early to draw final conclusions in all respects. The maximum yield varies among the four strains in the different years. In two of the seasons the low-oil gave the highest yield and in two others the low-protein yielded most.

But the lowest yield has in every season been produced by the high-protein corn and this fact accords with our previous observation regarding the type of ear where we found the typical high-protein ear to be the smallest of all the four strains. So it seems a high-protein content and the highest productivity do not go together.

The formation of protein depends, of course, upon the supply of nitrogen in the soil. In fact the relation is so intimate that it has been observed in experiments that the protein content can be increased in corn by the application of nitrogenous fertilizers. This suggests the possibility of a limitation of growth on ordinary soil due to an extra high nitrogen requirement on the part of the high-protein strain.

If, however, we consider the production of protein per acre we will find a very decided gain in the production of protein in the high-protein breeding. For example in 1906 the high-protein strain produced 65.1 bushels per acre and the protein content of the crop that year as we have seen was 14.26 percent. This would yield (reckoning 56 pounds shelled corn per bushel) 520 pounds of

protein per acre. At the same time the low-protein strain produced 73.2 bushels carrying 8.54 percent of protein which would yield 354 pounds. This makes a difference of 166 pounds of protein per acre in favor of the high-protein breeding. This, however, from the practical standpoint, would be an unfair comparison because ordinarily what the farmer has to deal with is corn of ordinary protein content rather than low-protein corn. We have no "Illinois" strain now unaffected by chemical selection with which to make the comparison. But suppose we compare our "Illinois High-Protein" with the standard white variety for this year, that is the "Silvermine," which has had no chemical selection, and assume that it contains the same percentage with which we started the "Illinois" breeding, that is 10.92, which as a matter of fact is not far from the average of ordinary dent corn. Making the computation we find that the 75.7 bushel yield containing 10.92 percent would give us 463 pounds of protein per acre. Based upon this estimate there was a gain this year of 57 pounds of protein per acre by the high-protein breeding and this is of no mean consequence when we consider that this 57 pounds represents about oneeighth of the total quantity of protein produced.

On the whole these results of the yields are quite gratifying when we consider that these "Illinois" strains have maintained their productiveness as well as they have in spite of the intense selection they have undergone for other special characteristics. With the exception of one season, some one of the Illinois strains has even surpassed in yield the supposedly good variety used as a standard. All of this goes to show that intense selection for a special character is not necessarily accompanied by a reduction in yield, this not implying, of course, that selection for yield alone would not make greater progress when unhampered by consideration for other characteristics.

APPENDIX

In connection with this investigation a large amount of experimental data has been collected. For the selection of seed for these four "Illinois" breeding plots there have been analyzed during the ten years 4000 individal ears. Of these, 756 ears have been selected and subjected to performance test in the breeding plots and the records of these tests form a most interesting and instructive The importance of placing these data on record by publication rests not alone upon their direct connection with the subject matter in hand. There are many obscure problems in this work of corn breeding of intensely practical significance upon which we may hope to secure light by a study of such heredity records as these, and in the study of the broader problems relating to the general subject of heredity there has been a lack of just such specific statistical data as these analyses afford. Already they have furnished excellent material for some such studies and naturally their value as such will ever increase with their accumulation. Therefore it seems advisable to present the essential detailed data of these experiments, preferably incorporated in systematic arrangement in an appendix where they may be referred to at pleasure, rather than encumbering the text of the bulletin with such a mass of statistical material.

The following tables are so arranged in series that the complete history of each strain of the breeding is shown by itself. For each year there is given a record of the breeding plot in a table showing the analyses of the seed ears planted and of the corresponding crops harvested. Immediately following this table is a second one in which are listed the analyses of all of the ears examined from that breeding plot for the selection of seed ears to be planted in the succeeding year's plot.

By this arrangement it is made possible with the system of "Register Numbers" and "Dam Numbers" previously explained, to readily find the relationships of all the ears ever produced in each of the four strains.

The first table gives the complete analyses of the 163 original ears from which the four strains of corn were started and a column is added to indicate to which of the breeding plots each of the selected ears is assigned. Following this table are given the series of records for the high-protein plot, low-protein plot, high-oil plot and low-oil plot in the order named.

The "Annual Ear No." in these records correspond to the "Corn No." as used in Bulletin 55 and, as previously explained, this is simply a temporary number used while working with the corn for the selection and has no permanent significance, there is no necessity for changing the back records in this respect and so these old numbers are retained. They begin in the first table with No. 76 and run in the order of the rows of the breeding plot, that is in the order of their mother ears or "Dam Numbers."

In the first year usually four ears were analyzed from each plotrow and every fifth number was given to the composite sample representing the row as will be seen in the tables of 1897. In the years following, up to 1903, nine ears were analyzed from each plot-row and every tenth number was given to the corresponding composite sample. In 1903 the new system was adopted in which the "Annual Ear Number" begins with 1 each year and ten ears are analyzed from each selected plot-row with no provision for composite sample numbers within the series. In 1905 another modification was introduced in which 20 ears instead of 10 are analyzed from each selected plot-row.

In the tables of analyses all ears that have been selected for seed are indicated by their assigned "Register Nos." being placed

in the column opposite.

In order to illustrate the working of this system of records let us suppose that it be desired to trace the pedigree record of a given ear. We may take as an example the first ear analyzed from the high-protein plot in 1906 and registered as No. 1102. We see immediately that the "dam" or mother of this ear was No. 1004. By reference to the plot record of the year 1906 we find that the ear with Register No. 1004 had a protein content of 17.39 percent and that its "dam" was No. 914. Turning now to the plot record of the previous year we find that Register No. 914 had 17.73 percent of protein and by the corresponding "Dam No." we are referred to No. 811 of the preceding generation. Following along in this manner through the preceding generations we finally trace the complete maternal pedigree back to the beginning of the breeding. Thus we find the pedigree record with respect to the protein content of this ear registered as No. 1102 to run as follows:

			Maternal pedigree record.	Year planted.	Protein, percent.
Reg	rister	No.	1102	1907	17.13 17.39
ву	Dam	No.	1004	1906	
			914	1905	17.73
"	66	+ 4	811	1904	17.33
6.6	4 6	6 6	710	1903	14.70
4.6	4.4	66	601	1902	15.00
6.6	6 6	66	507	1901	15.71
66	6.6	66	413	1900	14.53
66	66	66	323	1899	12.45
4.6	44	66	207	1898	12,46
4	66	66	121	1897	12.28

At the end of these four series of the regular plots are Tables 96 to 103 inclusive which contain the records of the mixed-protein and mixed-oil plots.

Table 15.—Composition of One Hundred Sixty-three Individual Ears from General Crop of 1896

Annual ear No.	Ash.	Protein.	Oil.	Carbohy- drates.	Plot assigned.	Register No. assigned.
76 77 78	1.70 1.45 1.55	10.05 10.42 11.00	4.77 5.24 4.90	83.48 82.89 82.55	High-oil	107
79	1.62	10.89	4.88	82.61		
80	1.63	11.50	4.58	82 29		
81	1.47	11.49	4.26	82.78		
82	1.39	11.78	4.83	82.00	_	
- 83	1.17	9.08	4.05	85.70	Low-protein	103
84	1.51	12.79 11.76	4.25	81.45	High-protein	110
85 86	1.46 1.50	12.07	4.94 4.6 1	81.82	High-protein	102
87	1.59	12.40	4.71	81.27	High-protein	117
88	1.35	9.34	4.84	84.47	ang. protom	
89	1.61	10.71	4.70	82.98		
90	1.55	9.90	4.97	83.58		
91	1 56	10.68	4.91.	82.85	*** 1	112
92 93	1.46 1.48	12.96 11.80	3.97	81.61 81.92	High-protein	113
94	1.74	11.89	4.80 4.55	81.82	High-protein	101
95	1.55	10.49	5.51	82.45	High-oil	109
96	1.60	11.10	4.38	82.92	8	
97	1.59	11.84	4.96	81.61		
98	1.39	10.23	5.51	82.87	High-oil	115
99	1.42	8.40	4.91	85.27	Low-protein	107
100	$\frac{1.65}{1.30}$	12.28 10 08	4.76	81.31	High-protein	105
101 102	1.30	11.83	4.86 4.51	83.76 82.17		
103	1.44	11.25	4.78	82.53		
104	1.54	11.82	4.43	82.21		
105	1.37	12.36	4.84	81.43	High-protein	119
106	1.33	11.15	5.21	82.31	High-oil	120
107	1.33	9.47	4.97	84-23		
108 109	1.30 1.45	11.04 10.82	4.67 5.65	82 99 82.08	High-oil	111
110	1.43	12.81	5.03	80.38	High-protein	111
111	1.31	10.76	4.13	83.80	ing ii protein	
112	1,26	10.48	4.54	83.72		
113	1.10	9.30	4.38	85.22	Low-protein	111
114	1.33	9.12	4.10	85.45	Low-protein	102
115	1.29	10.41	4.17	84.13	T am amataim	105
116 117	$\frac{1.10}{1.42}$	8.38 9.95	4.88 4.23	85.64 84.40	Low-protein	105
118	1.44	11.40	5.02	82.14	High-oil	101
119	1.55	12.38	4.62	81.45	High-protein	106
120	1.39	9.97	4.42	84.22		
121	1.36	10.09	4.82	83.73		117
122	1.36	10.31	5.25	83.08	High-oil	117 108
123 124	1.34 1.44	9 68 11.87	4.01 4.61	84.97 82.08	Low-oil	100
125	1.44	10.73	4.53	83.40		
126	1.49	13.87	5.72	78.92	High-protein	112
127	1.43	11.53	4.31	82.73	3 1	
128	1.33	11.64	4.57	82.46		
129	1.36	11.25	4.16	83.23	1	I

TABLE 15.—Continued

		IABL	E 13. Con			
Annual ear No.	Ash.	Protein.	Oil.	Carbohy- drates.	Plot assigned.	Register No. assigned.
				-		
130	1.35	11.86	5.01	81.78		
131	1.47	10.49	4.86	83 18		
132	1 55	11.13	4.55	82.77		
133	1.39	11.13	4.10	83 38	Low-oil	110
134	1.30	10.85	4.45	83.40	24011 011	110
135	1.37	11.29	4.53	82,81		
136	1.59	11.43	5.10	81.88	High-oil	103
137	1 47	11.61	4 41	82.51		
138	1.36	11.36	4.53	82.75		
139	1.57	9.81	5.23	83.39	High-oil	118
140	1.34	10 53	4.18	83.95		
141	1 45	12.42	4.51	81.62	High-protein	120
142	1.37	9.31	4.82	84.50	-8 F	
143	1.29	11.33	4.49	82.89		
144	1.42	11.39	4.99	82.20	High-oil	124
145	1.45	8.25	4.81	85.49	Low-protein	106
146	1.47	11.29	4.83	82.41		
147	1.26	12.21	4.49	82.04	High-protein	123
148	1 54	11.94	4.74	81.78	0 1	
149	1.36	11.29	4.08	83.27	Low-oil	101
150	1.44	11.71	4.03	82.82	Low-oil	103
151	1.40	9.31	4.96	84.33	Low-protein	101
152	1.41 -	11.90	4.09	82 60	Low-oil	102
153	1.35	12.51	5.19	80.95	High-protein	108
154	1.42	11 13	5.02	82.43	High-oil	123
155	1.44	11.05	4.53	82.98		
156	1.39	11.74	4.14	82.73	Low-oil	112
157	1.46	10.02	4.88	83.64		ų.
158	1 45	10.66	4.51	83.38		
159	1.48	11.53	4.65	82.34		
160	1.43	11.50	4.83	82,24		
161	1.47	11.11	4.93	82.49		
162	1.48	12.09	5.61	80.82	High-oil	114
163	1.29	10.78	5.09	82.84	High-oil	102
164	1 30	9.36	4.34	85.00	Low-protein	110
165	1.47	10 50	4.75	83.28		
166	1.65	11.29	3.84	83.22	Low-oil	106
167	1.37	9.58	4.72	84.33		
168	1.49	10.94	4.34	83.23		
169	1.60	11 79	4.22	82.39		
170	1.36	11.06	4.39	83.19		
171	1.44	11.18	5.75	81.63	High-oil	113
172	1.45	12.28	3.99	82.28	High-protein	121
173	1.39	10.14	4.35	84.12		
174	1.30	10.19	5.22	83.29	High-oil	106
- 175	1.40	12 68	5.29	80.63	High-protein	109
176	1.37	9.86	4.73	84 04		
177	1.48	13.06	4.93	80.53	High-protein	114
178	1.37	10 93	4.76	82.94		
179	1.32	11.87	5.03	81.78		
180	1.39	11.27	4.55	82 79		
181	1.47	9.66	4.21	84.66		
182	1.37	10.97	3.94	83.72	Low-oil	107
183	1.54	10.32	5.46	82.68	High-oil	108
184	1.44	10.68	4.89	82.99		

TABLE 15.—Continued

Annual ear No.	Ash.	Protein.	Oil.	Carbohy- drates.	Plot assigned.	Register No. assigned
185	1.42	9.33	4.49	84.76	Low-protein	109
186	1.48	10.78	4.74	83.00		
187	1.28	10-49	4.44	83.79		
188	1.53	13.10	5.51	79.86	High-protein	115
189	1.32	9.58	5.63	83.47	High-oil	110
190	1.25	11.50	4.95	82.30		
191	1.29	11.19	4.31	83.21		
192	1.51	11.49	4.07	82.93	Low-oil	104
193	1.36	9.47	4 51	84.66	Low-protein	112
194	1.50	11.47	4,65	82.38	•	1
195	1.54	11.09	4.37	83.00		
196	1.30	9.44	3.95	85.31	Low-oil	105
197	1.26	11.20	4.46	83.08		
198	1.44	10.23	4 53	83.80		
199	1.29	10 64	4.67	83.40		
200	1.39	10.13	4.84	83.64	1	
201	1.38	9.64	5.22	83 76	High-oil	105
202	1.39	11.26	4.96	82.39	IIIg II-OII	103
202	1.26	10.48	4.59	83.67		
203	1.66	12.57	4.82	80.95	High-protein	118
						l .
205	1.46	10.71	5.36	82.47	High-oil	116
206	1.34	10.27	4.65	83.74		
207	1 25	11.09	4.27	83.39	TT: 1	101
208	1.48	12.05	4.78	81.69	High-protein	124
209	1.48	10.22	4.30	84.00		
210	1.45	11.16	4.75	82.64	`-	
211	1.48	10.44	4.21	83.87		
212	1.27	9.75	4.12	84 86	Low-oil	111
213	1.53	12.40	4.75	81.32	High-protein	104
214	1.58	10.22	4.43	83.77		
215	1.45	9.22	4.60	84.73	Low-protein	108
216	1.42	10.27	4.35	83.96		
217	1.32	9.39	4.83	84.46		
218	1.40	9.74	4.71	84.15		
219	1.37	9.92	4.32	84 39		
220	1.43	9.63	5,23	83.71	High-oil	104
221	1.32	10.33	5.01	83.34		
222	1.41	12.34	4.57	81.68	High-protein	122
223	1.49	10.58	4.64	83.29		
224	1.52	11.36	4.63	82.49		
225	1.33	9.15	4.55	84.97	Low-protein	104
226	1.36	10.31	5 08	83.25	2011 protein	201
227	1.46	12.63	5.15	80.76	High-protein	107
228	1.41	12.16	4.12	82.31	Low-oil	109
229	1.36	11.04	4.52	83.08	12011-011	105
230			4.32		High protein	103
230	1.43 1.33	12.10 10.95	4.60	82.18 83.12	High-protein	103 \
		10.95			High protoin	116
232	1.52		4.10	81.62	High-protein	110
233	1.40	9.75	4 14	84.71		
234	1.39	10.78	4.76	83.07	TT: min grid	110
235	1.58	9.97	5.27	83.18	High-oil	119
236	1.40	10.18	6.02	82.40	High-oil	112
237	1.47	11.16	5.13	82.24	High-oil	122
238	1.60	11.42	5.20	81.78	High-oil	121
1		1		F .	1	

Table 16.—First Generation High Protein Plot Record, 1897

Register	†By Dam	Protein,	percent.	Register	†By Dam	Protein,	percent.
ear No.	No.	Seed ear planted.	Crop har- vested	ear No.	No.	Seed ear planted.	Crophar- vested.
101 102		11.89 12.07	9,61 11.07	*114		13.06	10 89 10 67
103 104	5	12.10 12.40	10.94 11.48	*115		13.10	10.34
105		12.28	10.85	116		12.76	11.05
106		12.38	11.64	117		12 40	10.75
107		12.63	11.46	118		12.57	10.86
108		12.51	11.57	119		12.36	11.07
109		12.68	11.17	120		12.42	10.88
110		12.79	11.14	121		12.28	11.73
111		12.81	11.16	122		12.34	10.76
*112		13.87	(11.60 (11.31	123 124		12.21 12.05	11 30 11.53
*113		12.96	{ 11.07 { 11.44				
A	verage of	f plot				12.54	11.10

^{*}Crop from Reg. Nos. 112, 113, 114, and 115 sampled in duplicate. $\dagger F$ irst generation not known.

Table 17.—Protein in One Hundred Twelve Individual Ears from High-Protein Plot of 1897

Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.
В	y Dam	101	B	y Dum	111	B	y Dam	17
271 272 273 274	8.82 8.42 11.60 8.34		321 322 323 324	11.43 10.94 11.18 11.55		371 372 373 374	11.75 9.46 11.17 8.67	
B	$y \mid Dam \mid$	102	B	y Dàm :	112	B	$\stackrel{+}{y} Dam$:	118
276	12.83	215	326	13.62	212	376	10.47	
277 278 279	10.46 9.95 10.96		327 328 329	10.99 11.07 9.18		377 378 379	10.92 9.32 12.28	218
В	y Dam .	103	* E	y Dam	112	\parallel B	$\stackrel{'}{y}$ Dam .	119
281 282 283 284	12.62 10.43 9.87 11.58	208	331 332 333 334	11.40 12.24 10.06 11.02	205	381 382 383 384	9.31 11.00 12.23 11.99	221 201
B	By Dam .	104	I.	By Dam	113	B	y Dam	120
286 287 288 289	10.97 11.08 10.23 12.99	214	336 337 338 339	10.78 11.28, 11.09 12.85	210	386 387 388 389	9.20 9.76 9.18	203
I_{2}	By Dam.	105	* 1	By Dam	113	B	y Dam	121
291 292 293 294	11.52 10.44 11.92 11.25		341 342 343 344	11.65 11.35 10.60 12.16	220	391 392 393 394	12.46 11.14 10.03 13.27	207
I	$\overset{\perp}{B}y \; Dam$.	106	1	By Dam		B	y Dam	
296 297 298 299	11.11 12 07 13.58 11.68	222 213	346 347 348 349	11.63 12.26 8.76 10.69	204	396 397 398 299	9.94 11.78 11.30 11.08	
E	By Dam	107	* 1	By Dam	114	\parallel B	y Dam	123
301 302 303 304	10.80 12.26 11.20 11.97	219 223	351 352 353 354	11.39 10.59 9.65 9.83		401 402 403 404	11.23 10.92 9.72 11.14	
I	Dy Dam	108		By Dam	115	B	y Dam	124
306 307 308 309	12.33 12.39 9.64 9.93	206 217	356 357 358 359	8.63 11.08 11.39 9.12		406 407 408 409	10.44 12.72 12.80 11.17	216 209
I	By Dam	109		By Dam	11 5			
311 312 313 314	10.65 11.05 9.89 10.22		361 362 363 364	11.63 9.98 10.45 11.89	224			
В	y Dam	110	I	By Dam	116			
316 317 318 319	11.08 10.29 11.72 8.76		366 367 368 369	12.01 9.51 11.43 11.76	202			

^{*}An extra set of ears were analyzed from Dams 112, 113, 114 and 115.

Table 18.—Second Generation High Protein Plot Record, 1898

Register	By Dam	Protein,	percent.	Register	By Dam	Protein,	percent.
ear No.	No.	Seed ear planted.	Crop harvested.		No.	Seed ear planted.	Crophar- vested.
201 202	119 116	11.99 12.01	11.18 10.86	*213	106	13.58	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
203 204	120 114	12.10 12.26	10.64 11.26	*214	104	12.99	11.42
205	112	12.24	11.61	215	102	12.83	11.34
206 207	108 121	12.33 12.46	11.24 11.26	216 217	124 108	12.72 12.39	10.77 11.03
208 209	103 124	12.62 12.80	10 80 10.55	218 219	118 107	12.28 12.26	10.96 10.47
210	113	12.85	10.33	220	113	12.16	10.33
*211	121	13.27	$ \begin{cases} 11.06 \\ 10.67 \end{cases} $	221 222	119 106	12.23 12.07	11.58 9 78
*212	112	13.62	{ 11.17 { 12.48	223 224	107 115	11.97 11.89	10.72 10.95
Averag	e of plot		1	,		12.49	11.05

^{*}Crop from Reg. Nos. 211, 212, 213, and 214 were sampled in duplicate.

Table 19.—Protein in Two hundred fifty-two Individual Ears from High-Protein Plot of 1898

					-			
Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.
Б	By Dam	201	B	y Dam	206	B	y Dam 2	211
821	9.82	.	871	12.82	321	921	11.29	1
822	10.38		872	11.65		922	9.69	
823	10.46		873	10.21	[923	9.78	
824	11.08		874	10.13		924	10.18	
825	10.79	205	875	10.49		925	11.54	
826	12.83	305	876 877	10.58 11.20		926 927	11.93 12.29	
827 828	12.50 7.84		878	10.61		927	11.39	
829	12.07		879	12.01		929	10.98	
	By Dam	202	1	By Dam	207		y Dam	211
831	10.19	1	881	10.76	ı	931	11.98	1
832	9.66		882	11.38		932	11.05	
833	9.97		883	11.22		933	10.04	
834	11.92	ļ	884	9.60		934	9.84	
835	11.47		885	12.45	323	935	9.96	
836	10.76		886	13.67	-	936	11.01	-
837 838	12.04		887 888	9.90 11.08		937 938	11.22	
839	9.39		889	11.59		939	8.76	
	By Dam	203		By Dam	208	li	By Dam	212
841	11.17	1	891	10.40	I	941	9.84	1
842	10.88		892	12.09		942	10.84	
843	10.39		893	9.98		943	11.69	
844	10.91		894	9.06		944	8.75	
845	13.05	308	895	13.46	314	945	14.92	312
846	7.72 9.48		896 897	10.54 9.93		946 947	11.36 13.04	
847 848	8.92		898	9.28		948	10.12	1
849	9.63		899	11.64		949	8.89	
	By Dam	204	ز ∥	By Dam	209		By Dam	212
851	12.48	. 303	901	9,90	1	951	14.25	313
852	10.31		902	10.33		952	9.83	
853	12.03		903	11.48		953	13.21	309
854	11.78		904	12.55	322	954	12.91	
855	11.22		905	8.89		955	10.37	
856 857	10.60		906	11.95 10.84		956 957	11.50 10.69	
858	9.81		908	9.15		958	11.94	
859	9.69		909	10.02	1	959	14.05	311
	By Dam	205		By Dam	210	1	By Dam	213
861	11.18	[911	11.66	1	961	12.97	306
862	12.10		912	11.06		962	13.25	315
863	11.55		913	10.02		963	12.66	
864	13.04	317	914	10.08		964	11.68	
865	11.08		915 916	11.83		965	9.29	
866 867	11.73		916	11.45		966 967	9.89	
868	11.78		918	10.75		968	12.29	
869	10.64		919	9.67		969	9.71	

TABLE 19.—Continued.

			I ABLE	: 19.—C	mimuea.			
Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No assigned.
*1	By Dam	213	1	By Dam	217	1	By Dam	222
971 972 973 974 975 976	10.55 11.80 9.47 11.97 11.94 12.98	319	1021 1022 1023 1024 1025 1026	10.06 12.24 10.25 11.84 11.50 11.23		1071 1072 1073 1074 1075 1076	8.07 11.48 10.95 10.47 10.90 10.17	
977 978 979	10.96 11.43 12.16		1027 1028 1029	9.66 11.91 9.86		1077 1078 1079	10.84 7.83 9.06	
1	By Dam	214		By Dam	218	1	$By \ Dam$	223
981 982 983 984 985 986 987 988 989	11.80 11.58 10.12 13.12 13.34 10.95 11.38 11.17 10.11	316 310	1031 1032 1033 1034 1035 1036 1037 1038 1039	11.74 11.53 10.15 8.90 9.93 10.46 10.47 11.72 12.39	302	1081 1082 1083 1084 1085 1086 1087 1088 1089	11.44 9.97 11.55 9.94 11.27 11.57 10.53 9.36 10.61	
	By Dam	214		By Dam	'		By Dam	224
991 992 993 994 995 996 997 998 999	11.39 9.86 10.69 10.75 12.42 10.42 11.72 12.20 10.96		1041 1042 1043 1044 1045 1046 1047 1048 1049	8.70 10.98 8.63 12.16 12.35 10.10 9.54 10.83 10.68	301	1091 1092 1093 1094 1095 1096 1097 1098 1099	8.74 9.50 10.20 10.60 11.49 12.74 10.47 12.07 12.36	304
E	By Dam	215	1	By Dam	220			
1001 1002 1003 1004 1005 1006 1007 1008 1009	11.85 11.42 10.39 12.88 9.32 11.04 12.75 10.33 12.09	320	1051 1052 1053 1054 1055 1056 1057 1058 1059	10.87 9.63 8.61 10.31 12.37 10.28 11.85 11.26 9.80	324			
B	By Dam	216	B	y Dam	221			
1011 1012 1013 1014 1015 1016 1017 1018 1019	12.99 9.96 9.71 10.78 11.51 11.39 9.81 9.11 11.29	318	1061 1062 1063 1064 1065 1066 1067 1068 1069	12.78 13.03 11.72 10.58 10.95 11.50 12.04 11.43 11.42	307			

^{*}An extra set of ears were analyzed from Dams 211, 212, 213 and 214.

Table 20.—Third Generation High Protein Plot Record, 1899

D	D D	Protein,	percent	D	D D	Protein,	percent.
Register ear No.	By Dam No.	Seed ear planted.	Crop harvested.	Register ear No.	By Dam No.	Seed ear planted.	Crop har vested.
301	219	12.35	10.00	313	212	14.25	10.74
302	218	12.39	10.17	314	208	13.46	11.09
303	204	12.48	11.50	315	213	13 25	11.42
304	224	12.74	11.00	316	214	13.12	11.77
305	201	12.83	10.89	317	205	13.04	12.50
306	213	12.97	11.35	318	216	12.99	11.88
307 .	221	13.03	11.91	319	213	12.98	12.68
308	203	13.05	10.56	320	215	12.88	12.09
309	212	13.21	12.04	321	206	12.82	11.89
310	214	13.34	11.37	322	219	12.55	10.22
311	212	14.05	12.78	323	207	12.45	12.24
312	212	14.92	12.21	324	220	12.37	10.76
		Average	e of plot.			13.06	11.46

Table 21.—Protein in Two hundred sixteen Individual Ears from High-Protein Plot of 1899

			1 11012	11 1 201	01 1099			
Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.
1	By Dam	301	1	By Dam	306	1	By Dam	311
1601	12.03		1651	12,10		1701	13.46	420
1602	9.81		1652	11.85		1702	13.74	407
1603	10.79		1653	10.75		1703	12.10	
1604 1605	7.71 11.28		1654 1655	9.54 11.73		1704 1705	14.41 12.09	411
1606	11.56		1656	13.22	401	1706	11.70	
1607	10.18		1657	11.57		1707	12.78	
1608	8.91		1658	9.66		1708	11.01	
1609	9.66		1659	13.36	405	1709	12.75	
E	By Dam	302	1	By Dam	307	E	By Dam	312
1611	9.91		1661	13.41	403	1711	12.37	
1612	8.35	1	1662	12.75		1712	12.83	
1613 1614	9. 11 9.83		1663 1664	11.72 11.46		1713 1714	10.17 12.69	
1615	11.20		1665	12.32		1715	10.32	
1616	11.88	1	1666	11.58		1716	11.41	
1617	10.96		1667	13.09		1717	12.06	
1618 1619	10.75		1668	12.77		1718	11.35	
	9.77		1669	11.48	0	1719	10.59	
	By Dam	303		By Dam	308		By Dam	313
1621 1622	11.69 11.60	ĺ	1671 1672	11.32 11.11		1721 1722	13.05 9.94	
1623	9.94		1673	12.30		1723	10.23	
1624	13.13		1674	9.81	j	1724	11.97	
1625	10.60		1675	10.02		1725	12.25	
1626	12.15		1676	10.27		1726	10.32	
1627 1628	12.32 12.65		1677 1678	10.92 10.52	1	1727 1728	10.06 9.91	
1629	11.82		1679	9.55		1729	11.21	
	By Dam	304	I	By Dam	309	B	y Dam	314
1631	10,25		1681	10.59		1731	11.95	•
1632	12.83		1682	12.33		1732	13.19	424
1633	13.54		1683	13.48	404	1733	13.94	409
1634 1635	11.55 11.10		1684 1685	12.88 11.00		1734 1735	11.05 10.47	
1636	11.10		1686	13.87	408	1736	10.10	
1637	9.78		1687	13.31	402	1737	12.34	
1638	10.30		1688	10.29		1738	13.20	
1639	10.24		1689	12.09		1739	10.02	
E	By Dam	305	B_{\cdot}	y Dam 3	710	$B_{\underline{c}}$	y Dam 3	315
1641	11.04		1691	11.90		1741	10.13	
1642	12.13		1692	11.35		1742 1743	10.50 11.41	-
1643 1644	10.50 11.15		1693 1694	$12.97 \\ 10.07$		1743	8.74	
1645	9.97		1695	12.21		1745	11,96	
1646	11.31		1 696	12.53		1746	13.73	418
1647	10.81		1697	11.93		1747	11.76	
1648	11.55		1698	11.37		1748 1749	10.16 11.20	
1649	10,66		1699	10.56		1749	11.20	

TABLE 21.—Continued.

Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.
I	By Dam	316	I	By Dam	319	1	By Dam	322
1751	11.12		1781	12.26)	1811	11.17	
1752	11.30		1782	13.89	417	1812	11.89	
1753	11.78		1783	10.69		1813	13.51	419
1754	11.85		1784	12.29		1814	10.95	
1755	12.16		1785	14.24	414	1815	11.84	
1756	13.48	421	1786	13.89	416	1816	10.60	
1757	11.23	İ	1787	11.83		1817	12,00	
1758	11.02		1788	14.20		1818	9.76	
1759	11.97		1789	12.66		1819	11.19	
I	By Dam	317	l E	By Dam	320	B	By Dam	323
1761	12.32		1791	13.97	410	1821	14.53	413
1762	12.46		1792	12.35	'	1822	11.31	
1763	14.78	412	1793	11,62		1823	11.95	
1764	12.70		1794	11.69		1824	10.44	
1765	12,49		1795	11.61		1825	13.31	423
1766	12.67	į	1796	12.07		1826	10.46	
1767	12.04		1797	10.72		1827	11.53	
1768	12.96		1798	12.92		1828	13.02	
1769	13.41	422	1799	12.10		1829	12.01	
I	By Dam	318	l I	By Dam	321	B	By Dam	324
1771	10.85		1801	13.93	415	1831	10.09	
1772	12.88		1802	12.42		1832	11.61	
1773	11.81		1803	10.65		1833	10.81	
1774	12.86		1804	13.63	406	1834	10.81	
1775	13.05		1805	10.90		1835	10.96	
1776	11.84		1806	11.99		1836	10.35	
1777	12.66		1807	10.54		1837	12.78	
1778	11.73		1808	12.80		1838	11.15	
1779	12.32		1809	10.94		1839	9.62	

TABLE 22.—FOURTH GENERATION HIGH PROTEIN PLOT RECORD, 1900.

D	n n	Protein,	percent.	D	P- Dom	Protein,	percent.
Register ear No.	By Dam No.	Seed ear planted.	Crop harvested.	Register ear No.	No.	Seed ear planted.	Crop har- vested.
401	306	13.22	12,27	413	323	14.53	13.50
402	309	13.31	12.56	414	319	14.24	12,34
403	307	13.41	12,44	415	321	13,93	12.44
404	309	13.48	11.62	416	31 9	13.89	12.24
405	306	13.36	11.53	417	319	13.89	12.76
406	321	13.63	12.00	418	315	13.73	12.21
407	311	13.74	12.90	419	322	13.51	12.37
408	309 -	13.87	12.09	420	311	13.46	12.13
409	314	13.94	11.70	421	316	13.48	12.38
410	320	13.97	11.95	422	317	13.41	12,26
411	311	14.41	12.87	423	323	13.31	12.71
412	317	14.78	12.86	424	314	13.19	11.63
		Average	of plot.		1,	13.74	12,32

Table 23.—Protein in Two hundred sexteen Individual Ears from High-Protein Plot of 1900

Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.
	By Dam 4	101		By Dam .	406	1	By Dam .	411
2801 2802 2803 2804	12.22 13.09 14.35 12.05	514	2851 2852 2853 2854 2855	12.55 12.28 11.14 13.30 10.56		2901 2902 2903 2904 2905	12.31 15.21 12.72 12.93 12.45	506
2805 2806 2807 2808 2809	12.57 11.20 12.31 12.54 11.87		2856 2856 2857 2858 2859	10.56 12.82 12.15 13.34 11.61		2906 2907 2908 2909	12.43 12.43 12.72 13.45	513
B	y Dam 4	102	1	By Dam	407	1	By Dam.	412
2811 2812 2813 2814 2815 2816 2817 2818 2819	14.10 14.01 12.34 12.45 11.99 14.06 11.93 13.13 13.30	515	2861 2862 2863 2864 2865 2866 2867 2868 2869	11.44 13.31 14.63 13.53 13.11 11.75 12.99 13.43 13.63	510	2911 2912 2913 2914 2915 2916 2917 2918 2919	14.54 13.31 11.31 12.64 13.71 12.56 11.79 12.87 15.20	503 509
В	By Dam 4	103		By Dam	408	B	y Dam 4	113
2821 2822 2823 2824 2825 2826 2827 2828 2829	11.82 14.09 13.32 13.72 14.56 11.30 13.55 11.64 12.48	511	2871 2872 2873 2874 2875 2876 2877 2878 2879	13.63 13.11 10.59 12.55 12.19 10.88 12.57 12.13 13.90		2921 2922 2923 2924 2925 2926 2927 2028 2929	12.47 14.98 14.45 14.38 13.22 15.40 15.71 12.48 13.58	505 512 501 508 507
В	By Dam 4	104	1	By Dam	409	$B_{\mathcal{I}}$	y Dam 4.	14
2831 2832 2833 2834 2835 2836 2837 2838 2839	11.45 11.86 12.11 13.70 11.54 11.90 12.63 11.63 12.86		2881 2882 2883 2884 2885 2886 2887 2888 2889	11.26 12.53 11.85 12.54 13.04 11.45 11.22 10.31 13.77		2931 2932 2933 2934 2935 2936 2937 2938 2939	14.17 10.89 11.51 12.98 14.19 14.30 13.02 11.92 11.69	
i	By Dam	405] .	By Dam	410	В	By Dam 4	115
2841 2842 2843 2844 2845 2846 2847 2848 2849	11.35 11.62 11.31 13.05 12.54 11.47 11.54 12.53 12.60		2891 2892 2893 2894 2895 2896 2897 2898 2899	14.43 11.24 11.55 11.42 11.70 11.79 11.75 12.56 12.11	502	2941 2942 2943 2944 2945 2946 2947 2948 2949	13.24 13.03 13.21 12.53 13.96 13.39 12.39 13.53 12.92	

TABLE 23.—Continued

Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned
В	y Dam	116	i	By Dam	119		By Dam	422
2951	13.37	1	2981	12.34		3011	13.73	
2952	12.58		2982	13.03		3012	12.30	
2953	11.74		2983	12.37		3013	11.96	
2954	12.29		2984	13.00		3014	12.78	
2955	11.63		2985	14.59	504	3015	12.88	
2956	11.99		2986	12.73		3016	11.10	
2957	12.14		2987	13.30		3017	12.86	
2958	12.35		2988	12.01	-	3018	12.16	
2859	11.91		2889	12.23		3019	13.22	
B_{\cdot}	y Dam 4	17	1	By Dam	120	1	By Dam	423
2961	13.85		2991	12.29		3021	11.81	1
2962	11.74		2992	12.48		3022	11.90	
2963	12.43		2993	12.22		3023	13.01	1
2064	12.16		2994	12.66		3024	12.29	
2965	12.36		2995	12.52		3025	11.74	
2966	13.44		2996	12.75		3026	13.01	
2967	13.40		2997	13.01		3027	13.54	
2968	14.01		2998	12.15		3028	13.89	
2969	12.87		2999	11.79		3029	13.50	
B_{\cdot}	y Dam 4	118	I	By Dam	121	1	By Dam	424
2971	12,23		3001	12.89		3031	12.49	
2972	13.47		3002	12.66		3032	10.98	
2973	12.36		3003	13.10		3033	11.24	
2974	12.17		3004	13.68		3034	11.44	,
2975	12.73		3005	11.82		3035	13.00	
2976	12.16		3006	12.77		3036	12.11	-
2977	11.59		3007	11.67	i	3037	11.98	
2878	10.52		3008	13.16		3038	9.34	
2979	13.81		3009	13.31		3039	11.46	

Table 24.—Fifth Generation High Protein Plot Record, 1901

	D D	Protein,	percent.		D D	Protein, percent.		
ear No.	By Dam No.	Seed ear planted.	Crop harvested.	Register ear No.	No.	Seed ear planted.	Crop harvested.	
501	413	14.38	14.78	508	413	15.40	15.21	
502	410	14.43	13.76	509	412	15.20	14.22	
503	412	14.54	14.10	510	407	14.63	13.61	
504	419	14.59	15.02	511	403	14.56	13.83	
505	413	14.98	13.37	512	413	14.45	14.19	
506	411	15.21	14.07	513	411	14.43	13.61	
507	413	15.71	14.44	514	401	14.35	13.46	
• • •			••••	*515	402	14.01	13.37	
		Average	of plot.			14.78	14.12	

^{*}Planted in Special High-Protein Plot:-not included in average.

Table 25.—Protein in Sixty Individual Ears from High-Protein Plot of 1901 and Seventy-two additional Ears from Special High-Protein Plot

A	D	Register		D t . i	Register	A	Destata	Register
Annual ear No.	Protein, percent.	No.	Annual ear No.	Protein, percent.	No	Annual ear No.	Protein, percent.	No.
	1.	assigned			assigned.		L	assigned.
B	y Dam	501	B	y Dam	500	3563	12.70	
						3564	10.60	
3611	14.78		3691	15.03	613	3565	13.69	
3612	16.03		3692	13.77		3566	14.78	
3613	13.57		3693	12.84		3567	13.61	
3614	14.84		B	y Dam	510	3568	15.27	
		1		12.19	i	3569	12.75	
B_{i}	y Dam	502	3701 3702	1		3591	14.62	
3621	13.15	l	3702	14.85 14.33		3592	13.93	٠
3021	13.13		3703	12.36		3593	15.05	602
D	Dans	F03	3705	14.56		3594	13.26	
D_{i}	y Dam	303	3705	13.00		3595	14.71	
3631	14.12		3700	13.00	·	3596	13.18	
3632	13.62		\parallel B	y Dam	511	3597	14.98	
	1	l .	2711	11125	1	3598	12.49	
B	y Dam	504	3711	14.35		3599	15.58	605
			3712	11.59		n	l	
3641	15.51	610	3713	11.80		11	y Dam	
3642	14.64		3714	13.24			n in Speci Protein Pl	
3643	14.68		ll ,	Data Diama			1	01.
3644	14.89		1	ly Dam	512	3521	13.73	
3645	14.85		3721	12.63	l	3522	12.73	
3646	14.27		3722	15,80	608	3523	13.46	
3647	12.78		3723	12.67		3524	13.87	
3648	14.22		3724	15.65	- 609	3525	13.12	614
D	D			l		3526	14.93	614
•B	y Dam	505	Б	y Dam	5/3	3527	11.56	
3651	13.02	1	H .	-		3528	13.40	
3652	12.17		3731	13.99		3529	13.93	
3653	14.63		3732	14.51		3541	13.78	
3654	13.57		3733	12.01		3542	11.78	
3655	12.94		3734	12.86		3543	12.80	
3656	12.96		3735	14.27		3544	13.54	
3657	12.80		ll B	y Dam	511	3545	13.16	
3658	13.14	}	il .		J.4	3546	13.47	
3659	13.56		3741	11.50		3547	12.21	
		•	3742	14.37		3548	13.09	İ
В	ly Dam	506	3743	13.86		3549	11.76	
3661	15.41	604	3744	13.34		3551	14.88	
3662	13.41	604	· r	Day Dave	507	3552	13.85	
3663	11.82		D D	By Dam	507	3553	13.16	
3664				n in Speci		3554	11.08	
300+	14.17			Protein P	lot.	3555	12.23	
	. D		3531	13.29		3556	13.28	
В	By Dam	507	3532	12.33		3557	14.12	
3671	14.54	1	3533	11.96		3558	14.61	
3672	14.88		3534	14.25		3559	14.80	
	1	1	3535	13.84		3571	14.69	
Б	y Dam	508	3536	15.17	612	3572	12.08	
			3537	15.00	601	3573	11.18	
3681	13.47		3538	16.12	607	3574	13.67	
3682	15.38		3539	14.20		3575	13.07	
3683	15.49		3561	12.86		3576	8.94	
3684	14.51	1	3562	15.40	611	3577	13.58	
	1		11		1	11		

TABLE 25.—Continued.

Annual ear No.	Protein, percent.	Register No. assigned.
3578	13.33	
3579	15.76	606
3581	12.17	
3582	15.01	
3583	13.58	
3584	13.75	
3585	15.21	603
3586	13.82	
3587 .	13.13	
3588	14.77	
3589	14.12	

Table 26.—Sixth Generation High Protein Plot Record, 1902

Register ear No.	D= D	Protein, percent.		D - 1 1 4 -	By Dam	Protein, percent.	
	No.	Seed ear planted.	Crophar- vested.	Register ear No.	No.	Seed ear planted.	Crop har- vested.
601	507	15.00	12.47	608	512	15.80	
601	507	15.05	12.83	609	512	15.65	12.44
603	515	15.21		610	504	15.51	11.76
604	506	15.41	11.59	611	507	15.40	13.17
605	507	15.58	12.44	612	507	15.17	11.93
606	51 5	15.76		613	509	15.03	12.42
607	507	16.12	12.32	614	515	14.93	
	Avei	age of ter	1 selected	rows.		15,39	12.34

Table 27.—Protein in Ninety Individual Ears from High-Protein Plot of 1902

Annual ear No.	Protein, percent.	Register No. assigned.	Augual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.
Б	By Dam	601	E	By Dam	605	B	y Dam	511
4171	13.07		4201	13.44		4241	12 81	Ι.
4172	12.64		4202	14 22	707	4242	14.29	708
4173 4174	12.82 14.70	710	4203 4204	13.76 13.50	720	4243 4244	12 76 14 49	709
4175	13.51	/10	4205	13 32		4245	13.79	703
4176	13.51		4206	13 47		4246	13.19	
4177	12.29		4207	13 13		4247	10.48	
4178	13.62		4208 4209	13.32		4248 4249	13.70 12.68	701
4179	13.38	(13,06	(1	
	By Dam	002	ll .	By Dam	607	11 -	y Dam	012
4181 4182	$\begin{vmatrix} 12.11 \\ 13.80 \end{vmatrix}$	719	4211 4212	13.14	713	4251 4252	12.28	ļ
4183	11.84	(12)	4213	13.86	704	4253	15.01	711
4184	12 32		4214	13 31		4254	12.50	
4185	13.72	721	4215	14 12	716	4255	12.02	
4186 4187	12 86 14.25	715	4216 4217	14 02 11.50	717	4256 4257	13.22	}
4187	13.30	/15	4217	14 37	714	4257	11.04	
4189	14.75	712	4219	13.66	'1'	4259	12.66	
E	By Dam	604	1	By Dam	600	B	y Dam	613
4191	11.77	1	4221	13 28	1	4261	11.60	1
4192	12.32		4222	13.30		4262	12.36	
4193	13.28		4223	10.88		4263	12.99	
4194 4195	13.08 12.16		4224 4225	13.42 13.76	702	4264 4265	13.67 13.98	705
4196	11.69		4226	13.45	702	4266	12.36	103
4197	12.54		4227	14.03	706	4267	12.91	
4198	12.73		4228	11.09		4268	12.53	
4199	9.99		4229	12.99	}	4269	13.02	
			H	By Dam				
			4231 4232	13.89	718 722			
			4232	13 68 11.00	122			
			4234	9.80				
			4235	13.12				
			4236	11.79				
			4237 4238	11.86 9.54				
			4238	12 17				
			11 1202	1 22 21		ч		

Table 28.—Seventh Generation High Protein Plot Record, 1903

	Pre Doses	Protein,	percent.	Register	n n	Protein,	percent.
Register ear No.	No.	Seed ear planted.	Crop harvested.	Register ear No.	No.	Seed ear planted.	Crop har vested.
701	611	13.70		712	602	14.75	13.63
702	609	13.76		713	607	14.62	14.03
703	611	13.79		714	607	14.37	11,20
704	607	13.86		715	602	14.25	
705	613	13.98	13.22	716	607	14.12	12.40
706	609	14.03	12.76	717	607	14.02	12.30
707	605	14.22		718	610	13.89	12.47
708	611	14.29		719	602	13.80	
709	611	14.49	13.74	720	605	13.76	
710	601	14.70	14.61	721	602	13.72	
711	612	15.01		722	610	13.68	
-	Aver	age of ter	selected :	rows.		14.30	13.04

Table 29.—Protein in One hundred Individual Ears from High-Protein Plot of 1903

Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.
E	By Dam	705	1	By Dam	712	B	y Dam	717
1 2 3 4 . 5 6 7 8 9	13.68 11.98 14.42 14.40 14.60 12.64 11.49 11.39 13.44 13.49	822	41 42 43 44 45 46 47 48 49 50	13.02 12.30 12.02 12.71 13.94 12.78 14.30 13.77 14.37		81 82 83 84 85 86 87 88 89 90	13.92 14.30 13.12 13.06 12.51 8.47 14.90 14.88 14.28 10.47	818 804
Б	y Dam	706	1	l By Dam	713	B	y Dam	1 718
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	14.42 11.35 12.96 13.85 12.57 11.18 15.34 12.22 15.40 14.75 3y Dam 13.58 14.95 11.87 15.30 12.51	808 813 801	51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	14.85 13.44 15.21 14.76 12.95 13.82 12.66 14.56 14.78 13.65 3.90 13.34 11.87 13.07 14.00 13.26	819 806 802 820	91 92 93 94 95 96 97 98 99 100	14.26 14.38 15.23 13.91 13.98 10.93 10.84 12.68 10.37 11.62	816
26 27 28 29 30	14.34 15.12 15.55 15.38 14.83	817 812 809 803	66 67 68 69 70	12.56 12.81 12.22 13.30 13.90				
	y Dam			ly Dam	716			
31 32 33 34 35 36 37 38 39 40	14.76 13.42 15.37 17.33 14.56 13.80 15.45 14.08 11.47 14.40	821 814 811 810	71 72 73 74 75 76 77 78 79 80	11.09 11.01 14.50 13.76 12.28 13.68 15.24 12.37 14.34 12.69	807		•	

Table 30.—Eighth Generation High Protein Plot Record, 1904

Register	By Dam	Protein,	percent.	Register ear No.	By Dam No.	Protein,	percent.
ear No.	No.	Seed ear planted.	Crophar- vested			Seed ear planted.	Crophar vested.
801	706	14.75		812	709	15.55	15.56
802	713	14.76	1	813	706	15.40	
803	709	14.83	15.19	814	710	15.34	15.41
804	717	14.88		815	709	15.30	
805	709	14.95		816	718	15.23	14.70
806	713	15.21	14.99	817	709	15.12	
807	716	15.24		818	717	14.90	14.96
808	706	15.34	13.79	819	713	14.85	ì
809	709	15.38	14.32	820	713	14.78	14.99
810	710	15.45		821	710	14.76	
811	710	17.33	16.39	822	705	14.60	
	Aver	age of ter	selected 1	rows	-	15.39	15.03

Table 31.—Protein in One hundred Individual Ears from High-Protein Plot of 1904

			1			11	1	las .
Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned
Ь	By Dam	803	E	By Dam	809	B	y Dam	816
1 2 3 4 5 6	13.88 14.10 15.54 16.41 16.89 15.30	907 904	31 32 33 34 35 36	13.68 16.35 14.77 14.65 15.69 13.81	921	71 72 73 74 75 76	14.83 14.07 14.38 15.17 16.24 13.52	909
7 8 9 10	17.00 13.48 14.64 15.38	913	37 38 39 40	14.64 16.57 15.64 14.18	918	77 78 79 80	14.20 13.12 13.40 12.94	
В	y Dam	806	В	y Dam	811	B	y Dam d	818
11 12 13 14 15	16.60 13.90 16.77 15.43 14.06	906 924	41 42 43 44 45	17.79 17.07 14.74 15.83 17.53	916	81 82 83 84 85	13.22 15.43 15.97 14.63 13.07	911
17 18 19 20	14.28 15.10 14.00 14.46 13.18		46 47 48 49 50	17.73 14.41 16.26 16.71 17.38	914	86 87 88 89 90	13.43 16.76 15.18 14.65 15.15	922
	By Dam	,		By Dam	812	$B_{\mathcal{I}}$	y Dam è	1
21 22 23 24 25 26 27 28 29 30	16.49 12.72 14.21 14.77 13.80 13.75 13.46 13.95 16.75 10.61	901	51 52 53 54 55 56 57 58 59 60	15.39 17.04 16.43 16.78 15.94 14.75 14.18 13.87 15.00 15.73	915 919 923	91 92 93 94 95 96 97 98 99 100	15.83 15.92 14.83 12.62 14.38 15.85 16.52 14.17 13.22 14.52	903 917 910
			B	y Dam	814			
			61 62 63 64 65 66 67 68 69 70	15.74 16.28 13.62 16.50 15.72 13.90 14.60 15.62 16.13 16.33	912 920 925			

Table 32.—Ninth Generation High Protein Plot Record, 1905

By Dam No.	Protein,	percent.		By Dam	Protein, percent.	
	Seed ear planted.	Crophar- vested.		No.	Seed ear planted.	Crophar vested.
808 811 820	16.49 17.53 15.83		914 915 916	811 812 811	17.73 17.04 17.79	15.09
811	17.38		918	809	16.57	14.75
803 808	16.41 16.75		920 921	814 809	16.50 16.35	14.91
816 820	16.24 16.52		922 923	818 812	16.76 16.78	14.76
818 814 803	15.97 16.28	13.97	924 925	806 814	16.77 16.33	14.86
		•				14.72
	808 811 820 803 811 806 803 808 816 820 818 814 803	By Dam No. Seed ear planted. 808 811 17.53 820 15.83 803 16.89 811 17.38 806 16.60 803 16.41 808 16.75 816 16.52 818 15.97 814 16.28 803 17.00	No. Seed ear planted. 808	By Dam No. Seed ear planted. Cropharvested. Register ear No. 808 16.49 914 915 811 17.53 916 917 803 16.89 917 918 806 16.60 919 920 803 16.41 920 808 16.75 921 816 16.24 922 820 16.52 923 818 15.97 924 814 16.28 13.97 925 803 17.00 ,	By Dam No. Seed ear planted. Crophar-vested. Register ear No. By Dam No. 808 16.49 914 811 811 17.53 916 812 820 15.83 916 811 803 16.89 918 809 811 17.38 918 809 806 16.60 919 812 803 16.41 920 814 808 16.75 921 809 816 16.24 922 818 820 16.52 923 812 818 15.97 924 806 814 16.28 13.97 925 814	By Dam No. Seed ear planted. Crophar-vested. Register ear No. By Dam planted. 808 16.49 914 811 17.73 811 17.53 915 812 17.04 803 16.89 916 811 17.79 806 16.60 918 809 16.57 808 16.75 920 814 16.50 808 16.75 921 809 16.35 816 16.24 922 818 16.76 820 16.52 923 812 16.78 818 15.97 924 806 16 77 814 16.28 13.97 925 814 16.33

Table 33.—Protein in One hundred twenty Individual Ears from High-Protein Plot of 1905

Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned
B	y Dam	912	В	y Dam	918	В	y Dam	922
1	13.84	-	41	14,65		81	15,43	
2	13.82		42	14,00		82	13.38	
3	15.30		43	15.83	1011	83	14.06	
4	12.77		44	14.71		84	16.16	1010
5	14.35		45	14.86		85	14.83	
6	12.91		46	13.95		86	12.74	
7	15.52	1007	47	14.51		87	15.25	
8	15.84	1002	48	15.87	1023	88	15.30	
9	13.39		49	16.58	1006	89	15.71	1003
10	13.82		50	14.59		90	14.79	
11	11.31		51	14.02		91	14.59	
12	12.98		52	13.87		92	14.89	
13	13.99		53	13.15		93		
14	15.81	1014	54	15.07		94	14.78	
15	15.22		55	14.29		95	12.84	
16	13.48		56	15.29		96	15.39	
17	14.70	ľ	57	16.10	1018	97	15.10	
18	10.77	4040	58	15.36		98	13.87	
19	15.62	1019	59	14.54		99	15.72	1022
20	13.99		60	13.81		100	15.65	101 5
B_{\cdot}	y Dam	914	B_{\cdot}	y Dam 9	920	$B_{\underline{c}}$	y Dam	924
21	16.00		61	15.41	-	101	14.75	
22	14.94	1	62	15.19		102	14.79	
23	14.25	i	63	16.87	1008	103	15.21	
24	16.32	ļ	64	12.44		104	15.56	
25	12.80		65	14.55		105	15.95	1012
26	17.35	1009	66	13.47		106	17.05	1024
27	14.95		67	15.46		107	15.05	
28	14.24	ļi.	68	15.78		108	15.88	1005
29	15.02		69	15.87	1001	109	12.00	
30	15.01		70	15.99	1020	110	15.38	
31	15.15		71	13.08		111	11.03	
32	14.74	-	72	15.25	4043	112	14.60	1015
33	12.92	li	73	15.88	1013	113	15.74	1017
34	14.45	1004	74	15.85		114 115	16.59	
35	17.39	1004	75 76	13.99		116	14.02 15.44	
36 37	15.23	1016	76 77	14.71		116	15.44 14.97	
38	15.68 12.25	1016		14.36 14.11		117	14.97	
38	17.30	1021	78 70			118	15,26	
40	15.74	1021	79 80	14.79 15.28		120	13.20	
40	13.74		- 00	13.40		120	13.90	

TABLE 34.—TENTH GENERATION HIGH PROTEIN PLOT RECORD, 1906

Register ear No.	By Dam No.	Protein,	percent	Register ear No.	By Dam	Protein, percent.		
		Seed ear planted.	Crophar- vested.		No.	Seed ear planted.	Crophar vested.	
1001	920	15.87		1013	920	15.88		
1002	912	15.84		1014	912	15.81		
1003	922	15 71		1015	922	15.65	ŀ	
1004	914	17.39	14.35	1016	914	15.68		
1005	924	15.88		1017	924	15.74		
1006	918	16.58	14.50	1018	918	16,10		
1007	912	15 52		1019	912	15.62	ĺ	
1008	920	16.87		1020	920	15.99	14.47	
1009	914	17.35		1021	914	17.30		
1010	922	16.16	14.35	1022	922	15.72	13.97	
1011	918	15.83		1023	918	15.87		
1012	924	15.95	13.92	1024	924	17.05		
	Aver	age of six	selected	rows	·	16.30	14.26	

Table 35.—Protein in One hundred twenty Individual Ears from High-Protein Plot of 1906

Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.	Annval ear No.	Protein, percent.	Register No. assigned.
$B_{\mathcal{I}}$	y Dam	1004	B	y Dam	1010	B	y Dam	020
1	17.13	1102	41	14.17		81	16.11	1110
2	15.56		42	13.94		82	14.36	
3	16.62	1114	43	11.84		83	12.64	
3 4 5 6	14.57	7	44	14.00		84	14.27	
5	13.83		45	13.14		85	15.57	
6	11.73		46	14.75		86	15.00	
7	15.02		47	14.42		87	14.62	
8	14.07		48 49	14.37 12.50		88	12.57	
9	13.89 13.85		50	14.96		89 90	13.69 14.15	
10 11	13.02		51	13.93		91 •	14.15	
12	13.88		52	15.69	1111	92	14.40	
13	15.76	1107	53	15.54	1106	93	15.74	1103
14	13.98	1107	54	15,16	1123	94	15.63	1115
15	12.69		55	17.67	1118	95	13.51	1113
16	12.04		56	14.91	1110	96	14.19	
17	14.87		57	13.67		97	13,25	
18	15,79	1119	58	13.50		98	14.79	
1 9	14.14		59	14.70		99	14.48	
20	14.56		60	14.16		100	16.17	1122
B^{\prime}	v Dam 1	1006	B	y Dam	1012	В	y Dam 1	1022
21			_			-		1105
22	14.88 12.87		61 62	14.17 15.58	1113	101 102	16.11 13.77	1105
23	12.61		63	14.85	1113	102	14.14	
24	14.72		64	11.09		103	14.14	
25	12.75		65	14.21		105	13.15	
26	12.85		66	13.59		106	11.30	
27	16.30	1104	67	12.44		107	12.91	
28	15.44	1109	68	14.07		108	15.82	1112
29	15.01	2205	69	15.35	1101	109	16.48	1124
30	15.26		70	14.45		110	10.46	
31	13.37		71	11.42		111	14.79	
32	16.06	1116	72	12.19		112	14,36	
33	13.31		73	13,40		113	12.47	
34	15.20		74	14.89		114	12.06	
35	15.93	1121	75	13.58		115	14.93	
36	15.08		76	13.94		116	12.62	
37	13.78		77	16.36	1120	117	14.10	
38	14.95		78	12.82		118	14.28	
39	14.44		79	14.18		119	15.65	
40	14.08	`	80	15.79	1108	120	15.78	1117
						- 1		

[September,

TABLE 36.—FIRST GENERATION LOW PROTEIN PLOT RECORD, 1897

516

Register ear No.	By Dam	Protein,	percent.	11 0 1	By Dam	Protein,	Protein, percent.	
		Seed ear planted.	Crophar- vested		No.	Seed ear planted	Cr. phar- vested.	
101 102 103 104 105 *106		9.31 9.12 9.08 9.15 8.38 8.25	10.55 10.89 10.26 10.10 10.73 { 9.90	*107 108 109 110 111 112		8.40 9.22 9.33 9.36 9.30 9.47	10.36 10.20 9.89 10.24 11.20 12.24	
	A	verage of	ten rows	†	1	8.96	10.55	

[†]Analyses of seed for rows that are not represented in the harvest are not included in the plot average.

Table 37.—Protein in Forty-eight Individual Ears from Low-Protein Plot of 1897

Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, perceut.	Register No. assigned	Annual ear No.	Protein, percent.	Register No. assigned
. 1	By Dam	102	1	By Dam	106	1	By Dam	108
411 412 413 414	11.37 11.47 11.36 11.15		431 432 433 434	10.98 9.67 9.91 12.85	212	451 452 453 454	10.80 10.07 12.13 10.04	
1	By Dam	103	*	By Dam	106	1	By Dam	109
416 417 418 419	8.88 9.26 11.62 10.43	208 203	436 437 438 439	9.38 10.03 10.97 9.28	211	456 457 458 459	10.16 10.22 8.22 11.92	206
1	By Dam	104	1	By Dam	107	1	By Dam	110
421 422 423 424	9.60 9.93 12.45 10.43	201	441 442 443 444	10.25 10.28 11.40 9.34	202	461 462 463 464	11.61 10.85 10.04 11.68	
1	By Dam	105	*	By Dam	107	1	By Dam	III
426 427 428 429	11.46 8.29 10.19 9.69	207	446 447 448 449	8.84 11.27 9.05 8.95	205 209 204	466 467 468 469	13.98 12.55 13.89 12.19	

^{*}An extra set of ears were analyzed from Dams 106 and 107

^{*}Crop from Reg. Nos. 106 and 107 were sampled in duplicate.

Table 38.—Second Generation Low Protein Plot Record, 1898

Register	By Dam No.	Protein,	percent.	I 0 I	By Dam	Protein,	Protein, percent.	
ear No.		Seed ear planted.	Crophar- vested.		No.	Seed ear planted.	Crop har vested.	
201 202 203 204 205 *206	104 107 103 107 107	9.60 9.34 9.26 8.95 8.84 8.22	10.92 11.00 11.03 10.06 9.83 { 10.26 { 10.19	*207 208 209 210 211 212	105 103 107 106 106 106	8.29 8.88 9.05 9.28 9.38 9.67	\$ 10.43 \$ 11.14 10.68 -11.16 9.93 10.27 10.83	
	4	Average o	f plot			9.06	10.55	

^{*}Crop from Reg. Nos. 206 and 207 were sampled in duplicate.

Table 39.—Protein in One hundred twenty-six Individual Ears from Low-Protein Plot of 1898

			PROT	EIN PLOT	OF 1898			
Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.
B	y Dam 2	201	1	By Dam	206	1	By Dam .	209
1101 1102 1103 1104 1105 1106 1107	9.26 10.25 10.73 7.76 12.78 11.36 10.17	309	1151 1152 1153 1154 1155 1156 1157	8.90 10.62 9.33 9.52 11.00 10.68	315	1201 1202 1203 1204 1205 1206 1207	12.70 11.02 10.97 10.89 10.25 12.31 11.35	
1108 1109	12.49 11.98		1158 1159	$\frac{13.04}{9.02}$	301	1208 1209	9.8 1 9.60	
,	y Dam 2	202		By Dam.	206		By Dam	210
1111 1112 1113 1114 1115 1116 1117 1118 1119	9.99 11.07 11.26 11.09 10.40 11.11 11.33 10.70 11.41		1161 1162 1163 1164 1165 1166 1167 1168 1169	10.93 10.58 10.24 9.41 7.85 11.71 8.29 11.65 9.90	310 306	1211 1212 1213 1214 1215 1216 1217 1218 1219	8.66 9.87 11.63 9.45 10.78 9.99 9.87 10.22 8.82	303
B	y Dam 2	203	1	By Dam .	207	. 1	By Dam	211
1121 ⁻ 1122 1123 1124 1125 1126 1127 1128 1129	11.87 9.57 10.48 10.28 10.87 13.36 11.44 9.45 11.60		1171 1172 1173 1174 1175 1176 1177 1178 1179	10.10 10.71 8.63 10.34 11.32 10.93 11.66 9.66 11.10	313	1221 1222 1223 1224 1225 1226 1227 1228 1229	11.51 11.28 10.94 10.63 8.32 10.16 9.18 8.78 10.74	311
В	y Dam	204	*/	By Dam .	207	I	By Dam 2	212
1131 1132 1133 1134 1135 1136 1137 1138 1139	8.58 12.97 7.85 9.24 11.81 11.77 8.80 10.97 8.57	312 307 305	1181 1182 1183 1184 1185 1186 1187 1188 1189	16.08 12.30 13.25 8.95 11.36 9.46 11.42 8.83 10.19	316	1231 1232 1233 1234 1235 1236 1237 1238 1239	10.44 11.27 10.30 12.46 9.52 10.02 11.34 10.54 10.09	
В	y Dam	205	1	By Dam.	208			
1141 1142 1143 1144 1145 1146 1147 1148 1149	10.58 11.21 10.21 7.50 9.67 9.56 9.54 10.15 8.62	308	1191 1192 1193 1194 1195 1196 1197 1198 1199	9.71 11.38 9.15 12.48 11.48 10.41 11.59 10.85 9.26				

^{*}An extra set of ears were analyzed from Dams 206 and 207.

Table 40.—Third Generation Low Protein Plot Record, 1899

Register ear No.	By Dam		percent.	Register	By Dam	Protein,	Protein, percent.	
	No.	Seed ear planted.	Crophar- vested.	ear No.	No.	Seed ear planted.	Crophar- vested.	
301	206	9.02	9.80	309	201	7.76	9.26	
302	207	8.83	10.09	310	206	7.85	10.33	
303	210	8.66	9.87	311	211	8.32	9.61	
304	205	8.62	9.95	312	204	8.58	10.50	
305	204	8.57	9.70	313	207	8.63	9.88	
306	206	8.29	9.83	314	210	8.82	9.73	
307	204	7.85	9.55	315	206	8.90	9.79	
308	205	7.50	9.53	316	207	8.95	10.40	
	I	verage of	f plot			8.45	9.86	

Table 41.—Protein in One hunded forty-four Individual Ears from Low-Protein Plot of 1899

Annual	Protein,	Register No.	Annual ear No.	Protein,	Register No.	Annual ear No.	Protein,	Register No.
ear No.	percent.	assigned.	ear No.	percent.	assigned.	ear No.	percent.	assigned.
· 1	By Dam	301	1	By Dam	306	1	By Dam	311
1841	9.49		1891	8.54		1941	9.66	
1842	8.66		1892	9.13		1942	8,66	
1843	9.17		1893	8.68		1943	8.71	
1844	9.11		1894	8.47	409	1944	8.83	
1845	8.97		1895	6.66	408	1945	9.11	
1846	11.49	İ	1896	9.40		1946	10.15	İ
1847	9.56		1897	9.00		1947	9.29	
1848	9.74		1898	8.79		1948	9.86	
1849	9.72		1899	9.66	-	1949	9.54	
1	By Dam	302	į i	By Dam	307	H	By Dam	312
1851	10.16		1901	10.49		1951	9.84	1
· 1852	8.82		1902	9.04		1952	10.57	
1853	9.26		1903	8.95		1953	9.93	
1854	10.07		1904	9.89		1954	9.76	
1855	11.29		1905	9.92		1955	9.27	1
1856	9.69		1906	10.91		1956	9.85	
1857	10.23		1907	10.04		1957	10.15	
1858	8.63	416	1908	10.24		1958	10.74	
1859	8.57	415	1909	8.08	404	1959	9.12	i
1	By Dam	303	İ	By Dam	308	1	By Dam	313
1861	9.48		1911	9.52		1961	9.62	
1862	10.23	[1912	8.41		1962	10.57	
1863	10.77		1913	9.50		1963	11.99	
1864	9.74		1914	9.26		1964	10.27	
1865	10.34		1915	8.39		1965	9.55	
1866	9.96		1916	9.26		1966	8.54	402
1867	9.30		1917	8.62	401	1967	9.99	
1868	9.01		1918	9.18	100	1968	10.19	
1869	10.38		1919	7.74	406	1969	13.06	
	By Dam	304	1	By Dam	309		By Dam	314
1871	9.27		1921	7.49	407	1971	9.66	
1872	8.70		1922	8.61		1972	8.44	403
1873	10.54		1923	7.98	405	1973	8.85	
1874	9.20		1924	9.89		1974	9.72	
1875	9.44		1925	7.60	410	1975	10.28	
1876	10.19	112	1926	8.41		1976	8.74	
1877	8.18	413	1927	9.44		1977	11.27	
1878 1879	10.99 12.66		1928 1929	9.42 8.67		1978 1979	10.13 10.26	
								I
	By Dam			By Dam	310		By Dam	315
1881	7.83	411	1931	11.62		1981	9.54	
1882	9.53		1932	10.12		1982	9.00	
1883	10.98		1933	10.15		1983	9.06	
1884	7.61		1934	10.01		1984	9.09	
1885	9.84		1935	8.47	414	1985	9.57	
1886	9.52		1936	11.76		1986	8.95	412
1887 1888	8.94 9. 1 7		1937 1938	10.14 9.59		1987 1988	8.03 10.48	412
1889	8.48		1939	11.86		1989	9,64	
1009	0.40		1939	11.00		1989	7,04	

TABLE 41. (Continued.)

Annual ear No.	Protein, percent.	Register No. assigned.				
1	By Dam	316				
1991	10.33	1		•		
1992	10.46					
1993	9.34					
1994	9.96	[]			4	
1995	10.70					
1996	10.09					
1997	11.28					
1998	10.59					
1999	10.86					

Table 42.—Fourth Generation Low Protein Plot Record, 1900

Register ear No.	By Dam No.	Protein,	percent.	Register	Ry Dam	Protein, percent.		
		Seed ear planted.	Crophar- vested.	ear No.	No.	Seed ear planted.	Crophar vested.	
401	308	8.62	9.14	409	306	8.47	9.03	
402	313	8.54	9.54	410	309	7.60	9.08	
403	314	8.44	9.20	411	305	7.83	9.97	
404	307	8.08	9.09	412	315	8.03	9.39	
405	309	7.98	9.04	413	304	8.18	9.09	
406	308	7.74	9.08	414	310	8.47	9.41	
407	309	7.49	9.35	415	302	8.57	9.53	
408	306	6.66	8.84	416	302	8.63	10.72	
		Average o	f plot		<u></u>	8.08	9.34	

Table 43.—Protein in One hundred forty-four Individual Ears from Low-Protein Plot of 1900

Annual	Protein,	Register	Annual	Protein,	Register	Annual	Protein,	Register
ear No	percent.	No. assigned.	ear No.	percent.	No. assigned.	ear No.	percent.	No. assigned.
1	By Dam	401	1	By Dam	406	1	B Dam	411
3041	9.82	1	3091	8.50		3141	7.54	510
3042	9.08		3092	8.37		3142	8.15	
3043	9.58		3093	9.28		3143	10.02	
3044	8.02		3094	8.60	·	3144	11.05	
- 3045	7.96		3095	8.30		3145	8.87	
3046	7.62	511	3096	7.91		3146	9.54	
3047	8.61		3097	10.26	502	3147	11.32	
3048	9.36		3098 3099	7.67	503	3148	10.73	
3049	8.55	1		8.25		3149	12.29	
	By Dam	402	li .	By Dam	407		By Dam	412
3051	8.44		3101	8.27		3151	10.76	
3052	8.90		3102	8.39		3152	11.16	
3053	9.47		3103	11.85		3153	11.12	
3054	9.67 7.90	514	3104	8.57		3154	10.12	E12
3055 3056	8.95	514	3105	9.13 10.13		3155 3156	7.78 8.69	513
3057	10.90		3106 3107	8.52		3157	9.14	
3058	8.34		3108	7.79	501	3158	10.05	
3059	10.23		3109	9.81	301	3159	9.34	
By Dam 403				By Dam	408		By Dam	413
3061	8.40	1	3111	7.90	1	3161	9.39	1
3062	9.04		3112	8.57		3162	9.85	
3063	7.50	505	3113	8.04		3163	8.14	
3064	8.60		3114	8.18	1	3164	8.74	
3065	9.95		3115	7.26	508	3165	9.21	
3066	7.43	506	3116	9.79		3166	8.54	
3067	9.71		3117	8.14		3167	9.54	
3068	10.19	1	3118	11.83		3168	8.87	
3069	7.67		3119	8.67		3169	9.72	
	By Dam		By Dam 409]]	By Dam	414
3071	7.75	502	3121	9.58	}	3171	8.14	
3072	9.08		3122	8.12		3172	10.12 8.68	1
3073 3074	10.53 8.09		3123 3124	8.93		3173 3174	9.31	
3074	9.81		3125	8.46		3175	8.86	
3076	9.32		3126	9.33		3176	9.28	
3077	9.36		3127	9.56		3177	8.16	
3078	7.08	507	3128	9.19		3178	8.81	
3079	10.08		3129	8.28		3179	8.70	
i	By Dam	405	∥ .	By Dam	410	-	By Dam	415
3081	7.49	509	3131	8.72		3181	8.40	
3082	9.53		3132	8.49		3182	10.89	
3083	8.56		3133	7.70	512	3183	10.91	
3084	8.48		3134	9.66		3184	9.85	
3085	8.24		3135	9.18		3185	9.91	
3086	9.77		3136	9.17		3186	8.55	
3087	9.67		3137	8.17		3187 3188	9.03	
3088 3089	9.99		3138 3139	10.31 7.56	504	3189	9.94	
3009	7,39		11 3139	1.30	307	11 3109	1 3.34	

Table 43.—Continued

Annual ear No.	Protein percent.	Register No. assigned.
1	By Dam	416
3191	10.51	1
3192	9.52	
3193	9.52	
3194	9.93	
3195	8.58	
3196	10.74	
3197	11.09	
3198	9.86	
3199	9.41	

TABLE 44.—FIFTH GENERATION LOW PROTEIN PLOT RECORD 1901

Register	By Dam	Protein,	percent.	Register	By Dam	Protein,	percent.
ear No.	No.	Seed ear planted.	Crophar- vested.	ear No.	No.	Seed ear planted.	Crophar vested.
501 502 503 504 505 506 507	407 404 406 410 403 403 404	7.79 7.75 7.67 7.56 7.50 7.43 7.08	10.30 9.50 9.69 9.97 9.59 10.08 10.54	508 509 510 511 512 513 514	408 405 411 401 410 412 402	7.26 7.49 7.54 7.62 7.70 7.78 7.90	9 92 10.90 9.38 10.68 10 44 9.61 9.97
		Average o	f plot	11	1)	7.58	10.04

TABLE 45.—PROTEIN IN ONE HUNDRED TWENTY-SIX INDIVIDUAL EARS FROM LOW-PROTEIN PLOT OF 1901

Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.
	-	assigned.					1.	assigned.
	ly Dam	501		By Dam	506		By Dam	511
3751 3752	9.79		3801 3802	9.56		3851 3852	9.24	
3752 3753	11.03		3803	9.03		3853	10.25 12.82	
3754	9.17		3804	8.36	602	3854	10.93	
3755	10.22		3805	9.61		3855	9.73	
3756	10.32		3806	9.80		3856	9.98	
3757 3758	10.12 9.01		3807 3808	9.78 8.36	613	3857 3858	10.78 9.91	
3759	8.89		3809	9.77	013	3859	8.22	
	y Dam	502		By Dam	507		By Dam	512
3761	8.37	614	3811	10.26	307	3861	8.61	<i>J12</i> I
3762	7.77	609	3812	9.03		3862	8.72	
3763	9.08		3813	9.70		3863	8.93	
3764	8.14	610	3814	11.22		3864	10.03	
3765	8.44		3815	11.39		3865	9.35	
3766 3767	10.37		3816 3817	9.27 8.92		3866 3867	8.78 9.75	
3768	11.63		3818	10.50		3868	12.47	
3769	11.11		3819	10.52		3869	10.79	
B	y Dam	503	1	By Dam	508	1	By Dam	513
3771	8.20	611	3821	8.83		3871	9.40	
3772	9.33		3822	10.29		3872	8.71	607
3773 3774	9.44		3823 3824	10.05 9.11		3873 3874	7.54 9.06	607
3775	8.41	601	3825	10.24	i	3875	9.05	
3776	9.52		3826	9.05		3876	10.84	
3777	10.51		3827	9.68		3877	8.87	
3778	9.88		3828	9.08		3878 3879	9.53	
3779	9.60		3829	9,66			9.79 Par Dam	
3781	'y Dam : □ 8.41	504	3831	By Dam 9.83	509	3881	<i>By Dam</i> ∣ 9.6 1	514
3782	9.18		3832	13.05		3882	7.66	606
3783	11.38		3833	11.44		3883	9.60	
3784	8.49		3834	10.54		3884	11.75	
3785	10.83		3835	9.57		3885	8.03	605 603
3786 3787	8.68		3836 3837	10.23		3886 3887	8.25	003
3788	10.72		3838	9.23		3888	8.53	
3789	11.18		3839	11.59		3889	10.97	
В	y Dam	505		By Dam	510			
3791	9.45		3841	8.73				
3792	9.16		3842	7.59	608			
3793 3794	10.19		3843 3844	8.53 10.26				
3795	10.41		3845	9.20				
3796	8.53		3846	8.19	604			
3797	8.34	612	3847	9.52		-		
3798	9.08	7	3848	8.73				
3799	10.39		3849	8.81				

TABLE 46.—SIXTH GENERATION LOW PROTEIN PLOT RECORD 1902

Register	Rw Dam	Protein,	percent.	Register ear No.	By Dam	Protein,	Protein, percent.		
ear No.	No.	Seed ear planted.	Crophar- vested.		No.	Seed ear planted.	Crophar vested.		
601 602	503 506	8.41 8.36	8.03 7.78	608 609	510 502	7.59 7.77	8.01		
603 604	514 510	8.25 8.19	7.63	610 611	502 502 503	8.14 8.20	8.53		
605 606	514 514	8.03 7.66	8.47 8.43	612 613	505 506	8.34 8.36	8.29 8.47		
607	513	7.54		614	.502	8.37	8.57		
	Averag	ge of ten s	elected rov	vs	-1-	8.15	8.22		

Table 47.—Protein in Ninety Individual Ears from Low-Protein Plot of 1902

Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.
I	By Dam	601	1	By Dam	605	B	y Dam	612
4271	7.66		4301	7.96		4341	7.57	
4272	9.05		4302	9.38		4342	8.15	
4273	7.89		4303	8.04		4343	8.11	
4274	8.63		4304	8.41		4344	7.73	
4275 4276	7.74 6.98	707	4305 4306	7.53 8,20		4345 4346	8.70 6.84	708
4277	7.78	107	4307	7.63	}	4347	7.94	708
4278	9.69		4308	7.65	1	4348	7.94	
4279	7.46		4309	7.57		4349	8.10	
	By Dam	602		By Dam	606	1	v Dam o	1 5 z a
4281	6.61	714	4311	9,44	, ,	4351	7.52	1
4282	8.89	,,,,	4312	8.31	}	4352	8.17	
4283	8.31		4313	7.01	706	4353	7.80	
4284	8.52		4314	7.65		4354	7.47	ĺ
4285	7.46		4315	7.43	701	4355	7.59	
4286	6,86	715	4316	8.47		4356	9.12	
4287	6.37	712	4317	8.03		4357	8.63	
4288	7.59		4318	7.62	1	4358	9.48	
4289	7.50		4319	8.27		4359	7.23	704
E	By Dam	603 '	1	By Dam	608	B_{2}	y Dam o	514
4291	7.47	[4321	7.09	717	4361	8.38	
4292	7.36	702	4322	6.42	710	4362	7.94	
4293	7.97		4323	7.22	718	4363	8.46	
4294	7.91		4324	9.14		4364	7.62	
4295	6.45	713	4325	7.42	721	4365	8.63	
4296 4297	7.29 7.52	720	4326 4327	7.00 9.53	716	4366 4367	8.51 7.45	722
4297	7.34	719	4328	6.37	711	4368	6.48	709
4299	7.12	705	4329	8.20	'11	4369	8.21	709
7277	1 1.12	100		By Dam	610	7303	0.21	
			4331	8.38	010			
			4332	8.44)		
			4333	7.73				
			4334	8.10				
			4335	7.67				
			4336	7.78				
			4337	7.27	703			
			4338	7.70				
			4339	7.85				

Table 48.—Seventh Generation Low Protein Plot Record 1903

Register	By Dam	Protein,	percent.	Register	By Dam	Protein,	percent.
ear No.	No.	Seed ear planted.	Crophar- vested.	ear No.	No.	Seed ear planted.	Crophar vested.
701 702 703 704 705 706 707 708 709 710 711	606 603 610 613 603 606 601 612 614 608 608	7.43 7.36 7.27 7.23 7.12 7.01 6.98 6.44 6.42 6.37	8.57 9.04 7.68 8.53 9.22 8.88 8.63 8.51	712 713 714 715 716 717 718 719 720 721	602 603 602 602 608 608 608 603 603 608 614	6.37 6.45 6.61 6.86 7.00 7.09 7.22 7.24 7.29 7.42 7.45	8.41 8.74
	Averag	ge of ten s	elected ro	ws		6.93	8.62

Table 49.—Protein in One hundred Individual Ears from Low-Protein Plot of 1903

Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register
E	By Dam	702	E	By Dam	706	B	y Dam	711
1 2 3 4 5 6 7 8 9	8.58 8.40 8.56 6.82 8.41 7.14 8.37 8.43 6.89 7.26	815 805 816 819	31 32 33 34 35 36 37 38 39 40	7.73 7.43 8.69 6.67 7.20 7.56 8.95 7.41 8.01 8.03		71 72 73 74 75 76 77 78 79 80	7.17 8.41 8.10 7.77 7.92 7.28 6.80 8.01 6.79 9.50	803 814 809
Z	By Dam	703	1	By Dam	707	$B_{\underline{I}}$	y Dam	7 <i>15</i>
11 12 13 14 15	9.14 8.86 8.20 7.85 9.26		41 42 43 44 45	8.26 7.34 7.37 6.75 10.20	801 813	81 82 83 84 85	7.95 7.30 10.05 7.41 8.14	820
16 17 18 19 20	9.48 8.21 8.43 8.00 7.36	822	46 47 48 49 50	9.05 9.35 9.34 7.80 8.82		86 87 88 89 90	7.74 9.00 7.23 7.37 6.38	804 811
1	By Dam	704	1	By Dam	708	$B_{\underline{c}}$	y Dam	716
21 22 23 24 25 26 27 28 29 30	7.00 6.80 7.19 6.62 7.32 6.99 8.85 7.35 7.74 7.31	817 808 818 810 821 806	51 52 53 54 55 56 57 58 59 60	6.54 8.55 8.61 8.21 8.61 8.10 8.16 9.08 8.19 9.42	812	91 92 93 94 95 96 97 98 99	8.13 8.37 8.60 8.57 8.61 7.86 7.87 8.61 6.87 7.95	807
			1	By Dam	710			
			61 62 63 64 65 66 67 68 69 70	7.61 9.27 7.56 7.64 8.34 7.61 7.72 8.37 10.05 8.00				

Table 50.—Eighth Generation Low Protein Plot Record 1904

Register	By Dam	Protein,	percent.	Register	By Dam	Protein,	percent.
ear No.	No.	Seed ear planted.	Crophar- vested.	ear No.	No.	Seed ear planted.	Crophar vested.
801	707	7.34		812	708	6.54	9.56
802	704	7.31	9.42	813	707	6.75	
803	711	7.28	8.76	814	711	6.80	
804	715	7.23	8.81	815	702	6.82	9.02
805	702	7.14		816	702	- 6.89	
806	704	6.99	ĺ	817	704	7.00	i
807	716	6.87	8.66	818	704	7.19	9.27
808	704	6.80		819	702	7.26	
809	711	6.79	9.36	820	715	7.30	
810	704	6.62	10.09	821	704	7.32	9.79
811	715	6.38		822	703	7.36	
	Avera	ge of ten s	elected ro	ws		7.00	9.27

Table 51.—Protein in One hundred Individual Ears from Low-Protein Plot of 1904

Annual ear No.	Protein, percent	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.
В	y Dam	802	E	By Dam 807			y Dam &	815
1 2 3 4	7.60 7.71 7.83 8.83	902	31 32 33 34	9.00 7.80 7.95 8.44	903 909	71 72 73 74	8.13 8.30 7.39 7.15	918
4 5 6 7 8 9	9.41 7.96 7.24 9.82 8.14	911	35 36 37 38 39	8.64 8.21 7.31 8.51 6.36	916	75 76 77 78 79	7.57 7.63 7.26 7.87 8.93	9 2 5
10	9.61		40	8.22		80	6.57	904
1	By Dam	803		By Dam	809	1 1	Dam 8	818
11 12 13 14 15	8.94 6.13 7.24 7.69 8.67	908	41 42 43 44 45	8.68 9.24 9.60 7.87 7.58		81 82 83 84 85	7.86 8.75 7.76 8.34 8.84	
16 17 18 19 20	8.55 6.78 7.38 7.24 7.64	914 901	46 47 48 49 50	7.67 7.65 7.49 8.71 8.00	907 913 920	86 87 88 89 90	9.26 7.35 7.70 8.85 7.53	921 910
B_{i}^{l}	y Dam	804	, E	By Dam	810	B_0	Dam &	32 <i>I</i>
21 22 23 24 25 26 27 28 29 30	8.44 7.16 7.06 8.44 8.71 8.18 7.64 6.71 9.25 7.74	923 912 906	51 52 53 54 55 56 57 58 59 60	8.58 9.98 8.87 7.39 7.34 8.06 8.89 8.55 10.46 7.79	905	91 92 93 94 95 96 97 98 99	8.91 7.46 7.34 8.10 9.88 6.91 8.47 7.27 7.95 9.98	919 924 915
30	1.74		''	Ry Dam		100	9.90	ļ.
		-	61 62 63 64 65 66 67 68 69 70	9.90 8.05 8.19 7.88 8.77 9.47 8.63 7.51 8.93 8.25	917			

TABLE 52.—NINTH GENERATION LOW PROTEIN PLOT RECORD, 1905

Register	By Dam	Protein,	percent.	Register	By Dam	Protein,	percent.
ear No.	No.	Seed ear planted.	Crophar- vested.		No.	Seed ear planted.	Crophar- vested.
901 902 903 904 905 906 907 908 909 910 911 912	803 802 807 815 810 804 809 803 807 818 802 804	7.24 7.60 7.80 6.57 7.34 6.71 7.67 6.13 7.95 7.53 7.24 7.06	7.96 8.78 8.68	914 915 916 917 918 919 920 921 922 923 924 925	803 821 807 812 815 821 809 818 810 804 821 815	6.78 7.27 7.31 7.51 7.15 7.34 7.35 7.79 7.16 6.91 7.26	8.91 8.38 8.71
913	809 Ave	7.65 rage of si	x selected	rows		7.09	8.57

Table 53.—Protein in One hundred twenty Individual Ears from Low-Protein Plot of 1905

Annual ear No.	Proteiu, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register /No.	Annual ear No.	Protein, percent.	Register No. assigned.
1	By Dam	902	1	By Dam	912	E	By Dam	920
1	7.57	ĺ	41	8.75		81	6.78	1010
	6.86	1007	42	10.80		82	8.09	
3	7.61		43	7.92		83	7.93	
4	7.88		44	9.97	:	84	7.47	
2 3 4 5 6	6.62	1002	45	8.60		85	9.38	
6	9.06		46	9.57		86	9.52	
7	8.02		47	9.36		87	10.01	
8	8.02		48	7.24	1006	88	9.48	
9	7.60		49	8.38		89	7.28	1003
10	7.87		50	8.20		90	7.86	
11	7.70		51	8.14		91	6.72	1022
12	9.57		52	9.14		92	7.08	1015
13	8.47		53	6.96	1018	93	8.04	
14	9.01		54	8.61		94	10.45	
15	7.39	1019	55	9.83		95	7.46	
1 6	6.69	1014	56	8.13	1011	96	7.52	
17	8.59		57	7.76	1023	97	10.04	
18	8.07	l l	58	8.33		98	8.18	
1 9	8.36		59	8.38		99	8.71	,
20	8.16		60	9.48		100	9.69	
i	By Dam	906	1	By Dam	914	l I	By Dam	924
21	9.69	1	61	9.09	i - i	101	9.80	
22	8.32		62	12.14		102	7.50	1012
23	9.05		63	7.47	1001	103	11.39	
24	9.62		64	8.12		104	7.58	1005
25	9.09		65	8.58	ĺ	105	7.88	
26	9,23		66	8.15	1013	106	10.06	
27	8.53		67	9.28		107	7.90	
28	9.57	l i	68	7.21	1008	108	9.40	
29	6.72	1004	69	8.35		109	9.32	
30	8.54		70	8.54		110	7.38	1024
31	8.30	l	71	11.43		111	9.20	
32	8.24	1009	72	9.46		112	7.67	1017
33	8.88		73	7.38	1020	113	9.36	
34	9.28		74	10.00		114	7.81	
35	8.18	1021	75	9.54	1	115	8.20	
36	9.20		76	9.13		116	7.68	
37	9.57		77	7.90		117	9.05	
38	8.11	1016	78	8.76		118	8.28	
39	7.62		79	9.20	}	119	9.68	
40			80	8.53		120	9.05	

Table 54.—Tenth Generation Low Protein Plot Record, 1906

Register	By Dam		percent.	Register	By Dam	Protein,	percent.
ear No.	No.	Seed ear planted.	Crophar- vested.	ear No.	No.	Seed ear planted.	Crophar vested.
1001	914	7.47		1013	914	8.15	
1002	902	6.62		1014	902	6.69	8.25
1003	920	7.28	[1015	920	7.08	
1004	906	6.72		1016	906	8.11	8.70
1005	924	7.58		1017	924	7.67	1
1006	912	7.24	9.01	1018	912	6.96	8.76
1007	902	6.86		1019	902 .	7.39	
1008	914	7.21		1020	914	7.38	1
1009	906	8.24		1021	906	8.18	İ
1010	920	6.78	8.43	1022	920	6.72	
1011	912	8.13		1023	912	7.76	
1012	924	7.50	8.71	1024	924	7.38	
	Aver	age of six	selected	rows		7.21	8.64

Table 55.—Protein in One hundred twenty Individual Ears from Low-Protein Plot of 1906

Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.	Annual ear No.	Protein, percent.	Register No. assigned.
B	y Dam	7006	B	y Dam	1012	By	Dam 1	016
1	10.54		41	8.12		81	7.99	
2 3 4 5 6	8.80		42	9.02		82	8.19	
3	7.52	1107	43	9.83		83	7.54	1110
4	10.38		44	8.08		84	7.67	1103
5	10.32	4440	45	9.48	-	85	7.36	1122
6	7.61	1119	46	8.88	1100	86	8.92	
7	9.46		47	7.92	1106	87	8.14	
8	9.38	1	48	9.48		88	9.63	
9	10.17	1	49	8.15		89 90	10.91	1
10	9.23		50	8.53			9.78	
11	9.00 8.70		51 52	8.87	1111	91 92	7.93	
12		.	52	8.05	1111	92	9.07	4447
13	9.25		54			93	7.65	1115
14 15	9.17 7.94	Ì	55	8.18 7.86	1118	95	9.83	
	8.98		56	9.60	1110	96	8.78	1
16 17	8.88		57	7.97	1123	97	9.06	1
18	7.51	1102	58	9.35	1123	98	9.00	
19	10.45	1102	59	8:65		99	7.91	
20	6.94	1114	60	9.49		100	9.67	
	y Dam.	7010		y Dam.	1014	~	Dam 1	
21	8.85		61	8.19	1100	101	7.68	1112
22	7.64	1	62	7.07	1108	102	9.29	
23	9.87	[]	63	8.54		103	8.36	
24	10.17		64 65	7.75		104 105	9.70	1
25	8.43		66	8.39 9.36		105	9.21 8.67	
26	$\begin{vmatrix} 7.39 \\ 9.52 \end{vmatrix}$		67	9.36		107	9.51	
27 28	8.70	[68	7.67		107	9.31	
28 29	6.73	1104	69	9.17		109	9.43	
30	8.13	1104	70	7.47		110	8.93	
31	9.92		71	9.54		111	7.71	1105
32	9.71		72	6.49	1120	112	8.49	1105
33	7.02	1116	73	7.41	1101	113	8.88	1
34	7.96	1110	74	8.04	1101	114	9.36	1
3 4 35	7.36	1109	75	10.63		115	7.04	1124
36	8.18	1109	76	7.27	1113	116	8.88	1127
37	8.81		77	8.14	1110	117	9.42	
38	8.53		78	8.15		118	8.05	1117
39	7.36	1121	79	7.57		119	9.07	****
40	8.32		80	8.80		120	8.15	1

Table 56.—First Generation High Oil Plot Record, 1897

Register	By Dam	Oil, pe	rcent.	Register	By Dam	Oil, pe	rcent.
ear No.		Seed ear planted.	Crophar- vested.		No.	Seed ear planted.	Crophar vested.
101 102 103 104 105 106 107 108 109 110 111		5.02 5.09 5.10 5.23 5.22 5.22 5.24 5.46 5.51 5.63 5.65 6.02	4.43 4.74 4.77 4.65 4.50 4.53 4.98 4.75 5.40 4.65	113 114 115 116 117 118 119 120 121 122 123 124		5.75 5.61 5.51 5.36 5.25 5.23 5.27 5.21 5.20 5.13 5.02 4.99	4.99 4.84 5.23 4.70 4.47 4.81 4.38 4.80 4.58 4.46
	Avera	ige twenty	rows har	vested	1	5.39	4.73

TABLE 57.—OIL IN EIGHTY INDIVIDUAL EARS FROM HIGH-OIL PLOT OF 1897

Annual ear No.	Oil percent.	Register No. assigned.	Annual ear No.	Oil percent.	Register No. assigned.	Annual ear No.	Oil percent.	Register No. assigned.
B	By Dam	103	l E	By Dam	IIO	B	y Dam	116
471 472 473 474	4.44 4.79 4.42 4.59		506 507 508 509	4.91 4.69 5.04 4.20	221	536 537 538 539	4.97 4.50 4.92 4.83	223
E	y Dam	104	В	y Dam	III	B	y Dam .	117
476 477 478 479	4.84 4.82 5.39 4.40	209	511 512 513 514	5.44 5.45 5.49 5.39	210 214 213 216	541 542 543 544	4.78 3.60 4.91 5.02	220
B	y Dam	105	B	y Dam	II2	B_2	Dam	1 118
481 482 483 484	5.04 4.87 4.46 5.07	219	516 517 518 519	4.63 5.26 4.81 4.44	217	546 547 548 549	5.20 5.00 4.90 4.81	207 222
E	y Dam	106	В	y Dam	113	B	y Dam	119
486 487 488 489	5.03 4.20 4.72 4.86	203	521 522 523 524	4.98 4.22 4.91 5.68	201	551 552 553 554	4.31 4.33 4.24 4.33	
I	By Dam	107	E	By Dam	114	B	y Dam	120
491 492 493 494	4.85 4.38 4.93 4.97	224	526 527 528 529	4.70 5.43 5.12 4.68	215 206	556 557 558 559	4.93 4.68 4.92 5.12	218
I	By Dam	108	I	By Dam	115	B	y Dam	121
496 497 498 499	4·26 4.59 4.76 4.45		531 532 533 534	5.04 4.82 4.98 5.27	204 202 208	561 562 563 564	4.41 4.62 4.95 4.23	
1	By Dam	109				B	y Dam.	722
501 502 503 504	5.45 4.95 4.64 4.77	211				566 567 568 569	4.39 4.20 5.05 4.42	205

Table 58.—Second Generation High Oil Plot Record 1898

Register	By Dam	Oil, p	ercent.	Register	By Dam	Oil, p	ercent.
ear No.	No.	Seed ear planted.	Crophar- vested.		No.	Seed ear planted.	Crophar vested.
201 202 203 204 205 206 207 208 209 210	113 115 106 115 122 114 118 115 104	4.98 4.98 5.03 5.04 5.05 5.12 5.20 5.27 5.39 5.44	4.86 4.74 4.94 5.17 5.36 4.79 4.87 5.20 5.16 5.25	213 214 215 216 217 218 219 220 221 222	111 111 114 111 112 120 105 117 110	5.49 5.45 5.43 5.39 5.26 5.12 5.07 5.02 5.04 5.00	5.21 5.44 5.48 5.26 5.55 5.23 5.06 4.89 5.00 5.10
210 211 212	109 113	5.45 5.68	5.21 5.63	222 223 224	116 116 107	4.97 4.97	5.05 5.21
		Averag	e of plot			5.20	5.15

Table 59.—Oil in Two hundred sixteen Individual Ears from High-Oil Plot of 1898

	-							
Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.
1	By Dam	201	1	By Dam	206	I	By Dam	211
1241 1242 1243 1244 1245 1246 1247 1248 1249	5.14 5.47 4.44 4.66 4.30 4.38 4.94 4.76 4.62	,	1291 1292 1293 1294 1295 1296 1297 1298 1299	5.29 4.43 5.57 4.54 4.57 4.52 4.52 5.04 4.39	×	1341 1342 1343 1344 1345 1346 1347 1348 1349	4.79 5.90 4.68 5.33 5.70 4.80 5.09 5.08 5.31	302
	By Dam	202		By Dam	207	l '	y Dam	212
1251 1252 1253 1254 1255 1256 1257 1258 1259	4.11 5.16 4.53 4.39 4.73 4.79 4.16 4.47 5.82	312	1301 1302 1303 1304 1305 1306 1307 1308 1309	4.58 4.37 4.93 4.21 5.59 4.83 4.84 6.09 4.91	309	1351 1352 1353 1354 1355 1356 1357 1358 1359	5.94 6.71 5.73 6.49 5.78 5.11 5.33 4.90 5.76	306 307
В	By Dam	203	I I	By Dam	208	E	By Dam	213
1261 1262 1263 1264 1265 1266 1267 1268 1269	4.37 4.52 4.84 5.10 5.00 5.24 5.29 4.99 4.96		1311 1312 1313 1314 1315 1316 1317 1318 1319	4.77 4.82 5.09 6.28 5.32 4.90 5.27 4.57 5.72	304	1361 1362 1363 1364 1365 1366 1367 1368 1369	4.72 5.39 5.78 4.79 5.23 5.51 5.09 5.59 5.14	
	By Dam	204	İ	By Dam	209		By Dam	214
1271 1272 1273 1274 1275 1276 1277 1278 1279	4.42 5.80 4.99 5.51 4.26 5.90 4.80 4.87 5.02	310	1321 1322 1323 1324 1325 1326 1327 1328 1329	5.43 4.75 5.55 5.18 5.64 4.97 5.22 4.84 4.68		1371 1372 1373 1374 1375 1376 1377 1378 1379	5.07 5.12 5.09 5.43 5.55 5.55 5.14 5.77 5.89	311
B_{\cdot}	y Dam	205	l E	By Dam	210	В	By Dam	215
1281 1282 1283 1284 1285 1286 1287 1288 1289	5.21 5.87 5.23 5.44 4.50 5.21 4.85 5.18 5.26		1331 1332 1333 1334 1335 1336 1337 1338 1339	5.05 4.73 5.02 5.55 4.59 5.68 5.54 6.08 5.00	303	1381 1382 1383 1384 1385 1386 1387 1388 1389	5.29 4.70 5.00 5.69 5.81 5.77 5.07 5.06 6.47	305

TABLE 59.—Continued

								
Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.
1	By Dam	216	I	By Dam	219	I	By Dam	222
1391	5.55	r I	1421	4.87		1451	4.44	
1392	4.98		1422	5.05		1452	4.66	
1393	5.23		1423	4.54		1453	4.94	
1394	5.29		1424	4.99		1454	4.99	
1395	4.65		1425	4.97		1455	5.63	
1396	5.41		1426	4.87		1456	4.99	
1397	5.33	1	1427	5.54		1457	4.80	
1398	5.28		1428	5.10	!	1458	5.43	
1399	4.96		1429	4.61		1459	5.22	
1	By Dam	217	I	By Dam	220	1	y Dam	223
1401	5.26		1431	4.88		1461	4.58	
1402	4.75		1432	4.63		1462	4.48	
1403	5.62	1	1433	4.47		1463	5.10	
1404	5.58		1434	4.46		1464	4.97	
1405	5.24		1435	5.10		1465	5.63	
1406	5.74	<u> </u>	1436	4.76		1466	4.98	
• 1407	5.54		1437	4.90		1467	5.69	
1408	5.66	-	1438	4.69		1468	5.08	
1409	5.52		1439	5.23		1469	4.48	
1	By Dam	218	1	By Dam	221	1	By Dam	224
1411	5.26		1441	4.75		1471	5.17	
1412	4.81		1442	5.05	,	1472	4.61	
1413	5.83	301	1443	4.81		1473	4.51	
1414	4.94	002	1444	5.28		1474	5.72	
1415	5.34	-	1445	4.87		1475	4.99	
1416	5.33	!	1446	5.07		1476	6.34	308
1417	4.85		1447	5.11		1477	5.12	
1418	4.84	1	1448	4.79		1478	4.91	
1419	4.59		1449	4.18		1479	5.32	

TABLE 60.—THIRD GENERATION HIGH OIL PLOT RECORD 1899

Register	By Dam	Oil, percent.		Register	By Dam	Oil, p	ercent.
ear No.	No.	Seed ear planted.	Crophar- vested.	ear No.	No.	Seed ear planted.	Crophar- vested.
301	218	5.83	5.49	307	212	6.49	5.95
302 303	211 210	5.90 6.08	5.68 5.82	308 309	224 207	6.34	5.61 5.48
304	208	6.28	5.62	310	207	5.90	5.53
305	215	6.47	5.94	311	214	5.89	5.47
306	212	6.71	5.66	312	202	5.82	5.40
	-	Average	of plot		,	6.15	5.64

Table 61.—Oil in One hundred eight Individual Ears from High-Oil Plot of 1899

Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned,
1	By Dam	<i>301</i>	E	By Dam	305	B	y Dam	309
2001 2002	5.07 5.28		2041 2042	5.21 5.24		2081 2082	5.07 5.43	
2003 2004	5.52 5.07		2043 2044	6.21 5.38	402	2083 2084	5.31 5.67	1
2005	5.50		2045	6.20	411	2085	6.22	410
2006	5.61	40-	2046	5.63		2086	5.59	
2007 2008	6.42 5.91	405	2047 2048	6.34 5.87		2087 2088	5.23 5.13	
2009	5.73		2049	5.65		2089	6.09	
	By Dam	302	-	By Dam	306	В		1 310
2011	5.35	i l	2051	5.84	Ĭ	2091	5.94	
2012	6.11		2052	5.85	-	2092	6.12	
2013	5.71		2053	5.76		2093	5.49	
2014	5.77		2054	5.43 5.77		2094	6.15 5.17	
2015 2016	5.34 5.10	1	2055 2056	5.77	_	2095 2096	5.90	
2017	5.74		2057	6.18	401	2097	5.39	
2018	4.30		2 58	6.16	401	2098	5.48	
2019	6.01		2059	5.63		2099	5.56	
I	By Dam	303	l E	By Dam	307	B	y Dam	311
2021	5.65		2061	5.80]	2101	4.89	1
2022	6.09		2062	5.87		2102	6.33	408
2023	5.85	400	2063	5.50		2103	6.35	404
2024 2025	6.27 5.54	409	2064 2065	5.90 5.38	1	2104 2105	6.10 5.38	
2026	6.02	1	2066	5.46		2106	5.69	
2027	6.43	407	2067	5.83		2107	4.74	Ì
2028	5.70		2068	6.18	412	2108	5.24	
2029	5.37	ļ	2069	6.06		2109	6.02	
	By Dam	304	1	By Dam	308	$B_{\underline{\cdot}}$		312
2031	5.31		2071	5.35		2111	4.96	
2032 2033	5.91 5.26		2072	5.84	403	2112 2113	5.86 5.40	-
2033	6.54	406	2073	6.22 4.84	403	2113	5.11	
2035	5.84	700	2074	5.82		2115	4.93	
2036	5.97		2076	5.53		2116	5.61	
2037	5.06		2077	6.08		2117	5.00	
2038	5.39]	2078	5.40		2118	5.28	
2039	5.56	1	2079	5.32		2119	6.04	1

TABLE 62.—FOURTH GENERATION HIGH OIL PLOT RECORD 1900

Pariator	By Dam	Oil, p	ercent.	Register	r By Dam	Oil, pe	ercent.
ear No.	No.	Seed ear planted.	Crophar- vested	ear No.	No.	Seed ear planted.	Crophar- vested.
401 402	306 305	6.18 6.21	5.93 6.29	407 408	303 • 311	6.43	5.92 6.29
403 404	308 311	6.22 6.35	6.04 6.16	409 410	303 309	6.27 6.22	5.92 5.91
405	301	6.42	6.17	411	305	6.20	6.27
406	304	6.54	6.30	412	307	6.18	6.24
	I.	Average of	f plot	-		6.30	6.12

Table 63.—Oil in One hundred eight Individual Ears from High-Oil Plot of 1900

Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.
1	By Dam	401	1	By Dam	405	1	By Dam	409
3201	5.63		3241	6.30	ı	3281	5.32	1
3202	5.71		3242	5.68		3282	6.34	
3203	6.61	513	3243	5.78		3283	5.66	
3204	5.31		3244	6.57		3284	6.57	
3205	6.30	505	3245	5.97		3285	5.81	
3206	6.77	505	3246	6.05		3286	6.31	
3207	6.18		3247	6.51	510	3287	5.41	
3208	5.58		3248	6.74	510	3288	6.20	
3209	5.94		3249	6.29	١ , ١	3289	5.44	
	By Dam	402		By Dam	406	1	By Dam	
3211	6.18		3251	5.43		3291	6.67	512
3212	6.46		3252	6.14		3292	6.47	
3213	6.60		3253	6.22		3293	5.30	
3214	6.03		3254 3255	5.43 6.37		3294	5.78	504
3215 3216	5.67 6.14		3255	6.33		3295 3296	6.74 4.60	504
3217	6.23		3257	6.51		3297	6.02	
3218	6.64	502	3258	6.58	501	3298	5.60	
3219	6.38	302	3259	6.26	001	3299	6.13	
	By Dam	103	1 '	By Dam	407		By Dam	111
3221	5.72	,,-3	3261	5.63	, ,	3301	5.51	7
3222	6.15		3262	6.73	511	3302	6.03	
3223	5.51		3263	5.46		3303	6.58	514
3224	6.29		3264	6.91	508	3304	6.79	509
3225	6.10		3265	5.82		3305	6.31	
3226	5.70		3266	5.94		3306	5.71	
3227	6.88	506	3267	5.76		3307	5.80	
3228	5.08		3268	5.60		3308	5.98	
3229	5.94		3269	6.39		3309	5.95	
E	By Dam	404	E	By Dam	408	l E	By Dam	412
3231	6.29		3271	6.25		3311	5.81	
3232	6.16		3272	6.44		3312	6.29	
3233	6.26		3273	6.31		3313	6.32	500
3234	5.99	505	3274	5.85		3314	6.73	503
3235	7.40	507	3275	6.41		3315	6.38	
3236 3237	5.84		3276	6.24		3316	5.70 5.96	
3238	6.09 6.07		3277	6.14		3317	6.28	
3239	6.53	İ	3278 3279	6.14 6.27		3318 3319	6.45	
3207	0.00		3417	0.44	- 1	5517	0.70	

Table 64.—Fifth Generation High Oil Plot Record 1901

Register	By Dam	Oil, percent.		Register	By Dam		Oil, percent.	
ear No.	J	Seed ear planted.	Crophar- vested.	11 0 1	No.	Seed ear planted.	Crophar- vested.	
501	406	6,58	5.69	508	407	6.91	6.25	
502	402	6.64	5.97	509	411	6.79	6.09	
503	412	6.73	5.98	510	405	6.74	6.09	
504	410	6.74	6.10	511	407	6.73	6.41	
505	401	6.77	5.97	512	410	6.67	6.55	
506	403	6.88	5,92	513	401	6.61	6.05	
507	404	7.40	6.35	514	411	6.58	5.83	
		Average	of plot	·		6.77	6.09	

Table 65.—Oil in One hundred twenty six Individual Ears from High-Oil Plot of 1901

By Dam 501						,01			
3891 6.55 3931 5.59 3981 5.94 3892 6.58 3932 6.53 3982 5.36 3984 4.92 3934 5.68 3933 6.55 3983 5.61 3894 4.92 3934 5.68 3984 5.61 3895 5.77 3935 6.64 3985 6.22 3897 6.01 3937 6.48 3987 6.66 6.20 3897 6.01 3937 6.48 3987 6.66 6.38 3989 5.56 3938 5.92 3988 5.92 3988 5.92 3989 5.56 3941 6.56 6.64 3992 6.78 601 3903 6.08 3944 6.62 3994 6.51 3904 6.57 3904 6.57 3904 6.57 3905 6.61 3945 6.20 3995 6.74 3906 6.65 3907 6.14 3947 5.43 3997 6.07 3908 6.44 3949 5.95 3999 5.34 3999 5.34 3991 6.25 3911 6.25 3913 5.69 3953 6.51 4001 6.24 3914 6.52 3913 5.69 3955 6.60 4002 6.83 602 3913 5.69 3955 6.60 4002 6.83 602 3913 6.57 3916 6.53 3955 6.60 4005 7.01 604 3917 5.27 3956 6.50 3956 6.50 3957 5.98 4007 6.36 3919 7.09 606 3959 6.87 603 3909 5.92 8p Dam 504 8p Dam 508 8p Dam 503 8p Dam 508 8p Dam 503 3958 6.18 4008 6.43 3919 7.09 606 3959 6.87 603 4009 5.92 8p Dam 503 3958 6.18 4008 6.43 3919 7.09 606 3959 6.87 603 4009 5.92 8p Dam 504 3956 6.66 4011 6.01 3926 6.63 3959 6.87 603 4009 5.92 8p Dam 504 3966 6.66 3967 7.07 609 4017 5.90 3928 6.31 3968 6.08 3977 5.66 3966 6.61 4018 6.35 3929 6.50 3975 6.81 613 4025 5.88 3977 5.66 3966 6.61 4018 6.35 3975 6.81 613 4025 6.46 3976 6.72 614 4026 5.83 3977 5.66 3966 6.61 4018 6.35 3978 6.62 4012 5.88 4024 5.84 3975 6.67 6.72 614 4026 5.83 3977 7.00 611 4027 5.87 3978 6.26 614 4026 5.88 3977 7.00 611 4027 5.87 3978 6.26 4028 6.46 4028 6.46 4028 5.88 3975 6.626 4028 6.46 4028 6.46 4028 6.46 4028 6.46 4028 6.46 4028 6.46 4028	Annual ear No.	Oil, percent.	No.	Annual ear No.	Oil, percent.	No.	Annual ear No.		Register No. assigned.
3892	I	By Dam	501	1	By Dam	505	В	y Dam	510
3893 5.68 3933 6.55 3984 5.61 3985 5.61 3895 5.77 3935 6.64 3985 6.22 3986 6.26 3936 6.75 3986 6.20 3988 5.92 3899 5.56 3939 5.81 3988 5.92 3988 5.92 3989 5.55 8			ī	3931	5.59		3981	5.94	
3893 5.68 3933 6.55 3984 5.61 3985 5.61 3895 5.77 3935 6.64 3985 6.22 3986 6.26 3936 6.75 3986 6.20 3988 5.92 3899 5.56 3939 5.81 3988 5.92 3988 5.92 3989 5.55 8	3892	6.58		3932	6.53		3982	5.37	
3895 5.77 3936 6.64 3985 6.22 3896 6.26 3987 6.66 6.20 3988 5.92 3989 5.56 3939 5.81 3988 5.92 3988 5.92 3989 5.55 89	3893	5.68	1	3933			3983	5.61	
3896 6.26 3937 6.48 3986 6.20 3987 6.66 3988 5.92 3989 5.56 3938 5.92 3989 5.55 By Dam 502 By Dam 506 By Dam 511 3901 5.96 3941 6.56 3992 6.78 601 3903 6.08 3943 6.62 3993 6.17 3904 6.57 3904 6.55 3944 6.62 3993 6.17 3906 6.55 3944 6.62 3993 6.17 3906 6.55 3944 6.62 3993 6.17 3906 6.55 3944 6.62 3993 6.17 3906 6.55 3944 6.62 3993 6.17 3906 6.55 3946 5.97 3996 6.68 3907 6.14 3947 5.43 3997 6.07 3908 6.09 3948 6.43 3999 5.34 5.95 3911 6.25 3951 6.67 4001 6.24 3911 6.25 3951 6.67 4002 6.83 602 3913 5.69 3953 6.51 4003 6.85 612 3915 6.25 3955 6.60 4004 6.52 3915 6.25 3956 6.50 4006 6.61 3915 6.25 3957 5.98 4007 6.36 3919 7.09 606 3959 6.87 603 4009 5.92 By Dam 504 3966 6.61 3966 6.61 4011 6.01 4014 5.61 3922 6.50 3966 6.61 3966 6.61 4012 6.62 3922 6.63 3966 6.61 3966 6.61 4012 6.62 3922 6.63 3968 6.08 4013 5.12 3928 6.31 3966 6.61 3966 6.61 4015 6.24 3925 6.16 3966 6.61 4016 6.08 3927 5.66 3967 7.07 609 4017 5.90 3928 6.31 3968 6.08 4018 6.35 3973 6.14 4022 5.89 3973 6.14 4022 5.89 3973 6.14 4022 5.89 3973 6.14 4022 5.89 3973 6.14 4022 5.89 3973 6.14 4022 5.89 3973 6.14 4022 5.89 3973 6.14 4022 5.89 3977 7.00 611 4027 5.87 3978 6.26 4028 6.46 4028 6.46 4028 6.46 4028 6.46 6.66 4028 6.46	3894	4.92		3934	5.68		3984	5.61	
3897	3895	5.77		3935	6.64		3985	6.22	
3897	3896			3936	6.75		3986		
3899 5.56 3990 5.81 3989 5.59 By Dam 502 3941 6.56 3991 6.57 3903 6.08 3943 6.62 3993 6.17 3904 6.27 3944 6.62 3994 6.51 3906 6.55 3946 5.97 3996 6.68 3907 6.14 3947 5.43 3997 6.07 3908 6.09 3948 6.43 3998 7.05 605 3909 6.44 3947 5.43 3997 6.07 3911 6.25 3951 6.67 3995 6.74 3912 6.56 3955 6.60 4002 6.83 602 3913 5.69 3953 6.51 4004 6.52 3914 5.92 3954 6.57 4004 6.52 3915 6.25 3956 6.60 4005 7.01 604 3916 6.53 3958 6.18 4008 6.43 3917 5.27 3957 5.98 4007 6.36 3919 7.09 606 3959 6.87 603 4009 5.92 By Dam 503 By Dam 508 By Dam 513 3921 6.53 3958 6.18 4008 6.43 3919 7.09 606 3959 6.87 603 4009 5.92 By Dam 504 3966 6.61 4016 6.08 3921 6.53 3956 5.90 4015 6.24 3926 6.49 3966 6.61 3962 5.89 3927 5.66 3967 7.07 609 4015 6.24 3928 6.31 3968 6.08 4013 5.12 3929 6.50 3968 6.08 4018 6.35 3929 6.50 3973 6.14 4021 5.88 3976 6.72 614 4026 5.83 3977 7.00 611 4027 5.87 3978 6.26 616 4026 5.87 3978 6.26 616 4028 6.46 4026 5.83 3976 6.72 614 4027 5.87 3978 6.26 4028 6.46	3897	6.01		3937	6.48		3987	6,66	
3899 5.56 3939 5.81 3989 5.59 By Dam 502 3941 6.56 3992 6.57 3994 6.51 3903 6.08 3943 6.62 3993 6.17 3904 6.27 3944 6.62 3994 6.51 3906 6.55 3946 5.97 3996 6.68 3907 6.14 3947 5.43 3997 6.07 3908 6.09 3948 6.43 3998 7.05 605 3909 6.44 3947 5.43 3999 5.34 By Dam 503 3948 6.43 3999 5.34 By Dam 503 3952 7.03 610 4002 6.83 602 3911 6.25 3951 6.67 4004 6.52 3913 5.69 3953 6.51 4003 6.85 612 3914 5.92 3954 6.57 4004 6.52 3915 6.25 3955 6.60 4005 7.01 604 3916 6.53 3958 6.18 4007 6.36 3917 5.27 3958 6.18 4008 6.43 3919 7.09 606 3959 6.87 603 4009 5.92 By Dam 504 3966 6.61 3962 5.89 3921 6.53 3922 6.63 3924 6.51 3968 6.18 3922 6.63 3925 5.90 4015 6.24 3924 6.52 3955 5.90 4015 6.24 3925 6.16 3966 6.61 4016 6.08 3927 5.66 3968 6.08 4013 5.12 3928 6.31 3968 6.08 4015 6.24 3929 6.50 3968 6.08 4015 5.78 3970 6.64 3975 6.81 613 4022 5.89 3971 6.64 3975 6.81 613 4025 6.46 3976 6.72 614 4026 5.83 3977 7.00 611 4027 5.87 3978 6.26 6.26 4028 6.46	3898	6.35		3938	5.92	-	3988	5.92	
3901 5.96 3941 6.56 3992 6.57 3992 6.78 601	3899	5.56		3939			3989	5.59	
3902 5.72 3942 6.02 3992 6.78 601 3903 6.08 3943 6.62 3993 6.17 3904 6.27 3944 6.62 3994 6.51 3905 6.61 3945 6.20 3995 6.74 3908 6.09 3948 6.43 3997 6.07 3908 6.09 3948 6.43 3998 7.05 605 3911 6.25 3951 6.67 3953 6.51 3912 6.05 3953 6.51 3954 6.57 3913 5.69 3953 6.51 3954 6.57 3914 5.92 3954 6.57 4004 6.52 3915 6.25 3955 6.60 4005 7.01 604 3916 6.53 3956 6.50 3958 6.18 3919 7.09 606 3959 6.87 603 4008 6.43 3921 6.53 3954 6.66 4006 6.61 3922 6.63 3923 7.13 607 3963 7.10 608 4013 5.12 3924 6.52 3964 6.14 3966 6.61 3966 6.61 3925 6.50 3966 6.60 3967 7.07 609 4015 6.24 3926 6.49 3966 6.61 3966 6.61 3966 6.61 3927 5.66 3967 7.07 609 4017 5.90 3928 6.31 3968 6.08 3969 6.00 4023 5.78 3929 6.50 3971 6.64 3976 6.72 614 4026 5.83 3977 7.00 611 4027 5.87 3978 6.26 6.46 4026 5.83 3977 7.00 611 4026 5.83 3977 7.00 611 4026 5.87 3978 6.66 6.66 4028 6.46 4026 5.83 3977 7.00 611 4026 5.87 4026 5.46 4026 5.87 4021 5.88 4022 5.89 3973 6.14 4026 5.83 3976 6.72 614 4026 5.83 3977 7.00 611 4026 5.87 3978 6.66 6.66 6.66	E	By Dam	502	l I	By Dam	506	B	y Dam	511
3903	3901	5.96	1	3941	6.56	1	3991	6.57	
3903 6.08 3944 6.62 3994 6.17 3994 6.51 3995 6.61 3995 6.61 3995 6.61 3995 6.65 3996 6.55 3996 6.44 3997 5.43 3997 6.07 3998 6.09 3998 6.44 3999 5.95 3999 5.34 8999 5.34 8999 5.34 8999 6.68 3911 6.25 3952 7.03 610 4002 6.83 602 3913 5.69 3953 6.57 4004 6.52 3914 5.92 3954 6.57 3956 6.50 3957 5.98 3918 6.09 3958 6.18 3919 7.09 606 3958 6.18 3919 7.09 606 3959 6.87 603 4007 6.36 3919 7.09 606 3959 6.87 603 4007 6.36 3912 6.53 3922 6.63 3924 6.52 3955 6.66 3962 5.89 3923 7.13 607 3963 7.10 608 4011 6.24 4011 6.01 4011 6.24 4011 6.01 40	3902	5.72		3942			3992		601
3904 6.27 3944 6.62 3945 6.20 3995 6.74 3906 6.65 3946 6.51 3946 6.55 3946 6.55 3946 6.55 3946 6.55 3947 5.43 3997 6.07 3998 6.09 3948 6.43 3949 5.95 3999 6.44 3949 5.95 3999 7.05 605 3912 6.05 3952 7.03 610 4002 6.83 602 3913 5.69 3953 6.51 4003 6.85 612 3915 6.25 3955 6.60 3956 6.50 3956 6.50 3957 5.98 4004 6.52 3918 6.09 3957 5.98 4006 6.61 3917 5.27 3958 6.87 603 4009 5.92 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 504 8y Dam 508 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 504 8y Dam 503 8y Dam 504 8y Dam 503 8y Dam 504 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 503 8y Dam 504 8y Dam 504 8y Dam 504 8y Dam 504 8y Dam 504 8y Dam 504 8y Dam 504 8y Dam 505 8y Dam 504 8y Dam 505 8y Dam 505 8y Dam 505 8y Dam 505 8y Dam 505 8y Dam 505 8y Dam 504 8y Dam 504 8y Dam 504 8y Dam 504 8y Dam 504 8y Dam 504 8y Dam 504 8y Dam 504 8y Dam 504 8y Dam 504 8y Dam 504 8y Dam 504 8y Dam 504 8y Dam 504 8y Dam 505 8y	3903	6.08		3943			3993		
3905 6.61 3945 6.20 3996 6.74 3906 6.55 3946 5.97 3996 6.67 3998 6.09 3999 6.44 3947 5.43 3997 6.07 3998 6.09 3999 5.34 3911 6.25 3951 6.65 3952 7.03 610 4002 6.83 602 3913 5.69 3954 6.57 4004 6.52 3915 6.25 3955 6.60 4005 7.01 604 3916 6.53 3956 6.50 3957 5.98 3917 5.27 3957 5.98 3959 6.87 603 4009 5.92 8y Dam 503 8y Dam 508 By Dam 503 By Dam 508 By Dam 513 3921 6.63 3922 6.63 3924 6.52 3925 6.16 3925 6.16 3925 6.16 3925 6.16 3925 6.16 3925 6.16 3925 6.16 3925 6.16 3925 6.16 3925 6.16 3925 6.16 3926 6.49 3966 6.61 3968 6.08 3929 6.50 3968 6.08 3929 6.50 3968 6.08 3929 6.50 3968 6.08 3929 6.50 3968 6.08 3929 6.50 3968 6.08 3968 6.08 3969 6.00 8025 5.89 3971 6.64 3965 5.90 3968 6.08 3968 6.08 3929 6.50 3968 6.08 3968 6.08 3969 6.00 5.74 8y Dam 514 4022 5.89 3973 6.14 3974 6.55 3975 6.81 613 4025 6.46 4026 5.83 3976 6.72 614 4026 5.83 3977 7.00 611 4028 6.46	3904	6.27	1	3944			3994		
3906 6.55 3947 5.43 3997 6.06 6.07 3998 6.08 3947 5.43 3999 5.34	3905								
3907 6.14 3948 5.43 3998 7.05 605 3909 6.44 3949 5.95 3999 5.34 By Dam 503 By Dam 507 By Dam 512 3911 6.25 3951 6.67 4001 6.24 4002 6.83 602 3913 5.69 3953 6.51 4003 6.85 612 3916 6.53 3956 6.50 3955 6.60 4005 7.01 604 3917 5.27 3957 5.98 4007 6.36 3919 7.09 606 3958 6.18 3959 6.87 603 3922 6.63 3963 7.10 608 4013 5.12 3924 6.52 3966 6.61 4014 5.61 3925 6.16 3966 6.61 3966 6.61 3927 5.66 3966 6.61 3968 4013 5.12 3928 6.31 3968 6.08 3959 6.87 603 3929 6.50 3971 6.64 4016 6.08 3929 6.50 3971 6.64 3965 5.90 3971 6.64 3968 6.08 3969 6.00 By Dam 504 By Dam 509 By Dam 514 By Dam 509 By Dam 509 By Dam 504 By Dam 508 By Dam 504 By Dam 508 By Dam 504 By Dam 508 By Dam 504 By Dam 508 By Dam 504 By Dam 508 By Dam 504 By Dam 508 By Dam 504 By Dam 508 By Dam 504 By Dam 508 By Dam 504 By Dam 508 By Dam 504 By			1 1						-
3908 6.09 3948 5.95 3999 5.34 605 By Dam 503 By Dam 507 By Dam 512 3911 6.25 3952 7.03 610 4002 6.83 602 3913 5.69 3953 6.51 4004 6.52 3914 5.92 3954 6.57 4004 6.52 3915 6.25 3955 6.60 4005 7.01 604 3916 6.53 3958 6.18 4007 6.36 3918 6.09 3959 6.87 603 4009 5.92 By Dam 504 By Dam 508 By Dam 513 3921 6.53 3964 6.14 4011 6.01 3922 6.63 3964 6.14 4014 5.61 3925 6.16 3965 5.90 4015 6.24 3926 6.49 3966 6.61 4016 6.08 3927 5.66 3968 6.08 3968 6.08 3929 6.50 3971 6.64 3965 5.90 3971 6.64 3965 5.90 4015 6.24 3972 6.16 3967 7.07 609 4017 5.90 3973 6.14 3975 6.81 613 3974 6.55 3974 6.55 4022 5.89 3977 7.00 611 4027 5.87 3978 6.26 4028 6.46									1
3909 6.44 By Dam 503 By Dam 507 By Dam 512			· I						605
3911									
3912	B	y Dam	503	E	By Dam	507	B	y Dam	512
3912	3911	6,25	1	3951	6.67		4001	6.24	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3912	6.05		3952	7.03	610		6.83	602
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3913	5.69		3953	6.51		4003	6.85	612
3915 6.25 3956 6.60 4005 7.01 604 3916 6.53 3956 6.50 4006 6.61 3917 5.27 3957 5.98 3918 6.09 3958 6.18 3919 7.09 606 3959 6.87 603 3921 6.53 3961 6.66 3922 5.89 3923 7.13 607 3963 7.10 608 4011 6.01 3924 6.52 3964 6.14 3925 6.16 3965 5.90 3926 6.49 3966 6.61 3927 5.66 3967 7.07 609 4015 6.24 3928 6.31 3968 6.08 3929 6.50 3971 6.64 3971 6.64 4018 6.35 3972 6.19 3973 6.14 3974 6.55 3975 6.81 613 3976 6.72 614 4026 5.83 3977 7.00 611 4027 5.87 3978 6.26 4028 6.46	3914	5.92		3954					1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3915			3955		1	4005		604
3917 5.27 3958 3958 6.18 4007 6.36 4008 6.43 3919 7.09 606 3959 6.87 603 4009 5.92 8y Dam 504 8y Dam 508 By Dam 513 3921 6.53 3962 5.89 4012 6.62 3923 7.13 607 3963 7.10 608 4014 5.61 3924 6.52 3964 6.14 4014 5.61 3925 6.16 3965 5.90 4015 6.24 3926 6.49 3966 6.61 4016 6.08 3927 5.66 3967 7.07 609 4017 5.90 3928 6.31 3968 6.08 3969 6.00 4018 6.35 3929 6.50 3967 7.07 609 4017 5.90 3928 6.31 3968 6.08 3969 6.00 4018 6.35 3929 6.50 3967 7.07 609 4017 5.90 3928 6.31 3968 6.08 4018 6.35 3929 6.50 3967 6.00 4017 5.74 4021 5.88 3972 6.19 3973 6.14 3974 6.55 3974 6.55 3974 6.55 3975 6.81 613 4025 6.46 3976 6.72 614 4026 5.83 3977 7.00 611 4027 5.87 3978 6.26 4028 6.46	3916	6.53							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3917		 	3957			4007		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3918							6.43	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			606			603			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B	y Dam	504	I	By Dam	508	B_2	y Dam	513
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3921	6.53		3961	6.66		4011	6.01	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3922	6.63		3962	5.89		4012	6.62	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3923	7.13	607	3963		608	4013	5.12	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3924	6.52		3964	6.14		4014	5.61	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3925	6.16		3965			4015	6.24	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3926	6.49		3966	6.61		4016	6.08	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3927	5.66			7.07	609	4017	5.90	
By Dam 509 By Dam 514 3971 6.64 4021 5.88 3972 6.19 4022 5.89 3973 6.14 4023 5.78 3974 6.55 4024 5.84 3975 6.81 613 4025 6.46 3976 6.72 614 4026 5.83 3977 7.00 611 4027 5.87 3978 6.26 4028 6.46	3928	6.31		3968				6.35	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3929	6.50		3969	6.00		4019	5.74	
3972 6.19 4022 5.89 3973 6.14 4023 5.78 3974 6.55 4024 5.84 3975 6.81 613 4025 6.46 3976 6.72 614 4026 5.83 3977 7.00 611 4027 5.87 3978 6.26 4028 6.46				B	By Dam	509	B_{2}	y Dam s	514
3973 6.14 4023 5.78 3974 6.55 4024 5.84 3975 6.81 613 4025 6.46 3976 6.72 614 4026 5.83 3977 7.00 611 4027 5.87 3978 6.26 4028 6.46									
3974 6.55 4024 5.84 3975 6.81 613 4025 6.46 3976 6.72 614 4026 5.83 3977 7.00 611 4027 5.87 3978 6.26 4028 6.46			[1						
$\left egin{array}{c c c c c c c c c c c c c c c c c c c $									
3978 6.26 4028 6.46									
						611	4027		
							1 1		
3979 6.01 4029 5.74				3979	6.01		4029	5.74	

TABLE 66.—SIXTH GENERATION HIGH OIL PLOT RECORD 1902

Pagistar	By Dam	Oil, percent.		Register	By Dam		ercent.
ear No.			Crophar- vested.		No.	Seed ear planted.	Crop har vested.
601	511	6.78		608	508	7.10	1
602	512	6.83	6.18	609	508	7.07	6.65
603	507	6.87		610	507	7.03	6.65
604	512	7.01	6.61	611	509	7.00	6.50
605	511	7.05	1	612	512	6.85	6.48
606	503	7.09	6.21	613	509	6.81	6.08
607	504	7.13	6.65	614	509	6.72	6.11
	Avera	ge of ten	selected	rows	1	6.95	6.41

TABLE 67.—OIL IN NINETY INDIVIDUAL EARS FROM HIGH-OIL PLOT OF 1902

Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.
1	By Dam	602	1	By Dam	607	B	y Dam	612
4371 4372 4373 4374	5.82 6.50 6.15 7.04	703 710	4401 4402 4403 4404	5.98 6.09 7.00 7.08		4441 4442 4443 4444	7.37 5.82 6.40 6.27	711
4375 4376 4377 4378 4379	5.43 6.50 6.04 5.76 6.44	720	4405 4406 4407 4408 4409	6.38 5.85 6.68 6.77 6.62		4445 4446 4447 4448 4449	6.28 5.11 5.67 6.78 6.36	716
	By Dam	604		By Dam			y Dam	613
4391 4392 4393 4394 4395 4396 4397 4398	6.94 6.41 5.29 6.21 6.68 5.30 6.38 5.66 5.50 Dam 5.50 5.74 5.04 6.40 6.08 6.26 5.17	722 705 704 606	4421 4422 4423 4424 4425 4426 4427 4428	7.00 6.87 6.65 6.85 6.70 6.31 7.00 5.35 6.36 Dam 7.02 6.50 6.94 6.67 6.61 6.61 6.69 6.13	709 715 718 707 717 714 610 713 702 708	4461 4462 4463 4464 4465 4466 4467 4468	6.34 5.95 5.86 6.06 6.43 6.10 6.21 5.83 7 Dam 5.59 6.74 6.00 6.28 5.92 6.56 5.98 5.67	701 706 719
4399	6.14		4429	6.27 By Dam	617	4469	6.00	
			4431 4432 4433 4434 4435	6.50 6.77 6.67 6.17 6.22	721			
			4436 4437 4438 4439	7.17 . 6.92 6.13 6.45	712			

Table 68.—Seventh Generation High Oil Plot Record 1903

Register	By Dam	Oil, p	ercent.	Register	By Dam	Oil, p	Oil, percent.	
ear No.	No.	Seed ear planted.	Crophar- vested.	ear No.	No.	Seed ear planted.	Crophar vested.	
701	613	6.43	6.25	712	611	7.17		
702	610	6.50	6.54	713	610	7.02	7.04	
703	602	6.50		714	609	7.00		
704	604	6.56		715	609	6.87	6.39	
705	604	6.68		716	612	6.78		
706	614	6.74		717	609	6.70	6.61	
707	609	6.85		718	609	6.65	6.24	
708	610	6.94		719	614	6.56	6.35	
709	609	7.00	6.68	720	602	6.50		
71 0	602	7.04	6.62	721	611	6.50	6.25	
711	612	7.37		722	604	6.41		
Ave	erage of	ten select	ed rows			6.73	6.50	

Table 69.—Oil in One hundred Individual Ears from High-Oil Plot of 1903

Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned	Annual ear No.	Oil, percent	Register No. assigned.
	By Dam	701	- E	By Dam	710	1	By Dam	718
1	6.20	í l	31	6.81	ı l	71	6.28	ĺ
2	6.35		32	6.97	804	72	5.73	
3 4	6.23		33	6.19	010	73 74	6.25	
4 5	6.44		34 35	6.99	818	75	6.23	801
5 6	6.04		36	6.50		76	6.51	301
7	5 75	1	37	6.60	ļ	77	6.09	
8	6.35		38	6.95	820	78	6.82	
9	6.73		39	7.10	807	79	7.02	805
10	6.84	1	40	663.	1	80	5.63	ì
	By Dam	702		By Dam		1	By Dam	719
11	5.88		41	7.41	813	81	6.53	
12 13	6.20 5.70		42 43	6.98 7.71	819 811	82 83	5.90 6.65	
13 14	6.39		44	6.56	011	84	6.43	
15	7.08	816	45	7.31	809	85	5.83	
16	6.37		46	6.61		86	6.26	ŀ
17	6.13		47	7.16	815	87	6.33	
18	6.49		48	7.06	806	88	6.16	
19 20	6.59 5.92		49 50	6.46	803	89 90	6.62	1
	By Dam	700		By Dam			By Dam	727
21	6.68	109	51	6,90	821	91	6.37	/21
22	6.34		52	6.33	021	92	6.70	
23	7.33	810	53	7.05	817	93	6.94	1
24	6.68		54	7.27	808	94	6.66	
25	7.56	812	55	5.74		95	5.65	
26	6.37		56 57	6.51 5.69		96 97	5.84 5.96	i
27 28	6.78	L	58	6.12		98	6.64	
2 9	6.69	1	59	6.77		99	6.81	822
30	7.29	814	60	6.78		100	6.73	
			1	By Dam	717			
			61	6.60	1			
		•	62	6.90	802			
			63	6.70				
			64 65	5.80				
			66	6.76				
			67	6.09				
			68	5.96				
			69	6.44				
			70	5.52		11		

Table 70.—Eighth Generation High Oil Plot Record 1904

Register	By Dam		ercent.	Register	By Dam		ercent.
ear No.	No.	Seed ear planted.	Crophar- vested.	ear No.	No.	Seed ear planted.	Crop har vested.
801	718	6.82		812	709	7.56	7.02
802	717	6.90	6.82	813	713	7.41	7.13
803	713	6.94		814	709	7.29	7.16
804	710	6.97	6.81	815	713	7.16	
805	718	7.02		816	702	7.08	7.06
806	713	7.06		817	715	7.05	ļ
807	710	7.10		818	710	6.99	7.17
808	715	7.27	6.69	819	713	6.98	
809	713	7.31		820	710	6.95	
810	709	7.33	7.32	821	715	6.90	
811	713	7.71		822	721	6.81	6.47
	' Avera	ge of ten	selected i	rows		7.16	6.97

Table 71.—Oil in One hundred one Individual Ears from High-Oil Plot of 1904

Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned
1	By Dam	802	1	By Dam	810	B	y Dam	816
1 2 3 4 5 6 7 8	7.73 6.62 7.36 7.55 7.39 7.10 7.33 7.22	912	31 32 33 34 35 36 37 38	7.53 7.31 6.88 7.72 7.63 6.86 7.43 7.41	909 9 1 4	71 72 73 74 75 76 77 78	8.44 6.82 8.03 7.24 6.94 7.68 8.30 7.54	908 915 918
9	6.87		39	6.88	925	79	7.52	
10 z	4.88	90.4	40	7.62 3v Dam	1	80 p	7.14 v Dam a	0.0
11	By Dam	004			012	1 7	y Dam 6 7.39	1
11 12 13 14 15 16 17 18 19 20	7.00 7.36 7.02 7.43 6.29 6.29 7.57 7.99 6.74 7.44	913 920	41 42 43 44 45 46 47 48 49 50	6.68 6.27 8.09 7.69 7.58 6.31 6.25 6.87 7.20	917 922 907	81 82 83 84 85 86 87 88 89 90	7.39 7.41 6.54 7.28 7.03 7.68 7.10 7.22 7.24 7.26	910 923
E	By Dam	808	I	By Dam	813	B	y Dam	1 822
21 22 23 24 25 26 27 28 29 30	7.09 7.95 6.94 7.03 7.32 7.37 6.95 6.54 6.81 7.32	904	51 52 53 54 55 56 57 58 59 60	6.75 6.78 6.89 7.50 7.17 7.70 6.84 7.49 7.43 6.87	919 906 924	91 92 93 94 95 96 97 98 99 100	6.02 6.51 6.18 6.62 6.60 6.37 6.35 5.97 6.21 7.13	905
			B	By Dam	814	101	7.50	902
			61 62 63 64 65 66 67 68 69	7.05 6.81 7.92 8.14 7.82 6.47 6.82 6.60 6.38	921 916			
-			70	7.94	903			

Table 72.—Ninth Generation High Oil Plot Record 1905

Register	By Dam	Oil, p	ercent.	Register	By Dam	Oil, pe	rcent.
ear No.	No.	Seed ear planted.	Crophar- vested.	ear No.	No.	Seed ear planted.	Crophar vested.
901	802	7.55	6.00	914	810	7.63	
902	822	7.56	6.98	915	816	8.03	
903	814	7.94		916	814	8.14	7.11
904	808	7.95	7.55	917	812	8.09	
905	822	7.13	'	918	816	8.30	7.68
906	813	7.70		919	813	7.50	
907	812	7.58		920	804	7.99	7.12
908	816	8.44		921	814	7.92	Ì
909	810	7.72		922	812	7.69	1
910	818	7.41	7.30	923	818	7.28	
911	808	7.37		924	813	7.49	
912	802	7.73		925	810	7.62	
913	804	7.57					
	Avera	ge of six	selected	rows	<u> </u>	7.88	7.29

Table 73.—Oil in One hundred twenty Individual Ears from High-Oil Plot of 1905

Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.
В	By Dam	902	I	By Dam	910	B.	y Dam	918
1 2 3 4 5 6	6.67 6.40 8.38 6.32 7.24 6.43	1002	41 42 43 44 45 46	7.28 7.36 6.27 6.59 6.28 7.02		81 82 83 84 85 86	7.78 7.02 8.57 7.73 7.74 7.41	1010
7 8 9 10 11 12	6.71 7.12 6.73 6.68 6.84 7.57	1014	47 48 49 50 51 52	7.44 6.63 7.84 7.86 7.18 7.83	1011 1006 1023	87 88 89 90 91 92	7.46 7.12 7.49 8.59 7.51 7.50	1022
13 14 15 16 17 18 19 20	6.55 6.76 7.56 6.84 6.79 7.21 7.46 7.30	1007 1019	53 54 55 56 57 58 59 60	7.68 7.18 7.77 7.69 7.10 6.87 8.24 7.87	1018	93 94 95 96 97 98 99	7.81 7.57 7.87 7.79 7.89 8.00 7.39 7.30	1003 1015
	By Dam	904		By Dam	'	B		1 920
21 22 23 24 25	7.35 6.58 7.90 7.20 7.32		61 62 63 64 65	7.18 7.65 6.88 6.39 7.65	1008	101 102 103 104 105	7.15 6.69 6.93 7.20 7.35	1017
26 27 28 29 30	7.33 8.33 7.65 7.53 6.76	1004	66 67 68 69 70	8.00 7.02 6.70 6.27 6.58	2002	106 107 108 109 110	7.02 6.38 7.91 8.17 7.38	1012 1005
31 32 33 34 35	8.02 8.25 6.79 8.33 6.66	1009 1021	71 72 73 74 75	7.31 7.44 6.67 7.15 7.38		111 112 113 114 115	6.95 6.53 7.76 7.20 6.97	1024
36 37 38 39	7.58 7.71 7.98 7.26 8.50	1016	76 77 78 79 80	7.04 7.76 6.82 6.74 7.53	1020	116 117 118 119 120	7.06 6.95 7.14 6.76 6.87	

Table 74.—Tenth Generation High Oil Plot Record 1906

Register	By Dam	Oil, pe	rcent.	Register	By Dam	Oil, pe	ercent.
ear No.	No.	Seed ear planted.	Crophar- vested.	0	No.	Seed ear planted.	Crophar- vested.
1001	916	7.65		1013	916	7.53	
1002	902	8.38		1014	902	7.57	7.50
1003	918	7.89		1015	918	8.00	1
1004	904	8.33		1016	904	8.50	
1005	920	7.38		1017	920	7.34	
1006	910	7.86		1018	910	7.87	6.96
1007	902	7.56		1019	902	7.46	1
1008	916	7.65	743	1020	916	7.76	7.23
1009	904	8.25		1021	9.4	8.33	
1010	918	8.57	749	1022	918	8.59	1
1011	910	7.84		1023	910	7.83	
1012	920	8.17		1024	920	7.76	7.60
	Avera	ge of six s	elected ro	ws		7.86	7.37

Table 75.—Oil in One hundred twenty Individual Ears from High-Oil Plot of 1906

Annual ear No.	Oil, percent.	Register No.	Annual ear No.	Oil,	Register No.	Annual ear No.	Oil,	Register No.	
		assigned.		•	assigned.		1	assigned.	
By Dam 1008			B	y Dam	014	By Dam 1020			
1	7.70		41	6.98		81	6.77		
	7.29		42	7.89	1111	82	7.62	1103	
2 3 4 5 6	7.44		43	7.47		83	7.30	1100	
4	7.31		44	8.02	1123	84	6,89		
5	7.37		45	7.85		85	7.45		
6	7.01		46	7.72		86	7.14		
7	6.94		47	8.23	1106	87	7.10		
8	7.72	1107	48	7.58		88	7.90	1110	
9	7.55		49	7.45		89	7.33		
10	7.02		50	6.88		90	7.26		
11	7.81	1119	51	7.63		91	6.62		
12	7.69	.	52	7.66	·	92	7.49		
13	7.42		53	7.64		93	6.56		
14	7.42		54	6.93		94	7.86	1122	
15	6.87	1	55	6.67		95	7.48		
16	7.47		56	7.62		96	6.90		
17	7.82	1102	57	6.87		97	7.42		
18	7.30		58	7.47		98	7.41		
19	7.58	İ	59	7.09		99	6.57		
20	7.87	1114	60	8.39	1118	100	7.53	1115	
B_{i}	y Dam .	1010	By Dam 1018			By Dam 1024			
21	7.14	1	61	7.16	1101	101	7.97	1105	
22	7.47		62	6.59	1101	102	7.52	1105	
23	7.08		63	7.11	1113	103	7.39		
24	7.73		64	6.71	1110	104	7.59		
25	7.92	1109	65	7.43		105	7.33		
26	7.04		66	6.73		106	7.67		
27	7.84		67	6.86		107	7.13		
28	6.99		68	7.61	1108	108	7.05		
2 9	7.44		69	7.05		109	8.01	1112	
30	7.47		70	6.96		110	7.61		
31	6.92		71	8.33	1120	111	7.46		
32	7.05		72	6.57		112	7.22		
33	7.94	1121	73	7.02		113	7.76		
34	7.31		74	6.11		114	8.46	1124	
35	7.28]	75	6.88		115	7.60		
36	7.75		76	6.66		116	7.56		
37	8.51	1104	77	6.95	ļ	117	7.87	1117	
38	8.05	1116	78	6.68		118	7.82		
39	7.61		79	6.88		119	7.87		
40	7.34	1 1	80	6.94		120	7.61		

TABLE 76.—FIRST GENERATION LOW OIL PLOT RECORD 1897

Register ear No.	By Dam No.	Oil, percent.		Register	By Dam	Oil, percent.	
			Crophar- vested.		No.	Seed ear planted.	Crophar vested.
101		4.08		107		3.94	4.01
102		4.09	3.96	108		4.01	4.06
103		4.03	4.21	109	l	4.12	3.97
104		4.07	4.31	110		4.10	4.05
105		3.95	4.05	111		4.12	4.22
106		3.84	3.79	112		4.14	
	Avera	ge of ten	rows harv	rested		4.03	4.06

Table 77.—Oil in Forty Individual Ears from Low-Oil Plot of 1897

Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned
E	By Dam	102	E	By Dam	105	B	y Dam	109
571 572 573 574	4.00 3.96 3.89 3.83	202	586 587 588 589	4.21 4.74 3.70 3.85	209 201	606 607 608 609	3.50 4.40 3.90 3.90	208
E	By Dam	103	E	By Dam	106	B	Dam 1	110
576 577 578 579	4.21 4.28 4.18 4.41		591 592 593 594	3.85 3.72 3.38 3.39	212 203 207 205	611 612 613 614	3.84 4.08 4.39 3.39	211 206
В	By Dam	104	E	By Dam	107	B	y Dam 1	' 'II
581 582 583 584	4.74 4.69 4.65 4.07		596 597 598 599	4.21 4.22 4.42 4.04		616 617 618 619	4.08 4.19 4.43 4.68	
			В	y Dam	108			
			601 602 603 604	4.68 3.55 3.80 4.42	204 210			

Table 78.—Second Generation Low Oil Plot Record 1898

Register	ByDam	Oil, percent.		Register	By Dam	Oil, percent.	
ear No.	No.	Seed ear planted.	Crophar. vested.	ear No.	No.	Seed ear planted.	Crophar vested.
201	105	3.85	3.97	207	106	3.38	3.69
202	102	3.83	4.32	208	109	3.50	3.78
203	106	3.72	4.08	209	105	3.70	3.93
204	108	3.55	3.99	210	108	3.80	4.18
205	106	3.39	3.81	211	110	3.84	4.21
206	110	3.39	3.81	212	106	3.85	4.11
	Avera	ge of plot		• •	*	3.65	3.99

Table 79.—Oil in One hundred eight Individual Ears from Low-Oil Plot of 1898

Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.	
E	By Dam	201	E	By Dam	205	By Dam 209			
1481	4.11	1	1521	3,64	301	1561	3.68		
1482	3.88		1522	3.27	309	1562	3.73		
1483	3.91		1523	4.10		1563	4.24		
1484	4.02		1524	3.72		1564	3.58	303	
1485	4.29		1525	3.89		1565	3.92		
1486	3.39	312	1526	4.02		1566	3.72		
1487	3.76		1527	4.07		1567	4.00		
1488	4.02	1	1528	3.90		1568	3.67		
1489	4.02		1529	3.22	308	1569	4.25		
E	By Dam	202	1	By Dam	206	1	By Dam	210	
1491	4.27		1531	3.33	310	1571	4.01		
1492	4.60		1532	3.67	,	1572	4.09		
1493	3.81		1533	3.86		1573	4.11		
1494	4.12		1534	3.67		1574	4.26		
1495	4.19	1	1535	4.34		1575	4.45		
1496	4.27	İ	1536	3.85		1576	4.19		
1497	4.37		1537	3.50		1577	4.29		
1498	4.52	1	1538	3.56	304	1578	3.80		
1499	3.82		1539	3.34	306	1579	3.80	1	
	By Dam	203	III .	By Dam	207	II	By Dam	211	
1501	4.55		1541	3.83		1581	4.35		
1502	4.02	1	1542	4.11		1582	3.82		
1503	4.25		1543	3.59	314	1583	4.22	ľ	
1504	3.38	305	1544	3.66	-	1584	4.50		
1505	3.77		1545	3.35	311	1585	4.61		
1506	4.35		1546	3.63		1586	4.06		
1507	4.17		1547	3.64	216	1587	3.75		
1508	4.08		1548	3.65	316	1588	4.39		
1509	3.95	I	1549	3.72	1	1589	4.45		
By Dam 204			11	By Dam	208	By Dam 212			
1511	3.98		1551	3.89		1591	3.95		
1512	3.64	315	1552	3.87		1592	4.34		
1513	4.20		1553	3.86		1593	4.17		
1514	4.01		1554	3.79		1594	4.77		
1515	4.10	207	1555	3.93		1595	4.17 3.99		
1516	3.32	307	1556	3.64	21.2	1596	3.85		
1517	3.65		1557	3.56	313	1597 1598	4.40		
1518	4.26		1558	3.80	302	1599	3.98		
1519	4.03		1559	3.63	302	11 1399	1 3.95	1	

Table 80.—Third Generation Low Oil Plot Record 1899

Register ear No.	By Dam No.		ercent.	Register	By Dam	Oil, percent.		
		Seed ear planted.	Crophar- vested.	II	No.	Seed ear planted.	Crophar vested.	
301	205	3.64	3.85	309	205	3.27	3.73	
302	208	3.63	3.92	310	206	3.33	3.71	
303	209	3.58	3.81	311	207	3.35	3.76	
304	206	3.56	3.88	312	201	3.39	3.76	
305	203	3.38	4.01	313	208	3.56	3.86	
306	206	3.34	3.81	314	207	3.59	3.74	
307	204	3.32	3.59	315	204	3.64	3.94	
308	205	3.22	3.91	316	207	3.65	3.84	
		3.47	3.82					

Table 81.—Oil in One hundred forty-four Individual Ears from Low-Oil Plot of 1899

			1.	LOI OF IC	99				
Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.	
	By Dam	301	By Dam 306			By Dam 312			
2121 2122 2123 2124	3.89 3.45 3.82 3.91	404	2171 2172 2173 2174	3.55 3.57 3.46 3.76	414	2231 2232 2233 2234	4.03 3.65 4.29 3.55		
2125 2126 2127 2128 2129	4.09 3.93 3.56 4.12 3.68		2175 2176 2177 2178 2179	3.91 3.60 3.90 4.16 3.79		2235 2236 2237 2238 2239	3.41 4.03 3.72 4.10 3.42	412	
1	By Dam	302	1	By Dam	307	B	y Dam	313	
2131 2132 2133 2134 2135 2136 2137 2138	3.79 4.17 3.62 3.82 4.24 3.54 3.74 4.12	401	2181 2182 2183 2184 2185 2186 2187 2188	2.94 3.53 3.14 3.22 3.58 3.69 3.71 3.60	409	2241 2242 2243 2244 2245 2246 2247 2248	4.21 3.63 3.47 3.81 3.99 4.32 3.95 3.98	413	
2139	4.20	1	2189	3.51		2249	3.96		
2141	By Dam 3.53	303 402	11	By Dam	<i>308</i>	2251	y Dam	<i>314</i>	
2141 2142 2143 2144 2145 2146 2147 2148 2149	3.53 4.50 4.21 3.87 4.10 3.55 3.89 3.94 3.65	402	2191 2192 2193 2194 2195 2196 2197 2198 2199	4.38 3.93 4.18 4.13 3.87 4.38 4.21 3.92 3.46	403	2251 2252 2253 2254 2255 2256 2257 2258 2259	3.90 3.71 3.56 3.68 2.81 4.13 3.84 4.48 3.60	408	
	By Dam	304	11	By Dam	309	\parallel B	y Dam	315	
2151 2152 2153 2154 2155 2156 2157 2158 2159	3.62 3.96 3.83 3.62 4.57 3.82 3.76 3.89 4.19		2201 2202 2203 2204 2205 2206 2207 2208 2209	3.73 4.00 3.52 3.69 3.57 3.69 3.95 3.81 3.84	416	2261 2262 2263 2264 2265 2266 2267 2268 2269	4.11 4.25 3.93 3.67 3.60 3.49 4.28 3.84 3.76 y Dam	415	
2161	3.68		2211	3.68	1	2271	4.13	1	
2162 2163 2164 2165 2166 2167 2168 2169	4.04 3.66 4.38 4.16 4.08 4.72 4.35		2212 2213 2214 2215 2216 2217 2218 2219	4.26 4.45 3.08 3.58 3.33 3.60 3.93 3.32	407	2272 2273 2274 2275 2276 2277 2278 2279	3.72 3.71 4.22 3.97 3.78 4.14 3.92 3.59		
			2221 2222 2223 2224 2225 2226 2227 2228 2229	By Dam 3.31 4.00 3.82 4.36 3.73 3.98 3.75 4.41 3.92	406				

Table 82.—Fourth Generation Low Oil Plot Record 1900

Dominton	Dr. Dom	Oil, pe	ercent.	Register	By Dam	Oil, p	ercent.
Register By Dam ear No. No.	Seed ear planted.	Crophar- vested.	ear No.	No.	Seed ear planted.	Crop har vested.	
401	302	3.54	3.61	409	307	2.94	3.36
402	303	3.53	3.67	410	307	3.14	3.40
403	308	3.46	3.55	411	310	3.32	3.61
404	301	3.45	3.52	412	312	3.41	3.65
405	312	3.42	3.99	413	313	3.47	3.68
406	311	3.31	3,43	414	306	3.46	3.71
407	310	3.08	3.33	415	315	3.49	3.71
408	314	2.81	3.39	416	309	3.52	3.43
	Avera	ge of plot				3.33	3.57

Table 83.—Oil in One hundred forty-four Individual Ears from Low-Oil Plot of 1900

Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.
	D			Par Dam			By Dam	
	By Dam	401	I .	By Dam	400		•	411
3321 3322	4.35		3371 3372	3.35		3421	3.50	
	4.05		3373	3.42	512	3422	3.59	j
3323 3324	3.16	501	3374	3.35	312	3423	3.56	
3325	3.32	301	3375	3.54		3424 3425	3.24	
3326	3.42		3376	3.03	502	3426	3.59	
3327	3.69		3377	3.32	002	3427	3.90	
3328	4.43		3378	3.65		3428	3.46	
3329	3.68	1	3379	3.55	}	3429	3.63	
i	By Dam	402	1	By Dam	407	l E	By Dam	412
3331	3.49		3381	3.76		3431	3.55	
333 2	3.70		3382	3.34		3432	3.89	
3333	3.44		3383	3.66		3433	3.38	
3334	3.61		3384	3.27		3434	3.77	
3335	3.64		3385	3.55		3435	3.24	
3336	3.26		3386	3.23		3336	3.36	
3337 3338	4.08		3387 3388	3.28		3437	3.71	
3339	3.23		3389	2.97	504	3438 3439	3.82	
	By Dam	103		By Dam	'		By Dam	172
3341	3.26	1	3391	2.94	510	3441	3.30	4-3 I
3342	3.74		3392	3.49	020	3442	3.73	
3343	3.26		3393	3.43		3443	3.93	
3344	3.37		3394	3.37		3444	3.83	
3345	3.94		3395	2.56	507	3445	4.01	
3346	3.82	1	3396	3.20		3446	3.95	
3347	3.46	1	3397	3.66		3447	3.68	ĺ
3348	3.44		3398	4.03	j l	3448	4.04	514
3349	3.45	1	3399	3.41		5449	3.22	514
3351	By Dam 3.31	404	3401	By Dam 3.68	409	3451	3y Dam 3.56	414
3352	3.90		3402	3.81		3452	3.58	
3353	3.27		3403	2.65	508	3453	3.50	
3354	3.35		3404	3.49		3454	3.89	
3355	3.09	513	3405	3.54		3455	3.94	
3356	3.54	1	3406	3.50		3456	3.32	
3357	3.25		3407	3.37		3457	4.31	ļ
3358	3.43		3408	2.65	506	3458	4.17	
3359	3.86		3409	3.51		3459	3.78	
	By Dam	405	l I	By Dam	410		By Dam	415
3361	4.52		3411	4.19		3461	3.71	
3362	3.96		3412	2.89	505	3462	3.36	1
3363	4.06	1	3413	3.75		3463	3.68	
3364	4.05		3414	3.47		3464	4.05	
3365 3366	4.07		3415 3416	3.20		3465 3466	3.39 4.14	
3367	3.62		3417	3.02	503	3467	3.81	
3368	4.01		3418	3.44	555	3468	3.31	
3369	4.45		3419	3.59		3469	3.55	
			u	1		, 0.02		L

TABLE 83.—Continued.

Annual ear No.	Oil, percent.	Register No. assigned.
E	By Dam	416
3471	3.39	
3472 3473	3.28 3.84	
3474	2.87	509
3475	3.78	
3476	2.97	511
3477	3.38	
3478	4.05	
3479	3.71	

Table 84.—Fifth Generation Low Oil Plot Record 1901

Register	By Dam		ercent.	Register	By Dam		ercent.
ear No. No.	Seed ear planted.	Crophar- vested.	ear No.	No.	Seed ear planted.	Crop har vested.	
501 502 503 504 505 506 507	401 406 410 407 410 409 408	3.16 3.03 3.02 2.97 2.89 2.65 2.56	3.48 3.41 3.54 3.32 3.47 3.31 3.32	508 509 510 511 512 513 514	409 416 408 416 406 404 413	2.65 2.87 2.94 2.97 3.03 3.09 3.22	3.37 3.64 3.44 3.35 3.42 3.44 3.48
	.30	Average			.10	2.93	3.43

Table 85.—Oil in One hundred twenty-six Individual Ears from Low-Oil Plot of 1901

Annual	Oil,	Register No.	Annual ear No.	Oil,	Register No.	Annual ear No.	Oil,	Register No.
ear No.	percent.	assigned.	ear No.	percent.	assigned.	ear No.	percent.	assigned.
E	By Dam	501	i	By Dam	505	$B_{\underline{c}}$	y Dam	510
4031	3.31	1	4071	3.60		4121	3.60	
4032	3.96		4072	3.75		4122	3.25	
4033	3.19	1	4073	3.57		4123	3.29	
4034	3.32		4074	3.77		4124	3.41	
4035	3.53		4075	3.37		4125	3.42	
4036	3.31		4076	3.36		4126	3.42	
4037	3.90		4077	3.72		4127	3.65	
4038	3.35		4078	3.45		4128	3.58	
4039 z	3.34	503	4079	y Dam	506	4129] 3.54 y Dam !	
	By Dam	502		3.18	1	1		1
4041	3.57		4081	3.75		4131	3.47	604
4042	3.42 3.26		4082 4083	3.73		4132 4133	3.00	004
4043 4044	3.20	613	4084	3.52		4134	3.43	
4045	3.29	013	4085	3.29		4135	3.23	
4046	3.81		4086	2.78	607	4136	3.38	
4047	3.65		4087	3.17	00.	4137	3.44	
4048	3.16	614	4088	3.56		4138	3.40	
4049	3.77	021	4089	3.80		4139	3.66	
	By Dam	503		By Dam	507	11	y Dam	5/2
4051	3.06	603	4091	3.21	1	4141	3.32	
4052	3.93		4092	3.08	602	4142	2.93	606
4053	3.60		4093	3.88		4143	3.44	
4054	3.69		4094	3.70		4144	3.68	1
4055	3.42		4095	3.24		4145	3.03	611
4056	3.52		4096	3.35		4146	3.62	
4057	3.53		4097	3.22		4147	3.83	
4058	3.57		4098	3.07	612	4148	3.62	
4059	3.32		4099	3.26		4149	3.39	
E	By Dam	504	1	By Dam	<i>508</i>	B_{i}	y Dam	513
4061	2.96	605	4101	2.95	609	4151	3.56	
4062	3.66		4102	3.33		4152	4.17	
4063	2.97	610	4103	3.82		4153	3.78	
4064	3.62		4104	3.40		4154	3.28	
4065	3.34		4105	3.35		4155	3.53	
4066	3.36		4106	3.47		4156	3.37	
4067	3.22		4107	3.47		4157	3.65	
4068	3.78		4108	3.18		4158	3.66	
4069	3.47	1	4109	3.20		4159	2.97	1
				By Dam	509		y Dam 5	514
	•		4111	3.73		4161	3.40	
			4112	3.17		4162	3.73	
			4113	3.38		4163	4.09	
			4114	3.61 3.49		4164	3.64	
			4115 4116	3.49		4165 4166	3.69 2.87	608
		- 7 - [4117	3.63		4167	3.38	000
			4118	3.10	601	4168	3.87	
			4119	3.64	002	4169	3.55	

Table 86.—Sixth Generation Low Oil Plot Record 1902

Register	Prr Dom	Oil, pe	ercent.	Register	By Dam	Oil, per	rcent.
ear No.	No.	Seed ear planted.		ear No.	No.	Seed ear planted.	Crophar. vested.
601	509	3.10	,	608	514	2.87	
602	507	3.08	3.16	609	508	2.95	3.03
603	503	3.06	3.18	610	504	2.97	
604	511	3.00	2.92	611	512	3.03	2.84
605	504	2.96	2.86	612	507	3.07	3.01
606	512	2.93	3.02	613	502	3.09	1
607	506	2.78	2.80	614	502	3.16	3.32
Ave	erage of	en selecte	ed rows			3.00	3.02

TABLE 87.—OIL IN NINETY INDIVIDUAL EARS FROM LOW-OIL PLOT OF 1902

Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.
Е	By Dam	602	I	By Dam	605	1	By Dam	611
4471 4472 4473	3.32 2.80 3.55		4501 4502 4503	2.83 2.66 3.21	717	4541 4542 4543	3.17 2.85 3.21	
4474 4475 4476	2.67 3.37 3.41	718	4504 4505 4506	3.03 2.75 2.78	721 701	4544 4545 4546	2.87 2.83 2.79	
4477 4478 4479	3.08 3.04 3.28		4507 4508 4509	2.81 2.83 2.52	713	4547 4548 4549	2.80 2.54 2.87	709
I	By Dam	603	1	By Dam	606	11	By Dam	612
4481 4482 4483 4484	2.94 2.86 3.16 3.05		4511 4512 4513 4514	3.06 2.44 3.36 2.98	710	4551 4552 4553 4554	3.53 3.01 2.65 2.66	716 705
4485 4486 4487 4488	3.66 2.65 3.39 3.51	707	4515 4516 4517 4518	2.79 3.16 3.07 2.83	722	4555 4556 4557 4558	2.65 2.83 3.44 3.12	706
4489	3.03		4519	3.23	١, ,	4559	3.28	6
	By Dam	,	11	By Dam	•	4561	<i>By Dam</i> ∣ 3.80	014
4491 4492 4493 4494	2.60 2.93 3.19 2.78	708	4521 4522 4523 4524	2.12 3.06 2.93 2.90	711	4562 4563 4564	3.56 3.76 3.20	
4495 4496 4497	2.59 2.67 3.33	714 704	4525 4526 4527	3.06 3.54 2.63	715 719	4565 4566 4567 4568	3.29 3.03 3.52 2.74	702
4498 4499	2.87 2.72	703	4528 4529	2.70		4569	3.07	702
			4531	<i>By Dam</i> ∣ 3.12	1 .			
			4532 4533 4534	2.92 2.83 2.80				
			4535 4536	2.73 3.16	720			
			4537 4538 4539	2.41 2.74 3.65	712			

Table 88.—Seventh Generation Low Oil Plot Record 1903

Register	By Dam	Oil, p	ercent.		By Dam		ercent.
ear No.	No.	Seed ear planted.	Crophar- vested.		No.	Seed ear planted.	Crophar vested.
701	605	2.78		712	609	2.41	2.82
702	614	2.74	ļ	713	605	2.52	3.01
703	604	2.72		714	604	2.59	*
704	604	2.67		715	607	2.63	
705	612	2.66		716	612	2.65	3.24
706	612	2.65	!	717	605	2.66	
707	603	2.65		718	602	2.67	2.81
708	604	2.60	3.04	719	607	2.70	3.01
709	611	2.54	2.82	720	609	2.73	2.93
710	606	2.44	i i	721	605	2.75	ľ
711	607	2.12		722	606	2.79	3.02
	A	verage of	nine row	s		2.62	2.97

^{*}Sample destroyed

Table 89.—Oil in Ninety Individual Ears from Low-Oil Plot of 1903

Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned
I	By Dam	708	1	By Dam	713	B	y Dam	719
1 2 3 4 5 6	3.26 3.12 2.92 3.04 2.96 2.83 2.95	816	31 32 33 34 35 36 37	3.19 2.86 2.82 3.31 3.20 3.26 3.21	801 807	71 72 73 74 75 76 77	3.14 3.18 2.66 2.51 2.77 3.26 3.47	821 812 808
8 9 1 0	3.04 3.22 2.62		38 39 40	3.12 3.01 3.03	820	78 79 80	3.31 3.56 3.01	803
E	By Dam	709	Į ž	By Dam	714	B	y Dam	720
11 12 13	2.78 2.93 3.38		41 42 43	(No an	s spoiled)	81 82 83	3.19 3.33 2.99	822 805
14 15 16	3.10 2.93 2.73		44 45 46	m:	ade	84 85 86	2.91 2.96 2.85	818
17 18 19 20	3.13 2.81 2.68 2.89		47 48 49 50			87 88 89 90	3.02 2.71 2.71 3.32	802 810
\boldsymbol{E}	By Dam	712	Į .	By Dam	716	$B_{.}$	y Dam	722
21 22 23 24 25 26 27 28 29 30	2.71 2.94 2.74 2.85 2.81 2.87 2.93 2.84 3.28 3.03		51 52 53 54 55 56 57 58 59 60	2.98 2.83 2.66 3.39 3.31 2.88 2.78 3.18 3.28 2.75	814 817	91 92 93 94 95 96 97 98 99	3.02 3.37 3.38 3.06 2.72 2.81 2.33 2.92 2.72 2.97	813 819 811 815 809
			Б	y Dam	718			
		,	61 62 63 64 65 66 67 68	2.62 2.96 3.17 3.21 2.91 2.94 3.00 2.92 2.99	806			

Table 90.—Eighth Generation Low Oil Plot Record 1904

Register	By Dam	Oil, pe	rcent.	Register	By Dam	Oil, p	ercent.
ear No.	No.	Seed ear planted.	Crophar- vested.	ear No.	No.	Seed ear planted.	Crophar vested.
801	713	3.19		812	719	2.66	2.82
802	720	3.02		813	722	2.72	
803	719	3.01	,	814	716	2.78	3.05
804	722	3.02	3.08	815	722	2.92	2.88
805	720	2.99		816	708	2.92	2.84
806	718	2.92	2.84	817	716	3.18	
807	713	2.82	2.88	818	720	2.96	2.99
808	719	2.77		819	722	2.81	
809	722	2.72		820	713	3.03	
810	720	2.71	2.93	821	719	3.14	
811	722	2.33	2.60	822	720	3.19	
Ave	erage of t	en selecte	d rows		·	2.80	2.89

Table 91.—Oil in One Hundred Individual Ears from Low-Oil Plot of 1904

Annual ear No.	Oil, percent,	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.
E	By Dam	804	E	By Dam	810	E	By Dam	815
1 2 3 4 5 6 7 8 9	3.10 3.05 3.43 3.15 3.30 3.26 2.70 2.96 3.31 2.83	906	31 32 33 34 35 36 37 38 39 40	3.09 2.57 2.69 3.18 2.97 2.66 2.94 2.76 2.90 2.90	9 12 9 21	71° 72 73 74 75 76 77 78 79 80	3.29 2.65 2.47 2.87 2.78 3.28 3.14 3.33 2.69 2.99	924 920 913
	By Dam			By Dam	811		By Dam	816
11 12 13 14 15 16 17 18 19 20	2.98 2.82 2.93 2.83 2.84 2.79 2.84 2.83 3.03 2.69	901 908 915	41 42 43 44 45 46 47 48 49 50	2.37 2.78 2.40 2.79 2.74 2.66 2.67 2.52 2.53 2.34	902 914 917	81 82 83 84 85 86 87 88 89 90	3.15 2.95 2.95 2.95 2.63 3.07 3.44 3.07 2.74 2.96 2.84	905
Ì	By Dam	807	1	By Dam	812		By Dam	818
21 22 23 24 25 26 27 28 29 30	2.83 2.83 2.94 3.02 2.67 2.75 2.83 3.03 3.24 2.53	904 910 919	51 52 53 54 55 56 57 58 59 60	2.93 2.91 2.86 2.96 2.74 3.10 2.85 2.93 2.74 3.02	907 918 925	91 92 93 94 95 96 97 98 99	2.69 2.98 3.10 3.17 ,2.49 2.65 3.09 3.00 2.80 3.15	903 916 923
			4	By Dam	814			
			61 62 63 64 65 66 67 68 69 70	3.23 3.07 2.67 3.14 3.41 3.27 2.68 3.47 2.86 3.12	909			

Table 92.—Ninth Generation Low Oil Plot Record, 1905

Paristar	By Dam	Oil, p	ercent.	Register	Pr. Dom		ercent.
ear No.	No.	Seed ear planted.	Crophar- vested.	ear No.	No.	Seed ear planted.	Crophar vested.
901 902 903 904 905 906 907 908 909 910 911	806 811 818 807 816 804 812 806 814 807 804	2.83 2.40 2.69 2.67 2.63 2.70 2.86 2.84 2.67 2.75 2.83	2.60 2.64 2.48	914 915 916 917 918 919 920 921 922 923 924	811 806 818 811 812 807 815 810 816 818 815	2.53 2.69 2.49 2.34 2.74 2.53 2.47 2.66 2.74 2.65 2.65	2.52 2.69 2.57
912 913	810 815	2.69 2.69		925	812	2.74	
	Avera	age of six	selected	rows	1	2.67	2.58

Table 93.—Oil in One Hundred twenty Individual Ears from Low-Oil Plot of 1905

Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.
	By Dam	906	В	By Dam	910	$B_{\underline{c}}$	y Dam	918
1	2.51		41	2.30	1011	81	2.84	1
2	2.93		42	3.04		82	3.02	
3 4 5	2.35	1002	43	2.33		83	2.53	1
4	2.25		44	2,62		84	2.57	
5	2.78		45	2.41		85	3.06	
6 7	2.35	1014	46	2.77		86	2.24	1010
7	1.97		47	2.52		87	2.42	1003
8	2.92		48	2.50		88	3.02	
9	2.41	1007	49	2.74		89	3.14	1
10	2.75		50	2.10		90	2.37	1015
11	2.56		51	2.43		91	2.50	
12	2.95		52	2.82	1005	92	2.32	1022
13	2.42	1019	53	2.22	1006	93	2.58	
14	2.87		54	1.77	1018	94	2.46	
15	2.89		55 56	3.09		95 96	2.71	
16	2.76		57	2.44		96	2.66	
17	2.86		58	2.37 2.31		98	2.72	
18			59	2.58		99	2.83	
19 20	2.60		60	2.36	1023	100	2.75	
	1 2.43 By Dam	008		2.20 By Dam		B		030
21	2.51	903	61	2.48	91 <i>4</i>	101	2.61	920
$\tilde{2}$ 2	2.51	1	62	2.80		102	2.71	
23	2.94		63	2.73		103	2.99	
24	3.07	1	64	2.63		103	2.63	
25	2.80		65	2.93		105	2.66	
26	2.58		66	2.24		106	2.31]
27	2.01	1004	67	2.77		107	2.45	1005
28	2.75	2001	68	2.80		108	2.86	1 2000
29	2.92]	69	2.36	1001	109	2.74	
30	2.52		70	2.56		110	2.80	
31	2.24	1016	71	2.47		111	2.40	1017
32	2.68		72	2.23	1008	112	2.26	1012
33	2.85		73	2.24	1020	113	2.26	
34	2.69		74	2.42		114	2.24	
35	2.45		75	2.64		115	2.50	1
36	2.92		76	1.99		116		1
37	2.43	1009	77	2.67		117	2.89	
38	2.55		78	2.39	1013	118	2.40	1024
39	2.40	1021	79	2.60		119	2.56	
40	2.95		80	2.41		120	2.51	1

Table 94.—Tenth Generation Low Oil Plot Record 1906

Danietan	D D		ercent.	D: - 4	By Dam		ercent.
ear No.	By Dam No.	Seed ear planted.	Crophar- vested.			Seed ear planted.	Crophar vested.
1001	914	2.36		1013	914	2.39	
1002	906	2.35	2.79	1014	906	2.35	2.76
1003	918	2.42		1015	918	2.37	
1004	908	2.01		1016	908	2.24	2.60
1005	920	2.45		1017	920	2.40	
1006	910	2.22	2.71	1018	910	1.77	2.46
1007	906	2.41		1019	906	2.42	
1008	914	2.23		1020	914	2.24	2.62
1009	908	2,43		1021	908	2.40	ļ
1010	918	2.24		1022	918	2.32	
1011	910	2.30		1023	910	2.26	
1012	920	2.26		1024	920	2.40	
	Aver	age of six	selected	rows	1	2.20	2.66

Table 95.—Oil in One Hundred twenty Individual Ears from Low-Oil Plot of 1906

Annual ear No.	Oil, percent.	Register No. assigned.	Annual ear No.	Oil, percent.	Register No. assigned.	Aunual ear No.	Oil, percent.	Register No. assigned
B_{\cdot}	y Dam	1002	В	y Dam	1014	Ву	Dam 1	018
1 2	2.88	1102	41 42	2.96 2.76		81 82	2.26	
3	2.05	1114	43	2.77		83	2.40	
3 4 5 6	2.70		44	2.66		84	1.60	1110
5	2.88		45	2.82		85	2.43	
6	2.69		46	2.05	1106	86	3.17	}
7	2.71		47	2.28		87	2.36	-
8	2,42	1107	48	3.17		88	2 57	
9	2 98		49	2.87		89	2.35	
10	2 98		50	2.67		90	3.22	
11	2.65	1119	51	2.80		91	2 39	1
12	2.88	1117	52	2.97		92	2.98	
13	3.18		53	3.03		93	2.47	İ
14	3.16		54	2.88		94	2.23	1103
15	3.21		55	2.43	1118	95	2.52	1103
16	2 93		56	2 43	1111	96	2.41	}
17	2.79		57	2 45	1123	97	2.59	
	2.79		58	2.56	1123	98		
18			59			11	2.48	1445
19	2.77		60	3.10		99	2.34	1115
20	3.00			3.54		100	2.10	1122
$B_{\underline{c}}$	y Dam	1006	B	y Dam	1016	$B\mathfrak{I}$	Dam 1	020
21	2.70		61	2.74		101	2.52	
22	2.68		62	2.67	1	102	2.44	
23	2.40	1109	63	2.79		103	2 35	1105
24	3.01		64	2.87		104	2.60	
25	2.63		65	2.34	1108	105	3.14	1
2 6	2.34	1104	66	2.45		106	2.85	
27	2.49	1121	67	2.62		107	2.21	1112
28	2.86		68	2.72		108	3.15	1111
29	2.93		69	2.77		109	2.67	
30	3.13		70	2.55		110	2.91	
31	2.82		71	2.91		111	2.50	
32	2.78		72	2.68		112	2.38	1117
33	2.71	i	73	2.82		113	2.59	111,
34	2.71		74	2.45	1101	11		
	2.71		75	2.45	1101	114	2.61	
35		1116			1120	115	2.45	
36	2.15	1116	76	2.34	1120	116	2.62	
37	2.73		77	2.50		117	2.22	
38	2.53		78	2.54	1.1.0	118	3.28	
39	2.87		79	2.35	1113	119	2.78	
40	3.01	1	80	2 54		120	2.10	1124

Table 96.—Protein in Corn Planted and Harvested on Mixed-Protein Plot in 1898

	I	High protein		Low protein.			
Plot row	D	Protein, percent.		Register	Protein, percent.		
No.	Register ear No.	· Seed ear planted.	Crop harvested.	ear No.		Croph revested.	
1 2 3 4	209 212 216 223	12.80 13.62 12.72 11.97	11.24 11.75 12.10 11.65	205 206 207 208	8.84 8.22 8.29 8.88	9.72 11.04 10.09 10.89	
5 Plot	224 averages	11.89	11.81	209	9.05	10.58	

Table 97.—Protein in Corn Planted and Harvested on Mixed-Protein Plot in 1899

		High protei	n.	Low protein.				
	Register	Protein,	percent.	Register	Protein, percent.			
	ear No.;	Seed ear planted.	Crop harvested.	ear No.	Seed ear planted.	Crop har- vested.		
1	309	13.21	12.04	303	8.66	9.87		
2	309	13.21	12.07	303	8.66	10.53		
1 2 3 4 5	310	13.34	12.86	304	8.62	9.39		
4	310	13.34	12.24	304	8.62	10.01		
5	311	14.05	12.70	305	8.57	9.60		
6	311	14.05	12.00	305	8.57	8.74		
6 7	312	14.92	12.74	306	8.29	9.70		
8	312	14.92	12.86	306	8.29	9.33		
9	313	14.25	12.02	307	7.85	9.36		
10	313	14.25	12.04	307	7.85	9.22		
11	314	13.46	11.33	308	7.50	9.03		
12	314	13.46	12.12	308	7.50	9.06		
13	315	13.25	11.16	311	8.32	10.11		
14	315	13.25	11.39	311	8.32	9.10		
15	316	13.12	11.10	312	8.58	9.40		
16	316	13 · 12	11.63	312	8.58	8.82		
17	317	13.04	12.09	314	8.82	9.29		
18	317	13.04	12.45	314	8.82	10.00		
Plot a	averages	13.63	12.05		8.36	9.47		

Table 98.—Protein in Corn Planted and Harvested on Mixed-Protein Plot in 1900

	I	High protein	1.	Low protein.				
Plot row	Register	Protein,	percent.	op har- Register Seed ear	Protein, percent.			
No.	ear No.	Seed ear planted.	Crop har- vested		Crop har vested.			
1	408	13.87	9.54	404	8.08	8.18		
2	409	13.94	11.10	405	7.98	8.36		
3	410	13.97	10.32	406	7.74	7.68		
4 5	411	14.41	11.55	407	7.49	7.81		
5	412	14.78	10.78	408	6.66	7.57		
6	413	14.53	11.87	409	8.47	7.68		
7	414	14.24	10.19	410	7.60	8.56		
8	415	13.93	10.64	411	7.83	7.96		
9	416	13.89	10.88	412	8.03	7.79		
10	417	13.89	11.18	413	8.18	7.88		
Plot	averages	14.15	10.81		7.81	7.95		

Table 99.—Protein in One Hundred thirty-seven Pairs of Ears Grown on Mixed-Protein Plot in 1899

Plot	Hill	Protein,	percent.	Plot	Hill	Protein,	percent.
row No.	No.	From high-protein seed.	From low-protein seed.	row No.	No.	From high-protein seed.	From low-protein seed.
1	4	9.65	12.13	8	15	13.86	9.76
1	6	13.90	10.50	8	16	14.41	9.73
1	7	12.75	9 80	9	7	10.48	7.48
1	8	11.51	9.54	9	9	10.89	11.54
1	9	10.25	9.79	9	10	12.03	8.56
1	13	11.53	8 18	9	10	10.07	7.35
1	13	11.89	8.44	9	11	14.25	8.92
1	14	14 89	9.98	9	13	11.26	8.21
2	1	12.94	9 09	9	14	13.62	7.33
2	3	12.73	10.40	9	15	12.35	7.71
2	4	13 22	8 27	9	15	10.34	9.38
2	7	10.51	9.81	9	16	14.03	14.03
2	10	9.89	7 87	10	2	10.45	7.75
2	11	10.98	14.71	10	3	12.49	13.32
2	12	14.76	11.53	10	7	12.40	7-62
2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4	3	12.83	10 26	10	9	11.15	7.64
3	5	12.16	9.22	10	10	10.74	9.14
3	6	12.78	8.76	10	13	11.48	11.86
3	7	11.92	9.45	10	14	13.50	8.22
3	8	10.51	9.88	10	15	12.26	9.27
3	8	9.15	7.89	10	15	13.30	8.27
3	11 12	13.77	10.10	11 11	2 5	11.88 9.58	8.78 9.92
3	14	14.80	8.99		6		
3	16	13.51 15.18	11.05 9.51	11 11	10	11.77 9.98	10.61 7.25
3	8	8.37	9.63	11	11	9.76	7.23
4	9	13.44	10.17	11	12	10.58	9.57
4	11	11 79	8.53	ii	13	12.55	8.75
4	14	12.77	11.21	11	14	11.38	9.26
4	15	12.84	9.78	li îi	14	12.09	9.43
	16	13 21	9 85	lii	15	11.48	7.57
5	4	11 26	7.91	12	1	12.86	9.83
5	5	13.80	8.33	12	5	11.95	11.07
5	5	11.18	10.42	12	5 7	12 05	8.81
5	10	14.06	10.38	12	8	12.23	8.45
4 5 5 5 5 5 5 5	11	12.88	9.28	12	8	12 25	8.72
5	14	12.68	11.73	12	9	13.29	8.09
5	15	14.04	9.07	12	11	8.93	8.41
6	6	12.07	9.88	12	13	11.66	8.08
6	7	11.12	8.07	12	15	12.72	7.83
6	9	12.30	7.94	12	16	11.47	9.85
7	9	14.33	8.82	13	3	10.59	10.91
7	10	10 84	9.86	13	7	11 67	9.11
6 7 7 7 7 7 7	11	12.45	8.58	13	8	10.66	11 25
7	11	9.56	9.35	13	9	11.47	7.74
7	12 14	10.77	8.92	13	9	8 27	8.17 10.05
7	15	14.21	9.51	13	11 15	11.22	9.19
8	8	15.15	12.01	13 13	16	10.21 12.41	11.28
8	8	12.05 13.47	9.52 8.51	13	4	12.41	8.26
8	10	9.60	8.51	14	7	12.35	9.52
8	13	12.59	8.26	14	8	10.52	9.14

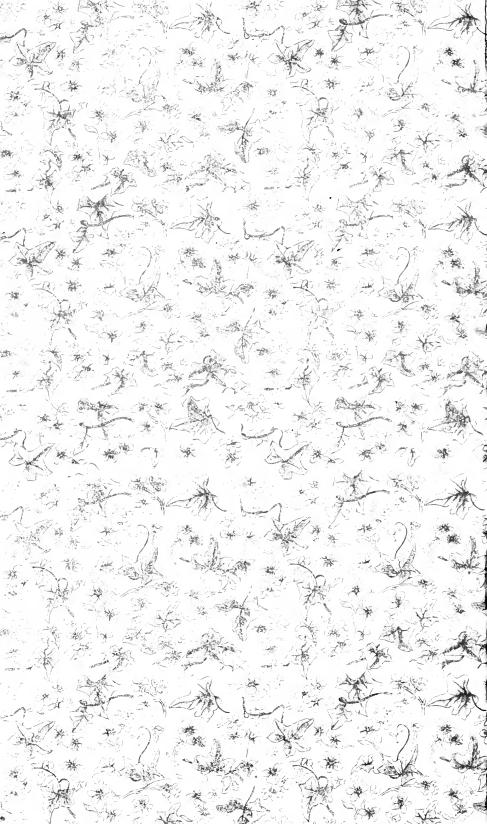
TABLE 99 .- Continued.

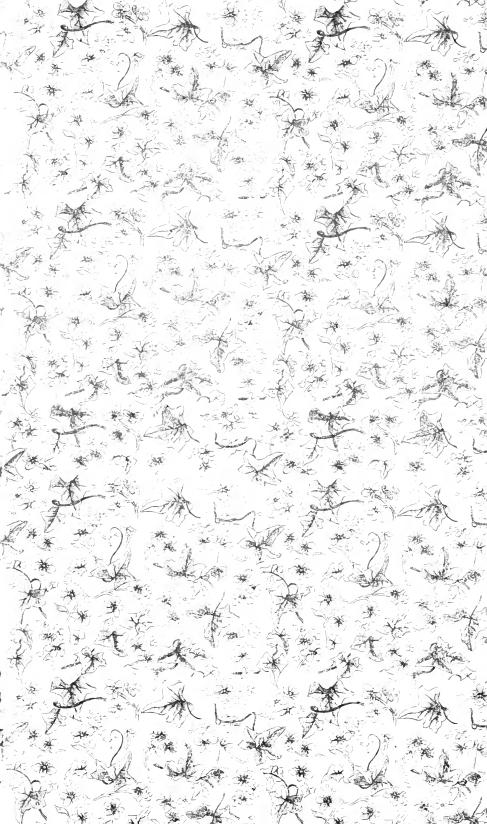
Plot		Protein,	percent.	Plot		Protein	, percent.
row No.	Hill No.	From high-protein seed.	From low protein secd.	row No.	Hill No.	From high-protein seed.	From low-protein seed.
14	11	11.32	9 09	16	15	11.77	9 92
14	12	9.37	9.08	16	16	12 18	9 51
14	13	10.21	8.36	17	1	10.73	9.99
14	13	11.18	8.25	17	7	10 29	9.71
14	15	12.56	9.46	17	7	12.11	8.92
14	16	10 96	9.94	17	8	12.69	8.12
15	3 7	10.96	8.65	17	10	13.00	9.114
15	7	11.76	8 91	17	12	12.48	8.85
15	9	9.18	7.74	17	14	12.05	11.00
15	12	11 67	9.68	17	15	13.01	7.57
15	15	11.12	12.48	17	16	12.54	9.45
16	7	12.51	9.32	18	4	14.14	11.17
16	9	11.11	9.06	18	9	11.73	10.84
16	11	11.50	8.39	18	10	14.19	9.66
1 6	12	10 93	7 45	18	12	9 28	8.51
16	13	12.20	7.46	18	16	13.44	10.35
16	14	10.26	8.15				
		Ave	rages			11.92	9.34

Table 100.—Oil in Corn Planted and Harvested on Mixed-Oil Plot in 1898

		High oil.		Low oil.			
Plot row	Register	Oil, pe	ercent.	Register	Oil, percent.		
No.	ear No.	Seed ear planted.	Crop harvested.	ear No.	Seed ear planted.	Crop harvested.	
1 2 3 4 5	207 210 212 213 215	5.20 5.44 5.68 5.49 5.43	4.66 4.87 5.38 5.14 5.35	205 206 207 208 209	3 39 3.39 3.38 3.50 3.70	3.60 3.86 4.13 4.20 4.06	
Pl	ot averages	5.45,	5.08		3.47	3.97	

TABLE 101.—OIL IN CORN PLANTED AND HARVESTED ON MIXED-OIL PLOT IN 1899


		High oil.		Low oil.			
Plot row No.	Register ear No.	Oil, pe	ercent.	Register ear No.	Oil, percent.		
		Seed ear planted.	Crop harvested.		Seed ear planted.	Crop harvested.	
1	305	6.47	5.09	304	3.56	3.81	
2	305	6.47	5.08	304	3.56	3.92	
3	306	6.71	5.27	308	3.22	3.89	
4	306	6.71	5.09	308	3.22	3.83	
5	307	6.49	5.03	310	3.33	3.73	
6	307	6.49	5.33	310	3.33	3.85	
7	308	6.34	5.04	311	3.35	3.72	
8	308	6.34	5.44	311	3.35	3.76	
9	309	6 09	5.07	315	3.64	3.95	
10	309	6.09	5.37	315	3.64	3.88	
Plo	t averages	6.42	5.18		3.42	3.83	


Table 102.—Oil in Corn Planted and Harvested on Mixed-Oil Plot in 1900

		High oil.		Low oil.				
Plot row	Register	Oil, p	ercent.	Register	Oil, percent.			
No.	ear No.	Seed ear planted.	Crop harvested.	ear No.	Seed ear planted.	Crop harvested.		
1	402	6.21	5.61	404	3.45	3.93		
2	403	6.22	5.74	405	3.42	3.78		
3	404	6.35	5.88	406	3.31	3.73		
4	405	6.42	5.99	407	3.08	3.75		
4 5	406	6.54	5.71	408	2.81	3.89		
6	407	6.43	5.91	409	2.94	3.80		
7	408	6.33	5.60	410	3.14	3.60		
8	409	6.27	5.84	411	3.32	3.58		
9	410	6.22	5.68	412	3.41	4.22		
10	411	6.20	5.82	413	3.47	3.77		
Plot	averages	6.32	5.78		3.24	3.81		

Table 103.—Oil in Eighty-five Pairs of Ears Grown on Mixed-Oil Plot in 1899

D1-4		Oil, pe	rcent.	Plot	1	Oil, pe	ercent.
Plot row No.	Hill No.	From high-oil seed.	From low-oil seed.	row No.	Hill No.	From high-oil seed.	From low-oil seed.
1	6	5.23	3.51	5	12	5.66	3.90
1	8	5.31	3.61	5 5 6	13	4.82	3.68
1	9	5.84	4.06		1	4.40	3.82
1 1	10 12	5.78 3.46	3.47 4.00	6	5 9	5.18	3.72
1	14	4.00	3,81	6 6	9	5.49 5.59	5.49 3.33
1	15	6.05	3.96	6 6	11	5.43	3.33
î	16	5.96	4.31	6	12	5.15	3.92
$\overline{2}$	1	5.55	4.27	6	12	4 91	3.67
222222222223333333333333333333333333333	3	5.34	4.20	6	13	5.59	3.22
2	4	5.29	4.34		3	5.75	3.57
2	6	5.12	3.66	7 7 7	5	4.51	3.30
2	8	5.71	3.20	7	6	4.92	3 93
2	9	5.17	3.86	7 7	9	5.09	3.92
2	10	3.56	3.86	7	10	4.74	3.73
2	11	5.18	4.55	7	13	5 01	3.66
2	12	4.51	3.93	7	15	5.30	3.93
2	12	4.84	3.85	8	2	6.29	3.76
2	15 16	5 59 5.28	3 62	8	10	6 08	4.09
2		5.28	3.67 5.24	8	11	5.29	3.28
3	3 4	5.77	3.73	8	12 13	5.66 4.66	3.38 4.13
3	8	5.23	3.73	8 8	13	5.02	4.13
3	9	5.26	3.16	8	14	5.53	4.04
3	9	5.85	3.01	8	16	5.22	3.42
3	10	5.77	3.56	9	2	4.58	4.69
3	11	4.73	3.52	9	4	4.97	3.60
3	12	5.36	3.86	9	6	5.34	4.21
3	13	4 85	4 48	9	6	4.93	3.47
4	2	5.49	4.12	9	8	5.66	3.08
4	3	5.18	3.90	9	9	5.33	3.61
4	7	4.77	3.58	9	12	5.01	3.97
4	11	5.77	4.30	9	12	4.65	4.29
4	12	5.17	3.79	9	13	4.90	4.37
4	13	3.86	3.93	9	14	5.06	3.48
4 4 4 5 5 5 5 5 5 5 5	13	5.28 5.24	4.26 3.52	10	4 7	5.67	3.28 3.86
5 5	3	5.59	3.52	10 10	9	5.01 5.63	3.86
5	2 3 5 7	5,02	3.60	10	10	4.80	3.68
5	7	5.25	3.67	10	12	5.12	4.41
5	9	5.05	3.41	10	14	5.75	3.77
5	10	5.20	3.78	10	15	5.95	3.85
5	10	6.69	3.98		-0	1	
		Av	erages			5.22	3.82

UNIVERSITY OF ILLINOIS-URBANA

3 0112 078530356