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PKEFACE.

The present work has been compiled with the object of assisting

candidates for scientific and higher technical examinations. But
little difficulty is experienced in the teaching of engineering

subjects to students who have already a sound knowledge of

mathematics. Unfortunately, however, the engineering student

in Great Britain lags behind his Continental colleague in regard
to the interest he takes in mathematics.

An engineer who desires to economise his time should, first of

all, acquire a thorough knowledge of the elements of the calculus.

To omit to do so is to find out, when too late, that he is im-

properly equipped for his work. In the present volume it has

been assumed that the student has already acquired a thorough

knowledge of algebra, including logarithmic series, and of plane

trigonometry, including the solution of triangles. He is also

assumed to have the usual acquaintance with geometry and

elementary mechanics necessary to a proper understanding of the

higher branches of the subjects.
The author has had experience in the teaching of mathematics

in this country, extending since 1880, having acted as an assistant

to the late Professor W. E. Ayrton, F.R.S., in the City and Guilds

of London Institute. He has, therefore, been more than a mere

spectator, and he has been struck by the low standard of mathe-

matical knowledge which is deemed necessary for entrance to

Technical Institutions, and by the indifference which is shown

by many British engineers to the value of a sound knowledge
of mathematics as a preliminary to higher technical studies.

In Germany and other Continental countries, on the other hand,
the greatest attention is paid to such preliminary education,

and, in view of the increasing competition which is rapidly becom-

ing international in character, the author feels strongly that the

tacit opposition encountered in so many quarters to the spread
of mathematical education is of the nature of a rearguard action,

and that those who adopt this attitude will inevitably have, in
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the long run, to give way. In the meanwhile, much valuable time
is lost, and the sooner the truth is realised the better will it be
for the commercial and industrial development of the country.

In the section dealing with Analytical Geometry, the author
has deviated from the course usually followed by British writers

of treating the straight line and the circle separately, and of

dealing subsequently with the parabola, ellipse, and hyperbola
jointly as conic sections. He does not consider that this pro-

ceeding is logically sound. It is more natural to treat the five

curves separately, and eventually to show that they all belong
to one category

—the conic section.

The section of Mechanics has been treated entirely from a

dynamical point of view, and has been written with the intention

of avoiding, as far as possible, the unscientific and erroneous

expressions still employed by writers of the present day, which
have done much to impede progress. It has been said that, in

the teaching of any subject,
"
precision in the use of words and

cogency in modes of thought
"
should be cultivated. For these

reasons, the author has laid great stress on the principle of

physical dimensions, and has applied those principles uniformly

throughout the book.

The numerous worked-out examples, over 250 in number, should

prove of great assistance to the student. Most of them have
been chosen from examination questions of the Associate Member-

ship of the Institution of Civil Engineers, and the qualifying
examination of the Mechanical Science Tripos, Cambridge. They
have been treated in a general way, and may be regarded as

appendices.
The author's thanks are due to his friend, Mr F. F. Burrell,

M.A., for his assistance in reading and correcting proof sheets,

and ^ many valuable suggestions ;
and to the publishers for

havi^^pared neither trouble nor expense in preparing the book
for t^^Kress.
In^Bpusion, the author would be grateful for any corrections

or suggestions for improvement of any subsequent edition that

might be called for.

CHARLES CAPITO.

London, December 1912.
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ERRATA.

Page 82
;
read: — ang(sin =«)=  

,
and -— aiig(cos =a?)= -

dx VI - x^ dx Vl - a?

107; read: ^-^= . . . = 42x^ + 3x + 4 )

dx 2{l+x + x'^)^

110, (29); read: /'(0)= -1-4757 ;
. . . -Q-TSS.'k^ . . . (Ans.).

164, (55) numerator of X
;
read : 9x instead of 9.

235, (89); read: E^= . . . =414,100 ft.-lbws.
; F/=246 Ibws., or

49 Ibws. . . . (Ans.).

236,(91); read: a = 0-lS ft. /s.^ (Ans.).

314,(120); read: ird= . . . (Ans.).

320, (127); read: R^= 2 ft.
;
M =

2935xi^^^
=1223 lbs. (Ans.).

349, (139) ;
read: P= 424 Ibws.

; power . . . =19-8 H.P. (Ans.).

349, (140) ;
read: kinetic energy = 2'5 in.-lbws. {Ans.).

365
;
read : one metric atmosphere= 1 kgw. per cm.^

388, at top: read: P= . . . =^^A±^^ wx (Ans.).
a

392, (158) ;
read : . . . channel is 10 feet wide . . .

t^lli.'iltrtb



ANALYTICAL GEOMETRY.

CHAPTER I.

INTRODUCTION.

1. Rectangular co-ordinates.

It will be assumed that the student is perfectly familiar with
the elementary process of plotting graphs on squared paper from

simple equations containing two variables, such as x and y, or

from experimental data of a series of corresponding values of two
variable quantities, which have been determined by trial.

A graph provides a useful and practical illustration of the law
of variation of the two variables, which would often not be com-

y1

Fig. 1.

prehensible in any other way. The graph is also called the
locus

;
it means the path traced by a point which moves in

such a way as to always satisfy the conditions laid down in

the equation.
For the purpose of drawing a graph two lines of reference,

X'X and Y'Y
(fig. 1), are conveniently chosen. The lines are

termed the axes of co-ordinates, and in order to distinguish them
X' X is called the axis of abscissce or the x-axis

;
Y' Y is called the

a 's of o'-.'Unctes or the y-axis. The point, 0, at which the

1
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axp9 iitt«ts^at;is,* tfijnieS ^.he. cfigin. The angle X Y is usually
a.*rfghi*'angle;

• and 'thd 'system is then termed rectangular; but

the system is called oblique if the angle X Y differs from that

of a right angle.
The position of a point A, referred to the axes, will be known

when the length, 6, of PA (the ordinate) drawn parallel to Y' Y,
and the length, a, of OP (the abscissa) are given ;

a and 6 are

the co-ordinates of point A, and the position of the point is given

by the symbol A(a, b).

The axes, however, divide the plane into four quadrants, and

for the purpose of defining the quadrant in which the point is

situated, the co-ordinates are not only given by their magnitudes,
but also by their signs. It is conventional to take the directions

X' X and Y' Y as positive, and the directions X X' and Y Y' as

negative ;
hence the position of a point is perfectly determined by

one of the following symbols, viz. :

1st quadrant (a:, y) ;
2nd quadrant (

—
x, y) ;

3rd quadrant (
—

x, —y); 4th quadrant (oc, —y).

In the following, angle XOY is understood to be a right angle,
unless otherwise specified.

2. Polar co-ordinates.

The position of a point on a plane may often conveniently be

referred to other systems of co-ordinates than the rectangular

system.
A method which is often found useful consists in removing the

y-axis. The position of a point, M (fig. 2), will be perfectly

determined if the distance M and the angle X M are known.
The a;-axis is then called the fixed axis or the initial axis,

and the origin, 0, is called the pole. The co-ordinates of point M
are the length of O M—which is called the radius vector—and
the angle X M, which is called the vectorial angle ; they are

usually denoted by r and Q respectively. The position of a point
referred to this system is denoted by (r, 0).

This method is known as the system of 'polar co-ordinates.
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The vectorial angle is reckoned positive when measured in the

anti-clockwise direction from X.

The radius vector is positive when measured along the line

bounding the vectorial angle, and it is negative when measured
in the opposite direction.

Assuming that the distances M and N are equal, and the

polar co-ordinates of point M are
(r, 0), then those of point N

will be
(
-

r, 0).

If we choose angle X0N = ^-i-7r as the vectorial angle, then

the co-ordinates of the two points will be M( -
r, $ + w) and

N(r, ^-f-Tr).

The co-ordinates of a point may be changed from the one

system into the other. Let the rectangular co-ordinates of

point M be ic and y, then it will be seen that

x = r cos 6, and i/
= r sin 6 . . . [1]

r= Jx'^ + y\ and tan^ = -
• • • L^]

and conversely

For point N
x= -r cos 0, y = - r sin 6,

and r= - Jo^+^, tan^=-.

3. Functions.

If a quantity (such as i/) depends on another quantity (such
as x), so that no change can be made in the value of the one (x)
without making a corresponding change in the value of the

other (y), then y is said to be a, /miction of x. The usual symbol
to express that y is a function of x is,

y=/W [3]

X in [3] is said to be the independent variable and ^ the dependent
variable, because the value of y depends on the value we choose
to give to X. In any equation involving x and y, y is a function
of X if the latter is taken as the independent variable, or a; is a
function of i/ if p is taken as the independent variable.

The function is said to be implicit when expressed indirectly
in terms of the independent variable, thus

X^-4:X + y^+27/-4: = . . . (1)

By solving (1) with respect to ^, we have

y= -1± J5 + ix-x^ , . . (2)
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In (2) the function is expressed directly in terms of the inde-

pendent variable, and it is said to be an explicit function.

The symbol for an implicit function is usually

/(^,y) = [4]

whereas [3] is an explicit function.

The student need not be puzzled by the term "function."

fix, y)
= stands practically for nothing else than a general

symbol for an equation involving the two i«variables x and y.
He knows from experience, when plotting the graph of an

equation, that he must choose one of the variables, say x, and

assign a series of convenient values to it
; he then works out the

corresponding values of y. The value of y is thus dependent
on the value he assigns to x.

4. Dimensions.

Geometrical quantities are measured by their dimensions in

length.
A curve has no depth nor width and has therefore only one

dimension ; hence, it is measured by length, L, only. The

symbol for the dimensions of a curve is [L].
A surface has two dimensions, width and length. It is always

possible to construct a square whose area is equal to the area

of the given surface
; hence, a surface is measured, like the

square, by L^. The dimensions of a surface are [L]^.
A mathematical body has three dimensions, length, width,

and depth. There is always a cube whose volume is equal
to that of the given body. A body is therefore measured,
like the cube, by L^. The dimensions of a mathematical body
are [hf.
A pure number is the ratio of two quantities of the same

dimensions ;
thus an angle expressed in radians is a pure

number, because it is equal to the ratio of the length of a

circular arc and the radius of the circle, A pure number has
therefore no dimensions.

If the graph of an equation is to have any meaning in a

geometrical sense, all the terms of the equation must be of the

same dimensions, and the same system of units must be applied

throughout the equation. It is obvious that one cannot add a

volume to an area no more than one can add an apple to a

penny; but it is possible to add 2 cubic feet to 4 cubic metres,

only the two quantities must be referred to the same system
of units.

If the equation y = Aa;^ + Boj^ + Co; + D is to have any
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geometrical meaning, then, as x and y are length, C must be a

pure number, D a length, the dimensions of A must be ~ or [L]"^^

and the dimensions of B must be — or [L]"^.

The student should always test his work by examining the

dimensions of each term of his result.

The equation y = sin x cannot be plotted in a geometrical

sense, unless, indeed, it is a special case of the general equation

y = asin -, where a and b are lengths, x is then the length of a
6

circular arc whose radius is b
; the maximum value of y will be

a, since the maximum value of sine is one.

In geometry x and y must be plotted to the same scale. If

we were to plot the graph of x^ + y^ = r'^, taking the same scale

for X and y, we should find that the curve is a circle. But if we
were to take different scales for x and y, the graph would be

an oval figure (ellipse).

5. Transformation of rectangular co-ordinates.

If we know the position of a point referred to a given set of

Y Y,

p

i— fi

6 L
Q

Fig. 3. Fig. 4.

axes, we can deduce its position with reference to another set

of axes.

(a) The new axes are parallel to the original axes.

Let the new origin (fig. 3) be point \h, k), and let P be any

point on the plane, then

also

Q = ^ 4- O'Q', or x = h + x'

Q P = ^ + Q'P', or y = k + y'.

(y8)
The direction of the new axes is changed without changing

the origin.
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Let the new axes (fig. 4) be inclined at an angle, 6, to the

original axes X and Y, then

OQ =ON-QN = 0^'co8^-FQ'sin^, or x = x co^B-y ^md',

also

QP = NQ' + MP = OQ'sin^ + QTcosl9, or y = a;' sin ^ + / cos ^.



CHAPTER II.

THE STRAIGHT LINE.

6. The equation of a straight line in terms of the angle, <^, it

makes with the a;-axis and the intercept, c, which it cuts off

from the ^^-axis, is

1/
= X tSiU

(f) + c . . . • [5]

The position of a straight line referred to the axes of co-

ordinates may be determined by the position of point M (fig. 5),

Fig. 5.

at which it intersects the y-axis, and the angle cf)
it forms with

the a;-axis. Taking any point, P, in the straight line, it will be

seen that

Q P - M = OQ tan <^,
but Q P = y, Q = ;r, and M =

c,

hence, ^ = x tan 4> + c.

The symbol m is usually used instead of tan
<f>, hence, we may

also write [5] as

y = mx + c . . . . [6]

7. Any equation of the form j/
= mx + c is the equation of

a straight line (fig. 6).

The graph of the equation y = mx + c will intersect the ^^-axis

7
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at a point M, and a.s jc = makes p
-

c, OM = c. Take any three

points Pi(.r^, j/^) ; l\(x^, y^), and V^{x^, y^) on the graph, and
draw a straight line M N^N^Ng parallel to the a;-axis. Further,
draw the three lines M Pj, M Pg, and M Pg, then



THE STRAIGHT LINE. 9

If the equation of the straight line is given by Aa: + By + C = 0,

then the latter may be written as

---fy-l
. . . . (1)

the intercept which the line cuts off from the ^-axis is therefore

_C
A'

10. The equation of a straight line in terms of the intercepts,
a and 6, which it cuts off from the axis is

f+f=l .... [9]a

The equation Kx + B?/ + C = may also be written as

A B
C

According to articles 8 and 9 the two intercepts are ^ = -
^

c
and 6 = - —

,
hence [9] is the required equation.B

11. To find the equation of a straight line parallel to one of

the axes.

When a straight line is parallel to one of the axes, the angle
which it makes with that axis will be zero; therefore, when' the

straight line is parallel to the y-axis, angle 1/^
= 0; and when the

straight line is parallel to the ir-axis, angle </>
=

0, hence,

a; = a constant . . . . [10]

is the equation of a straight line parallel to the y-axis. The
constant being the distance between [10] and the ^^-axis. And

y = a constant . . . . [11]

is the equation of a straight line parallel to the *'-axis. The
constant being the distance between [11] and the ir-axis,

12. To find the equation of a straight line parallel to a given
straight line.

Let the given straight line be given by

y = mx-{-c, or Aa; + By + C = . . (1)

and let the required equation be

y-^m-^x + c^,
or k^x + ^^y + C^^O . . C2)
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Since (1) and (2) are to be parallel, they must form the same
A A

angle with the a;-axis
; hence, we must have m = m^ and ^r^ = ^ or,

13, B
A B
yi
=
:^
= ^ (a constant). The equations of two parallel straight

lines are therefore

y = vlx +
c^^,

and 2/
= mx + c^ . . [12]

or, Aa; + By + Ci
= 0, and Ma; + ^By + C2 =•

. [13J

13. To find the equation of a straight line, which is parallel
to a given straight line, and which passes through a given
point.

Let the given point be (a, b), and the given straight line be

i/
= mx + c, or Ax + Bij + C — . . (1)

As the required straight line is to be parallel to (1), its

equation may be written as

7/
= mx + c^,

or kAx-^ kBi/ + 0-^
=

. . (2)

As (2) is to pass through point (a, b), we must have

b = ma + c^,
or kAa-}-kBb + C^^O . . (3)

By subtracting (3) from (2) we obtain

7/-b = m(x -
a), or A(x -a) + B(y -

6)
=

. [14]

14. To find the equation of a straight line through two given

points.
Let the two given points be (a^, b^) and (a^, b^) ;

and let the

required equation be of the form

y = mx + c . . . . (1)

The constants of (1) are to be determined. Since (1) is to pass

through point (a^ b^ we must have, according to [14],

y-b-^
= m{x-a^) . . . • (2)

and since (2) is to pass through point {a^, b^),
we must have

^2
-

6^
= m(a2

-
dj) . . . . (3)

By eliminating m between (2) and (3) we obtain

y= ^-^2 ^ + ^A-^2^1 . . . [15]
a

1 "-2

which is the required equation.
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15. To find the angle between two given straight lines.

The angles which the two straight lines i/
= m^x + c^ and y

= m2x + C2 form with the ^-axis are
(f>^

and ^g respectively. The

angle between the lines will therefore be w = <^2
~
^i (%• '^)>

^^^

tan CO = tan (<^,
-

<^,)
= >n <^2

" ta-n
<^i _ ^^

1 + tan
<^j

tan
<j>2

1 + m-^m^
[16]

The lines will be parallel when w is zero, which, according to

[16], will take place when m^ = m^
Y

Fig. 7.

Example.—Find the angle between the two lines y = 2a?4-3

and
i/
= 0'3x-7.

2-0-3
tan (o

1 + 2x0-3
= 1-0625; oro> = 46° 44'.

16. To find the condition that two straight lines intersect at

right angles.
In this case tan co in [16] must be equal to co

,
which requires

that 1 + m^mg = 0, or that

m^Tn^
= - 1 . . . . [17]

In words : Two straight lines intersect at right angles when the

product of their m-constants is equal to minus one.

Thus the two straight lines y = 2^ + 5 and y= -
-.
- 3 intersect

at right angles as2x -J=-l.
17. To find the point (a, h) of intersection of two given

straight lines.

Let the two lines be

y = m^x + Cj,
and y =m^ + c^ (1)
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The co-ordinates a and b of the point of intersection must satisfy

(1), hence,
6 =

??ija + Cj,
and b = m2a + C2 . . (2)

By solving (2) with regard to a and b we get the required co-

ordinates, viz. :

c, - Co J , moC, - nuCoand b = '^^TL
[18]

We have seen that the two straight lines will be parallel when

m^ = m^ which makes both a and b in [18] equal to co
, hence,

two parallel straight lines intersect at an infinite distance,

18. To show that the equation of a straight line in terms of

the length, p, of the perpendicular on it from the origin, and
the angle, a, which this perpendicular makes with the a;-axis, is

xcosa + i/sma=p . . . [19]

Let M L
(fig. 8) be the given straight line, and point F the

foot of the perpendicular OF=p. Angle XOF = a. F is

Fig. 8.

determined by its polar co-ordinates a and p, or by its rectangular
co-ordinates {p cos a, p sin a).

Let the equation of M L be y_= mx + c. The condition that it

intersects F at right angles is wj.tana= -1^ or m= -cot a,

and as the line must pass through F, its equation is also

y -
JO sin a = - cot a(x -p cos a) .

(1) can be reduced to

xcosa + i/{ima=p,

which is the required equation.
If the equation of M L is given by

Ax + Bi/ + C =

(1)

(2)
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then the condition that it passes through point F is

K{x - p cos a) + B(^ -p sin a)
=

0,

hence,

C= -/)(Acosa + Bsina)= -p JA? +W cos (^
-

a),

where

cos p =—==- ,
sin y8

=—==-
,

and tan B = -r,

but the condition that M L intersects F at right angles is,

A— = cot a, hence (3
=

a, and
B

p=
^

. .

'

. . [201
VA2 + B2

•- ^

The equation (2) can therefore be written

^±lL=p .... [21]

Example.—Let the straight line be Sa? - 3y + 2 = 0, then

p= - -^J=^= -034:3, cos a = -5-= +0-8575,
725 + 9 J3i

3
and sina= - = -0*5145,

v/34

hence a = 329° 2'. As p is negative, point F lies in the 2nd

quadrant at a distance 0*343 from the origin.

19. To find the conditions that two parallel straight lines

lie on the same side or on opposite sides of the origin.

(a) The equations of the two straight lines are

p = mx + Cj,
and j/

= rax + c^ .

It is evident that when the signs of the intercepts Cj and c^
are the same, the two lines must lie on the same side of the

origin, and when the signs of
c^
and c^ are opposite, the two lines

will lie on opposite sides of the origin.

(;8) The equations of the two straight lines are

k^x + B^y + Cj
=

0, and k^x + ^^y + C2
= 0.

A,_A,
According to article 12 the lines will be parallel when ^ =^ .

Bj B2
C C

The intercepts cut off from the y-axis are - —i and - —2
respectively.

Bi B2
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This case is therefore reduced to that of (a).

(y) The equations of the two straight lines are

X cos
ttj
+ y sin a^

=
jt?j,

and x cos ag + y sin aj
=

/?2 •

The two lines will be parallel when cos a^
= cos ag and sin a^

= sin ag,

i.e. when the equations have the form of

07 cos a + y sin a =
jOj,

and re cos a + y sin a = jOg . (1)

One of the equations (1) might be given as

- X cos a - y sin a =P2,

but the latter can be transformed into

a;cosa + ysina= -JOg.

We have stated in article 18 that p and a are the polar co-

ordinates of the foot, F, of the perpendicular, hence the two

parallel lines (1) lie on the same side of the origin when jo^
and

P2 have the same signs, and they lie on the opposite sides of the

origin w^hen
jOj

and P2 have opposite signs.

Example.—Let the two lines be

(1) -3a; + 4y + 7 = 0, and (2) Qx-87/ + 5 = 0.

The lines are parallel, since —— =—-
.

4 — 8

(2) may be written thus

- 3a; + 4^/- 2-5 = 0.

7 2*5
The intercepts cut ofFfrom the y-axis are respectively

- - and ^ ,

hence, the two lines lie on opposite sides of the origin.

We might also have transformed the two equations into

/,. -3a; + 4y 7 ,
,

, ^n. -3a; + 4v 2-5 ^ p,

(1) ^_^=--= -1-4=^1, and (2) ^==— = 0-5 = ^2,

which also show that the two lines lie on opposite sides of the

origin. We have further

cosa= -
0'6, and sin a = 0*8, hence, a = 126° 52'.

As p^ is negative, its foot lies in the 4th quadrant and at a

distance of 1-4 from the origin, p^ being positive, its foot lies

in the 2nd quadrant at a distance of 0'5 from the origin.
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20. To find the distance, d, between two parallel straight lines.

(a) The equations of the two lines are

a; cos a + 2/ sin a =jOp and it; cos a + 2^ sin a =
jOg.

From what we have found in article 19 it is evident that

d=Pi-P2 .... [22]

where p^ and p^ must be taken with their signs.

(y8) The equations of the two lines are

Aa? + By + Cj
=

0, and kx + By + G^
= 0.

According to [20]

C C
^1 = ^

,
and ^9 = ^—

,

VA2 + B2'
^'

VA2 + B2'

hence, d = _z£L±£2 ... r231

VA2 + B2
L-^J

Example.—Locate the following two straight lines and find

the distance, d, between them.

(1) 7a; -93/ + 23 = 0, and (2)
- 49a; + 63y + 56 = 0.

7 — 49
The two lines are parallel since == .^ -9 63

(2) may therefore be reduced to 7a; - 9y - 8 = 0,

hence, ^^8 -(- 23) ^ ^.^^^

V49 + 81

With respect to the location of the two feet Fj and Fg ,
it will

be found that a = 307° 52'; F^ is situated in the 2nd quadrant
at a distance of 2 01 7 from the origin, and Fg will be found in

the 4th quadrant at a distance of 0*702 from the origin.
The position of the two lines may also be determined by finding

the intercepts which they cut off from the axes. According to

article 10 the equations of the two lines may be transformed into

(1)

7 9

X y X y ^

(2)
~ir-+

—
5 = 1, or iTTT + —T^Toft

=
A,

^ ^ y
T

23+ 23 -^'
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from which we can see that the two given lines lie on opposite
sides of the origin.

21. To find the length, d, of the perpendicular let fall from a

given point, (h, k), upon a given straight line.

(a) Let the equation of the given straight line be

a; cos a + y sin a =
jt)

. . • (1)

p should always be positive. The required length, d, will be equal
to the distance between (1) and a straight line drawn through
(h, k) and parallel to (1). The equation of the latter line is

(x
-
h) cos a + (y

-
^) sin a = 0,

which may also be written

X cos a + 2/ sin a = A cos a + A: sin a =
jo,,

hence,

c?=jOj
-

j(9
= /iC0Sa + ^sin a -jO . . [24]

The length, d, of the required perpendicular is therefore obtained

hy substituting h and k for x and y in the given equation.
d will be positive when (1) lies between the origin and the

given point, and d will be negative when the given point and the

origin lie on the same side of (1).

(/?) Let the equation of the straight line be

Aa; + By + C = .... (2)

As the perpendicular, />, should be positive, (2) must be written

so that C is a negative quantity.
The equation of a straight line through (A, k) and parallel with

(2) is

A(a;
-
^) + B(y -

A;)
=

0, or kx H- By = AA + BA:
;

we have now that

-C , AA + B/fc

p =—===• ,
and p, = —== ,

7A2 + B2 VA2 + B2

, , Ah + Bk + C rrtcT
hence, d=p,-p = ^==,,,=^ . . . 125]'

VA2 + B2
'- ^

The length, d, of the required perpendicular is therefore obtained

by substituting h and k for x and y in the given equation, and

dividing the result by the square root of the sum of the squxires of
the coefficients to x and y.
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Example.—Find the length of the perpendicular drawn from

point (2,
-

5) to 3a: - 5^/ + 7 = 0.

Write the equation of the straight line thus

The required length is

,_-3x2 + 5x(-5)-7__,.,,,
V9 + 25

As d is negative, the given point and the origin lie on the same
side of the given straight line. This is also evident from the fact

that cos a being negative and sin a positive, the foot of the per-

pendicular drawn from the origin to the given line lies in the

2nd quadrant, whereas the given point lies in the 4th quadrant.
22. To find the equations of the bisectors of the angles

between the two straight lines.

Aia; + Biy + Ci
= 0. . . . (1)

and

A2^ + B22/ + C2 = 0. ... (2)

The equations must be written so that both Cj and €3 are

negative quantities. Let the lengths of the perpendiculars drawn
from a point M(^, k) to (1) and (2) be

d-^
and d^ respectively,

then by [25]

If point M is to be a point on one of the bisectors, we must
have d^

=
d^, or

AjA + B^k + Cj _ AJi + B^k + C2

x/Ai2 + Bi2

~ - ~
VI7+I?

'

+ or - according to whether d^ and
dc^

have same or opposite

signs. By substituting x for h and ^ for k, the required equations
will be

A^x + B^y + Ci _ Ag^+B^+Cg ^ q rggn

VAi2 + Bi2

"^

JA^^ + B^^

' '
' -'

The student will find that the two bisectors [26] intersect at right

angles.

By article 21 d^ and d^ will have the same signs when point
M and the origin lie on the same sides of the two straight lines,

hence the upper sign in [26] gives the equation of the bisector of

the angle in which the origin lies,

2
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Example.—Find the equations of the bisectors of the angles
between the straight lines

- 5a; + 7y - 3 = 0, and 4a7 - 9y + 5 = 0.

The constant terms of the equations must have the same signs ;

we may therefore write them

-5^ + 7y-3 = 0, and -4a; + 9y-5 = 0.

The bisector of the angle in which the origin lies will be

- 5a; + 7y - 3 - 4a; + 9y - 5 ^ q
n/25 + 49 716 + 81"

which can be reduced to

y= -l-75a; + 1-588 ... (3)

The equation of the other bisector will be

-5a; + 7y-3 -4a; + 9y-5 ^Q
V25 + 49 v/25 + 49

which can be reduced to

y = 0-571a; + 0-496. ... (4)

As- 1*75 X 0*571 = -
1, the two bisectors (3) and (4) intersect

at right angles.



CHAPTER III.

THE CIRCLE.

23. Definition.—A circle is the locus traced by a point which
moves so that its distance from a given point, the centre, is

constant.

The constant distance is called the radius of the circle.

24. To find the equation of a circle.

Let the centre be QiJi, k) and the radius be a.
.
The distance of

any point P(^, y) from C is

x/(x-A)2 + (y-7^)2;

if point P is to lie on the circle we must have

J{x-hf + {y-kf = a

or {x-hf + (y-hf = a' . . . [27]

which is the equation of the circle.

25. To find the condition that the general equation of second

degree may represent a circle.

The general equation of second degree is

Air2 + By2 + 2Ca;y+2Da; + 2Ey + F = . . (1)

[27] may also be written

a;2 + 2/2-2A^-2% + /i2 + F-a2 = . . (2)

By comparing (1) and (2) it will be seen that if (1) is to

represent a circle, we must have A = B and C = 0, hence, (1) must
have the form

a;2 + ^2_2Ga;-2Hy + K = ... (3)

(3) may also be written

(^_G)2 + (3/-H)2 = G2 + H2-K . . (4)
19
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If (3) is to represent a circle,

VG2 + H2-K
must be the radius, or

or we must have
K<G2 + H2.

Example 1.—Does x^ -{ y^ + 6x - lOi/ -\- 4:0 = represent a circle 1

The equation may also be written

(a; + 3)2 + (y-5)2=.9-}-25-40= -6 . . (1)

As the right-hand side of (1) is negative, the given equation
does not represent a circle.

Example 2.—Does x- + i/'^ + 8x-Qi/ + 9 = represent a circle 1

The equation may also be written

(^ + 4)2 + (y-3)2=16 . . . (1)

which is a circle with radius equal to 4 and centre
(
-

4, 3). As

the centre is situated at a distance 4 to the left of the y-axis

and the radius is 4, the circle will touch the y-axis at a point
which is situated at a distance + 3 from the origin.

26. To find the equation of the tangent to a circle.

For this purpose we may choose a circle with centre at the

origin. Let the equations of the tangent and the circle respec-

tively be

i/
= mx + c, and x^ + y" = a^ . . . (1)

Let the point of contact be {x, y) ;
then its co-ordinates must

satisfy both equations (1) or

y=mx' + c, and x"^-^y"^
= a^ . . (2)

from (2) we obtain

,^ -mc± JaHl+m^)-c^ ^ c ± m Ja^jl + m^)
- c^

,3.

l+w2
' ^

1-Hm2
^

If a\l -f m2)>c2, then there will be two points of intersection,

and the straight line in (1) is a secant.

If a%l + m:^)<c\ then x and y' will be imaginary, or the

straight line in (1) does not intersect the circle.

If, however, a^l +m^) = c^, then the two points in (3) become
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coincident, and the straight line is a tangent to the circle. In

this case we obtain from (3)

m= --,, and c'^Jil +i^
The equation of the tangent will therefore be

xx' + yy=a^ .... [28]

The equation of the tangent is thus obtained from that of the
circle by substituting xx and yy for x"^ and y^ respectively.

y y72'
or ^ = --



CHAPTER IV.

THE PARABOLA.

27. Definition.—The parabola is the locus traced by a point

moving so that it is always equidistant from a given straight
line and a given point.
The given straight line is called the directHxy and the given

point is called the focus.
28. To find the equation of the parabola (fig. 9).

Fig. 9.

Let Z B be the directrix and point S the focus, then take the

straight line SZ through the focus and perpendicular to the

directrix as ar-axis, and the middle point, 0, of S Z as origin. The

y-axis will thus be parallel to the directrix. Let O S = Z = a,

and the distances of a point P(a;, y) from the directrix and the

focus be d^ and d^ respectively, then

c?i
= a; + a, and d^ = y- + {x

- af . . (1)

If the point P is to lie on the parabola we must have
c^j
=

c^g » or

{x-\-af = y'^-{-(x-af

or y'^
= ^ax

[29]

which is the equation of the parabola.
22



THE PARABOLA. 23

The iT-axis is called the axis of the parabola, and is the vertex.

29. To find the points of intersection of a straight line and a

parabola.
Let the straight line be y = mx + c and the point of intersection

be [x, y). The co-ordinates of the point {x , y) must satisfy the

equations of the straight line and the parabola,

hence, y —mx -\-c, and y'^
= iax . . . (1)

By solving the two simultaneous equations (1) we obtain

, _2a-7nc±2 Ja^-acm -, , _2a±2 Ja^ - acm .^^X
,

ana y (Z)m^ m
From (2) follows that—
(a) If the quantity under the radical sign is negative, the

straight line does not intersect the parabola.

(/?)
If m =

0, i.e. the straight line is parallel to the axis of

the parabola, then there will be two points of intersection, viz.

(oo, oo) and (-, -j;
the latter point can, however, easily be

determined. When m = 0, the equation of the straight line is

y — c, to which corresponds a point on the parabola whose abscissa

is — ; hence, the second point of intersection is
(
-—

,
c

).

4a \4a /

(y) If the quantity under the radical sign is positive and m
is not zero, then the straight line will intersect the parabola in

two finite points.

(8) If the quantity under the radical sign is zero, then the two

points of intersection will coincide and the straight line becomes
a tangent to the parabola.

30. To find the equation of the tangent to the parabola.
It was shown in the preceding article that the straight line will b^

a tangent when cm = a. The co-ordinates of the point of contact are

• • (1)
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which is the equation of the tangent to the parabola in terms of

the intercepts it cuts off the axes
; [30] is the most practical form

of the equation of the tangent, as it admits of an easy construc-

tion of the tangent to the parabola. Let P be a point on the

parabola, then make N = Q. The straight line N P is then

the tangent to the parabola at point P
(fig. 10).

[30] may also be written

i/y'
= 2a{x + x'), or y = mx+-~m (2)

31. To find the locus of the middle point C of a system of

parallel chords of a parabola (fig. 11).

Let PQ be any one of the parallel chords, V{x^, ^j), and

Q(^2» P2) ^^ ^^® *^^*^ points at which the chord intersects the

Fig. 10.

parabola, and let C{h, h) be the middle point of the chord whose

equation is y = mx -I- c. Taking the co-ordinates with their signs,
it will be seen that

h =^^\ and y^ =^.
According to (2) in article 29 it will be found that

, 2a - mc -
,

2a
n, = 5

—
,
and /c= — (1)

k is therefore constant for the same system of parallel chords,
hence, the locus is a straight line parallel to the x-axis, and its

equation is

y =^ [31]

A straight line passing through the middle points of a system
of parallel chords is called a diameter.
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The diameters, of the parabola are parallel to the axis of the

parabola.
The point at which the diameter meets the parabola is

(
--

,
—

) ;
the tangent at that point is therefore

Km/' mj
X y ^ a

4- =1, or y = mx-\— ,

a a m

hence, the tangent to the point at which the diameter intersects the

parabola is parallel to the chords.

32. To show that the tangent at any point of the parabola
bisects the angle between the diameter and the focal line

through the point (fig. 12).
Let P(a, (B) be a point on the parabola, and let P Q be the

diameter, PM the tangent, and PS the focal line through P,

then it will be sufficient to show that the length of the per-

pendicular MNj is equal to MQ =
^. The equation of S P is

evidently

and as a = j~, the equation may also be written

4a/3^ + (4a2
-
^2)^

_
4^2^^ q . (1)

As the co-ordinates of point M are ( 0, ^ j
,
the length of the

perpendicular M Nj is

(4a2-^2)^_4^2y5

x/l6a2^2 + (4^2_^2)2 2*
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This principle is of great importance in applied physics. It

shows that a ray emanating from the focus of a parabolic
reflector will be reflected in a direction parallel to the axis

;
and

vice versd, a ray entering a parabolic reflector in a direction

parallel to the axis will be reflected through the focus.

33. To trace the parabola.
The equation [29] of the curve gives

y=±2jax . . . . (1)

which shows that the axis of the parabola is an axis of symmetry.

(1) also shows that x cannot be negative; hence the curve is

entirely situated on the right-hand side of the y-axis.

x = makes ?/
= 0, i.e. the curve passes through the origin.

When X increases in (1) ^^ also increases, and when x becomes

infinitely great, then y also becomes infinitely great.

The equation (2) in article 30 of the tangent shows that at

the vertex the equation of the tangent becomes 2ax = 0, or a; = 0,

which is the y-axis; hence the tangent to the curve at the

vertex is perpendicular to the axis.

The tangent of the angle which the tangent makes with the

axis is positive when y' is positive, and it is negative when t/' is

negative.



CHAPTER V.

THE ELLIPSE.

34. Definition.—The ellipse is the locus traced by a point
which moves" so that the sum of its distances from two given

points is constant.

The two given points are called the foci, and the constant sum
is denoted bv 2a.

35. To find the equation of the ellipse (fig. 13).

Y

Fig. 13.

Let point S^ and Sg be the foci. Take line SjSg as a;-axis, and
the middle point of S^^Sg as origin. Let point V{x, y) be a

point on the ellipse, then by definition

SiP + S2P=2a (1)

There will evidently be two points Aj and Ag of the curve on
the a;-axis

;
at these points we have S^A^ + SgA^ = 2a = SjAg + SgAg,

hence, A^ = A.^
= a.

There will also be two points B^ and Bg on the ^-axis, for which
we have

S^B^
= ^^^ = ^^B^

=
S^B^

= a.

The ratio

o^=21^=.<i ...
Aj Aj

27

(2)
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is called the eccentricity of the ellipse. By (2)

OSi = «a, and 082= -ea . . . (3)

2 2

We have now S^P = y^ + {x- ecCf^ and SgP = y^ 4- (a: + eaf-^ hence,

__2 2

SgP
-
SjP = ieax, and as SjP + SgP = 2a, we have SgP

-
SjP

= lex,

hence, SgP = a + «a; and SjP = a - ea;.

2

We have seen that S^P = y2 + (^
_

go^)2
=

(^
-

ej;)^,

hence, y2 = (i
_

g2)(a2
_

^2) . . [32]

which is the equation of the ellipse. Let Bj
=

B2 be denoted

by 5, then

W-^a'-e'a? = a\\-t% or {\-e'^)J'--\
CL

[32] may therefore be written

^4-' • • • • [33]

[33] is the most useful form of the equation of the ellipse.

a is called the semi-axis major and b is called the semi-axis

minor of the ellipse.

The above property of the ellipse permits of a simple con-

struction for the curve.

Fasten a drawing-pin at each focus, and take a string of length

SjS2-f-AjA2. Pass the string round the two pins, then let the

point of a pencil, always in contact with the string, move on the

paper and keeping the string tight all the time. The pencil-

point will then trace the ellipse.

36. To find the points of intersection of a straight line with

the ellipse.

Let the straight line and the ellipse respectively be

y'
= mx' + c, and ^--f-|2=l • • (1)

a'^ 0^

The co-ordinates of the points of intersection are found by
solving the two simultaneous equations (1). We get

mca'^ ± abjm'^a'^ -k-U^ - c'^

n^cfi -I- 52

and y = = rTT72
• • • (^)

m^a^ + 0^
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(a) The straight line will not intersect the ellipse when
m2a2 + 62<c2.

(y8) The straight line will intersect the ellipse when m%2 + 52 -> c2_

(y) When m%2 4. 52 = (.2 ^^j^g ^^yo points of intersection will

become coincident points, and the straight line is a tangent to

the ellipse.

37. To find the equation of the tangent to the ellipse.

It has been shown in the preceding article that the straight line

y = mx + c will be a tangent to the ellipse when m^a^ 4. ^2 _ ^2 ^ 0,

hence, the equation of the tangent to the ellipse is

y = mx± Jm^a^ + b'^ . . . [34]

The two signs + and - in front of the radical sign show that

there are always two tangents to the ellipse which are parallel to

y = mx + c.

The co-ordinates x' and y' of the point of contact will, accord-

ing to the preceding article, be

/ _ ma^c -. / _ b^c

""''m^a^ + b^' ^~Wa^b^'
As rn^a^ + b'^ - c^ = 0, we have

b^ Xm^ - _
. . . . (1)

and hence the equation of the tangent at point (x, y') is

^-^'=-^(^-^')
• • • [35]

By transformation of [35] the equation of the tangent may also
be written

-^
+ ^^-1 • • • • [36]

The equation of the tangent is thus obtained from that of the

ellipse by substituting xx and yy' for x^ and y^ respectively.
38. To find the condition that a; cos a -t- y sin a =p may touch

the ellipse.

The straight line, ^ cos a + y sin a =p, meets the ellipse,
^252 _|_ ^2^2 = ^252^ in two points, whose abscissae are given by

x^{a^ cos 2a + 62 sin2 a)
-
2pa2(cos a)x + a^(p^- b^ sin^a)

=
(
1
)

The two points of intersection in (1) are coincident, and the

straight line is a tangent, if

^2 =^ a2 cos 2a 4- 62 sin2a . . . (2)
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39. To find the locus of the middle points of parallel chords

of the ellipse.

Let P(-Pi, ^i) and Qi^c^f V^) ^® ^^® ^^^ points at which a chord

y = mx + c intersects the ellipse, and let the middle point of P Q
be C(A, k) then, according to (2), article 36,

By eliminating c between the two equations in (1), we obtain

and the locus is therefore

k= -—-h,

y=-A^ .... [37]

which is a straight line through the origin, hence, the diameters of
an ellipse pass through the centre of the ellipse.

We might write [37] as 3/
=
m^x. The diameter of chords parallel

to the latter would be
A2

y---^x .... (2)

52
but m. = -—

^ ,
which inserted in (2) gives

y^mx (3)

which is parallel to chords PQ. Hence, each of the two
diameters [37] and (3) bisects all chords parallel to the other.

Such two diameters are called conjugate diameters.

40. The tangent at the extremity of any diameter is parallel
to the chords which it bisects.

Let the equation of the diameter be

y= -— X . . . . (1)

and that of the tangent at the extremity {x\ y) of the diameter be

y-y = -
-2-/(^

-
^') • • • (2)

a^y

Point {x\ y) is a point on (1),

62 , X— X, or —
mxi^ y

which inserted in (2) gives

y-y' r=m{x-x) . . . • (3)

hence, y = -—Jc ,
^^ ~= --FT'
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but (3) is parallel to the system of parallel chords y = mx^c
of which (1) is the diameter.

41. To find the locus of the point of intersection of tangents
to an ellipse which meet at right angles.

The equation of one of the tangents is

y = mx + Jnfi^a^ + b^
;

the second tangent is to be perpendicular on the latter, hence its

equation must be

X
, / a^

, 1^ -x+ Ja^ + m^b^

<m '\/ m^ m

Let the point of intersection of the two tangents be {h, k), then

we must have

h — mh + Jm^d^ + 6^, and also k — — m

k-7nh= Vm2a2 + 52^ ^nd mk + h= Ja^ + m%'^ . (1 )

By squaring and adding the two in (1) we obtain h^ + k'^ = a'^ + b^,

or the locus is

a;2 + y2^a2 + 62 .... [38]

which is a circle with centre at the centre of the ellipse and

radius = Ja^ + 62, which latter is the length of the line joining
the ends of the major and minor axis. This circle is called the

director circle.

42. To show that the tangent at any point of the ellipse
bisects the angle between the two focal lines through the point.

Let V{x, y) (fig. 13) be a point on the ellipse. The equations
of the focal lines through P are

y-y=~^—(x-x), and y-y'=-l.—(x^x) (1)X -ea X -\-ea

The two equations in (1) may be reduced to

y'x
-

(x
-
ea)y

-
eay' = 0, and -

y'x + (x + ea)y
-

eay' = (2)

The equation of the bisector of the angle in which the origin is

not situated is, according to [26], article 22,

y'x
-
(x

-
ea)y

- eay -
y'x + {x' \- ea)y

-
eay' ^ ^ ,^.

^y"ij^{x' -eaf Jy"^ + {x^-eaf
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The quantities under the radical signs are respectively

S^ = {a-ex)\ and S^ = (a + exy.

The equation (3) may be reduced to

y-y =
--2-?(a^-a^)

... (4)

but (4) is the equation of the tangent at point P.

On account of this property of the ellipse a ray emanating from

one of the foci of an elliptic reflector will be reflected through the

other focus.

43. The auxiliary circle.

Definition.—The circle which is described on the major axis of

an ellipse as diameter is called the auxiliary circle
(fig. 14).

The equation of the auxiliary circle is

a;2 + y2 ^ ^2^ or .C=i (1)

The equation of the ellipse is

^'4.^=1
a2'^ 62

(2)

Let N Q be an ordinate on the circle, then N P is an ordinate on

the ellipse. Q and P have the same abscissa N = a;
; hence, from

(1) and (2), we have

yl^X-%, and 1^1-^ . . (3)a^ a^ 0^ a^ ^ '

Hence,
a2 62

or 1=-
y\

^
[39]
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We can therefore construct the ellipse by dividing the ordinates

of the auxiliary circle in the ratio — .

44. To trace the ellipse.

The equation [33] of the ellipse shows that both axes are axes

of symmetry. Hence, the two axes divide the curve into four

equal quadrants ;
hence it becomes only necessary to investigate

that part of the curve which is situated in the 1st quadrant. In

the latter quadrant x is positive, and the ordinate is

y=+^jaf^^ . . . . (1)

(1) shows that the values of x lie between a and zero. For x = a

we have y = 0, and x = gives y = b.

By article 39 all diameters pass through the point at which

the two axes intersect; and as conjugate diameters bisect each

other, point is a centre.

The equation [35] of the tangent- shows that the tangent at the

vertex {a, o) is perpendicular on the major axis
;
and the tangent

at the end of the minor axis, point (o, b), is parallel to the

major axis. Between these two points the angle which the

tangent makes with the major axis is greater than 90°.



CHAPTER VI.

THE HYPERBOLA.

45. Definition.—The hyperbola is the locus traced by a point
which moves so that the difference between its distances from

two given points is constant.

The two given points are called the foci, and the constant

difference is usually denoted by 2a.

46. To find the equation of the hyperbola (fig. 15).

Fig. 15.-

Sj and Sq are the foci. Line SjSg is taken as aj-axis and the

middle point of S^Sg, called the centre, is taken as origin.
Let point V{x, y) be a point on the hyperbola, then by definition

S^P SiP = 2a (1)

There will evidently be two points Aj and Ag of the curve on the

a:-axis. For these points we have SgAj
-
SjAj = SiA2

-
SgAg = 2a;

hence, 0Ai = 0A2 = a.

The ratio

OAi OAj
34

(2)
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is called the eccentricity of the hyperbola. By (2) we have

Sj
= ea, and Sg

= - ea . . . (3)
We have now

2 2

SgP ^y'^ + {x + ea)\ and S^P = 2/2 + (^c
-
eaf,

hence,

2 2

S;P
- S^ = (SgP

-
SiP)(S2P + SjP)

= 4mic, SgP
-
S^P = 2a

;

therefore

S2P4-SiP = 2e^.

Hence,

SjP = a-\-ex, and S^P = ea; - a.

We have now ^

S^= (e^
- of = y2 + (^

_
g^)2.

Hence, the equation of the hyperbola is

2/2=(e2_l)(a;2_^2) ,

[40]

Let 52 = a2(e2
_

i), then [40] becomes

|-P=i_-
 • • M

For a;=0 in [41] we have y= ±b J -1, which shows that the
curve meets the y-axis in two imaginary points.
The points A^ and Ag are called the vertices of the hyperbola,

AjAg is the first axis or the transverse axis, and B-^Bg is the
second axis or the conjugate axis. B^

= Bg = b.

As the equations of the ellipse and the hyperbola only differ

in the sign of 6^^ many of the propositions for the hyperbola may
be derived from those for the ellipse by substituting

- b^ for b^.

47. To find the points of intersection of a straight line and
the hyperbola.
As in article 36, the co-ordinates of the points of intersection

are found by solving the two simultaneous equations

x'^ y'2
y'
= mx+c, and — -|- = 1 . . (1)

a-" 0^ ^ '

By eliminating ^' in (1) we obtain

x'\b'^-ni^a^)-2ma'^cx -aHb'^ +
c'^)

=
. . (2)

Hence,

, mca2 + ab Jb^ - m?a^ + c^ , , b'^c± mab Jh^ - m^a^ + c^ .ox

62 - m^a^
^ c

j2 _ ^2^ \ /
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(a) Tlie straight line will not intersect the hyperbola when
62_m2a2 + c2<0.

(/3) When h'^ -rri^a^-\-c^>Q^ the straight line will intersect the

hj'perbola at two points.

(y) When h- - m^a^ 4- c- = 0, the two points of intersection

will become coincident points, and the straight line is a

tangent.

(8) The denominators in (3) become zero when b'^-m^a^ = Oj

or when m= ±-. The equation of the straight line in (1) will

then be

y=z-x + c, or y= — x + c . (4)
Ct CI

Let us consider the general quadratic equation

Ax2 + B^ + C = .... (5)

Substitute — for x in (5), then we get

A + By + C2/2
= .... (6)

If A =
0, one root in (6) will be zero

;
if A = and B = 0, both

roots in (6) will be zero. But y = makes x = co. Hence, if

A = 0, there will be one infinite root in (5), and if A = and B ^ 0,

both roots in (5) will be infinite.

If now b^ = m^a^, then there will be one infinite root in
(2).

The two straight lines (4) will therefore intersect the hyperbola,
at two points of which one is at an infinite distance. The co-

ordinates of the other point are

Form=+- ^ =
--^-2Tc

,
^"^ ^

:

(7)

Form=--, 00'=-^^, and y = --^ • • (8)

48. To find the equation of the tangent to the hyperbola.

According to the preceding article, the straight line 7/
= mx + c

will be a tangent to the hyperbola when b^ - m^a^ + c = 0.

Hence, y = mx± Jm^a^-b"^ . . [42]

is the equation of the tangent. [42] shows that there are two

tangents parallel to y = nix -f c.
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By (3), article 47, we have m =
-^, ,

the equation of the tangenta y
may therefore also be written

y-y=J,M-^)' • • • [^^]a y

By transformation of [43] the equation of the tangent is also

5'-f
= 1 • • • • [44]

[42] shows that, when w?>— ,
there will be two tangents to the

hyperbola which are parallel to y = mx + c. But there will be no

tangents at all when m2< — . When m= ± -, then there will be
a^ a

two tangents to the hyperbola, both passing through the centre.

Their equations are

y=-\.-.x, and y= - -X . . . (1)
a a ^ '

The angle which the tangents in (1) make with the ^P-axis is

smaller than that of any other tangent to the hyperbola. As
c = in (1), it follows that the coefficients of x'^ and x in (2),
article 47, are both zero. Hence, both roots of the equation are

infinite. The tangents (1) touch therefore the hyperbola at

points which are situated at an infinite distance. Such a tangent
is called an asymptote. The hyperbola has therefore two

asymptotes (1).

49. To find the locus of the middle points of parallel chords

of the hyperbola.
As in article 39, the co-ordinates of the middle point are,

according to (3), article 47,

^1+^2 ^ rri€fic__ ^^^ 7. y, + y^ b^c

2 6^ - m%2 '

By eliminating c in (1) we get

^^_^
+ x,^ mn'^c

k = y^±y^ =-^ . (1)
2 62-m2a2' 2 62-m%2 VV

h= — h,
ma^

and the locus

y=—o«^ [45]

which is the equation of a straight line through the origin. Hence,
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the diameters of a hyperbola like those of the ellipse pass through
the centre of the curve.

As in article 39, the diameter of chords parallel to [45] would
be y = mx. Hence, the two diameters are conjugate diameters.

60. The tangent at the extremity of any diameter is parallel
to the chords which it bisects.

The equation of the diameter is

62
y =— x

ma^

and that of the tangent through point {x\ y) is

y-y' =
^2y'(^-^')

... (2)

Point {x^ y') lies on (1) ;

hence, y = x
,

or - = -t^,ma^ y b^

which, inserted in
(2), gives

y-y ^m{x-x) . . . • (3)

but (3) is parallel to the system of parallel chords of which

(1) is the diameter.

51. To show that the tangent at any point on the hyperbola
bisects the angle between the two focal lines through the point.

Let P {x\ y) be a point on the hyperbola. The equations of

the focal lines through P are

y'x
-
{x

-
ea)y

-
eay = 0, and -

y'x + {x + ea)y
-
eay =0 (1 )

The equation of the bisector of the angle in which the origin
is situated is, according to [26],

y'x
-

{
x -

ea)y
- eay _

-
y'x + {x + ea)y

-
eay' ^ ^ .^N

Jy'^^{x'-eaf Jy'2^(^'j,e^2

The quantities under the radical signs are respectively

2 2

S^p
=

(e^'-a)2, and S2P
=

(^ + ^^T-

(2) may be reduced to

y-2^=^(^-^)
• . • (3)

but (3) is the equation of the tangent at (x, y').

On account of this property of the hyperbola, a ray emanating
from one of the foci of a hyperbolic reflector will be reflected in

a direction as if it emanated from the other focus.
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52. The director circle of a hyperbola.

By the same process as applied in article 41, the equation of

the director circle will be found to be

^2 + y2^(^2_52 . . . . (1)

The radius of (1) is Ja^-b^. The director circle will there-

fore only exist when 72

a2>62, or l>-„,

i.e. when the angle which the asymptote makes with the first

axis is less than 45".

63. To trace the hyperbola (fig. 16).
The equation [41] of the hyperbola shows that both axes are

axes of symmetry; and therefore, as in the case of the ellipse,

Y

Sr^

Fig. 16.

it will be sufficient to investigate that part of the curve which

is situated in the 1st quadrant. In the latter quadrant x is

always positive, and the ordinate is

y a (1)

(1) shows that the values of x lie between x = a emd x = co .

When a: = a we have ^ = 0, and when a? = go
, y = oo . As the curve

is symmetrical about the origin, the latter point is a centre.

The equation [43] of the tangent shows that the tangent at

the vertex (a, 0) is perpendicular to the major axis. It has been

shown in article 48 that the angle which the tangent makes with

the iK-axis is greater than tan~i — and is smaller than 90°, except

at the vertex. It is also useful to draw the asymptotes which
the curve tends to meet, but only reaches at an infinite distance.
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64. The equilateral or rectangular hjrperbola.
In the particular case when a = b, the equation of the hyperbola

becomes

a:2_y2 = „2 .... [46]

and the hyperbola is then called an equilateral or rectangular

hyperbola. The equations of the asymptotes are

y = Xf and y= -x . . (1)

i.e. they are inclined at angles ±45° to the a;-axis, and are there-

fore at right angles, hence the name rectangular hyperbola.
65. The equation of the rectangular hyperbola referred to

its asymptotes.

Angle Q in article 6 is in this case - 45°
; hence, cos ^= +

/^J,

sin^= -
s}\^ x= J\{x'-\-y')^ and 3/= J\{y'

-
x). Inserting the

latter values of x and y in [46] we get

, , a2
xy =—

or, as it is usually written,

xy = c^ . . . . . [47]

which is the required equation.
The equation [47] is of great importance in practical Physics

and Engineering.

Y'

Fig. 17.

66. Another equation of the rectangular hyperbola.
In fig. 17 O'X' and O'Y' are the asymptotes. The equation



THE HYPERBOLA. 41

of the curve referred to the asymptotes, and, in the position
shown in fig. 17, is obtained by turning the original axes through
an angle of + 45°. Hence, as in the preceding article, the required

equation is

xy = --
. . . . (1)

We shall now proceed to find the equation of the curve referred

to a pair of axes 0"X" and 0"Y", which are parallel to the

asymptotes, and whose origin is 0"{h,
-

d).

By article 5 we have, x =x" -^h and y'
= y"

— d
', inserting these

values in (1), we get x"y"
-

a point on the curve
; hence,

will therefore be

or, as it is usually written.

dx'^-hy"
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CONIC SECTIONS.

67. Definition.—The locus of a point, which moves so that its

distance from a fixed point is always in a constant ratio to its

perpendicular distance from a fixed straight line, is called a

conic section.

The fixed point is called the focus. The constant ratio is called

the eccentricity^ and is denoted by e. The fixed straight line is

called the directrix, and the straight line through the focus and

perpendicular to the directrix is called the axis.

It is evident that when the eccentricity is unity the conic section

is a parabola.
58. The eccentricity is smaller than unity.
Let Sg be the focus, KgLg the directrix, and ZgSg the axis (fig. 18).

Z,

Fig. 18.

There will be two points A^ and Ag on the axis, such that

and S2A2
= ei;Z2 . . . . (1)

M
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Subtract (1) from (2) and we get

S2O = ea.

Let V(x, y) be a point on the curve, then

S;P
=
e^MP, or y'^ -\- {x + eaf = e^{x -v'^y .

Taking a^{l
-

e^)
=

h"^, the equation of the locus will be

!l^y2_.

which is the equation of the ellipse. We may therefore also define

the ellipse as the locus of a point vjhich moves so that its distance

from a fixed point hears a constant ratio, which is less than unity,
to its distance from a fixed line.

On account of the symmetry of the ellipse with respect to the

y-Sixis, there will evidently be another directrix, Lj^K^, to the

right of the y-axis and at the same distance from the latter as

K2L2.
59. The eccentricity is zero.

In the case of the ellipse we have

b^ = a%l-e^).

li e = 0, b will be equal to a and the equation of the ellipse will be

which is a circle with centre at the origin and with radius equal to

a. The circle is therefore a conic whose eccentricity is zero. In the

case of the ellipse we saw that ZgO = - and SgO = ea. As e = for

the circle, it will be seen that the directrix of the circle is at an
infinite distance, and that the foci of the circle coincide with the

centre.

60. The eccentricity is greater than unity (fig. 19).

There will be two points Aj and A2 on the axis, such that

S,A,==eZ;A, . . . . (1)
and

A2Si=:eA;Zi S2A2 = .A;Z2 ... (2)

Let the length A.2AJ be 2a, and let the origin be the middle

point of A^Ay Subtracting (1) from (2) we get

Zfi = -
(3)
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Adding (1) and (2) we get

SgO = ea (i)

Lot point P(a:, y) be a point on the curve, then

2 2 / /-» \ 2

S^ = e2pM =
e^[x +j],

or f -h {x + eaf = (ex i- af.

Taking a\e^
-

1)
=

6^, the equation of the locus will be

which is the equation of the hyperbola. Hence, we may also

define the hyperbola as the locus of a point which moves so that its
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Taking 6 = 0, (2) will be reduced to (1), i.e. the ellipse reduced

to its centre.

(/3), e^\; the locus (1) will be y^
=

0, or two straight lines

5/
=

0, i.e. two straight lines coinciding with the axis. This result

may also be obtained from the equation of the parabola by making
a =

;
the equation will then be y^ = Q, or the parabola reduced

to its axis. The focus and the directrix of the parabola will

respectively coincide with the vertex and the ^/-axis.

K
M

Fig. 20.

(y), e>l; the locus (1) will be y= ±XsJe^
-

1, or two straight
lines through the origin. This result may be obtained from the

equation of the hyperbola, which may be written

r

©
 (3)

as Jf-^a^ie^ -\) we have when a = also 6 = 0, and hence, (3)

becomes

y= ±-x= ±xj¥^\. .  . • (4)

or the hyperbola reduced to its asymptotes.
62. The expression conic section is derived from the cone.

Let us consider a cone of revolution (fig. 21), and a plane, P,

passing through the apex.

(a) Let P cut the cone through the apex only. Any plane, Q,

parallel to P will intersect the cone in an ellipse or a circle. As Q
approaches P the curve becomes smaller and smaller, and when
the planes coincide the curve will be reduced to its centre.

(^) Let P touch the cone along a generator. Any plane, Q,

parallel to P will intersect the cone in a parabola, which will be
reduced to its axis when the two planes coincide.

(7) Let P cut the cone through two generators. Any plane,

Q, parallel to P will intersect the cone in a hyperbola, whose
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asymptotes are parallel to the two generators through which P
cuts the cone. The hyperbola will be reduced to its asymptotes
when Q coincides with P.

Under the head of conic sections are therefore included—
(i.) the ellipse, including the circle and a point ; (ii.)

the parabola,

including two coincident straight lines
; (iii. )

the hyperbola, includ-

ing two intersecting straight lines.

When the distance of the apex of the cone becomes infinite,

then the cone becomes a cylinder. Any plane, Q, parallel to the

axis of the cylinder cuts the cylinder through two parallel straight
lines. For this reason two parallel straight lines are also included

under the head of conic sections.



CHAPTER VIII.

EXAMPLES.

(1) Trace the graph of

Solution.—(1) may be solved w.r.t. a?,

,3y± V48-3y2

(1) may also be solved w.r.t. y,

y=
.±yi6-j

2

(1)

(2)

(3)

It follows from (2) that x will be imaginary for values of y

larger than + 4 and smaller than - 4
; hence, the curve must lie

between the two straight lines A B and C D (fig. 22) drawn parallel
to the iP-axis at distances + 4 and - 4 respectively.

(3) shows that y will be imaginary for values of x larger than

+ 6-93 and smaller than - 6*93
;
the curve is' therefore situated

between the two straight lines BC and AD drawn parallel to

the ^-axis at distances +6*93 and - 6*93 respectively.
The entire graph lies therefore within the rectangle A B C D.

The work may be tabulated thus :
—

X.
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The straight lines AB, BC, CD, and DA are tangents to the

curve, which is an ellipse (tig. 22).

(2) Trace the g^aph of

x^ + y^ + 2xi/-x-i = . . (1)

Solution.-SoWmg (1) w.r.t. x we have

l-2y±s/17-4yX ~
.

By solving (1) w.r.t. y we obtain

y=-x±Jx + 4:.

(2) shows that x will be imaginary for values of y greater than

+ 4-25. The curve must therefore lie below the straight line A B

(2)

(3)

A
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(3) Trace the graph of

i/
= asin (1)

Solution.—The maximum value of y is +a, since the maximum
vahie of sine is + 1

; the minimum value of y is -
a, as the

minimum value of sine is - 1. x is the length of a circular arc,

and the radius of the circle is b. The angle — is therefore
b

expressed in radians.

All the values which can be assigned to sine lie between sin

and sin 27r. We need therefore only consider that part of the

curve which is situated between x = and x = ^irb
; beyond these

two values of x the curve will repeat itself.

Y
J^3

Fig. 24.

If we take an inch as unit of length, then we may proceed by
dividing the length 27r6 inches into a convenient number of equal

parts, say 8. The work may be tabulated as follows :
—

X
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draw two concentric circles with centre at C and radii C A = a and

C B = b respectively. Set off a distance 0D = 2'rrh and divide it

into any convenient number of equal parts at points 1, 2, 3 . . .

Divide the circumference of the circle C B into the same number
of equal parts at points 1, 2, 3, . . . then the lengths of the

arcs Bl, B2, B3 . . . are respectively equal to the lengths of

01, 02, 03 . . . measured along the a;-axi8. The ordinate

corresponding to say ^173
= 03 is then

• B3 ,

2/3
=asm— =

63(^3.

By continuing the process, a sufficient number of points of the

graph may be plotted. Beyond point D to the right, and point

Fig. 26.

to the left, the curve will repeat itself. D is called the wave

length of the curve.

(4) Find the polar equation of (x"^ + y^y = 2a^{x'^
-

y^) and

plot the graph.
Solution.—By substituting r and for x and 1/, according to [1]

the polar equation will be found to be

r4 = 2aV2cos2^ . . . . (1)

It will be seen that for each value of in (1) there are two

equal values of r which are zero; the curve passes therefore

through the pole. The two other values of r are

r= ±a ^2 cos 2^ (2)

r will be imaginary when cos 20 is negative ;
hence the values

of must lie between +45° and -45°. As the two values of

r in (2) are numerically equal, the curve must consist of two

branches, one on each side of the pole. We need therefore only
work out the values of r= +a J2 cos 26. But as cos

(
-

2$)
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= COS
( + 2^), it follows that the fixed axis is an axis of symmetry ;

hence, we need only work out the values of r = + a ^2 cos '2$ for

values of 6 between 0° and 45°.

It is evident that the polar equation is simpler than the equation
in rectangular co-ordinates.

The curve, which is shown in fig. 25, is called the lemniscate.

(5) Prove that the three heights of any triangle meet at one

point (fig. 26).

Solution.—Let us choose ^^^ as y-axis and side "a" as ^-axis.

Fig. 26.

The co-ordinates of the vertices are : A(0, ^„), B(ai, 0), and

C(
--

ttg, 0). Let the equations of the heights hj, and h^ be

y = m^x -t- c^ ,
and y = m^x -\- Cg

respectively ; it will suffice to show that c^
=

c^.

tanC =^, and tan(XBA)=-^;

(1)

hence, m.= - -^
,

and m^ = -1

ha K
But \ passes through point B and h^ passes through point C,

hence, the two equations (1) will give

"2

0=-^ai-|-Ci,
and =

^(-a2)
+ C2,

hence. 1" 2 A

(6) (Q. Nov. 1906).—Prove that the angle between the lines

whose equations referred to rectangular axes are ax^hy^c = Qi
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and rt'a; +% + c' = respectively, is tan~^
^

r^.r,- ^^^^ *^®
aa +00

angle between the lines .r + y = 1 and 2(y
-
^)
= 1

;
also the

area of the quadrilateral which they form with the co-ordinate

axes.

Solution.— In article 15 it has been proved that the angle a>

between the two straight lines y = m^x + c^ and y = m^oc + c^ is

1 + m^m^
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(7) (Q. Nov. 1906).
—Find the equations to the two circles,

each of which passes through the origin and touches the ellipse
2 2

^4-1:^ =1 at an end of the major axis. Show that the condi-

tion that the circles meet the ellipse at other points is ^> ^2,

and find the co-ordinates of these points.

Solution.—There will be a circle on each side of the origin;
their equations will be—
To the right of the origin :

(«^-|)+^^=^'
or x'^ + y'^-ax = . . (1)

To the left of the origin :

O' + lJ
+ f =

'^^
or x^ + f-^ax=^0 . . (2)

We need only find the intersection of (1) with the ellipse. By
eliminating p between the two equations we get

the roots of which gives the abscissae to the required points, viz.,

X =a, and x = --—„ .

a2 - 62

The corresponding ordinates will be obtained by inserting the

values of x' in (1). We get

y=0, and y = ±
\^_^^

. . (3)

Therefore the three points in which (1) and the ellipse meet are :

{a, o), at which the two curves touch, and

/ a&2 abja^-2b^\ . f ab^ abja^-2b^\ ...

The three points in which (2) and the ellipse meet are : (-a, o),

at which the curves touch, and

(-A-"^i^^>-(-«-^-"-%/-^) (^)



64 ANALYTICAL GEOMETRY.

The two last points in (4) and (5) will vanish when a^ -W = 0,

or -. = ^2; hence,
-j

must be greater than ^2 if the two circles

shall meet the ellipse in more than one point each.

(8) (Q. Nov. 1907).—State the formula for the length of the

perpendicular drawn to the straight line ax -\-hy
= from the

point (/i, ^•), distinguishing between the two cases in which

the point is on one side or on the other side of the line, the

axes being rectangular.

Assuming the equation xy = c^ for a rectangular hyperbola,

prove that its equation referred to rectangular axes inclined

at an angle of 45° to the original axes is x^ - y^ = 2c'^. Which
line is here taken for axis of x ?

P is any point on a rectangular hyperbola, C the centre, A
the vertex of the branch on which P lies, and N the foot of the

2

perpendicular drawn from P to the axis C A. Prove that A P

is equal to 2 CN AN.
Solution—First part.

—See article 21.—If {h, k) is situated on

the positive side of the given line, i.e. on the side where the

perpendicular drawn from the origin to the line through {h, k)

and parallel to the given line is positive, then the distance is

ah-\-hk
d =

Ja^ + b^

If the point (h, k) is situated on the other side of the given

line, then the perpendicular is negative and the distance is

, ah + bk

The given line passes through the origin.

Second part.
—The new a;-axis makes 45' and the new y-axis

makes 135° with the present ic-axis. According to article 5 we
have _ _

x = {x
-

y') Jl, and y = {x' + y) ^J,

these values inserted in the given equation give

{x
-

y'){x' + y) = 2c-, or x'^ - y"^
= 1c^.

Third part.
—Draw a rectangular hyperbola with its axes

along the co-ordinate axes and with its centre at the origin.
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Its equation is then x^ -y^ = a^. C N is the abscissa of P,
and we have

2 2 2

AP = NP + AN,

but according to the equation of the curve

CN-NP = a2;

we have also

AN = CN-a;
hence,

2 2 2 2

AP = CN-ot^ +AN = (CN-a)(CN + a) +AN
= AN(CN + a + CN-a) = 2CNAN.

(9) Find the centre, axes, vertices, foci, asymptotes, and

directrices of a hyperbola when the curve is drawn.

Solution. — Refer to figs. 15, 16, and 19.—
(i.)

Draw two

parallel chords, one in each branch of the curve. Bisect both

chords and draw the straight line through their middle points ;

the latter line is a diameter, whose middle point is the centre

of the hyperbola.

(ii.) With the centre of the curve as centre, and with a

convenient radius, draw a circle which meets the curve in four

points. Draw the four chords (not the diameters) joining the

four points, thus making two sets of two parallel chords, which

meet at right angles. The diameters of the latter chords

contain the axes of the curve. The vertices, the length of the

first axis and therefore also that of the semi-aocis a, are thus

determined.

(iii.)
We may determine the semi-axis b in the following

manner :
— Draw two convenient parallel chords and their

diameter, then draw the tangent to the hyperbola at one of

the points at which the diameter meets the curve. This tangent
is parallel to the chords. The intercept c which the tangent

cuts off the y-axis is by [42] equal to Jm^a^
-

b"^, hence,

b = Jm^a^
-

c2, ma is easily constructed. Hence, b and c are

sides in a right-angled triangle whose hypotenuse is ma; b is

thus determined. _____
(iv.) By article 46 we have that b'^ = a\e'^

-
1) or ae= Ja^ + 6^,

i.e. ae is the hypotenuse of a right-angled triangle whose

sides are a and b
;

but ae = S^
=

Sg ; hence, the foci are

determined.
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(v.) a and being known, we can readily determine the

position of the asymptotes. Draw the tangents at the vertices,

and fro!n the latter points set off a length b on each tangent
to both sides of the axis. The two straight lines joining the

diametrically opposite ends of the tangents are the asymptotes.

(vi.) By articles 46 and 60 we have that

^OSj _S,Ai

hence

QSi^ OSj-SiAj _QA^
OA^"OAi-ZiAi~OZi'

or OZj is third proportional to S^ and OA^.
The position of the directrices is thus determined.

(10) Find the centre, axes, vertices, foci, and directrices of an

ellipse when the curve is drawn.
Solution.—Refer to figs. 13 and 18.—(i.)

Draw two parallel
chords as far apart as convenient. Bisect the chords and draw
a straight line through their middle points. The latter line is a

diameter, whose middle point is the centre of the ellipse.

(ii.) With the centre of the ellipse as centre, and with a

convenient radius, draw a circle which meets the curve in four

points. Draw the four chords (not the diameters) joining the

four points, thus making two sets of two parallel chords, which
meet at right angles. The diameters of the latter chords are the

axes of the ellipse, and the longest is the axis major. The two

points A^ and A2 at which the axis major meets the curve are

the vertices of the ellipse.

(iii.) With the centre at B^ and a radius equal to the semi-axis

major O A^ = a, draw a circular arc, which meets the axis major
at points S^ and Sg ;

these two points are the foci of the ellipse.

(iv.) By articles 35 and 58 we have that the eccentricity of

the ellipse is

OS^^SjA, or OS^^OV^SA ^OA,
OAj Z^Aj' OA, OAi + ZjA, OZ/

i.e. the distance of the directrix from the centre of the curve

is third proportional to Sj and A^, which can easily be

constructed.

(11) Find the axis, focus, directrix, and vertex of a parabola
when the curve is drawn.

Solution.—Refer to figs. 9 and 12.—
(i.)

Draw two parallel chords

to the curve as far apart as possible ;
bisect the chords

;
the
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straight line through the middle points of the chords is a diameter

and is parallel to the axis of the parabola.

(ii.)
Draw a chord at right angles to the diameter, bisect the

chord and draw a straight line through its middle point and

parallel to the diameter. The straight line is the axis of the

parabola, and the point at which it meets the curve is the vertex

0. The y-axis can now be drawn.

(iii.)
Take any point P on the curve, draw the ordinate N P,

then N is the abscissa to P. Set off a length L = N,
then L P is the tangent at P.

(iv.) Draw the diameter P Q through P, then make angle MPS
equal to angle Q P M. The point S on the axis is the focus.

(v.) The directrix is parallel to the y-axis and is situated to the

left of the vertex. Its distance from is equal to S.

The equation of the parabola referred to the usual axes is

y2 = 40S.'A

(12) (Q. Oct. 1909).
—Determine the co-ordinates of the

centre of the circle which passes through the points (1, 2),

(2, 3), (4, 2), and find the equation of the circle.

Solution.—The equation of the circle is

(a;-a)2 + (y-5)2 = r2, or x"^ + y''-
- 2ax - 2hy + a^ + h"- - r'^ = (1)

By successively inserting the co-ordinates of the given points
in the last of (1) we get

5-2a-4Z) + a2 + 62-r2 = 0. . . (2)

13-4a-65 + a2 + 62-r2 = 0. .

(3)

20-8a-45 + a2 + 62-r2 = 0. . . (4)

Subtracting (2) from (4) we get a = 2"5.

Subtracting (2) from (3) we get 6 = 1-5.

Inserting the values of a and h in either of the equations (2),

(3), or (4), we get r2 = 2*5
; hence, the required equation is

(^
-

2-5)2 + (y- 1-5)2
= 2-5, or a:2 + 3^2

- 5^ -
3y + 6-0.

(13) Construct a rectangular hyperbola through a given

point when the asymptotes are known.
Solution.—Let X and Y

(fig. 28), be the asymptotes, and

P(A, k) be the given point. Draw line M P L parallel to

the a;-axis.
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Suppose we require to determine a point, Q(a:, y), on the

hyperbola, which lies a given distance, M R, from the y-axis. Draw
lines RN and PT both parallel to the y axis, then draw R and

through point S draw a line parallel to the ic-axis, point Q is then

a point on the hyperbola.

Proof.-

Hence,

-N R : O N : : T S OT, or

xy = kh.

kjx — yjli.

(1)

(1) is the equation of the rectangular hyperbola through point P
referred to its asymptotes (see article 56).

Fig. 28.

By this process any number of points on the hyperbola may
be determined.

This construction of the rectangular hyperbola is frequently
used in engineering.

(14) (Q. June 1909).—An ellipse which has its centre at the

origin and its axes along the co-ordinate axes, passes through
the points a; = 2, y = 8, and a: = 10, y == 3. Find the equation to

the ellipse.

And find the length of the chord which passes through the

origin and is parallel to the line joining the two given points.
Solution.—The equation of the ellipse is

S2
(1)

(1) must be satisfied by the values of x and y of the two given

points. Hence,
4 64 , . 100 9 /

and
^2 "^62

(2)
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By solving the two simultaneous equations (2) with respect
to a and 6, we get a = 10-76 and 6 = 8142; hence, the equation
of the ellipse is

"^^

+^^n = l- ... (3)
115-7 66-29

According to [15] the constant m of the straight line

through the two given points is -
^ . Hence, the equation of
8

the chord through the origin and parallel to the straight line is

y=-^^
   • W

(4) intersects (3) at the two points (
- x, y) and {x ,

- y) ;
the

length of the chord will therefore be 2 Jx"^ + y"^. The values of

x and y' will be found by solving (3) and (4) w.r.t. x and y.
We get

a:' = 8-29, 3/'
= 5-18;

the length of the chords 19-55.

(16) (Q. Oct. 1909).—Find the equation of the line which

passes through the point (1, 4) and is perpendicular to the line

x-2y = 0. Show that the lines intersect in the point ( -^, -^
V

and that the point (0, 2) is equidistant from them.

Solution.—The given line may be written y = ~, which shows
A

that it passes through the origin and that its m is \\ hence, a

line which is perpendicular to the given line must have its m
equal to - 2.

The equation of such a line is

y= -Ix^c . . . . (1)

The required line must also pass through point (1, 4); hence,
its equation is

y-4= -2(^-1), or 2^ + 2^-6 = 0. . (2)

The point of intersection (x, y) of the two lines is obtained by
solving the two simultaneous equations

X -
2y'

=
0, and 1x -\-y' -^ = 0,

which give ^
^ /.

dj' = _
,
and y =

g
•
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According to article 21 the distances of point (0, 2) from the

two lines are : from the given line

d =-"-^= -L

and from (2)

^ _ + 2-6 4

Point (0, 2) is therefore equidistant from the two lines.

(16) (Q. June 1908).—Give the equations to the tangents to

the curves x^-\-y'^
= i and 5^2 + ^2 = 5 at the points where they

intersect ; and show that the angle at which they intersect is

37° 46' to the nearest minute.

Solution.—Write the general equations as

which may also be written

x^^y'^^a^, and
f^
+
f-^^l

• • (1)

The first in (1) is a circle with centre at the origin and radius a.

The second in (1) is an ellipse with semi-axes unity and h.

The co-ordinates of the points of intersection will be obtained

by solving the two simultaneous equations in (1). We get

There will therefore be four points of intersection, viz. in

1st quadrant {x\ y') ; 2nd quadrant (
- x, y) ;

3rd quadrant (
-

a?',
- y) ;

4th quadrant (x,
-
y).

The equations of the tangents are—
To the circle :

xx {yy —w^; - xx + yy =a-; - xx -
yy'

—
a?-

;
xx - yy =a^ (3)

To the ellipse :

12
t-

^2
- ^

'

12
-^

^,2

- ^
^ p /,2

- ^
^

12 ^,2

" ^
K"^)

As the tangents in the 1st quadrant are parallel to those in

the 3rd quadrant, and the tangents in the 2nd quadrant are parallel
to those in the 4th quadrant, it follows that the four sets of
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tangents intersect at the same angle w. We need therefore

only consider the tangents in the 1st quadrant, which may be
written—
To the circle : y = - - /?zZ , ^f /lEJ^ ^V a2-l +6V a^-r
and to the ellipse :

/62-T2 ,

, /623T

According to [16]

Inserting the given numerical values a = 2 and h = ^5, we get
the tangents to the circle :

0-5^+l-94y = 4; - 0-5a;+ 1 -94^ = 4;
-0-5^ -1-942/ = 4; 0-5a;- 1 -94^ = 4.

The tangents to the ellipse :

0-5^ + 0-392/=l; - 0-5x + 0-39y= 1
;

- 0-5^ - 0-39y = 1
;
0-5^ ~

0-39y = 1.

And tana)= ^0*6; hence, w = 37° 46' (about).

(17) (Q. May 1907).
—Find the equations to the two straight

lines which are parallel to the line 4^ + 3y + 1 = 0, and at a
distance 2 from it ; also the areas of the triangles which they
make respectively with the co-ordinate axes.

Solution.—The length of the perpendicular drawn to the given

line from the origin is, according to [21], p= --; the lengths of
o

the perpendiculars to the required lines will respectively be

the equations of the two lines will therefore be

4^- + 3y+ll =
0, and 4^ + 3y-9 = . . (1)

The two equations (1) may, according to (1), article 10, also be
written

4 3 4 4
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The areas of the two triangles will respectively be

and
1 11 11 K(M

.,= 1,^,9^3.375.

«! lies below the a;-axis and to the left of the y-axis, or, in other

words, in the 3rd quadrant; a^ lies in the 1st quadrant.

(18) (Q. Nov. 1908).—A rod of length 5" is moved so that

one end moves along each of two lines at right angles. Show
that the path traced out by any point on the rod, other than

the middle point, or either end, is an ellipse, and find the semi-

axes of the ellipse traced out by a point 2" from the end (fig. 29).

Fig. 29.

Solution.—Let A B = L and A C = ^, and let C{x, y) be the point
whose locus we require to trace out. We have

-^-^-—
= 0082^, and l-^=^mW (1)

By adding the two equations in (1), we obtain the required

equation

+ ^=1»
(L

-
If

'

V^

which is an ellipse whose semi-axes are L - / and I. If C be the

middle point of A B, then 1 =
-^,

and the equation of the ellipse

becomes
X^ + y^

= L2

4'

which is a circle with centre at the origin and radius —.

In the given example I = 2" and L = 5", the ellipse will therefore be

9^4 •

and its semi-axes are 3 and 2.
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(19) (Q. Nov. 1907).—Find the points of intersection of the

straight line ix - 2y = 3 with the parabola ^^
= 4^. Also write

down the equations to the tangents to the parabola at these

points of intersection.

Find also the angles which the tangents make with the given
line.

Solution.—It has been shown in article 29 how to find the

points of intersection of a straight line and a parabola. We now

proceed to solve the two simultaneous equations 4.r - 2^/
= 3 and

y2 = 4^^ 'pjje lyfQ points of intersection will be

(2-25, 3), and (0-25,-1) . . . (1)

According to (2), in article 30, the equations of the two tangents
will respectively be

3^ = 2(^ + 2-25), and - y = 2(a; + 0-25),

which may also be written

y =L + l-5, and i/=-2x-0'5 . . (2)
o

The angles Wj and m^ between the given line and the two lines

in (2) will, according to [16], be respectively

tan<.i= % = * = 0-57143,

and tan
(Og
=

~ ^ " ^ =
^
= 1 -33333,

hence, w^
= 29° 45' (nearly), and

cog
= 53° 8' (nearly).

(20) (Q. May 1907).—Find the equations to the four circles

of radius unity, each of which touches both co-ordinate axes ;

indicating on a sketch which circle is represented by each

equation.
Solution.—Let radius of the circle be a, then according to

whether the circle lies—
(i.)

In the 1st quadrant, the centre is {a, a), and the equation
of the circle is

(ic-a)2 + (y-a)2 = a2, or x^ +f -2a(x + i/) + a^ = 0.

(ii.)
In the 2nd quadrant, the centre is

(
-

a, a), and the circle

{x + ay + (y
-

a)2
=

a"-, or x^ + y^ + 2a(x ~y) + a^ = 0.
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(iii.)
In the 3rd quadrant, the centre is (

-
a,

-
a), and the circle

(a; + a)2 + (y + a)2
= a2, or x^ + y^ + 2a{x + i/)-\-a^

= 0.

(iv.) In the 4th quadrant, the centre is (a,
-
a) and the circle

(x
-
a)2 + (y + a)2

=
a^, or x^ + y^

_
2a(a;

-
y) + a^ = 0.

In the present case a = 1
; hence, the four circles are

(a;-l)2 + (y-l)2=l; {x+iy + (y
- ly =1 ;

(x+iy-i-(i/+lf=l- {x-lf + (i/+lf^l.

(21) Plot the graph of t/^
- Qx"^ + xy - 9x - 81/ + lb = 0.

Solution.—Solving the equation w.r.t. x, we get

^_ y-9± V2%2"2iQy + 44i
"^

12
'

but 25y2 _ 210y+ 441 = 25L - —Y.

Hence, x =
^-^

^,

or j^
= 2^ + 5 and y=-3a; + 3 . . (1)

The graph is two straight lines which intersect at point

(-0-4, 4-2).

(22) Plot the graph of 9^2 + f-
-

Qxi/
- 12x + iy - 45 = 0.

Solution.—Solving the equation w.r.t. y, we get

i/
= 3x-2±7,

or i/
= 3x + 5, and i/

= 3x-9,

which are the equations of two parallel lines.
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CHAPTER IX.

FUNCTIONS—DIFFERENTIAL COEFFICIENTS.

63. Known functions.

The species of functions which we have met with hitherto are

classed as follows :
—

(i.) Algebraical functions, which consist of powers of variables

and constants connected by the signs + ,

-
,

x
,

-^ . If the

function is of the first degree with respect to the variables, it is

said to be linear, because the graph of the function is a straight line.

If any of the powers of the variables are fractional, the function

is said to be irrational, otherwise the function is rational.

(ii.)
Transcendental functions which are—(1) the exponential

function y = a'^, where a is a constant; (2) the logarithmic function

y = log^ X, where a is the base of the system ; (3) the trigono-

metrical functions y= mwx, y= cos^, etc.; (4) the inverse trigono-

metrical functions y = sin~^ x-, y= cos~^ x, etc.

64. Inverse functions.

y =f^{x) is said to be the inverse function of y ^f^ix) if by solving
the latter function w.r.t. x we obtain the result x=ffy). Thus

y = log„ X is the inverse function of y = a', because from the latter

function we have x = log„, y.

The graph of the inverse function is the same as that of the

original function, only its position w.r.t. the axes of co-ordinates

is different.

In the mathematical nomenclature the Continental symbols
used for denoting the inverse trigonometrical functions differ from
those used in Great Britain. Thus, the Continental symbols are—
y = arc (sin = x) ; y = arc (cos

=
x), etc.

;
and read,

^'

y = the arc

whose sine is equal to x," etc. By
" the arc

"
is meant the length of

65 5
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the arc corresponding to a radius equal to unity. Those expressions
are evidently meaningless. If y were an arc its dimensions would
be [L], but y is an angle expressed in radians, hence a pure
number whose dimensions are zero.

On the other hand, the British symbols are misleading, thus—
y= sin~^iP might be imderstood to be y= l/8ina:= coseca;. I

have suggested the adoption of the symbols : y = ang. (sin
=

x) ;

y = ang. (cos
=

a;), etc., which read, "y = the angle in radians

whose sine is equal to ar," etc. The latter symbols will be used

in the following.

66. Continuity and discontinuity.
Let us consider the ellipse (fig. 13, p. 27) as being traced by a

point starting at the vertex Ag and moving towards Bj. While the

abscissa increases from - a to zero, the ordinate will gradually go

Fig. 30.

through all the possible values between zero and b, and by con-

tinuing the motion towards the vertex Aj, the abscissa will steadily
increase from zero to + a, and the ordinate will steadily decrease,

going through all the possible values between b and zero.

The m-constant of the tangent, y = mx + c, to the curve will,

during the motion from Ag to B^, pass gradually through all the

possible positive values between infinity and zero
;
and again,

while the point is tracing the curve from Bj to A^, the value of m
will gradually go through all the possible negative values which
exist between zero and infinity.

Let us next trace the lemniscate (fig. 25, p. 50), starting at point

Ag and keeping above the ic-axis. As the point traces the curve
the abscissa will gradually increase from -

AgO to zero, and at the

same time the ordinate will gradually increase from zero to a maxi-

mum, and then again decrease towards zero. The m-constant of the

tangent will go through all the possible positive values between

infinity and zero, and then go through all the possible negative
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values between zero and - 1. The moving point has now arrived

at the origin, and it is a question whether it will cross the aj-axis

or not. If it crosses the ^-axis and traces the portion of the curve

which lies below the latter axis, nothing remarkable happens ; but
if the point remains above the a7-axis, the value of m will suddenly

change from - 1 to +1 without going through the intermediate

values. If we plot the graph (fig. 30) with the same abscissae as

those of the lemniscate, but with ordinates representing the

corresponding values of m, then the point tracing the latter graph
must, when ^ = 0, leave the curve and suddenly jump from a

distance - 1 to a distance + 1 from the origin. The curve is not

continuous at the origin, but there is discontinuity in the value of

m, for x = 0.

Hence, we say that a function is continuous between any two
values x^ and x^ of the independent variable, if the point tracing
the graph of the function can remain on the curve while the

abscissa gradually goes through all the intermediate values

between x^ and x^.

66. Limiting values.

Suppose we have two quantities of which the first one is an

approximate value of the second one. If we, however, by a

certain operation can bring the value of the first quantity to

become a closer and closer approximation of the value of the

second quantity, so that their values ultimately become equal,
then the second quantity is said to be the limiting value of the

first quantity.
Example 1.—If the length of the side of an equilateral polygon

inscribed in a closed curve be decreased indefinitely, and at

the same time the number of sides, be increased indefinitely,
then the area and the shape of the polygon will gradually

approach those of the curve, and ultimately the polygon and
the curve will coincide. The curve is thus the limit of the

polygon.
Example 2.—We say that |== 0-333 . . . and mean that, by

increasing the number of threes to the right of the decimal point,
we can make the decimal fraction to approach the value of J to

any degree we please. J is therefore the limiting valu^ of
0-333. . . .

Example 3.—The function

x(Sa^ + 2x^)

3(a2 + 0:2)3

will ultimately become zero as the value of x decreases towards



68 DIFFERENTIAL CALCULUS.

zero. When x is increased indefinitely the function becomes ^
,

00

bujb we may write it

2
which for a; = 00 becomes

^ ; hence,
o

lim.<?^!±?^) = 0, and lim. ^S^lt^) = ?
,

or the two limiting values of the function are and

3(a^ + a;2)3
^=00

3(a2 + a;2^l

2

3*

In the following we shall use the symbols lim. for lim., and
x=0

Lim. for lim.

67. Undetermined forms.

It sometimes happens that for a certain assigned value of

the independent variable the function will be reduced to one
of the following forms, viz. :

—

^; ^; Oxoo
;

00 -00; 00; ooO; r . . (1)

In either case the function cannot be determined by direct

substitution of the assigned value of the independent variable.

The forms in (1) are called undetermined forms, because they
are apparently equal to any finite quantity a

; thus, we may say

- is equal to a because x a = 0. As a rule, they have a value

which can be determined. The most common of the forms in

Example 1.

y= ;

x — a

the value of y becomes — by direct substitution of a for x. The

value, however, is 2a, because

x^ — or {x
-
a){x + a)

i^itL X -a x — a
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Example 2.

sinO

y becomes — for ^ = 0, but a figure will show that

sm^<^< tan^ = -, or 1<-^—-< —-.;
cos i) sm d cos

substituting for 6 we have

which is impossible unless

smO

T sin^ Thm.— = 1.

Example 3.—Suppose we have a circular arc whose radius is r

and whose angle at the centre is 6. Let the length of the arc be

a, and the length of the chord be c^., then the ratio —'

will be
a

- when ^ = 0. But a figure will show that

Ir sm - sm-
ch. 2 2, ,. ch.

hence, lim. — ' = 1.

a rd a

2

This subject will be treated more fully in article 94.

68. The tangent to a curve.

We have, in some preceding chapters, determined the tangent
to the various kinds of conic sections. The process consisted in

finding the conditions which make the two points Pi(a?i, y-^ and

1*2(^2' 2/2)'
^^ which the straight line y = mx + c intersects the

curve, coincident points on the curve.

The value of m is always ^-1—^, and when the two points

become coincident, then we reach the limiting value of m^ which

corresponds to the tangent. By the process hitherto adopted in

this work, we have found the limiting value of m in an indirect

way. We shall now proceed to explain a principle by which the

limiting value of m may be found in a direct manner.
Let y—f{x) be the equation of the curve shown in fig. 31, and

let the problem be to determine the direction of the tangent to

any point, Vix, y), on the curve. N is another point on the curve
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at a very short distance from P; the co-ordinates of N being
x + 8x and y + By, where &r and Sy are small corresponding in-

crements of the two variables. The chord P N makes an angle

d/ with the a;-axis, and it is evident that tan i^
= k^ • Let now
ox

N travel on the curve towards P, and let it ultimately coincide

with P. During the travelling of N, hx will gradually go through
all the intermediate values between QR and zero, and 81/ will

at the same time go through all the intermediate values between

S N and zero, but always so that y + 81/ =f(x + Bx) ; hence, the

ratio or- depends on the law of generation of the curve. The
ox

limiting value of ^ is evidently tan <^, where <^ is the angle which
ox

the tangent at P makes with the a;-axis
;
we may therefore write

tan
<f>
= lim. -^ : the latter is called the differential coefficient of

2/=:f(x), and is denoted by ^^ , or/'(^). ^ is a ratio of two finite

quantities Sy and 8x, but lim. -^=~- is oi the form -x
,
but it can

always be determined. It must therefore be understood that -r-

is not a fraction whose denominator is dx and whose numerator

is dy, but that it is a notation denoting that a certain operation
is to be undertaken with y=^f{x). It might have been better

never to have introduced the notation
-^

but to have adopted

the notation f\x) only.
The differential coefficient is also called the derived function of

y =f(x), and the latter is called the primitive function of f'{x).

Definition.—The differential coefficient of a function is the
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limiting value of the ratio of the corresponding and si7.

vanishing increments of the dependent and the independent variables.

For the purpose of saving space it has become conventional,

instead of writing -K=f'(x)^ to write dyldx^fix)^ and even
dx

(iy =f'{x)dx.
69. The differential coefficient as a measurer of the growth

of the function.

ov
The differential coefficient being lim.

^
measures the gradient

or slope of the curve w.r.t. the ar-axis. If we consider

^x to be always positive, then ~- will be positive or negative,
(XX

according as the function {y) is growing or diminishing ; hence, the

gradient at a point of the curve is upwards (in the direction of

the positive y) when ^- is positive, and downwards when -^ is

negative. The maximum steepness corresponds to a gradient, ~,
cix

equal to infinity ;
and the minimum steepness corresponds to a

gradient, _^, which is zero.
dx

Let U be the time it takes to increase the abscissa by hx, then

lim. -- and lim. ^
St St

measure the rates at which the abscissa and the ordinate are

respectively growing. But we may write

Sy _8y ^
Sx

Sx~Si^St'
and therefore

T Sy dy ,. Sy ,. Sx

^""•^
=^ =

'""•1^1™- 8^'

hence, the differential coefficient measures the ratio of the rates

of growth of the function and the independent variable.



CHAPTER X.

DIFFERENTIATION.

70. Definition.—The operation of determining the diiFerential

coefficient of a given function, y =f{x), is called diflferentiation.

Genei^al process.
—The co-ordinates of point N (fig. 31) are

x + hx and y -H 8y, which satisfy the equation, y =f(x), of the curve ;

hence, y + Sy =f{x + 8a;),
but as y =f{oc), we have

8y=f{x + Bx)-f{x),

and ^ =
li^/(^+S^)_rA^) . . . [49]

ci/X ox

ExampIjE 1.—To Jlnd -^ to the parabola y'^
= 4:ax.

ax

(y + Syy = ^a{x + Bx), or y^ + 8y^ + 2y.By = iax + ^a.8x (1)

Subtract y^= iax from (1) and we get

Sy^ + 2y . Sy = 4:a . 8x, or ^(Sy + 2y) = 4a
;

ox

y,
dy _y ^y _^^ _ y

'

dx hx 2y 2x
'

which we also found in article 30.

Example 2.—To find -^ of the circle x^-\-y'^
= a^.

dx

(x + hxf + {y + hyy = a\

or x'^ + hx'^ + 2x.hx + y'^ + hy'^-{-2y.hy
= a^ . . (1)

Subtract x'^ + y'^
= a^ from (1) and we get

8x^ + 2x.Sx + 8y^ + 2y.8y = 0, or Bx + 2x + ^(Sy + 2y) = ;
ox

72
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hence, -^ = lim. -^ = - -
,

dx 6X y

which we also found in article 26.

71. Differential coefficient of a constant is zero.

Suppose y =f(x) = a. As the value of y corresponding to x + Zx

is always equal to a, it follows that hy = a-a = ;

hence, ^ = • . . . [50]dx

72. The differential coefficient of log^ x.

It has been shown in algebra that

l0g,(l+^)=^-|+|-|
. . . (1)

i-
(log, X)

= lim. I0ge(^ +
f)-l0ge^dx^

^' '
8x

lim.

, x + Bx , /-,
,
8x\

8x

hence, according to (1),

X
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hence, —
(log^ x)

=
log, a — (log„ x)

or
^(log„.:)

= _l- i = M . . . [53]ax loge a X X

where M is the modulus of system a.

75. The differential coefficient of a function of a function.

Suppose that we have given 3^
= log 2, where 2 = sin a*. By

eliminating z between the two equations we get

y = log(sina:) . . . • (1)

If it were required to plot the graph of (1) we should have
to begin by plotting the sine curve, 2 = sin a;

;
and then to plot

the logarithmic curve, y = \ogz. From these two curves we
could obtain the required curve, y in (1) is thus a function

of a function of x, because 2 is a function of x, and y is a

function of 2.

Let 8y, 8z, and ^x be the three corresponding and simul-

taneously vanishing increments of the three variables in y =/i(z),
where 2 =/2(a:), and let the angles which the tangents to the

curves y =fi(z), z =f2(.x), and y =/i[/2(^)] make with their respective
axis of abscissae be

<^j, <f>2,
and ^, then

tan d>, = -^ = lim. ^ ,
and tan ^„ = -— = lim. j^ ;

dz dz ax 6x

but ^-?!=^
8z Sx 8x

'

and this holds for any value of 8.r, however small, and therefore

also at the lim. ; hence, tan ^ = tan
<f}^

tan
<^2J

o^

dy^dydz .... [54]
dx dz dx

This principle may be extended to any number of functions ;

hence,

dy _ dy c?( 1st function) c?(last function
r-g-,

dx c?(lst function) ^(2nd function)

' ' '

dx

76. The differential coefficient of x^.

By taking the log^ ot y = x" we get

log,y= nlog,x . . . . (1)
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By differentiating (1) w.r.t. x we obtain

^(Iog,5,)
=
i-(log,s,)|

=
„^(log,.,)

1 dy n dy ny „ .

or _ ^ = _, or / = -^ =
nx''-^,

ydx X dx X

hence, ^{x"")
= nx""-^ .... [56]

(XX

77. The differential coefficient of a''.

By taking the logg oi y = a^ we get

\og,y = x\oge(i . . . . (1)

Differentiating (1) w.r.t. x we obtain

d ,. V , dx d ,-, .dy ,

^(log.2,)
= log.a-, or

_(log.y)J
= log,a;

hence, _J^ =
log,a, or J- = y\o^^a;

hence, (a*)
=

(log^ a) a* . . . [67]

In the special case when a = e we have

lie)^e'
.... [58]

78. The differential coefficient of a sum of functions of x is

equal to the sum of the differential coefficients of the functions

with respect to x.

Suppose we have y^yi + y^ + V^ • • •
,

where yi=fi{x)',

y2=M^) • • •
5
then

y +^ =
y^ + h-^ + y^ + ^y^ . . . =f^(x + Sx)+flx + Sx) . . .

,

and Sy =f^{x + Sx) -f,(x) +f,{x + 8x) -f,{x) . . . ;

hence,

~
1 & +

Si
• • }

l.(y.+..+.3 . . .)=t4?+t • • m
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Example.—Find the differential coefficient of y^log^x^^ + a*

- 5 log, a'.

We may also write y = n log^ x + a" -bx log^ a ; hence,

dx dx dx ax

= - + a^log,a-51og,a=- + (a*-5)logea.
X X

79. The differential coefficient of a product of two functions

of X is equal to the first function into the differential coefficient

of the second function w.r.t. x plus the second function into the

differential coefficient of the first function w.r.t. x.

Suppose we have y = y^y^, where y^ =fi{x), y^ =f'i^\ then

y + 8y = (^1 + 8yi)(y2 + ^2^2)
=
ViVi + y\ • ^^2 + y<i

' ^I/i + ^2^1
• ^^2^

or 8y = 2/1
. 8y^ + y^ . S^i + Sy^ . 8^2 ;

[60] may also be written

ldy^l^dy^^l_dy^ . . . (1)
ydx y^ dx y^ dx

80. The differential coefficient of a product of functions of x

divided by the product is equal to the sum of the differential

coefficients of the functions w.r.t. x, each divided by its function.

Let ^ = ^1^2^35 then according to (1), article 79, we have

^dy_ 1 ^yi
I

1
djy^Vz)^

1 ^yi
,

1
dy^^\ ^3^

y dx y^ dx y^y^ dx y^ dx y^ dx y^ dx"*

which may be extended to any number of functions ; thus, if

y=y\yiyz • - - yn,
then

y dx y^ dx y^ dx y^ dx
' ' '

y" dx

81. The differential coefficient of a quotient of two functions

of X is equal to the denominator into the differential coefficient

of the numerator w.r.t. x minus the numerator into the

differential coefficient of the denominator w.r.t. x, the whole
divided by the square of the denominator.
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Let ?/
= —̂

, hence, y^^y yg? ^^^ therefore

2 dy^ ^ 1 ^y  

1 '^^2

dy^ _ dy^

dx y^

which may also be written

\^dy _\ dy^ _\ dy^

y dx y^ dx y^ dx (1)

(1) maybe extended to any number of functions of x; thus, by
differentiating

y >

we get

1
c^y^

1 d{y^y^y^ •  . yJ
y dx y^y^^ ' ' - yn dx

Z^Z^ . . . 2rn dx
'

or

ldi^l_dy^^\dy^ ^ ^ +l^_l.^
y dx y^ dx y^ dx

'

y^ dx
z^

dx

1 dz^ _ 1 dz^

Zg dx z^n dx (2)

82. The differential coefficient of sin x.

We have given y = s,mx
;

, d / . X 1
 sin (a? + S.:*?)

- sin a?

hence, — (sm x)
= hm. ^ ^dx ox

1 . sin X cos Bx 4- cos x sin 8x — sin x , . sin Sx= '"^- &
= -^"^ ^ '""•^^ '

but, according to article 67,

, . sin Sx ,
hm. -—— = 1 ;

ox

hence,
—

(sin ii?)
= cos * .... [63]

CbX
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83. The differential coefficient of cos x.

d / > v cos (a? + &c)
- cos a;

-— (cos x) = lim. ^^ ^
ax ox

V cosiccosSa; -sinajsin&r-cosa; . v sin&r= lim
jr

•= - sm X iim. —5
—

,

Sx ox

or --
(cos £c)

= - sin a; . . . . [64]
ax

84. The differential coefficient of tan x.

tana;=
, therefore, by article 81, we have

d /. N cos X cos X - sm x( - sin x) 1 r/jR-i— (tana7)=
—^^

^ =— o- • [oo\
dx cos^ X cos^ X

85. The differential coefficient of cot x,

cot a; =-;—^; hence, by article 81, we have
sin X

d , , ^ sin x{
- sin x\ - cos x cos x 1 ^(^c^—

(cota;)=
^——^ = _ __^ . [66J

dx sm'^ X sm^ x

86. The differential coefficient of an inverse function.

If x=f^{y) be the inverse function of y=fi{x), then, according

to fig. 31 and article 68, \i
-j-

= tan
<^,
— must be equal to cot ^ ;

hence,

^ — = 1 . . . . [67]
dx dy

87. The differential coefficients of the inverse trigonometrical
functions.

(i. ) y = ang (sin
=

x) ; hence, x = sin y, and_ == ^os y = s}\- sin^y

^1 -
a;2, or

c?a; Vl - a;2

^

^^''^®'
dx^'^^^^'^^^'^^^ijrz^^

' ' '

^^^^
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(ii.) y = ang(cos = .;),
or^= eos2., g= -siny, 1=

--1-
;

hence, ^ ang (cos
=

^)
= --=p .

(iii.) y = ang (tan
=

x), or a? = tan y ; hence,

dx 1 1 c?y „ 1

,
and

-f-
= cos^ y =

dy cos^ ^
' dx ^

1 + tan^ y

hence, -
ang (tan

=
^)
=
j-^^

. . . [70]

(iv.) y = ang (cot
=

a?),
or a? = cot 2/ ; hence,

dx 1

,
and -f-= -sin^y

dy sin^ y dx 1 + cot^ y

^^^^^'
d^^"^^^^^^^""^^ ~TT^

' ' '
^'^^^

88. The diiFerential eoeflBcient off{x + z).

Let X and z m y =f{x + z) be two independent variables, such

that the one is constant while the other varies. We may then

differentiate f{x-\-z) w.r.t. x while z is constant or vice versd.

Hence,

d ./ X df(x + z)d(x + z) .,/ ,
d, . ^

also

dz"^^
'

d{x-\-z) dz
^ ^ " dz^ '

Hence, ^/(^
+ ^)

=
|/(^

+ ^) =/(^ + ^) • • [72]

89. Successive differentiation.

As -^=f{x) is a function of
a?, it follows that it may be

differentiated w.r.t. x
;
we have

d^
doo_ df'{x) _d^y_ ...

~d^-~d~x ^2-/ W . . . (1}
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(1) is called the second differential coefficient of y w.r.t. x, or the

second derived function of f{x). In the same manner we obtain

S=/»...3=rw. . . (2)

The last in (2) is called the ti"* differential coefficient of y w.r.t.

Xf or the n'* derived function oif{x).
Example 1.—Find the n"^ differential coefficient of e'.

As^ =
e*, it follows that^ = e'.

dx dx^

Example 2.—Find the n*^ differential coefficient of a;".

hence, ^ = ^(71- l)(7i- 2) . . . x''-'' =
\n^ax

Example 3.—Find the second differential coefficient of sin x.

d . d'^ . d-— sm a? = cos X,
—- sin a; = —- cos a? = - sm x.

dx dx^ dx

Example 4.—Find the n*^ differential coefficient of a''.

g=a-log.a;|Klog.a)
=

a'(log,a)^ =^^;
d^a"

hence, -~— = ^'^(log. aY.
dx""

^ ^' '

90. Partial differentiation.

The terms in f{x, y)
= may be divided into four kinds, viz. :

(i.)
The terms which contain neither x nor y but only constants

;

let the sum of these terms be denoted by K.

(ii.)
The terms which only contain constants and the variable

x\ let X denote the sum of these terms.

(iii.)
The terms which only contain constants and the variable

y ;
the sum of which we will denote by Y.

(iv.) The terms which contain constants as well as products of

X and y ;
the sum of these terms we will denote by X Y.

We may now write

/(^, y)
= K + X + Y +XF=0. . . (1)
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By articles 75, 78, and 79 we get

dx dx dx dy dx dx dy dx

d ., . {dX ^dX\ (dX ^dY\dy ^ (^.

The first portion of (2) may be obtained by differentiating

/(a?, 3f')
= w.r.t. X, considering ^ as a constant. The second

portion of (2) may be obtained by differentiating f{x^ y)
=

w.r.t. y, considering a? as a constant and multiplying the result

by -^
. The two bracketed portions of (2) are called 'partial

differential coefficients^ and in order to distinguish them from
the ordinary differential coefficients we will use the letter A
instead of d. Hence, (2) should be written thus

|./(.,,)=A^/(.,,)
+
iLx.,,)|

= 0. . (3)

For the sake of abbreviation we may write u=f{x, y)
= 0.

Hence, (3) becomes

du _ Au Aw dy _^ dy Aw
^
Aw

dx Ait; Ay dx
'

dx Ax' Ay

Example, w =/(a?, y)
^

y'^
- x'^ + xy - 1x + ^ =

;

Aw n n Aw f,

hence, dj,Jjc + 2-p^
dx 2y + x

91. Table of results to be remembered.

dx 8x

dyi_ dy^

±(yA j^dx y^dx
.

dx\yj y2

[73]
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y dx y^ dx
' ' '

yn <i^
z-^

dx
' '

z^ dx
^

dx

d 1

UiU/* U/

d
,

M
dx X

sin X = cos ic
;

cos x= - sin rr

dx

d_
dx

d
^

1

^ tan X =—„
dx QOB^X

where y =
"1^1

d ,
1

cm; sin-^a;

dy dx _^
dx dy

-— ang (sm = ic)
=

, ;

^ang(cos
=
.)=-_^^;

^^ang(tan
=

.)
=^;

^ang(cot
=
.)=-^,;

dy _dy dz

dx dz dx
'

du _lS.u lS,u dy _^
dx A a; /!i^y

dx



CHAPTER XI.

EXPANSION.

92. Taylor's theorem.

Suppose we have given y =f{x), and let the problem be to find

the expansion of f{x + hx) in ascending integral positive powers
oihx.

Let

f{x + Sa?)
=

a^ + «! . SiC + ^2 • S^^ + ^3 • S^^ + • • • + «n • S^" + • • • (1)

As (1) must be satisfied by any value of ^x, we may take

hx = 0; hence, aQ=f(x), which inserted in (1) gives

f(x + Bx) -fix) ^ ^ . g^ + ^^ ^ g^o + . . . +a„.8x-K . .,
ox

and therefore

hence, (1) becomes

f{x + Bx)=f{x)+f(x)^
+ a,.Sx^ . . (2)

Differentiating (2) w.r.t. Sx, according to article 88, we get

f{x + Bx)==0 +f{x) + 2a^ .Bx + 3a^.Sx'^+ . . , + na^ . Sx"-'' (3)

By dividing (3) by 8x we get

/fe±Mz/M=2a2 + 3a3.S^+ . . . +na,.Sx^-^ (4)

hence,

lim./(^^zZfc) =/'(.) = 2«„ or a^JM;
83
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in the same manner we get

hence,

/(^ +
&:)=/(x)+/(x)^+/'(x)^+

. . .

+/"W|^°
.... [74]

which is Taylor's theorem.

[74] will be true as long as none of the derived functions is

infinite.

Example.—Eocpand {a-\-xY in ascending powers of x\ n may he

any positive or negative integral number or fraction.
We may write

(a + xf = a"(l + ^y = a%\ + hf where h = -.
\ aj a

By applying Taylor's theorem to the expansion of (1 +A)'*, we
must take

f{x)^\; f\x)^n- f\x) = n{n-.\) . . .

f(x) = n{n-l){n-2) . . . (n-r + l);

hence,

1
|2_ \6_

+ . . . +^^-1) • ' •

i^-r+^j^r^ _ . [75]
\L

[76] is convergent when h<l orx<a, and the number of terms

is finite when ti is a positive integral number, in which case

the last term will be (by making r = n)

n(n-l) . . . (n-n+l ) ^, ^ ^„

By multiplying [75] by a" and substituting
- for h we get
a

{a + xT = a- + la^-'x + ^i^^a-^^^

+ ^n(n-l )
. . .

{
n-r + l) ^^_r^r^ _ _ [yC]

[76] is the binomial theorem In engineering [75] is the most

useful form.
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93. Maclaurin's theorem.

Suppose we substitute Sx for x and x for Sx in [74], then we
have

f{Sx + X) =f{Sx) +f'(Sx)^ +fVx)^ + . . . +fHSx)f. + . . . (1)

Make 8x in (1) equal to 0, and we get

/W=/(0)+/(0)f +/"(0)|-^+
. . .+

/"(0)|^'+
• • • [77]

which is Maclaurin's theorem.

Example 1.—Expand a".

f{x)
= a% hence, /(O)

=
1, /(O) = log, a,

/"(0)= (log,a)2 . . . r{0) = {\o^,ay\ etc.;

hence,

a'-l+^Y^ +
'^^'^^f^-+.
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If now f{x) =^^ ,
and for a? = a both <^(a) and

i/^(a)
are 0, then

f{a)
= —

. For the purpose of determining the actual value of /(a)

we will expand /(a + A) and then determine lim./(a + ^).

(i.) If Taylor's theorem can be used, i.e. when the differential

coefficients of <j>{a) and \^{a) are finite. By substituting h for hx in

[74] we get

^a) + i,\a)\
+
^"{a)^+

. . .

f(a+ h) = ^
L_

^

,l,(a) +
^'{a)j

+
f'{a)^.

. .

but i^(o)
= and ili{a)

=
;

,#,'(«) +
^"(«)||-+.

. .

hence, f{a + h) =

ik'{a) + if/"(a)~+ .

hence, lim./(a + A) = *^;M . . . [78]
l/r(a)

Example 1.—Find the value of for x = 0.
X

<f>{0)
= sin = 0, \j/{0)

=
;
but

<ti'{x)
= cos x and \f/'(x)

= 1
; hence,

<^'(0)
= cosO = l and xlf\0)

= l and
!i^

= i- = 1 ;
which we have

found before in a different manner.
e* — e~*

Example 2.—Find the value of —. for x = 0.
smx

We have <^(0)
= and i/^(0)

= 0. <^'(^)
= «* + e'^ \l/'{x)

= cos x ;

hence, <l>'{Qi)
= '2, and i/^'(^)

=
l' therefore the value of —

,

sin X

for a; = is 2.

If a; = a makes <^'(a)
= and

xl;'{a)
= 0, then

f{a + h) =

^>i±--^-,and lim./(a + A) =^
i/a (a)+ ... <A (a)
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Example 3.—Find the value of
~

„
— for x = 0.

We have 4>{0)
= and

i/^(0)
= 0. <l>\x)

= sin x and xp'{x)
= 2x

;

hence, <^'(0)
= and

i/^'(0)
=

;
but

(i>"{x)
= cos x and

\l/''{x)
= 2

;

hence, ^\0) = 1 and
./."(O)

= 2
; hence, the value of i^-^^ for

x^

a: = is equal to — .

Example i.—Find the value of^~^
''~

'^'Ifor x = 0.
X - sin X

We have
</>(0)

= and
i//(0)

= 0. ^'{x)
= e^ + e"^ - 2 and f (^)

= 1 - cos a;
; hence, <j!>'(0)

= and
i/^'(0)

=
; 4>"{oc)

^e" - e'"" and

y\f"{x)
= sin a;

; hence, <^"(0)
= and

i/^"(0)
=

;
but

<^"'(a;)
= e^ + e'^

and
\\f"'{x)

= cos ^
; hence, <^'"(0)

= 2 and
j/^"'(0)

= 1
; hence, the

value of
^"-^"'-^^

for ^ = is 2.
X - sin a;

(ii.) Taylor's theorem cannot he used, i.e. one of the differential

coefl&cients is oo . In this case
ff>{a + h) and

i/r(a, + h) must be

expanded in some other manner.

Example.—i^iTi^ the value of
> + ^- \/^-^ -

v/^Q^ /pr x = a.

Jax - x^

<fi(a)
= and

if/(a)
—

; (t>'(a)
= oo and

if/'(a)
= oo

;

hence, Taylor's theorem cannot be applied. But by applying the

binomial theorem we have

<t>(a + h) _ (a + a + hy-(a-a-hy- {2af ^ {
2a + hf- {-hf -{2af

xl;(a + h)~ [a(a + h)-{a + hf]^

~^
[-^(a + A)]i

(2.)..|(2.)->...-(-iy.>--(2.)> _(_,),,.^^(,,)-,,..,^

, ,. ci>(a + h) 1

hence, lim. ^. -{ = ^
il/(a + h) Ja

which is the required value.



CHAPTER XII.

PLANE CURVES.

95. Equation of the tangent.

Let the equation of the curve be y =f{oc), and let Y and X be

the current co-ordinates of the tangent; then, as the tangent

passes through point P(.r, y) on the curve, the equation of

the tangent to the curve at point P(a^, y) is

Y-, =
|(X-.).

. . . [79]

Hence, to draw the tangent through any point on the curve,
we must draw a straight line through the point, which makes an

angle <^ with the a;-axi8 so that tan ^ is equal to the value of

-^ for the given point.
-^ in [79] is therefore the same as the

ax dx
constant m in the equation of a straight line.

If the equation of the curve be given as

^=/(^,y) = . . . . (1)
then by article 90

du bM Au dy _^
dx Ax Ay dx

and the equation of the tangent is

<^-O(Y-,)g
= . . . [80]

Example 1.—Find the equation of the tangent to parabola
y"^
= 4aa;.

2yf:
= 4», or fJ-^= l;dx dx y 2x

88



PLANE CURVES. 89

hence, the equation of the tangent

Y-, =
£(X-.),

which we have found before.

Example 2.—Find the equation of the tangent to x^ + iy"^

-3^y + 8 = 0.

-^ = 2a;-3y; ^ = 82^-3^;

hence, the equation of the tangent to the curve at any point

{x, y) is

(X
-
x){2x

-
3y) + (Y

-
y)(8y

-
3x)

= 0.

96. Definition.—The normal at any point on a curve is a

straight line drawn through the point and perpendicular on the

tangent to the curve at the point.

97. Equation of the normal.

Since the equation of the tangent is

Y-. = |(X-.),

and since the normal is perpendicular on the tangent, the equation
of the normal must be

Y-2/=-^(X-^),
or (X-^) + (Y-y)g

=
. [81]

If the equation of the curve be u =f{x, y)
=

0, the equation of

the normal is

X.-X Y-y
Au Au
Ax Ay

[82]

Example.—Find the equations of the tangent and the normal to

the ellipse

^:-6=i
. . . . (1)

By differentiating (1) w.r.t. x and y respectively, as in article

90, we get
Au 2x J Au 2v— = -5- ,

and — = -7^ ;Ax a^ Ay (fl
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hence, the equation of the tangent is

2x 2y Xa: Yy x^ y^
(X-a:)-2+(Y-yW^ =

0, or -^ +
-j^

=
62 62 62

1,

the same as we found in article 37. The equation of the normal is

X-a;^Y-y

a2 62

or (X-a:)a2 (Y-y)62

98. Suhtangent and subnormal.

Let the equation of the curve be y =f(x) ;
and let the straight

lines P M (fig. 32) and P Q be respectively the tangent and the

normal to the curve at point P. The length NjM is called the

subtangent^ and the length N^Q is called the subnormal. These

Y

lines are reckoned positive and negative according to their

direction from Nj. In the above figure NjM is negative and

NjQ is positive. Hence, length of subtangent

S,= -y
dx

length of subnormal,

length of tangent P M denoted by

dx

length of normal P Q,

-V-(l)

-V^HD-

[83]

[84]

[85]

[86]

Example 1.—Find the length of the subtangent to y
— ae^.

a,

dij 1 — —
-— =a- 6°- =e^' hence, S<dx a ' ' '
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or the subtangent is constant, i.e. it has the same value for all

points on the curve.

Example 2.—Find the length of the subnormal to y^ = iax.

^ = —', hence, ^^ = yJ. = 2a,
ax y ax

hence the subnormal to the parabola is constant-

99. Definition.—An asymptote is the limiting position of the

tangent to a curve when the point of contact moves away along
the curve to an infinite distance, while the tangent itself does

not ultimately lie wholly at infinity.

100. The equation of the asymptote.

By definition the equation of an asymptote is

• Y =
x('Lim.^VLim.c

. . . [87]

Example.—To find the equation of the asymptote to ---^ = 1.
a^ W'

The equation of the tangent to point (a:, y) on the curve is

62^ „ 62 , ,
a

Y = ^-fX--, but ^=±-Tx/62 + y2.
a^y y 6^ ^

hence, the equation of the tangent may also be written thus,

=±v1 + ^X-^;

7) / 7)2 7) A2
but Lim. ±-. /l +—„= ±-, and Lim.— =0.

a'\ y^ a y

Hence, there are two asymptotes to the hyperbola, both through
the origin ;

their equations are

Y = -X, and Y=--X.
a a

We arrived at the same result in article 48, but in a more

complicated manner.

101. Definition.—In the immediate neighbourhood of any
given point on a curve the latter is said to be convex as seen
from the tangent to the curve through the given point, and the
curve is concave as seen from a point situated on the side of
the curve opposite to that on which the tangent lies.
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102. Geometrical investigation of concavity.

By article 69 the ordinates of a curve increases with increasing

abscissfiB when the gradient (-r^)
oi the curve is positive, and

diminishes when the gradient is negative.
Let us, instead of plotting the curve

y=/W (1)

plot the curve

!=/(.)
.... (2)

i.e. if we trace the curve whose ordinates are -^ instead of v.
dx

The gradient to curve (2) is —
-^ ,

and by article 69 the

ordinate \-^) will increase with increasing values of x when the

gradient ( —^j is positive, and will diminish when the gradient

is negative.

Returning to curve (1), and assuming that x is always increas-

ing, we have just found that -~~ is positive when -^ is increasing,
dx^ dx

and —- is negative when -^ is decreasing.
dx^ dx

Example 1.—Consider the parabola (fig. 9, p. 22), and trace

the curve, beginning at the vertex. As the point moves along

the portion of the curve whose ordinates are positive, -^
will

steadily diminish from + oo
; hence, —^ is always negative. Take

OuX

now any point on the curve and draw the ordinate. If we wish

to see the concave side of the curve, we must move from the point
on the curve in the negative direction along the ordinate.

Trace now the other portion of the parabola. As the point

moves from the vertex the values of
-^ increase (absolutely) from

- 00 to any negative value
; hence, —4 is always positive. By

dx^

moving from the curve along the ordinate in the positive direction

we shall see the concave side of the curve.

Example 2.—Let us trace the ellipse (fig. 13, p. 27), starting
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from the vertex k^. As the point moves towards B^ and thence

towards A,, -^ is steadily diminishing from + oo to - oo
; hence,

dx

—^ is always negative, and in order to see the concave side of the
dx
curve the point must move from the curve in the negative
direction of the ordinates.

Next let the point start again from A2 and move towards Bg

and thence to A^. During this motion -^ is steadily increasing

from - 00 to + CO
; hence, —| is positive throughout the motion,

and the point will be on the concave side of the curve, if it moves
from the curve in the positive direction of the ordinates.

From these two examples it will be seen that, when —^ is
dx

positive the curve (1) is concdve seen from a point moving from the

curve in the positive direction of the ordindte, and when —^ is
dx^

negative the curve is concave seen from a point moving from the

curve in the negative direction of the ordinate.

A continuous function cannot change its sign without passing

through or 00
; for instance, -^

to the ellipse (fig. 13, p. 27)dx

changes sign at the vertices where its value is 00
,
and it also

changes sign at points B^ and Bg where its value is 0. For this

reason we may expect that the concavity of a curve will change

its direction at points where —^ is either or 00 . A point of
dx

this kind is called a point of inflexion. The centre of the

lemniscate (fig. 25, p. 50) is a point of inflexion.

It does not, however, follow that because d'^yfdx^ is or 00
,

that the point is a point of inflexion. A closer examination of

this subject is made in the next article.

103. Analytical investigation of concavity.
Let the equation of the curve in fig. 33 be y =f(x). The

equation of the tangent through point M(<x, b) is

Y - b =f'{a){X
-

a), or as b =f(a), Y -f(a) =/(a)(X -a) (1)

For X = OF^ = a + Bxwe have Y = V^Q^ =^f{a) +f'{a) . 8x
;
for 8x

negative we have X = OP2 and Y = P2Q2.
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We have also

M^PA =/(a + Bx) =f(a) +f(a) . &r

+/'(«)( 3
+

A. The difference between the two ordinates P Q and P R is

q^
-8x2[/'W|^+/»^+/»p-V

. .

.]
. (2)

Bx may be taken so small that the sign of (2) will depend on
the sign of /"(a) only.

(i.) If /"(a) is positive, both q^ and q^ will be negative (fig. 34).

(ii.)
If /"(a) is negative, both ^^ and ^g will be positive (fig. 33).

Y

Fig. 34.

B. If /"(a) is equal to 0, then

2=
-8x3[/»|i+/»||+/»Jl'+

. . .

]
. (3)

Bx may be taken sufficiently small so that the sign of (3) will

depend on the signs oi f"'{a) and Bx.

(i.) If /'"(a) is positive then
g'^

will be negative and q^ will be

positive. We have then a point of inflexion (fig. 35).

(ii.)
If /""'(a) is negative then q^ will be positive and q^ will be

negative. We have then a point of inflexion as shown in fig. 36.

(iii.) lif"{a) is 0, then

Bx

j=-Sx*[/'(a)l+/v(„)|+...]
(4)

If 8a; be taken sufficiently small the sign of (4) will depend on
the sign oif^{a) only ;

the curve in the immediate neighbourhood
of point M will be similar to that in fig. 34 when f^^{a) is positive,
and it will be like that in fig. 33 when/*^(a) is negative.

(iv.) If/^a) is 0, then

^=-8^[/»|^+/^(a)|^. ..] (5)
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The curve near point M will be like that in fig. 35 when fia)
is positive, and like that in fig. 36 if /^(a) is negative.

Rule.— When the first of the differential coefficients in (2), which

is not zero, is of even index, the curve in the neighbourhood ofpoint
M lies entirely on one side of the tangent ; and if the said differential

coefficient he positive, the curve is concave seen from a point moving
from the curve in the positive direction of the ordinate ; hut if it he

negative the curve will he concave seen from a point moving from
the curve in the negative direction of the ordinate. If the said

differential coefficient is of odd index, then the point is a point of

inflexion.
If any of the differential coefficients in (2) are infinite, then (2)

cannot be used. In such case the curve may be examined by

Fig. 35. Fig. 36.

taking y as abscissa and x as ordinate. The equation of the

curve will then be x =
cfi(y), and instead of (2) we shall have

2=-ay{0"(*)i
+
<^"W|

+
<#."Wr$

• •

•]
(6)

104. Maxima and minima.
When the tangent to a point on a curve is parallel to the

ar-axis, and the point is not a point of inflexion, then it is evident

that the ordinate to the point has reached a maximum, or a

minimum value. A figure will show that the ordinate is a

maximum if the curve in the neighbourhood of the point is

concave seen from a point moving from the curve in the negative
direction of the ordinate, and that it is a minimum if the curve
is concave in the opposite direction. Hence,

the ordinate is a maximum when ''

f! = and
dx

<Py

dx'^
is negative,

and the ordinate is a minimum when

dy ^ T d^y .

-f
= ^ and -—^ IS positive.

(1)

H
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This subject can, however, be investigated more thoroughly by
means of analysis.
A function is a maximum for a; = a if the values of the function

in the neighbourhood of (a, b) are smaller than b
;
and a function

is a minimum if the values of the function in the neighbourhood
of (a, b) are greater than b. Hence,

Maxima of y =/(^) will occur when

f{a
-

8x) <f(a) >f{a + 8x).

Minima of y =/(^) will occur when

f(a-8x)>f{a)<f(a + 8x).

Maxima of a; = ^(y) will occur when

<f>(b-Sy)<<f>(b)>cl>{b + 87/).

Minima oi x = cf>{^)
will occur when

cl>(b-Sj/)><l>{b)<cf,{b + Sy).

By Taylor's theorem we have

f{a +
Sx)=f{a)+/(a).Sx+r{a)^+

or f{a + 8x) -f(a)
=
8x[/(a) +f{a)^ +/"(»)^

+ • •

•]
(2)

Whether 8x is positive or negative, i.e. whether the neighbour-

ing point is to the right or to the left of point (a, b), the

expression (2) must be negative when b=f{a) is a maximum,
and it must be positive when b =f{a) is a minimum. This, how-

ever, is impossible unless /'(a), -^ to (a, b), is equal to 0. Hence,

we must have

/{a+ Sx) -f{a) =
8^{/'(«)|-^ +/"X«)j|

• •

•]
 (3)

which must be negative in the case of a maximum and positive
in the case of a minimum. Hence, it follows that if x = a makes

f{a) = arid at the same time makes f"{a) negative, then b=f{a)
is a maximum ; whereas if x = a makes f'{a) positive, then b =f{a)
is a minimum. This is the same rule as given in (1).

In the case that x = a also makes f\a) equal to 0, then there
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can be no maximum nor minimum unless f"'{a) is also equal to 0,

because

f{a, + Sx)-f{<i)
=
h^\f"\a)^+f(a)^

. .

.]

changes sign with &r, we must therefore have

f{a + Sx)-f{a) = Sxf^

r{a)'+ria)fl...]
. (4)

According as f^^{(i) in (4) is negative or positive, h =f{(i) is a

maximum or a minimum. Hence, the above rule may now be ex-

tended to : When x — a makesf{a)
— and at the same time the first

differential coefficient, which is not 0, is of even index, then b —f{a)
is a maximum or a minimum according as the latter differential co-

efficient is negative or positive. If the latter differential coefficient

is of odd index, then b =f{a) is neither a maximum nor a minimum,
but the point (a, b) is a point of inflexion.

Exactly in the same manner we may show that y = 6

makes a =
<l>{b)

a maximum or a minimum when — =
<l>'(b)

=
di/

(i.e. -^=f'{a)
= 00

j
,
and at the same time —

^
=
^"(^) is negative

\ U/X / cty

or positive, etc.

Example.-—Find the maximum and minimum values of the

ordinate and the abscissa to the ellipse -— + -^ = 1
a^ b^

a%'^v - xb^a^ -^
,. X dy b^x

, d^y dx 6*
0-) -T-= --^, and ^

dx a^y dx^ a^y^ a^y^

dx
^ — ioY x = and y=±b', hence.

y=+b, point (0, b), is a maximum as —| is negative.

y= -b, point (0,
-

b), is a minimum as —^ is positive.
dx^

^ 2 ^2 b'^xa^-a^yb'^^
,. dx__a^ d?x^_ dy _ a4
^ ''

dy 6% '

dy^

"
6%2

" -
52^

•

— = for y = and therefore x= ±a; hence,
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a? = + a, point (a, 0), is a maximum as —^ is negative.
dy

<Px
a? = -

a, point (
-

a, 0), is a minimum as —
^

is positive.

105. Contact.

Let the equations of the two curves I and II (fig. 37), which

intersect at M {a, 6), respectively be

. . . (1)

The ordinate

The ordinate

RjNi = cf>{a + hx)
=

cf>{a) + f(«)y
+

</>"(«)r2-
+

(2)

(3)

as the two curves intersect at M (a, b), we have b =f{a) = <f>{a) ;

hence, P,N, = j,
=
[/{a)

-
4>'(a)]^

+ [/'(a)
-
,^"(«)]^'

+ • •  • W
If also /(a) = </)'(«) (*•«• t/he two curves have common tangent

atM),/'(a) = <^"(«),/» = <^"'(«) • • ./» =
</>"(«), then

The expression for PgNg = g'g
is the same as (5), only Bx is negative.

When 8x is sufficiently small the sign of ^^ will be the same as

the sign of the first term in (5). The values of
q^^

and q^ will be

the smaller the greater n is, and therefore the two curves will

approach each other the more the greater n is. When n is even,

q, and ^g bave opposite signs and the two curves intersect at M
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(although they have common tangent at M), Whereas when
n is odd, q-^

and q^ have the same sign, and also the same sign
as (/""^^(a)

-
^""""^(a)), the two curves do not intersect. The

two curves are said to have contact of the v}^ order. When w = 0,

the two curves intersect and have 7io contact. When 7i=l, the

curves do not intersect, but as f'{a)
=

^'(^), the two curves have
common tangent at M, and the curves have contact of first order.

When n = 2, the curves intersect, and as f"{a)
=

<f>"{a), the curves

have contact of second order.

106. Osculation.

Let y=f{x) be the equation of a given curve, and Y = ^(X)
be the equation of a curve of a certain kind with 71 + 1

constants; the latter are to be determined so that the two
curves may have contact of the nF^ order at point {a, h) on the

curve y =f{oc) ;
Y = ^(X) is then said to be the curve of its kind

which has the closest contact with y =^f(oo) at point (a, b). Y = ^(X)
is also said to have osculation with y=f(x) at point (a, b).

The straight line, Y =mX + c, contains only two constants

(m and c), and its closest contact with curve y =f{x) can there-

fore only be of the first order. X = a requires that Y =/(a) = b

and m =f'(a) ;
the osculating straight line is therefore Y — 6

=/'(a)(X-a), i.e. the tangent.
At some special points on the curve, y=f{oc), the osculating

curve may have contact with y=f(oc) of higher order than the

^th_ Pqj. after we have determined the (n+1) constants of

Y = ^(X) so as to get contact of the n^^ order, it may happen,
quite apart from our control, that, for the special value of the

abscissa, /"+^(i»7)
=

^''+Xir), /"+^(a^)
=

^"'+^(^7), etc., in which case we
should have contact of the {n+ 1)*^, (71 + 2)*^ . . . order.

Example. y = x- oc^.

dx
-5^4. ^ 20x^. <^ -60a^2. ^ -UOx.

dx^ dx^ dx^

Hence, at the origin (0, 0) the tangent (Y = X) to the given
curve will have contact of the fourth order with the curve.

107. The osculating circle.

The equation of the circle whose centre is (a, ^) and whose
radius is p, is (X - af + (Y

-
/?)2

=
p2

.

(^Y
hence, (Y

-
/?)|^

+ (X -
a)
=

0,

, ,v p\^^Y^/c?YV .in
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As the equation of the circle contains three constants (a, /?, and

p), the osculating circle can, as a rule, only have contact of the

second order with a curve, or the osculating circle intersects the

curve at the point of contact. In order to determine the three

constants we must substitute ic, y, -^, and —^ of the curve for
ax dx^

the corresponding terms of the circle. The following equations
will therefore determine a, j8, and p, viz. :

(^-a)2 + (y-/3)2 = p2; {y-pf£+{x-a)
=

0,

'

dx^

[88]

Example 1.—Find the radius of the osculating circle of the

parabola y^ = ^ax,

dy _2a d^y _ ia^
.

dx y
'
dx^ y^

At the vertex p = 2a. The centre of the osculating circle at

the vertex lies on the axis at a distance 2a from the vertex.

Example 2.—Find the radius of the osculating circle of the

ellipse -^ + f^
= I.

dy_ _^ (Py_ _ _64_
-

dx a^y
'
dx^ a^y^

(aY + b^x^)i
hence, P= ^^^

.

For the points on the minor axis we have x = 0, y— ± h
; hence,

a2 62

p = — ;
for the vertices we have x— ±a,y = 0; hence, p = — .

Ci

and
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It is evident that at the vertices of a conic and at the ends of

the minor axis of an ellipse the osculating circle cannot intersect

the curve as the axis is an axis of symmetry. Hence, the

contact of the osculating circle at the latter points must be

of a higher order than the second order, and must also be of

an odd index. This might be investigated by determining the

higher differential coefficients of the circle as well as those of

the curve.

108. Curvature.

The curvature of a circle is said to be measured by the

reciprocal of its radius. Hence, we might conclude that the

curvature of a curve at any point, on the curve might be

measured by the reciprocal of the radius of the osculating
circle. This conclusion, however, is not justifiable without a

further investigation, as the osculating circle has only con-

tact of second order with the curve and it intersects the

curve.

The direction of the curve at any of its p^ifit^ iiS determined

by the direction of the tangent at the point. The greater the

rate at which the direction of the tangent d'angec; th^ ^re^t^r is

the average bending of the curve.
' * '

>
'

 . .
' " «

^
,* f •

For a certain lengtlj M N = 8s of the curve (fig. 38) the average
curvature of the arc will increase with the angle of contingency
8(li

=
<f>

-
<f)^,

V M. and Q N being the tangents respectively to points

M and N on the curve. Hence, the average curvature is e^= ~ ;

OS

hence, the curvature of the curve at any point on the curve is

.=lim.^ =^ .... [89]
OS ds

Bx, 8y, S<f), and Ss are corresponding and simultaneously vanish-
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ing increments. Since lim. [length of the arc -i- length of the

chord]
= 1 (see article 67) we have lim. [Bs^ -r (&r^ + V)l = 1

;

SV^iJ-    m
<fi is the angle whose tan = --^; hence, <^

= ang(tan = --^),
and

therefore

d<f> _dif>d8 _ dx^

dx ds dx~
^ (dy\^

\dx)

d<f> ds ,

smce €=~^ i-—- we have
dx dx

d^
dx^

1 + (dpy
\dxj

V-(S'-S<-©T%i i"i

Hence, the curvature at any point of a curve is equal to the

reciprocal of the radius of the osculating circle
;
for this reason the

latter is also called the circle of curvature and p is called the

radius of curvature.



CHAPTER XIII.

POLAR CO-ORDINATES.

109. Differential coefficients.

Let the equation of the curve A M (fig. 39) be referred to polar

co-ordinates, point being the pole and points N and M two

neighbouring points on the curve whose co-ordinates are

respectively (r, 0) and (r -I- 8r, + SO). Further, let the length of

the chord N M be 8c and that of the arc N M be 8s
; 8r, SO, Sc, and

Ss being corresponding and simultaneously vanishing increments.

From triangle M N we get

8c2 = r^ + (r + 8r)2
-
2r{r + 8r) cos 80 = 2r(r + 8r)(l

- cos SO) + Br'^ (!)

SO

2

SO
but 1 - cos SO = 2 sin^ —

; hence, (1) becomes

Sc^ = 4r(r 4- Sr) sin^ + Sr^
2i

hence• ©W="<-M^) ^IKI)'-'
 «
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but lim. s- and lim. f sin — ^ —
j
are both equal to unity ; hence,

lim. (2) is

and similarly
'

r92]

110. The angle between the tangent and the radius vector.

The secant T N M (fig. 39) will ultimately become the tangent
to the curve at N

;
and the angle N T, j/^,

will ultimately become
the angle, ^, which the tangent makes with the radius vector. By
triangle M N (fig. 39) we have

(r + 8r)2
= r2 + 8c2 + 2r 8c cos

./^,
or cos

«/.
=
-^ f

- 8c + S?- ^ + 2rfrV
2r\ oc oc J

hence, cos ^ = lim. cos
i/^
=—

;
sin <^

= Jl _
cos2<^ ; hence, by [92]

sin<^ =rf. Tan</> = --^II^^, but cos2<^= 1 - \Mf)\\\ ;

ds cos<f> . L \dr/ J

hence, tan
<f>
= r-- .

dr



CHAPTER XIV.

EXAMPLES.

(23) Differentiate the following functions w.r.t. x.

(1) ey = \og,x', (2) y^ ^(cos^ + sm^)
^ j,

= log,tan^;

(4) y = JaP-
- a;2

; (5) y = log, Jx-\- J\ -\r x^ ; (6) y = sec x
;

(7) 2/
= cosec X

; (8) sin y = tan a;.

Solution.

(1) cge^c^y^ (i(log,a;)
^
e^^^,^

;

c?5/ c?a; dx
^

dx x
'

hence, -^= —
(^ws.).

dx xloggX

^n\
cosa7 + sina;_l +tana;_ tan 45° + tan a?

(A^° 4. \-

cos ic - sin X 1 - tan ic 1 - tan 45° tan x

hence,

2/
= 6Han(45'' + a;);^ = e-—_-L . + tan (45° + ^) 6^^ ^ ^ dx cos2 (45 + a;)

^ ^

= ^r
1

, sin(45°+a;)
"| ^ ^^

2 + cos 2a;

Lcos2(45°+^) cos(45° + a;)J.

^

2cos2 (45° + ^)'

but
'

cos^i5° + x)
=
l.::^^^,

hence, ^^^2
+
cos2x^

aa; 1 - sin 2a;

105
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(S\ dy _d{\og,t8inx) dta.nx_ 1 1

dx d tan x dx tan x cos^ x
'

hence, -r^ = -.
—k- (-4rw.).

dx sin 2x

... dy dja'^-x^ d{a^-x^) _ 1
^ _ .^ .

hence, -i^= . (Ans.).
dx Ja^ -x^

(^\ <^y _ ^ loge n/^ + \/l + a;
'-^ d Jx + Jl+x^ d{x + >Jl + x^)

^ dJx + jTT^ d(x + JI+ x^) dx

dy^
1 _ 1 r dJT+^ ^(1+5!)] .

dy^ 1_
^^ 2^1+ic'

(^TIS.).

(6) y = sec X = =
(cos x)

^

;

cos a;

hence, _Z = - 1 x (cos x)
^ —-—

;

dx dx

dy sin a? / . >.

dx cos^a;

(7) y = cosGCx = ~— : hence, -^ = - I x (sin x)~^ — :

sma; dx dx

dy _ cos a? / . >.

dx sin^a;

/Qv d sin y dy c^tana; dy 1

(8) __^^^= —^ J
or cosy -f-

=
dy dx dx

'

c?a; cos^a;'

1
but co8y= Vl-tan^a;? and cos2a; =

(Ans.).

1 + tan^ a;
'

1 + tan2 a?

dx Jl - tan2 ;
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X'

(24) (Q. Oct. 1909).—Differentiate (i.) e«"^^^; (ii.)-^==p.
Find the fourth differential coefficient of e" sin x.

Solution.—Differentiating (i.) w.r.t. x we get

= -——
\
——/ —^^ ^ = e''" "=2 sm a: cos £t; = e^'°

^ sm 2x.
dx d (sin^ ^) d (sin a:)

(iir

Differentiating (ii.) w.r.t. x we get

. l + 2a;

c^(ii.) ^
Vl+^ + ^'x2^ -^'

2N/l+^ + a;2 _ a;(2^2 + 3^ + 4
)

(i.r

~
(l+x + x^)

~
{l-\-x + ^2)f

Let 3/
= e* sin ic then, as — =

e'', we get
dx

dy ( . d sin x\ ^/ .
, x-^ = A sin a; +— =

e'=(sm x + co?,x);
dx \ dx J

d'^y I

.
, , c?(sin x + cos xY] ^ x-4 =A sm x + co^x-k- -^

:;

'- = le" cos x :

dx^ L dx A

—
I
= ^e'i cos a? + ^^^ j

=
2e^(cos x

- sin x) ; and, finally,

^V o ^rf •
 c?(cos X - sin 07)1 . _ . .—^ = ie'' cos X - sm ^ + ^^^ ' = - 4e* sm a? = - 4y .

c^a;'' L dx A

(26) (Q. Nov. 1907).
— Prove that in any triangle

a2 = 52 + c2 - 26c . cos A. Prove that if the angle A is increased

by one minute, the sides h and c being unchanged, the increase

f in the side a is approximately ^jt^^P, where p is the lengthK 10800
* of the perpendicular drawn from the angle A to the side a.

Solution.—It is shown in trigonometry that

a2 = 62 + c2-26ccosA . . . (1)

A figure will show that

J
• k 6c sin A /rtv

jDa=6csmA, or jo
= . . (2)a

a and A in (1) are two variables
;
we may therefore differentiate

a w.r.t. A. We get

2a—- = 26c sin A, or approximately — = — sin A. (3)
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By (2) and (3) we have

8(i=p BA . . . (4)

8A = 1' =
--atq^t^

radians
; hence, (4) becomes

(26) (Q. Nov. 1906).—Prove that as x increases,
^ sin a; + 6 cos a;

cemx + e cos x
either increases for all values of x or else decreases for all

values of x; and find the condition to be satisfied by the

constants a, b, c, and e to provide that it shall always increase.

Solution.—When x increases, Bx is positive ; hence, by article 69,

the function increases when -^ is positive, and diminishes when
ax

-r- is negative. We must therefore find the differential coefficient
ax
w.r.t. X of the given function. By article 81 we have

d /asinx + b cos x\

dx\c sin x + e cos xj

_(c8mx + e cos x)(a cos x- b sin x)
-
(asinx + b cos x)(c cos x -esin x)

(c sin a; + e cos xy
_ ae-bc

(c sin a? + e cos xy
The denominator is positive for all values of x; if therefore

ae>bc, the function will increase for all values of x, and when
ae<bc the function will diminish for all values of x,

(27) (Q. June 1909).
—Write down the form of Taylor's series

which expresses f{a + x) in a, series of ascending powers of x,

and derive from it the first four terms in the expansion of

sin (a + x).

Apply this to determine sin 31° correctly to four places,

being given sin 30° = 0-5 and cos 30° = 0-866.

Solution.—Substituting a for x and x for Sx in [74] we get

f{a +
x)=f{a)+f(a)j+f'(a)^+r(a)^

. . .

 

oc or cy^

hence, sin {a-{-x)
= sin a + cos a ^

- sin a ?« - cos a r^ ',

hence, sin3r = sin30° +
cos30°y

-sin
30°|^ -cos30°|^

. (1)
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X in (1) must be expressed in radians, hence, x= -—-, and
180

inserting this value of .c in (1) we get

.in 31- = sin
30»(l

-
^--^,)

+ cos
30"(l

-^,) ^|g

= 0-5 X 0-99985 + 0-866 x :^ x 0-99994
180

= 0-4999 + 0-0151 = 0-5150.

sin 31° = 0-515 (Ans.).

(28) (Q. Oct. 1909).
—Use Maclaurin's series to show that

the expansion of logg(l + x) in terms of ^ is a; - — +— . . .

Calculate to four figures of decimals the value of log^o 1 08,

having given that log, 10 = 2-3026.

Solution. — Applying Maclaurin's theorem, article 93, to

logg(l+a:) we have

fix)
=

log, (1 + ^) ; fix) = J- ; fix) = - ^

l+x'-"
' ^

il+x)^'

hence,

/(O) = 1
; /(O) = ; /"(O) = - 1

; /"(O) = 2
; /^O) = - 6

;

hence, log,(l +.r)
= r» -

|-+ 1
- ^ . . . (1)

In the present case 1+^7=1-08, hence, a? = 08, and as we
require log^Q 1-08 with four decimals, we ought to calculate

loge 1*08 to six decimals. By substituting 0-08 for x in (1)
we get

log. 1 -08 = 0-08 - «:00«* + ^^^'1? - 0-0^0Oi09G ^ g.^^gggo
2 3 4

as log. X = log^ 10 logirt X, we have logi^ ^ = ,
———

;Be Be gio » BlO
log^ IQ

'

hence, log,, 1-08 =^^^ = 0-0334 iAns.).
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(29) (Q. Oct. 1909).— Find the first three terms in the

expansion of (4 + a:)*(l + 2x)* in ascending powers of x.

Solution.—Let (4 + ar)»(l + 2ic)» =f(x)

then /'(^)
=

;^[(4 + xy(l + 2xyi
CLX

and /\x) = ^[{^
+ xy{l+2xy].

By differentiation we get

f'{x) = {i + xy^--?~-— + (l + 2xy
^

S{l + 2xyi^ ^2{4 + xy'

By substituting for x we get

/(0)
= 2 ;/(0) = 1-583 ;/"(0)= -1-6212.

By Maclaurin's theorem, article 93, we get

(4 + ic)*(l + 2a;)i
= 2 + 1-583^ -0-811^2 . , (Ans.).

(30) (Q. Nov. 1907).—Find the condition to be satisfied by
the coefficients to secure that x^ + ax'^ + bx + c shall increase as

X increases for all values of x.

Solution.—Let us write

y=:x^ + ax^ + bx + c . . . . (1)

y will always increase as x increases if -^ is always positive.
Cl/X

^ = Sx^ + 2ax + b=^s(x + f)\b-'^ . . (2)
ax \ 3/ 3

As c does not appear in (2), it may be any positive or negative

integral or fractional quantity,

(ic + ^j is always positive, its lowest value is 0, viz. when

a? = -
^ ; hence, b - —- must be positive.
o 3

b-'^^>0{Ans.).o

(31) (Q. Nov, 1907).
—A variable quantity 6 is specified as a

function oix by the equation (9 = a + x sin ^, where a is a constant.

Prove that the value of —- when ^i? = is sin a, and that the
dx

dP-B
value of—- when a:^ = is sin 2a.

dx^
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Show that a + a; sin a + Ja?2 sin 2a is an approximate value of

when x is small.

Solution.—We have given

e = a + xsmO . . . . (1)

Differentiating (1) w.r.t. we get

dO f. , ndO ,

. A dO sin ^ ,^v— = + ii;cos^ — + sin(9, or — = -
^ . (2)ax ax ax \ — X cos

For x = in (1) we get 6 = a; hence, (2) will be, for x = 0,

dO .

-— = sm a,
dx

Differentiating (2) w.r.t. a? we get

,o /, ( 1
- a^ cos ^) cos 6' —- - sin 0( ^ sin ^ -— - cos ]

d^O _ dx \ dx ^
/ S^

^2-" (l-iK;cos^)2
•

^ ^

we have fo

values in (3) we get

By Maclaurin's theorem we get

=/W =/(0) +/(0)^ +/"(0)
^' +/'"(0)p^

... . (4)

x = 0, /(O) = a
; /( 0) = sin a

; f"{0)
= sin 2a

;

neglecting the remaining terms of (4) we get

= a + x sin a + — sin 2a.

(32) (Q. Nov. 1906).—Prove that in any triangle c2 = ^2 + 6^
- '2ab cos C.

A straight line of given length moves with its extremities
on two fixed lines. Prove that the area of the triangle
formed by the fixed lines and the moving line is a maximum
when that triangle is isosceles.

Solntion,—It is proved in trigonometry that

c2 = rt2 + 62-2a6cosC . . . (1)

For a; = we have found that B = a and -—= sin a : inserting these
dx

d^O . o

^2
= --2a.
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Let C B = a and C A = 6 be the two fixed lines, and B A = c be
the line of given length. Hence a and b are two variable

quantities. The area of triangle B C A is

T = ^a68inC .... (2)

We will now find the value of a which makes T maximum, b

being a function of a.

Differentiating (2) w.r.t. a we get

dT b . ^ ,
a db . rA /ox

Differentiating (1) w.r.t. a we get

= 2a + 26^-2icosC-2a — cosC . . (4)da da '

From (4) we get
db _a-b cos C

.

da a cos C - 6
'

-— must be equal to
; hence, -— = — . By equating the two

da da a

values of -—
,
we have

da
a-b cos C b ,

or a = b.
a cos G-b a

As a is equal to b when —- =
0, we have -— = - 1 in (3) :

da da

, c^2T sinC sinC

which is negative. The area of the triangle is therefore maxi-

mum when a = 6, i.e. when the triangle is isosceles.

(33) (Q. May 1907).—Sketch the curve y^x = {x+lY. Find
the value of x for which the tangent is parallel to the axis of

X
;
and show that, for values of x greater than this, the angle

which the tangent makes with the axis of x does not exceed

the value tan-i—=r
,
which occurs when ii? = 3.

3^3
Solution.—The knowledge which we have gained by studying

the differential calculus is of very great value to us when tracing
the graph of an equation. We would naturally begin by search-
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ing for points which at 6nce would give us a general idea of the

curve. Such points are called singular points^ and include

maxima, minima, points of inflexion, etc.

As the a7-axis is an axis of symmetry of the given curve, we need

only determine that part of the curve which is situated above the

ip-axis and for which the ordinates are positive. Hence,

y =
{x+\) Jx dy

dx

ix
*

dx'^~

Jx
9.^2 4x^

X.
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Solution,

(i.) ^1; j,,
=
2».(:»-l);^i

=
2(2x-l);^

= 4.

As —^ is always positive there can be no maximum value of y^

. Jli = 0, when a; = J, and as —^ is positive the minimum value
dx dx^

of y^ is equal to -
J, which is also the least value of y^ as —^ is

always positive.

When a; =1, ^p =
dx

2 and y^
= 0.

(ii.) *^1; y2=^(x
-

\)(x
-

2)(x
-

S)
= x^ - 6x^ +llx - Q.

^ = 3x^-l2x+n = 3{x- l'4:23){x
-
2-577) ; ^ = Q{x

-
2).

dx dx^

X.
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Prove that -^ is equal to - 2 cos ^

dx
' ^

2

described by the point as B increases from to 180°. What is

the path of the point as B increases from 180° to 360° ?

dy_dyde__dB(^^^.^xx,n
dOdx dx\ 2 y '"'

dO

dy ,-, . ^^ « o^

Solution. —
dx

and sketch the path

, . dx
but — = sm

Hence,
dx

= -(l + cos^)= -2cos2

As cos = 1 -X, the equation of the curve is

2y = x'^-ix + l
= {x- 3-225)(^

-
0-775). (1)

We have also -^
dx 2and^dx"^ 1. The graph of (1) will be

found to be a parabola with vertex at (2,
-
f )

and its axis parallel
to the y-axis. But we only require the portion of the curve

which lies between x = 0,or =
0, and x = 2, or 0= 180°. For this

portion of the curve we have

X.
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(36) (Q. June 1908).
—The equation to a curve being given in

terms of polar co-ordinates, find an expression for the angle <^

between the radius vector of any point on the curve and the

tangent to the curve at the point.
Find the co-ordinates of the points on the curve r'^^a^ sin 20

at which the tangent is at right angles to the initial line from
which is measured.

Solution.—The first part of the question is answered by article

110.

The graph of r'^ = a^&m.2B is the lemniscate (see (4) p. 50);
in the latter example the polar equation of the curve is

r^ = 2a^ 009,26; but by turning the a:-axis (fig. 25), which is also

the initial axis, through an angle of minus 45°, the polar equa-
tion of the curve will be found to be r'^ = 2a^%m26

;
and by

taking a^ for 2a^ the equation of the curve is r^ = a^ sin 26,

which is the equation given in the present question.
(16

In article 110 it is shown that tand> = r-— . Let now a be
dr

the angle which the tangent makes with the initial line in the

positive direction, then it will be seen that a = 6 + ^; hence,
tan 6 + tan 4> y ^\. i.

''t ,

tan a = — . In the present case a = -
,
or tan a = oo

,

I - tan tan <^

^
2'

'

d6
which will occur when I - tan 6 tan = 0, or tan d> = cot 6 = r—- .

dr

Differentiating the equation of the curve w.r.t. 6 we get

2r^=2a2cos20,
d6

d6 7-2 a2 sin 2(9 ^ ^. ^.or ^3-= -^ ^= 9 ^^
= tan2(9 = cot(9,

dr a^ cos 20 a^ cos 20

2 tan0 1

30°

210°'

I-tan20 tan0'

hence, tan0=± /-, or 0= <

The numerical value of r is 0-9306a. Hence, thei' two points
are

*

(0-9306a, 30°), and (0'9306a, 210°) (Ans.) ;

the notation may also be written thus

(0'9306a, 30°), and
(
- 0'9306a, 30°).
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(37) (Q. Nov. 1906).—Find the value of ^ at any point x, y

of the curve ^* + y*
=

a*, and write down the equation of the

tangent to the curve at the point. If the tangent cuts the

axes 0^, Oy, in P and Q respectively, show that P + Q is

constant, and equal to a.

Take a equal to 4 inches, and draw a number of straight
lines cutting the axes and having the sum of their intercepts

equal to this. Show that the curve may then be sketched in

to touch these lines.

Solution.—Differentiating the given equation w.r.t. x we get

hence, the equation of the tangent is

Y-y=-M^-x\
X Y , X Y ,=

1, or —^+^^=1;
Jx{ sjx + sly) sjy{ Jx + Jy) Jax \Jay

hence, by article 10, the intercepts which the tangent cuts off the

axes are P = Jax and Q = Jay.

Hence, P + Q = J'^ + J'^ = ^a( sJx + Jy)
= « .

The second part of the question follows from the, first part.

(38) (Q. Nov. 1908, second part).
—A circular cylinder of a

given capacity, closed at each end, is to be made of thin sheet

metal of a uniform thickness. Find the ratio of the diameter
to the length of the cylinder such that the weight of the vessel

shall be a minimum.
Solution.—Let V be the constant volume, I the length, and d

the diameter of the cylinder. As the walls of the cylinder are

very thin, we may take the weight as being proportional to the

total surface S. S is therefore to be a minimum. We have

Y = ^4l. .... (1)

S =
-2^+Trdl

. . .

'(2)
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Let -Y=Xy then d = lx, which, inserted in (1) and (2), gives

y = ^l^x\ and S =^ZV + 7r^2^ . . (3)

Hence, "^^ = ^ ^(l^2x + x'^Sl^^) ,
or ~= -- . (4)dx 4 \ dxj dx ox

r(p2.
+
|2^£ + ^^ +

.2/|)
=
p»(.-l)

. (5)dx

-— — for x=\j or l = d:
dx

which is positive for a; = 1,

l = d (Ans.).

(39) (Q. Nov. 1907).
—Find the maximum and minimum

values of ^^"^ '
, distinguishing between them.

X — 1

Solution.—Let v = -^^
,

then
x-l

di/_ (x-l){x + x + l)-x(x+l) _x^-2x-l _ {x-l - s/2){x-l+ J2)
dx~ {x-iy

~
>-l)2 (^-1)2

d^y 4 dy #— i—

^2
=

(-^Z-r)-3; ^
= ^hen ^=14-V2 and ^=l-v/2.-

— d^v
The fuMction is a inaodmuni when x=\ - J2 as -r—^

is negative.
y-72

The function is a minimum when x=\ + J2 as
-j-i:^

is positive.

(Ans.).

(40) (Q. May 1907).
—A certain function of x is equal to ax^

for values of x less than 1, and to - ax^ + bx - 1 for values of

X greater than 1. Find the values of the constants a and b in

order that there may be no discontinuity or abrupt change of

slope in the graph of the function at the point x=l.
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With these values of a and h find the values of x for which
the function is zero.

Solution.—The values of the ordinates of the two portions
of the given function, for a?=l, are respectively yi

= ci and

^2= -a + 6- 1.

The slopes for ic = 1 are^ = 2a and ^ = - 2a + 6.

ax dx
If there is to be no discontinuity we must have

^1
=

2^2'
o^ 2a = 6-l. . . . (1)

and if there is to be no abrupt change of slope we must have

fijli, or 4a= 6 . . . (2)dx dx

The simultaneous equations in (1) and (2) give

a = i, and 6=2. . . . (3)

Inserting the values (3) in the function we get

Ja-^,
and -

\x^ + 2x-\.

The function will therefore be zero ior x = 0, x = "l-\- \/2 = 3*414

and « = 2 - v/2 = 0-586 {Ans.).

(41) (Q. June 1908).
—Apply Taylor's theorem to express

sin ( - + ^
j
in the form of a series in ascending powers of x

;
and

show exactly how many terms must be included, in order to

give a result which is correct to five places of decimals for all

positive values of x not exceeding the circular measure of 2'.

Solution—Substituting ^ for x, and x for ^x in [74], we get

dn(^^
+

;r)

. TT TT X . IT X'^ IT X^ . TT X^

/, X x^ x^ x!^ \ /,v=
V0-5(l+7-|^-|y

+
|J---).

(1)

X must not exceed the circular measure of 2°, but 2° is equal

to— = 0349666 radians. As the result is required to be correct

to five decimals, we must work with seven decimals.
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Substituting 0*0349666 for x in (1) we get

sin
(j^
+ 0-0349666^ = 0707 1066(1 + 0-0349666

-0-0006112 -0-0000071 +00000000) . . .

= 0-73135 .... (2)

(2) shows that we only require four terms when x is not to

exceed 0-0349666 radians.

sin
(^

+
^)

=
0-7071066('l

+ J
"
i^

"
ly) i^ns.).

(42) (Q. June 1909).
—A conical tent is to have a given

volume. Find what is the ratio of the height of the tent to the

radius of its base when the least possible amount of canvas is

used in the conical surface.

If in this case the canvas is spread out on the ground, what
fraction of a complete circle is it ?

Solution.—The cone is a cone of revolution. Let r be the

radius of the base, h the height of the cone, and I the length of

the generator.

Volume of cone = -^r%
= K (a constant) . (1)

o

Area of curved surface

= A = ix27rW = 7rr7^27^2 ... (2)

Let — = x, or h = rx. By inserting the latter value for h in (1)

and (2) we get

Y^ =
\r^x,

and A = 7rr2x/rT^ . . (3)
o

r is a function of x in (3). By differentiating the first in (3)

w.r.t. X, we get
_ -TT o

,
.. c?r dr r= -r3 + ,rW^ or -f=-^.O CLX G/X OX

By differentiating A in (3) w.r.t. x, we get

dA_^r%r^-2) _ ^ is for a; = >/2
dx Sxjl + x^

' dx

— d^k
Inserting x = v 2 in

^-^ ,
it will be found that the latter quantity

will be positive.
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A : area of complete circle : : irrl : ttI^
; hence, for x = j2^

- = J2 ;
A = 0*577 of a complete circle (Ans.).

(43) (Q. June 1910).—Find the differential coefficients of

(i.) log, tan a?; (ii.) -^^-^
.

If. = W(-^), prove
that^4^.-g/|

=
|.

(i-)

Solution.

log^tan^ dloget&nx c^tana; 1 1

dx c?tana7 dx tana; cos^a; sin2.z;

(ii.)

^g"
^de"

dx ^^^/
dx dx^ dx

(a;2+l)2^e^^-(ef + l)2a; _ 2a;(a;V^-l)

Hence,

'*^2+l/^^- (a;2 + l)2 (^2+1)2
•

/••• \ dy J ax I ^ ah d'^y j ah I ^ 2ah

Hence, '-t±^ «V, + ,J^ <^^ = 1 (Ans.).ax (x + if (x + bf ab a;
^ '
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CHAPTER XV.

INTEGRALS—AREAS.

111. Integration.
As subtraction and division are respectively the inverse

operations of addition and multiplication, so is integration the

inverse operation of differentiation.

If we have given the slope,
-^

=f'{x), of a curve as a function
ax

of x^ the equation of the curve is found by integrating f'(x).

Just as the result of division is tested by multiplying the divisor

by the quotient, so we test the result obtained by integration by
differentiating the latter result, and if we thus obtain the function

which has been integrated, then the integration has been correctly

performed. The student is advised always to make this test.

That a function is to be integrated w.r.t. x is denoted by

jf(x)dx. Hence, we have

g=/(^),
and y =

jf{x)dx=f(x)
. . [93]

The second expression in [93] reads "y equal to the integral of

f'{x) w.r.t. iP."

Example 1.—Integrate y= ix^dx.

du x^"^^ f X
Since ^ =

«;"', we have y= -; hence, /
x^dx= —

dx m + 1 y -yw

Example 2.—Integrate y = I ^dx.

Clearly y = ^ because -^
=

e'; hence, 1 e'^dx =

122

-^w + 1
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112. Table of results to be remembered.

(Refer to table in article 91.)

\adx — a\dx = ax;
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each division corresponding to P R and Q S of the division P R S Q,

then clearly

2, (rectangles PTSQP)>A> ^^(rectangles
P R N Q P) (

1
)

By diminishing Sx indefinitely, and at the same time increasing
the number of divisions indefinitely, the two areas to the right
and left of A in (1) will ultimately be equal, and will therefore

also both be equal to A. Area L B C M L is therefore the

limiting value of y/rectangles P R N Q P).

Let us consider division P R S Q P, and let the area L B R P L
be AJ, corresponding to 0P =

^, then area PRSQP is 8A, i.e.

Sx, hy, and SA are corresponding and simultaneously vanishing
increments of a;, y, and A^. We have now (y \-^y)hx>hk>y 8a;,

or y + hy>-^>yy and ultimately
ox

T 8A dk. , dk. mill

and

A= [ydx= [f(x)dx
=
F(x) . . [96]

We thus see that the area A = F{x) is determined by integrating

the equation of the curve by which the area is bounded.

Integration may therefm'e also be defined as the operation of

determining the area v/nder the graph of the function which is to be

integrated.
Example.—To find the area of parabola y^ = iax.

y = ± 2 Ja^ ; hence, the area of the portion of the parabola,
which lies between a: = and x = x, is

A =
2jy

dx =
2j2 Jax dx = 4: Ja\ s/xdx =

i^

Jax^ =
^^y,

or the area is equal to | of the rectangle x2y.

114. Arbitrary constant.

We have ^) =/(4ax

but we have also ^iM.tSl =/»,
dx

where C is a constant. Hence, we may write

\f{x)dx=f{x) + C,P
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where C may or may not be equal to 0. For this reason it is

necessary to add a constant C to any function which is produced
by integration. This constant is called an arbitrary constant, and

/•
f{x)dx is called an indefinite, or uncorrected integral.

115. Definite and corrected integrals.
The curve (fig. 40) may be continued beyond points B and

C, but in article 113 we only required the area under the portion
B C of the curve. Let M = a and L =

6, then by [95] A = F(a)
-

F(^), which we write

k=ly{x)dx==Y{a)-Y{b) . . . [96]

and read,
"
the integral off{x) between the limits of a and b." a is

called the upper limit and b is called the lower limit, and the

integral in [96] is called a definite integral, a - 6 is termed the

i7iterval.

If we require an expression for the area from L B to a distance

X from the origin, we would write

K=iy{x)dx = ¥{x)-Y{b) . . . [97]

The upper limit is undetermined, and the integral is called a

corrected integral.
Examples.

/e'
dx = e^ - e~" = 1

;
\ e'^ dx = e^ - e~" = e*

;

-co y — 00

\
e"" dx = €^ - e^ = e' -\

; \
cos xdx = %\nx - sin = sin a?

;

Jo 'Jo
II

The limits of a definite integral may be interchanged by changing
the sign of the integral.
Example 1.

^y(x)dx
=
F(a)

-
F(6)

= -
[F(6)

-
F(a)]

= -
j\x)dx.

Example 2.

I f{x)dx
-

I f(x)dx = I fix)dx + I f(x)dx
= I f{x)dx.

J a J b J c J a J a

Example 3.

re rb re ra re

I f{x)dx
-

I f{x)dx = I f(x)dx + I f{x)dx = / f{x)dx.
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116. Approximate determination of an area.

If the integration of [96] can be performed, then the area A
will be determined with absolute accuracy. If, however, [96]
cannot be integrated, or the equation of the curve, y=f{x), is

unknown, then we must be satisfied with an approximate value

of the area A.

(i.) The trapezoid imle.—Let BC (fig. 41) be the curve whose

equation is imknown, or which is too complicated to be integrated.
For the purpose of determining the area L B C M L = A, the base

line L M may be divided into a number of equal portions, each

of length A; the latter must be chosen so small that the arc of the

curve of any division is so short that it may be considered

Ficx. 41.

approximately a straight line. Area A is then approximately

equal to the sum of the areas of the divisions, but each division

is a trapezoid ; hence,

^^yo±yih^yi±y3ii+yi±y3h+y^±y-^h

h(y^^^%r) [98]

or generally

where h =
,
and yQ and y„ are respectively the first and the

last ordinate. This method is known as the trapezoid ride.

(ii.) Simpson's rule.—Divide the base line LM (fig. 41) into

an even number, 2n, of equal portions, each of length h
; hence,

h= . Let point L be the origin, and let us first determine'
2n

the area A^ of the two divisions between y^ and y^. Instead of
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considering the arcs of the curve between y^ and y^ straight lines,

let us substitute for the given curve another curve whose equation
is y-=a-\-hx->f cx^

; hence,

r2h

Ag = I {a + hx + cx'^)dx
= .

bx cx^\

2A( a + 6A + icA^

but ar = 0, ^Q
=

(i; x — h, y^
= a + l>h + ch^

;

a: = 2A, ^2
= « + 2*A + ich'^

(1)

(2)

By eliminating a, b, and c between (1) and (2) we get

In the same manner we get the area between y^ and y^ ,

^4= 3(y2
+ %3 + y4)-

The' last area, between
y2(n-i)

and y^^ is

^2^
q"W2(n-l)

+ 4:y2n-l + ^2*1)

Hence,

A =
y(2^o

+ %i + 22/2 + 4y3 + 22^4+ . . . +2y2(„-i, + 4y2„-i + 2/2«)

or A =
|-(yo

+ 2^2. + 42s^2.-i + 2'2L)
. . [99]

which is Simpson^s rule. Results obtained by [99] are more
accurate than those obtained by [98].

Example.—Find the area under the curve from the data given
in the following table :

—

2/0
= 4-47
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117. Determination of an area referred to polar co-ordinates.

Let the problem be to determine the area A (fig. 42), bounded

by L, Q, and the curve L N P Q, whose equation is

Let ON =
r, angle XON =

^, and angle N0P = 8^, then

OP = r4-8r. 8A will thus be equal to area NOPN, and it is

obvious that the value of 8A must lie between those of the areas

of the two circle-sectors M PM =
^(r -I- h^fhO and N RN = \r^e ;

we have therefore \{r + hrfhe>hk>\r^e, and in the limit

4^ = \r\ and therefore A = J (\H6 = ^ I \f{e)fd0 [100]
du Jri Jei

where rj
= L, rg

= Q, 0^
= angle X L, and 6^

= angle X Q.
If [100] cannot be integrated, or r=f{6) is not known, then

we may resort to the approximate methods shown in the pre-

ceding article. For this purpose we divide the angular interval

Fig. 42.

$2
-

^1 into a number of equal portions each equal to e radians,
and measure the lengths of the radii vectores Vq, r^, r^ . . .

corresponding to angles 0, t, 2€ . . . reckoned from L. The
values of r^, r^ . . . must be squared.

f) — f)

(i.) When applying [98] we have e = -^ 1
,
and the area will

approximately be /^t"
f /^ 2 I ^ 2 q=n-l v

^=UH^+'L<)   . [101]

(ii.)
When we apply Simpson's rule, we have f^-^^—^' ^^^

the area is approximately

" \
9= 1 g_ 1

/

I
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Example.—Find the area bounded by r = a(l -cosO) and the

radii vectores corresponding to = and =
y.

By- [100] we have

A = Ia2 r(i _
cos^)2 dO = ~ fV + cos2^ - 2 cos^) dO

Jo 2 Jo

a^n/^ l + cos2^ ^ \ ,^ a^/^^
4sin^

=
-J (^y + si^ 7 ^os y

- 4 sin y).

Let y= - and a = 8, then r= 8(1
-
cos^) and A = 11-4 units.

If we use Simpson's rule and take ^ =^ =
9°> our calculated

values may be tabulated thus :
—

e

degrees.
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fore the average value of y=f{x\ the equation of the curve,
in the interval a-b. Hence,

^^^a^^^BCML^fc^ . . [103]

In practical physics we often speak of the average value of a

cause, which has produced a certain effect during a certain given
interval of time T. Let the variable cause be C, and the variable

time be ty then C =f{t).
The total effect produced by C during the time-interval T is,

f{t) dty and the average value of C during the same interval is

therefore
H'

c.
\j^f(t)dt

.... [104]

C,„ is that constant cause which would produce the same effect

during the time-interval T as the variable cause has produced
during the same interval.



CHAPTER XVI.

VOLUMES.

119. The volume of any solid.

Let M N (fig. 43) be any solid whatever standing on the plane

P, and let X be perpendicular to P. Planes at distances x and
x + hx and parallel to P cut the solid through sections whose

X

Fig. 43.

areas are A^ and (A^ + SAJ respectively. Let 8V be the volume
of the portion of the solid which lies between the two planes.
The value of SV must lie between the cylindrical volumes

SV
(A^ + 8A^)8er and A^ hx

;
therefore

j-
lies between A^^ + SA^^ and

A^ ; hence, in the limit

dx
= A,, and V

=r k^dx [105]

where H is the height of the solid measured along OX. The
volume V is therefore determined as if it were the area under

131
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the graph of A^=/(a:), A, being the ordinate to the graph.

Hence, if the variation of A^^ with ar, i.e. A^ =/(a?), is known and

integration is possible, V can be determined with absolute

accuracy ;
but if f{x) is unknown, or cannot be integrated, we

must apply the approximate methods. The rule [98] becomes

v=a(a«+a,+ 2a,) [106]

where h = — .

n

Simpson's rule [99] becomes

V =
|(a. + A,„ + i%K-. + 22Xr) . • [107]

\ ^^1 r=l /
LT

where h =— . The areas A^, Aj, etc., may be determined by

planimeter.
Example.—To find the volume of the solid from the data given

below.

H = 10, ^=1 and

Ax.
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polygon. Turn the solid about until the plane of the base

C B is perpendicular to X. Let the height of the solid be H
and the area of the base be A. A plane parallel to the base and

at a distance x from will cut the solid at a section whose area

is A,.. But we have

-I
=
-2; hence, k,^-x^=f{x\

and the volume of the solid is

V== rA,(^a; = Ar^2^^==lAH . . [108]
JO H'^yo o

The volume of any cone or pyramid is therefore equal to one-

third of the volume of a cylinder whose height and base are the

same as those of the cone or the pyramid.
121. The volume of any truncated cone or pyramid.

Let B C N M B
(fig. 45) be any truncated cone or pyramid,
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and let Aj and A^ be the areas of the two plane ends. The
volume of the solid is

V = 1(A2H,
-
A^Hi), but ^ = 5l and Hi = Hg

- H ;

H
hence, Y =

-^{A^-\- JA^A^ + A^) . . . [109]

A truncated cone or pyramid is also called & frustum.
122. Volume of revolution.

Let it be required to find the volume formed by the revolution

of a given curve about an axis in its own plane. Take the axis of

revolution as ar-axis, for instance, X in fig. 40, p 123. Planes

at right angles to the axis of revolution will cut the solid in circles,

and if the equation of the revolving curve be y =f{x), then the area

A, will be equal to Try^ ^ hence, the volume of the solid will be

dx . . . [110]

If [110] can be integrated, then the value of V can be
determined accurately, otherwise the values of iry^

=
Tr[f{x)Y must

be calculated for x = 0, x = h, x-=1h, etc., and one of the approxi-
mate methods must be applied. Formulae [98] and [99], pp. 126,

127, will respectively be

V =
7rA(^«i±i^+2k^)

. . . [Ill]
r=\

and
^="^(y!+yl+i%U+''^'Zf)j-

 [112]^ \ r=l r=l /

123. The sphere.
The sphere is produced by the revolution of a circle about its

diameter
; take the latter as aj-axis and the centre of the circle as

origin, and let the equation of the circle be x'^ + y'^
= ^'^.

(i.) The volume of the sphere is

/•+R /•+R /.+R r+R r+R
V = 7r/

y'^dx=2Tr\ y^dx = 27r (R"^
-

x'^)dx
= 27rU^ dx-^irl x'^ dx

J-u Jo Jo Jo Jo

=
f27rR2^y^

- (?^T= 27rR2(R
-

0)
- ^(R3 -

0) = U^^
\ Jx=o \ 6 Jx=o 3 o

(ii.) The portion of the sphere which is cut off by a plane is

called a spherical segment. Let us choose the diameter which is
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perpendicular to the plane as x-axis, and let the height of the

segment be H, then the volume of the spherical segment is

y-R /-R

V = 7r/ y^dx^iri (R2
_
^2)^^^ H2(3R -

H).
•/r-h ^r-h "^

(iii.)
The portion of a sphere which is cut off by two parallel

planes is called a spherical zone (fig. 46). Let H be the distance

Fig. 46.

between the two parallel planes, and let the radii of the two circles

in which the planes intersect the sphere be R^ and Rg- ^^^
volume of the spherical zone is

.-x+JH /•a:+H rx+H. rx+H , ~.x-x-\-

V = 7r/ y^dx = 7r (R^-x^)dx = 7r W^ dx - tt x^ dx =
IttR^x)

Jx Jx Jx Jx \ ^ x=x

But Ri2
= R2 - x\ and ^^^ =W -

{x ^- Uf ;

hence, V = ^{^^^ + R22)H + JH^.

124. The paraboloid of revolution.

Let the parabola, y'^
= iax, revolve about its axis; the solid

thus formed is a paraboloid. The volume of the paraboloid is

/•H /-H

r ji/^dx
= 7r

j
4:

Jo Jo

iax dx = 47ra( -^
- 27raH2

where H is the height of the paraboloid. Let b be the radius of

the base of the solid, then 62 = 4aH; hence, V =—^^H, or equal

to half the volume of the cylinder whose base and height are the

same as those of the paraboloid.
125. The ellipsoid and the spheroid.

Let the equation of the ellipse be — + Vs == !•
a^ b^
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(i.) The solid formed by the revolution of an ellipse about the

major axis is called an ellipsoid of revolution. The volume of the

latter solid is

/+a

fa ifl fa

-a Jo a^Jo

= 27r62 [% - 27r —̂ rx^ dx = l-KoJb'^ - —irah^ « ^irab'^ ;

Jo a^Jo 3 3

when a = b the ellipse becomes a circle and the solid becomes

a sphere whose volume is
-^rra^,

which we found in article 123.
o

(ii.) The solid formed by the revolution of an ellipse about its

minor axis is called a spheroid, whose volume is

f+b fb „2 fb
V = TT

j
x^ dy =

27r|
x'^ dy =

27r|^|
(^^

-
y^)dy

= 27ra2
^dy

- 27rp fV^ ^V = 27ra26 -
^tto?-})

=
^'rra%

.

126. The hyperboloid of revolution.

Let the equation of the hyperbola be — - ^ = 1 .

(i.)
The hyperboloid of two sheets.—The volume of the solid

formed by the revolution of the curve about the first axis is

Y = ^l'^f dx + 7r[ y^ dx^TrTy'^ dx = 2Trry'^ dx=27r—J\x'^ -a^)dx
Ja J-x J-x Ja a^Ja

where x is always positive.

(ii.) The hyperboloid of one sheet, or the skew hyperboloid.
—The

volume of the solid formed by the revolution of the curve about
the second axis is

V =
,r02

ay = 2^jy dy =
27r|J ['(y2

+ b^)dy
=
2^f^(^^

+
b^y^

3 "6

where y is always positive.

2 ^V + 3&2)y,
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127. The equation of the revolving curve is unknown.
Let us find the volume of the soHd which is formed by the

revolution of the curve of which data are given in the following
table :

—

y-
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middle points of chords parallel to the y-axis. The ordinates to

points C and F are respectively y^ and y^ ; hence, the ordinate

to point Q is
17
= ^2 + ^1

. If A be the area enclosed by B C D F B,
z

and L be the distance of its centroid from the axis of ar, then the

first area-moment w.r.t. the axis of x is

(a.m.)
=AL . . . . (1)

We have also

A=
j y^dx-

I y^dx= j (y^- y^)dx, where b = OM. (2)

The centroid of 8A must lie somewhere between Q and R on
the curve B Q R D when Q R is indefinitely small

; hence, we must
have

8A{rj + 8r))^S{a.m.)^8Arj;

hence, in the limit

d{a. m.) _ _ ^1 + ^2 _ ^{^' ^') ^^
.

~~dK '^
2 'dbT' dk'

hence, we have

AL = (a.m.)=
^^'^'^ -^dx

= ^\{y^-^y^)(y^-y^)dx

=
\\\y,^-yi^)dx,

or
27rLA=^7rj\y,'^-y,^)dx,

but the latter integral is the volume of the solid which is formed

by the revolution of curve B C D F B about the ar-axis. Hence,
when any closed curve revolves about an axis in its own plane^
cmd which does not cut the curve, the volume of the ring so formed is

equAil to that of a cylinder whose base is the curve and whose height
is equal to the length of the path described by the centroid of the

area enclosed by the curve

V = 27rLA . . . . [113]

Example.—A circle is revolving about an axis in its plane.
The distance, L, of the centre from the axis of rotation is greater
than radius, r, of the circle. Find the volume of the ring formed

by the revolution of the circle. By [113] we have

V = 27rL7rr2 = 27r2Lr2 ... (3)

This article may be left out until the student has studied

Chap. XXXV., p. 275.



CHAPTER XVII.

SURFACES—RECTIFICATION.

129. Surface of revolution.

Let S be the area of the curved surface formed by the revolu-

tion of a curve M B C N (fig. 48) about X
;
and let Ss be the

length of the curve-element B C. 8S will thus be the area of the

surface-element of the solid between the sections through B and C.

M

It is obvious that the value of 8S must lie between those of the

areas of the cylindrical surfaces 27r3/ Ss and 27r(y + 5y)8s. Hence,
we have in the limit

where H = L,

but

therefore

hence.

27r fV ds=
27ry, and therefore S

dS dS dx _dS dy
ds dx ds dy ds

'

dS _fy ds 1 ^^ _ o ^^
.

dx dx dy dy
'

139

[114]

[115]
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where r — M and R = L N. If now either of the three functions

y = <^(«), or yi
=

y-j- ,
or

1/2
=
1/^ is known, and the integration

in [114] or [116] can be performed, then the value of S can be

found accurately. It is evident that S is equal to Itt times the

area under either of the graphs whose equations are y = <;^(s},
or

y\
—

y-T- >
or y^

—
y-— . Hence, if we find it necessary to resort to

ax ay
approximate methods, and we choose the graph of y = (f>{s),

then

we must rectify the curve M B C N as accurately as possible ;

which may be done by dividing the curve into a number of small

parts, each so small that it may be considered approximately a

straight line, and then add all the parts together by setting them
off along a straight line.

(i.) When applying [98], p. 126, the rectified curve M BCN must
be divided into n equal parts each of length h, and the values of

y corresponding to s = 0, s = h, s = 2h, etc., must be determined
from the curve M B C N. We have then approximately

S = 2.h(^^'+'%) . . . [116]
^ *"

r=l /

(ii.) If we desire to apply Simpson's rule, we must divide the

rectified curve into In equal parts each of length h, and determine
the values of y corresponding to s = 0, s = h, etc.

The curved surface of the solid will approximately be

S = ^(yo + y2« + 4'£y.,_i
+
2''^y ^. . [117]

130. The cone of revolution.

Fig. 49.

Let I be the length of the generator B (fig. 49), then
ds

dx
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and -^ = —
,
where L = H and L B = r. Hence, by [115], we have

X H
S = 27

H
dx = Trrl.

i.e. S is equal to half the curved surface of a cylinder with the

same base and the same generator.

131. Truncated cone of revolution.

In fig. 50 OX is the axis of the cone, NM =
ri,

PB =
r2,

Fig. 50.

M B = ^, and N P = H. It will be found that B :

rJ

by the preceding article,

-irr. r,l = 7r{r^+r^)l .

hence.

(1)

Let E C be parallel to, and equidistant from, N M and P B, and
draw line C T perpendicular to M B

; then, if C T = R, we have

^:H::R:^1^, or 7r(ri + r2)/
= 27rR H ; hence, (1) becomes

S = 7r(ri + r2)^=27rRH.
132. The sphere.

By articles 129 and 108 we have

dS ^ ds ^ L
, (dy\^

let the equation of the great circle be ic^ + ^^ = R^
;

then '^y

hence.

_= -i:, or ._=27rR;
dx X dx

S = 27rR/'X=47rR2,
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or the area of the surface of a sphere is equal to four times the area

of the great circle.

133. The spherical segment and the spherical zone.

By the preceding article we have that — = 27rR
; hence, the

ax
area of the curved surface of

(i.) the spherical segment, whose height is H, is

S = 27rR/ c^a? = 27rRH.
yR-H

(ii.) the spherical zone (fig. 46, p. 135) is

S = 27rR/ (^a; = 27rRH.

Hence, when the heights of a spherical segment and of a spherical

zone, cut off from the same sphere, are equal, then the areas of

their curved surfaces are also equal.

134. Guldin's theorem.

Let the first moment of the perimeter (fig. 51) w.r.t. X be

Y

Fio. 61.

(s. m.) = si, where I is the distance of the centroid of the perimeter
from X and s is the length of the perimeter B C D F B. Let the

length of the portion B C D of the perimeter be
Sg,

and its current

ordinate be y^ ; and, similarly, let the length of B F D be Sp and its

current ordinate be
y-^,

then s =
Sj + 8^.

It is obvious that h{s. m.)^
lies between (yg + ^I/2)^h ^"^ ^2 ^h > hence, in the limit

d{8.m.)^

dsc
2,

and similarly -^-
—'-h =

ds.
Vi'^

rx-b rx=b

hence, (s. w.)2
= / ^g ^^2' ^"*^

(^- ^Oi = I Vi ^h •

Jx=(i Jx-O

But we have that
/•x=b rx=b

(«. m.\ + («. m\ =
(s,m,)

= sl= I y.ds,+ j y^ ds.
Jx^O Jx=Q

(1)
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The area of the surface of the ring which is formed by the

revolution of B C D F B about X is, according to [114],

rx=b rx=b

S = 27r/ yj(isi + 27r| y^ds^',
Jx=0 Jx^O

hence, by (1) we have
S = 27r/s .... [118]

Hence, when any closed curve revolves about an axis in its own

plane, and which does not cut the curve, the area of the surface thus

formed is equal to that of the cylinder whose base is the curve and
whose height is equal to the length of the path described by the

centroid of the perimeter of the curve.

This article may be left out until the student has studied

Chap. XXXV., p. 275.

135. Rectification.

The operation of finding the length of a curved line is called

rectification.

When the curve is drawn on the paper its length can always be

found approximately by the method described in article 129. In

some cases, however, a great amount of work may be saved by
the application of calculus. By article 108 we have

ds

dx yi.(|;;hence,.
=
/yi.(|y... [119]

s in [119] is the length of the portion of the curve between the

values a and b of x.



CHAPTER XVIII.

INTEGRATION RULES

136. Nature of the problem.
The results given in the table, article 112, follow obviously from

the examples tabulated in article 91, and require, therefore, no
further comment. It has been shown in Chap. XV. that, if the

integral is definite and the constants are numerical, the integration

may be performed with great accuracy by means of approximate
rules, but the saving of labour, however, is very marked when
true integration can be performed.

Generally the functions to be integrated are much more

complicated than the simple functions given in article 112. The

process consists, then, in trying to simplify the given function,

and reduce it to one or more of the forms which we know. In

the present and in the next chapters we will endeavour to

establish some general rules by which the integration of a given
function may be performed.

137. Integration by parts.
Let u=f{x) and v = <f>{x) be two functions of x; then, by

article 79, we have

and, conversely,

d{uv) _ dv du

dx dx dx^

f dv-, , f dujuv= \u—-dx-^ lv-—dx:
J dx J dx

/dv
T [ du

'^d^
'"~

j'^dx^^
' ' ' [^^®]

which is known as the principle of integration hy parts. The

process consists in resolving the function to be integrated into

two factors, of which one (dvldx) must be integrable.
144
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Example 1.

/ loggX dx = X logeO?
- lx~dx = X loge- + C

J J X e

where u = logg x and dv/dx = 1
; hence, du/dx = 1 /x and v= \dx = x.

(i.) The integral may he reduced to a known form^ or to a simpler
one of the same form.

In Example 1 the integral is reduced to a known form.

Example 2. To find ia'x^dx.ia'a

Take u = x^, v= {a^dx= -^- :

J loge*

then dujdx = mx"^'^
,
and dvldx = a* .

we get [a^x'^dx = ^^-^-^(a^x'^-'dx . . (1)
; logea log, ay

The last integral in (1) is of the same form as the given
t integral, but is reduced to a simpler one. If m is positive the

f continued integration will lead to / a* c?ic = a^ logg a. Thus, by

continued integration, we get

je'x^
dx = e'x'^ -^(e'xdx^ e%x^

- 2^ + 2) + C.

Example 3. To find f,—^,v .

By taking u = -—
. v = z. and therefore —- = -

(l+^y
'

dz (l+22)-+l

dz

~(l+lT ""ion^^ y(T+^'^

V, f <^^ 2 2r - 1 / c?2

^^^^^'
j (TT^^+i

=
2r(iT^^

"^
-^T^j (TT^^

^

by substituting r for (r + 1) and (r-1) for r, we obtain the

following reduction formula :
—

[
dz _ z 2r-3 r dz

.^^

J Ji+Wr
"

2(r
-

i)(i + z^y-'
"'

27;^^; (1 + 22)^-1

•
^ ^

10
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/ 2
= ang (tan = z) + C.

By applying this method of reduction (r-1) times we get,

finally,
dz

lTz2

Example 4.—By exactly the same method as those used in

the preceding example, we obtain the reduction fo^'mula.

/dz
_ z 2r-'3 f dz /o\

{z^-iy~
~
2(r-i)(z2_i)'-i

~
2(^)) {z'

-
ly-'

^ ^

By applying (3) (r-1) times we get

f dz 1 f dz I f dz 1, z-1,^

(ii.)
The given integral may be expressed by itself throtigh one or

more integrations.
Example 5.

je'cosxdx^e'smx- je'smxdx . . (4)

by taking u = e' and v = sin x.

Similarly we have

je'8mxdx=
- e* cos x-{-

je'
cos xdx . . (6)

by taking u^e' and v= - cos x.

Hence, we get by (4) and (5)

\e'BU\xdx= ^ '
+• C, and I e* cos x dx

_ e*(sin x + cos ^) , p (a\
Z

138. Methods of substitution.

Let y=f{z) where 2 is a function of x^ then, by article 76,

we have

dfjz) ^df{z)dz .,,.dz
,^

dx dz, dx . dx'
*

*

f dz
conversely lf{z)—dx =f{z) ,

but we have also/(z)= lf{z)dz; hence,

jf{z)±d^^jf(z)dz^f(z).
. . [121]



INTEGRATION RULES. 147

When applying a substitution, the limits of a definite integral
must be changed to those corresponding to the new variable.

U 3[; = a corresponds to z = b, then

jy{z)'td^
=
j/{z)dz=f{z)~f(b)

. . [122]

Example 1.

r dx f dz ^ —
, ^

,

= --= = 272 = 2 V^ + a + C
J Jx-^a J JzJx + a J J:

where z = x + a and dz/dx
= 1 ,

Example 2.

f dx _ idz 1 1-- = ^ +C
z ijc + a

where z = x-{-a and dzjdx
= 1.

Example 3.

f^ax
+ b^ ^^^ fdz^ I ^ ^ 1 \C(ax^ + bx + c)l

Jax^ + bx + c J z
^' 5eL V -r -r ;j

where z = ax^ + bx + c and dz/dx
= 2ax + b.

Example 4.

I dx I \a) I dz /. x\ , f^
I
—r=- =

I
 

^ ^ =
I
— = aner sm = —

) + C.

J Ja^-x^ J /i.f^Y J x/1-2' ^ ^^

Example 5.

/• a? c^a? _ 1 r -2xdx _ 1
/•<i(a2

_
x^)

Example 6.

/ sin {ax) dx =— / sin (ax) d{ax)

If- 7 cos z cos (ax) , ^= —
/
sinz dz= = ^^—c + C.

a J a a

139. Integration of trigonometrical functions.

Example 1.

f. -J [%mx J fd (cos x) , ^ 1 C
ltSinxdx= I dx= -

I
—^ 1 = -

log, cos a? + C = log,
; ; cos X J cosx

^ ^
cos X
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Example 2.

[cotxdx= h^dx=^ /*^L(?E^) = log.(C8mx).
; J amx J sina;

^^ ^

Example 3.

I sin a; lo-a? x ] . x oXJ w' 2sm— cos— J sin-cos^—
2 2 2 2

tan —
2

Example 4.

r-^= r-^^-^=iog,rctan('^+^)l

from Example 3.

Example 5.

/ =
/
cot X dx, and

|
=

/
tan x dx.

J tan X J J cot X J

See Examples 1 and 2.

Example 6.

dxdx _ fsin^x + coa^x, _ f dx f

sin^ a? cosmic J sin^iccos^a; J cob^x J sm^x

= tan X - cot x= -2 cot2a7 + C.

Example 7.

/ am^(nx) dx= — / sin^z dz = — /
—4 ^^

J
^ ^ nl nj 2

^ (j If /o \ J 2 sin22 'nx-Bin(nx)co&(nx^ ^= \dz-—-\ cos(20)c?2 = — = i^—<- ^—I + C.
2nJ 2nJ

^ ^ 2n in 2n

Example 8.

/ coB^ (nx)dx
—— / cos^z c?z =— / (1 + cos 2z)dz

_nx + sin (nx) cos (nx) p
~Z ^ '

Example 9.

f dx

J (asinx + b cos xY '
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Let cos 8 = —T-r—"„ ,
sm ^ =

, „ ^„ ,
and tan 6= —', nence,

Ja'^ + b^ Ja^ + h'^' a

6 = ang (
tan = —

)
•

By substituting Ja^ + b^coaO and Ja^ + b'^sinO for a and b,

we get

f dx _ \ [ dx

J {aainx + b cosa;)^

~
a^ + b^J sin2(a; + 0)

Example 10.

/sina;
_ f d(cosx)

a + b cosx Ja + bco^x

1 fd(a + b cosx) 1. r/ . i \i= -
-r /

-

.
7

= -
i-loge L^C^ + ^

cosa;)].
6 y a + b cosx b

'^

The integration of algebraical functions may often be facilitated

by substituting trigonometrical functions for x.

Example 11.

j >'- "? dx.

Take a; = ct sin ^, then dxjdB = a cos B
; hence, x/a^ - x^ dx

= a^co8^6dO, and

r.2

J
^/,?r^<i.=

a^jcos^0c?e=

(^ +
^i"^'"'^^K

=
"I"

ang
^sin

=
^^ +y v'a2 _ a;2 + C.



CHAPTER XIX.

ALGEBRAICAL FRACTIONAL FORMS.

140. Rational forms.

A fraction, ^^-v, whose numerator and denominator both are

algebraic rational functions, can be integrated by resolving it

into partial fractions :
—

Example 1. —— can be resolved into the following

partial fractions,

(x-lfx (x-l)'^(x-l)^^{x-lf x'
' ^^

To find the constants k^, k^ . . . ,
clear (1) of fractions; we get

1 = k^x{x
-

1)2 + k^(x -l) + k^ + k^x -
1)3 . (2)

(2) is an identity and must be satisfied by any value of x
; thus,

a;= 1 in (2) gives k^=\ \ then, dividing (2) by {x - 1), we get

= k^x{x-l) + k^ + l+k^{x-iy . . (3)

a;= 1 in (3) gives ^2= ~
!> ^^'^ dividing (3) by (x-1), we get

0==k^x-l+k^(x-l) ... (4)

a; = 1 in (4) gives /fcj

= 1 and k^= - 1.

u 11111 ,.,
^"^'''

(^^ri)r^=^i-(^:rij2+(^rTf8-^
• (5)

All the partial fractions in (5) are integrable. Hence,

f dx f dx f dx f dx fdx , , ^^

where c is the arbitrary constant.

160
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a;^ — 2ic + 3
Example 2.—Resolve -— ——-— — into partial frac-

{x^
- X + l){x^ i- 2x + 4:)

^

tions. A further resolution into factors of the denominator of

the given fraction would lead to imaginary results. Hence,

{x^-x+l)(x^ + 2x + 4:)^x^-x+l'^x^ + 2x + 4:

' ^ '

Clearing (6) of fractions, we get

^ - 2^ + 3 = (^1 + h^)x^ + (2^j + ^j
-

^^2 + l^)x^

+ (ik^ + 2^1 + ^2
-
h)^ + (4^1 +y • . (7 )

As (7) is an identity, we require that

^1 + ^2=1; 2^1 + ^1-^2 + ^2
= 0; )

/8\

4^1 + 2^1 + ^2-^2= -2; 4^1 + ^2
= 3 J

* ' ^'

By solving the four simultaneous equations in (8) we get

z.
4

,
2

;
13 , , 19

^1=
--g-;

^i
=

-9-;
^2
=

-9-
and

^2=9--

Hence ^'-2^+3 _ -ix + 2 13^ + 19
.9.

'(^2_^+l)(^2 + 2^ + 4)~9(x2_^+l)
+

9(^2 + 2a; + 4)
^ ^

The integration of the given fraction requires the integration
of the two partial fractions in (9).

[ -4^ + 2 , 2[d{x'^-x+l) 2, .
2 j_i new

i 9(.2-.+ l)^-^=-9J L^-. + l --9^^g-^"-"^^- ('')

/• 13a; + 19 _ f Ux + U + ^ _ 13 fd{x^ + 2x + i)

J9(a;2 + 2^ + 4) 7 9(^2 + 2^ + 4) 18j ^2 + 2^ + 4

+ _A^
I _W?Z_^13iog^(^2 + 2^ + 4)

(9), (10), and (11) give

/,

^-2-^ + 3
^=_liog,(^2.^+l)

(«2- a; + !)(«« + 2a; + 4) 9

+
i|log.(^^

+ 2x+4) +
2^ang(tan=^^)

+ C.
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RuLB.—If the given rational algebraic fraction, ^^' ,
is to be

integrated, the denominator, /(a;), must be resolved into factors,

none of which must be imaginary. The given fraction is then

thrown into partial fractions. The dimensions of <f>(x) must be

less than those of f{x) ;
if this is not the case, then divide (f){x) by

f(x) until the dimensions of the remainder are less than those

As shown in Examples 1 and 2, the partial fractions will take

either of the following forms, viz. :
—

k kr k{x-a) + l kr{x-a) + lr /-.(^^

x~a' Jx^^' {x-aY + P^' [(cc^a)^ + p^Y
' ^ "'

It is obvious that the first two in (12) are integrable. The
third one

[ k{x-a)+l ,,[ x-a
^^ , j f ^

_ k r4(^-a)2+^2] I
r \-^)

2
J (^-a)2+^2

-^

fij i+f^-^y

=y loge [(^
-

a)2 + P^] +^ ang(
tan =^) .

The fourth one in (12),

[ K(x-a) + lr ,7. f (oc-a) .J f dx .,„.

The first in (13),

J [(^-a)2 + ^2]r« 2j[{x- a)2 + ft^Y

K 1

2(r-l)[(^-a)2 + y82]'-i-
The second in (13),

;
{ dx _Jz_ [

d^
'
J [(x

-
a)2 + P^Y

~
W^'J (TmY

'

where 3=^-11^. The solution of (13) depends therefore on
P

-, which can be integrated by applying the reduction
/,(T+^
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method (2), article 137. Hence, the four forms in (12) are all

integrables.
141. Irrational forms.

It has been shown in the preceding article that rational

algebraic fractional forms can always be integrated. If, therefore,

the function X, which is to be integrated, contains irrational

fractional forms, the integration may be performed if we can

convert the irrational forms into rational forms. This may be
done by substitution.

Example 1. X = --^?f^J— .

^2^-1 - 1

By taking 2^ = 2x-l the irrational forms in X will disappear.

Hence, 2= V2^^1 and
J=32'-

We have

J3/2^_1_1
Jz'^-1 Jz^-1 J z2_i

lj2x - 1 must be substituted for z in (1).

Example 2. X = —^--
~~

.

Jl+x^

Suppose we put \/l+x^ = z, then l+x^ = z^; this substitution

would obviously lead to no result, as we have simply changed
X to z.

But take Jl+x^ = z-x, then

/-, --, z'-l
,
dx z^ + 1

,
.;,

z2 + 1
Z = X+ x/1+^2. X=-^ , ^-^^2-^ ^1+^ ="2^

•

r dx f 2z z^ + 1-, fdz , ,^ .

=
log,[C(a;+ Jl+x^)] ... (2)

Example 3. X =— =^ .

s/x^-8x+l5

This case may be treated in the same manner as the preceding
one by taking Jx'^ -Sx+l5 = z-x.
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It will, however, be observed that x^ -Sx+I6 = (x~3){x -6),

and we may therefore use the substitution z = ^ /^~ .V x-5
TT 522-3 dx iz 2z
Hence, x = „

—^ ,
_ = -—11— .

/a-z _ q^, . 1 5 = _j^_
.

z^-l'dz (02-1)2'
V^ 0^+10

^2_i-
Hence,

=
log,[C(^

- 4 + Va;2 - 8a: + 15)] (3)



CHAPTER XX.

EXAMPLES.

(44) (Q. May 1907).—Evaluate \-^^dx and r^ixi^xdx.

Find the average value of the latter integral for all values of

a from to tt.

Solution.

C\ ^' _ 4 + a^2-4 _ 4 ._ 1 1
.

^^'f
4_a;2 i-x^ 4-a;2 2-x 2+x

hence, ( J^.= - ffe)+ f<M- U.
] i-x^ J 2-x J 2 + x J

= -log,(2-a.) + log,(2 + ^)-^ + C = loge|±^-a. + C;
^ — X

hence, |
-c?^ = logg 3 -

log, 1 - 1 = log, 3-1.
Jo 4c- x'^

0-098612 (Ans.).

(ii.) By article 139

( • 1 J ^ sin2.r
, ^

, r  9 J (^ sin2a
hence, |

sm^a; dx = --—-—
.

Jo 2 4

If we draw the curve ^ = ^
- —r— ,

the area under the curve is

-=f(r^>= T
156
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the required average value is the mean ordinate of the said curve,
. 7r2

.
IT

a sin 2a , rr / a v

(45) Find the area enclosed by the ellipse _ +^ = 1.
d^ h-

Solution.—It has been shown in article 43 that if the equation of

the auxiliary circle be x^ 4- y-^
= a2,and the ordinate of the ellipse isy,

then — = - . Let A be the area of the ellipse, and A, = tto^ be the

area of the circle, then

^ =-4- 7.
>

or
k^\k,J--.a\

1 4/ y^dx
j
y^dx

Hence, k = 'rrah . •. . . [123]

(46) (Q. Oct. 1909).—Evaluate the integrals : (i.) ix^lo^^xdx;

A line rotates uniformly through a complete revolution about

a fixed axis at one end, and its length increases uniformly from
1 inch to 2 inches during the revolution. Find the area swept
out by the line.

Solution.

(i.) Take v= \x'^dx = -
;

u = \og^Xj and -^=-. Then,
J d dx X

j
a;21og,xdx =

|-loge
X-

-jx^dx
+ C =

'^
(log, a;3 - 1

j
+ C (Arts.).

^"•^ 934^2
=

s + 2i 3""::2^
^
6(3T2^

^
3~r2^)

' ^®''''®'

f
dx _iri fd(3 + 2x) _ 1 fd(S-2x)l

pj

J9-4a;2~6L2J 3 + 2^ ^j 3 - 2a; J
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1- COS 4(9
(iii.) sin2 2^

hence, { sin2 2^rf^ = if"(l -cos4^)c?(4^)
=J {Ans.).

Jo ojo 2

(iv.) Let r = a when ^ = 0, and r = a + b when 6 = 2^, then

r = a-\- — when 6 = 0; and the equation of the curve described

thy
the end of the rotating line is r = a +— .

The area swept out by r during one revolution is

Hence, when a = 5 = 1 inch, the area will be

L A = 2-333 . . . TT inches^ (^m.).

(47) (Q. Nov. 1908).—Evaluate the integrals: (i.) {^""x^dx

and(ii.)r^l^.

Solution.

(i.) Take^= fe«-c?a? =
^
fe«^(^(a^)

=—
;
u = x'^ and — =1x,

J aj a dx

Hence, fe«Vc^^ =-V- ?
fe'^^c^a; . . . (1)

J a aJ

Take v= fe«*(^a;
= -e«^; u=:x and ^=1 ;

J a dx

hence, [e«^a; c?^ = - e«* - -
fe«*c?a; = - e«* - i e«^

y a aJ a a^

Hence, /"e«^^2^^ = ^«,aV-2aa; +
2

_^ ^ ,^^^ v^

r^dx r ^ 1 ^
i. /I 4.1, c?tan^ 1

;
take — = tan 0, then—~

_ .
^

1^' r
'

de cos2^

and

(ii.) {r^+x^)i
h+f^y]

id

(
—

)
=cos^^. Whenic= oo ,sin0=l : a; = 0, sin^ = 0.
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Hence, C "^^
^
\\o^^ d6 = (" (\

-
Jo (r* + ic2)t 7 Jo

sm^e)d8md=~ (Ans.).
(r2 + ar2)«

(48) (Q. June 1909, 2nd part).
—Integrate the expressions

/ ae'^dx and I -

Solution.

(i)

(ii)

Hence,

jaef^dx
= [e'^d(ax) + C = e«* + C {Ans. ).

[ xdx 1 /c?(l-;r2)

T-^^ =1 Mns.).

(49) (Q. Nov. 1906).—Two rods AB, BC, of equal length a,

are Mnged together at B
;
the rods being initially in one straight

line, the rod A B rotates in one plane about the point A which
is fixed, and the rod B C rotates in the same plane with angular

velocity twice that of A B and in the same direction. Sketch

the curve traced out by the point C, and calculate the whole
area passed over by the rods, counting each part of it only onc©»

Solution.

Let angle C^AB (fig. 52) be 6 and the length of ACj be r.

y

Fig. 53.

q

Angle CjEiD = angle B^A B = a
; hence, $ = a + - =

-^ ,
and

r = 2a cos - ; hence, the equation of the curve traced by point C is

r = 2a cos (1)
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When A B has made half a revolution about A, B C will have
o

made half a revolution about B and =
-^ - The area passed

over by r will be

Area = i
j

^

r^de = 2a^ (
^

cos2 tid = Qa^ Tcos^ dz

(50) (Q. Nov. 1908).—Fig. 53 shows a portion of the

rectangular hyperbola x^-i/^ = a- cut off by a chord KL,
parallel to Y and at a distance 2a from Y. Show that the

volume of the solid cap formed by the revolution of KAL
about X is equal to the volume of a sphere of radius a.

Show also that if the figure be rotated about the axis Y,
the solid generated by the revolution of the figure M KA L N
has half the volume of the cylinder generated by the revolution

of the rectangle M K L N.

Solution.—Let the volume of the solid cap formed by the

revolution about X be Vj, then

SVj = 7ry2 Sx = (ttx^
-

7ra^)Sx ;

hence, ^^=1 (ttx^
—

7ra^)dx
= tt l x^dx - ira^ \ dx = —ira^

^

Ja Ja Ja 3

which is the volume of a sphere of radius a.

Let Vg be the volume of the solid generated by the revolution

about Y, then

8V2 = TTX^ hy = 7r(y2 + a2)Sy ;

hence,

V2 =
27rj^

{y'^ + a^)dy=2Trj^ y^dy+27ra^j^ dy = 4:7ra^j3.

Volume of cylinder generated by the revolution of M K L N
about Y is

V3 = 47ra2 X 2aJ3 = Sira^JS . Hence, Vg = 2Vg .

(51) (Q. Jime 1908).—Sketch the curve aY = {a^-x'^)^ and
find the volume of the solid which is formed by the revolution

of this curve about the axis of x.

Solution.—The curve is symmetrical w.r.t. the two co-ordinate

axes; hence, we need only work out the data of the portion
which lies in the 1st quadrant. We have

_ (gg
-

a^2)? ^ ^y _ So; J'^iF^^
^ d^y _ S{a^

-
2x^)

 

^~
a^

' dx~ a2
^

c?a;27 "^fi~jW^^'



160 INl'EGRAL CALCULUS.

Hence, the following singular points :
—

X.
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(52) (Q. June 1908).—Sketch the curve a^y'^
= x\a? - x^) and

2
show that the area of either loop is equal to -a^.

o

Solution.—Both axes of co-ordinates are axes of symmetry, and
we need therefore only work out the data for the portion of the

Fig. 55.

curve which is situated in the 1st quadrant, and which is shown
in fig. 55.

_ x_
,——- dy aP' - 2x^

. d'^y _ x{2x'^
-

Sa^)

Hence the following data :
—

X.
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The area A of one loop is

3aV -
A=o 3

(53) (Q. Nov. 1907).—Evaluate jxe'dx.
Sketch the curves

y = c* and y = xe^ between :r= - 1 and x=\, and calculate the

area enclosed between portions of these two curves and the

axis of y.

Solution.

(i.)
Take v= le'dx = e'

;
u = x and

;r^
= 1- Hence,

lxef'dx= xe'- le'dx = e'(x-\) + C (Ans.).

(ii.)
Let ^1

=
6*; hence, -^i

= e* and -j\
= ^-

dx dx^

Let also ^2
= ^^; ^ = (^+l)e*; ^| =

(a; + 2)e^.
(XX CLX

Data for tracing the two curves are given in the following
table :

—

X,
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When the student has sketched the curves he will find that

the required area is

A= {\y^-y2)dx^- I {e^ -xe^)dx = e-2 = 0-1\S2^ units (Ans.).

(54) (Q. Nov. 1906).
— Prove that the area between the

curve y = ae~^''Bmx and the axis of x, from ^ = to ^= 7r, is

If a= 1 and 6 = 0-1, prove that the decrease of area, when h is

increased by a comparatively small quantity A, is approximately
2-6 X.

Solution.—Take

cosx; 2^ = e~^^, and — 7-7,.v= \ivi\xdx =

hence, I e~^^sina? dx— - e~^^ cos x - b
j
e'^" cos x dx.

Take v= \co^xdx = %iiix
- u = e~^'', and — = - be'^"

;

J dx

hence, 1 e~'"^cos^(i^ = e~^''sinic + b
j
e'^'^ sin x dx

;

hence, j
e~''''sinxdx= - e'^'' cosx - be'^^'mnx — b^

j e~^''smxdx,

( -hx • J e~''^(cos ^ + 6 sin x)
or I e "''sni xdx = ^^ :

;

J 1 + 62

hence, the required area is

A^aj e-^''&mxdx =
^^^^(e-^''+l) (Ans.). (1\

Differentiating (1) w.r.t. b we get

^A _ _ a[{7rb-^ + TT 4- 2b)e-
^^ + 26]

db (62+1)2

as 86 = X, we have approximately

?i\= - 4(7r62 + 7r+26)e-^"+26],

(62 + 1)2
^'

substituting 1 for a and 0"1 for 6, we get

BA = 2'6X{Ans.).
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(55) Integrate x^^^
+ ^x^+f + 5^' + 9 ^ ^^ ^

Solution. — The denominator in X cannot be resolved into

factors. By dividing the numerator by the denominator we get

X = a:5-2a:4 + 2a;8 + 6a;2-18^+ll+ii^^^^^ . (1)
x^ + 2x-\-o

/X..
=
j-|.^-.1^^2^-9.2^11.+ ll/g^^^ (2)

/•J7^-5)^ nx + 1-n ,_^[ x+\ ^^_.o[ dx

2j (a;+l)^ + 4
J ^^/ar+iy

=
^
loge [(^ + 1)2 + 4]

- 6
ang(tan

=
^).

Hence,
a;** 2x^ . a:^

, \xdx^~-^ +^ + 2oi^-^x^ + Ux
J D 5 2

+ y log, [(x + 1)2 + 4]
- 66

ang(tan
=^) + C.

(56) To find the area of the rectangular hyperbola.
Solution.—The equation of the rectangular hyperbola is

(i.) a;2-y2 = a2^ or ({l)xy = c\ or
(iii.) y = ., ^, ,

\ +bx

accordingly to the position of the curve w.r.t. the axes of co-

ordinates (see p. 40). P'ind, in all three cases, the area enclosed

by the curve and the axis of x in the interval x^
-
Xy

(i.) y'^
—
x^-w^^ or y=± Jx'^-a^.

Hence, the required area is A = S I >Jxy^
- aP- dx.

As
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Hence,
f ^^^.^.^ _Sa{l^,

+j~^^  (1)

f dz ^ _ z _ 3 / dz .a\

j(22-"T)3 4(22-1)2 4J(z2-l)2
' ' W

J f dz z 1 f dz /ox

but

f dz _ f dz __ _1 f dz 1 f dz _1 . z-l
^..

]^^^~J(z-l){z + l)~ 2JF+I 2J^^i"2 ^^'^Tl
^ ^

By (2), (3), and (4) we get

j J^^d..a^^-ho,^^
==

l(x J^c^:^^ - a2 log.

^ -^

^^^^')
. . (5)

Hence, A =
l(^22^2 -^iyi + a2

1og.^L±J^i)
. . [124]

c2

(ii.) y= -
; hence, the required area is

A = / 'V f^^ = C2r^ = c2 log,
-2 =

,^2^2 log^
^2

. [125]

(iii.)
The required area is

A =
/ ydx-=a\ —dx = -

/
-_ — dx

Jxi jxy l+bX hjxy \+bX
"^ ^dx -

""
r^^'^

+ ^^) -""ix x) *
lo^

bk 6"2^-iT6^-r2-^i)-piog.
1 +6^2
1 + bx^

=
?(.,-.,)

-|log,^^>
. . .[126]

(57) To find the length of a parabolic arc.

Solution.—Let the equation of the parabola be y2
=

4.(ix, then

{—-] = - and — = . / • The length of the arc from the
\dx/ X dx W X

vertex to point {x, y) on the curve is

'=fx/¥<^^-
• • • «

The integration of (1) can be performed by substitution.
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Take z^ = ^5l±f
; hence, x = -^^ and -5-

= -
7-5-^, ,0

• We have

V4 ^"z + i 2(32-1) y

Inserting a; for z wo get

g=
>J{a + x)x-alog,

^^ + ^- ^/^
. . [127]

C = 0, because s = for « = 0.

When — is small -- will also be small, and the length of the
a ay

parabolic arc may be determined approximately in a simple

manner. We have -—• = J^ ,
and

ay 2a

dy~\/ \dy) V 4a2 ^8^2 128a*
'

hence, s =
jdy+ 1-Jfdy

-
^Jy^dy^-

. . .,

^
24a2 640a4^ L J

[128] may be applied to determine the lengths of the cables of

a suspension bridge or of a suspended telegraph wire. There are

two cases to be considered.

(i.) The tivo points of suspension are in the same level.

Let A and B
(fig. 56) be the points of suspension, ^ = A B, the

length of the span, and /^ = D, the dip. To find a we have that

I P- P-
x = h, y—-^. Hence, — =

4ay^, or a = -— . The length of the

whole cable is approximately

^-'4t • • •  (2)

(ii.)
The two points of suspension are not in the same level.

In this case the position of the vertex is not known, but we
have given the span E D = ^ and the height A D =

;^„ and B E = A^ .
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Let D = m and E = 71 (fig. 57).

The equation of the parabola is y^ = 4^ax. When x^h^, y^m;

and x = h., y = n. Hence, 4a =— = -- and -s = y^; out m, + n = I.

h„ hn n^ Aft

Hence,
I Jh^ and n =

I Jhi

Jha+ Jhj,' s/ha+ Jhj,

The lengths of the twp portions of the cable are

2 h^2 K^ .

s, = m + -—• -^
,

and So
^

3 m
= 71 +

3 n (3)

The form assumed by a suspended telegraph wire is a catenary,

but when the ratio of the dip to the length of the span is very

A
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Hence, we need only consider that portion of the curve which is

situated to the right of the y-axis. -^ is zero when -^ =pTr, where
ax

p is any positive integral number :
—^ cannot be oo : :p? is zero
dx dx^

when — = -"^— TT, and the latter points are points of inflexion.

The curve is a periodical curve.

The shape of the curve may be sketched from the values found

below :
—

X.
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(ii.) Taking u — x and v= \&mxdx= - cos x we get

/ X sin X dx= - x cos x + l cos xdx= - x cos « + sin x + c.

/ .. N. 11 +x~x 1 1

(m.)
x(x+l) ^(^+1) X x+1

Hence, / ~dx=
\
- dx -

l d(x + 1) = log. r- »

Jx{x+l) Jx Jx+l x+l
and

r ,^.. dx = log, 1
= 1-3863-1 -0986 = -288 (Ans.).

Ji x{x 4" iy o



MECHANICS.

CHAPTER XXI

FUNDAMENTAL UNITS.

142. Matter—Mass.

By matter is understood everything that makes an impression

upon us through our senses. Thus all we smell, feel, taste, and
see is matter, and it is only through vibration of matter that

sound can be produced and transmitted to our ear
;

in a perfect
vacuum there would be no sound.

A bounded portion of matter is called a material body, and a

bounded portion of space is called a mathematical body. Hence,

any physical body possesses its mathematical double or mathe-
matical body. The amount of space which a body occupies is

called the volume of the body. The amount of matter contained

in a physical body is called the mass of the body.
In practice the mass of a body is measured by comparing it

with the mass of a standard body. Thus in Great Britain the

standard mass is called a poimd.
In France the standard mass is a kilogramme, and it was originally

the mass of a cubic decimetre of pure water at the standard tem-

perature, but now it is the mass of a piece of platinum, which is

as nearly as possible equal to the original kilogramme.
In the C.G.S. system the standard mass is a gramme, which is

one-thousandth part of a kilogramme.
The determination of the mass of a body is done by means of

a pair of scales, whereby is found the number of times that the

mass of the body is greater than the standard mass. This is the

only way in which the mass of a body can be found direct. For

very accurate measurements it may be necessary to take into

account the mass of the air which is displaced by the body.
170
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The measurement of mass by means of a pair of scales and a

standard mass can be made at any place in the world.

143. Length—Time.

The British standard length is a yard, being the distance at

the standard temperature between two marks on a bar kept in

the Standard Office of the Board of Trade.

The French standard length is a metre, and is the distance

between two marks on a certain bar at the standard temperature.
The standard length used in science is a centimetre, which

is one-hundreth part of a metre.

Time.—The standard time is a second.

144. Density—Specific density— Specific volume.

By the density of a substance is understood the mass contained

in unit volume of the substance. In Great Britain density is

expressed in pounds per cubic foot, and in France in kilogrammes
per cubic metre.

In science density is expressed in grammes per cubic cm.

The density of a substance varies with the temperature and
the pressure to which it is subjected.

By relative density, or specific density (sometimes called specific

gravity), of a substance at a given temperature is understood the
ratio of the density of the substance at the given temperature
to that of pure water at the standard temperature.

By specific volume, or bulkiness of a substance, is understood the
number of units of volume occupied by a portion of the substance,
of which the mass is equal to the standard mass. It is therefore

measured by the number of cubic feet to the pound, or the number

of cubic metres to the kilogramme, or the number of cubic cms. to the

gramme.
145. Particle.

A particle or a molecule is the smallest conceivable portion of

a material body, and may be defined as the limit of division of a
mass by mechanical means. The geometrical dimensions of a

particle are so small that for all practical purposes a particle may
be considered as a point with a mass.

146. Homogeneous and heterogeneous bodies.

When any two equal portions of a body, however small, are in

every respect similar, the body is said to be homogeneous, other-

wise the body is said to be heterogeneous. In this book we shall

consider the bodies as being homogeneous unless otherwise

specified.
147. Rigid bodies.

A physical body will slightly yield when subjected to a pressure
or a change of temperature, i.e. the distances between its particles
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will change to some extent. For theoretical reasons it is con-

venient, even necessary, to neglect this internal change of the

body and to conceive a body which cannot yield to any cause

applied to it
; such a theoretical body is called a Hgid body. In

this part of the book all bodies will be considered rigid unless

otherwise specified.
148. Oravitation.

Matter possesses a characteristic property called gravitation,
i.e. two masses m-^ and m^ at a distance, d, apart attract each

other and exert a mutual pull which is equal to km^mjd^, where
A is a constant called the gravitation constant.

The pull set up between a body in the immediate neighbour-
hood of the surface of the earth is called the iveight of the body.
The pull might just as truly be called the weight of the earth

w.r.t. the given body.
Different masses placed at the same spot will have weights

which are directly proportional to their masses
;
but the weight

of a given mass varies with its position relative to the earth.

For this reason, by weighing a body on a pair of scales, we do
not determine the weight but the mass of the body.
Example 1.—If we buy a ton of rice at the equator, measuring it

on a pair of scales, and then bring the rice to London, and again
measure it on a pair of scales, the last measure will be the same
as that at the equator. But if we measure the rice in London
on a spring-balance, calibrated at Greenwich, the rice will measure
more than a ton, because the spring-balance measures the pull
between the rice and the earth.

Example 2.—If the safety-valve of a boiler is loaded by weights,
the valve will open at a smaller effective pressure at the equator
than at the pole ;

but if the valve is loaded by a spring, the

effective pressure, which is required to open the valve, will be the

same at any place of the world.

149. Physical dimensions.

Just as a geometrical quantity depends on its dimensions in

length, so does a physical quantity depend on its dimensions in

mass, length, and time. Thus the density of a body varies directly
as its mass and inversely as its volume

; hence, the dimensions

of density is plus one in mass and minus three in length, or

density = [M] [L]~^
The specific volume of a substance is proportional to the volume

of a body made of the substance, and inversely proportional to

the mass of "that body ; hence, the dimensions of specific volume
is plus three in length and minus one in mass, or specific volume
= [M]-i[L]3.
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The specific density, however, is a pure number, as it is

expressed by the ratio of two quantities of the same dimensions
;

hence, the dimensions of specific density are zero.

For these reasons the unit of mass, length, and time are called

fundamental units, whereas the units of other physical quantities
are called derived units.

The correctness of an equation between any number of physical

quantities may be tested by examining the dimensions in mass,

length, and time of each term. It is obvious that the dimensions

in mass, length, and time must be the same in each term.

The student should always test his results by means of

dimensions.
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VECTORS.

150. Vector quantity.
When a person tells us that he has walked 10 miles, the only

information he has given us is that the arithemetical sum of all

the distances he has walked is equal to 10 miles.

If he tells us further, that he started from a certain given

point and always walked in the same direction, say in a line

stretching south-north, and always in the same sense, say from
north towards south and never from south towards north, then

we know exactly what he has done.

The latter example has been chosen to illustrate that a quantity

may not always be determined by its magnitude only, but may
also involve the idea of direction and mnse of action. A quantity

involving the latter three ideas is called a vector quantity.

Quantities which only involve the idea of magnitude are called

scalar quxintities.

A B (fig. 58) represents a vector quantity whose magnitude is

given by the length A B drawn to scale, the direction of which

is identical with that of A B and whose sense of action is from
A towards B, the latter being denoted by an arrow-head pointing
towards B. If 4- A B is a given vector quantity, then a vector

quantity
- A B is denoted by reversing the arrow-head, which

would also denote the vector quantity 4- B A.

151. Displacement.
When a particle has changed its position, due to some cause,

174
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it is said to have been displaced. A displacement is determined,

(i.) by the original position of the particle ; (ii.) by the direction in

which the displacement has taken place ; (iii.) by the magnitude
of the displacement, ix. by the length of the straight line joining
the initial and final positions of the particle ; and, finally (iv.), by
the sense of the displacement in the given direction.

Displacement is therefore a vector quantity ; hence, we may
illustrate the properties of vectors by the displacement of a

particle.

Suppose a particle (fig. 59) originally at A is displaced to B
and thence to C. The displacement A C which would have

placed the particle at the same point C is called the equivalent of
ABand BG.
The displacement AB (fig. 60) is equivalent to the two dis-

placements AD and DB, the latter being perpendicular to A C

e

Fig. 59. Fig. 60.

and similarly B C is equivalent to B D and D C ; but A C = A D
+ DB + BD + DC, because BD= -DB.
As, however, A D and D B together, and B D and D C together,

are equivalents to A B and B C respectively, it is said, that

the vector sum [A B + B C]
= vector AC. . (1)

and the vector difference [A C - A B]
= vector B C . (2)

Hence, the sum of two given vectors is found by choosing any
point A and setting out the two vectors as A B and B C in fig. 59

;

AC is then the required vector sum. The order in which the

vectors are to be set out is very important. They must be set

out w.r.t. their senses, so that they form a continuous sense-

circuit which is only broken by the equivalent, which belongs to

a sense-circuit going in the opposite direction.

The difference of two given vectors is found by setting them
out from point A, such as A C and A B

(fig. 59) ;
B C is then the

required difference. The sense of B C is found by remembering
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that it must be in sense-circuit with the vector which is to be

subtracted.

The above principle may be extended to any number of dis-

placements. Let the successive displacements of the particle be

AB, BC, CD, and DE (fig. 61). Let AX be a straight line

perpendicular to AE, and let the vectors form angles aj, a^, a^,

and a^ respectively with A X in the positive direction, then

A E = A B sin
ttj
+ B C sin

ttg + C D sin
ttg + D E sin a^ ;

we have also

A B cos
ttj
+ B C cos

ttg + C D cos ag + D E cos a^
=

;

hence,

A E =A B sin
ttj
+ A B cos aj + B C sin

ttg
+ B C cos a^

+ C D sin
ttg + C D cos

ttg + D E sin a^ + D E cos a^,

but A B is equivalent to A B sin a^ + A B cos a^, etc. Hence, the

vector sum

(AB + BC + CD + DE) = vector AE= -vectorEA. (1)

152. Simultaneous displacements.
Two or more agents may displace a particle simultaneously in

two or more directions. The latter may be illustrated by a

person walking on the deck of a moving ship. Let the original

position of the particle be at A (fig. 62), and let A B and A C be
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the two simultaneous displacements. The final position of the

particle will obviously be reached if it be displaced to B and
thence to D, BD being parallel and equal to AC; or if the

particle be displaced to C and thence to D, C D being equal and

parallel to AB. The ultimate position of the particle will be

point D, which is the opposite corner to A in the parallelogram
ABDCA.

If the two simultaneous displacements take place in a regular

manner, i.e. that equal displacements, however small, always take

place during equal intervals of time, then there will correspond
to any displacement A B^ along A B, a displacement A C^, along
AC; A Bj and A C^ being sides in the parallelogram A B^D^CjA.
Hence, point Dj lies on the straight line AD, and the latter is

thus the locus traced by the particle during the two simultaneous

displacements A B and AC. A D is called the resultant of A B
and AC, and is in every respect the substitute for the two
simultaneous displacements A B and A C.

153. Composition.
A vector quantity has been defined as a quantity which

possesses direction, sense of action, and magnitude ;
it must

therefore be able to produce or tend to produce a displacement.

Hence, two like vectors acting simultaneously at a point must

produce or tend to produce displacements along their lines of

action which are proportional to the magnitudes of the respective
vectors.

Hence, we may extend the rule which we have just found for

the two simultaneous displacements A B and A C in fig. 62 to

any vector quantity, or we may say :

Any two like vector quantities Aj and Ag acting simultaneously
at the same point, may he substituted in every respect by a third

vector quantity A^ of the same kind, which is represented in

magnitude and direction by the diagonal of the parallelogram of
12
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which the sides are formed hy Aj and Ag. A^ is called the

resultant of A^ and A^.

We may now determine the resultant of any number of

simultaneously acting vectors whose lines of action lie in the

same plane, but which do not necessarily pass through one point.
Let Aj, Aj, A3, and A^ be four such vectors, whose resultant it is

required to find. Choose any point A in the plane (fig. 63), draw
a vector A B equal to A^, and similarly draw vectors B C, CD,
and D E equal to Ag, A3, and A^ respectively, then A C is equal to

the resultant of A^ and Ag ; likewise A D is equal to the resultant

of Aj, Ao, and Ag, and, finally, A E, which is the vector sum of the

given vectors, is equal to the resultant of all four vectors. The

polygon A B C D E A is called the vector-polygon. The resultant,

however, is still to be localised; this is done by producing the

C

" ""
-

Fig. 64.

lines of action of A^ and Ag until they meet, and through the point
of intersection draw a line parallel to A C, then produce the

latter line until it meets the line of action of A3, and through their

point of intersection draw a line parallel to A D. Finally, pro-
duce the latter line and the line of action of A^, the resultant,

which is parallel to and equal to A E, will pass through their

point of intersection.

We may now also determine the resultant of any number of

simultaneously acting vectors passing through one point, but
whose lines of action do not lie in one plane. In fig. 64 A, B,

and C are three such vectors. The resultant of A and O B is

D, and the resultant of D and C is E, which is also the

resultant of the three given vectors. To find the resultant E
we might simply have drawn the lines A, AD, and D E. The
latter principle may obviously be extended to any number of

vectors passing through one point.
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The operation of determining the resultant vector of a number
of given simultaneously acting vectors is called composition ;

we

compound the given vectors to obtain the resultant. The given
vectors are called the components of the resultant.

154. Resolution.

We may obviously also perform the operation of determining
the components in given directions of a given vector. The latter

operation is called resolution, since we resolve the given vector in

the given directions to obtain the components in those directions.

When the directions of the components of a given vector are at

right angles to each other, the components are called the resolved

parts, or the resolutes of the given vector in those directions.

Let us take a system of rectangular co-ordinates. A vector

lying in the co-ordinate plane can be resolved into components
parallel to the axes. The latter components are the resolutes

in the directions of the axes. Suppose we have a number of

vectors Ap Ag . . . A,j forming angles a^, a^ . . . a„ respectively
with the axis of x. The components in the direction of the £P-axis

are A^cosaj, AgCOSag • . . A„cosa„; and those in the direction

of the j'-axis are A^ sin a^, A2 sin
a.2

. . . A„ sin a„. Hence, the

vector sum in the direction of the ^-axis is ^A,. cosa^ = X, and

r=n

that in the direction of the ^-axis 'V A^ sin a^ = Y.
r-l

The resultant of X and Y is R=\/X2 + Y2. R is the vector

sum of all the given vectors A^, Ag . . . A,„ and is also equal to

their resultant. If be the angle which R forms with the a;-axis,

then tan 6 = Y/X.
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SPEED—VELOCITY.

155. Motion.
A body is said to be in absolute motion when it changes its

position in space ;
and it is said to be in relative motion when it

changes its position relatively to other bodies. We do not know

any instance of absolute motion
;

all motion which we can observe

is relative.

When a body does not change its position in space it is said to

be at absolute rest
;
the latter condition, however, does not exist so

far as we know, and if it did exist and we could see the body, we
would say that the body was moving at a great rate, because we
are always changing our position in space. A stone lying on the

road is said to be at rest, while it is really moving at a great rate,

the stone is at relative rest. There is no rest, everything is in

motion, and all the laws of mechanics can be deduced from the

laws of motion.

A particle which is in continuous motion traces out a curve,
which is called the path of the particle.

156. Speed.
The speed of a particle is the rate at which it describes its path.
When we say that a train is travelling at a rate of 32 miles an

hour, amidst bodies at relative rest, we mean that if the speed
remained the same as at the particular moment, we would travel

a distance of 32 miles in one hour. The speed may vary con-

siderably during the journey, but when a distance of, say, 63*5

miles has been travelled in 2 hours 10 minutes, we say that the

average speed of the train has been 29 '3 miles an hour. The

average speed is therefore the distance travelled divided by the

time occupied. The dimensions of speed are [L] [T]~i.

Speed does not involve the ideas of direction or of sense, but

simply of magnitude, and is therefore Tiot a vector quxintity.

Let 8s and ht respectively be the length of an arc of the path,
and the interval of time occupied by describing Ss, then the

180
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average speed u,n
=

Ss/U. If the speed be not constant during

time, 8t, there must be a minimum speed, u, and a maximum

speed, u + 8u; hence, u„i must lie between u and u + Su, and

therefore in the Hmit

»4: • •  • [129]

The unit speed is the unit of length travelled in the unit of time,

thus : 1 foot per second
;

1 metre per second
;

1 cm. per second,

etc. The latter units, however, are for various reasons not always
convenient ; hence, in practice other units are used, such as :

1 mile per hour
;

1 kilometre per hour
;

1 knot = 1 nautical mile

per hour, etc.

Referring to [129] we have

s= udt . . . . [130]

When the relation between speed and time is given the distance

travelled is found by [130] ;
s is thus the area under the speed-

time curve. If [130] cannot be integrated, then draw the speed-
time curve and calculate the area by [98] or [99]. The mean
ordinate of the curve is the average speed.
When the relation between distance and time of a moving

particle is given the speed at any time may be found by [129], or

by plotting the distance-time curve and carefully drawing the

tangent to the curve at the point corresponding to the given time.

If the tangent forms an angle a with the time-axis the speed is

proportional to tan a.

157. Velocity.

Velocity is defined as the rate of change of displacement.

Velocity is therefore a vector quantitypossessing both magnitude,
direction, and sense. In fig. 63 the path described by the particle
is the broken line ABODE; if t be the time occupied by the

motion it is evident that, the average velocity of the particle must
be v,n

= A E/t, because v,„ is the average rate of change of displace-
ment. But A E is the vector sum of the various displacements
from A to E

; hence, the average velocity v^ is equal to the vector

sum of the displacements divided by the time occupied by the motion.

The average velocity is therefore not the same as the average

speedy the latter quantity is equal to the arithmetical sum of the

displacements divided by the time occupied by the motion, or

AB+BC+CD+DE
11^ = .

t

If the displacement changes direction continuously, then the
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path of the particle becomes a curved line such as A B C in fig. 65.

Let
t^

and
t,2 respectively be the intervals of time occupied in

describing the arcs AB =
«j

and AC =
S2-

'The chords AB and

A C are respectively the vector sums of the displacements repre-
sented by arcs

s^
and

s.^ ; hence, vector B C is equal to the vector

difference (A C - A B), which is the change of displacement of the

particle while describing arc BC. Hence, the average velocity
of the particle, while moving along arc BC, is equal to the length
of the chord B C divided by time

{t^
-

1^\ whereas the average

speed is («2 ~*i)/(^2~ ^i)* ^^^^ ^^^^' cl^o^^ BC/{t2-t^) = \im.

ih
~
h)/(h

~
^i)»

^^^ if C T be the tangent to the path at point C
then lim. (angle T C B) is zero. Hence, the magnituile of the

velocity v, of a particle is equal to the sjjeed ds/dt, of the particle,

Fig. 65.

the direction of the velocity is along the tangent to the path, and its

sense is that of the motion. The dimensions of velocity are the same
as those of speed, viz. [L] [T]~i.

Magnitude of v =^ . . . [131]

A particle possesses the unit of velocity when it undergoes a

displacement of the unit of length in the unit of time. But the

particle moves with the unit of speed when it describes the unit
of length in the unit of time.

158. Resultant velocity.

Being a vector quantity all the laws regarding vectors also

apply to velocity. A particle may thus be subjected to two
simultaneous velocities v^ and

v^, whose resultant may be found

by constructing the triangle of velocities as in fig. 59, taking
AB =

'yi
and BC^v.^'^ ^^ is the resultant velocity and the

particle will move as if it only possessed the latter velocity.
If a particle be possessed of more than two simultaneous

velocities, all in one plane, then the resultant of all the velocities
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may be found by drawing the polygon of velocities as in fig. 63,

taking AB =
Vj, BC =

V2, etc.; AE is the resultant velocity and
the motion of the particle will be the same in every respect as if

it were only subjected to the velocity A E.

If the directions of the velocities to which the particle is sub-

jected do not lie in one plane, then the resultant velocity will be

found by constructing the parallelepiped of velocities, as shown in

fig. 64, taking OA =
'yj,
0B =

'y2,
etc. The particle will move in

space in every respect as if it only possessed the velocity E.

Conversely, a velocity may be resolved into components in given
directions.

Let the resolutes of a velocity v in the directions of the axes

of a rectangular system of co-ordinates be v^ in the direction of

the axis of x, and Vy in the direction of the axis of y ;
and let

8a7, hy, and ht be corresponding increments, then v^^lim.hxjht
=
dxjdt and Vy

= lim. ^yJU = dyjdt. Also

v= Jv^^ + Vy^= sl{dxldtf + (dyldtf . . [132]

159. Relative velocity.
Let A

J
and k^ (fig. 66) be two particles moving in the same

Fig. 66.

plane with velocities
v-^

and v^ respectively. Let be the origin
of a system of rectangular co-ordinates, whose y-axis is parallel
to Vy Set off C equal to 'y,, OB equal to v^,

and D B parallel
to the a;-axis. Finally, let angle B C be equal to yS.

Seen from Aj the motion of Ag appears to be as if Ag moved
with a velocity {v^ cos /?

-
-y-^)

= C D in the direction of the y-axis,

and with a velocity of v^ sin /5
= D B in the direction of the x-axis.

Hence, the relative motion of Ag w.r.t. A^ has a velocity f^ = C B.

Seen from Ag the motion of A^ seems to possess a velocity

(vj
-

v^ cos /3)
= t) C in the direction of the y-axis, and with a

velocity of -
Vg sin j8

= B D in the direction of the a?-axis. Hence,

From the above it follows that

Vr = the vector difference (v^
-

v^) [133]
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W.r.t. sense, v^ is in circuit with the velocity of the particle
from which the motion is observed.

160. Angular velocity.

Let a straight line A turn in a plane about one of its points

0, and let t be the time it takes the line to turn through an

angle radians, then 6/t is called the average angular velocity of

the line during time t. Hence, the angular velocity of the line is

B dfi
(u^lim. - =—

,
and its dimensions are [T]~i . [134]

t at

The unit of angular velocity is evidently 1 radian per second.

In accordance with the convention adopted in trigonometry
the angular velocity is positive when the line turns in an anti-

clockwise sense.

Example.—A particle moves with constant speed on a circle with

radius r. Find the angular velocity of the radius.

As the speed is constant equal sectors will be described by
the radius in equal times

; hence, the angular velocity of the

radius is constant. During the time T of one revolution the

radius will turn through an angle of 27r radians. Hence,
the angular velocity of the radius is 27r/T radians per second.

As a circular arc is equal to the central angle which it subtends

into the radius, it follows that the speed of the particle is equal
to the radius into the angular velocity independent of the sense

of the latter. It also follows that in a given position of radius

the velocity of the particle is equal to the radius into the

angular velocity, taking into account the sense of the latter.



CHAPTER XXIV.

ACCELERATION—FORCE.

161. Acceleration.

The velocity of a moving particle is always changing except
in one case, viz. when the particle describes a straight line at

constant speed.
The rate of change of velocity is called acceleration.

Let AB
(fig. 67) be an arc of the path described by the

Fig. 67.

particle which is moving in a plane, and let v^
= C and v^^^OD

be the velocities of the particle at points A and B respectively.
C D is then the change of velocity, and if it takes the particle
time t to describe arc AB, then CD/^ is the average acceleration.

If the arc A B be diminished indefinitely, then we have 8v and
St instead of C D and t. Hence, in the limit

Acceleration
dv

dt
(1)

Acceleration is a vector quantity, and the resultant of two or

more accelerations can be found in the same manner as the

resultant of two or more velocities. Conversely, an acceleration

may be resolved into components in given directions.

185
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Let the resolutes of an acceleration, a, in the directions of a

pair of rectangular axes be a^ in the direction of the axis of x,

and a^ in the direction of the axis of y. According to [132] and

( 1 ), a, = dvjdt = d^xjdt:^ and a^
= dvjdt = d^yjdt'^. Also

rt= s/a,2 +V= s/(d^x/dt^y + (d^y/dtY • [135]

A particle moves with the unit of acceleration when its

velocity changes by the unit of velocity in the unit of time.

The practical units of acceleration are : 1 foot per sec. per sec.
;

1 metre per sec. per sec.
;

1 cm. per sec. per sec.

The dimensions of acceleration are [L] [T]~^.
The 7-ate of change of angular velocity is called angular accelera-

tion, which is obviously

^ = —-
,
and its dimensions are fTI'^ . . [136]

dt dt^'
" - ^ ^

The unit of angular acceleration is 1 radian per second per
second.

162. Hodograph.
The relation between velocity and time and between accelera-

tion and time cannot be graphically represented by a curve

Fig. 68.

referred to rectangular co-ordinates, such as the relation between

speed and time. Velocity and acceleration are not determined by
their magnitudes only, but their directions are also required to be

known ; hence, the term velocity-time curve is erroneous, it really
means speed-time curve.

Let A B (fig. 68) be an arc of the path described by a moving
particle. Take any point in the plane of the curve and draw

Aj and Bj equal to the velocities Va ^-nd v^ at the points A
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and B respectively. Similarly, draw radii vectores from equal
to the velocities of the particle at various points between A and B.

The curve A^C^B^ which connects the ends of the velocity vectors

drawn from is called a hodograph. Chord A^^B^ is the vector-

difference of v^ and -y^ ; hence, if t be the time it takes the particle
to describe arc A B, then chord A-^Bj/^ is the average acceleration

of the particle during the time-interval t. But chord A^Bj is also

the vector-difference of the displacements of the point describing
the hodograph, while the latter point passes over arc A^Bj.
Hence, A^Bj/^ is also the average velocity of the point on the

hodograph while it describes arc A^B^ or, the total acceleration

of the particle when passing the point on A B, at which the

velocity is
(7^,

is equal to the velocity of point C-^
on the hodo-

graph.

Fig. 69.

When the tangent to the hodograph is not perpendicular to the

velocity-vector, then the acceleration of the particle can be
resolved into two resolutes, one at right angles to and another in

the direction of the velocity of the particle. The former is called

the normal acceleration, and the- latter is called the tangential
acceleration of the particle. When the tangent at a point of the

hodograph is at right angles to the velocity-vector, then the
acceleration is totally normal and the particle moves at that
moment with constant speed.
K M in fig. 69 is a small arc, Ss, of the path described by the

particle, and K^Mj is the corresponding arc of the hodograph.
Hence, OM^ is the velocity, v, at point M ; K^Mj = Bv, and K^L = Su.

The total average acceleration is = —i—J
; the average normal

M^_vSO^ sess

Bt
~

St ^Bs Bt
acceleration

"IT'

and the average tangential



188 MECHANICS.

acceleration = ^. But lim. jr-=- (see article 108), and lim. k-
Bt 68 p

^
ht

= the magnitude of v.

Hence, total acceleration, a<
= —- . . . [137]

at

normal acceleration, a„ = — . . [138]
P

tangential acceleration, a =^ -^ =—
. . [139]

The direction of the total acceleration [137] is that of the

tangent to the hodograph, and the dfrection of the tangential
acceleration [139] is that of the tangent to the path.
The acceleration is negative when the speed diminishes. A

negative acceleration is called a retardation.

If the speed-time curve be known the magnitude of the

tangential acceleration can be found by drawing the tangent to

the curve at the given point. Let a be the angle which the

tangent forms with the axis of time, then the numerical value

of a = tan a.

Example.—A particle moves with constant speed on a circle with

radius r. Find the acceleration.

As the speed u is constant
-y-

=
0, and the hodograph is also a

at

circle. Hence, the acceleration is totally normal.

Hence, a< = a„ = _-a= =0 . . . [140]
r dt

163. Motion with uniform (constant) acceleration.

When the acceleration is constant and in the direction of the

motion, then a„ = 0, a^ = a, and the path is a straight line. Hence,

—- is constant, and the speed-time curve is therefore also a straight
dt

line, the slope of which is equal to the numerical value of the

acceleration. In fig. 70 A is the initial speed of the particle,
AB the speed-time curve, and tan CAB = the magnitude of a.

The velocity, v, at the end of time-interval D ^ ^ is therefore

v = Vi-{-at . . . . [141]

According to article 156, the area OABDO represents the

distance, s, traversed in the time-interval, t. But OABDO
= OACDO-t-ABCA, or

s = Vit + ^at^ .... [142]
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The same results are obtained by integrating [137] and (1) in

article 161 thus,

/ dv^al dt, and l ds= I vdt= I (Vi + at)dt.

If the mean velocity be v^, then v^t = s.

Hence, [143]

The magnitude of v^^ is graphically represented by H K in

fig. 70. By eliminating t between [141] and [142], we get

. . . [144]•y= sjv^^ + 2as

By [141] and [142], we get

_ v-Vj _ Jv^^ + 2as - Vj
[145]

164. The law of inertia, or Newton's first law of motion, may
be stated thus :

Every mass remains in its state of rest (relative or absolute), or

continues to move with constant velocity in a straight line as long
as no external cause occurs to change that state.

This characteristic property of matter which shows itself by
the apparent reluctance of a mass to change its velocity is called

inertia, which means inertness or sluggishness. Inertia manifests

itself to us whenever we happen to be in a train. The sudden

starting and stopping or moving on a curve appear to us as some-

thing which our body is not willing to partake in. It might
seem, at first, to us that inertia is a property which one would
wish that matter did not possess, but we shall see that it is a

very useful quality.
165. Force.

The external cause which produces, or tends to produce, a change

of velocity is called force. On account of the inertia of the mass
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the change of velocity will be gradual, and the force will

therefore manifest itself by producing acceleration. It is obvious

that a force must be proportional to the acceleration it produces
on a given mass, and also that it must be proportional to the

mass on which it produces a given acceleration. Hence, by
adopting proper units, we have

Force, F = Mass into acceleration . . [146]

In other words, unit offorce acting on itnit of mass produces unit

of acceleration. Thus, in the C.G.S. system, the unit of force is

that force which acting on a mass of one gramme produces an

acceleration of one centimetre per second per second
;
this force is

called a d^ne.
A force is a vector quantity, as it must have direction and

sense of action in order to be able to change velocity. Hence, a

force can be resolved into components in given directions, and

the resultant of a number of given forces can be found by con-

structing the polygon of forces, the triangle of forces, or the

parallelepiped of forces, as the case may be. It is evident that

the dimensions offorce are [M] [L] [T]~^.
A force which acts in the same direction and sense as the

velocity is called an ejfort (Fg), and a force which acts in the

same direction, but in the opposite sense of the velocity, is

known as a resistance
(F,.).

A force producing a curvilinear motion must have two com-

ponents (article 162), one in the direction of the velocity, the

tangential force, and a second component in the direction of

the normal
;
the latter force is called the deviating force, because

it causes the mass to deviate from the straight line motion, or

the normal force (F,i), because it acts along the normal to the

curve. By [139] and [138] we get

magnitude of tangential force = m—
,

and F„ = m— [147]
dt p

When the velocity of the body changes from v^ to v^ during
time-interval t, the average force which has caused the change
of velocity is F,„ = mass of body into vector difference ('^2-'^!)
divided by t.

166. Momentum.
Newton's second law of motion states : T'he rate of change of

momentum is proportional to the impressed force, and takes place in

the direction of the straight line in which the force acts.

The momentum or quantity of motion of a body is measured
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by the product of the mass and the velocity of the body.
Momentum is a vector quantity, its direction being the same
as that of the velocity. The dimensions of momentum are

[M] [L] [T]~\ which are the same as those of force into time.

Hence, force may be measured by rate of change of momentum.
An instantaneous force, such as that produced by an explosion,

may be considered as having been constant during the short

time-interval t in which it has existed, and is therefore measured

by the momentum it has produced, divided by t.
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ENERGY—POWER.

167. Energy.
Newton's third law of motion states : To every action there is

an equal and opposite reaction.

The manner in which a force acts on a body is by push,

although it may sometimes be transmitted to the body by pull.
The steam in the cylinder of an engine acts by pushing the

piston. A horse before a cart seems to pull, but it really pushes
the harness.

The body always resists the push by an equal force in the

same direction but in the opposite sense of the push. Thus, the

total steam pressure on the piston is always met with an equal
resistance, consisting of the back pressure, the useful and wasteful

resistances, and the inertia resistance of the moving masses of the

engine. There is, however, a great difference between the push
and some of the resistances, such as the inertia resistance. The

push is an active force, which is kept up by a source possessing

capacity for producing activity, whereas the inertia resistance is

only a reaction or passive force, which can produce no motion.

As long as there is steam at the proper pressure in the boiler,

so long will the push on the piston be able to overcome the

reaction.

The capacity for producing activity is called energy. The

primary source of the energy in the case of the steam-engine is

in the fuel, which is used for firing the boiler. As long as there

is fuel, so long can also the push be maintained.

The energy stored in the fuel is latent until it is converted

into heat by being burnt in the furnace of the boiler. Latent

energy is called potential energy (E^). It is manifested by the

motion of the piston against all the resistances. The push on
the piston is an effort, and the amount of steam required is pro-

portional to the distance through which the piston has travelled.

192
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Hence, the energy manifested by the motion of the piston ^s equal
to the effort into the distance through which it travels.

Suppose that a constant effort F^ is acting on a particle of

mass m. At a certain time
t^

the speed of the particle is
u-^,

and

3^ a later time
t^

the speed is u^. As Fg is constant the accelera-

tion is also constant. Hence, see [139],

a=-^ 1, and therefore Fe = m^ i . (1)
^2
~

^1 ^2
"
H

Let the distance traversed by the particle during time-interval

(^2
-

^i)
be s, then, as the mean speed is (u^ -\- u^)/2, the amount of

energy manifested by the effort is

F, s =^f—^ ^T"^(^2
-

^i)
=^

-^-2~^'
• • (2)

Energy may thus be measured by mu^/2. The quantity FgS is

called the energy exerted (Eg) hy the effort Fg while travelling through
the distance s. The energy exerted is therefore the amount of

the potential energy contained in the source which has been
manifested.

If Fg be variable the elementary energy exerted by the effort

while traversing distance hx, is

8Eg = Fg ScT = m—-u ht : hence, dEJdt = mu— = — .

dt
' ' ''

dt 2 dt

Hence, Eg =^ '^dt = m "^
~
'^^

. . [1481
2

j
dt 2 L J

The quantity mu^l2 is called kinetic energy or energy of motion.
The mean effort is that constant effort which exerts the same

amount of energy as the variable effort while travelling through
the same distance. The mean effort must not be confounded
with the average force in article 165. The two forces are not

necessarily equal.
The potential energy of the source may, according to [148], be

converted into kinetic energy due to the inertia of matter. We
may therefore say that, inertia is that property of matter which
enables a mass to become an accumulator of kinetic energy.

Kinetic energy can also be converted into potential energy.
This statement may be exemplified by the following simple case :

A cylindrical drum can turn without friction about its axis,
which is horizontal and in fixed bearings. A weight is attached
to one end of a string which is coiled round the drum. The

13
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weight is let go when it is at its highest level. Air resistance

and resistance of the string to being bent and straightened are

neglected.
The weight of tlie falling body is an effort, because it acts in

the direction and sense of the velocity which the mass of tke

body is gaining while falling. As the body is descending the

energy exerted by its weight will be converted into kinetic energy,
which is manifested by the rotation of the drum, and the motion

of the following mass.

The body will be at its lowest level when the string is

completely uncoiled
;

its vertical velocity is then zero. Let the

magnitude of the weight be W and the vertical distance through
which it has fallen be A, then the energy exerted by the weight
is WA, which is therefore also the total available potential energy

E^, stored in the body when it is at its top-level. E^ has during
the fall of the body been gradually converted into kinetic energy
E;t, which is now accumulated in the rotating mass of the drum.

In virtue of E^ the drum will continue its rotation, lifting the

body, whose weight is now a resistance as it acts in the opposite
sense of the velocity of the body. The weight is therefore not

exerting energy but is consuming energy ;
the latter is manifested

by the rotation of the drum becoming slower and slower. At
last the total kinetic energy, which was accumulated in the mass
of the drum, is exhausted and the drum stops. The body is

then again at its top-level, containing all its original potential

energy.
The body will now fall again turning the drum, and the process

of converting potential energy into kinetic energy and vice versd

will be repeated. The sum of the kinetic energy accumulated in

the moving masses and the available potential energy stored in

the weight is at any time equal to E^ = W^.
The unit of energy must be expressed by unit of force exerted

through unit of distance. In the C.G.S. system the unit of

energy, equal to the energy exerted by one dyne through one

centimetre, is called an erg.

The dimensions of energy are = [M] [L^ [T]"-.
168. Work (Wh).
By work is understood the production of motion against a

resistance. Let us consider a body, such as the piston of a steam-

cylinder. On the one side of the piston we have the pressure of

the steam, which is an effort (Fg) ;
on the other side there are

the back-pressure of the exhaust steam, the useful and wasteful

resistances to be overcome ; let their resultant be F,.. Both F^

and F^ act along the same line and hence move through the
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same distance. The force—the effective force—which is left to

produce motion is F^ - F^ ; hence, the energy exerted hy the efective

force
= the energy exerted hy the effort minus the work done on the

resistance.

When Fg is different from F^ the effective force will produce
acceleration and the speed of the moving piston will be changed
from

u-^
to u^.

Let m be the mass of all the moving parts of the

engine reduced to the piston, then the change of kinetic energy-

is m{u,^^
-

Ui^)/^, and the energy-equation (see [148]) is

Energy exerted = Work done + Change of kinetic energy [149]

[149] expresses the principle of conservation of energy and also

the impossibility ofperpetual motion.

It is obvious that work done is measured by the same units as

energy, work done is energy consumed.

169. Work represented by an area.

As work done and energy exerted are products of two

quantities, force and length, they can be represented by the

area of a plane figure, which is also the product of two quantities.
The area under the effort-distance curve represents the energy

exerted, and the area under the resistance-distance curve represents
the work done. The difference of the two areas determines the

change of kinetic energy.
170. Energy in terms of pressure and volume.

A force is said to exert itself as a pressure when it is applied
over an area. The ratio of the force to the area is called the

intensity of the pressure. Steam acts on a piston by pressure,
and the force of the steam is equal to the intensity of the steam

pressure into the area of the piston.
F

The dimensions of intensity ofpressure are — = [M] [L]"-* [T]~^

Suppose the area of a cylinder-piston is A and the intensity of

the pressure is P. The total force pushing the piston is thus P A,
and when the piston has moved through a distance I, the energy
exerted is equal to PA^ = P V, where V is the volume swept by the

piston. Hence, the energy exerted by the force pushing the piston
is equal to the intensity of the push multiplied by the volume swept

hy the piston.
171. Power.
Power is defined as the rate of doing work. The terms energy

and power must not be confounded. Power has relation to time.

Thus, one ton of coal contains a certain amount of latent energy,
which can be realised by burning the coal in a steam-boiler. The
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rate at which the coal is consumed may, however, be varied to

almost any extent. The fuel may thus be consumed in one hour
in a large boiler feeding a large engine ;

or it may be consumed

say in fifteen hours in a small boiler supplying a correspondingly
smaller engine. The total energy is the same in both cases, but
the power of the larger engine is said to be fifteen times greater
than that of the smaller one, assuming that the efficiencies of the
two engines and boilers are the same.
The unit of power is therefore expressed in unit of work in unit

of time. Hence, in the C.G.S. system the unit of power is 1 erg

per sec.

The dimensions of power are -!lz = [M] [Lf [T]-^.

Energy may he eocpressed as ppwer into time.



CHAPTER XXVI.

PRACTICAL UNITS.

172. Absolute systems.
It has been shown, in the preceding chapters of this part of

the book, that the dimensions of all mechanical quantities are

dependent, and dependent only, on mass, length, and time.

Hence, when the question arises to invent a system of units it is

obviously logical to settle on the units of mass, length, and time
first of all. A system which is built up on this principle is called

an absolute system.
The G.G.S. (centimetre, gramme, second) system is an absolute

system, and is the only international system of units. Some of

its units have already been defined, but may, with advantage, be

repeated here.

Unit of mass is called a gramme (gm.), and is O'OOl of the mass

(at 0° C.) of a standard piece of platinum kept at Paris to

represent the mass of a kilogramme (kg.). It was, however,

originally defined as the mass of a cubic centimetre of pure water
at its highest density.

Unit of length is called a centimetre (cm.), and is O'Ol of the

distance (at 0° C.) between two marks on a standard bar kept at

Paris. Originally, however, a centimetre was defined as 10~^ of an

earth-quadrant measured on an arc of 90° of the meridian.

Unit of time is called a second (sec), and is 1/86164 of the time
it takes the earth to make one revolution about its axis.

Unit of velocity is 1 cm. per sec. (1 cm./s.).
Unit of acceleration is 1 cm. per sec. per sec. (1 cm./s.^).
Unit offorce is called a dyne, and is that force which, acting on

the mass of one gramme, produces an acceleration of 1 cm. per sec.

per sec.

Unit of energy is called an erg and is, the amount of energy
which an eff'ort of 1 dyne exerts when travelling through the dis-

tance of 1 cm.

Unit ofpower is 1 erg per sec.

197
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Derived units :

Unit of energy =10^ erg% is called a joule.
Unit ofpower =10^ ergs per sec. = \ joule per sec. is called a watt.

10metre8 = 1000cms.
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weight (kgw.) ;
it is the force which balances the gravitation-pull

on the mass of 1 kilogramme (kg.) at the sea-level at Paris.

Unit of length
= 1 metre.

Unit of time = 1 sec.

Unit of velocity =1 metre per sec. (1 m./s.).
Unit of acceleration = 1 metre per sec. per sec. (1 m./s. 2).

Unit of mass = the mass of 9 '8087 kilogrammes. (See note

below.)

Unity of energy is called 1 kilogramme-metre (kgwm.), and is

the energy exerted by an effort of 1 kgw. when travelling through
the distance of 1 metre.

Unit of power = 1 Tcgwm. per sec.
;

also a French horse-power

(F.H.P.) = 75 kgwms. per sec.

Note.—If unit of force is equal to the weight of the standard
mass at a standard place, where the acceleration due to gravity
is g units, then unit of mass m in terms of the standard mass, is

a units of acceleration , -, ,m = ^—
; : standard mass.

unit of acceleration

The acceleration due to gravity is always denoted by the letter

"^r." At Greenwich, p'
= 32-187 feet/sec2. Hence, the British

engineering unit of mass = the mass of 32-187 lbs.

At Paris, ^ = 9-8087 metres/sec^. Hence, the French engineer-

ing unit of mass = the mass of 9 '8087 kgs.
174. Relation between the units of the different systems.
Mass.~l kg.

= 1000 gms. = 2-20463 lbs.; 1 lb. = 0*45359 kg.
= 453-59 gms.
Length.—I ft. =0*3048 metre = 30*48 cms.; 1 metre = 3-2809

ft. = 100 cms.; 1 cm. = 0-3937 inch; 1 inch = 2-54 cms. = 25-4

millimetres.

Area.~l sq. ft. (ft.2)
= 0*092904 sq. metre (m.2) ;

1 sq. metre
= 10-764 sq. ft.; 1 sq. cm. (cm.2)

= 0155 sq. inch (inch2) ;

1 sq. inch. = 6-452 sq. cms.

Volume.—1 cubic metre (m.^)
= 35-314 cubic ft. (ft^) ;

1 cubic

ft. =0-028317 cubic metre.

Field-length.— \ kilometre = 0*62138 mile; 1 mile = 5280 ft.

= 1-6093 kilometres.

^ ,, 2-20463x9*8087x3*2809 ooa.^aii.Force.— 1 kgw. = — = 2*20460 Ibw.
1 X oJ*lo7

= 1000x^80:87^ 3^,
1x1 ^

1 Ibw. = 0-4536 kgw. = 444,995 dynes.
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Work and energy.— I ft.-lbw. = 0-1382 kgwm. = 13,560,000 ergs
= 1-356 joules.
1 kgwm. = 7-233 ft.-lbws. = 98,087,000 ergs = 9-8087 joules.
Power.— 1 British H.P. = 550 ft.-lbws. per sec. = 76 kgwms.

per sec. = 1-014 F.H.P. = 746 watts.

1 F.H.P. = 75 kgwms. per sec. =0-986 British H.P. = 736 watts
= 542-5 ft.-lbws. per sec.



CHAPTER XXVII.

MOTION UNDER GRAVITY.

175. Acceleration due to gravity.
The weight of a body with mass m is W = mg. If the earth

did not revolve about its axis, g would only depend on the distance

from the centre of the earth, and would be inversely proportional
to the square of this distance. Let R be the radius of the earth

and d the distance of the mass from the surface of the earth, then

goz l/(R + (i)2.
In practice, however, d is always small compared

with R and may therefore be neglected ; the magnitude of g may
thus be taken as being independent of d.

g, however, varies with the latitude of the place of observation,
a fact which is due to the rotation of the earth about its axis.

The body is forced to describe a circle whose radius at the equator
is equal to that of the earth, and at the pole is zero. The circular

motion requires a normal force
; hence, part of the gravitation-

force is applied as a normal force, g is therefore smallest at the

equator and greatest at the pole, the ratio being about 978 : 983.

176. Vertical motion under gravity.

Neglecting any resistance due to the atmosphere, a particle,
which is let fall, will describe a straight vertical line and will

move with a constant acceleration g. The weight of the particle
is an effort; hence, the total acceleration is tangential and

g = dvjdt. As g is constant the laws of motion of the particle are

found by substituting g for a in article 163. Hence,

v = Vi + gt; s = Vit + 0-5gt^ ; v^ = {v + Vi)/2 ;

v = s/vi^ + 2gs; t = {v-v,)lg. . [150]

Let us next consider that the particle is projected vertically

upwards starting with a velocity v^. The force of gravity (weight)
will act on the particle as a resistance and the velocity will

gradually diminish. The laws of motion of the particle are

obtained by substituting -g iov g in all the formulae in [150]. At
201



202 MECHANICS.

the highest point the velocity v is zero
; hence, the greatest

height, h, attained is found by =
v^^

_
2gh, or

.... [151]
2^

[151] may also be found graphically. In fig. 71 tan DC A is

numerically equal to -g, A = Vi. v is zero at the end of time-

interval T = C
; hence, at that moment the greatest height h

has been reached, A = area COAC = 0-5 OA 0C =
Vi^/2g. The

particle starts now on its downward path, and when C D = C the

particle will be at the starting-point, having attained a velocity

Vi and has fallen through the height k = area ODBC.
177. Inclined plane.
A plane surface which is not horizontal is called an inclined

plane. The line of greatest steepness of an inclined plane is the

Fig. 72.

path which a smooth body would describe when allowed to move

freely down the smooth plane ;
this path is a straight line making

a right angle with the line of intersection of the inclined plane
and the horizontal plane. The angle which the line of greatest

steepness makes with the horizontal plane is called the angle of
inclination (a), and the steepness of the plane is measured by
tana, called the gradient. The level from which the inclined

plane rises is called the datv/m-level. In fig. 72 A is the line of



MOTION UNDER GRAVITY. 203

greatest steepness, B is the datum-line which is horizontal, and

angle B A is the angle of inclination.

The acceleration, due to gravity, down the inclined plane is

found by resolving g into two resolutes, one in the direction of

A and the other in the direction perpendicular on A 0. The
former is ^sina, the tangential acceleration, and the latter is

g cos a, the normal acceleration. Hence, if the mass of the particle
C be m, and its weight be W = mg, the force by which the particle
is pulled downwards is P =W sin a and the pressure of W on the

plane is Q =W cos a.

The motion of a particle on a smooth inclined plane is determined

by substituting g sin a or - g sin a for g in the formulae of the pre-

ceding article according as the motion is down or up the plane.
Wsina is the effort urging the particle down the plane, and

-W sin a is the resistance opposing the motion up the plane.

The energy exerted by Wsina is Wsina A0 =W A B = WA.

Hence, the energy exerted by gravity while the particle moves
down the plane, and the work done against gravity while moving
the particle up the plane, are of the same magnitude as when the

particle moves through the vertical height of the plane.
178. The speed due to gravity is independent of the path.
Let AB (fig. 73) be the path which the particle must describe,

y^

y^^-
^0

ft Fig. 73.

^and let it arrive at C with a speed u, and leave the element 8s

with a speed {u + Su). If a be the angle of slope at point C, then

the energy equation is

Wsina8.=^K"y-"T
. . . (1)

but Sssina= -
St/. In the limit (1) becomes u(du/di/)

= -
g.

Hence, / udu= -gl dy, or u^ = u^ ->r 'igQi
-
y) . [152]

Jui Jh

u is thus independent of the path, and is equal to the speed which
the particle would have attained in falling through the height
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h-y. Multiplying [152] by the weight, W, of the particle,

we get

Wt*2-<2_ W(A-y) (2)

The left-hand side of (2) is the change of kinetic energy of the

particle in describing path A C, and the right-hand side of (2) is

the energy exerted by W in falling through height {h
-

y), or the

work done in raising W through h-i/a,8 the case may be. Hence,

energy exerted by gravity and work done against gravity are

independent of the path described by the particle.
The laws of motion due to gravity which have been developed

in the present and preceding articles, can only be applied to a

particle or to a body placed in vacuum. A body moving in the

atmosphere is subjected to air-resistance, which increases with the

square of the speed of the body and even with the cube of the

speed, when the latter is very high. A bullet and a feather, when

dropped simultaneously from the same level, will not reach the

ground at the same time, the feather having a much larger
surface exposed to the air than the bullet for the same weight.
The formulae, which we have just found, can therefore only be

applied in practical cases when the body is moving at a moderately
slow rate.

179. Projectiles in vacuum.
We will now consider the motion of a particle projected in a

direction which makes an angle a with the horizontal plane. In

fig. 74 point is the point of projection, the path A B, which is

described by the particle, is called the trajectory^ the horizontal

displacement B of the projectile is known as the range, and the

time occupied in describing the path is called the time ofjlight (T).
The determination of the trajectory is most difficult unless we

may neglect all disturbances due to the air. Hence, we shall

consider that the projectile moves in a vacuum. The only force

which acts upon the particle is its weight; hence, the motion
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will take place in the vertical plane which contains the direction

of the initial velocity (vi). The displacement of the particle at

any time may be resolved into a horizontal component x, and a

vertical component y.

(i.)
2'he horizontal motion.

Velocity, i;^
= 'yiCOsa . . . (1)

Displacement, ij? = v^ cos a ^ . . . (2)

As v^ is constant the motion will be uniform, and the range
will be equal to v^ cos a T.

(ii.)
The vertical motion.

Yelocitj, Vy
=

Vi sina- gt . . . (3)

Displacement, 2'
= 'yiSina ^- 1^^^''^

. . (4)

The vertical motion is therefore the same as when the particle
is projected vertically upw^ards with an initial velocity -y^sina

(see article 176) ;
it will therefore attain a maximum height

CA = h = {Vimna)^/2g. By eliminating t between (2) and (4) we
obtain the equation of the trajectory,

y = a;tana- ^ x^ . . • (5)
2?vcos2a

7/ is zero at points and B
; therefore, ^ = in (4) gives ^ = and

^ = T. Hence, the time of flight,

J J.1, r\T> i'i^sin2a /wv
and the range, O B = -!- . . (7)

For a given velocity Vi the range is maximum for a = 45°. As
sin 2(45 -t-/5)

= sin 2(45 -/3) it follows that, for a given range,
there are two directions of projection which are equally inclined

to the direction of maximum range.
The tangent to the trajectory at point A is horizontal, because

the vertical component of the velocity is zero. The ordinate to

the latter point is h, and its abscissa is determined by substituting
the value of h for 2/ in (5).

Hence, the highest point is

.^2 sin 2a Vi2sin2a\ . .
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Let it be required to refer the equation of the trajectory to

point A as origin and to a pair of axes parallel to the given ones.

By article 5 we have

Inserting the values of (9) in (5) we obtain the equation of the

trajectory referred to the new system of co-ordinates

X
o 2v<2cos2a ,-^,2 =—1—

y^ .... (10)

which is a parabola whose vertex is point A, and whose axis is the
vertical line A C.

The trajectory is thus symmetrical w.r.t. the straight line C A.
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FRICTION.

180. Friction.

Experience shows that a body may rest on an inclined plane

although, apparently, it is perfectly free to move. There must
therefore be a force which prevents the sliding of the body, and

which the force W sin a cannot overcome. If the inclined plane
can be made to incline at any angle, such as a board, it will be

found that by increasing the angle a sufficiently the body will

begin to slide. If we now gradually diminish the angle of

inclination, and at the same time tap the board gently, a value

^ of a will be reached, when the body just ceases to slide.

The angle <f>
is called the angle of repose, and the force resisting

the sliding is called the force of friction ; it is obvious that the

force of friction is equal toWsin^.
The force of friction is therefore a force which resists the

sliding of two bodies on each other at their surfaces of contact

(bearing-surfaces).
The surface of a body is never perfectly smooth, although it

may appear to be so, since, by examining it with a magnifying

glass, it will be found to be more or less undulated. To overcome

friction, therefore, consists in lifting the sliding body over the

undulations.

The degree of smoothness which can be given to a surface

depends on the material; thus, the surface of a metal can be

made smoother than the surface of leather. By using a lubricant,
which will adhere to the surfaces and which can be squeezed
into and fill up the undulations, the smoothness of the bearing-
surfaces will be greatly increased.

As long as the force P, by which the two sliding bodies (not

perfectly rigid) are pressed together, is so small that it does not

cause any indentations in the surfaces of the bodies, but leaves

them in their original condition, then the force of friction has

been found to be proportional to P and independent of the area

207
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of the bearing-surfaces and the speed of the motion. Hence, in

this case we have
the force of friction = /iP . . . [153]

where
/w,

is a factor called the coefficient of friction, whose value

depends on the state of the bearing-surfaces as to smoothness and
lubrication.

If P be so great that it causes the bodies to grind into each

other, then /a will increase with P. It is, therefore, of great

importance in constructing machinery to make the bearing-
surfaces large enough, so as to prevent P from producing excessive

friction and injuring the bearing-surfaces.
We have seen that the force, which is to overcome the force

of friction on an inclined plane, is Wsin0, and as P in [153] is

= Wcos^, we have

Wsin«^ = /xWcos<^, or tan<^ = />i
. [^54]

hence, the coefficient of friction is equal to the tangent of the

angle of repose.
Friction must not be confounded with adhesion

; the latter is

a force which resists the separation of two bodies at their surfaces

of contact without the bodies being pressed together. Adhesion

increases with the area of the surfaces of contact
; hence, lubrica-

tion increases adhesion, but diminishes friction. At small

pressures between the surfaces of contact adhesion may be

greater than friction, but with great pressures the former is

very small in comparison with the latter.

While two surfaces of contact—of bodies which are not perfectly

rigid
—are at relative rest the undulations will have time to fit

better into each other, and the lubricant, if there is any, will

gradually be squeezed out between the surfaces. For these

reasons the friction between two surfaces at the moment of start-

ing the sliding motion is sensibly greater than that between the

same two surfaces while sliding on each other. The excess,

however, of the friction of rest or staticfHction over the friction of
motion or kinetic friction is soon destroyed by vibration.

181. Motion on a rough surface.

Let P be a particle which can slide on the rough surface S S'

(fig. 75). Let P A be the normal and P B the tangent-plane to

the surface at the given point. Draw the straight line PC,
making an angle ^ (the angle of repose) with the normal, and let

P C revolve about the normal, thus describing a cone of revolution

called the cone offriction.
Let R, which makes an angle a with the normal, be the
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resultant reaction between the particle and the surface SS'.

Resolve E, along the normal and the tangent, the two components
being N = Rcosa and T = Rsina respectively. If there were
no friction there would be acceleration, when T is greater than
zero

; but the surface is rough ; hence, there will be accelera-

tion when the force of friction is less than T, i.e. when Rsina
> Rcosatan<^ or a > <^. Hence, the motion of the particle
can only be continued when a is at least equal to ^, or when R
falls on or outside the surface of the cone of friction. If R falls

inside the cone no motion of the particle can take place. If,

Fig. 75.

therefore, the particle be at rest, it will remain at rest until

a><5fe, or R falls outside the cone of friction.

182. Motion on a rough inclined plane.
The pressure on the plane (fig, 72) due to gravity is Wcosa;

hence, the force of friction is W cos a tan ^, which resists the
motion of the particle, whether the motion is down or up the

plane.

(i.)
When the motion is down the plane the resultant force

is W sin a -W cos a tan =W cos a (tan a
- tan

<^). Hence, the

acceleration, which is constant, is

g cosa(tana
-
tan<^) (1)

By substituting (1) for g in article 176 we obtain all the formulae
for the motion. If a is greater than <^ in (1) there will be accelera-

tion, and the velocity of the particle will increase as it moves
down the plane. For a=^ there is no acceleration, and the

14
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motion is uniform. When a< <^ the motion will be retarded, and
the particle may come to rest before reaching point 0. The

velocity v of the particle is by article 176

^= >JVi^ + 2(/cosa(ta.na- tan <f>)s
. . (2)

where s is the displacement from A along AO, v is zero when

v/^ + 29'cosa(tana- tan^)s = 0, which can only take place when

a<<f>. Hence, in the latter case the particle will come to rest when

8 = v,^

1g cos a(tan
- tan a)

or when the particle has descended height A - 3/
= s sin a.

TT 7 v^ tana ,n\
Hence, y=:h- r^ , . • (3)^

2g tan<^-tana
^ '

(ii.)
When the particle is projected along the surface of the plane

from point the resultant resistance is Wsina + Wcosatan^.
Hence, the acceleration is

-5rcosa(tana + tan^) . . . (4)

By substituting (4) for g in article 176 we obtain the formulae

for the motion. The velocity, v, of the particle is

^= W- 2^cosa(tana + tan<^)« . . (5)

where s is the displacement along OA from 0. The particle
will come to rest when v^ = 2g cosa(tana4-tan^)s, or

v^ 1 1 v^ tana /^v
s = -i —

-, and y = Tr (o)
2^ cosa(tana + tan^) 2g tan a + tan ^

(iii.)
The work done in raising a particle a distance / up a rough

inclined plane is obviously

(W sina +W cos a tan<^)^
= W^ sin a + W^ cos a tan^ (7)

but I sin a is the height h of the plane, and I cos a is the base b.

Hence, the work done = WA + W6 tan <^ . . [155]

or : The work done in raising a body up a rough inclined plane is

egv/il to the ivork done in raising the body through the vertical height

of the plane plus the work done in moving the body along the base,

the latter being of the same roughness as the plane.



CHAPTER XXIX.

EXAMPLES.

(60) (Q. Nov. 1907).—State the law of composition of vectors.

The wind blows from a direction 30° south of east at 5 miles

an hour, and a flag on the mast of a ship, which is sailing due

north, points in a direction 30' west of south
;
calculate the

speed of the ship.

Solution.—The first part of the question follows from Chap.
XXII. The triangle of vectors can easily be constructed. The
wind-vector and the ship-vector meet at an angle of 60", and the

flag-vector and the wind-vector intersect at an angle of 90".

Hence the triangle of vectors is a right-angled triangle, of which

the one side, the wind-vector, is given. The velocity v of the

ship is, therefore, found by v cos 60° = 5, or

v= 10 miles an hour (Ans.).

(61) (Q. Nov. 1908).
—If two vectors A andB are given, show

how to find the vector sum A + B, and the vector difference

A - B. Calling the sum S, and the difference D, show further

from your construction that the vector sum, S-t-D, is equal to

vector 2A, and that the vector difference, S - D, is equal to the

vector 2B.

If A be represented by a straight line 4 inches long, making
an angle of 30° with a fixed line X, and B by a straight line 3

inches long, making an angle of 90° with X, (OX, A and B
all lying in one plane), find the values of S and D by a con-

struction and verify by calculation.

Solution.—Draw Oa and Oh (fig. 76) equal to A and B
respectively; ba is then the vector difference D. Complete
parallelogram OaC60, then C is the vector sum S. Draw Od

equal and parallel to ba, then dC is the vector S - D which is

equal to 2B because the two triangles aOd and Cha are equal in

every respect. Complete parallelogram OdeQO, then Oe is the

211
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vector S + D, which is equal to 2A since Oe and dC are the

diagonals of the parallelogram 0<ieCO.

Let angle aOb = a, then we have

S = v/A2 +W + 2AB cos a, and D = s/A^ +'B2 - 2AB cos a.

Inserting the given numerical values of A, B and a, we get

S = 6-08 ins., and D = 3-61 ins. (Ans.).

(62) (Q. Oct. 1909).
—A battleship is steaming due north at

12 knots and is observed by a submarine which is 5 sea miles

north-west of her. The latter closes to attack at 9 knots
;

what course should she steer to close as quickly as possible, and
how long time will elapsQ before the vessels are within 2000

yards of one another ? 1 knot = 1 sea mile per hour, and the

sea mile may be taken as 2000 yards.

Solutio7i.—Let A and B (fig. 77) be the positions of the sub-

marine and the battleship respectively, BA being 5 sea miles.

Let us find the motion of B relative to A. If B C had been zero

the two ships would have collided
;
hence in the present case the

relative velocity v^ must be in the direction B A.

Graphical Method.—Set off B C = 12 in the northerly direction,

and from C draw a line CDF parallel to A B. With centre at B
draw a circular arc with radius = 9, then B F is the course which

the submarine must steer in order to close as quickly as possible.

If it were to take the course B D it would take more time, as

v^
= F C is greater than v^ = J)C
Calculation.—From the triangle of velocities we have
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92=122 + ^^2 _2x 12 X'y^cos45°, or
r 11-49 )

""'=] 5-49 /
knots

;

we must take '1;^= 11*49 knots. The two vessels will be within

2000 yards = 1 sea mile when the battleship has sailed 4 sea miles

at the rate of 1 1 "49 knots relative to the submarine.

Hence, time t =
11-49

= 20 mins. 53 sees.

Let angle C B F = a,

sin a 11-49

sin 45°

hence a = 64° 31' east of north, which is the course to be taken by
the submarine.

Fig. 77.

(63) (I.C.E., Oct. 1906).
—A man, standing on a train

wMcli is moving with a speed of 36 miles per hour, shoots at an

object running away from the railway at right angles at a speed
of 12 miles per hour. If the bullet, which is supposed to move
in a horizontal straight line, has a velocity of 880 feet per

second, and if the line connecting man and object makes an

angle of 45° with the train when he fires, find at what angle to

the train he must aim in order to hit the object.

Solution.—A speed of 880 ft./sec.
= a speed of 600 miles/hr.

For the sake of generality let the velocities of the train, the object,
and the bullet be respectively V^, V^, and V3 ;

let also V^ be the

velocity of the object relative to the man and t be the time which
must elapse from the moment the man fires till the bullet hits the

object.
In fig. 78 is the point from which the man fires and A is the

point at which the object is seen. Set off C A = Vj^ and C B = Y^t^
then AB = V^ and point B is thus the point where the object is
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hit. B = y^t is therefore the direction in which the man should

fire. Let angle C A B = a and B A = ^, then

8in/8 AB V^ , . ^ V,. ,

. . J2
„
—r = 77^

=^ '} hence, sin /3
= - / (cosa + sin a) x -L-

sin (45° + a) OB Vg

x/2 V^ + Vg

Hence, 13
= 3" 15', and the angle to the train the man must aim is

therefore 48° 15' (Ans.).

Fig. 78.

(64) (I.C.E., Feb. 1909).
—Two ships start simultaneously

from two ports situated on the same meridian and 50 miles

apart. The ship from the more northerly port steers south-

.west at 12 knots and the other steers due west at 15 knots.

How near will the two ships approach each other, and at what
time after departure will they be closest ? 1 knot = 6080 feet

per hour.

Solution.—Let A B (fig. 79) be the meridian and A and B be
the two ports, the latter being the more southerly one. Let v^ be
the velocity of the ship starting from A as seen from the other

ship. Vr is the vector difference of the velocities of the two ships.

Graphical Method.—Set off from a point D a velocity of 15 (D A)
in a westerly direction, and a velocity of 12 (D F) in a south-

westerly direction, then v^ is represented by A F. Produce A F
and draw B C perpendicular to A C, then B C is the shortest

distance between the two ships, and A C is the distance the ship
from A must travel to reach the point where the two ships are

closest together. If fig. 79 be drawn to scale, AB being 50 miles,
then B C and A C will be determined in miles, v^ will be found
in knots and must be reduced to miles per hour. The required
time t in hours is equal to A C in miles divided by v^ in miles per
hour.
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Calculation.—Let angle DAF be a, then A C = 50 sin a miles,

and BC = 50 cosa miles. 'y^2= 122+ I52 - 2 x 12 x 15 cos45°;

hence, v^^ 1067 knots = 12'29 miles per hour. From the triangle
of velocities we have

sina 12

sin 45° 10-67

hence, a = 52° 41', and AC
^ = 3 hrs. 14 mins. 7 sees.

A

39-8 miles, BC = 30-3 miles, and

Fig. 79.

(65) (I.C.E., Oct. 1898).—A body of 30 lbs. moves towards
south at 30 feet per second, in 2 minutes it moves towards
the south-west at 40 feet per second; what is the added

velocity? Find the average acceleration. What constant

force would produce this change ?

Solution.—The body is moving on a curve (fig. 80) ;
at point A

it is moving towards south with a velocity v^,
and at point B

towards south-west with a velocity v.^-
^^ takes the body

2 mins. = 120 sees, to move from A to B. Draw OG =
v^ and

D =
^2,

then C D =
^'3

is the added velocity. The average
acceleration is a^ = 'y3/120. v^ may be found graphically or by
calculation.

7;32
=

-^^2
^ ^^2

_
2'y^/y2

cos 45°.
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Henco, V3
= 28-34 ft./s. a„, = 0.236 ft./s.^,

and the constant force = 0236 x 30/^
= 0*22 Ibws.

The direction of the force is the same as that of v^.
Let angle

Fig. 80.

C D be e, then sin 6 : sin 45° : : Vg :
v,. Hence, ^ = 86° 24', or

the direction of the force is west by 3° 36' north.

(66) (Q. June 1909).
—An electric carruns 440 yards between

one stop and the next, and covers the distance in 84 seconds.

At starting it is uniformly accelerated up to a speed of 12 miles

per hour
;

it maintains this speed for some time, and is then
retarded uniformly until it stops. The time of acceleration is

twice that of retardation. Find the value of each of them in

foot-second-second units, and find the distance the car runs at

its highest speed.

Solution.—The speed-time diagram of the car is shown in fig. 81.

Fig. 81.

The time between stops
= T = 0^*(known) ; time of acceleration

= Or =
^j ;

time of highest speed = rj>
=

t^',
time of retardation

=pq = ^3 ; highest speed = rm = u (known) ; distance between

stops
= 5 = area OmnqO (known) ; distance car runs at highest

speed
= So = area rmnpr.

T =
^i + ^2 + ^3^ ^3

=
2^1; s = utJ2-\-ut^-{-utj2

= u{211-^t^l1.
Hence, t^=^'2{u'Y -s)IZu ; magnitude of acceleration =

i^/^i ; mag-
nitude of retardation = ujt^ ; s^

—
ut^

= (T
-
dt^u.
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The given values are : s= 1320 ft.
;
2*= 17*6 ft./s. ;

T = 84 sees.

Hence,

t^
= 12 sees.; ^2

= ^^s®^^'i ^3
= 6 sees.; magnitude of accelera-

tion = l*47ft./s. 2; magnitude of retardation = 2 "9 3 ft./s.^ ; Sg
= 1162 ft. (Ans.).

(67) (Q. June 1908).
—A train passes a station, A, at 30 miles

an hour, maintains this speed for 4J miles, and is then uniformly

retarded, stopping at B, which is 5 miles from A. A second

train starts from A at the instant the first train passes, and,

being uniformly accelerated for part of the journey and uniformly
retarded for the rest, reaches B at the same instant as the first

train. What is the greatest speed on the journey ?

If the second train, after a certain uniform acceleration, runs

at a constant speed for 1 mile and is then uniformly retarded,
so that it reaches B with the first train

;
what is the value of

the constant speed ?

Solution—Question 1.—The speed-time diagrams of the two
trains are shown in fig. 82. It takes the trains time Oq = ^2

to

m

travel from A to B. Omnq is the diagram of the first train.

Om =
Ui, 01 =

t^,
area OmnlO = s^ miles, and area OmnqO = s miles.

Opq is the diagram of the second train, area OpqO = s miles and

rp = u^j._ is the speed to be determined.

t^Ui^s^; {t^-t^)ui=2(s-Sj). Hence, ^2
=

(2s
- OM (1)

i^'^max.
= 2s. Hence, 2^„,«^.

=
2s%/(2s

-
s^) . . (2)

Ui = 30 miles/hr. ;
s = 5 miles

;
The numerical values are :

Sj
= 4*5 miles.

Hence, u^ax. = 54'55 miles/hr. (Ans.)

Question 2.—Omnq (fig. 81) is the speed-time diagram of the
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train, mr = Uf. is the

OmnqO = 5 miles, 0^^
=

constant speed to be determined, area

^2
and rq = ty

hence,
9 X 54-55

10
= 491 miles/hr. {Atis.).

(68) (Q. June 1909). —The graph of the speed of a train during
a 10 minutes' run is given below. Tabulate the values of the

average acceleration or retardation during each minute and plot
the acceleration-time curve, pointing out the significance of the

abrupt change at the highest point of the speed curve. Also
estimate the total distance run in the 10 minutes.

Time in minutes.
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off entirely and the brakes applied at the end of the first period.
The distance run in the 10 minutes is represented by the area

under the curve
;

for this purpose we may apply [98].

Hence, the distance run

=^ X (0 + 10-00 + 18-05 + 2500 + 28*95 + 31-25

+ 19-15 + 11-40 + 5-00 + 1-60 + 0)
= 2-51 miles.

(69).
—A train starts from rest and moves in a straight line

;

the velocity, in miles per hour, at the end of successive minutes
is 5-55, 9-82, 13-41, 16-58, 19-88, 23-78, 28-28, 33-08, 37-88;
the acceleration varies without abrupt change during the first

7 minutes, and remains constant during the two next. Sketch

velocity-time and acceleration-time diagrams for the first 9

minutes of the journey on the following scales :
—

2 mins. = 1 in.; 10 miles an hour=l in.; 5 miles an hour

per min. = 1 in. Also find the distance travelled in 7 mins.

from the start.

Solution.—Draw the speed-time curve, then draw tangents to

the latter curve at successive minutes. If a be the angle which
the tangent forms with the time-axis, then a = tan a if the scales

for speed and time were the same, but in the present case

a = 5 tan a. The values of a are tabulated in the following table :
—

Minutes .
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(70).
—A truck weighing 1000 Ibws. is started from rest on a

level track. The speed of the truck in terms of the time is

recorded in the table below. If the frictional resistance to the

motion of the truck be constant and equal to 10 Ibws., find

the force which is being applied in pulling the truck at the end
of 5 seconds.

Estimate also how much work is done in the first 4 seconds

in overcoming the frictional resistance.

Seconds



I
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the train be 150 tons and the frictional resistance 11 lbs. per

ton, find the tractive force necessary to start on the level.

Solution.— In fig. 81 Oq=\'b mins. = 90 sees.; area OmnqO =
0-5 mile = 2640 ft.; rm=pn = u = 25 miles/hr.

= 36-7 ft./s.; angle
rOm = angle pqn = a

;
tan a = numerical values of acceleration and

retardation
;
Or =pq = t-^; W= ^2-

^® have

at^
= u = Z^'1 ;

2640 = it(^i + ^2)j
or

^1 + ^2=" 72; 2t^ + t^=-^0 (1)

Eliminating t^
and

t^
between the three equations in (1), we get

a=2-04ft./s.2.
The tractive force F to start the train on the level is

^ 11 xl50
,

150x2-04 T^o^ /A \F = ^^,^ + = 10-2 tnws. (Ans.).
2240 g

^ '

(72) (Q. Nov. 1906).
—A body weighing 1. ton, starting with

the velocity of 10 miles an hour, moves in a straight line, the

power applied (tending to increase its velocity) being constant,

namely one horse-power. Find the time that will elapse before

the acceleration will be reduced to one-half of its initial value.

Find also the ratio of the initial acceleration to that of gravity.

Solution.—Let W be the weight of the body, then

the power applied =—av = -v = lL . . (1)

where K is a constant. Hence,

a,_ K
9 Wi;^

as the final acceleration \% = aj2 we have, v_f=2vi. Integrating

(1) we get

vdv= dt. Hence, t = ^ \ '^
. (3)

gKjv, Jo 2gK

where ^ is the required time.

(3) may be obtained direct from the equation: Power x time

— change of kinetic energy, or

Kt-j 2
•

The given numerical values are: W = 2240 Ibws. ;
K = 550

ft.-lbws./s. ; -y,
= 10 miles/hr.

= 14-67 ft./s.

Hence, a,/^
= 0-0167 ;

^ = 40-8 (Ans.).

(2)
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(73) (Q. June 1908).
—Two men exerting together a force of

90 lbs. weight put a railway waggon into motion. The waggon
weighs 6 tons and the resistance to motion is 10 lbs. per ton.

How far does the waggon advance in 1 minute
;
and at what

rate, in horse-power, are the men working at the end of the

minute ?

If the men can at most do work at the rate of 0*8 horse-

power, at what constant speed can they keep the waggon moving ?

Solution — Question 1.—We will assume that the waggon is to

be moved on the level. Let the weight of the waggon be W tnw.

and the force of friction be/W Ibws. If the men exert a force of

P Ibws., then the effective force is P -/W assuming that P is

horizontal. We have

P -/W =«—^ ; hence, a =
•'-^240W"

'
' ^^

At the end of the t sees.,

and
,^„,=?(^^^/W)fft./3.

. . . (3)

and the men work at the rate of

P.._ P^(P-/W)^ .

550 550 X 2240W ^ ^

The numerical values are : P = 90 Ibws.
; /W = 60 Ibw^s.

;

^ = 60 sees. ;
W = 6 tnws.

«= 128-6 ft.
;
rate of work at the end of 1 min. = 0-7 H.P. (Ans.).

Question 2.—Let the constant speed be = ?^ft./s. As u is to

be constant, a must be zero, i.e. P =/W.

xj f^u no A 440
^®''''®' 550^ '

^""^

"""/W-
?^ = 7Jft./8. (Ans.).

(74) (Q. Nov. 1907).
—A car weighing 1 ton starts from

rest on a level road. The tractive force acting on it is initially

80 Ibws., and this falls, the decrease being proportional to the

distance travelled, until its value is 30 Ibws., at the end of 200

yards, after which it remains constant. There is a constant
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frictional resistance of 30 Ibws. Find the speed of the car at

the end of 200 yards, and plot a curve, on a distance base,

showing the gradual rise of the speed from the start.

Solution.—The ordinates to the straight line D F (fig. 83)

represent the tractive force, and A C = B F represent the constant

frictional resistance Q = 30 Ibws. which acts against the motion
and in the opposite direction of the tractive force. The car starts

at point A and moves in direction A B. The initial tractive force

is AD = P = 80 Ibws., and AB = /=200 yds.
= 600 ft. The

tractive force at distance x from B is qm. We may consider that
the force F^ = wm (the effective force) is the force which moves the

car, and it is due to this force that the car gains speed. If u^ be

Fig. 83.

the speed when the car has moved through the distance l-x,
and W = 2240 Ibws. be the weight of the car, then the energy
equation is

\^ ^ 2

Energy represented by area C T>mnQ =— -^
. (1)

9 2

The diagram gives F^ = a;(P
-

Q)/^. Hence, area C DmwC
=

(F, + P -
Q)(/

-
x)l'2

=
{l^

-
^2)(P

-
q)l2l, which, inserted in (1),

gives

• . . (2)
;2_^2 p._Q2^

g.
^

I
" w

We obtain the speed u^ at B by making ^ = in (2).

Hence, ui^=gi
P-Q
w (3)

By (2) and (3) we get the equation of the required speed-distance
curve, viz. :

_+_;£_ = 1 (4)
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(4) is the equation of an ellipse with centre at F and with / and

u, as horizontal and vertical axes respectively.

Inserting the given numerical values we get

Ui = 20*8 ft./sec. ; equation of the ellipse^ 1 (Ana.).36 X 10* 431

The student should draw the ellipse.

(75) (Q. Oct. 1909).
—Given the initial velocity and the mass

of the body, show how to find its velocity at any instant when
the curve connecting force and distance travelled is given.
A gun of 6-inch calibre fires a projectile weighing 100 lbs.,

the travel of the shell in the gun being 18 feet. If the curve
of gas pressure in the bore be as in the figure, and if friction be

neglected, calculate the velocity in feet per second with which
the projectile leaves the muzzle.

Solution.—The following table is given here instead of the

curve. The student should draw the curve. Horizontal scale

2 ft. = 1 cm., and vertical scale a pressure of 3 tnws. per inch^
= 1 cm.

Shot travel in ft.
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(76) (Q. Nov. 1907).—A particle, mass 10 lbs., moves
uniformly in a horizontal circle of 3 feet, suspended by a cord
of length 5 feet attached to a fixed point ; calculate the velocity
of the particle and the tension of the cord.

Solution.— B (fig. 84) is the cord of length I; A B is the radius
r of the circle. Let angle A B be ^ and W be the weight of the

particle. The circular motion of the particle requires a normal
force F„ (here horizontal) which is furnished by gravity.

vv i--^

Fig. 84.

Resolve W into Wtan^ and Wsec.^; the former is F„ and the

latter is the tension T in the cord. Hence, the magnitude of

F„ = Wtan^= — — ;
T = Wsec.^; r = ^sin^ . (1)

r 9
^ '

where u is the speed of the particle. Eliminating ^ in (1) we get

.2 _ W^
;
T =

Jl^-r^
(2)

Inserting the given values in (2) we get

%= 8-5 ft./sec. ;
T = 12-5 Ibws. (Ans.).

(77) (I.C.E., Feb. 1908).—A body of weight 2 tons rotates on
rails in a vertical circle of radius 30 feet, without friction.

Find the least speed at the highest point at which it will retain

contact with the rails there, and find then the speed at the

lowest point.

Solution.—Let W be the weight of the body, r the radius of

the circle, u^ the least speed at the highest point, u^ that at the

lowest point, and tana the slope of the circle at any point.
The acceleration, g, of gravity may be resolved into ^sina

and ^cosa. Hence, a„^^cosa, which latter is maximum when
15
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cosa= 1, or a = 0, i.e. at the highest point of the vertical circle.

Hence, for the latter point we have

Jrg (1)

The acceleration of the weight along the circle is g sin a, the

same as on an inclined plane. Hence, the energy exerted by the

weight while moving from the highest point to the lowest point
of the circle is W2?\ At the moment the weight reaches the

lowest point the energy-equation is

W2r =— ^^~^
or u. J^rg (2)

3M
ft./s. ; ?^2

= 69-5 ft./s. {Ans.).

(78) (I.C.E., Oct. 1908).—A large hollow sphere, of 20 feet

in internal radius, is pivoted on a vertical axis and rotated at

20 revolutions per minute. To what portion on the inside surface

would a hall joll if displaced from the lowest point of the surface ?

If the coeflOicient of friction between a wooden block and the

inside surface is 0-2, at what minimum speed must the sphere
revolve if the block is to remain at rest in the horizontal

diametral plane ?

Solution—Question 1.—Let B (fig. 85) be the position of the

ball, A the lowest point of the sphere, A C = y, C B = a?, angle A B
=

a, and w the angular velocity of the sphere.

Neglecting friction, the normal acceleration at B, a^^xuP',
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must be equal to ^tana, g being resolved in the directions OB
and B C.

Hence, an = xo>^ = gtsiua = g--— ,
or v= ^

„
^

. (1)
r —

'i/
(1)^

r = 20
; g = 32'2

;
co = 27r/3 rads. per sec.

Hence, y= 12-66 ft. (Ans.).

Question 2.—The force of friction between the block and the

inside surface of the sphere must be equal to the weight, W, of

W /^
the block. Hence, — 7^o}^fx

= W, or (o== * / -^ = minimum speed of

g '\
Tfx.

rotation.

^ = 32-2, r=20, /x
= 0-2;

hence, 00 = 2-84 rads./s.
= 27'12 revs./min. {Ans.).

(79) (I.C.E., Feb. 1906).
—A train is travelling at a uniform

speed on the level. The weight of the brake-van at the rear of

the train is 10 tons and the weight of the remaining part of the

train is 90 tons. If the brakes are applied to the brake-van,
what will be the force on the brake-van couplings, the coeflBlcient

of friction of the wheels on the rails being 0*1 ?

Solution.—Let Wj = the weight of the brake-van ; Wg = the

weight of the remaining part of the train
; ju-

= 0'l.

The retarding force of the brake-van when the brakes are

applied is = /xWj
= ma, where m = (Wj -h Wg)/^' is the mass of the

uW
train and a is the retardation. Hence, a==^--—

-J—^, but the

retarding force ftWj must be communicated to the remaining part
of the train through the couplings. Hence, the force on the

couplings will be dS^^jg, we have therefore

Wo /*W,W2 ,,x

''-/^WTiw,
• • • • (1)

Inserting the given values in (1),

force on couplings = 0'9 tnw. {Ans.).

(80) (I.C.E., Oct. 1901).—A man weighing 140 lbs. stands on
the floor of a lift. Find the pressure he exerts on the floor

(a) when the lift ascends and descends with uniform velocity ;

{h) when it ascends with a velocity which decreases by the
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acceleration of 0-1 ,7 ; (c) when it descends with a velocity which
increases at the rate of 8 feet per second per second. Under
what conditions can the pressure be (i.) zero, (ii.) greater than the

weight of the man ?

Solution.—Let W be the weight of a body standing on the

floor of the lift. The motion of the body will be unchanged if

we remove the floor and add a force P equal to the pressure on
the floor (fig. 86). If the acceleration of the body be a, we have

W-P=-a (1)

When the velocity of the body is uniform, i.e. when the lift
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(81) (I.C.E., Oct. 1907).
— In a colliery winding-plant the

weight of the cage and its load is 2*7 tons, and the rope is

balanced. The depth of the shaft is 500 yards. The cage
ascends with a uniform acceleration of 4*5 feet per second per
second for 9 seconds

;
it then ascends at uniform speed, and at

the top the retardation is also 4-5 feet per second per second for

9 seconds. Find the time taken to make a journey, and the

tensions in the rope during acceleration and retardation.

Solution.—Let W be the weight of the cage, T^ and Tg the

tensions in the rope respectively during acceleration and retarda-

tion. Fig. 87 is the speed-time diagram, AF = ED =
^j

is the

time of acceleration and retardation, F E =
^2 ^^^ time of constant

speed u, and angle F A B = angle E D C = a. We have

u =
t-^ tana, t-^

tana -f t^t^
tana = d (the depth of the shaft).

Hence, h =
d - t^ tan a

and the time taken to make a journey, t =
2t-^-\- 1^.

During acceleration the cage is urged on by a force Tj
- W and

with an acceleration tana. During retardation the cage is urged
on by a force W -

Tg and with a retardation tana.

Hence,

Hence,

W =— tana

Ti

and W-Tn= — tana.

W WW +— tana; To =W- — tana.
9

"

9

We have
^^
= 9; W = 2-7; ^ = 32-2, and tana = 4'5. Hence,

t = 46 sees.
; Tj = 3-08 tnws.

; T2
= 2-32 tnws. {Am.).

(82) (I.C.E., Oct. 1906).—The final blow on a 9-inch diameter

pile 20 feet long, from a weight of 1800 lbs., dropping 25 feet,

drives it in 1 inch. Calculate the force of the blow, and the

frictional resistance on the side of the pile, per square foot, if

all the energy of the blow is thus spent.

Solution.—The energy of the blow itself is equal to the energy
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ozerted by the weight of 1800 lbs. falling through the height of

25 ft. The weight falls further through the height of 1 in.

Hence,
The energy of the blow « 1800 x 25 = 45,000 ft.-lbws.

The total energy spent in driving the pile
= 45,000 + -rrjr-12

-45,150 ft.-lbws.

Let tlie total frictional force to be overcome be F^ then the

work done is F^ x y\ ft.-lbws. Hence, F^= 12 x 45,150 ft.-lbws.
;

the surface of the pile
= 20 x 2.356 ft.2

Hence, the frictional resistance per square foot of pile-surface

12X45,150 iiprrvAlU.^ /A \= ——L—- = 11,500 Ibws. (Ans.).
20x2-356

^ ^

(83) (I.C.E., Feb. 1904).
—In a steam hammer the diameter of

the piston is 36 inches, the total weight of the hammer and

piston is 20 tons, and the effective steam pressure is 40 lbs. per

square inch. Find the acceleration with which the hammer
descends, and its velocity after descending through a distance of
4 feet. If the hammer then comes into contact with the iron,

and compresses it through a distance of 1 inch, find the mean
force of compression.

Solution.—The area of the piston = 1017*88 inches^
; hence, the

total effective pressure of the steam = 18-18 tnws. The force mov-

ing the piston and hammer is therefore 18-18 -f- 20 = 38-IS tnws.
;

the mass to be moved is 20/^. Let a ft./s.^ be the acceleration

with which the hammer descends, then

38-18 =—a. Hence, a= 61-45 ft./s.2.
if

Let V
ft./s. be the velocity of the piston and hammer after

descending through a height of 4 ft., then

v= n/2x 61-45x4 = 22-17
ft./s.

The total energy spent in compressing the iron is equal to the

energy exerted by the force of 38-18 tnws. travelling through
the distance 4 ft. 1 in. If C be the mean force of compression
in tnw., we have

38-18 X 4^^ =^ C. Hence, C = 1871 tnws. (Ans.).

(84) (I.C.E., Feb. 1907).—Find the horse-power required to
haul six 10-ton trucks up a gradient of 1 in 20 at 7J miles an
hour. Calculate also how long an engine of this horse-power.
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weighing 25 tons and with the six trucks attached, would take

to develop this speed on the level, the air and other resistances

being 11 lbs. per ton in each case.

Solution. — The six trucks weigh together W tnw.
;

the

speed is u=^l\ ft./s. ;
the weight of the engine is W^tnw. ;

cosa = l/,^l +tan''^a = 20/^401 ;
we can therefore take cosa=l

and sina = 1 : 20
;
the frictional resistances are therefore the same

on the incline as on the level.

(1) Up the gradient.
— The resistances to the motion are

2240W sin a and /W ;
the drawbar-pull, that is the effort, is

therefore F^ = 2240W sin a +/W.

u xjr»  A ^en (224asina+/)W . ,..
Hence, H. P. required = ^-^

= ^ --_
-^ ' ~ u . . (1)

or 147-7 H.P. {Ans.).

(2) On the level.—Let t be the required time. The mass to

be removed is 2240(W + Wj)/^ ;
the resistance to the motion

=/(W + Wj) Ibws.
;
we must assume that the indicator-diagram

remains unchanged from the start until the train attains the speed
'?^ = 11 ft./s. The effort Fg will thus be constant, and as the

resistances are given to be constant, the acceleration will also

remain constant. We have therefore a = ult. Hence, Y^u —
550x147*6, and the force-equation is

^ = 10 sees. {Ans.).

(85) (I.C.E., Oct. 1906).
—Taking the resistance as 13 lbs. per

ton, find the horse-power required to produce a speed of 40 miles

per hour in a train weighing 300 tons in 3| minutes : (1) on the

level
; (2) down an incline of 1 in 320.

Solution.—Let W be the weight of the train in tnw., u the

speed in
ft./s.,

t the time in sees., n the number of horse-power, and

Fg the effort in Ibws.

(1) On the level.—The frictional resistance is /Ibws. per tnw. of

W. Hence, the effective force is F^ -/W. As Fg is supposed to

be constant the acceleration is also constant. Hence,

^l^^^a = Fg-/W"; v = at; Y,v = f>bOn . . (1)
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Eliminating a and F, between the three in (1), we get

n _fWv 2240Wt;2

550
*"

bbOgt
' ' ' ^ ^

Inserting the given values in (2) we have

n = 1038H.P. (^m.) ... (3)

(2) On the incline.—As a is very small we may take cosa= 1

and 8ina = tana=l : 320. The frictional resistance is therefore

the same as in the first case ;
but the effort to be developed by

the engine is less by 2240W sin a. Let
rt^

be the number of horse-

power developed by 2240Wsina, then 2240Wsina'y = 5507ii.

Hence, the value of n in this case is equal to (3) minus n^, or

n= 1038 -224-814 H.P. (Ans.).

(86) (I.C.E., Oct. 1907).—A train, weighing 150 tons and

running at 30 miles an hour, has the steam cut off and the

brakes applied at a certain point. The brakes would bring it to

rest on the level in a distance of 300 yards, but it is on an
incline of 1 in 100. At what distance would the train come to

rest if running (a) up the incline, {b) down the incline ?

Solution.—Let W be the weight of the train in tnw. ;
u the

speed in ft./s. ; Sj (known^, s^,
and Sg respectively the distances in

feet on the level, up the incline and down the incline in which
the train is brought to rest. The resistance F^ to the motion on
the level consists of the resistance due to the brakes plus the

frictional resistance. The latter is/W on the level and /W cos a
on the incline, but as a is very small we may take cosa = 1 and
sin a = tan a = 1 : 100. Hence, F^ is the same in all three cases.

(1) Level.—The energy-equation is

^ 9

Hence, F, = -^tnw. = 5-012 tnws. . . (1)

(2) Up the incline.—The resistance to the motion = F,. -FW sin a.

Hence, the energy-equation is

=
(F;.-»- W8ma)52-—— ,

or
8^
=

^ ^^ _ ^^^ .
—

^ (2)
2g

' 2

2^(F,-f-Wsina)

Hence, «2
= ^93 ft. (^Tis.).
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(3) Down the incline.—The resistance to the motion is F,., but
there is an effort =W sin a. Hence, the energy-equation is

WsinaSo = F„So- —3 '3
2

%2 W W2*2

2^(F,-Wsina)
(3)

Hence, 1284 ft. {Ans.).

(87) (Q. Nov. 1906).
—A smooth wedge weighing 5 lbs. can

slide on a smooth horizontal plane. A weight of 1 lb. is placed
on the sloping surface of the wedge, 1 foot from the bottom edge,

and allowed to slide down. If the angle of the wedge is 30°,

and if weight and wedge start from rest, prove that the weight
reaches the bottom of the slope in about ^ second.

Solution.—The wedge will be displaced during the required
interval of time t an amount C D =

Sg (fig. 88), and the weight

will describe the straight line A D. The latter may be resolved

into displacement A B =
Sj along the sloping surface of the

wedge and displacement AE =
S2 in the direction perpendicular

to the latter surface. Let a^, a^^ and a^ denote respectively the

accelerations in the directions of
Sj, Sg,

and
Sg,

then we have

S\
=

\<^\i^} ^2~i^2^^i h~i^z^^} S2
=

^3^i^°' • (1)

The components of the weight, W, are Wsina and Wcosa.
A part of W cos a is applied to produce the acceleration a^, and
the remainder produces a pressure P on the slope. Hence,

W
aj=^sina; a^~ +V = y^ co^a; (XgM sma ; a^^ina = a„ (2)

where M is the mass of the wedge. Eliminating ag and P between
the three last expressions in (2), we get

^Wsinacostt

M^ + Wsin2a'
and

1 ^Wsinacosa
2 M^-}-Wsin2a

(3)
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and (4)

Let AC«/, then

, . ,0 , ,1 orWsinaCOS^a.o
»i = *a sina <"* = / - «« cosa = t - - ~-z ... . „

—
c-,

t= /
""2/ M^+~W8in2a~V ^^sina M^ +W

Inserting the given values in (4) we get

< = 0-33 {Ans.).

(88) (I.C.E., Oct. 1898).—A body of 50 lbs. is on an inclined

plane of inclination 35°. The coefficient of friction is 0-16. A
force ./• acts up the plane, making an angle of 10° with the

plane (45° with the horizontal). Working either graphically or

arithmetically, find x. First, when it just allows the body to

slip down the plane ; second, when it pulls the body up the

plane (fig. 89).

Fig. 89.

Graphical Solution. C D =«= the weight, W, of the body ; C N is

the normal, and C Ej Eg C is the cone of friction. Let the value

of X in first case be x^^ and in the second case be x^. The resultant

of
a;j
= CKj and W must fall along CE^ and the resultant of

^2
= C Kj and W must fall along C Eg. The values are

a:i
= 23-l Ibws. and

.^2
= 34*8 Ibws.
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Analytical Solution.—Let angles A B and KgC A bea and P re-

spectively. ResolveWand x respectively intoW sin a,W cos a, x sin /3

and X cos (i. The force of friction is then (W cos a - x sin ^) tan ^.

First case.—The force-equation is

Wsina = ^j cosj8 +W cos a tan<^-a;j sin^ tan^.

Hence, ^- = ^^'^.f"'" *^)w, or a;, = 23-1 Ibws.
^

cos {l3 + cf>)

^

Second case.—The force-equation is

^2 cos^ =W cosa tan^ -
x^ sin^ tan<^ +W sin a.

Hence, sin(a-H<^)^ ^^ ^,
= 34-8 Ibws.

2
cos {/3-cf>)

' ^

(89) (Q. Nov. 1907).
—A length, measuring 2 miles, of a track

has varying gradients, but it is known that the point B is

100 feet above A. A car weighing 5 tons is driven along A B
by a motor which exerts 40 H.P. uniformly, the speed is 60

miles an hour at A and 50 miles an hour at B, and the time

occupied is 2| minutes. Calculate approximately the amount
of frictional resistance to the motion of the car, on the

assumption that this is uniform.

Solution.— If the horizontal projection of A B, call it <i, were

given, then (see [155]) the work done on friction would be =
frictional resistance into d. But d is not given, and we must
therefore assume that the gradient tan a, although varying, is

always so snmll that cos a may be considered equal to one. In

these circumstances the work done on friction is = the frictional

resistance into A B.

Let Fy be the total frictional resistance, then the work to be

done is

(1) Wj = the work done in lifting the car through a height of

100 ft. = 5 X 2240 X 100 = 1,120,000 ft.-lbws.

(2) W2 = the work done on friction = Fy x 2 x 5280 =
10,560 F^ ft.-lbws.

The energy to our disposal is

(1) Ej
= difference of kinetic energy at A and B

1 5 X 2240
X

2 32 :(-x§
22V /5„,22V-

15.

= 149,000 ft.-lbws.

(2) Eg = the energy developed by the motor = 40 x 33,000 x 2*5

= 3,300,000 ft.-lbws.
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Energy-equation : Ej + Eg = W^ + Wg.

Hence, F/«i220 Ibws., or 44 Ibws. per tnw. of car (Ans.).

(90) (I.C.E., Oct. 1906).
—State the principle of the conserva-

tion of energy. In a cable tramway, one car (weight 14 tons)
is on a down-gradient of 1 in 50, and another (weight 11 tons)
is on an up-gradient of 1 in 300. The cable connecting them

weighs 8 tons, and is always equally distributed on the two

slopes. Find the acceleration and the speed of the cars, due to

gravity only, after running 400 feet from rest, if all frictional

resistances are neglected.
Solution.—The principle of conservation of energy states :

Enet'gy ca/nnot be destroyed nor created^ but can change its

There are 4 tons of cable on each slope to be dealt with.

(1) Up-gradient.
—The weight on the slope = 11 tnws. -f- 4 tnws.

= 15 tnws. The force pulling the weight down the incline

= 15 sina = 15/300 tnws. The mass on the slope =15/^.
(2) Dovm-gradient.

—Weight on the slope
=

(1 4 -f 4) tnws.=
18 tnws. The force pulling the weight down = 18/50 tnw. The
mass on the slope

=
18/^.

Hence, the force-equation is

As the acceleration a in (1) is constant, the speed u after a run

of 400 ft. from rest is, by article 163, u= sJ^aAOO.

Hence, a = 0'3 ft./s.2 ;
%= 15-5 ft./s. (Ans.).

(91) (Q. Oct. 1909).
—A train of 350 tons is ascending an

incline of 1 in 200, and the resistance to motion is 12 Ibws.

per ton. What is the acceleration of the train when its velocity
is 15 miles per hour, if the horse-power then developed by the

engine be 500 ?

Solution.—The forces which resist the motion are : the force of

friction = Fy and Wsina. The effort is F^. Hence, the effective

force = F, - Fy
- W sin a. We have now

a— = F,-F,-Wsina,
9.

therefore <^ (F.- F,- W sina)g
^ ^ ^

n.
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Let the speed be u when the engine develops w H.P., then

F,t^ = 55071 ft. -Ibws./s., or F, = 550V%. . (2)

The value of Fg inserted in (1) gives

a = {5b0n/u
-
F^

- W sina)^/W.

Thenumericalvaluesare: n= 500;u= 22it./8. ; Fy=12 x 350cosa
= 4200 Ibws.

;
as a is very small we can take cosa= 1 and sina

= tana = 1 : 200 ;
W = 350 x 2240 = 784,000 Ibws. ;

mass of train

= W/^ = 784,000/32-2 gravitation units.

Herice, a = 0-13 ft./s.^ (Ans.).

(92) (I.C.E., Feb. 1898).—Show that, if a man can throw a

ball straight up so that it is 6 seconds before he catches it again,

he can throw it to a horizontal distance of 96 yards.

Solution.—Let 2^ be the time which elapses before the man
catches the ball again,
then f^i

=
9i (1)

The maximum range, d, which can be attained when the man
throws the ball at an angle a with the horizontal corresponds to

a = 45° (article 179). Let the time of flight be T, then

T
'y^sin45° =^— ,

and c? = 'y^cos45° T . . (2)
2i

Eliminating v^ and T between the three equations in (1) and (2)
we get

(^ = ^^2 gin 90° = ^^2 ... (3)

We have ^ = 32-2, ^ = 3.

Hence, d = 289'8 ft. = 96-6 yds. {Ans).

(93) (LC.E., Feb. 1907).
—A gun mounted on a tower over-

looking the sea is capable of discharging shells horizontally with
a velocity of 600 feet per second. Determine the equation of
motion of the shells, referred to vertical and horizontal axes

having their origin at the muzzl6, and find the range over the

sea, which is 300 feet below.

Solution.—Let Vi be the muzzle velocity, and the a;-axis be
vertical. At the end of time-interval t the shell will have
travelled a horizontal distance y and a vertical distance x. The
horizontal velocity is constant and equal to v^, whereas the vertical

motion is due to gravity.

Hence, y = ^i^j and x = \gt^ . . . ^1)
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By eliminating t between the two in (1) we obtain the equation

of the motion,

..2 = 2tV^. .... (2)
9

(2) is a parabola. Let r be the range over the sea to which

corresponds a value of U7 = 300 ft.

Hence. ^2 = ^^x300, but Vi
= ^00.

9

Hence, r = 2590 ft. (Ana.).

(94) (I.C.E., Feb. 1909).
— The radius of curvature of a

trajectory at a point in the rising branch is 6-85 miles and is

inclined at 30° to the vertical. Determine the velocity of the

projectile at the point in question. How much higher will the

projectile rise ? Neglect the air resistance.

Solution.—In fig. 90 AT is the tangent and A N the normal to

the given point A on the trajectory. C A B is the vertical line

through point A. We have, a„ = v'^/p ; hence, the required velocity
v= Jpa„f but a„ is the resolute of the total acceleration (here

retardation) in the direction of the normal. Let angle N A B = ^,

then a„ = g cos ^, and as p is given the velocity v can be determined.
The projectile will continue to rise until the vertical velocity

becomes zero. The vertical velocity at point A is obviously

v^
= vam6, and the projectile will still rise a height h^

= vy2g
from the given point.

*

The given numerical values are: p = 6"85 miles = 36, 168 ft.;

Hence, t;= 1004 ft.
; h^

= S9l5 ft. (Ans.).



CHAPTER XXX.

ROTARY MOTION.

183. Rotation.

When the path described by a moving particle is a circle, the

motion is called rotation. When a particle moves in a curved line

it moves momentarily in the osculating circle, and curvilinear

motion in general may therefore be considered as a rotary motion
in which the radius of rotation changes continuously. By article

165 a curvilinear motion requires a normal force, and whatever
the resultant force—which acts on the particle

—may be, it con-

sists of two components, the tangential force and the normal
force.

If the tangential force be zero the speed remains unaltered,
and when the normal force is zero the particle goes off at the

tangent and its path is henceforth a straight line. The normal
force is therefore a deviating force, and as it tends towards the

centre of curvature it is sometimes called the centripetal force.

The deviating force may be produced in several ways, but it

always acts by push on the mass, which in turn resists the push
by an equal reaction. The latter reaction has been called the

centrifugal force, because, superficially regarded, it seems as if the

mass tries to leave the curved path in the direction of the normal,
whereas the mass really tries to leave the curve in the tangential
direction. Centrifugal force is a misleading and unscientific

expression, which ought to be abandoned.
184. Rotating masses.

Let us consider, a system of masses rotating about a fixed axis,

i.e. about an axis in fixed bearings. The particles are supposed
to be rigidly connected, mutually as well as to the axis. Each

particle describes a circle with centre at the axis
;
the speed of

rotation is supposed to be less than any speed which requires a

deviating force greater than that which the connection between the

particles can supply. Let there be a number of tangential forces

acting on the system at different distances from the axis thus :

239
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F/, F," ... act respectively at distances p^^ p2 • . .
;
and resistances

F^', F/ . . . act respectively at distances d^, d^ . . . .

Such a system may be exemplified by a main workshop shaft

on which a number of pulleys are fixed. The effort is transmitted

from the workshop engine by a moving belt, which passes over

one of the pulleys. The energy is transmitted, travelling along
the shaft, to the other pulleys. The latter are connected by
belting with the machines which require the energy developed

by the engine.
The energy exerted by all the efforts together while the system

turns through an angle 8a is,

f;8«i + f;'8«2+ . . . =F;pi8a+F;'p2Sa+ . . .

=
8a(F;pi + F;>2+ . . .

)
= F,p8a (1)

where F^ is the effort, at a given distance p from the axis, which
exerts the same amount of energy as all the efforts exert together
while the system turns through the angle 8a. (1) gives

F,p = F;pi + F;'p2+ (2)

The product F^ p is called the torque or turning moment of F^.

Hence, the resultant toi^que of a system of tangential forces is equal
to the algebraical sum of the torques of the several forces.

In the same manner the resultant torque of the resistances is

F,.p. If the kinetic energy of the system changes from E;i.' to E^"
during n revs., then the energy-equation is

ritra pirn

p]Y,do.=p]Y\do.^^;' -^;
. . (3)

Fe and F^ must be given as functions of a. The instantaneous

energy-equation is

F,p8a = F,p8a + 8E, ... (4)

(a) The system is accelerating, and the kinetic energy is in-

creasing when the effective torque (F^
-
F^)p is positive.

(6) When the effective torque is negative the system is retard-

ing, and is only kept in motion by losing kinetic energy.
(c) The motion is a uniform rotation when SE;^

=
0, i.e. when

(F,-F,)p = OorF, = F,.

185. Moment of inertia.

We will now find an expression for the kinetic energy of a

system of rotating masses. Let m^, ^g ... be the masses,

rj, rg . . . the radii of the circles described by the particles, and

Wj, 2*2
.. . the speeds of the respective particles. It is obvious
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that Un = u-^o-„/ry Hence, the kinetic energy accumulated in the

system is

Ek = l[my^ + m^ul+ . . .]
=
^^[m^7i

+ m^7i-\- . . .] (1)

but
^t'l/r^

is the angular velocity, w, of the system.

Hence, E,=^ ^w'^^mr^
= ^w^ . . . [156]

y,mr^, which is denoted by I, is called the moment of inertia,

or the second mass-moment of the system of rotating masses w.r.t.

the axis of rotation. I depends not only on the amount of mass
contained in the system, but also on the distribution of the mass
about the axis.

If we compare [156] with [148] we shall find that [156] may be

derived from [148] by substituting w for u and I for M= ^m.
We may consider a translation as a rotation about an axis at an

infinite distance from the body, and we may therefore consider

9'j
=

rg . . .
=

T^, say equal to r.

Hence, E, = ^'2^^^
=
i^2^^'2^^

= i^'^ • ' (2)

The moment of inertia of a single mass m, describing a circle

with radius r, is I = mr^. If therefore M be the sum of the masses

of a rotating system, then I = ^mr^ = M RJ, or

E,Vh • • • • [157]

R^ is called the radius of gyration, or the swing radius, of the

system. Hence, we may imagine all the niasses of the rotating

system to be concentrated into one point describing a circle with
radius Rj, without affecting the kinetic energy of the rotary motion.

We may also substitute a mass M^, describing a circle with

radius Rj, for a system of rotating masses whose moment of inertia

is I. The condition is that

MjRi = I
; hence, R^ =^ — when M^ is given ;

Mj =— when Rj is given . . [158]
Ri

The dimensions of I are [M] [L]^.

16
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We may now write the eaergy-equation (3) in the preceding

article thus,

p/F,cia =
p|F,c?a

+ J(<o/- (0,2)1
. . [159]

where a>/
and w< are the final and initial angular velocities respec-

tively ; or, reducing the mass of the system to a point at distance

p from the axis,
/•2im r2im

pj
F,da = p F,da + i(u/-u,^)M^ . . [160]

where Mj p* = I, and «y and Ut are respectively the final and initial

speeds of a point at distance p from the axis.
' 186. Equilibrium of tangential forces.

A system of forces is said to bo in equilibrium, or to be mutually
balanced, when they, by their combined action, cannot produce
acceleration. A system of forces which is in equilibrium cannot

therefore produce motion, and if the system be moving the motion

must be uniform.

Hence, SE* in (4), article 184, must be zero, i.e. the rotation

is uniform, when F^ p
—

F,.p
= 0, or a system of tangentialforces is in

equilibrium token the algebraical sum of the tm^ques of the several

forces w.r.t. the axis of rotation is zero.

187. Instantaneous centre.

Let A and B (fig. 91) be any two points belonging to a plane

g
Fig. 91.

figure which is moving in its own plane. Let it also be known
that the instantaneous motions of the two points take place

respectively in the directions A T^ and B Tg. Draw the normals
to points A and B. meeting at point 0. It can now be proved
that point is instantaneously at rest, or, in other words, that
the given plane figure rotates instantaneously about point 0.

If were not at rest we could resolve its velocity along A
and B, but points A and B move along the tangents to their
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a,ut, and Vc be the respective
V'. v,

•

^;
'

: A : B : C.

respective paths, and their motions can have no components along
their normals. Hence, point is at rest.

Point is called the instantaneous centre of motion of the

plane figure ;
and the motion of any point C takes place along the

perpendicular on C through C. Let v.

velocities of points A, B, and C, then

Hence, if the velocity of one of the three points be known, the

velocity of any other point of the plane figure may be found.

In fig. 29, p. 62, the instantaneous centre of motion of the

sliding-rod is the point of intersection of the two perpendiculars,
drawn through points A and B, on the .r-axis and the y-axis

respectively. The line drawn from the instantaneous centre

through point C on the ellipse is the normal to the curve at

point C. Hence, the tangent to the ellipse at the latter point
is determined.

188. Rolling circle.

Fig. 92 represents a circle B A, with centre at C and of radius

C =
r, which is rolling without slipping on the straight line D 0.

Fig. 92.

The point of contact is obviously the instantaneous centre of

motion
; hence, the motion of any point B on the circle is

perpendicular on B and along the line B A—point A being the

point on the circle which lies diametrically opposite to 0. Draw

tangent F B D to the circle at B, then draw C K D
;
the latter

line bisects B as well as angle D B. Draw B E parallel to

D
;
A B bisects angle F B E.

Finally, resolve the velocity Vf, of point B in the directions BF
and B E. We have now that the two components of

v^, are equal,

say equal to x, because B A bisects angle F B E
; Vj, : v : : OB : r,

V being the velocity of the centre C; v,,
= 2it; sin a, where a is

angle D K
;

B = 2r sin a. Hence, x^v, or, in words, the motion
of any point on the rolling circle can be resolved into two com-
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ponents, viz. a translation with a linear velocity v equal to that

of the centre and parallel to the fixed straight line, and a rotation

about the centre with an angular velocity w = v/r.

The velocity of point A is equal to 2v and is made up of the

velocity v of translation and the velocity v = r<a. The velocity of

the instantaneous centre is zero, being the resultant of the velocity
of translation v and the velocity minun rm.

189. Instantaneous axis.

Let the directions of the instantaneous motions of two points
A and B belonging to a moving body be known. Draw the

normal planes through A and B
;
the latter two planes intersect

in a straight line which must be instantaneously at rest, and is

therefore the instantaneous axis of motion of the body.
190. Boiling friction.

The rolling of a wheel on a surface is a rotation about the axis

of the wheel combined with a translation of the axis. A rotary

Fig. 93.

motion requires the application of a tangential force. In the
case of the rolling wheel the tangential force is the force of
friction between the two surfaces of contact. Hence, if there
were no friction there would be no rolling, and the motion of the
wheel would entirely be translatory.

Consider the wheel in fig. 93. Due to its weight, W, the wheel
makes a groove in the road, which is not perfectly rigid, and it will

therefore be necessary to apply a force, F, at the axis and parallel
to the road, in order to bring the wheel out of the groove. Let
2k be the length of the chord A B, yS

= angle A C, and r the radius
of the wheel, then we have

Fr cos /3
- Wr sin y8

=
0,
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but as /3 is very small we may take cos /?
= 1

;
we have also

rain 13
= k. Hence, the force of rolling friction is

F = -W-Wtan^. . . . [161]

F is thus directly proportional to the chord of the groove and

inversely proportional to the radius of the wheel. If the road be
a plane of inclination a, then the pressure of the wheel is W cos a.

Hence, in the latter case, F =W cos a tan
;
the wheel will be at

rest on the plane when W sin a= F =W cos a tan 6, or when a = 6.

Angle 6 = ang (
tan = -

j
is therefore the angle of repose of rolling

friction for a given sized wheel and the bearing-surfaces in a

given condition, k is also called the coeffijcient of rolling friction^
and is given in feet, metres, etc.



CHAPTER XXXI.

AREA-MOMENTS.

191. Moments.
In the case of certain physical and geometrical quantities, the

product of the quantity and the n^^ power of its distance from a

given point, or a given straight line, or a given plane, is called

the rC^ moment of the quantity w.r.t. the given point, straight line,

or plane. We have hitherto met with such expressions as second

mass-moment and torque (the first moment of a force) w.r.t. an
axis of rotation. In the following we shall have many oppor-
tunities to use the term moment.

192. Area-moments.
Let 8A be the element of a plane area, r the distance of SA

from a given point (fig. 94) in the plane, then, by the preceding

article, 2,^-^^" ^s the ii*^ moment (the 7i"' polar moment), of the

area w.r.t. the given point. Similarly, when x and y are the

usual rectangular co-ordinates, then 2^Aa;"and ^SA^** are the

rC^ moments of the given area w.r.t. the j^-axis and the ic-axis

respectively.
We shall only require the first and second area-moments, for

which the following notations will be used :
—

246
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First moments :

^SAr =
(a.m.)p, ^SA x=(a.m.)y, and ^BA 1/

=
(a.m.)^.

Second moments :

28Ar2 = (A.M.)^, 2^BAx^
= {AM\, and 2,^Af = (AMX.

It is obvious that none of the second moments can be zero,

whereas we may choose the co-ordinate axes so that one or all

three of the first moments will be zero. The point in the plane
w.r.t. which the first area-moments are zero is called the ce7itroid

of the area {see Chap. XXXV.).
If the origin of a set of rectangular axes be chosen as the pole,

then r^ —- x^ + y^.

Hence, (A.M.)^
=

(A.M.), + (A.M.), . . . [162]

Or the sum of the second area-moments w.r.t. any pair of

rectangular axes, having the same origin, is constant and equal to

the second polar area-moment w.r.t. the given origin.

Let the second area-moment, (A.M.)!,, w.r.t. an axis ah' in the

plane and through the centroid be known, and let it be required

CL

I
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w.r.t. an axis parallel to the given axis and passing through the

eentroidf plus the area of the plane jigure into the square of the

distance from the centroid to the given axis.

Let the second polar moment (A.M.)^ w.r.t. the centroid, C, be

known, and let it be required to find (A.M.)^, w.r.t. a given

point (fig. 95), which is at a distance I from C.

(A.M.»2,^Ar'2; (A.M.)p= ^.^^r^ ;

but ?'2 = r'2 + 1'^ + 27-7 cos 0'.

Hence, (A.M.)^
= ^BA /« +P^BA + 2l^SA r' cos 0\

but the latter moment is = 2l(a.m.)'^, which is zero, since a'b'

passes through C.

Hence, (A.M.)p
=

(A.M.);, + A/2 . . . [163b]

Or in words : The second polar moment of a plane figure w.r.t. a

point in its plane is equal to the second polar moment of the

plane figure w.r.t. the centroid plus the area of the plane figure
into the square of the distance from the centroid to the point 0.

The student will often meet with the expression
" moment of

inertia of an area" an expression used instead of the second area-

moment. An area does not contain mass, and can therefore not

possess inertia. The dimensions of the second area-moments are [L]*,
whereas those of the moment of inertia are [M] [L]^. Second area-

moments are expressed in inches^, cm.*, etc.

The n^^ area-moment is evidently equal to the product of the
n*** power of a length R and the area. R may conveniently be
termed the n^^ mean radius of the area w.r.t. the given point or

given line. Thus,

(a.m.)
= r^A, and (A.M.) = R2A . . [164]

The second mean radius, R„ in [164], is often erroneously
called the radius of gyration of the area.

193. Second axea-moments of a circle.

(i.) (A.M.)p of a circle w.r.t. the centre. For a circular ring of

radius r and depth 8r we have, 8(A.M.)^
= 2Trr Sr r^.

Hence, (A.M.),= 2.j\^dr
=^ =

^^ . . . (1)

where R is the radius and D the diameter of the circle. The
second mean radius of the area of the circle w.r.t. the centre is

R« = R/s/2, because ttR^R^^^ . . (2)
2



r^-

AR^A-MOMENTS. 249

(A.M.)^ of a circle-sector w.r.t. the centre will therefore be

(A.M. )^,
of circle-sector = -—- — = ——

. . (3)

where 6 is the angle at the centre.

(ii.) (A.M.)p of a circle w.r.t. a point in the plane of the circle

and at a distance I from the centre.

By [163b] we have (A.M.)^ w.r.t. point

7rR4
R2^2 =

^\R2 + 2Z2);R,^=y5!±^'
. (4)

(iii.)
The second area-moment of a circle w.r.t. a diameter.

Since a diameter is an axis of symmetry, it follows that (A.M.)
w.r.t. any diameter is

(A.M.),
= (A.M.).= (A:^^

Hence,

(A.M.) of a circle w.r.t. a diameter = ''^^—
'^'~~'T > ^m,= -x (5)

194. General expression for (A.M.)^,.
Let be the pole and X (fig. 96) the initial axis of a system

Fig. 96.

of polar co-ordinates. 8(A.M.)^ of area-element NOQ must lie

between Z6 r^/4: and 80(r + Sr)*/4 (see preceding article). Hence,
in the limit

^i^^
=
^^,

and
{A.M.)^^lj%e

. [165]

195. (A.M.)p of a regular polygon.

The sector of an n-sided regular polygon is an isosceles triangle
whose angle at the vertex is a = 2Trjn radians. Let R be the
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radius of the inscribed circle, then the area of the triangle is

R'Un?.

Let the median of an isosceles triangle be taken as the fixed

axis and the vertex as the pole of a system of polar co-ordinates,

then the equation of the base of the triangle is r cos d = h^ where

h is the height of the triangle.

The (A.M.)p of the isosceles triangle w.r.t. the vertex is,

according to [165],

4!f"j?^ = |*r'tan^^.£tan^4^f2 I cos^^ 2 1 2 I

'

dO

00820

=!'(
3 + tan2^)tan^ . . . (1)

Hence, the second polar moment of an ?i-sided regular

polygon w.r.t. the centre is

(A.M.L = ^('3 + tan2'^Van- = A5_Y3 + tan25'\ . [1661

where A is the area of the polygon.
196. Second area-moments of an ellipse.

Let us determine (A.M.)^, i.e. the second moment of the ellipse
w.r.t. the major axis. Draw the auxiliary circle (article 43), and
let the ordinate to the circle be y^, and that of the ellipse be y,

then 8(A.M.)^ of the circle is 2x^y-^y\, and that of the ellipse
is 8(A.M.), = 2x Sy y'^, but y^ : y :: a : b; hence, 8(A.M.)^ =

63/a38(A.M.)^. But we have found that the second moment of

a circle w.r.t. a diameter is 7rR*/4. Hence, the second moment
of the ellipse w.r.t. the major axis is,

(A.M.), = 7raiV4
=

Ai2/4, and (A.M.)^
=

7ra36/4
= Aa2/4 (1)

Hence, the second polar moment of an ellipse w.r.t. its centre

4 4 4
(A.M.),

=
A^'+ Ai = A<^'. . . (2)

197. Approximate determination of the second area-

moments.
Let the problem be to find the second area-moments of the

area enclosed by figure B C D E (fig. 97). E = ^.

In the limit, hk = yhx is a rectangle; we must therefore



AREA-MOMENTS. 251

determine the second area-moment of a rectangle w.r.t. its base.

Let h be the height and h the base of the rectangle, then

(A.M.) of a rectangle w.r.t. the base

=
2*«y3''

=
«>/V^2'=y

=^ . . [167]

Hence, the general formula3 for the second area-moments of an

area, as fig. 97, are

(A.M.).
=
;2|'8^

=
1|W^

. . [168]

and {kM..)y=^ylxx'-={\xHx . . [169]

When [168] and [169] cannot be integrated we may determine

the area-moments by Simpson's rule.

lift

Fig. 97.

(i.) To find (A.M.)a. we must substitute y^jZ for y in [99].

Hence, (A.M.).
=
^Lo^ + yi„ + 422^l-i + S^k] • (1)

; "L r=l r=l -•

(ii.) To find (A.M.)^ we must substitute yx^ for y in [99]. The
values for x are : x=^h^ x = h^ x = 1h . . . ,

x = Ink. Hence,

(A.M.),
=
^T(27i)2y,„

-F 42(2r
-

1)^2.-1 + 22 (2r)VJ (2)
«^ L r=l r=l -I

198. Second-radius ellipse.

Let (A.M.)j and (A.M.)2 be the second moments of the area

enclosed by a plane figure w.r.t. any pair of rectangular axes

through a given point in the plane of the figure. By [162] we
have (A.M.)p

=
(A.M.)i + (A.M.)2, or if A be the area, (A.M.)^

,= Ap2 = AIlf-f-ARi.

Hence, Rf + E| = p2 . . . . (i)
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where p is the second mean radius w.r.t. point 0, R^ and Rg the

second mean radii w.r.t. the axes of y and x respectively.
Let a and h be the maximum and minimum second mean radii

w.r.t. point 0, then

a2 + ^,2 = p2 = R2^R2 ... (2)

Let A, and Bj (fig. 98a), be equal to a and h in magnitude as

well as in direction, then the rectangular axes X X and Y Y, which

contain a and b respectively, are called the principal axes of the

area through the given point 0. Let now the problem be to

Fig. 98a.

determine the second mean radii F = Rj and D = Rg along a

pair of rectangular axes, X^Xj and YjY^, inclined at an angle $^
to the initial axes X X and Y Y.

By article 5 x^
= x cos O^ + p sin 9^ ,

and y^
= y cos 0-^-x sin 0^

Hence, the second moments w.r.t. the new axes are

RiA = 2,^^ ^1 =2 ^^(-^^ ^^^ ^1 + y^ sin2 0^ + sin 26 xy)

= ka^ cos2 e^ + A62 sin2 6^ + sin lO^lk xy

R?A=21^Ayf = Aa2 8in2 0i + A62cos2^i-sin2^i2^^^y
Differentiating (3) w.r.t. 6^ we get

A^'
= - 2Aa2 sin 0^ cos 6^ + 2A62 sin B^ cos 6^

+ 2cos2^i2^^^y

As maximum (A.M.) = Aa2, then ^i
= must make (5) equal to

zero.

(3)

(*)

(5)
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Hence, ^f^"^ ^y = Oj ^^'^ instead of (3) and (4) we get

Ilf
= a2cos2^i + 62sm2^i . . . (6)

R2 = a2sin2^i + Z>2cos2(9i ... (7)

Comparing (6) and (7) with the condition found in article 38, it

will be seen that the straight lines E D and E F are tangents to

the ellipse whose semi-axes are a and b
;
the circle of radius p

and with centre at point is the director-circle of the ellipse.

Hence, if the principal axes of a given plane figure w.r.t. a given

point be known, then—having constructed the ellipse whose

semi-axes are a and b—the second mean radius through in any-

given direction may be determined by drawing a tangent to the

ellipse at right angles to the given direction, the length of the

perpendicular drawn from to the tangent is the length of the

required mean radius.

The ellipse is known as the ellipse of gyration, or the inertia-

ellipse. The first name implies a whirling of the plane figure
about some axis, and the second name implies the presence of

mass. Hence, both expressions are erroneous, and I have there-

fore called the ellipse the second-radius-ellipse.

The ellipse shows that the second moments w.r.t. axes through

any point in the plane of the area are symmetrical w.r.t. the

axes of the ellipse, although the plane figure may have no axis of

symmetry.
(i.) When the plane figure can be divided symmetrically by a

straight line through point 0, that line contains one of the axes

of the second-radius-ellipse ;
because the second moments referred

to any two straight lines, through point and symmetrically
situated w.r.t. the axis of symmetry, are equal.

(ii.) When the plane figure has no axis of symmetry through

point the principal axes may be determined by the following
method :

—
We commence by selecting two convenient rectangular axes

XjXj, YjY;, and a third convenient axis X2X2 (fig. 98b). We then

determine the area. A, of the plane figure, and the second

moments referred to the three chosen axes.

Let the rectangular axes X X and Y Y be the principal axes
;

Rj, R.,' ^"^^ 1^3 *^^ second mean radii along X^Xj, Y^Y^, and XgXg
respectively, B^

= angle X X^ and 6^
= angle X Xg.

6-^
and 6^ are unknown, but ^2

-
^1
= y is known. We have now

Rf -F R| = p2 ;
and by (6) we have

R2 = a2cos2^j + 62sin2^i ... (8)

R2 = a2cos2^2 + ^^sin2^2 • • • W
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As 6*«»p* -a^ we obtain by eliminating a^ between (8) and (9)

COS 2^1 _ 2Ri - p2 + p^ cos 2^1 .^q.

0082^2 2R^-p'-^ + p'^cos2^2

'

and as dj
-

^1 + y we have

^

(2Rf-p2)8in2y
'

By (8) we have

a2 = 5LUe!^!^, and i^^^p^-a^ . . (12)
cos 2^1

Example.—Find the po^ncipal axes through the centroid of the

Z-shaped figure shoum in fig. 98c.

The flanges are 7*5 ins. x 2 ins. ; the width of the web = 1 in.,

and the height of the figure
= 14 ins.

Solution.—The area of the figure will be found to be, A =
40 ins.^

y = 45*, sin 2y = 1, cos 2y = 0.

Rf =
o/7-5x73 6-5x53\

40

R^ =
^/2

X 73 5 X (0-5)3\

V 3
"^

3 J

40

= 29J ins.^

11-444 ins.2

Hence, p2 = R2 + R2 = 40-78 ins.2
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The (A.M.) w.r.t. XgXg is easily determined; we have to

calculate the (A.M.)s of three isosceles right-angled triangles w.r.t.

their respective hypotenuses. If h be the height of such a

Fig. 98o.

triangle, the (A.M.) referred to the hypotenuse will be found to be

^Y6. We have now

RI = P^

,r(7-5sin45°)4 _ (4-5 sin 45°)^ (2 sin 45°)^16 6
*"

6 J
40

= 40-78 -5-77 = 35-01 ins.2

_ 9"p)2 j_ 2

tan 2^1= ^^7_ 2^

= -58° 32'. Hence, ^i= -29° 16'.

29-333- 40-78 sin2 29° 16'

cos 58° 32'
= 37-52 ins.2; h'^ = p^-a^ = ^'2Qu

a = 6'13 ins.; 6 = 1-81 ins.; maximum (A.M.) = Aa2= 1501 ins.*

minimum (A,M.) = A62 = 130-4 ins.*



CHAPTER XXXII.

MOMENTS OF INERTIA.

199. I of bodies of revolution.

We will now proceed to determine the moment of inertia of a

homogeneous body of revolution w.r.t. its axis. The mass
contained in unit volume is denoted by m and the total mass of

the body by M.

A.—Solid cylinder.
—Let H be the height and R the radius of

the cylinder. The mass of a hollow cylinder, whose inside and
outside radii are r and r + ^' respectively, is 8M = lirr 8r Hwi and
its moment of inertia is 81 = SMr^ = 2Trr^ hr Hm. Hence, in the

limit

— = 27rHm?^, and I = 27rHm fV (^r = M R2/2 . [170]

B.—Hollow cylinder.
—Let Rj and Rg respectively be the inside

and outside radii of the cylinder. The mass of the body
=

7r(R| -Ri)Hm = M, and I = the moment of inertia of the solid

cylinder with the radius Rg minus the moment of inertia of the

solid cylinder with the radius Rj, or

I = 0-57rHm(R*
-
Rl)

= 0-57rHm(R2
-
R2)(r2 ^ j^2)

= 0-5M(Ri + R?) . . . [171]

The radius of gyration of the solid cylinder is R/^2, and that of

the hollow cylinder is 7(Ri + R^)/2.
C.—Any body of revolution.—Let the curve (fig. 99) whose

equation is y=f{x) be the meridian-curve of the body. Two
planes, both at right angles to the axis and at a distance ^x apart,
cut off an elementary portion of the body which is bounded by
two circles whose radii are y and y + ^y respectively. 81 will

lie between O-biryhnhx and 0'bTx{y + hyYm^x, or in the limit

^ = 0-5?ryX and I = 0-57r;yifV^^ • • [172]

256
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Fig. 99.

D.—Sphere.
—The equation of the great circle is x^-^y'^

= W.
Hence, by [172]

iry*6^a;
=
^7rmR5

= 0-4ME,2 . . [173]15

E.—Spheroid.
— See article 125, the volume of the spheroid

4 4
~Tra%

; hence, M = -Tra%m.
o o

1 = -bTrm r^^dy = O'^Trm^^ ^^^ + y^- 2h'^y^dy
J-b oV-b

15

F.—Cone.—Let H be the height of the cone and R the radius of

the base. See article 120, the volume of the cone = JttR^h and
therefore M^^TrR^Hm. A plane parallel to the base and at a
distance x from the apex cuts the cone in a circle whose radius

my.
But y/R = x/R ; hence.

I = 0'57rm
jo H^"

rf^ = 0-3MR2
[174]

G.—Approximate determination.—The integral in [172] can be
determined approximately by Simpson's rule. Divide the height
H into an even number of equal parts of length h. Measure the

lengths of the ordinates y^, y^ . . . y^n- Then,

(r=n
r=n~\ .

yl-^yL-^-^^ylr-i^'^^ytr) . [175]

17
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Example.—A homogeneoits body of revolution is 10 feet high.

The lengths of the ordinates of the meridian-curve per foot i^un of the

axU are given in the table below. Find I of the body w.r.t, its cuds.

y«.
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centreid, and (A.M.)^, that of a section at distance x from the

apex and parallel to the base. As the dimensions of area-

moments are [L]4, it follows that (A.M.);, : (A.M.)^ :\x^\W; but

8I= (A.M.);, S^m;
/•H CA M ) /""

hence, I = m| (A.M. )'j1x
= m ^

lr± I
^^^^

Jo H* ^0

=^0'2mAUlR = 0'QMRl . [177]

Example 1.—The base of the right cone is an ellipse. By article

196 (A.M.)p of an ellipse w.r.t. the centre is K{a'^ + b^)j^ ; hence,

R^ = (a2 + 62)/4, and
I = 0-15M(a2 + 52).... (1)

Example 2.—I of a regularpyramid. By article 195 (A.M.)^ of

a regular polygon w.r.t. its centroid is

Hence, by [177]

I =
0-2mA5!('3

+
tan2!!:jH

= O'lU + tan^-W W- . [178]

202. Parallel axes.

Let the moment of inertia I^ of a solid about a certain axis be

known, and let the problem be to find the moment of inertia I of

the solid about a second axis which is parallel to and at a distance

I from the first axis.

Fig. ^95 represents a section through the solid at right angles
to the two axes. C and are respectively the points at which
the first and second axes meet the section. An elementary
cylinder, which is parallel to the axes, is cut by the plane of

the section at B
;
the mass of the latter cylinder is 8M. We

have now 5Ii
= 8Mr? and SI = aMr2, but r'^=^r\ + l'^ \-2r^lQ0^e^;

hence, 81 = 8M r? + 8M ^2 + 2/ 8M r^ cos
6^,

or I = Ii + MZ2 + 2^2(SMr^cos^i) . . (1)

But y,(8MrT cos^i) is the first mass-moment of a solid w.r.t. a

plane containing the first axis and intersecting C at right

angles. The point about which all the first mass-moments of a

body are zero is called the centroid, or mass-centre, or the

inertia-centre of the body (see Chap. XXXVI.). Hence, when the

first of the given axes passes through the mass-centre, then
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or in words : The moment of inertia of a solid w.r.t. any axis is

equal to the moment of inertia of the solid w.r.t. the axis, which is

parallel to the first one and which passes through the mass-centre,

plus the mass of the solid into the square of the perpendicular

distance between the a^es.

Example 1.—To find 1 of a pendulum. The pendulum of a

large clock consists of a long thin rod of length I suspended at

the upper end and joined to a large sphere of radius R at the

lower end. The total length of the pendulum is thus / + 2R.

The moment of inertia I of the suspended pendulum is equal
to the moment of inertia I' of the rod w.r.t. the axis of suspension,

pltis the moment of inertia I" of the sphere also w.r.t. the axis of

suspension.
The elementary moment of inertia, at a distance x from the

axis, of a thin rod suspended at the one end is 81' = aSx m'x^, where

a is the area of the cross-section of the rod.

Hence, r = am'Cx'^dx = am'iy3 = M'iy3 . . [180]
Jo

The I of a sphere about a diameter is by [173] equal to

0*4M"R2. The axis of suspension is at a distance l + R from the

centre of the sphere; hence, by [179] we have r' = 0'4M"R2

+ M"(^ + R)2; and I of the pendulum = M72/3 + 0-4M"R2

+ M"(/ + R)2.
Example 2.—To find 1 of a homogeneous cylinder of revolution

ahout an axis through the mass-centre and perpendicular to the axis

of the cylinder.
Two parallel planes, at right angles to the axis of the cylinder

and at a distance hx apart, enclose a thin slice of the cylinder.
The limiting value of the moment of inertia of this thin slice

about the diameter which is parallel to the given axis is, by
article 193, 8Ij

= -Ki^m Bx/i, where r is the radius of the base of

the cylinder. But the slice is at a distance x from the given
axis; hence, the moment of inertia of the slice w.r.t. the given
axis is, 81 = in^m Sx/i + ttt^Sx mx^. Let H be the height of the

cylinder, then the required moment of inertia is :

'+H/2 Q^2 I TT2/•+H/2
. (rV4
J -H/2 12

203. I of flywheel-rims.
A flywheel is a wheel of large diameter, having a rim of

considerable mass, which moves at a great speed. The moving
rim is the seat of a large quantity of kinetic energy, which can be
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augmented or diminished without causing an appreciable variation

of angular velocity. The rim must therefore have a considerable

moment of inertia.

Let fig. 100 represent the cross-section of the rim through the

axis of rotation, and let O be the centroid of the section. We
will choose a set of rectangular axes through ;

OX being

perpendicular to and Y parallel to the axis of rotation. A
plane at distance y from X and perpendicular to the axis of the

wheel cuts the rim in a circle-ring, whose outside and inside radii

are R + a; and R -^ respectively, R being the radius of the circle

which point describes when the wheel rotates. The (A.M.)^

\?^ <?-

Fig. 100.

of the circle-ring is 7r(R + a-)4/2
-
7r(R

-
a;)72 (see article 193)

or (A.M.)p
=
47rR^(R2 + a;2),

and 81 = (A.M.)^^^^^. Hence, the

moment of inertia of the flywheel-rim is

\TrV.m\x(p^x^)dy [181]

Itwhere ^w is the width of the rim measured along the ^-axis.
is understood that the co-ordinate axes are axes of symmetry.

X in [181] is often very small in comparison with R, and x'^

may in such cases be neglected. The integral in [181] is then

R2A/4, A being the area of the cross-section, and we have
I = 27rR3Am, but by article 128 V = 27rRA, and therefore

M = 27rRAm.

Hence, I = MR2 [182]

or in words : When half of the depth of the rim is very small

compared with the radius of the circle described by the centroid of
the cross-section of the rim^ then we may approximately consider the

mass of the rim as concentrated at the centroid.

A.—The cross-section is a rectangle.
—Let t be the depth of the

rim, then x in [181] is constant and equal to ^/2.



262 MECHANICS.

Hence, I = 7rR<m(4R2 + t^)rdy = 7rR^m(4R2 + t^)w.

But V - 2irR2wt
; hence, ^

I = 0-25M(4R2 + ^2)^

and when t^ is very small compared with 4R2, then

I = MR2.

We may also consider the rim as a hollow cylinder with radii

rj and r^. I of the rim is by article 199

I = 0-5M(ri2 + r22).

The latter result will also be obtained by substituting (r^ + ^2)/^
for R, and (r^ -r^) for t in the above formulae for V and I.

B.—The cross-section is a circle.—The equation of the circle is

ar2 + y2
_

^2^ ^^d therefore w = r.

Hence, I = 87rRm rx(R'^ + r^- y'^)dy

or, approximately,

I = 87rRm(R2 + r2) {\ dy = M(R2 + r2).

C.—The cross-section is an ellipse.
—When the major axis is

parallel to the axis of the wheel, the equation of the ellipse is

^^ + ^^=1, and x^ = b4l-t\^ and w = a.
0^ a^ \ a?')

Hence, I = 87rRm {''x{w + b^- -^yAdy,

or, approximately,

I = 87rRm(R2 + 62) r^c dy = 27rRm(R2 + b^)A = M(R2 + 62),
Jo

where A = irab is the area of the ellipse.
When the minor axis is parallel to the axis of the ring we

must substitute a for 6
;

hence, I = M(R2 + a2).



CHAPTER XXXIII.

EQUILIBRIUM OF FORCES.

204. Sesultant of parallel forces.

The force-polygon of a system of parallel forces is a straight
line parallel to the given forces. Hence, the magnitude of the

resultant of a system of parallel forces is equal to the algebraical
sum of the forces.

Two parallel forces and their resultant are obviously coplanar
forces. In determining the resultant, we must consider separately
whether the forces act in the same sense or in opposite senses.

/

/'B _,-'''/
/

(i.)
The ttoo parallel forces act in the same sense.—Let Pj and

Pg (fig. 101) be the two given forces, and AB the line of action

of their resultant, R. The problem is to find the position of A B.

Take any convenient point in the plane, and let
r^, r^, and

r be respectively the perpendicular distances of Pj, Pj, and A B
from 0. The two given forces and - R = -

(P^ -f p^) must
balance. Hence, the algebraical sum of their torques about an
axis through and perpendicular on the plane must be zero

(article 186), or

Pi^'i + ^'f^
- R^ = 0, or Pi(ri

-
r) + V^{r^

-
r)
= 0.
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The torque Vp of the two forces of the couple is called the

torque of the couple, and is the product of one of the parallel forces
into the lever of the couple.
A couple is not determined by the positions and magnitudes of

its two forces, but by its torque and the position and the direction

of its axis.

It has been shown that the torque of the couple is Vp
—

P(rj
-

r<^),
where r^ and rg are respectively the levers of the

two parallel forces w.r.t. any axis parallel to that of the couple.

Hence, the torque of the couple w.r.t. any axis parallel to the

axis of the couple is constant. Hence, it follows that :

(i.) Couples are parallel when their axes are parallel ;

(ii.) Couples are equal when their torques are equal ;

(iii.)
The resultant couple of any number of parallel couples is

parallel to the given couples, and its magnitude (torque) is equal to

the algebraical sum of the magnitudes (torques) of the given couples ;

(iv.) If the body on which the couple is applied can only turn
about a fixed axis, the couple may be moved parallel to itself

without disturbing the rotary motion. Hence, when a system of
forces, containing couples, is balanced, one or more of the couples

may be moved parallel to themselves ivithout disturbing the

equilibrium {see also article 222).
206. Resolution and composition of couples.
As a couple possesses magnitude (torque) and swing-direction

Y
Fig. 103.

it may be represented by a straight line, whose length is pro-

portional to the torque. It is conventional to draw the line

from the centre of the lever along the axis of the couple and in

such a sense that, looking from a point on the line towards the
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plane of the forces, the couple shall be seen to turn in the anti-

clockwise direction.

In fig. 103 C D is the axis of a couple making an angle a with

the zaxis of a system of rectangular space-co-ordinates. The axis

of the couple is contained in the arz-plane, and the couple is

turned so that its two forces, P, are perpendicular to the a:z-plane.

It will be seen that the forces P produce a torque P(A K -i- E B)
« Pp cos a about the z-axis, and another torque P K E = Pjo sin a

about the x-axis. But as C D oc Pjo we have, H D oc Pjo cos a and
C H oc Pjo sin a. Hence, the couples Fp cos a and Vp sin a are the

components of Pjo in the directions of the axes of z and x

respectively; and, conversely, Vp is the resultant of Pjocosa
and Pjosina. Hence, couples as represented hy their axes are

compounded amd resolved like vectors. We have thus, the

triangle, the parallelogram, the polygon, and the parallelopiped
of couples.

207. EcLuilibriuin of coplanar forces.

The resultant of any given system of coplanar forces may be

found by the method described in article 153. Let the number of

the given forces be n and let Rj be the resultant of the n-\ forces,

then the resultant R of the whole system is the same as that of

Rj and P„. There are four different cases to be considered, viz. :

(i.) Rj and P„ are equal and parallel forces acting in opposite
senses but not in the same straight line. The given system has no

resultant, but is reduced to a couple whose torque is T. The

given system will be balanced by adding a couple (
-
T) whose

axis is perpendicular on the plane of the system.

(ii.) Rj and P„ are equal and parallel forces which act in opposite
senses and in the same straight line. The given system of forces

is balanced.

(iii.) Rj and P„ are either wnequal and parallel forces, en' equal
and parallel forces acting in the same sense. The system has a

resultant parallel to P„.

Equilibrium will be established by adding a force
(
- R) in

the line of action of R.

(iv.) Rj and P„ are not parallel. The given system has a

resultant, and balance is obtained as in
(iii.).

We might also choose a pair of rectangular axes, as in article

154, and resolve the given forces in the directions of the axes.

Let
ttj, ttg,

. . . a„ be the positive angles which the respective
forces form with the positive direction of the a;-axis. The

components of the given forces parallel to the a;-axis are

PjCOSttj, PgCOSttg, . . . P„cosa„; and those parallel to the

y-aiis are, Pj sinaj, Pgsinag, . . . P„sina„. The components
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are positive or negative according as cos a and sin a are positive
or negative. Let there be an axis, the z-axis, through the origin
and perpendicular on the plane of the forces. Each force P cos a

produces a pressure on the z-axis and a couple ( -y Pcosa) about

the latter axis. Similarly, each force Psina produces a pressure
P sin a on, and a couple xV sin a about, the z-axis. Hence,

the total pressure on the z-axis along the x-Sixm is = ^P cosa = X,

and,

the total pressure on the z-axis along the y-axis is= y,Psina= Y.

The torque of the resultant couple about the z-axis is

y.-yPcosa-h y,arPsina=T.

(a) The given system of forces is balanced when X =
0, Y = 0,

and T = 0.

(yg) T = but X and Y are not zero.—The system is reduced

to a single resultant R, = ^^X^ -|- Y^ which passes through 0, and
forms an angle with the positive direction of the -r-axis,

tan^ = — . To balance the system a force R through and
A.

forming angle (^-180) with the positive direction of the a;-axis

must be added.

(y) X =
0, Y = but T not zero.—The system will be balanced

by adding a couple
-
T, whose axis is parallel to the z-axis.

(8) Neither X, Y, nor T are zero.—The given system of forces

can be reduced to a single resultant R which does not pass

through 0. To find the line of action, A B, of the resultant we

proceed as follows : Let r be the length of the perpendicular let

fall from upon A B, then rR = T or r = T/R. As we know the

direction and sense of R= ^X^-i-Y^, AB can be determined.
The given system of forces will be balanced by adding the force
- R along A B.

208. Link-frames.

By a link-frame is understood a plane polygon consisting of
straight bars connected by frictionless movable joints.

Fig. 104a represents a triangular link-frame with three forces

Pj, Pg, and Pg acting respectively at the three joints and in the

plane of the frame.

The lettering of the frame and the forces may be done as

shown in fig. 104a. It will be seen that every bar has a letter

to its right and left, which is done for the purpose of naming it.

The bars are named thus : A, OB, and C. As every force
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has also a letter on each side they may be named — when

following the clockwise direction—A B, B C, and C A, instead of

of Pj, Pj, and Pg. Finally, the joints are named respectively

OAB, OBC, andOCA.
Resolve each of the forces Pj, Pi^'

^"^ 1^3
^^ ^^^ directions of its

adjacent bars. The given forces will obviously be in equilibrium
when

Si + S,
= 0; S2 + S,

= 0; S3 + S,
=

. . (1)

Let us choose any convenient point (fig. 104b), and draw the

three straight lines OA, OB, and OC respectively parallel to

the bars OA, OB, and OC in fig. 104a. Next set off to

scale 0A = S4= -Sj; 0B = S2= -
S^, and 0C = S6= -Sg, then

AB =
Pi, BC = P3,andCA = P2.

To find whether three given coplanar forces Pj, Pg, and Pg are

balanced, we proceed by drawing the polygon of forces A B C A
(fig. 104b), then choose any convenient point and draw lines

OA, OB, and OC. Then, through any point 1 in the line of

action of Pj (fig. 104c), draw a line 1-2 parallel to A and meeting

Pg at point 2
; through point 2 draw a line parallel to C and

meeting Pg at point 3
; then, through the latter point, draw a line

parallel to B. If the latter line meets P^ at point 1, then the

three given forces are balanced, as in fig. 104a. If, however, the

straight line through point 3 and parallel to B does not meet

Pj at point 1, as in fig. 104c, then the three forces are not

balanced, but produce or tend to produce a rotary motion, whose

torque is joPj. By adding a fo^ce equal to and parallel to P^ at

point 4, and a force - Pj at point 1, the system of forces will be
balanced.

This method of examining a given system of forces may be
extended to any number of coplanar forces. The system is called

graphic statics.

The diagram (fig. 104b) is called the force-stress diagram,
because it consists of the polygon of the external forces, and at

the same time serves to determine the pull or push which take

place at the ends of each bar.

It is obvious that if three coplanar forces are balanced they
must meet at one point, as in fig. 104a. But if the three forces

are not balanced they will not meet at one point, as in fig. 104c.

209. Reciprocal figures.

When n coplanar straight lines radiate from a point 0, and
an n-sided polygon be drawn, whose sides are parallel to or

perpendicular to the corresponding lines through 0, then the

polygon is called the reciprocal for point 0.
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Thus the polygon of a number of balanced forces, passing

through one point 0, is the reciprocal for point 0.

In fig. 104b, triangles OAB, OCA, and OBC, are reciprocals

Fig 104b.

Fig. 104g.

for joints OAB, OCA, and OBC respectively ; hence, the force-

stress diagram (fig. 104b) is the reciprocal force-diagram for the
frame in fig. 104a.

210. The method of sections.

If the external forces acting at the joints of the link-frame (fig.
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105) DA, DB,and DC are balanced, equilibrium will not be disturbed

by cutting the bars D B and D C, provided that the necessary
external forces be added at the points where the bars are cut

;

the two latter forces and force B C must balance, but only B C is

known. As, however, the resultant of any two of the three

forces acts in the line of the third force, we may choose any
convenient point, 0, in the line of action of one of the unknown

Fig. 106.

forces, say DB, as fulcrum, and measure the lengths of the

perpendiculars, Pj and p^^ let fall from point on the forces B C
and C D respectively. We have thus,

Hence,

jOj
X force B C =/?2 x force C D.

force C D=^x force BC.

By this process, known as the method of sections^ all the internal
forces in the bars may be determined.



CHAPTER XXXIV.

^

MACHINES.

211. Definition.

A machine is a contrivance hy which energy is transmitted from
one point to another while undergoing a required modification.

212. Efficiency—Mechanical advantage—Velocity-ratio.

Any machine, however complicated, is a combination of one or

both of the two elementary machines : The lever and the inclined

plane. The pulley and the wheel and axle are examples of levers
;

the screw and the wedge are both modifications of the inclined

plane.
The energy received by the engine or prime-mover is converted

by the latter into energy of a suitable kind and then transmitted

by machines to the point where it is to be utilised, whether it be

in the lifting of weights, the working of materials, etc. The

energy-equation for such a system of machinery is —
Energy received by prime-mover = energy available + energy

lost in the machinery.

The ratio ^
,
—z- is called the eMciency of the system

energy received

of machinery, and is always less than unity, as it is impossible
to avoid losses however well the machinery may be designed.
Each elementary machine receives energy from the preceding
one and delivers energy to the following one. Let

rj^, rj^,

etc., be the efficiencies of the respective elements of a series

of machines, and E the amount of energy received by the first

element. The amounts of energy delivered by the successive

elements are t/^E ; r;2(^iE) ; rj^{rJ2rj-^^)
.... Hence, the efficiency

of the series is v = Vi'r)2V3-
• • • or, the efficiency of a series of

machine-elements is equal to the product of the efUciencies of the

respective elements.

Let P be the effort applied at the receiving end of the machine,W the load or useful resistance to be overcome at the other end
271
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of the contrivance, H and h corresponding displacements of P
and W respectively, then

— »
)3 is called the mechaniccU advcmtage of the machine ;

TT

— = a is called the displacement-ratio, or, more commonly, the
h

velocity-^utio of the machine.

The efficiency of the machine is

Wh B

Let P, be the effort required to overcome W if there were no

waste, then the efficiency would be

'"=P^=i'
-

wr-
^"^ M=^  [^««]

Hence, the theoretical mechanical advantage is equal to the

velocity-ratio, and the efficiency of the machine is equal to the ratio

of the theoretical effort and the actual effort.

213. The screw.

The screw-line or helix is the curve of least distance between
two points on the surface of a cylinder of revolution. Hence, if

the cylinder be rolled off, the helix will appear as a straight line

inclined towards the base of the cylinder. The angle of slope is

called the pitch-angle, and the rise corresponding to the length of

the circumference of the base is called the pitch.

When the screw is applied as a machine to lift weights, the

screw-jack, we may take it that the load is equally distributed

over the bearing-surface of the screw, and hence, we may consider

the load as being concentrated at one point on the screw-surface,
situated on the mean-helix. The screw as a machine may thus

be considered as an inclined plane.
Let D and d be respectively the external and internal dia-

meters of the screw, p the pitch, and 6 the pitch-angle.
The mean diameter corresponding to the mean helix is obvi-

ously d^ = {T> + d)l2, and the slope of the inclined plane is

tan 6 =p/Trdm.
214. Pulley and belt.

To enable the belt to drive the pulley the tension, Tg, at the

point where the belt leaves the pulley must be greater than the

tension, Tp at the point where the belt meets the pulley. The

driving force of the belt is thus Tg
-

T^, and if the velocity of the

belt be v, the driving power of the belt is obviously (T2
-

T^)-?;,
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If Tg and Tj be expressed in Ibw. and v in feet per second, the

horse-power transmitted by the belt is (T2
-

Tj)'y/550.
If D and d be respectively the diameters of the pulleys on the

driving and driven shafts and no slipping takes place, the angular

velocity-ratio of the two shafts is djT).
To prevent slipping the total force of friction between the belt

and the face of the pulley-rim must never be less than Tg
-

Tj.

Fig. 106 represents a pulley and belt, A BCD being the arc em-

braced by the belt. A B is an arc subtending angle 6, and B C is an

element of length 8s subtending angle B C = S^- If the total force

of friction between the belt and the arc A B of the rim be F = /a^,

Fig. 106.

then slipping will just be prevented when 8T = 8F = ixhpi where Zp is

the resultant of T and T -\- 8T. If the tension at B and C were
both T, hp would be = 2T sin (80/2), and if the tensions at the two

points were both T + ST, we should have Sp = 2(T + 8T) sin (80/2).

Hence, 2T sin (8^/2)< 8j9< 2(T + 8T) sin (8^/2) ; hence, in the limit,

dp/dO= T.

Let w be the weight of unit length of belt, r the radius of the

pulley, and v the velocity of the belt. The belt-element B C will

require a normal force 8s, and the pressure between the belt-

element and the pulley-rim will be reduced to

g r

18

--vHO, and 8F = 8T
9

w
MOp - —V

9
Up - "^v^ 8e\ = fx(T BO - %2 8e\



274 MECHANICS.

Hence, in the limit, ^ =
A*(t

"
-v')

• - W
Integrating (1) we get

-^i-=/x dd, or ^=^y. . (2)

where y = angle A D.

The belt will be able to drive if the resistance Q reduced to the

pulley-rim is equal to or less than the friction between the belt

and the rim, or

T,-T, = Q .... (3)

By (2) and (3) we have

T, = -5^ + !ft.2 and Ti
= --5_+!f„2 . [186]

e^i-l 9 e^^-1 9



CHAPTER XXXV.

CENTROIDS OF PLANE FIGURES.

215. Centroid of a plane curve.

The first moment, S(s.m.), of an arc-element w.r.t. the a?-axis is

ySs, and that w.r.t. the y-axis is x8s (fig. 107).

Through a point C (a, ^), in the plane of the given curve,
draw two straight lines respectively parallel to the given axes.

Fig. 107.

The first arc-moments about the former lines are 2 (^
~

**)^^ ^^^

Let
x-^

and
^/i

^® "t^® co-ordinates referred to a pair of

rectangular axes having their origin at C and the a^^-axis forming
a positive angle 6 with the given .r-axis, then by article 5 we have

that x-a = x^ cos 0-1/-^ sin 0, and i/
- ^ = x^smO + 7/^

cos 6.

Hence, ^{^ -
a)8s

= cos O^x^Ss
- sin d^p^Ss,

and 2(^^
~

'^^^^
"^ ^^^

O^^x^^s + cos 0^ i/^Ss.

If we choose point C so that

^{x-a)Ss
= and ^{j/-f3)8s^O . (1)

then we have also 2a7j8s
= and ^yj8s = 0. Hence, the first

arc-moment ahov,t any straight line through point C is zero. The
275
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latter point is called the centroid of the plane curve; and its

oo-ordinates, a and j8, referred to the given system of co-ordinates

are determined by (1).

Hence, a = ^^:!
,

and J3=
^^^

,

where 8 is the total length of the given curve.

dx

we have,

a =
'l^,

,
and

f3=~'^
[187]

When the curve possesses an axis of symmetry the latter

contains the centroid. Hence, if there are more than one axis

of symmetry (circle, ellipse, etc.), the point at which the axes

meet is the centroid.

A.—Centroid of circular arc.—Let the equation of the circle

be x'^ + y^ = r^, and c the length of the chord. If the axes be
drawn so that the y-axis bisects the given arc, then the abscissa,

a, of the centroid is naught. We have that dj/Jdx
= -

xjy^ and
x= sjr-

-
ip".

/'=;J.Vi
+

r.2 yg
Hence, ^=,| yjx^^ldx^'l

B.—The student should now study article 134.

216. Centroid of a plane area.

The first area-moments of the area-element of a plane figure
w.r.t. to the axes of a system of rectangular co-ordinates are

y^a.m.\ = yhk, and l{a.m\ = xlk, where lk = lx^ (fig. 107a).
By the same process of reasoning as we adopted in the preced-

ing article we shall find that the plane area possesses a centroid
whose co-ordinates are

°-='^ =^^— ,
and ^=4^ =4^ t

[188]
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Any axis of symmetry contains the centroid. Hence, the

meeting-point of two or more axes of symmetry is the centroid.

The student is advised not to use the erroneous expressions mass-

centre and centre of gravity of a curve or of a surface^ which are

so often used instead of the term centroid. Neither a curve nor

a surface possesses mass
; hence, they cannot be subject to

Fig. 107a.

gravitation. The dimensions of the first area-moment are [L]^,
those of the first mass-moment are [M] [L], and those of the first

force-moment are [M] [L]^ [T]-^.
A.—Centroid of a triangle.

—The centroid must be situated on
the median BM (fig. 108); we have therefore only to find the

co-ordinate y8. Let 6 = D be the length of the base, li the height,
and E F =

•);.
The elementary area of the triangle is, 8A =

r; 8y ;

but
-q

: b :\ {h-y) : h.

Hence, 'q=r.h--y, 8(a.m.)^
= bySy-—y^ Sy,

{a.m.)^
=
bj^y dy - -I yHy -g-,andA

=
^.

Hence, (a.m.)^ _ h /2
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or the centroid it situated on the median BM at a dista/nce of § of
the height from the vertex.

B.—Centroid of a circle sector.—The radius OD = r which

bisects the angle at the centre of the given sector (fig. 109)
contains the centroid. The centroid of an elementary sector

must, according to the preceding proposition, be situated at a

distance §r from 0. Hence, the circular arc F M L, whose radius

16 §r, is the locus of the centroids of all the elementary sectors

Fig. 109.

between B and E. Hence, the centroid of the given sector is

the same as the centroid of the arc F M L, or, by the preceding
article,

., 0FFL _§r§c_2rc^~ FML ~
|s ~3 s

•

C.—Centroid of a circle segment.
—Let the segment be B D E B

(fig. 109). The centroid is situated on D at a distance 13 from 0.

Area of sector BDE = 05 rs; Area of triangle OBEO
= 0'5 cr cos -

;
where a is the angle at the centre.

{a.m.)^ of sector = r'^c/3 ; (a.m.)^ of triangle = cr^ cos^ -Is
; (a.m.)^

jn.)^ of sector minus {a.m.\ of triangle = 0^/12.

MC3_
2A

[area
of the segment.

of a trapezoid.
—The centroid will be found on the
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median K L at a perpendicular distance /3 from B E (fig. 1 10). Let

C D =
5, B E = <x, and area F H = 8A at a distance y from B E.

lk=\h^(a-h){\-'h 8y, and ^(a.m.)^.

-h
hKy = ayhy-^^^y'^hy

Hence,

{a.m.% = aj^ydy-^-j^y^dy-.
—h''; A =-^h.

Hence, ^~ A ~3{a + b)

'

L

Fig. 110.

^.—Centroid of a parabolic sector.—The sector B D (fig. Ill)
is bounded by the parabolic arc B, the abscissa OT> = d, and the

ordinate D B = 6 to point B. Area F H = 8A at a distance x from

0. Equation of the parabola is y'^
= iax. We have that

hk — yhx== 2ja Jx Sx
; 8{a.m.)y

= 8A x = 2»Ja xr 8x.

The ordinate of the centroid of SA is y/2 ; hence, S{a.m.)^
= 8Ay/2

= 2axSx. k = lbd; b'^ = iad.
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Henoe,

{a.m.),
- 2a rx dx =

^'; (a.m.),
= 2

J^j^^
dx = ficP.

Let the co-ordinates of the centroid be a and ft then

(a.m.)„ 3, JO (a.m.)^ 3,

F.—Centroid of a parabolic segment.
—The segment is bounded

by the parabolic arc B and the chord B (fig. 111).
For sector B D we have

(a.»i.)^=:-— ,
and {a.m.)y=lbd^.

For triangle B D we have,

, . bdb bH , . . bd2d bd'^

(a.m.). =--^-, and {a.m), =-- = -.

{a.m.)^ of segment = (a.vi.)^ of sector minus (a.m.)^ of triangle = —- .

(a.m.)j, of segment = {a.m.)y of sector minus {a.m.)^ of triangle =—= .

lo
... ^ 2bd bd bd
Area of segment =—— tt

= "^ •

o 2 o

„ bd^ 6 2d ,. bH 6 b
Hence, a =— — =— ; « = = - •

'

lb bd 5
' ^

12 bd 2

G.—Approximate determination of the centroid of a plane
figv/re.

—When the equation of the curve bounding the plane
figure is unknown the centroid may be found approximately by

Simpson's rule [99]. We have that (a. m. )„
= y,hkx=^, yx Zx,

V 1
and {a.m.\=^hk^

=
-^^y'^Zx (fig. 97). Hence, [99] may be

applied to determine (a.m.)y and (a.m.)^ by substituting yx,
and y2/2 for y respectively ;

the values of x being 0, h, 2h, 3h,
. . . 2nk.

Hence, (a.m.)y
= ^J2ny,„ + i^{2r- l)y.._i + 2^27J [189]" L r—l r=l -1

(a.m.)^ =
|[y?

+ yl, + i^^l., +
•P^yl']^

. [190]

^^(flLmO,^ p^(a^^ ^ ^^.^^ determined by [99].
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Example.—Determine the co-ordinates of the centroid of the plane

figure which is bounded hy the axes and the cui've, whose equidistant
ordinates are given below. The distance between consecutive ordinates

is h—2.

Suffix r
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Let Pit />2.
and p^ be the perpendicular distances between R and

Pj, Pj,
and Pj respectively, then p<^V2=PiVi+p^V^.

The area of fig. 113a is made up of three parallelograms whose

areas, from the left to the right, are respectively A^, Ag, and Ag,
and their respective centroids are the middle-points, Cj, Cg, and

Cj. The problem is to determine the centroid C of the whole

lyi

Fig. 113a.

V.



CHAPTER XXXVI.

MASS-CENTRE.

217. Mass-centre.

The magnitude and the point of application, C, of the resultant,

R, of the two given parallel forces, Pj and P2 (fig. 101), are obviously

independent of the angle which the direction of the given forces

makes with the line joining their points of application. Point C
is therefore called the centre of the two parallel forces. Hence,
a system of any number of parallel forces possesses a centre,

^
P

Fig. 114.

which is the point of application of the resultant of the forces,

and is independent of the direction of the forces.

We have seen that the weight of a particle is equal to the mass
of the particle into the acceleration of gravity, but the value and
the direction of the latter varies with the position of the particle
relative to other bodies, especially to the earth and the heavenly
bodies. The weight of a physical body is the resultant of the

weights of all the particles which constitute the body.
When the dimensions of a body are sufficiently small the

acceleration of gravity may be taken to be the same for all the

particles of the body, and we may consider the weights of the

particles as a system of parallel forces. The body possesses then a

weight-centre, generally called the centre of gravity (C.G.).
Take a system of three rectangular co-ordinates (fig. 114), and

283
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let the z-axis be vertical. We have then three planes of reference,

viz. the j;y-plane, the a:z-plane, and the y2-plane; a point P in

space is determined by (x, y, z). Let (a, y8, y) be the C.G. of a

body, M the mass, and W = M^ the weight of the body. The
moment of W w.r.t. any of the three planes of reference is equal
to the sum of the moments of the weights of the particles w.r.t.

the same plane of reference. Hence,

= ^y^', yW =
yM.g =^zmgy or

* =
~7M~

"
"IT" '

*°^ similarly P = -^^, y =—^ [191]

Hence, the position of the C.G. in the body is independent of

gravity, and only depends on the distribution of the masses of

the particles within the body. We may therefore use the term
mass-centre (M.C.) instead of centre of gravity.^
When the dimensions of the body, such as a mountain, are large,

then the magnitude as well as the direction of g vary with the

position of each particle. Hence, stLch a body possesses no centre

of gravity.
A body, however large, has always an M.C, see [191], but it

may not have a C.G. Hence, the term ^^ centre of gravity
^^

is

superfluous a/nd misleading, and the term ^^ mass-centre^^ only ought
to he adopted.

218. Mass-centre of a homogeneous body.
Let m be the mass of unit volume of a homogeneous body,

then w8V is the mass of a volume-element, xmW is the first

mass-moment of an element of the body w.r.t. the 2^2-plane, and
mV = M is the mass of the body. Hence, the co-ordinates of the
mass- centre of the body are

Z»'»SV_ "'Z-^V_Z^«V and similarlv
M mV V

^=^^-r=-^. . (1)

or the mass-centre of a homogeneous body coincides with the
centroid of its mathematical body.

' As the weight mg and the z-co-ordinate are both vertical, the moment zmg
would be zero

; hence, for the purpose of determining 7 we imagine the
direction of the weights horizontal

;
this will not alter the position of the C.G.

as explained in the present article.
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Hence, when the centroid of a mathematical body has been

determined, the mass-centre of the corresponding homogeneousphysical

body is also determined.

Any plane that divides the mathematical body into two

symmetrical portions contains the centroid. If there be two

planes of symmetry their line of intersection contains the

centroid, and if there be more than two planes of symmetry
the centroid is the point at which the three planes meet. If

a body has a centre (sphere, ellipsoid, etc.), that point is the

centroid.

A.— Centroid of a right cylinder.
—By a right cylinder is

understood a cylinder whose generators are perpendicular on

fhe ends.

The axis of a cylinder is the straight line joining the centroids

of the end-surfaces.
The volume-element of the cylinder is BY = h 8A, where A is

the area of the end-surface and h the height of the cylinder.
The first volume-moment about any plane containing the axis is

p SY =ph 8A, p being the perpendicular distance between 8V and
the plane. Hence, the distance p of the centroid from the

plane is

^ph8A _ ^p8A ^

^~ TA8A
~

A '

SA is the area-moment of the end-surface about a line

through its centroid
; hence, p

=
0, or the centroid of the cylinder

lies in the axis, and is obviously the middle-point of the axis of
the cylinder. The same rule holds for a right prism.

B.—Centroid of a body of revolution.—Any plane containing
the axis of rotation divides the body symmetrically. Hence, the

centroid of the body lies in the axis. Take any plane, Q, at

right angles to the axis as the plane of reference. At a distance

X from Q the sectional area of the body is A^, the volume-element

is 8V = A^ Zx, and the elementary first volume-moment is xA^ Zx.

Hence, the centroid of the body lies in the axis and at a distance

^y\x A^Zx
a =

^^'^'^^
from the plane of reference . (2)

C.—Centroid of a cone or apyramid.—The axis of the body is the

straight line joining the apex and the centroid of the base.

For the same reason, as explained in the present article, the

centroid of the body lies in the axis.
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By article 120 we have

^ A /-»„ ,
AH2 ,^ AH

hence, ^^^^^^-j^^dx^^lY 3-

Hence, a = iH . . . (3)

or the centroid of a cone or of a pyramid lies in the axis of the body

at a distance equal to j of the height from the apex.

D.—Centroid of a spherical segment (see article 123).

o

Hence, a^7r(\{r^-x'^)dx N =?^^^fZ^ . . (4)
Jr-h I ^ or- h

E.—Centroid ofa spherical sector.—The centroids of the spherical

segment and spherical sector are situated in the axis.

First volume-moment of sector = first volume-moment of segment
+ first volume-moment of cone.

Volume of sector,

y _ ^h\Zr -
h) '^h{2r

-
h){r -h) _ 2 ,,

3
"^

3 3
'

First volume-moment of sector

^ 7rh\1r-hf irh{2r
-
h)(r

-
h) 3(r -h) _ 'jrhr\2r

-
h)

4
"^

3 4
-

4
•

Hence. ^'^^^^^^A^r -
,, . . (5)

F.—Centroid of a paraboloid of revolution.—The paraboloid is

generated by the rotation of the parabola about its axis. As

plane of reference we will take the plane Q which is generated
by the rotation of the y-axis. Let y^ = iax be the equation of

the parabola and H the height of the body. At distance x from

Q the sectional area of the body is A^ = iry'^
= 4a7rr

;
SV= iairx Sx

;

V = irraTx dx = iairW
;

a; 8V = 4a7ra;2 hx .

Hence, a = 4a7r/^W^ /2a7rH2 = |H ... (6)
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G.—M.C. of a body determined by experiment.
—The M.C. of a

homogeneous disc with two flat end-faces may conveniently be
determined by balancing the disc on a knife's edge, in two
directions meeting at a point C on the lower face. The M.C. is

the middle-point of the vertical axis through point C. When
the two end-faces of the disc are parallel, point C is the centroid

of the face.



CHAPTER XXXVII.

EXAMPLES.

(95) (Q. Nov. 1908).—A circular pulley, moment of inertia I,

and radius r, is mounted on frictionless bearings. Over the pulley

hangs a light string carrying a weight P at one end and a weight

Q at the other. The system is in motion, and there is no

slipping of the string on the pulley. Find an expression for the

kinetic energy of the system when the angular velocity of the

wheel is w.

Find the values of the tension in the string when the weights
are 8 lbs. and 11 lbs., and the pulley is a disc of uniform thick-

ness weighing 10 lbs.

Solution.—Let M =
I/r^ be the mass of the pulley reduced to

radius r (article 185), Tj and Tg the tensions in the string between
P and the pulley and between the pulley and Q respectively.
We may consider the system as consisting of three portions

^ \i^jLS~t,r}^<^
Fig. 115.

(fig. 115), moving together with the same acceleration. The
whole system of the three masses is urged on by the effective

tangential force Q -
P, Q being greater than P, and the sense of

the motion is therefore that of Q. Let a be the acceleration of

the system, then

Q-P =
a('^ + M + ?

Hence, a =JS^^ . . . . (1)
Q + P + M^

'^ ^

The masses.of P and Q are urged on by the effective forces

Tj
- P and Q -

Tg respectively.
288
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Hence, T^-V = a?; q-T^ = a^.

Hence, T, =»:^^) L T, =P^) . . (2)1

Q + P + M^
2

Q + p + M^
^ ^

When the pulley is a disc, i.e. a solid cylinder of revolution,
and its weight is W, then

1=^ (article 200).

Hence M-^ T - P(iQ±ZL and T - Q(^P + ^) (S)Hence, M-_,
li-^^p^Q)^^'

and
i2-2(p + Q) +w ^'^^

Inserting the given values in (3) we get

Ti = 9 Ibws., T2 = 9| Ibws. (Ans.).

The three portions of the kinetic energy of the system are :

E;;. stored in the pulley = 0-5o>21, E;^ stored in Q = 0'5(rw)2Q/y,
and that in P = 0.5(ra))2p/^.

Hence,

total E, =
0-5co2('l

+ r''9±l\ =
^'[W + 2(Q + P)] (Ans.) (4)

(96) (Q. Nov. 1906).—A cylindrical drum weighing 40 lbs.

and having a radius of 1 foot and a radius of gyration of 9 inches

can turn without friction about its axis, which is horizontal and
in fixed bearings. A weight of 10 lbs. is attached to one end of

a string which is coiled round the drum. The drum is held with
the weight hanging freely, and is then let go so that the weight
falls, causing the string to unwind and the drum to turn. Find
the angle through which the drum turns in the first second after

the drum is let go.

P->

Fig. 116.

Solution.—Let W = weight of drum, r= radius of drum, M
= mass of drum reduced to the circumference, T = tension in the

string, and P = suspended weight. The weight of the string is

neglected.
The whole system is urged on by the constant force P

; hence,
the acceleration is constant. M is urged on by force T, and the
mass of P by force P - T

(fig. 116). Hence, T = aM and P - T =

aV/g. But Mr2 = R^W/^ (article 185).

19
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Hence, a.__-^-^-,
and

T=^^^^^
. (1)

Let 8 be the distance traversed by P and a the angle turned

through in time t, then

8 =a zafi •> —,—„ £^^o. t^ and a = - radians
2 2(Pr2 + WR;) r

2(Pr2+WRS) TV
^ ^^

The given numerical values are :

P=10 Ibws. ;
W = 40 Ibws. ;

r= 1 ft. ; R, = 0-75 ft. ; t=l sec.

T = 7 Ibws. (nearly) ;
a = 283' 45' (Ans.).

(97) (I.C.E., Oct. 1909).
—A double-armed swing-bridge revolves

upon a horizontal turn-table at the centre of its length, being
actuated by a chain-drum 32 feet in diameter. The two main

girders of the bridge, 180 feet in length, are spaced 30 feet

apart, transversly (centre to centre) and each girder has the

uniform weight of 10 cwts. per foot. Reduce the inertia of these

revolving girder-masses to the driving-point.

Solution.—Let w be the weight of each girder per foot run,
D the diameter of the drum, d the distance between the centre-

lines of the girders, and 21 the length of each girder.

Considering each girder as a thin rod of mass w/g per foot run,
we may proceed to determine the moment of inertia of each

w.r.t. a vertical axis through the centre, the mass-centre, of the

girder. The mass of a length 8x of the girder is

-8x, and 8I = -Sxx\ Hence, I = 2-Cx^dx=--l^ (1)
9 g

'

g]o Zg
^^

The total mass of each girder = 2wl\g. Hence, by article 202
the moment of inertia of the two girders w.r.t. the axis of the

drum is

2x|!^^3 + 2^2^? = i^(4^2 + 3^2)^ . . (2)
^g g ^ ^g

Let M be the mass of the girders reduced to the driving-point,
then

M — = -5— (4/2 + S(P) l,orM. = ~ ~— I gravitation units (3)^ o g o g D^

w = 0-5; 1 = 90; d=SO; D = 32.

Hence, M = 2057 tons (Ans.),
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(98) (I.C.E., Feb. 1906).—A flywheel weighing 10 tons, whose
radius of gyration is 5 feet, rests on bearings 10 inches in

diameter. If the coefficient of friction of the axle and bearings
is 0'006, find the constant moment which must act upon the

wheel to get up a speed of 20 revolutions per minute in one
minute.

Solution.—Let W be the weight of the flywheel, T the required
constant torque or moment which must act on the wheel to get

up a speed of n revs./s. in time t, and d the diameter of the

bearings. The force of friction is W/x and its torque is W/x c?/2,

which latter is also constant.

Reducing the tangential forces to a point at distance R^ from
the axis we have as in a translating motion : the effort = the

resistance plus the accelerating force. Multiplying the latter

equation by R^, we have : the torque of the effort is equal to the

torque of the resistance plus the torque of the accelerating tangential

force.

The accelerating force = Ma, where a is the linear acceleration

at distance R^ from the axis and M = W/^. The angular accelera-

tion = 0)/^
=

27r7i/^. Hence, a = Ug27rn/t, and therefore

But WgW/g is the moment of inertia. Hence, we have: the

torque of the effort is equal to the torque of the resistance plus the

angular acceleration into the moment of inertia.

Inserting the given values in (1), we get

T = 2240xl0x0mx-i^ +22i^^x25xl^12x2 g 60x60

= 663 Ibws. and ft. (Ans.).

(99) (Q. June 1909).
—A uniform disc 6 inches in diameter

weighing 10 lbs. can rotate freely about a horizontal axis. A
mass of 2 lbs. is fixed at one end of a horizontal diameter and
the disc is then released : neglecting friction, find the angular
velocity of the disc when the 2 lb. mass reaches the lowest

point of the swing.
Also find the corresponding angular velocity if the disc be

keyed to an axle 1 inch in diameter and if a 3 lb. weight be

suspended from a string which is wound upon the axle as the
disc rotates.

Solution.—Let W be the weight and D the diameter of the



Hence,

292 MECHANICS.

disc, P the mass in lbs. on the end of the horiz6ntal diameter

and ^1 the local value of the acceleration of gravity.

The weight of P is ^g^jg Ibws. and the energy exerted by the

latter weight in descending to the lowest point is P 'Dgj2g. Let

I be the moment of inertia of the disc, then the total moment of

P D^
inertia is I H— -j-. Hence, the energy-equation at the lowest

9 *

point is

g 2 2 \ ff i J' g^8

'"-V(W^ + 2P^,)D
• • • (1)

We have given P = 2 1bs. ;
W= 10 Ibws. Neglecting the

difference between g and g^^ we get

Ans. to the first question : w = 8'6 radians/sec.

Let d be the diameter of the axle and Q the weight suspended

by the string. While P descends to the lowest point, the disc

makes 1/4 rev. Hence, Q is lifted an amount irdj^. The energy-

equation is now

9

where v = the linear velocity of Q at the moment P passes the

lowest point. But v =
a)C?/2.

Hence, ^^JZ^^^J^^^ml . . (2)

Inserting the given numerical values in (2) and taking ^j=^,
we get

Atis. to the second question : o) = 6'6 radians/sec.

Note.—In the above formulae g^ is an acceleration but ^ is a

pure number (see article 173).

(100) (I.C.E., Feb. 1907).—An experimental flywheel has an
external diameter of 18 inches, the rim is 2 inches wide and
1 inch thick. The arms and boss may be neglected. A weight
of 100 lbs. is attached to a cord womid round the axis. Find

(1) the velocity of a point on the outside of the rim if the

weight falls 15 feet freely under gravity, neglecting friction;

(2) how many revolutions the wheel will make before being
brought to rest by a braking force of 10 lbs. applied to the rim.

Weight of cast iron is 450 lbs. per cubic foot.

r 2 4^"^2Vy, 8^^ 4;"^^, 2'
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Solution.—Let D be the external diameter of the wheel, P the

weight attached to the cord, and d the diameter of the shaft. By
article (203) I = M(4I12 + ^2^/4 and M =

27rIl^*^A, where A is the

density of the material and b the width of the rim. Hence, the

numerical value of the moment of inertia is I = 0"4:4 gravitation
units (foot, Ibs./^, sec).

(1) Let h be the height through which the weight P falls,

V the velocity of a point on the face of the rim, and v^ the

velocity of P. We have
v-^

: v :: d : J). Hence, the energy-

equation is

P tf- 1

PA =
^|

+ lo,^I . . . . (1)

but o> = 21^/0. Hence, we can write (1) thus.

Taking c?=l inch, ^ = 62 ft./s. (nearly) {Ans.).

(2) Let n be the number of revolutions the wheel will make,
and Q the braking force.

The distance travelled by a point on the face of the rim will

be tittD, and P will fall a further distance mrd before the wheel

stops. Hence, at the moment the wheel is brought to rest, the

energy-equation is

Vwird + Vh^qnTcD, or 71=—-^^——. . (3)
7r(QD

-
Pa)

^ '

The wheel will be stopped if Q D>Pc? or c^<QD/P. Hence,
we must take c?<l*8 ins. If we take d=l in. as above,
we get

71 = 72 revs. {Ans.).

(101) (Q. June 1908).
—Two wheels, on spindles in fixed

bearings, suddenly engage so that their angular velocities

become inversely proportional to their radii and in opposite
directions. One wheel, moment of inertia I^ and radius a, has

angular velocity co initially ;
and the other wheel, moment of

inertia 1^ and radius 6, is initially at rest. Find the new
angular velocities in terms of the quantities here given ; explain

briefly the dynamical principles involved in the calculations.

Solution.—If there be no loss of energy due to shock,

friction, or any other causes, the original energy accumulated
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in wheel No. 1 will be divided between the two wheels. We
have

Original energy stored in No. 1 = Jw^Ij.
Final „ „ „ =l<olIy

Original „ „ No. 2 = zero.

Final „ „ „ =io)^2'

Hence, Jo)2Ii
=

i<o?Ii + Jwpg, or ion^
=

<ol(l,
+

'^;L^
. (1)

If there be no slip between the wheels, then

which inserted in (1) gives

(102) (Q. June 1909).—An equilateral triangle, each side

4 inches in length, is cut from sheet metal weighing 5 lbs. per

square foot. Find the moment of inertia of the triangle about

one side, measured in "Ib.-ft.^" units.

Solution.—Let AB (fig. 117) be a very thin homogeneous plate
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If m be the mass per unit area, then

l = md
iX'-t)

x^ dx —m
12

(2)

I

I is required to be expressed in Ib.-ft.^ units and not in gravita-
tion units. We have given c?=l/3 ft.; A = c? sin 60° and we will

take m = 5 lbs. per sq. foot.

1 = 0-00334 lb.-ft.2 units {Ans.).

(103) (I.C.E., Oct. 1908, first part).—Find the position of the
instantaneous centre of a motor-car wheel 30 inches in diameter
when skidding, the car travelling at 10 miles an hour and the
wheel revolving at a speed which would correspond to 4 miles

per hour without slip.

Solution.—Let d be the diameter of the wheel, u the speed of

the axle, and w the angular speed of the wheel.

The problem is to find the diameter, D, of a wheel, whose centre

travels at a speed u, and which rotates at a rate of 2^/D = a>.

Hence, D = 2tt/(o.

We have given ^=10, -(o = 4; hence, D = 2'5c?=75 ins.

In fig. 1 18 A E is the road, A B the real wheel, D the imaginary
wheel. Hence, point is the instantaneous centre.

Ans.—The position of the instantaneous centre is vertically
below the centre of the wheel and at a distance A = 22*5 ins.

below the road.

Point A in fig. 118 travels at a rate of 6 miles/hr., point C at

10 miles/hr., point B at 14 miles/hr., and point D at a rate of

20 miles/hr.
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(104) (I.C.E^ Oct. 1907).
—Define "instantaneous centre."

In the mechanism shown in fig. 119 a force, E, of 2000 lbs., acts

on the slider and moves it at a rate of 1 foot per second.

Find the velocity of P in magnitude and direction. What weight

hung vertically at P will balance the force E ?

AB= 2-5; AC = 3-6; CB = l-5 and BP= 0-8.

Fig. 119.

Solution.—As AB turns about A the motion of B will be

perpendicular to A B and the instantaneous centre must lie some-

where in A B produced, C moves along A C ; hence, the instan-

taneous centre must be situated in the perpendicular drawn

through C on A C. Hence, point is the instantaneous centre.

The line P appears to be parallel to A C ; hence, if the latter

be horizontal, the weight at P will hang at right angles to P.

It will be found that the length of P = 1 "92 and that of C = 1 -3.

Hence, the velocity V of P will be V : 1 : : 1-92 : I'S, or

V=l-48ft./s. (Am.).

Let the weight at P be W, then 1-92W = 1*3 x 2000, or

W = 1354 1bws. (Ans.).

(105) (I.C.E., Feb. 1898).—Apply the principle of the con-

servation of energy to find the velocity of a thin hollow circidar

cylinder after rolling a distance of 12 feet down a plane inclined

at a slope of 1 vertical in 5 horizontal.

Solution.—Let W be the weight of the drum, r its radius, and
d the distance it rolls down the plane.
The M.C. of the drum falls through a height c^sina while the

drum rolls distance d down the plane. The kinetic energy of the
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drum is partly kinetic energy of translation E^^.', and partly
kinetic energy of rotation E/ (see article 188). We have

e;=^J;e;'=ki
. • • (i)

where v is the linear velocity of the centre. But I = Wr'^/g
and 0) = v/r. Hence, E;^'

= E/ =
Y^v^l^g. The energy-equation is

therefore

W<:?sina =—v^.

9

Hence, v= slgdmQ.a . . . • (2)

If the drum had fallen through the vertical height c^sina

without rotation the velocity would be v= sl2gdmia (see article

176).

We have c^=12; sina =—^^^^.= = 0-196.

Vl -f-tan^a

'y = 8-7 ft./s. (^Tis.).

(106) (I.C.E., Feb. 1909).—A steel shaft 3 inches diameter has

two flywheels keyed to it near the ends, the mass of each fly-

wheel being 500 lbs. and the radius ofgyration 1 foot. The ends of

the shaft rests on two elevated horizontal rails along which the

shaft can roll. A rope 1 inch in diameter is coiled round the

portion of the shaft between the flywheels, one end being fixed

to the shaft and on the free end a load of 500 lbs. is hung.
Find the acceleration of the system along the rails.

Solution.—Let d be the diameter of the shaft, t the diameter

of the rope, M the masses of the two flywheels and the shaft, Mj
the latter masses reduced to radius of gyration R^, P the weight

suspended at the free end of the rope, v the velocity along the

rails, and v^ the velocity of P.

The portion of the rope between the centre of the rope and
the shaft will be compressed and the other portion of the rope
will be extended. Hence, if the rope be perfectly flexible and

inelastic, we may consider that P is suspended at the free end of

a rope of no thickness and coiled on a shaft whose diameter is

d + t.

All frictional and other resistance are to be neglected. As the

system is urged on by a constant force P the acceleration a along
the rails is also constant. The motion of M is partly a translation

and partly a rotation. We have now v -.v-^wd-.d + t, and when
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P has dropped through a height h from rest, 2aji
= v\, where

Oj is the acceleration of P.

k=i^t . . . . (1)

The kinetic energy of translation is

The kinetic energy of rotation is

K/ = KMiR5 =
5VR? ... (3)

Hence, the energy-equation is

Hence d{d+t)Vg
^^.

If we neglect the mass of the shaft, then M = M^ = lOOO/^r. We
have also d = 0-25, < = 1/12, P = 500 and B^ = 1.

a= 0-326ft./s.2(^m.).

If T be the tension in the rope ;
the mass of P is urged on by

a force P - T and with an acceleration a^ But a^:a::d + t:d.

Hence, T = P - -^a = 493 Ibws.

9 d

(107) (Q. Nov. 1907).—The sketch (fig. 120a) shows a column

D, of weight W, which is being raised vertically, with uniform

velocity, by a force P applied to the wedge C. The inclined

plane A and the support B are fixed, and the upper face of the

wedge is horizontal. There is the same coefficient of friction

between A and C as between C and D, and D and B. Draw a

diagram of the forces acting on the wedge and on the pillar, and
find the ratio P to W, when /a

= tan 18°, and the inclination of

the plane is 30'.

Solution.—The motions of the wedge and of the column will

be uniform when the forces acting on the three sets of surfaces

of contact are respectively balanced, i.e. the resultants Rj, Rgj
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and Rg must make an angle (f>
with the respective normals

(article 181).
Let us first consider the forces acting between C and D

; they
are :

(i.) W, which is vertical
; (ii.)

a horizontal force to over-

come the force of friction Fg ;
the resultant of these two forces

between B and D are :
(i.)

A normal horizontal
isRg-
The forces

pressure, which is numerically equal to Fg ; (ii.)
the vertical

force to overcome the force of friction Fg ;
their resultant is Rg.

Fig. 120a.

Fig. 120b.

Finally, the forces between A and C are : (i.)
the vertical

forces W and Fg; (ii.)
the force P; their resultant is Rj.

Fig. 120b is the diagram of forces. We have, first, triangle

W, (
-

Fg), Rg, the angle between W and Rg being <^. Secondly,

triangle (
-

Fg), (
-

Fg), Rg, the angle between Rg and Fg is

also
</). Finally, triangle (W + Fg), P, Rj, the angle between

Rj and W being <^ + a, where a is the inclination of A.
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It will be seen that P=
(
W + Fj) tan (<^ + a), and Fg = Fj tan<^

Hence, =^
=

8ec2<^tan(<^ + a).-Wtan8<^.

Inserting the given numerical values we get

P^

W 1-23 (nearly) (Ans.).

(108) (I.C.E., Feb. 1907).—State and prove the theorem known
as the triangle of forces. Calculate, otherwise than graphically,
the stresses in the members A B, B C, A C, and C D of the truss

(fig. 121a), when a load of 500 lbs. is slung from the apex B, and
state which are struts and which ties.

Fig. 121b.

Solution.—The author has added the figures 1 ... 6. The
required stresses may be determined by drawing :

(i.) the triangle
of the forces through point A; (ii.)

the triangle of the forces

through point C. This is done in fig. 121b.
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Hence, stress (4-1) = ^-^^^ x 250 = 683 Ibws.;
sin 15

stress (2-4)
= ^'"

\^5 x 250 = 836-5 Ibws. ;

sin 15*

stress (4-5) = (4-1) x
sin 30°

sin 60°
stress (5-1)

= 394*3 Ibws.

Bars 4-1, 4-5, and 5-1 are ties; bar 2-4 is a strut.

(109) (Q. June 1908).
—A ladder on a horizontal floor leans

against a vertical wall. Show that, if the centre of gravity is

at its middle point, the greatest inclination to the wall which

is consistent with equilibrium is tan~\
^

^ ,
where

//,
is the co-

1-/^2
efficient of friction for the contact both with the floor and with

the wall
;
and that, in this position, the lines of action of the

resultant forces acting at the foot and at the top of the ladder

are at right angles to one another.

Solution.—In the case of a ladder standing on a horizontal

floor and leaning against a vertical wall, we have three forces to

deal with, viz. :
(i.)

the weight W of the ladder which is vertical,

0-.

w
Fig. 122c.

and which, in the present case, passes through the middle point
of the ladder; (ii.)

the reaction Rj of the floor; and
(iii.) the

reaction Rg of the wall. But three forces cannot be mutually
balanced unless they meet at one point. Hence, W, Rj, and Rg
must meet at the same point 0.

In' fig. 122a, both floor and wall are perfectly smooth; hence,
the reactions Rj and Rg are both normal to their respective
surfaces. Rg acting along the normal C Ng meets W at point 0,
but Rj acting along the normal ANj cannot possibly pass
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through point unless the whole ladder stands against the wall.

Henoe, equilibrium is impossible in any slanting position of the

ladder.

It is therefore necessary that the floor shall be rough, but the

wall may be smooth. This is shown in fig. 122b. The ladder

will not slip as long as angle OA^{^<f). Point A will be

furthest from the wall when angle A Nj = <^.

The inclination of the ladder can be increased when the wall

is rough also. This is shown in fig. 122c. Point A will be

furthest from the wall when point is at its highest position,

and which corresponds with angle ANj = 0CN2 =
<^. Let 6

be the value of angle A C B in the latter case, h the height of

point above the floor, and I the length of the ladder. We
have that

h = l coad + — sin^ tan</),

but -sin^ = Atan</>, ^co8^ = BC, and AB = 2Atan<^.

Hence, tan ^ =-^—Z-r
=

i
—^ "= ^^^ ^^'

1

Hence, =
2<f)

= ang I tan = —^ j {Ans. ).

In quadrilateral A C B A, angle A = 90° -
<^, angle C = 90° + <^,

and angle B = 90*. Hence, angle is 90°, or Rj and Rg ^^® ^*

right angles to one another.

(110) (Q. Nov. 1908).—A uniform ladder weighing 100 lbs.

rests against a smooth vertical wall, making an angle of 60° with
the ground. A man weighing 150 lbs. ascends the ladder

;
show

that the ladder will slip before he reaches the top unless the
coefficient of friction between the ladder and the ground be at

least 0-46.

Solution.—The conditions of wall and floor are the same as

those in fig. 122b.

Let be the value of angle CAB and P the weight of the

man.
While the man is ascending the ladder between A and M, the

resultant of P and W will meet C Ng at a point to the left of
;

and when he reaches M the resultant will pass through point 0.

While he is moving between M and C the resultant will meet
C Ng at a point to the right of

;
and on reaching the top of
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the ladder the resultant will meet C Ng at a point D at a distance

X from 0. The value of x is determined thus,

(W + P) : ^-^ : : P : x; hence, ^=
P'"*^

2(W + P)

<- rv A w MB, \/„T, [loose P'cos^ "!/,.„

Inserting the given numerical values we get

tanDANi = 0'462,

or the coefficient of friction must not be less than 0*462 {Ans.).

(Ill) (Q. June 1909).—A heavy circular disc, of weightW Ihs.,

stands on a rough inclined plane of inclination a, the plane of

the disc being in the plane of the greatest slope. The disc

is supported by a tangential force applied, by means of a string,

at its highest point. Find the tension in the string and the

magnitude of the frictional force at the point of contact.

Solution.—Let T be the tangential force, r the radius of the

disc, and P the pressure on the plane.
The force T, which is horizontal, acts as a brake to prevent the

rolling of the disc. The inclined plane is not perfectly rigid.

Fig. 123.

Hence, when a = 6, where 9 is the angle of repose of rolling

friction, then T = 0. The force of rolling friction is Fj
= P tan B

(see article 190).
We have also to prevent skidding ;

this is avoided when a does

not exceed a certain value, which in this case is greater than the

angle of repose, ^, of sliding friction. The force of sliding friction

isF2
=
Ptan<^.
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We have obviously P =W cosa+ T sin a. Hence,

Fi-{Wco8o + T8ina)tan^, and F2 = (Wcosa + Tsina)tan<^.

The forces acting on the system are (fig. 123): T, acting at

point B, is horizontal ;
W acting at 0, is vertical ; Fj, acting at

0, is parallel to the inclined plane ;
and Fg acting at A along the

inclined plane.

Rolling will be prevented when the algebraical sum of the

couples about the instantaneous centre, A, is zero, or

Wr sin a - Tr(l + cos a)
-
F^r = 0.

Hence T- sing -cosa tan ^ ^_ sin(a-g) ^
'

1 4-cosa + sinatan^ cos ^ + cos (a
-

^)

_ sin (a
-

6)

2 cos? cos
(;-)

W (Ans.).

cos- sin (

F,=Ptan^= j -W.
cos I

F-drf , sinasin(a-0) ~1 , ,

2
=W cosa+ — ^ ^ tan<^^

L cos^ + cos(a-6»)J
^

cos ^ cos -
-.XT cosd(l+cosa) . J TTT 2 , , / . V=W 1—!^ <- tan <l>

=W tan<^ (Ans.).

2cos|cos(^-^j cosf^-^J

The components, parallel to the inclined plane, of W and T
are respectively Wsina and Tcosa. Hence, skidding will just
be prevented when W sin a - T cos a - Fg = 0, or when

cos ^ cos -

sm _^__sin(o-fl)cos«__ lun.l>:^0,

2cos?cos(?-e) cosg-a)

or when sin (a
-

«^)
= sin (<^

-
0) sec 0,

Hence, we must have

a "^ </) + ang [sin
=

sin(<^
-

6) secO].
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(112) (I.C.E., Feb. 1906).—A flexible cord is carried by two

pegs A and D in the same horizontal line and 24 inches apart.

A weight of 8 lbs. hangs at B and an unknown weight at C,

thereby causing the cord to assume the form shown in fig. 124a.

Find by a graphical construction the magnitude of the unknown

weight and the tensions in parts A B, B C and C D of the cord.

Solution.—The following dimensions in fig. 124a are given:
A F = 6 ins., F E = 10 ins.,E D = 8 ins., F B = 6 ins., and E C = 10 ins.

The figures ... 3 have been added by the author.

Fig. 124a.

Fig. 124b.

Fig. 124b is the reciprocal force diagram and requires no

explanation. It will be found that the tensions in A B, B C, and
C D are respectively

19 Ibws. ;
14-75 Ibws. ;

23 Ibws. {Ans.).

The weight at C will be found to be 23-6 Ibws. {Ans.).

(113) (Q. Oct. 1909).
— Two weights, each of 2 lbs., are

attached to different points of a string which hangs from a
20
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support. The upper weight is acted on by a horizontal force of

4 lbs. to the left and the lower weight by a horizontal force of

1 lb. to the right. Find by a graphical construction the tension

of each portion of the string when in equilibrium, and the angle

which each portion makes with the vertical.

Solution.—Fig. 125 is the force diagram. Force 1-2 is the

resultant of a horizontal force of 4 Ibws. and a vertical force of

2 Ibws.
;
force 2-3 is the resultant of a horizontal force of 1 Ibw.

and a vertical force of 2 Ibws. ; complete the force polygon by
drawing force 3-1.

The tension in the upper part of the string must be parallel

Fig. 125.

to and equal to 3-1, and the tension in the lower part must be

parallel to and equal to 2-3.

The upper portion of the string will make an angle 6-^
with the

vertical, tan 0^
= 075. Hence, 0^

= 36° 52'.

The lower portion of the string will make an angle $2 with the

vertical, tan 6^
= 5. Hence, 0^

= 26° 34'.

(114) (Q. Nov. 1907),
—Draw the reciprocal force diagram to

give the forces in the several bars of the frame (fig. 126a), and
show that the tension in the bar E F is E F P/AC.

Solution.—The figures 1 ... 6 have been added by the

author. Fig. 126b is the reciprocal force diagram. The

reciprocal of joint A is 2-1-3-2, the external force P being 2-1.

Similarly, the reciprocal of joint C is 1-2-4-1. The reciprocals
of joints B and D are respectively 2-3-6-4-2 and 1-3-5-4-1

;

and those of joints E and F are respectively 3-5-6-3 and 4-6-5-4.
To find which bars are in tension and which are in compression.

Imagine the bars at joint A being cut by a circle with centre at

A, and at the same time external forces being added at the points
where the bars are cut, and which balance the external force at A.

The sense-circuit of these forces is 2-1-3-2 in fig. 126a. Hence,
the external forces acting along bars 1-3 and 3-2 will respectively
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be in the directions and senses 1-3 and 3-2 (fig. 126b). Hence,

both bars are being pulled. The same takes place at joint C.

Take next joint D and cut the bars by a circle with centre at D,

at the same time adding external forces at the points where the

bars are cut and which are mutually balanced. As the bars 1-3

and 4-1 are in tension, the sense-circuit is 3-1-4-5-3. Hence,

bars 5-3 and 4-5 are in compression. Similarly, at joint B where

Fig. 126b.

bars 6-3 and 4-6 are in compression. W.r.t. joint E the sense-

circuit is 3-5-6-3. . Hence, bar 5-6 is in tension.

The tension in bar EF (5-6) bears to force P (1-2) (fig. 126b)
in the same ratio as the length E F to the length A C in fig. 126a.

Hence, the tension in bar E F =EF P/AC (Ans.).

(115) (Q. Nov. 1906, second part).
—Draw a reciprocal force

diagram for the frame shown in fig. 127a, pin-jointed at the

points at which the lines of the figure meet
;
the frame being

loaded with given unequal weights at A and B, and supported

by a horizontal tie at C and a fixed pin at D.

Solution.—The author has added figures 1 . . . 10 in fig. 127a.

In constructing the reciprocal force diagram we begin by setting
off the two given vertical forces 3-4 and 4-1, then draw a hori-

zontal line through point 1. The reciprocal of joint B is con-

structed by drawing lines 1-5 and 5-4 respectively parallel to

bars 1-5 and 5-4. Similarly, the reciprocal figure of joint A is

3-4-7-3, lines 4-7 and 7-3 being respectively parallel to the

bars of the same names. We then proceed to construct the
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reciprocal figures of joints 4-5-6-7 and 6-10-9-8. The vertical

through 9 determines the reciprocal of joint D, and at the same
time determines the magnitude of the external force at C. We
can now draw line 2-3, which represents the external force at D
in magnitude and direction. The four external forces will be

seen to be balanced as they form a continuous circuit.

To find which bars are ties and which are struts.—Let us start

at joint A by cutting the bars by a circle with centre at A, and

add the necessary external forces at the points where the bars are

<?ut. The latter forces must balance the given external force at

Fig. 127a.

Fig. 127b.

A and thus form the sense-circuit 3-4-7-3 (fig. 127b). Hence,
bar 7-3 will be pushed and bar 4-7 will be pulled. Repeat similar

operations at joints B, C, and D. It will be found that : bars 4-7,

6-5, 1-5, 10-1, 9-10, and 8-6 are ties; and bars 7-3, 5-4,

6-7, 3-8, 2-9, 8-9, and 10-6 are struts.

(116).
—A horizontal beam, 30 feet long, is supported at both

ends and loaded with weights of 10 tnws. and 16 tnws. at

distances of 10 feet and 20 feet respectively from one of the

supports. Find the reactions of the supports, and draw the

bending-moment diagram for the whole beam.
Solution.—Let ABCD (fig. 128a) represent the given beam

supported at A and D. The letters indicate the points of appli-
cation of the forces, and at the same time, being placed to the
left of the forces, the letters will also be used to name the forces.

Thus, force A B = TO tnws. ; force B C = 16 tnws. ;
D A = E,«, and

CD = Ra.
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(i.) Calculation.—The two weights and the two reactions must
balance.

Hence, 10 + 164-Il„ + Ild
= (1)

But condition (1) is not sufficient
;
the forces must not form a

couple. Hence, the algebraical sum of their torques about any
axis perpendicular on their plane must be zero. By choosing the
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the two torques must have opposite signs as their algebraical sum
must be zero. Hence, the forces acting on the beam produce a

bending of the beam at any point on the beam. The resultant

moment of the forces to the left or to the right of the point is

called the beridiiig-moment, B.M., at the given point.

B.M. between A and B.—Let us find B.M. at a point at a dis-

tance jc from A, remembering that the sign of a lever is positive
reckoned from the fulcrum towards the right and is negative in

the opposite direction. Hence, B.M. = - Ra^ ;
the equation of

B.M. is a descending straight line starting at point A. At point

B, B.M. = - 100 tnws.-ft.

B.M. between B and C.—At distance x from point A we have,

B.M. = - Ra^ + force AB x
(a;

- A B), or B.M. ^ -2x- 100, which
is also a descending straight line. At point C, B.M. = -140
tnws.-ft.

B.M. between C amd D.—At distance x from A, B.M. = - 12a7

-hlO(a;-AB)-hl6(a:-AC), or B.M. = 14x- 420, which is an

ascending straight line, ending at point D.

The bending-moment diagram consists thus of three straight
lines ; B.M. being zero at points A and D, and maximum at

point C.

(ii.) Graphical method.—For the purpose of determining the

values of E-a and Rj, we may construct a link-frame containing
four bars, which shall be in equilibrium when each of the four

forces Ra, R^, A B, and B C act respectively at a joint of the frame.

We commence by drawing the reciprocal force diagram
(fig. 128b). Draw the vertical line AC, setting off AB= 10 and
BC = 16. Choose any convenient point 0, and from the latter

draw the straight lines A, OB, and C.

Take any point in DA
(fig. 128a) and draw line A parallel

to A of fig. 128b, and likewise draw B and OC in fig. 128a

parallel to OB and OC of fig. 128b. Close the link-frame by
drawing OD, and finally draw line D in

fig. 128b parallel to

ODof fig. 128a; then CD =
Rrf and DA = R„.

A portion of the vertical line through point B
(fig. 128a) is

intercepted by the link-frame. Call the latter intercept H, and
let h be the perpendicular from on AC (fig. 128b) then,

H : length AB (fig. 128a) : : D A (fig. 128b) :h; ash is constant

it follows that, H ex: R^ x lever A B. Hence, the intercept of the

vertical line through any point in the beam is proportional to the

B.M. at that point. The numerical value of H is 100 tnws.-ft.

Hence, if we construct a scale so that a length of H/lOO represents
I tnw.-foot, then the link-frame (fig. 128a) may be used as a
B.M. diagram.
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(117) (I.C.E., Oct. 1907).—A simple frame (see fig. 129a) is

loaded at B and C as shown. It is supported by a vertical

reaction at A, and by a reaction at D. Find the magnitude of

the reaction at A, the magnitude and direction of the reaction

at D, and the forces in the bars, stating which are struts and
which are ties.

Solution.—It is given that the force at B is 3 tnws., and
forms an angle of 30° with the horizontal line

;
the force at C is

4 tnws., and forms an angle of 45° with the horizontal line;

AB =CD = 2 ft., and AD = 4ft. The figures ... 5, the

letters F and E, and the dotted lines have been added by the

author.

Fig. 129b is the reciprocal force diagram. The force 1-3 is the

resultant of 1-2 and 2-3. We have therefore only to do with

Fig. 129a.

Fig. 129b.

forces 1-3, 0-1, and 3-0 which must meet at one point E.

Hence, we obtain the direction of the reaction 3-0. By fig. 129b
we determine the magnitude of 3-0 and 0-1.

By fig. 129b we obtain the magnitudes of the following forces

in tnws.: 0-1 = 1-94, 1-5 = 1-71, 2-5 = 3-45, 3-4 = 0-695,
3-0 = 5-38, 0-4 = 5-05, 4-5 = 6-78.

We have now to determine which of the bars are struts and
which are ties. Let us begin at A. Cut the bars by a circle

with centre at A
;
as equilibrium must not be disturbed we must
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add the necessary external forces at the points where the bars are

cut. These forces must be in sense-circuit with 0-1. Hence, the

circuit is 0-1-5-4-0. Hence, bar 1-5 will be pulled ;
bar 5-4

will be pushed ;
bar 4-0 will be pulled. Performing similar

operations at B, C, and D, we shall find that bars 1-5, 4-0, 2-5,
3-4 are ties

;
and bar 5-4 is a strut.

(118) (Q. May 1907).
—Draw a reciprocal force diagram for

the frame (flg. 130a), loaded and supported in the manner
indicated.

Solution.—Figures 1 ... 9 have been added by the author.

Fig. 130b.

Fig. 130b is the reciprocal force diagram. It has been constructed

by setting off the vertical loads 2-3 = W, 3-4 = 2W and 4-5 = W.
The two reactions 1-2 and 5-1 must be equal on account of

symmetry, and their sum must be equal to 4W. We may then
construct the reciprocals of joints 1-2-6-1 and 1-9-5-1, then
that of 3-4-7-3, and finally the reciprocals of joints 2-3-7-8-6-2
and 4-5-9-8-7-4.

Cutting the bars by circles with centres at the respective joints,
we shall find that bars 6-1, 1-9, 8-6, 9-8 are ties

;
bars 2-6,

9-5, 3-7, 7-8, 4-7 are struts.

(119) (I.C.E., Oct. 1906).—The diameter of the pulleys of a
Weston pulley-block (fig. 131) are 10 inches and 9 inches. Find
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the pull P required to raise 2000 lbs. if the efficiency for that
load is 65 per cent.

Solution.—Let D be the diameter of the larger and d that of

the smaller of the two concentric pulleys.
The tension in each of the two parts of the chain carrying W is

obviously W/2 when we consider their directions to be very nearly
vertical. While P moves a distance ttD the tension W/2 to the

right of the load will also travel a length ttD, but upwards,

Fig. 131.

whereas the tension W/2 to the left will only have moved through
a distance ird downwards. Neglecting friction, the energy-
equation is

^-V and P = I>-^WHence, -
, ^^' 2D ' 2D

ry

We have given: D = 10, c?=9, W = 2000, •7
= 0-65.

Hence, P = 154 Ibws. (nearly) {Ans.).

By article 212 we have.

(1)

Wl
Hence, a

W 2D

Pi D-
W 2D

'The mechanical advantage = -^
=

-pr -q

(2)

(3)

In the present case : a = 20
;
the mechanical advantage = 13.
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(120) (I.C.E., Oct. 1902) —In experimenting with a Weston

differential pulley-block, it is found that a force of 10 lbs. is

required to raise a load of 50 lbs. and that a force of 18 lbs. will

raise 100 lbs. The curve obtained by plotting these and other

results with the forces as abscissae and the loads as ordinates is

found to be a straight line. Determine the constants in the

equation of this line, and state what may be inferred as to the

amount of friction in the contrivance. If the circumference of

the larger wheel is 18 inches, and the velocity ratio of the pulley

is 16, what is the circumference of the smaller wheel ?

Solution.—The equation of the straight line is W = mP + c.

The constants m and c are determined by substituting for W and

P the given values of the load and effort. We have

50 = 10m + c, and 100 = 18m + c . . (1)

Eliminating m and c between the two in (1) and the equation
of the straight line, we obtain the required equation, viz. :

W = 6-25P-12-5 .... (2)

We may measure the force of friction as a load F; the

theoretical mechanical advantage will be (W + F)/P = a. Hence,
F = (a

-
6-25)P + 12-5, or as a is given to be 16,

F = 9-75P + 12'5 1bws. ... (3)

By the preceding problem we have a = 2D/(D -
d), or

d==°^jy (4)
a

c?= 15*75 ins. {Ans.).

(121) (Q. Nov. 1907).
—In a crane the lifting force is applied

to a handle which rotates in a circle of 3 feet diameter, and it

is found that when the handle makes five complete revolutions

the load is lifted 1*46 feet. It is also found that with loads of

1 cwt., 3 cwts., and 5 cwts. respectively the lifting forces required
are 17*5 lbs., 26 lbs., and 35 lbs. Find the efficiency of each of

these loads.

Solution.—Let d be the diameter of the circle in which the

handle rotates, P the lifting force, and Q the load.

While the handle makes n revs, the load is lifted through a

height h. Hence, a= ——
; the mechanical advantage, /?

= ^ ;

and the efficiency, t? =  

^
,
= i- .
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We have given : ^ = 1 "46, d=3, and n = 5.

Arts. :

a.
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and the force of friction F will move a distance z. Hence, the

enertry-equation is^^
P;r-Hy + Fz . . . . (1)

We may take the normal pressure on the sides of the

wedge as H. Hence, we may write (1), Pa; = Hy + zH tan<^

= H(y + X tan «^), or

Vx _ P _ P _ ^cosd
sin ^> tan^ • (2)

H
y + 3tan<^ V^l^^^ f+^-tan<^XX.

TJT TT

The efficiency, ^7
=

-pT
=
p
^^ ^ (3)

We have given : P = 2, tan^ = 1 : 24
;
we may take sin^ = tan^,

and cos^=l, tan<^ = 01.

H= 14*12 tnws. ; 17
= 29-4 per cent. {Ans.).

h TT

Velocity-ratio, a = - = 24
;
mechanical advantage, ^ = p

= 7*06.

(123) (I.C.E., October 1908).—The sketch (fig. 133) shows

diagrammatically the arrangement of levers in a platform weigh-

i-db

F
Ri

\:f>//y'////.//////y/////y//y/y//^/

O—E

Fio. 133.

bridge. Investigate the connection between the lengths of

a, 6, c, and <i, in order that the balance may be independent of

the position of the weight W on the platform.
Solution.—Let x be the distance of W from Rj, I the distance

between Rj and Rg, and k the moment of w and the weight of

the lever B E about B.

To find Rj and R2 :

Hence,

Rj + R2 = W; -W£C + R2/
= 0.

Rj = W^-^, R2 = Wf-.
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The relation between Rj and Rg is :

The relation between Rg ^^^ R3 is :

RgC? + RgC
= Z;

Eliminating R3 between (1) and (2) we get

- Wa + W^a +4-W^ -6 =
I d Id

(3) must be independent of x.

Hence,

From the first condition in (4) we get

W% = Wf?6, and Wa =4lid a

317

(1)

(2)

(3)

a :b : : c : d
.)•

The second condition in (4) gives W =
k/c. Hence, as k depends

on the distance of w from B, the lever B E can be made to indicate

the weights of W.

(124) (I.C.E., Feb. 1908).—A lever system is shown diagram-

matically in fig. 134, A and B being fixed fulcrmns. The system

^
.m: .jt".

Fig. 134.

is balanced when the weight w, 100 lbs., is 4 inches to the right

of A. Find the position of w when a force F of 20,000 lbs. is

applied as shown.

Solution.—Remove w and F and add a vertical force
q-^,

at the

vertical link, which just keeps the levers in a horizontal position.
We may now consider the system of levers weightless ;

and we
must now increase the vertical force at the vertical link by q^ so

that
g'l
+ g'2

= Q can balance iv about A. It was shown in article

186 that tangential forces are in equilibrium when the algebraical
sum of their moments about the fulcrum is zero. Hence, Q is

determined by 2Q = 4 x 100, or Q = 200 Ibws.
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When force F is applied a vertical force P must be added at

the vertical link if the levers are to be kept in a horizontal

position. P is determined by the equation, 62P= 2 x 20,000,

or P = 645*16 Ibws. w must be moved to a distance x from A
in order to balance Q + P. x is determined by

100a:=845-16x2, or x=\6'9 ins. (Ans.).

(125) (I.O.E., Feb. 1907).
—A screw-jack has a mean diameter

of 2-25 inches and a pitch of 0*75 inch. It is turned by applying
a force P tangentially at the end of a horizontal lever, 25 inches

from the centre of the screw. Find (1) the magnitude of P
when the jack is lifting 3 tons, neglecting friction

; (2) the

coefficient of friction between the threads that just suf&ces to

prevent the screw running back under the 3-ton load.

Solution.—The efficiency of the jack. Let Fg be the effort

reduced to the mean radius r and I the length of the lever, then

VI = F^r. The energy-equation for one revolution of the screw is

27r?'F,
= Wp + work done against friction . (1)

Hence, V =
Wjp Wp

27rlF

In fig. 135a OB = 27rr, BA=p, CD = GF

Fig. 135a.

G F

Fig. 135b.

C N is the normal, angle F C N =
<^. Hence, F, =W tan (6 + 0).

Let FJ be the value of Fg when we neglect friction
; we have then

WpF; = Wtan^ and
rj^

In the case of friction we have

^ Wp __ Wp 27rrF;_F,

27rrF;
1

tan^

27rrF, 27rrF, Wp F, t&n(0 + <f>)

(3)

(4)
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Question (1).

27r X 25
^ ^

Question (2).
—In this case we must have =

(fi,
the angle

» TT tand) l-tan^cf) . /i Jo 0-75
01 repose. Hence, ri = ^ = —-

',
tan b = -f- = ^ttt^"^ '

tan2</) 2 27rr 2-257r

= 0-106 = tan <^ ; hence, ->?

= 0*494
;
P =-^ = 65 Ibws. ; velocity-

ratio =— = 209*4 : mechanical advantage = —- = 103*4 ;

p P

tan
</)
= 0*106 (^ws.).

When $ is greater than ^ the " screw and nut " machine may
be reversible, i.e. a pressure, W, applied on the nut and parallel
to the axis of the screw, may turn the screw.

In fig. 135b the same letters refer to the same lines as in fig.

135a; angle FCG = ^-<^. F^ =W tan (^
-

<^),
and the torque

required to turn the screw is = F^r = Wr tan {6
-

<j>).
The effi-

ciency of the reversed " screw and nut "
is

_ 27rrF, _ tan
(<9
-

4>) ,^^'^~ Wp
~

tan^
  *

^ ^

This principle is used in some hand-drills. It is necessary that

Wrtan(^-^) is equal to or greater than the moment of the

force of friction between the drill and the material to be drilled
;

6 must therefore be considerably greater than
<fi.

(126) (I.C.E., Feb. 1906, first part).—State the rule for finding
tlie moment of inertia of a beam section which admits of being

split up into a number of rectangular areas.

Solution.—A beam section is a plane figure and can therefore

have no moment of inertia, but it has a second area-moment w.r.t.

a given straight line. If the latter line is parallel to one set

of the sides of the rectangles, as in fig. 136, we may split the

figure up into rectangles, all of which have one side on the line

0-0. The second area-moment of these rectangles are all of

the form —-
,
where b is the width and h the height of any one

o

of the rectangles. The required (A.M.) is then obtained by a

proper addition and subtraction of the various (A.M.)s.
In fig. 136 let

b-^
and

t-^
be the width and depth of the top-

flange, 62 and
^2 those of the bottom-flange, and 63 and h the
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width and height of the web. The (A.M.) of the figure w.r.t.

0-0 is

(A.M.) = ^(^i+^+hr _ {b,-b,){h+t,r ^ ihrW. .

o o o

Fig. 136.

(127) (I.C.E., Feb. 1910).
—In a single-cylinder engine, intended

to run at 120 revolutions per minute, the work done at each
stroke is 2200 foot-lbs. while the work of acceleration is

400 foot-lbs. Then, for a flywheel 4 feet in diameter, what
must be the weight of the rim if the speed is not to fluctuate

beyond the limits of 119 and 121 revolutions? Neglect the
mass of the wheel-arms.

Solution.—If the tangential effort, which produces the rotary
motion of a shaft, turning at its normal speed of revolution, is

variable, while the tangential resistance to be overcome is constant,
there will be a period during each revolution of the shaft when
the energy exerted by the effort is greater than that consumed

by the resistance. The excess of energy exerted will be ac-

cumulated in the flywheel as kinetic energy, and the angular

velocity of the wheel will be increased from w^ to Wg. This

period will be followed by another one, during which the energy
consumed by the resistance is greater than that exerted by the

effort; the flywheel will give off the energy it received during
the first period, and the angular velocity of the wheel will fall

from
o>2

to lOy
Let W denote the energy which causes the irregularity of

speed, Rj, the radius of gyration, and M the mass of the wheel
reduced to a distance R^ from the axis, then

W =
0-5(a,22-a)i2)R2M,

2W
or

(o>2 + a,,)R^M
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As
oig

-
o>j

must be small, the mean angular velocity of the

wheel will be to = 0-5(a)2 + w^).

Hence <^2-^i _ ^
_/,

where ^ is a constant which must be the smaller the steadier the

rotary motion is required to be.

If the shaft is to make n revs, per min., then

2Trn lirn. 2-^71^

"'la' ""i^-eT' '"2=-6o--

Hence, ^lil^i = ll^li ^ i,

and M

If W be given in foot-lbws. and R^ in feet, then

^^ /30V32-19W ^„_ W „M= —
) -^^27- = 2935-^-^ lbs.

The to-and-fro motion of the piston of a reciprocating engine
is converted into rotary motion by the crank-connecting rod

mechanism. In engines of this kind the crank-efFort is never

constant during a revolution of the shaft. Hence, a flywheel is

required to store and return the energy which otherwise would
cause too great a variation of the speed of rotation.

In the present problem W = 400 ft.-lbws., 7Zj
= 119, n^^l^l,

71 = 1 20, Rj,
= 4 ft. Hence, the mass of the flywheel is required to be

M = 2935 X ^^^, = 306 lbs. (AnsX16 X 120^ ^ '

(128) (Q. June 1910).
—Two drums of diameters 5 and 3 feet

respectively are set with their axes parallel and their centres

at a distance 7 feet apart. Find the necessary length of open
belt to pass round the drums and be taut.

Solution.—Let D be the diameter of the large pulley, d that of

the smaller pulley, and I the distance between centres.

(i.) Open belt (fig. 137).—The length of the belt is

L = 2(a6 + 6c + ce)
= 2

x^('^-</>)
+ 2^ cos<^ + 2 X

5^1
+

</,)

= 2^cos<^ + (D + £^)^
+ (D-c^)<^; and sin<^

= ^~^.

21
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Inserting the given numerical yalues we get

,^
= 8' 13' = 0-1434 radians, and

L = 13-86 + 12-57 + 0-29 = 26-72 ft. (Am.).

Fig. 137.

(ii.) Crossed belt (fig. 138).—The length of the belt is

L = 2(a6 + 6c + c.)
=
2g(^

+
<^)

+ ^cos<^ + ?(|
+

<^)]

= 2^cos«^ + (D +
c^)(^

+
<^);

8in<^
=5+i

Fig. 138.

Inserting the same numerical values as given in the question
we get

<^
= 34*' 51' = 0-6082 radians, and

L = 11-49 + 17-43 = 28-6 ft. (Ans.).

(129) (Q. June 1910).—A uniform plank weighing 200 lbs.

and 20 feet long is placed with one end upon the ground and
rests upon a smooth cylinder of 6 feet diameter lying upon the

ground. If the end upon the ground is 15 feet from the line of

contact of the cylinder with the ground, determine graphically
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or otherwise tlie least horizontal force applied at the end upon
the ground which will push the plank further up on the cylinder.

The coefficient of friction between the ground and the plank
is 0-2.

Solution.

(i.) Analytical method.—Let point B (fig. 139) be the mass-

centre, I the length, and W the weight of the plank, and let r

be the radius of the cylinder.
As the cylinder is smooth its axis must be fixed, or else it

will roll off" from underneath the plank.

C K
Fig. 139.

W acts along the vertical E B C, the reaction at D passes

through the centre of the circle as the cylinder is smooth.

Hence, the reaction, R, at A must act along the line A E. We
have now

sin^R = W.

If H be the horizontal component of R, and F the force of

friction at A, then the least horizontal force required at A to

push the plank further up on the cylinder is

Q = F + H==Rcos.Atan<^ + Rsin^ = ^^"f,^^"^f
+
'^)w

sm(^ + i/^)cos<^

To find 6 and
if/.

r
tani/^

AC

_ tan<^ + tani/^^
1+cot^tani/f

^sin2^

EB + BC 2(2BD + ^sin2^)

Inserting the given values: r^S ft., AK = 15 ft., ^ = 20 ft.,
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BD-AK-- = 5 ft., tan«^ = 0-2, and W = 200 Ibws., it will be

found that cot^ = 2*4
; tan«/.

= 0-548.

Hence, Q = 65 Ibws. {Am.),

(ii.) Ghraphical method.—Draw fig. 139 to scale; resolve W
along EA and ED; resolve R along AK and the perpendicular

through A on A K, the former component is H
;
draw the cone

of friction about the perpendicular through A and construct

R cos lir tan <^
= F, then

Q = H + F.



CHAPTER XXXVIIl.

MOTION OF THE M.C.

219. Pressure on an axis due to revolving masses.

Let us consider a system of revolving masses rigidly connected

to an axis Z (fig. 140), which turns frictionless in fixed bearings.
Let the plane of reference, which is perpendicular to Z, contain

two rectangular co-ordinate axes.

The inertia-pressure on the bearings due to a revolving
mass m is jo

= mrw^ acting in the direction of r and perpendicular

Fig. 140.

to OZ. jo's components along the two axes in the plane of

reference are %> cos a = mcoV cos a = iii^mx, and mo)V sin a = iip-my.

Let M be the total revolving mass, a and ^ the co-ordinates

of the mass-centre, then the total inertia-pressure along the

ic-axis is X =
a)22^mit;

= o)2Ma, and that along the y-axis is

Y = (o^^i^y
==

(o2M/3. Hence, the resultant inertia-pressure is

P = a)2Mx/^[2q7^2^^2Mr^ . . . (1)
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or, the resultant inertia-pressure due to a system of revolving
masses is the same as if all the revolving masses were concentrated

ai their common mass-centre.

The resultant inertia-pressure, P in (1), is zero when the aocis, Z,

passes through the mass-centre, as then rg
= 0.

We have, however, seen that a system of forces need not be

in equilibrium because their resultant is zero ; it may be that the

forces form a couple. Let us choose the a:-axi8 so that the

a»-plane (not the z-axis) passes through the mass-centre. Let

Rj and Rg be the reactions respectively on the two bearings, R^
acting in the plane of reference

; 6^ and
O2,

the angles which Rj
and Rg form with the ic-axis, and y the distance of the mass-centre

from the plane of reference. We have, when I is the distance

between the bearings,

the couple about the y-axis = oy^^mxz
=

(jy^Mrg-y
=
^Rg cos^g (2)

the couple about the a;-axis = o>^^myz = ^R^ sin^^ . . (3)

X = fa)^ y.T/M? = R, cos 6^ + R9 cos 6^ = (u^Mrg . (4)

Y =
o)22,»^iy

= Ri8in^i + R2sin^2 = ^ • • (5)

The values of Rj, Rg, 6-^
and 6^ may be determined by (2) . . .

(5).

There will be no tendency to displace the z-axis when Rj = Rg
=

0, which happens when

^,7nxz ^ 0, ^_myz = and r^
= . [192]

We may take as an example a homogeneous cylinder of revolution.

Fig. 14U.

In fig. 141 the axis of rotation, OZ, passes through the mass-
centre of the cylinder. As long as Z coincides with the axis
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of the cylinder, as in fig. 141a, [192] is satisfied
; hence, Rj = R|= 0.

The equilibrium of the inertia-forces, however, is unstable,
because the slightest deviation of OZ—although still passing

through the M.C.—from the axis of the cylinder will cause the

inertia-forces to form a couple, as shown in fig. 141b, and which
tends to turn the body into the position shown in fig. 141c.

Hence, there will be a pressure on each bearing. In fig. 141c,

[192] is again satisfied, and the equilibrium of the inertia-forces

is stable.

It is of great importance in machinery that the rotating
masses should be so distributed round the axis of rotation as to

produce no pressure on the bearings.
220. Moment of momentum.
The linear velocity of a rotating mass is rw

; hence, the

momentum of the mass is mrco, and the moment of momentum
about the axis of rotation is mrcor = oimr^. The total moment of
momenttim of a system of revolving masses about the axis of

rotation is thus

oi^mr^
= o>l=<oM.Rl . . . [193]

The moment of momentum is also called angular momentum.
The rate of change of the moment of momentum is

but r. -— is the linear acceleration of mass m.
; hence,^

dt
1' '

»i'-i^
=

Fi, and -JtJf^r^'^i'r^^^URl^^^l (1)

Hence, the rate of change of angular momentum of a system of
masses rotating about an axis is equal to the algebraical sum of the

moments of the forces acting on the system (compare article 166).
221. Velocity of the mass-centre.

Fig. 142 represents a body which is acted upon by forces

parallel to the plane of reference. Let C(^, yj)
be the M.C. and

M the mass of the body. We have

M^= y,md7, and M.y]=^^my . . (1)

By difFeretitiating (1) w.r.t. time t we get (article 158),

ni.^<^^ "^^ ^^
-i ^.d-n ,^r^ dy
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where — and -^ are the velocities of a particle of mass m, in the
dt dt

directions of the a:-axis and the y-axis respectively. Hence, the

velocityi \/(~^) +(t-^) » ^/ *^ 'i^.Q. of the body is equal to the

sum of the momenta of the particles of the body, divided by the mass

of the body ; also, the m^omentum of the body is the same as if the

masses of the particles were collected in the M.C.

Fig. 142.

222. Acceleration of the mass-centre.

By differentiating (2) in the preceding article (see article 161),
we get

d^i d^x d^Y} d^y

d^x d^v
where --^ and —^ are the accelerations of the particle in the

dt^ dt^
^

directions of the a;-axis and the y-axis respectively. Hence, the
acceleration of the M.C. is

V \dty Kdf^.

and the resultant of the forces is

dW
dtV'

or the motion of the M.C. is the same as if all the forces were moved to

that point parallel to their original directions.
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The motion of the body consists of two simultaneous

motions, viz :

(i.)
A translation of the M.C. with an acceleration, R/M, in the

direction of R, and

(ii.)
A rotation with a torque, Rr, about an axis through the

M.C. perpendicular to the plane of reference.

If the forces which act on the body are not parallel to the same

plane we must resolve them along three fixed rectangular co-

ordinate axes and proceed as in the preceding and present articles.

As neither the rotation about the M.C, nor the magnitude
and the direction of the resultant, R, are changed by moving a

couple, which acts on the body, parallel to itself, it follows

that : A couple may he moved parallel to itself without disturbing
the motion of the body (compare article 205).

223. Conservation of momentum.
When the forces, in the two preceding articles, are mutually

balanced their resultant is zero, and the M.C. will move in a straight
line with uniform velocity. This theorem is known as the

principle of the conservation of the motion of the M.C. As the

total momentum of the body, or the system of particles, remains the

same, the theorem is also referred to as the principle of the

conservation of momentum.
The forces which act on the body may be external forces, i.e.

forces which are due to external causes
;
or the forces may be

internal forces, i.e. mutual actions between the particles of the

system, such as the attraction between heavenly bodies or as

stresses between the particles of an elastic body, for instance,

when the body is being extended, due to rise of temperature.
Internal forces are always balanced, because one particle attracts

or repels another one by a force which is equal to the force by
which the latter particle attracts or repels the former. Hence,
the motion of the M.C. is unaffected by any mutual action between

the particles of the system.
The motion of the M.C. of a shell containing an explosive will

thus be unaffected by the bursting of the shell, because the

action and the reaction between the gases and the pieces of the

bursting shell are equal, and are therefore balanced.

The present chapter has taught us that we may regard the

motion of a body in space as if the mass of the body were con-

centrated at the M.C, i.e. as if the body were reduced to a single

point, the M.C, with a mass equal to that of the body.
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GRAVITATION.

224. Law of gravitation.
This law states that every particle in natv/re attracts every other

particle with a mutiial force which varies directly as the product of
the masses of the particles and inversely as the square of the distance

between them. Hence, if the particles, whose masses are m^ and wij,

are placed at a distance d apart, the force of attraction is

F,
=K^» .... [194]

where K is a constant called the gravitation constant; its

dimensions are evidently [L]^ [M]~^ [T]""^.

As the attraction between the particles is a mutual action it

follows, by article 223, that the motion of the particles towards

each other cannot affect the motion of their common M.C.

Hence, the two masses are attracted towards their common M.C.

Thus, both a falling body and the earth fall towards their common
M.C. which, however, is practically at the M.C. of the earth.

The acceleration with which m^ approaches m^ is —^ =
K-^,

and similarly the mass m^ approaches m-^ with an acceleration

K-—i
. Hence, the apparent acceleration with which one particle

approaches the other, viewed from either of them, is K^^^ J^"^' .

a
If m^ were the mass of the earth and m^ that of a falling body,

the acceleration of gravity would change with mg. But m.2 is very
small compared with the mass of the earth and may therefore be

neglected ; the acceleration of gravity may therefore be taken to be
the same for all bodies.

225. Attraction of a homogeneous spherical shell.

Consider a very thin shell consisting of one layer of particles

uniformly distributed over the surface of the shell, and let all the

330
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particles be similar in every respect. Let the problem be to

determine the force of mutual attraction between the shell and a

particle of mass m.

(i.)
The particle is outside the shell.—The force of attraction

(fig. 143) between a particle of the shell and m is / = K—1—
,
and

T
its two components are X=/^cosa and Y=/^sina. The total

Fig. 143.

attractive force due to an elementary zone is 8F^
=^ X = y/„cosa,

y Y being obviously equal to zero.

By article 133 the area of the elementary zone is ^irrhx,
and if there be n particles per unit area, then the mass of the

elementary zone is 2iTrnm^ ^x. We have also

,
and

rj
=

sl{d
-
x)^ + y'^.

8F,=
2«-K«m,«>^^-:|^-^^,8x,

cos a:

Hence,

and F(,= 27rrK?imTm/ .dx' ^

J-r{d^-2xd + r^f

(1) may be integrated by substitution, thus

(1)

z^ = d^-2xd + r'-,

, dx
hence, —- =

dz

Jd^ - 2xd + r2

d
^

and x =
2d
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Hence, F,
= 4,rr2K^^'L^

nm^m
IP

but itrrhvm^ is the mass, M, of the shell.

Hence, F,=K^ .... [195]

or the mutual attractive force between the shell and the particle
is the same as if the mass of the shell were concentrated at the

centre of the shell. As a solid sphere and a spherical shell of any
thickness consists of a number of thin concentric shells, it follows

that the mutual attractive force of a solid homogeneous sphere or of a

?iomx)(/en€Ous spherical shell and a particle outside the sphere is the

same a^s if the mass of the sphere or of the shell were concentrated at

the centre of the sphere.

The same law will, of course, hold if the sphere or the shell

consists of homogeneous concentric shells.

Fig. 144.

If we consider that the earth consists of homogeneous concentric

shells, the weight of a mass m at the pole is

«..= K^, or K =f ... (2)

where M is the mass of the earth, R its polar radius, and g the
acceleration of gravity at the pole. M has been determined by
Cavendish and others, and as g and R are both known, the value
of K can be determined.

K = 666 X 10-1° C.G.S. units . . . (3)

(ii.) The particle is inside the shell.—Describe, with the particle
as apex, a cone with a very small apex-angle. The cone cuts out
of the shell two portions a^ and a^ at distances r^ and r^ from the

particle (fig. 144). If n^ and n^ be the number of particles
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contained in the two portions respectively, then n^ : n^ : : 7\^ : r^^.
Let Fg' and F/ be the forces of gravitation due to m and the

particles of a^ and a^, then by [194]

F; =kM^ and f;'
=kM^, or l^ = !h!l! = l,

or rather -
1, as the two forces act in opposite senses. Hence,

the mutual attractive force of a homogeneous spherical shell and a

particle inside the shell is zero.

The same law holds for spherical shells of any thickness and
also for shells consisting of homogeneous concentric spherical
shells.

226. Mutual attraction of a solid homogeneous sphere and a

particle in the interior of the sphere.
Let R be the radius of the sphere and r the distance of the

particle from the centre of the sphere. By the preceding article

it follows that the particle is not attracted by the shell whose
radii are E, and r, but is only attracted by the sphere whose
radius is r. The mass of the latter sphere is M =

f7rr^mj, and
the force of mutual attraction between M and m is

F, =K^ =
|7rKmimr

. . . [196]

or the mutual attractive force of a solid homogeneous sphere and a

particle within the sphere varies directly as the distance of the particle

from the centre of the sphere. Hence, at the centre the force is

zero.



CHAPTER XL.

THE PENDULUM.

227. Simple liarmonic motion.

Definition.— When a particle moves in a straight line^ so that its

acceleration is always directed through^ and varies as its distam^ie

fromy a fixed point in the straight line, the particle is said to move
toith simple harmonic motion.

In fig. 145 a particle N moves in a circle with constant speed
u in the anti-clockwise direction. Another particle P moves so

that it is always at the foot of the perpendicular from N on a

Fig. 145.

fixed diameter AA". Hence, P oscillates between A' and A", while

N rotates at constant speed in the circle.

Let V be the velocity, at any instant, of P, r the radius of the

circle, = angle P N, P = a:, and P N =
2^.

(i.)
To find the time, t, in which the particle P describes the dis-

tance A'P. t is also the time in which N describes arc A'N.

Hence, ut = r6, or t = ~ ang
(0 (eos

=
f)
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The time, T, in which N describes the circle is called the periodic
time of the motion. It is obvious that 27rr = u^.

Hence, T =— and ^ = -^ • • . (1)

The periodic time is thus independent of r which is called the

amplitude of the oscillation. The motion of P from A' to A" and
back to A' is called a complete oscillation, or a complete vibration.

The time in which P describes the distance between its present

position and the nearest resting-place (A' or A") is thus

^=T_^ng(cos
=
^)
... (2)

and the time in which P describes the distance between its present

position and the furthest resting-place is

T_ T
2 27r

ang
(cos

=
^)

=
|[l

- i ang
(cos

=
fj

(3)

(ii.)
To find the velocity, v, of the particle P.—It will be seen

that v= -u sin 6= —u-— -
wv, or

r

27r ,

-y = -
7p y, where y=± slr'^

- x^ . . (4)

V changes sense when y changes sign, -y is a maximum at point
where y = r', -y is zero at points A' and A" where y = ;

A' and
A" are therefore resting-places.

(iii.)
To find the acceleration, a, of the particle P.—The only

force acting on particle N is the deviating force which produces
an acceleration, coV, always directed towards the centre 0. The

component of coV in the direction A'A" is equal to the accelera-

tion of P.
A 2

Hence, a = wV cos ^ = —
2-

a; . . . (5)

Hence, the acceleration of P is always directed towards, and
varies as the distance from, point 0, the position of equilibrium.
The motion of particle P is therefore a simple harmonic motion,
and the relations expressed in (1) . . . (5) are those characteristic

of the latter kind of motion. The particle P is accelerated or

retarded, according as the numerical value of x is decreasing
or iucreasnig.
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By (6) the periodic time of a simple harmonic motion is

/
rp_2 /displacementV acceleration

(6)

228. Conical pendulum.
Definition.—A particle of mass, m, suspendedfrom a fixed point

by a weightless inextensible string and revolving in a horizontal circle

is called a conical pendulum.
To find the tirne, T, of a revolution or the periodic time of a

conical pendultmi.
In 'fig. 146 SQ = ^ is the length of the pendulum, OQ = r the

e
Fig. 146.

radius of the circle described by the particle Q, W = mg the weight
of the particle, ^ = angle S Q, and h = the vertical height S.

Resolve W into two components, one in the direction of S Q and
another in the direction of r. The latter force is the deviating
force F„. If u be the constant speed of the particle, then

F-. = mGr tan<i = ma- =m— ,
but u=—~-.

h r T

Hence,
ip2

COS9and T = 2,r./5^-2x,/^

When
<ji

is very small we may take cos^== 1, and

T = 27r,

[197]

[198]

which is independent of angle ^, or the oscillations are isochronous.
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229. Simple pendulum.
Definition.—A particle of mass, m, suspended from afixedpoint

by a weightless inextensihle string and oscillating in a vertical plane
through the fixed point is called a simple pendulum.
To find the periodic time of a simple pendulum when the angle of

oscillation is very small.

In fig. 147 let SP = ^ be the length of the pendulum, S the

point of suspension, <^
= angle S P, c? = D P the distance of the

particle from the vertical S.

At any position S P of the pendulum the effort F, = m^sin<^
acts in the direction of the tangent to the arc which the particle

describes, sin
<;^
=

d/l, therefore F^ = mgd/l. When the angle <^ is

very small, arc P may be considered a straight line along which

Fig. 147.

F, acts, and as the latter is oc d, the motion of the particle is a

simple harmonic motion.

Let the circle in fig. 145 be horizontal, and let there be a point
S vertically above 0, and let point S be the point of sus-

pension of a conical as well as of a simple pendulum, both of the
same length I. The particle Q of the conical pendulum rotates

at constant speed in the horizontal circle, and the particle P of

the simple pendulum oscillates in the vertical plane along
diameter A'A". When angle <^ is very small, the periodic times
of the two pendulums are equal, viz. T = 27r/oj. Hence, by [198]
in the preceding article, the periodic time of a simple pendulum
when the displacement angle is very small is

>v [199]

or the oscillations of a simple pendulum are isochronous when ^ is

very small.

22
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230. Compound pendulum.
Definition.—A compoundpendtUum is a body which can oscillate

aJxmt a fixed horizontal aocis. The length of a compound pendulwn
is equal to the length of the simple pendulu/m whose periodic time is

equal to that of the compound pendulum.

Fig. 148 represents a body which can oscillate about a

horizontal axis through point S, C is the M.C., SC =
A;, S0 = /, SA

the vertical through S, W = M^ is the weight of the body, <j>
=

angle A S 0.

The energy exerted by W while the pendulum turns through
angle «^ is

M^Z:(l-cos<^)
= 0-5 0)21 . . . (1)

where I is the moment of inertia of the body about the axis of

suspension, and w is the angular velocity of the pendulum when
S passes the vertical position.
The energy exerted while the simple pendulum turns through

angle ^ is

mgl(l
- cos

(f>)
= 0-5 (o^ml^ . . . (2)

(1) and (2) give

'=i (^)

Hence, the periodic time of a compound pendulum when
<{>

is

very small is,

Point in the compound pendulum is called the centre of
oscillation.
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If I' = M RJ be the moment of inertia about an axis through
the M.C. and parallel to the axis of suspension, then

hence, l^m±3 =^ ^ k, i.e. l>k.
MA k

If the pendulum be suspended from an axis through S, then

k

If the pendulum be suspended from an axis through 0, then

^' —1^—
Hence, l-l^ = l-.?i±^Z^ = lk-(Rl + k^)

= 0, or l^l^.
t — K

Hence, the centres of oscillation and suspension are convertible.

If we take any straight line through the M.C, and take any
two points S and S^ at the same distance, d, from the M.C, the

periodic times of oscillation about the two points will be the

same, but S Sj will not be equal to I unless 2d = —^— ,
or c? =

R^,.

Hence, on any straight line through the M.C there are four

points S, 0, Sj and 0^ about which the times of oscillation are

equal.
231. Kater's pendulum.
This pendulum is a bar which can oscillate about either of two

parallel knife-edges whose plane passes through the M.C By
varying the position of the knife-edges the periodic times of

small oscillations about either of them may be made equal. To
be sure that the distance between the edges is equal to I, the

edges should not be equidistant from the M.C
By measuring I and T the value of g may be determined most

accurately, thus

T = 2^yi; hence, ^ =
4^2^^

. . [201]

232. Ballistic pendulum.
The velocity of a bullet may be determined by letting it

strike against a large body suspended like a pendulum, called a

ballistic pendulum.



840 MECHANICS.

Let the bullet strike the body in a horizontal direction in a

plane perpendicular to the axis of suspension.

By article 220 we have that the moment of momentum of a

body is equal to wl, and also that the rate of change of moment
of momentum is equal to the algebraical sum of the moments of

the external forces. Hence, I dmldt
= Fx, where x is the lever of

the instantaneous force w.r.t. the axis of suspension.

During the very short time, ^, that F acts on the body the

angular velocity changes from zero to w. Let p= I Fdt be the

impulse due to the impact, then

px = oiI . . . • (1)

The kinetic energy received by the body is 0*5 w^I, causing the

M.C. to be raised through a height h.

Hence, M(/h = 0'6 o^n .... (2)

233. Centre of percussion.
The axis of suspension of a ballistic pendulum will receive a

shock due to the impact of the bullet. Let R be the reaction

of the bearings due to the latter shock.

The velocity of a particle of the body directly after impact is

ru>; hence, the change of momentum of the body is^mrto
= (u ^mr =

gjMZ;, but this change is equal to the sum of the

impulses due to F and R,

or p+p^ = u)Mk where p.= I Rdt . . (1)
Jo

By (1) in the preceding article we have

— +p^ = oiMk, or p^ = JMk-l) . . (2)X \ x/

jOj
is zero when x = —-, i.e. there will be no shock at the bearings

of the axis if the velocity of the bullet be directed through the
centre of oscillation of the pendulum. The latter point is there-

fore also called the centre ofpercussion.
Let 6 be the angle through which the pendulum is turned by

the impulse, then

h = k{l-cose) = 2h sin2 ^ ,
and 4M^^ sin2 ^

= a>21 (3)

^ '^=Vi

r •"2
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we have, by eliminating <d and I between (1), (2), and (3),

px =—^— sin- . . . . (4)

If the bullet comes to rest in the pendulum, and m and v

respectively are the mass and velocity of the bullet, then p = mv.

Hence, „ = ^!2^sin^ .... [202]



CHAPTER XLI.

EXAMPLES.

(130).
—To find the volume of a right cylinder whose top end

is cut o£f by a plane inclined at angle (f}
to the base.

FBDEF (fig. 149) is an elevation of the body and the curved

figure is the base of the cylinder. The straight line in which the

plane B D intersects the base has been chosen as axis of reference.

Let V be the volume of the body, then 8V = Z 8A. But as

Z = x tan^jSV = x8A tan^ = S{a.m.) tan^. Hence, V = (a.m.)tan <f},

D

Fig. 149.

where (a.m.) is the first area-moment of the base w.r.t.

0-0.
Let a be the distance from the centroid, C, of the base to the

axis of reference, and y the height through C, then

V = aAtan<^ = yA . . . [203]

or, the volume of the given body is equal to the volume of a right
cylinder whose base is that of the body and whose height is the height
of the body through the centroid of the base.

342
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Let ^ be the distance between the axis of reference and the
foot of the perpendicular on the base through the centroid of the

body, then

|V = 2,^ SV = tanc^^i'^s SA = (A.M.) tan<^.

Let R^ be the second mean radius of the area of the base w.r.t.

an axis through C and parallel to the axis of reference, then

(A.M.) = R^A + a2A. Hence,

^=:?k+a . . . . [204]

If the heights, Z, represent intensities of pressure, so that the

minimum intensity of pressure is p = kFB, and the maximum

intensity of pressure is g = ^ED, then tan<^= ,,
,
where

6 = F E. The total pressure on the area is

P = ^V = Z:yA
=

Z:aAtan</)
= aAill:^ . . [205]

The line of action of P passes through the centroid of the body
and intersects the area at a point, the centre of pressure, whose
distance from the axis of reference is ^. The latter axis is, in

this case, called the neutral axis.

By article 230 the length of a compound pendulum is

^_
I _ MRL + Ma2 _R^^^
Ma Mtt a

*

Hence, ^ in [204] corresponds to the length of a pendulum
whose bob is a very thin disc of the shape of the base of the

above cylinder, and oscillating about the axis of reference.

(131) (LC.E., Feb. 1904).—A uniform circular plate, 1 foot

in diameter and weighing 4 lbs., is hung in a horizontal plane

by three fine parallel cords from the ceiling, and when set into

small torsional oscillations about a vertical axis is found to

have a period of 3 seconds. A body, whose moment of inertia is

required, is laid diametrically across it, and the period is then

found to be 5 seconds, the weight of the body being 6 lbs. Find

the moment of inertia of the body about the axis of oscillation.

Solution.—Let I be the length of each of the three parallel

cords, W the weight of the circular plate, and r its radius.

Turning the plate through a small angle about its vertical axis



344 MECHANICS.

and setting it free, it will overshoot its natural position and

commence a series of isochronous oscillations. Each of the three

wires may be considered a simple pendulum of length I, and

suspending together a mass m having an acceleration whose vertical

component is^. Hence, the periodic time of the oscillating plate

is T = 27r.Vi
At the moment the plate swings through its natural position

the energy-equation is

0-5a)?I = W^(l-cos^) . . . (1)

6 is the displacement angle of the wire, and I the moment of

inertia of the plate about its vertical axis. As m is the mass of

the plate reduced to its circumference we have also

0-bii>ll'^m
= mal{\-coBe) ... (2)

But m =
l/r^ and ^Wg^rcuj. Hence, we have l/r^ = W/a, or

a = r^W/I. The periodic time of the oscillating plate is thus

The data of the two given experiments are

(i.)
T = 3secs. ;

I = M^ = 0-5 lb.-ft.2; W-4.

(ii.)T
= 5secs.; 1 = 0-5-1- 1^; W = 10.

Hence, Ii
= 3 Ib.-ft.^ (nearly) (Ans.).

(132) (Q. Nov. 1906).
—Simple harmonic motion being defined

as derived from uniform motion in a circle, investigate the law
of acceleration.

A particle performs 150 complete simple harmonic oscillations

a minute and its greatest acceleration is 10 feet per second per
second

; find (1) its greatest velocity, (2) its mean velocity

during the motion from one extreme position to the other.

Solution.—The answer to the first portion of the present

question will be found in article 227. By the same article

we have

Maximum acceleration = -^— ,
and maximum velocity

= -— .
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The frequency of the oscillations = 150/60 = 2*5
; hence, T =—

= 0*4 sec. As the maximum value of a= lO'/sec.^, we have

r = 15a(^^)^
= 0-04 ft.; hence, max. velocity

= 0-628 ft./sec. {Ans.).

The mean velocity of the particle
=— = 0*4 ft./sec. (Ans.).

(133) (I.CE., Feb. 1901, second part).
— Prove that if a

frictionless straight tunnel tube were constructed from London
to Paris, and air-resistance prevented, parcels could be delivered

between the two places, under gravity alone, in about 42
minutes.

Solution.—Let arc LP (fig. 150) be a portion of the great circle

(5

Fig. 150.

through London and Paris, chord LP the tunnel tube, the

centre of the earth, and angle COB.
The acceleration at any point B in the tunnel is ^sin^, and

if be very small we may take for sin^. Hence, the parcel
wall move as the particle of a simple pendulum w^hose length is

equal to the radius of the earth. Let the latter be R, then the

time taken by the parcel is

VI
R = 20,923,600 ft. Hence,

^ = 42-2 mins. (Ans.).

(134) (I.C.E., Oct. 1908).
— In order to measure the in-

stantaneous velocity of a flywheel 6 feet in diameter, a

pendulum is employed consisting of a solid sphere 1 foot in

diameter hanging on a wire 2J feet long. A pencil attached to

the sphere at its horizontal diameter makes a continuous mark
on the circumference of the wheel when the pendulum is at rest.
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The pendulum is deflected through 60' in the plane perpendicular
to the flywheel and set free, and the new mark made by the

pencil on the periphery intersects the former line at 45°.

Determine the angular velocity of the flywheel in revolutions

per minute.

Solution.—Let v be the velocity of the pencil when it touches
the periphery of the wheel, and V the velocity of the latter.

The centre of the sphere may be taken as the M.C. of the

pendulum. Hence, the pencil as well as the M.C. are 3 feet from
the suspension. The height through which the M.C. of the

pendulum falls = 3 - 3 cos 60° = 15 ft.

As the mark made by the moving pencil forms an angle of 45°

with the mark made by the pencil when at rest, v must be

equal to V.

Hence, v = V = J2gx\'b = 9-83 ft./sec.

Radius of the wheel = 3 ft. ; hence,

y
3a) = V, or o> = _ = 3*28 radians/sec.

= 31*3 revs./min. {Am.).o

(135) (I.C.E., Feb. 1909).—An impact tester for testing steel

specimens consists of a compound pendulum made out of a bar
6 feet long of mass 40 lbs., pivoted at the top end. The bottom
end of the bar strikes against the specimen to be tested, which
is fixed in a vice immediately below the end of the pendulum in

the natural position of rest.

The pendulum is deflected through 60° from the vertical, is

then set free, and after breaking the specimen it comes to rest

at a deflection of 30° on the opposite side of the vertical. Find
the velocity of the blow and the energy absorbed by the

specimen.
Solution.—The M.C. of the bar is 3 ft. from the point of sus-

pension. The height through which the M.C. falls = 3 - 3 cos 60°

= 15 ft. Hence, the velocity of the blow= Vs^' x 1*5 = 9'83

ft./sec.
After the blow the M.C. rises (3-3 cos 30°)

= 0402 ft. Hence,
the energy absorbed by the specimen

= 40 (1-5
-
0-402) = 44 ft.-lbws. (nearly) (Am.).

(136) (Q. Nov. 1907).
—A point is moving in a straight line

with simple harmonic motion. Its velocity has the values 3 feet

per second and 2 feet per second when its distances from the
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mean position are 1 foot and 2 feet respectively. Find the

length of its path and the period of its motion.
Find also, correct to the third significant figure, what fraction

of the period is occupied in passing between the specified points.
Solution.—By the moving point is meant a particle, because

without mass no vibratory nor any other motion can take place.

By article 227

27r I-, r- v2T2
^ = m- V^^ -

!xr, or ^"2 +x^ = r^.

It is given that, when x=\\ v — S'/sec; and when x = 2',

V = 2 '/sec.

Hence, A.T^ + l=r^, and -i-T2 + 4 = 7'2 , (i)
47r2 47r'^

The simultaneous equations in (1) give

T = 7r/^
= 4-9 sees.;

the length of the path = 2r = 5-06 ft. (Ans.).

The time occupied in passing the specified points is

,
T / 1\ T /

^ =
_ang(cos=-)-_ang^

=
^[ang(cos

=
l)-ang(cos

=
?)].

The accurate value of r is x/6-4 ;

hence, 1=^.,!^^.r 8 ' r 4

Let cosa = l and cos/3 = -, then a - j8
= 28° 57' 18" = 0-50536

r r

radians.

XT t 0-50536 ^ ^o^ . , X
Hence, - =— = -080 (Ans.).

i 27r

(137) (Q. Oct. 1909).—A weight of 2 lbs. at the end of an

elastic string describes simple harmonic motion in a vertical line

and passes from its highest position to its lowest, a distance of

6 inches, in J second. Find the tension of the string when the

particle is at its lowest point, and draw a curve to any suitable

scale showing the velocity for any position of the weight.

2
cos= -

r
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Solution.—T = 2 X 0*25 = 0*5 sees. The acceleration is maximum
in the lowest position and is

47rV 47r20-25 oQ.io ,,/...« 2.

the latter acceleration acts in the opposite sense of that of gravity.

Hence, the tension in the string at the lowest point is

(g + 39-48)
= -x 71-67 = 4-45 Ibws. (Ans.).

9

By article 227

47r2, „ „^ , 47r2
V =Y ^^^ ~ ^^ ^^ ^^ =

~^h^'^
-

*^^) >
^^t

-p-
= 1 60.

Hence, the relation between x and v is

^ + 160r2
'

which is an ellipse with centre at the point of equilibrium and

semi-axes r = 0'25 and 4rAyiO = 3'16; the former is vertical and
the latter is horizontal.

(138) (Q. Nov. 1907).
—A rigid body which can turn about a

fixed axis receives a given impulse ; explain how the a,ngular

velocity thus communicated to it may be calculated.

A rifle is fixed to a heavy block which can swing about a
fixed horizontal axis, the line of the barrel being at right angles
to the axis. The discharge of the rifle produces such a recoil

that the block swings through an angle from its equilibrium

position. If in a series of experiments the same bullet is used
but different charges of powder, prove that the muzzle velocity

n
of the bullet is proportional to sin - .

Solution.—W.r.t. the first part of the problem, see article 232.

The block-and-rifle is a ballistic pendulum (see article 233). The

only force we have to deal with is the mutual action between the

bullet and the block-and-rifle. Hence, the sum of the momenta
remains unaltered. In this case the latter sum = 0, or the

momentum of the bullet is equal to the impulse, p, received by
the block-and-rifle. Hence, the velocity of the bullet, see [202], is

roc sin- .

2
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(139) (Q. Nov. 1908). — A water-jet issues from a nozzle
4 inches in diameter with a velocity of 50 ft.-secs. and strikes
a plane surface perpendicularly. If a cubic foot of water weighs
62-5 lbs., find the pressure on the plane and find the horse-

power of an engine which could deliver such a jet at a height of
40 feet above the tank from which the water is obtained

; neglect
friction in the pipe.

Solution.—Let d be the internal diameter of the nozzle, v the

velocity of the water, and h the height above the tank.

(p.

Quantity of water delivered per sec. = tt—v = Q ft.^

Weight „ „ „ =:Qw; = Wlbws.

W M engineering units.

9
WA

The power spent in delivering the jet at a height h =—r H.P.

The total pressure on the plane = P Ibws. = rate of change of

momentum of the water = ?.

t

If the plane surface remains stationary and the water does not

rebound, then we may take v^
=

;
as ^ = 1 sec. we have P = Mv.

P = 19-8 Ibws.
; power of engine = 424 H.P. {Ans.).

(140) (Q. Nov. 1908).—Show how to find the maximum
velocity in a simple harmonic motion when the periodic time
and the amplitude are given.
A mass of 5 lbs. is hung on to a light spring and is found to

stretch it 4 inches
;

it is then pulled down a further 2 inches

and released. Find the time of a complete oscillation and
calculate the kinetic energy as the mass passes through the

position of equilibrium.
Solution.—W.r.t. the first part of the problem, see article 227.

In
fig. 151 points A and are the positions of equilibrium of

the lower end of the spring when respectively no weight and

weight W is hung on to the end. The spring is further stretched

to point B.

Let A =
^j,

B =
^2'

^^^ 1^^ *^® horizontal ordinates to line

A C represent the elastic force of the spring when the end of the

latter is pulled down to the level of the ordinates. Hence,
C represents W.
W describes a simple harmonic motion, l^^ being the amplitude.
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Let the force, which is required to stretch the spring from to

B, be P, then, if line D be drawn parallel to A C, ordinate B D
represents P. The work done while stretching the spring from

to B is represented by the area of triangle D B 0, and is

equal to 0-5/2P
= kinetic energy accumulated in the mass, W/^, as

it passes through point 0. We have

V _l. or P = 12W.w ^;

If V be the maximum velocity of the oscillating weight W, then

1 oW 1;

fj-¥^''

We have also

or, the periodic time of the oscillating weight is equal to that of a

simplependulum of length ly Inserting the given numerical values

in the expressions for T and the energy, we get

T = 0"64 sees.; kinetic energy = 2*5 ft.-lbws. {Ans.).

(141) (I.C.E., Oct. 1908).—What do you understand by the

term moment of momentum of a body rotating about an axis ?

A bullet of mass 1 oz. and velocity 1000 feet per second is

fired into, and remains embedded in, a heavy door standing open,
the line of fire being perpendicular to the door. The door is of

oak, of uniform thickness throughout, 6 feet high by 3 feet
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broad, and has a mass of 240 lbs. The bullet strikes the door
2 feet from the axis of the hinges. Find the angular velocity
of the door if the hinges are frictionless. Determine the line

of fire which would produce no reaction on the hinges.
Solution.—W.r.t. the first part of the question, see article 220.

Let W and v be respectively the weight and velocity of the

W
bullet. We have r — v = wl, where r is the distance of the

9
point, at which the bullet strikes the door, from the axis of the

hinges, and I is the moment of inertia of the door w.r.t. the latter

TT rWv
axis. Hence, to = —^.

9^
To jind I.—Let ^, 6, ^, and M be respectively the height, width,

thickness, and mass of the door. The horizontal section of the

door is a rectangle whose sides are h and t. (A.M.)p of the

rectangle w.r.t. the centroid is

the (A.M.)p of the rectangle w.r.t. the axis of the hinges is therefore

Volume of door = hht^ and mass of door = mhht = M.

Hence, I = (A.M.)^m= ^^^'M.

As t is not given, we may assume that t'^ is very small compared
52

with 452
J we may therefore take I = — M.

o

Let I be the distance of the centre of percussion from the axis

of the hinges, then ^ = — (see article 233).

By inserting the given numerical values in the expressions for

0) and I we get

2x^^x1000x3 2
0, = i^ =0-174 radians/sec. ; ^=^^ = 2 ft. (Ans,),

Q 240
/ ' 3 ^ '

^x 9 X
9
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(142) (Q. Nov. 1909).—A block of wood, weigMng 10 lbs.,

is supported by strings so that it is free to move as a simple
pendulum of length 8 feet. A bullet, weighing 0-5 oz., is fired

into the wood and becomes embedded in it, and the maximum
horizontal deflection of the block is then observed to be 2*5 feet.

What was the velocity of the bullet before hitting the wood ?

Solution.—Let / be the length of the pendulum, d its horizontal

deflection, Wj and Wg the weights of the block and the bullet

respectively.
Let us assume that the bullet strikes the block in a horizontal

direction; the block and the bullet will then both be raised

through a height h. The energy-equation is

or the velocity of the bullet just before striking the block was

^= x/s^'V -%7-^
. . . (1)

where h=^l- JP-d^ . . . . (2)

Inserting the given values in (1) and (2) we shall find that

'y = 91-03ft./sec. {Ans.).

(143) (Q. June 1910).
—State the second law of motion.

Buckets are fixed to the circumference of a wheel of 16 feet

diameter which is rotating at 100 revolutions per minute about
a vertical axis. Water is caused to fall vertically into the
buckets at a uniform rate so that, at the end of 2 minutes,
500 gallons are in the buckets. Find the extra couple necessary
to be exerted upon the wheel to keep up its velocity, neglecting
the increased friction at the bearings ;

determine also what
extra horse-power is required.

Solution.—Let r be the radius of the wheel, w its angular
velocity, and Fp the extra couple.

While the wheel turns through an angle h<j> the mass of water

poured into the buckets is hm. Hence, the energy-equation is

F/o8<^ = Jo)V2Sm,

or Fp =
la>V^

. . . . (1)
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Taking British engineering units, the extra horse-power equation

It is given that: r = 8 ft.; a) = 27r-——= 10*472 radians per
60

sec.
;
total mass of water = ^^pr^ which is poured into the buckets

during 120 sees.

8m 5000 , 8m 5000
Hence, -- = ^—-—r————^, ,^^ ,

and
S<^ 32-19 X 120x10-472' 8t 32-19x120'

Fp = 432-75 Ibws. and ft., and extra power = 8-22 H.P. {Ans.).

23



CHAPTER XLII.

HYDROMECHANICS.

234. Introduction.

In nature matter is found in three states of aggregation, thus :

(i.) solid, (ii.) liquid, (iii.) gaseous. Matter in either of the latter

two states is said to hejluid.
The different substances, in either of the three states in which

they are found, differ so much in their physical properties and
internal structure, that for our present purpose it is convenient to

consider three imaginary classes of bodies
;
a body of either class

is usually termed a perfect body. I think the latter expression is

misleading, and prefer to use the term imaginary/ body. Hence, we
will consider that :

{A) An imaginary solid is a body whose shape and volume cannot

be changed by the action of any force or forces. It is absolutely

incompressible and rigid.

{B) An imaginary fluid is a body which makes no resistance what-

ever to change of shape.

(a) An imaginary liquid is an imaginary fluid whose volu/me

cojinot be changed by the action of any force or forces. It is ab-

solutely incompressible.

(b) An iTuaginary gas is an imaginary fluid whose volume can be

cha/nged to any degree by the action of suitable forces.
The mechanics for liquids is called hydromechanics, and its

practical application is called hydraulics. The mechanics for

gases is called pneumatics.
235. Transmission of pressure by fluid.

Let a vessel (fig. 152) be entirely filled with a fluid, whose

particles are mutually at rest, and let there be two cylinders A
and B let into the vessel at any convenient part of the vessel.

Each cylinder is fitted with an airtight frictionless piston. Push
the piston. A, in a small distance with a pressure whose intensity
is p. If the fluid be a liquid the volume will be unaltered, but if

it be a gas a compression of the gas will take place ;
but we will

354



HYDKOMECHANICS. 355

assume that the intensity of the pressure, q, on the piston, B, is

not greater than it will allow the gas to expand to its original
volume. In both cases, therefore, the volume remains unchanged ;

hence, the volume, V, swept by piston B, is equal to the volume

swept by piston A
;
and as no energy is spent in changing the

shape of the fluid we have, by article 170, that

pV = qV, or p = q (1)

Hence, a fluid transmits pressure equally in all directions. An
imaginary solid can only transmit pressure in the direction of the

Fig. 152.

pressure which it receives, but not at all sideways, because the
volume and the shape of the solid remains unaltered.

As a fluid cannot resist shearing it follows that the surface of

a fluid must be at right angles to the direction of the resultant

force acting on the fluid. Hence, the surface of a liquid contained
in a vessel must be horizontal, i.e. at right angles to the direction

of gravity.
236. Pressure of a licLuid due to its weight.
The pressure of a fluid on an immersed plane surface is due to

the weight of the fluid above the plane surface plus the pressure
on the surface of the fluid.

We must, however, distinguish between a liquid and a gas. An
imaginary liquid is incompressible ; hence, the density of a liquid
remains the same throughout the liquid. The density of a gas
depends on the pressure to which it is subjected. As a lower

layer of a gas carries the weight of the gas above it, it follows

that the density of a gas increases from the surface towards the
base of the vessel in which it is contained.

Let C (fig. 153) be an indefinitely small cylinder containing a

piston and immersed in a liquid, say water. Let the piston sweep
through a volume 8V against the pressure of the liquid. The
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jxerted is j) SV, where p is the intensity of the pressure of

lid on the piston. The piston displaces a weight of liquid
rhich must be raised to the surface. If the piston be at a

depth, kj below the surface, we have that

p8V = 'wSVh, or p = wh. . . [206]

Hence, the intensity of the pressure due to the weight of a liquid,

at any point in the liquid, is equal to the weight of a column of the

liquid whose base is unity and whose height is the depth of the

liquid at the given point.
The same law holds in the case of a gas, only w in [206] varies

with the height of the gas above the given point, and the pressure
cannot be readily calculated, but must be measured by certain

instruments called manometers.

Let BD (fig. 154) be a plane surface immersed in a liquid, such

Fig. 153.

as water, and let the problem be to find the pressure of the water
•on either side of B D. Let the distance from the axis of

reference, through 0, to area-element 8A be x, then the pressure on
8A will be wx^m.<^ 8A, ^ being angle E D. Hence, by example
(130), Chap. XLL, the total pressure mi the plane surface is P
= the weight of the prism of water B K L D = wA H, where A is

the area of the immersed plane sv/rface and H the depth of the liquid
at the centroid of the area.

The pressure, P, acts at a point, the centre of pressure, whose
distance from 0, see example (130), is

|=^ + a .... (1)a

The liquid-pressures will be in equilibrium if the liquid extends

on both sides of the plane surface, as in fig. 154. Besides the

pressure of the liquid there is the pressure of the atmosphere on
the surface of the liquid ;

but this need not, as a rule, be taken
into account, as it acts on both sides of the plane surface.
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The horizontal and vertical components of P are respectively,

P;,
= ?^AHsin^ = ^^HA„ and P^ = i^AHcos^ = ^HA7^, where A„

and A/i are the vertical and horizontal projections of A.

237. Weight of a solid immersed in a fluid.

Let a solid be immersed in a fluid (fig. 155) whose particles are

mutually at rest
;
and let B D be a vertical cylindrical portion of

the solid whose sectional area is SA. Let p be the intensity of

the vertical pressure at B, and q that at D, then (<2'-j9)8A is

obviously equal to the weight of the volume of fluid displaced by
the portion B D of the solid. Hence, the difference between the

vertical pressure, which tends to push the solid out of the fluid, and
the vertical pressure, which tends to push the solid further down
into the fluid, is equal to the weight of the volume of fluid

displaced by the solid or, a solid immersed in a jiuid loses in

weight an amount equal to the weight of the displaced Jiuid.

Fig. 155.

The horizontal pressures at B and E on the horizontal portion
B E of the body are obviously equal, as their A^ are equal, but they
act in opposite senses. Hence, the resultant horizontal pressure
on the body is zero, and the body can therefore have no tendency
to move in any horizontal direction.

238. Pressure on the walls of a vessel containing a liquid.

Let us next consider a vessel of any shape (fig. 156) contain-

ing a liquid. The horizontal pressure due to the weight of

the liquid on a surface-element, N, of the vessel at depth x is

^Vh^^wxhK^.
Whether the horizontal pressures at B and at E

(fig. 155) are

both external or both internal their resultant will be zero. Hence,
the resultant horizontal pressure on the walls of the vessel is

zero, and equilibrium will remain undisturbed until a hole is made
in the side of the vessel, in which case the horizontal pressure

opposite the hole will be unbalanced. The vessel will therefore

be pushed by a force whose direction is horizontal, and which

acts in the opposite sense in which the water flows out. This

principle is made use of in the construction of reaction-turbines.
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The vertical pressure on the surface-element, N, is 8P„ = wx SA^,
and the vertical pressure on the surface-element, L, vertically
below N is equal to the reaction of element N due to SP^ plus the

weight of the column of liquid, whose base is SA^ and whose height
is y - X. Hence, the total vertical pressure on surface-element

L is wyA^j or equal to the pressure due to the depth of liquid

Fig. 156.

at L. The pressure on any part of the sides and the base of the

vessel is therefore independent of the shape of the other part of the

vessel. Hence, the total pressure on the base of a given vessel^

containing a liquid, is the same as it would be if the vessel were a
vertical cylinder on the given base, and filled with liquid to the

given level.

239. Water-pressure machine.
The machine shown diagrammatically in fig. 157 consists of a

piston B, the ram, which can move watertight up and down in

cylinder N. Water may be forced into the cylinder through the

communicating pipe by a small plunger-pump worked by a

vertical force F which acts at the end E of lever E.

When the plunger-piston is raised the inlet-valve at the bottom
of the pump-cylinder will open and the water from tank D will

flow into the pump. When the plunger-piston is forced down,
the inlet-valve shuts and the delivery-valve opens and water is

forced into cylinder N.
Let A be the cross-sectional area of B, a that of the plunger,

p the intensity of the water pressure in the machine, L and I

respectively lengths E and C.

The upward pressure on B is P =pA, and that on the plunger
is =joa; we have also ¥h=pal, or F=pal/L. Hence, the

theoretical mechanical advantage of the machine is

1 =^ . . . . (1)F al
^ ^

If piston B is to be raised through a height h, point E must
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be moved through a height d. The vohime of water which must
be forced into cylinder N to lift B is equal to Ah, and the

plunger-piston must therefore move downwards an amount equal
to A^/a, but d:L: : Ah/a : I, or

the velocity ratio = - =— . . . (2)
h al

^ '

Hence, energy is transmitted through the machine according
to the same law which we found for solid connections (see article

212).
^

Fig. 157.

The machine (fig. 157) appears in three principal forms, thus :

(i.)
The ram may be employed as the moving part of a press.

The head of the ram is then a strong flat plate of larger diameter
than the ram. The plate supports the substance to be pressed
and moves up against a similar plate which is fixed by uprights
to the frame of the machine. In this form the machine is called

hydraulic press or Bramah press.

(ii.)
The ram may be employed to raise a heavy load through

a short height. The machine is then called hydraulic jack.

(iii.)
The ram and cylinder N may be long and of comparatively

small diameters
;
and B is heavily loaded with weights. Let W

be the total weight of the loaded ram, then the intensity of the

water pressure is jo
= W/A, which remains constant.

A portion of the high-pressure water in the machine is utilised

in driving hydraulic machinery, such as hydraulic cranes,

hydraulic riveters, etc. The pump, which is driven by an
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engine, must replenish the water used by the motors
;
but as the

latter do not work continuously the pump may at times force

more water into the machine than the motors require. The
loaded ram will then be lifted and thus gain potential energy,
which it gives off again by descending when the motors use

water at a higher rate than the pump can supply. The loaded

ram acts, therefore, in the manner of a flywheel on a rotating
shaft by accumulating energy when the supply is greater than

the demand, and giving energy off when the demand is greater
than the supply. The loaded piston and its cyclinder in this

form is called hydraulic accumulator.

The pump-engine is automatically stopped when the accumu-
lator-ram is at its maximum height, and is started automatically
when the ram begins to descend.

240. Buoyancy.
Let Wj be the weight of a solid immersed in a fluid, and Wg

the weight of the fluid displaced by the solid. Both Wj and Wg
are vertical forces, the former acting at the M.C. of the solid and
in the same sense as gravity ; whereas Wg acts at the M.C.—the

centre of buoyancy—of the fluid displaced, and in the opposite
sense of gravity. The line of buoyancy—the line of action of Wg—must pass through the M.C. of the solid

;
otherwise Wj and Wg

will form a couple, which will turn the solid in the fluid until the

two M.C.s lie in the same vertical line.

The solid will thus be pushed by a vertical force, Wj -
Wg, and

will sink in the fluid when Wj>W2; it will be at rest in any
part of the fluid when Wj = Wg, and will rise in the fluid when

Wj< Wg. The pushing force will remain constant as long as the

solid is wholly immersed, but when Wj<W2 the force will

diminish when the solid has reached the surface of the fluid,

because then the volume of fluid displaced will decrease as long
as the solid is rising out of the fluid. The solid will continue to

rise until the weight of fluid displaced is equal to the weight of

the solid.

When the solid is wholly immersed in the fluid the ratio

Wj/Wg is equal to the relative specific density of the solid

substance, because Wj/Wg is equal to the ratio of the masses of

equal volumes of the solid substance and of the fluid.

241. Metacentre.
A homogeneous cylinder of revolution, a portion of which is

cut off" by a plane parallel to its axis, is floating on a liquid

(figs. 158). It is evident that the line of buoyancy will pass

through the axis as long as the solid does not lurch so much
that a portion of the plane surface is immersed in the liquid.
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The point at which two consecutive lines of buoyancy meet is

called the metacentre. In the positions (figs. 158a and 158b) of
the solid the metacentre is the middle point of the axis and the

M.C., C, is below the axis. It is obvious that as long as the
metacentre is vertically above the M.C. the floating body is in
stable equilibrium ; because the couple consisting of the weight of

the body and the force of buoyancy (fig. 158b) will turn the body
back to its position (fig. 158a). The same will take place if the

body be standing on a horizontal plane surface. In the latter

case, the line of buoyancy is replaced by the line of reaction of the

plane surface
;

if the body be tilted to one side and let go, it will

oscillate like a cradle about its position of stable equilibrium

Fig. 158a.. Fig. 158b. Fig. 158c.

corresponding to fig. 158a. An oscillating body has a metacentre
;

the metacentre of a pendulum lies in the axis of suspension.
The floating body will be in neutral equilibrium when the meta-

centre and the M.C. coincide
;
thus a long homogeneous cylinder of

revolution and a homogeneous sphere will both float in neutral

equilibrium.
In fig. 158c the floating body is in equilibrium, but it will be

seen that the metacentre is below the M.C.
; hence, when the

body lurches in the least degree, it will heel over, and after a few

oscillations about position fig. 158a, will remain in the latter

position. The body in position fig. 150c is in unstable equilibrium.
The resistance of a ship against rolling is thus proportional to

the distance betw^een its metacentre and its M.C, the latter point

always being lower than the former. It is generally necessary to

ballast the ship to bring the M.C. sufficiently below the meta-

centre
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PNEUMATICS.

242. Properties of gases.

We have said that the volume of imaginary gases can be

changed to any extent, i.e. the gas can be expanded or be com-

pressed to any degree by the application of suitable forces.

Some gases in nature, such as atmospheric air, oxygen, hydrogen,

nitrogen, etc., may be expanded or compressed to a great extent

without changing their nature. The reason for this is that these

gases are far from their fluid state of aggregation, and therefore

remain gases for a long range of compression. Whereas carbonic

acid gas can be condensed to a fluid by compressing it at a

pressure of 36 atmospheres.
The former gases may therefore be said to follow, within certain

limits, approximately our definition of imaginary gases, and we
will therefore proceed to study some of their properties.
The volume occupied by a certain portion of a gas depends

upon its temperature and the pressure to which it is subjected.
If the pressure of the gas be diminished, the volume will increase,
i.e. the gas will expand ;

the same effect is caused by raising the

temperature of the gas.
243. Boyle's law.

Assume that we have a certain portion of a gas enclosed within

a cylinder, with an airtight fitting piston. We may then

compress the gas by placing weights on the top of the piston, in

which case we shall find that the temperature of the gas will rise,

but still by conveying a sufficient amount of heat from the gas
we can keep the temperature constant. We could otherwise

diminish the weights on the piston, and the gas would then

expand again and at the same time the temperature would fall,

but by adding the necessary quantity of heat to the gas, we can

keep the temperature constant in this case also.

Let now Vq, Vj, Vg, Vg . . . denote the volumes occupied by the

gas, corresponding to the intensities of pressure Pq, Pj, Pg, Pg . . .

362
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then we shall find by keeping the temperature of the gas constant

that

% p/ V, p/ V3 p,
• •  '^>

or V„P„= ViPi = V2P, = V3P3 = C . . [207]

This is the Jlrst law of expansion of gases, and may be stated as

follows : The product of the volume occupied by a portion of a gas
at constant temperature into its intensity ofpressure is constant.

This law was first discovered by Robert Boyle in 1662, and
verified by Mariotte in 1715.

The constant C in [207] varies with the temperature, every-

thing else remaining the same.

244. The law of Charles.

The second law of expansion of gases states that, the increase of
volume of a portion of a gas at constant intensity ofpressure is pro-

poi'tional to the temperature.
It has been found that the increase of volume of a portion of

a gas by heating it from the ice-point to the boiling-point is 0*3665

of its volume at the ice-point. The expansion of a gas by increase

of temperature is therefore for one degree C. equal to 0'003665
;

this number is called the coeffi^cient of expansion of gases.
Let Vq, Vj, and V2 be the volumes of the same portion of a

gas at degrees, t-^ degrees, and
t^ degrees C. respectively, then

Vi = [l-l-0-003665^JVo .
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and let Vj be the volume of the gas at
t^ degrees C. and at pres-

sure Pj, then

1 = ^ ... (4)

Now multiply (3) by (4), then

Vi = Vo(l+0-003665^i)|o
... (5)

If the temperature and the intensity of pressure be changed to

<2
and Pg respectively, then the volume of the gas will be

i
Now divide (5) by (6), then

V P V P

l+0-003665«i 1 + 0-003665^2
' '

^ ^

where R is a constant, depending upon the nature and portion of

the gas. Formula (7) expresses in symbols the two laws of

expansion of gases.
245. Absolute temperature of gases.

The absolute temperature of a gas is a theoretical consequence
of the law of Charles, by assuming that it is possible to continue

the cooling of a gas until its volume is diminished to naught.
This agrees with our definition of an imaginary gas. The tem-

perature Tq at which the volume of the gas should be naught
must satisfy the following equation :

= l + 0-003665To . . . (1)
and we find

To= - 272-9 say minus 273° C. . . [209]

The temperature Tq is the absolute zero for imaginary gases,
and the temperature of the gas reckoned from this zero is the

absolute temperature of the gas. Thus, if the temperature of

an imaginary gas is t degrees C, its absolute temperature is

T = 273 + ^. A degree on the absolute temperature scale is, of

course, equal to a degree C. ; we have only lowered zero 273° C.

Applying [209] we may write (7) in the preceding article thus :

V P V P

tT" T7=^
• • • • ^^^°^

where R is constant, but not equal to that in (7) in the preceding
article.

[210] expresses the relation which exists between volume,
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intensity of pressure, and absolute temperature of an imaginary
gas.

By [210] we have V P - R T, but by article 170, V P is the work
done on the gas by expanding it from volume = to volume = V
under a constant intensity of pressure P, or we may say that it is

the energy exerted while heating the gas from absolute zero to

the absolute temperature, T, against a constant intensity of

pressure, P. R is therefore the work done per degree of

temperature.
246. The atmosphere.
Our earth is completely covered by an ocean of atmosphere,

consisting of such gases as are necessary for upholding life. The

height of the atmosphere varies according to a number of circum-

stances, and at no time can the height be measured. We can,

however, measure the intensity of its pressure on a surface by
balancing it with a column of liquid on the top of which the air

has been removed. Take, for instance, a glass tube closed at one

end and open at the other, fill it with mercury, and boil the latter

while in the tube, the open end being uppermost. All the air

which might be in the mercury will thus escape during boiling ;

put the finger against the open end and let it down into a basin

containing mercury. It will be seen that the mercury will not

run out of the tube altogether, but will leave a column whose

height depends on the condition of the atmosphere; on an average,
it is 760 mm. = 29*94 ins. near the sea-level. Above the column
of mercury is left a space which is very nearly empty, i.e. it is as

near as possible a perfect vacuum.
The vertical column of air above the surface of the mercury in

the basin and the column of mercury in the tube form, as it were,

two communicating tubes. Hence, the intensity of the pressure
due to the air column is equal to the intensity of the pressure
due to the mercury column on the surface of the mercury in the

basin. Now a cubic cm. of water weighs 1 grw., and the specific

density of mercury is 13-6
; hence, a column of mercury whose

height is 76 cm. and whose base is 1 cm.^ weighs: 76 x 13*6 x Q-OOl

= 1-033.6 kgw., or 14-7 Ibw. per inch^. This is the pressure of
one atmosphere. In the metric system the pressure of one atmo-

sphere is often taken as 1 kgw. per mm.^
The apparatus, just described, consisting of the basin and tube

containing mercury, is called a barometer. The space above the

mercury in the tube is not a perfect vacuum; it will always
contain some mercury vapour, and it is impossible to remove

every trace of air from the mercury. The pressure due to the

remaining air and the mercury vapours, however, is very small



366 MECHANICS.

in a well-made barometer, and is, according to some authorities,

only equivalent to a column of mercury of 0*0013 mm. height,
and is thus inappreciable.
The barometer measures the atmospheric pressure in columns

of mercury, but the actual pressure, in kgw. per mm.^ or in Ibw.

per inch^, depends on the weight of unit volume of mercury.
It is only at the sea-level and latitude of Paris that a cubic cm.

of mercury weighs 13 6 gmw. The weight of unit volume of

mercury depends on gravity and temperature.
A barometer may also be constructed on the principle of the

spring-balance ;
it consists then of a cylindrical metal box closed

at top and bottom by two corrugated diaphragms, which act as

springs. The box is exhausted and the atmospheric pressure on
the diaphragms is balanced by the elastic force of the diaphragms,
whose deflection is magnified by levers and is indicated on a scale.

A barometer of this kind is portable and is called an aneroid

barometer.

The two kinds of barometer measure two different things. The

mercury barometer measures the mass of the atmosphere by
balancing it against the mass of the column of mercury, like a pair
of scales. Whereas the aneroid barometer measures the weight
of the atmosphere by balancing it against a force. Although the

latter barometer is calibrated to indicate the atmospheric pressure
in columns of mercury, it ought really to indicate the pressure in

kgw. per mm.
2 or in Ibw. per inch^. Hence, the indications of the

two kinds of barometer will not always agree accurately.
247. The siphon.

When a liquid, or a portion of it, is to be transferred from a

7 \
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E is a bent tube which must be completely filled with liquid ;

this may be done by sucking liquid through the tube from the

free end. Let b be the height of the column of liquid correspond-
ing to the atmospheric pressure, then the lifting pressures on the

liquid in the tube at the surface-levels in B and D are respectively
due to heights (6

-
h-^ and \b

-
(h^ + h^)]. Hence, the liquid runs

out at the free end in D with a velocity due to height h^. The
tube E is called a siphon. It is obvious that h^ must be less

than b
; hence, a siphon cannot work in a vacuum. The siphon

will continue to work until B is empty or until the level of the

liquid in B has fallen to that in D.

248. Raising water.

The mean height of the column of water which the atmosphere
can support is equal to 29"94 x 13-6 ins. = 33*9 ft. The atmospheric
pressure may thus be utilised in raising water from one level to

a higher one. For this purpose a vertical pipe is let into the

water below, while a vacuum is being produced at the other end
of the pipe.

Steam may be used to expel the air from the pipe, and then

produce a vacuum by condensing the steam. The contrivance

generally employed to exhaust the pipe is a pump, which consists

of a cylinder with a reciprocating piston. The pipe, the suction-

pipe, which is to be exhausted dips into the well below,
and the top end of the pipe is connected to the pump-cylinder

(fig. 160a).
In starting the pump there is no water above the piston, and

the pump acts as an air-pump while exhausting the suction-pipe.
When the pump-piston is at the end of its down-stroke there is

still a small space, the clearance, left between the piston and

the lower end of the pump cylinder, which is filled with air at

the atmospheric pressure. Let V^ be the clearance volume and

Vg the volume swept by the piston in one stroke then, provided
there be no leakage and the temperature remains constant, by

P.=^^P.
. . .  (1)

Pj is the intensity of the atmospheric pressure, which also acts

on the surface of the water in the well. Hence, the intensity of the

effective pressure by which the water is lifted through the suction-

pipe is

P<=Pi-I'2=
v;5v^P.

... (2)
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Let b and h be the heights of water which can be supported by
Pj and Pg respectively, then

Vo 7

h : b : : V, : ¥., or A =
v,+v,

(3)

V^ is rarely smaller than 0*05 Vg, and as the average value of b

is about 34 ft., we get A = 32*4 ft.

The pump is not working properly unless the water from the

suction-pipe follows the piston during its up-stroke. Let I be the

4^

Fig. 160a. Fig. 160b.

length of the stroke and h^ that of the suction-pipe, then the

suction height is

*=*>+^=vr?v;*-
• [211]

The atmospheric pressure may be much less than 30 ins. of

mercury, the pump may leak, and the valves do not close instan-

taneously ;
for these reasons we cannot rely on a suction-height

of more than 20 ft. to 25 ft.

The second function of the pump is to raise the water through
a height h^ from the suction-valve to the level of the spout

through which the water is discharged.
In fig. 160a the water passes through the piston-valve during
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the down-stroke into the delivery-pipe, which is a continuation of

the pump-cyUnder. The water level is thus lifted through a

height I in each up-stroke until it reaches the spout.
The piston in fig. 160b forces the water through the delivery-

valve and raises the level of the water through a height I in each
down-stroke. If A be the area of the piston, the volume of water

discharged by either pump in a double-stroke of the piston is

A^. The pump (fig. 160a) is called a lift-pump, and that in

fig. 160b is called &> force-pump.
To find the work done in raising the water from the level of the

well to the level of the discharge spout.

When the piston (fig. 160a) is at a distance x from the bottom
end of the cylinder in the up-stroke, the downward pressure
on the piston is = wk.{b ^h^- x), and the upward pressure is

= wk\b
—

(h^ + x)]. Hence, the piston is to be lifted against a

pressure = Ai6'(Aj -i- ^2)5 ^^^ ^^® work done during the up-stroke
= wMQi-^ -F h^ energy-units. The piston does not overcome any
pressure during the down-stroke.

The pressure on the piston (fig. 160b) against the motion, in

the down-stroke, is wk(b ^hc^-x-h) = wk(h^
-

x), and the work

done during the down-stroke is

n
fi 11= wkh^ \

dx - wk lxdx = wklh^
- ^A— .

Jo Jo 2i

In the up-stroke the pressure on the piston to be overcome is

= wk[b -{b-h-^- x)]
= kw{h^ + x),

and the work done during the up-stroke is

ri ri p
= wkh^ \ dx -h wk \xdx = wklh^ -{-

wA-^
.

Hence, the total work done during a double-stroke

= wkl{h^ 4- ^2).

The work done by either of the two pumps during a double-

stroke of the piston is

wkl{h^+h^)=^wkm ... (4)

H is the vertical height between the two water-levels.

The actual volume of water delivered by a pump is somewhat

less than that we have just found. The valves do not shut at

once at the moment the motion of the piston is reversed. Hence,

some water will be forced out of the cylinder through the valves.

24
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Other losses are due to leakage, air in the water, etc. Let
rj

be

the efficiency of the pump, then the volume of water delivered by
the pump in a double-stroke is

r]Al volume-units.... (5)

7} may be taken between 0*9 and 0*98.

249. Air-vessel.

While the piston (fig. 160b) is in its up-stroke the column of

water remains at rest in the delivery-pipe and must be started

again at the moment the piston begins to move downwards. At
that moment the pressure on the piston is equal to the weight of

the column of water above the piston plus the inertia-pressure of

the water. To ease the piston and piston-rod of the extra pressure,
an air-vessel (fig. 161) may be placed between the vertical

Jl_
Fig. 161.

delivery-pipe and the pump. At the beginning of the stroke the

piston forces water into the air-vessel, the air will be compressed,
and the compressed air will in due time expand and assist the

piston in starting the water on the other side of the vessel. The
air in the vessel acts like a buffer of a railway carriage, it assists

in the start and prevents any shock due to sudden changes of

velocity. When the air-vessel is of sufficient size the flow of

water in the delivery-pipe will be continuous.
250. Air-pump.
A pump which is used to extract the air from a vessel is called

an air-pump.
A pump like the one shown in fig. 160a may be used for the

purpose by connecting the suction-pipe with the vessel, the

receiver, which is to be exhausted.
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By (1) in article 248 the limiting intensity of pressure in the

receiver would be -—^Pp Hence, if we imagine a perfect air-

pump, i.e. a pump with no clearance, the limiting pressure would

apparently be zero. Let us, however, consider this case more fully.
Let Pq be the initial intensity of pressure in the receiver, V its

volume, and P^, Pg . . . P« the intensities of pressure in the receiver

at the end of the first, second . . . . n}'^ out-stroke of the pump,
then

PoV = P,(V + V,), or Pi =y^n;
and P,V = P,(V + V,), or P,

=
(^yp„.

P„ =
(^j"Po

. - . (1)

P„ can only be zero when n = oo . Hence, it is impossible to

obtain a perfect vacuum even with a perfect pump.
In order to hasten the exhaustion we may use a double-pump,

i.e. two pumps working together, the two pistons moving always
in opposite senses.

251. Air-compressor.
A pump which is used to increase the pressure of the air in a

vessel, the receiver, is called an air compressor.
When a gas is being compressed its temperature rises, unless

the heat which is generated during the process of compression
is dissipated by cooling the gas. In the following we will assume
that the temperature of the gas remains unaltered.

In fig. 162 D is the delivery-pipe which connects the barrel of

the compressor with the receiver ;
the delivery-valve opens into

the pipe. In the out-stroke of the piston the delivery-valve is

shut and the piston-valve is open, and the pump takes air in at an

intensity of pressure P. During the in-stroke the piston-valve is

shut and the air is being compressed until the pressure has reached

that of the air in the receiver ;
the delivery-valve opens and the

air in the cylinder is forced into the receiver. Let P' be the

limiting intensity of pressure of the air in the receiver which can

be obtained by the compressor, then

P'Vi-P(Vi + V2), or F = Il+Z2p . . (1)

Hence, when V^ = 0, i.e. a perfect compressor, P' will apparently be

equal to oo . Let us, however, also consider this case more fully.
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During each in-stroke a volume Vg of air at atmospheric

pressure is forced into the receiver, whose volume is V. Hence,
after n in-strokes the volume of air, at atmospheric pressure,
contained in the receiver will be nVg + VPo, where Pq is the

initial intensity of pressure of the air, in atmospheres, in the

Fig. 162.

receiver. Hence, the intensity of pressure P^
of the air in the receiver after n in-strokes is

P.= TlV. + VP,

in atmospheres.

(2)

P„ cannot be oo as it requires n = ao .

252. Fluid friction.

If it were possible to produce an imaginary fluid and we poured
the fluid into a vessel whose inside surface is a surface of revolu-

tion and then caused the vessel to be rotated about its axis, we
should find that the fluid would not be affected at all by the

rotation, but would remain at rest in the vessel.

If, however, the vessel contains a natural fluid, then every
particle of the fluid will gradually take part in the rotary motion
of the vessel. This shows us two things :

—
(i.) That there is a force which resists the sliding of the fluid

on the surface of the vessel. This force is very great indeed
when the fluid adheres to the vessel.

(ii.) That natural fluids possess something—called viscosity
—

which is analogous to friction.

The force of friction between two neighbouring surfaces of a

fluid is very diff"erent from the force of friction between the

surfaces of two solid bodies. The latter force is proportional to the

pressure between the bearing surfaces, and is independent of their
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areas and their relative velocity ;
and the friction of rest is greater

than the sliding friction.

The force of friction between two fluid surfaces is—(1) in-

dependent of the pressure; (2) proportional to the area of the

surfaces; (3) proportional to the relative velocity of the surfaces;
and hence, (4) the friction at rest is equal to or approaches zero.

The viscosity of a liquid diminishes rapidly with rise of

temperature, whereas the viscosity of gases has been found to

increase with the temperature.
When a liquid flows through a straight capillary tube whose

length is many times greater than its bore, the paths of the

particles will be straight lines parallel to the axis of the tube.

The particles of the liquid next to the wall of the tube will be

at rest, hence, the liquid will flow as if the tube itself were made
of the liquid. B F in fig. 163 is a horizontal capillary glass-

[fiJ"rlc_l:lD ^^

Fig. 163.

tube communicating at one end with a vessel A filled with a

liquid. When the free end of B F is closed the liquid in the

vertical tubes, which are open at the tops, will be found to stand

at the same level as in A. This shows that, when the liquid is at

rest the internal friction is zero.

When the free end of B F is open the liquid will flow with a

velocity whose magnitude will depend on the level in A and on

the viscosity of the liquid. If we keep the level in A constant,

the velocity of the liquid will be uniform and the levels in the

vertical tubes will arrange themselves in the dotted straight line,

the steepness of which will increase in the same proportion as the

velocity of the liquid in B F.

As the heights of the liquid in the vertical tubes measure the

pressure of the flowing liquid in B F, we may deduce the following

from the experiment :
—

(i.)
As the diff'erence of pressure between any two points in
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B F is proportional to the distance beween them, the force of

friction is proportional to the area of the sliding surfaces.

(ii.)
As the steepness of the dotted line increases in the same

proportion as the velocity of the liquid, it follows that the friction
is propo7'tional to the relative velocity of the particles.

(iii.)
As the pressure on the liquid in B F varies along the tube,

the force offriction is independent of the pressm^e.

Let V be the velocity of the liquid, r the internal radius of the

tube, p the difference of intensity of pressure between the ends

of a length I of the tube and
rj

a coefficient, then, according to

Poiseuille,

^-f/r
• • • • 0)

As V and
rj

are inversely proportional, the latter may be

regarded as something analogous to a coefficient of friction,
rj

is

called the coejfficient of viscosity, and its dimensions are evidently

[M] [L]~^ [T]~^> whereas the coefficient of friction between two
solid bodies is a pure number.

If V be the volume of liquid passing through the tube per
second, then

V = «-^- =
^f.

. . . (2)

(2) has been found to hold also for gases when the volume V
is measured at an intensity of pressure (pj +jOg)/^, where p^ and

^2 are the intensities of pressure at the ends of the tube. Hence,
for gases

Y_^^ ^i-j^2 .... (3)
817 I

I in (3) is the length of the tube,
r)

is also called the coeficient

of transpiration.



CHAPTER XLIV.

IMPACT.

253. Volume-elasticity.
In fig. 164 is shown a cylinder with an airtight fitting piston,

which can move in the cylinder without friction. Both cylinder
and piston are supposed to be made of a material which is a

perfect insulator of heat, so that they can neither absorb nor

conduct heat.

The cylinder contains a portion of an imaginary gas whose

intensity of pressure, volume, and temperature are P^, V^, and T^

P

III))!))!) ))))ni)nn /in)>,!inTrT7Tr

Fig. 164.

when the piston is in the position shown in the figure. The

piston is now pushed gradually towards the bottom of the

cylinder
—compressing the gas

—until it reaches position B2A2.

Let the values of P, V, and T at the latter position of the piston

be P2, V2, and Tg, then we have by [210]

PiVi/Ti = P2V2/T2
= R

Hence, P,V,

or PiVi
= R Ti, and

-PiV. = E(T,-Ti) .

P^V^^ RT„

(1)
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By article 245 the left-hand side of (1) is the work done on the

gas while increasing the intensity of pressure from Pj to Pg ;
and

the right-hand side of (1) is the work done in raising the tempera-
ture of the gas from Tj to Tg. Hence, the work done on the gas

during compression is turned into heat, and is represented by
area BjAiAgBgBj. The relation between P and V is represented

by the curve A^Ag, which is called an adiabatic curve, and the com-

pression is called adiabatic compression. As no heat can escape
from or be added to the gas, no loss of energy can take place

during the process of adiabatic compression.
We may now gradually diminish the external pressure on the

piston, and the gas will expand adiabatically driving the piston
forward. When the piston reaches its initial position, B^Aj, the

total energy represented by area B.^AgAjBjBg will have been spent,
and the values of P, V, and T will again be P^, Vj, and Tj.
As P V/T is always equal to R, the different stages of the gas

during compression will thus be repeated during expansion
in the reversed order. The gas is said to possess perfect volume-

elasticity.

The forces which are to be overcome, in the case of compres-
sion, are due to mutual actions between the molecules of the gas,
and may be termed elastic fwces. If we consider a substance

which possesses internal resistances, which are not elastic, then

part of the energy spent in compressing the substance will be

wasted, and the substance will not resume its original shape by
a subsequent expansion. We may even go so far as to consider a

substance—such as an imaginary liquid
—which is void of any

elastic forces. Such a substance would have no tendency to

recover its initial shape ; it would be perfectly inelastic.

In nature we find neither perfectly elastic nor perfectly inelastic

materials, but some approach the first limit, as ivory, others

approach the second limit, as butter, hard clay, etc.

254. Impact of two smooth homogeneous spheres.
When two bodies strike against one another they are said to

impinge on one another, and the collision is termed an impact.
A sphere is said to impinge directly on a fixed plane, if the

direction of the velocity of its centre, just before impact, is

normal. The impact of two spheres is said to be direct if the

centres of the spheres, just before impact, are moving along the

same straight line.

When two bodies collide their velocities will be altered, and
their mutual action will cause their shape to be changed ;

according to the preceding article the latter deformation requires

energy, hence the bodies will lose some of their kinetic energy.
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255. Direct impact.
The only forces acting on the two spheres during direct impact

are those due to the mutual action between the bodies. Hence,

by Chap. XXXVIII., the motion of the common M.C. of the

spheres is unaffected by the impact and it will continue to move
with uniform velocity ; also, the sum of the momenta of the two
bodies remains constant.

There are three distinct stages during impact which must be

considered, viz.:

(i.) The impact begins at the moment the two spheres touch.

At this moment their velocities are the same as during approach.
Let M and V^ be the mass and the velocity of sphere I., and m
and Vi be those of sphere II. The velocity of approach will thus

be V< - -y^ ; the velocities being reckoned positive in the direction

of V,.

(ii.)
The second stage is when the deformation of the bodies

has reached its maximum. At this moment the two spheres will

move instantaneously together with velocity V, and as the sum
of the momenta remains unchanged, we have MV^ + wiv^

= (M + m)V.

M + m '- -

(iii.)
The third stage is reached when the bodies have recovered

as much as is possible of their original shape. At this moment

they will separate with velocities Nf and Vj respectively. The

velocity of separation is thus V^
-

Vj.

When the bodies are perfectly elastic sphere I. will lose

velocity V^ - V between stages (i.)
and (ii.) ;

and as the bodies

recover their shapes perfectly the action betw^een stages (ii.)
and

(iii.)
will be exactly equal, but opposite, to the action between

stages (i.)
and

(ii.) ; sphere I. will therefore again lose velocity

v,-v.

Hence, V^== V,- 2(V,- V) . . . (1)

Similarly, sphere II. will gain velocity 2(V
-

v^.

Hence, v^==Vi + 2{Y -v,) . ... . (2)

As bodies in nature only recover partially we must take

V^=V,-K(V,-V), and v^^v. + KiY -v,) . (3)

Where K < 2 is a constant which depends on the material of
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which the spheres are made. The two equations in (3) give

y,-t;,= -(K-l)(V,-t;0,or

^^=-(K-l)=-e . . . [213]

c is a constant and is known as the coefficient of restitution or

sometimes the coefficient of elasticity Hence, the ratio of the

velocity of separation to the velocity of approach is constant, and

depends on the material only, and not on the masses of the bodies.

For perfectly inelastic bodies, K =
1, e = 0.

For perfectly elastic bodies, K =
2, e=\.

For bodies in nature, 1<K<2, orO<e<l.
By eliminating V between [212] and the two expressions in (3)

we obtain

y _ M V< + mVi -
em(Yi

-
Vi)

and MV,-i-m.+.M^V,-.,)^ M +m •- '

When the spheres are perfectly inelastic bodies we have e = 0.

Hence, Vy = ty
= V, or the bodies do not separate, but move

together with velocity V.

When the spheres are perfectly elastic, or e = 1, we have

^ M + m ^ M +m •- ^

When M = m in [215], we get ¥^•
=

'1;^
and ty=Vi, or the two

bodies interchange velocities.

When M is very large compared with m and Vi = 0, we get

Vy= 0, and Vj= -Vi, or the small body rebounds with a velocity

equal to its velocity of approach, but in the opposite sense.

256. Kinetic energy lost during impact.
Let the loss of energy be L, then

L = 4(MV,2 + m'y,2)
- J(MV/ + mv/),

or 2L = M(V,2
- V/) + m(v,2

-
v/).

By (3) in the preceding article, we get

V,2 - V/ = (V,
-
V^)(V, + V^)

=
(1

-
e2)(V,

-
V)2 . (1)

^.2 _ v/ = {Vi
-

Vj){Vi + vj)
=

(1
-
e2)(V

-
v,f . (2)
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Hence, 2L = (1
-
e2)[M(V,

-
V)2 + m(V -

v^f]

or L =l^ J^(V,-i;,)2 . . . [216]

(i.) Perfectly/ elastic bodies. e=l, hence L = 0, which was also

shown in article 253.

(ii. ) Pe7]fectly inelastic bodies. e = 0.

V,=,,,=V = MZi±^<;L = l^(V.-^,)^ . (3)M + m 2 M + m^ ^ '

(a) If M is very large compared with m and V^ = 0, i.e. M is at

rest, then L = 0'5 mVi^^ or the whole of the kinetic energy of the

impinging body is lost. This case may be examplified by a lead

bullet striking a target or a wall. The whole energy of the
bullet will be converted into heat, which may cause the lead to

melt.

(6) Let M be the mass of a water-wheel, and m the mass of a

water-particle which impinges directly on the bucket of the

wheel. The bucket moves with a constant speed V, i.e. the

impinging of m on the bucket does not alter the speed of

the wheel, but will cause the wheel to keep up its speed. We
may now find the energy transmitted to the wheel by the

impulse of each particle, assuming that both the water and the

bucket are perfectly inelastic.

As M is very large compared with m and ^'^>V, the energy
lost by m is 0*5 m{y^ -N'^). By (3) the total energy lost during

impact is O'b m{Vi-Ny. Hence, the energy transmitted to the

wheel is

0-5 m{y,?
-
V2)

- 0-5 m{Vi
- Yf = mV{v,

-
V) . (4)

Let W be the weight of the water impinging on the wheel per

second, then the power transmitted to the wheel per second is

when the quantities are given in British engineering units.

(5) is maximum when Vi = 2Y. Hence, the maximum theoretical

power transmitted to the wheel by the impulse of the water is

W^^'h.P (6)
2200^
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257. Oblique impact of two smooth homogeneous spheres.

Let Vi, v,, Vy.,
and ty (fig. 165) make angles a, /8, <f>,

and 6

respectively with the centre-line of the spheres when they touch.

Hence, \^ sina = y;'Sin<^ . . . . (1)

Viaml3 = Vysin6 .... (2)

The velocities along the centre-line are,

before impact Vi cos a and v^cosjS . . (3)

and after impact VyCos<^ and Vycos^ . . (4)

I.

Fig. 165.

As the only forces which act on the spheres during impact are

those due to the mutual action of the bodies, we may use [214]
to determine (4), by substituting the values in (3) for V^ and Vi

in [214].

Hence, V,cos<f> = <^
"
^^^^^ co^a + m(l 4- e)v, cosg^ .^.

V cos^ = (1 + e)M V, cosa - (eM -
m)Vi cos/?

,^.^ M+m  
^

Hence, tan<^ = (ii, tan^ = (?) ... (7)
(5) (6)

and V^=^V,,^,= «i£^^, ... (8)^
sin<^

" -^

sin^
" ^ '



CHAPTER XLV.

EXAMPLES.

(144) (I.C.E., Oct. 1901).—A vessel of water is weighed on a

parcel spring-balance, the reading of which shows that the
vessel and water weigh 11 lbs. A 7-lb. iron-weight is suspended
by a fine wire from the hook of an ordinary spring-balance, and
is lowered into the water until it is completely immersed. Under
these conditions find (i.) the reading of the spring-balance from
which the weight is suspended ; (ii. ) the reading of the parcel

spring-balance on which the vessel stands. Give the reason for

any change in the readings of the balances. Specific gravity of

iron = 7-5
;

1 cubic foot of water weighs 62-5 lbs.

Solution.—Suppose that the spring-balance and iron-weight,

together with the vessel and water, be all mounted on the parcel

spring-balance. It is obvious that the reading of the latter

balance would remain the same whether the iron-weight is out of

the water or in the water. But the weight of the iron-weight,
when immersed in the water, is diminished by the weight of the

water displaced.

Hence, when the iron-weight is immersed in the water, the

weight of the vessel and water will be increased by the weight of

the water displaced, and the reading on the spring-balance will be

diminished by an amount equal to the latter weight.
The weight of water displaced when the iron-weight is

completely immersed is W = 7/7-5 Ibws. = 14/15 Ibws. Hence, the

reading of the parcel spring
- balance = 11 -t- 14/15 = 12 Ibws.

(nearly); and the reading of the spring-balance
= 7 - 14/15 = just

over 6 Ibws.

(145) (I.C.E., Oct. 1897, second part).—A bulb weighing 12 oz.

is found to weigh 8 oz. when immersed in water, and 7 oz. when
immersed in another liquid. What is the specific gravity of the

liquid ?

Solution.—Let V and W^ be the volume and weight of the

381
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bulb, W2 its weight in water, and Wg its weight in the liquid,

then

The weight of volume V of water = Wj -
Wg.

The weight of volume V of liquid
= W^ -

Wg.

Hence, W — W 12 — 7
the specific density of the liquid = —i——2 =——-== 1'25 (Ans.).W n

— W 2 1^ —

(146) (Q. June 1909).
—A raft is formed by placing planks

across two equal hollow circular cylinders each 20 feet long and
3 feet in diameter. The raft floats with one quarter of the

vertical diameters of the cylinders immersed, and the water in

which it floats weighs 1 ton to 35 cubic feet. Find what
additional load will just completely immerse the cylinders.

Solution.—Let d and I be respectively the diameter and length
in feet of the cylinders, and A the immersed area of the cylinder-
ends when 0'25 of the diameter is immersed.
The weight of the water displaced when the cylinders are com-

pletely immersed is

W, = ?^!^piltnv>B. . . . (1)

and the weight of water displaced when 0*25 of the vertical

diameters are immersed is

W2 = ^A'tnws (2)

Hence, the additional load which will just completely immerse
the cylinders is

W = Wi-W2 =
^'^?^^2Unws.

. . (3)

The angle at the centre subtending the immersed arc, when
0*25 of the diameter is immersed, is 120°. Hence, A = 7r(i2/12

-dc/8f c being the length of the chord. But c = d sin 60°.

Hence, A=l-38ft.2 and W = 6-5 tnws. (^tw.).

(147) (Q. May 1907).
—A cylinder 6 inches long, having a

cross-section of 1 square inch, floats totally submerged with its

axis vertical in a vessel containing water and oil on the top of

the water. If the cylinder weighs 0*2 lb., find how much of

its length is below the surface of separation of the oil and the
water. The specific gravity of the oil is 0-7, and the weight of

1 cubic inch of water is 0-036 lb.
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Solution.—Let a, h, and w^ be respectively the cross-sectional

area, the height, and the weight per unit volume of the cylinder,w the weight of unit volume of water, and
h-^

the portion of the

length of the cylinder below the surface of separation.

Weight of cylinder, W^ = ahw^.
Weight of water displaced, W =

ah^w.
Weight of oil displaced, Wg = a(h - h^ x 0-1w.

Hence, Wi =W + W2, and
0-7i

0-3w

>^i
= 4-52 ins. {Ans.).

(148) (I.C.E., Feb. 1898, second part).—Prove that the oscilla-

tion under gravity of a licLuid in a U-tube follows the simple
harmonic law.

Solution,—In fig. 166 0-0 is the level of the liquid when it is

at rest. The bore of the tube is assumed to be uniform, the area

-0-

FiG. 166.

being A. The two levels of the liquid are always equidistant from
0-0. Hence, at the moment either level is at a vertical distance

X from 0-0 the force, which produces the motion of the liquid, is

equal to 2xk.w, and if M be the total mass of liquid in the tube,

the acceleration of each particle of liquid is <*= -,«—^j *-<^- the

acceleration is proportional to the distance from the position of

equilibrium. Hence, the oscillation of the liquid follows the

simple harmonic law.

Let maximum x^h, then, by article 227, maximum acceleration
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= u,8A = -^^--A, or 0) is independent of h. On account of frictionM
between the liquid and the walls of the tube, and other resistances,

the amplitude h will gradually diminish to zero. By article 227
the periodic time is

/ MV 2^'

which is independent of the amplitude. Hence, the oscillations

of the liquid are isochronous.

Let / be the length of the liquid, i.e. the distance between the

two surfaces of the liquid measured along the tube, then lA
= volume of liquid, wlA = the weight of the liquid

= M^.

Hence, T =
27r^l;

or, the periodic time of the oscillations is equal to that of a simple

pendulum whose length
= half the length of the liquid.

(149) (I.C.E., Feb. 1908).—A U-tube of uniform section

contains mercury. In one branch is also some water which fills

3 inches of the tube above the mercury in that branch. Find
the difference in level of the surfaces of mercury in the two
branches, (a) when both ends of the tube are exposed to the

atmosphere ; (b) when the end containing mercury only is exposed
to a pressure of 1 lb. per square inch, the other end being exposed
to the atmosphere. The specific gravity of mercury is 13*6.

Solution.—Let Ag be the difference in level of the surfaces of

mercury in the two branches, Aj the height of water above the

mercury in the one branch, and n the specific density of mercury.
(a) There will be equilibrium when a column of water, whose

height is h^ and whose base is unity, is equal to a column of

mercury whose height is h^ and whose base is also unity, or when

Hence, A = ^i =A, = 22 in. (Ans.).n 13*6

(h) Take the intensity of the atmospheric pressure as 15 Ibws.

per inch^
;
the difference of pressure on the surfaces in the two

branches will therefore be 14 Ibws. per inch.^ Hence, the weight
of the column of mercury, whose height is h^ and whose base is

unity, is equal to the weight of a column of mercury, whose base is

also unity and whose height is 0-22 in. plus the height of mercury
corresponding to a weight of 14 Ibws. per inch.^
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The weight of a column of water whose base is 1 ft.
2 and

whose height is H ft. is = 62-4H Ibws. If this column is to balance
a pressure of 14 Ibws. per inch^, then

62-4H = 14x144, or H = li2iiilft
62-4

A column of mercury which can balance the latter column of
water must be

14x1728 .^o^.^
624 X 13-6

^ ^^•^"^^-

Hence, h^
= 0-22 + 28-5 = 28-72 ins. {An8>,.

(150) (I.C.E., Feb. 1906).—A ship sinks 2 inches on entering
a river and then rises 1-5 inches on discharging 40 tons of cargo.
Find its original displacement. Specific gravity of sea-water
= 1-025.

Solution.—40 tnws. of river-water corresponds to 1-5 ins., and
X tnws. of river-water corresponds to 2 ins. Hence, a; : 40 : : 2 : 1 -5,

or ar= 160/3 tnws.

Let the volume of the original displacement be V ft.^, then
V ft.3 of sea-water weigh V x 62-4 x 1-025 Ibws. = W^ ;

and V ft.^

of fresh water weigh V x 62-4 Ibws. = Wg.

Hence, Wj - Wg = 2240 a;.

Hence, V^ ^160_xJ240_ ^^3
3 X 62-4 x 0-025

and the

original displacement = ^ ^ tnws. = 2187 tnws. (Ans.).

(151) (I.C.E., Oct. 1907).—A diving bell is in the form of a
hollow circular cylinder 8 feet high inside, open at the bottom
and closed at the top. When the axis is vertical and the
bottom just touches the water surface, it is filled with air at

atmospheric pressure, 15 lbs. per square inch, and at a tempera-
ture of 60° F. It is lowered gradually into the water, the axis

remaining vertical, until its bottom end is 20 feet below the
surface. Find the height to which the water rises inside the

bell, and the pressure of air inside, the temperature remaining
the same. Find also the air pressure in lbs. per square inch

which must be supplied to the bell to keep the water out.

Solution.—Let h^ be the height inside the bell when the bottom

just touches the water, p the intensity of the pressure of the

25
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atmosphere, D the depth to which the bottom end is lowered, P the

intensity of the pressure, and hj the height of the air inside the bell

at depth D ; finally, let w be the weight of unit volume of water.

also

P =p + Dio - (hi
-
hf)w

V : p : : hi : hj

(1)

(2)

P and hf can be determined by the two simultaneous equations

(1) andi:2).

Inserting the given numerical values in (1) and
(2), we get

T5 ,^ .
20x62-4 8x62-4

^=''^-144: UT
62-4,

+
144^^ (3)

PAy=15x 8 = 120 .... (4)

Hence, Ay^=5-33 ft.; the water will rise inside the bell to a

height A< -hf= 2-67 ft. = 2 ft. 8 ins.
;
P = 22 5 Ibws. per inch 2

{Ans.).

(152) (Q. Nov. 1906).
—A sphere, 1 foot in diameter, floats in

a cylindrical vessel of water having a cross-section of 2 square
feet. The sphere is of such weight that it is half immersed
when floating freely. If a vertical force of 10 lbs. is applied to

the top of the sphere so as to press it down, find how much the

water-level rises. A cubic foot of water weighs 62*5 lbs.

JSolution.—In
fig. 167 1-1, 2-2, and 3-3 are respectively

Fig. 167.

original water-level, the level when the sphere flokts on the

water, and the level when the vertical force is applied. The

corresponding depths of the water are h^, h^^ and h^ respectively
Let A be the cross-sectional area of the vessel, d the diameter

of the sphere, and P the vertical force.

When the sphere floats freely we have

7. A ^ A .

2 d^
nd^
T2A
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When force P is applied we have

AgA = hc^k + V, where P = vN.

* P
Hence. h^-hc =

 

^ wk

We have given that d=l ft., A = 2 ft.2, P = 10 Ibws., and
2^ = 62-5 Ibws.

Hence, K-h-^= 0-131 ft.
; h^-h^ = 0-08 ft. {Ans.).

(153) (Q. June 1909).
—The envelope, car, passengers, etc., of

a balloon weigh 600 lbs.
;
its capacity is 20,000 cubic feet of coal-

gas, the density of which is 0-45 that of air. Assuming that,
under the atmospheric conditions prevailing at the time of the

ascent, 1 cubic foot of air at the earth's surface would weigh
0-08 lb., find the acceleration with which the balloon will begin
to rise.

Solution.—Weight of air displaced by balloon is

Wi = 20,000 X 0-08 Ibws.

Weight of gas contained in balloon, W2 = 20,000 x 0-45 x 0-08

Ibws.

Ascending effort, F^ = Wj -
Wg.

Let W be the weight of envelope, car, passengers, etc., then

ascending eifective force F = F,
- W = (W^

- Wg - W) Ibws. Mass
to be moved by F is M = (W + Wg)/^'. Hence, the balloon will

begin to rise with an acceleration

a = F/M = ^^~^%^^ g = 6-83 ft./sec.^ {Ans.).W + W 2

(154) (Q. Nov. 1908).
—Two vertical cylinders, whose cross-

sectional areas are A and a respectively, stand side by side and

communicate by a pipe near the bottom. Water stands at the

same level in the two. The water is now pushed from cylinder

A into the other by a piston. Find the thrust on the piston

when it has lowered the level in A by the distance x, and from

the value of the thrust deduce an expression for the work done

up to the point. Verify your result by finding the work done

against gravity in lifting the water.

Solution.—When the piston has lowered the level in A by a

distance x, the water-level in the other cylinder has risen to a

height y above the original level, thus ya = xk.
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The thrust on the piston is

P = A(y + x)w = ~: -wx (Ans.).

The work done while moving the piston through distance x is

^JA±-^} w{^xd^ = ^^^±^) wx^ (Ans.).ah 2a
^ ^

The latter expression may also be determined by considering
the work which must be done against gravity in lifting the water

in the other cylinder.
While pushing the piston a distance Zx downwards you must

lift a column of weXer = {y + x)a through a height hy. Hence,

work done against gravity = (y + x)aw 8y ;
but y=~x and there-

(X

fore Sy = — he. Hence,
a

the work done against gravity = —^ ^w I xdx= "^ '

wx^j
a Jo 2a

which is the same expression as we found above.

(155) (I.C.E., Oct. 1909).—A cubical box 2 feet by 2 feet by
2 feet, partly filled with water, is made to rotate about a
vertical axis, passing through the centre of its base, at a uniform

speed of 60 revolutions per minute. At the centre the water
stands 3 inches above the floor of the box. To what height does
it rise at each of the four corners? Trace the curve of the

water-surface upon either of the four vertical walls, writing its

equation.

Solution.—Let D be the depth of the water at the centre of the

box and take as plane of reference (X
- Y plane) the horizontal

plane at distance D above the floor of the box. The 2-axis is the

axis of rotation (fig. 168).
Let Q be a water-particle in the X - Z plane. There will be

equilibrium if the direction of the resultant of the forces, acting
on Q, is along the normal, Q N, to the surface of the water. The

weight, mff, of the particle must therefore supply the deviating

force, mxoi^
;
the other component of mg being normal to the

surface of the water. If
</>

be the angle which the tangent T Q
makes with the z-axis, then

az mxui^ xoi^
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By integration we get

dz. -^Az (1)

The equation (1) is a parabola with vertex at and axis along
the 2-axis. Hence, the surface of the water, when the box is

rotated about the 2-axis, is a paraboloid, which can be produced

Fig. 168.

by the revolution of parabola (1) about its axis. At distance r

from the z-axis we have

:^z, but 2 = ^2 _^ ^2

Hence, the equation of the paraboloid w.r.t the gi

space-co-ordinates is

^2 ^. y2 ^ y
2

given rectangular

(2)

Let a be the length of the edge of the box, and let the axes of

X and of y each be perpendicular to one pair of vertical walls.

The ^-co-ordinate to any point on either of the two walls, parallel

to the y-axis, is equal to a/2. Hence, the equation of the wall

is .r = a/2. By eliminating x between the latter equation and that

of the paraboloid, we get

y'-ik-"^-
•  • (^)

which is the equation of the curve of intersection between the

wall and the surface of the water. The curve is a parabola whose

axis is vertical, and whose vertex is at a height -—— above the
25^

plane of reference.
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Let H be the height above the floor of the box to which the

water rises at each of the four corners, then z = H - D and y = a/2
are the co-ordinates of the highest water-particles.

Hence, ^=-|(H-D-_),
or H = D4._ . (4)

H^a, or a^D +
'*"'^^

To prevent any overflowing of water we must have

Hence, maximum w = ->/g(a
-
D) .

We have given a = 2 ft., D = 0*25 ft., <«) = 27r radians/sec. Hence,
H = 1 ft. 5 7 ins.

; equation of paraboloid, x^ + i/^=l'63z; equation
of the parabola upon either of the four walls, i/^

= l'63 z-\
;

maximum (i> = 7*5 radians/sec.
= 71 '67 revs, per min. (Ans.).

(156) (Q. Nov. 1906).
— A prism whose section is a right-

angled triangle A B C (B being the right angle) forms one side of

a trough of water. The base BC of the prism rests on the

bottom of the trough which is horizontal and the prism is

hinged at the edge C so that it can turn about the edge, the

vertical face A B being presented to the water. A B is three

times B C, and the specific gravity of the material of which the

prism is made is 2. Find (in terms of the height AB) the

greatest depth of water which can be poured into the trough
without the prism overturning. Assume that no water leaks

under the prism.

Solution.—In fig. 169 OB = BE = A is the depth of water, W
= the weight of the prism, and P = the total pressure of the water

on the face A B. As the surface on which P acts is a rectangle

V^wO-bhhl^O-bwlk"- . . . (1)

I is the length of the trough.

__2W = O'bnwA BBCl = 0-5 nwqB CI . . (2)

where n is the specific density of the prism, and A B = g-B C.

P acts at a point on AB which lies at a distance ^= —?^4-a
a

from 0. The second area-moment about an axis parallel to I and
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through the centroid of the rectangle is (A.M.) = R2„ A = ^3//12.

Hence, 'Rl,
=

h^ll2, and as a = -, we have ^ = ^ A which is also the

distance of the centroid of the triangle E B from 0.

W acts at the M.C. of prism ABC which is at a distance 2CB/3
from C. W and P meet at point L, and their resultant must act

along L C when the maximum depth of water is poured into the

trough. Hence, the moment of P about C must be equal to the
moment of W alDout C, or

lp^ = ^^CB,
3 3

A =
2;CB

=AB^L» . (3)

h = 0-753AB(Ans.).

(157) (Q. June 1908).
—A river embankment has its face

vertical for a depth of 5 feet below the surface of the water, and
inclined at 45° to the horizontal for a further depth of 10 feet,

measured vertically. Find the magnitude and line of action of

the resultant thrust on the inclined portion of the face. Take
one foot-length of the embankment. A cubic foot of water

weighs 62-4 lbs.

Solutio7i.—In fig. 170 FAB is the face of the embankment,
M the water-line, A E = A = the depth at A, B D = H = the depth

at B. A B inclines at an angle (f>
to the horizontal, and I is the

length of the embankment.

Hence, OA = ^cosec<^, A B = (H -
^) cosec <^, a = OA + 0-5AB

= 0'5 (H + A) cosec
<jf). (A M.

)
of a rectangle whose sides are a and b

w.r.t. an axis parallel to h and through the centroid is = a^6/12, and
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i^ = a*6/12flt6
= a2/12. In the present casea = AB. Hence, the

thrust, P, on the inclined portion of the embankment is

P = a sm<f>ABlw = O'S wl{R^ ^
h^) cosec«^ . (1)

and ^-jf-T^^'r, ^;!t'^_^,,
+ 0-b{il+h)cosec<l>

12sm^<^ 0-o{H + h)

2(H2 + HA + A2)
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height is a and whose base is an isosceles right-angled triangle of

equal sides 6, we have

r = wa— = wa
9 9

3 3

the moment of P about point A = P(^ + ^j).

Fig. 171.

Taking ?/;:^62*4, and inserting the given values, we get

P=1950 1bws.: i 1 ft. 8 ins.
;

the moment of P = 8125 Ibws.-ft.

(ii.)
The sides of the submersed rectangle are a and

(/
-

^^/cos <^).

The height of water above the centroid of the rectangle is

0-5(^
-

Zj/ cos<^) cos
<;^.

Hence, P
cos6/\

l^ \cos</)

^A" cos(i)/ 2

the moment of P - PU^ + i

\ cos<^

Inserting the given values we get

P = 1206 Ibws.j ^-1 ft. 5 ins.;

the moment of P = 5182 Ibws.-ft. {Ans).

(159) (I.C.E., Feb. 1904).—A uniform raft of rectangular
section which, when floating freely, is immersed to two-thirds

its depth, has one end stranded so that the lower edge is in the

plane of flotation, as in fig. 172. If the ends be assumed vertical

in the position of equilibrium, show that the upper edge of the

sea end is also in the plane of flotation, and that the pressure
on the wall end is W/4, where W is the weight of the raft.

Solution.—Let I be the distance between the ends of the raft,

W the weight of the raft, W2 the weight of water displaced, and
R the reaction on the wall end.
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Wo acts at the mass-centre of the submersed portion of the

raft. Taking moments about the lower edge at the wall we have

W- = ^mo, and also R+W-W2 = 0.
2 3

Hence, W^ = 0-75W, and R = - 0-25 W (Ans.).

Fig. 172.

Let V be the volume of the submersed portion of the raft, and

Vj the volume of the raft, then

V : |Vi : : Wg : W. Hence, V = 0-5 V^ (Ans.).

(160) (I.C.E., Oct. 1908).
—A vertical lock-gate has an aperture

in it in the form of an equilateral triangle of 6 feet side, the

lowest side being horizontal. The vertex of the triangle is

6 feet below the surface of the water. Find the total pressure

and also the centre of pressure on a door closing the aperture.

Fig. 173.

Solution.—Let I be the length of the side of the triangle (fig.

173). In this case b is the height of the triangle. We have

a = h + ^b = h + ^liim 60° ; A = ~ —
;

Let (A M.)j be the second area-moment of the triangle w.r.t. the

horizontal side, and (A.M.) be the second area-moment of the

triangle w.r.t. the horizontal axis through C, then

(A,MO = (AM.)j-A^;(A.M.),
= -'

fb

I (6
-
x)x^dx =

^^sin^eO'

12
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Hence,

po (A.M.) ^2gin2 60° l^sin^QO' . „, . ^^„Rm = ^—r-^ =—
:r^

,
and ^= -_-^^^,_^ + /i + f/ Sin 60°.A 18 18(A+ g/sm 60

)

**

The total pressure on the door is

P = waA = w{h+'^l sin QO°fl^^^.
Z

Inserting the given numerical values we get

P = 9206 Ibws. = 4-1 tnws. (Ans.).

^=9 ft. 7-5 ins. (Ans.).

(161) (I.C.E., Feb. 1902).—The ram of a hydraulic accumu-
lator is 10 inches diameter, and has a stroke of 11 feet. When
fully loaded, the water-pressure is 800 lbs. per square inch. If

the whole energy of the accumulator water could be used in

3 minutes, what horse-power would it exert ?

Solution.—See article 239.

A = 78*54 ins.2 Take the pressure of the atmosphere as

15 Ibws. per inch^, then the weight of the fully loaded ram is

W- 78-54(800 -15) = 61,654 Ibws.

W descends through a height of 11 ft. Hence, the energy
exerted during the descent = 61,654 x 11 foot-lbws. As this

energy is exerted during three minutes, the power exerted is

61,654X11 /j.QK XT T) /A \=—I— =6'85 H.P. (Ans,).
3 X 33,000

^ ^

(162) (I.C.E., Feb. 1907).—A tidal flap, uniform in section

and weighing 2000 lbs., is 4 feet wide and 6 feet deep. It hangs
on a horizontal hinge through the top edge, at an angle of 60°

with the horizontal. Assuming that the water-level on the

outer side is 0*26 feet, measured vertically, below the hinge,

find the water-level on the inner side, relative to the hinge,

when the flap is just about to open.

Solution.—In fig. 174 OC is the flap and the hinge. We
will take it that the given water-level passes through point E to

the left of C, and the level of the tide through point F to the

right of C.

The water-pressure which tends to open the flap is

Pj = 0-5 CD EC X 4x62^4; but C
sin_60°

= C D -t- 0-26, and

EC = CDcos60°. Hence, CD = 4-946 ft., EC^5-71Jt., and P^

= 3525 Ibws.
;
the latter acts at a distance 0E-i-fEC = 4-l ft.

from 0. Hence, the moment of P^ about = 14,452 Ibws. and ft.
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The moment of the weight of the flap about point
= - 3 X 2000 X cos 60° = - 3000 Ibws. and ft.

If the pressure on the flap due to the tide be F^, then the

moment of Pg about must be = -(14,452-3000)= -11,452
Ibws. and ft.

/7777777V7777777777

Fig. 174.

P2
= 0-5x 4x62-4 FC CB; but F C sin 60° = C B. Hence,

J2

P2= 144-1 CB.Pg acts at a distance OF + fFC = c? from 0;
but OF = 6-FC = 6-CBcosec60°, and c? = 6 - JC Bcosec60°.

Hence, the moment of P2 about the hinge = 6 x 144-1 CB

-
J X 144-1 CB cosec 60" = 1 1,452, or CB - 15-6 CB + 206-5 = 0.

By trial we find that CB = 4-27 ft. Hence, the water-level at

F is (6 sin 60° -
4*27)

=
just over 11 ins. below the hinge (Ans.).

(163) (I.C.E., Feb. 1909).—A ball of steel falls 38-82 feet

upon a horizontal slab of the same material. Assuming the

coefficient of restitution (or resilience) to be 0-7, how high will

the ball rise after impact ? What is the ratio of kinetic energy
just before and just after impact ?

Solution.—See articles 255 and 256.

V^=V< = 0; Vi= J2g x 38-82
; S = 0;M

hence. Vj= -eVi', \u
l-e2
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Hence, energy just before impact ^ Jmv/ ;

1 _ g2 g2

energy just after impact = ^mv^^ mVi^ = —mVi^ ;

Hence, the required ratio = — = 2'04.

The ball will rise a height h after impact ;

(164) (Q. Nov. 1909).
—A cylinder 6 inches in diameter and

12 inches long, with plane ends, floats with its axis vertical in

water contained in a cylindrical vessel 9 inches in diameter.

If the cylinder weighs 7 lbs., plot to scale curves showing the

relation between the force required to depress the cylinder and
the distance through which it is depressed, and the relation

between the work done and the depression.

Solution.—Let D be the diameter of the vessel
; I, d, and W the

length, diameter, and weight of the cylinder respectively. Take
as plane of reference the water-level when the cylinder is floating

freely.
When the cylinder is depressed a distance Bx the water-level

will rise to a height By.

„ TrdK /7rD2 7r6?2\ C?2

Hence, -_-S^=
^_^

-_
j8y,

or
8y=p-3^2^^-

If a force SF be required to depress the cylinder through a

distance Bx, then

8F = w—{Bx + Sy)
= -

^^-^^w
Bx.

Hence, by integration
TT D2(^2

(1) is a straight line through the origin. Maximum F is the

force which is required to submerse the entire cylinder.

Hence, maximum F = -t-^^^'
- W . . . (2)

Equating (1) and (2) we obtain

(7rdHw-m)(D^-d^) (^.maxmiuma? = ^
^^^^39

• • W>'
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The elementary energy-equation is

«^ =^^ =
i^S""'^ ... (4)

Hence, by integrating (4) we get

^^SW^'''' .... (5)

(5) is a parabola with vertex at the origin. Its axis lies on the

positive branch of the y-axis.

We have given D = 0-75, d = 0-5, 1=1, w = 62'4, W = 7.

Hence, F = 22-05^; E=ll-03a:2 (Ans.).
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