

院

3,

UNIVERSITY OF TORONTO
DEPARTMENT OE CIVIL ENGINEERING
Municipal and Structural

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

TEXT-BOOK OF MECHANICS

EY
LOUIS A. MARTIN, JR.

Vol. II
Kinematics And Kinetics

TEXT-BOOK

OF

MECHANICS

BY
LOUIS A. MARTIN, Jr. (M. E., Stevens; A. M., Columbia)
Assistant Professor of Mathematics and Mechanics in Stevens Institute of Technology

> Vol. I. STATICS

FIRST EDITION FIRST THOUSAND

NEW YORK
 JOHN WILEY \& SONS

London: CHAPMAN \& HALL, Limited

$$
1906
$$

$Q A$
807
$M 38$
$V .1$

Copyright, 1906 BY

LUUIS A. MARTIN, Jr.

LIBRARY 757062

UNIVERSITY OF TORONTO

UNIVERSITY OF TORONTO
 DEYGRTMENT QF CIYIL E日GINEERING Municipal age Structural

PREFACE

Answers to the examples given in this book will be supplied to students by the publishers, free of charge, on the receipt of the written order of the instructor.
on statics, the stuny of wimen can auvantageousiy de begun with such knowledge of mathematics as is required for admission to most Colleges and all Technical Schools. The elements of Analytical Geometry are introduced as the treatment of the subject requires, but no Calculus is used in the first volume.

The second volume, the MS. of which is nearly ready, will treat of Kinematics and Kinetics. In this volume extensive use will be made of the Calculus.

Thus, while studying Mechanics, the student becomes acquainted with a use to which pure mathematics, as now taught in our schools, may be put. Starting with a knowledge of Algebra, Geometry, and Trigonometry,

$$
\begin{aligned}
& \text { QA } \\
& 807
\end{aligned}
$$

LIBRARY 757062
 UNIVERSITY OF TORONTO

UNIVERGITY JF TORONTO
 DERASTMEAT OF CIVIL ERGIMEERING

 Municipal and Stluctaral
PREFACE

The Text-book of Mechanics, of which this is the first volume, is designed as an introductory course to Applied or Technical Mechanics for Technical Schools and Colleges. It is based upon notes prepared for the use of the Freshman and Sophomore classes at Stevens Institute of Technology.
At the same time an attempt has been made to produce a graded course in the application of mathematics. With this end in view the first volume treats of Statics, the study of which can advantageously be begun with such knowledge of mathematics as is required for admission to most Colleges and all Technical Schools. The elements of Analytical Geometry are introduced as the treatment of the subject requires, but no Calculus is used in the first volume.

The second volume, the MS. of which is nearly ready, will treat of Kinematics and Kinetics. In this volume extensive use will be made of the Calculus.

Thus, while studying Mechanics, the student becomes acquainted with a use to which pure mathematics, as now taught in our schools, may be put. Starting with a knowledge of Algebra, Geometry, and Trigonometry,
he at once puts them to practical use, and it is designed to have this application keep pace with his advancing knowledge of pure mathematics.

Throughout it is aimed to make the book a teachable one. As a course in Mechanics should primarily fit the student to solve its problems, numerous examples and many exercises are introduced to illustrate each principle as developed.

Of the two hundred and fifty-five problems contained in this volume many are to be found in most books on Mechanics; some have been especially prepared, while others have been selected from examinations set at Stevens.

As regards the subject-matter in a book of this nature nothing new can be expected. My only claim to originality lies in the presentation. Should any errors be found in the work, I shall esteem it a favor to be informed of them.

In concluding, I would here express my thanks to my wife, Alwynne B. Martin, for her aid in preparing the MS. and in reading the proof.

Louis A. Martin, Jr.
Hoboken, N. J., March, 1906.

CONTENTS

INTRODUCTION

PAGE Mechanics, Kinematics, Dynamics, Statics, Kinetics 1
Motion, Velocity, Acceleration 1
Exercises 1 to 6 2
Matter, Mass. 4
Momentum. 5
Exercise 7 5
Force 5
Gravitational Units of Force and Mass. 7
Examples 8
Exercises 8 to 11 9
STATICS
ANALYTICAL STATICS
CHAPTER I
FORCES ACTING AT A SINGLE POINT
SECTION I
Triangle of Forces
Representation of a Force. 13
Principle of the Triangle of Forces. 14
Action of Supports. 14
Examples. 16
Exercises 12 to 21 19
SECTION II
Components. Composition of Forces
PAGE
Resolution of Forces, Components. 21
Exercises 22 to 26. 22
Example. 22
Exercises 2' to 30 23
Composition of Forces. 24
Exercises 31 to 35 25
SECTION III
Conditions for Equilibrium
Conditions for Equilibrium. 26
Example. 27
Exercises 36 to 40. 29
SECTION IV
Statical Friction
Friction. 30
Direction in which Friction Acts. 30
Coefficient of Friction. 31
Exercises 41 and 42. 32
Angle of Friction. 33
Total Reaction of a Surface 34
Example. 34
Exercises 43 to 50. 37
SECTION V
Moments
Arm of a Force. 38
Moment of a Force. 38
Exercises 51 to 54. 39
Varignon's Theorem of Moments. 40
Condition for Equilibrium. 41
Example. 42
Exercises 56 to 58 42

CHAPTER II

FORCES ACTING ON A RIGID BODY

SECTION VI
Resultant of Two Forces. Couples
PAGE
Rigid Body. 43
Transmissibility of a Force. 43
Resultant of Two Non-parallel Forces 44
Resultant of Two Parallel Forces. 44
Exercises 59 to 64 45
Couple. 46
Moment of a Couple 47
Translation of a Couple 48
Rotation of a Couple 49
Equivalent Couples. 50
Resultant of Couples 50
Exercises 65 and 66 50
Resultant of a Force and a Couple 51
Exercise 67. 51
SECTION VII
Resultant of any Number of Forces
Resultant of Any Number of Forces. 51
Exercises 68 to 70 54
SECTION VIII
Conditions for Equilibrium
Rotation and Translation. 55
The Cause of Rotation and Translation. 56
Conditions for Equilibrium, First Method 56
Example. 57
Exercises 71 to 77 58
Conditions for Equilibrium, Second Method. 59
Example 59
Exercise 78 60
PAGE
Relation between Three Forces Acting on a Body 60
Example. 61
Exercises 79 to 84 62
SECTION IX
Parallel Forces. Centroids or Centers of Gravity
Resultant of Parallel Forces 63
Exercises 85 and 86. 65
Centroids or Centers of Gravity 66
Examples. 66
Exercises 87 to 92 68
SECTION xSummary of the Methods of Statics
Forces Acting at a Point 69
Forces Applied to a Body 70
Choice of Equations Used in the Solution of a Problem 70
Example 70
Exercises 93 to 96 72
CHAPTER III
APPLICATIONS OF THE PRINCIPLES OF STATICS TO THE SIMPLE MACHINES
SECTION XI
The Lever and the Wheel and Axle
Machines. 73
Mechanical Advantage. 73
Simple Machines 73
The Lever. 74
Example. 74
Exercises 97 to 101 75
The Balance. 75
Exercises 102 to 104 76
The Common or Roman Steelyard. 76
Example 76
Exercise 105, 78

CONTENTS

PAGE
The Danish Steelyard. 78
Exercise 106. 78
The Wheel and Axle. 79
Exercises 107 to 109 79
SECTION XII
The Pulley
The Fixed Pulley 80
Example. 80
Exercises 110 and 111 81
The Movable Pulley. 82
Example. 82
Exercise 112. 82
Systems of Pulleys 83
Example. 83
Exercises 113 to 120. 84
SECTION XIII
The Inclined Plane and the Wedge
The Inclined Plane. 85
Exercises 121 to 126 86
The Wedge without Friction. 87
Example. 87
Exercises 127 to 129 88
The Wedge including Friction. 88
Example. 88
Exercises 130 and 131. 90
SECTION XIV
Miscellaneous Machines
The Bent-lever Balance 91
Exercises 132 to 134. 91
The Differential Wheel and Axle. 92
Exercise 135. 93
The Platform Scale. 93
Exercise 136. 93
The Knee. 93
Exercises 137 to 139. 94

GRAPHICAL STATICS

CHAPTER IV
GRAPHICAL ARITHMETIC

SECTION XV
Summation, Division, and Multiplication
Graphical Arithmetic. 95
Laws of Signs. 95
Summation. 96
Exercises 140 and 141. 96
Multiplication and Division. 96
Examples. 97
Exercises 142 to 145 . 97
Example. 98
Exercises 146 to 148 . 99

SECTION XVI
 Combined Multiplication and Summation

Multiplication and Summation. 100
Exercises 149 to 152. 102
Application to the Finding of Centroids. 102
Example. 102
Exercises 153 and 154. 104

CHAPTER V
 FORCES ACTING AT A SINGLE POINT

section xvii
Components. Resultants
Resultant by the Parallelogram of Forces. 105
Resultant by the Triangle of Forces. 106
Exercise 155.. 107
Comporents . 107
Exercises 156 to 158 . 107
page
Polygon of Forces 108
Exercises 159 to 163 109
SECTION XVIII
Conditions for Equilibrium
Conditions for Equilibrium. 109
Example. 110
Exercises 164 to 171 111
Three Forces Acting on a Body 112
Exercises 172 to 174 112
CHAPTER VI
FORCES ACTING ON A RIGID BODY
section xix
Resultants
Resultants by Parallelogram of Forces 113
Resultants by Triangle of Forces. 114
Exercise 175 114
Resultant by Funicular Polygon. 115
Exercises 176 to 179 117
SECTION XX
Conditions for Equilibrium
Conditions for Equilibrium. 117
Examples 119
Exercises 180 to 188 122
CHAPTER VII
APPLICATIONS TO STRUCTURES
SECTION XXI
Stresses in Members of Framed Structures
Applied or External and Internal Forces. 123
Structures, Framed and Non-framed. 123
Example. 124
Exercises 189 to 194 127
section xxil
The Funicular Polygon for Parallel Forces Considered as a Moment Diagram
Bending Moments.
page 127
Moment Diagram. 129
Exercises 195 to 200. 129
section xxili
Graphical Method for Finding Centroids
Graphical Method for Finding the Centroids of Laminæ. 130
Example. 130
Exercises 201 and 202 131
APPENDIX
Application of Two-dimensional Methods to Finding Stresses in Three-dimensional Structures
Example. 133
Exercises 203 and 204. 134
Example. 135
Exercises 205 to 209 136
Problems for Review
Exercises 210 to 255 137 to 142

> Univensity of Toronto
> DEPAFITMENT DF CIVIL ENGINEERING Municipal and Structural

TEXT-BOOK OF MECHANICS

INTRODUCTION

That branch of physics which is the simplest and also the oldest and which is usually treated as introductory to the other branches of this science is called Mechanics.

Mechanics treats of the motions of bodies and the equilibrium of forces.

It is divided into Kinematics and Dynamics.
Kinematics treats of the motions of bodies without reference to the forces producing these motions or to the masses moved.

Dynamics is that branch of Mechanics which treats of the equilibrium of forces and the motions of bodies under the action of forces. It is accordingly subdivided into two parts,-Statics and Kinetics.

Statics treats of the equilibrium of forces.
Kinetics treats of the motions of bodies as related to the forces producing these motions and to the masses moved.

> Motion is change of position.
> Velocity is the rate of change of position.

Acceleration is the rate of change of velocity.
By rate of change is meant the total change divided by the time occupied in making the change, provided the change progresses uniformly.

Thus, the population of a town in 1890 was 1500 , in 1900 it was 4000 ; to find the rate at which the population changed we have:

$$
\begin{aligned}
\text { Rate of change } & =\frac{\text { Total change }}{\text { Time }}=\frac{4000-1500}{10} \\
& =250 \text { persons per year. }
\end{aligned}
$$

A body which moves uniformly over a space of 60 feet in 5 seconds changes its position at the rate of $\frac{60}{5}=12$ feet per second.

The velocity of a uniformly moving body is therefore calculated thus: velocity $=\frac{\text { space }}{\text { time. }}$. In algebraic language this is expressed, $v=\frac{s}{t}$, where velocity, space, and time are denoted by their initial letters.

Exercise i. If a body moves 144 feet in 3 seconds, what is its velocity?

Exercise 2. A body moves with a uniform velocity of 40 miles and 1600 yards per hour; what is its velocity in feet per second, and how many feet will it traverse in io seconds?
Exercise 3. A railway-train explodes two torpedoes which are placed on the rails 176 feet apart. Two seconds of time elapse between the explosions. Compare the velocity during that interval with the mean velocity, which is indicated by the statement that the train takes an hour and a half to perform the journey between two stations 45 miles apart.

If the velocity of a moving body changes, the rate of change of velocity is called its "acceleration." Thus, if a moving body has a velocity of 20 feet per second at one point of its path, and this velocity increases uniformly so that 3 seconds later its velocity is 50 feet per second, its acceleration is $\frac{50-20}{3}=10$ feet-per-second per second.

This shows that

$$
\text { Acceleration }=\frac{\text { Change in velocity }}{\text { Time required to produce change' }}
$$

or $a=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}$, where v_{2} and v_{1} are the velocities of the body at the times t_{2} and t_{1} respectively.

Acceleration, being measured by the velocities imparted per second, is stated in terms of feet-per-second per second.
Exercise 4. A body starts from rest with an acceleration of 2 feet-per-second per second. When will it have a velocity of 1000 feet per second?

Exercise 5. The velocity of a body decreases during io seconds from ro feet per second to 7 feet per second. What is its acceleration?

Exercise 6. A body is made to record its own velocity, which shows that at a certain instant it is moving at the rate of 112 feet per second; but after an interval of $I / 20$ second its velocity is 114 feet per second. What is its acceleration?

From the above it will be noticed that the unit of velocity is obtained from the formula $v=\frac{s}{t}$, by placing $s=\mathrm{I}$ foot and $t=\mathrm{I}$ second; thus, $v=\frac{\mathrm{I}}{\mathrm{I}}=\mathrm{I}$ foot per second.

This may be stated thus: A body has Unit Velocity when it traverses uniformly a unit of distance in a unit of time.

Similarly, the unit of acceleration is derived from $a=\frac{v_{2}-v_{1}}{t_{2}-t_{1}}$ by placing $v_{2}-v_{1}=1$ foot per second and $t_{2}-t_{1}=\mathrm{I}$ second; thus, $a=\frac{\mathrm{I}}{\mathrm{I}}=\mathrm{I}$ foot-per-second per second; or, A body has Unit Acceleration when its velocity increases uniformly by a unit of velocity in a unit of time.

This method of deriving units will be found of universal application.

Matter is the material of which bodies are composed.
A Body is a limited portion of matter.
Mass is the scientific name for a quantity of matter.
We can recognize in bodies a property which depends partly on their size and partly on the substance of which they are composed. Thus, if we take two balls of iron of considerably different sizes and hang them up by long strings of the same length, a very slight effort is sufficient to give considerable motion to the small ball, while a strong push is necessary to displace appreciably the large ball. These balls are said to differ in mass.

A heavy fly-wheel, properly mounted on ball-bearings, continues to rotate for a long time when set in motion; much effort, however, is required to either stop it or to start it when at rest. The fly-wheel is said to have mass, and the greater the mass the greater the effort required to stop it in a given time.

These and similar observations lead us to recognize
that property of bodies to which the name of "Mass" has been given.

The Unit of Mass is the mass of a certain lump of platinum marked "P. S., 1844, I lb." (P. S. being the abbreviation of Parliamentary Standard).

Momentum.-Observation leads us to recognize a quantity which depends upon both the mass of a body and its velocity. Two bodies of equal mass moving with equal and opposite velocities will on impact (collision) come to rest. If, however, the masses are unequal or their velocities different, the result of impact is not rest. The motion which a given body can communicate by impact to another body depends upon this quantity, which we call "Momentum."

The momentum of a body is the product of its mass and its velocity, or

$$
\text { Momentum }=m \times v \text {. }
$$

The Unit of Momentum is the momentum of a mass of I pound moving with a velocity of 1 foot per second.

Exercise 7. A baseball of 5 oz . mass has a horizontal velocity of 66 feet per second. A blow causes it to travel back on the same line with a velocity of 62 feet per second. Find the change of momentum.

Momentum is a fundamental property of a moving body. If we observe the motions of bodies, we will find but few cases in nature in which the velocity is uniform: bodies generally have acceleration. This leads us to consider change in momentum. That which changes the momentum of a body is called "Force."

Force is measured by the rate of change of momentum, or

$$
\begin{aligned}
\text { Force } & =\frac{\text { Change of momentum }}{\text { Time required for change }} . \\
F & =\frac{m \times \text { change of velocity }}{\text { Time required for change }}=\frac{m\left(v_{2}-v_{1}\right)}{t_{2}-t_{1}} ;
\end{aligned}
$$

but

$$
\frac{v_{2}-v_{1}}{t_{2}-t_{1}}=\text { acceleration }=a \text {. }
$$

Therefore

$$
F=m \times a \text {. }
$$

The Force acting on any mass is equal to the product of the mass by the acceleration produced by the force.

The Unit of Force is called the "Poundal," and is that force which when acting upon a mass of I pound produces an acceleration of I foot-per-second per second for $F=m \times a=\mathrm{I} \times \mathrm{I}=\mathrm{I}$ poundal.
From the formula $F=\frac{m\left(v_{2}-v_{1}\right)}{t_{2}-t_{1}}$ it will be noticed that $F\left(t_{2}-t_{1}\right)=m\left(v_{2}-v_{1}\right)$, or Force multiplied by the time during which it acts equals the change of momentum produced.

The product $F\left(t_{2}-t_{1}\right)$ is called Impulse.
\therefore Impulse $=$ change of momentum.
It has been experimentally demonstrated that any body near the earth's surface falls with a sensibly constant acceleration, usually denoted by g. This means that the velocity of the body, and therefore its momentum, is changing. In the light of what has been said we should say that a force is acting on the body.

This force is known as "Weight" and is the result of the attraction which the earth exercises on all bodies in accordance with the law of gravitation.

Thus, if w represents the weight of a body whose mass is m and as

$$
\text { Force }=\text { mass } \times \text { acceleration },
$$

we have

$$
w=m \times g .
$$

As g is approximately equal to 32 feet-per-second per second, the weight of a body whose mass is, say, ro lb . equals

$$
10 \times 32=320 \text { poundals. }
$$

In engineering practice it is not usual to use the absolute unit of force,-the poundal. Instead, forces are measured in terms of the weight of some given body, usually the weight of the standard of mass,-i pound. Thus, when in practice we speak of a force p we do not mean a force of p poundals, but a force p times as great as the weight of I pound. Such a unit is known as a gravitational unit of force.
If we wish to use as the unit of force the weight of a mass of I pound, as before defined, and still retain the equation $w=m g$, which is a necessary deduction from the laws of mechanics, we must change the unit of mass.

The necessity of this change becomes evident from the equation $m=\frac{w}{g}$, which gives $m=1$ only upon making $w=g$. The new unit of mass is then the mass of a body possessing g times the weight of the original unit of mass.

If, then, we speak of a mass of 5 glb ., we mean a mass possessing $5 g$ times the weight of the original unit of mass, or it contains $\frac{5 g}{g}(=5)$ times the new unit of mass, and is therefore a mass of 5 units.

As, by definition, a poundal is that force which acting on a mass of I lb . produces an acceleration of I foot-persecond per second, and as we observe in the case of falling bodies that a force equal to the weight of 1 pound of mass acting upon a mass of I pound produces an acceleration of g feet-per-second per second, the force equal to the weight of I pound of mass must equal g poundals. This is expressed more compactly as follows: I pound $=$ g poundals.

In the Absolute System of Units the unit of mass is fundamental, and the unit of force is derived.

In the Gravitational System of Units we assume the unit of force and then derive the unit of mass from it.

Example.-A force of io lb. acts upon a weight of 20 lb . for 5 seconds. Find the change of momentum produced and the mass of the moving body in gravitational units.

Solution.-We have the law $F t=m v$.
\therefore The change of momentum $=m v=F t=(10)(5)=50$ units of momentum.

The moving body has a weight of 20 lb .; one unit of mass has a weight of $g \mathrm{lb} . \therefore$ The mass of the moving body is $\frac{20}{g}$ units of mass.

It should be observed that no specific name has been assigned to either the unit of momentum or the unit of mass.

Example.-What velocity would a mass of 64 pounds acquire in io seconds if acted on by a force of 4 pounds? ($g=32 \mathrm{ft}$.-per-sec. per sec.)
Solution,-Find first the acceleration produced by the
force by means of the formula $F=m a$, wherein $F=4$ pounds and $m=\frac{64}{32}=2$ units of mass.

Thus, $a=\frac{4}{2}=2 \mathrm{ft}$.-per-sec. per sec.
As the acquired velocity will be the change in velocity and as the acceleration is the rate of change of velocity, we have

$$
2=\frac{v}{10} . \quad \therefore v=20 \mathrm{ft} . \text { per } \mathrm{sec} .
$$

The following exercises should be solved in gravitational units.

Exercise 8. A mass of ioo pounds possesses an acceleration of io feet-per-sec. per sec. What force must be acting upon it?

Exercise 9. What is the weigl.t of a mass on which a force of io pounds produces an acceleration of 3 feet-per-sec. per sec.?
Exercise io. What force would increase the velocity of a 30 -pound mass from - Io feet per sec. to 30 feet per sec. in 5 minutes?
Exercise ir. What acceleration would a force of 6 pounds produce in a mass of 32 units of mass?

STATICS

ANALYTICAL STATICS

CHAPTER I

FORCES ACTING AT A SINGLE POINT

Section I

TRIANGLE OF FORCES

Statics treats of the equilibrium of forces.
When a body is acted on by forces which are in equilibrium the body is at rest or moves with a constant velocity.

Representation of a Force.-A force can conveniently be represented by a straight line; one end of the line will represent the point of application of the force, the direction of the line gives the direction of the line of action of the force, the number of units of length in the line represents the number of units of force, while the arrowhead shows the "sense" of the force.

It can be experimentally demonstrated that if $O A$ and $O B$ (Fig. I) represent two forces acting upon a particle O, the diagonal $O C$ of the parallelo-

Fig. I gram constructed upon $O A$ and $O B$ represents in direc-
tion and magnitude the resultant of the forces $O A$ and $O B$, or the single force $O C$ may replace the forces $O A$ and $O B$ without affecting the state of the particle O.

If we assume a force $O C^{\prime}$ (Fig. 2) equal in magnitude, but opposite in direction to $O C$, acting upon O together with $O A$ and $O B$, it is evident that equilibrium of the forces would result.

Let us now start with any one of the forces $O C^{\prime}, O A$, $O B$, as $O A$ (Fig. 2), and in any order put the remaining

Fig. 2
forces end to end, being careful to preserve their lengths and direction, and it will be found that a closed triangle results. (Prove this by Geometry.) Therefore,

If three forces impressed on a particle are in equilibrium, they can be represented in direction and magnitude by the sides of any triangle drawn so as to have its sides parallel to the forces.

Before applying this principle to some examples we will call attention to the manner in which the actions of cords, planes, and supports in general may be represented by their equivalent forces.

A flexible cord or string is always assumed to transmit any force along its fibres in the direction of its length. If two equal and opposite forces keep a string in equilibrium, the string is said to be in tension and the tension is
consant throughout its length. This tension is measured by the force applied at either end. The tension in a cord passing over a smooth (frictionless) peg or surface is unaltered. If a string is knotted to another string at any point of its length, the tension will no longer be the same for both portions, in fact we may consider the two portions as two separate strings.

The action of a string can thus always be represented by a force having for direction the direction of the string, and this force will measure the tension to which the string is subjected.

A smooth (frictionless) plane always exerts a force normal to its surface. Thus in Fig. 3,

Fig. 3 representing a beam resting upon two smooth surfaces, trie arrows N_{1} and N_{2} represent the reactions of the planes.

Fig. 4 If a body rests upon a smooth peg, the peg exerts a force normal to the surface of the body at the point of contact. This is illustrated in Fig. 4, representing a beam resting upon a peg, P, and against a smooth wall, $W W$; here S represents the reaction of the peg, and N the reaction of the wall.

A body which has been separated from all supports and upon which the reactions of the supports are all represented by their equivalent forces is called a free body. Of course the action of gravity must also be shown as a force, representing the weight of the body, acting upon the free body.

In statics it is of the utmost importance always to
represent the body to which the principles of equilibrium are to be applied as a free body. The greatest care must be taken to represent all the forces acting upon the body by their respective arrows.

In solving problems involving the above principles the method to be pursued may be outlined as follows:
(a) Draw a diagrammatic sketch to aid in obtaining a clear conception of the problem.
(b) Find a point at which three forces act in equilibrium.
(c) Locate this point with its impressed forces, making it a "free body."
(d) Construct the triangle of forces.
(e) Apply your knowledge of mathematics (Geometry, Algebra, and Trigonometry) so as to calculate the required forces.
(f) Interpret your answer so as to obtain its mechan--ical significance.

Example.-A picture weighing 3 lb . hangs vertically from a nail by a cord passing through two rings in the frame. The parts of the string form an equilateral triangle. Find the tension of the string.

Fig. 5

Solution.-(a) Fig. 5 illustrates the problem.
(b) At N (Fig. 5) we have three forces acting, the tensions of the two strings and the reaction of the nail, which is equal to the weight of the picture and acts upward.
(c) In Fig. $6 N C$ represents the reaction of the nail, and $N a\left(=T_{1}\right)$ and $N b\left(=T_{2}\right)$ the

Fig. 6 tensions of the strings $N A$ and $N B$ respectively. These lines represent forces and are in no way
connected with the lines in Fig. 5, except by reason of their parallelism.
(d) Fig. 7 represents the corresponding triangle of forces.
(e) It now remains to calculate the values T_{1} and T_{2} from the triangle of forces. This may be done in many ways; for instance, from Q drop $\perp Q S$ to $P R$; then as $P Q=Q R, \quad P S=S R=3 / 2$ (Geometry). From $\triangle P S Q$,
and

$$
\begin{aligned}
\frac{P S}{P Q} & =\frac{3 / 2}{T_{2}}=\cos 30^{\circ}=\frac{\sqrt{3}}{2} . \\
\therefore T_{2} & =\frac{3}{2} \cdot \frac{2}{\sqrt{3}}=\sqrt{3} 3 \mathrm{lb} .=1.7+\mathrm{lb} . \quad \quad_{\text {FIG. }}+7
\end{aligned}
$$

(f) We thus arrive at the conclusion that the tensions in the strings are equal, and that in each it equals $1.7+\mathrm{lb}$.

Fig. 8 This means that if the string is strong enough to support a weight of $1.7+\mathrm{lb}$. , as indicated in Fig. 8, it will safely support the picture as shown in Fig. 5.
1.7 1b. Example.-A piece of machinery weighing 4000 pounds is suspended by two ropes making angles of 30° and 45° with \uparrow the vertical. Find the ten-
sions in the ropes.

Fig. 9

Solution.-(a) Fig. 9 illustrates the problem.
(b) At C we have three forces acting.
(c) Fig. io shows these forces, the unknown Fig. io forces due to the action of the ropes being denoted by R and S.
(d) Fig. in represents the triangle of forces.

D
(e) To calculate the magnitude of the forces R and S note that the angles between the forces 4000 and R and between 4000 and S (Fig. II) are respectively equal to 30° and 45°. (Why ?) Therefore the angle between the forces R and S becomes 105°. By the law of sines (TrigoFig. II nometry) we have

$$
\begin{aligned}
& \frac{S}{\sin 30^{\circ}}=\frac{R}{\sin 45^{\circ}}=\frac{4000}{\sin 105^{\circ}}\left(=\frac{4000}{\sin 75^{\circ}}\right) . \\
& \therefore S=\frac{4000 \sin 30^{\circ}}{\sin 75^{\circ}}=2070 \text { pounds, } \\
& R=\frac{4000 \sin 45^{\circ}}{\sin 75^{\circ}}=2928 \text { pounds. }
\end{aligned}
$$

and
(f) These results to be interpreted as in the previous example.

Example.-A heavy particle whose weight is W pounds is placed on a smooth (frictionless) inclined plane, $A B$. The height of the plane is a and its length is c (Fig. 12). Find the force acting parallel to $A B$ required to sustain the particle upon the plane. Also

Fig. 12 find the pressure exerted by the particle upon the plane.

Solution.-(a) Fig. I2 illustrates the problem.
(b) Whenever a surface enters into a problem it should be remembered that there always exists a normal reaction perpendicular to the surface, which in the case of a friction-
less plane is the only reaction. The particle then becomes the point at which three forces act in equilibrium.
(c) The three forces are (Fig. I3):
ist. The weight, W.
2d. The sustaining force, P.
3d. The normal reaction of the plane,

Fig. I3 N.
(d) The triangle of forces is shown in Fig. I4.

Fig. 14
(e) In this example no angle is given. This precludes the use of Trigonometry. On due consideration it will be noticed that $\triangle x y z$ is similar to $\triangle A B C$, (why?) and therefore
or more simply $\frac{P}{W}=\frac{a}{c} ; \quad \therefore P=W \frac{a}{c} ;$
also $\quad \frac{N}{W}=\frac{\sqrt{c^{2}-a^{2}}}{c} ; \quad \therefore N=W \frac{\sqrt{c^{2}-a^{2}}}{c}$.
(f) This shows us that the force P necessary to sustain the particle upon the plane is less than W, the weight of the particle, for $a<c$.

As the reaction of the plane upon the particle is N, it follows that an equal but opposite force must be the pressure exerted by the particle upon the plane.

Exercise 12. A picture weighing 7 lb . hangs by a cord passing through two hooks and over a small nail. The hooks are 18 inches apart and the cord is 4 feet long. Find the tension of the cord.

Exercise i3. If the cord in Exercise 12 be lengthened to 6 feet, how will the tension in it be altered?
Exercise i4. A cord is stretched horizontally between two posts 6 feet apart. What is the tension in it, and how much longer does it become when a $7-\mathrm{lb}$. weight suspended from its middle makes it droop 3 inches?
Exercise 15. A particle weig aing io lb . is sustained upon a smooth inclined plane by a force whose line of action makes an angle of 60° with the horizontal. If the angle of the plane is 30°, find the sustaining force.
Exercise 16. Same as preceding exercise with angle of plane 45° and angle between line of action of the force and horizontal 30°.

Exercise 17. An inclined plane has a base of 4 feet and a length of 5 feet. What will be the reaction of the plane upon a particle whose weight is 100 pounds, if the sustaining force be applied parallel to the base of the plane?
Exercise 18. A weight w is supported on a smooth plane inclined at an angle α to the horizon, by means of a force inclined at an angle 0 to the plane. Find the magnitude of the force, and the pressure on the plane. If there is no pressure on the plane, in what direction does the force act?

Exercise 19. A man pushes a garden-roller weighing 80 pounds up a plank io feet 3 inches long and with one end 2 feet 3 inches above the ground. If the handle is horizontal, find the force applied and the pressure of the roller on the plank.
Exercise 20. Two sticks, $A B$ and $B C$, loosely jointed at A, rest upon horizontal ground at B and C, making angles of 65° and 40° respectively with the ground. If a weight of 200 pounds be suspended from A, find the forces transmitted by the sticks to the ground.
Exercise 21. Draw a triangle $A B C$ with base $B C$ horizontal and its vertex A under $B C$. Let $A B$ and $A C$ be threads fastened to two fixed points B and C, and to a third thread at A. If the third thread supports a weight W and the angles
of the triangle are A, B, and C respectively, find the tensions in the threads.

Section II

COMPONENTS. COMPOSITION OF FORCES

We have just noticed that the triangle of forces gives us an easy method for calculating the relations existing between three forces in equilibrium.

For the consideration of the equilibrium of more than three forces another method must be used. To introduce this, we will first consider the

Resolution of Forces

In Fig. 15 assume the force R and the lines of action of two other, unknown forces $O A$ and $O B$. Through C draw $C D \|$ to $O A$, and $C E \|$ to $O B$. Let $O D$ and $O E$ then represent the forces F_{y} and F_{x} respectively. By the parallelogram of forces, F_{x} and F_{y} would have R as resultant.

Fig. I5
F_{x} and F_{y} are called the Components of R; and R is said to be resolved into the component forces F_{x} and F_{y}.

Fig. 16

In case the lines of action of the components $O A$ and $O B$ are oblique, the analytical calculation of F_{x} and F_{y} is not easily accomplished. To simplify the calculation we shall, whenever possible, assume $O A$ and $O B$ at right angles as in Fig. 16. Then if $\angle C O E=\theta$,

$$
\begin{aligned}
& F_{x}=R \cos \theta \\
& F_{y}=R \sin \theta .
\end{aligned}
$$

and
Exercise 22. A force of 100 pounds acts at an angle of 30° to the horizontal. Resolve same into vertical and horizontal components.

Exercise 23. Same as Exercise 22 if force is inclined at 45° to the horizontal.

For convenience we shall designate all forces acting upward and to the right as plus, and therefore all forces acting downward and to the left as minus.

Exercise 24. Resolve a force of 2 tons, acting at an angle of 160° to the horizon, into vertical and horizontal components.
Exercise 25. Same as Exercise 24, if the line of action of the force makes an angle of (a) 270°; (b) 210°; (c) 315° with the horizontal.
Exercise 26. The pull on the rope of a canal-boat is 100 pounds, and the direction of the rope makes an angle of 60° with the parallel banks. Find the force urging the boat forward.
In the propulsion of a canal-boat, is a long or a short rope more advantageous? Why?

Example.-Explain the action of the wind in propelling a ship.

Solution.-Let $A B$, Fig. 17, represent the direction of the ship's keel; $C D$ the position of the sail, which we assume flat. Let the pressure of the wind be equivalent to a force P acting on the sail in the direction indicated. Resolve the force P into two components T and N, one parallel to the sail and the other at right angles to the sail. The first component, T, produces little or no
effect, and we will neglect it. The component N acts on the ship through the mast. We may resolve N into the components X and Y, parallel and at right angles to the keel. The resistance offered by the water to a motion in a direction at right angles to the keel is so great that the component Y produces but little motion. The ship is so built that the water may offer only a small

Fig. 17
resistance to motion parallel to the keel, and the ship moves in this direction under the action of the force X.

Exercise 27. Show that a vessel may sail due east against a southeast wind.

Exercise 28. If F be the force of the wind, α and β the inclinations of the wind and sail to the keel of a boat, find the headway force and the leeway force.

Exercise 29. A boat is sailing due west; the wind is from the northeast. The sail is set at an angle of 75° with the keel of the boat. Of the two possible positions of the sail select the most advantageous and calculate the headway force.

Exercise 30. A boat is towed along the centre of a canal, 25 feet wide, by mules on each bank; the length of each rope is 36 feet. Find the force exerted by each mule when the force urging the boat forward is 200 pounds.

Composition of Forces

The method of resolving a force into its components leads us to a method of combining forces which is, for purposes of calculation, much more convenient than the principle of the parallelogram of forces. Consider three forces $F^{\prime}, F^{\prime \prime}, F^{\prime \prime \prime}$ all acting upon the point O and inclined to the horizontal at angles $\theta^{\prime}, \theta^{\prime \prime}$, $\theta^{\prime \prime \prime}$, respectively (Fig. 18). From what has preceded it follows that each of the three forces may be replaced by a horizontal and vertical component, i.e.,

F^{\prime}	by	$F^{\prime} \cos \theta^{\prime}$	and $F^{\prime} \sin \theta^{\prime} ;$
$F^{\prime \prime}$	by	$F^{\prime \prime} \cos \theta^{\prime \prime}$	and $F^{\prime \prime} \sin \theta^{\prime \prime} ;$
$F^{\prime \prime \prime}$	by	$F^{\prime \prime \prime} \cos \theta^{\prime \prime \prime}$	and $F^{\prime \prime \prime} \sin \theta^{\prime \prime \prime}$.

To simplify the notation, we shall designate $F^{\prime} \cos \theta^{\prime}$ by F_{x}^{\prime} and $F^{\prime} \sin \theta^{\prime}$ by F_{y}^{\prime}, etc., and therefore call the horizontal line $O A$ the axis of X, and $O B$ the axis of Y.

As $F_{x}{ }^{\prime}, F_{x}{ }^{\prime \prime}, F_{x}{ }^{\prime \prime \prime}$ all have a common line of action (the axis of X), we may add them algebraically to obtain their resultant,
similarly,

$$
\begin{aligned}
& R_{x}=F_{x}^{\prime}+F_{x}^{\prime \prime}+F_{x}^{\prime \prime \prime \prime} ; \\
& R_{y}=F_{y}^{\prime}+F_{y^{\prime}}^{\prime \prime}+F_{y}^{\prime \prime \prime},
\end{aligned}
$$

where R_{x} and R_{y} are the x and y components of the resultant, R, of the three forces $F^{\prime}, F^{\prime \prime}, F^{\prime \prime \prime}$.

Fig. I9 shows how R_{x} and R_{y} may be utilized to obtain the resultant

$$
R=\sqrt{R_{x}{ }^{2}+R_{y}{ }^{2}},
$$

and the direction of its line of action

$$
\alpha=\tan ^{-1} \frac{R_{y}}{R_{x}} .
$$

It should be noticed that the argument just applied would be in nowise affected if the X axis and the Y axis

Fig. 19
were not horizontal and vertical so long as they remained mutually perpendicular.

Exercise 3r. Three forces of 6,8 , and io pounds act on a particle at angles of 120° to each other. Find the resultant in magnitude and direction:

Exercise 32. $A B C D E F$ is a regular hexagon. Find the magnitude of the resultant of the forces represented by $A B$, $A C, A D, A E$, and $A F$. (Assume $A B=a$).

Exercise 33. Three smooth pegs are driven into a vertical wall and form an equilateral triangle whose base is horizontal.

Find the pressure on each peg, if a thread, having equal weights of 10 pounds attached to its ends, be hung over the pegs.

Exercise 34. Three men pull an iron ring. The first pulls with a force of 100 pounds in a southeasterly direction, the second pulls northeast with a force of 70 pounds, and the third pulls towards the north with a force of 50 pounds. In which direction will the ring move?

Exercise 35. Two forces of 20 pounds each and one of $2 I$ pounds act at a point. The angle between the first and second is 120°, and between the second and third 30°. Find the resultant in direction and magnitude.

Section III

CONDITIONS FOR EQUILIBRIUM

We know that the resultant of any number of forces may be expressed by $R=\sqrt{R_{x}{ }^{2}+R_{y}{ }^{2}}$.
If a force equal in magnitude but opposite in direction to R is applied to the body, it will balance the original forces.

If the original forces are themselves in equilibrium, no other force is necessary to produce rest or motion with constant velocity, and their resultant is therefore zero.

Whenever forces are in equilibrium we may set

$$
R=0,
$$

and as $R^{2}=R_{x}{ }^{2}+R_{y}{ }^{2}$, both R_{x} and R_{y} must be o. (Why ?)
Therefore

$$
\begin{aligned}
& F_{x}{ }^{\prime}+F_{x}{ }^{\prime \prime}+F_{x}{ }^{\prime \prime \prime}+\ldots=0, \\
& F_{y}{ }^{\prime}+F_{y}{ }^{\prime \prime}+F_{y}{ }^{\prime \prime \prime}+\ldots=0 ;
\end{aligned}
$$

and
whence follows the theorem:

If any number of forces acting on a body keep it in equilibrium, the respective sums of the components of the forces along any two straight lines at right angles to each other are equal to zero.

In the solution of problems based upon this theorem we may proceed as follows:
(a) Draw the sketch illustrating the problem.
(b) Find a point at which the forces act in equilibrium.
(c) In a separate sketch show this point with all the forces acting upon it and draw "any two straight lines at right angles to each other." These lines are usually drawn so as to coincide with as many forces as possible.
(d) Write the equation expressing the fact that the respective sums of the components of the forces along these lines or axes are equal to zero.
(e) Solve the equations for the unknown quantities. they may contain.
(f) Interpret the results so obtained.

Example.-A $\operatorname{rod} A B$, whose weight may be neglected, is hinged at A and supports a weight W at B. It is held up by a wire $B M$ fastened to a fixed point M vertically above A. If $A B$ is horizontal and the angle $A B M=30^{\circ}$, find the tension, T, in the wire and the compression, C, in the rod.

Solution. - (a) Fig. 20 illustrates the problem.
(b) The wire and the rod both act upon the point B,

Fqg. 20 and by the nature of the problem this point is in equilibrium.
(c) In Fig. 2 I the forces acting at the point B are shown. $B X$ and $B Y$ are the lines along which the components will be taken.

Fig. $2 I$
(d) The components of the forces in the X and Y directions are:

Forces	X Components	Y Components
C	C	\circ
W	\circ	$-W$
T	$-T \cos 30^{\circ}$	$T \sin 30^{\circ}$

Therefore $C+0-T \cos 30^{\circ}=0$ and $0-W+T \sin 30^{\circ}=0$.

$$
\left.\begin{array}{c}
\text { (e) } C-T \cos 30^{\circ}=0, \\
-W+T \sin 30^{\circ}=0,
\end{array}\right\} \quad \text { or }\left\{\begin{array}{c}
C-T \frac{\sqrt{3}}{2}=0 \\
-W+T \frac{\mathrm{I}}{2}=0 . \\
\therefore C=\frac{T \sqrt{3}}{2}, \quad T=+2 W, \quad \text { and } C=W \sqrt{3 .}
\end{array}\right.
$$

(f) In Fig. 21 the arrow T represents the action of the wire upon the point B. The reaction upon the wire at B is necessarily an equal but opposite one and may
be represented as in Fig. 22. As the wire is in equilibrium, an equal force must act upon the wire at M, this force being supplied by the wall. These equal and opposite forces $(T=2 W)$ at M and B, Fig. 22, produce a tension of $T={ }_{2} W \mathrm{lb}$. in the wire.

Fig. 22

Explain the effect of the forces acting upon the $\operatorname{rod} A B$.
Exercise 36. A man weighing 160 lb . rests in a hammock suspended by ropes which are inclined at 30° and 45° to two vertical posts. Find the pull in each rope.

Exercise 37. A man weighing $W \mathrm{lb}$. is seated in a loop at the end of a rope l feet long, the other end being fastened to a point ahove. What horizontal force will pull him m feet from the vertical, and what will be the pull on the rope? If the rope is just strong enough to support the man when the rope is vertical, will it support the man when displaced from the vertical?

Exercise 38. A thread whose length is $2 l$ is fastened at two points, A and B, in the same horizontal, and distant l from each other. The thread carries a smooth ring of weight W. Find the tension in the thread.

Exfrcise 39. What weight can be sustained on a smooth inclined plane, the ratio of whose height to base is $5: 12$, by a horizontal force of 10 pounds and a force of 50 pounds parallel to the plane. What is the pressure on the plane?
Exercise 40. Five men pull upon five ropes knotted together towards the south, northeast, east, northwest, and 30° south of west respectively. If the first three exert forces of 70,30 , and 40 pounds respectively and the knot does not move, find the forces exerted by the remaining two men.

Section IV

STATICAL FRICTION

Thus far the surfaces of bodies in contact have been assumed perfectly smooth, that is, they offered no re-
 sistance to the motion of the bodies parallel to their surfaces. In reality no body can be made perfectly smooth, and thus if a body weighing $W \mathrm{lb}$. is to be moved along a horizontal plane, a certain force P is necessary to start the body, Fig. 23.

This force P overcomes an equal but opposite force F, arising from the irregularities in the surfaces of contact which fit more or less closely into one another. This is shown in Fig. 24, which represents a very highly magnified view of

Fig. 24. the contact between the weight and plane. This force, F, is called Friction. From an inspection of Fig. 24 it is evident that the irregularities will always grip in such a way as to resist any motion of the weight W. So that: The direction in which friction acts is always opposite to the direction in which motion would take place if there were no friction.

The amount of friction up to a certain limit is always just sufficient to prevent motion. But only a limiting amount of friction can be called into play. We may
suppose that this limiting amount of friction is reached when either the irregularities give way and break, or when the body lifts sufficiently to allow the irregularities to clear one another.

Thus, if a body rests upon a horizontal table, the pressure of the table balances the weight; and as these forces are both vertical, there is no tendency to move in the horizontal direction and no friction is called into play. Apply a small force parallel to the surface; the body does not move; sufficient friction is exerted to just balance the applied force; increase the applied force and still the friction increases so as to hold the force in equilibrium until the applied force reaches a certain magnitude, which the friction cannot reach, and the body moves. (Try this experiment with a book.)

Experiment shows that the amount of this limiting friction varies as the normal pressure between surfaces in contact, or is directly proportional to the force with which they are pressed together. Therefore, if

$$
F=\text { limiting friction }
$$

and

$$
N=\text { normal pressure }
$$

$$
F \propto N
$$

and $\therefore F=\mu N$,*
where μ is a constant depending upon the material of the surfaces in contact and the state of their polish, but not on their area or shape.
This constant μ, the Coefficient of Friction, is deter-

[^0]mined by experiment and for some substances is approximately as follows:

Wood on wood or metal, surface dry. 0.4 to 0.6
" " " " ، " lubricated.. O.I to 0.2
Metal on metal, surface dry. 0.2
" " "، " lubricated.......... 0.075
Steel on ice. 0.02
Exercise 41. Find the greatest horizontal force which can be applied to a sled shod with steel and resting on a horizontal sheet of ice without causing motion, if the weight of the sled is 50 lb . and the load is 200 lb .

Exercise 42. An iron mass of 1000 lb . rests upon a horizontal wooden floor. What will be the least horizontal force necessary to move the same if the coefficient of friction is 0.5 ? Between what limits may the applied force vary without producing motion?

Consider a weight W placed upon a rough inclined plane (Fig. 25). The tendency to move is in the down-

ward direction and we thus have the friction acting upward and parallel to the plane.

This force with the other forces acting upon W are shown in Fig. 26, and as the weight is assumed at rest we have:

Forces	X Components	Y Components
W	$-W \sin \theta$	$-W \cos \theta$
f	f	\circ
n	\circ	n

$$
\begin{aligned}
& \Sigma X=-W \sin \theta+f=0 \\
& \Sigma Y=-W \cos \theta+n=0
\end{aligned}
$$

where Σ (sigma, the Greek S) denotes summation. Thus ΣX is read, the sum of the X components. Therefore

$$
n=W \cos \theta, \quad j=W \sin \theta .
$$

Thus the friction $f=W \sin \theta$, where θ is the inclination of the plane.

Assume θ to vary from \circ to $\frac{\pi}{2}$, then $\sin \theta$ varies from \circ to I and the friction, to preserve equilibrium, would have to vary from o to W.

It is evident that f cannot possibly equal W or even approach this value, and therefore equilibrium cannot be preserved throughout the whole change of θ. As θ increases from o , some limiting angle must be reached beyond which the plane cannot be inclined without causing the body to slide. If we call this limiting angle α, then in Fig. 27 the weight

Fig. 27 will be on the point of sliding and is retained in equilibrium by the limiting friction F, and the values of n and f above deduced become

$$
N=W \cos \alpha, \quad F=W \sin \alpha,
$$

from which $\mu=\frac{F}{N}=\frac{W \sin \alpha}{W \cos \alpha}=\tan \alpha$ can be obtained

The limiting angle, α, is known as the Angle of Friction or the Angle of Repose; therefore: The tangent of the angle of friction is equal to the coefficient of friction.

As has already been pointed out (page 15), a surface

Fig. 28 always exerts a normal pressure or reaction upon a body in contact with it. If the plane is rough we will have, under certain conditions, the friction as an additional reaction (Fig. 28). The resultant of these forces is called the Total Reaction of the surface. If ϕ be the angle between the normal to the surface and the total reaction, we have

$$
\tan \phi=\frac{F}{N},
$$

and as

$$
\begin{aligned}
& \frac{F}{N}=\mu=\tan \alpha, \\
& \tan \phi=\tan \alpha, \\
& \therefore \phi=\alpha .
\end{aligned}
$$

Therefore:
The greatest angle that the total reaction of a rough surface can make with the normal is equal to the angle of friction.

Example.-A heavy body rests on a rough plane inclined at an angle 30° to the horizontal, the coefficient of friction being $\frac{2}{\sqrt{3}}$. A horizontal force is applied to the body, and is gradually increased until the body begins to move up the plane; find the magnitude of the horizontal force.

Solution.-As $\mu=\frac{2}{\sqrt{3}}$, the tangent of the limiting angle (α) to which the plane may be inclined without causing. the weight to slide is $\frac{2}{\sqrt{3}}=$, or

$$
\begin{aligned}
& \tan \alpha=\frac{2}{\sqrt{3}}=\mathrm{I.I} 5+ \\
& \therefore \alpha=49^{\circ}+
\end{aligned}
$$

As the plane is only inclined at 30°, the body will remain at rest upon the plane with only part of the total amount of friction (acting upward) brought into play (Fig. 29).

Fig. 29

Fig. 30

If the force p, Fig. 30 , be now applied, this force will tend to cause motion up the plane, thus relieving f, and as p increases it causes f to act down the plane, finally overcoming f, thus producing motion $u p$ the plane.

The value of p which we are to consider is the limiting one just sufficient to balance the limiting value of f acting downward. We will call these values of p and f, P and F.

Fig. 31

Fig. 3^{1} shows this condition of equilibrium.

Fig. 32 shows us all the forces acting upon the body. We have:

Forces	X Components	Y Components
P	P	\circ
N	$-N \sin 30^{\circ}$	$N \cos 30^{\circ}$
F	$-F \cos 30^{\circ}$	$-F \sin 30^{\circ}$
W	0	$-W$

Fig. 3^{2}
and the conditions of equilibrium are

$$
\begin{array}{r}
\Sigma X=P-N \sin 30^{\circ}-F \cos 30^{\circ}=0 \\
\Sigma Y=N \cos 30^{\circ}-F \sin 30^{\circ}-W=0 \\
P=\frac{I}{2} N+\frac{\sqrt{3}}{2} F, \quad . . \\
W=\frac{\sqrt{3}}{2} N-\frac{I}{2} F . \quad . . \tag{2}
\end{array}
$$

or

These equations contain three unknown quantities, N, P, and F. So that we must find another equation before we can effect a solution. This third equation is obtained through the law of friction. We know the coefficient of friction, and as F is the limiting value of the friction and N the normal pressure between the surfaces,
we have

$$
\begin{equation*}
F=\mu N=\frac{2}{\sqrt{3}} N=\frac{2 \sqrt{3}}{3} N . \tag{3}
\end{equation*}
$$

We can now find P in terms of W from equations (1), (2), and (3). Substituting F from (3) in (1) and (2),

$$
\begin{align*}
P & =\frac{1}{2} N+N=\frac{3}{2} N \tag{4}\\
W & =\frac{\sqrt{3}}{2} N-\frac{\sqrt{3}}{3} N=\frac{\sqrt{3}}{6} N . \tag{5}
\end{align*}
$$

Substitute N from (4) in (5),

$$
\begin{aligned}
W & =\frac{\sqrt{3}}{9} P \\
\therefore P & =3 \sqrt{3} W .
\end{aligned}
$$

Exercise 43. A weight W rests in equilibrium on a rough inclined plane, being just on the point of slipping down. On applying a force W parallel to the plane, the weight is just on the point of moving up. Find the angle of the plane and the coefficient of friction.
Exercise 44. What is the coefficient of friction when a body weighing 50 lb . just rests on a plane inclined at 30° to the horizontal? If the plane were horizontal, what horizontal force would be required to move the body?
Exercise 45. What horizontal force will be required to support a weight of 300 lb . upon a smooth inclined plane whose height is $3 / 5$ of its length ?

Exercise 46. A block of iron weighing io lb . rests on a level plate. A string attached to the block passes over a pulley so placed above the plate that the string makes an angle of 45° with the vertical. After passing over this pulley the string supports a weight. Find the least value of this weight which will make the block slip, the coefficient of friction being 0.2.
Exercise 47. Explain with diagrams two methods for experimentally determining the coefficient of friction.

Exercise 48. A weight of 60 pounds rests on a rough level floor. Find the least horizontal force that will move it ($\mu=0.5$). Find the total reaction of the floor. What is its direction?

Exercise 49. Find the least angle of inclination of a wooden incline that stone blocks may slide down under the action of gravity. $\quad\left(\mu=\frac{1}{\sqrt{3}}.\right)$

Exercise 50. On a hill sloping I in 50 a loaded sled weighing one ton is kept from sliding down. Show that the pull of the horses may vary from 360 to 440 pounds, the coefficient of friction between sled and snow being 0.2.

Section V

MOMENTS

We will now consider another method of obtaining the relations existing between forces acting on a particle.

In Fig. 33 consider the force F acting on a particle at A and conceive a fixed point O to be rigidly connected to A.

Fig. 33 The force F will then tend to move the particle A about O as centre. The effect of the force in producing rotation about O depends not only upon the magnitude of the force F, but also upon the distance of the line of action of F from
O. This perpendicular distance, d, is called the arm of the force. We may then state as a definition that the

Moment of a force with reference to a point is the product of the force and its arm,
wherein the word moment is used in its old-fashioned sense of importance or influence; so that the moment of
a force with reference to a point means its influence in producing rotation about this point.

The point O, from which the perpendicular is drawn, is called the origin of moments and may be chosen arbitrarily.

The algebraic sign of a moment is considered positive if it tends to turn the system in a direction opposite to that of the hands of a watch, and negative if in the other direction. This assumption is purely arbitrary, but it will be noticed that it conforms with the positive and negative directions assumed in the measurement of angles in Trigonometry. Thus in Fig. 34 the moments of the

Fig. 34 forces with reference to the origin of moments O are $-F_{1} d_{1} ;+F_{2} d_{2} ;+F_{3} d_{3} ; F_{4}(\mathrm{o})=0$; and $-F_{5} d_{5}$.

As the moment of a force $=F d$, the unit moment is the moment due to a force of I pound whose arm is I foot. No name has been assigned to this unit.

Exercise 5 r 1. A force of 5 pounds acts along one side of an equilateral triangle whose side is 2 feet long. Find the moment about the vertex of the opposite angle.

Exercise 52. A force of P pounds acts along the diagonal of a square whose side is $2 n$ feet. Find the moments of P about each of the four vertices.

Exercise 53. If P is the thrust along the connecting-rod of an engine, r the crank-radius, and the connecting-rod is inclined to the crank at 150°, show that the moment of the
thrust about the crank-axis is one-half the greatest moment possible.

Exercise 54. At what height from the foot of a tree must one end of a rope, whose length is l feet, be fastened so that

Fig. 35 a given force acting at the other end may have the greatest tendency to overturn it, assuming the force applied at the ground.

Exercise 55. The post $A C$, Fig. 35, of a jib-crane is ro feet long; the jib $C B$ is inclined at 30°, and the tie $A B$ at 60°, to the vertical. If the weight lifted is ro tons, find the moment about C tending to upset the crane.

The moment of a force may be geometrically represented by twice the area of a triangle whose base is the force and whose altitude is the arm of the force. Thus in Fig. 36, 2 (area of $\triangle O A B)=F d=$ moment of F about O.

Fig. 36

This geometrical representation will be used to prove Varignon's Theorem of Moments:

The sum of the moments of two forces, F_{1} and F_{2}, about any point O in
 their plane is equal to the moment of their resultant, R, about the same point.

In Fig. 37 (moment of F_{1} about $\left.O\right)=2 \triangle O A B$, (moment of F_{2} about O) $=2 \triangle O A D$, (moment of R about $O)=2 \triangle O A C$. We must prove that
(moment of F_{1}) $+\left(\right.$ moment of $\left.F_{2}\right)=($ moment of $R)$,
or

$$
2 \triangle O A B+2 \triangle O A D=2 \triangle O A C
$$

Draw $B E$ and $D F \| O A$. Then
$\triangle O A B=\triangle O A E$ and $\triangle O A D=\triangle \triangle O A F$. (Why ?)
Prove $A E=C F$, by means of $\triangle A B E$ and $\triangle D C F$. Then $\triangle O A E=\triangle O F C$. (Why?)
From this the remainder of the proof may be easily deduced.

Theorem: If any number of forces acting upon a particle are in equilibrium, the algebraic sum of their moments about any point will be zero.

To prove this proposition consider the forces F_{1}, F_{2}, . ., Fig. 38 , to be in equilibrium, and O any origin of moments. We must now prove

Fig. 38

$$
F_{1} d_{1}+F_{2} d_{2}+\ldots=0
$$

Join O and A and find the component forces \perp to $O A$; then

$$
F_{1} \sin \theta_{1}+F_{2} \sin \theta_{2}+\ldots=0 . \quad(\text { Why ? })
$$

But $\sin \theta_{1}=\frac{d_{1}}{O A}, \quad \sin \theta_{2}=\frac{d_{2}}{O A}, \quad$ etc.

Therefore
$F_{1} \frac{d_{1}}{O A}+F_{2} \frac{d_{2}}{O A}+\ldots=0$
and
$F_{1} d_{1}+F_{2} d_{2}+\ldots=0 ;$
or

$$
\Sigma \text { moment }=\Sigma M=0
$$

Example.-A brace $A B$ rests against a smooth vertical wall and upon a rough horizontal plane, and supports a weight W at its upper end. Find the compression in the brace if the angle $C A B$ is θ.

Solution.-The forces acting at A are W, N, and C, Fig. 39.

As these forces are in equilibrium we may select any point as our origin of moments and equate the sum of the

Fig. 39 moments to zero. But as we seek a relation between C and W, we should attempt to exclude N from our equation of moments. This can only be done by choosing the origin of moments upon the line of action of N, thus reducing its arm to zero. Besides, the origin of moments should be chosen conveniently for calculation. Vertically above B at O is a good position. Thus,

$$
\Sigma M=-W(\overline{O A})+C(\overline{O A} \cos \theta)=0 ; \quad \therefore C=W \sec \theta .
$$

Exercise 56. Find the normal reaction of the wall in the preceding example.

Exercise 57. A weight W is attached to a string which is secured at A to a vertical wall and pushed from the vertical by a strut $B C$ perpendicular to the wall; find the pressure on $B C$ when the angle $C A B$ is θ.

Exercise 58. A rod whose length is $B C=l$ is secured at a point B in a horizontal plane, and the end C held up by a cord $A C$ so that $\angle A B C$ is θ and the distance $A B=a$; required the compression in $B C$ due to a weight W applied at C,

CHAPTER II

FORCES ACTING ON A RIGID BODY

Section VI

RESULTANT OF TWO FORCES. COUPLES

To the present our work has been confined to the investigation of forces applied to a single point or particle.

We shall now consider the action of forces applied at different points of a rigid body.

A body is said to be rigid when the particles of which it is composed retain their relative positions no matter what external forces may be applied to the body. Practically no such thing as a rigid body is found in nature, but if the body considered "gives" under the action of the applied forces, the methods now to be described may still be employed, provided the positions of thee points of application considered are assumed after all changes in the body have ceased.

If any force F (Fig. 40) be applied to a body at A, the effect of this force will remain unchanged if its point

Fig. 4° of application be moved to any other point in the line of action of the force, such as A^{\prime}. This principle is known as the transmissibility of a force.

Let the question be proposed to find the resultant of

Fig. 41 two non-parallel forces F_{1} and F_{2}, Fig. 4I, applied to a body, B, at the points A_{1} and A_{2}.

Then by the above principle the force F_{1} may have its point of application transferred to any point in its line of action; the same holds for the force F_{2}. Let us select the point P at the intersection of their lines of action as the new point of application. The transference of the forces F_{1} and F_{2} to the new point P reduces the problem to the simple case of the parallelogram of forces, and the resultant R may now be applied to any point in its line of action $P A_{3}$.

Consider now the computation of the resultant of two parallel forces F_{1} and F_{2}, Fig. 42. It is evident that the method of transmissibility of forces will in this case lead to no result. (Why?) So a special artifice must be used.

Two equal and oppositely directed forces F having a common line of action $A_{1} A_{2}$ are introduced. As these
forces neutralize each other their introduction will not affect the original problem. Combine these forces with F_{1} and F_{2} and obtain the forces R_{1} and R_{2}. Now, instead of considering F_{1} and F_{2}, find the resultant of R_{1} and R_{2}, which we will denote by R, whose point of application is anywhere in the line $P C$, at C if we so choose.

By resolving R_{1} and R_{2} at P into components along $P C$ and parallel to $A_{1} A_{2}$ the magnitude of R will be found to be $F_{1}+F_{2}$, and its direction will be parallel to F_{1} and F_{2}. (Prove this.) To completely determine the resultant it is sufficient to locate any convenient point, say C on $A_{1} A_{2}$, on its line of action. From the similar triangles $A_{2} M N$ and $P C A_{2}$ we find that

$$
\begin{aligned}
& \frac{F_{2}}{F}=\frac{P C}{C A_{2}} ; \text { similarly } \frac{F_{1}}{F}=\frac{P C}{A_{1} C} ; \\
\therefore & \frac{F_{2}}{F_{1}}=\frac{C A_{1}}{C A_{2}}, \quad \text { or } \quad F_{1}\left(C A_{1}\right)=F_{2}\left(C A_{2}\right) .
\end{aligned}
$$

As the angle between the forces F_{1}, F_{2} and the line $A_{1} A_{2}$ does not enter into this discussion, it should be noticed that the resultant R always passes through C irrespective of the direction of the parallel forces.

This point C is therefore called the Center of the Parallel Forces.

Exercise 59. Show how to find the resultant of two unequal parallel forces acting in opposite directions but not in the same straight line.

Through Ex. 59 we arrive at the result shown in Fig. 43. The resultant of the two unequal parallel forces, F_{1} and F_{2}, is parallel to them, but divides the line $A_{1} A_{2}$
externally at C. The resultant has the same direction

Fig. 43 and equals $F_{2}-F_{1}$. Also $F_{2}\left(C A_{2}\right)=$ ${ }^{\mathrm{R}} \mathrm{F}_{1}\left(C A_{1}\right)$.

Exercise 60. Three forces are represented by the lines $A D, B C$, and $D B$ in a parallelogram $A B C D$. Show that $A C$ is their resultant.
Exercise 6i. Two forces acting upon a body are located with reference to a set of rectangular axes as follows: F_{1}, point of application ($-4,-4$), with arrow representing force extending to (2,6) ; F_{2}, point of application (1,7), arrow extending to (14,6). Find the resultant.

Exercise 62. Two parallel forces of 3 and 5 pounds act in the same direction at points 2 feet apart. Find their resultant in magnitude and position.

Exercise 63. Two parallel forces of 3 and 5 pounds act in opposite directions at points 2 feet apart. Find their resultant in magnitude and position.

Exercise 64. "We have a set of hay-scales and sometimes we have to weigh wagons that are too long to go on them. Can we get the correct weight by weighing one end at a time and then adding the two weights?"

Consider the case of two equal parallel forces acting in opposite directions (Fig. 44). If we here apply the artifice used when the forces are unequal, we find that the lines of action of R_{1} and R_{1} are still parallel and the method fails.

But from the results obtained in Ex. 59 we have $R=F_{1}-F_{1}=0$ and $F_{1}\left(C A_{1}\right)=F_{1}\left(C A_{2}\right) ; \quad \therefore C A_{1}=C A_{2}$.

But as C must divide $A_{1} A_{2}$ externally, $C A_{1}$ can only equal $C A_{2}$, as $C A_{2} \doteq \infty$. (The sign \doteq is read "approaches," $\therefore C A_{2}$ approack.es infinity.) In other words,
the two forces cannot be reduced to a single force in a definite position.

This combination of two equal parallel forces acting in opposite directions, but not in the same straight line, which cannot be replaced by a single force, is called a couple.

As shown a couple cannot be reduced to a single force, and its action therefore is not that of a force. It thus becomes imperative to study more

Fig. 44 fully the properties of couples.

The tendency of a couple is to cause rotation. This is illustrated in the operation of a screw copying-press, or in the winding of a watch or clock. This tendency to produce rotation is measured, as explained on page 38 , by the moments of the forces.

Select any point O, Fig. 45, in the plane of the couple

Fig. 45 and draw the line $O a b$ perpendicular to the lines of action of the forces F. The sum of the moments of the forces about O is $-F(a O)+F(b O)=F(b O-$ $a O)=F(a b)$. The distance $a b$ is called the arm of the couple, and we have shown that the moment of the couple $[F(a b)]$ about any point in its plane is the prod-
uct of one of the forces and the arm; the sign to be determined, as on page 39 , by the direction in which the body acted on would tend to turn.

Theorems Concerning Couples

In the proofs of the following theorems we shall always consider the forces of the couple applied at the ends of their arm. That a couple can always be reduced to this form is evident from Fig. 45. Here we may move the forces F along their lines of action until the tails of their arrows are respectively at a and b.

We will first prove that the action of a couple remains unaltered if it is moved anywhere in its plane in such a position that the forces remain parallel to their original directions, or

The translation of a couple does not alter its effect upon the body.

In Fig. 46 consider the couple $F\left(A_{1} A_{2}\right) F$. We wish to show that it is equivalent to

Fig. 46 the couple $F\left(A_{1}{ }^{\prime \prime} A_{2}{ }^{\prime \prime}\right) F$, in which the F 's are the unmarked ones.

To do this first move its forces by the principle of transmissibility to the position $A_{1}{ }^{\prime} A_{2}{ }^{\prime}$. Then anywhere on $A_{1}{ }^{\prime} A_{2}{ }^{\prime}$ prolonged take $A_{1}{ }^{\prime \prime} A_{2}{ }^{\prime \prime}$ equal to $A_{1}{ }^{\prime} A_{2}{ }^{\prime}=A_{1} A_{2}$. Introduce at $A_{1}{ }^{\prime \prime}$ and $A_{2}{ }^{\prime \prime}$ two pairs of equal and oppositely directed forces F. Ti.e body originally acted on by the
couple $F\left(A_{1} A_{2}\right) F$ will now be acted upon by six forces, but its state of rest or motion will not be altered.

Now the singly marked F 's may be replaced by the singly marked $R=2 F$, their resultant. Similarly for the doubly marked forces. The R 's balance each other and their action may be neglected. Thus all forces but the unmarked ones at $A_{1}{ }^{\prime \prime}$ and $A_{2}^{\prime \prime}$ are accounted for. These evidently form the couple $F\left(A_{1}{ }^{\prime \prime} A_{2}{ }^{\prime \prime}\right) F$, which is therefore equivalent to the couple $F\left(A_{1} A_{2}\right) F$.

We will now show that a couple may be rotated about any point without altering its action.

In Fig. 47 consider the couple $F\left(A_{1} A_{2}\right) F$. On any line $M A_{2}^{\prime}$ lay off $M A_{1}{ }^{\prime}=$ $M A_{1}$ and $A_{1}{ }^{\prime} A_{2}{ }^{\prime}=A_{1} A_{2}$. At A_{1}^{\prime} and A_{2}^{\prime} introduce the pairs of forces $F \perp$ to $A_{1}{ }^{\prime} A_{2}{ }^{\prime}$. Now the singly marked F 's reduce to their singly marked resultant R. Similarly for the doubly marked F 's.

The resultants R have a common line of action (which

Fig. 47 bisects $\angle A_{1} M A_{1}{ }^{\prime}$) and are of equal magnitude. (Prove this.) They thus neutralize each other and there remains only the couple $F\left(A_{1}{ }^{\prime} A_{2}{ }^{\prime}\right) F$, which proves the proposition.

As a corollary to the above theorems we can state that A couple can be shifted into any position in its plane without altering its action.

Another important theorem concerning couples is the following:

Any couple may be replaced by another couple of equal moment.

This may be demonstrated thus: In Fig. 48 consider the couple $F\left(A_{1} A_{2}\right) F$. Let A_{3} be any point in $A_{1} A_{2}$ prolonged. Introduce two pairs of equal and opposite forces $P \perp$ to $A_{1} A_{3}$ at A_{3} and

Fig. 48 A_{2}. Let us, however, make P of such magnitude that $P\left(A_{2} A_{3}\right)$ $=F\left(A_{1} A_{2}\right)$. The resultant of the singly marked P and F will be $R_{1}=F+P$ acting at A_{2} (see page 44), and the resultant of the doubly marked P and F is $R_{2}=F+P$ acting at A_{2}. These resultants neutralize each other and there remains only the couple $P\left(A_{2} A_{3}\right) P$; but as $P\left(A_{2} A_{3}\right)$ was made equal to $F\left(A_{1} A_{2}\right)$, this new couple has the same moment as the original couple. Combining this result with the previous theorem we arrive at our present theorem.

We can now state that the resultant of any number of couples is a couple whose moment is the sum of the moments of the given couples.

For the given couples may all be reduced to equivalent couples having a given arm. They may then be shifted until the lines of action of their forces coincide in pairs. Their forces may then be added and there results a couple whose moment is equal to the sum of the moments of the given couples.

Exercise 65. Prove the last theorem for the case of three couples whose moments are $P a, Q b$, and $R c$ and whose arms are a, b, and c respectively.

Exercise 66. Along the sides $A D$ and $C B$ of a rectangle
$A B C D$, whose side $A D$ is s feet long and whose side $A B$ is s yards long, forces of F pounds act, and along $A B$ and $C D$ forces of $5 F$ pounds act. Find the moment of the equivalent couple. In what position should this equivalent couple be placed with reference to the rectangle $A B C D$?

It is important to notice that a single force F acting at C, Fig. 49, and a couple $P(a) P$ acting on a body in the same plane cannot be in equilibrium. For, the couple $P(a) P$ may be replaced by a couple $F(b) F$, if $P a=F b$, and this new couple may be placed anywhere in the plane. If placed as shown in Fig. 49, the forces at C are

Fig. 49 in equilibrium, leaving the force F at D unbalanced.

Exercise 67. Assume a force of 100 pounds and a couple whose forces are 50 pounds and whose arm is 4 feet. Find their resultant.

Section VII

RESULTANT OF ANY NUMBER OF FORCES

We are now in position to find the resultant of any number of forces acting upon a rigid body.

Let the forces $F_{1}, F_{2}, F_{3}, \ldots$ act at the points $P_{1}\left(x_{1}, y_{1}\right)$, $P_{2}\left(x_{2}, y_{2}\right), P_{3}\left(x_{3}, y_{3}\right) \ldots$ of a body referred to rectangular axes. Consider the force F_{1} resolved into two components X_{1} and Y_{1}, Fig. 50. At the origin O apply two opposing forces each equal and parallel to X_{1}, and similarly for Y_{1}. This will not alter the given problem. X_{1} acting at P_{1} may now be replaced by X_{1} acting at O plus a couple
whose moment is $-X_{1} y_{1}$, and Y_{1} acting at P may be replaced by Y_{1} acting at O plus a couple whose moment is $Y_{1} x_{1}$. Similarly for all the other forces F_{2}, F_{3}, \ldots

Fig. 5°
The resultant of all the component forces acting at O may now be found as already explained on pages 24 and 25. We have

$$
\begin{aligned}
& R_{x}=X_{1}+X_{2}+X_{3} \ldots=\Sigma X, \\
& R_{y}=Y_{1}+Y_{2}+Y_{3} \ldots=\Sigma Y,
\end{aligned}
$$

and $\therefore R=\sqrt{(\Sigma X)^{2}+(\Sigma Y)^{2}}$ and $\tan \alpha=\frac{\Sigma Y}{\Sigma X}$.
We have thus found the magnitude and direction of the resultant, but it is evident that the line of action of the resultant need not pass through the origin.

So far we have neglected the couples introduced above. By adding their moments we may obtain the moment of the resultant couple:

$$
\begin{aligned}
M & =\left(Y_{1} x_{1}-X_{1} y_{1}\right)+\left(Y_{2} x_{2}-X_{2} y_{2}\right)+\left(Y_{3} x_{3}-X_{3} y_{3}\right)+\ldots \\
& =\Sigma(Y x-X y) .
\end{aligned}
$$

We shall assume this to be the moment of a couple whose forces are R, R, and whose arm is $a, \quad R$ having
been previously determined, the equation $M=R a=$ $\Sigma(Y x-X y)$ determines a. These results are illustrated in Fig. 51. R acting at O shows the magnitude and direction of the forces acting at O, Fig. 50, and RaR the couple whose moment is M, placed in the convenient position for finding their resultant (see page ${ }_{51}$).

Fig. 5^{1}
The forces R, R acting at O neutralize each other, and this leaves $K L$ as the final resultant, which may be applied at any point in its line of action $K L$.

The intercept of the line of action of the resultant $K L$, Fig. 51, upon the X-axis may readily be found to be $(O X)=\frac{a}{\sin \alpha}$, and as $\sin \alpha=\frac{\Sigma Y}{R}$, we have

$$
(O X)=\frac{a R}{\Sigma Y}
$$

To condense this theory for actual computation we need simply fill out the following table:

Forces	x	y	X	Y	$Y x$	$X y$	$Y x-X y$
F_{1}	x_{1}	y_{1}	X_{1}	Y_{1}	$Y_{1} x_{1}$	$X_{1} y_{1}$	$Y_{1} x_{1}-X_{1} y_{1}$
F_{2}	x_{2}	y_{2}	X_{2}	Y_{2}	$Y_{2} x_{2}$	$X_{2} y_{2}$	$Y_{2} x_{2}-X_{2} y_{2}$
$\ldots \ldots$	\ldots	\ldots	\ldots	\ldots	\ldots.	\ldots	$\ldots \ldots \ldots$

Then obtain the $\Sigma X, \Sigma Y, \Sigma(Y x-X y)=R a$. Finally,

$$
R=\sqrt{(\Sigma X)^{2}+(\Sigma Y)^{2}}, \quad \alpha=\tan ^{-1} \frac{\Sigma Y}{\Sigma X},
$$

and the intercept of the line of action of the resultant upon the X-axis is

$$
(O X)=\frac{R a}{\Sigma Y},
$$

which gives us all the data necessary for the location of the resultant.

Exercise 68. Three forces F_{1}, F_{2}, F_{3} have their points of application at $(2,4),(4,-1),(-2,-2)$, and the arrows representing their ends at $(6,7),(-2,-6)$, and $(-7,10)$, respectively. Find their resultant.

Exercise 69 . Find the resultant of the following forces, given a point on each line of action, the angle each line of action makes with the X-axis, and their magnitudes:

$$
\begin{aligned}
& \text { Ist force: }(3,2) ; 100^{\circ} ; 50 \text { pounds. } \\
& \text { 2d force: }(-1,3) ; 200^{\circ} ; \text { roo pounds. } \\
& \text { 3d force: }(-2,-4) ; 30^{\circ} ; 60 \text { pounds. }
\end{aligned}
$$

Exercise 70. Find the resultant of the following forces: $P_{1}=40$ pounds, $P_{2}=30$ pounds, and $P_{3}=90$ pounds, whose lines of action make angles of $60^{\circ}, 280^{\circ}$, and 140° with the X-axis and whose intercepts on the X-axis are 9 feet, 5 feet, and o feet, respectively.

Section VIII

CONDITIONS FOR EQUILIBRIUM

The motion of a rigid body may always be considered as either a translation, a rotation, or a combination of the two.

In the motion of translation the spaces described simultaneously by the different parts of the body are parallel and equal to each other. Thus if, in Fig. ${ }_{52}, A_{1}, B_{1}$, C_{1} represent the positions of the particles of a body at a time t_{1}, and A_{2}, B_{2}, C_{2} represent their positions at some subsequent time t_{2}, the body is said to possess a motion of translation.

Fig. 5^{2}

In the motion of rotation the parts of the body describe concentric arcs of circles about a certain line, called the axis of rotation. Thus in Fig. 53 the two positions shown are those of a body pos-

Fig. 53 sessed of a motion of rotation, and a perpendicular to the plane of the paper passing through O would be the axis of rotation.

Every more complex motion can be considered as the combination of a translation and of a rotation. Thus, in Fig. 54, if the body $A_{1} B_{1} C_{1}$ moves to the position $A_{2} B_{2} C_{2}$, we may first conceive it to move by translation to $A^{\prime} B^{\prime} C^{\prime}$ and then by rotation about O as an axis from $A^{\prime} B^{\prime} C^{\prime}$ to $A_{2} B_{2} C_{2}$.

Thus, only two kinds of motion, Translation and Rotation, need be considered.

Translation is always caused by the resultant of the
forces, and Rotation by the resultant of the couples acting on a body.

The forces shown in Fig. 50, page 52, acting on the body have been reduced, as explained on pages 5^{2} and

Fig. 54 53 , to the force R and a couple whose moment is $M=R a$. This body, if acted on only by the forces $F_{1}, F_{2}, F_{3}, \ldots$, would possess a compound motion; the translation of which would be due to the force R, and the rotation of which would be due to a couple whose moment is $R a$.

Conceive now that the body is at rest, possessing neither translation nor rotation. This would imply that R (the cause of the translation) is zero and $M=R a$ (the cause of the rotation) is zero.

Therefore, if any rigid body is in equilibrium under the action of forces,

$$
\Sigma X=0, \quad \Sigma Y=0, \quad \text { and } \quad \Sigma(Y x-X y)=0
$$

the X and Y axes to be assumed at pleasure.
In the application of this principle proceed as follows:
(a) Draw a sketch illustrating the problem.
(b) Draw a diagram showing the body considered as a free body.
(c) Into the last sketch introduce the coördinate axes and fill out a table similar to that shown on page 53 , thus obtaining the ΣX, the ΣY, and the $\Sigma(Y x-X y)$.

The choice of the position of the axes must be left largely to the ingenuity of the student.
(d) Solve the equations obtained by putting the three sums just found each equal to zero for whatever unknown quantities are sought.
(e) Interpret the results.

Example.-A beam $A B$ rests on smooth horizontal ground at A and on a smooth inclined plane at B; a string is fastened at B and, passing over a smooth peg at the top of the plane,

Fig. 55 supports a weight P. If W, the weight of the beam, acts at the centre of the beam and α be the inclination

Fig. 56 of the plane, find P and the reactions on the rod.

Solution.-(a) Draw a diagram illustrating the problem (Fíg. 55).
(b) Draw the rigid body under consideration (beam) alone (Fig. 56), showing all the reactions and other forces acting upon it.
(c) Introduce the coördinate axes and complete the table:

F	x	y	X	Y	$Y x$	$X y$	$Y x-X y$
N_{1}	$-2 l \cos \theta$	$-2 l \sin \theta$	0		Y	N_{1}	$-2 N_{1} l \cos \theta$
W_{2}	$-l \cos \theta$	$-l \sin \theta$	0	$-2 N_{1} l \cos \theta$			
N_{2}	0	0	$-N_{2} \sin \alpha$	$N_{2} \cos \alpha$	$W l \cos \theta$	0	$W l \cos \theta$
P	0	0	$+P \cos \alpha$	$P \sin \alpha$	0	0	0

Then, as the beam is in equilibrium,

$$
\begin{aligned}
& \Sigma X=0=-N_{2} \sin \alpha+P \cos \alpha=0 \\
& \Sigma Y=0=N_{1}-W+N_{2} \cos \alpha+P \sin \alpha=0,
\end{aligned}
$$

and

$$
\Sigma(Y x-X y)=-2 N_{1} l \cos \theta+W l \cos \theta=0 .
$$

(d) Solving the equations, we obtain

$$
N_{1}=\frac{W}{2} ; \quad P=\frac{W}{2} \sin \alpha ; \quad N_{2}=\frac{W}{2} \cos \alpha .
$$

Exercise 7r. A beam 20 feet long and weighing rooo pounds rests at an angle of 60° with one end against a smooth vertical wall and the other end on smooth horizontal ground. It is held from slipping by a rope extending horizontally from the foot of the beam to the foot of the wall. Find the tension in the string and the reaction at the ground and wall.

Exercise 72. Same as Exercise 7r, but assuming the wall rough, with $\mu=0.2$.

Exercise 73. Same as Exercise 7r, but assuming the ground rough, $\mu=0.3$.

Exercise 74. Same as Exercise 7r, but assuming the wall rough, $\mu=0.2$, and the ground rough, $\mu=0.3$.

Exercise 75. A beam 20 ft . long rests with its upper end against a smooth vertical wall. Its lower end rests on a smooth horizontal plane and is prevented from slipping by a rope 16 feet long fastened to it and the base of the wall. The weight of the beam is W and acts at a point 5 feet from its upper end. Find the reactions of the wall and the plane and the tension in the rope.

Exercise 76. A cellar-door $A B$, hinged at its upper edge, A, rests at an angle of 45° with the horizontal when a horizontal force F is applied to its lower edge, B. If the weight of the door, W, be assumed to act at its midpoint, find the force F and the reaction at the hinge A.

Exercise 77. A uniform rod, length $2 a$ and weight W,
rests with one end against the inner surface of a smooth hemispherical bowl whose edge is horizontal and whose radius is r. The rod is also supported at some point of its length by the edge of the bowl. Find its position of equilibrium.

Another method of obtaining the equation $\Sigma(Y x-X y)$ $=0$, used in the solution of the above exercises, which is perhaps less laborious than. that described on page 57 , is the following:

From Fig. 57 it follows, by Varignon's theorem of moments, page 40, that

$$
Y x-X y=-F d ;
$$

$\therefore \Sigma(Y x-X y)=\Sigma(F d)$.

Fig. 57

But $\Sigma(F d)$ represents the sum of the moments of all the forces about the origin O, and as the origin O may be taken in any position we have as the conditions of equilibrium the three equations:

Sum of the components of all the forces along any line $=0$; Sum of the components of all the forces along a line \perp to the first line $=0$;
Sum of the moments of all the forces about any point $=0$.
Example.-A uniform cylindrical shell of radius r stands upon a horizontal plane; two smooth spheres of radii a and b, such that $a+b>r$, are placed within it. Show that the cylinder will not upset if the ratio of its weight to the weight of the upper sphere exceeds the ratio $2 r-a-b$:r.

Solution.-Fig. 58 illustrates the problem. Fig. 59
shows the cylindrical shell as a free body, W being its weight. From this figure we obtain

$$
\begin{align*}
& \Sigma X=R_{1}-R_{2}=0, \tag{I}\\
& \Sigma Y=N-W=0, \tag{2}
\end{align*}
$$

$\Sigma($ moments about $O)=2 r N-r W-z R_{1}=0$.
(We select O as origin, as this eliminates R_{2} from equation(3)).

Fig. 58

Fig. 59

Fig. 60

Consider now the equilibrium of the upper sphere, W_{1} being its weight, and the corresponding triangle of forces (Fig. 6o).

This triangle is similar to $\triangle A B C$ (Fig. 58).

$$
\begin{equation*}
\therefore \frac{R_{1}}{W_{1}}=\frac{2 r-a-b}{z}, \quad \text { or } \quad R_{1}=\frac{2 r-a-b}{z} W_{1} \tag{4}
\end{equation*}
$$

From (2), (3), and (4) we have $\frac{W}{W_{1}}=\frac{2 r-a-b}{r}$.

Exercise 78. Write the equations for equilibrium for Exercises 75, 76, and 77 by the method just described.

An important principle which in many cases simplifies the solution of problems is the following:

If three forces in the same plane keep a body in equilibrium, they must be parallel or meet in a point.

From pages 44 and 45 it is evident that parallel forces acting on a body may be in equilibrium. If the three forces are not parallel, two of them at least intersect and their resultant acting at the point of intersection must balance the third force. Therefore the line of action of the third force must pass through the point of intersection of the first two; otherwise a couple would result and the body would not be in equilibrium.

Example.-A $\operatorname{rod} A B$ whose weight may be neglected and which is 35 inches long carries a weight, W, at C, 20 inches from A. A thread 49 inches long is tied to the ends of the rod and slung over a smooth peg D. Find the tension in the thread and the inclination of the rod to the horizontal when it comes to rest.

Solution.-In Fig. 61, as the thread $A D B$ passes over a smooth peg at D, the tensions in $A D$ and $D B$ must be equal to, say, T pounds.

Fig. 6i

Fig. 62

Fig. 63

In Fig. 62 the lines of action of the forces T, T, W, as there are only three, must pass through D, and we may apply the method of the triangle of forces, Fig. 63.

As $T=T, \alpha=\beta$, and

$$
\frac{T}{\sin \alpha}=\frac{W}{\sin \{180-(\alpha+\beta)\}}=\frac{W}{\sin (\alpha+\beta)} .
$$

From Fig. 61,

$$
\begin{aligned}
A C: C B=b & : a=20: 15 ; \quad(\text { Why? }) \\
\therefore b+a: a & =35: 15 ; \quad(\text { Why?) } \\
49: a & =35: 15 ; \\
a & =\frac{49 \times 15}{35}=21 ; \\
b & =28 .
\end{aligned}
$$

As $35^{2}=28^{2}+2 \mathrm{I}^{2}, \angle A D B=90^{\circ} ; \therefore \alpha=\beta=45^{\circ}$;
then
Also

$$
\cos \theta=\frac{A H}{A C}=\frac{28\left(\frac{1}{2} \sqrt{2}\right)}{20}=\frac{7 \sqrt{2}}{10} .
$$

Exercise 79. A uniform beam weighing W pounds rests on two smooth planes inclined at 30° and 60° to the horizontal. Find the angle which the beam makes with the horizontal in the position of equilibrium, and also the pressure on the planes.
Exercise 80. A spherical shot weighing ioo pounds lies between two smooth planes inclined respectively at 30° and 60° to the horizontal. Find the pressure on each plane.

Exercise 81. A straight rod 4 inches long is placed in a smooth hemispherical cup and when in equilibrium one inch projects over the edge. Find the radius of the cup.

Exercise 82. A rod 3 feet long is in equilibrium resting upon a smooth pin and with one end against a smooth vertical wall. If the pin is one foot from the wall, show that the inclination θ to the horizontal is given by $3 \cos ^{3} \theta=2$.

Exercise 83. A balanced window-sash, whose height is 3 ft . and width 4 ft ., weighs 100 pounds. If one of the cords is broken, what must be the least coefficient of friction in order that the remaining cord may sustain the sash ?

Exercise 84. A hemisphere, whose center of gravity is at a distance of $\frac{3}{8}$ of its radius from the centre and is on the radius perpendicular to its plane surface at its centre, is sustained by friction against a vertical wall and a horizontal plane of equal roughness. Find the greatest inclination of the plane of the base to the horizon.

Section IX

PARALLEL FORCES. CENTROIDS OR CENTRES OF GRAVITY

In the consideration of the conditions for the equilibrium of forces acting on a body we meet a difficulty not involved in the consideration of the forces acting on a single particle. While considering a particle the force of gravity (the weight of the particle) was assumed to act at the point occupied by the particle itself, but in the consideration of a body assumed to consist of many particles, each having its own weight, it becomes imperative to find the resultant force of gravity before we can apply the conditions of equilibrium.

To this end we will first find the

Resultant of any Number of Parallel Forces

In Fig. 64 conceive the forces $F_{1}, F_{2}, F_{3}, \ldots$ to be parallel and to have their points of application at $P_{1}\left(x_{1} y_{1}\right), P_{2}\left(x_{2} y_{2}\right), P_{3}\left(x_{3} y_{3}\right), \ldots$ The forces do not necessarily lie in the plane $x y$, but may have any direction whatsoever so long as they remain parallel.

Consider first the forces F_{1} and F_{2}; their resultant, by the principle described on page 45 , is $F^{\prime}=F_{1}+F_{2}$, and the line of action of t.e resultant divides $P_{1} P_{2}$ in the
ratio $F_{2}: F_{1}$. The coördinates of P^{\prime} may now be determined for

$$
\frac{l_{1}}{l_{2}}\left(=\frac{F_{2}}{F_{1}}\right)=\frac{x^{\prime}-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}} \text { (by similar triangles), }
$$

Fig. 64
from which we obtain

$$
x^{\prime}=\frac{F_{2} x_{2}+F_{1} x_{1}}{F_{1}+F_{2}} \quad \text { and } \quad y^{\prime}=\frac{F_{2} y_{2}+F_{1} y_{1}}{F_{1}+F_{2}} .
$$

Find now the resultant $F^{\prime \prime}$ of F^{\prime} and F_{3}. Here

$$
\begin{gathered}
F^{\prime \prime}=F^{\prime}+F_{3}=F_{1}+F_{2}+F_{3} \text { and } \frac{m_{1}}{m_{2}}=\frac{F_{3}}{F^{\prime}} \\
\therefore x^{\prime \prime}=\frac{F_{3} x_{3}+F^{\prime} x^{\prime}}{F_{3}+F^{\prime}}=\frac{\left(F_{1}+F_{2}\right) \frac{F_{2} x_{2}+F_{1} x_{1}}{F_{1}+F_{2}}+F_{3} x_{3}}{F_{1}+F_{2}+F_{3}} \\
=\frac{F_{1} x_{1}+F_{2} x_{2}+F_{3} x_{3}}{F_{1}+F_{2}+F_{3}} ;
\end{gathered}
$$

similarly

$$
y^{\prime \prime}=\frac{F_{1} y_{1}+F_{2} y_{2}+F_{3} y_{3}}{F_{1}+F_{2}+F_{3}}
$$

The resultant of $F^{\prime \prime}$ and F_{4} may now be found, etc. The final resultant will be $R=F_{1}+F_{2}+F_{3}+\ldots$, and the Centre of the Parallel Forces (see page 45) will be at the point $(\bar{x}, \bar{y}) *$ where
$\bar{x}=\frac{F_{1} x_{1}+F_{2} x_{2}+F_{3} x_{3}+\ldots}{F_{1}+F_{2}+F_{3}+\ldots}, \bar{y}=\frac{F_{1} y_{1}+F_{2} y_{2}+F_{3} y_{3}+\ldots}{F_{1}+F_{2}+F_{3}+\ldots}$,
which we will abbreviate to

$$
\bar{x}=\frac{\Sigma F x}{\Sigma F} \text { and } \bar{y}=\frac{\Sigma F y}{\Sigma F} .
$$

Note particularly that the above operations are wholly independent of the direction of the parallel forces, and the position of the point (\bar{x}, \bar{y}) would remain unchanged even if the direction of the forces were altered.

Exerctise 85. The legs of a right triangle are 3 'and 4 feet long; a force of one pound acts at the right angle, a negative force of 2 pounds at the greater acute angle, and a force of 3 pounds at the smaller, all forces being parallel. Find the centre of the forces.

Exercise 86. Four forces of 2,3 , I , and -4 pounds act perpendicularly to the plane $x y$ at $(\mathrm{I},-\mathrm{I}),(\mathrm{O}, 4),(-\mathrm{I}, 3)$, and $(\mathrm{I}, 2)$ respectively. Find the resultant and one point on its line of action.

It can be shown that the attraction which the earth exercises on a particle is directed toward the centre of the earth.

In Fig. 65 let O represent the centre of the earth, and P_{1} and P_{2} two particles near its surface; then the arrows
W_{1} and W_{2} would represent the forces of attraction. If instead of the particles P_{1} and P_{2} we consider a body

Fig. 65 $A B$, then each particle of the body is acted on by a force as represented. These forces are certainly not parallel, but bodies such as we ordinarily deal with in mechanics are very small in comparison to the earth, under which circumstances the lines of action of the weights of the particles are very nearly parallel and for practical purposes can be assumed perfectly parallel.

Under these conditions the centre of the parallel forces representing the weights of the particles of a body is called its centre of gravity, or centroid.

As this point is a point in the line of action of the resultant weight, it follows that a force equal and opposite to this resultant acting through the centroid will support or balance the body in any position.

To find the position of the centroid we may use the formulæ above derived for parallel forces, if we remember that the forces $F_{1}, F_{2}, F_{3}, \ldots$ under consideration are now the weights $W_{1}, W_{2}, W_{3}, \ldots$ Thus the coördinates of the centroid are

$$
\bar{x}=\frac{\Sigma W x}{\Sigma W} \text { and } \bar{y}=\frac{\Sigma W y}{\Sigma W} .
$$

Example.-Find the centre of gravity of three particles each weighing W pounds placed upon the circum-
ference of a circle, radius r, so that the first and third are 90° from the second.

Solution.-Draw diagram illustrating problem (Fig. 66). Assume two rectangular axes. Then the position of the C. of G. is found as follows:

$$
\begin{aligned}
& \bar{x}=\frac{\Sigma W x}{\Sigma W}=\frac{W(r)+W(0)+W(-r)}{W+W+W}, \\
& \bar{x}=0 ; \\
& \bar{y}=\frac{\Sigma W y}{\Sigma W}=\frac{W(0)+W(r)+W(0)}{W+W+W}, \\
& \bar{y}=\frac{r}{3} .
\end{aligned}
$$

\therefore the C. of G. is really at C, Fig. 66.

Example.-Find the centroid of a circular plate or lamina, radius r inches, in which a circular hole tangent to the circumference and of radius $\frac{r}{2}$ has been drilled (Fig. 67).

Solution.-In this case consider by reason of symmetry that the C. of G. of the whole plate is at its centre, at which point its weight may be considered as concentrated. Similarly for the hole, with the exception that the weight is taken with the negative sign, signifying that this weight has been removed from the whole plate.

Assume the density of the plate to be w pounds per square inch; then the weight of the whole disc is $\pi r^{2} w$, and of the removed portion $-\pi_{4}^{r^{2}}$.

$$
\therefore \bar{x}=\frac{\Sigma W x}{\Sigma W}=\frac{\left(\pi r^{2} w\right)(r)+\left(-r^{-2}-w\right)\left(\frac{3 r}{2}\right)}{\pi r^{2} w+\left(-r^{2}-w\right)}=\frac{r-\frac{3 r}{8}}{\mathrm{I}-\frac{1}{4}}=\frac{5 r}{6} \mathrm{in} .
$$

and

$$
\bar{y}=\frac{\Sigma W y}{\Sigma W}=\frac{\left(\pi r^{2} w\right)(0)+\left(-r^{2}-w\right)(0)}{\left(\pi r^{2} w\right)+\left(-\pi \frac{r^{2}}{4} w\right)}=0,
$$

which places the centroid at C, Fig. 67 .
Exercise 87. Weights of $\mathrm{I}, 2$, and 3 ounces are placed at the vertices of an equilateral triangle whose sides are 6 inches long. Find the distance of their C. of G. from the vertices.

Exercise 88. A common form of a cross-section of a reservoir wall or embankment wall is a trapezoid

Fig. 68 whose top and bottom sides are parallel (Fig. 68). If the top side equals 4 feet, bottom side 8 feet, and height 9 feet, find the centre of gravity of the section with reference to the left and lower sides. (Divide the figure into a rectangle and a triangle, or into two triangles. C. of G. of rectangle is at intersection of diagonals and of triangle at intersection of medians.)

Exercise 89. A lamina has the form of a square with an isosceles triangle attached to one side. The side of the square is a, the height of the triangle is h. Find the position of the centre of gravity of the figure, and determine the value of h, if the C. of G. lies in the base of the triangle.

Exercise 90. Where must a circular hole of one foot radius be punched out of a circular disc of 3 foot radius, so that the centre of gravity of the remainder may be 2 inches from the centre of the disc?

Exercise 91. A circular disc, 8 inches in diameter, has a hole 2 inches in diameter punched out of it; the centre of the hole is 3 inches from the circumference of the disc. Find the C. of G. of the remaining portion.

Exercise 92. Find the centroids of the plates shown in Fig. 69.

Fig. 69

Section X

SUMMARY OF THE METHODS OF STATICS

As may be observed from the preceding sections, we may divide the methods employed in statics into two large classes, based upon the treatment of forces acting-
I. At a single point.
II. On a rigid body.

If the forces acting at a single point are only three in number, the "Triangle of Forces" may be used advantageously.

If more than three forces act at a single point, we may best proceed by putting

$$
\begin{aligned}
& \Sigma(X \text {-components of the forces })=0 \\
& \Sigma(Y \text {-components of the forces })=0 .
\end{aligned}
$$

and
If the forces considered are applied to a rigid body, then they will be in equilibrium if

$$
\begin{aligned}
& \Sigma(X \text {-components of the forces })=0, \\
& \Sigma(Y \text {-components of the forces })=0,
\end{aligned}
$$

and $\quad \Sigma($ Moments about any point $)=\Sigma(Y x-X y)=0$.
In dealing with rigid bodies the weight of the body considered must always be assumed as concentrated at the centre of gravity, or centroid, of the body.

The method of finding the centroid as developed in Section IX, although universally true, can be applied only to a system of concrete particles or to a system of bodies the positions of whose centroids are known until the student has familiarized himself with the methods of the calculus.

It is not always necessary, in dealing with the equlibrium of the forces acting on a rigid body, to write out all the equations for equilibrium as explained in Section VIII. It lies with the ingenuity of the student to select that one of the equations $\Sigma X=0, \Sigma Y=0, \Sigma$ (Moment) $=0$ which will involve only the one unknown force sought. This is illustrated in the following

Example.-A straight rod io feet long, when unweighted, balances about a point 4 feet from one end;
but when loaded with 20 pounds at this end and 4 pounds at the other it balances about a point 3 feet from the end. Find the weight of the rod.

Solution.-Draw two diagrams representing the conditions of the problem; and also a diagram showing all the forces acting on the rod (Fig. 70).

From the first statement, and from the definition of the centroid, we can say that the centroid of the rod is 4 feet from the lefthand end, and that the weight W may be assumed there concentrated.

For the solution of

Fig. 70 this example it will be most convenient to write the equation for the moments about the point of support when loaded, for the reaction of the support (an unknown force) will then not enter our equation of moments.

Thus $\quad \Sigma(M)=(20)(3)-(W)(\mathrm{r})-(4)(7)=0$;
$\therefore W=32$ pounds.
If the reaction (R) of the support were required, the moments should have been taken about the centroid, as then the unknown weight would not have entered
our equation. Thus

$$
\begin{aligned}
\Sigma(M)= & (20)(4)-R(\mathrm{x})-(4)(6)=0 ; \\
& \therefore R=56 \text { pounds. }
\end{aligned}
$$

If the weight were known and the reaction of tl.e support were required,

$$
\Sigma Y=-20+R-3^{2}-4=0
$$

would give the result

$$
R=56 \text { pounds. }
$$

Solve each of the following exercises by the use of a single equation.

Exercise 93. A weightless rod ten feet long is supported at its centre. 100 pounds is hung at one end and 200 pounds 3 feet from this end. Find the pressure on the support if enough force is applied at the other end to hold the rod in equilibrium.

Exercise 94. A heavy rod 5 feet long has a weight of 200 pounds attached to one end and is supported 2 feet from that end. What force must be applied at the other end 10 produce a pressure of 150 pounds on the support?

Exerctse 95.-A rod weighing 25 pounds and loaded at each end with 200 pounds is supported so as to be in equilib. rium. If the unloaded rod balances on a knife-edge placed I foot from one end and is 6 feet long, find the pressure on the support.

Exercise 96. A man carries a load of 40 pounds attached to the end of a stick resting on his shoulder. If the man exerts a force of 20 pounds at the other end of the stick, what is the pressure on his shoulder
(a) if the stick is horizontal?
(b) if the forward end of the stick dips 30° ?

CHAPTER III

APPLICATIONS OF THE PRINCIPLES OF STATICS TO THE SIMPLE MACHINES

Section XI

the lever and the wheel and axle

The principles of statics as discussed in Chapters I and II will now be applied to what are usually termed simple machines.

Any contrivance for making a force applied to a body at a given point and in a given direction available at some other point or in some other direction is called a machine.

The machines considered will all be supposed in equilibrium under the applied force, the available force, and the reactions of the supports of the machine. If motion is desired, the applied force must be slightly increased.

The ratio of the available force to the applied force is called the mechanical advantage of the machine.

The simple machines usually include the lever, the wheel and axle, the pulley, the inclined plane, the wedge, and the screw.

In the solution of problems involving simple machines no special formulæ will be deduced or required; each case is to be analyzed, all the forces acting are to be
shown, and the required forces calculated in terms of the known forces and the dimensions of the machines by the direct application of the principles of equilibrium already studied.

The Lever

The lever is a rod or bar, either straight or curved, supported at one point. This point is called the fulcrum.

Example.-A straight rod is loaded so that its centroid
 is one third of its length from one end. When weights of
105 and io pounds are supported from the ends, the rod balances about the middle point. Find the weight of the rod.
Solution.-(1) Draw a diagram illustrating the problem (Fig. 7r).
(2) Draw a sketch showing all forces acting on the rod (Fig. 72); these include the reaction of the fulcrum and the weight.

Assume the origin of moments so as to exclude from the moment equation ($\Sigma M=0$) the

Fig. 72 reaction R, which is not required. Then

$$
\begin{gathered}
\Sigma M=5\left(\frac{l}{2}\right)+W\left(\frac{l}{6}\right)-\mathrm{IO}\left(\frac{l}{2}\right)=0 ; \\
\therefore W=15 \text { pounds. }
\end{gathered}
$$

Exercise 97. A lever is to be cut from a bar weighing 3 pounds per foot. What must be its length that it may balance about a point 2 feet from one end, when weighted at this end with 50 pounds?

Exercise 98. A straight lever 6 feet long weighs io pounds, and its centre of gravity is 4 feet from one end. What weight at this end will support 20 pounds at the other when the lever is supported at one foot from the latter, and what is the pressure on the fulcrum?

Exercise 99. A lever is supported at its centroid, which is nearer to one end than the other. A weight P at the end of the shorter arm is balanced by 2 pounds at the end of the longer; and the same weight P at the longer arm is balanced by 18 pounds at the shorter. Find P.

Exercise 100. In a pair of nut-crackers the nut is placed one inch from the hinge; the hand is applied at a distance of 6 inches from the hinge. How much pressure must be applied by the hand if the nut requires a pressure of 20 pounds to break it, and what will be the force acting on the hinge?

Exercise ioi. The oar of a boat is rol $\frac{1}{2}$ feet long; the rowlock is $2 \frac{1}{2}$ feet from the end. A man applies a force of 70 pounds at 2 feet from the rowlock; the average pressure of the water is exerted at 6 inches from the other end of the oar. Find the force urging the boat forward, and the total pressure of the water on the blade of the oar.

The balance (Fig. 73) in its simplest form is a lever which turns very freely about a fulcrum F. It is used for comparing the weights of two bodies. A balance is true if the beam is horizontal when-

FIG. 73 ever equal masses are placed in the scale-pans $P P^{\prime}$.

Exercise io2. Find the condition that a balance may be true.

Exercise io3. A false balance rests with the beam horizontal when unloaded, but the arms are not of equal lengths. A weight W when hung at the end of the shorter arm, b, balances a weight P, and when hung at the end of the longer arm, a, it balances a third weight, Q. Find the correct weight of W.

Can you suggest another way of ascertaining correctly the weight of W ?

Exercise 104. The arms of a false balance are in the ratio of 20 to 2 I. What will be the loss to a tradesman who places articles to be weighed at the end of the shorter arm if he is asked for 4 pounds of goods priced at $\$$ I. 50 per pound?

The Common, or Roman, Steelyard (Fig. 74) consists of a lever support-

Fig. 74 ed on knife-edges at D. The object to be weighed is placed at W, and the distance of Q from the fulcrum is adjusted until the lever is horizontal. The centroid, C, of the lever and scale-pan does not usually coincide with the point of suspension D.

Example.-To graduate the steelyard.
Assume the weight of the lever to be w. With no load at W adjust Q until the lever is lorizontal; then $x=a$.

Thus

$$
\Sigma(M)=w y-Q a=0 .
$$

Now assume a load W in the pan; then

$$
\begin{aligned}
& \Sigma(M)=W d+w y-Q x=0 ; \\
\therefore W d & =Q x-w y=Q x-Q a .
\end{aligned}
$$

In this equation d, Q, and a are known quantities to be determined by experiment; the variable quantities are W and x.

Assume

$$
\begin{aligned}
d & =3 \text { inches } \\
Q & =6 \text { pounds, } \\
a & =2 \text { inches; }
\end{aligned}
$$

then

$$
\begin{aligned}
3 W & =6 x-12 \\
W & =2 x-4
\end{aligned}
$$

This is the equation of the straight line plotted in Fig. 75. Assuming any value of W we obtain a certain value of x.

Fig. 75
If $W=0$, then $x=2$, so that when the steelyard is unloaded Q must be placed 2 inches from D.

If $W=1$, then $x=5 / 2$ inches. If $W=2$, then $x=3$ inches, etc.

The zero mark would then be placed at 2 inches to the right of D, the one-pound mark $\mathrm{i} / 2$ inch farther to tre right, the two-pound mark $1 / 2$ inch still farther, etc.

If now, instead of measuring x from D, x be measured from E, the zero mark, the equation $W=2 x-4$ would have to be transformed to a new set of axes W^{\prime}, x^{\prime} (Fig. 75), so that $W=W^{\prime}$ and $x=x^{\prime}+2$; whence

$$
W^{\prime}=2\left(x^{\prime}+2\right)-4, \text { or } \quad W^{\prime}=2 x^{\prime}
$$

If now $W=W^{\prime}=0$, then $x^{\prime}=0$;

$$
\begin{array}{lll}
W=\mathrm{I}, & \text { " } & x^{\prime}=\mathrm{I} / 2 \\
W=2, & \text { " } & x^{\prime}=\mathrm{I}, \text { etc. }
\end{array}
$$

If, in the equation $W^{\prime}=2 x^{\prime}, x^{\prime}$ is given a minus value, that is, is measured to the left of the zero mark, the value $W^{\prime}=W$ becomes minus (Fig. 75).
The physical interpretation of this is that instead of a weight an upward push must be supplied at W to produce equilibrium.
Exercise io5. In a common steelyard the pan is supported 3 inches to one side of the fulcrum, and the center of gravity is I inch to the other side. The weight of the lever is 3 pounds, that of the movable constant weight is 2 pounds. What is the smallest load that can be weighed?

The Danish Steelyard (Fig. 76) consists of a bar

Fig. 76
terminating in a ball. The load is placed at W, and the fulcrum F is moved until equilibrium is established.

Exercise io6. Graduate a Danish steelyard, assuming the distance from the load to the centroid to be 12 inches and the weight of bar and scale-pan 20 pounds.

The Wheel and Axle

consists of a whecl or drum of considerable diameter to which is rigidly attached a drum or axle of smaller diameter. Both drums turn freely upon the same axis (Fig. 77).

A rope is coiled around each drum, one clockwise, and the other counter-clockwise.

The forces are applied to these ropes. An end view

Fig. 77 of this machine is shown in Fig. 78, from which it

Fig. 78 may be seen that the wheel and axle is simply a lever with fulcrum F at the axis.

The wheel and axle may be called a continuous lever; for, if motion results, new radii take the place of the ones previously in use and the machine operates as before.

Exercise io7. In a wheel and axle the diameter of the wheel is io feet and the radius of the axle is 18 inches. A force of 100 pounds is applied to the rope coiled about the axle. Find the available force at the end of the rope coiled about the wheel if this rope leaves on a horizontal tangent. Find, also, the mechanical advantage. What pressure do the bearings sustain?

Exercise io8. In a wheel and axle the radius of the wheel is 3 feet. The axle is of square section, the side of the square
being 6 inches long. Find (a) the greatest and (b) the least vertical power that must be exerted to slowly lift a weight of 25^{2} pounds attached to the rope coiled around the wheel. If the wheel and axle weighs 150 pounds, what is the pressure on the bearings ?

Expercise iog. The circumference of a wheel is 60 inches, the diameter of the axle is 5 inches. What force must be applied to the circumference of the axle to support 100 pounds at the circumference of the wheel?

Section XII

THE PULLEY

The pulley is a small wheel with a groove cut in its outer edge. The pulley can turn on an axis through its centre; the ends of this axis are carried by a block within which the pulley turns. If the block is so fastened as

Fig. 79 to be immovable, the pulley is said to be "fixed"; otherwise the pulley is designated as "movable."

Fig. 79 shows a fixed pulley; the applied force is F pounds, the available force is W pounds.

Example.-Calculate F and the reaction of the staple supporting the block.
Solution.-Fig. 80 shows the forces acting upon the pulley. R is the force transmitted by the block from the staple to the axis of the pulley.

Since three forces acting in equilibrium upon a rigid body (pulley) have their lines of action meeting in a point (page 60), Fig. 8I may be used to represent the forces.

Using C, Fig. 8o, as the origin of moments, we have

$$
\Sigma M=F r-W r=0 ; \quad \therefore F=W
$$

In Fig. 8r, assuming the x and y axes as shown,

$$
\begin{gathered}
\Sigma Y=R-W \cos \theta-W \cos \theta=0 \\
\therefore R={ }_{2} W \cos \theta
\end{gathered}
$$

as, by Geometry,

$$
\angle m O C=\angle n O C .
$$

Fig. 80

Fig. 8I

Exercise ilo. Find the force necessary to sustain a weight of 100 pounds by means of a fixed pulley; find also the magnitude and direction of the force on the staple to which the pulley is fastened, if the applied force makes an angle of (a) 0°, (b) $30^{\circ},(c) 90^{\circ},(d) 150^{\circ}$ with the vertical.

From the above it follows that a fixed pulley has a mechanical advantage of unity (it does not increase the available over the applied force): it simply changes the direction of the applied force.

Exercise ifi. Design a system of fixed pulleys by means of which a horse walking on horizontal ground may raise a bale of hay weighing 200 pounds from the ground to a ver-
tical height of 20 feet. Show by diagrams all the forces acting on the various pulleys.

In Fig. 82 a movable pulley is shown.
Example. - Assuming the pulley, Fig. 82, to weigh w pounds, find the force F necessary to sustain the weight W.

Fig. 82

Fig. 83

Fig. 84

Solution.-Fig. 83 shows all forces acting on the pulley, T representing the tension in the rope.

Taking moments about C,

$$
\Sigma M=-F r+T r=0 ; \quad \therefore F=T .
$$

From Fig. 84,

$$
\begin{gathered}
\Sigma Y=F \cos \theta+F \cos \theta-W-w=0 ; \\
\therefore F=\frac{W+w}{2 \cos \theta} .
\end{gathered}
$$

Exercise il2. Find the force necessary to sustain a weight of 100 pounds by means of a single movable pulley; also, find direction and magnitude of the force acting on the staple supporting one end of the rope if the force makes an angle of (a) 90°, (b) 35°, (c) \circ° with the horizon.

System of Pulleys

Various combinations of pulleys are in use. For convenience we shall designate three important systems as the first, second, and third; these systems are illustrated in Figs. 85, 86, and 87, respectively.

In finding the various forces acting in a system of pulleys, it should be remembered that the tension in any one string is the same throughout its length, and that each portion of the system may be considered in equilibrium by itself.

Example.-Find the force necessary to sustain a weight W by means of the third system if one movable pulley (weighing w pounds) is used. Also find the pull on the staple if the fixed pulley weigis w_{1} pounds.

Solution.-The machine is shown in Fig. 88.
Consider first the equilibrium of the movable pulley, Fig. 89, where t, t_{1} represent the tensions in the several strings.

$$
\Sigma Y=t_{1}-F-w-F=0 ; \quad \therefore t_{1}={ }_{2} F+w .
$$

Fig. 88

Fig. 89

Fig. 90

Fig. ${ }^{1}$

The equilibrium of the weight gives (Fig. 90)

$$
\Sigma Y=-W+t_{1}+t=0 ;
$$

$$
\therefore W=t+t_{1}=F+{ }_{2} F+w, \quad \text { and } \quad F=\frac{W-w}{3} .
$$

Consider now the equilibrium of the fixed pulley, Fig. 91.

$$
\begin{gathered}
\Sigma Y=R-t_{1}-w_{1}-t_{1}=0 ; \therefore R=2 t_{1}+w_{1}, \\
R=4 F+2 w+w_{1} \\
\\
=\frac{4 W-4 w}{3}+2 w+w_{1} \\
\\
=\frac{4 W+2 w+3 w_{1}}{3} .
\end{gathered}
$$

Exerctise if3. What force is necessary to sustain a weight of 1000 pounds by means of the first system of pulleys, using two movable pulleys and regarding them as weightless? What is the pull upon each point of support?

Exercise 114. Same as Exercise 113, considering each pulley to weigh 20 pounds.

Exercise i15. What weight will a force of io pounds applied to the first system, containing five weightless pulleys, support?

Exercise il6. A force of 20 pounds applied to the second system, containing two pulleys in the movable block with the rope fastened to the fixed block, will sustain what weight? What is the pull on the point of support?

Exercise 1r7. Same as Exercise ir6, but having the rope fastened to the movable block.

Exercise ir8. A system of the third class has three weightless movable pulleys. What weight will a force of 10 pounds sustain, and what is the tension in the staple?

Exercise 1rg. Same as Exercise ir8, if each pulley weighs 2 pounds.

Exercise 120. In the system illustrated in Fig. 92 find the force, necessary to sustain 100 pounds, and the pull on the staples, if each

Fig. 92 pulley weighs 4 pounds.

Section XIII

THE INCLINED PLANE AND THE WEDGE

Any plane inclined to the horizon is an inclined plane.

In solving problems involving inclined planes, it is simply necessary to consider the equilibrium of the weight, considered as a particle, upon the plane. Care should be taken not to neglect the normal reaction of the plane, and, if friction is involved, the friction force.

The inclination of a plane is usually denoted by the angle it makes with the horizon. When referring to
roads or railways the inclination is generally expressed as the grade of the incline, which means the ratio of the height to the length. Thus on a "five per cent grade" a rise of 5 feet would be obtained on walking 100 feet up the incline.

Less frequently the term pitch is used to denote the ratio of the height to the base.

Exercise i21. What force acting parallel to the plane is needed to support two tons on a smooth incline, if the grade is 8 per cent?
Exercise 122. Same as Exercise 121, if the coefficient of friction is 0.3 .

Exercise 123. The pitch of a plane is 0.25 , and the coefficient of friction between a certain body and the plane is 0.35 . Will the body, if placed on the plane, slide down or remain at rest? What will be the friction force exerted?

Exercise 124. A weight rests on a smooth inclined plane. Show that the least force which will keep it in equilibrium must act along the plane. (Assume a force acting at an angle θ with the plane and show that θ is zero for a minimum force.)
Exercise 125. Two unequal weights W_{1} and W_{2} on a rough inclined plane are connected by a string which passes over a smooth pulley in the plane. Find the greatest inclination of the plane consistent with equilibrium, in terms of W_{1}, W_{2}, and the coefficients of friction μ_{1} and μ_{2}.
Exercise i26. Two rough bodies W_{1} and W_{2} rest upon an inclined plane and are connected by a string parallel to the plane. If the coefficient of friction is not the same for both, determine the greatest inclination and the tension of the string, consistent with equilibrium, in terms of W_{1}, W_{2}, and the coefficients of friction μ_{1} and μ_{2}.

The Wedge

This machine consists of a double inclined plane made of some hard material, such as iron or steel. It is used for splitting wood, or overcoming great resistances over short distances. In Fig. 93, $A B C$ represents a wedge. The applied

force, F, acts normally to $B C$; the available force will be a force equal and opposite to R, normal to $A B$.

Example.-Assuming the angle shown in Fig. 93, and all surfaces to be frictionless, find the relation existing between R and F.

Solution.-Fig. 94 shows all forces acting on the wedge, N being the normal resultant of the reactions of the plane $M N$ on $A C$.

Fig. 94

Fic. 95

Fig. 96

Three forces to be in cquilibrium must always act through one point. Therefore Fig. 95 truly represents the forces, and by the principle of the triangle of forces Fig. 96 is obtained.

From which we have

$$
\frac{F}{K}=\sin \alpha,
$$

$$
F=R \sin \alpha
$$

Exercise 127. In the wedge shown in Fig. 97 find the relation between F and P in terms of the angles α, β, and θ. All surfaces to be considered smooth, and $G G$ being guides preventing lateral motion of the rod transmitting the force P.

Fig. 97

Hint.-Find a force R normal to $A B$ balancing F and then consider the rod as a free body with a force equal and opposite to R acting upon it together with the reactions of the guides, etc.

Exercise 128. A wedge in the form of a right triangle, whose sides are 5,4 , and 3 , is driven by a horizontal force of 300 pounds, applied normally to side 3 , along a horizontal plane. What weight, supported so as to prevent its moving horizontally, may be lifted if applied to the side 5 , friction neglected?

Exercise 129. In Fig. 97, assuming $\alpha=45^{\circ}, \theta=30^{\circ}, \beta=120^{\circ}$, and $F=500$ pounds, find P.

Action of the Wedge, including Friction

In Fig. 98 let $A B C D$ be the wedge driven by a force P along the plane $M N, H E$ a block sliding upon $A B$, and $G G$ a fixed guide preventing the horizontal motion of $H E$.

Let θ be the inclination of $A B$, and μ, μ_{1}, μ_{2} the coefficients of friction at the surfaces $D C, A B$, and $G G$, respectively.

Fig. 98

The problem consists in finding the relation between P and Q, assuming the wedge and block $H E$ as weightless.

In Figs. 99 and 100 are shown the wedge and block respectively, with all forces acting on the same.

From Fig. 99,

$$
\begin{align*}
& \Sigma X=P-\mu R-N_{1} \sin \theta-\mu_{1} N_{1} \cos \theta=0, \tag{I}\\
& \Sigma Y=R-N_{1} \cos \theta+\mu_{1} N_{1} \sin \theta=0 . . \tag{2}
\end{align*}
$$

Fig. 99

Fig. 100

From Fig. 100,

$$
\begin{align*}
& \Sigma X=N_{1} \sin \theta+\mu_{1} N_{1} \cos \theta-S=0, \tag{3}\\
& \Sigma Y=N_{1} \cos \theta-\mu_{1} N_{1} \sin \theta-Q-\mu_{2} S=0 . \tag{4}
\end{align*}
$$

From (1) and (2), by elimination of R,

$$
P=\left[\left(\mathrm{I}-\mu \mu_{1}\right) \sin \theta+\left(\mu+\mu_{1}\right) \cos \theta\right] N_{1} .
$$

From (3) and (4), by elimination of S,
$Q=\left[\left(1-\mu_{1} \mu_{2}\right) \cos \theta-\left(\mu_{1}+\mu_{2}\right) \sin \theta\right] N_{1} ;$
$\therefore \frac{P}{Q}=\frac{\left(\mathrm{I}-\mu \mu_{1}\right) \sin \theta+\left(\mu+\mu_{1}\right) \cos \theta}{\left(\mathrm{I}-\mu_{1} \mu_{2}\right) \cos \theta-\left(\mu_{1}+\mu_{2}\right) \sin \theta}$,
which is the required solution.

If the coefficients of friction are equal, or $\mu=\mu_{1}=\mu_{2}=$ $\tan \alpha$, where α is the angle of friction (see page 34),

$$
\begin{aligned}
\frac{P}{Q} & =\frac{\left(\mathrm{I}-\mu^{2}\right) \sin \theta+2 \mu \cos \theta}{\left(\mathrm{I}-\mu^{2}\right) \cos \theta-2 \mu \sin \theta}=\frac{\frac{\sin \theta}{\cos \theta}+\frac{2 \mu}{\mathrm{I}-\mu^{2}}}{\mathrm{I}-\left(\frac{2 \mu}{\mathrm{I}-\mu^{2}}\right) \frac{\sin \theta}{\cos \theta}} \\
& =\frac{\tan \theta+\tan 2 \alpha}{\mathrm{I}-\tan 2 \alpha \tan \theta}=\tan (\theta+2 \alpha),
\end{aligned}
$$

by the trigonometric relations

$$
\begin{aligned}
\tan 2 x & =\frac{2 \tan x}{1-\tan ^{2} x}, \\
\tan (x+y) & =\frac{\tan x+\tan y}{1-\tan x \tan y} .
\end{aligned}
$$

and

Exercise 130. Find the relation of P to Q in the machine shown in Fig. 98, if Q is applied normally to $A B$ by means of a block restrained from moving parallel to $A B$.

Fig. ior
Exercise ini. Find P, if $Q=1000$ pounds, and the coefficient of friction $\mu=0.2$, and $\mu_{1}=0.4$, from the wedge shown in Fig. roI, where $\triangle A B C$ is isosceles and $\angle A B C=60^{\circ}$.

Section XIV

MISCELLANEOUS MACHINES

The Bent-lever Balance.-This balance is shown in Fig. 102, where $A B C$ is the bent lever turning about a pivot at $B . \quad D$ is the index which points to some division on the graduated arc $M D N$. C is the centroid of the lever CBA.

Exercise 132. Find the relation existing between ϕ and W, if W is the load in the pan and

Fig. 102 ϕ is the angle through which $B C$ is displaced from its position, when $W=0$, by the load W. Assume as constants of the balance $B C=a, B A=b, w=$ weight of pan, $W_{1}=$ weight of lever $C B A$, and that when $W=0$ the end A is on a horizontal through B while $B C$ makes an angle β to the vertical.

Exercise 133. Find the relation between F and W in the combination of levers shown in Fig. 103.

Fig. 103

Fig. 104

Exercise 134. Find the weight, W, that can be sustained by a force of 100 pounds and the pull on each point of support in the combination of pulleys shown in Fig. 104, if the
movable pulleys weigh 5 pounds each and the fixed pulleys 3 pounds each.

The Differential Wheel and Axle.-This machine is shown in Fig. 105. It is similar to the wheel and axle, but instead of one axle it has two of different diameters with the same rope coiled in opposite directions around them. In the loop of this rope hangs a single movable pulley to which the weight is attached.

An end view of the machine is shown in Fig. 106, and the forces acting on the separate parts in Figs. 107 and 108, where T represents the tension in the rope.

Taking moments about C, Fig. 107, we have

$$
\Sigma M=P a+T r-T R=0 .
$$

From Fig. 108,

$$
\Sigma Y={ }_{2} T-W=0 ; \quad \therefore T=\frac{W}{2} .
$$

Thus,

$$
\begin{aligned}
P a & =T(R-r)=\frac{W}{2}(R-r), \\
P & =\frac{W(R-r)}{2 a} .
\end{aligned}
$$

From this equation it should be noted that the nearer $r=R$ the smaller does P become until $R=r$ when $P=0$.

Exercise 135. In a differential wheel and axle the radius of the wheel is 3 feet, and the radii of the axles 20 inches and i8 inches respectively; find the weight sustained, and the pressure on the bearings, if applied force is 200 pounds.

A form of Platform Scales is shown in Fig. Iog. The levers are so arranged that x pounds at A balance the

Fig. 109
same load W wherever it may be put on the platform. This result is secured by making the horizontal arms $E M$ and $N H$ equal, and also $E F$ equal to $G H$.

In this machine there are three fulcrums, at B, E, and H, while the platform rests on the levers $E F$ and $D H$ at M and N respectively.

Exercise 136. Assume the distances (Fig. 109) as follows: $E F=G H=10 \mathrm{ft}$., $E M=N H=2 \mathrm{ft}$., $H D=25 \mathrm{ft}$., $B C=1$ inch, $A B=30$ inches. Find x, if $W=3$ tons and is placed (a) at the centre of the platform, (b) one foot from the left edge of the platform.

The combination of levers shown in Fig. ino is sometimes called a knee. This machine can be used to advantage where very great pressure is required to act through very small space only, as in coining money, in the printing-press, etc.

At A and D are fixed pivots, and the levers $A B$ and $D C$ are joined by pins to $B C$ at B and C.

As $B C$ transmits force only in the direction $B C$, the forces acting upon the levers $A B$ and $D C$ can be represented as in Fig. im.

Exercise 137. In Fig. ino, assuming $\angle C A B=\angle B C A=$ $30^{\circ}, A H=10$ inches, $A C=3$ feet, $D C=2$ feet, and $D K=1 \frac{1}{2}$

Fig. 110

Fig. III
feet, find pressure at K produced by a horizontal force of roo pounds acting at H.

Exercise i38. Draw diagrams showing the forces acting on the fixed points A and D and on the bar $B C$.

Exercise i39. Calculate the direction and magnitude of the forces acting at A and D due to the force given in Exercise 137.

GRaphical Statics

CHAPTER IV

GRAPHICAL ARITHMETIC

Section XV

SUMMATION, DIVISION, AND MULTIPLICATION

The theory of statics and the solution of statical problems has already been considered. The results, however, were obtained by the use of analytical methods. Methods for solving statical problems graphically will now be developed.

As an introduction, some problems in Graphical Arithmetic will first be considered.

Numbers may be represented by the lengths of lines drawn to some scale. Thus, \qquad represents 5 .

If plus and minus numbers are to be used, some assumption as to signs becomes necessary. It will be assumed that plus numbers are to be shown by lines drawn to the right, and minus numbers by lines drawn to the
left. Thus, \longrightarrow represents +3 , and
represents -3 , the arrow-head being used to show direction.

Summation (addition and subtraction) is performed graphically by placing the arrows representing the numbers to be summed tail to head, and measuring the distance between the tail of the first and the head of the last arrow, care being taken to denote the direction of this line by the appropriate sign. Thus $3+2-4$ is represented graphically by $\xrightarrow[-4]{+3}$ and equals - , +I .

Exercise 140. Sum graphically:
(a) $5+3-2-6-3$.
(b) $-6+4-5+7-2$.
(c) $12-3-4+2-10+5$.

Exercise 141. Rewrite each sum in Exercise 140, changing the order of the terms, and then again sum graphically.

Multiplication, when performed graphically, must always be preceded by Division.

In order to perform division, it is necessary to use lines drawn vertically, and another assumption as to signs must be made. Assume lines drawn upward as plus and downward as minus.

Then $2 \div 3$ is shown graphically in Fig. il2. The dividend is placed vertically, the divisor horizontally,

Iİ. 112 always tail to head. The tail of the dividend is then joined to the head of the divisor. The quotient, although not drawn in Fig. II2, is the tangent of the angle θ, for $\tan \theta=\frac{2}{3}$. This quotient may be obtained graphically by multiplying by
one. In Fig. 113 this is done by making the multiplier a continuation of the divisor. Then x, the required quotient, is drawn vertically to meet the sloping line.

Exercise 142. Prove geometrically that in Fig. II $3 x=\frac{2}{3}$.
Example.-Find graphically $x=\frac{-4}{3}$.

Solution in Fig. il4 shows $-4 \div 3$ to obtain the dotted line, then the multiplication by unity to obtain x.

Exercise i43. Find graphically:
(a) $x=\frac{6}{3}$;
(b) $x=\frac{-4}{-2}$;
(c) $x=\frac{-2}{2}$.

Example.-Find graphically $x=\frac{(3)(-6)}{5}$.
The solution in Fig. ${ }_{11} 5$ is obtained by dividing 3 by 5 , thus obtaining the direction of the sloping line, then multiplying by (-6), as above explained, to find x.

Exercise 144. Find x graphically:
(a) $x=\frac{(-2)(4)}{3}$;
(b) $x=\frac{(2)(-4)}{3}$;
(c) $x=\frac{(2)(4)}{-3}$;
(d) $x=\frac{(-2)(-4)}{3}$;
(e) $x=\frac{(-2)(4)}{-3} ;$ (f) $x=\frac{(-2)(-4)}{-3}$.

It is important to note that the triangles used in multiplication and division need not be right-angled. Thus, $x=\frac{(5)(3)}{2}$ may be found from each of the Figs. II6 to II8.

EXERCISE 145. Give a geometric proof that $x=\frac{(5)(3)}{(2)}$ for the construction shown in each of the figures from 116 to 118 .

^IG. II6

IIG. II7

Fig. 118

Example.-Find graphically $x=\frac{(3)(2)(7)}{(-5)(-3)}$. To find x the form of the expression should first be changed to

$$
x=\frac{\left\{\frac{(3)(2)}{-5}\right\}(+7)}{(-3)}
$$

Then find $y=\frac{(3)(2)}{(-5)}$, as shown in Fig. II9, and then $x=\frac{y(7)}{-3}$ as shown in Fig. 120. Or, better, we may solve the entire problem in one diagram by combining Figs. II9 and I20, as in Fig. I2I.

From the preceding work it becomes evident that, in performing multiplication and division graphically, the problem must be put in a fractional form, in which the numerator always contains one more factor than the denominator. This may be accomplished by the introduction of unit factors. Thus, $x=\frac{(2)(3)(4)}{(5)}$ should be put in the form $x=\frac{(2)(3)(4)}{(5)(1)}$.

Fig. 119

Fig. 120

Fig. 121

Again, in $x=\frac{90}{14}$ an inconveniently large diagram would result if the form be changed to $x=\frac{(90)(\mathrm{I})}{(\mathrm{I} 4)}$. This may be avoided by factoring; thus $x=\frac{(3)(6)(5)}{(2)(7)}$.

Exercise i46. Find x graphically:
(a) $x=\frac{(3)(4)(5)}{(7)(\mathrm{II})}$;
(b) $x=\frac{(2)(3)}{(5)(7)}$;
(c) $x=\frac{35}{4}$;
(d) $x=\frac{(5)}{(3)(2)}$;
(e) $x=\frac{75}{7}$;
(f) $x=\frac{(4)(5)(6)(\mathrm{II})}{(7)(\mathrm{I} 3)}$.

Exercise i47. Find x graphically:
(a) $x=\frac{(-5)(-5)}{(-7)}$;
(b) $x=\frac{(2)(-4)(-7)}{(-3)(-5)}$;
(c) $x=\frac{-75}{-7}$;
(d) $x=\frac{(-35)(-7)}{(-9)}$.

Exercise 148. By means of cross-section paper find x, y, and z. In each case select an appropriate scale.

$$
\begin{gathered}
x=\frac{(-\mathrm{IOI})\left(-\mathrm{II}_{3}\right)(9)(59)}{(76)(78)(-3 \mathrm{I})} ; \quad y=\frac{(\mathrm{I} 3750)(-4725)(\mathrm{I} 379)}{(6375)(3957)} ; \\
z=\frac{(.087)(.0035)(.01975)}{(-.029)(.00995)} .
\end{gathered}
$$

Section XVI

COMBINED MULTIPLICATION AND SUMMATION

Consider now a problem such as $u=\frac{2 \cdot 3+4 \cdot 5+6 \cdot 7}{8}$.
It is found most convenient to change the given expression into one composed of parts similar to those already solved; thus, $u=\frac{2 \cdot 3}{8}+\frac{4 \cdot 5}{8}+\frac{6 \cdot 7}{8}$. Instead of solving each term separately and then summing the results, it

Fig. 122 is more convenient to perform all the divisions in one diagram (Fig. 122).

Here P (called the Pole) is selected anywhere at a distance 8 from the line along which 2,4 , and 6 are set off, and the rays drawn from P to the extremities of $2,4,6$. The division is then performed as in the left-hand portion of Fig. II8.

To perform the multiplication the rays in Fig. I22 could be prolonged (Fig. 123) and the distance $3,5,7$ laid down horizontally and lines x,
y, z located between their proper rays and at their proper distance from P, as in Fig. 118 .

Fig. 123
By this construction the lines x, y, z will not fall in the same straight line, and therefore their sum is not found directly. A more convenient construction is shown in Fig. 124. Here at any point, O, in a vertical line $O M$, construct a triangle similar to the one with base 2 in Fig. 123, but with altitude 3 , thus obtaining x. This is most conveniently done by drawing the sides of the triangle parallel to the corresponding rays of Fig. 122. Next construct a triangle similar to the one with base 4 , but

Fig. 124 with altitude 5 , etc. Thus we obtain x, y, z all on the
line $O M$ and following one another head to tail. Then $O M=u$ is the required result.

The diagram in Fig. 124 can appropriately be called a Summation Polygon or Diagram.

Exercise 149. Find graphically:
(a) $x=\frac{5 \cdot 3+2 \cdot 4+30}{7}$;
(b) $x=\frac{7 \cdot 8+5 \cdot 6+3 \cdot 4+1 \cdot 2}{5}$.

Exercise i50. Find x graphically:
(a) $x=\frac{2 \cdot 3+(3)(-4)+(5)(6)}{7}$;
(b) $x=\frac{(-2)(3)+(3)(-5)-(6)(-7)}{8}$.

Exercise ${ }^{5}$ 51. A horizontal weightless rod io feet long has weights of 2,3 , and 4 pounds attached at $\frac{1}{4}, \frac{1}{2}$, and $\frac{3}{4}$ of its length. Write down the value of the \bar{x} of its centroid according to the formula $\bar{x}=\frac{\Sigma W^{\prime} x}{\Sigma W}$, and find \bar{x} graphically.

Exercise 152. Same as Exercise 151, with additional weights of I and 5 pounds at the ends of the rod.

The construction just studied lends itself well to finding the centroids of plates.

Example. - Find the centroid of a

Fig. 125 quadrant of a circle, Fig. 125 .

Solution. - Consider the quadrant divided into sections of equal width as shown. Let the plate weigh w pounds per square foot and let the width of each section be a feet. Each section will have a mean altitude, as shown by the dotted lines; denote these by h_{1}, h_{2}, \ldots.
Assume each section to be a trapezoid, and assume their
centroids to be at the midpoints of their medians. Neither of these assumptions is strictly true, but by decreasing the width of the sections, and thus increasing their number, the assumptions approach nearer and nearer the truth. It follows that
the area of any section is $a h$,
" weight" " " "wah,
which weight is assumed to act at the midpoint of the median.
Placing the y-axis as shown in Fig. 125 and putting $\bar{x}=$ the abscissa of the centroid, we have

$$
\begin{aligned}
\bar{x} & =\frac{\Sigma W x}{\Sigma W}=\frac{w a h_{1}\left(\frac{a}{2}\right)+w a h_{2}\left(\frac{3 a}{2}\right)+w a h_{3}\left(\frac{5 a}{2}\right)+\ldots}{w a h_{1}+w a h_{2}+w a h_{3}+\ldots} \\
& =\frac{h_{1}\left(\frac{a}{2}\right)+h_{2}\left(\frac{3 a}{2}\right)+h_{3}\left(\frac{5 a}{2}\right)+\ldots}{h_{1}+h_{2}+h_{3}+\ldots},
\end{aligned}
$$

which is an expression precisely suiting our graphical methods.

The graphical construction for \bar{x} is shown in Fig. 126 . At (a) is shown the quadrant with the mean altitudes (the sections are not shown, as these are unnecessary for purposes of construction). At (b) the divisions are performed. Here, instead of using the h 's as indicated in the formula, half h 's are used throughout. Why does this not affect the result? At (c) we have the summation polygon, and \bar{x}, the required abscissa, is here
found. \bar{x} is then plotted as shown in (a); the centroid must lie on the dotted line.

Where is the final position of the centroid?

Fig. 126
Exercise I53. Construct a parabola whose parameter is 8 and find the centroid of a plate of this shape between the vertex and the latus rectum. Divide the plate into four sections.

Exercise 154. Same as Ex. 153, but divide the plate into 8 sections and compare the result with that of Ex. 153 .

CHAPTER V

FORCES ACTING AT A SINGLE POINT

Section XVII

COMPONENTS. RESULTANTS

We already know that the diagonal of a parallelogram constructed upon two forces as sides, correctly represents the resultant if the tails of all forces are at the one vertex of the parallelogram. Thus, in Fig. 127, if $A B$ and $A C$ represent forces acting on a particle at $A, A D$ represents their resultant. If now the arrows representing the forces $A B$ and $A C$ be drawn to a scale, i.e., each unit

Fig. 127 of their length being accurately made to represent a unit of their force, and the parallelogram be accurately drawn, then, by applying the same scale of length to $A D$, the number of units of length in $A D$ would correctly indicate the number of units of force in the resultant of $A B$ and $A C$. This is, then, a graphical method of obtaining the resultant of two forces acting at a point.

In many constructions it is inconvenient to complete the parallelogram as above, so the triangle of forces is used. This is illustrated in Fig. 128. It is here required to find the resultant of the forces represented by $A B$ and
$A C$. In a detached diagram, $a b$ is drawn $\|$ and $=$ to $A B$ and $b c \|$ and $=$ to $A C$, and the triangle then completed by the line $a c$. It will be remembered that the force $c a$ represents the force producing equilibrium with $A B$ and $A C$ and thus $a c$, acting in the opposite direc-

FIg. 128
tion to the other forces about the triangle, represents the resultant of $A B$ and $A C$ in magnitude.

This resultant is now, however, not in its proper position. A force parallel and equal to $a c$ acting at A is the resultant in both magnitude and position.

Notice the difference between the parallelogram and the triangle of forces, the first gives the complete resultant in position, magnitude, and direction, while the second gives only the magnitude and direction.

Instead of the notation employed in Fig. 128 it will be found more convenient to use the notation of Fig. I29.

Fig. 129
Here the forces are denoted by naming the letters on each side of the forces; thus, the horizontal force would be $a b$. In the triangle of forces these letters are placed at the ends of the arrow representing the force.

Exercise i55. Find graphically the resultant of

both by the parallelogram and by the triangle of forces.

Components

To find the components of a force P, Fig. I30 (a), in the direction of the lines 1 and 2 , proceed as indicated in Fig. I30 (b). Draw $p \|$ and $=$ to P, and through its ends

Fig. 130
draw lines $\|$ to 1 and 2 respectively; then $a b$ and $b c$ represent the required components of P, in magnitude and direction.

Exercise 156. Demonstrate the correctness of the above construction by means of the triangle of forces.

Exercise 157. Find the components of $P=10 \mathrm{lb}$. inclined at 45° to the horizon along lines inclined at
(a) 0° and 90°;
(b) 30° " 60°;
(c) -30° ' 120° to the horizon.

Exercise 158. Find graphically the components of a force whose magnitude, direction, and point of application are $20 \mathrm{lb} ., 210^{\circ}$, and $(2,6)$ respectively, along lines inclined at angles of 45° and 60° to the axis of X.

Resultants

If it is desired to find the resultant of more than two forces acting upon a particle, the principle of the parallelogram of forces may still be applied, provided the resultant of any two forces be

Fig. I3I found, and this resultant be then combined with another of the given forces, etc.

This is illustrated in Fig. 131, where the given forces are $O A, O B, O C$. The resultant of $O A$ and $O B$ is $O X$, and the resultant of $O X$ and $O C$ is $O Y$. Therefore the resultant of $O A, O B, O C$ is OY.
As the number of forces increases it is evident that this construction becomes more and more complicated.
In its place a construction based upon the polygon of forces is used. This is shown in Fig. 132. The forces whose resultant is required are shown in Fig. 132 (a). In

Fig. I32
the detached diagram, Fig. I32 (b), an open polygon is drawn having for its sides lines parallel and equal to the forces $a b, b c$, and $c d$ arranged tail to head. The arrow $a d$ required to close the polygon and taken in a direction around the polygon opposed to that of the given forces
represents the required resultant in magnitude and direction but not in position. A force parallel and equal to $a d$ acting at o completely represents the resultant.

Exercise 159. Find the resultant of the forces shown in Fig. I33, by means of the polygon of forces, and demonstrate the dependence of this construction upon that of the triangle of forces.
Exercise i6o. Find the resultant of the forces shown in Fig. 133 by means of the polygon of forces, and demonstrate the correctness of the construction by resolving each force into vertical and horizontal components and showing that

$$
\text { Resultant }=\sqrt{(\Sigma X)^{2}+(\Sigma Y)^{2}} .
$$

Exercise 161. Assume three sets of forces of 3,4 , and 5 forces respectively, and find the resultant of each set.
Exercise 162. Six men pull upon six cords knotted together. They exert forces

Fig. 133 of $50,60,40,100,80$, and 125 pounds and pull towards the N., N. 30° E., E. 60° S., W., NW., and S. 30° W., respectively. Find the direction in which the knot will move.

Exercise 163. If O is any point in the plane of the triangle $A B C$, and D, E, F are the midpoints of the sides of the triangle, show that the system of forces $O A, O B, O C$ is equivalent to the system $O D, O E, O F$.

Section XVIII

CONDITIONS FOR EQUILIBRIUM

For the equilibrium of forces acting on a particle it is evident that the resultant must be zero. Therefore from the above discussion of the polygon of forces it follows that if the forces acting upon a particle are known to produce equilibrium, the polygon formed of them must close.

Example.-A particle weighing 5 pounds is supported upon a rough inclined plane by forces of 3 and 2 pounds acting horizontally and vertically respectively. Find the

Fig. I34 normal reaction of the plane and the friction force, if the inclination of the plane is 30°.

Solution.-Fig. I34 illustrates the problem. To solve graphically all forces acting on the particle should be shown, as in Fig. I35. As the reaction of the plane, $d e$, and the friction force, ea, are unknown, they are represented by their lines of action only.

Fig. 135

Fig. ${ }^{3} 6$

In Fig. 136 the polygon of forces is shown. To construct this start with the known forces and then close the polygon by lines parallel to the lines of action of the unknown forces.

The arrows de and ea represent the normal reaction of the plane and the friction force respectively. If measured with the same scale as was used in plotting the known forces, their magnitudes are directly obtained. The total reaction of the plane, being defined as the sum of the normal reaction and friction, is represented by $d a$. (Why?)

In the following exercises diagrams illustrating the frames should first be drawn to scale so as to obtain the relative inclination of the members.

Exercise i64. Fig. I37 shows a derrick, $A B C$, and a chain, $D C E$, supporting a load of 10 tons. Assume $A C=25$ feet, $A B=9$ feet, $B C$ $=20$ feet, and D the midpoint of $A B$.

Find graphically the stresses in $A C$ and $B C$ if the chain is fastened at C. (This releases $D C$ of stress.)

Exercise 165. Find stresses in $A C$ and $B C$, Fig. 137, if the chain passes

Fig. 137 freely over a pin at C. (This causes a stress of 10 tons in $D C$.)

Exercise i66. Find the stress in $A B$ and $B C$ of the triangular frame, Fig. 138, if 2 tons

Fig. 138 are suspended from B.

Exercise 167. What will be the stress in $A C$, Fig. 138, if the frame is loaded as in Exercise 166?
Exercise 168. If in Fig. i38 two cables inclined to the horizon at 45° and 90° and stretched with forces of 2 and 5 tons respectively be attached to B, find the stress in $A B$ and $B C$.

Exercise 169. Find stresses in $A B$ and $B C$, Fig. 139, if the dotted line represents a rope passing without friction over B and fastened at E.

Exercise ryo. If a kite in equilibrium in the air makes an angle of 45° with a horizontal plane, and if the pressure of the air on the kite is equal to three times

Fig. I39 the weight of the kite, find the direction of the string at its point of attachment to the kite, and the magnitude of the tension in the string in terms of the weight of the kite.

Exercise ipt. A string $A B C D$ is fastened to supports at A and D which are on the same level. Two weights of io pounds and x pounds are tied to the string at B and C. If $A D$ is 30 feet and $B C$ is horizontal and $A B=B C=C D=12$ feet, find x and the tensions in $A B, B C$, and $C D$.

When considering the relation between forces acting on a body the important principle concerning the equilibrium of three forces stated on page 60 should be carefully remembered; for by it the problem can sometimes be reduced to the case considered in this section.

Exercise 172. Find the reactions at the points of support A and B when the crane, shown in Fig. 140 , is loaded at C with 4000 pounds. (The support at A consists of a collar, and at B of a footstep.)

Exercise i73. Make the rod DC (Fig. 140) a "free body" and thus find the stress in the $\operatorname{rod} E F$.

Fig. 140

Fig. 141

Exerctse 174. If in Fig. 14I the frame $A B C$ is hinged to the wall at A and rests against the wall at B, find the supporting forces at A and B.

CHAPTER VI

FORCES ACTING ON A RIGID BODY

Section XIX

RESULTANTS

The finding of the resultant of forces acting on a rigid body is next to be considered. Assume the forces shown in Fig. 142 and let their resultant be required. It will be remembered (see p. 43) that the point of applicaton of a force may be placed anywhere upon its line of action and thus the forces I and 2 may be applied at the point of intersection of their lines of action and the parallelogram completed to obtain the resultant X. X, considered as replacing I and 2 , may now be semi-

Fig. 142 lardy combined with 3 , and Y, the resultant of 1,2 , and 3 , obtained in both magnitude and position. This resultant, Y, may have its point of application anywhere along its line of action.

This use of the parallelogram of forces is cumbersome when a larger number of forces is to be dealt with. The triangle or polygon of forces is again, as in Section XVII, used to simplify the construction.
In Fig. 143 (a) the forces are shown, and in Fig. 143 (b) the forces are combined to obtain the resultant. First $a b$ and $b c$ give $a c$, then $a c$ and $c d$ give the final resultant

a l, Fig. I43 (b), in magnitude and direction but not in position.

Notice that from no portion of the work already completed can we infer at what point of the body this resultant should act.

To find the position of the resultant, return to Fig. 143 (a) and find the intersection of the lines of action $a b$ and $b c$ at O. Through this point we know that their resultant must act; therefore through O draw a line parallel to ac of Fig. I43 (b). This partial resultant is now combined with $c d$, and the intersection of their lines of action is found at P. Finally through this point the resultant of $a c$ and $c d$ (or of $a b, b c$, and $c d$), that is the force ad, must pass. The problem is thus completely solved.

Exercise 175. Find the resultant of the forces shown in Fig. 144
(a) by means of the parallelogram of forces;
(b) by means of the triangle of forces.

If it should happen that the given forces are parallel or even nearly so, it is evident that the method for finding their resultant outlined above is inapplicable, as the intersection of the lines of action of any two such forces cannot be found at all, or is inconveniently distant. It is therefore necessary to develop some modification of the preceding method.

Consider the forces $a b$, $b c, c d$, and de, shown in Fig. 145. Instead of finding the resultant of the given forces

Fig. 144 directly, introduce into the problem a force $o a$, taken entirely at random or to suit convenience, and then proceed to find the resultant of this new set of forces, as already explained on page 114 .

This is done in Figs. 145 and 146 , and $o e$ is found to be the resultant of $o a, a b, b c, c d$, and $d e$. Thus oe equals the sum of the given forces plus oa. But as oa was introduced for convenience of solution only, it should now be removed, i.e., subtracted from oe, to obtain the sum of the given forces or the required resultant. This is done by drawing the line $a e$; for, if the direction of the arrows be noted, we see that

$$
\begin{array}{r}
\quad o a+a e=o e ; \\
\therefore \quad a \varrho=o e-o a .
\end{array}
$$

This is equivalent to reversing the direction of the force $o a$ and adding it to $o e$.

Thus a force parallel and equal to $a e$, having its line of action passing through P, the intersection of the lines of action of $o a$ and $o e$, is the required resultant.

The polygon formed of the forces $a b, b c, c d, d e$, and $a e$, Fig. 146, is called the polygon of forces, or more dis-

Fig. $1+j$
Fig. 146
tinctively the magnitude polygon. It depends only upon the forces irrespective of their positions. The point o is called the pole, and the lines $o a, o b, \ldots, o e$ are rays.

The polygon formed by the lines of action of the forces $o a, o b, o c, o d$, and oe, Fig. 145, is called the funicular polygon. This is the Latin equivalent of string polygon, and it is so named because it gives the form assumed by a weightless string fastened at the points M and N and subjected to the given forces $a b, b c, \ldots, d e$.

In applying this method to a set of given forces, it will be found convenient to first letter all the forces, then draw the magnitude polygon, thus determining the mar-
nitude and the direction of the resultant, as in Fig. 146. Next, instead of assuming the force $o a$ as in the above demonstration, place the pole in any convenient position and draw the rays. Then start the funicular polygon by drawing the line of action of $o a$ anywhere in the diagram, showing the positions of the given forces, parallel to the ray oa. Through the intersection of the first and last sides of the funicular polygon draw the resultant parallel and equal to the arrow representing the resultant in the magnitude polygon.

Notice particularly the system of lettering employed and follow it closely in the exercises.

Exercise 176. Determine graphically the resultant of the following forces: ($20 \mathrm{lb} ., 45^{\circ}, \mathrm{o}, \mathrm{o}$), ($15 \mathrm{lb} ., 90^{\circ}, 13, \mathrm{o}$), (30 lb ., $60^{\circ}, 7,0$), and ($25 \mathrm{lb} ., 3^{1} 5^{\circ}, 30,0$). Each force is given by its magnitude, the direction of its line of action with reference to the X-axis, and one point on its line of action.

Exercise 177. Find the resultant of ($20 \mathrm{lb} ., 105^{\circ}, 5,0$), (25 lb., 263°, 11 , ○), (30 lb., 98°, 15 , ○), ($1 \circ \mathrm{lb} ., 80^{\circ}, 17,0$), (${ }_{5} 5 \mathrm{lb} ., 280^{\circ}, 2,0$).
(Note.-The angles in this exercise can be conveniently plotted by the use of a table of natural tangents.)

Exercise 178. Find the resultant of forces of 10, 20, 30, $40,50 \mathrm{lb}$. acting vertically upward, with successive intervals between their lines of action of $3,2,6$, and 4 feet.

Exercise 179. Same as Ex. 178, but with 10- and 30-lb. forces acting vertically downward.

Section XX

CONDITIONS FOR EQUILIBRIUM

The magnitude polygon shown in Fig. 146 is said to be "open" because, in addition to the given forces, $a b$, . . . , de, an extra force, $a e$, the resiltant, is required to
close the polygon. If the given forces placed tail to head do of themselves form a "closed" magnitude polygon, no closing line is required and the given forces have no resultant.

This, however, does not mean that the body on which these forces act is in equilibrium, for the absence of a resultant simply precludes translation.

It yet remains to be shown that no couple acts upon the body. To do this we turn to the funicular polygon. From Fig. 145 it will be noted that the funicular polygon has all but one of its vertices on the lines of action of the given forces, and this one vertex P lies on the line of action of the resultant. The polygon is said to be "open" because all of its vertices do not lie on the lines of action of the given forces. If, however, the lines of action of $a o$ and $o e$ should coincide, then the funicular polygon would be "closed," i.e., have each of its vertices upon one of the lines of action of the given forces, and the forces $a o$ and $o e$ would neutralize each other and produce equilibrium. This can only happen if the magnitude polygon is also closed. Study carefully Fig. 147.

Fig. 147
It is, however, possible that the magnitude polygon be closed, and that the first and last sides of the funicular
polygon do not coincide but are parallel. Under these conditions the funicular polygon is open and a couple, whose forces are $a o$ and $o e$, results. Study carefully Fig. 148.

Thus it is seen that for equilibrium of translation the graphical requirement is a closed magnitude polygon, and for equilibrium of rotation a closed funicular polygon is

Fig. 148
necessary. These, then, are the graphical conditions of equilibrium.

The following examples illustrate the method of procedure in the application of the above principles.

Example.-Upon a uniform beam, $A B$, io feet long, weighing 150 pounds, a force of 100 pounds acts at an angle of $3^{1} 5^{\circ}$ at a point 6 feet from A : find the reactions of the supports if the beam is horizontal, and its end A is hinged to a vertical wall while the beam rests upon a smooth knife-edge one foot from B.

Solution.-Fig. I49 (a) illustrates the problem. Fig. 149 (b) shows the beam as a "frec body." There is an
unknown vertical reaction P at C, and a reaction Q, unknown in magnitude and direction, at A.

Letter the forces, known and unknown, and start the magnitude polygon, Fig. i49 (c), using any convenient
 scale. Proceed to the line of action of $c d$, the point d being undetermined.
Assume a pole, o, and draw the rays, $a 0, b o$, and co. Now start the funicular polygon, Fig. 149 (b), at A, the only known point in the line of action of Q. This is essential, as otherwise the funicular polygon cannot be closed. Complete the funicular polygon, closing it by the line od, and through o, Fig. I49 (c), draw od parallel to od, Fig. 149 (b), and its intersection with $c d$ determines the point d.

Close the magnitude polygon by drawing $d a$. Then $c d=P=140$ pounds is the vertical reaction at C and $d a=Q=1$ Io pounds is the reaction at A in both direction and magnitude.

These are the forces which represent the actions of the knife-edge and hinge upon the beam. What forces do the wall and knife-edge have to resist?

Example.-The weightless bar, Fig. 150 (a), supported by smooth pegs at A and B and by the cord $C D$, is in equilibrium. Find the reactions of the supports.

Solution.-Fig. 150 (b).shows the bar as a "free body."

Letter the forces (known ones first), and start the magnitude polygon, Fig. 150 (c). Having carried the magnitude polygon as far as possible, start the funicular polygon at E, the intersection of the lines of action of the two lastnamed unknown forces; this, again, is essential for the closing of the funicular polygon.

Close first the funicular polygon and then the magnitude polygon by drawing $d e$ and $e a$ in Fig. r50 (c) through d and a parallel to the corresponding lines of action in Fig. $\mathrm{I}_{50}(b)$.

The reactions are found
 to be $c d=730 \mathrm{lb}$., $d e=$ 725 lb ., and $e a=200 \mathrm{lb}$.

The application of the graphical principles of equilibrium offers no difficulties with the exception of the two illustrated in

Fig. 150 the above examples. These should therefore be carefully noted.

Notice, also, as a check upon the correctness of a funicular polygon, that any two of its adjacent sides must meet upon the line of action of that force designated by the same letters as the sides after omitting the o 's. Thus the side; $o a$ and $o b$ meet on the line of action of the force $a b$, etc.

Exercise 180. Assume four forces and find a fifth wholly unknown force necessary to produce equilibrium.

Exercise 18r. Assume four non-parallel forces and the lines of action of two other forces. Find the magnitudes of these forces for equilibrium.

Note.-This system of forces requires the lines of action of all forces involved to pass through one point. This may be shown by replacing the known forces by their resultant and noting that this resultant and the two unknown forces can only be in equilibrium under the above conditions. (Why ?)
Exercise 182. Same as Exercise 181, but all forces parallel.
Exercise 183. Assume two forces and the line of action of another. Find a fourth wholly unknown force and the magnitude of the third force for equilibrium.
Exercise 184. Assume two forces and the lines of action of three other forces. Find the magnitudes of these forces for equilibrium.

Figs. I5I TO 154
Exercise 185. Find the reactions of the supports of th.e beam shown in Fig. ${ }^{5}$ 1.

Exercise 186. Find the reactions of the supports of the beam shown in Fig. ${ }^{5} 52$.

Exercise 187. Find the reactions of the abutments of the frame shown in Fig. 153.

Exercise 188. Find the reactions of the abutments of the frame shown in Fig. 154. The end A rests on frictionless rollers, and B is hinged to the foundations,

CHAPTER VII

APPLICATIONS TO STRUCTURES

Section XXI

STRESSES IN MEMBERS OF FRAMED STRUCTURES

Up to the present only the forces acting on a rigid body have been considered. These forces are called the applied forces or external forces. The external forces acting upon a body cause a strained condition of the body due to the interaction of the various parts of the body in withstanding the action of the applied forces. This interaction of the parts of the body allows a transmission of forces from one part of the body to another. The forces so transmitted are known as internal forces.

Structures are contrivances for resisting forces. They may be divided into two types, framed and non-framed. A framed structure, or frame, is one composed of a system of straight bars fastened together, at their ends only, by pins so as to allow a hinge-like motion. Since the triangle is the only geometric figure in which a change of shape is impossible without a change in the length of its sides, the triangle is necessarily the basis of the arrangement of the bars in a frame.

Non-framed structures consist of one continuous mem-
ber, or a number of members so fastened together throughout their lengths as to make one solid piece.

Only the forces acting in framed structures will be considered.

Consider the simple frame shown in Fig. 155. A load of 1000 pounds acts at the apex M, and the frame rests upon two abutments N and P.

The first step in finding the forces acting on and transmitted by the frame is to show the frame as a "free body," Fig. I56. In this figure, in order to readily refer

Fig. 155

Fig. 156
to the various members of the frame and the applied forces, designate each portion into which the plane is

Fig. 157 divided by a letter as shown. The load of 1000 pounds would then be referred to by naming the areas on each side, as $C D$; similarly the members of the frame are $E A, A D, A B$, etc.

Find now the reactions of the abutments $D E$ and $E C$ by means of the magnitude and funicular polygons as in Figs. 157 and 156. The reactions are found in Fig. 157 to be $c e$ and ed. Thus a complete knowledge of the external forces is obtained.

To find the internal forces, consider the pin 1 joining the bars $A D$ and $E A$. The forces acting on this pin are
shown in Fig. 158 (a). $D E$ is the known reaction, and $A D$ and $E A$ are the unknown forces transmitted by the members of the same name.
These forces must be in equilibrium, therefore the triangle of forces must close, Fig. ${ }_{15} 8(b)$, and $a e$ and $d a$ are the required internal forces trans-

(b) mitted by $A E$ and $A D$ respectively.

Consider now pin 2. The forces acting on it are shown in Fig. 159 (a). Here, in addition to $D C$, the given load, $A D$, is known. For, as the member $A D$ itself is in equilibrium and presses upon pin 1 in the direction $d a$, Fig. 158 (b), it must press with an equal and opposite force on pin 2.

The polygon of forces for pin 2 is shown in Fig. 159 (b).

Fig. 159

Fig. 160

This polygon shows that the member $A B$ transmits no force and is therefore useless for this particular loading of the frame.

The process begun above may be continued until as many force polygons as there are pins have been constructed. Instead, however, it is much shorter to combine all these polygons into one diagram based upon the magnitude polygon, Fig. 157, as shown in Fig. 160. The reason for this is evident if we consider that each polygon
has for its sides one or more sides already belonging to preceding polygons.

In order to facilitate the construction of the polygons of internal forces, the names of all the forces acting at each pin, always taken in one direction (clockwise) and always starting with known forces, are set down thus:

$$
\begin{aligned}
\text { For pin 1, EDAE; } & \text { pin 3, EABE; } \\
\text { pin 2, } A D C B A ; & \text { pin } 4, C E B C .
\end{aligned}
$$

Then, as in Fig. 160, draw lines parallel to the corresponding members transmitting the forces, through the proper points, until all the schemes have been completed.

Consider now very carefully the information conveyed by these polygons of internal forces (Fig. 160). If we consider the action of the member $A D$ upon pin I we need the scheme EDAE. Follow this in Fig. 160 and note that $D A$ presses pin I downward and to the left. For equilibrium it is necessary for pin I to react with an equal and opposite force, pushing member $A D$ upward and to the right. Now regard pin 2; here the scheme is $A D C B A$. This, with the assistance of Fig. 160, shows that $A D$ pushes pin 2 upward and to the right. Thus pin 2 reacts on $A D$ by pushing it downward and to the left. Thus $A D$ is pushed upward and to the right at I , and downward and to the left at 2 , by equal forces. These equal and opposite forces produce in $A D$ a stress, and in this case the stress is known as a compression, and its magnitude is given by the length $a d$, Fig. 160 . The member $A D$ must be made of sufficient strength to withstand this compression.

Exercise i89. Explain the stress in member $A E$, Fig. is6.
Exercise 190. Explain the stress in member $B C$, Fig. 156.

Exercise 191. Find the stresses in the various members of the frame shown in Fig. 155 if P is rigidly fastened to the abutment and N rests on frictionless rollers,

Fig. 161 and the load of 1000 lbs . at the apex is inclined at 45° to the horizon.

Exercise 192. Find the stresses in the members of the frame shown in Fig. 161.

Fig. 162

Fig. 163

Exercise 193. Same as Ex. 192 for Fig. 162.
Exercise 194. Same as Ex. 192 for Fig. 163.

Section XXII

THE FUNICULAR POLYGON FOR PARALLEL FORCES CONSIDERED AS A MOMENT DIAGRAM

Fig. i64 shows a horizontal bar supported at the ends and supporting the weights P and Q. The magnitude polygon is shown at the right, and the funicular polygon directly under the bar. From these polygons we derive the magnitudes of the reactions $c d$ and $d a$.

As this bar is in equilibrium the sum of the moments of all the forces acting on the bar about any point, A, must be zero. Thus, the sum of the moments of tlee forces to the left of A must be equal and opposite in sign to the sum of the moments of the forces to the right of A. At A, then, there is a tendency to bend the bar by rotating the left-hand end clockwise and the right-

Fig. 164
hand end counter-clockwise about A. The measure of this tendency to bend the beam at A is called the bending moment, or simply the moment, at A, and it is equal to the sum of the moments of the forces, either to the left or to the right of A, about A.

In Fig. 164 this moment would be

$$
M=-R_{1} x+P y .
$$

To obtain M graphically we must remember that in graphics division must always precede multiplication. From Fig. 164 (b) we see that $R_{1}=d a$ and $P=a b$ are both divided by D (see page 100). It only remains to mul-
tiply by x and y respectively. This is done in Fig. 164 (a), where $u=\frac{R_{1}}{D} x$ and $v=\frac{P}{D} y$ (see page 10I);

$$
\begin{gathered}
\therefore m=u-v=\frac{R_{1}}{D} x-\frac{P}{D} y, \\
m D=\dot{R}_{1} x-P y, \\
\therefore m D=-M .
\end{gathered}
$$

As the sign is immaterial, depending only on which side of A we consider the moment as acting, we see that

$$
m \cdot D \text { is the bending moment at } A
$$

m being a vertical distance bounded by the funicular polygon, we see that the funicular polygon can be considered as a moment diagram.

Exercise 195. Construct a diagram similar to Fig. 164 and show that (a) $n D$ is the bending moment at $B ;(b) p D$ is the bending moment at C.

In the application of the above principle care must be taken to measure the various distances in the proper units. A good rule to follow is to measure the forces and other vertical distances with the scale of force (in pounds) and all horizontal distances with the scale of space (in feet). Thus, $m, p, a b, c d$, etc. (Fig. 164) should be measured in pounds and x, y, D, etc. in feet.

Exercise ig6. Find graphically and check by calculation the bending moments at B, C, D, E, and F in the following horizontal beam: The beam, $A G$, is 30 feet long, $A B=B C=$ etc. $=5$ feet; abutments are at A and G; loads of 3000,1000 , 2000 lbs. are hung at B, C, and E respectively.
Exerctise 197. A horizontal beam $A E, 20$ feet long, is di-
vided into four equal parts by B, C, and D. The beam is supported at A and B and loaded at C, D, and E with 1000, 3000 , and 2000 lbs . respectively. Find graphically the bending moments at B, C, D, and E.

Exercise 198. Check the results of Ex. 197 analytically.
Exercise 199. A beam similar to that of Ex. 197 is supported at A and C and loaded with 3000,2000 , and 3000 lbs . at B, D, and E respectively. Find the moments at B, C, and D.

Exercise 200. A horizontal beam $A F, 25$ feet long, supports loads of 1000,500 , and 300 pounds at one end and at 10 and 25 feet from this end respectively. The supports are 5 and 15 feet from this same end. Find graphically the moments at 5 -foot intervals along the beam.

Section XXIII

GRAPHICAL METHOD FOR FINDING CENTROIDS

To find the centroid of a lamina, divide the lamina into portions the position of whose centroids are known, and consider the weights of these portions to act at their respective centroids in any convenient direction. By means of the funicular polygon find the resultant of these weights. The centroid must lie somewhere on the line of action of this resultant. Now assume the weights to act in any other direction, always through their respective centroids, and again find their resultant. The centroid must also lie upon the line of action of this resultant. The centroid is thus located at the intersection of the lines of action of these resultants.

This is illustrated in the following
Example.-Find the centroid of the plate shown in Fig. 165.

Divide the plate into rectangles. The weight of each rectangle is proportional to its area; thus the weights of the rectangles can be represented by $20 \times 6,20 \times 4,8 \times 4$ respectively.

Consider first the weights $a b, b c$, and $d c$ as acting vertically downward; their resultant is found to be ad.

Next assume the weights to act horizontally. Repre-

Fig. 165
sent them by $e f, f g$, and $g h$; their resultant is now eh. Therefore the centroid of the plate is at C, the intersection of the lines of action of the resultants.

Exerctse 20I. Find graphically the centroid of the plates shown in Fig. 69.

Exercise 202. Find graphically the centroid of the lamina described in Exercise 153.

APPENDIX

APPLICATION OF TWO-DIMENSIONAL METHODS TO FINDING STRESSES IN THREE-DIMENSIONAL STRUCTURES

In this volume only two-dimensional statics has been considered. A few examples will illustrate how the principles already studied may be applied to three-dimensional structures.

Example.-Find the stresses in the members of the structure represented pictorially in Fig. 166 (a). Here $A D$,

Fig. 166
$B D$, and $C D$ represent three rods fastened at A, B, and C to a vertical wall $M N . A$ and B are on the same level and 8 feet apart; $E C$ is perpendicular to $A B$ at its midpoint. The rods are each 5 feet long.

Solution.-Pass a plane through C, D, and E and find the stresses in the member $C D$, and in an imaginary member $E D$, by considering the equilibrium of the point D under the action of the forces transmitted by these members and the weight of 100 pounds, Fig. 166 (b).

By the similarity of triangles, we have

$$
\frac{R}{100}=\frac{3}{4}, \quad \therefore R=75 \text { pounds; }
$$

also $\quad \frac{S}{100}=\frac{5}{4}, \therefore S=125$ pounds.
The tension in $C D$ is thus found to be $S=125$ pounds.
Now pass a plane through A, B, and D. This plane contains the rods $A D$ and $B D$ and the imaginary rod $D E$. As $A D$ and $B D$ are to replace $E D$, a force equal and opposite to R, Fig. 166 (b), together with the forces transmitted by $A D$ and $B D$, must be in equilibrium. These forces are shown in their true relative positions, together with their triangle of forces, in Fig. 166 (c).

By comparing $\triangle x z w$ with $\triangle A B D$ we can show that $P=Q, \therefore w y=y z=\frac{75}{2}$. As $\triangle x y z$ is similar to $\triangle E B D$ we have

$$
\frac{P}{\frac{75}{2}}=\frac{5}{3}, \quad \text { or } \quad P=62.5 \text { pounds. }
$$

Thus the compressions in $A D$ and $B D$ are equal each to 62.5 pounds.

Exercise 203. A pair of "sheer-legs" is formed of two equal spars fastened together at the top so as to form an inverted V. The spars are inclined at 60° to each other, and
their plane is inclined at 60° to the ground. A rope attached to the top of the sheers and inclined at 30° to the horizon lies in a vertical plane bisecting the sheers and holds them in position. Find the stresses in the spars and in the rope when a weight of 10 tons is lifted.

Exercise 204. A pair of sheers, such as described in Ex. 203 but of the following dimensions, supports a load of 122 tons. The legs of the sheers are in6 feet long; they are 45 feet apart at the bottom; the supporting guy is 146 feet long, and the sheers afford a horizontal reach of 35 feet. Find the stresses in the legs.

Example.-The vertical post of a crane is io feet long. The jib is 30 feet long and the stay is 24 feet long. There

Fig. 167
are tivo back-stays, making angles of 45° with the horizontal; these lie in planes due south and due east of the post. A weight of 4000 pounds is sustained by the crane. Find the forces transmitted by the jib- and back-stays when the jib lies to the northwest of the post.

Solution,-Fig. 167 (a) illustrates the problem. Consider
the equilibrium of the forces acting at C and lying in the plane $A B C$. If their triangle of forces, Fig. 167 (b), is drawn to scale, we obtain the forces transmitted by $A C$ and $B C$ graphically. Represent these by S and R.

Now consider the point A in equilibrium under the action of $A C, A B$, and an imaginary stay $A D$. These forces all lie in the plane $A C B D$. From the triangle shown in Fig. 167 (c) find the forces transmitted by $A B$ and $A D$, let these be Q and P.

Then consider A in equilibrium under the action of $A S, A E$, and a force equal and opposite to P, Fig. 167 (c). These forces are shown in their true relative positions in Fig. 167 (d). From this figure we obtain $Y=X$, the stresses in the stays $A S$ and $A E$.

Exercise 205. Calculate the stresses found graphically in the preceding example.
Exercise 206. Find the stresses in the structure described in the preceding example when the jib lies to the north of the post.
Exercise 207. A weight of 100 pounds is sustained by a tripod having equal legs so arranged that the distance between each pair of feet is equal to the legs. Find the compression in each leg.

Exercise 208. Find the compression in each leg of a tripod the feet of whose legs rest at the vertices of an equilateral triangle whose sides are $\sqrt{3}$ feet long, if the legs are 5 feet long and the tripod sustains a weight of rooo pounds.

Exercise 209. A, B, and C are the vertices of an isosceles triangle drawn upon a horizontal ceiling. $A B$, the base of the triangle, is 6 feet long; the altitude $C D$ is 5 feet long. To A and B two strings, each 5 feet long, are attached; at C a string 3 feet long is fastened. The strings are joined at their lower ends and support a weight of 100 pounds, Find the tension in each string.

PROBLEMS FOR REVIEW

210. Two weights of P and Q pounds are attached to a string 21 inches long at points 8 and 6 inches respectively from the ends. If the ends of the string are fastened to two points on the same level 14 inches apart, and the central portion of the string is horizontal when equilibrium results, find the ratio of P to Q.
211. Draw an equilateral triangle $A B C$ with the base $A B$ horizontal and C downward. Let a weight at C be tied by threads $A C$ and $B C$ to the fixed points A and B : if the thread $B C$ is cut, by how much does the tension in $A C$ increase?
212. A load, W, of 2000 pounds is hung from a pin, P, at which pieces $A P$ and $B P$ meet like the tie-rod and jib of a crane. The angles $W P B$ and $W P A$ are respectively 30° and 60°. Find the forces transmitted by $A P$ and $B P$, and state which piece acts as a strut and which as a tie.
213. Draw an equilateral triangle $A B C$. Let $B C$ represent a weightless lever acted on at B by a force of I_{3} pounds, acting from A to B, and at C by a force of 9 pounds, acting from A to C. Find graphically the pressure on, and the position of, the fulcrum.
214. An incline, the ratio of the height to the base being I to Io, supports a body weighing 100 pounds. If the coefficient of friction is .2 , what force inclined at 30° to the incline would move the body up the plane?
215. A body rests upon a smooth plane inclined at 35° to the horizon. If the body weighs io pounds, find the tension in the supporting string when the string is inclined to the plane at an angle of $($ a $) 25^{\circ}$, (b) -10°.
216. A dead-weight safety-valve is 4 inches in diameter. The weight of the valve is 20 pounds. What additional weight must be added so that steam should blow off when the pressure reaches 80 pounds per square inch?
217. A square lamina is divided into four equal squares by lines parallel to the sides; a circle is inscribed in one of these squares, and the portion of the lamina within the circle is removed. Find the centroid of the remainder.
218. A uniform beam, whose length is 4 feet and whose weight is 20 pounds, has weights of 4 and 8 pounds suspended from its extremities. Where must a single support be placed to produce equilibrium ?
219. A, B, and C are three smooth pegs in a vertical wall, A being the highest. $A B$ and $A C$ make angles of 30° and 60° respectively with the vertical through A on opposite sides. A string, carrying two weights of 12 pounds each, passes over the pegs and the weights hang freely. Find the pressure on each peg.
220. A sphere, diameter I foot, hangs against a smooth vertical wall by a string 6 inches long fastened to its surface and to the wall; find the tension of the string and the pressure of the sphere against the wall.
221. A uniform wire $A D, 15$ inches long, is bent upwards at right angles 4 inches from A and 6 inches from D. Prove that if it be suspended from A it will rest with the second bend vertically below A.
222. A step-ladder has the form of the letter A. The semiangle at the vertex is θ. If it rests on a smooth horizontal plane, and its legs are kept from slipping by a cord connecting them together half-way up, how much greater does the tension in the cord become when a weight W is placed on top of the ladder?
223. The post $B A$ of a crane is 10 feet high; the jib $B C$ is 24 feet long and is movable about B. The tie is shortened so as to drop the load of 6000 pounds at a point, $D, 20$ feet from B. Find graphically the stresses in the tie and jib.
224. A rod of length b is supported horizontally, and to its extremities are attached the ends of a string of length s. If a heavy ring of weight W is slung on the string, find the compression in the rod.
225. Draw a square $A B C D$; a force of 8 pounds acts from A to D, and two forces of 12 pounds each act from A to B and from C to D; find their resultant.
226. A beam balances about the midpoint of its axis when weights of 20 and 40 pounds are suspended one from each end, and it balances about a point one-third of the length from one end when the weights are interchanged. Find the weight of the beam and the distance of its centroid from one end.
227. A round table is supported on three legs A, B, and C. $A B=A C=3$ feet, $B C=4$ feet. A weight of 100 pounds is placed at P; the distances of P from $A B$ and $A C$ are respectively $\frac{1}{3}$ and I foot. What is the compression in each leg?
228. A sheer-leg is formed by two sheer-poles, $B C$ and $D C$, each 25 feet in length and secured to a base-plate in the ground at B and D. The wire guy, $A C$, is attached to the ground at a point A which is 60 feet from $B D$. The vertical from the top, C, of the poles meets the ground at a distance of 10 feet from the center of $B D$, which is 15 feet long. Find the stresses in the guy (and the compression in the poles) when a weight of 20 tons is suspended from C.
229. A uniform beam 12 feet long and weighing 56 pounds rests on and is fastened to two props 5 feet apart, one of which is 3 feet from one end of the beam. A load of 35 pounds is placed (a) at the end farthest from a prop, (b) at the middle of the beam, (c) at the end nearest a prop. Calculate the pressure on each prop in each case.
230. A crane, whose post, tie-rod, and jib measure 15,20 , and 30 feet respectively, supports a load of 10 tons suspended by a chain passing over a pulley at the jib-head. Find the stresses in each member (i) when the lifting-chain passes
from the pulley to the drum parallel to the jib , (z) when the drum is placed so that the chain passes from the jib-head parallel to the tie-rod.

23I. In a pair of pincers the jaws meet one inch from the pin forming the joint. If the handles are grasped with a force of 30 pounds on each handle at a distance. 6 inches from the pin, find the compression exerted on an object held between the jaws, and also the force resisted by the pin.
232. A painter's scaffold 20 feet long and weighing 150 pounds is supported by vertical ropes attached 2 feet from each end; if two painters weighing 125 and 175 pounds are at 4 feet and 9 feet from one end of the scaffold respectively, and pots of paint weighing 30 pounds are at 6 feet from the same end, find the tensions in the ropes.
233. A uniform bar projects 6 inches beyond the edge of a table, and when 2 ounces is placed one inch from the projecting end the bar topples over; when it is pushed out so as to project 8 inches beyond the edge, one ounce at the end makes it topple over. Find the weight of the bar and its length.
234. In a common steelyard the weight of the beam is 10 pounds, and acts at a distance of 2 inches from the fuicrum. Where must a weight of 4 pounds be applied to balance it ?
235. The weight of a window-sash 3 feet wide is 5 pounds; each of the weights acting on the cords is 2 pounds. If one cf the cords be broken, find at what distance from the middle of the sash the hand must be placed to raise it with the least effort. What pressure must the hand exert?
236. A piece of lead placed in one pan, A, of a balance is balanced by 10 pounds in the other pan, B. When the same biece of lead is placed in the pan B it required in pounds in the pan A to balance it. Find the ratio of the lengths of the arms of the balance.
237. Two equal uniform spheres of weight W and radius a rest in a smooth spherical cup of radius r. Find the pressure between either sphere and cup and the pressure between the spheres.
238. A uniform beam weight W is hinged to a horizontal plane and rests against a vertical wall. Find the reaction of the hinge and the pressure on the wall if the inclination of the beam is α.
239. A smooth uniform beam rests against two smooth horizontal rods, and its lower end rests against a smooth horizontal plane. The beam is $2 l$ feet long, and the rods touch it at points a and b feet from its lower end. If the inclination of the beam is α, find the reactions of the supports.
240. A beam rests between two rough horizontal rods. The beam lies in a vertical plane. Assume all necessary data and write the equations for equilibrium.
241. $A B C$ is a rigid equilateral triangle; the weight is not considered; the vertex B is fastened by a hinge to a vertical wall, while the vertex C rests against the wall under B. If 100 pounds is hung from A, find the reactions at B and C graphically.
242. Three forces of 10,15 , and 50 pounds, making angles of $30^{\circ}, 90^{\circ}$, and -135° with the horizon, act upon a particle. Find the resultant force acting upon the particle. In what direction will the particle move?
243. A uniform beam weighing 10 pounds is supported at its ends by two props. If the length of the beam is 5 feet, find where a weight of 30 pounds must be attached so that the pressures on the props may be 15 and 25 pounds respectively.
244. A carriage-wheel, whose weight is W and whose radius is r, rests upon a level road. Find the least horizontal force applied at the axle necessary to draw the wheel over an obstacle whose height is h.
245. A mass whose weight is 750 pounds rests on a horizontal plane and is pulled by a force, P, inclined at 15° to the horizon. Find the value of P, which will just start the mass if the coefficient of friction is .62 .
246. Find the total resistance of the plane in Ex. 245.
247. A body whose weight is 10 pounds is supported on a
smooth inclined plane by a force of two pounds acting along the plane and a horizontal force of 5 pounds. Find the inclination of the plane.
248. Two equal rafters l feet long support a weight, W, at their upper ends. Find the stress in the tie-rod a feet long connecting their lower ends.
249. A davit is supported by a foot-step at A and by a collar at B placed 6 feet apart. A boat weighing 2 tons is supported by two such davits and is about to be lowered. Assuming that the boat hangs 5 feet from the vertical through the foot-step and collar, and that each davit supports onehalf the weight of the boat, determine the forces at A and B.
250. A man, sitting upon a board suspended from a single movable pulley, pulls downward at one end of the rope which passes under the movable pulley and over a pulley fixed to a beam overhead, the other end of the rope being fixed to the same beam. If the man weighs 180 pounds, what force must he exert so as to maintain equilibrium?
251. Make sketches of (a) a system of weightless pulleys in which one pound balances 3^{2} pounds, (b) a system of weightless pulleys in which one pound balances 15 pounds.
252. Given four weightless pulleys, three movable and one fixed, around each pulley passes a separate rope; the load is a man weighing 160 pounds. Find the pull exerted by the man on the free end of the last rope in order to maintain equilibrium.
253. A rod io inches long can turn freely about one of its ends; a body weighing 4 pounds is hung at a point 3 inches from this end. If the free end of the rod is supported by a string inclined to it at an angle of 120°, find the tension in the string and the reaction at the fixed end of the rod.
254. Find the height of a cylinder which can just rest on an inclined plane the angle of which is 60°, the radius of the cylinder being r.
255. What is the minimum coefficient of friction necessary to prevent the sliding of the cylinder in Ex. 254?
~ * - -

OF

 JOHN WILEY \& SONS,

 JOHN WILEY \& SONS,
 New York.
 London: CHAPMAN \& HALL, Limited.
 ARRANGED UNDER SUBJECTS

Descriptive circulars sent on application. Books marked with an asterisk (*) are sold at net prices only, a double asterisk (**) books sold under the rules of the American Publishers' Association at net prices subject to an extra charge for postage. All books are bound in cloth unless otherwise stated.

AGRICULTURE.

Armsby's Manual of Cattle-feeding. 12 mo , \$r 75
Principles of Animal Nutrition. .8vo, 400
Budd and Hansen's American Horticultural Manual:
Part I. Propagation, Culture, and Improvement. 12 mo , I 50
Part II. Systematic Pomology. 12 mo , 150
Downing's Fruits and Fruit-trees of America 8vo, 5 oo
Elliott's Engineering for Land Drainage. 12 mo , I 50
Practical Farm Drainage. 12 mon , 00
Green's Principles of American Forestry. 12 mo , 150
Grotenfelt's Principles of Modern Dairy Practice. (Woll.). 12mo, 200
Kemp's Landscape Gardening. 12 mo , 250
Maynard's Landscape Gardening as Applied to Home Decoration.12mo, 1 दо
Sanderson's Insects Irjurious to Staple Crops. 12 mo , 150
Insects Injurious to Garden Crops. (In preparation.)
Insects Injuring Fruits. (In preparation.)
Stockbridge's Rocks and Soils. 8vo, 250
Woll's Handbook for Farmers and Dairymen. 16mo, 150

ARCHITECTURE.

Baldwin's Steam Heating for Buildings. 12 mo , 250
Berg's Buildings and Structures of American Railroads. 4to, 500
Birkmire's Planning and Construction of American Theatres. 8vo, 300
Architectural Iron and Steel. .8vo, 3 . 50
Compound Riveted Girders as Applied in Buildings. 8vo, 200
Planning and Construction of High Office Buildings. 8vo, 350
Skeleton Construction in Buildings. .8vo, 3 oo
Brigg's Modern Areerican School Buildirgs. 8vo, 4 oo
Carpenter's Heating and Ventilating of Buildings. 8vo, 4 oo
Freitag's Architectural Engineering. 8vo, 350
Fireproofing of Steel Buildings. 8vo, ${ }_{2} 50$
French and Ives's Stereotomy. .8vo, 2 so
Gerhard's Guide to Sanitary House-inspection. 16mo, i oo
Theatre Fires and Panics. 12 mo , 150
Holly's Carpenters' and Joiners' Handbook. 18mo, 75
Johnson's Statics by Algebraic and Graphic Methods. 8vo, 2 oo
Kidder's Architects' and Builders' Pocket-book. Rewritten Edition. 16mo, mor., 500
Merrill's Stones for Building and Decoration. $8 \mathrm{vo}, 5$ oo
Non-metallic Minerals: Their Occurrence and Uses 8vo, 400
Monckton's Stair-building. 400
Patton's Practical Treatise on Foundatiors. 8vo, 5 oo
Peabody's Naval Architecture 8vo, 750
Richey's Handbook for Superintendents of Construction 16 mo , mor., 4 oo
Sabin's Industrial and Artistic Technology of Paints and Varnish. 8vo, 3 оо
Siebert and Biggin's Modern Stone-cuttirg and Masonry. $8 \mathrm{vo},{ }^{5} 5$
Snow's Principal Species of Wood. 8vo, 350
Sondericker's Graphic Statics with Applications to Trusses, Beams, and Arches.
8 vo , 200
Towne's Locks and Builders' Hardware. 18 mo , morocco, 3 oo
Wait's Engineering and Architectural Jurisprudence $8 \mathrm{vo}, 6$ ooLaw of Operations Preliminary to Construction in Engineering and Archi-tecture8vo,5 co
Sheep, 550
Law of Contracts. 8vo, 300
Wood's Rustless Coatings: Corrosion and Electrolysis of Iron and Steel. 8vo, 4 oo
Woodbury's Fire Protection of Mills. 250
Worcester and Atkinson's Small Hospitals, Establishment and Mainterance, Suggestions for Hospital Architecture, with Plans for a Small Hospital.
12 mo , I 25
The World's Columbian Exposition of 1893 Large 4to, 100
ARMY AND NAVY.
Bernadou's Smokeless Powder, Nitro-cellulose, and the Theory of the Celiulose Molecule 12 mo , 250

* Bruff's Text-book Ordnance and Gunnery $8 \mathrm{vo}, 6$ oo
Chase's Screw Propellers and Marine Propulsion 8vo, 3 oc
Cloke's Gunner's Examiner. (In press.)
Craig's Azimuth. 4to, 350
Crehore and Squier's Polarizing Photo-chronograph. 8vo, 300
Cronkhite's Gunnery for Non-commissioned Officers 24 mo , morocco, co
* Davis's Elements of Law. 8vo, 250
* Treatise on the Military Law of United States. 8vo, 700De Brack's Cavalry Outposts Duties. (Carr.)................. 24mo, morocco, 200
Dietz's Soldier's First Aid Handbook 16 mo , morocco, 25
* Dredge's Modern French Artillery 4to, half morocco, 1500
Durand's Resistance and Propulsion of Ships. 8vo, 5 co
* Dyer's Handbook of Light Artillery. $12 \mathrm{mo}, 300$
Eissler's Modern High Explosives. $8 \mathrm{vo}, 4$ oo
* Fiebeger's Text-book on Field Fortification. Small 8vo, 200
Hamilton's The Gunner's Catechism 18 mo , 1 oo
* Hoff's Elementary Naval Tactics. $8 \mathrm{vo}, 150$
Ingalls's Handbook of Problems in Direct Fire. $8 \mathrm{vo}, 4$ oo
* Ballistic Tables. $8 \mathrm{vo}, 150$
* Lyons's Treatise on Electromagnetic Phenomena. Vols. I. and II. . 8vo, eack, 60
* Mahan's Permanent Fortifications. (Mercur.). 8vo, half morocco, 750
Manual for Courts-martial. 16 mo , morecce, 50
* Mercur's Attack of Fortified Places 12 mo , i 00
* Elements of the Art of War. 8vo, 4 oo
Metcalf's Cost of Manufactures-And the Administration of Workshops. 8vo, 500
* Ordnance and Gunnery. 2 vols. 500
Murray's Infantry Drill Regulations. ro
Nixon's Adjutants' Manual. 100
Peabody's Naval Architecture. 750
* Phelps's Practical Marine Surveying. 8vo, 250
Powell's Army Officer's Examiner, 12 mo , 00
Sharpe's Art of Subsisting Armies in War. 18mo, morocco, 50
* Walke's Lectures on Explosives. 8vo, 00
* Wheeler's Siege Operations and Military Mining. 8vo, 00
Winthrop's Abridgment of Military Law. 50
Woodhull's Notes on Military Hygiene. 16 mo , 50
Young's Simple Elements of Navigation. 16 mo , morocco,00
Second Edition, Enlarged and Revised. 16 mo , morocco, 00

ASSAYING.

Fletcher's Practical Instructions in Quantitative Assaying with the Blowpipe.
ASTRONOMY.
Comstock's Field Astronomy for Engineers. 8vo, 250Craig's Azimuth.4to,Doolittle's Treatise on Practical Astronomy.8vo,
50
8vo, Gore's Elements of Geodesy. 5000
Hayford's Text-book of Geodetic Astronomy 8vo, 00-
Merriman's Elements of Precise Surveying and Geodesy. 8vo, 50.

* Michie and Harlow's Practical Astronomy. 8vo, 00.
* White's Elements of Theoretical and Descriptive Astronomy 12 mo , 00
BOTANY.
Davenport's Statistical Methods, with Special Reíerence to Biological Variation. 16mo, morocco, 25
Thomé and Bennett's Structural and Physiological Botany. 16 mo , 225
Westermaier's Compendium of General Botany. (Schneider.). .8vo, 200
CHEMISTRY.
Adriance's Laboratory Calculations and Specific Gravity Tables. 12 mo , 125
Allen's Tables for Iron Analysis. 8vo, 300
Arnold's Compendium of Chemistry. (Mandel.). Small 8vo, 350
Austen's Notes for Chemical Students 12 mo , 50
Bernadou's Smokeless Powder.-Nitro-cellulose, and Theory of the Cellulose Molecule 12 mo , 250
Bolton's Quantitative Analysis. I 50
* Browning's Introduction to the Rarer Elements. 8vo, 150
Brush and Penfield's Manual of Determinative Mineralogy. 400
Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.). . 8vo, 300
Cohn's Indicators and Test-papers. 12 mo , 200
Tests and Reagents. 8vo,Crafts's Short Course in Qualitative Chemical Analysis. (Schaeffer.). . . 12 mo ,I 50
Dolezalek's Theory of the Lead Accumulator (Storage Battery). (Von Ende.). 12 mo , 250
Drechsel's Chemical Reactions. (Merrill.). 12 mo , 125
Duhem's Thermodynamics and Chemistry. (Burgess.). 8vo, 400
Eissler's Modern High Explosives. 8vo, 400
Effront's Enzymes and their Applications. (Prescott.). 8vo, 3 oo.
Erdmann's Introduction to Chemical Preparations. (Dunlap.). 12mo, 25.
Fletcher's Practical Irstructions in Quantitative Assayirg with the Blowpipe.
I 2 mo , morocco, 150
Fowler's Sewage Works Analyses 12 mo , oo
Fresenius's Manual of Qualitative Chemical Aralysis. (Wells.)......... . 8vo, 500
Manual of Qualitative Chemical Analysis. Part I. Descriptive. (Weils.) 8vo, 300
System of Instruction in Quantitative Chemical Araiysis. (Cotr.) 2 vols. 8vo, 1250
Fuertes's Water and Public Health. 150
Furman's Manual of Practical Assaying. 3 oo
* Getman's Exercises in Physical Chemistry 00
Gill's Gas and Fuel Analysis for Engineers. 125
Grotenien's Frinciples of Modern Dairy Practice. (Woll.). 200
Hammarsten's Text-book of Physiological Chemistry. (Mandel.) $8 \mathrm{vo}, 4$ oo
Helm's Principles of Mathematical Chemistry. (Morgan.). $12 \mathrm{mo}, 150$
Hering's Ready Reierence Tables (Conversion Factors). icmo, merocco, 250
Hind's Inorganic Chemistry $8 \mathrm{vo}, 3$ oo
* Laboratory Manual for Students 75
Holleman's Text-book of Inorganic Chemistry. (Cooper.). 8vo 250
Text-book of Organic Chemistry. (Walker and Mott.). $8 \mathrm{vo}, 25 \mathrm{C}$
* Laboratory Manual of Organic Chemistry. (Waiker.) $12 \mathrm{mo}, 1$ oo
Hopkins's Oil-chemists' Handbook. 8vo, 300
Jackson's Directions for Laboratory Work in Physiological Chen siry. . 8vo, 125
Keep's Cast Iron. 8vo, 50
Ladd's Mianual of Quantitative Chemical Analysis $12 \mathrm{mo}, 100$
Landauer's Spectrum Analysis. (Tingle.). 8vo, 300
* Langworthy and Austen. The Occurrence of Aluminium in Vege able Products, Animal Products, and Natural Waters. 200
Lassar-Cohn's Practical Urinary Analysis. (Lorenz.). 100
Application of Some General Reactions to Investigations in Organic Chemistry. (Tingle.) 100
Leach's The Inspection and Analysis of Food with Special Reference to State Control. 8vo, 750
Löb's Electrolysis and Electrosynthesis of Organic Compounds. (Lorenz.).12mo, oo
Lodge's Notes on Assaying and Metallurgical Laboratory Experiments. .. .8vo, 100
Lunge's Techno-chemical Analysis. (Cohn.). 12 mo , oo
Mandel's Handbook for Bio-chemical Laboratory
* Martin's Laboratory Guide to Qualitative Analysis with the Blowpipe . . 12mo, 6o
Mason's Water-supply. (Considered Principally from a Sanitary Stardpoint.) 3d Edition, Rewritten. 8vo, 400
Examination of Water. (Chemical and Bacteriological.)......... 12mo, I 25
Matthew's The Textile Fibres. 350
Meyer's Determination of Radicles in Carbon Compounds. (Tingle.). . 12 mo , 100
Miller's Manual of Assaying. 100
Mixter's Elementary Text-book of Chemistry. 150
Morgan's Outline of Theory of Solution and its Results 00
Elements of Physical Chemistry. 200
Morse's Calculations used in Cane-sugar Factories. 50
Mulliken's General Method for the Identification of Pure Organic Ccmpourds. Vol. I. Large 8vo, 500O'Driscoll's Notes on the Treatment of Gold Ores. 8vo,
Ostwald's Conversations on Chemistry. Part One. (Ramsey.).12mo, 50
O'Brine's Laboratory Guide in Chemical Analysis. 8vo, 00
Ostwald's Conversations on Chemistry. Part Two. (Turnbull.). (In Fress.)* Penfield's Notes on Determinative Mineralogy and Record of Mireral Tests.8vo, paper,50
Pictet's The Alkaloids and their Chemical Corstitution. (Biddie.) 8vo, 500
Pinner's Introduction to Organic Chemistry. (Austen.). 12 mo , I 50
Pooie's Calorific Power of Fuels. 300
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer- ence to Sanitary Water Analysis. I 25
* Reisig's Guide to Piece-dyeing. 8vo, 25 oo
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint 8vo, 200
Richards's Cost of Living as Modified by Sanitary Science 12 mo , 100
Cost of Food, a Study in Dietaries 12 mo , 100
* Richards and Williams's The Dietary Computer. 8vo, 50
Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.) . 8vo, morocco, 75
Ricketts and Miller's Notes on Assaying. 8vo, 300
Rideal's Sewage and the Bacterial Purificat on of Sewage. Evo, 350
Disinfection and the Preservation of Food. 8vo, 4 oo
Rigg's Elementary Manual for the Chemical Laboratory. 8vo, 25
Rostoski's Serum Diagnosis. (Bolduan.). 12mo, 100
Ruddiman's Incompatibilities in Prescriptions. Evo, 200
Sabin's Industrial and Artistic Technology of Pairits and Varrish. 8\%о, 300
Salkowski's Physiological and Pathological Chemistry. (Orrdorff.). 8vc, 250
Schimpf's Text-book of Volumetric Analysis. $12 \mathrm{mo}, 250$
Essentials of Volumetric Analysis. $12 \mathrm{mo}, 125$
Spencer's Handbook for Chemists of Beet-sugar Houses. 16mo, morocco, oo
Handbook for Sugar Manufacturers and their Chemists. . 16 mo , morocco, oo oo
Stockbridge's Rocks and Soils. 8vo, 50
* Tillman's Elementary Lessons in Heat 8 vo , 50
: \quad Descriptive General Chemistry. 8vo,Treadwell's Qualitative Analysis. (Hall.). 8vo,300
Quantitative Analysis. (Hall.). 400
2 urneaure and Russell's Public Water-supplies 8vo, 500
Van Deventer's Physical Chemistry for Beginners. (Boltwood.) i2mo,
8vo, 4 oo
* Walke's Lectures on Explosives.
8vo, 200
Washington's Manual of the Chemical Analysis of Rocks.
Wassermann's Immune Sera: Hæmolysins, Cytotoxins, and Precipitirs. (Bol-duan.) . 12 mo ,
100
Well's Laboratory Guide in Qualitative Chemical Analysis. 8vo, 150
Short Course in Inorganic Qualitative Chemical Analysis for Ergireerirg Students. 12 mo, 150
Text-book of Chemical Arithmetic. (In press.)
Whipple's Microscopy of Drinking-water. 8vo, 350
Wilson's Cyanide Processes 12 mo , I 50
Chlorination Process. 12mo, 150
Wulling's Elementary Course in Inorganic, Pharmaceutical, and Medical Chemistry. 12 mo , 200
CIVIL ENGINEERING.
BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEERING. RAILWAY ENGINEERING.
Baker's Engineers' Surveying Instruments. 12 mO 300
Bixby's Graphical Computing Table. Paper $19 \frac{1}{2} \times 24 \frac{1}{4}$ inches. 25
** Burr's Ancient and Modern Engineering and the Isthmian Canal. (Postage, 27 cents additional.). 8vo,
8vo, 50
Comstock's Field Ástronomy for Engineers.
8vo, 0
Davis's Elevation and Stadia Tables. 8vo, ,
Elliott's Engineering for Land Drainage. 12 mo , 50
Practical Farm Drainage. 12 mo, 00
Fiebeger's Treatise on Civil Engineering. (In press.)
Folwell's Sewerage. (Designing and Mainterarce.). . 8vo, 300
Freitag's Architectural Engireerirg. 2d Editicr., Rewritten 8vo, 50
French and Ives's Stereotomy 8vo, 50
Goodhue's Municipal Improvements. 12mo, 75
Goodrich's Economic Disposal of Towns' Refuse. 8vo, 50
Gore's Elements of Geodesy $8 \mathrm{vo}, 250$
Hayford's Text-book of Geodetic Astronomy. 8vo, oo
Hering's Ready Reference Tables (Conversion Factors). 16 mo , morocco, 50Howe's Retaining Walls for Earth.12 mo ,25
Johnson's (J. B.) Theory and Practice of Surveying. Small 8vo, 4 oo
Johnson's (L. J.) Statics by Algebraic and Graphic Methods. 8vo, 200
Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.). 12mo,Mahan's Treatise on Civil Engineering. (1873.) (Wood.). 8vo, 500
* Descriptive Geometry. 8vo
Merriman's Elements of Precise Surveying and Geodesy. 8vo,
Elements of Sanitary Engineering. 8vo,
Merriman and Brooks's Handbook for Surveyors. 16mo, morocco,
Nugent's Plane Surveying. 8vo, 350
Ogden's Sewer Design. 12 mo , 200
Patton's Treatise on Civil Engineering. 8vo half leather, 750
Reed's Topographical Drawing and Sketching 4 to, 5 oo
Rideal's Sewage and the Bacterial Purification of Sewalc. 8vo, 350
Siebert and Biggin's Modern Stone-cutting and Masonry. 8vo, 150
Smith's Manual of Topographical Drawing. (McMillan.). $8 \mathrm{vo}, 250$
Sondericker's Graphic Statics, with Applications to Trusses, Beams, and Arches. 8 vo , 00
Taylor and Thompson's Treatise on Concrete, Plain and Reinforced. . . . 8vo, 500
* Trautwine's Civil Engineer's Pocket-book. 500
Wait's Engineering and Architectural Jurisprudence. 8voLaw of Operations Preliminary to Construction in Engir.eering and Archi-
tecture 8vo,500
Law of Contracts. 8vo, 300
Warren's Stereotomy-Problems in Stone-cutting.
Warren's Stereotomy-Problems in Stone-cutting. 8vo, 8vo,
Webb's Problems in the Use and Adjustment of Engineering Instruments.
16 mo , morocco, 250 125
* Wheeler's Elementary Course of Civil Engineering. $8 \mathrm{vo}, 4$ oo
Wilson's Topographic Surveying. 350
BRIDGES AND ROOFS.
Boller's Practical Treatise on the Construction of Iron Highway Bridges. 8vo, 200
* Thames River Bridge. 4to, paper, 500
Burr's Course on the Stresses in Bridges and Roof Trusses, Arched Ribs, and Suspension Bridges. 8vo, 350
Burr and Falk's Influence Lines for Bridge and Roof Computations. . . 8vo, 300
Du Bois's Mechanics of Engineering. Vol. II. Small 4 to, 10 oo
Foster's Treatise on Wooden Trestle Bridges. 4 to, 500
Fowler's Ordinary Foundations. $8 \mathrm{vo}, 350$
Greene's Roof Trusses. 8vo, 135
Bridge Trusses. 8vo, 250
Arches in Wood, Iron, and Stone. 8vo, 250
Howe's Treatise on Arches. 8vo, 400
Design of Cimple Roof-trusses in Wood and Steel. 8vo, 200
Johnson, Bryan, and Turneaure's Theory and Practice in the Eesigrirg of Modern Framed Structures. Smail 4to, 10 oo
Merriman and JJacoby's Text-book on Roofs and Bridges:
Part I. Stresses in Simple Trusses. 8vo, 250
Part II. Graphic Statics. 8vo, 250
Part III. Bridge Design $8 \mathrm{vo}, 250$
Part IV. Higher Structures. 8vo, 250
Morison's Memphis Bridge. 4to, 10 oo
Waddell's De Pontibus, a Pocket-book for Bridge Éngineers. 16mo, morocco, 3 ooSpecifications for Steel Bridges.$12 \mathrm{mo}, 125$
Wood's Treatise on the Theory of the Construction of Bridges and Roofs. .8vo, 2 oo
Wright's Designing of Draw-spans:
Part I. Plate-girder Draws. $8 \mathrm{vo}, 250$
Part II. Riveted-truss and Pin-conrected Long-span Draws. 8vo, 250
Two parts in one volume. $8 \mathrm{vo}, 3$ 50

HYDRAULICS.

Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.). 8vo, 200
Bovey's Treatise on Hydraulics. 8vo, 500
Church's Mechanics of Engineering. 8vo,
Diagrams of Mean Velocity of Water in Open Channels pajer, 50
Coffin's Graphical Solution of Hydraulic Problems. 16 mo , morocco, 250
Flather's Dynamometers, and the Measurement of Power. 12 mo , 3 oo
Folwell's Water-supply Engineering. 8vo, 4 oo
Frizell's Water-power. .8vo, 00
Fuertes's Water and Public Health. 12 mo , 50
Water-filtration Works. 12 mo , 250
Ganguillet and Kutter's General Formula for the Uniform Flow of Water in Rivers and Other Channels. (Hering and Trautwine.). 8vo 400
Hazen's Filtration of Public Water-supply. 8vo, oo
Hazlehurst's Towers and Tanks for Water-works. 8vo,
Herschel's 115 Experiments on the Carrying Capacity of Large, Hiveted, Metal Conduits. 8vo, 200
Mason's Water-supply. (Considered Principally from a Sanitarj' Standpoint.)
8vo,
8vo, 500
Merriman's Treatise on Hydraulics.400
8vo, * Michie's Elements of Analytical Mechanics. 8vo,
Schuyler's Reservoirs for Irrigation, Water-power, and Domestic Water-
Schuyler's Reservoirs for Irrigation, Water-power, and Domestic Water- supply La1凤e 8vo, 5 oo
** Thomas and Watt's Improvement of Rivers. (Post., 44c. additional.) 4to, 600
Turneaure and Russell's Public Water-supplies. vo , 500
Wegmann's Design and Construction of Dams. 4to, 5 oo
Water-supply of the City of New York from 1658 to 1895. 4 to, 1000
Wilson's Irrigation Engineering.. .Small 8vos 4 oo
Wolff's Windmill as a Prime Mover. 8vo, 300
Wood's Turbines. $8 \mathrm{vo}, 250$
Elements of Analytical Mechanics. 8vo, 3 oo
MATERIALS OF ENGINEERING.
Baker's Treatise on Masonry Construction. 8vo, 500
Roads and Pavements. Bros 500
Black's United States Public Works Oblong 4 to 500
Bovey's Strength of Materials and Theory of Structures. 8ァc. 75^{0}
Burr's Elasticity and Resistance of the Materials of Engineering. 8vo, 750
Byrne's Highway Construction. .8vo, 500
Inspection of the Materials and Workmanship Employed in Construction. 16 mo , 300
Church's Mechanics of Engineering. Small 4to, 750
Johnson's Materials of Construction. .Large 8vo, 6 oo
Fowler's Ordinary Foundations. 350
Keep's Cast Iron. 8vo, 250
Lanza's Applied Mechanics. 750
Marten's Handbook on Testing Materials. (Henning.) 2 vols. 8vo, 750
Merrill's Stones for Building and Decoration. 5 oo
Merriman's Text-book on the Mechanics of Materials. 400
Strength of Materials 12 mo ,
Metcalf's Steel. A Manual for Steel-users. $12 \mathrm{mo}, 200$
Patton's Practical Treatise on Foundations. 500
Richardson's Modern Asphalt Pavements. (In press.)
Richey's Handbook for Superintendents of Construction. 16mo, mor., 400
Rockwell's Roads and Pavements in France. 125
Sabin's Industrial and Artistic Technology of Paints and Varrish.. 8vo, 3 oo
Smith's Materials of Machines. x2mo, I 00
Snow's Principal Species of Wood. 350
Spalding's Hydraulic Cement. $12 \mathrm{mo}, 200$
Text-book on Roads and Pavements. $12 \mathrm{mo}, 200$
Taylor and Thompson's Treatise on Concrete, Plain and Reinforced. 8vo, 5 oo
Thurston's Materials of Engineerin:g. 3 Parts. $8 \mathrm{vo}, 8$ oo
Part I. Non-metallic Materials of Engineerirg and Mietaïurcy 8io, 200
Part II. Iron and Steel. 350
Part III. A Treatise on Brasses, Bronzes, and Cther Alloys and their Constituents. 250
Thurston's Text-book of the Materials of Construction. 8vo, 5 oo
Tillson's Street Pavements and Paving Materials. 8vo, 400
Waddell's De Pontibus. (A Pocket-book for Bridge Engineers.) . . 16 mo , mor., 300
Specifications for Steel Bridges. I 25
Wood's (De V.) Treatise on the Resistance of Materials, and an Appendix on the Preservation of Timber. 8vo, 200
Wood's (De V.) Elements of Analytical Mechanics. 8vo, 3 оо
Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and Steel. 8vo 400
RAILWAY ENGINEERING.
Andrew's Handbook for Street Railway Engineers. . . . 3×5 inches, morocco, 125
Berg's Buildings and Structures of American Railroads .4to, 5 oo
Brook's Handbook of Street Railroad Location. 16 mo , morocco, 150
Butt's Civil Engineer's Field-book. 16 mo , morocco, 250
Crandall's Transition Curve. 16 mo , morocco, 150
Railway and Other Earthwork Tables. 8 vo , I 50
Dawson's "Engineering" and Electric Traction Pocket-book . 16mo, morocco, 500
Dredge's History of the Pennsylvania Railroad: (1879)
Dredge's History of the Pennsylvania Railroad: (1879) Paper, 5 oo Paper, 5 oo

* Drinker's Tunnelling, Explosive Compounds, and Rock Drills. 4to, balf mor., 25 oo
Fisher's Table of Cubic Yards Cardboard, 25
Godwin's Railroad Engineers' Field-book and Explorers' Guide . . 16mo, mor., 250
Howard's Transition Curve Field-book. 150
Hudson's Tables for Calculating the Cubic Contents of Excavatiors and Em- bankments. 8vo, I 00
Molitor and Beard's Manual for Resident Engineers. 16 mo , r 00
Nagle's Field Manual for Railroad Engineers. 16mo, merocco, 300
Philbrick's Field Manual for Engineers. 16mo, morocco, 3 оо
Searles's Field Engineering. 16 mo , morocco, 300
Railroad Spiral. 16 mo , morocco,150
Taylor's Prismoidal Formulæ and Earthwork. 8vo, I 50
* Trautwine's Method of Calculating the Cube Contents of Excavations and Embankments by the Aid of Diagrams. 8vo, 200
The Field Practice of Laying Out Circular Curves for Railroads.
12 mo , morocco, 250
Cross-section Sheet.Webb's Railroad Construction.16 mo , morocco,500
Wellington's Economic Theory of the Location of Railways. Small 8vo, 500
DRAWING.
Barr's Kinematics of Machinery. 8vo, 250
* Bartlett's Mechanical Drawing. 8vo, 3 oo
Abridged Ed. 8vo, 150
Coolidge's Manual of Drawing. 8vo, paper x 00
Coolidge and Freeman's Elements of Genoral Drafting for Mechanical Engi- neers. Oblong 4to, 250
Durley's Kinematics of Machizes. 8vo, 400
Emch's Introduction to Projective Geometry and its Applications. 8vo. 250
Hill's Text-book on Shades and Shadows, and Perspective. $8 \mathrm{vo}, 200$
Jamison's Elements of Mechanical Drawing. 8vo, 250
Jones's Machine Design:
Part I. Kinematics of Machinery. 8vo, 150
Part II. Form, Strength, and Proportions of Parts. 8vo, 3 co
MacCord's Elements of Descriptive Geometry. 8vo, 300
Kinematics; or, Practical Mechanism. 8vo, 5 oo
Mechanical Drawing. 4to, 4 oo
Velocity Diagrams. 8vo, 150
* Mahan's Descriptive Geometry and Stone-cutting. 8vo 150
Industrial Drawing. (Thompson.) 350
Moyer's Descriptive Geometry. (In press.)
Reed's Topographical Drawing and Sketching. 4to, 5 oo
Reid's Course in Mechanical Drawing. $8 \mathrm{vo}, \quad 200$
Text-book of Mechanical Drawing and Elementary Machine Design 8vo, 300
Robinson's Principles of Mechanism. 8vo, 3 оо
Schwamb and Merrill's Elements of Mechanism. 8vo, 3 oo
Smith's Manual of Topographical Drawing. (McMillan.) $8 \mathrm{vo}, 250$
Warren's Elements of Plane and Solid Free-hand Geometrical Drawing. 12mo, 100
Drafting Instruments and Operations. 12 mo 125
Manual of Elementary Projection Drawing. $12 \mathrm{mo}, 15{ }^{\circ}$
Manual of Elementary Problems in the Linear Perspective of Form and Shadow 12 mo , 100
Plane Problems in Elementary Geometry 12 mo , 125
Primary Geometry 12 mo , 75
Elements of Descriptive Geometry, Shadows, and Perspective. 8vo 350
General Problems of Shades and Shadows. 8vo, 3 oo
Elements of Machine Construction and Drawing 8vo, 750
Problems, Theorems, and Examples in Descriptive Geometry. 8vo 250
Weisbach's Kinematics and Power of Transmission. (Hermann and Klein)8vo, 500
Whelpley's Practical Instruction in the Art of Letter Engraving. 12 mo , 200
Wilson's (H. M.) Topographic Surveying 350
Wilson's (V. T.) Free-hand Perspective. $8 \mathrm{vo}, 250$
Wilson's (V. T.) Free-hand Lettering. 8vo, 100
Woolf's Elementary Course in Descriptive Geometry. Large 8vo, 300
ELECTRICITY AND PHYSICS.
Anthony and Brackett's Text-book of Physics. (Magie.)......... Small 8vo, 300
Anthony's Lecture-notes on the Theory of Electrical Measurements 12 mo , 100
Benjamin's History of Electricity. 300
Voltaic Cell. 8vo, 3.00
Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.).8vo, oo
Crehore and Squier's Polarizing Photo-chronograph. 8vo, 5 oo
Dolezalek's Theory of the Lead Accumulator (Storage Battery). (Von Ende.). 12 mo , 250
Duhem's Thermodynamics and Chemistry. (Burgess.). 8vo, 400
Flather's Dynamometers, and the Measurement of Power. 12 mo , 3 oo
Gilbert's De Magnete. (Mottelay.). 8vo, 250
Hanchett's Alternating Currents Explained. 12 mo , I 00
Hering's Ready Reference Tables (Conversion Factors) 16mo, morocco, 250
Holman's Precision of Measurements. 8vo, 75
Kinzbrunner's Testıng of Continuous-Current Machines. 200
Landauer's Spectrum Analysis. (Tingle.). 300
Le Chatelien's High-temperature Measurements. (Boudouard-Burgess.) 12 mo oo
Löb's Electrolysis and Electrosynthesis of Organic Compounds. (Lorenz.) I2mo, oo
* Lyons's Treatise on Electromagnetic Phenomena. Vols. I. and II. 8vo, each, 600
* Michie's Eiements of Wave Motion Relating to Sound and Light. 8vo, 400
Niaudet's Elementary Treatise on Electric Batteries. (Fishback.).12mo, 250
* Rosenberg's Electrical Engineering. (Haldane Gee-Kinzbrunner.). . .8vo, 150
Ryan, Norris, and Hoxie's Electrical Machinery. Vol. I 8vo, 250
Thurston's Stationary Steam-engines. $8 \mathrm{vo}, 250$
* Tillman's Elementary Lessons in Heat. 8 vo , 150
Tory and Pitcher's Manual of Laboratory Physics Small 8vo, 200
Ulke's Modern Electrolytic Copper Refining. 8 vo , 300
LAW.
* Davis's Elements of Law. 8vo, 250
* Treatise on the Military Law of United States. 7 oo
Manual for Courts-martial. 16 mo , morocco, 50
Wait's Engineering and Architectural Jurisprudence. $8 \mathrm{vo}, 6$ оо
Law of Operations Preliminary to Construction in Engineering and Archi- tecture. 8vo, 500
Law of Contracts. 8vo, 00
Winthrop's Abridgment of Military Law 12 mo, 50
MANUFACTURES.
Bernadou's Smokeless Powder-Nitro-cellulose and Theory of the Cellulose Molecule 250
Bolland's Iron Founder. 12 mo , 250
"The Iron Founder," Supplement. 12 mo , 250
Encyclopedia of Founding and Dictionary of Foundry Terms Used in the Practice of Moulding 12 mo , 300
Eissler's Modern High Explosives. 4 oo
Effront's Enzymes and their Applications. (Prescott.) 8vo, 300
Fitzgerald's Boston Machinist. 12 mo , I 00
Ford's Boiler Making for Boiler Makers. 18 mo , 100
Hopkin's Oil-chemists' Handbook. 8vo, 3 oo
Keep's Cast Iron. 8vo, 250
Leach's The Inspection and Analysis of Food with Special Reference to State Control. Large 8vo, 750
Matthews's The Textile Fibres. .8vo, 350
Metcalf's Steel. A Manual for Steel-users. 12 mo , 200
Metcalfe's Cost of Manufactures-And the Administration of Workshops. 8vo, 5 oo
Meyer's Modern Locomotive Construction. 4to, 10 oo
Morse's Calculations used in Cane-sugar Factories. 16 mo , morocco, 50
* Reisig's Guide to Piece-dyeing. 8vo, 25 oo
Sabin's Industrial and Artistic Technology of Paints and Varnish. 8vo, 3 oo
Smith's Press-working of Metals. 8vo, 300
Spalding's Hydraulic Cement. 200
Spencer's Handbook for Chemists of Beet-sugar Houses. ... 16mo, morocco, 3 oo
Handbook for Sugar Manufacturers and their Chemists . 16 mo , morocco, 200
Taylor and Thompson's Treatise on Concrete, Plain and Reinforced.8vo, 5 oo
Thurston's Manual of Steam-boilers, their Designs, Construction and Opera- tion. 8vo, 500
* Walke's Lectures on Explosives. 8vo, 4 oo
Ware's Manufacture of Sugar. (In press.)
West's American Foundry Practice. 12 mo , 250
Moulder's Text-book. 12mo, 50
Wolff's Windmill as a Prime Mover 8vo,

MATHEMATICS.

Baker's Elliptic Functions. 8vo, 150

* Bass's Elements of Differential Calculus. 12 mo , 400
Briggs's Elements of Plane Analytic Geometry $12 \mathrm{mo}, 100$
Compton's Manual of Logarithmic Computations. 12 mo I 50
Davis's Introduction to the Logic of Algebra. 8vo,* Dickson's College AlgebraLarge 12 mo ,I 50
* Introduction to the Theory of Algebraic Equations. Large 12 mo , I 25
Emch's Introduction to Projective Geometry and its Applications. 8vo, 250
Halsted's Elements of Geometry. 8vo, 175
Elementary Synthetic Geometry. 8vo, 150
Rational Geometry. 175
* Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size paper, 15
100 copies for 5 oo
Mounted on heavy cardboard, $8 \times$ wo inches, 25
ro copies for 200
Johnson's (W. W.) Elementary Treatise on Differential Calculus. . Smah 8vo, 300
Johnson's (W. W.) Elementary Treatise on the Integral Calculus. Small 8vo, 150
Johnson's (W. W.) Curve Tracing in Cartesian Co-ordinates. 12 mo , 100
Johnson's (W. W.) Treatise on Ordinary and Partial Differential Equations. Small 8vo, 350
Johnson's (W. W.) Theory of Errors and the Method of Least Squares. 12 mo , 50
* Johnson's (W. W.) Theoretical Mechanics. 300
Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.). r2mo, oo
* Ludlow and Bass. Elements of Trigonometry and Logarithmic and Other Tables. 8vo, 300
Trigonometry and Tables published separately Each, 200
* Ludlow's Logarithmic and Trigonometric Tables. 00
Maurer's Technical Mechanics. 8. 400
Merriman and Woodward's Higher Mathematics. 8vo oo
Merriman's Method of Least Squares. $8 \mathrm{vo}, 2$ o
Rice and Johnson's Elementary Treatise on the Differential Calculus. .Sm. 8vo, 300
Differential and Integral Calculus. 2 vols. in one. Small 8vo, 50
Wood's Elements of Co-ordinate Geometry. oo
Trigonometry: Analytical, Plane, and Spherical 12 mo -
MECHANICAL ENGINEERING.
MATERIALS OF ENGINEERING, STEAM-ENGINES AND BOILERS.
Bacon's Forge Practice. 12 mo , 150
Baldwin's Steam Heating for Buildings. 50
Barr's Kinematics of Machinery. 50
* Bartlett's Mechanical Drawing. oo
Benjamin's Wrinkles and Recipes. oo
Carpenter's Experimental Engineering. $8 \mathrm{vo}, 6$ oo
Heating and Ventilating Buildings. 400
Cary's Smoke Suppression in Plants using Bituminous Coal. (In Prepara- tion.)
Coolidge's Manual of Drawing. 8vo, paper, 100
Coolidge and Freeman's Elements of General Drafting for Mechanical En- gineers. Oblong 4to, 250
Cromwell's Treatise on Toothed Gearing 12 mo , 150
Treatise on Belts and Pulleys. 12 mo , 50
Durley's Kinematics of Machines. 8vo, 4 oo
Flather's Dynamometers and the Measurement of Power. 12 mo , 300
Rope Driving. 12 mo , 200
Gill's Gas and Fuel Analysis for Engineers 12 mo , I 25
Hall's Car Lubrication. 12 mo , 00
Hering's Ready Reference Tables (Conversion Factors).16mo, morccco, 50
Hutton's The Gas Engine 8vo, 500
Jamison's Mechanical Drawing. 8vo, 50
Jones's Machine Design:
Part I. Kinematics of Machinery 8vo 150
Part II. Form, Strength, and Proportions of Parts. 8vo, 300
Kent's Mechanical Engineers' Pocket-book. 16 mo , morocco, 500
Kerr's Power and Power Transmission. 8vo, oo
Leonard's Machine Shop, Tools, and Methods. (In press.)
Lorenz's Modern Refrigerating Machinery. (Pope, Haven, and Dean.) (In press.
MacCord's Kinematics; or, Practical Mechanism. 8vo, 500
Mechanical Drawing. 4to, 400
Velocity Diagrams. 8vo, 50
8vo,
Mahan's Industrial Drawing. (Thompson.) 350
8vo Poole's Calorific Power of Fuels. 300
8vo Reid's Course in Mechanical Drawing. oo
Text-book of Mechanical Drawing and Elementary Machine Design 8vo, 00
Richard's Compressed Air 12 mo 150
Robinson's Principles of Mechanism. 8vo, 3 oo
Schwamb and Merrill's Elements of Mechanism. 8vo 3 оо
Smith's Press-working of Metals. 8vo, 3 oo
Thurston's Treatise on Friction and Lost Work in Machincry and Miil Work 8vo, 300
Animal as a Machine and Prime Motor, and the Laws of Energetics. 12 mo ,
' Elen a Macher, and the Laws of
8vo, 750
Warren's Elements of Machine Construction and Drawing.
Weisbach's Kinematics and the Power of Transmission. (Herrmann- Klein.) 8vo, 500
Machinery of Transmission and Governors. (Herrmann-Klein.). 8voWolff's Windmill as a Prime Mover.$8 \mathrm{vo}, 3$ оо
Wood's Turbines. 8vo, 50
MATERIALS OF ENGINEERING.
Bovey's Strength of Materials and Theory of Structures. 8vo, 750
Burr's Elasticity and Resistance of the Materials of Engineering. 6th Edition.
Reset.8vo, 750
Church's Mechanics of Engineering. 8vo, 6 оо
Johnson's Materials of Construction. 8vo, 6 оо
Keep's Cast Iron. 8vo 250
Lanza's Applied Mechanics. 8vo, 750
Martens's Handbook on Testing Materials. (Henning.) 8vo 750
Merriman's Text-book on the Mechanics of Materials. 8vo 400
Strength of Materials 12 mo oo
Metcalf's Steel. A manual for Steel-users 00
Sabin's Industrial and Artistic Technology of Paints and Varnish 8vo оо
Smith's Materials of Machines. 12 mo x oo
Thurston's Materials of Engineering. 3 vols., 8vo 8 оо
Part II. Iron and Steel. 8vo, 350
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their Constituents. 8vo, 250
Text-book of the Materials of Construction. 8vo, 500
Wood's (De V.) Treatise on the Resistance of Materials a.. ?n Appendix on the Preseivation of Timber. 8vo, 200
Wood's (De V.) Elements of Analytical Mechanics. 8vo,300
Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and Wood's (M. P. 8vo, 400
STEAM-ENGINES AND BOILERS.
Berry's Temperature-entropy Diagram. 12 mo , 125
Carnot's Reflections on the Motive Power of Heat. (Thurston.). 12 mo , 150 Dawson's "Engineering" and Electric Traction Pocket-book....16mo, mor., 5 oo Ford's Boiler Making for Boiler Makers. 88 mo , I 00
Goss's Locomotive Sparks. 8vo, 200
Hemenway's Indicator Practice and Steam-engine Economy 12 mo , 200
Hutton's Mechanical Engineering of Power Plants. 8vo,
Heat and Heat-engines. 8vo,
Kent's Steam boiler Economy. 8vo,
Kneass's Practice and Theory of the Injector $8 \mathrm{vo}, \mathrm{I} 50$
MacCord's Slide-valves. 8vo, 200
Meyer's Modern Locomotive Construction. 4to, 10 oo
Peabody's Manual of the Steam-engine Indicator. 12 mo . 150
Tables of the Properties of Saturated Steam and Other Vapors. 8 vo , I oo
Thermodynamics of the Steam-engine and Other Heat-engines. 8 vo,
8 vo,
5
Peabody and Miller's Steam-boilers. 8vo, 4 oo
Pray's Twenty Years with the Indicator. Large 8vo, 250
Pupin's Thermodynamics of Reversible Cycles in Gases and Saiurated Vapors. (Osterberg.) 125
Reagan's Locomotives: Simple Compound, and Electric. 12 mo , 250
Rontgen's Principles of Thermodynamics. (Du Bois.).8vo, 500
Sinclair's Locomotive Engine Running and Management. 12 mo , 200
Smart's Handbook of Engineering Laboratory Practice. 12 mo , 250
Snow's Steam-boiler Practice. 300
Spangler's Valve-gears. 8vo,
Notes on Thermodynamics $12 \mathrm{mo}, 100$
Spangler, Greene, and Marshall's Elements of Steam-engineering 8vo, 3 oo
Thurston's Handy Tables. 8 vo , 150
Manual of the Steam-engine. 8vo, 6 оо
Part I. History, Structure, and Theory. 8vo, 6 oo
Handbook of Engine and Boiler Trials, and the Use of the Indicator and the Prony Brake. 8vo, 500
Stationary Steam-engines 8vo, 250
Steam-boiler Explosions in Theory and in Practice 2 mo , 50
Manual of Steam-boilers, their Designs, Construction, ard Cperaticr. Evo, 500
Weisbach's Heat, Steam, and Steam-engines. (Du Bois.) 5 oo
Whitham's Steam-engine Design. 8vo, 5 oo
Wilson's Treatise on Steam-boilers. (Flather.) 250
Wood's Thermodynamics, Heat Motors, and Refrigerating Machines...8vo, 4 oo
MECHANICS AND MACHINERY.
Barr's Kinematics of Machinery 8vo, 250
Bovey's Strength of Materials and Theory of Structures 750
Chase's The Art of Pattern-making. 12 mo , 250
Church's Mechanics of Engineering. 8vo, 6 оо
Church's Notes and Examples in Mechanics. 8vo, 200
Compton's First Lessons in Metal-working. 12 mo , 50
Compton and De Groodt's The Speed Lathe 12 mo 150.
Cromwell's Treatise on Toothed Gearing 12 mo - 50
Treatise on Belts and Pulleys. 12 mo I 50
Dana's Text-book of Elementary Mechanics for Colleges and Schools. I 50
Dingey's Machinery Pattern Making 200
Dredge's Record of the Transportation Exhibits Building of the World's Columbian Exposition of 1893 4 to half morocco, 500
Du Bois's Elementary Principles of Mechanics:
Vol. I. Kinematics. 8vo, 350
Vol. II. Statics. 8vo, 400
Vol. III. Kinetics. 8vo, 350
Mechanics of Engineering. Vol. I. Small 4to, 750
Vol. II. Small 4to, 10 oo
Durley's Kinematics of Machines. 8vo, 400
Fitzgerald's Boston Machinist. 16 mo , 100
Flather's Dynamometers, and the Measurement of Power. 12 mo , 300
Rope Driving. 12 mo , 200
Goss's Locomotive Sparks. 200
Hall's Car Lubrication. I 00
Holly's Art of Saw Filing 75
8 mo ,
James's Kinematics of a Point and the Rational Mechanics of a Particle.
* Johnson's (W. W.) Theoretical Mechanics. $12 \mathrm{mo}, 300$
Johnson's (L. J.) Statics by Graphic and Algebraic Methods. 8vo, 200
Jones's Machine Design:
Part I. Kinematics of Machinery. $8 \mathrm{vo}, 150$
Part II. Form, Strength, and Proportions of Parts. 8vo, 300
Kerr's Power and Power Transmission. 8vo 200
Lanza's Applied Mechanics. 8vo, 750
Leonard's Machine Shop, Tools, and Methods. (In press.)
Lorenz's Modern Refrigerating Machinery. (Pope, Haven, and Dean.) (In press.)
MacCord's Kinematics; or, Practical Mechanism. 8vo, 500
Velocity Diagrams. 8vo, 150
Maurer's Technical Mechanics. 8vo, 400
Merriman's Text-book on the Mechanics of Materials. 8vo, 400
* Elements of Mechanics. 100
* Michie's Elements of Analytical Mechanics. 8vo, 400
Reagan's Locomotives: Simple, Compound, and Electric. 12 mo 250
Reid's Course in Mechanical Drawing. 8vo. 200
Text-book of Mechanical Drawing and Elementary Machine Design. 8vo, 300
Richards's Compressed Air. 150
Robinson's Principles of Mechanism. 8vo, 3 oo
Ryan, Norris, and Hoxie's Electrical Machinery. Vol. I. $8 \mathrm{vo}, 250$
Schwamb and Merrill's Elements of Mechanism 8vo, 300
Sinclair's Locomotive-engine Running and Management. $12 \mathrm{mo}, 200$
Smith's (O.) Press-working of Metals 8vo, 300
Smith's (A. W.) Materials of Machines. 12 mo , 100
Spangler, Greene, and Marshall's Elements of Steam-engineering. 8vo, 300
Thurston's Treatise on Friction and Lost Work in Machinery and Mill Work. 8vo, 300
Animal as a Machine and Prime Motor, and the Laws of Energetics. 12 mo , 100
Warren's Elements of Machine Construction and Drawing. 8vo, 750
Weisbach's Kinematics and Power of Transmission. 500
Machinery of Transmission and Governors. (Herrmann-Klein $8 \mathrm{vo}, 500$
Wood's Elements of Analytical Mechanics. 8vo, 00
Principles of Elementary Mechanics. 25
Turbines. 8vo, 250
The World's Columbian Exposition of 1893 4to, 00

METALLURGY.

Egleston's Metallurgy of Silver, Gold, and Mercury:
Vol. I. Silver. 8vo, 750
Vol. II. Gold and Mercury. 750
** Iles's Lead-smelting. (Postage 9 cents additional.) 50
Keep's Cast Iron. 50
Kunhardt's Practice of Ore Dressing in Europe. 50
Le Chatelier's High-temperature Measuremepts. (Boudouard-Burgess.) $\mathbf{1 2 m o}$, 00
Metcalf's Steel. A Manual for Steel-users 12 mo , 00
Smith's Materials of Machines. 12 mo ,
Thurston's Materials of Engineering. In Three Parts. 8vo, 800
Part II. Iron and Steel. 8vo, 50
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their Constituents. 8vo,
250
250
Ulke's Modern Electrolytic Copper Refining. 8vo, 300
MINERALOGY.
Barringer's Description of Minerals of Commercial Value. Oblong, morocco, 250
Boyd's Resources of Southwest Virginia. 8vo, 300
Map of Southwest Virignia. Pocket-book form. 200
Brush's Manual of Determinative Mineralogy. (Penfield.). 8vo, 400
Chester's Catalogue of Minerals. 8vo, paper, 1 oo
Cloth, 125
Dictionary of the Names of Minerals. 8vo, 350
Dana's System of Mineralogy. Large 8 vo , half leather 50
First Appendix to Dana's New "System of Mineralogy." Large 8vo, 1 oo
Text-book of Mineralogy. 400
Minerals and How to Study Them 150
Catalogue of American Localities of Minerals. 00
Manual of Mineralogy and Petrography. 00
Douglas's Untechnical Addresses on Technical Subjects. 100
Eakle's Mineral Tables. $8 \mathrm{vo}, 12=$
Egleston's Catalogue of Minerals and Synonyms. 8vo, 250
Hussak's The Determination of Rock-forming Minerals. (Smith.). Small 8vo, 200
Merrill's Non-metallic Minerals: Their Occurrence and Uses. 8vo, 400

* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests.
8vo. paper, - 50
Rosenbusch's Microscopical Physiography of the Rock-maining Minerais. (Iddings.) 8vo. 500
* Tillman's Text-book of Important Minerals and Rocks. 8vo. 2 oo
Williams's Manual of Lithology. 8vo, 300
MINING.
Beard's Ventilation of Mines. 12 mo 50
Boyd's Resources of Southwest Virginia. 8vo. 300
Map of Southwest Virginia. Pocket book form, 200
Douglas's Untechnical Addresses on Technical Subjects 12 mo . 100
* Drinker's Tunneling, Explosive Compounds, and Rock Drills . 4to, hf mor. 2500
Eissler's Modern High Explosives. 8vo. 400
Fowler's Sewage Works Analyses. $12 \mathrm{mo} \quad 200$
Goodyear's Coal-mines of the Western Coast of the United States. 12 mo .
Ihlseng's Manual of Mining. 8vo.
** Iles's Lead-smelting. (Postage gc. additional.). 12 mo .
Kunhardt's Practice of Ore Dressing in Europe. 8vo.
O'Driscoll's Notes on the Treatment of Gold Ores. 8vo.
* Walke's Lectures on Explosives. 8vo,
Wilson's Cyanide Processes. 12 mo ,50
Chlorination Process. 12 mo ,150
Wilson's Hydraulic and Placer Mining 12 mo , 200Treatise on Fractical and Theoretical Mine Ventilation. $\mathbf{1 2 m o}$,I 25
SANITARY SCIENCE.
Folvzell's Sewerage. (Designing, Construction, and Mairtenance.). . 8vo, 8vo,
Fuertes's Water and Public Health. 12 mo , 12 mo , $16 \mathrm{mo}, 1$ oo Gerhard's Guide to Sanitary House-inspection
Goodrich's Economic Disposal of Town's Refuse. Demy 8vo, 50
Hazen's Filtration of Public Water-supplies. 8vo, 00
Leach's The Inspection and Analysis of Food with Special Reference to State Control 8vo, 750
Mason's W ater-supply. (Considered principally from a Sanitary Standpoint) 8vo, 400
Examination of Water. (Chemical and Bacteriological.). 12 mo , 25
Merriman's Elements of Sanitary Engineering. 8vo,
Ogden's Sewer Design. 12 mo ,
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer- ence to Sanitary Water Analysis. 12 mo , I 25
* Price's Handbook on Sanitation. 50
Richards's Cost of Food. A Study in Dietaries. 12 mo ,
Cost of Living as Modified by Sanitary Science. 12 mo , I 00
Richards and Woodman's Air, Water, and Food from a Sanitary Stand- point. 8vo,
* Richards and Williams's The Dietary Computer. 8vo,
Rideal's Sewage and Bacterial Purification of Sewage. 8vo,
Turneaure and Russell's Public Water-supplies. 8vo,
Von Behring's Suppression of Tuberculosis. (Bolduan.) 12 mo ,
Whipple's Microscopy of Drinking-water 8vo,
16 mo , 200 150 350
Woodhull's Notes on Military Hygiene 500 I 00 350
MISCELLANEOUS.
De Fursac's Manual of Psychiatry. (Rosanoff and Collins.). . . Large 12 mo ,250
Emmons's Geological Guide-book of the Rocky Mountain Excursion of the
Emmons's Geological Guide-book of the Rocky Mountain Excursion of the International Congress of Geologists. ..Large 8vo, I. 50
Ferrel's Popular Treatise on the Winds. 8vo.
Haines's American Railway Management. 12 mo ,
=:ott's Composition, Digestibility, and Nutritive Value of Food. Mounted chart,
Fallacy of the Present Theory of Sound. 125400250
Ricketts's History of Rensselaer Polytechnic Institute, 1824-1894. Small 8vo, 300
Rostoski's Serum Diagnosis. (Bolduan.). I2mo, I 00
Rotherham's Emphasized New Testament Large 8vo,
Steel's Treatise on the Diseases of the Dog. 8vo,
Totten's Important Question in Metrology. 8vo,
The World's Columbian Exposition of 1893 4to,
Von Behring's Suppression of Tuberculosis. 12 mo ,
Winslow's Elements of Applied Microscopy 12 mo ,
Worcester and Atkinson. Small Hospitals, Establishment and Maintenance;200350250
Suggestions for Hospital Architecture : Plans for Small Hospital. 12 mo ,125
HEBREW AND CHALDEE TEXT-BOOKS.
Green's Elementary Hebrew Grammar. 12 mo , I 25Hebrew Chrestomathy.8vo,200Gesenius's Hebrew and Chaldee Lexicon to the Old Testament Scriptures.(Tregelles.).Small 4 to, half morocco,
500Letteris's Hebrew Bible.8vo,225
-

$\stackrel{\rightharpoonup}{4}$
-
;

UNIVERSITY OF TORONTO

Department of Civil Engineering
Mnnicipal and Strictural
$+$

```
QA Martin, Louis Adolphe
807 Text-book of mechanics. lst ed.
M38 v.l
v.1
P&CA Scie
```

PLEASE DO NOT REMOVE CARDS OR SLIPS FROM THIS POCKET

UNIVERSITY OF TORONTO LIBRARY

[^0]: * The sign \propto is read "varies as," and μ is called a proportionality factor.

