


LIBRARY
*

OF THE

UNIVERSITY OF CALIFORNIA.

CIms

,1^--^

«^

.»•
>.'^i*f^



1v-'

v««'.

Wr'^^m

^^mr-:/



^'

.\^>^

:>s











A TEXT-BOOK

OF

EUCLID'S ELEMENTS.





A TEXT-BOOK

OF

EUCLID'S ELEMENTS
FOR THE USE OF SCHOOLS

BOOKS L—VI. AND XL

BY

IH.
S. HALL, M.A.

FORMKRLY SCHOLAR OF CHRISt's COLLEGE, CAMBRIDGE
;

AND

F. H. STEVENS, M.A.

FORMERLY SCHOLAR OP QUEEN's COLLEGE, OXFORD
;

MASTERS OF THE MILITARY AND ENGINEERING SIDE, CLIFTON COLLEGE,

SECOND EDITION REVISED AND ENLARGED.

Hontron: frrWT VT?t? ^T^MACMILLAN AND COT
fj

* ^
^^^ \

AND NEW YOKE.
^^^tlf^"^!^

i«9i
^^

\A It" Rights reserved.]



Richard Clay and Sons, Limited,

london and bungay.

Fir»t Edition 18S8.

Second Edition (Book XI. added) 18S9.

Reprinted 1890. 1891.



PEEFACE TO THE FIEST EDITION.

This volume contains the first Six Books of Euclid's

Elements, together with Appendices giving the most im-

portant elementary developments of Euclidean Geometry.

The text has been carefully revised, and special atten-

tion given to those points which experience has shewn to

present difficulties to beginners.

In the course of this revision the Enunciations have

been altered as little as possible; and, except in Book V.,

very few departures have been made from Euclid's proofs:

in each case changes have been adopted only where the old

text has been generally found a cause of difficulty; and

such changes are for the most part in favour of well-recog-

nised alternatives.

For example, the ambiguity has been removed from the

Enunciations of Propositions 18 and 19 of Book I.: the

fact that Propositions 8 and 26 establish the complete
identical equality of the two triangles considered has been

strongly urged; and thus the redundant step has been

removed from Proposition 34. In Book II. Simson's ar-

rangement of Proposition 13 has been abandoned for a

well-known alternative proof. In Book III. Proposition
25 is not given at length, and its place is taken by a

/! /^



VI PREFACE.

simple equivalent. Propositions 35 and 36 have been

treated generally, and it has not been tliought necessary

to do more than call attention in a note to the special

cases. Finally, in Book VI. we have adopted an alterna-

tive proof of Proposition 7, a theorem wliich has been too

much neglected, owing to the cumbrous form in whicli it

has been usually given.

These are the chief deviations from the ordinary text

as regards method and arrangement of proof: they are

points familiar as difficulties to most teachers, and to name

them indicates sufficiently, without further enumeration,

the general principles which have guided our revision.

A few alternative proofs of difficult propositions are

given for the convenience of those teachers who care to

use them.

With regard to Book V. we have established the princi-

pal propositions, both from the algebraical and geometrical

definitions of ratio and proportion, and we have endeavoured

to bring out clearly the distinction between these two modes

of treatment.

In compiling the geometrical section of Book V. we

have followed the system first advocated by the late Pro-

fessor De Morgan ;
and here we derived very material

assistance from the exposition of the subject given in the

text-book of the Association for the Improvement of Geo-

metrical Teaching. To this source we are indebted for the

improved and more precise wording of definitions (as given

on pages 286, 288 to 291), as well as for the order and

substance of most of the propositions which appear between

pages 297 and 306. But as we have not (except in the

points above mentioned) adhered verbally to the text of

the Association, we are anxious, while expressing in the

fullest manner our obligation to their work, to exempt the



PREFACE. Vll

Association from all responsibility for our treatment of the

subject.

One purpose of the book is to gradually familiarise the

student with the use of legitimate symbols and abbrevia-

tions; for a geometrical argument may thus be thrown into

a form which is not only more readily seized by an advanced

reader, but is useful as a guide to the way in which Euclid's

propositions may be handled in written work. On the

other hand, we think it very desirable to defer the intro-

duction of symbols until the beginner has learnt that they
can only be properly used in Pure Geometry as abbrevia-

tions for verbal argument: and we hope thus to prevent
the slovenly and inaccurate habits which are very apt to

arise from their employment before this principle is fully

recognised.

Accordingly in Book I. we have used no contractions

or symbols of any kind, though we have introduced verbal

alterations into the text wherever it appeared that con-

ciseness or clearness would be gained.

In Book II. abbreviated forms of constantly recurring

words are used, and the phrases therefore and is 'equal to

are replaced by the usual symbols.
In the Third and following Books, and in additional

matter throughout the whole, we have employed all such

signs and abbreviations as we believe to add to the clear-

ness of the reasoning, care being taken that the symbols
chosen are compatible with a rigorous geometrical method,
and are recognised by the majority of teachers.

It must be understood that our use of symbols, and the

removal of unnecessary verbiage and repetition, by no

means implies a desire to secure brevity at all hazards.

On the contrary, nothing appears to us more mischievous

than an abridgement which is attained by omitting
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steps, or condensing two or more steps into one. Such

uses spring from the pressure of examinations; but an

examination is not, or ought not to be, a mere race; and

while we wish to indicate generally in the later books how
a geometrical argument may be abbreviated for the pur-

poses of written work, we have not thought well to reduce

the propositions to the bare skeleton so often presented to

an Examiner. Indeed it does not follow that the form most

suitable for the page of a text-book is also best adapted
to examination purposes; for the object to be attained

in each case is entirely different. The text-book should

present the argument in the clearest possible manner to the

mind of a reader to whom it is new : the written proposition

need only convey to the Examiner the assurance that the

proposition has been thoroughly grasped and remembered

by the pupil.

From first to last we have kept in mind the undoubted

fact that a very small proportion of those who study Ele-

mentary Geometry, and study it with profit, are destined

to become mathematicians in any real sense; and that to

a large majority of students, Euclid is intended to serve

not so much as a first lesson in mathematical reasoning,

as the first, and sometimes the only, model of formal and

rigid argument presented in an elementary education.

This consideration has determined not only the full

treatment of the earlier Books, but the retention of the

formal, if somewhat cumbrous, methods of Euclid in many
places where proofs of greater brevity and mathematical

elegance are available.

We hope that the additional matter introduced into

the book will provide sufficient exercise for pupils whose

study of Euclid is preliminary to a mathematical edu-

cation.
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The questions distributed tlirough the text follow very

easily from the propositions to which they are attached,

and we think that teachers are likely to find in them

all that is needed for an average pupil reading the subject

for the first time.

The Theorems and Examples at the end of each Book

contain questions of a slightly more difficult type : they

have been very carefully classified and arranged, and brought

into close connection with typical examples worked out

either partially or in full
;
and it is hoped that this section

of the book, on which much thought has been expended,

will do something towards removing that extreme want of

freedom in solving deductions that is so commonly found

even among students who have a good knowledge of the

text of Euclid.

In the course of our work we have made ourselves

acquainted with most modern English books on Euclidean

Geometry : among these we have already expressed our

special indebtedness to the text-book recently published by
the Association for the Improvement of Geometrical Teach-

ing; and we must also mention the Edition of Euclid's Ele-

ments prepared by Mr J. S. Mackay, whose historical notes

and frequent references to original authorities have been of

the utmost service to us.

Our treatment of Maxima and Minima on page 239 is

based upon suggestions deriyed from a discussion of the

subject which took place at the annual meeting of the

Geometrical Association in January 1887.

Of the Riders and Deductions some are original; but

the greater part have been drawn from that large store of

floating material which has furnished Examination Papers
for the last 30 years, and must necessarily form the basis

of any elementary collection. Proofs which have been
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found in two or more books without acknowledgement
liave been regarded as common property.

As regards figures, in accordance with a usage not

uncommon in recent editions of Euclid, we have made a

distinction between given lines and lines of construction.

Throughout tlie book we have italicised those deductions

on which we desired to lay special stress as being in them-

selves important geometrical results : this arrangement we
think will be useful to teachers who have little time to

devote to riders, or who wish to sketch out a suitable course

for revision.

We have in conclusion to tender our thanks to many of

our friends for the valuable criticism and advice which we
received from them as the book was passing through the

press, and especially to the Rev. H. C. Watson, of Clifton

College, who added to these services much kind assistance

in the revision of proof-sheets.

H. S. HALL,
F. H. STEVENS.

July, 1888.

PREFACE TO THE SECOND EDITION.

In the Second Edition the text of Books I—VI. has

been revised
;
and at the request of many teachers we have

added the first twenty-one Propositions of Book XI. together

with a collection of Theorems and Examples illustrating the

elements of Solid Geometry.

September, 1889.
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EUCLID'S ELEMENTS.

BOOK I.

Definitions.

1. A point is that which has position, but no mag-
nitude,

2. A line is that which has length without breadth.

The extremities of a line are points, and the intersection of two
lines is a point.

3. A straight line is that which lies evenly between
its extreme points.

Any portion cut off from a straight lineis called a segment of it.

4. A surface is that which has length and breadth,
but no thickness.

The boundaries of a surface are lines.

5. A plane surface is one in which any two points

being taken, the straight line between them lies wholly in

that surface.

A plane surface is frequently referred to simply as a plane.

Note, Euclid regards a point merely as a viark of position, and
he therefore attaches to it no idea of size and shape.

Similarly he considers that the properties of a line arise only from
its length and position, without reference to that minute breadth which

every line must really have if actually draion, even though the most

perfect instruments are used.

The definition of a surface is to be understood in a similar way.

II. ]•:. 1.



2 EUCLID'S KLEMENTS.

6. A plane angle ia the inclination of two straiglit

lines to one another, which meet together, but are not in

the same straight line.

The point at which the straight lines meet is called the vertex of

the angle, and the straight lines themselves the arms of the angle.

When several angles are at one point O, any one
of them is expressed by three letters, of which the

letter that refers to the vertex is put between the

other two. Thus if the straight lines OA, OB, OC
meet at the point O, the angle contained by the

straight lines OA, OB is named the angle AOB or

BOA ;
and the angle contained by OA, OC is named

the angle AOC or COA. Similarly the angle con-

tained by OB, 00 is referred to as the angle BOG
or COB. But if there be only one angle at a point,
it may be expressed by a single letter, as the angle
atO.

Of the two straight lines OB, OC shewn in the

adjoining figure, we recognize that OC is rnore in-

clined than OB to the straight line OA : this we
express by saying that the angle AOC is greater
than the angle AOB. Thus an angle must be

regarded as having magnitude. q

It should be observed that the angle AOC is the sum of the

angles AOB and BOC
; and that AOB is the difference of the angles

AOC and BOC.

The beginner is cautioned against supposing that the size of an

angle is altered either by increasing or diminishing the length of its

arms.

[Another view of an angle is recognized in many branches of

mathematics
;
and though not employed by Euclid, it is here given

because it furnishes more clearly than any other a conception of what
is meant by the magnitxidc of an angle.

Suppose that the straight line OP in the figure
is capable of revolution about the point O, like the

hand of a watch, but in the opposite direction
; and

suppose that in this way it has passed successively
from the position OA to the positions occupied by
OB and OC.

Such a line must have undergone more turning
in passing from OA to OC, than in passing from OA to OB; and
consequently the angle AOC is said to be greater than the angle AOB.]
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7. When a straight line standing on

another straight line makes the adjacent

angles equal to one another, each of the an-

gles is called a right angle ;
and the straight

line which stands on the other is called a

perpendicular to it.

8. An obtuse angle is an angle whicli

is greater than one right angle, but less

than two right angles.

9. An acute angle ,is an angle which is

less than a right angle.

B

[In the adjoining figure the straight line

OB may be supposed to have arrived at

its present position, from the position occu-

pied by OA, by revolution about the point O
m either of the two directions indicated by
the arrows : thus two straight lines drawn
from a point may be considered as forming
tico angles, (marked (i)

and (ii) in the figure)
of which the greater (ii)

is said to be reflex.

If the arms OA, OB are in the same
straight line, the angle formed by them
on either side is called a straight angle.]

10. Any portion of a plane surface bounded by one
or more lines, straight or curved, is called a plane figure.

The sum of the bounding lines is called the perimeter of the figure.
Two figures are said to be equal in area, when they enclose equal

portions of a plane surface. <,..•

11. A circle is a plane figure contained

by one line, which is called the circum-

ference, and is such that all straight lines

drawn from a certain point within the

figure to the circumference are equal to one
another : this point is called the centre of

the circle.

A radius of a circle is a straight line drawn from the
centre to the circumference.

1—2



4 Euclid's elements.

12. A diameter of a circle is a straiglit line drawn

ilirougli the centre, and terminated both ways by the

circumference.

13. A semicircle is tlie figure bounded by a diameter

of a circle and the jmrt of the circumference cut off by the

diameter.

14. A segment of a circle is the figure bounded by
a straight line and the part of the circumference which it

cuts oft".

15. Rectilineal figures are those which are bounded

by straight lines.

16. A triangle is a plane figure ])ounded by three

straight lines.

Any one of the angular points of a triangle may be regarded as its

vertex ; and the opposite side is then called the base.

17. A quadrilateral is a plane figure bounded by
four straight lines.

The straight line which joins opposite angular points in a qiiadri-
lateral is called a diagonal.

18. A polygon is a plane figure bounded by more
than four straight lines.

19. An equilateral triangle is a triangle
whose three sides are equal,

L

20. An isosceles triangle is a triangle two
of whose sides are equal.

21. A scalene triangle is a triangle which
has three unequal sides.
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22. A right-angled triangle is a triangle
which has a right angle.

The side opposite to the right angle in a right-angled triangle is

called the hypotenuse.

23. An obtuse-angled triangle is a

triangle which has an obtuse anijle.

24. An acute-angled triangle is a triangh
which lias tJwee acute an<j:les.

[It will be seen hereafter (Book I. ^Proposition 17) that every
triangle must have at least ttco acute angles.]

25. Parallel straight lines are such as, being in the

same plane, do not meet, however far they are produced in

either direction.

26. A Parallelogram is a four-sided

figure wiiich lias its opposite sides pa-
rallel.

28. A square is a four-sided figure which
has all its sides equal and all its angles right

angles.

[It may easily be shewn that if a quadrilateral
has all its sides equal and one angle a right angle,
then all its angles will be right angles.]

29. A rhombus is a four-sided figure
which has all its sides equal, but its

angles are not right angles.

30. A trapezium is a four-sided figure
which has two of its sides parallel.

27. A rectangle is a parallelogram which r
has one of its angles a right angle.

|
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ON THE POSTULATES.

In order to effect the constructions necessary to the study of

geometry, it must be supposed that certain instruments are

available; but it has always been held that such instruments
should be as few in number, and as simple in character as

possible.

For the purposes of the first Six Books a straight ruler and
a pair of comi^asses are all that are needed

;
and in the follow-

ing Postulates, or requests, Euclid demands the use of such

instruments, and assumes that they sufl&ce, theoretically as well

lis practically, to carry out the processes mentioned below.

Postulates.

Let it be granted,

1. That a straight line may be drawn from any one

point to any other point.

When we draw a straight line from the point A to the point B, we
are said io join AB.

2. That a JinitCj that is to say, a terminated straight
line may be produced to any length in that straight line.

3. That a circle may be described from any centre, at

any distance from that centre, that is, with a radius equal
to any finite straight line drawn from the centre.

It is important to notice that the Postulates include no means of

direct measurement : hence the straight ruler is not supposed to be

graduated ; and the compasses, in accordance with EucHd's use, are

not to be employed for transferring distances from one part of a figure

to another.

ON THE AXIOMS.

The science of Geometry is based upon certain simple state-

ments, the truth of which is assumed at the outset to be self-

evident.

These self-evident truths, called by Euclid Common Notions^
are now known as the Axioms.
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The necessary characteristics of an Axiom are

(i)
That it should be self-evident; that is, that its truth

should be immediately accepted without proof.

(ii) That it should be fundamental; that is, that its truth

should not be derivable from any other truth more simple than

itself.

(iii) That it should supply a basis for the establishment of

further truths.

These characteristics may be summed up in the following
definition.

Definition. An Axiom is a self-evident truth, which neither

requires nor is capable of proof, but which serves as a founda-

tion for future reasoning.

Axioms are of two kinds, general and geometrical.

General Axioms apply to magnitudes of all kinds. Geometri-

cal Axioms refer exclusively to geometrical magnitudes^ such as

have been already indicated in the definitions.

General Axioms.

1. Things which are equal to the same thing are equal
to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be taken from equals, the remainders are

equal.

4. If equals be added to unequals, the wholes are un-

equal, the greater sum being that which includes the greater
of the unequals.

5. If equals be taken from unequals, the remainder.4

are unequal, the greater remainder being that which is left

from the greater of the unequals.

6. Things which are double of the same thing, or

of equal things, are equal to one another.

7. Things which are halves of the same thing, or ot

equal things, are equal to one another.

9.* The whole is greater than its part.

* To preserve the classification of general and geometrical axioms,
we have placed Euclid's ninth axiom before the eighth.
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Geometrical Axioms.

8. Magnitudes wliich can be made to coincide with one

another, are equal.

This axiom affords the ultimate test of the equahty of two geome-
trical magnitudes. It implies that any liue, angle, or figure, may be

supposed to be taken up from its position, and without change in

size or form, laid down upon a second line, angle, or figure, for the

purpose of comparison.

This process is called superposition, and the first magnitude is

said to be applied to the other.

10. Two straight lines cannot enclose a space.

11. All right angles are equal.

[The statement that all right angles are equal, admits of proof,
and is therefore perhaj^s out of place as an Axiom.]

12. If a straight line meet two straight lines so as tv

make the interior angles on one side of it together less

than two right angles, these straight lines will meet if con-

tinually produced on the side on which are the angles wliicli

are together less than two right angles.

That is to say, if the two straight
lines AB and CD are met by the straight
line EH at F and G, in such a way that
the angles BFG, DGF are together less

than two right angles, it is asserted that
AB and CD will meet if continually pro-
duced in the direction of B and D.

[Axiom 12 has been objected to on the double ground that it cannot
be considered self-evident, and that its truth may be deduced from
simpler principles. It is employed for the first time in the 29th Pro-
position of Book L, where a short discussion of the difficulty will be
found.

The converse of this Axiom is proved in Book I. Proposition 17.]
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INTRODUCTOKY.

Plane Geometry deals with the properties of all lines and

figures that may be drawn upon a plane surface.

Euclid in his first Six Books confines himself to the properties
of straight lines, rectilineal figures, and circles.

The Definitions indicate the subject-matter of these books:
the Postulates and Axioms lay down the fundamental principles
which regulate all investigation and argument relating to this

subject-matter.

Euclid's method of exposition divides the subject into a
number of sej)arate discussions, called propositions; each pro-

position, though in one sense complete in itself, is derived from
results previously obtained, and itself leads up to subsequent
propositions.

Propositions are of two kinds. Problems and Theorems.

A Problem i3roposes to effect some geometrical construction,
such as to draw some particular line, or to construct some re-

quired figure.

A Theorem proposes to demonstrate some geometrical truth.

A Proposition consists of the following parts :

The General Enunciation, the Particular Enunciation, the

Construction, and the Demonstration or Proof.

(i) The General Enunciation is a preliminary statement,

describing in general terms the purpose of the proposition.

In a problem the Enunciation states the construction which
it is proposed to effect: it therefore names first the Data, or

things given, secondly the Qusesita, or things required.

In a theorem the Enunciation states the property which it

is j)roposed to demonstrate : it names first, the Hypothesis, or
the conditions assumed

; secondly, the Conclusion, or the asser-

tion to be X)rovcd.
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(ii) The Paaijicular Enunciation repeats in special terms
the statement already made, and refers it to a diagram, which
enables the reader to follow the reasoning more easily.

(iii) The Constmction then directs the drawing of such

straight lines and circles as may be required to effect the purpose
of a problem, or to prove the truth of a theorem.

(iv) Lastly, the Demonstration proves that the object pro-

posed in a problem has been accomplished, or that the propei-ty
stated in a theorem is true.

Euclid's reasoning is said to be Deductive, because by a con-

nected chain of argument it deduces new truths from truths

already proved or admitted.

The initial letters q.e.f., placed at the end of a problem,
stand for Quod erat Faciendum, which was to he done.

The letters q. e. d. are appended to a theorem, and stand for

Quod erat Demonstrandum, which was to be proved.

A Corollary is a statement the truth of which follows readily
from an established proposition ;

it is therefore appended to the

proposition as an inference or deduction, which usually requires
no further proof.

The following symbols and abbreviations may be employed
in writing out the propositions of Book L, though their use is not
recommended to beginners.

.-. for



BOOK I. PROP. 1. 11

SECTION I.

Proposition 1. Problem.

To describe an equilateral triangle 07h a given Jlnite

straight line.

Let AB be the given straight line.

It is required to describe an equilateral triangle on AB.

Construction. From centre A, with radius AB, describe

the circle BCD. Post. 3,

From centre B, with radius BA, describe the circle ACE.

Post. 3.

From the point C at which the circles cut one another,
draw tlie straight lines CA and CB to the points A and B.

Post. 1.

Then shall ABC be an equilateral triangle.

Proof. Because A is the centre of the circle BCD,
therefore AC is equal to AB. Def. 11.

And because B is the centre of the circle ACE,
therefore BC is equal to BA. Def. 1 1 .

But it has been shewn that AC is equal to AB
;

therefore AC and BC are each equal to AB.

But things which are equal to the same thing are equal
to one another. Ax. 1.

Therefore AC is equal to BC.

Therefore CA, AB, BC are equal to one another.

Therefore the triangle ABC is equilateral ;

and it is described on the given straight line AB. q.e. F.
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Proposition 2.. Problem.

From a given point to draw a straight line equal to

given straight line.

Let A be the given point, and BC the given straight line.

It is required to draw from the point A a straight line

equal to BC.

Construction. JoinAB; Post. 1.

and on AB describe an equilateral triangle DAB. i. 1.

From centre B, with radius BC, describe the circle CGH.
Post. 3.

Produce DB to meet the circle CGH at G. Post. 2.

From centre D, with radius DG, describe the circle GKF.
Produce DA to meet the circle GKF at F. Post. 2.

Then AF shall be equal to BC.

Proof. Because B is the centre of the circle CGH,
therefore BC is equal to BG. Def. 11.

And because D is the centre of the circle GKF,
therefore DF is equal to DG

; Dcf. 11.

and DA, DB, parts of them are equal; Def. 19,

therefore the remainder AF is equal to the remainder BG.

Ax. 3.

And it has been shewn that BC is equal to BG
;

therefore AF and BC are each equal to BG.

But things which are equal to the same thing are equal
to one another. Ax. 1.

Therefore AF is equal to BC
;

and it has been drawn from the given point A. q. e. f.

[This Proposition is rendered necessary by the restriction, tacitly

imposed by Euclid, that compasses shall not be used to transfer

distances.]
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Proposition 3. Problem.

From the greater of tivo given straight li7ies to cut off a

fart equal to the less.

Let AB and C ])e the two given straight lines, of wliich

AB is tlie greater.
It is required to cut off from AB a part equal to C.

Construction. From the point A draw the straight line

AD equal to C
; i. 2.

and from centre A, wit a radius AD, describe the circle DEF,

meeting AB at E. Post. 3.

Then AE shall be equal to C.

Proof, Because A is the centre of the circle DEF,
therefore AE is equal to AD. Def 11.

But C is equal to AD. Constr.

Therefore AE and C are each equal to AD.
Therefore AE is equal to C

;

and it has been cut off from the given straight line AB.

Q.E.P

EXERCISES.

1. On a given straight line describe an isosceles triangle having
each of the equal sides equal to a given straight line.

2. On a given base describe an isosceles triangle having each of
the equal sides double of the base.

3. In the figure of i. 2, if AB is equal to BC, shew that D, the
vertex of the equilateral triangle, ^Yill fall on the circumference of the
circle CGH.
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Ohs. Every triangle has six parts, namely its three sides

and three angles.
Two triangles are said to be equal in all respects, when

they can be made to coincide with one another by superposition

(see note on Axiom 8), and in this case each part of the one ia

equal to a corresponding part of the other.

Proposition 4. Theorem.

If two triangles liave ttoo sides of the one equal to two

sides of the other, ea^h to each, and have also tlie angles
contained hy those sides eqiial; then shall their bases or third

sides he equal, and the triangles slmll he equal in area, and
their remaining angles shall he equal, each to each, namely
tJiose to which the equal sides are opposite : timt is to say, the

triangles shall he equal in all respects.

D

_ E
C

Let ABC, DEF be two triangles, which have the .side AB

equal to the side DE, the side AC equal to the side DF, and
the contained angle BAC equal to the contained angle EDF.

Then shall the base BC be equal to the base EF, and the

triangle ABC shall be equal to the triangle DEF in area;
and the remaining angles shall be equal, each to each, to

which the equal sides are opposite,

namely the angle ABC to the angle DEF,
and the angle ACB to the angle DFE.

For if the triangle ABC be applied to the triangle DEF,
so that the point A may be on the point D^

and the straight line AB along the straight line DE,
then because AB is equal to DE, Hyp.

therefore the point B must coincide with the point E.
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And because AB falls along DE,

and the angle BAG is equal to the angle EDF, Hyp.
therefore AC must fall along DF.

And because AC is equal to DF, Hyp.
therefore the point C must coincide with tlie point F.

Then B coinciding with E, and C with F,

the base BC must coincide with the base EF;
for if not, two straight lines would enclose a space ;

which
is impossible.- Ax. 10.

Thus the base BC coincides with the base EF, and is

therefore equal to it. Ax. %.

And the triangle ABC coincides with tlie triangle DEF,
and is therefore equal to it in area. Ax. 8.

And the remaining angles of the one coincide with the re-

maining angles of the other, and are therefore equal to them,

namely, the angle ABC to the angle DEF,
and the angle ACB to the angle DFE.

That is, the triangles are equal in all respects. q. e. d.

Note, It follows that two triangles which are equal in their

several parts are equal also in area; but it should be observed that

equality of area in two triangles does not necessarily imply equality in

their several parts: that is to say, triangles may be equal in area,
without being of the same

Two triangles which are equal in all respects have identity ofform
and magnitude, and are therefore said to be identically equal, or

congruent.

The following application of Proposition 4 anticipates
tlie chief difficulty of Proposition 5.

In the equal sides AB, AC of an isosceles triangle
ABC, the points X and Y are taken, so that AX
is equal to AY

; and BY and CX are joined,
^hew that BY is equal to CX.

In the two triangles XAC, YAB,
XA is equal to YA, and AC is equal to AB

; Hyp.
that is, the two sides XA, AC are equal to the two

sides YA, AB, each to each;
and

the_ angle at A, which is contained by these

sides, is common to both triangles :

therefore the triangles are equal in all respects ;

so that XC is equal to YB.
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Proposition 5. Theorem.

lite angles at the base of an isosceles triangle are equal
to one another; and if the equal sides he produced^ the

angles on the other side of the hose shall also he equal to one
anotJier.

Let ABC be an isosceles triangle, having the side AB

equal to the side AC, and let the straight lines AB, AC be

produced to D and E :

then shall the angle ABC be equal to the angle ACB,
and the angle CBD to the angle BCE.

Construction. In BD take any point F;
and from AE the greater cut off AG equal to AF the less. i. 3.^

Join FC, GB.

Proof. Then in the triangles FAC, GAB,
( FA is equal to GA, Constr.

Because I
and AC is equal to A B, /%?.

jalso
the contained angle at A is common to the

I two triangles ;

therefore the triangle FAC is equal to the triangle GAB in

all respects ; i. 4.

that is, the base FC is equal to the base GB,
and the angle ACF is equal to the angle ABG,
also the angle AFC is equal to the angle AGB.

Again, because the whole AF is equal to the whole AG,
of which the parts AB, AC are equal, ^J^yp-

therefore the remainder BF is equal to the I'einaindei* CG.
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Then in the two triangles BFC, CGB,
r BF is equal to CG, Proved.

,, and PC is equal to GB, Proved.

I

also the contained angle BFC is equal to the

\ contained angle CGB, Proved.

therefore the triangles BFC, CGB are equal in all respects;
so that the angle FBC is equal to the angle GCB,

and the angle BCF to the angle CBG. i. 4.

Now it has been shewn that the whole angle ABG is equal
to the whole angle ACF,

and that parts of these, namely the angles CBG, BCF, are

also equal ;

therefore the remaining angle ABC is equal to the remain-

ing angle ACB
;

and these are the angles at the base of the triangle ABC.

Also it has been shewn that the angle FBC is equal to the

angle GCB ;

and these are the angles on the other side of the base, q.e.d.

Corollary. Hence if a triangle is equilateral it is

also equiangular.

Definition. Each of two Theorems is said to be the Con-
verse of the other, when the hypothesis of each is the conclusion

of the other.

It will be seen, on comparing the hypotheses and conclusions of

Props, o and 6, that each proposition is the converse of the other.

Note. Proposition 6 furnishes the first instance of an indirect

method of "proof, frequently used by Euclid. It consists in shewin*;
that an absurdity must result from supposing the theorem to be
otherwise than true. This form of demonstration is known as the

Reductio ad Absurdum, and is most commonly employed in establish-

ing the converse of some foregoing theorem.

It must not be supposed that the converse of a true theorem is

itself necessarily true : for instance, it will be seen from Prop. 8, Cor.

that if two triangles have their sides equal, each to each, then their

angles will also be equal, each to each
; but it may easily be shewn by

means of a figure that the converse of this theorem is not necessarily
true.

H. E.
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Proposition 6. Theorem.

If two angles of a triant/le he equal to otie another^ then

the sides also which subtend, or are opposite to, the equal

angles, shall he equal to one another.

Let ABC be a triangle, having the angle ABC equal to

the angle ACB :

then shall the side AC be equal to the si^e AB.

Construction. For if AC be not equal to AB,
one of them must be greater than the other.

If possible, let AB be the greater;
and from it cut off BD equal to AC. i. 3.

Join DC.

Proof. Then in the triangles DBC, ACB,

[
DB is equal to AC, Conslr.

and BC is common to both,
also the contained angle DBC is equal to the

I contained angle ACB; iiyj>-

therefore the triangle DBC is equal in area to the triangle

ACB, 1. 4.

the part equal to the whole
;
which is absurd. Ax. 9.

Therefore AB is not unequal to AC
;

that is, AB is equal to AC. q.kd.

Corollary. Hence if a triangle is equiangular it is

also equilateral.

Because
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Proposition 7. Theorem.

Oyi the same base, and on the same side of it, there

cannot he tivo triangles havirig their sides which are termi-

nated at one extremity of the base equal to one another, and
lihevnse those which are terminated at the other extremity

equal to one another.

If it be possible, on the same base AB, and ou the same
side of it, let there Ije two triangles ACB, ADB, having their

sides AC, AD, which are terminated at A, equal to one

another, and likewise their sides BC, BD, which are termi-

nated at B, equal to one another.

Case I. When the vertex of each triangle is without

the other triangle.

Construction. Join CD. Post. 1.

Proof Then in the triangle ACD,
because AC is equal to AD, U^VP-

therefore tlie angle ACD is equal to the angle ADC. I. 5.

But the whole angle ACD is greater than its part, the

angle BCD,
therefore also the angle ADC is greater than the angle BCD ;

still more then is the angle BDC greater than the angle
BCD.

Again, in the triangle BCD,
because BC is equal to BD, ^fyp-

therefore the angle BDC is equal to the angle BCD: i. 5

but it was shewn to be greater ;
which is impossible.

2—2
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Cask II. Wlieii one of the vertices, as D, is within

tlio other triangle ACB. ^

Construction. As before, join CD ; Post. 1.

and produce AC, AD to E and F. Post. 2.

Tlien in the triangle ACD, because AC is equal to AD, Hyp.
therefore the angles ECD, FDC, on the other side of the

base, are equal to one another. I. 5.

But the angle ECD is greater than its part, the angle BCD;
therefore the angle FDC is also greater than the angle

BCD:
still more then is the angle BDC greater than the angle

BCD.

Again, in the triangle BCD,
because BC is equal to BD, Hy^j.

therefore the angle BDC is equal to the angle BCD : I. 5.

but it has been shewn to be greater ;
which is impossible.

The case in which the vertex of one triangle is on a

side of the other needs no demonstration.

Therefore AC cannot be equal to AD, and at the same
time

J
BC equal to BD. q.e.d.

Note. The sides AC, AD are called conterminous sides ; similarly
the sides BC, BD are conterminoas.

Proposition 8. Theorem.

If two triangles have two sides of the one equal to two

sides of the other
^
each to each, and have likewise their bases

equal, then the angle which is contained by the two sides of
the one shall be equal to the angle which is contained by
the two sides of the other.
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Let ABC, DEF be two triangles, having tlie two sides

BA, AC equal to the two sides ED, DF, each to each, namely
BA to ED, and AC to DF, and also the base BC equal to the

base EF:
' '

then shall the angle BAC be equal to the angle EDF.

Proof. For if the triangle ABC be applied to the

triangle DEF, so that the point B may be on E, and tlie

.straight line BC along EF
;

then because BC is equal to EF, ^yP'
therefore the point C must coincide with the point F.

Then, BC coinciding with EF,
it follows that BA and AC must coincide with ED and DF :

for if not, they would have ^ different situation, as EG, G F :

then, on the same base and on the same. side of it there

»

would be two triangles having their conterminous sides

equal.
But this is impossible. i. 7.

Therefore tlie sides BA, AC coincide with the sides ED, DF.

That is, the angle BAC coincides with the angle EDF, and is

therefore equal to it. Ax. 8.PQ.E.D.Note. In this Proposition the three sides of one triangle are

given equal respectively to the three sides of the other; and from
this it is shewn that the two triangles may be made to coincide with
one another.

Hence we are led to the following important Corollary.

Corollary. If in two triangles the three sides of the

one are equal to the three sides of the other, each to each,
then the triangles are equal in all

respects.
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The following proof of Prop. 8 is worthy of attention as it is inde-

pendent of Prop. 7, which frequently presents difficulty to a beginner.

Proposition 8. Alternative Proof.

A D

Let ABC and DEF be two triangles, which have the sides BA, AC
equal respectively to the sides ED, DF, and the base BC equal to the

base EF :

then shall the angle BAG be equal to the angle EDF.
For apply the triangle ABC to the triangle DEF, so that B may

fall on E, and BC along EF, and so that the point A may be on the
side of EF remote from D,

then C must fall on F, since BC is equal to EF. •

Let A'EF be the new position of the triangle ABC.
If neither DF, FA' nor DE, EA' are in one straight line,

join DA'.

Case I. When DA' intersects EF.
Then because ED is equal to EA',

therefore the angle EDA' is equal to the angle EA'D. i, r>.

Again because FD is equal to FA',
therefore the angle FDA' is equal to the angle FA'D. i. 5.

Hence the whole angle EDF is equal to the whole angle EA'F
;

that is, the angle EDF is equal to the angle BAC.

Two cases remain which may be dealt with in a similar manner:

namely.

Case II. When DA' meets EF produced.

Case III. When one pair of sides, as DF, FA', are in one straight
line.
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Proposition 9. Problem.

To bisect a given angle, that is, to divide it into two equal

parts.

A

Let BAG be the given angle :

it is required to bisect it.

Construction. In AB take any point D;
and from AC cut off AE equal to AD. i. 3.

Join DE;
and on DE, on the side remote from A, describe an equi-

lateral triangle DEF. i. 1.

Join AF.

Then shall the straight line AF bisect the angle BAG.

Proof. For in the two triangles DAF, EAF,
( DA is equal to EA, Constr.

p I and AF is common to both;
Jjecause \^ ^^^ ^j^.^^ ^-^^ ^^P -^ ^^^^^^ ^^ ^j^^ ^j^.^,^ ^.^^^

I EF; Def. 19.

therefore the angle DAF is equal to the angle EAF. i. 8.

Therefore the given angle BAG is bisected by the straight
line AF. Q.e.f.

EXERCISES.

^1. If in the above figure the equilateral triangle DFE were de-

scribed on the same side of DE as A, what different cases would arise?

And under what circumstances would the construction fail?

2. In the same figure, shew that AF also bisects the angle DFE.

3. Divide an angle into four equal parts.
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Proposition 10. Problem.

To bisect a given finite straight linej that is, to divide it

into two equal 2Jarts.

Let AB be the given straight line :

it is required to divide it into two equal parts.

Constr. On AB describe an equilateral triangle ABC, i. 1.

and bisect the angle ACB by the straight line CD, meeting
AB at D. I. 9.

Tlien shall AB be bisected at the point D.

P7'oo/. For in the triangles ACD, BCD,
r AC is equal to BC, Dqf. 19.

-r, and CD is common to both :

I

also the contained angle ACD is equal to the con-

[ tained angle BCD; Constr.

Therefore the triangles are equal in all respects:
so that the base AD is equal to the base BD. i. 4.

Therefore the straight line AB is bisected at the point D.

Q. E, F.

EXERCISES.

1. Shew that the straight line which bisects the vertical angle of

an isosceles triangle, also bisects the hase.

2. On a given base describe an isosceles triangle such that the
sam of its equal sides may be equal to a given straight line.
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Proposition 11. Problem.

To draw a straight line at right angles to a given straight

line, from a given point in the same.

Because

Let AB be the given straight line, and C the given

point in it.

It is required to draw from the point C a straight line

at right angles to AB.

CoTistruction. In AC take any point D,

and from CB cut off CE equal to CD. i. 3.

On DE describe the equilateral triangle DFE. i. 1.

Join CF.

Then shall the straight line CF be at right angles to AB.

l^roof. For in the triangles DCF, ECF,
DC is equal to EC, Constr.

and CF is common to both
;

and the third side DF is equal to the third side

EF: Def. 19.

Therefore the angle DCF is equal to the angle ECF: i. 8.

and these are adjacent angles.

But when a straight line, standing on another straight

line, makes the adjacent angles equal to one another, each

of these angles is called a right an^le; Def. 7.

therefore each of the angles DCF, ECF is a right angle.
Therefore CF is at right angles to AB,
and has been drawn from a point C in it. q.e.p.

EXERCISE.

In the figure of the above proposition, shew that amj point in

FC, or FC produced, is equidistant from D and E.

J
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Proposition 12. Problem.

To draw a straight line perpendicular to a given straight
line of unlimited length, from a given point ivithotU it.

C

Let AB be tlie given straight line, which may be pro-
duced in either direction, and let C be the given point with-

out it.

It is required to draw from the point C a straight line

perpendicular to AB.

Construction. On the side of AB remote from C take

any point D;
and from centre C, with radius CD, describe the circle FDG,

meeting AB at F and G. Post. 3.

Bisect FG at H
; I. 10.

and join CH.

Then shall the straight line CH be perpendicular to AB.

Join CF and CG.

l^roof. Then in the triangles FHC, GHC,
( FH is equal to GH, Constr.

p I and HC is common to both;

[and the third side CF is equal to the third side

I CGj being radii of the circle FDG
; Def 11.

therefore the angle CHF is equal to the angle CHG; I. 8.

and these are adjacent angles.
But when a straight line, standing on another straight

line, makes the adjacent angles equal to one another, each

of these angles is called a right angle, and the straight line

which stands on the other is called a perpendicular to it.

Therefore CH is a perpendicular drawn to the given

straight line AB from the given point C without it. q. e.f.

Note. The given straight line AB must be of unlimited length,
that is, it must be capable of production to an indefinite length in

either direction, to ensure its being intersected in two points by the

circle FDG.
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EXERCISES ON PROPOSITIONS 1 TO 12.

1. Shew tbat the straight line which joins the vertex of an
isosceles triangle to the middle point of the base is perpendicular
to the base.

2. Shew that the straight lines which join the extremities of the

base of an isosceles triangle to the middle points of the opposite sides,

are equal to one another.

*

3. Two given points in the base of an isosceles triangle are equi-

distant from the extremities of the base : shew that they are also equi-

distant from the vertex.

4. If the opposite sides of a quadrilateral are equal, shew that the

opposite angles are also equal.

" 5. Any two isosceles triangles XAB, YAB stand on the same base

AB: shew that the angle XAY is equal to the angle XBY; and that

the angle AXY is equal to the angle BXY.

6. Shew that the opposite angles of a rhombus are bisected by the

diagonal which joins them.

'
7. Shew that the straight lines which bisect the base angles of an

isosceles triangle form with the base a triangle which is also isosceles.

8. ABC is an isosceles triangle having AB equal to AC ; and the

angles at B and C are bisected by straight lines which meet at O :

shew that OA bisects the angle BAC.

/
9. Shew that the triangle formed by joining the middle points of

the sides of an equilateral triangle is also equilateral.

I 10. The equal sides BA, CA of an isosceles triangle BAC are pro-
duced beyond the vertex A to the points E and F, so that AE is equal
to AF; and FB, EC are joined: shew that FB is equal to EC.

11. Shew that the diagonals of a rhombus bisect one another at

right angles.

12. In the equal sides AB, AC of an isosceles triangle ABC two

points X and Y are taken, so that AX is equal to AY; and CX and BY
are drawn intersecting in O : shew that

(i) the triangle BOC is isosceles;

(ii)
AC bisects the vertical angle BAC ;

(iii) AG, if produced, bisects BC at right angles.

13. Describe an isosceles triangle, having given the base and the

length of the perpendicular drawn from the vertex to the base.

14. In a given straight line find a point that is equidistant from

two given points.

In what case is this impossible ?
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Proposition 13. Theorem.

If one straight line stand upon anotlier straight line,

tlien the adjacent angles shall he either tivo right angles, or

together equal to two right angles.

A E A

Let the straight line AB stand upon the straight line DC :

then the adjacent angles DBA, ABC shall be either two right

angles, or together equal to two right angles.

Case I. For if the angle DBA is equal to tlie angle ABC,
each of them is a right angle. Def. 7.

Case II. But if the angle DBA is not equal to the

angle ABC,
from B draw BE at right angles to CD. i. 11.

Proof. Now the angle DBA is made up of the two

angles DBE, EBA;
to each of»these equals add the angle ABC;

then the two angles DBA, ABC are together equal to the

three angles DBE, EBA, ABC. Ax. 2.

Again, the angle EBC is made up of the two angles EBA,

ABC;
to each of these equals add the angle DBE.

Then the two angles DBE, EBC are together equal to the

three angles DBE, EBA, ABC. Ax. 2.

But the two angles DBA, ABC have been shewn to be equal
to the same three angles ;

therefore tlie angles DBA, ABC are together equal to the

angles DBE, EBC. Ax. 1.

But the angles DBE, EBC are two right angles; Constr.

therefore the angles DBA, ABC are together equal to two

light angles. Q. e. d.
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Definitions.

(i)
The complement of an acute angle is its defect from

a right angle, that is, the angle by which it falls short of a right

angle.

Thus two angles are complementary, when their sum is a

right angle.

(ii) The supplement of an angle is its defect from two right

angles, that is, the angle by which it falls short of two right

angles.

Thus two angles are supplementary, when their sum is two
right angles.

Corollary. Arigles which are comide^nentary or supple-

mentary to the same angle are equal to one another.

EXERCISES.

1. If the two exterior angles formed by producing a side of a tri-

angle both ways are equal, shew that the triangle is isosceles.

2. The bisectors of the adjacent angles which one straight line

makes with another contain a right angle.

Note. Jn the adjoining figure AOB
is a given angle; and one of its arms AO
is produced to C: the adjacent angles
AOB, BOC are bisected by OX, OY.

Then OX and OY are called respect-

ively the internal and external bisectors

of the angle AOB.

Hence Exercise 2 may be thus enunciated :

The internal and external bisectors of an angle are at right angles
to one another.

3. Shew that the angles AOX and COY are complementary.

4. Shew that the angles BOX and COX are supplementary; and
also that the angles AOY and BOY are supplementary.
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v^J*ROPOSiTiON
14. Theorem.

Jj\ at a point hi <i straight Ihie, ttvo other stra'ujht lineSy
on opjiosite sides of it, make the adjacent angles togetlter

equal to ttvo right angles, then these two straight lines shall

he in one and the same straight liv.e.

At the point B in the straight line AB, let the two

straight lines BC, BD, on the opposite sides of AB, make
the adjacent angles ABC, ABD together equal to two right

angles :

then BD shall be in the same straight line with BC.

Proof. For if BD be not in the same straight line with BC,
if possible, let BE be in the same straight line with BC.

Then because AB meets the straight line CBE,
therefore the adjacent angles CBA, ABE are together equal

to two right angles. i. 13.

But the angles CBA, ABD are also together equal to two

right angles. Hyj).
Therefore the angles CBA, ABE are together equal to the

angles CBA, ABD. Ax. 11.

From each of these equals take the common angle CBA;
then the remaining angle ABE is equal to the remaining angle

ABD; the part equal to the whole; wliich is impossible.
Therefore BE is not in the same straight line with BC.

And in the same way it may be shewn that no other

line but BD can be in the same straight line with BC.

Therefore BD is in the same straight line with BC. q.e.d,

EXERCISE. y^

ABCD is a rhombus; and the diagonal AC is bisected at O. If O
is joined to the angular points B and D; shew that OB and CD are

in one straight line.
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Ohs. When two straight lines intersect at a point, four

angles are formed; and any two of these angles which are not

adjacent, are said to be vertically opposite to one another.

Proposition 15. Theorem.

Iftwo straight lines intersectdne'ctHother, theyi the verticallij

vpi^osite angles shall he equal.

A
Let the two straight lines AB, CD cut one another at

the point E :

then shall the angle AEC be equal to the angle DEB,
and the angle CEB to the angle AED.

Proof. Because AE makes with CD the adjacent angles

CEA, AED,
therefore these angles are together equal to two right

angles. 1. 13.

Again, because DE makes with AB the adjacent angles AED,

DEB,
therefore these also are together equal to two right angles.
Therefore the angles CEA, AED are together equal to the

angles AED, DEB.
From each of these equals take the common angle AED;

then the remaining angle CEA is equal to the remaining

angle DEB. Ax. 3.

In a similar way it may be shewn that the angle CEB
is equal to the angle AED. q.e.d.

Corollary 1. From this it i^ manifest that, if two

straight liyies cut one another, tJie angles which they make
at the point where they cut, are together equal to four right

angles.

Corollary 2. Consequently, when ayiy number ofstraight
lines meet at a point, the sum of the angles made by con-

secutive Ihies is equal to four right angles.
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Proposition 16. Theorem.

Ifone aide ofa triangle he j}roduced, then the exterior a^ujle
slmll he greater than either of the interior opposite amjles.

Because

Let ABC be a triangle, and let one side BC be produced
to D : then shall the exterior angle ACD be greater than
either of the interior opposite angles CBA, BAG.

Construction. Bisect AC at E : i. 10.

Join BE; and produce it to F, making EF equal to BE. l 3.

Join FC.

Proof. Then in the triangles AEB, CEF,
AE is equal to CE, Constr.

and EB to EF
; Constr.

also the angle AEB is equal to tlie vertically

opposite angle CEF; I. 15.

therefore the triangle AEB is equal to the triangle CEF in

all respects : i. 4.

so that the angle BAE is equal to the angle ECF.

But the angle ECD is greater than its part, the angle ECF;
therefore the angle ECD is greater than the angle BAE;
that is, the angle ACD is greater than the angle BAC.

In a similar way, if BC be bisected, and the side AC

produced to G, it may be shewn that the angle BCG is

greater than the angle ABC.
But the angle BCG is equal to the angle ACD: i. 15.

therefore also the angle ACD is greater than the angle ABC.

Q. E. D.
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Proposition 17. Theorem.

Any two angles of a triangle are together less than two

right angles.

A k

B

Let ABC be a triangle; then shall any two of its angles, as

ABC, ACB, be together less than two riljht angles.

Construction. Produce the side BC to D.

Proof. Then because ACD is an exterior angle of the

triangle ABC,
therefore it is gieater than the interior opposite angle

ABC. I. 16.

To each of these add the angle ACB :

then the angles ACD, ACB are together greater than the

angles ABC, ACB. Ax. 4.

But the adjacent angles ACD, ACB are together equal to

two right angles. i. 13.

Therefore the angles ABC, ACB are together less than two

right angles.

Similarly it may be shewn that the angles BAC, ACB, as

also the angles CAB, ABC, are together less than two right

angles. q. e. d.

Note. It follows from this Proposition that every triangle must
have at least two acute angles : for if one angle is obtuse, or a right

angle, each of the other angles must be less than a right angle.

EXERCISES.

1. Enunciate this Proposition so as to shew that it is the converse l^
of Axiom 12.

2. If any side of a triangle is produced both ways, the exterior

angles so formed are together greater than two right angles. *

3. Shew how a proof of Proposition 17 may be obtained by
joining each vertex in turn to any point in the opposite side.

H. E. *)
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Proposition 18. Theorem.

If one side of a triangle be greater than another, then

the angle opposite to the greater side shall be greater than

the angle opposite to the less.

Let ABC be a triangle, in wliich the side AC is greater
than the side AB :

then shall the angle ABC be greater than the angle ACB.

Construction. From AC, the greater, cut off a part AD equal
to AB. L 3.

Join BD,

Proof. Then in the triangle ABD,
because AB is equal to AD,

therefore the angle ABD is equal to the angle ADB. i. 5,

But the exterior angle ADB of the triangle BDC is

greater than the interior opposite angle DCB, that is,

greater than the angle ACB. i. 16.

TJierefore also the angle ABD is greater than the angle ACB;
still more then is the angle ABC greater than the angle

ACB. ^ Q.E.D.

. Euclid enunciated Proposition 18 as follows:

The greater side of every tricmgle has the greater angle

opposite to it.

[This form of enunciation is found to be a common source of diffi-

culty with beginners, who fail to distinguish what is assumed in it and
what is to be proved.]

[For Exercises see page 38.]
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Proposition 19. Theorem.

If one angle of a triangle he greater than another^ then

the side opjjosite to the greater angle shall he greater than

the side opposite to the less.

I

Let ABC be a triangle in wliich the angle ABC is greater
tlian the angle ACB ;

then shall the side AC be greater than the side AB.

Proof For if AC be not greater than AB,
it must be either equal to, or less than AB.

But AC is not equal to AB,
for then the angle ABC would be equal to the angle ACB j i. 5.

but it is not. U^Vl^-

Neither is AC less than AB
;

for then the angle ABC would be less than the angle ACB ;
I.18.

but it is not : HyP-
Therefore AC is neither equal to, nor less than AB.

That is, AC is greater than AB. q.e.d.

Note, The mode of demonstration used in this ProiDosition is

known as the Proof by Exhaustion. It is applicable to cases in which
one of certain mutually exclusive suppositions must necessarily be

true; and it consists in shewing the falsity of each of these supposi-
tions in turn loith one exception: hence the truth of the remaining
supposition is inferred.

Euclid enunciated Proposition 1 9 as follows :

The greater angle of every triangle is suhtended hy the

greater side, or, has the greater side opposite to it.

[For Exercises see page 38.]

3—2
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Proposition 20. Theorem.

Any two sides of a tt'iangle are together greater than the

third side.

B

Let ABC l)e a triangle: •

then sliall any two of its sides be together greater tlian the

third side :

name]}', BA, AC, shall be greater than CB
;

AC, CB greater than BA
;

and CB, BA greater than AC.

Construction. Produce BA to the point D, making AD equal
to AC. 1. 3.

Join DC.

Proof. Then in the triangle ADC,
because AD is equal to AC, Constr.

therefore the angle ACD is equal to the angle ADC. i. 5.

But the angle BCD is greater than the angle ACD ;
Ax. 9.

therefore also the angle BCD is greater than the angle ADC,
that is, than the angle BDC.

And in the triangle BCD,
because the angle BCD is greater than the angle BDC, Pr.

therefore the side BD is greater than the side CB. i. 19.

But BA and AC are together equal to BD
;

therefore BA and AC are together greater than CB.

Similarly it may be shewn
that AC, CB are together greater than BA

;

and CB, BA are together greater than AC. Q. E. D.

[For Exercises aee page 38.]
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Propositiox 21. Theorem.

Iffrom the ends of a side of a triangle, there he drawn
two straight lines to a j^oint withiri the triangle, then these

straight lines shall be less than the other two sides of the

triangle, hut shall contain a greater angle.

I
Let ABC be a. triangle, aiid from B, C, the ends of tlie

. side BC, let the two straight lines BD, CD be drawn to

a point D wdthin the triangle :

then
(i)

BD and DC shall be together less than BA and AC
;

ii)
the angle BDC shall be greater than the angle BAC.

onstruction. Pi-oduce BD to meet AC in E.

Proof (i)
In the triangle BAE, the two sides BA, AE an^

together greater than the third side BE : i, 20.

to each of these add EC :

then BA, AC are together greater than BE, EC. Ax. 4.

Again, in the triangle DEC, the two sides DE, EC are to-

gether greater than DC :
- i. 20.

to each of these add BD
;

then BE, EC are together greater than BD, DC.

But it has been shewn that BA, AC are together greater
than BE, EC :

still more tlien are BA, AC greater than BD, DC.

ii) Again, the exterior angle BDC of the triangle DEC is

greater than the interior opposite angle DEC
;

i. 16.

and the exterior angle DEC of the triangle BAE is greater
than the interior opposite angle BAE, that is, than the

angle BAC
; i. 16.

still more then is the angle BDC greater than the angle BAC.

Q.E.D.

L th

%
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exercises

oil PUOPOSITIONS 18 AND 19.

1. The hypotenuse is the greatest side of a right-angled triangle.

2. If two angles of a triangle are equal to one another, the sides

also, which subtend the equal angles, are equal to one another. Prop. 6.

Prove this indirectly by using the result of Prop. 18.

3. BC, the base of an isosceles triangle ABC, is produced to any
point D

; shew that AD is greater than either of the equal sides.

4. If in a quadrilateral the greatest and least sides are opposite to

one another, then each of the angles adjacent to the least side is

greater than its opposite angle.

'5. In a triangle ABC, if AC is not greater than AB, shew that

any straight line drawn through the vertex A and terminated by the
base BC, is less than AB.

6. ABC is a triangle, in which OB, GO bisect the angles ABC.
ACB respectively: shew that, if AB is greater than AC, then OB is

greater than OC.

OK Proposition 20.
!

7. The difference of any two sides of a triangle is less than
the third side.

8. In a quadrilateral, if two opposite sides which are not parallel
are produced to meet one another; shew that the perimeter of the

greater of the two triangles so fonned is greater than the perimeter of
the quadrilateral.

^. The sum of the distances of any point from the three angular
points of a triangle is greater than half its perimeter.

10. The perimeter of a quadrilateral is greater than the sum of its

diagonals.

11. Obtain a proof of Proposition 20 by bisecting an angle by a

straight line which meets the opposite side.

ox Proposition 21.

12. In Proposition 21 shew that the angle BDC is greater than
the angle BAC by joining AD, and producing it towards the base.

13. The sum of the distances of any point within a triangle from
its angular points is less than the perimeter of the triangle.
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Proposition 22. Problem.

To describe a triangle having its sides equal to three

given straight lines, any two of which are together greater
than the third.

B

Let A, B, C be the three given straight lines, of which

any two are together greater than the third.

It is required to describe a triangle of which the sides

shall be equal to A, B, C.

Construction. Take a straight line DE terminated at tlie

point D, but unlimited towards E.

Make DF equal to A, FG equal to B, and GH equal to C. I. 3.

From centre F, with radius FD, describe the circle DLK.
From centre G with radius GH, describe the circle MHK,

cutting the former circle at K.

Join FK, GK.
Then shall the triangle KFG have its sides equal to the

tliree straight lines A, B, C.

Proof. Because F is the centre of the circle DLK,
therefore FK is equal to FD : Def 11.

but FD is equal to A
;

Constr.

. therefore also FK is equal to A. Ax. 1.

Again, because G is the centre of the circle MHK,
therefore GK is equal to GH : Def. 11.

but G H is equal to C
;

Constr.

therefore also GK is equal to C. Ax. 1.

And FG is equal to B. Constr.

Therefore the triangle KFG has its sides KF, FG, GK equal

respectively to the three given lines A, B, C. q.e.f.
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£XERCIS£.

Ou a given base describe a triangle, whose remaining sides shall be

equal to two given straight lines. Point out how the construction

fails, if any one of the three given lines is greater than the sum of

the other two.

Proposition 23. Problem.

At a given point in a given straigJtt line, to make an

angle equal to a given angle.

Let AB be the given straight line, and A the given point
in it; and let DCE be the given angle.

It is required to draw from A a straight line making
with AB an angle equal to the given angle DCE.

Construction. In CD, CE take any points D and E
;

and join DE.

From AB cut off AF equal to CD. I. 3.

On AF describe the triangle FAG, having the remaining
sides AG, GF equal respectively to CE, ED. i. 22.

Then shall the angle FAG be equal to the angle DCE.

Proof. For in the triangles FAG, DCE,

(
FA is equal to DC, Constr.

Because < and AG is equal to CE; Constr.

(and the base FG is equal to the base DE : Constr.

therefore the angle FAG is equal to the angle DCE. i. 8.

That is, AG makes with AB, at the given point A, an angle

equal to the given angle DCE. q.e.f.
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PROPOSITION 24.

Jf two triangles have two sides of the one equal to two

sides of the other, each to each, but the angle contained by
the two sides of one gi-eater than the angle contained by
the corresponding sides of the other ; then the base of that

which has the greater angle shall be greater than the base of the

other.

D'

Let ABC, DEF be two triangles, in wliicli the two sides

BA, AC are equal to the two sides ED, DF, each to each,

but the angle BAC greater than the angle EDF :

then shall the base BC be greater than the base EF.

' * Of the two sides DE, DF, let DE be that which is not

greater than DF.

Construction. At the point D, in the straight line ED,
and on the same side of it as DF, make the angle EDG

equal to the angle BAC. ]. 23.

Make DO equal to DF or AC; i. 3.

and join EG, GF.

Proof Then in the triangles BAC, EDG,

I'

BA is equal to ED, HyjJ.

-D and AC is equal to DG, Constr.

I

also the contained angle BAC is equal to the

\ contained angle EDG
;

Constr.

Therefore the triangle BAC is equal to tlie triangle EDG in

all respects : i. 4.

so that the base BC is equal to the base EG.

* See note on the next page.
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Again, in the triangle FDG,
because DG is equal to DF,

therefore the angle DFG is equal to the angle DGF, i. 5.

but the angle DGF is greater than the angle EGF;
therefore also the angle DFG is greater than the angle EGF;
still more then is the angle EFG greater than the angle EGF.

And in the triangle EFG,
because the angle EFG is greater than the angle EGF,
therefore the side EG is greater than the side EF

;
i. 19.

but EG was shewn to be equal to BC
;

therefore BC is greater than EF. q.e.d.

* This condition was inserted by Simson to ensure that, in the

complete construction, the point F should fall beloxc EG. Without
this condition it would be necessary to consider three cases: for F

might fall above, or upon, or below EG j and each figure would require

separate proof.
We are however scarcely at liberty to employ Simson' s condition

without proving that it fulfils the object for which it was introduced.

This may be done as follows :

Let EG, DF, produced if necessary, intersect at K.

Then, since DE is not greater than DF,
that is, since DE is not greater than DG,

therefore the angle DGE is not greater than the angle DEG. i. 18.

But the exterior angle DKG is greater than the angle DEK : i. 16.

therefore the angle DKG is greater than the angle DGK.
Hence DG is greater than DK. i. 19.

But DG is equal to DF
;

therefore DF is greater than DK.
So that the point F must fall beloio EG.
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Or the following method may be adopted.

Proposition 24. [Alternative Proof.]

In the triangles ABC, DEF,
let BA be equal to ED,
and AC equal to DF,

but let the angle BAC be greater than
the angle EDF:

then shall the base BC be greater than
the base EF.

For apply the triangle DEF to the

triangle ABC, so that D may fall on A,
and DE along AB:

then because DE is equal to AB,
therefore E must fall on B.

And because the angle EDF is less than the angle BAC,
therefore DF must fall between AB and AC.

Let DF occupy the position AG.

Case I. If G falls on BC :

Then G must be between B and C;
therefore BC is greater than BG.

But BG is equal to EF :

therefore BC is greater than EF.

Case II. If G does not fall on BC.
Bisect the angle CAG by the straight line AK
which meets BC in K.

Join G K.

Then in the triangles GAK, CAK,
/ GA is equal to CA,

Because \ ^"^
^K is cominon to both;

land the angle GAK is equal
\ angle CAK;
therefore GK is equal to CK.

But in the triangle BKG,
the two sides BK, KG are together greater than the third side BG, i. 20.

that is, BK, KC are together greater than BG ;

therefore BC is greater than BG, or EF. q.e.d.
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Proposition 25. Theorem.

If two triangles have two sides of the one equal to two
sides of the other^ each to each, hut the base of one greater
than tlie base of the other ; then the angle contained by the

sides of that which has t/ie greater ba^e, shall be greater than
the angle contained by the corresponding sides of the other.

Let ABC, DEF be two triangles which have the two sides

BA, AC equal to the two sides ED, DF, each to each, but the

base BC greater than the base EF :

then shall the angle BAC be greater than the angle EDF.

Proof For if the angle BAC be not greater than the

angle EDF, it must be either equal to, or less than the

angle EDF.

But the angle BAC is not equal to the angle EDF,
for then the base BC would be equal to the base EF

;
i. 4.

but it is not. J^yp-
Neither is the angle BAC less than the angle EDF,

for then the base BC would be less than the base EF
;

i. 24.

but it is not. Ilyp-

Therefore the angle BAC is neither equal to, nor less than

the angle EDF
;

that is, the angle BAC is greater than the angle EDF. q.e.d.

exercise.

In a triangle ABC, the vertex A is joined to X, the middle

point of the base BC; shew that the angle AXB is obtuse or acute,

according as AB is greater or less than AC.
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Proposition 26. Theorem.

If two triangles have two angles of the one equal to two

angles of the other, each to each, and a side of one equal
to a side of the other, these sides beiyig either adjacent to the

equal angles, or opposite to equal angles in each ; then shall

the triangles he equal iri all respects.

Case T. When the equal sides are adjacent to the equal
ani^les in the two triangles.

A D

Let ABCj DEF be two triangles, which have the angles

ABC, ACB, equal to the two angles DEF, DFE, each to each;
and the side BC equal to the side EF :

then shall the triangle ABC be equal to the triangle DEF
in all respects ;

that is, AB shall be equal to DE, and AC to DF,
and the angle BAC shall be equal to the angle EDF.

For if AB be not equal to DE, one must be greater than

the other. If possible, let AB be greater than DE.

Construction. From BA cut off BG equal to ED, i. 3.

and join GC.

Proof Then in the two triangles GBC, DEF,

iGB
is equal to DE, Constr.

and BC to EF, Hyp.
also the contained angle GBC is equal to the

contained angle DEF; ^J^yp-

therefore the triangles are equal in all respects ;
i. 4.

so that the angle GCB is equal to the angle DFE.
But the angle ACB is equal to the angle DFE ; Hyp.

therefore also the angle GCB is equal to the angle ACB ;
Ax.\.

the part equal to the whole, which is impossible.
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Because

Tlierefore AB is not unequal to DE,
that is, AB is equal to DE,

Hence in the triangles ABC, DEF,
AB is equal to DE, Proved.

and BC is equal to EF
; Hyp-

ABC is equal to the
V contained angle DEF

; J^yp-
therefore the triangles are equal in all respects : i. 4.

so that the side AC is equal to the side DF
;

and the angle BAC to the angle EDF. q e.d.

also the contained angle

Case If. When the equal sides are opposite to equal

angles in the two triangles.

Let ABC, DEF be two triangles Avhich have the angles
ABC, ACB equal to the angles DEF, DFE, each to each,
and the side AB equal to the side DE :

then shall the triangles ABC, DEF be equal in all respects ;

that is, BC shall be equal to EF, and AC to DF,
and the angle BAC shall be equal to the angle EDF.
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For if BC be not equal to EF, one must be greater than

the other. If possible, let BC be greater than EF.

Construction. From BC cut off BH equal to EF, i. 3.

and join AH.

Proof. Then in the triangles ABH, DEF,

{AB
is equal to DE, J^yp-

and BH to EF, Constr.

also the contained angle ABH is equal to the

contained angle DEF
; ^-^2//^-

therefore the triangles are equal in all respects, i. 4.

so that the angle AHB is equal to the angle DFE.

But the angle DFE is equal to the angle ACB
; JJ^l/]^-

therefore tlie angle AHB is equal to the angle ACB ;
Ax. 1.

that is, an exterior angle of the triangle ACH is equal to

an interior opposite angle ;
which is impossible. i. 1 6.

Therefore BC is not unequal to EF,
that is, BC is equal to EF.

Hence in the triangles ABC, DEF,

(
AB is equal to DE, J^^P-

and BC is equal to EF
;

Proved.

also the contained angle ABC is equal to the

contained angle DEF
; f^yp-

therefore the triangles are equal in all respects; i. 4.

so that the side AC is equal to the side DF,

i

Because

and the ansjle BAC to the angle EDF.

Q.E.D.

Corollary. In both cases of this Projjosition it is seen

that the triangles may he made to coincide with one another;
and they are therefore equal in area.
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ON THE IDENTICAL EQUALITY OF TRIANGLES.

At the close of the first section of Book I., it is worth while
to call special attention to those Propositions (viz. Props, 4, 8, 26)
which deal with the identical equality of two triangles.

The results of these Propositions may be summarized thus :

Two triangles are equal to one another in all respects, when
the following parts in each are equal, each to each.

1. Two sides, and the included angle. Prop. 4.

2. The three sides. Prop. 8, Cor.

3. (a) Two angles, and the adjacent side. \

(b) Two angles, and the side opposite one of >- Prop. 26.

them.
)

From this the beginner will perhaps' surmise that two tri-

angles may be shewn to be equal in all respects, when they have
three parts equal, each to each; but to this statement two obvious

exceptions must be made.

(i) When in two triangles the three angles of one are equal
to the three angles of the other, each to each, it does not

necessarily follow that the triangles are equal in all respects.

(ii) When in two triangles two sides of the one arc equal
to two sides of the other, each to each, and one angle equal to

one angle, these not being the angles included by the equal sides
;

the triangles are not necessarily equal in all respects.

In these cases a further condition must be added to the*

hypothesis, before we can assert the identical equality of the

two triangles.

[See Theorems and Exercises on Book I., Ex. 13, Page 92.]

We observe that in each of the three cases already proved
of identical equality in two triangles, namely in Propositions 4,

8, 26, it is shewn that the triangles may be made to coincide

with one another ; so that they are equal in area, as in all

other respects. Euclid however restricted himself to the use of

Prop. 4, when he required to deduce the equality in area of two

triangles from the equality of certain of their parts.

This restriction has been abandoned in the present text-book.

[See note to Prop. 34.]
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EXERCISES ON PROPOSITIONS 12—26.

1. If BX and CY, the bisectors of the angles at the base BC of afi

isosceles triangle ABC, meet the opposite sides in X and Y
; shew that

the triangles YBC, XCB are equal in all respects.

2. Shew that the perpendiculars drawn from the extremities of

the base of an isosceles triangle to the opposite sides are equal.

3. Any point on the bisector of an angle is equidistant from the

arms of the angle.

4. Through O, the middle point of a straight line AB, any straight
line is drawn, and perpendiculars AX and BY are dropped upon it from
A and B : shew that AX is equal to BY.

5. If the bisector of the vertical angle of a triangle is at right

angles to the base, the triangle is isosceles.

6. The perpendicular is the shortest straight line that can he

draion from a given point to a given straight line ; and of others, Jiat

which is nearer to the perpendicular is less than the more remote; and
two, and only two equal straight lines can be draion from the given
point to the given straight line, one on each side of the perpendicular.

7. From two given points on the same side of a given straight line,

draic two straight lines, which shall meet in the given straight line

make equal angles icith it.

Let AB be the given straight line,

and P, Ql the given points.
It is required to draw from P and Q.

to a point in AB, two straight lines

that shall be equally inclined to AB.

Construction. From P draw PH
pfrpendicular to AB: produce PH to

P', making HP' equal to PH. Draw QP', meeting AB in K.

PK.

Then PK, QK shall be the required lines. [Supply the proof.]

8. In a given straight line find a point which is equidistant from
two given intersecting straight lines. In what case is this impossible?

9. Through a given point draw a straight line such that the per-

pendiculars drawn to it from two given points may be equal.
In what case is this impossible?

H. E. 4
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SECTION 11.

PARALLEL STRAIGHT LINES AND PARALLELOGRAMS.

Definition. Parallel straight Irnes are such as, being
in the same plane, do not meet however far they are pro-

duced in both directions.

When two straight lines A B, CD are met by a third straight
line EF, eight angles are formed, to which
for the sake of distinction particular
names are given.

Thus in the adjoining figure,

1, 2, 7, 8 are called exterior angles,

3, 4, 5, 6 are called interior angles,

4 3^nd 6 are said to be alternate angles ;

so also the angles 3 and 5 are alternate to

one anotlier.

Of the angles 2 and 6, 2 is referred to as the exterior angle,
and 6 as the interior opposite angle on the same side of EF.

2 and 6 are sometimes called corresponding angles.

So also, 1 and 5, 7 and 3, 8 and 4 are corresponding angles.

Euclid's treatment of parallel straight lines is based upon his

twelfth Axiom, which we here repeat.

Axiom 12. If a straight line cut two straight lines so

as to make the two interior angles on the same side of

it together less than two right angles, these straight lines,

being continually produced, will at length meet on that

side on which are the angles which are together less than

two right angles.

Thus in the figure given above, if the two angles 3 and 6 are

together less than two right angles, it is asserted that AB and
CD will meet towards B and D.

This Axiom is used to establish i. 29 : some remarks upon it

will be found in a note on that Proposition.
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Propositiox 27. Theorem.

If a idraight line, falling on two other straight lines, make
the alternate angles equal to one another, then the straight

lines shall be parallel.

Let the straight line EF cut the two straight lines AB,
CD at G and H, so as to make the alternate angles AGH,
G H D equal to one another :

then shall AB and CD be parallel.

Proof For if AB and CD be not parallel,

they will meet, if produced, either towards B and D, or to-

wards A and C.

If possible, let AB and CD, when produced, meet towards B

and D, at the point K.

Then KG H is a triangle, of which one side KG is produced
to A:

therefore the exterior angle AG H is greater than the interior

opposite angle GHK. i. 16.

But the angle AG H is equal to the angle GHK: Hyj)-
Jience the angles AGH and GHK are both equal and unequal;

which is impossible.
Therefore AB and CD cannot meet when produced towaixls.

B and D.

Similarly it may be shewn that they cannot meet towards
A and C:

therefore they are parallel. q.e. d-

4—2.
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f

TkoPOSITION 28. Theorem.

// a straight line, fallifig on two otiier straight lineSj

iiiake an exterior arigle equal to the interior opposite angle
on the same side of the line; of if it make the interior

ajigles on the same side together equal to two right angles,

then the two straight lines shall he parallel.

Let the straight line EF ciit the two straiglit Hues AB,
CD in G and H : and

First, let the exterior angle EG B be equal to the interior

opposite angle G H D :

then shall AB and CD be parallel.

Proof Because the angle EGB is equal to the angle GHD;
and because the angle EG B is also equal to the vertically op-

posite angle AG H
;

1.15.

therefore the angle AGH is equal to the angle GHD;
but these are alternate angles;

therefore AB and CD are parallel. i. 27.

Q. E. D.

Secondly, let the two interior angles BGH, GHD be to-

gether equal to two right angles :

then shall AB and CD be parallel.

Proof Because the angles BGH, GHD arc together equal
to two right angles; ih/P-

and because the adjacent angles BGH, AGH are also together

equal to two right angles ;
1.13.

therefore the angles BGH, AGH are together equal to the

two angles BGH, GHD.
From these equals take the common angle BGH :

then the remaining angle AGH is equal to the remaining
angle GHD: and these are alternate angles;

therefore AB and CD are parallel. i. 27.

Q. E. I).
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%

Proposition 29. Theorem.

If a straight line fall on two imrallel straight lines, then it

shall make the alternate angles equal to one another , and the

exterior angle equal to the interior opposite angle on the

same side; and also the two interior angles on the same

side equal to two right angles.

Let- the straight line EF. fall on the parallel straight
lines AB, CD:

then
(i) the alternate angles AGH, GHD shall be equal to

one another;

(ii)
the exterior angle EG B shall be equal to the interior

opposite angle GHD;

(iii)
the two interior angles BGH, GHD shall be together

s equal to two right angles

'roof (i)
For if the angle AGH be not equal to the angle

GHD, one of them must be greater than the other.

If possible, let the angle AGH be greater than the angle

GHD;
add to each the angle BGH :

then the angles AGH, BGH are together greater than the

angles BGH, GHD.
But the adjacent angles AGH, BGH are together equal to

two right angles ;
i. 13.

therefore the angles BGH, GHD are together less than two

right angles;
therefore AB and CD meet towards B and D. Ax. 12.

But they never meet, since they are parallel. li^J^-

Therefore the angle AG H is not unequal to the angle GHD:
that is, the alternate angles AGH, GHD are equal.

{Over)



54 Euclid's elements.

(ii) Again, because the angle AGH is equal to tlie verti-

cally opposite angle EGB; L 15.

and because the angle AGH is equal to the angle GHD;
Proved.

therefore the exterior angle EGB is equal to the interior op-

posite angle GHD.

(iii) Lastly, the angle EGB is equal to the angle GHD;
Proved.

add to each the angle EG H
;

then the angles EG B, BG H are together equal to the angles
BGH, GHD.

But the adjacent angles EGB, BGH are together equal to

two right angles: I. 13.

therefore also the two interior angles BGH, GHD are to-

gether equal to two right angles. q.e.d.

EXERCISES ox PROPOSITIONS 27, 28, 29.

1. Two straight lines AB, CD bisect one another at O: shew that

the straight Hnes joining AC and BD are parallel. [i. 27.J

2. Straight lines which are perpendicular to the same straight line

are parallel to one another. [i. 27 or i. 28.J

3. If a straight line meet two or more parallel straight lines, aiul is

perpendicular to one of them, it is also perpendicular to all the others.

[I. 29.]

4. If two straight lines are parallel to two other straight lines, each
to each, then the angles contained by the first pair are equal respectivehj ^
to the angles contained hy the second pair. [i. 29.]

'
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XoTE ox THE Twelfth Axiom.

It must bo admitted that Euclid's twelfth Axiom is un-

satisfactory as the basis of a theory of parallel straight lines.

It cannot be regarded as either simple or self-evident, and it

therefore falls short of the essential characteristics of an axiom :

nor is the difficulty entirely removed by considering it as a cor-

roUary to Proposition 17, of which it is the converse.

Many substitutes have been proposed ;
but we need only notice

here the system which has met with most general approval.

This system rests on the following hypothesis, which is put
forward as a fundamental Axiom.

Axio:m. Two intersecting straight lines cannot he both parallel
to a third straight line.

This statement is known as Playfair's Axiom ;
and though

it is not altogether free from objection, it is recommended as

both simpler and more fundamental than that employed by
Euclid, and more readily admitted without proof.

Propositions 27 and 28 having been proved in the usual way,
the first part of Proposition 29 is then given thus.

Proposition 29. [Alternative Proof.J

Jf a straight line fall on two parallel straight lines, then it

shall make the alternate angles eqnal.

Let the straight line EF meet the two

parallel straight lines AB, CD, at G
and H :

then shall the alternate angles AGH,
G H D be equal.

For if the angle AG H is not equal to the

angle GHD:
at G in the straight line HG make the

angle HGP equal to the angle GHD,
and alternate to it. i. 28.

Then PG and CD are parallel, i. 27.

But AB and CD are parallel: Hyp.
therefore the two intersecting straight lines AG, PG are both parallel

to CD:
which is impossible. Flayfair's Axiom.

Therefore the angle AG H is not unequal to the angle GHD,
that is, the alternate angles AGH, GHD are equal, q.e.d.

The second and third parts of the Proposition may then be deduced
as in the text; and Euclid's Axiom 12 follows as a Corollary.
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Proposition 30. Theorem.

Straight lines ivJiich are j)(^rallel to the same straight line

are jiaraUel to oiie another.

ZC 7- D

p—¥^— Q

Let tlie straight lilies AB, CD be eacli })arallel to tlie

straight line PQ : .

then sliall AB and CD be parallel to one anotlier.

Construction. Draw any straight line EF cutting AB, CD,
and PQ in the points G, H, and K.

Proof. Then because AB and PQ are parallel, and EF
meets them,

therefore the angle AG K is equal to the alternate angle G KQ.

L 29.

And because CD and PQ are parallel, and EF meets them,
therefore

.
the exterior angle GHD is equal to the interior

opposite angle HKQ. L 29.

Therefore the angle AGH is equal to the angle GHD;
and these are alternate angles;

therefore AB and CD are parallel. i. 27.

Q.E.D.

Note. If PQ lies between AB and CD, the Proposition may be
estabhshed in a similar manner, though in this case it scarcely needs

proof; for it is inconceivable that two straight Knes, which do not
meet an intermediate straight line, should meet one another.

The truth of this Proposition may be readily deduced from

Playfair's Axiom, of which it is the converse.
For if AB and CD were not parallel, they would meet when pro-

duced. Then there would be two intersecting straight lines both

parallel to a third straight line : which is impossible.

Therefore AB and CD never meet; that is, they are parallel.
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Proposition 31. Problem.

To draw a straight line through a given point parallel
to a given straight li7ie.

1

Let A be the given point, and BC the given straight line.

It is required to draw through A a straight line parallel to

BC.

Construction. Jn BC take any point D; and join AD.

At the point A in DA, make the angle DAE equal to the

angle ADC, and alternate to it i. 23.

and produce EA to F.

Then shall EF be parallel to BC.

Proof. Because the straight line AD, meeting tlie two

straight lines EF, BC, makes the alternate angles EAD, ADC
equal; Constr.

therefore EF is parallel to BC; i. 27.

and it has been drawn through the given j^oint A.

Q, E. F.

EXERCISES.

1. Any straight line drawn parallel to the base of an isosceles

triangle makes equal angles with the sides.

2. If from any point in the bisector of an angle a straight line is

drawn parallel to either arm of the angle, the triangle thus formed is

isosceles.

3. From a given point draw a straight line that shall make with
a given straight line an angle equal to a given angle.

4. From X, a point in the base BC ol an isosceles triangle ABC, a

traight line is drawn at right angles to the base, cutting AB in Y, and
CA produced in Z : shew the triangle AYZ is isosceles.

5. If the straight line which bisects an exterior angle of a triangle
is parallel to the base, shew that the triangle is isosceles.
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Proposition 32. TheoreiM.

If a side of a triangle he jji'oducedj then the exterior

angle shall be equal to the sum of the two interior opposite

a)igles: also the three interior angles of a triangle are together

equal to two right angles.

i

Let ABC be a triangle, and let one of its sides BC be

produced to D :

then (i) the exterior angle ACD shall be equal to the sum
of the two interior opposite angles CAB, ABC;

(ii)
the three interior angles ABC, BCA, CAB sliall

be together equal to two right angles.

Construction. Through C draw CE parallel to BA. i. 31.

Proof (i)
Then because BA and CE are parallel, and AC

meets them,
therefore tlie angle ACE is equal to the alternate angle

CAB. I. 29.

Again, because BA and CE are parallel,. and BD meets them,
therefore the exterior angle ECD is equal to the interior

opposite angle ABC. I. 29.

Therefore the whole exterior angle ACD is equal to the

sum of the two interior opposite angles CAB, ABC.

(ii) Again, since the angle ACD is equal to the sum of

the angles CAB, ABC
;

Proved.

to each of these equals add the angle BCA :

then the 'angles BCA, ACD are together equal to the thi'ee

angles BCA, CAB, ABC.

But the adjacent angles BCA, ACD are together equal to

two right anfjles; i. 13.

therefore also the angles BCA, CAB, ABC are together equal
to two r\a;ht angles. q. e. d.
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From this Proposition we draw the foiloAving important
inferences.

1. If tico triangles have two angles of the one equal to two angles of
the other, each to each, then the third angle of the one is equal to the

third angle of the other. «

2. In any right-angled triangle the two acute angles are com-

plementary.

3. In a right-angled isosceles triangle each of the equal angles
is half a right angle.

4. If one angle of a triangle is. equal to the sum of the other two,

the triangle is right-angled.

5. The sum of the angles of any quadrilateral figure is equal to

four right angles.

6. Each angle of an equilateral triangle is two-thirds of a right

angle.

EXERCISES ON PROPOSITIOX 32

1. Prove that the three angles or a triangle are together etiual to

two right angles,

(i) hy drawing through the vertex a straight line parallel
to the base ;

(ii) by joining the verteis to any point in the base.

2. If the base of any triangle is produced both Avays, shew that

the sum of the two exterior angles diminished by the vertical angle is

equal to two right angles.

3. If two straight lines are perpendicular to two other straight

lines, each to each, the acute angle between the first pair is equal
to the acute angle between the second pair.

4. Every right-angled triangle is divided into tivo isosceles tri-

angles by a straight line draxvnfrom the right angle to the middle point
of the hypotenuse.

Hence the joining line is equal to half the hypotenuse*

I 5. Draw a straight line at right angles to a given finite straight
line from one of its extremities, without producing the given straight
line.

[Let AB be the given straight line. On AB describe any isosceles

triangle ACB. Produce BC to D, making CD equal to BC. Join
AD. Then shall AD be perpendicular to AB.]
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6. Trisect a right angle. ^

7. The angle contained by the bisectors of the angles at the base

of an isosceles triangle is equal to an exterior angle formed by pro-

ducing the base.

8. The angle contained by the bisectors of two adjacent angles of

H quadrilateral is equal to half the sum of the remaining angles.

Tlie following theorems were added .-is corollaries to

Proposition 32 by Robert Simson.

Corollary 1. All the inteHor angles of any rectilineal

figure, iwith four Hght angles,Jare together equal to twice as

many right angles as the figure has sides.

Let ABODE be any rectilineal figure.

Take F, any point within it,

and join F to each of the angular points of the figure.

Then the figure is divided into as many triangles as it has

sides.

And the three angles of each triangle are together equal
to two right angles. I. 32.

Hence all the angles of all the triangles are together equal
to twice as many right angles as the figure has sides.

But all the angles of all the triangles make up the in-

terior angles of the figure, together with the angles
at F;

and the angles at F are together equal to four right

angles: i. 15, Cor.

Therefore all the interior angles of tlie figure, with four

right angles, are together equal to twice as many right

angles as the figure has sides. Q. E. d.
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Corollary 2. If the sides of a rectilineal Jiyure, ichich

has no re-entrant angle, are iwoduced in order, theri all the ex-

terior angles so formed, are together equal to four right angles.

ft

For at each angular point of the figure, the interior angle
and the exterior angle are together equal to two right

angles. L 13.

Therefore all the interior angles, with all tlie exterior

angles, are together equal to twice as many right angles
as the figure has sides.

But all the interior angles, with four right angles, are to-

gether equal to twice as many right angles as the figure
has sides. i. 32, Cor. 1.

Therefore all the interior angles, with all the exterior

angles, are together equal to all the interior angles, with

four right an^jles.

Therefore the exterior angles are together equal to four

right angles. Q. e. d.

EXERCISES ON SIMSON S COROLLARIES.

UA polygon is said to be regular when it has all its sides and all its

angles equal.]

, 1. Express in terms of a right angle the magnitude of each angle
of

(i)
a regular hexagon, (ii)

a regular octagon.

2. If one side of a regular hexagon is produced, shew that the ex-

terior angle is equal to the angle of an equilateral triangle.

^ 3. Prove Simson's first Corollary by joining one vertex of the

rectilineal figure to each of the other vertices.

4. Find the magnitude of each angle of a regular polygon of

n sides.

5. If the alternate sides of any polygon be produced to meet, the
sum of the included angles, together with eight right angles, will

be equal to twice as many right angles as the figure has sides.
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Proposition IV^. Theorem.

The straight lines which join tite extremities of two equal
and parallel straight lines towards the same parts are them-

selves equal and parallel.

J^et AB and CD be equal and parallel straight lines;

and let them be joined towards the same parts by the

straight lines AC and BD:

then shall AC and BD be equal and parallel.

Construction. Join BC,

Proof. Then because AB and CD are parallel, and BC
meets them,

therefore the alternate angles ABC, BCD are equal, i. 29.

Now in tlie triangles ABC, DCB,
f AB is equal to DC, Hijp.

n
J

and BC is common to both;

jalso
the angle ABC is equal to the angle

\ DCB; Proved.

therefore the triangles are equal in all respects; I. 4.

so that the base AC is equal to the base DB,
and thfe angle ACB equal to the angle DBC;

but these are alternate angles ;

therefore AC and BD are parallel: i. 27.

and it has been shewn that they are also equal.

Q. E. D.

Definition. A Parallelogram is a four-sided figure
whose opposite sides are parallel.

o*
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Proposition 34. Theorem.

The opposite sides and angles of a parallelogra'ni are

equal to one another, and each diagonal bisects the jmrallelo-

gram.
3

\z\.
Let ACDB be a parallelogram, of which BC is a diagonal :

then shall the opposite sides and angles of the figure be

equal to one another; and the diagonal BC shall bisect it.

Proof. Because AB and CD are parallel, and BC meets

them,
therefore the alternate angles ABC, DCB are equal, i. 29.

Again, because AC and BD are parallel, and BC meets

them,
therefore the alternate angles ACB, DBC are equal, i. 29.

Hence in the triangles ABC, DCB,
rthe angle ABC is equal to the angle DCB,

p land the angle ACB is equal to the angle DBC;

jalso
the side BC, which is adjacent to tlie equal

I angles, is common to both,
therefore the two triangles ABC, DCB are equal in all

respects; i. 26.

so that AB is equal to DC, and AC to DB;
and the angle BAC is equal to the angle CDB.

Also, because the angle ABC is equal to the angle DCB,
and the angle CBD equal to the angle BCA,

therefore the whole angle ABD is equal to the whole angle
DCA.

And since it has been shewn that the triangles ABC, DCB
are equal in all respects,

therefore the diagonal BC bisects the parallelogram ACDB.

Q.E.D.

[See note on next page.]



U4 KUCLID'.S KLEMENTri.

Note. To the proof which is here given Euclid added an applica-
tion of Proposition 4, with a view to shewing that the triangles ABC,
DCB are equal in area, and that therefore the diagonal BC bisects the

parallelogram. This equality of area is however sufficiently established

by the step which depends upon i. 2G. [See page 48.]

EXERCISES.
V

V' 1. Jj one angle oj a parallelogram is a right angle, all its angles are

right angles.

2. If the opposite sides of a quadrilateral are eqnal, the figure is a

parallelogram.

3. If the opposite angles of a quadrilateral are equal, the ^figure is

a parallelogram.

4. If a quadrilateral has all its sides equal and one angle a

right angle, all its angles are right angles; that is, all tlie angles of
a square are right angles.

5. The diagonals of a parallelogram bisect each other.

6. If the diagonals of a quadrilateral bisect each other, the figure
is a parallelogram.

7. If two opposite angles of a parallelogram are bisected by the

diagonal which joins them, the figure is equilateral.

8. If the diagonals of a parallelogram are equal, all its angles ai-e

right angles.

, 9. In a parallelogram which is not rectangular the diagonals are ?

unequal.

10. Any straight line drawn through the middle point of a diagonal
of a parallelogram and terminated by a pair of opposite sides, is

bisected at that point.

11. If tiDo parallelograms have two adjacent sides of one equal to

tico adjacent sides of the other, each to each, and one angle of one equal
to one angle of the other, the parallelograms are equal in all respects.

12. Two rectangles are equal if two adjacent sides of one are

equal to two adjacent sides of the other, each to each.

13. In a parallelogram the perpendiculars drawn from one pair of

opposite angles to the diagonal which joins the other pair are equal.

14. If ABCD is a parallelogram, and X, Y respectively the middle

points of tlie sides AD, BC
; shew that the figure AYCX is a parallelo-

gram.
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MISCELLANEOUS EXERCISES ON SECTIONS T. AND II.

1. Shew that the construction in Proposition 2 may generally be

.performed in eight different ways. I'oint out the exceptional case.

2. The bisectors of two vertically opposite angles are in the same
.'straight line.

ii. In the figure of Proposition IG, if AF is joined, shew

(i) that AF is equal to BC; .

(ii) that the triangle ABC is equal to the triangle CFA in all V^

respects.

4. ABC is a triangle right-angled at B, and BC is produced to D: V
shew that the angle ACD is obtuse.

y. Shew that in any regular polygon of n sides each angle contains y^

right angles.

6. The angle contained by the bisectors of the angles at the base

of any triangle is equal to the vertical angle together with half the

sum of the base angles.

7. The angle contained by the bisectors of two exterior angles of

any triangle is equal to half the sum of the two corresponding interior

angles.
n

^
8. If perpendiculars are drawn to two intersecting straight lines \

from any point between them, shew that the bisector of the angle
between the perpendiculars is parallel to (or coincident with) the

bisector of the angle between the given straight lines.

9. If two points P, Q. be taken in the equal sides of an isosceles

triangle ABC, so that BP is equal to CQ, shew that PQ is parallel to ^^'

BC.

10. ABC and DEF are two triangles, such that AB, BC are equal
and parallel to DE, EF, each to each; shew that AC is equal and

parallel to DF.

11. Prove the second Corollary to Prop. 32 by drawing through

any angular point lines parallel to all the sides.

12. If two sides of a quadrilateral are parallel, and the remaining
two sides equal but not parallel, shew that the opposite angles are

supplementary; also that the diagonals are equal.

H. E. 5



SECTION III.

THE AREAS OF PARALLELOGRAMS AND TRIANGLES.

Hitherto when two figures have been said to be equal, it has

been implied that they are identically equal, that is, equal in all

respects.

In Section III. of Euclid's first Book, we have to consider

the equality in area of parallelograms and triangles which are

not necessarily equal in all respects.

[The ultimate test of equality, as we have already seen, is afforded

by Axiom 8, which asserts that magnitudes which may he made to

coincide with one another are equal. Now figures which are not identi-

cally equal, cannot be made to coincide without first undergoing some

change of form : hence the method of direct superposition is unsuited

to the purposes of the present section.

We shall see however from Euclid's proof of Proposition 35, that

two figures which are not identically equal, may nevertheless be so

related to a third figure, that it is possible to infer the equality of

their areas.]

Definitions.

1 . The Altitude of a parallelogram with reference to a

given side as base, is the perpendicular distance between

the base and the opposite side.

2. The Altitude of a triangle with reference to a given
side as base, is the perpendicular distance of the opposite
vertex from the base.
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Proposition 35. Theorem.

Parallelograms on the same base, and hetimeii the sairie

parallels, are equal in area.

F A. D E F A E D F

Let the parallelograms ABCD, EBCF be on the same
base BC, and between the same parallels BC, AF :

then shall the parallelogram ABCD be equal in area to

the parallelogram EBCF.

Case I. If the sides of the given parallelograms, oppo-
site to the common base BC, are terminated at the same

point D :

then because each of the parallelograms is double of the

triangle BDC; i. 34.

therefore they are equal to one another. Ax. 6.

Case II. But if the sides AD, EF, opposite to the base

BC, are not terminated at the same point :

then because ABCD is a parallelogram,
therefore AD is equal to the opposite side BC; i. 34.

and for a similar reason, EF is equal to BC
;

therefore AD is equal to EF. Ax. 1.

Hence the whole, or remainder, EA is equal to the whole,
or remainder, FD.

Then in the triangles FDC, EAB,
C FD is equal to EA, Proved.

^ ^ J
and DC is equal to the opposite side AB, i. 34.

jalso
the exterior angle FDC is equal to the interior

\ opposite angle EAB, I. 29.

therefore the triangle FDC is equal to the triangle EAB. i. 4.

From the whole figure ABCF take the triangle FDC
;

and from the same figure take the equal triangle EAB
;

then the remainders are equal ;
Ax. 3.

that is, the parallelogram ABCD is e£ua,l to the parallelo-

gram EBCF.
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Proposition 3G. Theorem.

Paralleloyrams on equal bases, and between the same

parallels^ are equal in area.

Let ABCD, EFGH be parallelograms on equal bases BC,

FG, and between the same parallels AH, BG :

then shall the parallelogram ABCD be equal to the paral-

lelogram EFGH.

Construction. Join BE, OH.

Proof. Then because BC is equal to FG
; Hyp-

and FG is equal to the opposite side EH; i. 34.

therefore BC is equal to EH : Ax. 1.

and they are also parallel; Hyp.
therefore BE and CH, which join them towards the same

parts, are also equal and parallel. i. 33.

Therefore EBCH is a parallelogram. Def. 26.

Xow the parallelogram ABCD is equal to EBCH
;

for they are on the same base BC, and between the same

parallels BC, AH. i. 35.

Also the parallelogram EFGH is equal to EBCH;
for they are on the same base EH, and between the same

parallels EH, BG. i. 35.

Therefore the parallelogram ABCD is equal to the paral-

lelogram EFGH. Ax. 1.

Q. E. D.

From the last two Propositions we infer that :

(i) A parallelogram is equal in area to a rectarigle of equal
base and equal altitude.

(ii) Parallelograms on equal bases and of equal altitudes are

equal m area.
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(iii) Of twoparallelograms ofequal altitudes, that is tJie greater
which has the greater base ; and of two parallelograms
on equal bases, that is the greater which has the greater
altitude.

PkoPOSITION 37, Theohem.

Triangles on the same base, and between the same paral-

lels, are equal in area.

Let the triangles ABC, DBC be upon tlie same base BC,
and between the same parallels BC, AD.

Then shall the triangle ABC be equal to the triangle DBC.

Construction. Through B draw BE parallel to CA, to

meet DA produced in E; i. 31.

through C draw CF parallel to BD, to meet AD produced in F.

Proof. Then, by construction, each of the ligures EBCA,
,

DBCF is a parallelogram. Def. 26.

And EBCA is equal to DBCF;
for they are on the same base BC, and between the same

parallels BC, EF. i. 35.

And the triangle ABC is half of the parallelogram EBCA,
for the diagonal AB bisects it. i. 34.

Also the triangle DBC is half of the parallelogram DBCF,
for the diagonal DC bisects it. i, 34.

But the halves of equal things are equal ;
Ax. 7.

therefore the triangle ABC is equal to the triangle DBC.

Q.K.D.

[I'or Exercises see page 73.
j
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Proposition 38. Theorem.

Triangles on equal bases, and between the same parallels,

are equal in area.

Let the triangles ABC, DEF be on equal bases BC, EF,
and between the same parallels BF, AD :

then shall the triangle ABC be equal to the triangle DEF.

Construction. Through B draw BG parallel to CA, to

meet DA produced in G; i. 31.

through F draw FH parallel to ED, to meet AD produced in H.

Proof. Then, by construction, each of the figures G BCA,
DEFH is a parallelogram. Def. 26.

And GBCA is equal to DEFH
;

for they are on equal bases BC, EF, and between the same

parallels BF, GH. i. 36.

And the triangle ABC is half of the parallelogram GBCA,
for the diagonal AB bisects it. i. 34.

Also the triangle DEF is half the parallelogram DEFH,
for the diagonal DF bisects it. i. 34.

But the halves of equal things are equal: Ax. 7.

therefore the triangle ABC is equal to the triangle DEF.

Q.E.D.

From this Proposition we infer that :

(i) Triangles on equal bases and of equal altitude are equal
in area.'

(ii) Of two triangles of tJie same altitude, that is the greater
which has the greater base : arid of two triangles on the same base,

or on equal bases, that is the greater which has the greater altitude.

[For Exercises see page 73.]



BOOK I. PROP. 39. 71

Proposition 39. Theorem.

Equal triangles on the same base, and oti the same side

of it, are het'wee7i the same parallels.

Let the triangles ABC, DBC which stand on the same
base BC, and on the same side of it, be equal in area :

then shall they be between the same parallels ;

that is, if AD be joined, AD shall be parallel to BC.

Construction. For if AD be not parallel to BC,
if possible, through A draw AE parallel to BC, i. 31,

meeting BD, or BD produced, in E.

Join EC.

Proof. Now the triangle ABC is equal to the triangle EBC,
for they are on the same base BC, and between the same

parallels BC, AE. i. 37.

But the triangle ABC is equal to the triangle DBC; Hyp.
therefore also the triangle DBC is equal to the triangle EBC;

the whole equal to the part ;
which is impossible.

Therefore AE is not parallel to BC.

Similarly it can be shewn that no other straight line

through A, except AD, is parallel to BC.

Therefore AD is parallel to BC.

Q.E.D.

From this Proposition it follows that :

Equal triangles on the same base have equal altitudes.

[For Exercises see page 73.]
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Proposition 40. Theorem.

Equal triangles, on equal bases in the same straight line,

and on the same side of it, are between the same parallels.

Let the triangles ABC, DEF wliich stand on equal bases

BC, EF, in the same straight line BF, and on the same side

of it, be equal in area :

then shall they be between the same parallels ;

that is, if AD be joined, AD si rail be parallel to BF.

Construction. For if AD be not parallel to BF,
if possible, through A draw AG parallel to BF, i. 31.

meeting ED, or ED produced, in G.

Join GF.

Proof. Now the triangle ABC is equal to the triangle GEF,
for they are on equal bases BC, EF, and between the

same parallels BF, AG. i. 38.

But the triangle ABC is equal to the triangle DEF: IIi/p.

therefore also the triangle DEF is equal to the triangle GEF :

the whole equal to the part; which is impossible.

Therefore AG is not parallel to BF.

Similarly it can be shewn that no other straight Hue

through A, except AD, is parallel to BF.

Therefore AD is parallel to BF.

From this Proposition it follows that :

(i) Equal triangles on equal bases hcvce equal altitudes.

(ii) Equal triangles of equal altitudes have equal bases.
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J^XERCISES OX PROPOSITIONS 37—40.

Definition. Each of tlie three straight lines wliich join
the angular points of a triangle to tlie middle points of the

opposite sides is called a Median of the triangle.

ON Prop. 37.

1. If, in the figure of Prop. 37, AC and BD intersect in K, shew that

(i)
the triangles A KB, DKC are equal in area. "^^ '

(ii) the quadrilaterals EBKA, FCKD are equal.

2. In the figure of i. 16, shew that the triangles ABC, FBC are

c(|ual in area.

3. On the base of a given triangle construct a second triangle, \
equal in area to the first, and having its vertex in a given straight i

line. '^j

4. Describe an isosceles triangle equal in area to a given triangle
and standing on the same base.

ON Piior. 38.

5. .-1 triangle is divided by each of its medians into two parts of

equal area.

6. A parallelogram is divided by its diagonals into four triangles
of equal area.

7. ABC is a triangle, and its base BC is bisected at X; if Y '\

be any point in the median AX, shew that the triangles ABY, ACY are

equal in area.

8. In AC, a diagonal of the parallelogram ABCD, any point X is

taken, and XB, XD are drawn: shew that the triangle BAX is equal _)
to the triangle DAX.

9. If two triangles have two sides of one respectively equal to two
sides of the other, and the angles contained by those sides supplement-

(irij,
the triangles arc equal in area. ^ '

ON Pkop. 39.

10. Tlie straight line which joins the middle points of two sides of
a triangle is parallel to the third side.

11. If two straight lines AB, CD intersect in O, so that the triangle
AOC is equal to the triangle DOB, shew that AD and CB are parallel.

ON Piior. 40.

12. Deduce Prop. 40 from Prop. 39 by joining AE, AF in the

figure of page 72.
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Pkoposition 41. Theorem.

If a parallelogram and a triangle he on tlin same base

and between the same j^^^rallels, the jyai'aUelogram shall be

double of the triangle.

Let the parallelogram ABCD, and the triangle EBC be

upon the same base BC, and between the same parallels

BC, AE :

then shall the parallelogram ABCD bo double of the triangle
EBC.

Construction. Join AC.

Proof. Then the triangle ABC is equal to the triangle EBC,
for they are on the same base BC, and between the same

parallels BC, AE. i. 37.

But the parallelogram ABCD is double of the triangle ABC,
for the diagonal AC bisects the parallelogram. 1. 34.

Therefore the parallelogram ABCD is also double of the

triangle EBC. q.e.d.

EXERCISES.

1. ABCD is a parallelogram, and X, Y are the middle points of

the sides AD, BC; if Z is any point in XY, or XY produced, shew-

that the triangle AZB is one quarter of the parallelogram ABCD.

2. Describe a right-angled isosceles triangle equal to a given square.

3. If ABCD is a parallelogram, and XY any points in DC and AD
respectively: shew that the triangles AXB, BYC are equal in area.

4. ABCD is a parallelogram, and P is any point within it; shew
that the sum of the triangles PAB, PCD is equal to half the paral-

lelogram.
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Proposition 42. Problem.

To describe a jjarallelogram that shall he equal to a given

triangle, and have one of its angles equal to a given angle.

A F G

Let ABC be the given triangle, and D the given angle.
It is required to describe a parallelogram equal to ABC, and

having one of its angles equal to D.

Construction. Bisect BC at E. i. 10,

At E in CE, make the angle CEF equal to D
;

i. 23.

through A draw AFG parallel to EC
;

i. 31.

and through C draw CG parallel to EF.

Then FECG shall be the parallelogram required.
Join AE.

Froof. Now the triangles ABE, AEC are equal,
for they are on equal bases BE, EC, and between the same

parallels ;
i. 38;

therefore the triangle ABC is double of the triangle AEC.

But FECG is a parallelogram by construction; Def. 2G.

and it is double of the triangle AEC,
for they are on the same base EC, and between the same

parallels EC and AG. i. 41.

Therefore the parallelogram FECG is equal to the triangle

ABC;
and it has one of its angles CEF equal to the given angle D.

Q. E. F.

EXERCISES.

1. Describe a parallelogram equal to a given square standing on
the same base, and having an angle equal to half a right angle.

2. Describe a rhombus equal to a given parallelogram and stand-

ing on the same base. When does the construction fail ?
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Definitiox. If in the diagonal of a parallelogram any
point is taken, and straight lines are drawn through it

parallel to the sides of the parallelogram; then of the four

parallelograms into which the whole figure is divided, tlie

two through which the diagonal passes are called Paral-

lelograms about that diagonal, and the other two, whicli

with these make up the whole figure, are called the

complements of the parallelograms about the diagonal.

Thus iu the figure given below, AEKH, KGCF are parallelograms
about the diagonal AC; and HKFD, EBGK are the complements of
those parallelograms.

Note. A parallelogram is often named by two letters only, these

being placed at opposite angular points.

PROPOSITION 43. Theorem.

27ie coinplemenls of the parallelograms about the diayonal
of any parallelogram, are equal to one another.

Let ABCD be a parallelogram, and KD, KB the comple-
ments of the parallelograms EH, GF about the diagonal AC:
then shall the complement BK be equal to the comple-
ment KD.

Proof. Because EH is a parallelogram, and AK its diagonal,
tli«refore the triangle AEK is equal to the triangle AHK. i. 34.

For a similar reason the triangle KGC. is equal to the

triangle KFC.

Hence the triangles AEK, KGC are together equal to the

triandes AHK, KFC.
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But the whole triangle ABC is equal to the wliole triangle

ADC, for AC bisects the parallelogram ABCD ;
i. 34.

therefore the remainder, the complement BK, is equal to the

remainder, the complement KD, Q.e.d.

EXERCISES.

In the figure of Prop. 43, ijvove that

(i)
The parallelogram ED is equal to the parallelogram BH.

(ii)
If KB, KD are joined, the triangle AKB is equal to the

triangle AKD.

Pi<oposiTioN 44. Problem.

To a given straight line to apply a jjarallelogratn vjhich

shall he equal to a given triangle, and have one of its angles

equal to a given angle.

Let AB be the given straight line, C the given triangle,
and D the given angle.

It is required to apply to the straight line AB a paral-

lelogram equal to the triangle C, and having an angle equal
to the angle D.

Construction. On AB produced describe a parallelogram
BEFG equal to the triangle C, and having the angle EBG
equal to the angle D; i. 22 and i. 42^.

through A draw AH parallel to BG or EF, to meet FG pro-
duced in H. I, 31.

Join HB.

* This step of the construction is effected by first describing on AB
produced a triangle whose sides are respectively equal to those of the

triangle C (i. 22) ; and by then making a parallelogram equal to the

triangle so drawn, and having an angle equal to D (i. 42).
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Then because AH and EF are parallel, and HF meets them,
therefore the angles AHF, HFE are together equal to two

right angles : I. 29.

hence the angles BHF, HFE are together less than two

right angles ;

therefore HB and FE will meet if produced towards B
and E. ' Ax. 12.

Produce them to meet at K.

Through K draw KL parallel to EA or FH; i. 31.

and produce HA, GB to meet KL in the points L and M.

Then shall BL be the parallelogram required.

Proof. Now FHLK is a parallelogram, Constr.

and LB, BF are the complements of the parallelograms
about the diagonal HK:

therefore LB is equal to BF. i. 43.

But the triangle C is equal to BF; Constr.

therefore LB is equal to the triangle C.

And because the angle GBE is equal to the vertically oppo-
site angle ABM, i. 15.

. and is likewise equal to the angle D
;

Constr.

therefore the angle ABM is equal to the angle D.

Therefore the parallelogram LB, which is applied to the

straight line AB, is equal to the triangle C, and has the

angle ABM equal to the angle D. q.e.f.
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Proposition 45. Problem.

To describe a 'parallelogram, equal to a given rectilineal

figure, and having an angle equal to a given angle.

H M

Let ABCD be the given rectilineal figure, and E the

given ansfle.

It is required to describe a parallelogram equal to ABCD,
and having an angle equal to E.

Suppose the given rectilineal figure to be a quadrilateral.

Construction. Join BD.

Describe the parallelogram FH equal to the triangle ABD,
and having the angle FKH equal to the angle E. I. 42.

To GH apply the parallelogram GM, equal to the triangle

DBC, and having the angle GHM' equal to E. i. 44.

Then shall FKML be the parallelogram required.

Proof. Because each of the angles GHM, FKH is equal to E,

therefore the angle FKH is equal to the angle GHM.
To each of these equals add the angle G H K

;

then the angles FKH, GHK are together equal to the angles
GHM, GHK.
But since FK, GH are jjarallel, and KH meets them,

therefore the angles FKH, GHK are together equal to two

right angles : i. 29.

therefore also the angles GHM, GHK are together equal to

two right angles :

therefore KH, HM are in the same straight line. i. 14.
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H M

Again, l)ecause KM, FG are parallel, and HG meets tlieni,

therefore the alternate angles MHG, HGF are equal : i. 29

to each of these equals acid the angle HGL
;

then the angles MHG, HGL are together equal to the angles
HGF, HGL.
But because HM, GL are parallel, and HG meets them,

therefore the angles MHG, HGL are together equal to

two right angles: i. 29.

therefore also the angles HGF, HGL are together equal to

two right angles :

therefore FG, GL are in the same straight line. I. 14.

And boc.iuse KF and ML are each parallel to HG, Constr.

therefore KF is parallel to ML; i. 30.

and KM, FL are parallel ;
Constr.

therefore FKML is a parallelogram. Def. 26.

And because the parallelogram FH is equal to tJie triangle

ABD, Constr.

and the parallelogram GM to the triangle DBG; Constr.

tlierefore the whole parallelogram FKML is equal to the

whole figure ABOD ;

and it has the angle FKM equal to the angle E.

By a series of similar steps, a parallelogram may be
constructed equal to a rectilineal figure of more than four

sides. Q.E.F.
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Proposition 46. Problem.

To describe a square on a g'ive7i straight line.

' Cl

B

Let AB be the given straight line :

it is required to describe a square on AB.

Constr. From A draw AC at right angles to AB
;

i. 11.

and make AD equal to AB. i. 13.

Through D draw DE parallel to AB; i. 31.

and tlirough B draw BE parallel to AD, meeting DE in E.

Then shall ADEB be a square.

Proof. For, by construction, ADEB is a parallelogram :

therefore AB is equal to DE, and AD to BE. I. 34.

But AD is equal to AB
;

Constr.

therefore the four straight lines AB, AD, DE, EB are equal
to one another;

that is, the figure ADEB is equilateral.

Again, since AB, DE are parallel, and AD meets them,
therefore the angles BAD, ADE are together equal to two

right angles ;
i. 29.

but the angle BAD is a right angle ; Constr.

therefore also the angle ADE is a right angle.
And the opposite angles of a parallelogram are equal ; i. 34.

therefore each of the angles DEB, EBA is a right angle :

that is the figure ADEB is rectangular.
Hence it is a square, and it is described on AB.

Q.E.P.

Corollary. If one angle of a yarallelogram is a right

angle, all its angles are right angles.

H. e. 6
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Proposition 47. Theorem.

In a right-angled triangle the square described on ilm

hypotenuse is equal to the sum of the squares described on

tits otlter two sides.

Let ABC be a right-angled triangle, having the angle
BAG a right angle :

then shall the square described on the hypotenuse BC be

equal to the sum of the squares described on BA, AC.

Construction. On BC describe the square BDEC; i. 46.

and on BA, AC describe the squares BAGF, ACKH.

Through A draw AL parallel to BD or CE; I. 31.

and join AD, FC.

Proof. Then because each ol the angles BAC, BAG is a

right angle,
therefore CA and AG are in the same straight line. i. 14.

Now the angle CBD is equal to the angle FBA,
for each of them is a right angle.
Add to each the angle ABC :

then the whole angle ABD is equal to the whole angle FBC.



BOOK I. PROP. 47. 83

Then in the triangles ABD, FBC,

[
AB is equal to FB,

Because - and BD is equal to BC,

[also the angle ABD is equal to the angle FBC
;

therefore the triangle ABD is equal to the triangle FBC. 1.4.

Now the parallelogram BL is double of the triangle ABD,
for they are on the same base BD, and between the same

parallels BD, AL. I. 41.

And the square GB is double of the triangle FBC,
for they are on the same base FB, and between the same

parallels FB, GC. i. 41.

But doubles of equals are equal : Ax. 6.

therefore the parallelogram BL is equal to the square GB.

In a similar way, by joining AE, BK, it can be shewn
that the parallelogram CL is equal to the square CH.

Therefore the whole square BE is equal to the sum of the

squares GB, HC :

that is, the square described on the liypotenuse BC is equal
to the sum of the squares described on the two sides

BA, AC. Q.E.D,

Note. It is not necessary to the proof of this Proposition that
the three squares should be described external to the triangle ABC;
and since each square may be drawn either toicards or awa^j frovi the

triangle, it may be shewn that there are 2x2x2, or eight, possible
constructions.

EXERCISES.

1. In the figure of this Proposition, shew that

(i) If BG, CH are joined, these straight lines are parallel;

(ii) The points F, A, K are in one straight line;

(iii) FC and AD are at right angles to one another; i^

(iv) If GH, KE, FD are joined, the triangle GAH is equal
to the given triangle in all respects ;

and the triangles

FBD, KCE are each equal in area to the triangle ABC.
[See Ex. 9, p. 73.]
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2. Ou the sides AB, AC of any triaugle ABC, squares ABFG,
ACKH are described both toward the triangle, or both on the side

remote from it: shew that the straight lines BH and CG are equal.

3. On the sides of any triangle ABC, equilateral triangles BCX,
CAY, ABZ are described, all externally, or all towards the triangle:
shew that AX, BY, CZ are all equal.

4. The square described on the diagonal of a given square, is

double of the given square.

5. ABC is an equilateral triangle, and AX is the perpendicular
drawn from A to BC : sheio that the square on AX is three times the

square on BX.

6. Describe a square equal to the sum of two given squares.

7. From the vertex A of a triangle ABC, AX is drawn perpendi-
cular to the hase : shew that the difference of the squares on the sides

AB and AC, is equal to the difference of the squares on BX and CX,
the segments of the base.

8. If from any point O within a triangle ABC, perpendiculars
OX, OY, OZ are drawn to the sides BC, CA, AB respectively; shew
that the sum of the squares on the segments AZ, BX, CY is equal to

the sum of the squares on the segments AY, CX, BZ.

Proposition 47. Alternative Proof.

C

Let CAB be a right-angled triangle, having the angle at A a right

angle :

then shall the square on the hypotenuse BC be equal to the sum of

the squares on BA, AC,
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On AB describe the square ABFG. i. 46.

From FG and GA cut off respectively FD and GK, each equal
to AC. I. 3.

On GK describe the square GKEH : i. 46.

then HG and GF are in the same straight line. i. 14.

Join CE, ED, DB.

It will first be shewn that the figure CEDB is the square on CB.

Now CA is equal to KG
;
add to each AK:

therefore OK is equal to AG.
Similarly DH is equal to GF:

hence the four lines BA, CK, DH, BF are all equal.

Then in the triangles BAG, CKE,
/ BA is equal to OK, Proved.

Because ^ ^^^ ^^ ^^ equal to KE; Constr.
' ^

j
also the contained angle BAG is equal to the contained

'

angle CKE, being right angles ;

therefore the triangles BAG, CKE are equal in all resi^ects. i. 4,

Similarly the four triangles BAG, CKE, DHE, BFD may be shewn
to be equal in all respects.

Therefore the four straight lines BC, CE, ED, DB are all equal;
that is, the figure CEDB is equilateral.

Again the angle CBA is equal to the angle DBF ; Proved.
add to each the angle ABD :

then the angle CBD is equal to the angle ABF :

therefore the angle CBD is a right angle.
Hence the figure CEDB is the square on BC. l)ef. 28.

And EHGK is equal to the square on AC. Comtr.

Now the square on CEDB is made up of the two triangles BAG, CKE,
and the rectilineal figure AKEDB ;

therefore the square CEDB is equal to the triangles EHD, DFB
together with the same rectilineal figure ;

but these make up the squares EHGK, AGFB:
hence the square CEDB is equal to the sura of the squares EHGK,
AGFB:

that is, the square on the hypotenuse BC is equal to the sum of the

squares on the two sides CA, AB. q. e. d.

Obs. The following properties of a square, though not

formally enunciated by Euclid, are employed in subsequent
proofs. [See i. 48.]

(i) 27ie squares on equal straiyltt Hues are equal.

(ii) Equal .squares stand tc2Jon equal straight lines.
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Proposition 48. Theorem.

If the square described on one side of a triangle he equal
to the sum of the squares described on the oilier two sides, then

the angle contained by these two sides shall be a right angle.

Let ABC be a triangle ;
and let the square described on

BC be equal to the sum of the squares described on BA, AC :

then shall the angle BAC be a right angle.

Construction. From A draw AD at right angles to AC; 1. 11.

and make AD equal to AB. i. .3.

Join DC.

Proof Then, because AD is equal to AB, Constr.

therefore the square on AD is equal to the square on AB.

To each of these add the square on CA;
then the sum of the squares on CA, AD is equal to the sum

of the squares on CA, AB.

But, because the angle DAC is a right angle, Constr.

therefore the square on DC is equal to the sum of the

squares on CA, AD. i. 47.

And, by hypothesis, the square on BC is equal to the sum
of the squares on CA, AB;
therefore the square on DC is equal to the square on BC :

therefore also the side DC is equal to the side BC.

Then in the triangles DAC, BAC,
/ DA is equal to BA, Constr.

-5 I and AC is common to both;
iJecause

^^^^^
^j^^ ^j^.^^ ^.^^ ^^ .^ ^^^^^ ^^ ^^^^ ^^^.^^ ^.^^

[ BC
;

Proved.

therefore the angle DAC is equal to the angle BAC. i. 8.

But DAC is a right angle ;
Constr.

therefore also BAC is a right angle. Q. k. d.



THEOREMS AND EXAMPLES ON BOOK I.

INTRODUCTORY.

HINTS TOWARDS THE SOLUTION OF GEOMETRICAL EXERCISES.
ANALYSIS. SYNTHESIS.

It is commonly found that exercises in Pure Geometry present
to a beginner far more difficulty than examples in any other

branch of Elementary Mathematics. This seems to be due to

the following causes.

(i) The main Propositions in the text of Euclid must be not

merely understood, but thoroughly digested, before the exercises

depending upon them can be successfully attempted.

(ii) The variety of such exercises is practically unlimited;
and it is impossible to lay down for their treatment any definite

methods, such as the student has been accustomed to find in the

rules of Elementary Arithmetic and Algebra.

(iii) The arrangement of Euclid's Propositions, though per-

haps the most convincing of all forms of argument, affords in

most cases little clue as to the way in which the proof or con-

struction was discovered.

Euclid's propositions are arranged synthetically : that is

to say, they start from the hypothesis or data
; they next pro-

ceed to a construction in accordance with postulates, and pro-
blems already solved

;
then by successive steps based on known

theorems, they finally establish the result indicated by the enun-

ciation.

Thus Geometrical Synthesis is a building up of known results,
in order to obtain a neio result.

But as this is not the way in which constructions or proofs
are usually discovered, we draw the attention of the student to

the following hints.

Begin by assuming the result it is desired to establish
;
then

by working backwards, trace the consequences of the assumption,
and try to ascertain its dependence on some simpler theorem
which is already known to be true, or on some condition which

suggests the necessary construction. If this attempt is suc-

cessful, the steps of the argument may in general be re-arranged
in reverse order, and the construction and proof presented in a

synthetic form.
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This viuravelling of the conditions of a proposition in order

to trace it back to some earher principle on which it depends,
is called geometrical analysis : it is the natural way of attack-

ing most exercises of a more difficult type, and it is especially

adapted to the solution ofproblems.
These directions are so general that they cannot be said to

amount to a method: all that can be claimed for Geometrical

Analysis is that it furnishes a mode of searchiiig for a

suggestion^ and its success will necessarily depend on the skill

and ingenuity with which it is employed : these may be exi)ected
to come with experience, but a thorough grasp of the chief l^ro-

positions of Euclid is essential to attaining them.

The practical application of these hints is illustrated by the

following examples.

1. Construct an isosceles triaiujle having given the hose, and the

sum of one of the equal sides and the perpendicular drawn from the

vertex to the base.

Let AB be the given base, and K the sura of one side and the

l^erpendicular dx-awn from the vertex to the base.

Analysis. Suppose ABC to be the required triangle.

From C draw CX perpendicular to AB :

then AB is bisected at X. i. 2G.

Now if we produce XC to H, making XH equal to K,

it follows that CH =CA ;

and if AH is joined,
we notice that the angle CAH = the angle CHA. i. 5.

Now the straight lines XH and AH can be drawn before the position

of C is known ;

Hence we have the following construction, which we arrange

synthetically.
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Synthesis. Bisect AB at X :

from X draw XH perpendicular to AB, making XH equal to K.

Join AH.
At the point A in HA, make the angle HAC equal to the angle
AHX

; and join CB.
Then ACB shall be the triangle required.

First the triangle is isosceles, for AC = BC. i. 4.

Again, since the angle HAC = the angle AHC, Constr.

.-. HC = AC. I. G.

To each add CX
;

then the sum of AC, CX = the sum of HC, CX
= HX.

That is, the sum of AC, CX= K. q. e. f.

2. To divide a given straight line so that the sqnare on one part
may he double of the square on the other.

Let AB be the given straight line.

Analysis. Suppose AB to be divided as required at X : that is,

suppose the square on AX to be double of the square on XB.
Now we remember that in an isosceles right-angled triangle, the

square on the hypotenuse is double of the square on either of the

equal sides.

This suggests to us to draw BC perpendicular to AB, and to make
BC equal to BX,

Join XC.
Then the square on XC is double of the square on XB, i. 47.

.-. XC = AX.
And when we join AC, we notice that

the angle XAC = the angle XCA, i. 5.

Hence the exterior angle CXB is double of the angle XAC. i. 32.

But the angle CXB is half of a right angle : i. 32.

.-. the angle XAC is one-fourth of a right angle.

This supplies tlie clue to the following construction :—
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Synthesis. From B draw BD perpendicular to AB
;

and from A draw AC, makiny BAG one-fourth of a right angle.
From C, the intersection of AC and BD, draw CX, making the angle
ACX equal to the angle BAC. i. 23.

Then AB shall be divided as required at X.

For since the angle XCA = the angle XAC,
.-. XA= XC. 1.6.

And because the angle BXC = the sum of the angles BAC, ACX, i. 32.

.-. the angle BXC is half a right angle;
and the angle at B is a right angle ;

therefore the angle BCX is half a right angle ;
i. 32.

therefore the angle BXC = the angle BCX ;

.-. BX = BC.
Hence the square on XC is double of the square on XB : i. 47.

that is, the square on AX is double of the square on XB. q.e.f.

I. 0\ THE IDENTICAL EQUALITY OF TRIANGLES.

See Propositions 4, 8, 26.

1. If in a triangle the perpendicular from the vertex on the base
bisects the base, then the triangle is isosceles.

2. If the bisector of the verti<Jal angle of a triangle is also per-

pendicular to the base, the triangle is isosceles.

3. If the bisector of the vertical angle of a triangle also bisects

the base, the triangle is isosceles.

[Produce the bisector, and complete the construction after the

manner of i. 16.]

4. If in a triangle a pair of straight lines drawn from the ex-

tremities of the base, making equal angles with the sides, are equal, the

triangle is isosceles.

5. If in a triangle the perpendiculars drawn from the extremities
of the base to the opposite sides are equal, the triangle is isosceles.

6. Two triangles ABC, ABD on the same base AB, and on opposite
sides of it, are such that AC is equal to AD, and BC is equal to BD :

shew that the line joining the points C and D is perpendicular to AB.

7. If from the extremities of the base of an isosceles triangle per- j

pendiculars are drawn to the opposite sides, shew that the straight '

line joining the vertex to the intersection of these perpendiculars bisects

the vertical angle.
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8. ABC is a triangle in which the vertical angle BAC is bisected

by the straight line AX : from B draw BD perpendicular to AX, and

produce it to meet AC, or AC produced, in E; then shew that BD is

equal to DE.

9. In a quadrilateral ABCD, AB is equal to AD, and BC is equal
to DC : shew that the diagonal AC bisects each of the angles which it

joins.

10. In a quadrilateral ABCD the opposite sides AD, BC are equal,
and also the diagonals AC, BD are equal: if AC and BD intersect at

K, shew that each of the triangles AKB, DKC is isosceles.

11. If one angle of a triangle be equal to the sum of the other two,
the greatest side is double of the distance of its middle point from the

opposite angle.

12. Two right-angled triangles which have their hypotenuses equal,
and one side of one equal to one side of the other, are identically equal.

Let ABC, DEF be two a ^
right-angled at B and E, having AC

equal to DF, and AB equal to DE :

then shall the A ^ be identically equal.

For apply the a ABC to the a DEF, so that A may fall on D,
and AB along DE ;

and so that C may fall on the side of DE remote
from F.

Let C be the point on which C falls.

Then since AB=DE,
.'. B must fall on E

;

so that DEC represents the A ABC in its new position.

Now each of the / » DEF, DEC is a rt. l
;

.-. EF and EC are in one st. line.

Then in the a CDF,
because DF=DC,

.-. the Z DFC=:the z DCF.
Hence in the two A^ DEF, DEC,

(
the Z DEF = the z DEC, being rt. l'

Because]
and the Z DFE=the z DCE;

(
also the side D E is common to both

;

.-. the A" DEF, DEC are equal in all respects; i. 20.

that is, the a^ DEF, ABC are equal in all respects. q.k.d.

Hyp.
I. 14.

Praised.
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13. If two triangles have two sides of the one equal to two sides of
the other, each to each, and have likewise the angles opposite to one pair
of equal sides equal, then the angles opposite to the other pair of equal
sides are either equal or supplementary, and in the former case the tri-

angles are equal in all respects.

Let ABC, DEF be two AS
Imviug tlie side AB equal to the side DE,

the side AC equal to the side DF,
also the Z ABC equal to the z DEF:

then shall the Z ^ ACB, DFE be either equal or supplementary,
and in the former case, the a^ shall be equal in all respects.

Apply the a ABC to the a DEF,
no that A may fall on D, and AB along DE ;

then because AB = DE, J^'/P-
.'. B will fall on E :

and because the Z ABC = the z DEF, Ifyp.
. .'. BC will fall along EF:

Then must C fall on F, or in EF, or EF produced.

If C falls on F,
the A ** coincide, and thei'efore are identically equal ;

so that the z ACB = the z DFE.

But if C falls in EF, or EF produced, as at C :

then DEC represents the a ABC in its new position.
Then because DF = AC, JiyP'

.'. DF = DC',
.-. the z DC'F = the z DFC. i. 5.

But the z >* DFC, DFE are supplementary; i. 13.

.". the Z * DCF, DFE are supplementary :

that is, the z =* ACB, DFE are supplementary. q.e.d.

Three cases of this theorem deserve special attention.

It has been proved that if the angles ACB, DFE are not equal,

they are supjilementary :

And we know that of angles which are supplementary and un-

equal, one must be acute and the other obtuse.
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Corollaries. Hence if in addition to the hypothesis of this

theorem it is given

(i) That the angles AC B, D F E, opposite to the two equal sides

AB, DE are both acute, both obtuse, or if one of them
is a right angle,
it follows that these angles are equal,

and therefore that the triangles are equal in all respects.

(ii) That the two given angles are right angles or obtuse

angles, it follows that the angles ACB, DFE must be
both acute, and therefore equal, by (i) :

so that the triangles are equal in all respects.

(iii) That in each triangle the side opposite the given angle
is not less than the other given side ; that is, if AC and
DP are not less than AB and DE respectively, then
the angles ACB, DFE cannot be greater than the angles
ABC, DEF, respectively;

therefore the angles ACB, DFE, are both acute
;

hence, as above, they are equal ;

and the triangles ABC, DEF are equal in all respects.

II. ON INEQUALITIES.

See Propositions 16, 17, 18, 19, 20, 21, 24, 25.

1. In a triangle ABC, if AC is not greater than AB, shew that

any straight line drawn through the vertex A, and terminated by the
base BC, is less than AB.

2. ABC is a triangle, and the vertical angle BAC is bisected by a

straight line which meets the base BC in X ; shew that BA is greater
than BX, and CA greater than CX. Hence obtain a proof of i. 20. .

3. llie perpendicular is the shortest straight line that can be

drawn from a given point to a given straight line ; and of others, that
xchich is nearer to the perpendicular is less than the more remote ; and
tiiw, and only tioo equal straight lines can be drawn from the given
point to the given straight line, one on each side of the perpendicular.

4. The sum of the distances of any point from the three angular
points of a triangle is greater than half its perimeter.

5. The sum of the distances of any point within a triangle from
its angular points is less than the perimeter of the triangle.
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6. The perimeter of a quadrilateral ib greater than the 8uni of its

diagonals.

7. The sum of the diagonals of a quadrilateral is less than the
sum of the four straight lines drawn from the angular points to any
given point. Prove this, and point out the exceptional case.

8. In a triangle any Uco sides are together greater than twice the

median which bisects the remaining side. [See Def. p. 73,]

[Produce the median, and complete the construction after the
manner of i. 16.]

9. In any triangle the sum of the medians is less than the peri-
meter.

10. In a triangle an angle is acute, obtuse, or a right angle,

according as the median drawn from it is greater than, less than, or

equal to half the opposite side. [See Ex. 4, p. 59.]

11. The diagonals of a rhombus are unequal.

12. If the vertical angle of a triangle is contained by unequal
sides, and if from the vertex the median and the bisector of the angle
are draicn, then the median lies within tlie angle contained by the

bisector and the longer side.

Let ABC be a a, in which AB is greater
than AC ; let AX be the median drawn from
A, and AP the bisector of the vertical

ZBAC:
then shall AX lie between AP and AB.

Produce AX to K, making XK equal to

AX. Join KC.

Then the a' BXA, CXK may be shewn
to be equal in all respects; i. 4.

hence BA = CK,and the z BAX = the z CKX.
But since BA is greater than AC, IlTjp.

:. CK is greater than AC;
.-. the Z CAK is greater than the z CKA: i. 18.

that is, the z CAX is greater than the z BAX :

.-. the Z CAX must be more than half the vert, z BAG ;

hence AX lies within the angle BAP. q.e.d.

13. If two sides of a triangle are unequal, and if from their point
of intersection three straight lines are drawn, namely the bisector of the

vertical angle, the median, and the perpendicular to the base, the first
is intermediate in position and magnitude to the other two.
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III. ON PARALLELS.

See Propositions 27—31.

1. If a straight line meets two parallel straight lines, and the

two interior angles on the same side are bisected; shew that the

bisectors meet at right angles, [i. 29, i. 32.]

2. The straight lines drawn from any point in the bisector of

an angle parallel to the arms of the angle, and terminated by them,
are equal ; and the resulting figure is a rhombus.

3. AB and CD are two straight lines intersecting at D, and the

adjacent angles so formed are bisected: if through any point X in

DC a straight line YXZ be drawn parallel to AB and meeting the

bisectors in Y and Z, shew that XY is equal to XZ.

4. If two straight lines are parallel to two other straight lines,

each to each; and if the angles contained by each pair are bisected;
shew that the bisecting lines are parallel.

5. The middle point of any straight line which meets two parallel

straight lines, and is terminated by them, is equidistant from the

parallels.

6. A straight line drawn between two parallels and terminated by
them, is bisected ;

shew that any other straight line passing through
the middle point and terminated by the parallels, is also bisected at

that point.

7. If through a point equidistant from two parallel straight lines,

two straight lines are drawn cutting the parallels, the portions of the
latter thus intercepted are equal.

Pboblems.

8. AB and CD are two given straight lines, and X is a given
point in AB : find a point Y in AB such that YX may be equal to the

perpendicular distance of Y from CD.

9. ABC is an isosceles triangle; required to draw a straight
line DE parallel to the base BC, and meeting the equal sides in D and
E, so that BD, DE, EC may be all equal.

10. ABC is any triangle; required to draw a straight line DE
parallel to the base BC, and meeting the other sides in D and E, so

that DE may be equal to the sum of BD and CE.

11. ABC is any triangle; required to draw a straight line parallel
to the base BC, and meeting the other sides in D and E, so that DE
may be equal to the difference of BD and CE.
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IV. ON PARALLELOGRAMS.

See Propositions 33, 34, and the deductions from these Props,

jiven on page 64.

1. The straight line drawn through the middle point of a side of a

triangle parallel to the base, bisects the remaining side.

Let ABC be a A , and Z the middle point
of the side AB. Through Z, ZY is drawn par'
to BC

;
then shall Y be the middlepoint of AC.

Through Z draw ZX par^ to AC. i.31.

Then in the a^ AZY, ZBX,
because ZY and BC are par',
.-.the Z AZY=:the z ZBX; i. 29.

and because ZX and AC are par',
.-. the Z ZAY = the z BZX; i. 29.

alsoAZ = ZB: Hijj>.

.-. AY = ZX.
But ZXCY is a par»i by construction ;

.-. ZX=:YC.
Hence AY= YC;

that is, AC is bisected at Y. q.e.ij.

2. The straight line 7vhich joins the middle points of two sides of a

triangle, is parallel to the third side.

Let ABC be a A ,
and Z, Y the middle

points of the sides AB, AC:
then shall ZY be par' to BC.

Produce ZY to V, making YV equal to

ZY.
Join CV.

Then in the a^AYZ.CYV,
( AY = CY, Hyp.

'' andYZ=YV, Constr.Because YV,
I and the Z AYZ = the vert, opp

.-. AZ = CV,
and the Z ZAY = the Z VCY;

hence CV is par' to AZ. i. 27.

But CV is equal to AZ, that is, to BZ : Hgp.
.'. CV is equal and par' to BZ :

.-. ZV is equal and par' to BC : i. 33.

that is, ZY is par' to BC. q.e.d.

[A second proof of this proposition may be derived from i. 38, 39.]
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3. The straight line which joins the middle points of two sides of a

triangle is equal to half the third side.

4. Shew that the three straight lines which join the middle points

of the sides of a triangle, divide it into four triangles which are identi-

cally equal.

5. Any straight line draion from the vertex of a triangle to the

base is bisected by the straight line ichich joins the middle points of the

other sides of the triangle.

6. Given the three middle points of the sides of a triangle, con-

struct the triangle.

7. AB, AC are two given straight lines, and P is a given point
between them

; required to draw through P a straight line termi-

nated by AB, AC, and bisected by P.

8. ABCD is a parallelogram, and X, Y are the middle points of

the opposite sides AD, BC: shew that BX and DY trisect the dia-

gonal AC.

9. If the middle points of adjacent sides of any quadrilateral he

joined, thejigure thus formed is a parallelogram.

10. Shew that the straight lines which join the middle points of

opposite sides of a quadrilateral, bisect one another.

11. The straight line which joins the middle points of the oblique
sides of a trapezium, is parallel to the two parallel sides, and passes
through the middle points of the diagonals.

12. TJie straight line which joins the middle points of the oblique
sides of a trapezium is equal to half the sum of the parallel sides ; and
the portion intercepted between the diagonals is equal to half the

difference of the parallel sides.

Definition. If from the extremities of one straight line per-
pendiculars are drawn to another, the portion of the latter

intercepted between the perpendiculars is said to be the Ortho-
goiial Projection of the tirst line upon the second.

B
B

Y Q

Thus in the adjoining figures, if from the extremities of the straight
hue AB the perpendiculars AX, BY are drawn to PQ, then XY is the
orthogonal projection of AB on PQ.

H. E.
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13. A given straight line AB is bisected at C; shew that the i)ro-

jections o/AC, CB o» any other straight line are equal.

c

X ^
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A

19. To divide a given Jinite straight line into any nuinher of equal

parts.

[For example, required to divide the straight
line AB into Jive equal parts.

From A draw AC, a straight line of un-

limited length, making any angle with AB.
In AC take any point P, and mark off

successive parts PQ, QR, RS, ST each equal
to A P.

Join BT
;
and through P, Q, R, S draw

parallels to BT.
It may be shewn by Ex. 14, p. 98, that these

parallels divide AB into five equal parts.]

20. If through an angle of a parallelogram any straight line

is draicn, the perpendicular drawn to it from the opposite angle
is equal to the sum or difference of the perpendiculars drawn to it

from the two remaining angles, according as the given straight line

falls without the parallelogram, or intersects it.

[Through the opposite angle draw a straight line parallel to the

given straight line, so as to meet the perpendicular from one of the

remaining angles, produced if necessary: then apply i. 34, i. 26. Or
proceed as in the following example.]

21. From the angular points of a parallelogram perpendiculars
are drawn to any straight line which is without the parallelogram:
shew that the sum of the perpendiculars drawn from one pair of

opposite angles is equal to the sum of those drawn from the other pair.

[Draw the diagonals, and from their point of intersection let fall a

perpendicular upon the given straight line. See Ex. 17, p. 98.]

22. The sum of the perpendiculars drawn from any point in the
base of an isosceles triangle to the equal sides is equal to the perpendi-
cular drawn from either extremity of the base to the opposite side.

[It follows that the sum of the distances of any point in the base
of an isosceles triangle from the equal sides is constant, that is,

the same whatever point in the base is taken.]

23. In the base produced of an isosceles triangle any point is

taken : shew that the difference of its distances from the equal sides is

constant.

24. The sum of the perpendiculars drawn from any point within
an equilateral triangle to the three sides is equal to the perpendicular
drawn from any one of the angular points to the opposite side, and is

therefore constant.

7—2
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PROBLEMB.

[Problems marked (*) admit of more than one solution.]

*25. Draw a straight line through a given point, so that the part of

it intercepted between two given parallel straight lines may be of given

length.

26. Draw a straight line parallel to a given straight line, so that

the part intercepted between two other given straight lines may be of

given length.

27. Draw a straight line equally inclined to two given straight
lines that meet, so that the part intercepted between them may be of

given length.

28. AB, AC are two given straight lines, and P is a given point
loithout the angle contained by them. It is required to draw through
P a straight line to meet the given lines, so that the part intercepted
between them may be equal to the part between P and the nearer line.

v. MISCELLANEOUS THEOREMS AND EXAMPLES.

Chiefly on i. 32.

1. A is the vertex of an isosceles triangle ABC, and BA is jjroduced
to D, so that AD is equal to BA ; if DC is draicn, sheio that BCD is a

right angle.

2. The straight line joining the middle point of the hypotenuse of a

right-angled triangle to the right angle is equal to half the hypotenuse.

3. From the extremities of the base of a triangle perpendiculars
are drawn to the opposite sides (produced if necessary) ;

shew that the

straight lines which join the middle point of the base to the.feet of

the perpendiculars are equal.

4. In a triangle ABC, AD is draxcn perpendicular to BC
;
and

X, Y, Z are the middle points of the sides BC, CA, AB respectively :

shexo that each of the angles ZXY, ZDY is equal to the angle BAC.

5. In a right-angled triangle, if a j)erpendicular he drawn from
the right angle to the hypotenuse, the two triangles thus formed are

equiangular to one another.

6. In a right-angled triangle tico straight lines are draion from,
the right angle, one bisecting the hypotenuse, the other perpendicular
to it : shew that they contain an angle equal to the difference of the two

acute angles of the irlaiigle. [See above, Ex. 2 and Ex. 5.]
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7. In a triangle if a 'perpendicular he draicn from one extremity
of the base to the bisector of the vertical angle, (i) it ivill make with
either of the sides containing the vertical angle an angle equal to half
the sum of the angles at the base; (ii) it will make with the base an
angle equal to half the difference of the angles at the base.

Let ABC be the given a, and AH the bi-

sector of the vertical z BAG,
Let CLK meet AH at right angles.

(i) Then shall each of the Z ^ AKC, ACK
be equal to half the sum of the z " ABC,
ACB.

In the A^AKL, ACL,
r the z KAL= the z CAL,

Because < also the Z ALK= the Z ALC, being rt.

( and AL is common to both a";
.-. the Z AKL= the Z ACL. i. 26.

Again, the z AKC= the sum of the z ' KBC, KCB ;
i. 32.

that is, the z ACK = the sum of the z " KBC, KCB.
To each add the Z ACK,

then twice the Z ACK = the sum of the z « ABC, ACB,
.-. the Z ACK=half thesumof the z « ABC, ACB.

(ii)
The z KCB shall be equal to half the difference of the

Z^ACB, ABC.
As before, the z ACK= the sum of the Z « KBC, KCB,

To each of these add the z KCB :

then the Z ACB = the Z KBC together with twice the z KCB.
.-. twice the Z KCB= the difference of the Z^ACB, KBC,

that is, the z KCB=half the difference of the Z ^ ACB, ABC.

CoKOLLAKY. If X be the middle point of the base, and XL bejoined,
it may be shewn by Ex. 3, p. 97, that XL is half BK ; that is, that

XL is half the difference of the sides AB, AC.

8. In any triangle the angle contained by the bisector of the

vertical angle and the perpendicular from the vertex to the base is equal
to half the difference of the angles at the base. [See Ex. 3, p. 59.]

9. In a triangle ABC the side AC is produced to D, and the

angles BAC, BCD are bisected by straight lines which meet at F;
shew that they contain an angle equal to half the angle at B.

10. If in a right-angled triangle one of the acute angles is double
of the other, shew that the hypotenuse is double of the shorter side.

11. If in a diagonal of a parallelogram any two points equidistant
from its extremities be joined to the opposite angles, the figure thus
formed will be also a parallelogram.
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12. ABC is a given equilateral triangle, and in the sides BC, CA,
AB the points X, Y, Z are taken respective!}', so that BX, CY and AZ
are all equal. AX, BY, CZ are now drawn, intersecting in P, Q, R :

shew that the triangle PQR is equilateral.

13. If in the sides AB, BC, CD, DA of a parallelogram ABCD
four points P, Q, R, S be taken in order, one in each side, so that AP,
BQ, CR, DS are all equal; shew that the figure PQRS is a parallelo-

gram.
•

14. In the figure of i. 1, if the circles intersect at F, and if

CA and CB are produced to meet the circles in P and Q. respectively ;

shew that the points P, F, Q are in the same straight line; and
shew also that the triangle CPQ is equilateral.

[Problems marked (*) admit of more than one solution.]

15. Through two given points draw two straight lines forming
with a straight line given in position, an equilateral triangle.

*16. From a given point it is required to draw to two parallel

straight lines two equal straight lines at right angles to one another.

*17. Three given straight lines meet at a point ; draw another

straight line so that the two portions of it intercepted between the

given lines may be equal to one another.

18. From a given point draw three straight lines of given lengths,
so that their extremities may be in the same straight line, and inter-

cept equal distances on that line. [See Fig. to i. 16.]

19. Use the properties of the equilateral triangle to trisect a given
finite straight line.

20. In a given triangle inscribe a rhombus, having one of its

angles coinciding with an angle of the triangle.

VI. ON THE CONCURRENCE OF STRAIGHT LINES IN A TRIANGLE.

Definitions, (i) Three or more straight lines are said to

l>e concurrent when they meet in one point.

(ii) Three or more points are said to be collinear when they
lie upon one straight line.

We here give some propositions relating to the concurrence
of certain groups of straight lines drawn in a triangle : the im-

portance of these theorems will be more fully appreciated when
the student is familiar with Books iii. and iv.
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1. The perpendiculars drawn to the sides of a triangle from their

middle points are concurrent.

Let ABC be a A, and X, Y, Z the

middle points of its sides :

then shall the perp^ drawn to the

sides from X, Y, Z be concurrent.
From Z and Y draw perps to A B, AC;

these perps, since they cannot be parallel,
will meet at point O. Ax. 12.

Join OX.

Because

Tt is required to prove that OX is perp. to BC

Join OA, OB, OC.

Inthe A« OYA, OYC,
YA = YC,

and OY is common to both
;

I also the z OYA = the Z OYC, being rt.L\
.-. OA = OC.

Similarly, from the a^ OZA, OZB,
it may be proved that OA = OB.
Hence OA, OB, OC are all equal.

Again, in the a« OXB, OXC
( BX = CX,

Because <and XO is common to both ;

(
also OB = 00:

.-. the Z OXB = the Z OXC;
but these are adjacent z ^

;

.-. they are rt. l^;
that is, OX is perp. to BC.

Hence the three perps OX, OY, OZ meet in the point O.

Q. E

2. The bisectors of the angles of a triangle are concurrent.

Let ABC be a A . Bisect the Z « ABC, A
BOA, by straight lines which must meet
at some point O. Ax. 12.

Join AO.
It is required to prove that AO bisects the

Z BAG.
From O draw OP, OQ, OR perp. to the

sides of the a .

Then in the a** OBP, OBR,
I the Z OBP = the Z OBR,

Because .| and the z OPB = the z ORB, being rt. L^,

(
and OB is common

;

.-. OP= OR.

Hy2).

1.4.

Hyp-

Proved.
1.8.

Def. 7.

I. 20.
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Similarly from the a" OCP, OCQ,
it may be shewn that OP=OQ,
.-. OP, OQ, OR are all equal.

Again in the a" ORA, OQA,
I the z" ORA, OQA are rt. l',

P land the hypotenuse OA is
liecause.

common,
[ also OR -OQ; Proved.

.'. the z RAO = the z QAO. Ex. 12, p. 91.

That is, AO is the bisector of the z BAG.

Hence the bisectors of the three z ** meet at the point O.

Q. E. r>.

3. The bisectors of two exterior angles of a triangle and tlie

bisector of the third angle are concurrent.

Let ABC be a a, of which the sides AB,
AC are produced to any points D and E.

Bisect the Z^ DBC, ECB by straight lines

which must meet at some point O. Ax. 12.

Join AO.

It is required to inove that AO bisects the

angle BAC.

From O draw OP, OQ, OR perp. to the

sides of the a .

Then in the a« OBP, OBR,
the Z OBP= the z OBR, Gomtr.
also the z OPB = the z ORB,
being rt. l ",

and OB is common ;

.-. OP= OR.

Similarly in the a" OCP, OCQ,
it may be shewn that OP = OQ:
.-. OP, OQ, OR are all equal.

Again in the A' ORA, OQA,
( the Z " ORA, OQA are rt. l %

Because \ and the hypotenuse OA is common,
(

alsoOR = OQ;
.-. the z RAO= the Z QAO.

Because

Proved.
Ex. 12, p. 91.

That is, AO is the bisector of the z BAC.
.-. the bisectors of the two exterior Z " DBC, ECB,

and of tlie interior z BAC meet at the point O.

Q.B.D.
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4. The medians of a triangle are concurrent.

Let ABC be a a . Let BY and CZ be two of its

medians, and let them intersect at O.
Join AO,

and produce it to meet BC in X.
It is required to shew that AX is the remaining
median of the a .

Through C draw CK parallel to BY:
produce AX to meet CK at K.

Join BK.

In the A AKC,
because Y is the middle point of AC, and- YD is

parallel to CK,
. •. O is the middle point of AK. Ex. 1, p. 96.

Again in the a ABK,
since Z and O are the middle points of AB, AK,

.-. ZO is parallel to BK, Ex. 2, p. 96.

that is, OC is parallel to BK :

.-. the figure BKCO is a par".
But the diagonals of a par™ bisect one another, Ex. 5, p. 64.

.-. X is the middle point of BC.
That is, AX is a median of the a .

Hence the three medians meet at the point O. q.e.d.

Corollary. The three medians of a triangle cut one another at a

point of trisection, the greater segment in each being toioards the

angular point.

For in the above figure it has been proved that
AO = OK,

also that OX is half of OK;
.-. OX is half of OA :

that is, OX is one third of AX.
Similarly OY is one third of BY,
and OZ is one third of CZ. q.e.d.

By means of this Corollary it may be shewn that in any triangle
the shorter median bisects the greater side.

[The point of intersection of the three medians of a triangle is

called the centroid. It is shewn in mechanics that a thin triangular

])late will balance in any position about this point : therefore the

centroid of a triangle is also its centre of gravity.]
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5. 21ie perpendiculars drawn from the verticeit of a triaiiaJ<' to tJir

opposite sides are concurrent.

Let ABC be a A, and AD, BE, CF the three perp" drawn from
the vertices to the opposite sides :

then shall these perp* be concurrent.

Through A, B, and C draw straight lines MN, NL, LM parallel
to the opposite sides of the a .

Then the figure BAMC is a par'". Bef. 26.

.-. AB=MC. 1.34.
Also the figure BACL is a par".

.-. AB=LC,

.-. LC =CM :

that is, C is the middle point of LM.
So also A and B are the middle points of M N and N L.

Hence AD, BE, CF are the perp* to the sides of the a LMN from
their middle points. Ex. 3, p. 54.

But these perp' meet in a point: Ex. 1, p. 103.

that is, the perp* drawn from the vertices of the a ABC to the

opposite sides meet in a point. q.e.d.

[For another proof see Theorems and Examples on Book iii.]

Definitions.

(i;
The intersection of the perpendiculars drawn from the

vertices of a triangle to the oi)posite sides is called its ortho-
centre.

(ii) The triangle formed b}^ joining the feet of the perpen-
diculars is called the pedal triangle.
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K

VII. ON THE CONSTRUCTION OF TRIANGLES WITH GIVEN PARTS.

No general rules can be laid down for the solution of

problems in this section; but in a few typical cases we give

constructions, which the student will find little difficulty in

adapting to other questions of the same class.

1. Construct a right-angled triangle, having given the hypotenuse
and the sum of the remaining sides.

[It is required to construct a rt.
~

angled A , having its hypotenuse equal
to the given straight line K, and the sum
of its remaining sides equal to AB.

From A draw AE making with BA
an z equal to half a rt. l . From
centre B, with radius equal to K, de-

scribe a circle cutting AE in the points
cc.

From C and C draw perp' CD, CD' to AB; and join CB, C'B.
Then either of the a^ CDB, C'D'B will satisfy the given conditions.

Note, If the given hypotenuse K be greater than the perpendicu-
lar drawn from B to AE, there will be two solutions. If the line K be

equal to this perpendicular, there will be one solution ;
but if less, the

problem is impossible.]

2. Construct a right-angled triangle, having given the hypotenuse
and the difference of the remaining sides.

3. Construct an isosceles right-angled triangle, having given the

sum of the hypotenuse and one side.

4. Construct a triangle, having given the perimeter and the angles
at the base.

R B
J

[Let AB be the perimeter of the required a
,
and X and Y the

the base.

From A draw AP, making the / BAP equal to half the z X.
From B draw BP, making the Z ABP equal to half the z Y,

From P draw PQ, making the Z APQ equal to the z BAP.
From P draw PR, making the z BPR equal to the z ABP.

Then shall PQR be the required a
.]

Z%at
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5. Coustruct a right-angled triangle, having given tlie perimeter
and one acute angle.

6. Construct an isosceles triangle of given altitude, so that its

base may be in a given straight line, and its two equal sides may pass
through two fixed points. [See Ex. 7, p. 49.]

7. Construct an equilateral triangle, having given the length of
the perpendicular drawn from one of the vertices to the opposite side.

*- 8. Construct an isosceles triangle, having given the base, and
the difference of one of the remaining sides and the perpendicular
drawn from the vertex to the base. [See Ex. 1, p. 88.]

9. Construct a triangle, having given the base, one of the angles
at the base, and the sum of the remaining sides.

10. Construct a triangle, having given the base, one of the angles
at the base, and the difference of the remaining sides.

,

Nil. Construct a triangle, liaving given the base, the difference

of the angles at the base, and tJie difference of the remaining sides.

k
[Let AB be the given base, X the difference of the z ' at the base,

and K the difference of the remaining sides.

Draw BE, making the Z ABE equal to half the Z X.
From centre A, with radius equal to K, describe a circle cutting BE

in D and D'. Let D be the point of intersection nearer to B.

Join AD and produce it to C.
Draw BC, making the z DBC equal to the z BDC.

Then shall CAB be the a required. Ex. 7, p. 101.

Note. This problem is possible only when the given difference K
is greater than the perpendicular drawn from A to BE.]

~12. Construct a triangle, having given the base, the difference of

the angles at the base, and the sum of the remaining sides.

"HES. Construct a triangle, having given the perpendicular from the

vertex on the base, and the difference between each side and the

adjacent segment of the base.
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14. Construct a triangle, having given two sides and the median
which bisects the remaining side, [See Ex. 18, p. 102.]

15. Construct a triangle, having given one side, and the medians
which bisect the two remaining sides.

[See Fig. to Ex. 4, p. 105.

Let BC be the given side. Take two-thirds of each of the given
medians; hence construct the triangle BOC. The rest of the con-

struction follows easily.]

16. Construct a triangle, having given its three medians.

[See Fig. to Ex. 4, p. 105.

Take two-thirds of each of the given medians, and construct

the triangle OKC. The rest of the construction follows easily.]

Vlir. ON AREAS.

See Propositions 35—48.

It must be understood that throughout this section the word

equal as applied to rectilineal figures will be used as denoting

equality of area unless otherwise stated.

1. Shew that a parallelogram is bisected by any straight line

which passes through the middle point of one of its diagonals, [i. 29,

26.]

2. Bisect a parallelogram by a straight line drawn through a

given point.

3. Bisect a parallelogram by a straight line drawn perpendicular
to one of its sides.

4. Bisect a parallelogram by a straight line drawn parallel to a

given straight line.

5. ABCD is a trapezium in which the side AB is parallel to DC.
Shew that its area is equal to the area of a parallelogram formed by
draioing through X, the middle point of BC, a straight line parallel to

AD. [I. 29, 26.]

6. A trapezium is equal to a parallelogram whose base is half the

sum of the parallel sides of the given figure, and whose altitude is

equal to the perpendicular distance between them.

7. ABCD is a trapezium in which the side AB is parallel to DC;
shew that it is double of the triangle formed by joining the extremities

of AD to X, the middle point of BC.

8. Shew that a trapezium is bisected by the straight line which

joins the middle points of its parallel sides. [i. 38.]
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In the following group of Exercises the proofs depend chiefly
on Propositions 37 and 38, and the two converse theorems.

9. If two straight lines AB, CD intersect at X, and if the straight
lines AC and BD, which join their extremities are parallel, shew that

the triangle AXD is equal to the triangle BXC.

10. If two straight lines AB, CD intersect at X, so that the

triangle AXD is equal to the triangle XCB, then AC and BD are

parallel.

11. ABCD is a parallelogram, and X any point in the diagonal
AC produced; shew that the triangles XBC, XDC are equal. [See
Ex. 13, p. 64.]

12. ABC is a triangle, and R, Q the middle points of the sides

AB, AC; shew that if BQ and CR intersect in X, the triangle BXC is

equal to the quadrilateral AQXR. [See Ex. 5, p. 73.]

13. If the middle points of the sides of a quadrilateral be joined
in order, the parallelogram so formed [see Ex. 9, p. 97] is equal to

half the given figure.

14. Two triangles of equal area stand on the same base but on

opposite sides of it : shew that the straight line joining their vertices

is bisected by the base, or by the base produced.

15. The straight line which joins the middle points of the dia-

gonals of a trapezium is parallel to each of the two parallel sides.

16.
(i)

A triangle is equal to the sum or difference of two triangle.^

on the same base (or on equal bases), if the altitude of theformer is equal
to the sum or difference of the altitudes of the latter.

(ii) A triangle is equal to the sum or difference of two triangles of
the same altitude if the base of the former is equal to tlie sum or differ-

ence of the bases of the latter.

Similar statements hold good of parallelograms.

17. ABCD is a parallelogram, and O is any point outside it;

shew that the sum or difference of the triangles CAB, OCD is equal to

half the parallelogram. Distinguish between the two cases.

On the following proposition depends an important theorem
in I!klechanics : we give a ]:>roof of the first case, leaving the second
case to be deduced by a similar method.
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18. (i)
ABCD is a parallelogram, and O is any point without the

angle BAD and its opposite vertical angle ; shetc that the triangle OAC
is equal to the sum of the triangles OAD, OAB.

(ii) If O is within the angle BAD or its opposite vertical angle,
the triangle OAC is equal to the difference of the triangles OAD,
OAB.

Cask I. If O is without the z DAB
and its opp. vert, z

,
then OA is with-

out the par" ABCD : therefore the perp.
drawn from C to OA is equal to the sum
of the perp" drawn from B and D to OA.

[SeeEx. 20, p. 99.]
Now the A« OAC, OAD, OAB are

upon the same base OA ;

and the altitude of the a OAC with

respect to this base has been shewn to

be equal to the sum of the altitudes of

the AS OAD, OAB.
Therefore the A OAC is equal to the sum of the a*» OAD, OAB».^

[See Ex. 16, p. 110.] q.e.d.

19. ABCD is a parallelogram, and through O, any point within

it, straight lines are drawn parallel to the sides of the parallelogram;
shew that the difference of the parallelograms DO, BO is double of

the triangle AOC. [See preceding theorem (ii).]

20. The area of a quadrilateral is equal to the area of a triangle

having two of its sides equal to the diagonals of the given figure, and
the included angle equal to either of the angles between the dia-

gonals.

21. ABC is a triangle, and D is any point in AB: ii is required to

draw through D a straight line DE fo meet BO produced in E, so that

the triangle DBE may he equal to the triangle ABC.

[Join DC. Through A draw AE parallel to DC. i. 31.

Join DE.

The A EBD shall be equal to the a ABC. i. 37.]
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22. On a base of given length describe a triangle equal to a given

triangle and having an angle equal to an angle of the given triangle.

23. Construct a triangle equal in area to a given triangle, and

having a given altitude.

24. On a base of given length construct a triangle equal to a

given triangle, and having its vertex on a given straight line.

25. On a base of given length describe (i) an isosceles triangle ;

(ii)
a right-angled triangle, equal to a given triangle.

26. Construct a triangle equal to the sum or difference of two

given triangles. [See Ex. 1(5, p. IIO.J

27. ABC is a given triangle, and X a given point: describe a

triangle equal to ABC, having its vertex at X, and its base in the samo

straight line as BC.

28. ABCD is a quadrilateral: on the base AB construct a triangle

equal in area to ABCD, and having the angle at A common with the

quadrilateral.

[Join BD. Through C draw CX parallel to BD, meeting AD pro-
duced in X ; join BX, ]

29. Construct a rectilineal figure equal to a given rectilineal

figure, and having fetoer sides by one than the given figure.

Hence shew how to constnict a triangle equal to a given rectilineal

figure.

30. ABCD is a quadrilateral : it is required to construct a triangle

eciual in area to ABCD, having its vertex at a given point X in DC,
and its base in the same straight line as AB.

31. Construct a rhombus equal to a given parallelogram.

32. Construct a parallelogram which shall have the same area
and perimeter as a given triangle.

33. Bisect a triangle by a straight line draicn through one of itn

angular points.

34. Trisect a triangle by straight lines drawn through one of its

angular points. [See Ex. 19, p. 102, and i. 38.]

35. Divide a triangle into any number of equal parts by straight
lines drawn through one of its angular points.

[See Ex. 19, p. 99, and i. 38.]
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3G. Bisect a triangle bij a straight, line draivn through a given

point in one of its sides.

[Let ABC be the given a , and P the

given point in the side AB.

Bisect AB at Z
;
and join CZ, CP.

Through Z draw ZQ parallel to CP.
Join PQ,

Then shall PQ bisect the a .

See Ex. 21, p. 111.]

37. Trisect a triangle by straight lines drawn from a given point ir

one of its sides.

[Let ABC be the given a ,
and X the given

point in the side BC.

Trisect BC at the points P, Q. Ex. 19, p. 99.

Join AX, and through P and Q draw PH
and QK parallel to AX.

Join XH, XK.
These straight lines shall trisect the a ;

as

may be shewn by joining AP, AQ.
See Ex. 21, p. 111.]

P X Q C

38. Cut off from a given triangle a fourth, fifth, sixth, or any
part required by a straight line drawn from a given point in one of its

sides. [See Ex. 19, p. 99, and Ex. 21, p. 111.]

39. Bisect a quadrilateral by a straight line drawn through an

angular point.

[Two constructions may be given for this problem : the first will

be suggested by Exercises 28 and 33, p. 112.

The second method proceeds thus.

Let ABCD be the given quadrilateral,
and A the given angular point.

Join AC, BD, and bisect BD in X.

Through X draw PXQ parallel to AC,
meeting BC in P; join AP.

Then shall AP bisect the quadrilateral.
Join AX, CX, and use i. 37, 38.]

40. Cut off from a given quadrilateral a third, a fourth, a fifth, or

any part required, by a straight line drawn through a given angular

point. [See Exercises 28 and 35, p. 112.]

H. E. 8
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[The following Theorems depenil on i. 47.]

41. In the figure of i. 47, shew that

(i)
the sum of the squares on AB and AE is equal to the sum

of the squares on AC and AD,

(ii) the square on EK is equal to the square on AB with four
times the square on AC.

(iii) the sum of the squares on EK and FD is equal to five

times the square on BC.

42. If a straight line he divided into any two parts the square on
the straight line is greater than the squares on the two parts.

43. If the square on one side of a triangle is less than the squares
on the remaining sides, the angle contained by these sides is acute; it'

greater, obtuse.

44. ABC is a triangle, right-angled at A; the sides AB, AC am
intersected by a straight line PQ, and BQ, PC are joined : shew that

the sum of the squares on BQ, PC is equal to the sum of the squares
on BC, PQ.

45. In a right-angled triangle four times the sum of the squares
on the medians which bisect the sides containing the right angle
is equal to five times the square on the hypotenuse.

46. Describe a square whose area shall be three times that of

a given square.

47. Divide a straight line into two parts such that the sum of

their squares shall be equal to a given square.

IX. ON LOCI.

It is frequently required in the course of Plane Geometry to

find the position of a point which satisfies given conditions.

Now all problems of this type hitherto considered have been
found to be capable of definite determination, though some admit
of more than one solution: this however will not be the case if

(yaly one condition is given. For example, if w'e are asked to find

a point which shall be at a given distance from a given point,
we observe at once that the problem is indeterminate, that is,

that it admits of an indefinite number of solutions
;

for the
condition stated is satisfied by any point on the circumference
of the circle described from the given point as centre, with a
radius equal to the given distance : moreover this condition is

satisfied by no other point within or without the circle.

Again, suppose that it is required to find a point at a given
distance from a given straight line.
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Here, too, it is obvious that there are an infinite number of

such points, and that they he on the two parahel straight hues
which may be drawn on either side of the given straight Hne at

the given distance from it : further, no point that is not on one
or other of these parallels satisfies the given condition.

Hence we see that when one condition is assigned it is not
sufficient to determine the position of a point absolutely, but
it may have the effect of restricting it to some definite line or

lines, straight or curved. This leads us to the following definition.

Definition. The Locus of a point satisfying an assigned
condition consists of the line, lines, or part of a line, to which
the point is thereby restricted; provided that the condition is

.satisfied by every point on such line or lines, and by no other.

A locus is sometimes defined as the path traced out by a

point which moves in accordance with an assigned law.

Thus the locus of a point, which is always at a given distance

from a given point, is a circle of which the given point is the

centre : and the locus of a point, which is always at a given distance

from a given straight line, is a pair of parallel straight lines.

We now see that in order to infer that a certain line, or

system of lines, is the locus of a point under a given condition,
it is necessary to prove

(i) that any point which fulfils the given condition is on the

supposed locus
;

(ii) that every point on the supposed locus satisfies the given
condition.

1. Find the locus of a point ivhich is always equidistant from
tioo given points.

Let A, B be the two given points,

(a) Let P be any point equidistant from A
and B, so that AP=BP.

Bisect AB at X, and join PX.
Then in the a^ AXP, BXP,

( AX = BX, Const)'.

Because and PX is common to both,

( alsoAP=BP, Hyp.
.'. the / PXA = the z PXB; i! 8.

and they are adjacent z ^
;

.-. PX is perp. to AB.
.'. Any point which is equidistant from A and B

is on the straight line which bisects AB at right angles.
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(/3)
Also every point in this line is equidistant from A and B.

For let Q. be any point in this line.

Join AQ, BQ.
Then in the a« AXQ, BXQ,

r AX = BX,
Because J and XQ is common to both ;

[also the / AXQ = the Z BXQ, being rt. l"*;

.-. AQ=BQ. ].4.

That is, Q is equidistant from A and B.

Hence we conclude that the locus of the point equidistant from
two given points A, B is the straight line which bisects AB at right

angles.

2. To find the locus of the middle point of a straight line drawn

from a giv^^oint to meet a given straight line of unlimited length.

Let A be the given point, and BC the given straight line of un-

limited length.

(a) Let AX be any straight line drawn through A to meet BC,
and let P be its middle point.

Draw AF perp. to BC, and bisect AF at E.

Join EP, and produce it indefinitely.

Since AFX is a a ,
and E, P the middle points of the two sides AF, AX,

.-. EP is parallel to the remaining side FX. Ex. 2, p. 90.

.-. P is on the straight line which passes through the fi:(ed point E,

and is parallel to BC.

{^) Again, every point in EP, or EP produced, fulfils the required
condition.

For, in this straight line take any point Q.
Join AQ, and produce it to meet BC in Y.

Then FAY is a a
,
and through E, the middle point of the side AF, EQ

is drawn parallel to the side FY,
. •. Q is the middle point of AY. Ex. 1, p. {

Hence the required locus is the straight line drawn parallel to BC,
and passing through E, the middle point of the perp. from A to BC.
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3. Find the locus of a point equidistant from two given inter-

secting straight lines. [See Ex. 3, p, 49.]

4. Find the locus of a point at a given radial distance from the
circumference of a given circle.

5. Find the locus of a point which moves so that the sum of its

distances from two given intersecting straight lines of unlimited

length is constant.

6. Find the locus of a point when the differences of its distances
from two given intersecting straight lines of unlimited length is

constant.

7. A straight rod of given length slides between two straight
rulers placed at right angles to one another: find the locus of its

middle point. [See Ex. 2, p. 100.]

8. On a given base as hypotenuse right-angled triangles are

described : find the locus of their vertices.

9. AB is a given straight line, and AX is the perpendicular drawn
from A to any straight line passing through B: find the locus of

the middle point of AX.

10. Find the locus of the vertex of a triangle, when the base and
area are given.

11. Find the locus of the intersection of the diagonals of a paral-

lelogram, of which the base and area are given.

12. Find the locus of the intersection of the medians of a triangle
described on a given base and of given area.

X. ON THE INTERSECTION OP LOCI.

It appears from various problems which have already been

considered, that we are often required to find a point, the

position of which is subject to two given conditions. The method
of loci is very useful in the solution of problems of this kind :

for corresponding to each condition there will be a locus on
which the required point must lie

;
hence all points which are

common to these two loci, that is, all the points of intersection

of the loci, will satisfy both the given conditions.
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Example 1. To cdhstruct a triangle, having given tfie base, the

altitude, and the length of the median lohich bisects the base.

Let AB be the given base, and P and Q the lengths of the altitude

and median respectively:
then the triangle is known if its vertex is known,

(i) Draw a straight line CD imrallel to AB, and at a distance

from it equal to P :

then tlic required vertex must lie on CD.

(ii). Again, from the middle point of AB as centre, with radius

equal to Q, describe a circle :

then tJie required vertex must lie on this circle.

Hence any points which are common to CD and the circle,

satisfy both the given conditions: that is to say, if CD intersect the
circle in E, F each of the points of intersection might be the vertex
of the required triangle. This supposes the length of the median
Q to be greater than the altitude.

Example 2. To find a point equidistant from three given points
A, B, C, ichich are not in the same straight line.

(i) The locus of points equidistant from A and B is the straight
line PQ, which bisects AB at right angles. Ex. 1, p. 115.

(ii) Similarly the locus of points equidistant from B and C is

the straight line RS w^hich bisects BC at right angles.
Hence the point common to PQ and RS must satisfy both con-

ditions: that is to say, the point of intersection of PQ and RS will

be equidistant from A, B, and C.

These principles may also be used to prove the theorems

relating to concurrency already given on i^age 103.

Example. To prove that the bisectors of^fhe angles of a triangle
are concurrent. \

Let ABC be a triangle.
Bisect the z« ABC, BCA by straight

lines BO, CO: these must meet at

some point O. Ax. 12.

Join OA.
Then shall OA bisect the z BAC.

Now BO is the locus of points equi-
distant from BC, BA; Ex. 3, p. 49.

.-. OP = OR.
Similarly CO is the locus of points

equidistant from BC, CA.
.-. OP = OQ; hence ORr^OQ.

.-. O is on the locus of points equidistant from AB and AC
that is OA is the bisector of the Z BAC.

Hence the bisectors of the three z ^^ meet at the point O.
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It may happen that the data of the problem are so related

to one another that the resulting loci do not intersect : in this

case the problem is impossible.

For example, if in Ex. 1, j)age 118, the length of the given
median is less than the given altitude, the straight line CD will

not be intersected by the circle, and no triangle can fulfil the

conditions of the problem. If the length of the median is equal
to the given altitude, 07ie point is common to the two loci

;

imd consequently only one solution of the problem exists :

and we have seen that there are two solutions, if the median
is greater than the altitude.

In examples of this kind the student should make a point
of investigating the relations which must exist among the data,
in order that the problem may be possible ;

and he must observe
that if under certain relations tivo solutions are possible, and
under other relations no solution exists, there will always be
some intermediate relation under which one and 07il^ one solution

is possible.

EXAMPLES.

1. Find a point in a given straight line which is equidistant
from two given points.

2. Find a point which is at given distances from each of two

given straight lines. How many solutions are possible?

3. On a given base construct a triangle, having given one angle at

the base and the length of the opposite side. Examine the relations

xchich must exist among the data in order that there may be two solu-

tions, one solution, or that the problem may be impossible.

4. On the base of a given triangle construct a second triangle

equal in area to the first, and having its vertex in a given straight
line.

5. Construct an isosceles triangle equal in area to a given
triangle, and standing on the same base.

6. Find a point which is at a given distance from a given point,
and is equidistant from two given parallel straight lines.



BOOK II.

Book II. deals witli the areas of rectangles and squares.

Definitions.

1. A Rectangle is a parallelogram whicli has one of

its angles a right angle.

It should be remembered that if a parallelogram has one right

angle, all its angles are right angles. [Ex. 1, p. 64.]

2. A rectangle is said to be contained by any two of

its sides which form a right angle : for it is clear that both

the form and magnitude of a rectangle are fully determined

when the lengths of two such sides are given.

Thus the rectangle ACDB is said

to be contained by AB, AC; or by CD,
DB : and if X and Y are two straight
lines equal respectively to AB and AC,
then the rectangle contained by X and Y
is equal to the rectangle contained by
AB, AC.

[See Ex. 12, p. 64.] x-
Y-

After Proposition 3, we sliall use the abbreviation

reel. AB, AC to denote tlie rectangle contained hi/ ^B and
AC.

3. In any parallelogram the figure formed by either

of the parallelograms about a diagonal together with the

two complements is called a gnomon.

Thus the shaded portion of the annexed

figure, consisting of the parallelogram EH
together with the complements AK, KC is

the (fnomon AHF.
The other gnomon in the figure is that

which is made up of AK, GF and FH,
namely the gnomon AFH,
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Introductory.

Pure Geometry makes no use of number to estimate the

magnitude of the lines, angles, and figures with which it deals :

hence it requires no imits of magnitude such as the student is

familiar with in Arithmetic.

For example, though Geometry is concerned with the relative

lengths of straight lines, it does not seek to express those lengths
in terms of yards^ feet, or inches: similarly it does not ask how
many square yards or square feet a given figure contains, nor how
many degrees there are in a given angle.

This constitutes an essential difierence between the method
of Pure Geometry and that of Arithmetic and Algebra ;

at the
same time a close connection exists between the results of these

two methods.

In the case of Euclid's Book II., this connection rests ujjon
the fact that the number of units of area in a rectangidar figure
is found by multiplying together the numbers of units of length in

two adjacent sides.

For example, if the two sides AB, AD
,

of the rectangle ABCD are respectively

four and three inches long, and if through
the points of division parallels are drawn
ns in the annexed figure, it is seen that
the rectangle is divided into three rows,
each containing four square inches, or

into four columns, each containing three

square inches.
" "

Hence the whole rectangle contains 3x4, or 12, square
inches.

Similarly if AB and AD contain m and n units of length

respectively, it follows that the rectangle ABCD will contain nin

units of area: further, if AB and AD are equal, each containing
m units of length, the rectangle becomes a square, and contains

m^ units of area.

[It must be understood that this explanation implies that the

lengths of the straight lines AB, AD are commensurable, that is, that

they can be expressed exactly in terms of some common unit.

This however is not always the case: for example, it may be

proved that the side and diagonal of a square are so related, that
it is impossible to divide either of them into equal parts, ofiohich the

other contains an exact number. Such lines are said to be incommen-
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surable. Hence if the adjacent sides of a rectangle are incommen-
surable, we cannot choose any linear unit in terms of which these

sides maybe exactly expressed; and thus it will be impossible to sub-

divide the rectangle into squares of unit area, as illustrated in the

figure of the preceding page. We do not here propose to enter

further into the subject of incommensurable quantities : it is suffi-

cient to point out that further knowledge of them will convince the

student that the area of a rectangle may be expressed to any required
degree of accuracy by the product of the lengths of two adjacent
sides, whether those lengths are commensurable or not. ]

From the foregoing explanation we conclude that the rectangle
attained by two straight lines in Geometry corresponds to the

product of two numbers in Arithmetic or Algebra ;
and that the

square described on a straight line corresponds to the square of
a number. Accordingly it will be found in the course of Book ll.

that several theorems relating to the areas of rectangles and

squares are analogous to W'ell-knowu algebraical formulae.

In view of these principles the rectangle contained by two

straight lines AB, BC is sometimes expressed in the form of a

product, as AB . BC, and the square described on AB as AB'^.

This notation, together with the signs + and —
,
w^ll be employed

in the additional matter appended to this book; but it is not

admitted into Euclid's text because it is desirable in the first

instance to emphasize the distinction between geometrical mag-
nitudes themselves and the numerical equivalents by which they
may be expressed arithmetically.

PiioPosiTioN 1. Theorem.

If there are two straight lines, one of which is divided

into any number of parts, the rectangle contained by the

two straight lines is equal to the sum of the rectangles con-

tained by the undivided straight line and the several parts

of the divided line.

Let P and AB be two straight lines, and let AB be

divided into any number of parts AC, CD, DB :

then shall the rectangle contained by P, AB be equal
to the sum of tlie rectangles contained by P, AC, by P, CD,
and by P, DB.
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Proposition 2. Theorem.

If a straight line is divided into any two parts^
the

square on the whole line is equal to the sum of the rectangles
contained by the lohole line and each of the parts.

Let the straight line AB be divided at C into the two

parts AC, CB :

then shall the sq. on AB be equal to the sum of tlic

rects. contained by AB, AC, and by AB, BC.

On AB describe the square ADEB. i. iC.

Through C draw CF par^ to AD. i. 31.

Now the fig.
AE is made up of the figs. AF, CE :

and of these,
the fig. AE is the sq. on AB : Constr.

and the fig. AF is the rectangle contained by AB, AC
;

for the fig. AF is contained by AD, AC
;
and AD = AB

;

also the fig. CE is the rectangle contained by AB, BC
;

for the fig. CE is contained by BE, BC; and BE = AB.

.-. the sq. on AB =^ the sum of the rects. contained by
AB, AC, and by AB, BC. q.e.d.

CORRESPONDING ALGEBRAICAL FORMULA.

The result of this proposition may be written

AB- = AB. AC + AB.BC.

Let AC contain a units of length, and let CB contain h units,

then AB = a + 6,

and we have {a + fc)2
= (a + 6) a + (a + h) h.
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Proposition 3. Theorem.
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If a straight line is divided into any two parts, the

rectangle co7itained hy the whole and one of the: parts is

equal to the squai'e on that part together with the rectangle
contained hy the tivo parts.

Let the straight line AB be divided at C into the two

parts AC, CB:
then shall the rect. contained by AB, AC be equal to tlie

sq. on AC together with the rect. contained by AC, CB.

On AC describe the square AFDC
;

i. 46.

and through B draw BE parHo AF, meeting FD produced in E.

I. 31.

Now the fig. AE is made up of the figs. AD, CE
;

and of these,

the fig. AE = the rect. contained by AB, AC
;

for AF = AC;
and the fig. AD is the sq. on AC

; Constr.

also the fig. CE is the rect. contained by AC, CB
;

for CD = AC.

.-. the rect. contained by AB, AC is equal to the sq. on
AC together with the rect. contained by AC, CB. q.e.d.

CORRESPONDING ALGEBRAICAL FORMULA.

This result may be written AB . AC= AC2+ AC . CB.

Let AC, CB contain a and h units of length respectively,

then AB = a + &,

and we have {a + l^a^a- + ah.

Note. It should be observed that Props. 2 and 3 are special cases

of Prop. 1.
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Proposition 4. Theorem.

If a straight line is divided into any two parts, the

square on the lohole line is equal to the sum of the squares
on the two parts together with twice the rectangle contained

hy the two parts.
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Again, the complement AG -the complement GE. i. 43.

But the fig. AG = the rect. AC, CB
;
for CG - CB.

.-. the two figs. AG, GE = twice the rect. AC, CB.

*Now the sq. on AB = the fig. AE
= the figs. HF, CK, AG, GE
= the sqq. on AC, CB together with

twice the rect. AC, CB.

.". tlie sq. on AB = the sum of the sqq. on AC, CB witli

twice the rect. AC, CB. q.e.d.

^ For the purpose of oral work, this step of the proof

may conveniently be arranged as follows :

Kow the sq. on AB is equal to the fig. AE,
that is, to the figs. HF, CK, AG, GE;
that is, to the sqq. on AC, CB togetlier

with twice the rect. AC, CB.

Corollary. Parallelograms about the diagonals of a

square are themselves squares.

CORRESPONDING ALGEBRAICAL FORMULA.

The result of this important Proposition may be written tlius ;

AB-^= AC-^ + CB2 + 2AC.CB.

Let AC = a, and CB = ?;;

then AB = « + ?>,

and \\Q liave (a + Vf= a- -\- h^ + lah.
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Proposition 5. Theorem.

If a straight line is divided equally and also unequally,
the rectangle contained hy the unequal parts, and tlie square
on the line between tlie points of section, are together equal to

tlie square on lialf the line.

Q B
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That is, the rect. AQ, QB and the sq. on PQ are together

equal to the sq. on PB. q.e.d.

Corollary. From this Proposition it follows that the

difference of the squares on two straight lines is equal to the

rectangle contained hy their sum and difference.

For let X and Y be the given a P Q g
st. lines, of which X is the greater.

'

^-
^

Draw AP equal to X, and pro- X
duce it to B, making PB equal to Y
AP, that is to X.

From PB cut off PQ equal to Y.

Then AQ is equal to the sum of X and Y,
and QB is equal to the difference of X and Y.

Now because AB is divided equally at P and unequally at Q,
.-.the rect. AQ, QB with sq. on PQ= the sq. on PB; ii. 5.

that is, the difference of the sqq. on PB, PQ^the rect. AQ, QB,
or, the difference of the sqq. on X and Y= the rect. contained by the
sum and the difference of X and Y.

CORRESPONDING ALGEBRAICAL FORMULA.

This result may be written

AQ.QB + PQ2=pB2.
Let AB= 2a; and let PQ= &;

then AP and PB each= a.

AlsoAQ= a + ?;; andQB = a-ft.

Hence we have

(a + 6) (a-fo) + ^2_^2^

or (a + &)(a-6) = a2-62.

EXERCISE.

In the above figure shew that AP is half the sitm of AQ and QB :

and that PQ is half their difference.

II. E.
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Proi'osition G. Theorem.

If a straight line is bisected and produced to any point,
the rectangle contained hy the wliole line thus produced, and
the part of it produced, together mlth the square on half
the line bisected, is equal to the square on the straight line

made up of the halfand the part produced.

A P B Q
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CORRESPONDING ALGEBRAICAL FORMULA.

This result may be written

AQ.QB+PB2r=PQ2.
Let AB = 2a

;
and let PQ.= b;

then AP and PB each= a.

AlsoAQ = rt + 6; andQB = &-a.

Hence we have

{a + h){b-a)+a^=b'^,
or {b + a){b~a) = b^--a^.

Definition. If a point X is taken in a straight line AB, or in AB
produced, the distances of the

point of section from the ex- A X b
tremities of AB are said to be

the segments into which AB is

divided at X. . r> y
In the former case AB is

divided internally, in the latter case externally.

Thus in the annexed figures the segments into which AB is

divided at X are the lines XA and XB.

This definition enables us to include Props. 5 and 6 in a single
Enunciation.

If a straight line is bisected, and also divided {Internally or ex-

ternally) into ttco unequal segments, the rectangle contained by the un-

equal segments is equal to the difference of the squares on half the line,

and on the line between the points of section.

EXERCISE.

Shew that the Enunciations of Props. 5 and 6 may take the

following form :

The rectangle contained by tioo straight lines is equal to the differ-

ence of the squares on half their sum and on half their difference.

[See Ex., p. 129.]
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Proposition Theorem.

If a straight line is divided into any trco parts, the sum

of tlie squares on the whole line and on one of the parts
is equal to tivice the rectangle contained by the whole and,

that part, together with the square on the other part.

/_
G

Let the straight line AB be divided at C into the two

parts AC, CB :

then shall the sum of the sqq. on AB, BC be equal to

twice the rect. AB, BC together with the sq. on AC.

On AB describe the square ADEB. l 4G.

Join BD.

Through C draw CF par^ to BE, meeting BD in G. i. 31.

Through G draw HGK par^ to AB.

Now the complement AG =the complement GE; i. 43.

to each add the fig. CK:
then the fig. AK = the fig. CE.

But the fig. AK = the rect. AB, BC
;
for BK = BC.

.-. the two figs. AK, CE = twice the rect. AB, BC.

But the two figs. AK, CE make up the gnomon AKF and the

fig. CK :

.'. the gnomon AKF wit-h the fig. CK = twice the rect. AB, BC.

To each add the fig. HF, which is the sq. on AC :

then the gnomon AKF with the figs. CK, HF
= twice the rect. AB, BC with tlie sq. on AC.

Now the sqq. on AB, BC = the figs. AE, CK
= the gnomon AKF with tli-

figs. CK, HF
^ twice the rect. AB, BC with

the sq. on AC.
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CORRESPONDING ALGEBRAICAL FORMULA.
^

The result of this proposition may be written

AB2 + BC2= 2AB. BC + AC-.

Let AB = rt, and BC = &; then AC = a- 6.

Hence we have a^ + h^= 2a6 + («-&)-,

or {a-bf= a"-2ah + h".

y Proposition 8. Theorem.

If a straight li7ie he divided into any two i)arts^ four
times the rectangle contained by the whole line and one of
the parts, together with the square on the other part, is equal
to the square on the straight line which is made up of the

whole and that part.

[As this proposition is of little importance we merely give the

figure, and the leading points in Euclid's proof.]

Let AB be divided at C. A C B D

Produce AB to D, making BD equal
to BC.

On AD describe the square AEFD;
and complete the construction as in-

dicated in the figure.
Euclid then proves (i)

that the figs.

CK, BN, GR, KO are all equal.

(ii)
that the figs. AG, MP, PL, RF are all equal.

Hence the eight figures named above are four times the

sum of the figs. AG, CK; that is, four times the fig. AK;
that is, four times the rect. AB, BC.

But the whole fig. AF is made up of these eight figures,

together with the fig. X H
,
which is the sq. on AC :

hence the sq. on AD = four times the rect. AB, BC,

together with the sq. on AC. q.e.d.

G
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Proposition 9. Theorem.

]f a straight line is divided equally and also uihequally,

the sum of the squares on the two unequal parts is twice

the sum of the squares on half the line and on tlie line

between the points of section.

Let the straight line AB be divided equally at P, and

unequally at Q :

then shall the sum of the sqq. on AQ, QB be twice the

sum of the sqq. on AP, PGl

At P draw PC at rt. angtes to AB
;

and make PC equal to AP or PB.

Join AC, BC.

Through Q draw QD par^ to PC;
and through D draw DE par^ to AB.

Join AD.

Then since PA = PC,
•. the angle PAC = the angle PCA.

1. 11.

I. 3.

I. 31.

Constr.

I- 5-

And since, in the triangle APC, the angle APC is a rt.

angle, Constr.

.' . the sum of the angles PAC, PCA is a rt. angle: i. 32.

hence each of the angles PAC, PCA is half a rt. angle.
So also, each of the angles PBC, PCB is half a rt. angle.

.'. the whole angle ACB is a rt. angle.

Again, the ext. angle CED = the int. opp. angle CPB, i. 29.

.•. the angle CED is a rt. angle :

and the angle ECD is half a rt. angle. Proved.

.'. also the angle EDC is half a rt. angle; i. 32.

.*. the angle ECD = the angle EDC;
.-. EC = ED. I. G.
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Again, the ext. angle DQB = the int. opp. angle CPB. i. 29.

.•, the angle DQB is a rt. angle.
And the angle QBD is half a rt. angle ;

Proved.

.-. also the angle QDB is half a rt. angle : i. 32.

.'. the angle QBD = the angle QDB ;

.-. QD = QB. I. 6.

Now the sq. on AP = the sq. on PC
;
for AP = PC. Gonstr.

But the sq. on AC = the sum of the sqq. on AP, PC,
for the angle APC is a rt. angle. i. 47.

.•. the sq. on AC is twice the sq. on A P.

So also, the sq. on CD is twice the sq. on ED, that is, twice

the sq. on the opp. side PQ. i. 34.

Now the sqq. on AQ, QB = the sqq. on AQ, QD
= the sq. on AD, for AQD is a rt.

angle; i. 47.

= the sum of the sqq. on AC, CD,
for ACD is a rt. angle; i. 47.

-= twice the sq. on AP with twice

the sq. on PQ. Proved.

That is,

the sum of the sqq. on AQ, QB = twice the sum of the sqq.

Q.E.D.

CORRESPONDING ALGEBRAICAL FORMULA.

The result of this proposition may be written

AQ2+QB2= 2(AP2+PQ2).
LetAB = 2a; andPQ=Z*;

then AP and PB each= a.

AlsoAQ= a + &; andQB = a-Z>.

Hence we have
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^^'' Proposition 10. Theorem.

If a straight line is bisected and produced to any jjoint^
the sum of the squares on the whole line thus produced, and
on tJte part produced, is ttoice the sum of the squares on ludj'

the line bisected and on the line made u^p of the half and the

part produced.

(X

2a +W

Let the St. line AB be bisected at P, and produced to Q :

then shall the sum of the sqq. on AQ, QB be twice tlu^

sum of the sqq. on AP, PQ.

At P draw PC at right angles to AB
;

i. 11.

and make PC equal to PA or PB. i. 3.

Join AC, BC.

Through Q draw QD par^ to PC, to

in D;
and through

in E.

meet CB produced
I. 31.

draw DE par^ to AB, to meet CP produced

Join AD.

Then since PA ~ PC, Consfr.

. •. the angle PAC = the angle PCA. i. 5.

And since in the triangle A PC, the angle APC is a rt. angle,
.-. the sum of the angles PAC, PCA is a rt. angle. i. 32.

Hence eacli of the angles PAC, PCA is half a rt. angle.
So also, each of the angles PBC, PCB is half a rt. angle.

.*. the whole angle AC B is a rt. angle.

Again, tJie ext. angle CPB = the int. opp. angle CED : i. 29.

.'. the angle CED is a rt. angle :
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Again, tlie angle DQB ^ the alt. angle CPB. i. 29.

.-. the angle DGIB is a rt. angle.
Also the angle QBD = the vert. opp. angle CBP

;
i. 15.

that is, the angle QBD is half a rt. angle.
.•. the angle QDB is half a rt. angle : i. 32.

.-. the angle QBD = the angle QDB ;

.-. QB = QD. I. G.

Now the sq. on AP == the sq. on PC j for AP = PC. Constr.

But the sq. on AC = the sum of the sqq. on AP, PC,
for the angle APC is a rt. angle. i. 47.

.*. the sq. on AC is twice the sq. on AP.

So also, the sq. on CD is twice the sq. on ED, that is,

twice the sq. on the opp. side PQ. i. 34.

Now the sqq. on AQ, QB = the sqq. on AQ, QD
= the sq. on AD, for AQD is a rt.

angle; i. 47.

= the sum of the sqq. on AC, CD,
for ACD is a rt. angle ;

I. 47.

= twice tlie sq. on AP with twice

the sq. on PQ. Proved.

That is,

the sum of the sqq. on AQ, QB is twice the sum of the sqq.
on AP, PQ. Q.E.D.

CORRESPONDING ALGEBRAICAL FORMULA.

The result of this proposition may be written

AQ2+ BQ2= 2 (AP-+ PQ2).
Let AB = 2rt; and PQ= 6

;

then AP and PB each= a.

Also AQ=a + 6; and BQ=6--a.
Hence we have

EXERCISE.

Shew that the enunciations of Props. 9 and 10 may take the

following form :

The sum of the squares on two straigJtt lines is equal to tioice the
sum of the squares on half their sum and on half their difference.
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f.
* Proposition 11. Problem.

' ^-'^^^0 divide a given straight line into two 2yctrt8, so that

the rectangle contained hy the whole and one "part may he

equal to the square on th^ otlier part.

Let AB be the given straight line.

It is required to divide it into two parts, so tliat the

rectangle contained by the whole and one part may be

equal to the square on the other part.

46.

10.

On AB describe the square ACDB.
Bisect AC at E.

Join EB.

Produce CA to F, making EF equal to EB. I. 3.

On AF describe the square AFGH. I. 46.

Then shall AB be divided at H, so that the rect. AB, BH is

equal to the sq. on AH.

Produce GH to meet CD in K.

Then because CA is bisected at E, and produced to F,

.-. tlie rect. CF, FA with the sq. on AE = the sq. on FE ii. 6.

= the sq. on EB. Constr.

But tlie sq. on EB = the sum of the sqq. on AB, AE,
for the angle EAB is a rt. angle. i. 47.

.*. the rect. CF, FA with the sq. on AE = the sum of the

sqq. on AB, AE.

From these take the sq. on AE :

then the rect. CF, FA = the sq. on AB.
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But the rect. CF, FA = the fig. FK
;
for FA = FG

;

and the sq. on AB = the fig. AD. Constr.

.-. the fig. FK = the fig. AD.

From these take the common fig. AK,
then the remaining fig. FH = tkfe remaining fig. HD.

But the fig. HD - the rect. AB, BH
;
for BD - AB;

and the fig. FH is the sq. on AH.

.-. the rect. AB, BH = the sq. on AH. q.e.f.

Definition. A straight line is said to be divided in Medial Section

when the rectangle contained by the given line and one of its segments
is equal to the square on the other segment.

The student should observe that this division may be internal or

external.

Thus if the straight line AB is divided internally at H, and ex-

ternally at H', so that

(i) AB.BH=AH2, ,
A H B

(ii)
AB.BH'= AH'2, U ^ L]

°

we shall in either case consider that AB is divided in medial section.

The case of internal section is alone given in Euchd ii. 11
;
but a

straight line may be divided externally in medial section by a similar

process. See Ex. 21, p. 146.

ALGEBRAICAL ILLUSTRATION.

It is required to find a point H in AB, or AB produced, such that

AB.BH = AH2.

Let AB contain a units of length, and let AH contain x units;

then H B = a - .r :

ivud X must be such that a [a- x)=x",
or x'^ + ax-a'^= 0.

Thus the construction for dividing a straight line in medial section

corresi^onds to the algebraical solution of this quadratic equation.

EXERCISES.

In the figure of ii. 11, shew that

(i) if CH is produced to meet BF at L, CL is at right angles
to BF:

(ii)
if BE and CH meet at O, AO is at right angles to CH ;

(iii)
the lines BG, DF, AK are parallel :

(iv)' CF is divided in medial section at A.

i
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Proposition 12. Theorem,

In an obtuse-angled tt-iangle, if a perpendicular is

drawn from either of the acute angles to the opposite side

lyroduced^ tlie squai'e on the S'lde subtending the obticse angle is

greater than the squares on the sides containing the obtuac

angle, bg twice the rectangle contained by the side on which,

wlien. produced, tJie perpendicular falls, a7id the line inter-

cepted witJwut the triangle, between the perpendicular and

the obtuse angle.
A

Let ABC be an obtuse-angled triangle, having the obtuse

angle at C
;
and let AD be drawn from A perp. to BC

produced :

then shall the sq. on AB be greater than the sqq. on

BC, CA, by twice the rect. BC, CD.

Because BD is divided into two parts at C,

.'. the sq. on BD =the sum of the sqq. on BC, CD, with twice

the rect. BC, CD. II. 4.

To each add the sq. on DA.

Then the sqq. on BD, DA = the sum of the sqq. on BC, CD,

DA, with twice the rect. BC, CD.

But the sum of the sqq. on BD, DA = the sq. on AB,
for the angle at D is a rt. angle. I. 4:]

Similarly the sum of the sqq, on CD, DA = the sq. on CA.

.-, the sq. on AB = the sum of the sqq. on BC, CA, with

twice the rect. BC, CD.
That is, the sq. on AB is greater than the sum of tlie

sqq, on BC, CA by twice the rect. BC, CD. q.e.d.

[For alternative Enunciations to Props. 12 and 1,3 and Exercises,
see p. 142.]
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PiiOPOsiTioN 13. Theorem.

In every triangle the square on the side subtending an
acute angle, is less than the squares on the sides containing
that angle, hy twice the rectangle contained by either of these

sides, and the straight line intercepted between the 'perpen-
dicular let fall on it from the opposite angle, and the a,cute

angle.

Let ABC be any triangle having the angle at B an
acute angle ;

and let AD be the perp. drawn from A to the

opp. side BC :

then shall the sq. on AC be less than the sum of tlie

sqq. on AB, BC, by twice the rect. CB, BD.

Now AD may fall within the triangle ABC, as in Fig. 1, or

without it, as in Fi

in Fig. BC is divided into two parts at D,

BD is divided into two parts at C,
Because >. ^. ^(m iig. 2.

.\ in both cases,

the sum of the sqq. on CB, BD = twice the rect. CB, BD with
the sq. on CD. ii. 7.

To each add the sq. on DA.

Then the sum of the sqq. on CB, BD, DA =^ twice the rect.

CB, BD with the sum of the sqq. on CD, DA.

But the sum of the sqq. on BD, DA = the sq. on AB,
for the angle ADB is a rt. angle. i. 47.

Similarly tlie sum of the sqq. on CD, DA= the sq. on AC.

.-. the sum of the sqq. on AB, BC, =:^ twice the rect. CB, BD,
with the sq. on AC.

That is, the sq. on AC is less than the sqq. on AB, BC

by twice the rect. CB, ED. q.e.d.
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Obs. If the perpendicular AD coijicides with AC, tlmt is, if ACB
ia a right angle, it may be shewn that the proposition merely repeat.s
the result of i. 47.

Note. The result of Prop. 12 may be written

AB2=BC-+CA2 + 2BC.CD.

Remembering the definition of the Projection of a straight lino

given on page 97, the student will see that this proposition may be
enunciated as follows :

In an obtuse-angled triangle the square on the aide opposite the

obtuse angle is greater than the sum of the squares on the sides contain-

ing the obtuse angle by twice the rectangle contained by either of those

sideSy and the projection of the other side upon it.

Prop. 13 may be written

AC2=AB2+BC2-2CB.BD,
and it may also be enunciated as follows :

In every triangle the square on the side subtending an acute angle,
is less than the squares on the sides containing that angle, by twice the

rectangle contained by either of these sides, and the projection of the

other side upon it.

EXERCISES.

The following theorem should be noticed ; it is proved by the help
ofii. 1.

1. If four points A, B, C, D are taken in order on a straight line,

then will

AB.CD+BC.AD = AC.BD.

ON II. 12 AND 13.

2. If from one of the base angles of an isosceles triangle a per-

pendicular is drawn to the opposite side, then twice the rectangle
contained by that side and the segment adjacent to the base is equal
to the square on the base.

3. If one angle of a triangle is one-third of two right angles,
shew that the square on the opposite side is less than the sum of the

squares on the sides forming that angle, by the rectangle contained by
these two sides. [See Ex. 10, p. 101.]

4. If one angle of a triangle is two-thirds of two right angles,
shew that the square on the opposite side is greater than the squares
on the sides fonuing that angle, by the rectangle contained by these

pides, [See Ex. 10, p. 101.]



book ii. prof. 14.

Propositiox 14. Problem.
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Ih describe a square that shalLbe equal to a given recfi-

linealfigure.

Let A be the given rectilineal figure.

It is required to describe ca square equal to A.

Describe the par*" BCDE equal to the fig. A, and liaving
the angle CBE a right angle. i. 45.

Then if BC = BE, the fig. BD is a square; and what was

required is done.

But if not, produce BE to F, making EF equal to ED; i. 3.

and bisect BF at G. i. 10.

From centre G, with radius GF, describe the semicircle BHF :

produce DE to meet the semicircle at H.

Then shall the sq. on EH be equal to the given fig. A.

Join GH.
Then because BF is divided equally at G and unequally

at E,

.-. the rect. BE, EF with the sq. on GE = the sq. on GF ii. 5.

= the sq. on GH.

But the sq. on GH = the sum of the sqq. on GE, EH
;

for the angle HEG is a rt. angle. i. 47.

.-, the rect. BE, EF with the sq. on GE = the sum of the

sqq. on GE, EH.

From these take the sq. on G E :

then the rect. BE, EF = the sq. on HE.

But the rect. BE, EF = the fig. BD
;
for EF = ED

; Constr.

BD = the given fig. A. Constr.

I

and the fig.

the sq. on EH = the given fig. A, q.e.f.
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THEOREMS AND EXAMPLES ON BOOK 11.

ON n. 4 AND 7.

1. Shew by ii. 4 that the square on a straight line is four times

the square on half the line.

[This result is constantly used in solving examples on Book ii,

especially those which follow from ii. 12 and 13.]

2. If a straight line is divided into any three parts, the square on
the whole line is equal to the sum of the squares on the three parts

together with twice the rectangles contained by each pair of these

parts.

Shew that the algebraical formula corresponding to this theorem is

{a + b + c)^=a^ + h- + c^ + 2hc + 2ca+ 2ab.

3. In a right-angled triangle, if a perpendicular is drawn from the

right angle to the hypotenuse, the square on this perpendicular is equal
to the rectangle contained by tlie segments of tlie hypotenuse.

4. In an isosceles triangle, if a perpendicular be drawn from one
of the angles at the base to the opposite side, shew that the square on
the perpendicular is equal to twice the rectangle contained by the

segments of that side together with the square on the segment
adjacent to the base.

5. Any rectangle is half the rectangle contained by the diagonals
of the squares described upon its two sides.

6. In any triangle if a perpendicular is drawn from the vertical

angle to the base, the sum of the squares on the sides forming that

angle, together with twice the rectangle contained by the segments of

the base, is equal to the square on the base together with twice the

square on the perpendicular.

ON II. 5 AND 6.

The student is reminded that these important propositions are

both included in the following enunciation.

The difference of the squares on two straight lines is equal to the

rectangle contained by their smn and difference.

7. In a right-angled triangle the square on one of the sides form-

ing the right angle is equal to the rectangle contained by the sum and
difference of the hypotenuse and the other side. [i. 47 and ii. 5.]
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8. The difference of the squares on two sides of a triangle is equal
to ticice the rectangle contained by the base and the intercept between

the middle point of the base and the foot of the perpendicular dravm

from the vertical angle to the base.

Let ABC be a triangle, and let P be the middle point of the base
BC : let AQ be drawn perp. to BC.

Then shall AB=^- AC2= 2BC . PQ.

First, let AQ fall within the triangle.

Now AB2=BQ2 + QA2, i. 47.

also AC2=QC2 + QA2,

.-. AB2-AC2=BQ2_QC^ Ax. 3.

= (BQ + QC) (BQ - QC) ii. 5.

= BC.2PQ Ex. 1, p. 129.
= 2BC.PQ. Q.E.D.

The case in which AQ falls outside the triangle presents no

difficulty.

9. The square on any straight line draicn from tJie vertex of an
isosceles triangle to the base is less than the square on one of the equal
sides by the rectangle contained by the segments of the base.

10. The square on any straight line drawn from the vertex of an
isosceles triangle to the base produced, is greater than the square on
one of the equal sides by the rectangle contained by the segments into

xoJdch the base is divided externally.

11. If a straight line is drawn through one of the angles of

an equilateral triangle to meet the opposite side produced, so that the

rectangle contained by the segments of the base is equal to the square
on the side of the triangle ;

shew that the square on the line so drawn
is double of the square on a side of the triangle.

12. If XY be drawn parallel to the base BC of an isosceles

triangle ABC, then the difference of the squares on BY and CY ia

equal to the rectangle contained by BC, XY. [See above, Ex. 8.]

13. In a right-angled triangle, if a perpendicular be drawn from
the right angle to the hypotenuse, the square on either side forming
the right angle is equal to the rectangle contained by the hypotenuse
and the segment of it adjacent to that side.

H. K 10kr
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ON II. 9 AND 10.

14. Deduce Prop. 9 from Props. 4 and 5, using also the theorem
tliat the square on a straight line is four times the square on half the

line.

15. Deduce Prop. 10 from Props. 7 and 6, using also the theorem
mentioned in the preceding Exercise.

16. If a straight line is divided equally and also unequally, the

squares on the two unequal segments are together equal to twice the

rectangle contained hy these segments together with four times the

square on the line between the points of section.

ON II. 11.

17. If a straight line is divided internally in medial section, and

from the greater segment apart he taken equal to the less; shew tliat

the greater segment is also divided in medial section.

18. If a straight line is divided in medial section, the rectangle
contained by the sum and difference of the segments is equal to

the rectangle contained by the segments.

19. If AB is divided at H in medial section, and if X is the
middle point of the greater segment AH, shew that a triangle whose
sides are equal to AH, XH, BX respectively must be right-angled.

20. If a straight line AB is divided internally in medial section at

H, prove that the sum of the squares on AB, BH is three times the

square on AH.

21. Divide a straight line externally in medial section.

[Proceed as in ii. 11, but instead of drawing EF, make EF' equal
to EB in the direction remote from A; and on AF' describe the square
AF'G'H' on the side remote from AB. Then AB will be divided exter-

nally at H as required.]

ON II. 12 AND 13.

22. In a triangle ABC the angles at B and C are acute: if E and
F are the feet of perpendiculars drawn from the opposite angles to the
sides AC, AB, shew that the square on BC is equal to the sum of the

rectangles AB, BF and AC, CE.

23. ABC is a triangle right-angled at C, and DE is drawn from
a point D in AC perpendicular to AB : shew that the rectangle
AB, AE is equal to the rectangle AC, AD.
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24. In any triangle the sum of the squares on two sides is equal to

twice the square on half the third side together loith tioice the square on
the median which bisects the third side.

Q C

Let ABC be a triangle, and AP the median bisecting the side BC.
Then shall AB2 + AC2= 2 BP2+2AP2.

Draw AQ perp. to BC.
Consider the case in which AQ falls within the triangle, but does

not coincide with A P.

Then of the angles APB, APC, one must be obtuse, and the other

acute: let APB be obtuse.

Then in the A APB, AB2=BP2-!-AP2 + 2 BP . PQ. ii. 12.

Also in the A APC, AC^^CP^-l- AP2-2CP . PQ. ii. 13.

ButCP=BP,
.-. CP2=BP2; and the rect. BP, PQ= the rect. CP, PQ.

Hence adding the above results

AB2 + AC2=:2.BP2+2.AP2. Q.E.D.

The student will have no difficulty in adapting this proof to the

cases in which AQ falls without the triangle, or coincides with A P.

25. The sum of the squares on the sides of a parallelogram is equal
to the sum of the squares on the diagonals.

26. In any quadrilateral the squares on the diagonals are toge-
ther equal to twice the sum of the squares on the straight lines join-

ing the middle points of opposite sides. [See Ex. 9, p. 97.]

27. If from any j)oint within a rectangle straight lines are drawn
to the angular points, the sum of the squares on one pair of the lines

drawn to opposite angles is equal to the sum of the squares on the
other pair.

28. The sum of the squares on the sides of a quadrilateral is

greater than the sum of the squares on its diagonals by four times
the square on the straight line which joins the middle points of the

diagonals.

29. O is the middle point of a given straight line AB, and from
O as centre, any circle is described : if P be any point on its cireum-^

ference, shew that the sum of the squares on AP, BP is constant.

10-2
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30. Given the base of a triangle, and the sum of the squares on
the sides forming the vertical angle ;

find the locus of the vertex.

31. ABC is an isosceles triangle in which AB and AC are equal.
AB is produced beyond the base to D, so that BD is equal to AB.
Shew that the square on CD is equal to the square on AB together
with twice the square on BC.

32. In a right-angled triangle the sum of the squares on the

straight lines drawn from the right angle to the points of tri-

section of the hypotenuse is equal to five times the square on the

line between the points of trisection.

33. Three times the sum of the squares on the sides of a tri-

angle is equal to four times the sum of the squares on the medians.

34. ABC is a triangle, and O the point of intersection of its

medians : shew that

AB2+BC2 + CA2= 3(OA2 + OB2+OC2).
35. ABCD is a quadrilateral, and X the middle point of the

straight line joining the bisections of the diagonals ;
with X as centre

any circle is described, and P is any point upon this circle : shew that

PA^-f PB2+ PC-+ PD2 is constant, being equal to

XA3 + X B2 + XC2 + X D2 + 4X P2.

36. The squares on the diagonals of a trapezium are together

equal to the sum of the squares on its two oblique sides, with twice

the rectangle contained by its parallel sides.

PH0BLEM8.

37. Construct a rectangle equal to the difference of two squares.

38. Divide a given straight line into two parts so that the rect-

angle contained by them may be equal to the square described on a

given straight line which is less than half the straight line to be

divided.

39. Given a square and one side of a rectangle which is equal
to the square, find the other side.

40. Produce a given straight line so that the rectangle contained

by the whole line thus produced, and the part produced, may be

equal to the square on half the line.

41. Produce a given straight line so that the rectangle con-

tained by the whole line thus produced and the given line shall be

equal to a given square.

42. Pivide a straight line AB into two parts at C, such that the

rectangle contained by BC and another line X may be equal to the

square on AC.
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PAET 11.

BOOK III

Book III. deals with the properties of Circles.

Definitions.

1. A circle is a plane figure bounded

by one line, which is called the circum-

ference, and is such that all straight lines

drawn from a certain point within the

figure to the circumference are equal to

one another : this point is called the centre

of the circle.

2. A radius of a circle is a straight line drawn from
the centre to the circumference.

3. A diameter of a circle is a straight line drawn

through the centre, and terminated both ways, by the

circumference.

4. A semicircle is the figure bounded by a diameter

of a circle and the part of the circumference cut oft' by the

diameter.

From these definitions we draw the following inferences:

(i) The distance of a point from the centre of a circle is less than
the radius, if the point is within the circumference : and the distance

of a point from the centre is greater than the radius, if the point is

without the "circumference.

(ii)
A point is within a circle if its distance from the centre is

less than the radius : and a point is without a circle if its distance

from the centre is greater than the radius.

(iii) Circles of equal radius are equal in all respects ; that is to

say, their areas and circumferences are equal.

(iv) A circle is divided by any diameter into two parts which are

equal in all respects.
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o. Circles which liave tlie same centre are snifl to })e

concentric.

6. An arc of a circle is any part of the circumferene^r

7. A chord of a circle is the straight line which joins

any two points on the circumference.

From these definitions it may be seen that a

chord of a circle, which does not pass through
the centre, divides the circumference into two

unequal arcs ;
of these, the greater is called the

major arc, and the less the rainor arc. Thus
the major arc is greater, and the minor arc let>s

than the semicircumference.

The major and minor arcs, into which a cir-

cumference is divided by a chord, are said to be

conjugate to one another.

8. Chords of a circle are said to be

equidistant from the centre, when the

perpendiculars drawn to them from the

centre are equal :

and one chord is said to be further from
the centre than another, when the per-

pendicular drawn to it from the centre is

greater than the perpendicular drawn to

the other.

9. A secant of a circle is a straight
line of indefinite length, which cuts the

circumference in two points.

10. A tangent to a circle is a straight
line which meets the circumference, but

being produced, does not cut it. Such a

line is said to touch the circle at a point;
and the point is called the point of

contact.
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If a secant, which cuts a circle at the

points P and Q, gradually changes its position
in such a way that P remains lixed, the point

Q will ultimately approach the fixed point P,

until at length these points may be made to

coincide. When the straight line PQ reaches

this limiting position, it becomes the tangent
to the circle at the point P.

Hence a tangent may be defined as a

straight line which passes through two coinci-

dent points on the circumference.

11. Circles are said to touch one another when they

meet, but do not cut one another.

When each of the circles which meet is outside the other, they are

said to touch one another externally, or to have external contact:
when one of the circles is within the other, they are said to touch one
another internally, or to have internal contact.

12. A segment of a circle is the figure bounded by a
chord and one of the two arcs into which tlie chord divides

the circumference.

The chord of a segment is sometimes called its base.
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1 3. An angle' in a segment is one
formed by two straiglit lines drawn from

any point in the arc of tlie segment to

the extremities of its chord.

[It will be shewn in Proposition 21, that all angles in the same
segment of a circle are equal.]

14. An angle at the circumference

of a circle is one formed by straight lines

drawn from a point on the circumference
to the extremities of an arc : sucli an

angle is said to stand upon the arc, wliicli

it subtends.

15. Similar segments
of circles are those which
contain equal angles.

16. A sector of a circle is a figure
bounded by two radii and the arc inter-

cepted between them.

\

Symbols and Abbreviations.

In addition to the symbols and abbreviations given on

page 10, we shall use the following.

for circle, O^'' for circumference.



book iii. prop. 1. 153

Proposition 1. Problem.

To find the centre of a given circle.

E^ ^B
Let ABC be a given circle:

it is required to find its centre.

In the given circle draw any chord AB,
and bisect AB at D. i. 10.

From D draw DC at right angles to AB; i. 11.

and produce DC to meet the O ''^ at E and C.

Bisect EC at F. i. 10.

Then shall F be the centre of the ABC.

First, the centre of the circle must be in EC :

for if not, let the centre be at a point G without EC.

Join AG, DG, BG.

Then in the A« GDA, GDB,
{ DA=DB, Co7istr.

Because -! and G D is common
;

[
and GA= GB, for by supposition they are radii;

.•. the ^ G DA -= the ^ G DB
; i. 8.

.". these angles, being adjacent, are rt. angles.
But the ^ CDB is a rt. angle ; Constr.

.'. the z. GDB = the ^ CDB, Ax.W.
the part equal to the whole, which is impossible.

.. G is not the centre.

So it may be shewn that no point outside EC is the centre
;

.'. the centre lies in EC.

.'. F, the middle point of the diameter EC, must be the
centre of the ABC. Q.E.F.

Corollary. The straight line which bisects a chord of
a circle at right angles passes through the centre.

[For Exercises, see page 156.]
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Proposition 2. Thkorem.

If any two points are taken in the circumference of a

circle, the chord lohich joins them falls within the circle.

Let ABC be a circle, and A and B any two points on

itsO''^:

then shall the chord AB fall within the circle.

Find D, the centre of the 0ABC; iii. 1.

and in AB take any point E.

Join DA, DE, DB.

In the A DAB, because DA = DB, iii. Def 1.

.'. the L DAB = the L DBA. I. 5.

But the ext. l DEB is greater than the int. opp. £. DAE;
I. 16.

.'. also the L DEB is greater than the z_ DBE;
.'. in the A DEB, the side DB, which is opposite the greater

angle, is greater than DE which is opposite the less: i. 19.

that is to say, DE is less than a radius of the circle
;

.". E falls within the circle.

So also any other point between A and B may be shewn
to fall within the circle.

.*. AB falls within the circle. Q. e. d.

Definition. A part of a curved line is said to be concave to a

point when, any chord being taken in it, all straight lines drawn
from the given point to the intercepted arc are cut by the chord : if,

when any chord is taken, no straight line drawn from the given point
to the intercepted arc is cut by the chord, the curve is said to be

convex to that point.

Proposition 2 proves that the whole circumference of a circle

is concave to its centre.
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Proposition 3. Theoreji.

If a straight line drawn through the centre of a circle

bisects a chord which does not pass through the centre, it shall

cut it at right angles :

and, conversely, if it cut it at right angles, it shcdl bisect it.

B

Let ABC be a circle
;
and let CD be a st. line drawn

through the centre, and AB a chord which does not pass

through the centre.

First. Let CD bisect AB at F :

then shall CD cut AB at rt. angles.
Find E, the centre of the circle; ill. L

and join EA, EB.

Then in the A^ AFE, BFE,
( AF = BF, Hyp.

Because \ and FE is common
;

. ( and AE = BE, being radii of the circle
;

.-. the L AFE -the L BFE; i. 8.

,*. these angles, being adjacent, are rt. angles,
that is, DC cuts AB at rt. angles. q.e.d.

Conversely. Let CD cut AB at rt. angles :

then shall CD bisect AB at F.

As before, find E the centre
;
and join EA, EB.

In the A EAB, because EA= EB, iii. Def. 1.

.•.thez.EAB=the/. EBA. 1.5.

Then in the A« EFA, EFB,
i the L EAF = the z. EBF, Proved.

Because
-|
and the l EFA = the z_ EFB, being rt. angles ; Hyp.

I and EF is common;
.'. AF=BF. I. 26.

Q.E.D.

[For Exercises, see page 156.]
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exercises.

ON Proposition 1.

1. If two circles intersect at the points A, B, shew that the line

which joins their centres bisects their common chord AB at right

angles.

2. AB, AC are two equal chords of a circle; shew that the

straight line which bisects the angle BAG passes through the centre.

3. Two chords of a circle are given in position and magnitude:

find the centre of the circle.

4. Describe a circle that shall pass through three given points,
which are not in the same straight line.

5. Find the locus of the centres of circles ichich pass through two

given points.

6. Describe a circle that shall pass through two given points,
and have a given radius.

ON Proposition 2.

7. A straight line cannot cut a circle in more titan two points.

on Pboposition 3.

8. Through a given point within a circle draw a chord which
shall be bisected at that point.

9. The parts of a straight line intercepted between the circum-

ferences of two concentric circles are equal.

10. The line joining the middle points of two parallel chords of a

circle passes through the centre.

11. Find the locus of the middle points of a system of parallel
chords drawn in a circle.

12. If two circles cut one another, any two parallel straight lines

drawn through the points of intersection to cut the circles, are equal.

13. PQ and XY are two parallel chords in a circle : shew that

the points of intersection of PX, QY, and of PY, QX, lie on the

straight line which passes through the middle points of the given
chords.
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. / Proposition 4. Theorem.

If in a circle two chords cut one anotJter, which do not

hoth jmss' through the centre, they can7iot both he bisected at

their point of intersection.

Let ABCD be a circle, and AC, BD two chords which

intersect at E, but do not both pass through the centre :

then AC and BD shall not be hoth bisected at E.

Case I. If one chord passes through the centre, it is

a diameter, and the centre is its middle point;

.'.it cannot be bisected by the other chord, which by hypo-
thesis does not pass through the centre.

Case II. If neither chord passes through the centre;

then, if possible, let E be the middle point of hoth;
that is, let AE = EC; and BE = ED.

Find F, the centre of the circle: iii. 1.

Join EF.

Then, because FE, which passes through the centre,

bisects the chord AC, Hyp.
.'. the L FEC is a rt. angle. ill. 3.

And because FE, which passes through the centre, bi-

sects the chord BD, Hyp.
.'. the ^ FED is a rt. angle.
.-. the^ FEC=ithe /. FED,

the whole equal to its part, which is impossible.

.'.AC and BD are not hoth bisected at E. Q. e. d.

[For Exercises, see page 158.] /.
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/ Proposition 5. Theorem.

If two circles cut one another^ they cannot have the same
centre.

Let the two 0^ AGC, BFC cut one another at C;
then they shall not have the same centre.

For, if possible, let the two circles have the same centre;
and let it be called E.

Join EC;
and from E draw any st. line to meet the O''^^ at F and G.

Then, because E is the centre of the 0AGC, Hyp.
.'. EG = EC.

And because E is also the centre of the BFC, JI^p.

.-. EF=EC.

.-. EG = EF,
the whole equal to its part, which is impossible.

.*. the two circles have not the same centre.

Q. E. D.

EXERCISES.

ON Proposition 4.

1. If a parallelogram can be inscribed in a circle, the point of

intersection of its diagonals must be at the centre of the circle.

2. Rectangles are the only parallelograms that can be inscribed

in a circle.

ON Proposition 5.

3. Two circles, which intersect at one point, must also intersect

at another.
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Proposition 6. Theorem.

If two circles touch one another internally^ they cannot

have the same ceritre.

Let the two ©" ABC, DEC touch one another internally
at C:

then they shall not have the same centre.

For, if possible, let the two circles have the same centre
;

and let it be called F.

Join FC;
and from F draw any st. line to meet the O ^*^^ at E and B.

Then, because F is the centre of the 0ABC, Hyp.
.'. FB=FC.

I

And because F is the centre of the DEC, Hy])
.'. FE=FC.

.-. FB=FE;
the whole equal to its part, which is impossible.

the two circles have not the same centre, q. E.i>.

Note. From Propositions 5 and 6 it is seen that circles, whose
circumferences have any point in common, cannot be concentric,
unless they coincide entirely.

Conversely, the circumferences of concentric circles can have no
point in common.
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Proposition 7. Theorem.

Iffrom any 'point within a circle which is not the centre,

straight lines are drawn to the circumference, the greatest is

that which passes through the centre ; and the least is that

which, when produced backwards, passes thorough the centre :

and of all other such lines, that which is nearer to the

greatest is always greater than one more remote :

also two equal straight lines, and only two, can, be drawn

from the given point to the circumference, one on eacli side

of the diameter.

Let ABCD be a circle, within which any point F is taken,
which is not the centre: let FA, FB, FC, FG be drawn to

the 0^^% of which FA passes through E the centre, and FB is

nearer than FC to FA, and FC nearer than FG : and let

FD be the line which, when produced backwards, passes

through the centre : then of all these st. lines

(i) FA shall be the greatest;

(ii)
FD shall be the least;

(iii) FB shall be greater than FC, and FC greater
than FG;

(iv) also two, and only two, equal st. lines can Ix;

drawn from F to tlie O"^*^.

Join EB, EC, EG.

(i)
Then in the A FEB, the two sides FE, EB are together

greater than the third side FB. i. 20.

But EB = EA, being radii of the circle;

.'. FE, EA are together greater than FB;
that is, FA is greater than FB.
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Similarly FA may be shewn to be greater than any other

st. line drawn from F to the O'^'^;

.'. FA is the greatest of all such lines.

(ii)
In the A EFG, the two sides EF, FG are together

greater than EG
;

I. 20.

and EG = ED, being radii of the circle;

.*. EF, FG are together greater than ED.

Take away the common part EF;
then FG is greater than FD.

Similarly any other st. line drawn from F to the O^®

may be shewn to be greater than FD.

.'. FD is the least of all such lines.

(iii) In the A^ BEF, CEF,

(
BE=:CE, III. Z)^/ 1.

Because < and EF is common;
(but the z. BEF is greater than the z. CEF;

.'. FB is greater than FG. i. 24.

Similarly it may be shewn that FC is greater than FG.

(iv) At E in FE make the lFEH equal to the z. FEG.

I. 23.

Join FH.

Then in the A« GEF, HEF,
r GE= HE, III. Def. 1.

Because •< and EF is common;
(also the l GEF = the z. HEF; Constr.

.'. FG = FH. I. 4.

And besides FH no other straight line can be drawn
rom F to the O^® equal to FG.

For, if possible, let FK= FG.

Then, because FH = FG, Proved.

.-. FK=: FH,

that is, a line nearer to FA, the greatest, is equal to a line

Avhich is more remote; which is impossible. Proved.

.'. two, and only two, equal st. lines can be drawn from

FtotheO'''. Q.E.D.
H. E. 11
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Proposition 8. Theorem.

Iffrom any point witliout a circle straight lines are drawn
to the circumference^ of those which fall on the concave cir-

cumference, tlie greatest is that which passes through the

centre ;) and of others, that which is nearer to the greatest

is always greater than one more remote :

further, of those which fall on the convex circumference,

the least is that which, when produced, passes through the

centre ;\ and of others that which is nearer to the least is

always less than one more remote:

lastly, from the given point there can he drawn to the

circumference two, and only two, equal straight lines, one on

each side of the shoi'test line.

Let BG D be a circle of which C is the centre
;
and let

A be any point outside the circle : let ABD, AEH, AFG, be

St. lines drawn from A, of which AD passes through C, the

centre, and AH is nearer than AG to AD :

then of St. lines drawn from A to the concave O ^^,

(i)
AD shall be the greatest, and (ii)

AH greater than

AG :

and of st. lines drawn from A to the convex O '^^

(iii)
AB shall be the least, and (iv) AE less than AF.

(v) Also two, and only two, equal st. lines can be

drawn from A to the O*^^.

Join CH, CG, CF, CE.

(i)
Then in the A ACH, the two sides AC, CH are

together greater than AH : i. 20.

but CH = CD, being radii of the circle;

.'. AC, CD are together greater than AH:
that is, AD is greater than AH.

Similarly AD may be shewn to be greater than any other

st. line drawn from A to the concave O^'';

.'. AD is the greatest of all such lines.
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(ii)
In the A« HCA, GCA,

( HC = GC, 111. Be/. 1.

Because < and CA is common;
( but the L HCA is greater than the z. GCA;

.*. AH is greater than AG. i. 24.

(iii)
In the A AEC, the two sides AE, EC are together

greater than AC : i. 20.

but EC=BC; iii. Def. 1.

.'. the remainder AE is greater than the remainder AB.

Similarly any other st. line drawn from A to the convex

O^® may be shewn to be greater than AB;
.'. AB is the least of all such lines.

(iv) In the A AFC, because AE, EC are drawn from the

extremities of the base to a point E within the triangle,
,". AF, FC are together greater than AE, EC. i. 21.

But FC = EC, III. Def, 1.

.*. the remainder AF is greater than the remainder AE.

(v) At C, in AC, make the l ACM equal to the l ACE.
Join AM.

Then in the two A« ECA, MCA,

EC=MC, III. Def. 1.

Because { and CA is common
;

also the l ECA = the /.MCA; Constr.

.•.AE = AM; I. 4.

and besides AM, no st. line can be drawn from A to the

0^^% equal to AE.

For, if possible, let AK = AE :

then because AM = AE, Proved.

AM = AK;
that is, a line nearer to the shortest line is equal to a

line which is more remote
;
which is impossible. Proved.

.'. two, and only two, equal st. lines can be drawn from
A to the 0'=*'. Q.E.D.

Where are the limits of that part of the circumference which is

concave to the point A ?

11-2
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Ohs. Of tlie following proposition Euclid gave two distinct pioofV
the first of which has the advantage of being direct.

Proposition 9. Theorem. [First Proof.]

Jf from, a 'point within a circle more tJtan two equal

straight lines can he drawn to the circumference, that point
is the centre of the circle.

Let ABC be a circle, and D a point within it, from which

more than two equal st. lines are drawn to the O "''5 namely
DA, DB, DC :

then D shall be the centre of the circle.

Join AB, BC :

and bisect AB, BC at E and F respectively. i. 10.

Join DE, DF.

Then in the A« DEA, DEB,

f EA = EB, Consir.

Because < and DE is common;
[ and DA=^ DB; Hyp.

:. the L DEA = the l DEB; I. 8.

.'. these angles, being adjacent, are rt. angles.

Hence ED, which bisects the chord AB at rt. angles, must

pass through the centre. iii. 1. Cor.

Similarly it may be shewn that FD passes through the

centre.

.'. D, which is the only point common to ED and FD,

must be the centre. q.e.d.
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Proposition 9. Theorem. [Second Proof.]

If froin a point loithin a circle more than two equal

straiyht lijies can be drawn to the circumference, that imint
is the centre of the circle.

Let ABC be a circle, and D a point within it, from which

more than two equal st. lines are drawn to the O^^ namely
DA, DB, DC:
then D shall be the centre of the circle.

For, if not, suppose E to be the centre.

Join DE, and produce it to meet the O^® at F, G.

Then because D is a point within the circle, not the

centre, and because DF passes through the centre E
;

.'. DA, which is nearer to DF, is greater than DB, whicli

is more remote : iii. 7.

but this is impossible, since by liypothesis, DA, DB, are

equal.
.. E is not the centre of the circle.

*And wherever we suppose the centre E to be, other-

wise than at D, two at least of the st. lines DA, DB, DC
may be shewn to be unequal, which is contrary to hypo-
thesis.

.'. D is the centre of the ABC.

Q.E.D.

* Note. For example, if the centre E were supposed to be within
the angle BDC, then DB would be greater than DA; if within the

angle ADB, then DB would be greater than DC ;
if on one of the three

straight lines, as DB, then DB would be greater than both DA and DC.
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Ohs. Two proofs of Proposition 10, both indirect, were given by
Euclid.

Proposition 10. Theorem. [First Proof.]

One circle cannot cut anotlier at more than two poirUs.

If possible, let DABC, EABC be two circles, cutting one
another at more than two points, namely at A, B, C.

Join AB, BC.

Draw FH, bisecting AB at rt. angles; i. 10, 11.

and draw GH bisecting BC at rt. angles.

Then because AB is a chord of hath circles, and FH
bisects it at vi. angles,

.'. the centre of both circles lies in FH. iii. l.Cor.

Again, because BC is a chord of both circles, and GH
bisects it at right angles,

.'. the centre of both circles lies in GH. iii. l.Cor.

Hence H, the only point common to FH and GH, is the

centre of both circles
;

which is impossible, for circles which cut one another
cannot have a common centre. iii. 5.

.*. one circle cannot cut another at more than two points.

Q.E.D.

Corollaries, (i)
Two circles cannot meet in three

points vnthout coinciding entirely.

(ii) Two circles cannot have a common arc ivithout

coinciding entirely.

(iii) Ordy one circle can he described through three

poifits, which are not in the same straight line.
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Proposition 10. Theorem. [Second Proof.]

Oiie circle cmmot cut another at more than two joints.

D

If possible, let DABC, EABC be two circles, cutting one
another at more than two points, namely at A, B, C.

Find H, the centre of the DABC, in. 1.

and join HA, HB, HC.

Then since H is the centre of the © DABC,
.'. HA, HB, HC are all equal. in. Def. 1.

And because H is a point within the © EABC, from
which more than two equal st. lines, namely HA, HB, HC
are drawn to the O*^®,

.*. H is the centre of the © EABC : iii. 9.

that is to say, the two circles have a common centre H
;

but this is impossible, since they cut one another, in. 5.

Therefore one circle cannot cut another in more than
two points. Q.E.D.

Note. This proof is imperfect, because it assumes that the centre

of the circle DABC must fall within the circle EABC; whereas it

may he conceived to fall either without the circle EABC, or on its

circumference. Hence to make the proof complete, two additional
cases are required.
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Proposition 11. Theorem.

If two circles touch one another internally, the straiglU
line which joins their centres^ being produced, shall ]>ass

through the point of contact.

Let ABC and ADE be two circles which touch one
another internally at A

;
let F be the centre of the ABC,

and G the centre of the ADE:
then shall FG produced pass through A.

If not, let it pass otherwise, as FGEH.
Join FA, GA.

Then in the A FGA, the two sides FG, Q'A are together
greater than FA : i. 20.

but FA ^ FH, being radii of the ABC :
•

Hyp.
.'. FG, GA are together greater than FH.

Take away the common part FG
;

then GA is greater than GH.

But GA = GE, being radii of the © ADE : Hy2J.
.'. GE is greater than GH,

the part greater than the whole
;
which is impossible.

.*. FG, when produced, must pass through A.

Q.E.D.

EXERCISES.

1. If the distance between the centres of two circles is equal to

the difference of their radii, then the circles must meet in one point,
but in no other; that is, they must touch one another.

2. If two circles whose centres are A and B touch onr another

internally, and a straight line be drawn through their point of contact,

cutting the circumferences at P and Q; shew that the radii AP and BQ
are parallel.
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Proposition 12. Theorem.

If two circles touch one another externallij, the straight

line which joins their centres shall pass through the jjoint of
contact.

Let ABC and ADE be two circles which touch one

another externally at A; let F be the centre of the ABC,
and G the centre of the ADE :

then shall FG pass through A.

If not, let FG pass otherwise, as FHKG.
Join FA, GA.

Then in the A FAG, the two sides FA, GA are together

greater than FG : i. 20.

but FA ^ FH, being radii of the ABC
; Hyp-

and GA = GK, being radii of the ADE
; Hyp-

.". FH and GK are together greater than FGj
which is impossible.

.'. FG must pass through A.

Q.E.D.

EXERCISES.

1. ¥ind the locus of the centres of all circles ichich touch a (jiven

circle at a given point.

2. Find the locus of the centres of all circles of given radius, xohich

touch a given circle.

3. If the distance between the centres of two circles is equal to

the sum of their radii, then the circles meet in one point, but in no

other; that is, they touch one another.

4. If two circles whose centres are A and B touch one another

externally, and a straight line be drawn through their point of contact

cutting the circumferences at P and Ql; shew that the radii AP and BQ
arc parallel.
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Proposition 13. Theorem.

Ttuo circles cannot touch one another at more than one

pointj whether internally or externally.

Fig. 2

D G

If possible, let ABC, EDF be two circles which touch one
another at more than one point, namely at B and D.

Join BD;
and draw GF, bisecting BD at rt. angles, i. 10, 11.

Then, whether the circles touch one another internally,
as in Fig. 1, or externally as in Fig. 2,

because B and D are on the O ^^^ of both circles,
.'. BD is a chord of both circles :

.'. the centres of both circles lie in GF, which bisects BD
III. 1. Cor.

Hence GF which joins the centres must pass through
a point of contact; iii. 11, and 12.

which is impossible, since B and D are without GF.

.*. two circles cannot touch one another at more than
one point.

Q.E.D.

at rt. angles.

Note. It must be observed that the proof here given applies, by
virtue of Propositions 11 and 12, to both the above figures: we have
therefore omitted the separate discussion of Fig. 2, which finds a place
in most editions based on Simson's text.
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EXERCISES ON PROPOSITIONS 1—13.

1. Describe a circle to pass through two given points and have
its centre on a given straight line. When is this impossible ?

2. All circles which pass through a fixed point, and have their

centres on a given straight line, pass also through a second fixed

point.

3. Describe a circle of given radius to touch a given circle at a

given point. How many solutions will there be? When will there
be only one solution?

4. From a given point as centre describe a circle to touch a given
circle. How many solutions will there be?

5. Describe a circle to pass through a given point, and touch a

given circle at a given point. [See Ex. 1, p. 169 and Ex. 5, p. 156.]
When is this impossible?

6. Describe a circle of given radius to touch two given circles,

[See Ex. 2, p. 169.] How many solutions will there be ?

7. Two parallel chords of a circle are six inches and eight inches
in length respectively, and the perpendicular distance between them
is one inch : find the radius.

8. If two circles touch one another externally, the straight lines,
which join the extremities of parallel diameters towards opposite
parts, must pass through the point of contact.

9. Find the greatest and least straight lines which have one

extremity on each of two given circles, which do not intersect.

10. In any segment of a circle, of all straight lines drawn at right
angles to the chord and intercepted between the chord and the arc,
the greatest is that which passes through the middle point of the
chord

;
and of others that which is nearer the greatest is greater than

one more remote.

11. If from any point on the circumference of a circle straight
lines be drawn to the circumference, the greatest is that which passes
through the centre

;
and of others, that which is nearer to the greatest

is greater than one more remote ; and from this point there can be
drawn to the circumference two, and only two, equal straight lines.
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Proposition 14. Theorem.

Equal chords in a circle are equidistantfrom the centre:

and, conversely, chords which are equidistant from the

centre are equal.

A

Let ABC be a circle, and let AB and CD be cliords,

of wliicli the perp. distances from the centre are EF
and EG.

First, Let AB = CD :

then shall AB and CD be equidistant from the centre E.

Join EA, EC.

Then, because EF, which passes through the centre, is

perp. to the chord AB; Hyp-
:. EF bisects AB

;
ill. 3.

that is, AB is double of FA.

For a similar reason, CD is double of GC.

ButAB = CD, Uyi>.
.'. FA = GC.

Now EA = EC, being radii of tlie circle;

.'. the sq. on EA = the sq. on EC.

But the sq. on EA = the sqq. on EF, FA;
for the L EFA is a rt. angle. i. 47.

And the sq. on EC = the sqq. on EG, GC ;

for the z_ EGC is a rt. angle.
.'. the sqq. on EF, FA = the sqq. on EG, GC.

Now of these, the sq. on FA = the sq. on GC
;
for FA = GC.

.*. the sq. on EF = the sq. on EG,
.-. EF=EG;

that is, the chords AB, CD are equidistant from the centre.

Q.E.D.
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Conversely. Let AB and CD be equidistant from the

centre E
;

that is, let EF - EG :

then shall AB — CD.

For, the same construction being made, it may be

shewn as before that AB is double of FA, and CD double

of GC;
and that the sqq. on EF, FA = the sqq. on EG, GC.
Now of these, the sq. on EF = the sq. on EG,

for EF = EG : Hyp.
.'. the sq. on FA = the square on GC

;

.-. FA = GC;
and doubles of these equals are equal ;

that is, AB = CD.

Q.E.D.

EXERCISES.

1. Find the locus of the middle points of equal chords of a circle.

2. If two chords of a circle cut one another, and make equal
angles with the straight line which joins their point of intersection

to the centre, they are equal.

3. If two equal chords of a circle intersect, shew that the segments
of the one are equxil respectively to the segments of the other.

4. In a given circle draw a chord which shall be equal to one

given straight line (not greater than the diameter) and parallel to

another.

5. PQ is a fixed chord in a circle, and AB is any diameter: shew
that the difference of the perpendiculars let fall from A and B on PQ
is constant, that is, the same for all positions of AB.
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Proposition 15. Theorem.

The diameter is the greatest chord in a circle ;

and of otherSy that which is nearer to the centre is greater
than one more remote:

conversely^ the greater chord is nearer to the centre titan

the less.

Let ABCD be a circle, of which AD is a diameter, and E
the centre

;
and let BC and FG be any two chords, whoso

perp. distances from the centre are EH and EK :

then
(i)

AD shall be greater than BC :

(ii)
if EH is less than EK, BC shall be greater than FG :

(iii)
if BC is greater than FG, EH shall be less than EK.

(i) Join EB, EC.

Then in the A BEC, the two sides BE, EC are together
greater than BC

; i. 20.

but BE = AE, III. Def. 1.

and EC = ED
;

• .*. AE and ED together are greater than BC
;

that is, AD is greater than BC.

Similarly AD may be shewn to be greater than any
other chord, not a diameter.

(ii)
Let EH be less than EK;

then BC shall be greater than FG.

Join EF.

Since EH, passing through the centre, is perp. to the
chord BC,

.'. EH bisects BC
;

iii. 3.



that is, BC is double of HB.

For a similar reason FG is double of KF.

Now EB= EF, III. Bef. 1.

.*. the sq. on EB = the sq. on EF.

But the sq. on EB = the sqq. on EH, HB;
for the z. EHB is a rt. angle ;

i. 47.

also the sq. on EF = the sqq. on EK, KF;
for the z_ EKF is a rt. angle.

.'. the sqq. on EH, HB = the sqq. on EK, KF.

But the sq. on EH is less than the sq. on EK,
for EH is less than EK

; J^yP'
.'. the sq. on HB is greater than the sq. on KF

;

.*. HB is greater than KF :

hence BC is greater than FG.

(iii) Let BC be greater than FG
;

then EH shall be less than EK.

For since BC is greater than FG, JiyV-
.'. HB is greater than KF :

.". the sq. on HB is greater than the sq. on KF.

But the sqq. on EH, HB=:the sqq. on EK, KF : Proved.
.'. the sq. on EH is less than the sq. on EK

;

.'. EH is less than EK.

Q.E.D.

EXERCISES.

1. Through a given point within a circle draw the least possible
chord.

2. AB is a fixed chord of a circle, and XY any other chord having
its middle point Z on AB: what is the greatest, and what the least

length that XY may have?

Shew that XY increases, as Z approaches the middle point of AB.

3. In a given circle draw a chord of given length, having its

middle point on a given chord.

When is this problem impossible?
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01)8. Of the following proofs of Proposition IG, the second (by
reductio ad absurdura) is that given by Euclid

;
but the first is to be

preferred, as it is direct^ and not less simple than the other.

Proposition 16. Theorem. [Alternative Proof.]

The straight line drawn at right angles to a diameter of
a circle at one of its extremities is a tangent to the circle:

and every other straight line drawn through this point
cuts the circle.

Let AKB be a circle, of which E is the centre, and AB
a diameter; and through B let thie st. line CBD be drawn
at rt. angles to AB :

then
(i)

CBD shall be a tangent tO the circle;

(ii) any other st. line through B, as BF, shall cut

the circle.

(i)
In CD take any point G, and join EG.

Then, in the AEBG, the l EBG is a rt. angle; Hyp.
.'. the z. EGB is less than a rt. angle; i. 17.

.". the L EBG is greater than the z. EGB;
.'. EG is greater than EB: l. 19.

that is, EG is greater than a radius of tlie circle;

.'. tlie point G is without the circle.

Similarly any other point in CD, except B, may be shewn
to be outside the circle :

hence CD meets the circle at B, but being produced,
does not cut it;

that is, CD is a tangent to the circle. iii.Z>^10.
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(ii)
Draw EH perp. to BF. i. 12.

Then in the A EH B, because the ^ EHB is a rt. angle,
.'. the lEBH is less than a rt. angle; i. 17.

.". EB is greater than EH; I. 19.

that is, EH is less than a radius of the circle :

.". H, a point in BF, is within the circle;

.*. BF must cut the circle. q.e.d.

Proposition 16. Theorem. [Euclid's Proof.]

The straight line drawn at right angles to a diameter of
a circle at one of its extremities, is a tangent to the circle :

and no other straight line can be drawn through this

point so as not to cut the circle.

E

Let ABC be a circle, of which D is the centre, and AB
a diameter; let AE be drawn at rt. angles to BA, at its

extremity A:

(i)
then shall AE be a tangent to the circle.

For, if not, let AE cut the circle at C.

Join DC.

Then in the A DAC, because DA = DC, ill. Bef 1.

.'. the I. DAC = the l DCA.
But the L DAC is a rt. angle; H^yp-

.*. the L DCA is a rt. angle;
that is, two angles of the A DAC are together equal to two

rt. angles; which is impossible. i. 17.

Hence AE meets the circle at A, but being produced,
does not cut it;

that is, AE is a tangent to the circle, iii. Bef 10.

H. E.
12



178 EUCLID'S ELEMENTS.

(ii) Also through A no other straight Hue but AE can
be drawn so as not to cut the circle.

For, if possible, let AF be another st. line drawn through
A so as not to cut the circle.

From D draw DG perp. to AF; I. 12.

and let DG meet the O^® at H.

Then in the A DAG, because the z_ DGA is a rt. angle,
.'. the L DAG is less than a rt. angle; i. 17.

.*. DA is greater than DG. I. 19.

But DA ^ DH, in. Def. 1.

.'. DH is greater than DG,
the part greater than the whole, which is impossible.

.". no st. line can be drawn from the point A, so as not to

cut the circle, except AE.

Corollaries, (i)
A tangent touches a circle at one

point only.

(ii)
There can he hut one tangent to a ci7'cle at a given

point.
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Proposition 17. Problem.

To draw a tangent to a circle from a givejt i}oint either

o7i, or without the circumference.

Let BCD be the given circle, and A the given point:
it is required to draw from A a tangent to the ©CDB.

Case I. If the given point A is on the O *'®.

Find E, the centre of the circle. iii. 1.

Join EA.

At A draw AK at rt. angles to EA. i. 11.

Then AK being perp. to a diameter at one of its extremities,
is a tangent to the circle. iii. 16.

Case II. If the given point A is without the O ^^^

Find E, the centre of the circle; iii. 1.

and join AE, cutting the BCD at D.

From centre E, with radius EA, describe the ©AFG.
At D, draw GDF at rt. angles to EA, cutting the 0AFG at

F and G. I. 11.

Join EF, EG, cutting the BCD at B and C,

Join AB, AC.

Then both AB and AC shall be tangents to the 0CDB.
For in the A^ AEB, FED,

AE = FE, being radii of the 0GAF;
Because ^and EB = ED, being radii of the BDC;

and the included angle AEF is common;
.'. the L ABE = the L FDE. i. 4.

12—2
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But the z. FDE is a rt. angle, Goiistr.

.'. the L ABE is a rt. angle ;

hence AB, being drawn at rt. angles to a diameter at one
of its extremities, is a tangent to the O BCD. iii. 16.

Similarly it may be shewn that AC is a tangent, q. e. f.

Corollary. If two tangents are drawn to a circlefrom
an external point, then

(i) they are equal ; (ii) they subtend

equal angles at the centre ; (iii) they Tnake equal angles with

tlw straight line tvhich joins the given point to the centre.

For, in the above figure,
Since ED is perp. to FG, a chord of the FAG,

.•.DF=DG.
Then in the A« DEF, DEG,

[DE is common to both,
Because

^
and EF = EG

;

[
and DF = DG

;

.*. the L DEF = the l DEG.

Again in the A* AEB, AEC,

I^AE
is common to both,

Because < and EB = EC,

[and the l AEB = the l AEC
.-. AB = AC:

and the z_ EAB = the l EAC.

III. 3.

in. Be/. 1.

Proved.

I. 8.

Proved.

I. 4.

Q.E.D.

Note. If the given point A is within the circle, no solution is

possible.

Hence we see that this problem admits of tico solutions, one solu-

tion, or no solution, according as the given point A is without, on, or

within the circumference of a circle.

For a simpler method of drawing a tangent to a circle from a given

point, see page 202.
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Proposition 18. Theorem.

The straight line drawn from the centre of a circle to the

point of contact of a tangent is perpendicular to the tangent.

Let ABC be a circle, of which F is the centre;
and let the st. line DE touch the circle at C :

then shall FC be perp. to DE.

For, if not, suppose FG to be perp. to DE, i. 12.

and let it meet the O^^at B.

Then in the A FCG, because the L FGC is a rt. angle, Hyp.
.'. the L FCG is less than a rt. angle : i. 17.

.'. the L FGC is greater than the z. FCG
;

.*. FC is greater than FG : i. 19.

but FC = FB ;

.'. FB is greater than FG,
the part greater than the whole, which is impossible.

.'. FC cannot be otherwise than perp. to DE :

that is, FC is perp. to DE. q.e.d.

EXERCISES.

1. Draw a tangent to a circle (i) parallel to, (ii) at right angles to

a given straight line.

2. Tangents drawn to a circle from the extremities of a diameter
are parallel.

3. Circles which touch one another internally or externally have a
common tangent at their point of contact.

4. In two concentric circles any chord of the outer circle ivhich

touches the inner, is bisected at the point of contact.

5. In two concentric circles, all chords of the outer circle which
touch the inner, are equal.
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Proposition 19. Theorem.

The straight line dratcn perpendicular to a tangent to a
circlefrom the point of contact joassea through the centre.

D c e

Let ABC be a circle, and DE a tangent to it at tlie point C ;

and let CA be drawn perp. to DE :

then shall CA pass through the centre.

For if not, suppose the centre to be outside CA, as at F.

Join CF.

Then because DE is a tangent to the circle, and FC
is drawn from the centre F to the point of contact,

.*. the L FCE is a rt. angle. iii. 18.

But the z. ACE is a rt. angle ; Hyp.
.'. the ^ FCE = the ^ACE;

the part equal to the whole, which is impossible.

.'. the centre cannot be otherwise than in CA;
that is, CA passes through the centre.

Q.E.D.

exercises on the tangent.

Propositions 16, 17, 18, 19.

1. The centre of any circle which touches two intersecting straight

lines must lie on the bisector of the angle between them.

2. AB and AC are two tangents to a circle whose centre is O;
shew that AC bisects the chord of contact BC at right angles.
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3. If two circles are concentric all tangents drawn from points on
the circumference of the outer to the inner circle are equal.

4. The diameter of a circle bisects all chords which are parallel
to the tangent at either extremity.

5. Find the locus of the centres of all circles which touch a given

straight line at a given point.

6. Find the locus of the centres of all circles which touch each
of two parallel straight lines.

7. Find the locus of the centres of all circles which touch each of
tiDO intersecting straight lines of unlimited length.

8. Describe a circle of given radius to touch two given straight
lines.

9. Through a given point, within or without a circle, draw a

chord equal to a given straight line.

In order that the problem may be possible, between what limits

must the given line lie, when the given point is (i) without the circle,

(ii)
within it?

10. Two parallel tangents to a circle intercept on any third tan-

gent a segment which subtends a right angle at the centre.

11. In any quadrilateral circumscribed about a circle, the sum of
one pair of opposite sides is equal to the sum of the other pair.

12. Any parallelogram which can be circumscribed about a circle,

must be equilateral.

13. If a quadrilateral be described about a circle, the angles sub-

tended at the centre by any two opposite sides are together equal to

two right angles.

14. AB is any chord of a circle, AC the diameter through A, and
AD the perpendicular on the tangent at B: shew that AB bisects the

angle DAC.
15. Find the locus of the extremities of tangents of fixed length

drawn to a given circle.

16. In the diameter of a circle produced, determine a point such
that the tangent drawn from it shall be of given length.

17. In the diameter of a circle produced, determine a point such
that the two tangents drawn from it may contain a given angle.

18. Describe a circle that shall pass through a given point, and
touch a given straight line at a given point. [See page 183. Ex. 5.]

19. Describe a circle of given radius, having its centre on a given
straight line, and touching another given straight line.

20. Describe a circle that shall have a given radius, and touch a

given circle and a given straight line. How many such circles can
be drawn?
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Proposition 20. Theorem.

The angle at the centre of a circle is double of an angle
at the circumference y standing on the same arc.

Fig. 2

Let ABC be a circle, of which E is the centre
; and let

BEC be an angle at the centre, and BAG an angle at the O^'',

standing on the same arc BC :

then shall the ^ BEC be double of the l BAC.

Join AE, and produce it to F.

Case I. When the centre E is within the angle BAC.

Then in the A EAB, because EA = EB,
.'. the L EAB = the l EBA

;
i. 5.

.'. the sum of the l^ EAB, EBA = twice the l. EAB.

But the ext. z. BEF = the sum of the l ^
EAB, EBA; i. 32.

.'. the L BEF = twice the z. EAB.

Similarly the l FEC = twice the l EAC.

.'. the sum of the l ^
BEF, FEC == twice the sum of

the z.
«
EAB, EAC

;

that is, the l BEC = twice the l BAC.

Case II. When the centre E is without the z. BAC.

As before, it may be shewn that the z. FEB == twice the z. FAB
;

also the z. FEC = twice the l FAC;
.". the difference of the z.

^
FEC, FEB ^ twice the difference

of the 1.
«
FAC, FAB ;

that is, the z. BEC = twice the z. BAC.

Q.E.D.
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Note. If the arc BFC, on which the angles

stand, is greater than a semi-circumference, it

is clear that the angle BEC at the centre will be

reflex: but it may still be shewn as, in Case I.,

that the reflex z BEC is double of the z BAC
at the o^, standing on the same arc BFC.

Proposition 21. Theorem.

Angles in the same segment of a circle are equal.

il

Let ABCD be a circle, and let BAD, BED be angles in

the same segment BAED:
then shall the ^ BAD = the /.BED.

Find F, the centre of the circle. iii. 1.

Case I. When the segment BAED is greater than a

semicircle.

Join BF, DF.

Then the z. BFD at the centre = twice the .1 BAD at the

O^^, standing on the same arc BD: ill. 20.

and similarly the z. BFD = twice the z. BED. ill. 20.

.'. the L BAD = the z. BED.

Case II. When the segment BAED is not greater than
a semicircle.

OF THE

IVEES
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Join AF, and produce it to meet the O''^ at C.

Join EC.

Then since AEDO is a semicircle;
.'. the segment BAEC is greater than a semicircle:

.'. the L BAG = the l BEC, in this segment. Case 1.

Similarly the segment CAED is greater than a semicircle;

.'. the z. CAD = the ^ CED, in this segment.

'. the sum of the z.
"
BAC, CAD = the sum of the l"" BEC,

CED:
that is, the ^ BAD = the z. BED. Q. E. D.

EXERCISES.

1. P is any point on the arc of a segment of which AB is the

chord. Shew that the sum of the angles PAB, PBA is constant.

2. PQ and RS are two chords of a circle intersecting at X: prove
that the triangles PXS, RXQ are equiangular.

3. Two circles intersect at A and B
;
and through A any straight

line PAQ is drawn terminated by the circumferences: shew that PQ
subtends a constant angle at B.

4. Two circles intersect at A and B; and through A any two

straight lines PAQ, XAY are drawn terminated by the circumferences :

shew that the arcs PX, QY subtend equal angles at B.

5. P is any point on the arc of a segment whose chord is AB : and
the angles PAB, PBA are bisected by straight lines which intersect at

O. Find the locus of the point O.
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Note. If the extension of Proposition 20, given in the note on

page 185, is adopted, a separate treatment of a
the second case of the present proposition is ^x-^^^^^E
unnecessary.

For, as in Case I.,

the reflex z BFD= twice the z BAD; iii.20.

also the reflex i BFD=: twice the z BED;
.-.the z BAD= the z BED.

The converse of Proposition 21 is very important. For the con-
struction used in its proof, viz. To describe a circle abotit a given
triangle, the student is referred to Book iv. Proposition 5. [Or see

Theorems and Examples on Book i. Page 103, No. 1.]

Converse of Proposition 21.

Equal angles standing on the same base, and on the same side of
it, have their vertices on an arc of a circle, of which the given base

is the cliord.

Let BAG, BDC be two equal angles standing
on the same base BC :

then shall the vertices A and D lie upon a

segment of a circle having BC as its chord.

Describe a circle about the a BAG : iv. 5.

then this circle shall pass through D.

For, if not, it must cut BD, or BD produced,
at some other point E.

Join EG.

Then the z BAG= the z BEG, in the same segment:
but the Z BAG= the Z BDG, by hypothesis;

.-. the Z BEG = the Z BDG;
that is, an ext. angle of a triangle = an int. opp. angle ;

which is impossible. 1. 16.

.-. the circle- which passes through B, A, G, cannot pass otherwise
thaTi through D.

That is, the vertices A and D are on an arc of a circle of which
the chord is BG. q. k.d.

The following corollary is important.
All triangles drawn on the same base, and with equal vertical angles,

have their vertices on an arc of a circle, of which the given base is the

cliord.

Ob, The locus of the vertices of triangles drawn on the same base
loith equal vertical angles is an arc of a circle.

III. 21.
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Proposition 22. Theorem.

TJie opposite angles of amy quadrilateral inscribed in a
circle are together equal to two right angles.

Let ABCD be a quadrilateral inscribed in the 0ABC;
then shall, (i) the l ^

ADC, ABC together = two rt. angles ;

(ii) the L^ BAD, BCD together = two rt. angles.

Join AC, BD.

Then the z. ADB = the l ACB, in the segment ADCB; iii. 21.

also the ^ CDB ^ the L. CAB, in the segment CDAB.

.'. the L ADC = the sum of the l.
^
ACB, CAB.

To each of these equals add the z_ ABC:
then the two z.

^

ADC, ABC together = the three z.
"
ACB,

CAB, ABC.

But the L^ ACB, CAB, ABC, being the angles of a

triangle, together = two rt. angles. I. 32.

.'. the L ^
ADC, ABC together = two rt. angles.

Similarly it may be shewn that

the L^ BAD, BCD together = two rt. angles.

Q. K. D.

EXERCISES.

1. If a circle can be described about a parallelogram, the

parallelogram must be rectangular.

2. ABC is an isosceles triangle, and XY is drawn parallel to the
base BC: shew that the four points B, C, X, Y lie on a circle.

3. If one side of a quadrilateral iiiscribed in a circle is produced,
the exterior angle is equal to the opposite interior angle of the quadri-
lateral.
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Proposition 22. [Alternative Proof.]

Let ABCD be a quadrilateral inscribed in the © ABC :

then shall the L ^ ADC, ABC together= two rt. angles.

Join FA, FC.

Then the Z AFC at the centre = twice the

Z ADC at the C"^, standing on the same arc

ABC. in. 20.

Also the reflex angle AFC at the centre
= twice the Z ABC at the O"^, standing on the

same arc ADC. in. 20.

Hence the Z^ ADC, ABC are together half

the sum of the z AFC and the reflex angle AFC ;

but these make up four rt. angles : 1. 15. Gor. 2.

.-. the z » ADC, ABC together= two rt. angles. q.e.d.

Definition. Four or more points through which a circle

may be described are said to be concyclic.

Converse of Proposition 22.

If a 'pair of opposite angles of a quadrilateral are together equal to

tivo right angles, its vertices are concyclic.

Let ABCD be a quadrilateral, in which the opposite angles at

B and D together= two rt. angles;
then shall the four points A, B, C, D be

concyclic.

Through the three points A, B, C describe

a circle : iv. 5.

then this circle must pass through D.

For, if not, it will cut AD, or AD produced,
at some other point E.

Join EC.
Then since the quadrilateral ABCE is inscribed in a circle,

.-. the Z s ABC, AEC together= two rt. angles. m. 22.

But the Z s ABC, ADC together=two rt. angles ; Hyp.
hence the Z » ABC, AEC= the Z ^ ABC, ADC.

Take from these equals the Z ABC:
then the Z AEC= the z ADC;

that is, an ext. angle of a triangle= an int. opp. angle ;

which is impossible. 1. 16.

.-. the circle which passes through A, B, C cannot pass otherwise
than through D :

that is the four vertices A, B, C, D are concyclic. q.e.d.
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Definition. ISimilar segments of circles arc tliosc which
contain equal angles.

Proposition 23. Theorem.

O71 the same cliord and on the same side of ity there

cannot he two similar segments of circles, not coinciding with
one another.

If possible, on the same chord AB, and on the same
side of it, let there be two similar segments of circles ACB,
ADO, not coinciding with one another.

Then since the arcs ADB, ACB intersect at A and B,

.'. they cannot cut one another again; ill. 10.

.'. one segment falls within the other.

In the outer arc take any point D
;

join AD, cutting the inner arc at C :

join CB, DB.

Then because the segments are similar,

.*. the /L ACB = the ^ADB; iii. Def.
that is, an ext. angle of a triangle = an int. opp. angle ;

which is impossible. i. 16.

Hence the two similar segments ACB, ADB, on the same
chord AB and on the same side of it, must coincide.

Q.E.D.

exercises on proposition 22.

1. The straight lines which bisect any angle of a quadrilateral

figure inscribed in a circle and the opposite exterior angle, meet on
the circumference.

2. A triangle is inscribed in a circle : shew that the sum of the

angles in the three segments exterior to the triangle is equal to four

right angles.

3. Divide a circle into two segment?, so that the angle contained

by the one shall be double of the angle contained by the other.
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Proposition 24. Theorem.

Similar segments of circles on equal chords are equal to

one another.

Let AEB and CFD be similar segments on equal chords

AB, CD:
then shall the segment ABE = the segment CDF.

For if the segment ABE be applied to the segment CDF,
so that A falls on C, and AB falls along CD;

then since AB = CD,
.'. B must coincide with D.

.". the segment AEB must coincide with the segment CFD ;

for if not, on the same chord and on the same side of it

there would be two similar segments of circles, not co-

inciding with one another : which is impossible. iii. 23.

.'. the segment AEB = the segment CFD. q. e.d.

EXERCISES.

1. Of two segments standing on the same chord, the greater

segment contains the smaller angle.

2. A segment of a circle stands on a chord AB, and P is any
point on the same side of AB as the segment: shew that the angle
APB is greater or less than the angle in the segment, according as P
is within or without the segment.

3. P, Q, R are the middle "points of the sides of a triangle,
and X is the foot of the perpendicular let fall from one vertex on the

opposite side : shew that the four points P, Q, R, X are concyclic.

[See page 96, Ex. 2 : also page 100, Ex. 2.]

4. Use the preceding exercise to shew that the middle points of the

sides of a triangle and the feet of the perpendiculars let fall from the

vertices on the opposite sides, are concyclic.
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Proposition 25. Problem*.

An arc of a circle being given, to describe the whole cir-

cumference of which the given arc is a part.

Let ABC be an arc of a circle :

it is required to describe the whole O^^ of which the arc

ABC is a part.
In the given arc take any three points A, B, C.

Join AB, BC.

Draw DF bisecting AB at rt. angles, i. 10. 11.

and draw EF bisecting BC at rt. angles.

Then because DF bisects the chord AB at rt. angles,
.'. the centre of the circle lies in DF. iii. 1. Cor

Again, because EF bisects the chord BC at rt. angles,
.'. the centre of the circle lies in EF. iii. 1. Cor.

:. the centre of the circle is F, the only point common to

DF, EF.

Hence the O ^^ of a circle described from centre F, with

radius FA, is that of which the given arc is a part. Q. E. P.

* Note. Euclid gave this proposition a somewhat different form,
as follows :

A segment of a circle being given, to describe the circle of which
it is a segment.

Let ABC be the given segment standing on the chord AC.
Draw DB, bisecting AC at rt. angles. 1. 10. b

Join AB.
At A, in BA, make the i BAE equal to the

ZABD. 1.23.

Let AE meet BD, or BD produced, at E.

Then E shall be the centre of the required circle.

[Join EC ; and prove (i)
EA= EC

;
i. 4.

(ii)EA=EB. 1. 6.]
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Proposition 26. Theorem.

In equal circles the arcs which subtend equal angles^
v:)hetlier at the centres or at the circumferences^ shall he equal.

Let ABC, DEF be equal circles and let the l ^
BGC, EHF,

at the centres be equal, and consequently the l ^

BAG, EDF
at the O *'*"

equal : iii. 20.

then shall the arc BKG — the arc ELF.

Join BG, EF.

Then because the 0^ ABG, DEF are equal,
.'. their radii are equal.

Hence in the A« BGG, EHF,

(
BG = EH,

Because -< andGG = HF,

(and the z. BGG = the ^ EHF
; Hyp.

.-. BG = EF. I. 4.

Again, because the z. BAG = the z. EDF, Hyp.
.'. the segment BAG is similar to the segment EDF;

III. Def. 15.

and they are on equal chords BG, EF;
.'. the segment BAG = the segment EDF. ill. 24.

But the whole ABG = the whole DEF;
.'. the remaining segment BKG = the remaining segment ELF,

.'. the arc BKG =^ the arc ELF.

Q.E, D.

[For an Alternative Prdof and Exercises see pp. 197, 198.]

H. E.
1 3
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Proposttton 27. Tftkorkm.

In equal circles the angles, v^hefher at the centres or the

circumferences, which stand on equal arcs, shall he equal.

Let ABC, DEF be equal circles,

and let the arc BC = the arc EF:
then shall the z. BGC = the l EHF, at the centres;
and also the l BAG = the l EDF, at the O *'*'".

If the L^ BGG, EHF are not equal, one must be the

greater.
If possible, let the z. BGG be the greater.

At G, in BG, make the z. BGK equal to the L EHF. I. 23,

Then because in the equal 0« ABC, DEF,
the /L BGK = the l EHF, at the centres; Constr.

.'. the arc BK = the arc EF. in. 26.

But tlie arc BC = tlie arc EF, Ifi/p.

.*. the arc BK =- the arc BC,
a part equal to tlie whole, which is impossible.

.'. the L BGG is not unequal to the z. EHF; •

that is, the z. BGG = the l EHF.

And since the l BAG at the O*"" is half tlie l. BGG at tlie

centre, in. 20.

and likewise the l EDF is half the l EHF,
.'. the ^ BAG = the ^i EDF. Q.E.D.

[For Exercises see pp. 197, 198.]
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Proposition 28. Theorem.

In equal circles the arcs, which are cut of hy equal

chords, shall be equal, the major arc equal to the major arc,

and the rninor to the minor.

Let ABC, DEF be two equal circles,

and let the chord BC — the chord EF :

then shall the major arc BAG = the major arc EDF;
and the minor arc BGC = the minor arc EHF.

Find K and L the centres of the 0'' ABG, DEF: iii. 1.

and join BK, KG, EL, LF.

Then because the 0* ABG, DEF are equal,
.'. their radii are equal.

Hence in the A« BKG, ELF,

(

BK = EL,
Because < KG = LF,

(and BG = EF; J^l/P-

.'. the ^ BKG = the ^ELF; 1.8.

.". the arc BGG = the arc EHF; iii. 26.

and these are the minor arcs.

But the whole O ''^ ABGG ^ the whole 0^« DEHF; Hyp.
.*. the remaining arc BAG = the remaining arc EDF:

and these are the major arcs. Q. e.d.

[For Exercises see pp. 197, 198.]

13-2
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Proposition 29. Theorem.

In equal circles tlie chordsy which cut off equal arcs, shall

he equal.
A D

Let ABC, DEF be equal circles,

and let the arc BGC = the arc EHF:
then shall the chord BC = the chord EF.

Find K, L the centres of the circles. in. 1.

Join BK, KC, EL, LF.

Then in the equal 0« ABC, DEF,
because the arc BGC = the arc EHF,

.'. the L BKC -- the l ELF. in. 27.

Hence in the A« BKC, ELF,

I'

BK = EL, being radii of equal circles;

Because - KC —
LF, for the same reason,

[and the ^ BKC = the L ELF; Proved.

:. BC = EF. I. 4.

Q. E. D.

EXERCISES

ON PROPOSITIONS 26, 27.

1. If two chords of a circle are parallel, they intercept equal arcs.

2. The straight lines, which join the extremities of two equal
arcs of a circle towards the same parts, are parallel.

3. In a circle, or in e-vinl circles, sectors are equal if their angles
at the centres (in- cqiud.
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4. If two chords of a circle intersect at right angles, the opposite
arcs are together equal to a semicircumference.

5. If two chords intersect loithin a circle, they form an angle

equal to that subtended at the circuviference by the sum of the arcs they
cut off.

6. Jf tivo chords intersect xoithout a circle, they form an anyle
equal to that sribtended at the circumference by the difference of the arcs

they cut off.

7. If AB is a fixed chord of a circle, and P any point on one

of the arcs cut off' by it, then the bisector of the angle APB cuts the

conjugate arc in the same point, ivhatever be the position of P.

8. Two circles intersect at A and B; and through these points
straight lines are drawn from any point P on the circumference of

one of the circles: shew that when produced they intercept on the
other circumference an arc which is constant for all positions of P.

9. A triangle ABC is inscribed in a circle, and the bisectors of
the angles meet the circumference at X, Y, Z. Find each angle of
the triangle XYZ in terms of those of the original triangle.

ON PROPOSITIONS 28, 29.

10. The straight lines which join the extremities of parallel chords
in a circle

(i)
towards the same parts, (ii) towards opposite parts, are

equal.

11. Through A, a point of intersection of two equal circles two
straight lines PAQ, XAY are drawn: shew that the chord PX is equal
to the chord QY.

12. Through the points of intersection of two circles two parallel
straight lines are drawn terminated by the circumferences : shew that
the straight lines which join their extremities towards the same parts
are equal.

13. Two equal circles intersect at A and B; and through A any
straight line PAQ is drawn terminated by the circumferences: shew
that BP:=BQ.

14. ABC is an isosceles triangle inscribed in a circle, and the
bisectors of the base angles meet the circumference at X and Y. Shew
that the figure BXAYC must have four of its sides equal.

What relation must subsist among the angles of the triangle ABC,
in order that the figure BXAYC may be equilateral?
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Note. We have given Euclid's demonstrations of Propositions
26, 27, 28, 29 ;

but it should be noticed that all these propositions
also admit of direct proof by the method of superposition.

To illustrate this method we will apply it to Proposition 26.

Proposition 26. [Alternative Proof.]

In equal circles, the arcs which subtend equal angles, whether at

the centres or circumferences, shall be equal.

Let ABC, DEF be equal circles, and let the Z ^ BGC, EHF at the

centres be equal, and consequently the z ' BAG, EDF at the o''*"

equal: iii. 20.

then shall the arc BKG = the arc ELF.

For if the © ABG be applied to the DEF, so that the centre G
may fall on the centre H,

then because the circles are equal. Hyp.
.'. their O*^' must coincide ;

hence by revolving the upper circle about its centre, the lower circle

remaining fixed,
B may be made to coincide with E,
and consequently GB with HE.

And because the Z BGC = the z EHF,
.•. GC must coincide with HF:

and since GC= H F, Hyp.
.: C must fall on F.

Now B coinciding with E, and C with F,

and the o^^^ of the ABC with the O''^ of the © DEF,
.. the arc BKC must coincide with the arc ELF.

.-. the arc BKC= the arc ELF.
Q.E.D.



book iii. prop. 30. 199

Proposition 30. Problem.

To bisect a given arc.

Let ADB be the given arc:

it is required to bisect it.

Join AB; and bisect it at C. i. 10.

At C draw CD at rt. angles to AB, meeting the given
arc at D. i. 11.

Tlien shall the arc ADB be bisected at D.

Join AD, BD.

Then in the A^ ACD, BCD,

(
AC = BC, Constr.

Because •< and CD is common;
(and the l ACD = the l BCD, being rt. angles:

.'. AD = BD. I. 4.

And since in the 0ADB, the chords AD, BD are equal,
.". the arcs cut off by them are equal, the minor arc equal

to the minor, and the major arc to the major: iii. 28.

and the arcs AD, BD are both minor arcs,

for each is less than a semi-circumference, since DC, bisecting
the chord AB at rt. angles, must pass through the centre

of the circle. iii. 1. Cor.

.'. the arc AD = the arc BD :

that is, the arc ADB is bisected at D. Q. e. f.

EXERCISES.

1. If a tangent to a circle is parallel to a chord, the point of

contact will bisect the arc cut off by the chord.

2. Trisect a quadrant, or the fourth part of the circumference, of
a circle.
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Proposition 31. Theorem.

llie angle in a semicircle is a right anyle :

the anyle in a segvietit greater than a semicircle is less

than a right arigle :

and the angle in a segment less thato a semicircle is

greater than a right angle.

Let ABCD be a circle, of wliich BC is a diameter, and
E the centre

;
and let AC be a chord dividing the circle into

the segments ABC, ADC, of which the segment ABC is

greater, and the segment is ADC less than a semicircle:

then (i) tlie angle in the semicircle BAC shall be a rt. angle ;

(ii)
the angle in the segment ABC shall be less than a

rt. angle ;

(iii) the angle in the segment ADC shall be greater
than a rt. angle.

In the arc ADC take any point D;
Join BA, AD, DC, AE; and produce BA to F.

(i) Then because EA = EB, iii. J)ef. 1.

.'. the L EAB = the l EBA. 'l. 5.

And because EA = EC,
.'. the L EAC = the z. ECA.

.'. the whole l BAC = the sum of the l "

EBA, ECA:
but tlie ext. l FAC = the sum of the two int. l ^

CBA, BCA;
.'. the z. BAC ^ the <l FAC;

,*. these angles, being adjacent, are rt. angles.
.'. the L BAC, in the semicircle BAC, is a rt. angle.
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(ii)
111 the A ABC, because the two l ^

ABC, BAC are

together less tlian two rt. angles; I. 17.

and of these, the l. BAC is a rt. angle ;
Proved.

:. the L ABC, which is the angle in the segment ABC, is

less than a rt, angle.

(iii) Because ABCD is a quadrilateral inscribed in the

0ABC,
.'. the L ^

ABC, ADC together = two rt. angles; in. 22.

and of these, the z_ ABC is less than a rt. angle: Proved.
.'. the L. ADC, which is the angle in the segment ADC, is

greater than a rt. angle. q. E. D.

EXERCISES.

1. A circle described on the hypotenuse of a right-angled triangle
as diameter, passes through the opposite angular j)o int.

2. A system of right-angled triangles is described upon a given
straight line as hypotenuse : find the locus of the opposite angular
points.

3. A straight rod of given length slides between two straight
rulers placed at right angles to one another : find the locus of its

middle point.

4. Two circles intersect at A and B
; and through A two diameters

AP, AQ are drawn, one in each circle : shew that the points P, B, Q.

are collinear. [See Def. p. 102.]

5. A circle is described on one of the equal sides of an isosceles

triangle as diameter. Shew that it passes through the middle point
of the base.

6. Of two circles which have internal contact, the diameter of the
inner is equal to the radius of the outer. Shew that any chord of

the outer circle, drawn from the point of contact, is bisected by the
circumference of the inner circle.

7. Circles described on any two sides of a triangle as diameters
intersect on the third side, or the third side produced.

8. Fi7id the locus of the middle points of chords of a circle draicn

through a fixed point.

Distinguish between the cases when the given point is within, on,
or without the circumference.

9. Describe a square equal to the difference of two given squares.

10. Through one of the points of intersection of two circles draAV

a chord of one circle which shall be bisected by the other.

11. On a given straight line as base a system of equilateral four-

sided figures is described : find the locus of the intersection of their

diagonals.
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Note 1. The extension of Proposition 20 to straight and rejlex

angles furnishes a simple alternative proof of

the first theorem contained in Proposition 31,
viz.

The angle in a semicircle is a right angle.

For, in the adjoining figure, the angle at

the centre, standing on the arc BHC, is

double the angle at the 0*=*, standing on the
same arc.

Now the angle at the centre is the straight angle BEC ;

.-. the z SAC is half of the straight angle BEC:
and a straight angle = two rt. angles;

.•. the z BAG = one half of two rt. angles.
: one rt. angle. Q.E.D.

Note 2. From Proposition 31 we may derive a simple practical
solution of Proposition 17, namely,

To draw a tangent to a circle from a given external 'point.

Let BCD be the given
circle, and A the given exter-

nal point:
it is required to draw from

A a tangent to the © BCD.
Find E, the centre of the

circle, and join AE.
On AE describe the semi-

circle ABE, to cut the given
circle at B.

Join AB.
Then AB shall be a tangent

to the© BCD.
For the Z ABE, being in a semicircle, is a rt. angle. iii. 31.

.-. AB is drawn at rt. angles to the radius EB, from its ex-

tremity B;
.-. AB is a tangent to the circle. iii. 16.

Q.E.F.

Since the semicircle might be described on either side of AE, it is

clear that there will be a second solution of the problem, as shewn by
the dotted lines of the figure.
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Proposition 32. Theorem.

If a straight line touch a circle^ and from the point of
contact a chord he drawn, the angles which this chord makes

with the tangent shall he equal to the angles hi the alternate

segments of the circle.

Let EF touch the given 0ABC at B, and let BD be a

chord drawn from B, the point of contact:

then shall
(i)

the z. DBF = the angle in the alternate

segment BAD:

(ii)
the z. DBE = the angle in the alternate

From B draw BA perp. to EF.

Take any point C in the arc BD;
and join AD, DC, CB.

I. 11,

(i)
Then because BA is drawn perp. to the tangent EF,

at its point of contact B,

.*. BA passes through the centre of the circle: iii. 19.

.*. the L ADB, being in a semicircle, is a rt. angle: ill. 31.

.'. in the AABD, the other z.
^
ABD, BAD together = a rt.

angle; i. 32.

that is, the z.
^

ABD, BAD together = the z. ABF.
From these equals take the common z. ABD;

.'. the z_DBF = the z. BAD, which is in the alternate seg-
ment.
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A

(ii)
Because ABCD is a quadrilateral inscribed in a

circle,

.'.the L^ BCD, BAD together = two rt. angles: iii. 22,

but the L^ DBE, DBF together = two rt. angles; i. 13.

.'. the /.« DBE, DBF together = the z.
»
BCD, BAD:

and of these the l DBF = the /L BAD; Proved.

.'. the i. DBE = the z_ DCB, which is in the alternate seg-
ment. Q. E. D.

EXERCISES.

1. State and prove the converse of this proposition.

2. Use this Proposition to shew that the tangents drawn to a

circle from an external point are equal.

3. If two circles touch one another, any straight line drawn

through the point of contact cuts off similar segments.
Prove this for

(i) internal, (ii) external contact.

4. If two circles touch one another, and from A, the point of con-

tact, two chords APQ, AXY are drawn: then PX and QY are parallel.
Prove this for (i) internal, (ii)

external contact.

5. Two circles intersect at the points A, B: and one of them
passes through O, the centre of the other : prove that OA bisects the

angle between the common chord and the tangent to the first circle

at A.

6. Two circles intersect at A and B
; and through P, any point

on the circumference of one of them, straight lines PAC, PBD are

drawn to cut the other circle at C and D: shew that CD is parallel
to the tangent at P.

7. If from the point of contact of a tangent to a circle, a chord
be drawn, the perpendiculars dropped on the tangent and chord from
the middle point of either arc cut off by the chord are equal.
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Proposition 33. Problem.

On a given straight line to describe a segment of a circle

tohich shall contain an angle equal to a given angle.

H H

\
Let AB be the given st. line, and C the given angle:

it is required to describe on AB a segment of a circle which
shall contain an angle equal to C.

At A in BA, make the z. BAD equal to the l C. i. 23.

From A draw AE at rt. angles to AD. i. 11.

Bisect AB at F; I. 10.

and from F draw FG at rt. angles to AB, cutting AE at G.

Join GB.

Then in the A^ AFG, BFG.
i AF = BF, Cojistr.

Because -< and FG is common,
(and the l AFG =the L BFG, being rt, angles;

.'. GA-GB : I. 4.

,'. the circle described from centre G, with radius GA, will

pass through B.

Describe this circle, and call it ABH:
then the segment AHB shall contain an angle equal to C.

Because AD is drawn at rt. angles to the radius GA from
its extremity A,

.". AD is a tangent to the circle: in. 16.

and from A, its point of contact, a chord AB is drawn;
.*. the L BAD = the angle in the alt. segment AHB. iii. 32.

But the ^ BAD = the l C : Constr.

.'. tlie angle in the segment AHB = the z. C.

.*; AHB is the segment required; Q. E;F»
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NoTK. In the particular case when the given angle C is a rt, angle,
the segment required will be the
Beraicircle described on the given ^^H
St. line AB; for the angle in a
semicircle is a rt. angle. iii. 31.

EXERCISES.

[The following exercises depend on the corollary to Proposition 21

given on page 187, namely
The locus of the vertices of triangles which stand on the same base

and have a given vertical angle, is the arc of tlie segment standing on
this base, and containing an angle equal to the given angle.

Exercises 1 and 2 afford good illustrations of the method of find-

ing required points by the Intersection of Loci. See page 117.]

1. Describe a triangle on a given base, having a given vertical

angle, and liaving its vertex on a given straight line.

2. Construct a triangle, having given the base, the vertical angle
and

(i)
one other side.

(ii) the altitude.

(iii|
the length of the median which bisects the base.

(iv) the point at which the perpendicular from tlie vertex

meets the base.

3. Construct a triangle having given the base, the vertical angle,
and the point at tvhich the base is cut by the bisector of the vertical

angle.

[Let AB be the base, X the given point in it, and K the given
angle. On AB describe a segment of a circle containing an angle
equal to K

; complete the o''^ by drawing the arc APB. Bisect the arc
APB at P: join PX, and produce it to meet the C"" at C. Then ABC
shall be the required triangle.]

4. Construct a triangle having given the base, the vertical angle,
and the sum of the remaining sides.

[Let AB be the given base, K the given angle, and H the given line

equal to the sum of the sides. On AB describe a segment containing
an angle equal to K, also another segment containing an angle equal
to half the z K. From centre A, with radius H, describe a circle

cutting the last drawn segment at X and Y. Join AX (or AY) cutting
the first segment at C. Then ABC shall be the required triangle.]

5. Construct a triangle having given the base, the vertical angle,
and the difference of the remaining sides.
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Proposition 34. Problem.

From a given circle to cut off a segment which shall

contain an angle equal to a given angle.

Let ABC be the given circle, and D the given angle:
it is required to cut off from the ABC a segment which
shall contain an angle equal to D.

Take any point B on the O '^'',

and at B draw the tangent EBF. iii. 17.

At B, in FB, make the L FBC equal to the l D. i. 23.

Then the segment BAC shall contain an angle equal to D.

Because EF is a tangent to the circle, and from B, its

point of contact, a chord BC is drawn,
.'. the L FBC = the angle in the alternate segment BAC.

III. 32.

But the L FBC = the ^ D;- Constr.

.". the angle in the segment BAC = the l D.

Hence from the given 0ABC a segment BAC has been
cut off, containing an angle equal to D. q, e. f.

EXERCISES.

1. The chord of a given segment of a circle is produced to a fixed

point : on this straight line so produced draw a segment of a circle
similar to the given segment.

2,
_
Through a given point without a circle draw a straight line

that will cut off a segment capable of containing an angle equal to a
given angle.
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Proposition 35. Theorem.

If two chords of a circle cut one anotlieVy tits rectangle
contained hy the segments of one shall he eqtud to the rect-

angle contained hy tlie segments of the other.

Let AB, CD, two chords of the 0ACBD, cut one another
at E:

then shall the rect. AE, EB-the rect. CE, ED.

Find F the centre of the © ACB : iii. 1.

From F draw FG, FH perp. respectively to A B, CD. i. 12.

Join FA, FE, FD.

Then because FG is drawn from the centre F perp. to AB,
.'. AB is bisected at G. iii. 3.

For a similar reason CD is bisected at H.

Again, because AB is divided equally at G, and unequally at E,

.*. the rect. AE, EB with the sq. on EG ^ the sq. on AG. ll. 5.

To each of these equals add the sq. on G F
;

then the rect. AE, EB with the sqq. on EG, GF:=the sum of

the sqq. on AG, GF.

But the sqq. on EG, GF = the sq. on FE; I. 47.

and the sqq. on AG, GF = the sq. on AF;
for the angles at G are rt. angles.

.'. the rect. AE, EB with the sq. on FE^^the sq. on AF.

Similarly it may be shewn that

the rect. CE, ED with the sq. on FE-the sq. on FD.

But the sq. on AF - the sq. on FD; for AF = FD.

.'. the rect. AE, EB with the sq. on FE = the rect. CE, ED
with the sq. on FE.

From these equals take the sq. on FE:

then the rect. AE, EB = the rect. CE, ED, <j.e.d.
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CoKOLLARY. If through a fixed 'point vnthin a circle

any number of chords are drawn, the rectangles contained

hy their segments are all equal.

Note. The following special cases of this proposition deserve

notice.

(i) when the given chords both pass through the centre :

(ii)
when one chord passes through the centre, and cuts the

other at right angles :

(iii)
when one chord passes through the centre, and cuts the

other obliquely.

In each of these cases the general proof requires some modifica-

tion, which may be left as an exercise to the student.

EXERCISUiS.

1. Tico straiglit ILnen AB, CD intersect at E, so that the rectangle

AE, EB is equal to the rectangle CE, ED: sheio that the four points
A, B, C, D are concyclic.

2. The rectangle contained by the segments of any chord drawn

through a given point within a circle is equal to the square on half

the shortest chord which may be drawn through that point.

3. ABC is a triangle right-angled at C
;
and from C a perpen-

dicular CD is drawn to the hypotenuse : shew that the square on CD
is equal to the rectangle AD, DB.

4. ABC is a triangle; and AP, BQ the perpendiculars dropped
from A and B on the opposite sides, intersect at O : shew that the

rectangle AG, OP is equal to the rectangle BO, OQ.
5. Two circles intersect at A and B, and through any point in AB

their common chord two chords are drawn, one in each circle
;
shew

that their four extremities are concyclic.

6. A and B are two points within a circle such that the rectangle
contained by the segments of any chord drawn through A is equal to

the rectangle contained by the segments of any chord through B :

shew that A and B are equidistant from the centre.

7. If through E, a point ivithout a circle, two secants EAB, ECD
are drawn; shew that the rectangle EA, EB is equal to the rectangle
EC, ED.

[Proceed as in ni. 35, using ii. 6.]

8. Through A, a point of intersection of two circles, two straight
lines CAE, DAF are drawn, each passing through a centre and termi-

nated by the circumferences: shew that the rectahgle CA, AE is equal
to the rectangle DA, AF»

II. E. 14
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Proposition 36. Theorem.

If from any point without a circle a tangent and a
secant be di'awn, then the rectangle contained by the whole
secant and the part of it loithout the circle shall be equal to

the square on the tangent.

Let ABC be a circle; and from D a point without it, let

there be drawn the secant DCA, and the tangent DB:
then the rect. DA, DC shall be equal to the sq. on DB.

Find E, the centre of the 0ABC: iii. 1.

and from E, draw EF perp. to AD. i. 12.

Join EB, EC, ED.

Then because EF, passing through the centre, is perp.
to the chord AC,

.'. AC is bisected at F. iii. 3.

And since AC is bisected at F and produced to D,

.'.the rect. DA, DC with the sq. on FC-^the sq. on FD. H. 6.

To each of these equals add the sq. on EF :

then the rect. DA, DC witli the sqq. on EF, FC = the sqq. on

EF, FD.

But the sqq. on EF, FC = the sq. on EC
;
for EFC is a rt. angle;

= the sq. on EB.

And the sqq. on EF, FD = the sq. on ED
;
for EFD is a rt. angle;

= the sqq. on EB, BD; for EBD is a

rt. angle. in. 18.

/. the rect. DA, DC with the sq. on EB=:the sqq. on EB, BD.

From these equals take the sq. on EB:
then the rect. DA, DC = the sq. on DB. Q. e.d.

Note. This proof may easily be adapted to the case when the

Becant passes through the centre of the circle.
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Corollary. If from a given point zvithout a circle

any number of secants are drawn, the o'ectanffles contained

hy the whole secants and the ^^ar^s of them without the circle

are all equal ; for each of these rectangles is equal to the

square on the tangent drawn from the given point to the

circle. p

For instance, in the adjoining figure,
each of the rectangles PB, PA and PD, PC
and PF_, PE is equal to the square on the

tangent PQ:

.*. the rect. PB, PA

= the rect. PD, PC

^^ the rect. PF, PE.

Note, llemembcring that the segments into which the chord AB
is divided at P, are the Hnes PA, PB, (see Part I. page 131) we are

enabled to include the corollaries of Propositions 35 and 36 in a

single enunciation.

If any numher of chords of a circle arc draicn through a [jiven

point icithin or without a circle, the rectangles contained hy the

segments of the chords are equal.

EXERCISES.

1. Use this proposition to shew that tangents drawn to a circle

from an external point are equal.

2s If two circles intersect, tangents drawn to them from any
point in their common chord produced are equal.

3. If two circles intersect at A and B, and PQ is a tangent to

both circles; shew that AB produced bisects PQ.

4. If P is any i^oint on the straight line AB produced, shew that

the tangents drawn from P to all circles which pass through A and B
are equal.

5. ABC is a triangle right-angled at C, and from any point P in

AC, a perpendicular PQ is drawn to the hypotenuse: shew that the

rectangle AC, AP is equal to the rectangle AB, AQ.
0. ABC is a triangle right-angled at C, and from C a perpen-

dicular CD is drawn to the hypotenuse; shew that the rect. AB, AD
is equal to the square on AC.

14-2
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PkOPOSTTION o7. 'J'llKUUEM.

//* from a jtoi/d /rifhuut a circle there h<' <h-<in-)h two

straight lines, one of tvhich cuts the circle, and the other

tneets it, and if the rectangle contained hy the whole line

lohich cuts the circle and the pa,rt of it vnthout the circle he

equal to the square on the line which meets tlte circle, then

the line which meets the circle shall he a tangcfU to it.

Let ABC be a circle; and from D, a point without it,

let there be drawn two st. lines DCA and DB, of which
DCA cuts the circle at C and A, and DB meets it; and let

the rect. DA, DC =^^ the sq. on DB:
then shall DB be a tangent to the circle.

From D draw DE to touch the ©ABC: in. 7.

let E be the point of contact.

Find the centre F, and join FB, FD, FE. in. 1.

Then since DCA is a secant, and DE a tangent to the circle,

.'. the rect. DA, DC = the sq. on DE, III. 36.

But, by liypotliesis, the rect. DA, DC = the sq. on DB;
.*. the sq. on DE = the sq. on DB,

.-. DE= DB.

Hence in the A^ DBF, DEF.

[ DB = DE,



NOTE ON thp: method of limits as applied to tangency.

Euclid defines a tangent to a circle as a straight line which meets

the circumference, hut being produced, does not cut it: and from this

definition he deduces the fundamental theorem that a tangent is j)er-

pendicular to the radius drawn to the point of contact. Prop. IG.

But this result may also be established by the Method of Limits,
which regards the tangent as the idtimate position of a secant tohen its

two points of intersection tvith the circumference are brought into coin-

cidence [See Note on page 151]: and it may be shewn that every
theorem relating to the tangent may be derived from some more

general proposition relating to the secant, by considering the ultimate

case when the two points of intersection coincide.

1. To prove by the Method of Limits tliat a tangent to a circle

is at right angles to the radius drawn to the point of contact.

Let ABD be a circle, whose centre

is C; and PABQ a secant cutting the

C" in A and B
;
and let P'AQ' be the

limiting position of PQ when the point
B is brought into coincidence with A :

then shall CA be perp. to P'Q'.

Bisect AB at E and join CE:
then CE is perp. to PQ. iii. B.

Now let the secant PABQ change
its position in such a way that while the

point A remains fixed, the point B con-

tinually approaches A, and ultimately
coincides with it

;

then, Jiowever near B approaches to A, the st. line CE is always
perp. to PQ, since it joins the centre to the middle point of the chord
AB.

But in the limiting position, when B coincides with A, and the

secant PQ becomes the tangent P'Q', it is clear that the point E will

also coincide with A; and the perpendicular CE becomes the radius
CA. Hence CA is perp, to the tangent P'Q' at its point of contact
A. * Q.E.D.

NoTK. It follows from Proposition 2 that a straight line cannot
cut the circumference of a circle at more than two points. Now when
the two points in which a secant cuts a circle move towards coinci-

dence, the secant ultimately becomes a tangent to the circle: we
infer therefore that a tangent cannot meet a circle otherwise than
at its point of contact. Thus Euclid's definition of a tangent may be
deduced from that given by the Method of Limits.
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2. By this Method Proposition 32 may he derived us a special case

from rropositio)i 21.

For let A and B be two points on the O"
of the ©ABC;
and let BCA, BPA be any two angles in

the segment BCPA :

then the z BPA^^^tho z BCA. in. 21.

Produce PA to Q.
Now let the point P continually approach

the fixed point A, and ultimately coincide

with it ;

then, however near P may approach to A,
the Z BPQ=rthe z BCA. iii. 21.

But in the limiting position when
P coincides with A,

and the secant PAQ becomes the tangent AQ',
it is clear that BP will coincide with BA,

and the Z BPQ becomes the z BAQ'.
Hence the z BAQ'= the z BCA, in the alternate segment. q. k. d.

The contact of circles may be treated in a similar manner by
adopting the following definition.

Definition. If one or other of two intersecting circles alters its

position in such a way that the two points of intersection continually
approach one another, and ultimately coincide ; in the limiting posi-
tion they are said to toucli one another, and the point in which the

two points of intersection ultimately coincide is called the point of

contact.

EXAMPLES ON LIMITS.

1. Deduce Proposition 19 from the Corollary of Proposition 1

and Proposition 3.

2. Deduce Propositions 11 and 12 from Ex. 1, page 156.

3. Deduce Proposition G from Proposition 5.

4. Deduce Proposition 13 from Proposition 10.

5. Shew that a straight line cuts a circle in two different points,
TWO coincident points, or not at all, according as its distance from the

centre is less than, equal to, or greater than a radiiis.

6. Deduce Proposition 32 from Ex. 3, page 188.

7. Deduce Proposition 36 from Ex. 7, page 209.

8. The -angle in a semi-circle is a rifjht angle.
To what Theorem is this statement reduced, when the vertex of

the right angle is brought into coincidence with an extremity of the

diameter?

9. From Ex. 1, page 190, deduce the corresponding property of a

triangle inscribed in a circle.
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THEOREMS AND EXAMPLES ON BOOK III.

I. ON THE CENTRE AND CHORDS OF A CIRCLE.

See Propositions 1, 3, 14, 15, 25.

1. All circles tvhich j^ass through a fixed point, and have then-

centres on a (jlven straight line, pass also throxigh a second fixed point.

Let AB be the given st. line, and P the given point.

P'

From P draw PR perp. to AB ;

and produce PR to P', making RP' equal to PR.

Then all circles which pass through P, and have their centres on

AB, shall pass also through P'.

For let C be the centre of amj one of these circles.

Join CP, CP'.

Then in the a" CRP, CRP'

{CR
is common,

and RP— RP', Constr.

and the z CRP= the z CRP', being rt. angles ;

.-. CP= CP'; 1.4.

.'. the circle whose centre is C, and which passes through P, must
pass also through P'.

But C is the centre of any circle of the system ;

.*. all circles, which pass through P, and have their centres in AB,
pass also through P'. q. e. d.

2. Describe a circle that shall pass through three given points not
in the same straight line.
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3. Describe a circle that shall pass through two given points and
have its centre in a given straight line. When is this impossible?

4. Describe a circle of given radius to pass through two given

points. When is this impossible?

5. ABC is an isosceles triangle ;
and from the vertex A, as centre,

a circle is described cutting the base, or the base produced, at X and Y.

Shew that BX = CY.

6. If two circles which intersect are cut by a straight line

parallel to the common chord, shew that the parts of it intercepted
between the circumferences are equal.

7. If two circles cut one another, any two straight lines drawn
through a point of section, making equal angles with the common
chord, and terminated by the circumferences, are equal. [Ex. 12,

p. 156.]

8. If two circles cut one another, of all straight lines drawn
through a point of section and terminated by the circumferences, the

greatest is that which is parallel to the line joining the centres.

9. Two circles, whose centres are C and D, intersect at A, B;
and through A a straight line PAQ is drawn terminated by the
circumferences: if PC, QD intersect at X, shew that the angle PXQ
is equal to the angle CAD.

10. Through a point of section of two circles which cut one
another draw a straight line terminated by the circumferences and
bisected at the point of section.

11. AB is a fixed diameter of a circle, whose centre is C; and
from P, any point on the circumference, PQ is drawn perpendicular
to AB; shew that the bisector of the angle CPQ always intersects the
circle in one or other of two fixed points.

12. Circles are described on the sides of a quadrilateral as

diameters: shew that the common chord of any two consecutive
circles is parallel to the common chord of the other two. [Ex. 9,

p. 97.]

13. Two equal circles touch one another externally, and through
the point of contact two chords are drawn, one in each circle, at

right angles to each other : shew that the straight line joining their

other extremities is equal to the diameter of either circle.

14. Straight lines are drawn from a given external point to the
circumference of a circle : find the locus of their middle points.

[Ex. 3, p. 97.]

15. Two equal segments of circles are described on opposite sides

of the same chord AB
; and through O, the middle point of AB, any

straight line POQ is drawn, intersecting the arcs of the segments at

P and Q : shew that O P - OQ.
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II. ON THE TANGENT AND THE CONTACT OP CIRCLES.

See Propositions 11, 12, 16, 17, 18, 19.

1. All equal chords placed in a given circle touch a fixed concen-
tric circle.

2. If from an external point two tangents are drawn to a circle,

the angle contained by them is double the angle contained by the

chord of contact and the diameter drawn through one of the points of

contact.

3. Two circles touch one another externally, and through the

point of contact a straight line is drawn terminated by the circun>
ferences : shew that the tangents at its extremities are parallel.

4. Two circles intersect, and through one point of section any
straight line is drawn terminated by the circumferences : shew that

the angle between the tangents at its extremities is equal to the angle
between the tangents at the point of section.

5. Shew that two parallel tangents to a circle intercept on any
third tangent a segment which subtends a right angle at the centre.

6. Two tangents are drawn to a given circle from a fixed external

point A, and any third tangent cuts them produced at P and Q: shew
that PQ subtends a constant angle at the centre of the circle.

7. In any quadrilateral circumscribed about a circle, the suvi of
one pair of opposite sides is equal to the sum of the other pair.

8. If the sum of one pair of opposite sides of a quadrilateral is

equal to the sum of the other pair, shew that a circle may be inscribed

in the figure.

[Bisect two adjacent angles of the figure, and so describe a circle to

touch three of its sides. Then prove indirectly by means of the last

exercise that this circle must also touch the fourth side.]

9. Two circles touch one another internally: shew that of all

chords of the outer circle which touch the inner, the greatest is that

which is perpendicular to the straight line joining the centres.

10. In a right-angled triangle, if a circle is described from the

middle point of the hypotenuse as centre and with a radius equal to

half the sum of the sides containing the right angle, it will touch
the circles described on these sides as diameters.

11. Through a given point, draw a straight line to cut a circle,
so that the part intercepted by the circumference may be equal to a

given straight line.

In order that the problem may 6e possible, between what limits

must the given line lie, when the given point is (i) without the circle,

(ii)
within it?
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12. A Belies of circles touch a given straight line at a given point:
shew that the tangents to them at the points where they cut a given

parallel straight line all touch a fixed circle, whose centre is the given

point.

13. If two circles touch one another internally, and any third

circle be described touching both ; then the sum of the distances of

the centre of this third circle from the centres of the two given circles

is constant..

14. Find the locus of points such that the pairs of tangents
drawn from them to a given circle contain a constant angle.

15. Find a point such that the tangents drawn from it to two

given circles may be equal to two given straight lines. When is this

impossible?

16. If three circles touch one another two and two
; prove that

the tangents drawn to them at the three points of contact are con.

current and equal.

The Common Tangents to Two Circles.

17. 'To draw a common tangent to two circles.

First, if the given circles are external to one another, or if they
intersect.

Let A be the centre of the

greater circle, and B the centre

of the less.

From A, with radius equal
to the diff^** of the radii of the

given circles, describe a circle:

and from B draw BC to touch
the last di'awn circle. Join AC,
and produce it to meet the

greater of the given circles at D.

Through B draw the radius BE pai^ to AD, and in the same
direction.

Join DE:
then DE shall be a common tangent to the two given circles.

For since AC = the diff'« between AD and BE, Comtr.
.'. CD=BE:

and CD is par^ to BE; Constr.

.-. DE is equal and par' to CB. i. 33.

But since BC is a tangent to the circle at C,
.-. the z ACB is a rt. angle; in. 18,

hence each of the angles at D and E is a rt. angle: i. 29.

.•. DE is a tangent to both circles. q.e.f.



THEOREMS AND EXAMPLES ON BOOK III. 219

It follows from hypothesis that the point B is outside the circle

used in the construction :

.-. two tangents such as BC may always be drawn to it from B
;

hence two common tangents may always be drawn to the given
circles by the above method. These are called the direct common
tangents.

When the given circles are external to one another and do not

intersect, two more common tangents may be drawn.

For, from centre A, with a radius equal to the siuii of the radii of
the given circles, describe a circle.

From B draw a tangent to this circle
;

and proceed as before, but draw BE in the direction opposite to AD.
It follows from hypothesis that B is external to the circle used in

the construction ;

.-. two tangents may be drawn to it from B.
Hence tioo more conmion tangents may be drawn to the given

circles : these will be found to pass between the given circles, and are
called the transverse common tangents.

Thus, in general, four common tangents may be drawn to two
given circles.

The student should investigate for himself the number of common
tangents which may be drawn in the following special cases, noting
in each case where the general construction fails, or is modified :

—
(i)

When the given circles intersect :

(ii)
When the given circles have external contact :

(iii)
When the given circles have internal contact :

(iv) When one of the given circles is wholly within the other.

18. Drmo the direct common tangents to two equal circles.

19. If the two direct, or the two transverse, common tangents
are drawn to two circles, the parts of the tangents intercepted be-
tween the points of contact are equal.

20. If four common tangents are drawn to two circles external to
one another; shew that the two direct, and also the two transverse,
tangents intersect on the straight line which joins the centres of the
circles.

21. Two given circles have external contact at A, and a direct
common tangent is drawn to touch them at P and Q. : shew that PQ
subtends a right angle at the point A.

22. Two circles have external contact at A, and a direct common
tangent is drawn to touch them at P and Q: shew that a circle
described on PQ as diameter is touched at A by the straight line
which joins the centres of the circles.
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23. Two circles whose centres are C and C have external contact

at A, and a direct common tangent is drawn to touch them at P
and Q : shew that the bisectors of the angles PCA, QC'A meet at

right angles in PQ. And if R is the point of intersection of the

bisectors, shew that RA is also a common tangent to tlie circles.

24. Two circles have external contact at A, and a direct common
tangent is drawn to touch them at P and Q : shew that the square
on PQ is equal to the rectangle contained by the diameters of the

circles.

25. Draw a tangent to a given circle, so that the part of it

intercepted by another given circle may be equal to a given straight
line. When is this impossible?

26. Draw a secant to two given circles, so that the parts of it

intercepted by the circumferences may be equal to two given straight
lines.

Problems on Tangency.

The following exercises are solved by the Method of Inter-

section of Loci, explained on page 117.

The student should begin by making himself familiar with
the following loci.

(i)
The loais of the centres of circles which pass through two given

points.

(ii) The locus of the centres of circles xohich touch a given straight
line at a given point.

(iii) The locus of the centres of circles tchich touch a given circle at

a given point.

(iv) The locus of the centres of circles ivhich touch a given straight

line, and have a given radius.

(v) 'The locus of the centres of circles tchich touch a given circle,

and have a given radius.

(vi) 'The locus of the centres of circles which touch two given

straight lines.

In each exercise the student should investigate the limits

and relations among the data, in order that the problem may be

possible.

27. Describe a circle to touch three given straight lines.

28. Describe a circle to pass through a given point and touch a

given straight line at a given point.

29. Describe a circle to pass through a given point, and touch a

given circle at a given point.
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30. Describe a circle of given radius to pass through a given

point, and touch a given straight line.

31. Describe a circle of given radius to touch two given circles.

32. Describe a circle of given radius to touch two given straight
lines.

33. Describe a circle of given radius to touch a given circle and a

given straight line.

34. Describe two circles of given radii to touch one another and
a given straight line, on the same side of it.

35. If a circle touches a given circle and a given straight line,

shew that the points of contact and an extremity of the diameter of

the given circle at right angles to the given line are collinear.

36. To describe a circle to touch a given circle, and aho to touch a

given straight line at a given point.

Let DEB be the given circle, PQ.
the given st. line, and A the given

point in it :

it is required to describe a circle to

touch the © DEB, and also to touch
PQ at A.

At A draw AF perp. to PQ : 1. 11.

then the centre of the required circle

must lie in AF. iii. 19.

Find C, the centre of the © DEB,
I. 1.

and draw a diameter BD perp. to

PQ:
join A to one extremity D, cutting
the o"'' at E.

Join CE, and produce it to cut AF at F.

Then F is the centre, and FA the radius of the required circle.

[Supply the proof : and shew that a second solution is obtained by
joining AB, and producing it to meet the O"" :

also distinguish between the nature of the contact of the circles, when
PQ cuts, touches, or is without the given circle.]

37. Describe a circle to touch a given straight line, and to touch
a given circle at a given point.

38. Describe a circle to touch a given circle, have its centre in a

given straight line, and pass through a given point in that straight
line.

[For other problems of the same class see page 235.]
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Oktuogonal Chicles.

Definition. Circles which intersect .'it a- point, so that the

two tangents at that point are at right angles to one another,
are said to be orthogonal, or to cut one another ortho-

gonally.

39. In two intersectiug circles the angle between the ta*)gents
at one point of intersection is equal to the angle between the tangents
at the other.

40. 7/ two circles cut one another orlJiononully, the tangent io

each circle at a point of intersection will p(/,s« throwjh the centre of
the other circle.

41. If tico circles cut one another orthogonally, the nquare on the

distance between their centres is equal to the sum of the squares on
their radii.

42. Find the locus of the centres of all circles which cut a given
circle orthogonally at a given point.

43. Describe a circle to pass through a given point and cut a

given circle orthogonally at a given point.

III. ON ANGLES IN SEGMENTS, AND ANGLES AT THE
CENTRES AND CIRCUMFERENCES OF CIRCLES.

See Propositions 20, 21, 22; 26, 27, 28, 29; 31, 32, 33, 34.

1. If two chords intersect to ithin a circle, they form an angle equal
to that at the centre, subtended by half the sum of the arcs they cut off.

Let AB and CD be two chords, intersecting
at E within the given ©ADBC:
then shall the l AEC be equal to the angle at

the centre, subtended by half the sum of the

arcs AC, BD.

Join AD.
Then the ext. z AEC = the sum of the int.

opp. /"EDA, EAD;
that is, the sum of the z ' CDA, BAD.
But the z-'CDA, BAD are the angles at

the O'^'' subtended by the arcs AC, BD
;

.-. their sum = half the sum of the angles at the centre subtended by
the same arcs;

or, the z AEC = the angle at the centre subtended by half the sum of

the arcs AC, BD. q. e. d.
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2. If tivo chords lohen produced intersect outside a circle, they form
an angle equal to that at the centre subtended by half the difference of

the arcs they cut of.

B. The sum of the arcs cut off by two chords of a circle at right

angles to one another is equal to the semi-circumference.

4. AB, AC are any two chords of a circle; and P, Q are the

middle points of the minor arcs cut off by them: if PGl is joined,

cutting AB and AC at X, Y, shew that AX = AY.

5. If one side of a quadrilateral inscribed in a circle is inoduced,
the exterior angle is equal to the opposite interior angle.

6. If two circles intersect, and any straight lines are drawn, one

through each point of section, terminated by the circumferences;
shew that the chords which join their extremities towards the same

parts are parallel.

7. ABCD is a quadrilateral inscribed in a circle ; and the opposite
sides AB, DC are produced to meet at P, and CB, DA to meet at Q:
if the circles circumscribed about the triangles PBC, QAB intersect

at R, shew that the points P, R, Q are collinear.

8. If a circle is described on one of the sides of a right-angled

triangle, then the tangent drawn to it at the point where it cuts the

hypotenuse bisects the other side.

9. Given three points not in the same straight line : shew how
to find any uumber of points on the circle which passes through them,
without finding the centre.

10. Through any one of three given points not in the same
straight line, draw a tangent to the circle which passes through them,
without finding the centre.

11. Of two circles which intersect at A and B, the circumference
of one passes through the centre of the other : from A any straight
line ACD is drawn to cut them both; shew that CB = CD.

12. Two tangents AP, AQ are drawn to a circle, and B is the
middle point of the arc PQ, convex to A. Shew that PB bisects the

angle APQ.

13. Two circles intersect at A and B; and at A tangents are

drawn, one to each circle, to meet the circumferences at C and D : if

CB, BD are joined, shew that the triangles ABC, DBA are equi-

angular to one another.

14. Two segments of circles are described on the same chord and
on the same side of it

;
the extremities of the common chord are joined

to any point on the arc of the exterior segment : shew that the arc

intercepted on the interior segment is constant.
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15. If a series of triangles are drawn standing on u lixed basi',

and having a given vertical angle, shew that the bisectors of the verti-

cal angles all pass through a fixed point.

16. ABC is a triangle inscribed in a circle, and E the middle

point of the arc subtended by BC on the side remote from A: ii"

through E a diameter ED is drawn, shew that the angle DEA is half

the difference of the angles at B and C. [See Ex. 7, p. 101.]

17. If two circles touch each other internally at a point A, any
chord of the exterior circle which touches the interior is divided at its

point of contact into segments which subtend equal angles at A.

18. If two circles touch one another internally, and a straight
line is drawn to cut them, the segments of it intercepted between the

circumferences subtend equal angles at the point of contact.

The Orthocen'tre of a Triangle.

I'J. The perpendiculars draini from the vertices of a Iriatiyle to

the opposite sides are concurrent.

In the A ABC, let AD, BE be the

perp' drawn from A and B to the oppo-
site sides ;

and let them intersect at O,

Join CO; and produce it to meet AB
at F.

It is required to shew that CF is perp.
to AB.

Join DE.

Then, because the z ' OEC, GDC are

rt. angles, Hijp.

:. the points O, E, C, D are concyclic :

.-. the z DEC = the Z DOC, in the same segment;
= the vert. opp. Z FOA.

Again, because the z " AEB, ADB are rt. angles, Hyp.
:. the points A, E, D, B are concyclic:

.-. the Z DEB = the Z DAB, in the same segment.

.-. the sum of the Z " FOA, FAO = the sum of the z ' DEC, DEB
= a rt. angle : ^VP-

:. the remaining Z AFO = art. angle: i. 32,

that is, CF is perp. to AB.
Hence the three perp' AD, BE, CF meet at the point O. q. e. d.

[For an Alternative Proof see page lOG.]
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Definitions.

(i) The intersection of the perpendiculars drawn from the

vortices of a triangle to the opposite sides is called its ortho-

centre.

(ii) The triangle formed by joining the feet of the perpendi-
culars is called the pedal or orthocentric triangle.

20. In an acute-angled triangle the perpendiculars draivn from
the vertices to the opposite sides bisect the angles of the pedal triangle

through ivhich they pass.

In the acute-angled a ABC, let AD,
BE, CF be the perj)^ drawn from the

vertices to the opposite sides, meeting
at the orthocentre O; and let DEF be
the pedal triangle :

then shall AD, BE, CF bisect respect-

ively the z « FDE, DEF, EFD.

For, as in the last theorem, it may
be shewn that the points O, D, C, E are

concyclic ;

.•. the Z ODE= the Z OCE, in the same segment.

Similarly the points O, D, B, F are concyclic;
,•. the z ODF — the z OBF, in the same segment.

But the z OCE= the z OBF, each being the comp' of the z BAC.
.-. the Z ODE = the z ODF.

Similarly it may be shewn that the z " DEF, EFD are bisected by
BE and CF. q. e.d.

Corollary, (i) Every two sides of the pedal triangle are equally
inclined to that side of the original triangle in icliich they meet.

For the z EDC = the comp* of the Z ODE
= the comp' of the Z OCE
= the Z BAC.

Similarly it may be shewn that the z FDB = the Z BAC,
.-. the z EDO = the z FDB = the z A.

In like manner it may be proved that
the z DEC = the z FEA=:the z B,

and the Z DFB = the z EFA = the z C.

Corollary,
(ii) The triangles DEC, AEF, DBF are equiangular

to one another and to the triangle ABC.

Note. If the angle BAC is obtuse, then the perpendiculars BE, CF
bisect externally the corresponding angles of the pedal triangle.

Ji. E. 15
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21. In a III/ triinifjlr, if the perpendiculars drawn from the vertices

on the opposite s/J, s art' produced to meet the circumscribed circle,

then each side bist'ctn that portion of the line perpendicular to it which
lies between the orthocentre and the circumference.

Let ABC be a triangle in which the perpen-
diculars AD, BE are drawn, intersecting at O the

orthocentre; and let AD be produced to meet
the o*® of the circumscribing circle at G :

then shall DO=DG.
Join BG.

Then in the two a" OEA, ODB,
the z OEA = the z ODB, being rt. angles;
and the Z EOA = the vert. opp. Z DOB;

.•. the remaining Z EAO = the remaining Z DBO. i. 32.

But the z CAG=the z CBG, in the same segment;
.-. the Z DBO = the z DBG.

Then in the a" DBO, DBG,

(the Z DBO = the Z DBG, Proved.

Because
jthe

z BDO = the z BDG,
(

and BD is common;
.-. DO = DG. 1.26.

Q. E. D.

22. In an acute-angled triangle the three sides are the external

bisectors of the angles of the pedal triangle : and in an obtuse-angled

triangle the sides containing the obtuse angle are the internal bisectors

of the corresponding angles of the pedal triangle.

23. If O is the orthocentre of the triangle ABC, sheic that the

angles BOC, BAC are supplementary.

24. If O is the orthocentre of the triangle ABC, then any one of
the four points O, A, B, C is the orthocentre of the triangle whose
vertices are the other three.

25. The three circles lohich pass through two vertices of a triangU
and its orthocentre are each equal to the circle circumscribed about the

triangle.

26. D
,
E are taken on the circumference of a semicircle described

on a given straight line AB : the chords AD, BE and AE, BD
intersect (produced if necessary) at F and G : shew that FG is per-

pendicular to AB.

27. ABCD is a parallelogram; AE and CE are drawn at right

angles to AB, and CB respectively: shew that ED, if produced, will

be perjiendicular to AC.
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28. ABC is a triangle, O is its orthocentre, and AK a diameter

of the circumscribed circle: shew that BOCK is a parallelogram.

29. The orthocentre of a triangle is joined to the middle point of

the base, and the joining line is produced to meet the circumscribed

circle : prove that it will meet it at the same point as the diameter

which passes through the vertex.

30. The perpendicular from the vertex of a triangle on the base,
and the straight line joining the orthocentre to the middle point of

the base, are produced to meet the circumscribed circle at P and Gt :

shew that PQl is parallel to the base.

31. The distance of each vertex of a triangle from the orthocentre

is double of the perpendicular drawn from the centre of the circum-

scribed circle on the opposite side.

32. Three circles are described each passing through the ortho-
centre of a triangle and two of its vertices: shew that the triangle
formed by joining their centres is equal in all respects to the original

triangle.

33. ABC is a triangle inscribed in a circle, and the bisectors of its

angles which intersect at O are produced to meet the circumference in

PQR : shew that O is the orthocentre of the triangle PQR.

34. Construct a triangle, having given a vertex, the orthocentre,
and the centre of the circumscribed circle.

Loci.

35. Given the base and vertical angle of a triangle, find the locus

of its orthocentre.

Let BC be the given base, and X the

^iven angle ; and let BAC be any triangle
on the base BC, having its vertical z A
equal to the Z X.

Draw the perp« BE, CF, intersecting
at the orthocentre O.

It is required to find the locus of O.

Since the z ' OFA, OEA axe rt. angles,
.-. the points O, F, A, E are concyclic ;

.•.the Z FOE is the supplement of the z A:
.-. the vert. opp. z BOC is the supplement of the Z A.

But the Z A is constant, being always equal to the Z X
;

.•. its supplement is constant
;

that is, the A BOC has a fixed base, and constant vertical angle;
hence the locus of its vertex O is the arc of a segment of which BC is

the chord. [See p. 187.]

15-2
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36. Given the base and vertical angle of a triangle, find the luciis

of the intersection of the bisectors of its angles.

Let BAG be any triangle on tlie given
base BC, liaviug its vertical angle equal to

the given z X; and let Al, Bl, CI be the

bisectors of its angles: [see Ex. 2, p. 103.]

it is required to find the locus of the

point I.

Denote the angles of the A ABC by
A, B,C; and let the z BIC be denoted by I.

Then from the a BIC,

(i) l + JB + *C = twort.
and from the a ABC,

A + B + C = two rt. angles ;

(ii)
so that ^A + ^B + ^C = one rt. angle,

.". , taking the differences of the equals in
(i) and (ii),

I
-
^A == one rt. angle :

l=one rt. angle + ^A.or,

X;

I. 32.

But A is constant, being always equal to the z

.-. I is constant :

.". , since the base BC is fixed, the locus of I is the arc of a segment
of which BC is the chord.

37. Given the base and vertical angle of a triangle, find the locus

of the centroid, that is, the intersection of the medians.

Let BAC be any triangle on the given
base BC, having its vertical angle equal
to the given angle S; let the medians AX,
BY, CZ intersect at the centroid G [see
Ex. 4, p. 105] :

it is required to find the locus of the point G .

Through G draw GP, GQ par' to AB
and AC respectively.

Then ZG is a third part of ZC;
Ex. 4, p. 105.

and since GP is par' to ZB,
.-. BP is a third part of BC.

Similarly QC is a third part of BC
;

.•. P and Q are fixed points.

Now since PG, GQ are par' respectively to BA, AC,
.-. the z PGQ= the z BAC,

= the z S,
that is, the Z PGQ is constant;
and since the base PQ is fixed,

.-. the locus of G is the arc of a segment of which PQ is the chord.

Ex. 19, p. 09.

Constr.
'

I. 29.
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Ohs. In this problem the points A and G move on the arcs of

similar segments.

38. Given the base and the vertical angle of a triangle ;
find the

locus of the intersection of the bisectors of the exterior base angles.

39. Through the extremities of a given straight line AB any two

parallel straight lines AP, BQ are drawn
;
find the lociis of the inter-

section of the bisectors of the angles PAB, QBA.

40. Find the locus of the middle points of chords of a circle drawn

through a fixed point.

Distinguish between the cases when the given point is within,

on, or without the circumference.

41. Find the locus of the points of contact of tangents drawn
from a fixed point to a system of concentric circles.

42. Find the locus of the intersection of straight lines which pass
through two fixed points on a circle and intercept on its circumference
an arc of constant length.

43. A and B are two fixed points on the circumference of a circle,

and PQ is any diameter : find the locus of the intersection of PA and
QB.

44. BAG is any triangle described on the fixed base BG and

having a constant vertical angle ;
and BA is produced to P, so that

BP is equal to the sum of the sides containing the vertical angle: find

the locus of P.

45. AB is a fixed chord of a circle, and AC is a moveable chord

passing through A: if the parallelogram GB is completed, find the
locus of the intersection of its diagonals.

46. A straight rod PQ slides between two rulers placed at right

angles to one another, and from its extremities PX, QX are drawn

perpendicular to the rulers: find the locus of X.

47. Two circles whose centres are G and D, intersect at A and B :

through A, any straight line PAQ is drawn terminated by the circum-
ferences ; and PG, QD intersect at X: find the locus of X, and shew
that it passes through B. [Ex. 9, p. 216.]

48. Two circles intersect at A and B, and through P, any point
on the circumference of one of them, two straight lines PA, PB
are drawn, and produced if necessary, to cut the other circle at X
and Y: find the locus of the intersection of AY and BX.

49. Two circles intersect at A and B; HAK is a fixed straight
line drawn through A and terminated by the circumferences, and
PAQ is any other straight line similarly drawn: find the locus of the
intersection of HP and QK. [Ex. 3, p. 186.]
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50. Two segments of circles are on the same chord AB and on
the same side of it

;
and P and Q are any points one on each arc :

lintl the locus of the intersection of the bisectors of the angles PAQ,
PBQ.

51. Two circles intersect at A and B
;
and through A any straight

line PAQ is drawn terminated by the circumferences : find the locus of

the middle point of PQ.

Miscellaneous Examples on Angles in a Circle.

52. ABC is a triangle, and circles are drawn through B, C, cutting
the sides in P, Q, P', Q', ... : shew that PQ, P'Q' ... are parallel to one
another and to tlie tangent drawn at A to the circle circumscribed
about the triangle.

53. Two circles intersect at B and C, and from any point A, on
the circumference of one of them, AB, AC are drawn, and produced if

necessary, to meet the other at D and E : shew that D E is parallel to

the tangent at A.

64. A secant PAB and a tangent PT are drawn to a circle from
an external point P; and tbe bisector of the angle ATB meets AB at

C : shew that PC is equal to PT.

55. From a point A on the circumference of a circle two chords

AB, AC are drawn, and also the diameter AF: if AB, AC are produced
to meet the tangent at F in D and E, shew that the triangles ABC,
AED are equiangular to one another.

56. O is any point within a triangle ABC, and CD, OE, OF are

drawn j)erpendicular to BC, CA, AB respectively : shew that the

angle BOC is equal to the sum of the angles BAC, EDF.

57. If two tangents are drawn to a circle from an external point,
shew that they contain an angle equal to the difference of the angles
in the segments cut off by the chord of contact.

58. Two circles intersect, and through a point of section a straight
line is drawn bisecting the angle between the diameters through that

point : shew that this straight line cuts off similar segments from the

two circles.

59. Two equal circles intersect at A and B
; and from centre

A, with any radius less than AB a third circle is described cutting the

given circles on the same side of A B at C and D: shew that the points

B, C, D are collinear.

60. ABC and A'B'C are two triangles inscribed in a circle, so that

AB, AC are respectively parallel to A'B', A'C : shew that BC is

parallel to B'C,
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01. Two circles intersect at A and B, and through A two straight
lines HAK, PAQ are drawn terminated by the circumferences : if

HP and KQ intersect at X, shew that the points H, B, K, X are

concyclic.

62. Describe a circle touching a given straight line at a given

point, so that tangents drawn to it from two fixed points in the given
line may be parallel. [See Ex. 10, p. 183.]

G3. C is the centre of a circle, and CA, CB two fixed radii: if

from any point P on the arc AB perpendiculars PX, PY are drawn to

CA and CB, shew that the distance XY is constant.

64. AB is a chord of a circle, and P any point in its circum-

ference
;
PM is drawn perpendicular to AB, and AN is drawn perpen-

dicular to the tangent at P : shew that MN is parallel to PB.

65. P is any point on the circumference of a circle of which AB is

a fixed diameter, and PN is drawn perpendicular to AB
;
on AN and

BN as diameters circles are described, which are cut by AP, BP
at X and Y : shew that XY is a common tangent to these circles;

66. Upon the same chord and on the same side of it three seg-
ments of circles are described containing respectively a given angle,
its supplement and a right angle: shew that the intercept made by the
two former segments upon any straight line drawn through an ex-

tremity of the given chord is bisected by the latter segment.

67. Two straight lines of indefinite length touch a given circle,

and any chord is drawn so as to be bisected by the chord of contact :

if the former chord is produced, shew that the intercepts between the

circumference and the tangents are equal.

68. Two circles intersect one another: through one of the points
of contact draw a straight line of given length terminated by the cir-

cumferences.

69. On the three sides of any triangle equilateral triangles are
described remote from the given triangle : shew that the circles de-

scribed about them intersect at a point.

70. On BC, CA, AB the sides of a triangle ABC, any points
P, Q, R are taken; shew that the circles described about the triangles
AQR, BRP, CPQ meet in a point.

71. Find a point within a triangle at which the sides subtend

equal angles.

72. Describe an equilateral triangle so that its sides may pass
through three given points.

73. Describe a triangle equal in all respects to a given triangle,
and having its sides passing through three given points.



•2:i-2 KUCLID'b KLKMENTS.

Simbon'b Line.

74. If from any point on the circumference of the circle circum-
scribed about a triangle, pei-pendiculars are drawn to the three siden, the

feet of these perpendiculars are coUinear.

Let P be any point on the o"" of the
circle circumscribed about the a ABC

;

and let PD, PE, PF be the perp" drawn
from P to the three sides.

It is required to prove that the points
D, E, F are collinear.

Join FD and DE:
then FD and DE shall be in the same
st. line.

Join PB, PC.

Because the Z » PDB, PFB are rt. angles, llyp.
:. the points P, D, B, F are concjdic:

.-. the Z PDF=the Z PBF, in the same segment. m. 21.
But since BACP is a quad' inscribed in a circle, having one of its

sides AB produced to F,
.-. the ext. z PBF= the opp. int. z ACP. Ex. 3, p. 188.

.-. the z PDF = the z ACP.
To each add the z PDE :

then the z«PDF, PDE^the z-'ECP, PDE.
But since the z " PDC, PEC are rt. angles,

.'. the points P, D, E, C are concylic ;

.'. the Z ECP, PDE together= two rt. angles:

.-. the Z » PDF, PDE together= two rt. angles;
.•. FD and DE arc in the same st. line; i. 1-1.

that is, the points D, E, F are collinear. q.e.d.

[This theorem is attributed to Robert Simson; and accordingly
the straight line FDE is sometimes spoken of as the Simson's Line of
the triangle ABC for the point P: some writers also call it the Pedal
of the triangle ABC for the point P.]

75. ABC is a triangle inscribed in a circle
; and from any point P

on the circumference PD, PFare drawn perpendicular to BC and AB:
if FD, or FD produced, outs AC at E, shew that PE is perpendicular
to AC.

76. Pind the locus of a point which moves so that if perpen-
diculars are drawn from it to the sides of a given triangle, their feet

are collinear.

77. ABC and A'B'C are two triangles having a common vertical

angle, and the circles circumscribed about them meet again at P : shew
that the feet of perpendiculars drawn from P to the four lines AB, AC,
BC, B'C are collinear.
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78. A triangle is inscribed in a circle, and any point P on the cir-

cumference is joined to the orthocentre of the triangle : shew that this

joining line is bisected by the pedal of the point P.

OX THE CIRCLE IN CONNECTION WITH RECTAXGLES.

See Propositions 35, 36, 37.

1. If from any external point P tico tangents are draivn to a
given circle tcliose centre is O, and if OP meets the chord of contact

at Ql; then the rectangle OP, OO is equal to the square on the radius.

Let PH, PK be tangents, drawn from
the external point P to the © HAK, whose ,-- -^,

centre is O; and let OP meet HK the
chord of contact at Ql, and the o''^ at A :

then shall the rect. OP, OQ=:the sq. on
OA.

On HP as diameter describe a circle :

this circle must pass through O, since the

Z HOP is a rt. angle. in. 31.

Join OH.
Then since PH is a tangent to the © HAK,

. •. the / OHP is a rt. angle.
And since HP is a diameter of the © HQP,

. •. OH touches the © HOP at H. iii. 16.

.-. the rect. OP, OQ = the sq. on OH, iii. 30.
= the sq. on OA. q. e. j>.

2. ABC is a triangle, and AD, BE, OF the perpendiculars drawn
from the vertices to tlie oj^posite sides, meeting in the orthocentre O :

shew that the rect. AO, OD = tlie rect. BO, OE = the rect. CO, OF.

3. ABC is a triangle, and AD, BE the perpendiculars drawn
from A and B on the opposite sides : shew that the rectangle CA, CE
is equal to the rectangle CB, CD.

4. ABC is a triangle right-angled at C, and from D, any point in

the hypotenuse AB, a straight line DE is drawn perpendicular to AB
and meeting BC at E: shew that the square on DE is equal to

the difference of the rectangles AD, DB and CE, EB.

5. From an external point P two tangents are drawn to a

given circle whose centre is O, and OP meets the chord of contact

at Q: shew that any circle which passes through the points P, Q
will cut the given cii-cle orthogonally. [See Def. p. 222.]
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6. A series of circles pass through two i/iven points, and from a

fixed point in the common chord produced tauifcnts are drawn to all the

circles : shew that the points of contact lie on a circle which cuts

all the given circles orthogonally.

7. All circles which pass through a fixed point, and cut a given
circle orthogonally, jxtss also through a second fixed point.

8. Find the locus of the centres of all circles which pass through
a given point and cut a given circle orthogonally.

9. Describe a circle to pass through two given points and cut a

given circle orthogonally.

10. A, B, C, D are four points taken in order on a given straight
line : find a point O between B and C such that the rectangle
OA, OB may be equal to the rectangle OC, OD.

11. AB is a fixed diameter of a circle, and CD a fixed straight
line of indefinite length cutting AB or AB produced at right angles ;

any straight line is drawn through A to cut CD at P and the circle at

Q: sheiv that the rectangle AP, AQ is constant.

12. AB is a fixed diameter of a circle, and CD a fixed chord
at right angles to AB

; any straight line is drawn through A to

cut CD at P and the circle at Q: shew that the rectangle AP, AQ
is equal to the square on AC.

13. A is a fixed point and CD a fixed straight line of indefinite

length; AP is any straight line drawn through A to meet CD at P;
and in AP a point Q is taken such that the rectangle AP, AQ is

constant: find the locus of Q.

14. Two circles intersect orthogonally, and tangents are drawn
from any point on the circumference of one to touch the other:

prove that the first circle passes through the middle point of the

chord of contact of the tangents. [Ex. 1, p. 233.]

15. A semicircle is described on AB as diameter, and any two
chords AC, BD are drawn intersecting at P : shew that

AB2=AC.AP+BD. BP.

16. Two circles intersect at B and C, and the two direct common
tangents AE and DF are drawn : if the common chord is produced to

meet the tangents at G and H, shew that GH-= AE2+ BC^.

17. If from a point P, without a circle, PM is drawn perpendicular
to a diameter AB, and also a secant PCD, shew that

PM2=PC.PD±AM . MB,
according as PM intersects the circle or not.
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18. Three circles intersect at D, and their other points of

intersection are A, B, C; AD cuts the circle BDC at E, and EB, EC
cut the circles ADB, ADC respectively at F and G : shew that the

points F, A, G are collinear.

19. A semicircle is described on a given diameter BC, and from
B and C any two chords BE, CF are drawn intersecting within

the semicircle at O; BF and CE are produced to meet at A: shew
that the sum of the squares on AB, AC is equal to twice the square on
the tangent from A together with the square on BC.

20. X and Y are two fixed points in the diameter of a circle

equidistant from the centre C : through X any chord PXQ is drawn,
and its extremities are joined to Y; shew that the sum of the

squares on the sides of the triangle PYQ is constant. [See p. 147,
Ex. 24.]

Pboblems on Tangency.

21. To describe a circle to j[;ass through tico given points and to

touch a given straight line.

Let A and B be the given points,
and CD the given st. line:

it is required to describe a circle to

])ass through A and B and to touch
CD.

Join BA, and produce it to meet
CD at P.

Describe a square equal to the
rect. PA, PB

; ii. 14.

and from PD (or PC) cut off PQ equal to a side of this square.

Through A, B and Q describe a circle. Ex. 4, p. 15G.

Then since the rect, PA, PB = the sq. on PQ,
. •. the ABQ touches CD at Q. iii. 37.

Q. E. F.

Note, (i) Since PQ may be taken on either side of P, it is

clear that there are in general two solutions of the problem.

(ii) When AB is parallel to the given line CD, the above method
is not applicable. In this case a simple construction follows from
iiT. 1- Cor. and iii. 16 • and it will be found that only one solution

exists
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2"2. To (h'^crihc a circle lo jms.'; tliroiiyJi tiro tjircit jmints and
to loach (I (jircH circle.

Let A and B be the given

points, and CRP the given
circle :

it is required to describe a
circle to pass through A and

B, and to touch the ©CRP.

Through A and B de-

scribe any circle to cut the

given circle at P and Q.
Join AB, PQ, and pro- "q

duce them to meet at D.

From D draw DC to touch the given circle, and let C be the point
of contact.

Then the circle described through A, B, C will touch the given
circle.

For, from the ©ABQP, the rect. DA, DB = the rect. DP, DQ:
and from the PQC, the rect. DP, DQ = the sq. on DC; ki. '.)(',.

.-. the rect, DA, DB = the sq. on DC :

.-. DC touches the © ABC at C. in. 37.

But DC totiches the PQC at C
;

Constr.

.'. the © ABC touches the given circle, and it passes tlirough the

given points A and B. q.k.i'.

Note, (i)
Since two tangents may be drawn from D tc the

given circle, it follows that there will be two solutions of the problem.

(ii)
The general construction fails when the straight line bisect-

ing AB at right angles passes through the centre of the given circle:

the problem then becomes symmetrical, and the solution is obvious.

23. To describe a circle to pass throiujh a given point and
touch ttco (jiven straight lines.

Let P be the given point, and

AB, AC the given straight lines:

it is required to describe a circle

to j)ass through P and to touch

AB, AC.

Now the centre of every circle

which touches AB and AC must
lie on the bisector of the z BAC,

Ex. 7, p. 183.

Hence draw AE bisecting the

z BAC.
From P draw PK perp. to AE, and produce it to P',

making KP' equal to PK.
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Then every circle which has its centre in AE, and passes through

P, must also pass through P'. Ex. 1, p. 215.

Hence the problem is now reduced to drawing a circle through
P and P' to touch either AC or AB. Ex. 21, p. 235.

Produce P'P to meet AC at S.

Describe a square equal to the rect. SP, SP'; it. 4 •

and cut off SR equal to a side of the square.
Describe a circle through the points P', P, R:

then since the rect. SP, SP' = the sq. on SR, Con>itr.

.-. the circle touches AC at R
;

iii. 37.

and since its centre is in AE, the bisector of the Z BAC,
it may be shewn also to touch AB. q. e. v.

Note,
(i)

Since SR may be taken on either side of S, it follows

that there will be two solutions of the problem.

(ii) If the given straight lines are parallel, the centre lies on the

parallel straight line mid-way between them, and the construction

proceeds as before.

24. To describe a circle to touch tico given straight lines and a

given circle.

Let AB, AC be the two given H..

st. lines, and D the centre of the ,'^' ^^
given circle :

^\<''' '^^y:
it is required to describe a circle

.'-/ \ q ^-^ \
to touch AB, AC and the circle Oy''! >0\/'^\N
whose centre is D.

f y^\r<\-^^
' \

Draw EF, GH par' to AB X^^ Vj^ '7^ )

and AC respectively, on the sides ^ \ '^i V / J ^

remote from D, and at distances ..rii-,,]^-.-'^—!^!!^!!^

from them equal to the radius of E M
~

F
the given circle.

Describe the ©MND to touch EF and GH at M and N, and
to pass through D. Ex. 23, p. 23G.

Let O be the centre of this circle.

Join CM, ON, CD meeting AB, AC and the given circle at P, Q
and R.

Then a circle described from centre O with radius OP will touch
AB, AC and the given circle.

For since O is the centre of the ©MND,
.-. 0M = 0N=30D.

But PM = QN = RD
; Comtr.

.-. OP = OQ=:OR.
.'. a circle described from centre O, with radius OP, will pass through

Q and R.

And since the z ^ at M and N are rt. angles, iii. 18.

.-. the Z ' at P and Q are rt. angles ;
i. 29.

.-. the PQR touches AB and AC.
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And since R, the point in which the circles meet, is on the Hnc of

centres OD,
. '. the PQR touches the given circle. q. k. v.

Note. There will be two solutions of this problem, since two
circles may be drawn to touch EF, GH and to pass through D.

25. To describe a circle to pass through a given poiiit and touch a

given straight line and a given circle.

Let P be the given point, AB the

given St. line, and DHE the given
circle, of which C is the centre :

it is required to describe a circle to

pass through P, and to touch AB
and the ©DHE.

Through C draw DCEF perp. to

AB, cutting the circle at the points
D and E, of which E is between C
and AB.

Join DP;
and by describing a circle through
F, E, and P, find a point K in DP (or DP produced) such that the

rect. DE, DF=:therect. DK, DP.

Describe a circle to pass through P, K and touch AB : Ex. 21, p. 235.

This circle shall also touch the given © DHE.

For' let G be the point at which this circle touches AB.
Join DG, cutting the given circle DHE at H.

Join HE.

Then the Z DHE is a rt. angle, being in a semicircle. iii. 31.

also the angle at F is a rt. angle; Constr.

.'. the points E, F, G, H are concyclic :

.. the rect. DE, DF = the rect. DH, DG : m. 36.

but the rect. DE, DF = the rect. DK, DP : Constr.

.'. the rect. DH, DG=therect. DK, DP:
.*. the point H is on the © PKG.

Let O be the centre of the PHG.
Join OG, OH, CH.

Then OG and DF are par", since they are both perp. to AB ;

and DG meets them.
.-. thezOGD=:thezGDC. i. 29.

But since OG = OH, and CD = CH,
.. theZOGH=thezOHG ; and the z CDH=the Z CHD :

.-.thezOHG^thezCHD;
.'. OH and CH are in one st. line.

.*. the PHG touches the given © DHE. q. e. f.
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Note, (i) Since two circles may be drawn to pass through
P, K and to touch AB, it follows that there will be two solutions

of the present problem.

(ii) Two more solutions may be obtained by joining PE, and

proceeding as before.

The student should examine the nature of the contact between the

circles in each case.

26. Describe a circle to pass through a given point, to touch

a given straight line, and to have its centre on another given straight
line.

27. Describe a circle to pass through a given point, to touch

a given circle, and to have its centre on a given straight line.

28. Describe a circle to pass through two given points, and to

intercept an arc of given length on a given circle.

29. Describe a circle to touch a given circle and a given straight
line at a given point.

30. Describe a circle to touch two given circles and a given

straight line.

V. ON MAXIMA AND MINIMA.

We gather from the Theory of Loci that the position of an

angle, line or figure is capable under suitable conditions of

gradual change ;
and it is usually found that change of position

involves a corresponding and gradual change of magnitude.

Under these circumstances we may be required to note if

any situations exist at which the magnitude in question, after

increasing, begins to decrease
;
or after decreasing, to increase :

in such situations the Magnitude is said to have reached a

Maximum or a Minimum value; for in the former case it is

greater, and in the latter case less than in adjacent situations

on either side. In the geometry of the circle and straight line

we only meet with such cases of continuous change as admit of

one transition from an increasing to a decreasing state—or vice

versS,—so that in all the problems with which we have to deal

(where a single circle is involved) there can be only one Maximum
and one Minimum—the Maximum being the greatest, and the
Minimum being the least value that the variable magnitude is

capable of taking.
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Tims a variaMe geometrical magnitude reaches ita maxiinum
or minimum ^•ahle at a turning point, towards which the magni-
tude may mount or descend from either side : it is natural there-

fore to expect a maximum or minimum value to occur when, in

the coui-se of its change, the magnitude assumes a symmetrical
form or position ;

and this is usually found to be the case.

This general connection between a symmetrical form or posi-
tion and a maximum or minimum value is not exact enough to

constitute a proof in any particular problem ;
but by means of

it a situation is suggested, which on further examination may be
shewn to give the maximum or minimum value sought for.

For example, suppose it is required
to determine the greatest straight line that may he drawn perpen-
dicular to the chord of a segment of a circle and intercepted
heticeen the chord and the arc:

we immediately anticipate that the greatest perpendicular is

that which occupies a symmetrical position in the figure, namely
the perpendicular which passes through the middle point of the

chord
;
and on further examination this may be proved to be the

case by means of i. 19, and i. 34.

Again we are able to find at what point a geometrical magni-
tude, varying under certain conditions, assumes its Maximum or

Minimum value, if we can discover a construction for drawing
the magnitude so that it may have an assigned value : for we

may "then examine between what limits the assigned value must
lie in order that the construction may be possible; and the

higher or lower limit will give the Maximum or Minimum
sought for.

It Avas pointed out in the chapter on the Intersection of Loci,

[see page 119] that if under certain conditions existing among
the data, two solutions of a problem are possible, and under other

conditions, no solution exists, there will always be some inter-

mediate condition under which one and only one distinct solution

is possible.

Under these circumstances this single or limiting solution

will always be found to correspond to the maximum or minimum
value of the magnitude to be constructed.

1. For example, suppose it is required
to divide a given straight line so that the rectangle contained hy the

two segments may he a maximum.
We may first attempt to divide the given straight line so that the

rectangle contained by its segments may have a given area—that is,

be equal to the square on a given straight line.
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Let AB be the given straight line, and K the side of the given

square :

p:^....

n
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The following example illustrates the same point.

2. To find at lohat point in a given straight line the angle subtended

by the line joining two given points, which are on the same side of the

given straight line, is a maximum.

Let CD be the given st. line, and A, B the given points on the

same side of CD:
it is required to find at what point in CD the angle subtended by the

St. line AB is a maximum.
First determine at what point in CD, the st. line AB subtends a

given angle.

This is done as follows:—

On AB describe a segment of a circle containing an angle equal to

the given angle. iii, 33.

If the arc of this segment intersects CD, tico points in CD are

found at which AB subtends the given angle: but if the arc does not
meet CD, no solution is given.

In accordance with the principles explained above, we expect that

a maximum angle is determined at the limiting position, that is,

when the arc touches CD ;
or meets it at two coincident points.

[See page 218.]
This we may prove to be the case.

Describe a circle to pass through A and

B, and to touch the st. line CD.
[Ex. 21, p. 235.]

Let P be the point of contact.

Then shall the Z APB be greater than

any other angle subtended by AB at a point
in CD on the same si^e of AB as P.

For take Q, any other point in CD, on
the same side of AB as P

;

and join AQ, QB.
Since Q is a point in the tangent other

than the point of contact, it must be with-

out the circle,

.•, either BQ or AQ must meet the arc of the segment APB.
Let BQ meet the arc at K : join AK.

Then the Z APB = the z AKB, in the same segment:
but the ext. Z AKB is greater than the int. opp. Z AQB.

.-. the Z APB is greater than AQB.

Similarly the Z APB may be shewn to be greater than any other

angle subtended by AB at a point in CD on the same side of AB:
that is, the Z APB is the greatest of all such angles, q. e. d.

Note. Two circles may be described to pass through A and B,
and to touch CD, the points of contact being on opposite sides of AB:
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hence two points in CD may be found such that the angle subtended

by AB at each of them is greater than the angle subtended at any
other point in CD on the same side of AB.

We add two more examples of considerable importance.

3. In a straight line of indefinite length find a point such that the

sum of its distances from two given points, on the same side of the given

line, shall be a minimum.

Let CD be the given st. line of

indefinite length, and A, B the given

points on the same side of CD :

it is required to find a point P in

CD such that the sum of AP, PB is

a minimum.

Draw AF perp. to CD
;

and produce AF to E, making FE
equal to AF.

Join EB, cutting CD at P.

Join AP, PB.
Then of all lines drawn from A £

and B to a point in CD,
the sum of AP, PB shall be the least.

For, let Gl be any other point in CD.
Join AQ, BQ, EQ.

Now in the a« AFP, EFP,

(
AF=EF, Co7istr.

Because <and FP is common;
(and the zAFP= the Z EFP, being rt. angles,

.-. AP=EP. 1.4.

Similarly it may be shewn that

AQ=:Ea
Now in the A EQB, the two sides EQ, QB are together greater

than EB;
hence, AQ, QB are together greater than EB,

that is, greater than AP, PB.

Similarly the sum of the st. lines drawn from A and B to any other

point in CD may be shewn to be greater than AP, PB.
.-. the sum of AP, PB is a minimum.

Q. E.D.

Note. It follows from the above proof that
the Z APF = tbe Z EPF i. 4.

= the Z BPD. I. 15.

Thus the sum of AP, PB is a minimum, when these lines are

equally inclined to CD.
16-2



244 EUCLID

4. Given tico intersecting straight lines AB, AC, and a point P
between them; shew that of all straight lines which pass through P
and are terminated by AB, AC, that which is bisected at P cuts off the

triangle of minimum area.

Let EF be the st. line, terminated

by AB, AC, wfiich is bisected at P:
then the a FAE shall be of mini-
mum area.

For let HK be any other st. line

passing through P :

through E draw EM par' to AC.

Then in the a" HPF, MPE,

(
the z HPF= the z MPE, i. 15.

Because^ and the z HFP= the z MEP, i. 29.

( andFP=EP; Hyp.
:. the A HPF= the A MPE. i. 26, Cor.

But the A MPE is less than the a KPE;
.-. the A HPF is less than the a KPE:

to each add the fig. AHPE;
then the a FAE is less than the a HAK.

Similarly it may be shewn that the a FAE is less than any other

triangle formed by drawing a st. line through P:
that is, the a FAE is a minimum.

Examples.

1. Two sides of a triangle are given in length ; how must they
be placed in order that the area of the triangle may be a maximum ?

2 Of all triangles of given base and area, the isosceles is that

which has the least perimeter.

3. Given the base and vertical angle of a triangle ; construct it

so that its area may be a maximum.

4. Find a point in a given straight line such that the tangents
drawn from it to a given circle contain the greatest angle possible.

5. A straight rod slips between two straight rulers placed at

right angles to one another; in what position is the triangle

intercepted between the rulers and rod a maximum ?
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6. Divide a given straight line into two parts, so that the sum of

the squares on the segments may
(i) be equal to a given square,

(ii) may be a minimum.

7. Through a point of intersection of two circles draw a straight
line terminated by the circumferences,

(i) so that it may be of given length,

(ii) so that it may be a maximum.

8. Two tangents to a circle cut one another at right angles ;

find the point on the intercepted arc such that the sum of the

perpendiculars drawn from it to the tangents may be a minimum.

9. Straight lines are drawn from two given points to meet
one another on the circumference of a given circle : prove that their

sum is a minimum when they make equal angles with the tangent
at the point of intersection.

10. Of all triangles of given vertical angle and altitude, the

isosceles is that which has the least area.

11. Two straight lines CA, CB of indefinite length are drawn
from the centre of a circle to meet the circumference at A and B

;

then of all tangents that may be drawn to the circle at points on the
arc AB, that whose intercept is bisected at the point of contact cuts

off the triangle of minimum area.

12. Given two intersecting tangents to a circle, draw a tangent to

the convex arc so that the triangle formed by it and the given tan-

gents may be of maximum area.

13. Of all triangles of given base and area, the isosceles is that
which has the greatest vertical angle.

14. Find a point on the circu]?iference of a circle at which the

straight line joining two given points (of which both are within,
or both without the circle) subtends the greatest angle.

15. A bridge consists of three arches, whose spans are 49 ft.,

32 ft. and 49 ft. respectively : shew that the point on either bank
of the river at which the middle arch subtends the greatest angle
is 63 feet distant from the bridge.

16. From a given point P without a circle whose centre is C,
draw a straight line to cut the circumference at A and B, so that the

triangle ACB may be of maximum area.

17. Shew that the greatest rectangle which can be inscribed
in a circle is a square.

18. A and B are two fixed points without a circle : find a point
P on the circumference such that the sum of the squares on AP, PB
may be a minimum. [See p. 147, Ex. 24.]
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19. A segment of a circle ig described on the chord AB : find a

point P on its arc so that the sum of AP, BP may be a maximum.

20. 0/ all triangles that can be inscribed in a circle that which
has the greatest perimeter is equilateral.

21. Of all triangles that can be inscribed in a given circle tliat

which has the greatest area is equilateral.

22. Of all triangles that can be inscribed in a given triangle that

which has the least perimeter is the triangle formed bij joining the feet

of the perpendiculars drawn from the vertices on opposite sides.

23. Of all rectangles of given area, the square has the least peri-
meter.

24. Describe the triangle of maximum area, having its angles
equal to those of a given triangle, and its sides passing through three

given points.

VI. HARDER MISCELLANEOUS EXAMPLES.

1. AB is a diameter of a given circle; and AC, BD, two chords
on the same side of AB, intersect at E : shew that the circle which

passes through D, E, C cuts the given circle orthogonally.

2. Two circles whose centres are C and D intersect at A and B,
and a straight hne PAQ is drawn through A and terminated by the
circumferences : prove that

(i)
the angle PBQr^the angle CAD

(ii) the angle BPC = the angle BQD.

3. Two chords A B, CD of a circle whose centre is O intersect at

right angles at P : shew that

(i) PA2+ PB2+ PC2+ PD2=4 (radiusp.

(ii) AB2 + CD2 + 40P2 =8(radius)2.

4. Two parallel tangents to a circle intercept on any third

tangent a portion which is so divided at its point of contact that the

rectangle contained by its two parts is equal to the square on the

radius.

5. Two equal circles move between two straight lines placed
at right angles, so that each straight line is touched by one circle,

and the two circles touch one another : find the locus of the point
of contact.

6. AB is a given diameter of a circle, and CD is any parallel
chord: if any point X in AB is joined to the extremities of CD,
shew that

XC2 + XD2=XA24-XB2.
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7. PQ is a fixed chord in a circle, and PX, QY any two parallel
chords through A and B : shew that XY touches a fixed concentric

circle.

8. Two equal circles intersect at A and B
; and from C any point

on the circumference of one of them a perpendicular is drawn to AB,
meeting the other circle at O and O' : shew that either O or O' is the
orthocentre of the triangle ABC. Distinguish between the two cases.

9. Three equal circles pass through the same point A, and their

other points of intersection are B, C, D : shew that of the four

points A, B, C, D, each is the orthocentre of the triangle formed

by joining the other three.

10. From a given point without a circle draw a straight line

to the concave circumference so as to be bisected by the convex
circumference. When is this problem impossible ?

11. Draw a straight line cutting two concentric circles so that

the chord intercepted by the circumference of the greater circle may
be double of the chord intercepted by the less.

12. ABC is a triangle inscribed in a circle, and A', B', C are the
middle points of the arcs subtended by the sides (remote from the

opposite vertices) : find the relation between the angles of the two

triangles ABC, A'B'C
;
and prove that the pedal triangle of A'B'C is

equiangular to the triangle ABC.

13. The opposite sides of a quadrilateral inscribed in a circle are

produced to meet: shew that the bisectors of the two angles so

formed are perpendicular to one another.

14. If a quadrilateral can have one circle inscribed in it, and
another circumscribed about it ; shew that the straight lines joining
the opposite points of contact of the inscribed circle are perpendicular
to one anotherl

15. Given the base of a triangle and the sum of the remaining
sides ; find the locus of the foot of the perpendicular from one

extremity of the base on the bisector of the exterior vertical angle.

16. Two circles touch each other at C, and straight lines are

drawn through C at right angles to one another, meeting the
circles at P, P' and Q, Gl' respectively: if the straight line which

joins the centres is terminated by the circumferences at A and A',

shew that

P'P2 + Q'Q2^A'A2.

17. Two circles cut one another orthogonally at A and B
;
P

is any point on the arc of one circle intercepted by the other, and
PA, PB are produced to meet the circumference of the second circle

at C and D : shew that CD is a diameter.
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18. ABC is a triangle, and from any point P perpendiculars

PD, PE, PF are drawn to the sides: if S^ So, S., are the centroM

of the circles circumscribed about the triangles DPE, EPF, FPD,
shew that the triangle SjSgSg is ecjuiangular to the triangle ABC,
and that the sides of the one are respectively half of the sides of the

other.

19. Two tangents PA, PB are drawn from an external point P to

a given circle, and C is the middle point of the chord of contact

AB: if XY is any chord through P, shew that AB bisects the angle
XCY.

20. Given the sum of two straight lines and the rectangle con-

tained by them (equal to a given square) : find the lines.

21. Given the sum of the squares on two straight lines and the

rectangle contained by them : find the lines.

22. Given the sum of two straight lines and the sum of the

squares on them : find the lines.

23. Given the difference between two straight lines, and the rect-

angle contained by them : find the lines.

24. Given the difference between two straight lines and the differ-

ence of their squares : find the lines.

25. ABC is a triangle, and the internal and external bisectors of

the angle A meet BC, and BC produced, at P and P': if O is the

middle point of PP', shew that OA is a tangent to the circle circum-

scribed about the triangle ABC.

26. ABC is a triangle, and from P, any point on the circum-

ference of the circle circumscribed about it, perjjendiculars are drawn
to the sides BC, CA, AB meeting the circle again in A', B', C ;

prove that

(i)
the triangle A'B'C is identically equal to the triangle ABC.

(ii) AA', BB', CC are parallel.

27. Two equal circles intersect at fixed points A and B, and from

any point in AB a perpendicular is drawn to meet the circumferences

on the same side of AB at P and Q : shew that PQ is of constant

length.

28. The straight lines which join the vertices of a triangle to the

centre of its circumscribed circle, are perpendicular respectively to the
sides of the pedal triangle.

29. P is any point on the circumference of a circle circumscribed
about a triangle ABC ; and perpendiculars PD, PE are drawn from P
to the sides BC, CA. I'md the locus of the centre of the circle circum-

scribed about the triangle PDE.
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30. P is any point on the circumference of a circle circumscribed

about a iriangle ABC : shew that the angle between Simson's Line
for the point P and the side BC, is equal to the angle between AP
and the diameter of the circumscribed circle.

31. Shew that the orthocentres of the four triangles formed by two

pairs of intersecting straight lines are coUinear.

32. Shew that the circles circumscribed about the four triangles
formed by two pairs of intersecting straight lines meet in a point.

On the Construction of Triangles.

83. Given the vertical angle, one of the sides containing it, and
the length of the perpendicular from the vertex on the base : construct

the triangle.

34. Given the feet of the perpendiculars drawn from the vertices

on the opposite sides : construct the triangle.

35. Given the base, the altitude, and the radius of the circum-

scribed circle : construct the triangle.

36. Given the base, the vertical angle, and the sum of the squares
on the sides containing the vertical angle : construct the triangle.

37. Given the base, the altitude and the sum of the squares on
the sides containing the vertical angle : construct the triangle.

38. Given the base, the vertical angle, and the difference of the

squares on the sides containing the vertical angle : construct the tri-

angle.

39. Given the vertical angle, and the lengths of the two medians
drawn from the extremities of the base : construct the triangle.

40. Given the base, the vertical angle, and the difference of the

angles at the base : construct the triangle.

41. Given the base, and the position of the bisector of the vertical

angle : construct the triangle.

42. Given the base, the vertical angle, and the length of the

bisector of the vertical angle : construct the triangle.

43. Given the perpendicular from the vertex on the base, the
bisector of the vertical angle, and the median which bisects the base :

construct the triangle.

44. Given the bisector of the vertical angle, the median bisect-

ing the base, and the difference of the angles at the base : construct the

triangle.



BOOK IV.

Book IV. consists entirely of problems, dealing with
various rectilineal figures in relation to the circles which

pass through their angular points, or are touched by their

sides.

Definitions.

1. A Polygon is a rectilineal figure bounded by more
than four sides.

A Polygon of Jive sides is ca^

„ six sides

,5 seven sides

,, eight sides

,, ten sides

„ twelve sides

3) fifteen sides

led a Pentagon,

Hexagon,
Heptagon,
Octagon,

Decagon,
Dodecagon,
Quindecagon.

2. A Polygon is Regular when all its sides are equal,
and all its angles are equal.

3. A rectilineal figure is said to be _
inscribed in a circle, when all its angular
points are on the circumference of the circle :

and a circle is said to be circumscribed
about a rectilineal figure, when the circum-

ference of the circle passes through all the

angular points of the figure.

4. A rectilineal figure is said to be
circumscribed about a circle, when each side

of the figure is a tangent to the circle :

and a circle is said to be inscribed in a recti-

lineal figure, when the circumference of the

circle is touched by each side of the figure.

5. A straight line is said to be placed in a circle, wlien

its extremities are on the circumference of the circle.
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Proposition 1. Problem.

In a given circle to i^lace a chord equal to a given

straight line, which is not greater than the diameter of the

circle.

Let ABC be the given circle, and D the given straight
line not greater tlian the diameter of the circle :

it is required to place in the 0ABC a chord equal to D.

Draw CB, a diameter of the 0ABC.
Then if CB = D, the thing required is done.

But if not, CB must be greater than D. Hyp-
From CB cut off CE equal to D : I. 3.

and from centre C, with radius CE, describe the 0AEF,
cutting the given circle at A.

Join CA.

Then CA shall be the chord required.

For CA = CE, being radii of the AEF :

and CE = D : Constr.

:. CA= D.

Q. E. F.

EXERCISES.

1. In a given circle place a chord of given length so as to pass
through a given point (i) without, (ii) within the circle.

When is this problem impossible ?

2. In a given circle place a chord of given length so that it may
be parallel to a given straight line.
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Proposition 2. Problem.

In a given circle to inscribe a triangle- equiangvZar to a

given triangle.

Let ABC be the given circle, and DEF the given triangle:
it is required to inscribe in the ABC a triangle equiangular
to the A DEF.

At any point A, on the O*^^ of the 0ABC, draw the

tangent GAH. ill. 17.

At A make the z. GAB equal to the l DFE
;

i. 23.

and make the l HAC equal to the L DEF. i. 23.

Join BC.

Then ABC shall be the triangle required.

Because GH is a tangent to the 0ABC, and from A its

point of contact the chord AB is drawn,
.'. the L GAB = the L ACB in tlie alt. segment: iii. 32.

.'. the L ACB = the l DFE. Constr.

Similarly the z. HAC = the l ABC, in the alt. segment:
.*. the z. ABC = the z. DEF. Constr.

Hence the third l BAG = the third z. EDF,
for the three angles in each triangle are together equal to

two rt. angles, i. 32.

.'. the A ABC is equiangular to the A DEF, and it is

inscribed in the 0ABC.
Q. E. F.
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Proposition 3. Problem.

About a given circle to circumscribe a triangle equi-

angular to a given triangle.

G E F H

M B

Let ABC be the given circle, and DEF the given A :

it is required to circumscribe about the ©ABC a triangle

equiangular to the A DEF.

Produce EF both ways to G and H.

Find K the centre of the ©ABC, iii. 1.

and draw any radius KB.

At K make the l BKA equal to the ^ DEG ;
i. 23,

and make the z. BKG equal to the ^ DFH.

Through A, B, C draw LM, MN, NL perp. to KA, KB, KG.

Then LMN shall be the triangle required.

Because LM, MN, NL are drawn perp. to radii at their

extremities,
.'. LM, MN, NL are tangents to the circle. lii. 16.

And because the four angles of the quadrilateral AKBM
together = four rt. angles ;

i. 32. Cor.

and of these, the l^ KAM, KBM, are rt. angles; Constr.

.'. the L^ AKB, AMB, together = two rt. angles.

But the L^ DEG, DEF together = two rt. angles; i. 13.

.*. the L^ AKB, AMB -the L^ DEG, DEF;
and of these, the l AKB = the ^ DEG

; Constr.

:. the ^AMB=.the L DEF.

Similarly it may be shewn that the ^ LNM = the lDFE.
.•. the third z. MLN =the third l EDF. i. 32.

.'. the A LMN is equiangular to the A DEF, and it is

circumscribed about the ©ABC. (J.B. f.
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Proposition 4. Problem.

To inscribe a circle in a give^i tricvagle.

Let ABC be the given triangle :

it is required to inscribe a circle in the A ABC.

Bisect the l ^

ABC, ACB by the st. lines Bl, CI, which
intersect at I. i. 9.

From I draw IE, IF, IG perp. to AB, BC, CA. i. 12.

Then in the A« EIB, FIB,

i the z. EBI = the z. FBI
;

Constr.

Because -land the z. BEI = the z. BFI, being rt. angles ;

( and Bl is common
;

.-. IE=:|F. I. 26.

Similarly it may be shewn that IF = IG.

.'. IE, IF, IG are all equal.

From centre I,
with radius IE, describe a circle:

this circle must pass through the points E, F, G
;

and it will be inscribed in the A ABC.

For since IE, IF, IG are radii of the EFG
;

and since the z.
^ at E, F, G are rt. angles ;

.'. the 0EFG is touched at these points by AB, BC, CA:
III. 16.

.'. the 0EFQ is inscribed in the A ABC.

Q. E. F.

Not«. From page 103 it is seen tliat if A I be joined, then A I

bisects the angle BAC.
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Hence it follows that the bisectors of the angles of a triangle are

concurrent, the point of intersection being the centre of the inscribed

circle.

The centre of the circle inscribed in a triangle is sometimes called

its in-centre.

Definitiox.

From
Ij
draw I^G

Because

A circle whicli touches one side of a triangle and the

other two sides produced is said to be an escribed circle of
* the triangle.

To draio an escribed circle of a given triangle.

Let ABC be the given triangle, of which
the two sides AB, AC are produced to E
and F:
it is required to describe a circle touching

BC, and AB, AC produced.

Bisect the z ** CBE, BCF by the st. lines

which intersect at I^, i. 9.

I^H, I^K perp. to AE,
BC, AF. I. 12.

Then in the a' I^BG, I^BH,
I-
the z ljBG = the Z liBH, Coiistr.

and the z I^GB^the Z I^HB,
being rt. angles;

{ also IjB is common
;

.-. liG=:liH.
Similarly it may be shewn that I^H = Ij^K ;

.-. IjG, liH, IjK are all equal.
From centre

1^
with radius I^G, describe a circle:

this circle must pass through the points G, H, K :

and it will be an escribed circle of the a ABC.
For since I^H, I^G, I^K are radii of the HGK,
and since the angles at H, G, K are rt. angles,

.-, the GHK is touched at these points by BC, and by AB, AC
jjroduced :

.'. the GHK is an escribed circle of the a ABC. q.e.f.

It is clear that every triangle has three escribed circles.

Note. From page 104 it is seen that if Alj be joined, then Alj
bisects the angle BAG : hence it follows that

The bisectors of tico exterior angles of a triangle and the bisector of
the third angle are concurrent, the point of intersection being the centre

of an escribed circle.
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Proposition 5. Problem.

To circumscribe a circle about a given tTricmgle.

'^>, /^?^^ bA^o

Let ABC be the given triangle :

it is required to circumscribe a circle about the A ABC.

Draw DS bisecting AB at rt. angles; i. 11.

and draw ES bisecting AC at rt. angles; .

llien since AB, AC are neither par', nor in the same st. line,

.'. DS and ES must meet at some point S.

Join SA
;

and if S be not in BC, join SB, SC.

Then in the A« ADS, BDS,
I AD=BD

Because <and DS is common to both
;

(and the z. ADS = the ^ BDS, being rt. angles ;

.'. SA = SB.

Similarly it may be shewn that SC = SA.

.". SA, SB, SC are all equal.

From centre S, with radius SA, describe a circle :

this circle must pass through the points A, B, C, and is

therefore circumscribed about the A ABC. q.e.f.

It follows that

(i)
when the centre of the circumscribed circle falls

within the triangle, each of its angles must be acute, for

each angle is then in a segment greater than a semicircle :

(ii)
when the centre falls on one of the sides of the

triangle, the angle opposite to this side must be a right

angle, for it is the angle in a semicircle ;
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(iii)
when the centre falls without the triangle, the

angle opposite to the side beyond which the centre falls,

must be obtuse, for it is the angle in a segment less than a

semicircle.

Therefore, conversely, if the given triangle be acute-angled,
the centre of the circumscribed circle falls within it : if it be

a right-angled triangle, the centre falls on the hypotenuse :

ifit be an obtuse-atigled triangle, the centre falls without the

triangle.

Note. From page 103 it is seen that if S be joined to the middle

point of BC, then the joining Hne is perpendicular to BC.

Hence the perpendiculars draivn to the sides of a trianglefrom their

middle points are concurrent^ the point of intersection being the centre

of the circle circumscribed about the triangle.

The centre of the circle circumscribed about a triangle is some-
times called its circum-centrd.

EXERCISES.

On thk Inscribed, Circumscribed, and Escribed CiRCiiES of a
Triangle.

1. An equilateral triangle is inscribed in a circle, and tangents
are drawn at its vertices, prove that

(i)
the resulting figure is an equilateral triangle:

(ii) its area is four times that of the given triangle.

2. Describe a circle to touch two parallel straight lines and a
third straight line which meets them. Shew that two such circles

can be drawn, and that they are equal.

3. Triangles lohich have equal bases and equal vertical angles
have equal circumscribed circles.

4. I is the centre of the circle inscribed in the triangle ABC, and

Ij
is the centre of the circle which touches BC and AB, AC produced:

shew that A, i, Ij
are collinear.

5. If the inscribed and circumscribed circles of a triangle are con-

centric, shew that the triangle is equilateral; and that the diameter of
the circumscribed circle is double that of the inscribed circle.

6. ABC is a triangle; and I, S are the centres of the inscribed

and circumscribed circles; if A, I, S are collinear, shew that AB= AC.
H. E. 17
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7. The sum of the diameters of the inscribed and circumscribed
circles of a right-angled triangle is equal to the sum of the sides

containing the right angle.

8. If the circle inscribed in a triangle ABC touches the sides at

D, E, F, shew that the triangle DEF is acute-angled; and express its

angles in terms of the angles at A, B, C.

9. If I is the centre of the circle inscribed in the triangle ABC,
and

Ij
the centre of the escribed circle which touches BC ; shew that

I, B, Ij, C are concyclic.

10. In any triangle the difference of two sides is equal to the dif-

ference of the segments into which the third side is divided at the

point of contact of the inscribed circle.

11. In the triangle ABC the bisector of the angle BAC meets the

base at D, and from I the centre of the inscribed circle a perpendicular
I E is drawn to BC : shew that the angle Bl D is equal to the angle CI E.

12. In the triangle ABC, I and S are the centres of the inscribed

and circumscribed circles : shew that I S subtends at A an angle equal
to half the difference of the angles at the base of the triangle.

13. In a triangle ABC, I and S are the centres of the inscribed

and circumscribed circles, and AD is drawn perpendicular to BC:
shew that A I is the bisector of the angle DAS.

14. Shew that the area of a triangle is equal to the rectangle
contained by its semi -perimeter and the radius of the inscribed circle.

15. The diagonals of a quadrilateral ABCD intersect at O: shew
that the centres of the circles circumscribed about the four triangles

AOB, BOC, COD, DOA are at the angular points of a parallelogram.

16. In any triangle ABC, if I is the centre of the inscribed circle,

and if A I is produced to meet the circumscribed circle at O ; shew that

O is the centre of the circle circumscribed about the triangle BIC.

17. Given the base, altitude, and the radius of the circumscribed

circle ; construct the triangle.

18. Describe a circle to intercept equal chords of given length on
three given straight lines.

19. In an equilateral triangle the radii of the circumscribed and
escribed circles are respectively double and treble of the radius of the

inscribed circle.

20. Two circles whose centres are A, B, C touch one another

externally two by two a^ D, E, F : shcwthat the inscribed circle of

the triangle ABC is the circumscribed circle of the triangle DEF.
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Proposition 6. Problem.

To inscribe a square in a given cli'cle.

A

Let ABCD be the given circle :

it is required to inscribe a square in the ©ABCD.

Find E the centre of the circle : iii. 1.

and draw two diameters AC, BD perp. to one another, i. 11.

Join AB, BC, CD, DA.

Then the fig. ABCD shall be the square required.

For in the A« BEA, DEA,

f
BE^DE,

Because I and EA is common
;

[and the z. BEA = the L DEA, being rt. angles;
.•. BA ^ DA. I. 4.

Similarly it may be shewn that CD ^^ DA, and that BC — CD.

IHb •*• ^^^® ^o" ^^^'^ ^'^ equilateral.

^Kl And since BD is a diameter of the 0ABCD,
^^K .'. BAD is a semicircle;

j^^r .". the i_ BAD is a rt. angle. ill. 31.

Similarly the other angles of the hg. ABCD are rt. angles.
.'. the fig. ABCD is a square,

and it is inscribed in the given circle.

Q. E. F.

[Fox Exercibes see page 203.]
17-2
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Proposition 7. Problem.

To circumscribe a square about a given circle.

G A F

Let ABCD be the given circle :

it is required to circumscribe a square about it.

Find E the centre of the 0ABCD : iii. 1.

and draw two diameters AC, BD perp. to one another, i. 11.

Through A, B, C, D draw FG, GH, HK, KF perp. to EA, EB,

EC, ED.

Then the fig. G K shall be the square required.

Because FG, GH, HK, KF are drawn perp. to radii at their

extremities,
.•. FG, GH, HK, KF are tangents to the circle, ill. 16.

And because the i.
^
AEB, EBG are both rt. angles, Constr.

.'. GH is par' to AC. i. 28.

Similarly FK is par' to AC :

and in like manner GF, BD, HK are par'.

Hence the figs. GK, GC, AK, GD, BK, GE are par"'^
.'. GF and HK each = BD

;

also GH and FK each = AC :

but AC - BD
;

.•. GF, FK, KH, HG are all equal :

tliat is, the fig. GK is equilateral.
And since the tig. G E is a par",

.*. the L BGA = the l BEA ;

but the z. BEA is a rt. angle ;

.'. the z. at G is a rt. angle.

Similarly the i.
^ at F, K, H are rt. angles.

.'. the fig. GK is a square, and it has been circumscribed

about the 0ABCD. Q.E.F.

I. 34.

Constr.
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Proposition 8, Problem.

To inscribe a circle in a given square.

A E D

KOAEy
H

Let ABCD bo the given square :

it is required to inscribe a circle in the sq. ABCD.

Bisect the sides AB, AD at F and E. I. 10.

Through E draw EH par' to A B or DC : i. 31,

and tlirough F draw FK par' to AD or BC, meeting EH at G.

Now AB = AD, being the sides of a square ;

and their halves are equal ;
Constr

:. AF = AE. Ax. 7,

But the iig. AG is a par"™; Constr.

:. AF=^GE, and AE = GF;
.-. GE-GF.

Similarly it may be shewn that G E = G K, and G K = G H :

.'. GF, GE, GK, GH are all equal.

From centre G, with radius GE, describe a circle;
this circle must pass through the points F, E, K, H :

and it will be touched by BA, AD, DC, CB; ill

for GF, GE, GK, GH are radii;
and the angles at F, E, K, H are rt. angles. i

Hence the FEKH is inscribed in the sq. ABCD.

Q. E. p.

16.

29.

[For Exercises see p. 263.]
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Proposition 9. Problem,

To circum8C7'ibe a circle about a give)i square.

A

I. J)ef. 28,

I. Def. 28.

I. 8.

Let ABCD be the given square :

it is required to circumscribe a circle about the sq. ABCD.

Join AC, BD, intersecting at E.

Then in the A« BAC, DAC,
I BA = DA,

Because •< and AC is common
;

( and BC = DC
;

.-. the L BAC = the z. DAC :

that is, the diagonal AC bisects the l BAD.

Similarly the remaining angles of the square are bisected

])y the diagonals AC or BD.

Hence each of the z.
^

EAD, EDA is half a rt. angle ;

.-. the ^ EAD = the ^EDA:
.-. EA = ED. I. 6.

Similarly it may be shewn that ED : - EC, and EC - EB.

.*. EA, EB, EC, ED are all equal.

From centre E, with radius EA, describe a circle :

this circle must pass through the points A, B, C, D, and is

therefore circumscribed about the
sq. ABCD. Q. E.P.
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Definition. A rectilineal figure about which a circle

may be described is said to be Cyclic.

EXERCISES ON PROPOSITIONS 6—9.

1. If a circle can he inscribed in a quadrilatei'al, slieio that the

sum of one pair of opposite sides is equal to the sum of the other pair.

2. If the sum of one pair of opposite sides of a quadrilateral is

equal to the sxim of the other pair, sheio that a circle may he inscribed

in the figure.

[Bisect two adjacent angles of the figure, and so describe a circle to

touch three of its sides. Then prove indirectly by means of the

last exercise that this circle must also touch the fourth side.]

3. Prove that a rhomhus and a square are the only parallelograms
in which a circle can he inscrihed.

4. All cyclic parallelograms are rectangular.

5. The greatest rectangle which can he inscrihed in a given circle

is a square,

6. Circumscribe a rhombus about a given circle.

7. All squares circumscribed about a given circle are equal.

8. The area of a square circumscribed about a circle is double of

the area of the inscribed square.

9. ABCD is a square inscribed in a circle, and P is any point on
the arc AD : shew that the side AD subtends at P an angle three times

as great as that subtended at P by any one of the other sides.

10. Inscribe a square in a given square ABCD so that one of its

angular points should be at a given point X in AB.

11. In a given square inscribe the square of minimum area.

12. Describe (i)
a circle, (ii)

a square about a given rectangle.

13. Inscribe (i)
a circle, (ii)

a square in a given quadrant.

14. In a given circle inscribe a rectangle equal to a given recti-

lineal figure.

15. ABCD is a square inscribed in a circle, and P is any point on
the circumference; shew that the sum of the squares on PA, PB, PC,
PD is double the square on the diameter. [See Ex. 24, p. 147.]
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Proposition 10. Problem.

To describe an isosceles triangle having each of ike angles
at the base double of the third angle.

Take any straight line AB.

Divide AB at C, so that the rect. BA, BC -the sq. on AC.

II. 11.

From centre A, with radius AB, describe the BDE
;

and in it place the chord BD equal to AC. i/. I.

Join DA.

Tlien ABD shall be the triangle required.

Join CD
;

and about the AACD circumscribe a circle. iv. 5.

Then the rect. BA, BC = the sq. on AC Constr.
= the sq. on BD. Constr.

Hence BD is a t^angent to the ©ACD : in. 37.

and from the point of contact D a chord DC is drawn
;

.'. the ^ BDC =. the z_ CAD in the alt. segment, in. 32.

To each of these equals add the lCDA:
then the whole z. BDA =^ the sum of the z.

*
CAD, CDA.

But the ext. z. BCD = the sum of the z.
»
CAD, CDA

; i. 32.

.'. the L BCD =the z. BDA.

And since AB = AD, being radii of the ©BDE,
.*. the z. DBA = the z. BDA : l. 5.

.'. the z. DB'C = the L DCB ;
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.'. DC=: DB; I. 6.

that is, DC = CA : Constr.

:. the L CAD = the l CDA ; i. 5.

.*. the sum of the l ^
CAD, CDA -= twice the angle at A.

But the ^ ADB = the sum of the z.
«
CAD, CDA

; Proved.

.'. each of the l^ ABD, ADB = twice the angle at A.

Q. E. F.

EXERCISES ON PROPOSITION 10.

1. In an isosceles triangle in which each of the angles at the

base is double of the vertical angle, shew that the vertical angle is

one-fifth of two right angles.

2. Divide a right angle into Jive equal parts.

3. Describe an isosceles triangle whose vertical angle shall be
three times either angle at the base. Point out a triangle of this kind
in the figure of Proposition 10.

4. In the figure of Proposition 10, if the two circles intersect at F,
sheiD that BD = DF.

5. In the figure of Proposition 10, shew that the circle ACD is

equal to the circle circumscribed about the triangle ABD.

6. In the figure of Proposition 10, if the two circles intersect at F,
shew that

(i) BD, DF are sides of a regular decagon inscribed in the

circle EBD.

(ii) AC, CD, DF are sides of a regular pentagon inscribed
in the circle ACD.

7. In the figure of Proposition 10, shew that the centre of the
circle circumscribed about the triangle DBC is the middle point of

the arc CD.

8. In the figure of Proposition 10, if I is the centre of the circle

inscribed in the triangle ABD, and I', S' the centres of the inscribed
and circumscribed circles of the triangle DBC, shew that S'l = 8'!'.
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Proposition 11. Problem.

To inscribe a regular pentagon in a given circle.

Let ABC be a given circle :

it is required to inscribe a regular pentagon in the ©ABC.
Describe an isosceles AFGH, having each of the angles

at G and H double of the angle at F. Iv. 10.

In the 0ABG inscribe the AACD equiangular to the

AFGH,
•

IV. 2.

so that each of the l^ ACD, ADC is double of the l CAD.
Bisect the l ^

ACD, ADC by CE and DB, which meet the

O '^'* at E and B. I. 9.

Join AB, BC, AE, ED.

Then ABCDE shall be the required regular pentagon.

Because each of the l^ ACD, ADC = twice the ^ CAD ;

and because the z.
^
ACD, ADC are bisected by CE, DB,

.-. the five L^ ADB, BDC, CAD, DCE, EGA are all equal.
.*. the five arcs AB, BC, CD, DE, EA are all equal, iii. 26.

.*. the five chords AB, BC, CD, DE, EA are all equal. III. 29.

.'. the pentagon ABCDE is equilateral.

Again the arc AB = the arc DE
; Proved.

to each of these equals add the arc BCD
;

.*. the whole arc ABCD = the whole arc BCDE :

hence the angles at the O^^ which stand upon these

equal arcs are equal ;
iii. 27.

that is, the ^ AED = the z_ BAE.

In like manner the remaining angles of the pentagon

may be shewn to be equal ;

.'. the pentagon is equiangular.
Hence the pentagon, being both equilateral and equi-

angular, is regular ;
and it is inscribed in the ABC. q.e.f.
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Proposition 12. Problem.

To circumscribe a regular pentagon about a given circle.

Lot ABCD be the given circle :

it is required to circumscribe a regular pentagon about it.

Inscribe a regular pentagon in the 0ABCD, iv. 11.

and let A, B, C, D, E be its angular points.
At the points A, B, C, D, E draw GH, HK, KL, LM, MG,

tangents to the circle. in. 17.

Then shall GHKLM be the required regular pentagon.

Find F the centre of the ABCD
;

iii. 1.

and join FB, FK, FC, FL, FD.

Then in the two A« BFK, CFK,
( BF = CF, being radii of the circle,

J
and FK is common :

I

and KB == KC, being tangents to tlie circle from

\ the same point K. in. 17. Cor.

Because

.-. the
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Then in the A« CFK, CFL,
( the z. CFK = the z. CFL, Proved.

Because
-j

and the z. FCK = the l FCL,beingrt. angles, hi. 18.

( and FC is common ;

.-. CK = CL, I. 26.

and the z. FKC -the L FLC.

Hence KL is double of KC; similarly HK is double of KB.

And since KC = KB, iii. 17. Cor.

.'. KL = HK.

In the same way it may be shewn that every two con-

secutive sides are equal ; ,

.*. the pentagon GHKLM is equilateral.

Again, it has been proved that the l FKC = the l FLC,
and that the l ^

HKL, KLM are respectively double of these

angles :

.'. the ^HKL = the ^KLM.
In the same way it may be shewn that every two con-

secutive angles of the figure are equal ;

.'. the pentagon GHKLM is equiangular.

.*. the pentagon is regular, and it is circumscribed about

the© ABC D. Q.E.F.

Corollary. SimilarU^ it may he proved that if tangents
are dravm at the vertices of any regular polygon inscribed in

a circle, tliey will form another regular polygon of the same

sjjecies circumscribed about the circle.

[For Exercises see p. 276.J
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Proposition 13. Problem.

To inacrihe a circle in a given regular pentagon.

Let ABCDE be the given regular pentagon :

it is required to inscribe a circle within it.

Bisect two consecutive l.^ BCD, CDE by CF and DF
which intersect at F. i. 9.

Join FB
;

and draw FH, FK perp. to BC, CD. i. 12.

Then in the A« BCF, DCF,
BC = DC, ^lyi^-

Because \ and CF is common to botli
;

and the l BCF = the z. DCF ; Constr.

.-. the /.CBF=the LCDF. 1.4.

But the L CDF is half an angle of the regular pentagon :

.. also the z. CBF is half an angle of the regular pentagon :

that is, FB bisects the l ABC.

So it may be shewn that if FA, FE were joined, these

lines would bisect tlie z.
^ at A and E.

Again, in the A^ FCH, FCK,
( the z. FCH = the l FCK, Constr.

Because •< and the ^ FHC ^-^ the z. FKC being rt. angles ;

( also FC is common
;

.-. FH = FK. I. 26.

Similarly if FG, FM, FL be drawn perp. to BA, AE, ED,
it may be shewn that the five perpendiculars drawn from F

to the sides of the pentagon are all equal.
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A

From centre F, with radius FH, describe a circle;

this circle must pass through the points H, K, L, M, G
;

and it will be touched at these points by the sides of the

pentagon, for the z.
^ at H, K, L, M, G are rt. L ^ Constr.

.'. the OHKLMG is inscribed in the given pentagon, q.e.f.

Corollary. The bisectors of the angles of a regular

2)entagon meet at a point.

In the same way it may be shewn that the bisectors of the angles
of any regular polygon meet at a point. [See Ex. 1, p. 274.]

[For Exercises on Kegular Polygons see p. 276.]

MISCELLANEOUS EXERCISES.

1. Two tangents AB, AC are drawn from an external point A to

a given circle: describe a circle to touch AB, AC and the convex arc

intercepted by them on the given circle.

2. ABC is an isosceles triangle, and from the vertex A a straight
line is drawn to meet the base at D and the circumference of the cir-

cumscribed circle at E: shew that AB is a tangent to the circle

circumscribed about the triangle BDE.

3. An equilateral triangle is inscribed in a given circle : shew
that twice the square on one of its sides is equal to three times the

area of the square inscribed in the same circle.

4. ABC is an isosceles triangle in which each of the angles at B
and C is double of the angle at A: shew that the square on AB is

equal to the rectangle AB, BC with the square on BC.
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Proposition 14. Problem.

To circumscribe a circle about a given regular jyeniagon.

Let ABODE be the given regular pentagon :

it is required to circumscribe a circle about it.

Bisect the l^ BCD, CDE by CF, DF intersecting at F. I. 9.

Join FB, FA, FE.

Then in the A« BCF, DCF,

I

BC = DC, i^*.
Because ^ and CF is common to both

;

(
and the z. BCF = the z_ DCF

;
Constr.

:. the L CBF = the L CDF. i. 4.

But the ii CDF is half an angle of the regular pentagon :

.*. also the /.CBF is half an angle of the regular pentagon :

that is, FB bisects the L ABC.

So it may be shewn that FA, FE bisect the z.
^ at A and E.

Now the L^ FCD, FDC are each half an angle of tlie

given regular pentagon ;

.'. the z. FCD = the L FDC, iv. Def.
.'. FC- FD. I. 6.

Similarly it may be shewn that FA, FB, FC, FD, FE are

all equal.

From centre F, with radius FA describe a circle :

this circle must pass through the points A, B, C, D, E,

and therefore is circumscribed about the given pentagon.
Q. E. F.

In the same way a circle may be circumscribed about any regular

polygon.
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Proposition 15. Problem.

To inscribe a regular hexagon in a given circle.

Let ABDF be the given circle :

it is required to inscribe a regular hexagon in it.

Find G the centre of the ABDF
;

in. 1.

and draw a diameter AG D.

From centre D, with radius DG, describe the ©EGCH.
Join CG, EG, and produce them to cut the O** of the

given circle at F and B.

Join AB, BC, CD, DE, EF, FA.

Then ABCDEF shall be the required regular hexagon.

Now G E = G D, being radii of the ACE
;

and DG = DE, being radii of the EHC :

.". GE, ED, DG are all equal, and the AEGD is equilateral.
Hence the ;L EGD = one-third of two rt, angles, i. 32.

Similarly the z. DGC = one-third of two rt. angles.
But the z." EGD, DGC, CGB together = two rt. angles ;

i. 13.

.'. the remaining l CGB = one-third of two rt. angles.
.*. the three l^ EGD, DGC, CGB are equal to one another.

And to these angles the vert. opp. l^ BGA, AGF, FGE
are respectively equal :

.-. the ^ »
EGD, DGC, CGB, BGA, AGF, FGE are all equal ;

.'. the arcs ED, DC, CB, BA, AF, FE are all equal; ill. 26.

.•. the chords ED, DC, CB, BA, AF, FE are all equal : in. 29.

.'. the hexagon is equilateral.

Again the arc FA = the arc D E : Proved.

to each of these equals add the arc ABCD
;

then the whole arc FABCD =the whole arc ABCDE :

lience the angles at the Q ^® which stand on these equal arcs

are equal,



ROOK IV. PROP. 15. 273

that is, the a FED = the ^AFE. in. 27.

In like manner the remaining angles of the hexagon
may be shewn to be equal.

.'. the hexagon is equiangular :

.". the hexagon is regular, and it is inscribed in the ABDF.

Q. E. F.

Corollary, Tlie side of a regular hexagon inscribed in

a circle is equal to the radius of the circle.

Proposition 16. Problem.

To inscribe a regular quindecagon in a given circle.

A

*"v

Let ABCD be the given circle :

it is required to inscribe a regular quindecagon in it.

In the 0ABCD inscribe an equilateral triangle, iv. 2.

and let AC be one of its sides.

In the same circle inscribe a regular pentagon, iv. 11.

and let AB be one of its sides.

Then of such equal parts as the whole O ^^ contains fifteen,

the arc AC, which is one-third of the O ''% contains five
;

and the arc AB, which is one-fifth of the O^*', contains three;
.". their difference, the arc BC, contains two.

Bisect the arc BC at E : in. 30.

then each of the arcs BE, EC is one-fifteenth of the O^^-

.'. if BE, EC be joined, and st. lines equal to them be

placed successively round the circle, a regular quindecagon
will be inscribed in it. q. e. f.

18
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NOTE ON RKGULAR POLYGONS.

The following propositions, proved bj Euclid for a regular jienta-

gon, hold good for all regular polygons.

1. The bisectors of the angles of any regular 'polygon c,r<' eon-

current.

Let D, E, A, B, C be consecutive angular
points of a regular polygon of any number of

sides.

Bisect the z • EAB, ABC by AO, BO, which
intersect at O.

Join EO.
It is required to prove that EO bisects the l DEA.

For in the A" EAO, BAO,

{EA=

BA, being sides of a regular polygon;
and AO is common;

and the z EAO = the z BAO ;
Constr.

.: the zOEA = the z OBA. i. 4.

But the z OBA is half the z ABC ; Constr.

also the Z ABC = the z DEA, since the polygon is regular;
/. the z OEA is half the z DEA:
that is> EO bisects the Z DEA.

Similarly if O be joined to the remaining angular points of the

polygon, it may be proved that each joining line bisects the angle
to whose vertex it is drawn.

That is to say, the bisectors of the angles of the polygon meet at

the point O. q. e. d.

CoROLT.ARiES. Sinco the Z EAB = the zABC; Hyp.
and since the Z ^ CAB, OBA are respectively half of the Z ' EAB, ABC ;

.-. the zOAB = the z OBA.
.-. OA^OB. I. G.

Similarly OE= OA.

Hence The bisectors of the angles of a regular polygon are all equal :

and a circle described from the centre O, with radius OA, will be
circumscribed about the polygon.

Also it may be shewn, as in Proposition 13, that perpendiculars
drawn from O to the sides of the polygon are all equal ;

therefore a
circle described from centre O with any one of these perpendiculars as
radius will be inscribed in the polygon.
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% If a polygon inscribed in a circle is equilateral, it is also

equiangular.

Let AB, BC, CD be consecutive sides of an

equilateral polygon inscribed in the ADK;
then shall this polygon be equiangular.

Because the chord AB = the chord DC, Hyp.
.: the minor arc AB = tho minor arc DC, in. 28.

To each of these equals add the arc AKD :

then the arc BAKD^-^the arc AKDC;
, .-. the angles at the Cce^ which stand on theso

equal arcs, are equal ;

that is, the z BCD = the Z ABC. iii. 27.

Similarly the remaining angles of the polygon may be she\vn to be

equal :

.•. the polygon is equiangular. q.e.d.

3. If a polygon inscribed in a circle is equiaiigular, it is also

equilateral, provided that the number of its sides is odd.

[Observe that Theorems 2 and 3 are only true of polygons inscribed

in a circle.

The accompanying figures are sufficient to shew that otherwise a

polygon may be equilateral without being equiangular, Fig. 1; or

equiangular without being equilateral, Fig. 2.]

FEg.l Fig. 2

Note. The following extensions of Euclid's constructions for

Eegular Polygons should be noticed.

By continual bisection of arcs, we are enabled to divide the

circumference of a circle,

by means of Proposition 6, into 4, 8,16,..., 2 . 2**, , . . equal parts ;

by means of Proposition 15, into 3, 6, 12, ..., 3.2'*,... equal parts;

by means of Proposition 11, into 5, 10, 20,..., 5 . 2"',... equal parts;

by means of Proposition 16, into 15, 30, 60,..., 15 . 2**,... equal parts.

Hence we can inscribe in a circle a regular polygon the number of

whose sides is included in any one of the formulae 2 . 2**, 3 . 2", 5 . 2^,

15 . 2**, 71 being any positive integer. In addition to these, it has been
shewn that a regular polygon of 2^+1 sides, provided 2"+l is a

prime number, may be inscribed in a circle.

18 2
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EXERCISES ON PROPOSITIONS 11—16.

1. Express in terms of a right angle the magnitude of an anp;le of

the following regular polygons :

(i) a pentagon, (ii) a hexagon, (iii) an octagon,

(iv) a decagon, (v) d. quindecagon.

2. The angle of a regular pentagon is trisected by the straight
lines which join it to the opposite vertices.

3. In a polygon of n sides the straight lines which join any

angular point to'the vertices not adjacent to it, divide the angle into

n-2 equal parts.

4. Shew how to construct on a given straight line

(i) a regular pentagon, (ii)
a regular hexagon, (iii) a regular octagon.

o. An equilateral triangle and a regular hexagon are inscribed in

a given circle ; shew that

(i) the area of the triangle is half that of the hexagon ;

(ii)
the square on the side of the triangle is three times the

sqitare on the side of the hexagon.

6. ABODE is a regular pentagon, and AC, BE intersect at H:
shew that

(i)
ABr=CH = EH.

(ii) AB is a tangent to the circle circumscribed about the

triangle BHC.

(iii)
AC and BE cut one another in medial section.

7. The straight lines which join alternate vertices of a regular

pentagon intersect so as to form another regular pentagon.

8. The straight lines which join alternate vertices of a regular

polygon of n sides, intersect so as to form another regular polygon of

n sides.

If n= 6, shew that the area of the resulting hexagon is one-third of

the given hexagon.

9. By means of iv. 16, inscribe in a circle a triangle whose

angles are as the numbers 2, 5, 8.

10. Shew that the area of a regular hexagon inscribed in a circle

is three-fourths of that of the corresponding circumscribed hexagon.



THEOREMS AND EXAMPLES ON BOOK IV.

I. ON THE TRIANGLE AND ITS CIRCLES.

1. D, F, E are the points of contact of the inscribed circle of the

triangle ABC, and D^, Fj, Ej tJie points of contact of the escribed

circle, which touches BC and the other sides produced: a, b, c denote

the lengths of the sides BC, CA, AB; s the semi-perimeter of the

triangle, and r, r^ the radii of the inscribed and escribed circles.

A
Prove the folloicing equalities:

—
(i)

(ii)

(iii)

(iv)

(V)

(vi)

AE= AF =

BD-BE.
CD = CF:

s - a,

:S-b,
:S-C.

CDi= CFi = s-6,
BDy=BE^= s-c.

CD^BDi and BD^CDi.

EEi=FFi = a.

The area of the a ABC
3=rs= rj (s-a).
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2. In tlie triangle ABC, I is the centre of the inscribed circle, and

I,, I.,, L the centres of the escribed circles touching respectively the

sides BC, CA, AB and the other sides produced.

Prove the following properties :
—

(i) The points A, I, Ij
are coUincar; so are B, I, \.,; and C, I, I3.

(ii) The points I.,, A, I3
are collinear ; so are I3, B, Ij; and

(iii) Tlie triangles BIjC, CLA, AI3B are equiangular to one
another.

(iv) The triangle l^lglg
is equiangular to the triangle formed by

joining the points of contact of the inscribed circle.

(v) Of the four points I, Ij, 1^, I3 each is the orthocentre of the

triangle whose vertices are the other three.

(vi) The four circles, each of lohich passes through three of the

points I, Ij, Ij, Ij,,
are all equal.
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3. With the notation of page 277, shew that in a triangle ABC.
if the angle at C is a right angle,

r=s-c; ri
= s-h; r,^

= s-a; r^=s.

4. With the figure given on page 278, sItcw that if the circles

whose centres are I, Ij, lo, 1 3 touch BC at D, D^, D,, D3, then

(i) DD,z=DiD3=&. (ii) DD3=DiQ1^2" C.

(iii) Dp.^^h + c. (iv) DD^ = h~c.

5. Shew that the orthocentre and vertices of a triangle are the

centres of the inscribed and escribed circles of the pedal triangle.

[See Ex. 20, p. 225.]

6. Given the base and vertical angle of a triangle, find the locus of

tJie centre of the inscribed circle. [See Ex. 36, p. 228.]

7. Given the base and vertical angle of a triangle, find the locus of
the centre of the escribed circle which touches the base.

8. Given the base and vertical angle of a triangle^ shew that the

centre of the circumscribed circle is fixed.

9. Given the base BC, and the vertical angle A of a triangle, find

the locus of the centre of the escribed circle which touches AC.

10. Given the base, the vertical angle, and the radius of the

inscribed circle ; construct the triangle.

11. Given the base, the vertical angle, and the radius of the

escribed circle, (i)
which touches the base, (ii) which touches one

of the sides containing the given angle ;
construct the triangle.

12. Given the base, the vertical angle, and the point of contact

with the base of the inscribed circle ; construct the triangle.

13. Given the base, the vertical angle, and the point of contact

with the base, or base produced, of an escribed circle
;
construct the

triangle.

14. From an external point A two tangents AB, AC are drawn to

a given circle
;
and the angle BAC is bisected by a straight line which

meets the circumference in I and l^: shew that I is the centre of the

circle inscribed in the triangle ABC, and
Ij

the centre of one of the

escribed circles.

15. I is the centre of the circle inscribed in a triangle, and l^, I2, 1.

the centres of the escribed circles; sheic that llj, llg, II3 are bisected by
the circumference of the circumscribed circle,

16. ABC is a triangle, and Ig, I3 the centres of the escribed

circles which touch AC, and AB respectively: shew that the points
B, C, Ij, I3

lie upon a circle whose centre is on the circumference of

the circle circumscribed about ABC.
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17. With three given points as centres describe three circles

touching one another two by two. How many solutions will there be?

18. Two tangents AB, AC are drawn to a given circle from an
external point A; aqd in AB, AC two points D and E are taken
so that DE is equal to the sum uf DB and EC: shew that DE touches
the circle.

19. Given the perimeter of a triangle, and one angle in magnitude
and position : shew that the opposite side always touches a fixed circle.

20. Given the centres of the three escribed circles ; construct the

triangle.

21. Given the centre of the inscribed circle, and the centres of

two escribed circles
; construct the triangle.

22. Given the vertical angle, perimeter, and the length of the

bisector of the vertical angle ; construct the triangle.

23. Given the vertical angle, perimeter, and altitude ;
construct

the triangle.

24. Given the vertical angle, perimeter, and radius of the in-

scribed circle
; construct the triangle.

25. Given the vertical angle, the radius of the inscribed circle,

and the length of the perpendicular from the vertex to the base ;

construct the triangle.

26. Given the base, the difference of the sides containing the

vertical angle, and the radius of the inscribed circle ;
construct the

triangle. [See Ex. 10, p. 258.]

27. Given the base and vertical angle of a triangle, find the locus

of the centre of the circle which passes through the three escribed

centres.

28. In a triangle ABC, I is the centre of the inscribed circle
;
shew

that the centres of the circles circumscribed about the triangles BIC,
CIA, AIB lie on the circumference of the circle circumscribed about
the given triangle.

29. In a triangle ABC, the inscribed circle touches the base BC at

D ; and r, r^ are the radii of the inscribed circle and of the escribed

circle which touches BC : shew that r .i\=BD . DC.

30. ABC is a triangle, D, E, F the points of contact of its inscribed

circle; and D'E'F' is the pedal triangle of the triangle DEF: shew
that the sides of the triangle D'E'F' are parallel to those of ABC,

31. In a triangle ABC the inscribed circle touches BC at D.

Shew that the circle& inscribed in the triangles ABD, ACD touch one

another.
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On the Nink-Points Chicle.

32. In any triangle the middle points of the sides, the feet of the

perpendiculars drawn from the vertices to the opposite sides, and the

middle points of the lines joining the orthocentre to the vertices are

concyclic.

In the A ABC, let X, Y, Z be the

middle points of the sides BC, CA,
AB

; let D, E, F be the feet of the

perps drawn to these sides from A,

B, C ; let O be the orthocentre, and
a, j8, 7 the middle points of OA,
OB, OC:
then shall the nine points X, Y, Z,

D, E, F, a, /3, 7 be concyclic.

Join XY, XZ, Xa, Ya, Za.
Nowfromthe a ABO,sinceAZ = ZB,
andAa = aO, Hyp.

.-. Za is pari to BO. Ex. 2, p. 96.

And from the a ABC, since BZ = Z A,
andBX = XC, Hyp.

.: ZX is par' to AC.

But BO makes a rt. angle with AC :

.'. the Z XZa is a rt. angle.

Similarly, the Z XYa is a rt. angle. i. 29.

.•. the points X, Z, a, Y are concyclic :

that is, a lies on the 0"^° of the circle, which passes through X, Y, Z ;

and Xa is a diameter of this circle.

Similarly it may be shewn that /3 and y lie on the C"^ of the circle

which passes through X, Y, Z.

_
Again, since aDX is a rt. angle, Hyp.

.'. the circle on Xa as diameter passes through D.

Similarly it may be shewn that E and F lie on the circumference
of the same circle.

.'. the points X, Y, Z, D, E, F, a, /3, y are concyclic. q.e.d.

Hyp.

From this property the circle which passes through the middle

points of the sides of a triangle is called the Nine-Points Circle ; many
of its properties may be derived from the fact of its being the circle

circumscribed about the pedal triangle.



282 EUCLID'S ELEMENTS.

33. To prove that

(i)
the centre of the nine-points circle is the middle point of

the straight line tohich joins the orthocentre to the circumscribed centre:

(ii)
the radius of the nine-points circle is half the radius of the

circumscribed circle :

(iii) the centroid is collinear with the circumscribed centre^ the

nine-points centre, and the orthocentre.

In the A ABC, let X, Y, Z be the
middle points of the sides; D, E, F
the feet of the perp"; O the ortho-

centre; S and N the centres of the
circumscribed and nine-points circles

respectively.

(i)
To prove that N is the

middle point of SO.

It may be shewn that the perp.
to XD from its middle point bisects

SO; Ex. 14, p. 98.

Similarly the perp. to EY at its

middle point bisects SO :

that is, these perp^ intersect at the middle point of SO :

And since XD and EY are chords of the nine-points circle,

.•. the intersection of the lines which bisect XD and EY at rt. angles
is its centre: iii. 1.

.•. the centre N is the middle point of SO.

(ii)
To prove that the radius of the nine-points circle is half

the radius of the circumscribed circle.

By the last Proposition, Xa is a diameter of the nine-points circle.

.•. the middle point of Xa is its centre:

but the middle point of SO is also the centre of the nine-points circle.

(Proved.)
Hence Xa and SO bisect one another at N.

Then from the a' SNX, ONa
j

SN = ON,
Because < and NX = Na,

(and the z SNX = the zONa;
.-. SX = Oa

= Aa.
And SX is also par' to Aa,

.-. SA = Xa.
But SA is a radius of the circumscribed circle;

and Xa is a diameter of the nine-points circle;

.'. the radius of the nine-points circle is half the radius of the circum-
scribed circle.

1.15.

1.4.

I. 33.
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(iii) To prove that the centroid is colHnear with points S, N ,
O.

Join AX and draw ag par^ to SO,
Let AX meet SO at G.

Then from the a AGO, since Aa = aO and ag is par' to OG,
.: Ag = gG. Ex. 13, p. 98.

And from the a Xag, since aN =^ NX, and NG is par> to ag,

.: gG^GX. Ex. 13, p. 98.

.-. AG=f of AX;
.-. G is the centroid of the triangle ABC.

That is, the centroid is colHnear with the points S, N, O. q.e.d,

34. Given the base and vertical angle of a triangle, find the locus

of the centre of the nine-points circle.

35. The nine-points circle of any triangle ABC, whose centre is

O, is also the nine-points circle of each of the triangles AOB, BOC,
COA.

36. If I, Ij, ly, I3
are the centres of the inscribed and escribed

circles of a triangle ABC, then the circle circumscribed about ABC is

the nine-points circle of each of the four triangles formed by joining
three of the points I, 1^, I2, I3.

37. All triangles which have the same orthocentre and the same
circumscribed circle, have also the same nine-points circle.

38. If S, I are the centres, and R, r the radii of the circumscribed

and inscribed circles of a triangle, and if N is the centre of the nine-

Ijoints circle; prove that

(i) S|2=R2-2Rr,

(ii)
Nl =iR-r.

And establish corresponding properties for the escribed circles.

39. Employ the preceding theorem to shew that the nine-points
circle touches the inscribed and escribed circles of a triangle.

II. MISCELLANEOUS EXAMPLES.

1. If four circles are described to touch every three sides of a

quadrilateral, shew that their centres are concyclic.

2. If the straight lines which bisect the angles of a rectilineal

figure are concurrent, a circle may be inscribed in the figure.

3. Within a given circle describe three equal circles touching one
another and the given circle.

4. The perpendiculars drawn from the centres of the three

escribed circles of a triangle to the sides which they touch, are con-

current.
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5. Given an angle and the radii of the inscribed and circumscribed

circles; construct the triangle.

6. Given the base, an angle at the base, and the distance between
the centre of the inscribed circle and the centre of the escribed circle

which touches the base ; construct the triangle.

7. In a given circle inscribe a triangle such that two of its sides

may pass through two given points, and the third side be of given

length.

8. In any triangle ABC, I, Ij, 1^, 1^
are the centres of the in-

scribed and escribed circles, and S^, S._,, S3 are the centres of the

circles circumscribed about the triangles BIC, CIA, AIB: shew that

the triangle S^S.^Sghas its sides parallel to those of the triangle Ijl.jly,

and is one-fourth of it in area: also that the triangles ABC and

S^SoSg have the same circumscribed circle.

9. O is the orthocentre of a triangle ABC : shew that

AOHBC^=B02-)-CA2^CO'-^-i-AB2= d^
where d is the diameter of the circumscribed circle.

10. If from any point within a regular polygon of n sides perpen-
diculars are drawn to the sides the sum of the perpendiculars is equal
to n times the radius of the inscribed circle. ''

11. The sum of the perpendiculars drawn from the vertices of a

regular polygon of n sides on any straight line is equal to n times the

perpendicular drawn from the centre of the inscribed circle.

12. The area of a cyclic quadrilateral is independent of the order
in which the sides are placed in the circle.

13. Of all quadrilaterals which can be formed of four straight
lines of given length, that which is cyclic has the maximum area.

14. Of all polygons of a given number of sides, which may be
inscribed in a given circle, that which is regular has the maximum
area and the maximum perimeter.

15. Of all polygons of a given number of sides circumscribed
about a given circle, that which is regular has the minimum area and
the minimum perimeter.

16. Given the vertical angle of a triangle in position and magni-
tude, and the sum of the sides containing it: find the locus of the
centre of the circumscribed circle.

17. P is any point on the circumference of a circle circumscribed
about an equilateral triangle ABC: shew that PA-+ PB-'-f PC- ia

constant.



BOOK V.

Book V. treats of Ratio and Proportion.

INTRODUCTORY.

The first four books of Euclid deal with the absolute equality
or inequality of Geometrical magnitudes. In the Fifth Book

magnitudes are compared by considering their ratio, or relative

greatness.
The meaning of the words ratio and proportion in their

simplest arithmetical sense, as contained in the following defini-

tions, is probably familiar to the student :

The ratio of one number to another is the multiple, part, or

parts that the first number is of the second; and it may therefore be

measured by the fraction of vihich the first number is the numerator
and the second the denominator.

Four numbers are in proportion when the ratio of the first to

the second is equal to that of the third to the fourth.
But it will be seen that these definitions are inapplicable to

Geometrical magnitudes for the following reasons :

(1) Pure Geometry deals only with concrete magnitudes, re-

presented by diagrams, but not referred to any common imit in

terms of which they are measured : in other words, it makes
no use of number for the purpose of comparison between different

magnitudes.

(2) It commonly happens that Geometrical magnitudes of

the same kind are incommensurable, that is, they are such that

it is impossible to express them exactly in terms of some common
unit.

For example, we can make comparison between the side and

diagonal of a square, and we may form an idea of their relative great-

ness, but it can be shewn that it is impossible to divide either of them
into equal parts of which the other contains an exact number. And
as the magnitudes we meet with in Geometry are more often incom-
mensurable than not, it is clear that it would not always be possible
to exactly represent such magnitudes by numbers, even if reference to

a common unit were not foreign to the principles of Euclid.

It is therefore necessary to establish the Geometrical Theory
of Proportion on a basis quite independent of Arithmetical

principles. This is the aim of Euclid's Fifth Book.
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We shall employ the following notation.

Capital letters, A, B, C,.., will be used to denote the magnitudes
themselves, not nny numerical or algehraical vieamres of them, and
small letters, m, n, p,... will be used to denote whole numbers. Also
it will be assumed that multiplication, in the sense of repeated
addition, can be applied to any magnitude, so that 7U . A or wA will

denote the magnitude A taken vi times.

The symbol > will be used for the words greater than, and < for

le$s than. •

Definitions.

1. A greater magnitude is said to be a multiple of a

less, wlien the greater contains the less an exact number of

times.

2. A less magnitude is said to be a submultiple of a

greater, wlien the less is contained an exact number of

times in the greater.

The following properties of multiples will be assumed as self-evident.

(1) 7uA > = or < 7/zB according as A > = or < B
;
and

conversely.

(2) ?HA + wB + ...=?H(A + B-f-...).

(3) If A > B, then vik - mB=m (A
-

B).

(4) wA + nA+... = (m + Ji+...) A.

.

(5) If m > n, then mA - nk— {m
-

7/) A.

(6) ni . 7iA= run . A= nm . A = tz . 7/iA.

3. The Ratio of one magnitude to another of the same
kind is the relation which the first bears to the second in

respect of quantuplicity.

The ratio of A to B is denoted thus, A : B; and A is

called the antecedent, B the consequent of the ratio.

The term quantuplicity denotes the capacity of the first magnitude
to contain the second with or without remainder. If the magnitudes
are commensurable, their quantuplicity may be expressed numerically

by observing what multiples of the two magnitudes are equal to one
another.

Thus if A -ma, and B = na, it follows that nA — niB. In this case

A = — B, and the quantuplicity of A with respect to B is the arith-

metical fraction -
.

11
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But if the magnitudes are incommensurable, no multiple of the

first can be equal to any multiple of the second, and therefore the

quantuplicity of one with respect to the other cannot exactly be

expressed numerically: in this case it is determined by examining
how the multii)les of one magnitude are distributed among the

multiples of the other.

Thus, let all the multiples of A be formed, the scale extending ad

infinitum; also let all the multiples of B be formed and placed in their

proper order of magnitude among the multiples of A. This forms the

relative scale of the two magnitudes, and the quantuplicity of A with

respect to B is estimated by examining how the multiples of A are

distributed among those of B in their relative scale.

' In other words, the ratio of A to B is known, if for all integral
values of m we know the multiples ?iB and {« + !) B between which
otA lies.

In the case of two given magnitudes A and B, the relative scale of

multiples is definite, and is different from that of A to C, if C differs

from B by any magnitude however small.

For let D be the difference between B and C ;
then however small

D may be, it will be possible to find a number m such that mD>A.
In this case, wB and mC would differ by a magnitude greater than A,
and therefore could not lie between the same two multiples of A

;
so

that after a certain point the relative scale of A and B would differ

from that of A and C,

[It is worthy of notice that we can always estimate the arithmetical

ratio of two incommensurable magnitudes loithin any required degree

of accuracy.

For suppose that A and B are incommensurable ; divide B into w
equal parts each equal to

jS,
so that B = mj3, where m is an integer.

Also suppose j8
is contained in A more than n times and less than

(n+1) times; then

A n8 ^ (w+l)/3
=r > -^ and < ^ ^ ,B m/J m^

that is, _- lies between — and ;B m m
A n 1

so that -^ differs from - by a quantity less than — . And since we

can choose /3 (our unit of measurement) as small as we please, m can

be made as great as we please. Hence — can be made as small as wem
please, and two integers n and m can be found whose ratio will express
that of a and b to any required degree of accuracy.]
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4. The ratio of one magnitude to another is equal to

that of a third magnitude to a fourth, when if any equi-

multiples whatever of the antecedents of the ratios are

taken, and also any equimultiples whatever of the con-

sequents, the multiple of one antecedent is greater than,

e(jual to, or less than that of its consequent, according as

the multiple of the other antecedent is greater than, equal
to, or less than tliat of its consequent.

Thus the ratio A to B is equal to that of C to D when
mC > = 0T <nD according as mA > = or < ?iB, whatever whole
numbers m and n may be.

Again, let m be any whole number whatever, and n another whole
number determined in such a way that either mA is equal to nB, or

7/iA lies between 728 and (n + 1) B ;
then the definition asserts that the

ratio of A to B is equal to that of C to D if mC —wD when mA = ?iB;
or if wC lies between wD and (n-i-1) D when jnA lies between wB and

(n-l-l)B.

In other words, the ratio of A to B is equal to that of C to D when
the multiples of A are distributed among those of B in the same
manner as the multiples of C are distributed among those of D.

5. When the ratio of A to B is equal to that of C to D
the four magnitudes are called proportionals. Tliis is ex-

pressed by saying
" fKis toE as C is to D", and tlie proportion

is written

A : B : : C : D,

or A : B =- C : D.

A and D are called the extremes, B and C tlie means: also

D is said to be a fourth proportional to A, B, and C.

Two terms in a proportion are said to be homologous
when they are both antecedents, or both consequents of the

ratios.

[It will be useful here to compare the algebraical and geometrical
definitions of proportion, and to shew that each may be deduced from
the other.

According to the geometrical definition A, B, C, D are in propor-
tion, when 7uC> = <:wD according as r»A> = <:nB, 7/1 and n being

any positive integers whatever.

According to the algebraical definition A, B, C, D are in proportion
, A C

when rc^ = -jz .

B D
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(i) To deduce the geometrical definition of proportion from
the algebraical definition.

Since s = ni i ^7 niultiplying both sides by — ,
we obtain

mA mC
nB~nD'

hence from the nature of fractions,

mC> = <wD according as mA> = <7tB,

which is the geometrical test of proportion.

(ii) To deduce the algebraical definition of proportion from
the geometrical definition.

Given that mC> = <nD according as ?nA> = <nQ, to prove

AC
B~b'

A C
If - is not equal to —

, one of them must be the greater.

Suppose -= > — ; then it will be possible to find some fraction —
t> U VI

which lies between them, n and m being positive integers.

Hence ;:;>- (1) ;

B VI
^ '

and ;r < — •. ...(2).D VI
^ '

From (1), 7nA>wB;
from (2), 7?iC<7iD;

and these contradict the hypothesis.AC AC
Therefore ^ and _. are not unequal ; that is, 0=7:; which proves

the proposition.]

6. The ratio of one magnitude to another is greater
than that of a third magnitude to a fourtli, when it is

possible to lind equimultiples of the antecedents and equi-

multiples of the consequents such that while the multiple
of the antecedent of the first ratio is greater than, or equal
to, that of its consequent, the multiple of the aittecedent
of the second is not greater, or is less, than th^t of its

consequent.
H. E. lit
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This definition asserts that if whole numbers m and n can be found
such that while 7?iA is greater than wB, mC is not greater than ?iD,
or while mA= ;<B, viC is less than ?tD, then the ratio of A to B is

greater than that of C to D.

7. If A is equal to B, the ratio of A to B is called a
ratio of equality.

If A is greater than B, the ratio of A to B is called a
ratio of greater inequality.

If A is less than B, the ratio of A to B is called a ratio
of less inequality.

8. Two ratios are said to be reciprocal when the ante-

cedent and consequent of one are the consequent and ante-

cedent of the other respectively ;
thus B : A is the reciprocal

of A : B.

9. Three magnitudes of the same kiiid are said to be

proportionals, when the ratio of the first to the second is

equal to that of the second to the third.

Thus Aj B, C are proportionals if

A : B : : B : C.

B is called a mean proportional to A and C, and C is

called a third proportional to A and B.

10. Three or more magnitudes are said to be in con-

tinued proportion when the ratio of the first to the second
is equal to that of the second to the third, and the ratio of

the second to the third is equal to that of the third to the

fourth, and so on.

11. When there are any number of magnitudes of the

same kind, the first is said to have to the last the ratio

compounded of the ratios of the first to the second, of the
second to .the third, and so on up to the ratio of the last

but one to the last magnitude.

For example, if A, B, C, D, E be magnitudes of the same

kind, A : E is the ratio compounded of the ratios A : B,

B : C, C : D, and D : E.
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This is sometimes expressed by the following notation:

/A : B

'^ •

^~]C : D
I D : E.

12. If there are any number of ratios, and a set of

magnitudes is taken such that the ratio of the first to the

second is equal to the first ratio, and the ratio of the second

to the third is equal to the second ratio, and so on, then

the first of the set of magnitudes is said to have to the

last the ratio compounded of the given ratios.

Thus, if A : B, C : D, E : F be given ratios, and if P, Q,

R, S be magnitudes taken so that

P : Q : : A : B,

Q : R :: C : D,

R : S :: E : F;

A : B

then P : S -^
-( C : D
E : F.

1 3. When three magnitudes are proportionals, the first

is said to have to the third the duplicate ratio of that

which it has to the second.

Thus if A : B : : B : C,

then A is said to have to C the duplicate ratio of that whioii

it has to B.

Since ^ • ^ ~
1 B • C

it is clear that the ratio compounded of two equal ratios is the dupli-
cate ratio of either of them.

14. When four magnitudes are in continued proportion,
the first is said to have to the fourth the triplicate ratio of

that which it has to the second.

It may be shewn as above that the ratio compounded of three equal
ratios is the triplicate ratio of any one of them.

19-2
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Although an algebraical treatment of ratio and proportion when
applied to geometrical magnitudes cannot be considered exact, it will

perhaps be useful here to summarise in algebraical form the principal
theorems of proportion contained in Book V. The student will then

perceive that its leading propositions do not introduce new ideas, but

merely supply rigorous jjroofs, based on the geometrical definition ol'

proportion, of results already familiar in the study of Algebra.

We shall only here give those propositions which are afterwards
referred to in Book VI. It will be seen that in their algebraical form

many of them are so simple that they hardly require proof.

Summary of Pkincipal Tjiuorems of Book V.

Proposition 1.

Ratios which are equal to the same ratio are equal to one another.

That is, if A : B=rX : Y and C : D==X : Y;
then A : B= C : D.

I'JIOPOSITION y.

If four magnitudes are proportionals, they are also proportionals
when taken inversely.

That is, if A : B = C : D,

then B:A=D:C.
This inference is referred to as invertendo or inversely.

Proposition 4,

(i) Equal magnitudes have the same ratio to the same magnitude.

For if A = B,

then A : C=B : C.

(ii) The same magnitude has the same ratio to equal magnitudes.

For if A=B,
then C : A =C : B.
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Proposition 6.

(i) Magnitudes which have the same ratio to the name magnitude
are equal to one another.

That is, if A:C=B;C,
then A=B.

(ii) Those magnitudes to ichich the same magnitude has the same
ratio are equal to one another.

That is, if
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Proposition 12.

If any number of magnitudes of the same kind are proportionals,
then as one of the antecedents is to its consequent, so is the sum of the

antecedents to the sum of the consequents.

Let A : B = C : D = E : F = ...;

then shall A: B = A + C+E+... : B + D + F+....

ACE
For put each of the equal ratios b » ^ j ? >•• equal to k ;D D r

then A = Bk, C=Dk, E=Fk,...

A + C+E+... _ Bk+Dk + Fk+..._ A _ C _ E_
••B + D + F+...~ B+D + F + ... -^~B~D~F"-'

/. A: B = A + C+E + ... : B+D + F+....

This inference is sometimes referred to as addendo.

Proposition 13.

(i) If four magnitudes are proportionals, the sum of the first and
second is to the second as the sum of the third and fourth is to the fourth.

Let
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Proposition 14.

If there are two sets of magnitudes, such that the first is to the

second of the first set as the first to the second of the other set, and the

second to the third of the first set as the second to the third of the other,

and so on to the last magnitude : then the first is to the last of the first
set as the first to the last of the other.

First let there be three magnitudes, A, B, C, of one set, and three,

P, Q, R, of another set,

and let
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Proofs op the Propositions of Book V. derived from

THE GEOMETRICAL DEFINITION OP PROPORTION.

Ohs. The Propositions of Book V. are all theorems.

Proposition 1.

Ratios which are equal to the same ratio are equal to one

another.

Let A : B :: P : Q, and also C : D :: P : Q; then shall

A : B :: C : D.

For it is evident that two scales or arrangements of

multiples which agree in every respect with a third scale,

will agree with one another.

Proposition 2.

If tivo raiios are equal, the antecedsnt of the second is

greater than, equal to, or less than its consequent according
as the antecedent of the first is greater than, equal to, or less

than its consequent.

Let
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Proposition 3.

If two ratios are equals their reciprocal ratios are eqnal.

Let A : B : : C : D,

then shall B : A : : D : C.

For, by hypothesis, the multiples of A are distributed

among those of B in the same manner as the multiples of

C are among those of D
;

therefore also, the multiples of B are distributed among
those of A in the same manner as the multiples of D are

among those of C.

That is, B : A :: D : C.

Note. This proposition is sometimes enunciated thus

If four magnitudes are proportionaU, they are also •proportionals
wlien taken inversely,

and the inference is referred to as invertendo or inversely.

Proposition 4.

Equal Ttiagnitudes liave the saine raiio to the same niag-

nitvde; atid the same magnitude has the same ratio to equal

magnitudes.

Let A, B, C be three magnitudes of the same kind, and

let A be equal to B;

then shall A : C : : B : C

and C : A :: C : B.

Since A = B, their multiples are identical and therefore

are distributed in the same way among the multiples of C.

.-. A : C : : B : C, J)e/. L

.'. also, invertendo, C : A :: C : B. v. 3.
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/
Proposition 5.

/
Of two unequal magnitudes^ the greater has a greater

ratio to a third magnitude than the less has; and the same

magnitude hafs a greater ratio to the, less of two magiiitudes
than it has m the greater.

First,/ let A be > B;

then shall A : C be > B : C.

Since A > B, it will be possible to find m such that mk
exceeds mB by a magnitude greater than C;

hence if mlK lies between nO and {71 + 1)C, ??iB < nO:

and if mA = tiC, then mB < nQ,\

/. A : C > B : C. Bef 6.

Secondly, let B be < A
;

then shall C : B be > C : A.

For taking m and n as before,

TiC > mB, while nC is not > mIK
;

.-. C : B > C : A. Def 6.

Proposition 6.

Mag7iitudes tvhich have the same ratio to the same mag-
nitude are equal to one another; and those to vjhich the same

magnitude has the same ratio are equal to one a7iother.

First, let A : C : : B : C
;

then shall A = B.

For if A > B, then A : C > B : C,

and if B > A, then B : C > A : C, v. 5.

which contradict the hypothesis;

.-. A= B.
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Secondh/, let C : A :: C : B;

then shall A = B.

Because C : A : : C : B,

.*., invertendo, A : C :: B : C, V. 3.

A-B,

by the first part of the proof.

Proposition 7.

That magnitude which has a greater ratio than another

has to the same viagnitude is the greater of the two-, and
tliat maxjnitude to which the same has a greater ratio than it

has to another magnitude is the less of the two.

First, let A : C be > B : C;

then shall A be > B.

For if A = B, then A : C : : B : C, v. 4.

which is contrary to the hypothesis.

And if A < B, then A : C < B : C
;

v. 5.

which is contrary to the hypothesis;

.'. A>B.

Secondly, let C : A be > C : B;

then shall A be < B.

For if A- B, then C : A :: C : B, v. 4.

which is contrary to the hypothesis.

And if A > B, then C : A < C : B : \. 5.

which is contrary to the hypothesis;

.-. A<B.
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Proposition 8.

Magnitudes have the same ratio to one another which

their equimultij^les have.

Let A, B be two magnitudes;

then shall A : B :: mA : mB.

If
2^^ Q.

be any two whole numbers,

then m . pA> -^ or < m . ^-B

according as pA > — or <:qB.

But m .pfii=p . m/K, and 7)i . qB — q . iiiB;

.'. p . QiiA > = or <:q . r/iB

according as pA > ^ or < 5'B;

.'. A : B :: mA : mB. I)ef. 4.

CoK. Let A : B :: C : D.

Then since A : B : : mA : mB,
and C : D :: nC : nD;

:. iiiA : mB :: nC : nD. v. 1.

Proposition 9.

1/ tivo 7'atios are equal, and any equimultiples of the

antecedents and aUo of the consequents are taken, the multiple

of the first antecedent has to that of its consequent the same
ratio as the multiple of the other antecedent has to that of its

Let A : B :: C : D;

then shall mA : nB :: mC : nD.

Let p, q be any two whole numbers,
then because A : B : : C : D,

pm . C > = or <.qn. D

according as pm . A > = or <.qn . B, Def A.

that is, p . mC > = or <q .nD,

according as p . mA > — or <:q .7iB
;

.'. inA : 7iB :: mC : 7iD. Def 4.



902 Euclid's elements.

Proposition 10.

Iffour magnitiules of the same kind are proportionals^
the first is greater than, equal to, or less than tJie third,

according as the second is greater thati, equal to, or less than

tliefourth.

Let A, B, C, D be four magnitudes of the same kind such

that

A : B :: C : D;
then A > = or < C

according as B > = or < D.

If B > D, then A : B < A : D : v. 5.

but A : B :: C : D;
.*. C : D< A : D;
.*. A : D>C : D:

.•. A> C. V. 7.

Similarly it may be shewn that

if B < D, then A < C,

and if B ^ D, then A — C.

Proposition 11.

Iffour magnitudes of the same kind are proportionals,

they are also proportionals when taken alternately.

Let A, B, C, D be four magnitudes of the same kind such

that

then shall

A : B :: C : D;
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Proposition 12.

If any number of magnitudes of the same kind are 'pro-

portionals^ as one of the antecedents is to its consequent, so

is the sum of the antecedents to the sum of the consequents.

Let A, B, C, D, E, F, . . . be magnitudes of the same kind

such that

A:B::C:D::E:F:: ;

then shall A:B::A + C + E + ... :B + D+F+....

Because A:B::C:D::E:F::...,
.. according as mA> = or <:nE,

so is mC>=or <nD,
and mE > = or < nF,

.*. so is mk + mC + mE + ... >=^ov <nB +nD + nf + ...

or m(A+ C + E+...)> = or <7i(B 4- D+ F+ ...);

and wt and n are any whole numbers;
.•. A : B ::A+C + E+... : B+D+F+.... Def 4.

Note. This inference is usually referred to as addendo.

Proposition 13,

Iffour magnitudes are proportionals, the sudi or differ-

ence of the first and second is to the second as the sum, or

difference of the third andfourth is to the fourth.
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But DiA 1 mB = m(A + B), and 7«B + nS =- {m + w) B ;

.*. m(A + B) - (/M + n) B, or lies between
{^tn

+ w) B
and (m + ?i + 1

)
B.

Also because A : B : : C : D,

.'. mC = ?iD, or lies between nD and (n+ 1)D; Def. 4.

.'. m(C + D) = {m + n) D or lies between (m + n) D and

{m + n + \)D;
that is, the multiples of C + D are distributed among those

of D in the same way as the multiples of A + B among
those of B;

.'. A+ 8 : B :: C + D : D.

In the same Avay it may be proved that

A-B: B::C-D:D,
or B - A : B : : D — C : D,

according as A is > or < B.

Note. These inferences are referred to as componendo and divi-

dendo respectively.

Proposition 14.

If there are ttuo sets of magnitudes, such that the first is

to the second of the first set as the first to the second of the

otlier set, and the second to the third of the first set as the

second to the third of tlm other, and so on to the last nia(jni-

tude : then the first is to the last of the first set as tJie fi/rst to

the last of the other.

First, let there be three magnitudes A, B, C, of one set

and tliree, P, Q, R, of another set,

and let A : B : : P : Q,

and B : C :
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Now, if mA > nC,
then mA : mB>7iC : mB; v. 5.

.". 77iP : mQ> nR : mQ,
and .'. mP>7iR. v. 7.

Similarly it may be shewn that mP == or < 7iR,

according as mA = or < nC,

.'. A : C :: P : R. J)e/. 4.

Secondly, let there be any number of magnitudes, A, B,

C, ... L, M, of one set, and the same number P, Q, R, ...Y, Z,
of another set, such that

A : B : : P : Q,
B : C :: Q : R,

L : M :: Y : Z;

then shall A : M :: P : Z.

For A : C :: P : R, Proved.

and C : D :: R : S; Hyp.
.'. by the first case A : D : : P : S,

and so on, until finally
A : M = P : Z.

Note. This inference is referred to as ex sequali.

Corollary. If A : B :: P : Q,

and B : C :: R : P;

then A : C :: R : Q.

PROPOSITIOIf 15.
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.'.
, componendo, A + E : E :: C + F : F. v. 13.

Again, E : B :: F : D, Hyp.
.".

,
ex cequali, A + E : B : : C 4- F : D. v. 14.

Proposition 16.

Jf two ratios are equal, their duplicate ratios are equal;
and conversely/, if the duplicate ratios of two ratios are equal,
the ratios t/iemselves are equal.

Let A : B : : C : D ;

then shall the duplicate ratio of A to B be equal to that of

C to D.

Let X be a third proportional to A and B, and Y a third

proportional to C and D,

so that A : B :: B : X, and C : D :: D : Y;

then because A : B : : C : D,

.'. B : X :: D : Y;
.'.

,
ex cequali, A : X :: C : Y.

But A : X and C : Y are respectively the duplicate ratios of

A : B and C : D, Def 13.

.". the duplicate ratio of A : B = that of C : D.

Conversely, let the duplicate ratio of A : B = that of C : D;
then shall A : B :: C : D.

Let P be such that A : B : : C
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Definitions.

1. Two rectilineal figures are said to be equiangular

when the angles of the first, taken in order, are equal

respectively to those of the second, taken in order. Each

angle of. the first figure is said to correspond to the angle
to which it is equal in the second figure, and sides adjacent
to corresponding angles are called corresponding sides.

2. Rectilineal figures are said to be similar when they
are equiangular and have the sides about the equal angles

proportionals, the corresponding sides being homologous.

[See Def. 5, page 288.]

Thus the two quadrilaterals ABCD, EFGH are similar if the

angles at A, B, C, D are respec-

tively equal to those at E, F, G, H,
and if the following proportions
hold

AB : BC :: EF : FG,
BC : CD:: FG : GH,
CD: DA :: GH : HE,
DA : AB :: HE : EF.

3. Two figures are said to have their sides about two
of their angles reciprocally proportional when a side of the

first is to a side of the second as the remaining side of the

second is to the remaining side of the first.

4. A straight line is said to be divided in extreme
and mean ratio when the whole is to the greater segment
as the greater segment is to the less.

5. Two similar rectilineal figures are said to be similarly

situated with respect to two of their sides when these

sides are homologous.
20-2
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Proposition 1. Theorem.

The areas of triaru/les of the same altitude are to one
anotlter as t/teir bases.

Let ABC, ACD be two triangles of the same altitude,

namely the perpendicular from A to BD:

then shall the A A^ : the A ACD :: BC : CD.

Produce BD both ways,
and from CB produced cut oft* any number of parts BG, GH,
each equal to BC

;

and from CD produced cut off" any number of parts DK,

KL, LM each equal to CD.

Join AH, AG, AK, AL, AM.

Then the A"* ABC, ABG, AgH are equal in area, for they
are of the same altitude and stand on the equal bases

CB, BG, GH, I. 38.

.*. the A AHC is the same multiple of the A ABC that HC
is of BC

;

Similarly the A ACM is the same multiple of ACD that CM
is of CD.

And if HC = CM,'
the A AHC = the A ACM; I. 38.

and if HC is greater than CM,
the A AHC is greater than the A ACM; i. 38, Cor.

and if HC is less than CM,
the A AHC is less than the A ACM. i. 38, Cor.

Now since there are four magnitudes, namely, the

A* ABC, ACD, and the bases BC, CD; and of the antecedents,

any equimultiples have been taken, namely, the A AHC
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and the base HC
;

and of the consequents, any equi-

multiples have been taken, namely the A ACM and the

base CM; and since it has been shewn that the A AHC is

greater than, equal to, or less than the A ACM, according
as HC is greater than, equal to, or less than CM;
.'. the four original magnitudes are proportionals, v. Bef. 4.

that is,

the A ABC : the AACD :: the base BC : the base CD. q.e.d.

Corollary. TJie areas of parallelograms of the same

altitude are to one another as their bases.

Let EC, CF be par'"' of the same altitude;
then shall the par"" EC : the par"' CF :: BC : CD.

Join BA, AD.

Then the A ABC : the AACD :: BC : CD; Proved.

but the par"* EC is double of the A ABC,
and the par™ CF is double of the AACD;
.'. the par"* EC : the par"* CF :: BC : CD. v. 8.

Note. Two straight lines are cut proportionally when the seg-
ments of one line are in the same ratio as the corresponding segments
of the other. [See definition, page 131.]

Fig.l Fig.2

A X B A B X

YD
Thus AB and CD are cut proportionally at X and Y, if

AX : XB :: CY : YD.

And the same definition applies equally whether X and Y divide AB,
CD internally as in Fig. 1 or externally as in Fig. 2.
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Proposition 2. Theorem.

If a straight line he drawn parallel to one side of a

triangle, it shall cut the other sides, or those sides produced,

proportionally:

Conversely, if the sides or the sides produced he cut p7'o-

portionally, the straight line which joins the points of section,

shall he parallel to the remaining side of the triangle.

A A Y X

Let XY be drawn par' to BC, one of the sides of the

A ABC:
then shall BX : XA : : CY : YA.

Join BY, ex.

Then the A BXY = the A CXY, being on the same base XY
and between the same parallels XY, BC; i. 37.

and AXY is another triangle;

.'. the A BXY : the A AXY :: the A CXY : the A AXY. V. 4.

But the A BXY : the A AXY :: BX : XA, vi. 1.

and the A CXY : the A AXY : : CY : YA,
.-. BX : XA :: CY : YA. v. 1.

Conversely, let BX : XA :: CY : YA, and let XY be joined:
then shall XY be par' to BC.

As before, join BY, CX.

By hypothesis BX : XA :: CY : YA;
but BX : XA :: tlie A BXY : the A AXY, vi. 1.

and CY : YA :: the ACXY : the AAXY
;

.-. the A BXY : the A AXY :: the A CXY : the A AXY. v. 1.

,-. the A BXY -the ACXY; v. 6.

and they are triangles on the same base and on the same
side of it.

.-. XY is par' to BC. • I. 39.

Q.E.D.



BOOK VI. PROP. 2. 311

EXERCISES.

1. Shew that every quadrilateral is divided by its diagonals into

four triangles proportional to each other.

2. If any tico straight lines are cut by three parallel straight lines,

they are cut proportionally.

3. From a point E in the common base of two triangles ACB,
ADB, straight lines are drawn parallel to AC, AD, meeting BC, BD at

F, G : shew that FG is parallel to CD.

4. In a triangle ABC the straight line DEF meets the sides

BC, CA, AB at the points D, E, F respectively, and it makes
equal angles with AB and AC: prove that

BD : CD :: BF : CE.

5. If the bisector of the angle B of a triangle ABC meets AD at

right angles, shew that a line through D parallel to BC will bisect

AC.

6. From B and C, the extremities of the base of a triangle ABC,
lines BE, CF are drawn to the opposite sides so as to intersect on
the median from A: shew that EF is parallel to BC.

7. From P, a given point in the side AB of a triangle ABC,
draw a straight line to AC produced, so that it will be bisected

by BC.

8. Find a point within a triangle such that, if straight lines be
drawn from it to the three angular points, the triangle will be divided
into three equal triangles.
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Proposition 3. Theorem.

If the vertical angle of a triangle he bisected by a straight
line which cuts tlie base^ the segments of the base shall have
to one another the same ratio as the remaining sides of the

triangle:

Conversely, if the base he divided so tJiat its segments
have to one another the same ratio as the remxiining sides of
tlie triangle Imve, tlie straight line drawn from the vertex to

the point of section shall bisect the vertical angle.

In the A ABC let the z. BAG be bisected by AX, which
meets the base at X

;

then shall BX : XC : : BA : AC.

Through C draw CE par' to XA, to meet BA produced
at E. I. 31.

Then because XA and CE are par',

.'. the L BAX = the int. opp. l AEC, i. 29.

and the l XAC = the alt. i. ACE. i. 29.

But the I. BAX = the l XAC; Hyp.
.'. the ^ AEC = the ^ ACE;

AC = AE. 1.6.

Again, because XA is par' to CE, a side of the A BCE,
.'. BX : XC :: BA : AE; VI. 2.

that is, BX : XC : : BA : AC.
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Conversely, let BX : XC :: BA : AC; and let AX be joined:
then shall the z. BAX ^ z. XAC.

For, with the same construction as before,

because XA is par' to CE, a side of the A BCE,
.-. BX : XC :: BA : AE. VI. 2.

But by hypothesis BX : XC :: BA : AC;
.-. BA : AE :: BA : AC; v. 1.

.'. AE = AC;
.-. the L ACE = the l AEC. i. 5.

But because XA is par' to CE,
.-. the /_ XAC = the alt. z. ACE. i. 29.

and the ext. z_ BAX = the int. opp. l AEC; i. 29.

.-. the L BAX = the l XAC.

Q.E.D.

EXERCISES.

1. The side BC of a triangle ABC is bisected at D, and the angles
ADB, ADC are bisected by the straight lines DE, DF, meeting AB,
AC at E, F respectively: shew that EF is parallel to BC.

2. Apply Proposition 3 to trisect a given finite straight line.

3. If the line bisecting the vertical angle of a triangle be divided
into parts which are to one another as the base to the sum of the

sides, the point of division is the centre of the inscribed circle.

4. ABCD is a quadrilateral: shew that if the bisectors of the

angles A and C meet in the diagonal BD, the bisectors of the angles
B and D will meet on AC.

5. Construct a triangle having given the base, the vertical angle,
and the ratio of the remaining sides.

6. Employ this proposition to shew that the bisectors of the

angles of a triangle are concurrent.

7. AB is a diameter of a circle,, CD is a chord at right angles to

it, and E any point in CD: AE and BE are drawn and produced to
cut the circle in F and G : shew that the quadrilateral CFDG has any
two of its adjacent sides in the same ratio as the remaining two.
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Proposition A. Theorem.

If one side of a triangle he produced, and the exterior

angle soformed he hisected hi/ a straight line which cuts the

base produced, the segments between the bisector and the

extremities of the base shall have to one another the same
ratio as the remaining sides of the triangle Jiave:

Conversely, if the segments of the base produced liave to

one another the same ratio as the remaining sides of the tri-

angle have, the straight line drawn from the vertex to the

point of section shall bisect the exterior vertical angle.

In the A ABC let BA be produced to F, and let tlie

exterior z. CAF be bisected by AX which meets the base

produced at X :

then shall BX : XC : : BA : AC.

Through C draw CE par' to XA, i. 31.

and let CE meet BA at E.

Then because AX and CE are par',

.'. the ext. L FAX ='the int. opp. L AEC,
and the L XAC = the alt. i. ACE. i. 29.

But the L FAX = the l XAC; ffi/p.

.'. the z. AEC -the ^ACE;
.-. AC = AE. I. 6.

Again, because XA is par' to CE, a side of the A BCE,
Co7istr.

.". BX : XC :: BA : AE; VL 2.

that is, BX : XC : : BA : AC.



BOOK VI. PROP. A. 315

Conversely, let BX : XC :: BA : AC, and let AX be joined:
then shall the l FAX - the l XAC.

For, with the same construction as before,

because AX is par' to CE, a side of the A BCE,

.*. BX : XC :: BA : AE. vi. 2.

But by hypothesis BX : XC :: BA : AC;
.-. BA : AE :: BA : AC; v. 1.

.'. AE = AC,
.-. the :LACE = the ;L AEC. i. 5.

But because AX is par^ to CE,
.". the z. XAC = the alt. L ACE,

and the ext. l FAX = the int. opp. ^ AEC
;

i. 29.

.'. the ^ FAX = the /.XAC. q.e.d.

Propositions 3 and A may be both included in one enunciation
as follows :

If the interior or exterior vertical angle of a triangle he bisected

htj a straight line which also cuts the base, the base shall be divided

internally or externally into segments which have the same ratio as

the sides of the triangle :

Conversely, if the base be divided internally or externally into seg-
ments which have the same ratio as the sides of the triangle, the straight
line drawn from the point of division to tJie vertex will bisect the

interior or exterior vertical angle.

EXERCISES.

1. In the circunaference of a circle of which AB is a diameter, n

point P is taken
; straight lines PC, PD are drawn equally inclined

to AP and on opposite sides of it, meeting AB in C and D
;

shew that AC : CB :: AD : DB.

2. From a point A straight lines are drawn making the angles

BAC, CAD, DAE, each equal to half a right angle, and they are cut

by a straight line BCDE, which makes BAE an isosceles triangle:
shew that BC or DE is a mean proportional between BE and CD.

3. By means of Propositions 3 and A, prove that the straight
lines bisecting one angle of a triangle internally, and the other two

externally, are concurrent.
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Proposition 4. Theorem.

If two triangles he equiangular to one anotlier, the sides

about the equal angles shall be proportionals, those sides

which are opposite to equal angles being homologous.

B C E

Let the A ABC be equiangular to the A DCE, having the

L ABC equal to the L DCE, the z_ BCA equal to the L CED,
and consequently the ^i. CAB equal to the z. EDC: i. 32.

then shall the sides about these equal angles be propor-

tionals, namely
AB
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Again, because CD is par' to BF, a side of the A EBF,
.-. BC : CE :: FD : DE; VI. 2.

but FD== AC;
.-. BC : CE :: AC : DE;

and, alternately, BC : CA :: CE : ED. v. 11.

Again, because AC is par' to FE, a side of the A FBE,
.-. BA : AF :: BC : CE; y;, 2.

but AF = CD;
.-. BA
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Proposition 5. Theorem.

//* the sides of two triangles^ taken in order about each of
their angles^ he proportionals, the triangles shall he equi-

angular to one another, having those angles equal which are

02)posite to the homologous sides.

Let the A^ ABC, DEF have their sides proportionals,
so that AB : BC :: DE : EF,

BC : CA :: EF : FD,
nnd consequently, ex cequali,

AB : CA :: DE : FD.

Then shall the triangles be equiangular.

At E in FE make the lFEG equal to the /.ABC;
and at F in EF make the l EFG equal to the l BCA; i. 23.

then the remaining ;L EG F = the remaining ;L BAG. 1.32.

.". the A GEF is equiangular to the A ABC;
.-. GE : EF :: AB : BC. VI. 4.

But AB : BC :: DE : EF; Hyp.
.*. GE : EF :: DE : EF; V. 1.

.-. GE= DE.

Similarly GF = DF.

Then in the triangles GEF, DEF

(
GE=DE,

Because < GF=DF,
(and EF is common;

.-. the ^GEF = the ^ DEF, i. 8.

and the l GFE =the l DFE,
and the z.EGF=the ^ EDF.

But the £. GEF = the ^ ABC; Constr.

.". the ^ DEF -the ^ ABC.

Similarly, the ^ EFD = the l BCA,
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.'. the remaining L FDE = the remaining l. CAB; i. 32.

that is, the A DEF is equiangular to the A ABC.

Q.E.D.

Propositiox 6. Theorem.

If two triangles have one angle of the one equal to one

angle of the other, and the sides about the equal angles pro-

portionals, the triangles shall he similar.

In the A^ ABC, DEF let the z. BAC = the z. EDF,
and let BA : AC :: ED : DF.

Then shall the A^ ABC, DEF be similar.

At D in FD make the l FDG equal to one of the ^ ^
EDF, BAC :

at F in DF make the L DFG equal to the L ACB; i. 23.

.'. the remaining z. FGD = the remaining l. ABC. i. 32.

Then the A ABC is equiangular to the ADGF;
.•, BA : AC :: GD : DF. vi. 4.

But BA : AC :: ED : DF; Hyp.
.'. GD : DF :: ED : DF,

.-. GD-ED.
Then in the A^ GDF, EDF,

[
GD=.ED,

Because
-|

and DF is common;
[and the z. GDF =- the z. EDF; Constr.

.'. the A^ GDF, EDF are equal in all respects, i. 4.

so that the A EDF is equiangular to the A GDF;
but the A GDF is equiangular to the ABAC; Constr.

.', the A EDF is equiangular to the ABAC;
.'. their sides about the equal angles are proportionals, vi. 4.

that is, the A^ ABC, DEF are similar.

Q. E. D.
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Note 1. From Definition 2 it is seen that two conditions are

necessary for similarity of rectilineal figures, namely (1) the figures
must be equiangular, and (2) the sides about the equal angles must
be proportionals. In the case of triangles we learn from Props. 4
and 5 that each of these conditions follows from the other : this how-
ever is not necessarily the case with rectilineal figures of more than
three sidles.

Note 2. We have given Euclid's demonstrations of Propositions
4, 5, 6 ; but these propositions also admit of easy proof by the method
of superposition.

, As an illustration, we will apply this method to Proposition 4.

Proposition 4. [Alternative Proof.]

If two triangles be equiangular to one another, the sides about the

equal angles shall be proportionals, those sides which are opposite to

equal angles being homologous.

Let the A ABC be equiangular to the a DEF, having the Z ABC
equal to the Z DEF, the Z BCA equal to the z EFD, and conse-

quently the z CAB equal to the z FDE : i. 32.

then shall the sides about these equal angles be proportionals.

Apply the a ABC to the a DEF, so that B falls on E and BA
along ED:

then BC will fall along EF, since the Z ABC= the z DEF. Hyp.
Let G and H be the points in ED and EF, on which A and C fall.

Join GH.
Then because the z EGH = the z EDF, Hyp.

:. GH is par' to DF:
.-. DG : GE:: FH : HE;

.•.
, componendo, DE : GE :: FE : HE, v. 13.

.'., alternately, DE : FE :: GE : HE, v. 11.

that is, DE : EF :: AB : BC.

Similarly by applying the a ABC to the a DEF, so that the point
C may fall on F, it may be proved that

EF : FD :: BC : CA.
.-. , ex cequali, DE : DF :: AB : AC.

Q. E. D.
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Proposition 7. Theorkm.

If two triangles have one angle of the one equal to one

angle of the other and the sides about one other angle in each

^proportional, so that the sides opposite to the equal angles are

homologous, then the third angles are either equal or sup-

plementary ; and iri theformer case the triangles are similar.

Let ABC, DEF be two triangles having the L ABC equal to

the z_ DEF, and the sides about the angles at A and D pro-

portional, so that

BA : AC :: ED : DF;
tlien shall the l ^

ACB, DFE be either equal or supple-

mentary, and in the former case the triangles shall be
similar.

If the L. BAC = the /. EDF,
then the ^ BCA = the _ EFD; 1.32.

and the A^ are equiangular and therefore similar, vi. 4.

But if the L BAC is not equal to the z_ EDF, one of them
must be the greater.

Let the z. EDF be greater than the L BAC.
At D in ED make the i. EDF' equal to the z. BAC. i. 23.

Then the A^ BAC, EDF' are equiangular, Constr.

:. BA
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Corollaries to Proposition 7.

A

Three cases of this theorem deserve special attention.

It has been proved that if the angles ACB, DFE are not supple-

mentanj, they are equal:
and we know that of angles which are supplementary and unequal,

one must be acute and the other obtuse.

Hence, in addition to the hypothesis of this theorem,

(i)
If the angles ACB, DFE, opposite to the two homologous

sides AB, DE are both acute, both obtuse, or if one of

them is a right angle,
it follows that these angles are equal ;

and therefore the triangles are similar.

(ii) If the two given angles are right angles or obtuse angles,
it follows that the angles ACB, DFE must be both acute,
and therefore equal, by (i) :

so that the triangles are similar,

(iii) If in each triangle the side opposite the given angle is not
IBS'? than the other given side; that is, if AC and DF are

not less than AB and DE respectively, then
the angles ACB, DFE cannot be greater than the angles
ABC, DEF, respectively;

therefore the angles ACB, DFE, are both acute;

hence, as above, they are equal ;

and the triangles ABC, DEF similar.
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EXERCISES.

ON Propositions 1 to 7.

1. Shew that the diagonals of a trapezium cut one another in
the same ratio.

2. If three straight lines drawn from a point cut two parallel

straight lines in A, B, C and P, Q, R respectively, prove that

AB : BC :: PQ : QR.

3. From a point O, a tangent OP is drawn to a given circle, and
OQR is drawn cutting it in Q and R ; shew that

OQ: OP :: OP: OR.

4. If two triangles are on equal bases and between the same parallels,

any straight line parallel to their bases will cut off equal areas from the

tico triangles.

5. If two straight lines PQ, XY intersect in a point O, so that
PO : OX :: YO : OQ., prove that P, X, Q, Y are concyclic.

6. On the same base and on the same side of it two equal
triangles ACB, ADB are described; AC and BD intersect in O, and
through O lines parallel to DA and OB are drawn meeting the base
in E and F. Shew that AE= BF.

7. BD, CD are perpendicular to the sides AB, AC of a triangle
ABC, and CE is drawn perpendicular to AD, meeting AB in E : shew
that the triangles ABC, ACE are similar.

8. AC and BD are drawn perpendicular to a given straight line
CD from two given points A and B

;
AD and BC intersect in E, and

EF is perpendicular to CD : shew that AF and BF make equal angles
with CD.

9. ABCD is a parallelogram; P and Q are points in a straight
line parallel to AB ; PA and QB meet at R, and PD and QC meet at
S : shew that RS is parallel to AD.

10. In the sides AB, AC of a triangle ABC two points D, E are
taken such that BD is equal to CE

;
if DE, BC produced meet at F,

shew that AB : AC :: EF : DF.

11. Find a point the perpendiculars from which on the sides of a
given triangle shall be in a given ratio.

21-2
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Proposition S. Theorem.

In a rlyht-arbyled triangle if a perpendicular be drawn

froin tlie right angle to the hypotenuse, the triangles on earJi

side of it are similar to tlie wJiole triangle and to one anotJier.

A

Let ABC be a triangle riglit-anglecl at A, and let AD l)e

perp. to BC:
then shall the A^ DBA, DAC be similar to the A ABC and
to one another.

In the A*' DBA, ABC,
the z. BDA = the z. BAC, being rt. angles,
and the l. ABC is common to both;

.*. the remaining z. BAD = the remaining i. BCA, i. 32.

that is, the A^ DBA, ABC are equiangular;
.'. they are similar. vi. 4.

In the same way it may be proved that the A^ DAC,
ABC are similar.

Hence the A" DBA, DAC, being equiangular to the same
A ABC, are equiangular to one another;

.'. they are similar. vi. 4.

Q. E. D.

Corollary. Because the A^ BDA, ADC are similar,

.'. BD : DA :: DA : DC;
and because the A* CBA, ABD are similar,

/. CB : BA :: BA : BD;
and because the A^ BCA, ACD are similar,

.-. BC : CA :: CA : CD.

EXERCISES.

1. Prove that the hypotenuse is to one side as the second side is

to the perpendicular.

2. Shew that the radius of a circle is a vieau proportiomd heticeen

the sepments of any tangent between its point of contact and a pair
of parallel tangents.
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Definition. A less magnitude is said to be a sub-

multiple of a greater, when the less is contained an exact

number of times in the greater. [Book v. Def. 2.]

Proposition 9. Problem.

Froini a given straight line to cut off any required suh-

multiple.

G.

A F B

Let AB be the given straight line.

It is required to cut off a certain submultiple from AB.

From A draw a straight line AG of indefinite length making
any angle with AB.

In AG take any point D; and, by cutting off successive

parts each equal to AD, make AE to contain AD as many
times as AB contains the required submultiple.

Join EB.

Through D draw DF par^ to EB, meeting AB in F.

Then shall AF be the required submultiple.

\ Because DF is par^ to EB, a side of the AAEB,
.-. BF : FA :: ED : DA; VI. 2.

, componendo, BA : AF :: EA : AD. v. 13.

But AE contains AD the required number of times; Constr.

I.'.

AB contains AF the required number of times;
that is, AF is the required submultiple. Q.e.f.

EXERCISES.

1. Divide a straight line into five equal parts.

2. Give a geometrical construction for cutting off two-sevenths of
a given straight line.
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Proposition 10. Problem.

To divide a straight line similarly to a given divided

straight line.

A

f/Np

7K
B K

Let AB be the given straight line to be divided, and AC
the given straight line divided at the points D and E.

It is required to divide AB similarly to AC.

Let AB, AC be placed so as to form any angle.
Join CB.

Through D draw DF par' to CB, i. 31.

and through E draw EG par' to CB,
and through D draw DHK par' to AB.

Then AB shall be divided at F and G similarly to AC.

For by construction each of the figs. FH, HB is a par'";

.'. DH = FG, and HK = GB. I. 34.

Now since HE is par' to KC, a side of the A DKC,
.'. KH : HD :: CE : ED. VI. 2.

But KH = BG, and HD = GF;
.*. BG : GF :: CE : ED. V. 1.

Again, because FD is par' to GE, a side of the A AGE,
.-. GF : FA :: ED : DA, vi. 2.

and it has been shewn that

BG : GF :: CE : ED,

,'., ex cequali, BG : FA :: CE : DA : v. 14.

.*. AB is divided similarly to AC. Q. e. f.

EXERCISE.

Divide a straight line internally and externally in a given ratio. Is

this ahcays possible ?
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Proposition 11. Problem.

To find a third j^roportional to two given straight lines.

K

BA D

Let A, B be two given straight lines.

It is required to find a third proportional to A and B.

Take two st. lines DL, DK of indefinite length, containing

any angle:
from DL cut off DG equal to A, and GE equal to B;

and from DK cut off DH equal to B. i. 3.

Join GH.

Through E draw EF par' to GH, meeting DK in F. i. 31.

Then shall H F be a third proportional to A and B.

Because GH is par' to EF, a side of the A DEF;
.-. DG : GE :: DH : HF. vi. 2.

But DG =^ A; and GE, DH each = B; Constr.

:. A : B :: B : HF;
that is, HF is a third proportional to A and B.

Q. E. P.

I

exercises.

1. AB is a diameter of a circle, and through A any straight Hne
is drawn to cut the circumference in C and the tangent at B in D :

shew that AC is a third proportional to AD and AB.

2. ABC is an isosceles triangle having each of the angles at the
base double of the vertical angle BAC ; the bisector of the angle BCA
meets AB at D. Shew that AB, BC, BD are three proportionals.

3. Two circles intersect at A and B
; and at A tangents are

drawn, one to each circle, to meet the circumferences at C and D :

shew that if CB, BD are joined, BD is a third proportional to CB,
BA.
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Proposition 12. Problem.

Tojlnd afourth proportional to three given straight lines.

ABC

Let A, B, C be the three given straight lines.
,

It is required to find a fourth proportional to A, B, C.

Take two straight lines DL, DK containing any angle:
from DL cut off DG equal to A, GE equal to B;

and from DK cut off DH equal to C. i. 3.

Join GH.

Through E draw EF par' to GH. L 31.

Then shall HF be a fourth proportional to A, B, C.

Because GH is par' to EF, a side of the A DEF;
.-. DG : GE :: DH : HF. vi. 2.

But DG = A, GE = B, and DH - C; Consir.

.'. A : B :: : HF;
that is, HF is a fourth proportional to A, B, C.

Q. E. F.

EXERCISES.

1. If from D, one of the angular points of a parallelogram
ABCD, a straight line is drawn meeting AB at E and CB at F ; shew
that CF is a fourth proportional to EA, AD, and AB,

2. In a triangle ABC the bisector of the vertical angle BAC
meets the base at D and the circumference of the circumscribed circle

at E : shew that BA, AD, EA, AC are four proportionals.

3. Prom a point P tangents PQ, PR are drawn to a circle whose
centre is C, and QT is drawn perpendicular to RC produced : shew
that QT is a fourth proportional to PR, RC, and RT,
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PPtOPOsiTiox 13. Problem.

To find a mecui lyroportional between two given straight
lines.

Let AB, BC be the two given straight lines.

It is required to find a mean proportional between them.

Place AB, BC in a straight line, and on AC describe the
semicircle ADC.

From B draw BD at rt. angles to AC. i. 11.

Then shall BD be a mean proportional between AB and BC.
Join AD, DC.

Now the L ADC being in a semicircle is a rt. angle; iii. 31.

and because in the right-angled A ADC, DB is drawn from
the rt. angle perp. to the hypotenuse,

.*. the A^ ABD, DBC are similar; vi. 8.

.•. AB : BD :: BD : BC;
that is, BD is a mean proportional between AB and BC.

Q. E. F.

I

EXERCISES.

1. If from one angle A of a parallelogram a straight line be
drawn cutting the diagonal in E and the sides in P, Q, shew that AE
is a mean proportional between PE and EQ.

2. A, B, C are three points in order in a straight line : find a

point P in the straight line so that PB may be a mean proportional
between PA and PC.

3. The diameter AB of a semicircle is divided at any point C,
and CD is drawn at right angles to AB meeting the circumference in
D ;

DO is drawn to the centre, and CE is perpendicular to CD : shew
that DE is a third proportional to AG and DC.
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4. AC is the diameter of a semicircle on which a point B is taken

so that BC is equal to the radius : shew that AB is a mean propor-
tional between BC and the sum of BC, CA.

5. A is any point in a semicircle on BC as diameter; from D any
point in BC a perpendicular is drawn meeting AB, AC, and the cir-

cumference in E, G, F respectively; shew that DG is a third propor-
tional to DE and DF.

G. Two circles touch externally, and a common tangent touches
them at A and B : prove that AB is a mean proportional between the

diameters of the circles. [See Ex. 21, p. 219.]

7. If a straight line be divided in two given points, determine
a third point such that its distances from the extremities may be

proportional to its distances from the given points.

8. AB is a straight line divided at C and D so that AB, AC, AD
are in continued proportion; from A a line AE is drawn in any direc-

tion and equal to AC
;
shew that BC and CD subtend equal angles at E.

9. In a given triangle draw a straight line parallel to one of the

sides, so that it may be a mean proportional between the segments of

the base.

10. On the radius OA of a quadrant OAB, a semicircle ODA is

described, and at A a tangent AE is drawn ; from O any line ODFE is

drawn meeting the circumferences in D and F and the tangent in E :

if DG is drawn perpendicular to OA, shew that OE, OF, CD, and OG
are in continued proportion.

11. From any point A, in the circumference of the circle ABE, as

centre, and with any radius, a circle BDC is described cutting the

former circle in B and C
;
from A any line AFE is drawn meeting the

chord BC in F, and the circumferences BDC, ABE in D, E respec-

tively: shew that AD is a mean proportional between AF and AE.

Definition. Two figures are said to have their sides

about two of their angles reciprocally proportional, when
a side of the first is to a side of the second as the remaining
side of the second is to the remaining side of the first.

[Book VI. Def. 3.]
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Proposition 14. Theorem.

Parallelograms which are equal in area, and which have

one angle of the one equal to one angle of the other, have

their sides about the equal angles reciprocally proportional :

Conversely, parallelograms which have one angle of the

one equal to one angle of the other, and the sides about these

angles reciprocally proportional, are equal in area.

A F

/

Let the par""' AB, BC be of equal area, and have the

L DBF equal to the z. GBE:
then shall the sides about these equal angles be reciprocally

proportional,
that is, DB : BE :: GB : BF.

Place the par*"' so that DB, BE may be in the same straight

line;
.'. FB, BG are also in one straight line.

Complete the par" FE.

Then because the par'" AB = the par"" BC,
and FE is another par"",

.*. the par™ AB : the par"" FE :: the par™ BC : the par
but the par™ AB : the par™ FE :: DB : BE,
and the par™ BC : the par™ FE :: GB : BF,

.•. DB : BE :: GB : BF.

Conversely, let the l DBF be equal to the z. GBE,
and let DB : BE :: GB : BF.

Then shall the par™ AB be equal in area to the par™ BC.

For, with the same construction as before,

by hypothesis DB : BE :: GB : BF;
but DB : BE :: the par™ AB : the par™ FE, vi. 1,

and GB : BF :: the par™ BC : the par™ FE,
.". the par™ AB : the par™ FE : : the par™ BC : the par'" FE; v. 1 ,

.*. the par™ AB =the par™ BC.

Q. E. D,

I. 14.

Hyp.

•™
FE;

VI. 1.

V. 1.

^^'^ OF THE
^rrtSPTTr'W'RIsTTV^
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Proposition 15. Theorem.

Trlamjles which are equal in area, aiul which have one

angle of the one equal to one aiigle of the other
^
liave their

sides about the equal angles reciprocally jyroportional :

Conversely^ triangles which have one angle of the one

equal to one angle of the other, and the sides about these

angles reciprocally prroportional, are equal in area.

Let the A** ABC, ADE be of equal area, and liave tlie

L CAB equal to the z_ EAD :

then shall the sides of the triangles about these angles be

reciprocally proportional,
that is, CA : AD :: EA : AB.

Place the A^ so that CA and AD may be in the same st. line;
.'. BA, AE are also in one st. line. i. 14.

Join BD.

Then because the A CAB = the AEAD, Hyp.
and ABD is another triangle;

.'. the A CAB : the A ABD :: the AEAD : the A ABD;
but the A CAB : the A ABD : : CA : AD, VI. ].

and the AEAD : the A ABD : : EA : AB,
.-. CA : AD :: EA : AB. v. 1.

Conversely, let the l. CAB be equal to the /_ EAD,
and let CA : AD :: EA : AB.

Then shall the A CAB = A EAD.

For, with tlie same construction as before,

by hypothesis CA : AD :: EA : AB;
but CA : AD :: the A CAB : the A ABD, w. 1.

and EA : AB :: the AEAD : the A ABD,
.'. the A CAB : the A ABD :: the AEAD : the A ABD; v. 1.

.". the A CAB -^ the AEAD. q. e.b.
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KXERCISES.

ON Propositions 14 and 15.

1. Parallelofjravis tvhich are equal in area and ivhich have their

sides reciprocally proportional, have their angles respectively equal.

2. Triangles which are equal in area, and which have the sides

about a pair of angles reciprocally proportional, have those angles equal
or supplemental^.

3. AC, BD are the diagonals of a trapezium which intersect in

O
;

if the side AB is parallel to CD, use Prop. 15 to prove that the

triangle AOD is equal to the triangle BOC.

4. Prom the extremities A, B of the hypotenuse of a right-

angled triangle ABC lines AE, BD are drawn perpendicular to AB,
and meeting BC and AC produced in E and D respectively: employ
Prop. 15 to shew that the triangles ABC, ECD are equal in area.

5. On AB, AC, two sides of any triangle, squares are described

externally to the triangle. If the squares are ABDE, ACFG, shew
that the triangles DAG, FAE are equal in area.

6. ABCD is a parallelogram; from A and C any two parallel

straight lines are drawn meeting DC and AB in E and F respectively;
EG, which is parallel to the diagonal AC, meets AD in G : shew that

the triangles DAF, GAB are equal in area.

7. Describe an isosceles triangle equal in area to a given triangle
and having its vertical angle equal to one of the angles of the given
triangle.

8. Prove that the equilateral triangle described on the hypotenuse
of a right-angled triangle is equal to the sum of the equilateral

triangles described on the sides containing the right angle.

[Let ABC be the triangle right-angled at C
;
and let BXC, CYA,

AZB be the equilateral triangles. Draw CD perpendicular to AB
;

and join DZ. Then shew by Prop. 15 that the A AYC = the A DAZ ;

and similarly that the ABXC = the aBDZ.]
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Proposition 16. Theorem.

If four straight lines are p^'oportiorial, the rectangle
contained by the extremes is equal to the rectangle contained

by the means:

Conversely, if the rectangle contained by the extremes is

equal to the rectangle contained by the means, the four

straight lines are proportional.

B C D E G

Let the St. lines AB, CD, EF, GH be proportional, so that

AB : CD :: ^F : GH.
Then shall the rect. AB, GH =the rect. CD, EF.

From A draw AK perp. to AB, and equal to GH. i. 11, 3,

From C draw CL perp. to CD, and equal to EF.

Complete the par""' KB, LD.

Then because AB : CD :: EF : GH Hyp.
Constr.

KB, LD are

and EF = CL, and GH = AK;
.*. AB : CD :: CL : AK;

that is, the sides about equal angles of par

reciprocally proportional;
.•.KB = LD. VI. 14.

But KB is the rect. AB, GH, for AK = GH, Constr.

and LD is the rect. CD, EF, for CL- EF;
.'. the rect. AB, GH=--the rect. CD, EF.

Conversely, let the rect. AB, GH = the rect. CD, EF:

then shall AB : CD :: EF : GH.

For, with the same construction as before,
because the rect. AB, GH =:the rect. CD, EF

and the rect. AB, GH = KB, for GH = AK,
and the rect. CD, EF = LD, for EF = CL :

,•. KB = LD;

Hyp.
Constr.
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that is, the par"'' KB, LD, which have the angle at A equal
to the angle at C, are equal in area;

.'. the sides about the equal angles are reciprocally

proportional :

that is, AB : CD :: CL : AK;
.-. AB : CD :: EF : GH.

Q. E. D.

Proposition 1' Theorem.

If three straight lines are proportional the rectangle con-

tained hy the extremes is equal to the square on the mean:

Conversely, if the rectangle contaiiied hy the extremes is

equal to the square on the mean, the three straight lines are

proportional.

B

Let the three st. lines A, B, C be proportional, so that

A : B :: B : C.

Then shall the rect. A, C be equal to the sq. On B.

Take D equal to B.

Then because A : B : : B : C, and D = B
;

.•. A : B :: D : C;
.*. the rect. A, C = the rect. B, D;

but the rect. B, D = the sq. on B, for

.', the rect. A, C =^ the sq. on B.

Conversely, let the rect. A, C = the sq. on B :

then shall A : B : : B : C.

For, with the same construction as before,
because the rect. A, C = the sq. on B,

and the sq. on B — the rect. B, D
.'. the rect. A, C = the rect. B, D

.". A : B :: D : C,

that is, A : B :: B : C.

16.

for D
Hyp.

YI. 16.

CJ. E. D.
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EXERCISES.

ON PrOPOSITIOKS 16 AND 17.

1. Apply Proposition 16 to prove that if two chords of a circle

intersect, the rectangle contained by the segments of the one is equal
to the rectangle contained by the segments of the other.

2. Prove that the rectangle contained by the sides of a right-

angled triangle is equal to the rectangle contained by the hypotenuse
and the perpendicular on it from the right angle.

3. On a given straight line construct a rectangle equal to a given
rectangle.

4. ABCD is a parallelogram; from B any straight line is drawn
cutting the diagonal AC at F, the side DC at G, and the side AD pro-
duced at E : shew that the rectangle EF, FG is equal to the square
on BF.

5. On a given straight line as base describe an isosceles triangle

equal to a given triangle.

0. AB is a diameter of a circle, and any line ACD cuts the circle

in C and the tangent at B in D
; shew by Prop. 17 that the rectangle

AC, AD is constant.

7. The exterior angle A of a triangle ABC is bisected by a straight
line which meets the base in D and the circumscribed circle in E :

shew that the rectangle BA, AC is equal to the rectangle EA, AD.

8. If two chords AB, AC drawn from any point A in the cir-

cumference of the circle ABC be produced to meet the tangent at the
other extremity of the diameter through A in D and E, shew that the

triangle AED is similar to the triangle ABC.

9. At the extremities of a diameter of a circle tangents are drawn ;

these meet the tangent at a point P in Q and R : shew that the rect-

angle QP, PR is constant for all positions of P.

10. A is the vertex of an isosceles triangle ABC inscribed in a

circle, and ADE is a straight line which cuts the base in D and the
circle in E

;
shew that the rectangle EA, AD is equal to the square on

AB.

11. Two circles touch one another externally in A; a straight line

touches the circles at B and C, and is produced to meet the straight
line joining their centres at S : shew that the rectangle SB, SC is

equal to the square on SA.

12. Divide a tiiangle into two equal parts by a straight line at

right angles to one of the sides.
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Definition. Two similar rectilineal figures are said to

be similarly situated with respect to two of their sides

when these sides are homologous. [Book vi. Def. 5.]

Proposition 18. Problem.

On a given straight line to describe a rectili^ieal Jigure
similar and shnilarly situated to a given rectilineal figure.

'^
Let AB be the given st. line, and CDEF the given rectil.

figure: first suppose CDEF to be a quadrilateral.
It is required to describe on the st. line AB, a rectil.

figure similar and similarly situated to CDEF.

Join DF.

At A in BA make the l. BAG equal to the L DCF, i. 23.

iind at B in AB make the l. ABG equal to the l CDF;
.*. the remaining z. AG B = the remaining z.CFDji. 32.

and the AAGB is equiangular to the ACFD.

Again at B in GB make the z. GBH equal to the z. FDE,
and at G in BG make the ^ BGH equal to the l DFE; l. 23.

.'. the remaining z. BHG = the remaining z. DEF
;

i. 32.

and the A BHG is equiangular to the A DEF.

Then shall ABHG be the required figure.

(i)
To prove that the quadrilaterals are equiangular.

IHL Because the z. AGB = the z. CFD,

^B and the ^ BGH = the z. DFE; Constr.

^^K .". the whole ^ AG H = the whole z_ CFE. Ax. 2.

lip Similarly the ^ ABH -^ the ^ CDE ;

and the angles at A and H are respectively equal to the

angles at C and E
; Constr.

the fig. ABHG is equiangular to the fig. CDEF.
"O'

H. E. 22
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'd
(ii)

To prove that the quadrilaterals have the sides about
their equal angles proportional.

Because the A" BAG, DCF are equiangular;
.*. AG : GB :: CF : FD. VL 4.

And because the A^ BGH, DFE are equiangular;
.•. BG : GH :: DF : FE,

.'., ex cequali, AG : GH :: CF : FE. v. 14.

Similarly it may be shewn that

AB : BH :: CD : DE.

Also BA : AG :: DC : CF, VL 4.

and GH : HB :: FE : ED;
.'. tlie figs. ABHG, CDEF have their sides about the equal
angles proportional ;

.'. ABHG is similar to CDEF. Def. 2.

In like manner the process of construction may be
extended to a figure of five or more sides.

Q.E.P.

Definition. When three magnitudes are proportionals
the first is said to have to the tliird the duplicate ratio of

that which it has to the second. [Book v. Def.
13.]
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Proposition 19. Theorem.

Siinilar triangles are to one another in the duplicate ratio

of their homologoics sides.

Let ABC, DEF be similar triangles, having the /_ ABC

equal to the L DEF, and let BC and EF be homologous sides:

then shall the A ABC be to the A DEF in the duplicate
ratio of BC to EF.

To BC and EF take a third proportional BG,
so that BC : EF :: EF : BG. Yl. 11.

Join AG.

Then because the A^ ABC, DEF are similar, tlyj).

:. AB : BC :: DE : EF;

.'., alternately^ AB : DE :: BC : EF; V. 11.

but BC : EF :: EF : BG; Constr.

.'. AB : DE :: EF : BG; v. 1.

that is, the sides of the A^ ABG, DEF about the equal

angles at B and E are reciprocally proportional;
.•. the A ABG = the A DEF. vi. 15.

Again, because BC : EF : : EF : BG, Constr.

.'. BC : BG in the duplicate ratio of BC to EF. Def.
But the A ABC : the A ABG :: BC : BG, vi. 1.

.'. the A ABC : the A ABG in the duplicate ratio

of BC to EF: V. 1.

I

and the A ABG = the A DEF; Proved.

:. the AABC : the A DEF in the duplicate ratio

of BC : EF. Q.E.D.

22-2



340 euclid's elements.

Proposition 20. Theorem.

Similar polygons may be divided into the same number

of similar triangles^ having the same ratio each to each that

the polygons have; and the polygons are to one ariother in

the duplicate ratio of their homologous sides.

H
Let ABODE, FGHKL be similar polygons, and let AB be

the side homologous to FG
;

tlien
(i)

the polygons may be divided into the same number
of similar triangles;

(ii)
these triangles shall have each to each the same

ratio that the polygons have;

(iii)
the polygon ABODE shall be to the polygon FGHKL

in the duplicate ratio of AB to FG.

Join EB, EO, LG, LH.

(i)
Then because the polygon ABODE is similar to the

polygon FGHKL, Hyp.
.-. the z.EAB-tlie z. LFG,
and EA : AB : : LF : FG

;
vi. Def. 2.

.'. the A EAB is similar to the A LFG
;

vi. 6.

.-. the ^ ABE = the l FGL.

But, because the polygons are similar, HyP'
:. the :L ABO -the ^ FGH, vi. Def 2.

.*. the remaining ^ EBO — the remaining z. LGH.

And because the A^ ABE, FGL are similar, Proved.

:. EB : BA :: LG : GF;
and because the polygons are similar, J^Iy2^-

.'. AB : BO = FG : GH; VI. Def 2.

.*., ex cequali, EB : BO :: LG : GH, V. 14.

that is, the sides about the equal l ^
EBO, LGH are

proportionals;
.*. the A EBO is similar to the A LGH. vi. 6.
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In the same way it may be proved that the A ECD is

similar to the A LHK.

.'. the polygons have been divided into the same number
of similar triangles.

(ii) Again, because the A ABE is similar to the AFGL,
.". the A ABE is to the A FGL in the duplicate ratio

of EB : LG; VI. 19.

and, in like manner,
the A EBC is to the A LGH in the duplicate ratio

of EB to LG
;

.-.the A ABE : the AFGL :: the A EBC : the A LGH. v. 1.

In like manner it can be shewn that

the A EBC : the A LGH :: the A EDC : the ALKH.
.-. the A ABE : the AFGL :: the A EBC : the A LGH

:: the A EDC : the ALKH.
But when any number of ratios are equal, as each ante-

cedent is to its consequent so is the sum of all the ante-

cedents to the sum of all the consequents; v. 12.

.-. the A ABE : the A LFG :: the fig. ABCDE : the fig. FGHKL.

(iii)
Now the A EAB : the A LFG in the duplicate ratio

of AB : FG,
and the A EAB : the A LFG :: the fig. ABCDE : the fig. FGHKL;
.*. the fig. ABCDE : the fig. FGHKL in the duplicate ratio

of AB : FG. Q.E.D.

Corollary 1. Let a third proportional X be taken
to AB and FG,

then AB is to X in the duplicate ratio of AB : FG;
but the fig. ABCDE : the fig. FGHKL in the duplicate
ratio of AB : FG.

Hence, if three straight lines are proportionals, as the first
is to the third, so is any rectilineal figure described on the

first to a similar and similarly described rectilineal figure
on the second.

Corollary 2. It follows that similar rectilinealfigures
are to one another as the squares on their homologous sides.

For squares are similar figures and therefore are to one
another in the duplicate ratio of their sides.
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Proposition 21. Theorem.

Rectilineal figures which' are similar to the same recti-

linealfigure^ are also similar to each other.

Let each of the rectilineal figures A and B be similar to C :

then shall A be similar to B.

For because A is similar to C, Hyp.
.'. A is equiangular to C, and the sides about their equal

angles are proportionals- vi. Defi 2.

Again, because B is similar to C, ffyp-
.'. B is equiangular to C, and the sides about their equal

angles are proportionals. vi. Def. 2.

.'. A and B are each of them equiangular to C, and have
the sides about the equal angles proportional to the cor-

responding sides of C
;

.'. A is equiangular to B, and the sides about their equal

angles are proportionals; V. 1,

.'. A is similar to B.

Q. e. d.
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Proposition 22. Theorem.

If four straight lines he proportional and a pair of
similar rectilineal figures he similarly described on the first

and second, and also a pair on the third and fourth, these

figures shall he proportional:

Conversely, if a rectilineal figure on the first of four

straight lines he to the similar and similarly described figure
on the second as a rectilineal figure on the third is to the

similar and similarly described figure on the fourth, thefour

straight lines shall be proportional.

Let AB, CD, EF, GH be proportionals,
so that AB : CD :: EF : GH;

and let similar figures KAB, LCD be similarly described on

AB, CD, and also let similar figs. MF, NH be similarly-
described on EF, GH:
then shall

the fig. KAB : the fig. LCD :: the fig. MF : the fig. NH.

To AB and CD take a third proportional X, vi. 11.

and to EF and GH take a third proportional O;
then AB : CD :: CD : X,
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O P R

Conversely^
let the fig. KAB : the fig. LCD :: the fig. MF : the fig. NH;

then shall AB : CD :: EF : GH.

To AB, CD, and EF take a fourth proportional PR : vi. 12.

and on PR describe the fig. SR similar and similarly situated

to either of the figs. MF, NH. vi. 18.

Then because AB : CD :: EF : PR, Constr.

.*., by the former part of the proposition,
the fig.

KAB : the fig. LCD :: the fig. MF : the fig. SR.

But
the fig. KAB : the fig. LCD :: the fig. MF : the fig. NH. Hyp.
.'. the

fig.
MF : the fig. SR :: the fig. MF : the fig. NH, v. 1.

.-. the fig. SR = the fig. NH.

And since the figs. SR and NH are similar and similarly

situated,
.'. PR=GH*

Now AB : CD :: EF : PR; Constr.

:. AB : CD :: EF : GH.

Q. E. D.

* Euclid here assumes that if two similar and similarly situated

figures are equal, their homologous sides are equal. The proof is

easy and may be left as an exercise for the student.

Definition. "When there are any number of magnitudes
of the same kind, the first is said to have to the last the

ratio compounded of the ratios of the first to the second, of

the second to the third, and so on up to the ratio of the

last but one to the last magnitude. [Book v. Def. 12.]
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Proposition 23. Theorem.

Parallelograms which are equiangular to one another

have to one another the ratio which is compounded of the

ratios of their sides.

A D H

V
B

K L M E F
Let the par"" AC be equiangular to the par" CF, having tlie

z. BCD equal to the l ECG :

then shall the par"" AC have to the par*" CF the ratio com-

pounded of the ratios BC : CG and DC : CE.

Let the par"" be placed so that BC and CG are in a st. line;
then DC and CE are also in a st. line. i. 14.

Complete the par"* DG.

Take any st. line K,

and to BC, CG, and K find a fourth proportional L; vi. 12.

and to DC, CE, and L take a fourth proportional M
;

then BC : CG :: K : L,

and DC : CE :: L : M.
But K : M is the ratio compounded of the ratios

K : L and L : M, v. Def. 12.

that is, K : M is the ratio compounded of the ratios

BC : CG and DC : CE.
Now the par™ AC : the par™ CH :: BC : CG vi. 1.

:: K : L,

'

Constr.

and the par™ CH : the par™ CF :: DC : CE vi. 1.

:: L : M, Constr.

.'., ex cequali, the par™ AC : the par™ CF :: K : M. v. 14.

But K : M is the ratio compounded of the ratios of the sides;
.". the par™ AC has to the par™ CF the ratio compounded

of the ratios of the sides. Q. e. d.

EXERCISE.

The areas of two triangles or parallelograms are to one another
in the ratio compounded of the ratios of their bases and of their

altitudes.
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Proposition 24. Theorem.

Parallelograms about a diagonal of any parallelogram
are similar to the wlwle parallelograin and to one another.

A E B

Ih°^
D K

Let ABCD be a par"" of which AC is a diagonal;
and let EG, HK be par"'* about AC :

then shall the par*"' EG, HK be similar to the par"* ABCD,
and to one another.

For, because DC is par' to GF,
.-. the z.ADC-the ^AGF; 1.29.

and because BC is par* to EF,
.'. the ^ ABC = the ^AEF; i. 29.

and each of the l^ BCD, EFG is equal to the opp. z. BAD,
.-. the ^ BCD = the Z.EFG; [i.

34.

.". the par"" ABCD is equiangular to the par™ AEFG.

Again in the A^ BAC, EAF,
because the l ABC = the /_ AEF, i. 29.

and the z. BAC is common;
.*. A'' BAC, EAF are equiangular to one another; i. 32.

.-. AB : BC :: AE : EF. VI. 4.

But BC = AD, and EF = AG
;

I. 34.

.*. AB : AD :: AE : AG;
and DC : CB :: GF : FE,
and CD : DA :: FG : GA,

.*. the sides of the par"'' ABCD, AEFG about their equal

angles are proportional;
.'. the par"' ABCD is similar to the par"'AEFG. vi. Def. 2.

In the same way it may be proved that the par™ ABCD
is similar to the par™ FHCK,

.'. each of the par™^ EG, HK is similar to the whole par™;
.*. the par™ EG is similar to the par™ HK. vi. 21.

Q, E. D.
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Proposition 25. Problej/:.

To describe a rectilineal figure which shall he equal to

one and similar to another rectilineal figure.

I z^
Let E and S be two rectilineal figures :

it is required to describe a figure equal to the fig. E and
similar to the fig. S.

On AB a side of the fig. S describe a par"* ABCD equal to S,

and on BC describe a par"* CBGF equal to the fig. E, and

having the L CBG equal to the L DAB: i. 45.

then AB and BG are in one st. line, and also DC and CF in

one st. line.

Between AB and BG find a mean proportional HK; vi. 13.

and on H K describe the fig. P, similar and similarly situated

to the fig. S; vi. 18.

then P shall be the figure required.

Because AB : HK :: HK : BG, Constr.

.'. AB : BG :: the fig. S : the fig. P. vi. 20, Cor.

But AB : BG :: the par™ AC : the par™ BF;
.*. the fig. S : the fig. P :: the par™ AC : the par-" BF; v. i.

and the fig. S =the par™ AC; Constr.

.'. the fig. P =:the par™ BF
= the fig. E. Constr.

And since, by construction, the fig. P is similar to the fig. S,

.*. P is the rectil. figure required.
Q. E. F.
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Proposition 26. Theorem.

If two similar parallelograms have a com/man angle, and
be similarly situated., they are about the same diagonal.

Let tlie par"" ABCD, AEFG be similar and similarly situated,
and have the common angle BAD :

then shall these par"'* be about the same diagonal.

Join AC.

Then if AC does not pass through F, let it cut FG, or FG

produced, at H.

Join AF;
and through H draw HK par' to AD or BC. i. 31.

Then the par™' BD and KG are similar, since they are about

the same diagonal AHC; vi. 24.

.-. DA : AB :: GA : AK.

But because the par"'* BD and EG are similar; HyjJ.
:. DA : AB :: GA : AE; vi. Be/ 2.

.-. GA : AK :: GA : AE;
.'. AK = AE, which is impossible;

.'. AC must pass tlirough F;
tliat is, the par""* BD, EG are about the same diagonal.

Q.E. D.
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Ohs. Propositions 27, 28, 29 being cumbrous in form and of little

value as geometrical results are now very generally omitted.

Definitiox. a straight line is said to be divided in

extreme and mean ratio, when the whole is to the greater

segment as the greater segment is to the less.

[Book VI. Def. 4.]

Proposition 30. Problem.

2^0 divide a given straight line in extreme and mean ratio.

'3~B

Let AB be the given st. line:

it is required to divide it in extreme and mean ratio.

Divide AB in C so that the rect. AB, BC may be equal to

the sq. on AC. ii. 11.

Then because tlie rect. AB, BC = the sq. on AC,
.*. AB : AC :: AC : BC. vi. 17.

Q. E. P.

EXERCISES.

1. ABCDE is a regular pentagon; if the lines BE and AD inter-

sect in O, shew that each of them is divided in extreme and mean
ratio.

2, If the radius of a circle is cut in extreme and mean ratio, the

greater segment is equal to the side of a regular decagon inscribed in

the circle.
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Proposition 31. Theorem.

In a right-angled triangle, any rectilinealfigure described

on the hypotenuse is equal to the sum of the two sirnilar and

similarly described figures on the sides containing the right

angle.

Let ABC be a right-angled triangle of which BC is the

hypotenuse; and let P, Q, R be similar and similarly described

figures on BC, CA, AB respectively:
then shall the tig.

P be equal to the sum of the tigs. Q and R.

Draw AD perp. to BC.

Then the A^ CBA, ABD are similar;
BA : BD;
the tig. P

VI. 8.

/. CB : BA ::

.-. CB : BD ::

.'., inversely, BD : BC ::

In like manner DC : BC : :

'. the sum of BD, DC : BC

the tig. R

the tig. Q
the sum of figs.

the tig. R, VI. 20, Con
the tig. P.

the tig. P;

R, Q

V. :i.

tig. P;
V. 15.

but BC = the sum of BD, DC;
the tig. P = the sum of the figs. R and Q.

Q.E.D.

Note. This proposition is a generalization of the 47th Prop, of

Book I. It will be a useful exercise for the student to deduce the

general theorem from the particular case with the aid of Prop. 20,
Cor. 2.
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EXERCISES.

1. In a right-angled triangle if a perpendicular be drawn from the

right angle to the opposite side, the segments of the hypotenuse are in

the duplicate ratio of the sides containing the right angle.

2. If, in Proposition 31, the figure on the hypotenuse is equal
to the given triangle, the figures on the other two sides are each equal
to one of the parts into which the triangle is divided by the perpen-
dicular from the right angle to the hypotenuse.

3. AX and BY are medians of the triangle ABC which meet in

G : if XY be joined, compare the areas of the triangles AGB, XGY.

4. Shew that similar triangles are to one another in the duplicate
ratio of (i) corresponding medians, (ii) the radii of their inscribed

circles, (iii) the radii of their circumscribed circles.

5. DEF is the pedal triangle of the triangle ABC ; prove that the

triangle ABC is to the triangle DBF in the duplicate ratio of AB to

BD. Hence shew that

the fig. AFDC : the a BFD :: AD2 : BD^.

6. The base BC of a triangle ABC is produced to a point D such

that BD : DC in the duplicate ratio of BA : AC. Shew that AD is a

mean proportional between BD and DC.

7. Bisect a triangle by a line drawn parallel to one of its sides.

8. Shew how to draw a line parallel to the base of a triangle so

as to form with the other two sides produced a triangle double of the

given triangle.

9. If through any point within a triangle lines be drawn from
the angles to cut the opposite sides, the segments of any one side will

have to each other the ratio compounded of the ratios of the segments
of the other sides.

10. Draw a straight line parallel to the base of an isosceles tri-

angle so as to cut off a triangle which has to the whole triangle the

ratio of the base to a side.

11. Through a given point, between two straight lines containing
a given angle, draw a line which shall cut off a triangle equal to a

given rectilineal figure.

Obs. The 32nd Proposition as given by Euclid is de-

fective, and as it is never applied, we have omitted it.
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Proposition 33. Theorem.

In equal circles, angles, wliether at the centres or the cir-

cumferences, have the same ratio as the arcs on which they
stand: so also have the sectors.

Let ABC and DEF be equal circles, and let BGC, EHF be

angles at the centres, and BAG and EDF angles at the O*^*^^;

tlien shall

(i)
the L BGG : the l EHF :: the arc BG : the arc EF,

(ii)
the L. BAG : the l EDF :: the arc BG : the arc EF,

(iii)
the sector BGG : the sector EHF :: the arc BG : the

arc EF.

Along the O'*'' of the ©ABG take any number of ares

OK, KL each equal to BG; and along the O^® of the 0DEF
take any number of arcs FM, MN, NR each equal to EF.

Join GK, GL, HM, HN, HR.

(i)
Then the l^ BGC, GGK, KGL are all equal,
for they stand on the equal arcs BG, GK, KL: in. 27..

.". the z. BGL is the same multiple of the l BGG that the

arc BL is of the arc BG.

Similarly the z. EHR is the same multiple of the z_ EHF
that the arc ER is of the arc EF.

And if the arc BL = the arc ER,
the z. BGL^the ^EHR; III. 27.

and if the arc BL is greater than the arc ER,
the £. BGL is greater than the lEHR;
and if the arc BL is less than the arc ER,

the z. BGL is less than the l EHR.
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Kow since there are four magnitudes, namely the

L^ BGC, EHF and the arcs BC, EF; and of the antecedents

any equimultiples have been taken, namely the lBGL
and the arc BL; and of the consequents any equimultiples
have been taken, namely the z. EHR and the arc ER :

and it has been proved that the z. BGL is greater than,

equal to, or less than the z_ EHR according as BL is greater
than, equal to, or less than ER;

.'. the four magnitudes are proportionals; v. Be/. 4.

that is, the :. BGC : the z. EHF :: the arc BC : the arc EF.

(ii)
And since the z. BGC = twice the l BAC, hi. 20.

and the £. EHF = twice the t^EDF;
.". the L BAC : the z. EDF : : the arc BC : the arc EF.. v. 8.

(iii)
Join BC, CK; and in the arcs BC, CK take any

points X, O.

Join BX, XC, CO, OK.

Then in the A« BGC, CGK,

[
BG=:CG,

Because - GC = GK,

[and the z. BGC = the ^ CGK;
.'. BC = CK;

and the A BGC -= the A CGK.

And because the arc BC = the arc CK,
.*. the remaining arc BAC =the remaining arc CAK:

.'. the z.BXC=the Z.COK; m. 27.

.*. the segment BXC is similar to the segment COK; iii. Be/.
and they stand on equal chords BC, CK;

.'. the segment BXC = the segment COK. iii. 24.

And the A BGC = the A CGK;
.'. the sector BGC ^ the sector CGK.

III. 27.

I. 4.

Constr.

H. E. 23
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Similarly it may be shewn that the sectors BGC, CGK,
KGL are all equal;
and likewise the sectors EHF, FHM, MHN, NHR are all equal.

.', the sector BGL is the same multiple of the sector BGC
that the arc BL is of the arc BC;.

and the sector EHR is the same multiple of the sector EHF
that the arc ER is of the arc EF:

And if the arc BL = the arc ER,
the sector BGL = the sector EHR : Proved.

and if the arc BL is greater than the arc ER,
the sector BGL is greater than the sector EHR:

and if the arc BL is less than the arc ER,
the sector BGL is less than the sector EHR.

Now since there are four magnitudes, namely, the sec-

tors BGC, EHF and the arcs BC, EF; and of the antecedents

any equimultiples have been taken, namely the sector BGL
and the arc BL; and of the consequents any equimultiples
have been taken, namely the sector EHR and the arc ER :

and it has been shewn that the sector BGL is greater than,

equal to, or less than the sector EHR according as the

arc BL is greater than, equal to, or less than the arc ER;
.'. the four magnitudes are proportionals; v. Def. 4.

that is,

the sector BGC : the sector EHF : : tlie arc BC : the arc EF.

Q. E. D.
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Proposition B. Theorem.

If the vertical angle of a triangle he bisected by a straight
line which cuts the base, the rectangle contained by the sides

of the triangle shall be equal to the rectangle contained by
the segments of the base, together ivith the square on the

st7'aight line which bisects the angle.

Let ABC be a triangle having the l BAG bisected by AD:
then shall

the rect. BA, AC = the rect. BD, DC, with the sq. on AD.

Describe a circle about the A ABC, iv. 5.

and produce AD to meet the O^^ in E.

Join EC.

Then in the A^ BAD, EAC,
because the £. BAD = the a. EAC, ^J^yp-

and the L ABD = the /_ AEC in the same segment; iii. 21.

.'. the A BAD is equiangular to the A EAC. i. 32.

.-. BA : AD :: EA : AC; A^l. 4.

.'. the rect. BA, AC = the rect. EA, AD, VI. 16.

= the rect. ED, DA, with the sq. on AD.

II. 3.

But the rect. ED, DA = the rect. BD, DC; iii. 35.

.'. the rect. BA, AC = the rect. BD, DC, with the sq. on AD.

Q. E. D.

EXERCISE.

If the vertical angle BAC be externally bisected by a straight line

which meets the base in D, shew that the rectangle contained by BA,
AC together with the square on AD is equal to the rectangle contained

by the segments of the base.

23-2
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Proposition C. Theorem.

Iffrom the vertical angle of a triangle a straight line he

drawn perjyendicular to the ba,se, the rectarigle contained hy
the sides of the triangle shall he equal to the rectangle con-

tained hy the perpendicular and the diameter of the circlf.

described about the triangle.

Let ABC be a triangle, and let AD be the perp. from A
to BC:
then the rect. BA, AC shall be equal to the rect. contained

by AD and the diameter of the circle circumscribed about

o the A ABC.

Describe a circle about the A ABC; iv. 5.

draw the diameter AE, and join EC.

Then in the A« BAD, EAC,
the rt. angle BDA == the rt. angle ACE, in the semicircle ACE,

and the L ABD = the l. AEC, in the same segment; in. 21.

.". the A BAD is equiangular to the A EAC; i. 32.

.•. BA : AD :: EA : AC; vi. 4.

.". the rect. BA, AC --the rect, EA, AD. vi. 16.

Q.E.D.
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Proposition D. Theorem.

The rectangle contained hy the diagonals of a quadri-
lateral inscribed in a circle is equal to the sum of the two

rectangles contained by its opposite sides.

Let ABCD be a quadrilateral inscribed in a circle, and let

AC, BD be its diagonals:
then the rect. AC, BD shall be equal to the sum of the rect-

angles AB, CD and BC, AD.

Make the l DAE equal to the l BAC; i. 23.

to each add the z_ EAC,
then the L DAC = the £. BAE.

Then in the A« EAB, DAC,
the L EAB = the L DAC,

and the l ABE = the l ACD in the same segment; ill. 21.

.. the triangles are equiangular to one another; i. 32.

.-. AB : BE :: AC : CD; VI. 4.

,'. the rect. AB, CD = the rect. AC, EB. vi 16.

Again in the A* DAE, CAB,
the z. DAE = the zL CAB, Constr.

and the L ADE ==the L ACB, in the same segment, iii. 21.

.'. the triangles are equiangular to one another
;

i. 32.

.•. AD : DE :: AC : CB; VI. 4.

.*. the rect. BC, AD = the rect. AC, DE. vi. 16.

But the rect. AB, CD = the rect. AC, EB. Proved.

.'. the sum of the rects. BC, AD and AB, CD = the sum of

the rects. AC, DE and AC, EB
;

that is, the sum of the rects. BC, AD and AB, CD
= the rect. AC, BD. ii. 1.
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Note. Propositions B, C, and D do not occur in Euclid, but were
added by Kobert Simson.

Prop. D is usually known as Ptolemy's theorem, and it is the par-
ticular case of the following more general theorem :

The rectangle contained by the diagonals of a quadrilateral is leas

than the sum of tlie recta/ngles contained by its opposite sides, unless a
circle can be circumscribed about the quadrilateral, in which case it is

equal to that sum.

EXERCISES.

1. ABC is an isosceles triangle, and on the base, or base pro-
duced, any point X is taken : shew that the circumscribed circles of

the triangles ABX, ACX are equal.

2. From the extremities B, C of the base of an isosceles triangle

ABC, straight lines are drawn perpendicular to AB, AC respectively,
and intersecting at D : shew that the rectangle BC, AD is double of

the rectangle AB, DB.

3. If the diagonals of a quadrilateral inscribed in a circle are at

right angles, the sum of the rectangles of the opposite sides is double
the area of the figure.

4. ABCD is a quadrilateral inscribed in a circle, and the diagonal
BD bisects AC : shew that the rectangle AD, AB is equal to the rect-

angle DC, CB.

5. If the vertex A of a triangle ABC be joined to any point in

the base, it will divide the triangle into two triangles such that their

circumscribed circles have radii in the ratio of AB to AC.

6. Construct a triangle, having given the base, the vertical angle,
and the rectangle contained by the sides.

7. Two triangles of equal area are inscribed in the same circle :

shew that the rectangle contained by any two sides of the one is to

the rectangle contained by any two sides of the other as the base of

the second is to the base of the first.

8. A circle is described round an equilateral triangle, and from any
point in the circumference straight lines are drawn to the angular
points of the triangle : shew that one of these straight lines is equal to

the sum of the other two.

9. ABCD is a quadrilateral inscribed in a circle, and BD bisects

the angle ABC : if the points A and C are fixed on the circumference
of the circle and B is variable in position, shew that the sum of AB
and BC has a constant ratio to BD.
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I. ON HARMONIC SECTION.

1. To divide a given straight line internally and externally so that

its segments may be in a given ratio.

H-

'^-.

L M A P\,/'B Q
6

Let AB be the given st. line, and L, M two other st. lines which
determine the given ratio; it is required to divide AB internally and

externally in the ratio L : M ,

Through A and B draw any two par' st. lines AH, BK.
From AH cut off Aa equal to L,

and from BK cut ofi Bb and B6' each equal to M, Bb' being taken in

the same direction as Aa, and B6 in the opposite direction.

Join ab, cutting AB in P;
join ab', and produce it to cut AB externally at Q.

Then AB is divided internally at P and externally at Q,
so that AP : PB = L : M,
and AQ:QB = L:M.

The proof follows at once from Euclid vi. 4.

Obs. The solution is singular; that is, only one internal and one
external point can be found that will divide the given straight line

into segments which have the given ratio.
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DEFINITION.

A finite straight line is said to be cut harmonically when it

is divided internally and externally into segments which have
the same ratio.

A P B O

Thus AB is divided harmonically at P and Q, if

AP: PBrrAQ : QB.
P and Q are said to be harmonic conjugates of A and B.

If P and Q divide AB internally and externally in the same ratio,

it is easy to shew that A and B divide PQ internally and externally
in the same ratio: hence A and B are harmonic conjugates of P
and Q.

Example. The base of a triangle is divided harmonically by the

internal and external bisectors of the vertical angle :

for in each case the segments of the base are in the ratio of the other

sides of the triangle. [Euclid vi. 3 and A.]

Ohs. We shall use the terms Arithmetic, Geometric, and Harmonic
Means in their ordinary Algebraical sense.

1. If AB is divided internally at P and externally at Q, in the

same ratio, then AB is the harmonic mean between AQ and A P.

For by hypothesis AQ : QB = AP : PB;
.-., alternately, AQ : AP= QB : PB,
that is, AQ : AP= AQ-AB : AB-AP,

which proves the proposition.

2, 1/ AB is divided harmonically at P and Q, and O is the middle

point o/AB;
then shall OP . 0Q= 0A2.

ORB Q

For since AB is divided harmonically at P and Q,
.-. AP : PB = AQ: QB;

.-. AP-PB : AP+PB =AQ-QB : AQ + QB,
or, 20P : 20A = 20A : 20Q;

.-. 0P.0Q= 0A2.

Conversely, if OP . OQ^OA^,
it may be shewn that

AP : PB=:AQ: QB;
that is, that AB is divided harmonically at P and Q.
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8. The Arithmetic, Geometric and Harmonic means of tivo straight
lines may be thus represented graphically.

In the adjoining figure, two tan-

gents AH, AK are drawn from any
external point A to the circle PHQK;
HK is the chord of contact, and the

st. line joining A to the centre O cuts
the 0"° at P and Q.

Then (i) AO is the Arithmetic
mean between AP and AQ : for clearly

AO = i(AP + AQ).

(ii) AH is the Geometric mean between AP and AQ:
for AH2=AP.AQ. iii. 36.

(iii) AB is the Harmonic mean between AP and AQ:
for OA.OB = OP2. Ex. 1, p. 238.

.-. AB is cut harmonically at P and Q. Ex. 1, p. 360.

That is, AB is the Harmonic mean between AP and AQ.

And from the similar triangles OAH, HAB,
OA : AH=AH : AB,

.-. A0.AB = AH2; VI. 17.

.-. the Geometric mean hetioeen tioo straight lines is the mean propor-
tional between their Arithmetic and Harmonic means.

4. Given the base of a triangle and the ratio of the other sides, to

find the locus of the vertex.

Let BC be the given base, and let

BAG be any triangle standing upon
it, such that BA : AC = the given
ratio :

it is required to find the locus of A.

Bisect the z BAG internally and

externally by AP, AQ.
Then BC is divided internally at P, and externally at Q,

so that BP : PC= BQ : QC = the given ratio;
.*. P and Q are fixed points.

And since AP, AQ are the internal and external bisectors of the

Z BAC,
.-. the / PAQ is a rt. angle;

.-. the locus of A is a circle described on PQ as diameter.

Exercise. Given three points B, P, C in a straight line: find the

locus ofpoints at which BP and PC subtend equal angles.
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DEFINITIONS.

1. A series of points in a straight line is called a range.
If the range consists of four points, of which one pair are har-

monic conjugates with respect to the other pair, it is said to be
a harmonic range.

2. A series of straight lines drawn through a point is called a

pencil.
The point of concurrence is called the vertex of the pencil,

and each of the straight lines is called a ray.
A pencil of four rays drawn from any point to a harmonic

range is said to be a harmonic pencil.

3. A straight line drawn to cut a system of lines is called a

transversal.

4. A system of four straight lines, no three of which are

concurrent, is called a complete quadrilateral.
These straight lines will intersect two and two in six points,

called the vertices of the quadrilateral ;
the three straight lines

which join opposite vertices are diagonals.

Theorems on Harmonic Section.

1. If a transversal is drawn parallel to one ray of a harmonic

pencil, the otlier three rays intercept equal parts upon it: and con-

versely.

2. Any transversal is cut harmonically by the rays of a harmonic

pencil.

3. In a harmonic pencil, if one ray bisect the angle between the

other pair of rays, it is perpendicular to its conjugate ray. Conversely
if one pair of rays form a right angle, then they bisect internally arid

externally the angle between the other pair.

4. If A, B, C, D and a, b, c, d are harmonic ranges, one on each

of two given straight lines, and if Aa, Bb, Co, the straight lines which

join three pairs of corresponding points, meet at S; then will Dd also

pass through S.

5. If two straight lines intersect at O, and if O, C, B, D and O, c, b,

d are two harmonic ranges one on each straight line [the points corre-

sponding as indicated by the letters), then Co, Bb, Dd will be con-

current: also Cd, Bb, Do will be concurrent.

6. Use Theorem 5 to prove that in a complete quadrilateral in
which tlie three diagonals are drawn, the straight line joining any pair
of opposite vertices is cut harmonically by the other two diagonals.
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II. On centres of similarity and similitude.

1. If any two unequal similar figures are placed so that their

homologous sides are parallel, the lines joining corresponding points in

the two figures meet in a point, lohose distances from any two corre-

sponding points are in the ratio of any pair of homologous sides.

Let ABCD, A'B'C'D'be two similar figures, and let them be placed
so that their homologous sides are parallel; namely, AB, BC, CD,
DA parallel to A'B', B'C, CD', D'A' respectively:
then shall AA', BB', CC, DD' meet in a point, whose distances from

any two corresponding points shall be in the ratio of any pair of

homologous sides.

Let AA' meet BB', produced if necessary, in S.

Then because AB is par^ to A'B'; liyp.
.•. the A^ SAB, SA'B' are equiangular;

.-. SA : SA'=:AB : A'B'; vi. 4.

.-. AA' divides BB', externally or internally, in the ratio of AB to A'B'.

Similarly it may be shewn that CC divides BB' in the ratio of

BC to B'C.
But since the figures are similar,

BC : B'C=AB : A'B';

.-. AA' and CC divide BB' in the same ratio;
that is, AA', BB', CC meet in the same point S.

In like manner it may be proved that DD' meets CC in the

point S.

.-. AA', BB', CC, DD' are concurrent, and each of these lines is

divided at S in the ratio of a pair of homologous sides of the two

figures. Q. E. D.

Cor. If any line is draivn through S meeting any pair of homolo-

gous sides in K and K', the ratio SK : SK' is constant, and equal to the

ratio of any pair of homologous sides.

Note. It will be seen that the lines joining corresponding points
are divided externally or internally at S according as the correspond-
ing sides are drawn in the same or in opposite directions. In either
case the point of concurrence S is called a centre of similarity of the
two figures.
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2. A common tangent STT' to two circles whose centres are C, C,
meets the line of centres in S. If through S anij straight line is

drawn meeting these tico circles in P, Q, and P', Q', respectively,
then the radii CP, CQ shall he respectively parallel to C'P', C'Q'.
Also the rectangles SQ . SP', SP . SQ' shall each he equal to the

rectangle ST . ST'.

Join CT, CP, CQ and C'T', C'P', C'Q'.

Then since each of the z ' CTS, C'T'S is a right angle, in. 18.

.-. CT is pari ^o C'T';
.'. the A* SCT, SC'T' are equiangular;

.-. SC : SC'= CT : C'T'
= CP : C'P';

.-. the A" SCP, SC'P' are similar; vi. 7.

.-. the zSCP= the Z SC'P';
.-. CPis pari to C'P'.

Similarly CQ is par^ to C'Q'.

Again, it easily follows that TP, TQ are par' to T'P', T'Q'

respectively ;

.-. the A" STP, ST'P' are similar.

Now the rect. SP . SQ= the sq. on ST; iii. 37.

.-. SP : ST=:ST : SQ, vi. 10.

and SP
.-. ST

.-. the rect. ST
In the same way it may be proved that

the rect. SP . SQ'= the rect. ST . ST'.

Q.B. D.

Cor. 1. It has been proved that

SC : SC'= CP : C'P';
thus the external common tangents to the two circles meet at a point
S which divides the line of centres externally in the ratio of the radii.

Similarly it may be shewn that the transverse common tangents
meet at a point S' which divides the line of centres internally in the
ratio of the radii.

Cor. 2. CC is divided harmonically at S and S'.

Definition. The points S and S' which divide externally and

internally the line of centres of two circles in the ratio of their radii

are called the external and internal centres of similitude respectively.

ST=:ST
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EXAMPLES.

1. Inscribe a square in a given triangle.

2. In a given triangle inscribe a triangle similar and similarly
situated to a given triangle.

3. Inscribe a square in a given sector of circle, so that two

angular points shall be on the arc of the sector and the other two
on the bounding radii.

4. In the figure on page 278, if Dl meets the inscribed circle in

X, shew tJiat A, X, D^ are collinear. Also if Al^ meets the base in

Y sheiv that llj
is divided harmonically at Y and A.

o. With the notation on page 282 shew that O and G are respec-

tively the external and internal centres of similitude of the circum-
scribed and nine-points circle.

6. If a variable circle touches tioo fixed circles, the line joining
their points of contact passes through a centre of similitude. Distinguish
betioeen the different cases.

7. Describe a circle ivhich shall touch two given circles and pass
through a given point.

8. Describe a circle ichich shall touch three given circles.

9. Cj, Cg, C3 are the centres of three given circles; 1^, E^ are the

internal and external centres of similitude of the pair of circles ivhose

centres are C^, C3, and
Ig, Eg, I3, Eg, have similar meanings with regard

to the other tivo pairs of circles: sheio that

(i) I^Cj, IgCg, I3C3 are concurrent;

(ii) the six points 1^, Ig, I3, Ej, Eg, E3, lie three and three on four
straight lines.

III. ON POLE AND POLAR.

DEFINITIONS.

(i) If in any straight line drawn from the centre of a circle

two points are taken such that the rectangle contained by their
distances from the centre is equal to the square on the radius,
each point is said to be the inverse of the other.

Thus in the figure given below, if O is the centre of the circle, and
if OP . OGl= (radius)^, then each of the points P and Q is the inverse
of the other.

It is clear that if one of these points is within the circle the other
must be without it.
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(ii) The polar of a given point with respect to a given circle

is the straight line drawn through the inverse of the given point
at right angles to the line which joins the given point to the

centre : and with reference to the i)olar the given point is called

the pole.

Thus in the adjoining figure, if OP . OQ= (radius)^, and if through

L
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2. If A and P are any two points, and if the polar of A with

respect to any circle passes through P, then the polar of P imist pass

through A.

Let BC be the polar of the point A
with respect to a circle whose centre is

O, and let BC pass through P :

then shall the polar of P pass through A.

Join OP; and from A draw AQ perp.
to OP. We shall shew that AQ is the

polar of P.

Now since BC is the polar of A,
.-. the Z ABP is a rt. angle;

Def. 2, page 360.

and the Z AQP is a rt. angle: Gonstr.

.'. the four points A, B, P, Q are concyclic ;

.-. Oa.OP= OA.OB III. 36.

=
(radius)2, for CB is the polar of A:

.-. P and Q are inverse points with respect to the given circle.

And since AQ is perp. to OP,
.-. AQ is the polar of P.

That is, the polar of P passes through A.

A similar proof applies to the case when the given point A
without the circle, and the polar BC cuts it.

3. To prove that the locus of the intersection of tangents drawn to

a circle at tlie extremities of all chords which pass throxigh a given point
is the polar of that point.

Let A be the given point within the

circle, of which O is the centre.

Let H K he any chord passing through
A; and let the tangents at H and K
intersect at P :

it is required to prove that the locus of
P is the polar of the point A.

I. To shew that P lies on the polar
of A.

Join OP cutting HK in Q.
Join OA : and in OA produced take the

point B,
so that OA . OB = (radius)^, n. 14.

Then since A is fixed, B is also fixed.

Join PB.
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Then since H K is the chord of contact of tangents from P,

.-. OP . OQ= (radius)2. Ex. i. p. 233.

But OA . O B = (radius)2 ;
Const r.

:. OP.OQ= OA.OB:
.-, the four points A, B, P, Q are concyclic.

.-. the z " at Q and B together= two rt. angles. iii. 22.

But the Z at Gl is a rt. angle; Constr.

.: the Z at B is a rt. angle.
And since the point B is the inverse of A; Constr.

.'. PB is the polar of A
;

that is, the point P lies on the polar of A.

II. To shew that any point on the polar of A satisfies the given
conditions.

Let BC be the polar of A, and let P be any point on it. Draw
tangents PH, PK, and let HK be the chord of contact.

Now from Ex. 1, p. 366, we know that the chord of contact HK
is the polar of P,
and we also know that the polar of P must pass through A ; for P is

on BC, the polar of A: Ex. 2, p. 367.

that is, HK passes through A.

.-. P is the point of intersection of tangents drawn at the ex-

tremities of a chord passing through A.

From I. and II. we conclude that the required locus is the polar
of A.

Note. If A is without the circle, the theorem demonstrated in

Part I. of the above proof still holds good ; but the converse theorem
in Part II. is not true for all points in BC. For if A is without the

circle, the polar BC will intersect it; and no point on that part of

the polar which is within the circle can be the point of intersection of

tangents.

We now see that

(i) The Polar of an external point with respect to a circle is the

chord of contact of tangents drawn from it,

(ii)
The Polar of an internal point is the locus of tlie intersections

of tangents drawn at the extremities of all chords which pass through
it.

(iii) The Polar of a point on the circumference is the tangent at

that point.
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The following theorem is known as the Harmonic Property oi"

Pole and Polar.

4. Any straight line drawn through a point is cut harmonically
by the point, its polar, and the circumference of the circle.

Let AHB be a circle, P the given

point and HK its polar; let Paqh be any
straight line drawn through P meeting
the polar at q and the o*^" of the circle at

a and b :

then shall P, a, q, b he n harmonic

range.

In the case here considered, P is an
external point.

Join P to the centre O, and let PO
cut the 0*=^ at A and B : let the polar of

P cut the C/« at H and K, and PO at Q.

AHB. Ex. 1, p. 366.Then PH is a tangent to the
From the similar triangles OPH, HPQ,

OP : PH = PH : PQ,
.-. PQ. P0=:PH2

= Pa.P&.
.•. the points O, Q, a, b are concyclic:

.-. the ZaQA = the labO
=:the z Oa^ I. o.

=:the Z OQib, in the same segment.
And since QH is perp. to AB,

.-. the ZaQH=the z6QH.
.-. Q.q and QP are the internal and external bisectors of the Z aQ.b :

.: P, a, q, b is a, harmonic range. Ex. 1, p. 360.

The student should investigate for himself the case when P is an
internal point.

Conversely, it may be shewn that if throtigh a fixed point P ang
secant is draum cutting the circumference of a given circle at a, and h,

and if q is the harmonic conjugate at P tvith respect to a,h; then the

locus of q is the polar of P with respect to the given circle.

[For Examples on Pole and Polar, see p. 370.]

DEFINITION.

A triangle so related to a circle, that each side is the polar
of the opposite vertex is said to be self-conjugate with respect
to the circle.

H. E. 24
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KXAMPLES ON POLE AND POLAR.

1. Tlie straight line which joins any tico points is tlie polar with

respect to a given circle of the point of intersection of their polars.

2. The point of intersection of any two straight lines is the pole of
the straight line which joins their poles.

3. Find the locus of the poles of all straight lines which pas!<

through a given point.

4. Find the locus of the poles, toith respect to a given circle, of tan-

gents draion to a concentric circle.

5. If two circles cut one another orthogonally and PQ he any
diameter of one of them; shew that the polar of P with regard to the

other circle passes through Q.

6. If two circles cut one another orthogonally, the centre of each
circle is the pole of their common chord with respect to the other circle.

7. Any two points subtend at the centre of a circle an angle equal
to one of the angles formed by the polars of the given points.

8. O is the centre of a given circle, and AB a fixed straight line.

P is any point i/i AB; find the locus of the point inverse to P toith

respect to tlie circle.

0. Given a circle, and a fixed point O on its circumference : P /.s

any point on the circle : find the locus of the point inverse to P with

respect to any circle whose centre is O.

10. Given two points A and B, and a circle xchose centre is O;
sJiew that the rectangle contained by OA and the perpendicular from B
on the polar of A is equal to the rectangle contained by OB and the

perpendicular from A on the polar of B.

11. Four points A, B, C, D are taken in order on the circumference
of a circle; DA, CB intersect at P, AC, BD at Q and BA, CD in R :

.<(hew that the triangle PQR is self-conjugate with respect to the circle.

12. Give a linear constructioii for finding the polar of a given
point with respect to a given circle. Hence find a linear construction

for draicing a tangent to a circle from an external point.

13. If a triangle is self-conjugate with respect to a circle, the

centre of the circle is at the orthocentre of the triangle.

14. The polars, with respect to a given circle, of the four points of
a harmonic range form a harmonic pencil : and conversely.
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IV. ON THE RADICAL AXIS.

1. To find the locus of points from xchich the tangents drawn to

two given circles are equal.

Fig. 1. Fig. 2.

Let A and B be the centres of the given circles, whose radii are a
and h

; and let P be any point such that the tangent PQ drawn to the
circle (A) is equal to the tangent PR drawn to the circle (B) :

it is required to find the locus of P.

Join PA, PB, AQ, BR, AB; and from P draw PS perp. to AB.

Then because PQ= PR, .-. PQ2=PR2.
But PQ2=PA2-AQ2; and PR^^PB^-BRS; i. 47.

.-. PA2-AQ2==PB2-BR-^;
that is, PS2 + AS2-a2=PS2 + SB2-Z,2; 1.47.

or, AS2-rt2 = SB2-t2.
Hence AB is divided at S, so that AS^- SB^^a^- fts.

.•. S is B, fixed point.

Hence all points from which equal tangents can be drawn to the
two circles lie on the straight line which cuts AB at rt, angles, so

that the difference of the squares on the segments of AB is equal to the

difference of the squares on.the radii.

Again, by simply retracing these steps, it may be shewn that in

Fig. 1 every point in 8P, and in Fig. 2 every point in SP exterior to

the circles, is such that tangents drawn from it to the two circles are

equal.

Hence we conclude that in Fig. 1 the whole line SP is the required
locus, and in Fig. 2 that part of SP which is without the circles.

In either case SP is said to be the Radical Axis of the two circles.

24-2
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Corollary. If the circles cut one another as in Fig. 2, it is clear

that the Radical Axis is identical tcith the straight line which passes

through the points of intersection of the circles; for it follows readily
from iiL 36 that tangents drawn to two intersecting circles from any
point in the common chord produced are equal.

2. The Radical Axes of three circles taken in pairs are concurrent.

Zi

Let there be three circles whose centres are A, B, C.

Let OZ be the radical axis of the 0» (A) and (B);
and OY the Badical Axis of the ©• (A) and (C), O being the point of

their intersection :

then shall the radical axis of the © (B) and (C) pass through O.
It will be found that the point O is either without or within all

the circles.

I. When O is without the circles.

From O draw OP, OQ, OR tangents to the o' (A), (B), (C).

Then because O is a point on the radical axis of (A) and (B) ; Hup.
.. OP= OQ.

And because O is a point on the radical axis of (A) and (C), Hyp.
.: OP= OR,
.. OQ= OR;

.-. O is a point on the radical axis of (B) and (G),
i.e. the radical axis of (B) and (C) passes through O.

IL If the circles intersect in such a way that O is within
them all ;

the radical axes are then the common chords of the three circles

taken two and two ; and it is required to prove that these common
chords are concurrent. This may be shewn indirectly by iii. 35.

Definition. The point of intersection of the radical axes of three

,eircles taken in pairs is called the radical centre.
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rt. To draw the radical axis of two given circles.

Let A and B be the centres of the given circles :

it is required to draw their radical axis.

If the given circles intersect, then the st. line drawn through their

points of intersection will be the radical axis. [Ex. 1, Cor. p. 372.]
But if the given circles do not intersect,

describe any circle so as to cut them in E, F and G ,
H :

Join EF and HG, and produce them to meet in P.

Join AB; and from P draw PS perp. to AB.
Then PS shall be the radical axis of the ©" (A), (B).

Definition. If each pair of circles in a given system have
the same radical axis, the circles are said to be co-axal.

EXAMPLES.

1. Shew that the radical axis of two circles bisects any one of their

common tangents.

2. If tangents are drawn to two circles from any point on their

radical axis; sheic that a circle described with this point as centre and

any one of the tangents as radius, exits both the given circles ortho-

gonally.

3. O is the radical centre of three circles, and from O a tangent
OT is draion to any one of them: shew that a circle ivhose centre is O
and radius OT cuts all the given circles orthogonally.

4. If three circles touch one another, taken two and two, shew that

their common tangents at the points of contact are concurrent.
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5. If circles are described on the three sides of a triangle as

dia7)ieter, their radical centre is the orthocentre of the triangle.

6. All circles which pass through a fixed point and cut a given
circle orthogonally, pass through a secondfixed point.

7. Find the locus of tlie centres of all circles which pass through a

given point and cut a given circle orthogonally.

8. Describe a circle to pass through two given points and cut a

given circle orthogonally.

9. Find the locus of the centres of all circles which ciit two given
circles orthogonally.

10. Describe a circle to pass through a given point and cut two

given circles orthogonally.

11. The difference of the squares on the tangents drawn from any
point to two circles is equal to twice the rectangle contained by the

straight line joining their centres and the perpendicular from the givin

point on their radical axis.

12. In a system of co-axal circles which do not intersect, any point
is taken on the radical axis-; shew that a circle described from this

point as centre with radius equal to the tangent draionfromit to any
one of the circles, will meet the line of centres in tioo fixed points.

[These fixed points are called the Limiting Points of the system.'^

13. In a system of co-axal circles the tioo limiting points and the

points in which any one circle of the system cuts the line of centres

form a harmonic range.

14. In a system of co-aocal circles a limiting point has the same

polar with regard to all the circles of the system.

15. If two circles are orthogonal any diameter of one is cut

Jiarmonically by the other.

Obs. In the two following theorems we are to suppose that
the segments of straight lines are expressed numerically in

terms of some common unit
;
and the ratio of one such segment

to another will be denoted by the fraction of v/hich the lirst is

the numerator and the second the denominator.



THEOREMS AND EXAMPLES ON BOOK VT. 375

V. ON TRANSVERSALS.

Definition. A straight line drawn to cut a given system of

lines is called a transversal.

1. If three concurrent straigJu lines are draicn from the ancpdar

points of a triangle to meet the apposite sides, then the product of three

alternate segments taken in order is equal to the product of the other

tliree segments.
F

B D C B CD
Let AD, BE, CF be drawn from the vertices of the a ABC to

intersect at O, and cut the opposite sides at D, E, F:

then shall BD . CE . AF^ DC . EA . FB.

By similar triangles it may be shewn that

BD : DC = the alt. of aAOB : the alt. of a AOC;

BD_ aAOB
DC

~
aAOC '

. ., ,
CE aBOC

simdarly, EA^aBOA'
AF aCOA

'•^"^^

FB==ZCOB-

Multiplying these ratios, we have

BD CE AF_,.
DC

•

EA
•

FB~
*

or, CD.CE.AF^DC.EA.FB. q. k. n.

The converse of this theorem, which may be proved indirectly, is

very important : it may be enunciated thus :

If three straight lines drawn from the vertices of a triangle cut the

opposite sides so that the product of three alternate segments taken in

order is equal to the product of the other three, then the three straight
lines are concurrent.

That is, if BD . CE . AF= DC . EA . FB,

then AD, BE, CF are concurrent.
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2. If a transversal is drawn to cut tlie sides, or the sides produced,
of a triangle, the product of three alternate segments taken in order is

equal to the product of the other three segments.

T^et ABC be a triangle, and let a transversal meet the sides BC.

CA, AB, or these sides produced, at D, E, F:

then shall BD . CE . AF= DC . EA . FB.

Draw AH par' to BC, meeting the transversal at H.

'Hien from the similar a^ DBF, HAF,

BDHA
FB

"
AF

•

DCE, HAE,

CEEA
DC

~
HA

'

and from the similar a '

, by multiplication, ^^F B

that is.

or,

CEEA
DC

~
AF '

BD^CE^AF
DCTEA . FB~ '

BD.CE. AF-DC EA . FB.

Q.E. D.

Note. In this theorem the transversal must either meet two
sides and the third side produced, as in Fig. 1; or all three sides pro-

duced, as in Fig. 2.

The converse of this Theorem may be proved indirectly :

If three points are taken in txco sides of a triangle and the third

side produced, or in all three sides produced, so that the product of
three alternate segments taken in order is equal to the product of the

other three segments, the three points are collinear.

The propositions given on pages 103—106 relating to the concur-

rence of straight lines in a triangle, may be proved by the method of

Iransversals, and in addition to these the following important theorems

may be established.
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DEFINITIONS.

(i) If two triangles are such that three straight lines joining
corresponding vertices are concurrent, they are said to be co-

polar.

(ii) If two triangles are such that the points of intersection

of corresponding sides are collinear, they are said to be co-axial.

Theorems to be proved by Transversals.

1. The straight lines which join the vertices of a triangle to the

points of contact of the inscribed circle {or any of the three inscrihcd

circles) are concurrent.

2. The middle points of the diagonals of a complete quadrilateral
are collinear.

3. Co-polar triangles are also co-axial; and conversely co-axial

triangles are also co-polar.

4. The six centres of siviilitude of three circles lie three by three

on four straight lines.

MISCELLANEOUS EXAMPLES ON BOOK VI.

1. Through D, any point in the base of a triangle ABC,
straight lines DE, DF are drawn parallel to the sides AB, AC, and
meeting the sides at E, F: shew that the triangle AEF is a mean
proportional between the triangles FBD, EDC.

2. If two triangles have one angle of the one equal to one
angle of the other, and a second angle of the one supplementary to a
second angle of the other, then the sides about the third angles are

proportional.

3. AE bisects the vertical angle of the triangle ABC and meets
the base in E ; shew that if circles are described about the triangles
ABE, ACE, the diameters of these circles are to each other in the
same ratio as the segments of the base.

4. Through a fixed point O draw a straight line so that the

parts intercepted between O and the perpendiculars drawn to the

straight line from two other fixed points may have a given ratio.
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5. The angle A of a triangle ABC is bisected by AD meeting
BC in D, and AX is the median bisecting BC: shew that XD has
the same ratio to XB as the difference of the sides has to their sum.

6. AD and AE bisect the vertical angle of a triangle internally
and externally, meeting the base in D and E

; shew that if O is the
middle point of BC, then OB is a mean proportional between OD
and OE.

7. P and Q are fixed points; AB and CD are fixed parallel

straight lines; any straight line is drawn from P to meet AB at M,
and a straight line is drawn from Q parallel to PM meeting CD at

N : shew that the ratio of PM to QN is constant, and thence shew
that the straight line through M and N passes through a fixed point.

8. C is the middle point of an arc of a circle whose chord is

AB
;
D is any point in the conjugate arc : shew that

AD + DB : DC :: AB : AC.

9. In the triangle ABC the side AC is double of BC. If CD,
CE bisect the angle ACB internally and externally meeting AB in D
and E, shew that the areas of the triangles CBD, ACD, ABC, CDE
are as 1, 2, 3, 4.

10. AB, AC are two chords of a circle; a line parallel to the

tangent at A cuts AB, AC in D and E respectively: shew that the

rectangle AB, AD is equal to the rectangle AC, AE.

11. If from any point on the hypotenuse of a right-angled

triangle perpendiculars are drawn to the two sides, the rectangle
contained by the segments of the hypotenuse will be equal to the

sum of the rectangles contained by the segments of the sides.

12. D is a point in the side AC of the triangle ABC, and E is a

point in AB. If BD, CE divide each other into parts in the ratio

•i : 1, then D, E divide CA, BA in the ratio 3:1.

13. If the perpendiculars from two fixed points on a straight
line passing between them be in a given ratio, the straight line must

pass through a third fixed point.

14. PA, PB are two tangents to a circle; PCD any chord through
P : shew that the rectangle contained by one pair of opposite sides of

the quadrilateral ACBD is equal to the rectangle contained by the

other pair.

15. A, B, C are any three points on a circle, and the tangent at

A meets BC produced in D : shew that the diameters of the circles

circumscribed about ABD, ACD are as AD to CD.
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16. AB, CD arft two diameters of the circle ADBC at right angles
to each other, and EF is any chord; CE, CF are drawn meeting AB
produced in G and H : prove that the rect. CE, HG = the rect. EF, CH.

17. From the vertex A of any triangle ABC draw a line meeting
BC produced in D so that AD may be a mean proportional between
the segments of the base.

18. Two circles touch internally at O; AB a chord of the larger
circle touches the smaller in C which is cut by the lines OA, OB in

the points P, Q: shew that OP : OQ : : AC : CB.

19. AB is any chord of a circle; AC, BC are drawn to any
point C in the circumference and meet the diameter perpendicular to
AB at D, E : if O be the centre, shew that the rect. OD, OE is equal
to the square on the radius.

20. YD is a tangent to a circle drawn from a point Y in the
diameter AB produced; from D a perpendicular DX is drawn to the
diameter: shew that the points X, Y divide AB internally and ex-

ternally in the same ratio.

21. Determine a point in the circumference of a circle, from
which lines drawn to two other given points shall have a given ratio.

22. O is the centre and OA a radius of a given circle, and V
is the middle point of OA ;

P and Q are two points on the circum-
ference on opposite sides of A and equidistant from it; QV is pro-
duced to meet the circle in L : shew that, whatever be the length of
the arc PQ, the chord LP will always meet OA produced in a fixed

point.

23. EA, EA' are diameters of two circles touching each other

externally at E
; a chord AB of the former circle, when produced,

touches the latter at C, while a chord A'B of the latter touches the
former at C : prove that the rectangle, contained by AB and A'B', is

four times as great as that contained by BC and B'C.

24. If a circle be described touching externally two given circles,
the straight line passing through the points of contact will intersect
the line of centres of the given circles at a fixed point.

25. Two circles touch externally in C
;

if any point D be taken
without them so that the radii AC, BC subtend equal angles at D,
and DE, DF be tangents to the circles, shew that DC is a mean
proportional between DE and DF.
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26. If through the middle point of the base of a triangle any
line be drawn intersecting one side of the triangle, the other produced,
and the line drawn parallel to the base from the vertex, it will be

divided harmonically.

27. If from either base angle of a triangle a line be drawn

intersecting the median from the vertex, the opposite side, and the

line drawn parallel to the base from the vertex, it will be divided

harmonically.

28. Any straight line drawn to cut the arms of an angle and its

internal and external bisectors is cut harmonically.

29. P, Q are harmonic conjugates of A and B, and C is an
external point : if the angle PCQ is a right angle, shew that CP, CQ
are the internal and external bisectors of the angle ACB.

30. From C, one of the base angles of a triangle, draw a straight
line meeting AB in G, and a straight line through A parallel to the

base in E, so that CE may be to EG in a given ratio.

31. P is a given point outside the angle formed by two given lines

AB, AC: shew how to draw a straight line from P such that the

parts of it intercepted between P and the lines AB, AC may have a

given ratio.

32. Through a given point within a given circle, draw a straight
line such that the parts of it intercepted between that point and the

circumference may have a given ratio. How many solutions does
the problem admit of? .

33. If a common tangent be drawn to any number of circles

which touch each other internally, and from any point of this

tangent as a centre a circle be described, cutting the other circles ;

and if from this centre lines be drawn through the intersections of

the circles, the segments of the lines within each circle shall be equal.

34. APB is a quadrant of a circle, SPT a line touching it at P;
C is the centre, and PM is perpendicular to CA: prove that

the A SCT : the a ACB :: the a ACB : the a CMP.

35. ABC is a triangle inscribed in a circle, AD, AE are lines

drawn to the base BC parallel to the tangents at B, C respectively ;

shew that AD = AE, and BD : CE :: AB^ : AC^.

36. AB is the diameter of a circle, E the middle point of the
radius OB; on AE, EB as diameters circles are described; PQL is a
common tangent meeting the circles at P and Q, and AB produced
at L: shew that BL is equal to the radius of the smaller circle.
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37. The vertical angle C of a triangle is bisected by a straight
line which meets the base at D, and is produced to a point E, such

that the rectangle contained by CD and CE is equal to the rectangle
contained by AC and CB: shew that if the base and vertical angle
be given, the position of E is invariable.

38. ABC is an isosceles triangle having the base angles at B
and C each double of the vertical angle: if BE and CD bisect the

base angles and meet the opposite sides in E and D, shew that DE
divides the triangle into figures whose ratio is equal to that of AB
to BC.

39. If AB, the diameter of a semicircle, be bisected in C and on
AC and CB circles be described, and in the space between the three

circumferences a circle be inscribed, shew that its diameter will be

to that of the equal circles in the ratio of two to three.

40. O is the centre of a circle inscribed in a quadrilateral ABCD ;

a line EOF is drawn and making equal angles with AD and BC, and

meeting them in E and F respectively : shew that the triangles AEC,
BOF are similar, and that

AE : ED= CF : FB.

41. From the last exercise deduce the following: The inscribed

circle of a triangle ABC touches AB in F; XOY is drawn through
the centre making equal angles with AB and AC, and meeting them
in X and Y respectively: shew that BX : XF=r AY : YC.

42. Inscribe a square in a given semicircle.

43. Inscribe a square in a given segment of a circle.

44. Describe an equilateral triangle equal to a given isosceles

triangle.

45. Describe a square having given the difference between a

diagonal and a side.

46. Given the vertical angle, the ratio of the sides containing it,

and the diameter of the circumscribing circle, construct the triangle.

47. Given the vertical angle, the line bisecting the base, and the

angle the bisector makes with the base, construct the triangle.

48. In a given circle inscribe a triangle so that two sides may
pass through two given points and the third side be parallel to a

given straight line.

49. In a given circle inscribe a triangle so that the sides may
pass through three given points.
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50. A, B, X, Y are four points in a straight line, and O is such
a point in it that the rectangle OA, OB is equal to the rectangle OX,
OY: if a circle be described with centre O and radius equal to a
mean proportional between OA and OB, shew that at every point on
this circle AB and XY will subtend equal angles.

51. O is a fixed point, and OP is any line drawn to meet a fixed

straight line in P; if on OP a point Q is taken so that OQ to OP is

a constant ratio, find the locus of Q.

52. O is a fixed point, and OP is any line drawn to meet the
circumference of a fixed circle in P; if on OP a point Q is taken so
that OQ to OP is a constant ratio, find the locus of Q.

53. If from a given point two straight lines are drawn including
a given angle, and having a fixed ratio, find the locus of the extremity
of one of them when the extremity of the other lies on a fixed straight
line.

•

54. On a straight line PAB, two points A and B are marked and
the line PAB is made to revolve round the fixed extremity P. is a
fixed point in the plane in which PAB revolves; prove that if CA
and CB be joined and the parallelogram CADB be completed, the
locus of D will be a circle.

55. Find the locus of a point whose distances from two fixed

points are in a given ratio.

56. Find the locus of a point from which two given circles sub-
tend the same angle.

57. Find the locus of a point such that its distances from two
intersecting straight lines are in a given ratio.

58. In the figure on page 364, shew that QT, P'T' meet on the
radical axis of the two circles.

59. Through two given points draw a circle cutting another
circle so that their common chord may be equal to a given straight
line.

60. ABC is any triangle, and on its sides equilateral triangles
are described externally : if X, Y, Z are the centres of their inscribed

circles, shew that the triangle XYZ is equilateral.



SOLID GEOMETEY.

EUCLID. BOOK XL

Definitions.

From tlie Definitions of Book I. it will be remembered
that

(i)
A line is that which has length, without breadth

or thickness.

(ii)
A surface is that which has length and breadth,

without thickness.

To these definitions we have now to add :

(iii) Space is that which has length, hreadth, and
thickness.

Thus a line is said to be of one dimension ;

a surface is said to be of two dimensions ;

and space is said to be of three dimensions.

The Propositions of Euclid's Eleventh Book here given
establish the first principles of the geometry of space, or

solid geometry. They deal with the properties of straight
lines which are not all in the same plane, the relations

which straight lines bear to planes which do not contain

those lines, and the relations which two or more planes
bear to one another. Unless the contrary is stated the

straight lines are supposed to be of indefinite length, and
the planes of infinite extent.

Solid geometry then proceeds to discuss the properties
of solid figures, of surfaces which are not planes, and of

lines which can not be drawn on a plane surface.
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Lines and Planes.

1. A straight line is perpendicular to a plane when
it is perpendicular to every straight* line which meets it

in that plane.

^
Note. It will be proved in Proposition 4 that if a straight line

is perpendicular to two straight lines which meet it in a plane, it is

also perpendicular to every straight line which meets it in that plane.

A straight line drawn perpendicular to a plane is said to be a
normal to that plane.

2. The foot of the perpendicular let fall from a given

point on a plane is called the projection of that point on
the plane.

3. The projection of aline on a plane is the locus of

the feet of perpendiculars drawn from all points in the

given line to the plane.

Thus in the above ligure the line ah is the projection of the line
AB on the plane PQ.

It will be proved hereafter (sec page 420) that the projection of a

straight line on a plane is also a straight line.
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4. The inclination of a straight line to a plane is the

acute angle contained by that line and another drawn from
the point at which the first line meets the plane to the

point at which a perpendicular to the plane let fall from

any point of the first line meets the plane.

Thus in the above figure, if from any point X in the given
straight line AB, which intersects the plane PQ at A, a perpen-
dicular Xx is let fall on the plane, and the straight line Axb is drawn
from A through x, then the inclination of the straight line AB to the

plane PQ is measured by the acute angle BA6. In other words :
—

The inclination of a straight line to a plane is the acute angle
contained by the given straight line and its projection on the plane.

Axiom. If two surfaces intersect

meet in a line or lines.

another, they

5. The common section of two intersecting surfaces
is the line (or lines) in which they meet.

Note. It is proved in Proposition 3 that the common section of
two planes is a straight line.

Thus AB, the common section of the two planes PQ, XY is proved
to be a straight line.
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6. One plane is perpendicular to another plane when

any straight line drawn in one of the planes perpendicular
to the common section is also perpendicular to the other

plane.

•^
(BimiiiMisifiiiiiillli^

A..^
iilliilliliiiliiQilillliiliiiliilliliiiiiillli^^^

Thus in the adjoining figure, the plane EB is perpendicular to the

plane CD, if any straight line PQ, drawn in the plane EB at right

angles to the common section AB, is also at right angles to the

plane CD.

7. The inclination of a plane to a plane is the acute

angle contained by two straight lines drawn from any point
in the common section at right angles to it, one in one

plane and one in the other.

Thus in the adjoining figure,
the straight line AB is the com-
mon section of the two inter-

secting planes BC, AD; and
from Q, any point in AB, two

straight lines QP, QR are drawn
perpendicular to AB, one in each

plane: then the inclination of

the two planes is measured by
the acute angle PQR.

Note. This definition assumes that the angle PQR is of constant

magnitude whatever point Ql is taken in AB : the truth of which

assumption is proved in Proposition 10.

The angle formed by the intersection of two planes is called a
dihedral angle.

It may be proved tljut two planes are perpendicular to one another
when the dihedral angle formed by them is a right angle.
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8. Parallel planes are such as do not meet when pro-
duced.

9. A straight line is parallel to a plane if it does not

meet the plane when produced.

10. The angle between two straight lines which do not

meet is the angle contained by two intersecting straight
lines respectively parallel to the two non-intersecting lines.

Thus if AB and CD are two

straight hues which do not meet,
and ah, he are two intersecting lines

parallel respectively to AB and CD ;

then the angle between AB and CD
is measured by the angle abc.

11. A solid angle is that which is made by three or

more plane angles which have a common vertex, but are

not in the same plane.

A solid angle made by three

plane angles is said to be trihedral ;

if made by more than three, it is

said to be polyhedral.

A sohd angle is sometimes called

a comer.

12. A solid figure is any portion of space bounded by
bne or more surfaces, plane or curved.

These surfaces are called the faces of the solid, and the inter-

sections of adjacent faces are called edges.
25-2
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POLVHKDRA.

13. A polyhedron is a solid figure bounded by plane
faces.

Obs. A plane rectilineal figure must at least have three sides;
or four, if two of the sides are parallel. A polyhedron must at least

liave four faces ; or, if two faces are parallel, it must at least have

Jive faces.

14. A prism is a solid figure bounded by plane faces,

of which two that are opposite are similar and equal

polygons in parallel planes, and the other faces are paralle-

lograms.

The polygons are called the ends of the prism. A prism is

said to be right if the edges formed by each pair of adjacent parallel-

ograms are perpendicular to the two ends; if otherwise the prism is

oblique.

IT). A parallelepiped is a solid figure bounded by
three pairs of parallel plane faces.

Fig. 1. Fig. 2.

A parallelepiped may be rectangular as in fig. 1, or oblique as in

fig. 2.
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16. A pyramid is a solid figure bounded by plane
faces, of which one is a polygon, and the rest are triangles

liaving as bases the sides of the polygon, and as a com
mon vertex some point not in the plane of the polyf^on.

The polygon is called the base of the pyramid.
A pyramid having for its base a regular polygon is said to be

right when the vertex lies in the straight line drawn perpendicular
to the base from its central point (the centre of its inscribed or cir-

cumscribed circle).

17. A tetrahedron is a pyramid
on a triangular base : it is thus con-

tained hjfour triangular faces.

18. Polyhedra are classified according to the number
of theiryaces .•

thus a hexahedron has six faces
;

an octahedron has eight faces ;

a dodecahedron has hcelve faces.

19. Similar polyhedra are such as have all their solid

angles equal, each to each, and are bounded by the same
number of similar faces.

20. A Polyhedron is regular when its faces ai-e similar
and equal r(jgular polygons.
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21. It will be proved (see page 425) that there can

only he. Jive regular polyhedra.

They are defined as follows.

(i)
A regular tetrahedron is a

solid figure bounded by four pi;

faces, which are equal and e((ui

lateral triangles.

(ii)
A cube is a solid figure

bounded by six plane faces, which
are equal squares.

(iii) A regular octahedron is a
solid figure bounded by eight plane
faces, which are equal and equilateral

38.

(iv) A regular dodecahedron is /
a solid figure bounded by tvjelve plane
faces, which are equal and regular

pentagons.
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(v) A regular icosahedron is

a solid figure bounded by twenty

plane faces, which ;ire equal and

equilateral fricnff/fcs.

Solids of Revolution.

22, A sphere is a solid figure described by the revo-

lution of a semicircle about its diameter, which remains

fixed.

The axis of the sphere is the fixed straight line about which the

semicircle revolves.

The centre of the sphere is the same as the centre of the semi-

circle.

A diameter of a sphere is any straight line which passes through
the centre, and is terminated both ways by the surface of the

sphere.

23. A right cylinder is a solid

figure described by the revolution of

a rectangle about one of its sides

which remains fixed.

The axis of the cylinder is the fixed straight line about which the

rectangle revolves.

The bases, or ends of the cylinder are the circular faces described

by the two revolving opposite sides of the rectangle.
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24. A right cone is a solid figure
described by the re\'olution of a right-

angled triangle about one of the sides

containing the right angle which re-

mains fixed.

The axis of the cone is the fixed straight line about which the

triangle revolves.

The base of the cone is the circular face described by that side

which revolves.

The hypotenuse of the right-angled triangle in any one of its

positions is called a generating line of the cone.

25. Similar cones and cylinders are those which have

their axes and the diameters of their bases proportionals.
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Proposition 1. Theorem.

One part of a straight line cannot he in a plane and an-

other part outside it.

If possible, let AB, part of the st. line ABC, be in the

plane PQ, and the part BC without it.

Then since the st. line A B is in the plane PQ,
.". it can be produced in that plane, i. Post. 2.

Produce AB to D;
and let any other plane which passes through AD be turned

about AD until it passes also through C.

Then because the points B and C are in this plane,
.'. the st. line BC is in it: i. Def. 5.

.•. ABC and ABD are in the same plane and are both
St. lines

; which is impossible. i. Def. 3.

.'. the st. line ABC has not one part AB in the plane PQ,
and another part BC outside it. q. e. d.

Note. This proposition scarcely needs proof, for the truth of it

follows almost immediately from the definitions of a straight line

and a plane.

It should be observed that the method of proof used in this and
the next proposition rests upon the following axiom.

If a plane of unlimited extent turns about a fixed straifjht line as
an axis, it can be made to 2)ass through any point in space.



394 Euclid's et-kmentr.

Proposition 2. Theorem,

Any two straight lines which cut one another are in one

plane: and any three straight lines, of which each pair inter-

sect one another, are in one plnnie.

Let the two st. lines AB and CD intersect at E;
and let the st. line BC be drawn cutting AB and CD at B

and C:

then
(i)

AB and CD shall lie in one plane,

(ii) AB, BC, CD shall lie in one plane,

(i)

'

Let any plane pass through AB
;

and let this plane be turned about AB until it passes

through C.

Then, since C and E are points in this plane,
.'. the whole st. line CED is in it. I. Def. 5 and xi. L

That is, AB and CD lie in one plane.

(ii) And since B and C are points in the plane which
contains AB and CD,

.'. also the st. line BC lies in this plane. Q. e. d.

Corollary. One, and only one, plane can he made to

pass through tivo given intersecting straight lines.

Hence the position of a plane is fixed,

(i) if it passes through a given straight line and a given point
outside it; ^ a:, p. 393.

(ii)
if it passes through two intersecting straight lines ; xi. 2.

(iii) if it passes through three points not collinear
; xi. 2.

(iv) if it passes through two parallel straight lines. i. Def. 25,
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Proposition 3. Theorem.

If two 'planefi cut one another their common section is a

straight line.

C

Let the two planes XA, CY cut one another, and let BD be

their common section :

then shall BD be a st. line.

For if not, from B to D in the plane XA draw the st. line

BED;
and in the plane CY draw the st. line BFD.

Tlien the st. lines BED, BFD have the same extremities;
.'. they include a space;
but this is impossible.

.'. the common section BD cannot be otherwise than a st.

line. Q. E. D.

Or, more briefly thus—
Let the planes XA, CY cut one another, and let B and D be
two points in their common section.

Then because B and D are two points in the plane XA,
.'. the st. line joining B, D lies in that plane, i. Def. 5.

And because B and D are two points in the plane CY,
.*. the st. line joining B, D lies in that plane.
Hence the st. line BD lies in both planes,
and is therefore their common section.

That is, the common section of the two planes is a straight
line. Q. E. D.
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Proposition 4. Theorem. [Alternative Proof.]

If a straight line is perpendicular to each of two straight
lines at their point of intersection, it shall also be perpen-
dicular to the plane in which they lie.

Let the straight line AD be perp. to each of the st.

lines AB, AC at A their point of intersection:

then shall AD be perp. to the plane in which AB and
AC lie.

Produce DA to F, making AF equal to DA.

Draw any st. line BC in the plane of AB, AC, to cut

AB, AC at B and C;
and in the same plane draw through A any st. line AE to cut

BC at E.

It is required to prove that AD is perp. to AE.

Join DB, DE, DC
;
and FB, FE, FC.

Then in the A« BAD, BAF,
because DA = FA,

and the common side AB is perp. to DA, FA
.-. BD= BF.

Similarly CD = CF.

Now if the ABFC be turned about its base BC until

the vertex F comes into the plane of the A BDC,
then F will coincide with D,

since the conterminous sides of tlie triangles are equal, i. 7.

.*. EF will coincide with ED,
that is, EF^ED.

Constr

I. 4.
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Hence in the a ^
DAE, FAE,

since DA, AE, ED = FA, AE, EF respectively,
.-. the L DAE = the l FAE. i. 8.

Tliat is, DA is perp. to AE.

Similarly it may be shewn that DA is perp, to every
St. line which meets it in the plane of AB, AC

;

.'. DA is perp. to this plane. q.e.d.

ProPOSITION -i. Theorem. [Euclid's Proof.]

If a straight line is perpendicular to each of tivo straight

lines at their point of intersection^ it shall also he 'perpen-

dicular to the plane in which they lie.

Let the st. line EF be perp. to each of the st. lines

AB, DC at E their point of intersection :

then shall EF be also perp. to the plane XY, in which
AB and DC lie.

Make EA, EC, EB, ED all equal, and join AD, BC.

Through E in the plane XY draw any st. line cutting
AD and BC in G and H.

Take any pt. F in EF, and join FA, FG, FD, FB, FH, FC.

Then in the a ^
AED, BEC,

because AE, ED = BE, EC respectively, Co7tstr.

and the L AED = the L BEC
;

i. 15.

.*. AD = BC, and the :_ DAE = the L CBE. i. 4.
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F

In the A «
AEG, BEH,
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Proposition 5. Theorem.

If a straight line is i^erfendicular to each of three con-

current straight lines at their point of intersection, these

three straight lines shall he in one plane.

Let the straight line AB be perpendicular to each of

the straight lines BC, BD, BE, at B their point of inter-

section :

then shall BC, BD, BE be in one plane.

Let XY be the plane which passes through BE, BD
;
xi. 2.

and, if possible, suppose that BC is not in this plane.

Let AF be the plane which passes through AB, BC ;

and let the common section of the two planes XY, AF be the

St. line BF. xi. 3.

Then since AB is perp. to BE and BD,
and since BF is in the same plane as BE, BD,

.*. AB is also perp. to BF. xi. 4.

But AB is perp. to BC; Hyp-
.'. the L^ ABF, ABC, which are in the same plane, are

both rt. angles ;
which is impossible.

.'. BC is not outside the plane of BD, BE :

that is, BC, BD, BE are in one plane.

Q.E.D.
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Proposition 6. Theorem.

If two straight lines are 'perpeMdicular to the same j^lane^

they shall be jmralhl to one another.

X

Let the st. lines AB, CD be perp. to the plane XY :

then shall AB and CD be par'.*

Let AB and CD meet the plane XY at B and D.

Join BD;
and in the plane XY draw DE perp. to BD, making DE

equal to AB.

Join be; AE, AD.

Then since AB is perp, to the plane XY, ^%i^-
.*. AB is also perp. to BD and BE, which meet it in that

plane ; xi. Be/. 1.

that is, the l ^

ABD, ABE are rt. angles.

Similarly the z.
**

CDB, CDE are rt. angles.

Now in the A '^

ABD, EDB,
becauso AB, BD =^ ED, DB, respectively, Constr.

and the /. ABD = the z. EDB, being rt. angles ;

.'. AD = EB. I. 4.

Again in the a ^
ABE, EDA,

because AB, BE - ED, DA, respectively,
and AE is common

;

.'. the z. ABE -the ^ EDA. i. 8.

* Note. In order to shew that AB*and CD are parallel, it is

necessary to prove that (i) they are in the same plane, (ii) the angles
ABD, CDB, are supplementary.
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But the z_ ABE is a rt. angle ;
Proved.

.'. the z_ EDA is a rt. angle.
But the L EDB is a rt. angle by construction,

and the i. EDO is a rt. angle, since CD is perp. to the

plane XY. Ji^yp-

Hence ED is perp. to the three lines DA, DB, and DC;
.'. DA, DB, DC are in one plane. xi. 5.

But A B is in the plane which contains DA, DB
;

xi. 2.

.'. AB, BD, DC are in one plane.
And each of the z_

^

ABD, CDB is a rt. angle ; Hyp.
.'. AB and CD are par'. i. 28.

\ Q.E.D.

Proposition 7. Theorem.

If two straight lines are parallel, the straight line which

joiris any point hi one to any point in the other is in the

same plane as the
2^ci'f'cillels.

Let AB and CD be two par' st. lines,

and let E, F be any two points, one in each st. line :

then shall the st. line which joins E, F be in the same

plane as AB, CD.

For since AB and CD are par',
.'. they are in one plane. i. De/. 25.

And since the points E and F are in this plane,
.*. the St. line which joins them lies wholly in this plane.

I. Def. 5.

That is, EF is in the plane of the par'^ AB, CD.

Q.E.D,
H. K. 26
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Proposition 8. Theorem.

If two straight lines are parallel, and if one of them
is perpendicular to a plane, then the other shall also be per-

pendicular to the same plane.

Let AB, CD be two par' st. lines, of which AB is perp.
to the plane XY :

then CD shall also be perp. to the same plane.

Let AB and CD meet the plane XY at the points B, D.

Join BD
;

and in the plane XY draw DE perp. to BD, making DE equal
to AB.

Join BE, AE, AD.

Then because AB is perp. to the plane XY, Hyp-
.'. AB is also perp. to BD. and BE, which meet it in that

plane ;
xi. JJef 1.

that is, the z.
"

ABD, ABE are rt. angles.

Now in the A** ABD, EDB,
because AB, BD = ED, DB, respectively, Constr.

and the z. ABD — the z. EDB, being rt. angles;
.'. AD=EB. I. 4.

Again in the A^ ABE, EDA,
because AB, BE - ED, DA respectively,

and AE is common
;

.-. the L ABE = the i. EDA. i. 8.
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But the z_ ABE is a rt. angle ;
Proved.

.'. the L EDA is a rt. angle :

that is, ED is perp. to DA.

But ED is also perp, to DB : Constr.

.*. ED is perp. to the plane containing DB, DA. xr. 4

And DC is in this plane ;

for both DB and DA are in the plane of the par'*' AB, CD.

XI. 7 ..

:. ED is also perp. to DC
;

xi. Bef. 1.

that is, the z_ CDE is a rt. angle.

Again since AB and CD are par', J^yp-
and since the z. ABD is a rt. angle,
.". the z. CDB is also a rt. angle. i. 29.

.'. CD is perp. both to DB and DE
;

.. CD is also perp. to the plane XY, Avliich contains

DB, DE. XI. 4.

Q.E.D.

EXERCISES.

1. The perpendicular is the least straight line that can be drawn
from an external point to a plane.

2. Equal straight lines drawn from an external point to a plane
are equally inclined to the perpendicular drawn from that point to

the plane.

3. Shew that two observations with a spirit-level are sufficient to

determine if a plane is horizontal : and prove that for this purpose
the two positions of the level must not be parallel.

4. What is the locus of points in space which are equidistant
from two fixed points ?

5. Shew how to determine in a given straight line the point
which is equidistant from two fixed points. When is this im-

possible ?

6. If a straight line is parallel to a plane, shew that any plane
passing through the given straight line will have with the given plane
a common section which is parallel to the given straight line.

26-2
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Proposition 9. Theorkm.

I'wo straight lines which are 2)(^rallel to a third straight
line are parallel to one another.

Let the st. lines AB, CD be each par' to the st. line PQ :

then shall AB be par' to CD,

T. If AB, CD and PQ are in one plane, tlio proposition has

already been proved. i. 30.

II. But if AB, CD and PQ are not in one plane,
in PQ take any point G

;

and from G, in the plane of the par'" AB, PQ, draw GH
perp. to PQ; i. 11.

also from G, in the plane of the par'" CD, PQ, draw
GK perp. to PQ. i. 11.

Then because PQ is perp. to GH and GK, Constr.

.'. PQ is perp. to the plane HGK, which contains them.

XI. 4.

But AB is par' to PQ
; ^^W-

.'. AB is also perp. to the plane HGK. xi. 8.

Similarly, CD is perp. to the plane HGK.

Hence AB and CD, being perp. to the same plane, are par*

to one another, xi. 6.

Q.K.D.
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Proposition 10. Theorem.

//' two intersecting straight lines are respectively parallel

to two other intersectifig straight lines'not in the same plane
with them, then the first pair and the second pair shall con-

tain equal angles. /

Let the st. lines AB, BC be respectively par' to the st.

lines DE, EF, which are not in the same plane with them :

then shall the z. ABC = the i. DEF.

In BA and ED, make BA equal to ED
;

and'in BC and EF, make BC equal to EF.

Join AD, BE, CF, AC, DF.

Then because BA is equal and par' to ED,

Hyp. and Constr.

.'. AD is equal and par' to BE. i, 33.

And because BC is equal and par' to EF,
.'. CF is equal and par' to BE. i. 33.

,'. AD is equal and par' to CF
;

xi. 9.

hence it follows that AC is equal and par' to DF. i. 33.

Then in the A^ ABC, DEF,
because AB, BC, AC - DE, EF, DF, respectively,

.•. tlie L ABC = the _ DEF. i. 8.

Q.E.D.
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Proposition 11. Problem.

2^0 draiv a straight line 2>^tyendicular to a given flane
from a given point outside it.

Let A be the given point outside the plane XY.

It is required to draw from A a st. line perp

plane XY.

Draw any st. line BC in the plane XY
;

and from A draw AD perp. to BC
Then if AD is also perp.

required is done.

But if not, from D draw
to BC;

and from A draw AF perp. to DE.

Then AF shall be perp. to the plane XY.

Through F draw FH par' to BC.

Now because CD is perp. to DA and DE,
.'. CD is perp. to the plane containing DA, DE

And HF is par' to CD
;

.'. HF is also perp. to the plane containing DA,

And since FA meets HF in this plane
.". the /. HFA is a rt. angle ;

that is, AF is perp. to FH.

And AF is also perp. to DE;
.'. AF is perp. to the plane containing FH

that is, AF is perp. to the plane XY.

to the

I. 12.

to the plane XY, what was

DE in the plane XY perp.
L 11.

I. 12.

I. 31.

Constr,

XI. 4.

DE, XI. 8.

XI. Def. 1.

Co7istr.

DE;
Q.E.F.
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Proposition 12. Problem.

407

To draw a straight line perpendicular to a given plane
from a given point in the plane.

D B

Let A be the given point in the plane XY.

It is required to draw from A a st. line perp. to the

plane XY.

From any point B outside the plane XY draw BC perp.
to the plane. xi. 11.

Then if BC passes through A, what was required is

done.

But if not, from A draw AD par' to BC, i. 31.

Then AD shall be the perpendicular required.

For since BC is perp. to the plane XY, Constr.

and since AD is par' to BC, Constr.

.'. AD is also perp. to the plane XY. xi. 8.

Q.E.F.

EXERCISES.

1. Equal straight lines drawn to meet a plane from a point
without it are equally inclined to the plane.

2. Find the locus of the foot of the perpendicular drawn from a

given point upon any plane which passes through a given straight
line.

3. From a given point A a perpendicular AF is drawn to a plane
XY; and from F, FD is drawn perpendicular to BC, any line in

that plane: shew that AD is also perpendicular to BC.
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Proposition 13. Theorem.

Only one perpendicular can he drawn to a given plane

from a given point either in the plane or outside it.
'
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Proposition 14. Theorem.

Planes to which the same straight line is perpendicular
are parallel to one another.

! /

v
\
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Proposition 15. Theorem.

If two intersecting straight lines are parallel respectively
to two other intersecting straight lines which are not in

tlie same plane with them^ then the plane containing the

first pair shall be parallel to the plane containing the second

jiair.

Let the st. lines AB, BC be respectively par' to the

st. lines DE, EF, which are not in the same plane as

AB, BC :

then shall the plane containing AB, BC be par' to the

l^lane containing DE, EF.

From B draw BG perp. to the plane of DE, EF
;

xi. 11.

and let it meet that plane at G,

Through G draw GH, GK par' respectively to DE, EF. i. 31.

Then because BG is perp. to the plane of DE, EF,
,'. BG is also perp. to GH and GK, which meet it in that

plane : xi. Def. 1.

that is, eacli of .the l"" BGH, BGK is a rt. angle.

Now because BA is par' to ED, I^VP-
and because GH is also par' to ED, Constr.

.'. BA is par' to GH. xi. 9.

And since the /.BGH is a rt. angle ; Proved.

:. the L ABG is a rt. angle. I. 29.

Similarly the z. CBG is a rt. angle.
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Then since BG is perp. to each of the st. lines BA, BC,
.'. BG is perp. to the plane containing them. xi. 4.

But BG is also perp, to the plane of ED, EF : Gonstr.

that is, BG is perp. to the two planes AC, DF :

.*. these planes are par'. xi. 14.

Q.E.D.

Proposition 16. Theorem.

//* two parallel planes are cut hy a third plane their

common sections 'with it shall be parallel.

N
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Proposition 17. Theorem.

Straight lines which are cut by parallel planes are cut

proportionally.

H

Let the st. lines A B, CD be cut by the three par' planes
GH, KL, MN at the points A, E, B, and C, F, D :

then shall AE : EB :: CF : FD.

Join AC, BD, AD
;

and let AD meet the plane KL at the point X :

join EX, XF.

Then because the two par' planes KL, MN are cut by
the plane ABD,

.". the common sections EX, BD are par'. xi. 16.

and because the two par' planes GH, KL are cut by tlie

plane DAC,
.*. the common sections XF, AC are par'. xi. IG.

And because EX is par' to BD, a side of the A ABD,
.'. AE : EB :: AX : XD. vi. 2.

Again because X F is par' to AC, a side of the A DAC,
.-. AX : XD :: CF : FD. vi. 2.

Hence AE : EB :: CF : FD. v. 1.

C,).E.D.

Definition. One plane is perpendicular to another

plane, when any straight line drawn in one of the planes

perpendicular to their common section is also perpendicular
to the otlier plane. [Book xi. Def. C]
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Proposition 18. Theorem.

If a straight line is 2yerpendicidar to a plane, then every

plane which passes through the straight line is also

dicular to the given plane.

Let the st. line AB be perp. to the plane XY
;

and let DE be any plane passing through AB :

then shall the plane DE be perp. to the plane XY.

Let the st. line CE be the common section of the planes

XY, DE. XI. 3.

From F, any point in CE, draw FG in the plane DE

perp. to CE. i. 11.

Then because AB is perp. to the plane XY, Hyp.
:. AB is also perp. to CE, which meets it in that plane,

XI. Def. 1.

that is, the ^ ABF is a rt. angle.
But the z. GFB is also a rt. angle ; Constr.

:. GF is par' to AB. I. 28.

And AB is perp. to the plane XY, Hyp.
.'. GF is also perp. to the plane XY. xi. 8.

Hence it has been shewn that any st. line G F drawn in

the plane DE perp. to the common section CE is also perp.
to the plane XY.

.'. the plane DE is perp. to the plane XY. xi. Def. 6.

Q.E.D.

EXERCISE.

Sheio that tivo planes are perpendicular to one another tohen the

dihedral angle formed by them is a right angle.
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Proposition 19. Theorem.

If two intersecting iilanes are each perpendicular to a
third plane, their common section shall also be perpendicular
to that plane.

Let each of the planes AB, BC be perp. to the plane
ADC, and let BD be their common section :

then shall BD be perp. to the plane ADC.

For if not, from D draw in the plane AB the st. line DE

perp. to AD, the common section of the planes ADB, ADC :

I. 11.

and from D draw in the plane BC the st. line DF perp.
to DC, the common section of the planes BDC, ADC.

Then liecause the plane BA is perp. to the plane ADC,
Hyp.

and DE is drawn in the plane BA perp. to AD the common
section of these planes, Constr.

:. DE is perp. to the plane ADC. xi. Dp/. 6.

Similarly DF is perp. to the plane ADC.

.'. from the point D two st. lines are drawn perp. to the

plane ADC ;
which is impossible. xi. 13.

Hence DB cannot be otherwise than perp. to the plane ADC.

Q.E.D.
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Proposition 20. Theorem.

Of the three plane angles which form a trihedral angle,

any two are together greater than the third.

Let the trihedral angle at A he fonnecl by the three

plane L^ BAD, DAC, BAG :

then shall any two of them, such as the l ^
BAD, DAC, he

together greater than the third, the l BAG.

Case I. If the l. BAG is less than, or equal to, either

of the /^ BAD, DAG;
it is evident that the /.

^

BAD, DAG are together greater
than the l BAG.

Case II. But if the l BAG is greater than either of the

L^ BAD, DAG;
then at the point A in the plane BAG make the z. BAE equal

to the L BAD
;

and cut off AE equal to AD.

Through E, and in the plane BAG, draw the st. line BEG

cutting AB, AG at B and G :

join DB, DG.

I

Then in the a «
BAD, BAE,

since BA, AD = BA, AE, respectively, Constr.

and the /.BAD = the L BAE
;

Constr.

.'. BD = BE. I. 4.

Again in the ABDG, since BD, DG are together greater
than BG, I. 20.

andBD^BE, Proved.

.'. DG is greater tlian EC
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D

And in the a ^

DAC, EAC,
because DA, AC = EA, AC respectively,

Imt DC is greater than EC
;

the L. DAC is greater than the EAC.

Cjonstr.

Proved.

I. 25.

But the /.BAD =the z. BAE
;

Constr.

:. tlie two _ **

BAD, DAC are together greater than the

BAC. Q.E.D.

Proposition 21. Theorem.

Every [convex) solid angle is formed hy plane angles
which are together less than four right angles.

Let the solid angle at S be formed by the plane L ^
ASB,

BSC, CSD, DSE, ESA:
then shall the sum of these plane angles be less than four

rt. angles.



BOOK XI. PROP. 21. 417

For let a plane XY intersect all the arms of the plane

angles on the same side of the vertex at the points A, B, C,

D, E : and let AB, BC, CD, DE, EA be the common sections

of the plane XY with the planes of the several angles.
Within the polygon ABODE take any point O ;

and join O to each of the vertices of the polygon.
Then since the a.

^

SAE, SAB, EAB form the trihedral

angle A,

.*. the L ^

SAE, SAB are together greater than the l EAB
;

XI. 20.

that is,

the L ^

SAE, SAB are together greater than the l ^
OAE, OAB.

Similarly,

the L.
^ SBA, SBC are together greater than the l ^ OBA, OBO:

and so on, for each of the angular points of the polygon.

Thus by addition,
the sum of the base angles of the triangles whose vertices

are at S, is greater than the sum of the base angles of

the triangles whose vertices are at O.

But these two systems of triangles are equal in number
;

/. the sum of all the angles of the one system is equal to the

sum of all the angles of the other. .

It follows that the sum of the vertical angles at S is

less than the sum of the vertical angles at O.

But the sum of the angles art O is four rt. angles ;

/.the sum of the angles at S is less than four rt. angles.

Q.E.D.

'Note. This proposition was not given in this form by Euclid, who
established its truth only in the case of trihedral angles. The above

demonstration, however, applies to all cases in which the polygon
ABODE is convex, but it must be observed that without this condition
the proposition is not necessarily true.

A solid angle is convex when it lies entirely on one side of each
of the infinite planes which pass through its plane angles. If this is

the case, the polygon ABODE will have no re-entrant angle. And it

is clear that it would not be possible to apply xi. 20 to a vertex at

which a re-entrant angle existed.

H. E. 27
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Exercises on Book XT.

1. Equal straight lines drawn to a plane from a point without
it have equal projections on that plane.

2. If S is the centre of the circle circumscribed about the triangle

ABC, and if SP is drawn perpendicular to the plane of the triangle,
shew that any point in SP is equidistant from the vertices of the

triangle.

3. Find the locus of points in space equidistant from three given

points,

4. From Example 2 deduce a practical method of drawing a

perpendicular from a given point to a plane, having given ruler,

compasses, and a straight rod longer than the required perpen-
dicular.

5. Give a geometrical construction for drawing a straight line

equally inclined to three straight lines which meet in a point, but are

not in the same plane.

6. In a gauche quadrilateral (that is, a quadrilateral whose sides

are not in the same plane) if the middle points of adjacent sides are

joined, the figure thus formed is a parallelogram.

7. AB and AC are two straight lines intersecting at right angles,
and from B a perpendicular BD is drawn to the plane in which they
are : shew that AD is perpendicular to AC.

8. If two intersecting planes are cut by two parallel planes, the

lines of section of the first pair with each of the second pair contain

equal angles.

9. If a straight line is parallel to a plane, shew that any plane
passing through the given stra,ight line will intersect the given plane
in a line of section which is parallel to the given line.

10. Two intersecting planes pass one through each of two

parallel straight lines
;
shew that the common section of the planes

is parallel to the given lines.

11. If a straight line is parallel to each of two intersecting planes,
it is also parallel to the common section of the planes.

12. Through a given point in space draw a straight line to inter-

sect each of two given straight lines which are not in the same
plane.

13. If AB, BC, CD are straight lines not all in one plane, shew
that a plane which passes through the middle point of each one of them
is parallel both to AC and BD,

14. From a given point A a perpendicular AB is drawn to a

plane XY
;
and a second perpendicular AE is drawn to a straight

line CD in the plane XY : shew that EB is perpendicular to CD.
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15. From a point A two perpendiculars AP, AQ are drawn one

to each of two intersecting planes : shew that the common section of

these planes is perpendicular to the plane of AP, AQ.

16. From A, a point in one of two given intersecting planes,
AP is drawn perpendicular to the first plane, and AQ perpendicular
to the second : if these perpendiculars meet the second plane at P
and Q, shew that PQ is perpendicular to the common section of the

two planes.

17. A, B, C, D are four points not in one plane, shew that the

four angles of the gauche quadrilateral ABCD are together less than
four right angles.

18. OA, OB, OC are three straight lines drawn from a given

point O not in the same plane, and OX is another straight line

within the solid angle formed by OA, OB, OC : shew that

(i) the sum of the angles AOX, BOX, COX is greater than
half the sum of the angles AOB, BOC, COA.

(ii) the sum of the angles AOX, COX is less than the sum of

the angles AOB, COB.

(iii) the sum of the angles AOX, BOX, COX is less than the

sum of the angles AOB, BOC, COA.

19. OA, OB, OC are three straight lines forming a solid angle
at O, and OX bisects the plane angle AOB; shew that the angle
XOC is less than half the sum of the angles AOC, BOC.

20. If a point be equidistant from the angles of a right-angled

triangle and not in the plane of the triangle, the line joining it with
the middle point of the hypotenuse is perpendicular to the plane of

the triangle.

21. The angle which a straight line makes with its projection on
a. plane is less than that which it makes with any other straight line

which meets it in that plane.

22. Find a point in a given plane such that the sum of its

distances from two given points (not in the plane but on the same
side of it) may be a minimum.

23. If two straight lines in one plane are equally inclined to

another plane, they will be equally inclined to the common section
of these planes.

24. PA, PB, PC are three concurrent straight lines each of

which is at right angles to the other two: PX, PY, PZ are perpen-
diculars drawn from P to BO, CA, AB respectively. Shew that
XYZ is the pedal triangle of the triangle ABC.

25. PA, PB, PC are three concurrent straight lines each of which
is at right angles to the other two, and from P a perpendicular PO is

drawn to the plane of ABC : shew that O is the orthocentre of the

triangle ABC.

27-2
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THEOBEMS AND EXAMPLES ON BOOK XT.

Definitions.

(i)
Lines which are drawn on a plane, or through which a

plane may be made to pass, are said to be co-planar.

(ii)
The projection of a line on a plane is the locus of the feet

of perpendiculars drawn from all points in the given line to the

plane.

Theorem 1. Tlie projection of a straight live on a plane is itself a

straight line.

Let AB be the given st. line, and XY the given plane.
From P, any point in AB, draw Pp perp. to the plane XY :

it is required to shew that the locus of 2> is a st. line.

From A and B draw Aa, Bb perp. to the plane XY.
Now since Aa, Pp, Bh are all perp. to the plane XY,

.-. they are par'. xi. 6,

And since these par'* all intersect AB,
.-. they are co-planar. xi. 7

the point p is in the common section of the planes Ah, XY ;

that is, p is in the st. line ab.

Butp is any point in the projection of AB,
.-. the projection of AB is the st. line ab. q.e.d
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Theorem 2. Draiv a perpendicular to each of two straight lines

which are not in the same plane. Prove that this perpendicular is the

shortest distance between the two lines.

Let AB and CD be the two straight lines, not in the same plane.

(i) It is required to draw a st. line perp. to each of them.

Through E, any point in AB, draw EF par^ to CD.
Let XY be the plane which passes through AB, EF.

From H, any point in CD, draw HK perp. to the plane XY. xi. 11.

And through K, draw KQ par^ to EF, cutting AB at Q.
Then KQ is also par^ to CD

;
xi. 9.

and CD, HK, KQ are in one plane. xi. 7.

From Q, draw QP par' to HK to meet CD at P.

Then shall PQ be perp. to both AB and CD,

For, since HKis perp. to the plane XY, and PQ is par' to HK,
Constr.

:. PQ is perp. to the plane XY ;
xi. 8.

.'. PQ is perp. to AB, which meets it in that plane. I)ef. 1.

For a similar reason PQ is perp. to QK,
.". PQ is also perp. to CD, which is par' to QK.

(ii) It is required to shew that PQ is the least of all st. lines

drawn from AB to CD.
Take HE, any other st. line drawn from AB to CD.

Then HE, being oblique to the plane XY is greater than the

perp. HK. p. 403, Ex. 1.

.•. HE is also greater than PQ. q.e.d.
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Dkfinition. a parallelepiped is a solid figure bounded by three

pairs of parallel faces.

Theorem 3. (i) The faces of a parallelepiped are parallelograms,

of which those ichich are opposite are identically equal.

(ii) Thefour diagonals of a parallelepiped are concurrent and
bisect one another.

Let ABA'B' be a parPe*!, ^f ^hich ABCD, C'D'A'B' are opposite
faces.

(i)
Then all the faces shall be par'"', and the opposite faces

shall be identically equal.

For since the planes DA', AD' are par', Bef.
and the plane DB meets them,

.-. the common sections AB and DC are par'. xi. 16.

Similarly AD and BC are par'.
.-. the fig. ABCD is a par™,

andAB = DC; alsoAD = BC. i. 34.

Similarly each of the faces of the parP«'' is a par*" ;

so that the edges AB, CD', B'A', DC are equal and par':
so also are the edges AD,, C'B', D'A', BC

; and likewise AC, BD',
CA', DB'.

Then in the opp. faces ABCD, C'D'A'B',
wehave AB = CD' and BC = D'A'; Proved.

and since AB, BC are respectively par' to CD', D'A'
,

.-. the Z ABC = the Z C'D'A'; xi. 10.

.-. the par*" ABCD = the par" C'D'A'B' identically. P. 64, Ex. 11.

(ii) The diagonals AA', BB', CC, DD' shall be concurrent and
bisect one another.

Join AC and A'C.
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Then since AC is equal and par' to A'C,
.-. the fig. ACA'C is a par'" ;

.-. its diagonals AA', CC bisect one another.

That is, AA' passes through O, the middle point of CC.

Similarly if BC and B'C were joined, the fig. BCB'C would be a

par™;
.'. the diagonals BB', CC bisect one another.

That is, BB' also passes through O the middle point of CC.

Similarly it may be shewn that DD' passes through, and is

bisected at, O. q.e.d.

Theorem 4. The straight lines which join the vertices of a tetra-

hedron to the centroids of the opposite faces are concurrent.

Let ABCD be a tetrahedron, and let g-^, g^, g^, g^ be the centroids
of the faces opposite respectively to A, B, C, D.

Then shall A^Ti, Bg^, Cg^, Dg^ be concurrent.

Take X the middle point of the edge CD ;

then g^ and </., must lie respectively in BX and AX,
so that BX = 3 . Xf7i ,

P. 105, Ex. 4.

and AX = 3. Xg^;
•• 9i92 is pari to AB.

And
A^jfj , Bg.2 must intersect one another, since they are both in

the plane of the"a AXB :

let them intersect at the point G.

Then by similar a^,, AG : G(/i
= AB : g-^g^
=AX : X^2
= 3:1.

.*. B^2 cuts A^/i at a point G whose distance from^j = | . A^^.

Similarly it may be shewn that Cg.^ and D g^ cut Ar/j at the same
point ;

.-. these lines are concurrent. q.e.d.



424 EUCLID'S ELEMENTS.

Theorem 5. (i) If a pyramid is cut by planes drawn parallel to

its base, the sections are similar to the base.

(ii) The areas of such sections are in the duplicate ratio of their

perpendicular distances from the vertex,

S

A
Let SABCD be a pyramid, and abed the section formed by a

plane drawn par^ to the base ABCD.

(i) Then the figs. ABCD, abed shall be similar.

Because the planes abed, ABCD are par',
and the plane AB&a meets them,

.•. the common sections a6, AB are par'.

Similarly be is par' to BC; cd to CD; and da to DA.

And since ab, be are respectively par' to AB, BC,
.-. the z a6c= the z ABC. xi. 10.

Similarly the remaining angles of the fig. abed are equal to the

corresponding angles of the fig. ABCD.
And since the A" Sab, SAB are similar,

.-. ab : AB = S6 : SB
= bc : BC, for the a" Sbc, BCc are similar.

Or, ab : bc = AB : BC.

In like manner, 6c : cd=BC : CD.
And so on.

.-. the figs, abed, ABCD are equiangular, and have their sides

about the equal angles proportional.
/. they are similar.

(ii) From S draw Sa;X perp. to the planes abed, ABCD and

meeting them at x and X.

Then shall fig. abed : fig. ABCD = Sx2 : SX2.
Join ax, AX.

Then it is clear that the a' Sax, SAX are similar.

And the fig. abed : fig. ABCD = a62 : AB^ vi. 20.

= aS2 : AS2,
= Sx2 : SX\ Q.E.D.
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Definition.

A polyhedron is regular when its faces are similar and equal
regular polygons.

Theorem 6. There cannot be more thanfive regular polyhedra.

This is proved by examining the number of ways in which it is

possible to form a solid angle out of the plane angles of various

regular polygons; bearing in mind that three plane angles at least

are required to form a solid angle, and the sum the plane angles
forming a solid angle is less than four right angles. xi. 21,

Suppose the faces of the 'regular polyhedron to be equilateral
triangles.

Then since each angle of an equilateral triangle is | of a right
angle, it follows that a solid angle may be formed (i) by three, (ii) by
four, or

(iii) hy Jive such faces; for the sums of the plane angles
would be respectively (i) two right angles, (ii) f of a right angle,

(iii) -1/ of a right angle ;

that is, in all three cases the sum of the plane angles would be less

than four right angles.

^

But it is impossible to form a solid angle of six or more equilateral
triangles, for then the sum of the plane angles would be equal to, or

greater than four right angles.

Again, suppose that the faces of the polyhedron are squares.

(iv) Then it is clear that a solid angle could be formed of three,
but not more than three, of such faces.

Lastly, suppose the faces are regular pentagons.

(y) Then, since each angle of a regular pentagon is f of a right
angle, it follows that a solid angle may be formed of three such faces ;

but the sum of more than three angles of a regular pentagon is greater
than four right angles.

Further, since each angle of a regular hexagon is equal to | of a

right angle, it follows that no solid angle could be formed of such
faces ; for the sum of three angles of a hexagon is equal to four right
angles.

Similarly, no solid angle can be formed of the angles of a polygon
of more sides than six.

Thus there can be no more th&n five regular polyhedra.
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Note on the Regular Polyhedra.

(i) The polyhedron of which each solid angle is formed by
three equilateral triangles is called a regular tetrahedron.

It has /our faces,

four vertices,

six edges.

(ii) The polyhedron of which each solid angle is formed by
four equilateral triangles is called a regular octahedron.

It has eight faces, six vertices, twelve edges.

(iii) The polyhedron of which each solid angle is formed by
Jive equilateral triangles is called a regular icosahedron.

It has twenty faces, twelve vertices, thirty edges.
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(iv) The regular polyhedron of which each solid angle is formed

by three squares is called a cutoe.

It has six faces,

eight vertices,

twelve

(v) The polyhedron of which each solid angle is formed by
three regular pentagons is called a regular dodecahedron.

It has twelve faces, twenty vertices, thirty edges.
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TuEOREsi 7. If F denote tlie number offaces, E of edges, and V of
vertices in any polyhedron, then toill

E + 2 = F + V.

Suppose the polyhedron to be formed by fitting together the faces

in succession : suppose also that E^ denotes the number of edges, and

V^ of vertices, when r faces have been placed in position, and that the

polyhedron has n faces when complete.

Now when one face is taken there are as many vertices as edges,
that is Ei = Vi.

The second face on being adjusted has two vertices and one edge in

common with the first; therefore by adding the second face we
increase the number of edges by one more than the number of

vertices; .*. E2-V2= l.

Again, the third face on adjustment has three vertices and two

edges in common with the former two faces
; therefore on adding the

third face we once more increase the number of edges by one more
than the number of vertices

;

.-. E3-V3=2.

Similarly, when all the faces but one have been placed in position,

En-i-V„-i= 7i-2.

But in fitting on the last face we add no new edges nor vertices ;

•'• E=E„^i, V = V,i_i, and F=n.

So that E-V=F-2,
or, E + 2=F-i-V.

This is known as Eulefs Theorem.

Miscellaneous Examples on Solid Geometry.

1. The projections of parallel straight lines on any plane are

parallel.

2. If ah and cd are the projections of two parallel straight lines

AB, CD on any plane, shew that AB : CD = a6 : cd.

3. Draw two parallel planes one through each of two straight
lines which do not intersect and are not parallel.

4. If two straight lines do not intersect and are not parallel, on
what planes will their projections be parallel?

5. Find the locus of the middle point of a straight line of

constant length whose extremities lie one on each of two non-intersect-

ing straight lines.
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0. Three points A, B, C are taken one on each of the conter-

minous edges of a cube: prove that the angles of the triangle ABC
are all acute.

7. If a parallelepiped is cut by a plane which intersects two pairs
of opposite faces, the common sections form a parallelogram.

8. The square on the diagonal of a rectangular parallelepiped is

equal to the sum of the squares on the three edges conterminous with

the diagonal.

9. The square on the diagonal of a cube is three times the square
on one of its edges,

10. The sum of the squares on the four diagonals of a parallele-

piped is equal to the sum of the squares on the twelve edges.

11. If a perpendicular is drawn from a vertex of a regular tetra-

hedron on its triangular base, shew that the foot of the perpendicular
will divide each median of the base in the ratio 2:1.

12. Prove that the perpendicular from the vertex of a regular

tetrahedron upon the opposite face is three times that dropped from
its foot upon any of the other faces.

13. If A P is the perpendicular drawn from the vertex of a regular
tetrahedron upon the opposite face, shew that

3AP2= 2a2,

where a is the length of an edge of the tetrahedron.

14. The straight lines which join the middle points of opposite

edges of a tetrahedron are concurrent.

15. If a tetrahedron is cut by any plane parallel to two opposite

edges, the section will be a parallelogram.

16. Prove that the shortest distance between two opposite edges
of a regular tetrahedron is one half of the diagonal of the square on
an edge.

17. In a tetrahedron if two pairs of opposite edges are at right

angles, then the third pair will also be at right angles.

18. In a tetrahedron whose opposite edges are at right angles in

pairs, the four perpendiculars drawn from the vertices to the opposite
faces and the three shortest distances between opposite edges are

concurrent.

19. In a tetrahedron whose opposite edges are at right angles,
the sum of the squares on each pair of opposite edges is the same.

20. The sum of the squares on the edges of any tetrahedron is

four times the sum of the squares on the straight lines which join the
middle points of opposite edges.
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21. In any tetrahedron the plane which bisects a dihedral angle
divides the opposite edge into segments which are proportional to the
areas of the faces meeting at that edge.

22. If the angles at one vertex of a tetrahedron are all right

angles, and the opposite face is equilateral, shew that the sum of the

perpendiculars dropped from any point in this face upon the other
three faces is constant.

23. Shew that the polygons formed by cutting a prism by parallel

planes are equal.

24. Three straight lines in space OA, OB, OC, are mutually at

right angles, and their lengths are a, h, c : express the area of the

triangle ABC in its simplest form.

25. Find the diagonal of a regular octahedron in terms of one of

its edges.

26. Shew how to cut a cube by a plane so that the lines of section

may form a regular hexagon.

27. Shew that every section of sphere by a plane is a circle.

28. Find in terms of the length of an edge the radius of a sphere
inscribed in a regular tetrahedron.

29. Find the locus of points in a given plane at which a straight
line of fixed length and position subtends a right angle.

30. A fixed point O is joined to any point P in a given plane
which does not contain O; on OP a point Q. is taken such that the

rectangle OP, OQ is constant: shew that Q lies on a fixed sphere.
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