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PREFACE

The kind reception of the first five volumes of this text-

book by both teachers and students has led me to continue

the same method of presentation.

I again seek to produce a text which will encourage the

student to think and not to memorize, to do and not simply

to accept something already done for him. At the same

time care has been taken to furnish sufl&cient material in

the way of explanation and example so that the student

may not become discouraged.

In solving examples and exercises relating to steami the

Steam Tables and Diagrams of Marks and Davis (Long-

mans, Green, and Co.) have been used.

I hereby gratefully acknowledge the assistance of my wife,

Alwynne B. Martin, both in the preparation of the manu-

script and in the reading of the proof. Mr. Gustav G.

Freygang has also been kind enuf to read both manu-

script and proof.

L. A. M., Jr.

Castle Point, Hoboken, N. J.

January, 1016
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THERMODYNAMICS

INTRODUCTION

Thermodynamics is the science which deals with the

relation between heat and other forms of energy. As most

physical, chemical, and biological processes involve energy

transformations involving heat, thermodynamics is a most

fundamental science.

In this text-book the subject matter will be limited to

the relation of heat to mechanical energy in both its po-

tential and kinetic forms. It will include the mechanics

of gases and vapors with special emphasis on technical

or engineering applications.

Energy.—A body possesses energy when it can do work,

when it can move itself or other bodies against resistances.

The various forms in which energy is known to exist are

1. Kinetic energy

2. Potential energy

3. Heat energy

4. Radiant energy

5. Electric energy

6. Magnetic energy'

7. Chemical energy.

Heat is a Form of Energy.—It has been experimentally

demonstrated that other forms of energy may be con-
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verted into heat and that heat may be transformed into

other forms of energy. Thus heat must be a form of

energy.

It is useful to conceive a way in which this heat energy

may reside in a body. As a working hypothesis it is usual

to postulate the molecular constitution of matter and to

point to the molecules as a storage place of heat energy.

The Greek philosophers originated the idea that matter

consists of ultimate particles or molecules separated by

interspaces. By means of this hypothesis many physical

properties of matter such as compressibility, solubility,

etc. are readily explained; moreo^'er, the laws of chemical

combination are thereby explained with wonderful sim-

plicity.

Internal Kinetic Energy.—The molecules of which

matter is assumed to be composed are conceived to be in

constant vibratory motion. Their mean velocity deter-

mines their kinetic energy and this mean velocity is

assumed to increase with increasing temperature. The

molecules of a body whose temperature is high may be

conceived as producing the waves in the ether (which

constitute radiant energy) owing to their rapid vibratory

motion.

The higher the temperature of a body the greater will

be its store of internal kinetic energy.

Internal Potential Energy.—The molecules of which

matter is composed are conceived to exert an attraction

for each other. This mutual attraction ex-plains the co-

hesion which matter exhibits. If the mean distance between

molecules is increased then work must be done in over-

coming this attraction. Energy, equal in amount to the
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work done, is stored within the body as internal potential

energy.

A change in the mean distance between the molecules

may manifest itself as a change in volume or as a change

in ph)'sical state. In either case a rearrangement of the

molecules occurs.

External Work.—The heat supplied to a body from an

external source does not reside wholly in the molecules

of the body as internal kinetic and potential energies.

Expansion usually accompanies the absorption of heat.

Energy is necessary to do the work required in overcoming

any external pressure exerted upon the body. This energy

must be supplied to the body in the form of heat energy.

To compute the external work done in overcoming an

external pressure, p, acting upon the expanding body note

that the force on a differential element, dA, of the surface

of the body is pdA. If this force is displaced normally to

the surface thru a distance ds the work done is pdAds.

As dAds represents a differential volume of the increase

in size of the body which may be denoted hy dV we have

as the external work performed, I pdV.

The Conservation of Energy.^The heat absorbed by

a body from some external source must be wholly accounted

for, as energy has never been known to be either created

or destroyed.

In order to establish an equation expressing the con-

servation of energy as applied to the above described forms

of energy let

AQ be the heat absorbed by a body from external sources,

AP be that part of A() which is stored in the body as an

increase in internal potential energy,
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Ai<C be that part of AQ which is stored in the body as an

increase in internal kinetic energy,

AW be that part of AQ which must be expended in over-

coming the external pressure acting upon the body

and which is stored as external potential energy,

then for our purpose the fundamental equation expressing

the conservation of energy is

AQ =AP+AK+AW.

To illustrate the meaning of these symbols consider

the heating of water. Here the increase in volume is very

slight and therefore AW is very small. As no change

in physical state occurs and as the mean distance between

the molecules is not otherwise greatly increased by expan-

sion AP is also small. The temperature does increase so

that AK is relatively large and practically equals the whole

of AQ. Thus the heat supplied is practically stored as

increased internal kinetic energy due to an increase in

the mean vibratory velocity of the molecules.

Consider now the conversion of boiling water into steam.

Here the temperature remains constant so that AK is

zero. AW and AP however are very large owing to the

large increase in volume and to the change in physical

state which calls for a rearrangement of the molecules,

the mean distance between molecules having greatly in-

creased.

The Units to be Used.—The units used by English-

speaking engineers for measuring the energies above dis-

cussed are the foot-pound for the unit of work and energy

and the British thermal unit for the unit of heat.
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The British thermal unit (B.t.u.) is defined as y g-^ of the

heat which is absorbed by a mass of one pound of water

while its temperature increases from 32 to 212° F, the

pressure remaining constant and equal to the standard

atmosphere. This unit is sometimes called the mean

B.t.u. and it equals the heat required to change the tem-

perature of one pound of water from 63 to 64° F under

atmospheric pressure.

The First Law of Thermodynamics.—The first law of

thermodynamics states that not only can heat be converted

into other forms of energy (and vice versa) but that the

complete transformation of a definite quantity of heat will

always yield a definite quantity of mechanical energy.

Numerous experiments have led to the conclusion that

777.6 foot-pounds of mechanical energy always yield one

B.t.u. of heat.

This constant, which' for purposes of engineering cal-

culations may be assumed to be 778, will for convenience

be represented by the letter / in honor of Joule who in

1843 made the first experiments leading to a determination

of this constant.

Thermal Capacity.—The heat required to raise the tem-

perature of a body one degree F is called the thermal

capacity of the body.

The thermal capacity of a body may vary with each

degree of the thermometric scale and even for the same

range of temperature the thermal capacity of a given

body need not be constant under all conditions. It should

be remembered that the heat supplied may be stored in

three ways: (i) as internal kinetic energy manifested to

our senses as a change in temperature, (2) as internal po-
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tential energy manifested as a change in volume or as a

change in physical state, (3) as external work performed

in overcoming external pressure. At least the third manner

in which heat may be absorbed by a body must yield vary-

ing results with varying external conditions. These con-

ditions have no connection with the nature of the body.

If AQ represents the heat absorbed under certain con-

ditions with an increase in the temperature of the body

from h to t2° F, then the mean thermal capacity of tht

body equals —~ for this range of temperature and under
^2

—

h

the existing conditions.

The instantaneous value of the thermal capacity of a

body at a temperature t° F would be represented by

dQ
dt'

If the thermal capacity be divided by the mass of the

body in pounds the thermal capacity per unit of mass is

obtained.

For water at 63.5° F and under standard atmospheric

pressure, the thermal capacity per unit mass is by defini-

tion one B.t.u.

Specific Heat.—The specific heat of a substance at a

given temperature and under given external conditions is

the ratio of the thermal capacity per unit mass of this

substance at the given temperature and under the given

conditions to the thermal capacity per unit mass of water

under some chosen standard temperature and external

conditions.
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If the chosen temperature and pressure for water are

63.5° F and atmospheric pressure then its thermal capacity

per unit mass is unity and the specific heat of the substance

becomes numerically equal to its thermal capacity per

unit mass under the given conditions.

The heat absorbed by a given quantity of a substance

would thus be computed from the continued product of its

specific heat under the existing conditions, its mass, and

the change in temperature.





GASES

CHAPTER I

THE LAWS OF IDEAL GASES

Section I

JOULE'S, BOYLE'S, AND CHARLES' LAW

The laws about to be discussed are obeyed more or less

exactly by all gases. The more the conditions under which

the gases exist are removed from the conditions approaching

liquefaction the more closely do the gases obey these laws.

Thus at ordinary temperatures and pressures water vapor

does not obey the laws even approximately, ammonia and

carbon dioxide may as a first approximation be assumed

to follow the laws of ideal gases, while hydrogen, oxygen,

nitrogen, and air obey these laws with sufficient accuracy

for all engineering purposes.

Any hypothetical gas which would obey absolutely the

following laws is called an ideal gas (also a perfect gas).

Actual gases approach this ideal condition more closely

as their molecules become more and more separated and

thus exert less and less influence upon each other. An

ideal gas must thus be conceived to be so attenuated that

intermolecular forces no longer exist. This conception leads

to the first law of ideal gases.

9
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Joule's Law.—In an ideal gas no change in internal

potential energy occurs when the gas absorbs or rejects

heat. Thus in an ideal gas any change in internal energy

must be a change in internal kinetic energy which mani-

fests itself as a change in temperature.

In our notation we have for ideal gases

AP = 0.

To test this law Joule devised the following experiment

not knowing that Gay-Lussac had already performed it

in a slightly different way. Joule connected two large

receivers by means of a pipe closed with a valve. In one

of these receivers he compressed air to 22 atmospheres;

the other he exhausted. The whole apparatus was im-

mersed in a well insulated water-bath whose temperature

could be accurately determined. The experiment consisted

in noting the change in temperature due to the flow of air

from one receiver into the other after the valve was opened.

No change in temperature was detected.

In the notation of our fundamental energy equation

AQ= AP-\-AK-\-AW

this experiment was so devised that

AQ = o, for no heat was supplied to the air and

APT=0, for no external work was done during the flow

of the air from one receiver into the other.

Moreover the experiment showed that under

the existing conditions

AK = o, for no change in temperature occurred. Thus

AP must be equal to zero.
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If the receivers in Joule's experiment are each immersed

in a separate water bath, then considerable cooling would

be noticed in the bath surrounding the compressed air

receiver and the temperature of the bath surrounding the

originally exhausted receiver would be correspondingly

increased. This is explained by the fact that the air leaving

the high pressure receiver does so with considerable velocity

and therefore kinetic energy. This kinetic . energy can be

derived only from energy already in the system. Thus

heat energy equal in amount to the kinetic energy dis-

appears with a corresponding drop in temperature. Simi-

larly the kinetic energy carried over into the other receiver

is transformed by impact and friction into heat energy

with a corresponding rise in temperature.

Boyle's Law.—^At constant temperature the volumes of

a given mass of an ideal gas are inversely proportional

to che corresponding pressures.

Thus ir^:r'V2 pi

or p\ Vi = p2 V2 = a constant,

when / is constant.

Law of Charles.—At constant pressure, each change of

one degree Fahrenheit in temperature causes a change in

the volume of an ideal gas at 32° F equal to ^l^ of the

volume at 32° F, and

At constant volume, each change of one degree Fahrenheit

causes a change in the pressure at 32° F equal to ^J ,^ of the

pressure at ^2° F.

To express the two forms of this law in symbols, let

jjj be represented by a for convenience, and let the zero
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subscript refer to the conditions existing at 32° F, so that

po and Vo represent the pressure and the volume of the mass

of ideal gas when the temperature is 32° F. Then the

law of Charles may be written

V=Vo+Voa(t-s2),

when p is constant and

p = po-\-poa(t-7,2),

when V is constant, where p and V are the pressure and

the volume when the temperature is /° F.

Absolute Zero.—The above symbolic expressions of the

law of Charles may be simplified by using, instead of the

Fahrenheit scale of temperature, a scale having the same

degrees but whose zero is at the lowest conceivable tem-

perature, the absolute zero.

The kinetic theory of gases shows that the pressure

which a gas exerts may be explained as the result of the

bombardment of the walls of the enclosing vessel by the

molecules of the gas. The impact and therefore the pressure

exerted depends upon the velocity of the impinging mole-

cules. This velocity in turn depends upon the temperature

of the gas. Thus no temperature means no vibratory

velocity and no pressure. To find the absolute zero of

temperature on the Fahrenheit scale we may thus place

the pressure p in

p= po+poa(t—S2)

equal to zero and solve for i.

We find /=— 460° F. Therefore the absolute zero lies

492 Fahrenheit degrees below the freezing point of water.
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Temperature referred to this absolute zero is called ab-

solute temperature and will always be denoted by capital T.

Thus r=46o+/

where / is the temperature on the Fahrenheit scale.

Placing /=r— 460 in the equations expressing the law

of Charles we obtain

F= VoaT

and p= poaT.

The General Law for Ideal Gases.—A single law in-

cluding Boyle's law and both forms of Charles' law is

desirable.

To recapitulate we have

at constant temperature

pV = poVo= a. constant,

at constant pressure

—=a\o = a constant,

at constant volume

P—= apo =a constant.

A single equation combining these three equations may
be obtained by equating the product of their left-hand

members to the product of their right-hand members,

as follows:

^=a-Po'V.\



14 THERMODYNAMICS

As a=— and as T= A6o-\-t, whence To=402, we have
492

pV^poVo
T To

'

Another method of obtaining this general relation between

the pressure, the volume, and the temperature of any

given mass of gas under any conditions and the corre-

sponding values at 32° F consists in assuming an intermediate

step in the transition as illustrated in Fig. i. This inter-

FlG. I.

mediate step is necessary, because the application of either

Boyle's or Charles' law requires in each case a constant

condition. Thus we may maintain T constant during the

change from A to B (Fig. i) during which p becomes po

and V changes to V. During the second stage of the

transition po must now be maintained constant, while

V changes to Vq and T to To-

Applying Boyle's law during the change from A to B,

we have

pV=PoV\
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From Charles' law applied to the change from B to

C we have

T To

By the elimination of V from these equations

pV^PoVo
T To

'

Exercise i. Deduce the last equation assuming the pressure

to remain constant during the first step of the transition and

the temperature to remain constant during the second part of

the transition.

In the above equations V represents the volume of a

given mass of m pounds of gas. Let v represent the volume

of one pound of the gas, then

V = 7nv, and of course \'o=>f''Vo,

and we may write

pvm _ poVo

T ~ To
""'

or ^ =mR

where i? is a constant for any given gas and

R is called the gas constant. Its value depends not

only upon the nature of the gas considered but also upon

the units selected in the measurement of p, V, T, and m.
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English-speaking engineers always measure p, the abso-

lute pressure, in pounds per square foot, V , the volume, in

cubic feet, T, the absolute temperature, in Fahrenheit

degrees, m, the mass of the gas, in pounds.

Exercise 2. The weight of atmospheric air at normal tem-

perature and pressure is 0.08071 pound per cubic foot. Find

the gas constant for air.

Exercise 3. At what temperature will 50 pounds of air occupy

60 cubic feet when under an absolute pressure of 205 pounds

per square inch? {R for air 53.3.)

Exercise 4. A cylindrical tank (capacity 3 cubic feet) con-

tains 20 pounds of air at 60° F. To what internal fluid pres-

sure is the tank subjected?

Section II

THE GAS CONSTANT OF ANY IDEAL GAS

In order to determine the gas constant for any ideal

gas in terms of the molecular weight of the gas, Avogadro's

law is used.

Avogadro's Law states that at the same temperature

and pressure equal volumes of all ideal gases contain the

same number of molecules.

Thus the weights of equal volumes of two ideal gases

must be proportional to their molecular weights. As the

weight of oxygen (molecular weight 32) is found to be

0.08922 pound per cubic foot at n.t.p. the specific weight

of any other ideal gas whose molecular weight is m is

(0.08922)! —
I
at n.t.p.
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The volume of one pound of any gas is thus -. -r-;

cubic feet when under an absolute pressure of 14.7 pounds

per square inch and at a temperature of 32° F.

The gas constant of any gas is therefore

To 492X 0.0892

2

Xm m
'

where n is the molecular weight of the gas.

Exercise 5. Show that the weight of a cubic foot of any

gas at n.t.p. in pounds is

3S8*

Exercise 6. Compute R for nitrogen.

Exercise 7. A tank (capacity 5 cubic feet) contains 2 pounds

of acetylene. At what temperature will the pressure in the

tank reach 100 pounds per square inch gage?

Exercise 8. Two receivers, capacities 200 and 100 cubic feet,

are maintained at temperatures of 150° F and 80° F respect-

ively. These receivers are connected by a pipe and contain

1 20 pounds of air.

(a) Find the pressure in the system.

(b) What weight of air does the larger receiver contain?

Exercise 9. Two tanks, each having a capacity of 3 cubic

feet, are filled at 1500 pounds per square inch gage, one with

oxygen, the other with hydrogen, both at 70° F. If these

tanks are of equal weight when empty, find the difference in

their charged weights.
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Section III

THE GAS CONSTANT OF GASEOUS MIXTURES

To compute the gas constant of a mixture of ideal gases

Dalton's law is used.

Dalton's law states that the pressures exerted by a

mixture of ideal gases upon the walls of the containing

vessel equals the sum of the pressures due to each of the

constituent gases, provided they each in turn alone occupied

the containing vessel at the temperature of the mixture.

The law, pV=mRT, is apphcable to the mixture as

well as to each individual gas. It remains to find the

value of R for the mixture in terms of the i?'s of the indi-

vidual gases composing the mixture.

Let the mass w of the mixture be composed of the masses

mi, W2, . . . of the constituent gases and let the pressure

of the mixture be p and equal to pi-\-p2-\-- • ., the sum

of the pressures which each gas occupying the whole vol-

ume of the mixture would individually exert, this in accord-

ance with Dalton's law.

Then if Ri, R2, . . . are the gas constants, of the con-

stituent gases we have from the general equation of

gases under the assumption that each gas alone occupies

the original space of the mixture at the temperature of

the mixture,

pi]'= niiRiT

p2V— m2R2T, etc.

Adding these equations we obtain

pV={miRi+7n2R2-\- . . .)T.
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Comparing this equation with the equation

pV=mRT

applied to the mixture and in which R is the gas constant

of the mixture we see that

mR= miR]_-\-m2R2-\-- - •

m m

Here — ,

—, • . represent the parts by weight of the
w m

constituent gases forming the mixture.

Exercise io. Show that the pressure due to any one gas

of a mixture may be represented by

mn Rn ,

^"=m'R^-

Exercise it. Air contains 23.6 per cent of oxygen apd

76.4 per cent of nitrogen by weight.

(a) Compute the gas constant for air by means of the gas

constants of oxygen and of nitrogen.

(h) What part of the 30 inches of mercury representing nor-

mal atmospheric pressure is due to the oxygen, and what part

is due to the nitrogen of the atmosphere?

Exercise 12. Compute the apparent molecular weight of

air by means of the gas constant computed in Exercise 11 {a).

Exercise 13. Compute the weight of a cubic foot of air at

n.t.p. by means of the result obtained in Exercise 12.

Exercise 14. Analysis of a flue gas shows 12 parts of COj,

6 parts of O2, and 82 parts of N2 by volume.

Compute {a) the gas constant,

{b) the apparent molecular weight,

(r) the specific weight (pounds jht cubic foot) at n.t.p. of

this mixture.
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Section IV

THE SPECIFIC HEAT OF GASES

It follows from the units and the standard conditions

described in the Introduction that the specific heat of

any substance is numerically equal to its thermal capacity

per unit mass.

If c represents the specific heat under certain conditions

of temperature and pressure then the heat AQ absorbed

by a mass m of the given substance may be computed as

follows

Ae=/,mcdl.

If c is or is assumed constant then

A(2 = mcA^.

The heat absorbed by a body may have other effects

besides that indicated by a change in temperature. It

may do external work. The heat absorbed computed by

means of a specific heat must be interpreted as including

not only the heat required to increase the temperature

even tho it is computed by means of a change in tempera-

ture but also all the heat absorbed and stored or utilized

in other ways as in doing external work.

Thus the specific heat of a body may have various values

even for the same range of temperature depending upon

the external conditions.

For solids and liquids the specific heats will vary only

slightly, for a gas the specific heats may have any value

from plus to minus infinity for the same range in tem-

perature, under various external conditions.
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The specific heat of a gas depends not only upon the

nature of the gas but also upon the conditions under which

the heat is supplied to the gas. These conditions deter-

mine how much of the heat energy must be used in doing

external work during the heating of the gas.

The energy stored in an ideal gas must be stored wholly

as internal kinetic energ}' (Joule's law), so that even with

increasing volume and the accompanying increase in the

mean distance between the molecules of an ideal gas no

change in the internal potential energy occurs.

The energy equation for an ideal gas is therefore

AQ=AK+AW.

The Specific Heat at Constant Volume.—If a gas is

heated at constant volume no external work can be per-

formed during the absorption of the heat.

Therefore AWv= o,

and AQv= AKv,

where the subscripts v are used to indicate change at con-

stant volume. Under these conditions the whole heat energy

absorbed is stored in the gas.

Let Cv represent the specific heat of the gas at constant

volume then

^Qv=^nj^ CvdT.
Ti

It can be shown mathematically (see Exercise 275) that

the Cv for any gas obeying the law pV=mRT must have

the same value no matter at what pressure or at what

volume the gas may be heated. But Cp may vary with the
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temperature and experiments have shown that the specific

heats of all gases are linear functions of the temperature.

Thus the changing value of Cp for any gas may be rep-

resented by

Cv= a-\-bT,

where a and h are empirical constants.

Moreover it has been shown experimentally that equal

volumes of diatomic gases have the same thermal capacity

at the same temperature. As the masses of equal volumes

of diatomic gases are proportional to the molecular weights

of these gases (Avogadro's law) it follows that the thermal

capacities of masses of diatomic gases which are propor-

tional to their molecular weights must be equal or

where {cv)\, {c^2 • • - are the specific heats at constant

volume, and Ati, M2, • • • are the corresponding molecular

weights of the diatomic gases.

Langen has shown that for diatomic gases such as

H2, molecular weight= 2.016

N2, molecular weight =28.08

O2, molecular weight=3 2. 00

CO, molecular weight= 28.00

NO, molecular weight= 30. 04

and for mixtures of these gases,

MCi,=4.625+o.ooo588r,

where T is expressed in absolute Fahrenheit degrees.

For carbon dioxide (jj.= 44) Langen found

^iC5=6.774-fo.oo2ior
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and for highly superheated steam (/x= 1 8.01 6)

/xc„= 4.72+o.oo2387'

where T is in absolute Fahrenheit degrees.

These experimental results show that the more a gas

approaches the condition of the so-called permanent gases

the less does the specific heat at constant volume vary

with the temperature.

Ct, for any ideal gas is assumed to remain constant

for all temperatures.

The c„ of diatomic gases may be considered constant

between 32 and 400° F for engineering computations, and

may be taken as

0.1 7 1 for air

2.42 for H2

0.174 for N2

0.155 fo'' O2

0.172 for CO.

Exercise 15. (a) At what temperature is Cv for air equal

to 0.171?

{b) What is the percentage increase in the Cv of any diatomic

gas between 32 and 400° F?

Exercise 16. If fxCv = a-\-hT, where a and /; are constants,

compute the heat required to change the temperature of m
pounds of the gas from Ti to T2 degrees at constant volume.

What is the mean specific heat of the gas between Ti and Tz

degrees?

The Specific Heat at Constant Pressure.—When a gas

is heated under constant pressure its volume increases

according to the law pV=mRT and external work must be
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performed in overcoming the constant pressure p. This

work equals

where the subscript p indicates constant pressure and

the result is expressed in heat units.

During this change of volume the temperature of the gas

has increased from Ti to T2°. Thus the internal energy

of the gas has increased, and according to Joule's law its

internal kinetic energy only has increased. As this increase

in internal kinetic energy is independent of the change in

volume and depends only on the change in temperature

we see that Ai^^, is the same as any Ai^C occurring under

any other external conditions. We may put

CidT.
Ti

If Cv is constant as it is for an ideal gas then

AKp=A.Kv= niCviT2—Ti).

The total heat energy added to an ideal gas changing

its state under constant pressure is thus

AQp = AKp-{-AWp = mc,{T2-Ti)-\-jPiV2-Vi).

The heat absorbed by an ideal gas under constant pres-

sure may also be computed by means of its specific heat

at constant pressure, thus

and as Cp is constant

AQp=inCp{T2—Ti).
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Note that the use of Cp leads directly to the value of

AQp computed above in two steps by means of the energy

equation.

The Relation between Cp and Cv.—As the AQp's just

computed in two ways must be equal we may put

mc,(T2-Tinjp{V2-Vi) = mCp{T2-Ti).

To simplify this equation eliminate the p and the F's by

means of pV=mRT from which we obtain

p Vi = niRTi and p V2 = mRT2

for p by hvpothesis remains constant.

Thus mCv{T2— T{)-\-jmR{T2— Ti) = mCp(T2— Ti)

R
or Cp—Cv= ^.

This proof of the fundamental relation between Cp and c»

is based upon the assumption that Cp and Cv are constant

(as they would be for ideal gases) or that Cp and Cv are

the mean specific heats.

By writing the energy equation in its differential form

it is readily shown that the relation also holds for the

instantaneous values of varying specific heats.

Thus dQp= dKp+dWp

^dK,-{-dWp

or mcpdT= mcvdT-{-—pd V.
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In general

and

Cn— Cfi\

1.98

1.98

For purposes of engineering calculations Cp for diatomic

gases between 32 and 400° F is usually considered con-

stant. The following values may be used for Cp, Cc,

and k.
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Exercise 21. Compute the mechanical equivalent of heat

from the following experimental data. One pound of air at

n.t.p. occupied 12.39 cubic feet, Cp for air at 32° F equals 0.2375

and Ce at 32° F. equals 0.1689.

Exercise 22. Ten pounds of air are heated at a constant

pressure of 200 pounds per square inch absolute from 50 to

60° F.

(a) How much heat energy has been supplied?

(b) How much of this energy is stored in the air?

Exercise 23. One pound of air at 100° F expands at con-

stant pressure while 20 B.t.u. are supplied.

(a) What is the final temperature of this air?

(b) How much external work has been done?

Exercise 24. How much heat is required to expand 20 cubic

feet of air to 30 cubic feet under a constant pressure of 60 pounds

per square inch absolute?

Exercise 25. Three pounds of air confined under constant

pressure are heated from 50 to 100° F.

(a) How much heat is supplied?

(b) What increase in internal energy results?

(c) How much external work is done?

Section V

THE FUNDAMENTAL LAWS FOR IDEAL GASES

The fundamental laws for ideal gases may be summed

up in mathematical language as follows.

pV =mRT

1540
where R

dQ = dK+dW,
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and dK =mcAT

under all conditions.

Ri.pS
Cn Ce — _ —

J M

As dW= jpdV

the energy equation may be written

dQ=mc„dT+|pdV.

This equation may also be expressed in terms of dp,

instead of dV by means of pV= mRT, from which we

obtain

pdV-\-Vdp^mRdT

or pdV= mRdT-Vdp.

A A
^

And as Cp— G= -y,

this equation reduces on elimination of R to

pdV= mJ {cp-c,)dT- Vdp,

so that dQ = mCpdT - TrVdp.

Exercise 26. Show that dQ may be expressed as follows:

dV
dQ=mCf4T+m{cp— Cv) ^~^,

dQ= mcpdT—m {cp

—

Co) T—

,

P

dp dV
dQ= mcvT \-mcpT-rT-.^

p V



CHAPTER II

CHANGES OF STATE OF IDEAL GASES

Section VI

GENERAL DISCUSSION

Ideal gases obey the law

pv= RT,

where i? is a constant for any given gas.

The state of a gas is determined by its volume, its pres-

sure, and its temperature.

In this chapter will be discussed some changes of state

which a gas undergoes when any or all of its conditions

of volume, pressure, and temperature vary.

Characteristic Equation and Surface.—As the state of

a gas depends upon three conditions namely p, v, and T

this state may be represented graphically by a point in

space referred to three rectangular axes. The locus of

all points representing possible states of the gas is a surface

whose equation is

pv=RT,

the characteristic equation of the ideal gas.

Every gas has its own characteristic equation and corre-

sponding surface because the parameter R of the equation

depends upon the nature of the gas,

30
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The characteristic surface of any ideal gas is a hyperbolic

paraboloid, a portion of which is shown in Fig. 2. That

this is so is evident from the following analysis of the

equation pv = RT.

(i) The equations of all sections of the surface made

Fig. 2.

by planes parallel to the /Ji'-plane, for which T=Ti, a

constant, are

pv= RTi = a, constant.

These curves are thus equilateral hyperbolas.

(2) The equations of all sections of the surface made

by planes parallel to the pT-plane, for which v= vi, a

constant, are
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These sections are thus straight lines passing thru the

D-axis.

(3) The equations of all sections of the surface made

by planes parallel to the z^r-plane, for which p= p\, a

constant, are

These sections are thus straight lines passing thru the

^-axis.

The points on any line drawn upon the characteristic sur-

face of an ideal gas between the points {pi, vi, Ti) and

{p2, V2, T2) represent a possible sequence of values thru

which p, V, and T may pass while one pound of the gas

changes its state from a condition determined by pi, vi,

and Ti to another condition determined by p2, vo, and T2.

Exercise 27. What condition is imposed upon a change of

state following the line (a) AOE, (b) HOD, (c) FOB, (d) BC,

(e) HA
, (/) GF traced upon the characteristic surface of an ideal

gas, Fig. 2?

Exercise 28. How does {a) an increase in pressure at constant

volume {b) a decrease in volume at constant pressure affect

the temperature of an ideal gas?

Solve analytically, and also graphically by means of Fig. 2.

Instead of using lines traced upon the characteristic sur-

face to represent changes of state of a gas it is customary

to use only the projections of these lines upon the coor-

dinate planes. As the external work done by a gas during

a change of state always equals \ pdV and as this external

work is of great importance in engineering applications

the projection upon the />z)-plane is the most useful pro-
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jection. Fig. 2 shows the pv-curves representing some of

the more important changes of state. The projected lines

naturally show only the changes which occur in the pres-

sure and the volume of the gas; no changes in temperature

can here be indicated.

Important Changes of State.—It is evident that changes

of state may occur in innumerable ways. Any line drawn

upon the characteristic surface would represent a possible

way in which a change of state might occur. Of all pos-

sible changes of state the only ones of importance to the

engineer are:

Isothermal changes, during which the temperature remains

constant,

Isometric changes, during which the volume remains con-

stant,

Isopiestic changes, during which the pressure remains con-

stant,

Isodynamic changes, during which the internal energ} re-

mains constant,

Adiabatic changes, during which no heat is received from

or rejected to external bodies,

Polytropic changes, during which the heat supplied to or

withdrawn from the gas by external bodies is directly

proportional to the change in temperature.

The discussion of any change of state should include:

(i) The equations showing the relations between p,

V, and T during the change,

(2) The external work performed by or on the gas during

the change,

(3) The quantity of heat supplied to or rejected by the

gas during the change,
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(4) The change in the intrinsic or internal energy of the

gas during the change of state.

It should be remembered that the internal or intrinsic

energy of an ideal gas changes only with the temperature

and that this change in internal energy during any change

of state always equals

mCvdT= mcJT2— Ti).
Ti

Section VII

ISOTHERMAL, ISOMETRIC, ISOPIESTIC, AND
ISODYNAMIC CHANGES

Isothermal Change of State.—The equations for this

change of state involve first

pv=RT

the fundamental equation which is always true. In addition

we impose the condition of constant temperature so that

T=T\, a constant.

Thus pv= RTx = C\, a constant.

This is Boyle's law and it is the equation of the ^z'-curve

for isothermal change of state.

Exercise 29. What is the value of d for the isothermal

change of state of one pound of air at 90° F ?

Exercise 30. Show that the construction illustrated in Fig.

3 yields a curve for which pv= piVi = a. constant.

Exercise 31. Draw to scale the isothermal ^I'-curve for

one pound of air at (a) 90° F, (b) 200° F.
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The external work performed is represented graphically

by the area under the pv-cnrve, Fig. 3, for

AW I r^'

The sign of AW will be assumed positive when external

work is done by the gas during expansion and negative

when external work is done on the gas during compression.

Fig. 3.

Exercise 32. Show that the external work performed during

the isothermal change of state of one pound of ideal gas from

/>i. t'l, Ti to p, V, Ti is

AW=^PiV, lege (^j,

when measured in B.t.u., and also equals

jM:l0ge(^ -RT^ loge
J \p

where loge(x) =2.303 logio(x).

The heat absorbed (or rejected) by a gas during isothermal

change of state cannot be computed by means of a specific

heat, for the change in temperature is zero.
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We have, however, the equation

AQ=AK-\-AW.

Here during isothermal change

AA'= o,

I / V
so that AQT= AWT= 'ypivi loge —

Exercise t,^. How much heat must be supplied to 3 pounds

of air expanding at a constant temperature of 100° F from

200 to 30 pounds per square inch absolute?

Exercise 34. Gas expands, no heat is suppHed to it. Where

does the energy necessary for the performance of external work

come from? Is this an isothermal change of state?

Exercise 35. During isothermal expansion all heat suppliea

is transformed into external work. Why is this not an ideal

way of transforming heat into mechanical energy?

Isometric Change of State.—For all changes of state

we have, pv= RT, if we now impose upon this general

law change at constant volume then

z' = z;i = a constant.

Combining these equations we find

^ = — = C2, a constant.

This is one form of the law of Charles.

Exercise 36. Interpret the above equations graphically by

means of Fig. 2.

Exercise 37. Describe the pv-curve for isometric change of

state. How much external work is done during this change

of state?
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Exercise 38. How much heat must be supplied to a gas

(specific heat at constant volume, c») in order to increase its

pressure from pi to p2 pounds per square inch absolute, the

volume remaining Vi during the change?

What becomes of this heat?

Exercise 39. Compute C2 for air under a pressure of 200

pounds per square inch absolute and at 90° F. For what volume

of air does this constant apply?

Isopiestic Change of State.—

Exercise 40. Write the equations governing isopiestic change

of state. Interpret these equations on Fig. 2.

Exercise 41. Describe the ^z^-curve for isopiestic change of

state and compute the external work done during a change

from pi, Vi, Ti to pi, v, T.

Exercise 42. Is the internal energy of a gas increased or

diminished; is external work done by. or on; must heat be

supplied to, or withdrawn from a gas during isopiestic (a) expan-

sion, (b) compression?

Exercise 43. Ten pounds of air are kept under a constant

pressure of 200 pounds per square inch absolute.

(a) What temperature has this air when it occupies 12 cubic

feet?

(b) If its initial temperature was 300° F and its volume is

then reduced to 12 cubic feet what external work was done

upon the gas?

(c) How much intrinsic energy did it lose?

(d) How much heat was withdrawn from the gas?

Isodynamic Change of State.—By definition during an

isodynamic change of state the internal energy remains

constant.

The internal energy of an ideal gas is a function of the
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temperature only. Therefore constant internal energy im-

plies constant temperature.

Thus isodynamic changes of state of ideal gases are

isothermal changes of state.

Exercise 44. Express the change in internal energy of an

ideal gas in terms of Ct and show from this expression that an

isodynamic change is an isothermal change.

Section VIII

ADIABATIC CHANGE OF STATE OF IDEAL GASES

Definition and General Discussion.—During an adia-

batic change of state no heat is received from or rejected

to external bodies. Such a change of state would occur

if the gas could be insulated, as far as heat is concerned,

from all surrounding bodies. In practice adiabatic changes

are approximated when expansion or compression takes

place so rapidly that little time is allowed for the transfer

of heat.

Gas expanding adiabatically does external work. The

energy thus converted into external work is not derived

from an external source of supply; the gas is insulated.

This energy' must therefore be drawn from the internal

(intrinsic) energy of the gas. As the internal energy of

an ideal gas depends only on its temperature, the tem-

perature of an adiabatically expanding gas must fall. The

internal energy which disappears during adiabatic expan-

sion reappears as external work performed during the

expansion.

In Fig. 2 the line GOC approximately represents an

adiabatic change of state. Note the drop in temperature
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of the gas during expansion and the rise in temperature

during compression.

Exercise 45. Explain the fact that the temperature remains

constant during isothermal expansion and yet external work is

done.

Is an mcrease in temperature possible during an expansion

of a gas? Explain by means of Fig. 2.

Exercise 46. What terms in the equation

disappear during an adiabatic change of state of an ideal gas?

Why are these terms equal to zero?

Does a gas possess more or less internal energy after adiabatic

expansion? To what is the change in internal energy equal?

The Equations Governing Adiabatic Change of State.

The fundamental equation

pv=RT (i)

must always be satisfied.

During adiabatic change we have in addition the con-

dition that

dQ = o (2)

This last equation must be exiiressed in terms of p, v,

and T to make it useful.

As dQ = mc,dT-\-jpdV

we have CvdT-\-—pdv = o (3)

a differential equation representing the conditions of adia-

batic change of state in terms of p, v, and T.
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In order to integrate this equation it must be expressed

in terms of two variables by means of the fundamental

relation pv= RT.

We may eliminate p from equation (3) by substituting for

, RT ,

p its equal — , thus

CvdT-\—= —dv= o.
J V

But
-J

always equals Cp—Cv, so that

T
CvdT-\- (cp—Cv)—dv= o,

V

dT (cp \ dv
or -=r= — I—— il—

.

T \cv / V

For ideal gases Cp and Cv are constant, so that

a constant, by definition, and the differential equation may

be written

dT ,, .dv

Integrating between the initial state p\, vi, T\, and

the final state, p, v, T we have

logerl^=-(^-i)loge 4

log«jr=-(^-i)loge^^



CHANGES
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Also pv =RT

pV p\Vx , .

gives ^=R =^ (2j

To eliminate p we have from equation (2)

p _viT

pi vTi

and from equation (i) 7~~ ("~) '

therefore

or

Exercise 50. Starting with pv= RT and pv^=piv^ deduce

the relation between p and T for an adiabatic change of state.

Exercise 51. Show that the final temperature of an ideal

gas after an adiabatic change of state depends only upon the

initial temperature and upon the ratio of expansion (or upon

the ratio of the initial to the final pressure) but not upon the

individual volumes (or pressures) involved.

Exponential and Logarithmic Computations.—As the

equations just developed show, thermodynamic computa-

tions often require logarithmic computations. The follow-

ing examples will serve as a review and they should be

carefully studied.

I. What does (0.035)"'^^ equal?

Let X=(o.o35)''-''

then logio A' = (.21) logio (.035)

= (.2i)(8.5435-io)
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= (.2l)(- 1.4565)

= -0.3059

= 10- (0.3059) -10

= 9.6941 — 10

therefore
"

N'= 0.4944

2. Find the value of loge (0.085),

where 6=2.718 . . .

Let x=loge (0.085)

then 6^= 0.085.

Taking logarithms to the base 10 for which complete tables

are at hand we have

xlogio e = logio (.085),

or x= : logio (.085)
logio e

= -^{8.9285-10}
•434

= 2.303{-i.o7i5l

= -2.468.

Note that in general

loge N= . logio .¥=2.303 logio N.
logio «

Exercise 52. One pound of air expands adiabatically from

300 pounds per square inch absolute and 200° F to 15 pounds

per square inch absolute.

(a) What is its final temperature?

(b) What is its initial volume?

(c) What is its final volume?
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Exercise 53. Four cubic feet of air at 60° F are compressed

adiabatically until the volume is reduced to ^ cubic foot.

(a) What is its final temperature?

(b) What relation exists between the final and the initial

pressures?

(c) If the mass of air had been one pound what would have

been the final pressure?

The External Work Performed by or on an ideal gas

during an adiabatic change of state may be computed in

two ways,

(i) by means of the area under the pv-cuvve repre-

senting adiabatic change. That is, the area on the pv-

plane bounded by the curve pv^= pivi^, the z'-axis, and

the ordinates of the points representing the initial and the

final states of the gas.

(2) by means of the change in internal energy which

occurs during the adiabatic change of state, for all external

work is done at the expense of the internal energy of the

gas. Thus any loss in internal energy equals the external

work performed, or

AW= -AK= -mc„(T-Ti),

where the result is expressed in B.t.u.

Exercise 54. Show that the external work performed during

an adiabatic change of state when expressed in foot-pounds

equals

JmcvTi (
I —

:^ )
= JmCvTi \i—(-^] \= JmcTi

|

i — ( T"

where JtncvTi may be replaced by

JcvpiVi piVi
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Exercise 55. Show by means of the pv-curve that the external

work done during an adiabatic change of state (expressed in

foot-pounds) equals
p.Vi -pV
k-i

Exercise 56. Prove that the expression derived in Exercise

55 equals the expressions derived in Exercise 54.

Exercise 57. Compute the work done during the expansion

of the air discussed in Exercise 52

(a) by means of the results of Exercise 54,

(b) by means of the results of Exercise 55.

Exercise 58. Compute the work for Exercise 53 assuming

the mass of air to be one pound.

The Heat Absorbed from or rejected to external bodies

during an adiabatic change of state is by definition equal

to zero.

The Change in Internal Energy during an adiabatic

change of state is

AK— 7nCviT—Ti).

Section IX

POLYTROPIC CHANGE OF STATE OF IDEAL GASES

Definition and General Discussion.—During an isopiestic

expansion from the state determined by pi, vi, Ti to the

state determined by p\, V2, To the heat supplied to an

ideal gas must be suiBcient to increase the internal energy

and to perform the external work done by the expanding

gas. Thus the heat supplied must equal

^Qp^mcv{T2—Ti)-\-m~.n{v2— Vi)

=^mU+^{T2-Ti).
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Here the factor (ce+-y) is evidently a specific heat.

It equals c^ as shown on page 25.

During any change of state of an ideal gas the specific

heat c defined by the equation

dQ= mcdT

may similarly be regarded as composed of two terms,

one always being Cy and the other term being analogous to

— but not equal to it. This second term depends upon

the manner in which the gas changes its state and upon

the external work done during this change. Therefore

the specific heat of a given gas, c, may have as many

different values as there are ways in which the gas may

change its state. Even tho c„ be considered constant

c need not remain constant during all possible changes

of state.

By definition, a polytropic change of state is any change

of state during which the specific heat c does remain con-

stant, see page 33.

We must now determine the relations between p, v,

and T during polytropic changes of state.

The Equations Governing Polytropic Change of State

of Ideal Gases.—^The equation governing all changes of

state of ideal gases is

pv= RT.

In order to limit the change to a polytropic one the con-

ditions expressed by the equation

dQ— mcdT,

where c is constant, must also be satisfied.



CHANGES OF STATE OF IDEAL GASES 47

This second equation of condition must now be expressed

in terms of p, v, and T. As

dQ^mc4T-\-jpdV

under all conditions of change of state we may write

cdT= CvdT-\- -jpdv,

or (c-Cv)dT= —pdv.

To establish a relation between the p's and the v's T

must be eliminated by means of pv= RT, from which we

obtain

dT=^(pdv-\-vdp)
K

SO that {c—Cv){pdv-\-vdp) = —pdv.

Replacing — by Cp— Cv and regrouping the terms we have

{c—Cp)pdv-\- {c—Cv)vdp = o.

Integrating between the limits pi, I'l, Ty and p, v, T
we have

{c-Cp) log ^+{c-Cv) log — = o,
Vi px

y '\-p)

Comparing this equation with the analogous equation

for adiabatic change of state, namely,

P W'
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we note that the corresponding polytropic equation may be

written
C-Cp

P \n,

Here is a constant, for Cp and c» are constants for
C~Cv

ideal gases and c is a constant by definition for polytropic

changes of state. Let this constant exponent be denoted

by n, then

P \n,

Thus during any polytropic change of state of ideal

gases, we have
pv =RT

and pv" = piVi",

where the constant n has the value

C Of)

n =

Solving the last equation for c we may express the

specific heat for any given polytropic change in terms

of n as follows:

n-k
n—

I

Why do not the above equations hold for an actual gas?

Exercise 59. Deduce the relation between v and T for a

polytropic change of state of an ideal gas starting with

(c) the fundamental equation dQ=mcdT,

(jb) the equations pv=RT and pv^^piVi**.
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Exercise 60. Deduce the relation between p and T for a

polytropic change of state, starting with

{a) the fundamental equation dQ= nicdT,

(b) the equations pv=RT and pv^= piv^.

Exercise 61. Deduce the equations
n-l

T /v,\"-i T /p
pv'=pivr; . . , ,

JLi \v/ li \pi

expressing the conditions involved in polytropic changes of

slate of ideal gases from the equations of Exercise 26.

Discussion of the Poljrtropic Equations. —The equa-

tions to be discussed are

K=/'r^'i" (i)

where n may have any constant value, and

n-k
C= Cv (2)n— I

from which the value of the constant specific heat may
be computed for any given value of n.

(i) When 71= o, equation (i) becomes

P= Pi

and from equation (2)

C— RCi)— Cp,

Therefore a polytropic change during which n = o is an

isopiestic change of state, represented in Fig. 4 by the

line aoe.

(2) When n=i, equation (i) becomes

pv= piVi

and from equation (2)

i-k
c= Ct=00 .

o
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Therefore a polytropic change during which n=i is an

isothermal change, represented in Fig. 4 by the line bof.

Note that the specific heat of the gas is now infinite.

The gas thus has an infinite capacity for heat; it can

absorb or reject any quantity of heat without change

in temperature provided it obeys the laws pv= RT and

pv=pivi. During isothermal expansion this actually occurs.

We must however bear in mind that the heat so absorbed

without change in temperature does not remain in the

P
f,g h

g n-o ; c^C]

Fig. 4.

gas but is at once transformed into external work performed

by the gas, and the heat rejected without change in temper-

atiu-e is not derived from the gas but from the external

work performed simultaneously on the gas, the internal

energy of the gas remaining constant thruout the change.

(3) When n= k, equation (i) becomes

and equation (2) shows that

c= o.



CHANGES OF STATE OF IDEAL GASES 51

Therefore a polytropic change during which n= k is an

adiabatic change, represented in Fig. 4 by the Hne cog.

Note that when pv*^— pivi^ the gas has absolutely no

capacity for heat (c= o). As dQ= mcdT and c = o, an

infinitesimal quantity of heat supplied to the gas under

these conditions would cause an infinite rise in temperature.

This must be so for under adiabatic conditions no heat

should be added to or be extracted from the gas.

(4) When n= Qc , let n= -, where a and b are constants,

then equation (i) becomes

and as b must approach o as n approaches 00 we have

for n= 00

From equation (2) we have

--k
b a-bk

C— ——^— ^p— , Cf)»

a a— b

Thus when n=<x> , b^^o and

C=Cv.

Therefore a polytropic change during which n= 00 is

an isometric change, represented in Fig. 4 by the line doh.

Polytropic changes of state thus include all the changes

of state previously considered, together with other changes

of state. It should however be noted that the polytropic
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conditions do not include all possible changes of state

but only those during which the specific heat remains

constant.

Of all the polytropic changes of state other than the

isopiestic, isometric, isothermal, and adiabatic the only

polytropics used in engineering are the ones for which

n lies between i and k. The ^z'-curves of these polytropics

lie between the lines fob and goc in Fig. 4. For these

polytropics the specific heat is negative.

As dQ=mcdT it follows that when c is negative and

dQ is positive, dT must be negative therefore when heat

is supplied a drop in temperature occurs. This appar-

ently inconsistent condition will be understood when it

is remembered that the external work performed plays an

important part in the discussion. Thus under the condition

pv'^= p\Vi^ when n lies between i and k work is performed

so rapidly during the expansion of the gas that not only

the whole heat supplied is converted into external work

but this heat does not suffice to perform the work and the

store of internal energy of the gas is called upon to aid with

the evident result that a drop in temperature occurs.

During compression under these conditions the work

done on a gas and converted into heat cannot be com-

pletely rejected by the gas and that which remains in the

gas as an increase in internal energy causes a rise in tem-

perature even tho heat is removed from the gas. Thus

altho dQ is negative, JT is positive because c is negative.

Exercise 62. Trace the curve pv^=piVi^, assuming /'i = 3

and fi = 2, by means of seveial points, for (a) n= — i, {b) 11= —\,

(c) n= — 10. What are the corresponding values of c?

Exercise 63. Describe the positions of the lines on the char-
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acteristic surface (Fig. 2) corresponding to pv'*= piVi'* for values

of n between

(a) + 00 and i

(b) I and o

(c) o and — =0
,

for both compression and expansion.

Exercise 64. Write the equations of the pv-curves for iso-

thermal, adiabatic, isopiestic, and isometric changes of state.

(a) What values of a and b in // =— and thus what values
b

of n will change the polytropic law pv"'= piVi* into each of the

above mentioned changes of state?

(b) Discuss the value and the physical meaning of the specific

heat for each of the above cases.

The Signs of dQ, dK, and dW.—In the equation

dQ=dK-^dW
we have assumed

dQ positive when heat is supplied to the gas from some

external source,

dK positive when the internal energy (and temperature)

increases,

dW positive when external work is done by the gas.

Evidently during any polytropic expansion dW is

positive; during any polytropic compression dW is nega-

tive.

From Fig. 2 it may be seen that an expansion does not

necessarily entail a rise or a fall in temperature with cor-

responding increase or decrease in the internal energy.

For all polytropic expansion lines lying in front of the

isothermal OB (on the surface HOB) the temperature

and the internal energy increase during expansion; thus
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dT and dK are positive. For all polytropic expansion

lines lying behind the isothermal OB (on the surface DOB)
the temperature and the internal energy decrease during

expansion; thus dT and dK are negative.

To determine the sign of dK for any polytropic change

of state note that it depends only upon the sign of dT.

To find the sign oi dT analytically we may proceed as

follows, starting with the equations governing polytropic

change,

pv= RT, pv''=pivi":

where p and v are both variable, eliminate one of these

variables. If the change in T is to be expressed in terms

of a change in volume eliminate p. Thus

T Z'l^'i" l-nT= v^ ^
K

and dT= (^yi-n)(v-){dv).

The first factor is always positive, the sign of the second

depends upon the value of n, the third factor is always

positive, and the sign of dv is positive for an expansion and

negative for a compression.

The sign of dT may also be found from the equation

Ti \v

To illustrate, during an expansion v>vi so that —<i-
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If n is greater than unity ( — ) is less than one and

T<T\, therefore dT is negative. If however — <i and
V

n is less than unity, ( — ) is greater than one and T>Ti,

therefore dT is positive.

To determine the sign of dQ, remember that

dQ = nicdT,

so that the sign of dT does not alone determine the sign

of dQ. The sign of c, the specific heat under the particular

law pc^' = piVi^, must also be found. As an illustration,

during any expansion for which n lies between i and k,

c will be negative (see page 52) and dT will also be neg-

ative therefore dQ must be positive. Under these con-

ditions heat must be supplied to the gas even tho the

internal energy diminishes. The external work done ab-

sorbs not only the loss of internal energy' but the heat

supplied as well.

If n is greater than k, c is positive and dT is negative,

therefore dQ must be negative. Under these conditions

the expansion can only proceed according to the law

pv^— pii'i" provided heat is withdrawn from the gas. The

loss in internal energy is so large that all of the energy

lost by the gas cannot be utilized in the performance of

external work.

Exercise 65. (a) Check the statements in the following table.

(b) Sketch a figure similar to Fig. 4 and indicate the areas in

which the polytropics lie for which (i) aW is + and —
, (2)

AQ is -f- and —
, (3) aK is + and —

.
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During polytropic changes of state we have
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curve to be a polytropic n may be found by substituting

in the formula

^ log pi— log p2

log F2— log Vi

Exercise 66. Develop the above formula.

(2) The areas ABMN and ABPQ (Fig. 5) may be found

by means of a planimeter. Now if the curve AB is a poly-

tropic whose equation is pv^= piVi^, then

n=
area ABMN
area ABPQ

'

Exercise 67. Demonstrate the correctness of the above

described method of finding //.

(3) The third and best method does not assume the

curve AB (Fig. 5) to be a polytropic but shows whether

it is or is not a polytropic. If it is not a polytropic this

method shows how closely it approaches a polytropic and

gives the value of n for the actual polytropic which best

approximates the given curve. It often happens that a

given curve may be very closely represented not by one

but by two separate polytropics each for its own part
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of the expansion or compression. This method of finding

n will not only give the value of n for each polytropic but

will also show the region in which each is applicable.

A curve whose equation is

pv^= p\V\^=C, a constant

becomes a straight line when plotted on axes of logio p
and logio v instead of p and v. For the equation may

be written

(logio p)=-n{\ogio z;)+logio C,

which is the equation of a straight line when the variables

are (logio/') and (logic t;).

Thus if we replot the curve AB (Fig. 5) upon log-log

paper (i.e., paper ruled according to the logarithmic scale

instead of the usual decimal scale) the resulting curve will

be a straight line if ^S is a polytropic. In any case the

best representative straight line thru the plotted points

represents the log-log plot of a polytropic approximating

the curve AB. The slope of this straight line with its

sign changed gives the'value of n in the equation pv"= pivi^

which approaches most closely to the given curve AB.

Exercise 68. Prove the last statement.

The External Work Performed during polytropic changes

of state may be computed either by means of the pv-cxirve

or by means of the fundamental energy equation.

Exercise 69. Show by means of
j
pdV that the external

work performed during a polytropic change of state from the

state pi, Vi, Ti to the state p, V, T is
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Exercise 70. Starting with the equation aQ=aK+aW,
show that the external work performed during a polytropic

change of state is

J{AW) = mJic-cXT-T.) = ^(T,-T) ='^.-^
n—i n — i\ li

Exercise 71. Show that

p,V,-pV

n —

I

= mJ(c-c.)(T-TO

and that the last expression always gives a positive result for

expansion and always gives a negative result for compression.

The Heat Supplied during a polytropic change of state.

Exercise 72. Show that the heat supplied to an ideal gas

during a polytropic change of state from pi, Vi, Ti to p, V, T is

AQ= mc{T-Ti)^mU-\-jr^—\{T-Ti).

Exercise 73. Show that the change in internal energy during

a polytropic change is

ipV-PiV:
AK = mcv{l — 1 1) = — -

"

/ k-i '

when expressed in B.t.u. (see also Exercise 86) and that therefore

k— i

whence
AW: AK :AQ = k-i : i-n : k-n.

Exercise 74. Show that the expression for aQ in Exercise 73

may be negative during certain polytropic expansions.

Exercise 75. Compute by means of E.xercise 69 the external

work done during an adiabatic change
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(a) from lo pounds per square inch absolute and 17.16 cubic

feet to 200 pounds per square inch absolute, and

(b) from 200 pounds per square inch absolute and 2 cubic feet

to 10 pounds per square inch absolute.

Interpret the signs of the results.

Exercise 76. Air expands polytropically from 300 pounds

per square inch absolute and 0.4 cubic foot to 15 pounds per

square inch absolute with « = 3.

Compute (o) the external work done, (5) the heat supphed,

(c) the specific heat, the mass times the change in temperature

from the result of (b), and thus the change in internal energy.

Exercise 77. Compute the external work done during an iso-

thermal change of state from 20 pounds per square inch abso-

lute and 25 cubic feet to 100 pounds per square inch absolute

and. 5 cubic feet.



CHAPTER III

GR.\PHICS OF THE pv-FLANE

Section X

PLOTTING POLYTROPICS

Plotting the Polytropic Curve.—To construct the cur/e

pv^— piVi", assume any angle a, Fig. 6, and by means of

(i+tan/3) = (i+ tana)''

Fig. 6.

compute the corresponding angle /S, using the assigned

value of n. Set off these angles as shown in Fig. 6 and start

6i
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the construction by drawing pi and ^i from some known

point on the required polytropic.

To demonstrate the correctness of this construction note

that

V—Vi

Vl
•=tan a

Pi— P
and that = tan j(3.

P

Hence v=Vi{i-\-tana)

and
Pi

i+tan/3'

«i(i+ tan a)**
so that K=?i^i"4+I^-

But (i+tan/3) = (i+tana)'',

therefore pv^=p\V\^.

This constructi®n must be performed with great accuracy,

for in it errors are cumulative.

Exercise 78. Starting with (i+tan /3) = (i+tan «)" deduce

from it and the construction illustrated in Fig. 6 the fact that

Exercise 79. Show that the equation of the dotted curve

in Fig. 6 is ^i'~"= ^ii'i~".

Exercise 80. How could the points on the curve found

by means of the construction illustrated in Fig. 6 be caused

to lie closer together?
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Exercise 81. Construct thru (/>i = ioo, 't'i = 3)

(a) an isothermal (see pages 35 and 63).

(b) an adiabatic

(c) a polj'tropic for 11=1.2

for air, all on the same diagram.

Exercise 82. Plot a polytropic curve thru (/>i = ioo. t'i = 3)

or n=i.2 by direct substitution in the equation pv^=piVi".

Assume values of v and compute p by means of

logp= — n log v+ i\og pi +11 log Vi).

Tabulate your computations as follows:

log V
I

n log V logp

A simpler and more rapid way of plotting a polytropic

involves the use of log-log paper. On paper ruled both

vertically and horizontally on the logarithmic scale locate

the point (pi, vi), the given point thru which the poly-

tropic should pass. Thru this point draw a straight

line havnng a slope —n, where n is the exponent of the

required polytropic. This line represents the polytropic

on the log-log plane, see page 58. Now transfer as many

points as may be desired from this plane to a plane ruled

both vertically and horizontally on the decimal scale.

These points will lie on the required polytropic in the

pv-p\a.ne.

Construction of the Isothermal Curve.—The isothermal

is readily constructed by the method given on page 35.

Another method which does not involve the drawing of
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parallel lines is illustrated in Fig. 7. Here OA=MN,
OB= PQ, etc.

B M

Fig. 7.

Exercise 83. Show that the construction illustrated in Fig.

7 yields a curve whose equation is pv= piVi.

Section XI

GRAPHICAL REPRESENTATION OF AW, AK, AND AQ

Graphical Representation of External Work.—The

external work performed during any change of state equals

I
pdv. Therefore the area, Fig. 8,

bounded by the curve representing

the change of state, the end ordinates,

and the z)-axis represents the external

work performed.

In order to determine the sign of

this area the point tracing the

Fig. 8. boundary of the area (the stylus of a

planimeter) should always start at

the initial point of the line representing the change of
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state (A, Fig. 8) and then follow this line to the final

point {p, v) and so on around the area. If the area is

thus traced in the clockwise direction the area is to be

considered positive, if in the reverse direction, negative.

That this rule of signs agrees with the rules already-

established can be seen from Fig. 8. Here an expansion

occurs from .4 to B and the area is traced in the clockwise

direction and is thus positive.

Exercise 84. Under what conditions would the area bounded

by the curve representing the change of state, the abscissas

of the end points, and the portion of the p-a.xis intercepted

between these abscissas represent the work done during the

change of state considered?

Graphical Representation of Internal Energy.—The in-

ternal energy of an ideal gas is a function of the tem-

perature only. When an ideal gas has a temperature of

absolute zero it possesses no internal energy. An ideal

gas expanding adiabatically does work. This work is

done wholly at the expense of its internal energy. The

work done thus equals the loss of internal energy. If

the gas is assumed to expand adiabatically from any initial

state until its volume is infinite and its pressure and tem-

perature both zero the work done will equal the internal

energy which the gas possessed at the initial state con-

sidered.

Graphically, the area under the adiabatic extending to

infinity (Fig. 9) represents Ki. This internal energy must

always be positive so that in tracing the area we must

start at the point considered (pi, vi) and follow the adia-

batic and so on around the area.
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Exercise 85. Show that the internal energy of one pound

of an ideal gas whose state is (pi, Vi, Ti) is

p\Vl

k-i
, a finite quantity.

Graphical Representation of the Change in Internal

Energy.—The change in internal energy due to a change

of state from px, vi, T\ to p, v, T (Fig. 10) would of course

equal the difference between the areas K and Ki, or K—K\.

Exercise 86. Show that AK= K-Ki = Jmcv{T—Ti).

P

I

W/////////////////////A^/A

V

Fig. 9.

P ipv)

y//////////M

Fig. 10.

As the areas shown in Fig. 10 extend to infinity they cannot

be used to find AX" by means of a planimeter. To rep-

resent t^K by an area finite in all its dimensions proceed

as follows.

Draw an isothermal thru the initial point (^1, 'Qi)

and an adiabatic thru the final point, Fig. 11. These

curves intersect in some point C. Note that the adia-

batic approaches the D-a.\is more rapidly than the iso-

thermal. The area under the adiabatic between the final

point of the change of state considered and the inter-
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section of the adiabatic and the isothermal equals AK
for the change of state from (pi, vi, Ti) to {p, v, T).

To prove that this is so consider the cycle ABCA thru

which the gas may be conceived to pass. It should be

rem.embered that the gas actually changes its state only in

accordance with the law represented by the line AB. The

h>^othetical cycle ABCA returns the gas to its initial

state at A.

In passing thru the change from C to ^ the tem-

P

I AK %--
V///////////////////A

Fig. II.

perature (and therefore the internal energy) does not change.

Thus any gain in internal energy during the change from

.1 to B must be exactly neutralized by an equal loss of

internal energy during the change from B to C. But the

loss of internal energy- from J5 to C is represented by the

area Aiv. Therefore this area AiiC also represents the

gain in internal energy' during the change from A to B.

This area representing a gain must be positive so that

we must start tracing the area at (/>, v), then follow along

the adiabatic to C and so on around the area. An area
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about which the tracing point would move in a counter-

clockwise direction when following the above rule would

Fig. 12,

be negative and would indicate a loss of internal energy

during the change of state from {p\, vi) to {p, v).

Fig. 13.

Exercise 87. Show that the construction illustrated in Fig.

12 gives Aii: for the change of state from {pi, ih) to {p,v).
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Graphical Representation of the Heat SuppHed.—The

heat supplied during any change of state may be repre-

sented by the area included between the line representing

the change of state and the adiabatics thru the points

representing the initial and the final states of the gas, both

adiabatics extending to infinity.

In Fig. 13 areas A-\-B represent AW, C-\-D represent

K, B-\-D represent Ki.

(^.^^> _^B

I AQ -

m////////////////////////////A

Fig. 14.

As A()=Ai^+APF, NQ would be represented by

\{C^D)-{B^'D)\^\A-^B\ or A^C.

Another area, finite in all of its dimensions, which rep-

resents A(2 is shown in Fig. 14. The sign of this area is

determined by starting at the initial point then following

the line representing the change of state, the adiabatic

thru the final point, and so on around the area marked

AQ. An area traced in a clockwise direction is plus as

before.
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Exercise 88. Show that the area shown in Fig. 14 repre-

sents the heat supplied during the change of state represented

by AB.

Exercise 89. Indicate areas on the pv-p\a.ne finite in all

their dimensions representing the external work, the change in

internal energy, and the heat supplied during

(a) an isopiestic expansion,

(h) an isopiestic compression,

(c) an isometric decrease in pressure,

(d) an isothermal compression,

(e) an adiabatic expansion.

Note the signs of these areas. Do they agree with the signs

given in the table on page 56?



CHAPTER IV

COMPRESSORS

Section XII

SINGLE-STAGE COMPRESSION

Piston compressors take in a charge of gas at a low

pressure and after compression to a higher pressure deliver

this gas into a receiver where it is stored at the higher

pressure.

For an ideal compressor having no clearance these

processes may be represented on the ^TJ-plane as shown

Fig. is.

in Fig. 15. The line i 2 does not represent an isopiestic

change of state. During this process the mass of gas

considered does not remain constant. This line repre-

sents the gradual filling of the cylinder as the piston moves

toward the right. Thus during this process the tem-

71
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perature and the pressure of the gas remain constant but

the volume and the mass of the gas in the cylinder con-

tinually increase as the piston moves toward the right.

When the cylinder is full the inlet Vtilve closes and

the piston moves toward the left, compressing the charge.

During this process the mass of gas in the cylinder remains

constant (assuming no leakage) and the change of state

represented by the line 2 3 may be isothermal, adiabatic,

or in general polytropic.

The compressed gas must now be expelled from the

cylinder by a further motion of the piston to the left. The

outlet valve opens and the gas is displaced as shown by

the line 3 4 which does not represent an isopiestic change

of state. During this process the temperature of the

compressed gas is assumed to remain constant and equal

to the temperature after compression at 3.

The work required to compress and deliver the gas may

be computed irom Fig. 15. The work done by and against

the atmospheric pressure on the right-hand side of the

piston during the forward and the backward stroke of the

piston are equal and thus neutralize each other. On the

left-hand side of the piston the gas entering the cylinder

exerts a pressure pi (or P2) upon the piston and thus does

work represented by the area under the line i 2. During

the return stroke the gas exerts at first a variable pressure

(represented by the ordinates of the line 23) upon the

piston, and work represented by the area under the line

2 3 must be done by the machine upon the gas. Finally

to deliver the gas the work done by the machine equals

the area under the line 3 4.

The total work required for compression and delivery



COMPRESSORS 73

is thus represented by the area i 2341. This work must

be done upon the gas and thus represents energy which

must be supplied from some external source.

In developing formulas for the computation of this work

care must be taken to note the signs of the expressions

for the various areas concerned. Thus the area under

the line 2 3 is

P2V2 loge —

,

V2

if we assume isothermal compression. As vz is less than

V2 this expression is intrinsically negative. In passing

from 3 to 4 the work done is

along the line i 2 we have

Adding these expressions we find as the net work

1)3 V3
P2V2+ i—p3V3)+ p2V2 log€ —=p2V2 loge —

,

a negative quantity, as it should be, for work is done on

the gas.

Another method would be to write all areas in an in-

trinsically positive form, thus

1W2= P2V2

Tir 1 ^2
3W2= P2V2 log —

'iWs = p:iV3
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and then add and subtract these expressions as indicated

in Fig. 15, thus

P3'V3-\-p2V2 log P2V2.

This gives a positive answer which must of course be

understood to represent the work necessary for compression

and delivery and which must be supplied from outside

sources of energy.

Exercise go. Show that the work required to compress and

deliver an ideal gas is

P2V2 lege — , for isothermal compression,
pi

k . . .

{p?.Vz — p-iV2), for adiabatic compression,
k—i

P2V2
n— i

n-\

p^
, for polytropic compression,

where p2 and V2, and ps and F3 are the pressures and the vol-

umes of the gas at the beginning and at the end of the com-

pression, respectively, as indicated in Fig. 15.

If no heat is removed from the gas during compression

the process represented by 2 3, Fig. 15, would be adiabatic.

If it were possible to remove sufficient heat so that the

temperature of the gas during compression would remain

constant and equal to the temperature of the gas when

compression starts then the process 2 3 would be isothermal.

As an adiabatic is a steeper curve than an isothermal

more work must be done during adiabatic than during

isothermal compression. Therefore in practice the cooling
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of the gas during compression is important. This cooling

is effected by jacketing the cylinder or by injecting cold

water into the cylinder. It is however impossible to

remove sufficient heat during fairly rapid compression to

effect even isothermal compression much less improve

on this condition. Practically the compression curve is

approximately polytropic with an exponent varying, with

the design and operation of the compressor, from i to 1.4,

with an average value of 1.25.

Exercise 91. A compressor is to take 100,000 cubic feet

of air per hour at 15 pounds per square inch absolute and 70^

F, and deliver it at 60 pounds per square inch absolute. As

a first approximation compute the horse-power required to

drive this compressor assuming

(a) adiabatic compression

(b) polytropic compression, n—1.2.

Exercise 92. Compute the heat to be removed from a gas

during compression in order to produce a polytropic compression

having an exponent 71. Express the result in terms of the pres-

sures and the volumes at the beginning and the end of com-

pression and the gas constants. Solve by means of

(a) the equation aQ=aK+aW,
(b) the specific heat of the gas.

Exercise 93. Assuming that the cooling water suffers an

increase in temperature of 20° F during its passage thru

the compressor described in Exercise 91 and that the cooling

produced occurs only during compression, how much cooling

water must be supphed?

What expenditure of power does this cooling water save?

The Effect of Clearance.—In all practical compressors

the piston cannot come into contact with the cylinder-

head at the end of its stroke. The volume between the
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valves and the piston when in its extreme position is called

the clearance volume. The clearance is usually expressed

as a percentage of the displacement volume of the piston

which is the volume swept thru by the piston.

The effect of this clearance volume is shown on the

^zj-diagram in Fig. i6. After compression at 3 the volume

of compressed gas in the cylinder is a 3. The piston can

expel only the volume 3 4 from the cylinder for at 4 it

reaches the end of its stroke. The volume a 4 of com-

pressed gas thus remains in the cylinder when the piston

A -I- Displacement volume-

^ Clearance volume

Fig. 16.

starts its return stroke and expands during this return

stroke of the piston as shown by the process 4 i. The

inlet valves do not open until the point i is reached at which

the pressure in the cylinder drops to the intake pressure.

The volume of air admitted to the cylinder per stroke

is thus F2— Fi. This volume is called the low-pressure

capacity of the cylinder.

Exercise 94. The piston of a compressor has a displacement

volume of 6 cubic feet. The clearance is 4 per cent. The

compressor operates between 15 and 200 pounds per square

inch absolute. Assuming n=i.2, what volume of air does

the compressor take in per stroke?
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Exercise 95. Show that if

where pi is the delivery pressure,

pi is the intake pressure,

V is the displacement volume,

Fo is the clearance volume,

the compressor delivers no gas.

What power is required to run the compressor under these

conditions?

Exercise 96. At what pressure will delivery cease with iso-

thermal compression if the intake pressure is 14 pounds per

square inch absolute and the clearance is 5 per cent?

Exercise 97. Compute the volumetric efBciency of a com-

pressor (i.e., the ratio of the low-pressure capacity to the dis-

placement volume) in terms of the clearance c, the initial and

the final pressures pi and pi, and n.

Exercise 98. Compute the i.h.p. of a double-acting com-

pressor with clearance in terms of its low-pressure capacity,

the initial and the final pressures, and n.

Section XTII

COMPOUND COMPRESSION

As some of the above exercises show, the capacity of a

cylinder is diminished by the necessary clearance. If the

range of pressure is large this capacity may be very much

diminished.

On account of this decrease in volumetric efSciency as

well as on account of the saving of work that can be eflfected,

compression to more than six times the intake pressure

is never attempted in a single cylinder.
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In two-stage compression the gas is thoroly cooled

during its passage from the first cylinder to the second

one. The ideal conditions (clearance neglected) are shown

in Fig. 17. Thru i are drawn an adiabatic, a polytropic,

and an isothermal. The area representing the saving of

one-stage isothermal over one-stage adiabatic compres-

sion between the pressures pi and p2 is at once

evident.

Suppose now that the compression follows the polytropic

law and that the compression in the first cylinder stops

Fig. 17.

at A (pressure p'). As it is impossible to cool the gas

thoroly in the cylinder let the gas be expelled from

this cylinder (along AC) thoroly cooled in an mter-

cooler and then returned to the second cylinder (along

CB). This diminishes the volume of the gas from AC
to BC but its mass is unchanged. Moreover by thoro

cooling is to be understood that the gas has been cooled
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to its original temperature (the temperature at i). Thus

B lies on the isothermal thru i and

In the second cylinder the compression is continued from

B io 2 and the gas finally delivered at the pressure p2.

Note carefully the area representing the work saved by

two-stage polytropic over one-stage polytropic compression.

It is now important to determine the intermediate pres-

sure p', which will yield the greatest saving of work.

The work done on the gas in the first cylinder is

in the second cylinder it equals

if we assume the same exponent for the law of compression

in both cylinders.

As the second cylinder must handle all the gas supplied

by the first cylinder and as the temperature at B equals

the temperature at i due to perfect intercooling we have

by reason of pV^mRT

PiVi = P'Vb.

Thus the total work required to compress and deli\-er

equals
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Exercise 99. Show that if

p'=\/p,p.,

a minimum of work is necessary for two-stage compression.

Exercise 100. Show that W1 — W2 when p' is adjusted for

minimum work.

Exercise ioi. When p'=^pip2 show that the temperature

of the gas at the end of the first stage equals the temperature

of the gas at the end of the second stage of compression.

Exercise 102. Show that the results obtained in Exercises

99 and 100 are not affected by whatever clearance may exist

in either or both cylinders of a two-stage compressor.

Exercise 103. Compute the dimensions of the cylinders and

the power required to drive a double-acting two-stage air com-

pressor designed to deliver 3000 cubic feet of air per minute

(measured at 15 pounds per square inch absolute) at 100 pounds

per square inch absolute. Assume the intake pressure to be

15 pounds per square inch absolute, the revolutions 80 per

minute, the piston speed 600 feet per minute, the clearance

4 per cent in each cylinder, and the exponents of the polytropic

curves 1.3.

Three-stage Compression.—When compression is to be

carried to very high pressures three stages may advan-

tageously be employed. In order to determine the two

intermediate pressures which will yield minimum work when

three cylinders are used the calculus may be used, but

this method leads to the investigation of a function of

two independent variables.

Instead we niay regard the first two cylinders as con-

stituting a two-stage compressor and the intermediate

and high-pressure cylinders as constituting another two-

stage compressor.
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Then if pi is the initial pressure,

p2 the final pressure,

p' the pressure between the first and the second,

and p" the pressure between the second and the

third cylinders we have for minimum work

p'^Vpip" and />"=\/7>2.

Solving these equations for p' and p" we find

P'=^prp2

and p"=^pip2^.

Exercise 104. Find these values of p' and p" by means of

the calculus.

Turbo-compressors.—In turbo-compressors the gas is

compressed by the action of rotating blades. The .gas

is not confined in cylinders by means of pistons. Under

these conditions the indicator cannot be used to find the

indicated horse-power.

The work required to compress and deliver a gas by means

of a turbo-compressor can be computed from the follow-

ing experimental data.

(i) The weight and the temperature rise of the cooling

water used,

(2) the temperature rise of the compressed gas,

(3) the weight of the compressed gas.

Let pi, Vi, Ti, represent the initial state, and

P2, V2, T2, the final state of the gas,

Wc, the work of compression,

W, the work required to compress and deliver

the gas, both in foot-pounds,
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Q, the heat extracted during compression, in

B.t.u.

Then as AQ^AK+AW

we have —Q= mCt,{T2—Ti) — —Wc,

or Wc=JQ+Jmc,(T2-Ti).

No matter what the law of compression may be

W=Wc-\-p2V2-piVi,

thus W= JQ-\-JmUT2-Ti)+p2V2-piVi.

But pV=mRT

so that W= JQ-\-Jmc,(T2-Ti)+mR{T2-Ti)

or W=JQ-\-mJcj,{T2-Ti).

Exercise 105. A turbo-compressor delivers per minute at

a temperature of 170° F, 16,000 cubic feet of air, measured

at 14.7 pounds per square inch absolute. Assuming that no heat

is extracted during the compression find the indicated horse-

power of this compressor.



CHAPTER V

GAS CYCLES

Section XIV

INTRODUCTION

The state of an ideal gas is determined by its pressure,

volume, and temperature. The process thru which a

gas passes when it changes its state may conveniently be

represented by a line on the pV-plane. Thruout such

a process the mass of gas considered must remain con-

stant. The changes in temperature, not represented on

the />F-plane, may be followed by means of the equation

pV=mRT.

A series of processes which after completion leave the

gas in its initial state is called a cycle. Thus after the

gas has passed thru a cycle the pressure, the volume, the

temperature, and of course the internal energy have all

returned to their initial values.

In Fig. 1 8, let the lines 12,23,31 represent the processes

thru which the given mass of gas passes in order to

complete the cycle i 2 3 i. The work performed by the

gas during the process i 2 is represented by the area A 1 2 B.

The work performed on the gas during the process 2 3 is

represented by C 3 2 J5 and for the process 3 i by ^4 i 3 C
83
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The net work obtained from the gas would thus be rep-

resented by
A 1 2 B— C 3 2 B— A I 3 C,

or as it may also be expressed,

A I 2 B+B 2 T,C+C ^ I A.

The net work is thus the area enclosed between the

lines representing the processes thru which the gas passes

during the cycle, the shaded area in Fig. i8.

As will be shown, a gas cannot pass thru a cycle

unless heat is supplied to it and is rejected by it during

some of the processes of the cycle. Moreover when work

is done by the gas passing thru a cycle more heat is

invariably supplied to it than is rejected by it and the

difference between the supplied and the rejected heats

must equal the heat equivalent of the work done by the

gas. This is of course a consequence of the law of con-

servation of energy.

A heat motor is any machine by means of which heat

energy may be transformed into mechanical energy. In
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all known heat motors the following three prime elements

appear in some form or other:

(i) A hot body, the source of heat,

(2) A working substance,

(3) A cold body, the receiver of heat.

During the operation of a heat motor heat energy leaves

the hot body, passes to the working substance by means

of which some of the heat energy is transformed into mechan-

ical energy and the remaining heat energy is rejected by

the working substance to the cold body in order that the

working substance may return to its initial state ready

to resume the cycle.

The working substance may be a solid, a liquid, or a

gas. It is conceivable that a long bar of iron may act as

the working substance of a heat motor. Assume one end

of the bar to be firmly fixed while the other end acts as a

pawl upon a ratchet-wheel with teeth of small pitch. The

work performed may be stored as potential energy in a

weight lifted by means of a cord wound about a drum

fixed to the axle of the ratchet-wheel. If heat is supplied

to the bar of iron (the working substance) by means of a

flame (the hot body) the bar expands and work is done.

In order to return the bar to its initial state so that the

cycle may be repeated the bar must now be cooled and

heat must be rejected to the cold body which may be

the atmosphere. Heat motors operating on this prin-

ciple have been used to wind freak clocks by means of the

daily changes in the temperature of the atmosphere.

In the discussion of any cycle the following points should

be considered.

(i) The relations between the states of the gas at the
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beginning and at the end of the various processes involved

in the cycle.

(2) The total heat supplied to the gas by the hot body

and rejected by the gas to the cold body.

(3) The net external work performed by the gas during

the cycle.

(4) The efficiency of the cycle.

It should be remembered that the algebraic sum of the

heats supplied to the gas during the cycle (this to include

the heats rejected by the gas which are negative) must

equal the heat equivalent of the work performed by the gas.

The efficiency of a cycle is defined by the ratio

output _ heat converted into work

input heat supplied by the hot body"

The more important gas cycles which have been pro-

posed or used will be discussed in this chapter. For con-

venience they have been grouped as cycles of hot-air engines

and of internal-combustion engines.

Section XV

CYCLES OF HOT-AIR ENGINES

The Carnot Cycle.—No attempt has ever been made

to build a heat motor operating on a Carnot cycle. Its

mean effective pressure is very small so that a very large

engine would yield but little power. Theoretically this

cycle is however very important. Its efficiency, as will

be shown, cannot be surpassed by that of any other cycle.

It thus serves as a standard by means of which other

cycles should be judged.
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The Carnot cycle consists of two isothermal and of two

adiabatic processes as shown in Fig. 19. The gas to be

forced thru this cycle should be conceived as placed

in a heat-insulated cylinder, Fig. 19, closed at one end by

a non-conducting piston and at the other end by a con-

ducting plate A. The mass of gas remains in the cylinder

thruout the cycle. The end A of the cylinder may

//////////////////////////////f"////////////////////

<-P

Fig. 19.

be covered at will by either the hot body, E, the cold

body, C, or a non-conducting plate, /.

Assuming the cycle to start with the gas at its greatest

volume and at its least pressure (i, Fig. 19) the gas must

first be compressed along the isothermal i 2 at the tem-

perature of the cold body Tq- The work required for

this compression must be furnished by the machine. It

may be conceived to be derived from energy stored as

kinetic energv in the flv-wheel of the machine. Moreover



88 THERMODYNAMICS

the force exerted on the piston P must be conceived as

continually changing so as to remain only very slightly

in excess of the force exerted on the piston by the con-

fined gas. Thus the motion of the piston is very slow and

the temperature of the gas rises but very slightly above

Tc before the heat generated by the compression flows

to the cold body C which must be placed at A during this

process.

At 2 the law of compression should change to an adia-

batic one. The cold body C must be removed from

A and the non-conducting plate / substituted for it.

The work required for compression is still derived from the

machine but the temperature of the gas now rises from

Tc to Th, the temperature of the hot body. When the

temperature Th is reached (at 3) the isothermal expansion

should begin.

Now the force P exerted by the mechanism upon the

piston should remain always very slightly less than the

force exerted by the gas. Thus P must vary. The gas

now drives the piston and the work done must be partly

stored in the machine for future use in compressing the

gas and partly rejected by the machine. The isothermal

expansion can occur only if A is now in contact with the

hot body H so that the heat transformed into work may

be supplied to the gas by conduction as soon as the tem-

perature has fallen ever so slightly below Th-

To complete the cycle H is removed and I substituted

at A when the state 4 is reached. The gas continues to

expand and do work at the expense of its internal energy

and its temperature drops to Tc when state i is reached.

No engine reproducing exactly the processes above de-
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scribed could be built. The condition of practical equi-

librium involved during isothermal transfers of heat make

this impossible. However engines approximating these

conditions may be conceived. So it is with all heat engines.

The ideal conditions sought are never attained. The closer

the actual cycle approaches the ideal the more nearly will

the ideal efficiency be realized.

From the above description of the Carnot cycle it is

evident that certain relations must exist between the pres-

sures and between the volumes of the gas at i, 2, 3, and

4 in order that the processes involved may form a closed

cycle. For example, the isothermal expansion must cease

at just the right point in order that the following adiabatic

expansion may return the gas to its initial state at i.

From the process 2 3 we have

n \Th) \V2

and from the process 4 i

Ti \Tc) \V4

therefore -^zr^=j^.
V2 ^ 1

Exercise 106. What relation must exist between the pressure

at the beginning and at the end of the various processes of a

Carnot cycle?

• Exercise 107. Assuming the temperature of the source as

500° F and of the receiver as 70° F, the displacement volume

of the piston as 10 cubic feet with a "clearance" volume of

2 cubic feet, find the highest pressure reached in a Carnot cycle

operated under the above conditions provided the lowest

pressure is 1 5 pound's per square inch absolute.
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The heat supplied during the whole Carnot cycle illus-

trated in Fig.' 19 consists of the sum of the heats supplied

uuring the various processes. Thus

I Fc
lQ2= jplVi logey^

2(?3 =

3Q4= jp3V3l0gty-

so that iQi^^piVi loge 77^4-7^3^3 loge 77-.
J V\ J Vz

I V2 . . .

Note that —pi V\ loge 77— is intrinsically negative for
J Vi

V2<V\. Thus iQi as written above represents the dif-

ference between the heat supplied by the hot body and

the heat rejected to the cold body. It is the heat which

disappears as heat and reappears as mechanical energy.

It is important to simplify the expression for \Qi as

follows

:

l(?l =
;7 ( P3 Vz loge^- pi Vi loge yA

I VA= j{pzVz— piVi)\ogt—.

Exercise 108. Show that the heat conv'erted into work during

the operation of a Carnot cycle equals

—{Th—Tc) loge/-,

Vi Vi p2 pz
where r=r;-=—- =—=—

.

F2 Vz pi pi
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Exercise 109. Compute from Fig. 19 the area representing

the work dehvered during a Carnot cycle and show that the

result is equivalent to the results expressed in Exercise loS.

Exercise no. Show that the eflaciency of a Carnot cycle is

Th-Tc

Fig. 20.

until

The Stirling Cycle.—The Stirling cycle (Fig. 20) con-

sists of two isothermals combined with two isometric proc-

esses. This cycle affords larger mean

effective pressures and thus more

power for the same cylinder volume

than the Carnot cycle.

Under ideal conditions the gas

passing thru the processes of a

Stirling cycle should be compressed

while in thermal contact with the

cold body (process i 2, Fig. 20), then

heated while its volume remains constant, 2

its temperature is Th, the temperature of the hot body,

next expanded isothermally while in contact with the hot

body, process 3 4, and finally cooled at constant volume

to the temperature of the cold body, process 4 i.

In this cycle the heat supplied during the process 2 3 is

2Q3 = fnCviTii—Tc),

and the heat supplied from 4 to i is

4Qi = niCtiTc—TH).

As the last expression is intrinsically negative {Tc<Th)
it represents heat rejected. Also
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Stirling proposed to store the heat rejected from 4 to i

and utilize this heat during the process 2 3 in order that

less heat need be drawn from the hot body, thus improving

the efficiency. Stirling did this by means of a regenerator.

The regenerator may be conceived as a cylinder filled with

metal gauze. One end of this cylinder remains at the

temperature of the hot body, the other at the temper-

ature of the cold body. The hot gas passing thru this

cylinder from the hot towards the cold end, heats the

gauze so that the gas loses its heat gradually with gradually

falling temperature and leaves the cylinder cold. Reversing

the flow, the cold gas entering the cold end of the cylinder

would (at least under ideal conditions) pick up the heat

previously deposited in the gauze and would leave the

cylinder hot without drawing upon the source of heat

(the hot body).

Stirling built and operated engines based upon the above-

described cycle. One of these engines indicating 50 horse-

power is said to have realized a thermal efficiency of 30

per cent with 1.7 pounds of coal per i.h.p. hour.

Exercise hi. Show that the work performed by the gas

during a Stirling cycle is

m{TH-Tc)R\oger,
where

Vi V2 pi pi

Exercise 112. Show that with an ideal regenerator the

efficiency of the Stirling cycle is

Th-Tc
Th

'
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Exercise 113. Compute the efficiency of the Stirling cycle

without regeneration.

The Ericsson Cycle.—The Ericsson cycle consists of two

isothermal and of tw'o isopiestic processes. In Fig. 21

the cycle is i 2 3 4 i.

The mass of gas passing thru the cycle may be con-

ceived to remain in the cylinder during the whole cycle.

It is first compressed while its temperature is maintained

at the temperature of the cold body, process i 2, Fig. 21.

Fig. 21.

The gas is then heated while its volume increases at con-

stant pressure until its temperature is Th, the temperature

of the hot body, process 2 3. Next isothermal expansion

at a temperature Th follows during which the gas must

be heated from an external source, the hot body. Finally

the gas is cooled at constant pressure to a temperature

Tc the volume meanwhile reducing from F4 to Vi.

Practically the gas cannot be made to pass thru the

above-described processes in one cylinder for this would

require that the cylinder be heated and cooled from a
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temperature Tc to Th, and back to Tc during each cycle.

This would entail a great waste of heat.

Ericsson invented, designed, and built engines operating

on the above cycle in the following manner. The air was

first compressed as nearly isothermally as possible in one

cylinder of the engine. The action of this cylinder would

be shown on a />F-diagram (Fig. 21) by the lines b 1, i 2, 2 a.

The compressed air is now heated while on its way to the

second cylinder of the engine, the working cylinder. The

compressed and heated air (equal in mass to the air dis-

charged by the compressing cylinder) is now admitted to

the working cylinder (process a 3, Fig. 21) expanded while

heat is supplied to it by the hot body, process 3 4, and

then expelled from the working cylinder by the piston,

process 4 h. After leaving the working cylinder while on

its way to the compressing cylinder preparatory to resuming

"the cycle the air is cooled at constant volume so that the

mass of air having a volume of F4 when it leaves the work-

ing cylinder enters the compressor with a volume Vi.

Exercise 114. Show that the heat which must be supplied to

the gas during the process 2 3, Fig. 21, equals the heat which

must be withdrawn during the process 4 i, and thus that a

regenerator may be used to store the heat rejected along the

process 4 i for use during the process 2 3.

Exercise 115. Compute the efficiency of the Ericsson cycle

(a) with, {b) without regeneration.

The Joule Cycle.—All engines operating on the cycle of

Ericsson and of Stirling failed to give satisfaction in service

on account of the failure of the metal plates, which are

exposed on one side to the hot gases of the furnace and on

the other to the air in the cylinder. The air in the work-
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ing cylinder was also practically at rest so that the transfer

of heat to it was very slow. The regenerators were also

liable to rapid deterioration.

Joule proposed a cycle which overcame these difficulties.

His cycle consisted of two adiabatics and two isopiestics,

Fig. 22. The compression and the expansion being adia-

batic, no attempt is made to heat or cool the air during these

processes. Heat is supplied to the air only during the

processes 2 3 and 4 i. That these transfers of heat may

Fig. 22.

be effected under the best conditions Joule's engine con-

sisted of two cylinders and the heating and cooling occurred

during the passage of the air from one cylinder to the other.

A diagrammatic sketch of the engine is shown in Fig. 23.

The volume of the gas during compression is always less

than the volume of the same mass of air during expansion

(see Fig. 22) so that if the pistons have the same stroke

the diameter of the working cylinder must be greater than

the diameter of the compressing cylinder.

Assuming ideal conditions and cylinders without clearance

the states of the gas during the performance of the cycle
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and the corresponding positions of the gas in the engine

would be as follows. Intake into the compressor occurs

along b I (Figs. 22 and 23), the temperature being Ti; delivery

from the compressor occurs along 2 a, temperature T2

where T2>Ti owing to the adiabatic compression. The

gas is now heated during its passage thru the " hot

body " leaving it at a temperature T3 and passing into

the working cylinder a 3, Tz>T2. Adiabatic expansion in

the working cylinder cools the gas to a temperature 7*4

Cold Body

at this temperature it is delivered along 4 6 to the " cold

body " there to be further cooled to a temperature Ti

{Ta>Ti), preparatory to reentering the compressor with

a volume Vi = b i

.

The temperature of the cold body under ideal conditions

must be Ti so that the gas coming in contact with it at

a temperature T4, may leave at a temperature Ti. Simi-

larly the temperature of the hot body must be T3, altho

the gas reaches it at a temperature r2(<r3).

The difference between the conditions of heat transfer
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in this cycle and the cycles so far considered should be

carefully noted. In the other cycles the gas was always

at the same temperature as either the cold body or the

hot body during the transfer of heat, a less practical but

a theoretically more perfect condition and one which as

we shall see leads to a higher efficiency. Whenever a

transfer of heat from a body at higher to one of lower

temperature occurs energy is invariably wasted.

For the analysis of the Joule cycle note that

pi — p4:= pc, the pressure in the " cold body",

p2= p3 = pH, the pressure in the " hot body".

We may obtain a relation between the volumes by means

of either the processes i 2 and 3 4 or i 4 and 23. In the

latter the temperatures are involved—about these we as. yet

know nothing. The former gives the relations of the

volumes to the pressures. Thus

P^^(YlY=(Yl
pH \Vx) \F4

whence
V2 Vz

Now using the processes i 4 and 2 3 and remembering

that in pV=^mRT, p, in, and R are constant, we find

, n T3
whence ;=r=;=-.

i 1 J 2



qS thermodynamics

The heats suppHed durinff the four processes are

2Q3 = mCp{T3—T2)

3<24 =

4Q1 = mcp(Ti — 7^4) = — mCp{T4,— Ti).

The work performed by the gas durmg each of the four

processes is

TT. p\Vi— p'2V2 P2V2— P1V1
\W2 = 7 = 7

k—i k—i

2W3 = Ph{V3-V2)

„ p3Vs—p4:V4:
3W4= - 7

k—I

4Wi = Pc{Vi-V4)=-pc{V4-Vi).

Exercise 116. Find the net work performed by the gas

during a Joule cycle by means of two areas and show that the

result equals the sum of the four areas given above.

Exercise 117. Find an expression for the net work performed

during a Joule cycle in terms of the temperatures.

To find the efficiency of the Joule cycle the result of

Exercise 117 is more useful than the result of Exercise 116.

In general the efficiencies of a cycle can best be computed

from the heat than from the standpoint of work directly.

Thus the efficiency of the Joule cycle is

mcp{T3— T2) — mcp{T4— Ti) _ _T4—Ti
mcp{Tz—T2) T3—T2



GAS CYCLES 99

This expression may be simplified by means of the relation

between the temperatures already deduced, namely,

Ti T2

From this relation by subtracting unity from each member

^ . n-Ti TS-T2
we obtain —

:^
=—^ ,

i 1 I 2

U-Ti ^Ti
TZ-T2 T2

Therefore the efficiency reduces to

I-—=1-— = i-f^
T2 Tz \pH,

or

k

It is important to note that this efficiency is less than

the efficiency of a Carnot cycle operating between' the

same hot and the same cold bodies. The efficiency of

the Carnot cycle is
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Condition Necessary for Greatest Efficiency.—It should

be remembered that when heat is supphed to (and with-

drawn from) the gas during isothermal processes and only

during such processes that the efficiencies of the cycles

(Carnot, Stirling, Ericsson, the last two with regeneration)

are all the same and all greater than the efficiency of the

Joule cycle. It will be shown that no cycle can exceed

in efficiency the first-mentioned cycles. In these cycles

thermal equilibrium always exists and this renders the

exact fulfilment of the conditions involved impossible in

practice.

Cycles Composed of Two Pairs of Polytropics.—All

cycles so far considered have been composed of four poly-

tropics, of which the opposite pairs have the same ex-ponent.

In general we may assume the

process i 2 to be the polytropic p\Vi^= p2V2^=piP',

process 2 3 to be the polytropic p2V2^= psv-i"= pv^,

process 3 4 to be the polytropic pzV'A^= piVi^= pv^,

process 4 i to be the polytropic p4^Vi^= pivi^= pv^.

To establish the general relation between the volumes

place the product of the first members of these equations

equal to the product of the second members. Thus

Plp2p3p4. Vl''V'f'Vs''Vi"'=p2p3p4pl Z'^A'a'^t'Ar,

or (viVsT e^'21'4'") = (vov^r (I'svir,

whence (tail's)""'" =(^2^4)"-'^

or ViV3=V2V4.
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Similarly the relation between the pressures may be

obtained as follows
1 1

1 i.

p2"*V2= pZ*Vz

1 1

prv4=pi"'vi,

1 i 11
whence {pipzT{p2pAT= (p2p4T(p3pi )*"

1_1 i_i
(pipsr~"'={p2p4r~"'

or PlP3=P2P4.

These relations are the same as those already established

for each individual cycle discussed in this section. They

do not depend upon the substance which passes thru

the cycle but simply upon the laws of change of state

followed.

The relation between the temperatures however depends

upon the nature of the substance used. For ideal gases

the relation between the temperatures may be developed

as follows.

p\V\=RTi and psV3 = RT3

therefore (pip3){viV3) = R'iTiTs).

Similarly {p.2p4){v2Vi) = RHT2T4).

Thus by reason of the above-established relations between

the volumes and the pressures

TiT3 = T2T4.
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Section XVI

HEAT PUMPS OR REFRIGERATING MACHINES

The cycles and engines considered in the last section

were all cycles and engines utilized as heat motors, the

object being the transformation of heat energy into mechan-

ical energy. In all cases heat passed from the hot body

to the cold body and during the transfer thru the

working substance some of the heat leaving the hot body

was transformed into mechanical energy thus never reaching

the cold body.

If 7] represents the efSciency of the cycle considered and

Q the heat units leaving the hot body then rjQ represents

the heat units transformed into mechanical energ}^ and

{i— v)Q the heat units rejected to the cold body.

Exercise 119. An ideal engine operating under a Joule cycle

with air under extreme pressures of 40 and 100 pounds per square

inch absolute will reject what fraction of each B.t.u. supplied

by the hot body to the cold body, which is maintained at 70° F?

If the gas in any of the cycles already considered could

be forced to change its state in such a manner that the

point representing the state on the /?F- plane would move

around the cycle in a counter-clockwise direction then

instead of yielding mechanical energy, mechanical energy

would have to be supplied to the gas. Also instead of

rejecting heat to the cold body the gas would withdraw

heat from the cold body and the hot body would receive

heat from the gas instead of supplying it with heat.

Moreover the heat reaching the hot body would equal

the heat withdrawn from the cold body plus the heat
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equivalent of the net work done on the gas or the work

required to run the engine under these conditions.

If the Carnot cycle (Fig. 19) is traced in the counter-

clockwise direction the temperature of the hot body still

persists along the process 4 3 and the temperature of the

cold body along the process 2 i is still the temperature at

which heat is now transferred from the cold body to the

gas.

If however the Joule cycle (Fig. 22) is traced in the

Fig. 22.

counter-clockwise direction the temperatures cannot remain

as they were during the motor cycle. During the motor

cycle To < Th and Ts = Th, heat passing from the hot body

(temperature Tu) to the gas (whose temperature is less

than Th) during the process 2 3. But during the purwp

cycle heat must pass from the gas to the hot body during

the process 3 2; this would be impossible if Ts remained

equal to Th and Tz<Th- Thus during the pump cycle

T2 must equal Th and T^ must be less than Th- During

the motor cycle the gas reaches the temperature of the
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hot body at 3 while during the pump cycle the gas reaches

the temperature of the hot body at 2.

Exercise 120. At what point of the Joule cycle, Fig. 22,

does the gas attain the temperature of the cold body (a) during

the motor cycle, (b) during the pump cycle? Explain the passage

of the air thru the engine. Fig. 23, page 96, in connection

with Fig. 22, when the engine operates as a heat pump.

Heat pumps are used as refrigerating machines. The

cold body from which heat is withdrawn is the chamber

to be maintained at low temperature and the hot body is

the cooling water which carries away the heat rejected

by the gas at the relatively higher temperature.

The lowest pressure in the cycle may be atmospheric.

In this case the air of the refrigerated chamber may be

taken directly into the compression cylinder and the working

cylinder would discharge into the refrigerated chamber.

This method is impractical on account of the large volume

which the required mass of air occupies and also on account

of the condensation and freezing of the moisture (carried

by the air from the refrigerated chamber) in the ports and

passages leading from the working cylinder. These objections

may be overcome by working the air in a closed system

of pipes at a pressure above the atmospheric pressure

thus decreasing the volume of the required mass of air

and preventing the absorption of moisture by the air.

Refrigerating machines working on the principle just

described have been largely superseded by machines using

liquids and their vapors instead of air. The air machines

now are used only on shipboard or other confined places

where accidents to machines using ammonia would be

dangerous.
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The action of refrigerating machines is judged by their

coefficient of performance. The thermodynamic coeffi-

cient of performance of a refrigerating machine is defined

as the heat extracted from the cold body divided by the

heat equivalent of the work expended in driving the

machine.

Referring to Fig. 22 the heat extracted from the cold

body during the pump cycle is

mcpiTA—Ti).

The heat equivalent of the work done is the excess of the

heat rejected to the hot body, mCp{Tz—T2), over the heat

extracted from the cold body mCp{T^—T\)

thus mcp\{T^-T-2)-{T^-Tx)\.

The coefficient of performance is thus under ideal con-

ditions

iT3-T2)-{n-Ti) Ts-n T2_ T2-T1'
T4-T1 ^ Tx ^

by reason of the relation TiT3=Ti7^2-

From this result it should be noted that the smaller

the range of temperature thru which the air is cooled by

adiabatic expansion the larger will be the coefficient of

performance and thus the more economical the action of

the machine. Theoretically it is thus more advantageous

to cool the whole mass of air to be refrigerated a few degrees

than to cool a small portion thru many degrees and

then mix this very cold air with uncooled air to obtain the

proper temperature. Practically this would require ve^y
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large cylinders with large friction losses and thus a reduc-

tion of the actual coefficient of performance. This points

to one of the advantages of the liquid and vapor machines

over the air machines for refrigeration.

Exercise 121. A refrigerating machine is to remove 1200

B.t.u. per minute from a cold-storage room. The temperature

in this room is to be maintained at 34° F under atmospheric

pressure. The machine is to draw air from the cold-storage

room and compress it to 60 pounds gage while making 100

working strokes per minute. The cooling water maintains the

coils at 80° F. What horse-power is required to drive this

machine under ideal conditions and what must be the ideal

displacement volumes of the compression and of the expansion

pistons?

The Warming Engine.—A heat pump used to transfer

heat from the cold outside air to the interior of a building

may be called a warming engine. Lord Kelvin pointed

out that the methods now used for warming buildings

(by means of stoves or radiators) are very wasteful, at

least theoretically. The heat supplied by a stove at high

temperature is not used to the best advantage when it

is simply transferred to the air of the room to be heated

by convection and radiation. If this heat at high tempera-

ture be used in a heat motor and the energy so derived be

utilized to drive a heat pump which transfers heat from

the cold outer air to the building more heat could thus be

delivered at the intermediate temperature of the building.

As a rough mechanical analogy consider two supplies

of water one at a high level the other at a lower level and

assume that water is required at an intermediate level.

Three ways of obtaining this supply suggest themselves.
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Firstly, the water from the higher level may simply be

allowed to fall to the intermediate level. Secondly, the

water falling to the intermediate level may be used in a

turbine and the energy so recovered may be utilized to

run a pump which raises water from the low to the inter-

mediate level. Thirdly, the whole fall of the water from the

high to the low level may be utilized in the turbine and the

energy so recovered may be used to pump water from the

low to the intermediate level.

Similarly to warm a building each B.t.u. liberated by

the stove may be transferred directly to the air of the room

but in this manner only one B.t.u. of heat will be available

per B.t.u. supplied. Instead the B.t.u. supplied at high

temperature may be partly transformed into mechanical

energy by means of a heat motor before the remainder is

rejected to the air of the room at room temperature. The

mechanical energy obtained may be used to run a heat

pump. Under ideal conditions this pump rejects as heat

to the air at room temperature not only the mechanical

energy supplied to run the pump but also such heat as

it pumps from the outer air.

To take a concrete example assume the stove temper-

ature as 500° F, the temperature of the room 60° F, and

the outer air at 20° F. An ideal heat engine operating

between 500 and 60° F would have an efficiency of

^^^= o.4=;q. Thus for each B.t.u. available at ^00° F,
960 ^^ ^ '

0.459 B.t.u. would be transformed into mechanical energy

and 0.541 B.t.u. would be rejected to the air of the room

at 60° F. An ideal heat motor operating on a reversible

cycle between 60 and 20° F would have an efficiency of
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= 0.0769. It would be very inefficient. If however
520

this motor be reversed and used as a heat pump it would

deliver one B.t.u. at 60° F for every 0.0769 B.t.u. supplied

to it in the form of mechanical energy or it would transfer

0.9231 B.t.u. from the outer air to the room with an absorp-

tion of mechanical energy equivalent to 0.0769 B.t.u.; its

o 92 "?

I

ideal coefficient of performance would thus be
;;

=12.0.
0.0769

As 0.459 B.t.u. are available in the form of mechanical

energy from each B.t.u. furnished by the stove ——~— 5.97^^
0.0769

B.t.u. will be delivered by the heat pump to the room.

Therefore each B.t.u. at 500° F may be made to furnish

5.97+0.541 = 6.51 B.t.u. at 60° F, of course under ideal

conditions.

Exercise 122. In the above example assume the ideal heat

motor to operate between the stove and the outer air as hot

and cold bodies respectively and the ideal heat pump to operate

between the outside air and the building as cold and hot bodies

respectively. Compute the B.t.u. 's supplied to the building

under these conditions' for each B.t.u. furnished by the stove.

Section XVII

CYCLES OF INTERNAL-COMBUSTION ENGINES

One of the difficulties met with in the operation of hot-air

engines is the transfer of heat from the furnace to the air

in the cylinder which passes thru the processes required

to complete the cycle. To avoid this transfer of heat the

engine may be designed so as to allow combustion to occur

within the cylinder of the engine.
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The Brajrton Cycle.—Brayton designed an engine in

which a mixture of gas and air is first compressed into a

receiver, from this receiver it flows (thru wire gauze

to prevent backfire) into the working cyHnder where the

mixture is ignited. During this process the pressure in

the cyHnder must be the same as the pressure in the re-

ceiver. After the flow of the mixture is cut off the heated

products of combustion expand adiabatically, or nearly

so, to atmospheric pressure provided the cyHnder volume

is sufficiently large. Finally the expanded products of

combustion are expelled to the atmosphere at constant

back pressure.

Exercise 123. Sketch the />D-diagram of the Brayton cycle

and note that it is thermodynamically equivalent to the Joule

cycle, see page 94.

The Otto Cycle.—An engine operating on the Otto

cycle requires only one cylinder. The cycle is completed

in four strokes of the piston. In Fig. 24 the processes are

indicated as follows:

(i) The explosive mixture is drawn into the cylinder,

process i 2.

(2) This mixture is compressed, process 2 3.

(3) The compressed charge is ignited, the combustion

assumed to be instantaneous causes an increase of pressure

and temperature at constant volume, process 3 4.

(4) The products of combustion expand, process 4 5.

(5) The exhaust valve opens permitting the gases to

escape to the atmosphere, process 5 2.

(6) The remaining products of combustion are now

expelled into the atmosphere, process 2 i.
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Thermodynamically the Otto cycle is represented by

23452. The process 5 2 is regarded as a cooHng at con-

stant volume of the whole mass of gas taken in as the

charge. This mass of gas is then conceived to be recom-

pressed, 2 3, and reheated, 3 4, etc., altho actually a new

charge must be taken in. Moreover in gas-engine design

no account is usuallv taken of the fact that the contents

Fig. 24.

of the cylinder is not pure air. Calculations made in this

way give results which are known as the air standard.

Analysis of the Otto Cycle.—Let T^3=T^4=Fh and

V2=V5=Vc and assume the processes 2 3 and 4 5 (Fig.

24) to be polytropic.

p2 \Vh/ pb
Then

As

we have

pv
T

'' a constant,

Tz T4. n T2
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Thus ^=^=1?=^
p4. po To 14:

see also page loi.

The amounts of heat supplied during the various processes

are

2Q3 = mCn(T3—T2)

3QA=mCv{T4—T3)

aQo= mCniTo— T4) = — mCu(T4— T5)

5Q2 = )nCv(T2—To) = —mCviT-o— T2),

H— k
where Cn= Cv.

n—i

The work done by the gas during the various processes is

jjr P2VC—P3VH
214/3 =

n—i

n—i

5W2 = o

and the net work of the cycle is

j^, _ (P^-p3)VH-(p5-p2)Vc

As

n—i

,PK3=^(^.-A3)ji'.-({;^)"iv|

n-i\P3 Vr V'c
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Exercise 124. Show that the above result is equivalent to

'-'--mr)m
n-l

Exercise 125. Show that the mean effective pressure of the

Otto cycle is

n-l 1

2W2 ^ /pi \ \p2/
^

\p2

(^^)Vc—Vh '\p3 I n—i

i^y-

In gas-engine design the calculations are usually made

under the assumption that the compression and the expan-

sion are adiabatic. Under these conditions the net work

of the cycle may be expressed as follows:

2W2 = J(3Qi-\-5Q2)=JmC„(Ti-T3+T2-T5).

Exercise 126. Show that the efficiency of the Otto cycle is

t-i

T2 T, /V„Y-' /pA *

when compression and expansion are adiabatic.

Exercise 127. (a) Show that the efficiency of the Otto cycle

is less than the efficiency of the Carnot cycle both cycles operating

between the same hot and the same cold bodies.

(b) Show that the efficiency of the Otto cycle increases with

increasing compression.

The Diesel Cycle.—The Diesel cycle is particularly

suited to the internal combustion of oil. In this cycle,
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Fig. 25, the cylinder takes in a charge of air which is then

compressed adiabatically, process i 2, to about 500 pounds

per square inch into the clearance space. The temperature

of the compressed air is so high that the oil injected into

the cylinder ignites spontaneously. The injection of oil

and the heating of the contents of the cylinder continues

during a portion of the working stroke of the piston. After

the injection of oil ceases the contents of the cylinder

expand adiabatically to the end of the stroke.

Fig. 25.

Theoretically at least the flow of oil may be regulated so

as to maintain either

(a) constant pressure until the oil is cut ofT, process 2 3,

(b) constant pressure to A and then constant temperature

to B, process 2 A B,

(c) constant temperature thruout the period of injection

of oil, process 2 C.

Thermodynamically the cycle is completed after the

adiabatic expansion 34, 54, or C 4 by cooling at constant

volume from 4 to i, practically the products of combustion

are expelled to the atmosphere.
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Exercise 128. Show that the efficiency of the Diesel cycle

under the conditions described above is

c.(r.-r,)-..(r.-r,)^__,/r^\
,^^^„_,,,,,_,_^,„,_

Ci>{Ts-T2) k\T',-T,

-—
, for condition (b),

kiT^-T,)+{k-i)TAlog-^
V A

I Vc \ (VcY-'^ 1
jpiVilog-— mcv{Ti-Ti) CvTiU~] -i

I —
I Vc R Vc '

for condition (c).

Exercise 129. How many B.t.u. per i.h.p. per hour must

be supplied to an ideal engine operating on an Otto cycle?

Exercise 130. Compute the ideal efficiency of the Otto cycle

when compression is carried to 1 5 atmospheres.

Exercise 131. It is claimed that an oil engine uses 0.42

pound of fuel (18,000 B.t.u. per pound) per kilowatt-hour

delivered by the generator to which it is directly connected,

that 20 per cent of the indicated power is lost between the

cylinder and the bus bars, that the highest temperature in the

cylinder does not exceed 2500° F, and that the exhaust temper-

ature is 800° F. Are the above claims probable?
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THE SECOND LAW OF THERMODYNAMICS

Section XVIII

THE FIRST LAW

Conservation of Energy.—Experience and experimen-

tation have always led to the conclusion that the total

energy in a given space cannot be increased or diminished

unless energy passes thru the boundary of the space

considered. This principle is known as the law of conser-

vation of energy. In accordance with this law the total

energy of the universe is a fixed unalterable quantity.

Transformation of Energy.—Altho the total energy

within a given space cannot be increased or diminished

without introducing energy into or withdrawing energy

from the given space, energy of one form may be transformed

into energy of another form within this space without pro-

ducing changes in the amount of energy residing outside

of the space considered. Thus mechanical energy may be

converted into electrical energy and under ideal conditions

it is possible to conceive that all of the mechanical energy

which disappears would reappear as electrical energy.

Practically this complete conversion is impossible. Unavoid-

able losses always result in the transformation of some of

the mechanical energy into other forms of energy, principally

"5
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heat, with a corresponding decrease in the amount of electrical

energy produced.

The First Law of Thermodynamics states that whenever

heat is transformed into mechanical energy or mechanical

energy is transformed into heat a definite quantity of

mechanical energy reappears for every definite quantity

of heat which disappears and vice versa. It has been ex-

perimentally determined that the complete transformation

of 777.64 foot-pounds of mechanical energy always results

in the appearance of i B.t.u. of heat.

It should be noted that the first law of thermodynamics

does not specify how much of a given quantity of heat

energy can be transformed into mechanical energy. It

simply states that if any portion of, or if the whole of any

given quantity of heat is transformed each heat unit that

disappears will reappear as a definite number of units of

mechanical energy.

Section XIX

THE SECOND LAW OF THERMODYNAMICS

This law has been stated in many ways. As the proof

of this second law must be based upon experience and ex-

perimentation the simplest form of the law is the following

:

Heat has never been known to flow of its own accord

from a cold to a relatively hotter body; that is, an ex-

penditure of energy is always necessary to cause heat to

flow from a body to another body of higher temperature.

The consequences of this law are of the greatest importance.

It will be shown by means of this second law that heat

can never be completely converted into mechanical energy,

not even under ideal conditions; that the fraction which
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is convertible depends upon the available extreme tem-

peratures; that this fraction depends only upon these

temperatures and not upon the working substance with

which the heat is associated ; and thus that every transforma-

tion (even under ideal conditions) of heat into mechanical

energy is accompanied by an unavoidable waste of some

of the heat energy involved.

In order to demonstrate these consequences of the second

law we must first carefully consider the nature of reversible

and irreversible processes and cycles.

Reversible Processes and Cycles.—A process is said to

be reversible when the changes involved may be retraced

in reverse order, thus returning the substance undergoing

change to its initial state, and at the same time leave no

change of any kind in any associated bodies.

As an example, during an isothermal expansion of ideal

gases not only does the state of the gas change from pi,

Vi, Ti to p2, Vo, To but heat is supplied to the gas during

the change and the work performed by the gas must be

stored in some way. Thus two bodies associated with

the gas during the change of state were altered one by

being deprived of some of its heat and the other by having

its store of mechanical energy increased.

If this isothermal process is reversed and the gas is

compressed to its initial state, work must be performed

on the gas and heat must be withdrawn from the gas.

The necessary work may be obtained from the body in

which the work performed during expansion was stored.

The heat withdrawn from the gas may be returned to the

body which acted as the original source of heat. Then

after the gas has been returned to its initial state no changes
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will remain in any bodies associated with the gas during

its changes of state, because all work performed during

expansion must be used for compression and all heat bor-

rowed during expansion will be returned during compression.

It is at once evident that the processes just described

are ideal. Practically it is impossible to realize storage

and redelivery of the work involved without some loss due

to friction. Nor can heat be transferred from the source

to the gas while both are at the same temperature or while

they differ in temperature by an infinitesimal amount as

they must during a reversible change of state. Practical,

actually realizable processes are never reversible.

Under ideal conditions processes may be conceived to

be reversible and any cycle composed wholly of reversible

processes must also be reversible in the thermodynamic

sense. Thus the Carnot cycle is reversible. The Stirling

and the Ericsson cycles with perfect regeneration are also

reversible. Without regeneration the isopiestic processes

of the Stirling cycle and the isometric processes of the

Ericsson cycle are irreversible. During these processes

the gas is not at the same temperature as the body supply-

ing or receiving heat and a reversal of the process would

require the flow of heat from a cold gas to a relatively hotter

body.

It must not be supposed that the Stirling cycle without

regeneration cannot be traced in a counter-clockwise direc-

tion and the cycle used in a heat pump. This can be done

but only after the conditions of operation have been changed

so that during the isometric processes the thermal con-

tact between the gas and the hot and the cold bodies

are interchanged.
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Exercise 132. Sketch a Stirling cycle without regeneration

and indicate during which processes the gas is in thermal contact

with the hot body and with the cold body during (a) the motor

cycle, {b) the pump cycle. How do these conditions differ

from the conditions existing when a regenerator is used?

The Joule cycle is also irreversible, see page 103. Any

process involving the transfer of heat from one body to

another at an appreciably lower temperature is irreversible.

As conduction of heat is always present in all actual

machines reversibility can never be attained in actual

practice. It is an ideal condition which may be imagined

but not realized. The assumption of ideal reversible

processes and cycles is very useful in arriving at important

deductions of the second law of thermodynamics.

Irreversible Processes and Cycles.—xA.s another example

of an irreversible process consider the flow of air in Joule's

experiment devised to show that the change in the internal

potential energy of a gas is zero, see page 10. This

change of state involves conditions which have not yet

been studied. The internal energy of the compressed gas

is partly changed to kinetic energy of the moving mass of

gas during its passage from the high-pressure to the low-

pressure receiver. This kinetic energy is then reconverted

into heat energy in the low'-pressure receiver thru

impact and internal friction. The initial and the final

states of the gas are readily shown on the pV-plane but

the intermediate states cannot be represented by an adia-

batic pV^= a. constant even tho no heat is supplied to

or withdrawn from the gas during the process because the

whole mass of gas is not always under the same pressure

and temperature.
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That this process is not a reversible adiabatic process

such as has been studied becomes evident when we attempt

to restore the gas to its initial condition without leaving

changes of any kind in any associated bodies. The gas

will of course not flow back into the high-pressure receiver

of its own accord. It must be pumped back. Assume

the compression to be isothermal then work must be sup-

plied and the body supplying this work will lose this energy.

Assume the compression to be reversibly adiabatic then

again must work be supplied and more work than during

isothermal compression. Under the last assumption the

compressed gas will be hotter than in its initial state. It

may be argued that this extra heat may be withdrawn

from the compressed gas, transformed into work, and this

work used to repay the loan of work made for compress-

ing the gas. It will be shown that the work so obtained

will be insufficient to fully repay the loan of energy.

Under any conceivable conditions return to the initial state

is only possible when changes of some kind remain in

associated bodies. If this is so then the process is irre-

versible.

Carnot's Principle.—This principle is a consequence of

the second law of thermodynamics. It may be stated as

follows

:

No heat motor can have a greater efficiency than the

efficiency of a heat motor operating on a reversible cycle

provided all motors operate between the same extreme

temperatures.

To prove this principle conceive two heat motors (marked

I and 2, Fig. 26) operating between the same hot and

the same cold body. Let motor i operate on a reversible
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cycle and assume that the efficiency of motor 2 is greater

than the efficiency of motor i, so that,

'72>r;i.

If the principle we are to prove is true this assumption

should lead to an impossible condition.

As shown in Fig. 26 when both motors are running as

motors we may assume conditions such that each motor

Hot Body

/Q Q^

I

—

-—
[

^iQ<'^2Q

Cold Body

Fig. 26.

not Body

1
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source of heat one B.t.u. for every 771 B.t.u. supplied to it

as work when it runs as a heat pump. Under our assump-

tion motor I will receive 772^ B.t.u. of mechanical energy

and it must therefore reject to the hot body -^ B.t.u.
m

But 772 > 7?! by hypothesis. Therefore during the operation

of the motors as shown in Fig. 27 more heat will be re-

turned in a given time to the hot body by reversed motor

I than motor 2 extracts from the hot body. Thus we have

a self-contained system in which heat continuously flows

from a cold to a relatively hotter body, an impossibility

according to the second law of thermodynamics. We thus

conclude that our hypothesis is impossible and that 772

cannot be greater than 771.

Exercise 133. Establish the inequalities indicated in Fig. 27.

The Consequences of the Second Law of Thermo-

dynamics.—As has just been shown any heat motor opera-

ting on a reversible cycle has an efficiency at least as high

as any other heat motor (reversible or not) utilizing the

same hot and cold bodies as source and as receiver of heat.

Therefore all heat motors operating on reversible cycles

must have the same efficiency.

Also, with a given hot body and a given cold body any

heat motor operating on a reversible cycle is as efficient

as any heat motor can possibly be, or no engine can convert

a greater fraction of the heat energy supplied to it into

mechanical energy than an engine operating on an ideal

reversible cycle.

It should be noted that in the preceding discussion no

mention is made of the working substance nor of the mode
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of action of the motor. Reversibility in the thermody-

namic sense is the only stipulation. Thus any working sub-

stance passing thru any reversible cycle will transform

into mechanical energy the greatest possible fraction of

the heat supplied for any given conditions as regards

the source and the receiver of heat.

We must now establish the efficiency of a reversible

cycle in terms of the temperatures of the source and of the

receiver of heat upon which alone this efl&ciency depends.

Section XX

KELVIN'S ABSOLUTE SCALE OF TEMPERATURE

Lord Kelvin established a scale of temperature which

is independent of any particular substance and is in this

sense absolute. That such a scale of temperature is nec-

essary at least theoretically becomes evident when we

remember that the readings of mercury thermometers

differ with each other and with the readings of an air ther-

mometer and that none of these agree with the reading of

the standard hydrogen thermometer.

Kelvin arbitrarily defmed temperature by means of the

relation

6 Q'

where 6' and 9 are the temperatures of a source and of

a receiver of heat respectively and Q' and Q are the quan-

tities of heat supplied by this source and rejected to this

receiver by any heat motor operating on a reversible cycle

between them.
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As the efficiency of any heat motor is by definition

V ^ ,

Q' Q' Q Q'
and as -:r=^ or ^ = ^=r, some constant,

we have

so that

Q G

Q'^rd' and Q= rd,

!=

Fig. 28.

This is the efficiency of any and every ideal reversible

cycle and it cannot be exceeded by any other cycle oper-

ating between the same source and the same receiver of

heat. This expression is as yet meaningless. The sig-

nificance of d must be established. The scale of tempera-

ture must be determined.

The Carnot cycle is a typical reversible cycle. As shown

in Fig. 28 this cycle may be represented by any two
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adiabatics and two isothermals. Let the cycle marked

/ be the cycle of a heat motor operating between the tem-

peratures di and 6-2 and let Qi be the heat supplied at a

temperature ^i and Q2 be the heat rejected by the motor

at a temperature do. Further assume that the heat so

rejected by motor / is at once supplied to another motor

(whose cycle is marked II) at the temperature 62, and

that this motor rejects Qs heat units at a temperature

ds, and so on.

Under these conditions the efficiency of motor / is

Q1-Q2 9,-02

and for motor //

Q2— Qs 02— 03

.. ''=~Qr=~0r'
But, by definition,

h= Ql or 2i= 22
02 Q2 01 02

and as 0i, 02, 03 are to be consecutive points on a tempera-

ture scale the interval between 0i and 02 must equal the

interval between 62 and 03 or

Now from the expression for rji and r/2 we find

Ql-Q2 = ^{01-02)

and Q2-Q3 = ^{02-03)

whence by reason of the above relations between the ^'s

it follows that

Qi-Q2 = Q2-Q3.
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Therefore the heat which disappears and which is con-

verted into mechanical energy is the same in each of the

ideal reversible motors when the temperatures of their

sources and receivers of heat differ by the same number

of degrees on Kelvin's absolute scale of temperature. Thus

having assumed any two isothermals, Fig. 28, at say one

degree apart the next isothermal another degree lower

in temperature must be so located that the area of its

cycle (marked //) must equal the area of the first cycle

(marked /).

As each succeeding motor transforms a portion of the

heat originally supplied to the first motor into mechanical

energy and as the original supply of energy need not be

infinite and as each motor transforms the same amount of

heat as the preceding one, the heat will finally be wholly

transformed. When this occurs the last motor must

operate with a receiver at zero temperature and this will

be an absolute zero. There is nothing beyond. The zero

of Kelvin's scale is an absolute zero.

To put it in another way assume that in

77
=

d becomes negative, a negative temperature on Kelvin's

scale, then 7; becomes greater than one or the motor would

deliver more mechanical energy than would be equivalent

to the heat supplied to it. This would violate the

law of conservation of energy and our assumption is

impossible.

To establish a definite numerical value for Kelvin's

scale of temperature assume Oi to correspond to 212° F
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and 02 to 32° F. Between di and 62 we have the follow-

ing relations

6-2 Q2

and 01 -02 =180.

Next assume a working substance which passes thru

the ideal Carnot cycle. Any substance will do for all

substances have the same efficiency. Let the substance

be air. Now find by experimentation and calculation the

value of ^.* Its value is

Q2
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Section XXI

THE AVAILABILITY OF HEAT ENERGY

The availability of heat energy is measured by the frac-

tion of the heat energy which can be transformed into

mechanical energy under the best conceivable conditions.

Thus the efficiency of any reversible cycle operating be-

tween the temperature of the given heat energy and the

lowest obtainable temperature, i.e. the temperature of the

coldest body which can be relied upon continuously to

receive heat without increasing its temperature appreci-

ably, is a measure of the availability of the heat supplied.

Thus never, even under the most ideal conditions which

may be conceived altho not realized, can any given

supply of heat be completely transformed into mechanical

energy, for this would only become possible if a receiver

of heat could be found whose temperature would remain

permanently at absolute zero.

The degradation of heat energy is the term used to

denote the idea that every transformation of heat energy

into mechanical energy must be accompanied by an irre-

trievable loss, not of energy, but of transformable energy.

All heat rejected to a receiver of heat whose temperature

is the lowest obtainable is degraded; it can never be even

partly transformed into mechanical energy. Such heat

may be used for heating the receiver of heat but not for

the production of mechanical energy.

The availability of heat energy for transformation into

mechanical energy thus depends upon the fall in tempera-

ture between the source and the receiver of lowest obtainable
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temperature. It is measured by the efficiency of an ideal

reversible cycle operating between the source and this

receiver of heat.

Altho we can never attain this efficiency,

_Th-Tc
V——^—

,

it is the standard by which all actual thermal efficiencies

should be judged.

Exercise 134. What percentage of the heat suppUed by a

source at 600° F must necessarily be wasted if the lowest ob-

tainable receiver temperature is 60° F?

Exercise 135. (a) The combustion of gases furnishes a source

of heat with a temperature of 2500° F. Assuming that the

lowest available temperature is 80° F and that the heat is

supphed to a boiler and transmitted to steam at 380° F before

being suppUed to an engine, what is the best possible thermal

efl&ciency of this engine?

(b) What would be the efficiency of an ideal engine capable

of transforming the heat directly from the source?

Exercise 136. A steam engine requires 15,000 B.t.u. per

i.h.p. hour. The temperature of the steam supphed to this

engine is 300° F, and the temperature in the condenser is 130°

F. What is the ratio of the thermal efficiency of this engine

to the thermal efficiency of the best conceivable engine oper-

ating under the same conditions?

Three Types of "Perpetual Motion."—Peqoetual motion

of the first type would be realized by a machine which

could create energy, a machine which gives us something

for nothing. Any machine of this kind would violate the

law of conservation of energy and is therefore impossible.
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Perpetual motion of the second type is sought by in-

ventors who attempt to design machines which are able

to transform all of the heat energy supplied into mechan-

ical energy without having a receiver at a temperature

of absolute zero. In this case no attempt is made to obtain

something for nothing and still the result is impossible

of attainment for it would mean a violation of Carnot's

principle and thus of the second law of thermodynamics.

Perpetual motion of the third type is embodied in an

ideal mechanism which when once set in motion would

continue in motion forever. A mechanism of this kind is

not supposed to deliver energy and altho it is not theo-

retically impossible it could never actually be constructed.



CHAPTER VII

ENTROPY

Section XXII

INTRODUCTION

At the outset it should be understood that no attempt

is to be made in the following to explain what entropy is.

Such matter would be out of place in a first course in

thermodynamics. Nor is it necessary. We do not know

what electricity or even gravitation is. It will be suffi-

cient if we study the properties of and become familiar

with entropy and above all learn to recognize its usefulness

in our calculations.

The availability of Q heat units supplied at a tempera-

ture Th when the lowest obtainable receiver temperature

is Tc is

^ Th-Tc^ _Tc
"^ Th ' Th

During this ideal transformation of heat into mechanical

energy Q{i—ri) heat units must be wasted or degraded,

and Q{^-r^) = Q^=I^^^Tc.

The quant itV ~ is called the change in the entropy of

the source due to its loss of Q heat units at a constant

temperature Th-

131
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The heat degraded during this ideal transformation of

heat into mechanical energy may therefore be said to

equal the entropy lost by the source (^) multiplied by

the lowest obtainable receiver temperature Tq.

Whenever a body rejects heat its entropy is said to

diminish, whenever a body receives heat its entropy is

said to increase. The change in the entropy of a body is

measured by the heat received (or rejected) divided by

V

Fig. 29.

the absolute temperature of the body during this transfer

of heat.

Let us study the changes of entropy which occur during

the transfers and the transformation of heat during the

operation of an ideal Carnot cycle, Fig. 29.

During the process i 2 assume that the hot body rejects

and the working substance receives Qh heat units at an

absolute temperature Th- Then the entropy of the hot

body is diminished by ^ and the entropy of the working



ENTROPY 133

substance is increased by ^. Similarly if the working

substance rejects Qc heat units to the cold body at a

temperature Tc the entropy of the working substance is

thereby diminished by ^ while the entropy of the cold

Qc T,= I-
c

body is increased by ^.
i c

But 77=1 —^
Qh Tu'

SO that ^=%
see also page 123.

As no heat is transferred during the processes 2 3 and 4 i

no change in the entropy of either the working substance

or of any associated body occurs. Finally during the

operation of the cycle as a whole the entropy of the work-

ing substance returns periodically to its initial value and

altho the entropy of the hot body continually dimin-

ishes and that of the cold body continually increases the

entropy of the whole system remains constant.

Consider now a Carnot cycle in which owing to con-

duction the temperature of the working substance during

the process i 2 (Fig. 29) is Ti, a constant, where Ti<Ta
and the temperature along the process 3 4 is To where

T2>Tc. Then if Qh is the heat supplied by the hot

body and Q2 is the heat rejected to the cold body, we

find that

the entropy lost by the hot body ~^>
Th

Oh
the entropy gained by the working substance=^,

i 1
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the entropy lost by the working substance

the entropy gained by the cold body

and that these are the only changes in entropy during one

complete cycle.

As the efficiency of this cycle is less than the efficiency

of the ideal cycle considered in Fig. 29

Qh-Qc>Qh-Q2,

or Qc<Q2,

and as Ti<Th and 7^2> Tc by hypothesis,

1 H il -f 2 i C

Also - ^=—, seepage 135.

Therefore while the entropy of the working substance

remains unchanged the entropy of the whole system now

increases.

Moreover this cycle is not reversible. It is impossible,

without aid from a source external to the system con-

sidered, to return the heat supplied by the hot body to it

by means of the work obtained during the direct action

of the cycle.

The above examples illustrate the fact that during the

operation of reversible cycles the entropy of the system

remains constant but that during the changes occurring

in an irreversible cycle the entropy of the system increases.
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As all actual transfers of heat involve conduction we

may infer that the entropy of the universe is continually

increasing.

The actual entropy of any body at any time is never

computed nor need it be known. The changes in entropy

of a substance due to a transfer of heat is however very

useful. It is computed by means of the ratio

heat received or rejected by the body

the absolute temperature of the body during the transfer of heat'

Let S represent the entropy of a body receiving AQ

heat units .vhile the absolute temperature of the body remains

T then

A5=f.

If the temperature of the body changes during the heat

transfer then

for during this transfer of dQ heat units the temperature

of the body remains T.

A change in entropy will be denoted by dS if the mass

of the substance is m pounds and by ds if the mass is one

pound, so that

dS= 7nds.

The entropy of a body may be used as a coordinate

to represent the state of the body. The change in the

eiitropy of a body depends only upon the initial and the

final states of the body and not upon the manner in which

the change of state occurred.
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To demonstrate this Tor an ideal gas note that

dQ= mcvdT-\—:pd V,

and that by definition

dT 1 pdV
so that db — mcv-jr-rj^^'

From this equation it appears that the change in entropy

dS depends upon T and pdV in addition to the Cv of the

gas. As pdV represents the external work during the

change of state considered and must vary with the proc-

esses involved it would seem that ds must also vary with

these processes. But this is not so.

As pV= mRT
thRi

replace p by—t^t- and note that

,^ dT. R dV

This equation shows that the change in entropy depends

upon the temperature and the volume of the gas as well

as upon the change in temperature and the change in

volume but as it can be integrated without knowing the

relation between T and V the entropy does not depend

upon the manner in which either T or F change.

Thus when the gas attains its new state its entropy

reaches a definite value which is absolutely independent

of what may have happened to the gas during its change

of state.
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The difference in this respect between a change in entropy

and say the heat suppHed during a change of state should

be carefully noted. In changing from one state to another

every particular process followed will require the addition

of a definite amount of heat different in each case. Thus

Q cannot be used as a coordinate to determine the final

state of the gas. With entropy only one definite change

in entropy will be found during any change of state pro-

vided the same final state is reached.

Thus instead of three coordinates to determine any

particular state of an ideal gas as illustrated graphically

in Fig. 2 we may now use four, i.e., p, V, T, and 5. This

does not mean that all four must be used simultaneously.

In fact we have already explained that only two of the

three coordinates p, V, and T are usually used; instead

of the three-dimensional representation the two-dimensional

representation of changes of state on the />F-plane is always

preferred.

With the introduction of entropy we may use in addition

to the planes of pV, pT, and TV, other planes such as

pS, VS, TS. Of these new planes of projection it will

be shown that the r5-plane is the most important.

Section XXIII

CHANGES IN ENTROPY OF IDEAL GASES DURING
REVERSIBLE PROCESSES

Changes in Entropy during Reversible and Irrevers-

ible Processes.—It must be remembered that changes in

the entropy of a substance may occur even when no

heat is supplied to the substance from external sources.
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All heat generated within the substance itself will cause

a change in the entropy of the substance. To illustrate,

consider a mass of gas flowing thru a pipe. Friction will

cause some of the kinetic energy to be transformed into

heat. Thus even tho the gas be thoroly insulated so

that no heat may reach it from without its entropy will

nevertheless increase. This is an example of an irreversible

adiabatic change of state during which the entropy is not

constant even tho dQ is zero. These cases will be considered

more thoroly under the head of flow of fluids. It is at

present sufficient to call attention to the fact that what

follows applies only to reversible changes during which

thermal equilibrium exists and all parts of the mass con-

sidered are always at the same temperature. Neglect of

this precaution will lead to serious errors in the use of

entropy.

Changes in the Entropy of an Ideal Gas during Re-

versible Processes.—Under these conditions as

dQ= mc4T+jpdV

we have rf5=f=«c.f+i If.

To integrate this equation either p or V must be elim-

inated by means of

pV= mRT.
Eliminating p we have

dT
,
mR dV

dS= mCv-jr-'r—j- -yr^

whence S= mcv loge T-{-m{cp—Cv) loge F+C
= maloge(rF*-i)-|-C.
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Assuming that the entropy changes from 5i to So while

p, V, and T change from pi, Vi, T]_ to p2, V2, To we have

Si = mcv log Ti Fi'~ ^+C

and ^2 = mCv log T2 Vo'^'^-hC

or the change in entropy

S2-Si = mcAog(j:^j(pJ
VoV-^

Exercise 137. Show that the entropy, S, of an ideal gas

may be expressed in the following forms

S= nicv log {pV^)+Ci

S= mcvlogiTV^-^)+C2

l-k

S= mcp log (Tp >" )+a.

Exercise 138. Show by means of the equations of Exercise

26 that for reversible processes we may write the change in

entropy due to a change of state from pi, Vi, Ti, Si to p, V, T, S
in the following forms

T V
S-Si = 7ncv log-r+m{cp-Cv) log —

,

-11 Vi

S—Si = jncp log -

—

micp—Cv) log —

,

J

1

Pi

p V
S—Si = mcv log — -\-mcp log --.

pi Vi

Exercise 139. Deduce the results of Exercise 138 from the

results of Exercise 137 and transform them into the last form

given in the illustrative example above.
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The Temperature-Entropy Diagram.—During a revers-

ible process

dQ=TdS.

Therefore the area under a line representing any reversible

process on the T^-plane such as i 2, Fig. 30, represents

the heat supplied to the mass undergoing the change of state

from I to 2 in accordance with the indicated process. If

the process changes, the line i 2 (Fig. 30) must change

Fig. 30.

and the heat supplied must change but the change of

entropy and position of point 2 remain unchanged.

This graphical representation of heat supplied on the

r^-plane is analogous to the graphical representation of

work done on the ^F-plane.

The area enclosed between the lines representing upon

the r5-plane the processes of a reversible cycle represents

the heat transformed into work during this cycle.

Reversible Isopiestic Processes on the TS-plane.—Let

p\, I'l, Ti, 51 represent the initial conditions of one pound

of gas and pi, v, T, s any subsequent condition of this
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same gas after a reversible isopiestic process. This process

is represented graphically on the pv--p\a.ne in Fig. 31. We
must now transfer this representation to the r.j-plane,

Fig. 32.

As

and as

and

dq = CpdT

CndT
ds=

T

S-Si=Cy\0ge7ir.
-t 1

Fig. 31. Fig. 32.

By means of pv= RT, T\ may be computed and the

horizontal line on which point i lies in Fig. 32 may be

found. The value of s\ may now be arbitrarily assumed

for there is no absolute zero of entropy such as exists

for pressure, volume, and temperature. In practice the

entropy of the substance at the lowest temperature occurring

in any calculation may conveniently be assumed to be zero.

This would place point i in Fig. 32 on the axis of T.

T may also be computed by means of pv= RT. But 5

cannot be arbitrarily assumed after si is fixed. As

T
S= Si-\-Cp loge

Ti'
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the point 2 on the r5-plane lies upon a logarithmic curve

passing thru point i.

Exercise 140. One pound of air expands at a constant pressure

of 100 pounds per square inch absolute from a volume of i.g

cubic feet to 3 cubic feet.

(a) Compute the change in entropy of this air.

(b) Compute the final entropy of this air.

The relation between any two isopiestic curves on the

r^-plane is important. The equation of any isopiestic

curve is

1 ^S— Si = Cp lOge =r.
1 1

By diflferentiation we obtain

ds Cp

T

Fig. 33.

Therefore at any given temperature all isopiestic curves

for a given gas have the same slope, — , Fig. t^t,.

As an application of this fact suppose a series of iso-

piestics on the T^-plane are required. Then one such

curve may be accurately plotted and a templet of the
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form indicated in Fig. 33 may be cut. This templet sliding

along a straight edge coinciding with the 5-axis will serve

to draw all the required isopiestics.

Exercise 141. Compute the distance, measured on a line

parallel to the 5-axis, between two isopiestic curves for pres-

sures pi and p2 and show that this distance is independent of

the isothermal along which it is measured.

Exercise 142. Isopiestics for o, 10, 20, etc. pounds per

square inch absolute are to be drawn on a T^-plane. Are the

distances between these isopiestics measured along any given

isothermal equal?

Reversible Isometric Processes on the TS-plane.—
It can be readily shown that the change in entropy during

a reversible isometric process is

5— ^1 = Co log ^r.
J 1

Therefore the isometrics on the Ts-plane are also log-

arithmic curves but their slopes are

ds Cv

As Cp>Cv for any ideal gas isometrics are steeper than

isopiestics on the T^-plane.

Exercise 143. Two pounds of air are confined in a receiver

(capacity 10 cubic feet) at a temperature of 80° F. The pres-

sure increases to 70 pounds per square inch absolute. Compute

the increase in the entropy of this air during this change of state.

Exercise 144. Sketch a network of isopiestics and isometrics

on both the pv- and the T^-planes. Pay due attention to the

slopes and the relative positions of the curves on the T^-plane.
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Reversible Isothermal, Adiabatic, and Poljrtropic Proc-

esses on the TS-plane.—Reversible isothermals are evi-

dently represented by straight lines parallel to the 5-axis.

Reversible adiabatics for which dQ= o and no heat is

generated within the mass considered are processes for

which ds= o so that the entropy is constant. These are

represented by straight lines parallel to the T-axis.

Exercise 145. Show that the equation of the r^-curve repre-

senting any reversible polytropic process is

(n-k \ T

\n—i I Tx

From the last exercise it follows that polytropics are also

logarithmic curves on the T^-plane. Note that isometrics,

isopiestics, and the general polytropic curves all have the

equation

S-Si=ClOge;^,

the proper value of c to be introduced in each case.

The Temperature-Entropy Plane.—The preceding dis-

cussions and exercises lead to the results illustrated in Fig.

34. This figure should be compared with the corresponding

diagram for the /'ZJ-plane, Fig. 4.

Note that isometrics and isopiestics are straight lines

on the />i)-plane but logarithmic lines on the T^-plane.

Isothermals and adiabatics are curves on the ^f-plane

but become straight lines on the T^-plane.

Exercise 146. The state of an ideal gas changes from px,

Di, Ti, 5i to pi, V2, T2, S2 in a reversible manner, assume that

the change occurs in two steps, the first being
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(a) adiabatic and the second isometric,

(b) isothermal and the second isometric,

(c) isopiestic and the second isometric,

(d) isometric and the second isopiestic.

Sketch these changes on the pv-plane and note the relative

amounts of external work performed.

Exercise 147. Sketch the processes described in Exercise

146 on the r^-plane and note the relative amounts of heat that

must be supplied to produce these changes of state."*

Fig. 34.

Exercise 148. Compute the changes in entropy during the

processes described in Exercise 146 and show that the total

change in entropy is the same in each case.

Exercise 149. Deduce the relation between p and v, v and T,

and T and p for a reversible adiabatic process by means of

the equations in Exercise 138.

The Logarithm Temperature-Entropy Diagram.—We
have found that polytropic processes are represented upon

the pv-p\a.ne by curves whose equations are pv**=C. These

curves are in general difficult to plot. Their use does not
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lead to simple graphical methods for the solution of

problems.

On the r^-plane polytropics are represented by logarith-

mic curves. Also all polytropic curves having the same

exponent n may be drawn by means of the same templet

(see page 142). This permits graphical calculations to be

performed more easily on the Ts-plane than on the pv-

plane. But it requires a templet for each polytropic.

For all graphical calculations it is very desirable to

have to deal only with straight lines. All curves can be

represented by straight lines by properly selecting the

scales used on the coordinate axes.

The equation

s—si = c\oge —
-f 1

representing polytropic change on the T^-plane is rep-

resented by the logarithmic curve if the decimal scales

are used on both axes (Fig. 33). If however we rewrite

the equation as follows

S = C loge T-\-{si— C loge Ti)

and put loge r=z,

we obtain s= cz-\-{s\— c\ogeTi),

the equation of a straight line when uniform decimal scales

are used on the s and the z axes.

The scale on the 2-axis would thus appear as shown in

Fig. 35 (a). The reading of this scale, in terms of 2 is

easy, in terms of T it is impossible for these intervals are

non-uniform. As T is required and not 2 and in order
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to avoid reading z and then referring to a table of natural

logarithms for the corresponding value of T as must be

done when scale (a) is used, the scale shown in Fig. 35 (6)

is used.

Paper ruled horizontally with the H^ h^

scale shown in Fig. 35 (b) and ver-

tically with a uniform decimal scale

can thus be used to plot any poly-

tropic on the T5-plane as a straight

line.

Exercise 150. If 100° F is repre-

sented by a point i inch above 0° F

on the log T-axis how far below the

point representing 0° F should — 200° F

be located?

Where would the absolute zero be

located?

For diagrams ruled as above de-

scribed and which may be used for the graphical solution

of problems relating to air see the diagrams accompanying

Bulletin No. 63 of the Engineering Experiment Station

at the University of Illinois.

6-+ ,

5.75 ""1.75

5- -|-h6094

4.48 4- 1.50
4- +-1-.3863--

-1.0986-

-

I 0-

0-H

—

(a)

3.49- -1.25

2.72- -1.00

_2,12;:0JjS

(6)

Fig. 35.

Section XXIV

GAS CYCLES ON THE TS-PLANE

As all reversible processes can be represented on the

r5-plane any cycle consisting of such processes can also

be shown on this plane. The area included between the

lines representing the processes represents the heat trans-

formed into work during the cycle.
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In sketching any cycle on the T^-plane care should be

taken to note whether the temperature rises or falls, or

whether heat is supplied to or rejected by the gas during

each process as it occurs in the cycle.

Exercise 151. (a) Sketch a Carnot, a Stirling, an Ericsson,

a Joule, an Otto, and a Diesel cycle on the pV-planc.

(b) Sketch these cycles on the r5-plane and number the

points so as to correspond with the numbers on the /^F-diagrams

drawn in (a).

Exercise 152. Compute the efficiency of a Carnot cycle from

the areas of its r5-diagram.

Exercise 153. Sketch superimposed T^-diagrams of a Carnot,

a Stirling, and an Ericsson cycle (the last two when regenerators

are used). Assume these cycles to operate between the same

limiting temperatures and assume the gas to receive the same

quantity of heat from the source in each case.

Show by means of these diagrams that the efficiencies of these

cycles are the same.

Exercise 154. Compute the efficiency of the Otto cycle

from the areas of its T^-diagram, assume adiabatic expansion

and compression.



VAPORS

CHAPTER VUI

INTRODUCTION

Section XXV

PROPERTIES OF VAPORS

The study of vapors can best be begun by an analysis

of the behavior of water under varying conditions of pres-

sure, temperature, and volume.

It has been determined experimentally that the pressures

exerted by water-vapor at certain temperatures are those

given in the following table. The last column gives the

volume in cubic feet occupied by one pound of liquid

water at the temperature given in the first column.

PROPERTIES OF WATER

Temperature,
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When the temperature of and the pressure on the water

are those given in any line of this table and provision

is made for expansion at this constant pressure then any

addition of heat will cause vapor to form but no change

in pressure or in temperature occurs.

To more clearly understand the nature of these changes

it is useful to conceive the water to be confined as shown

in Fig. 36. Here the only pressure exerted upon the water

is that due to the heavy freely moving piston.

Fig. 36.

To fix our ideas let the mass of water be one pound

and the weight of the piston be such as to exert a force of

say 67 pounds per square inch upon this water. Then

provided the temperature of the water is less than 300° F

liquid water alone exists under the piston; no water-vapor

is present. When the temperature reaches 300° F (due

to the absorption of heat) vapor forms and more vapor forms

as more heat is supplied but as long as liquid water is

present the temperature remains 300° F and of course

the pressure remains 67 pounds per square inch absolute.

Consider now the changes in volume involved in the
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above specific case. According to our table the volume

of one pound of water at 300° F is 0.01744 cubic foot.

Altho the pressure 67 is given in the same Une of the

table this does not mean that this must be the pressure

exerted on the water when its specific volume is 0.01744.

Experiment shows that water is practically incompressible

(0.0000469 of one unit change in unit volume per atmos-

phere). Thus the volume of one pound of water at 300° F

is 0.01744 cubic foot under any pressure likely to occur

in engineering practice.

Exercise 155. (a) What is the specific volume of water at

2,2° F when under a pressure of 247 pounds per square inch

absolute?

(b) What will be the specific volume of water under the same

pressure when vapor forms?

Thus if in Fig. 36 we start with one pound of \\-ater

at 32° F its volume will be 0.01602 cubic foot under a

pressure of 67 pounds. As we heat this water under constant

pressure its volume gradually increases to 0.01744 and

its temperature to 300° F. Vapor now forms and the

volume of the liquid and vapor rapidly increases until the

liquid disappears and only (dry saturated) vapor at 300°

F remains. The volume now is 6.47 cubic feet as set down

in the steam tables. If more heat is supplied the tem-

perature of the vapor rises and its volume increases. Some

volumes and the corresponding temperatures of the now

superheated vapor, always under a pressure of 67 pounds

per square inch, are

6.99 cubic feet at 350° F

7 . 49 cubic feet at 400° F
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8.45 cubic feet at 500° F

9.38 cubic feet at 600° F.

The above described changes of state may be repre-

sented graphically on the ^z'-plane as shown in Fig. 37.

In this figure the names of the physical states of the sub-

stance have been added.

The point A at which the formation of vapor starts,

the poi,nt separating the liquid from the liquid and vapor

LiqulU lLi(uuci + Vapor ;\
Superb6atert

' " ^
\ Vappr

Dry Satiirated
VapQr

Fig. 37.

condition, lies on what is called the liquid line. The point

B at which the liquid ceases to exist and at which the

vapor is dry saturated lies on what is called the saturation

line. The point B separates the saturated condition of the

vapor from the superheated condition.

Exercise 156. Plot, by means of the steam tables, the satura-

tion and the liquid lines for water on the pv-p\a.ne.

Plot the same lines on the pt-p\ane.
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Section XXVI

THE CHARACTERISTIC SURFACE OF VAPORS

In order to illustrate the difference between the behavior

of a vapor and an ideal gas the general nature of the char-

acteristic surface of a vapor plotted in three dimensions

on axes of p, v, and T is shown in Fig. 38. This figure

I'lc;. 38.

does not represent any particular vapor nor is it drawn

to scale.

The portion of the characteristic surface between the

liquid line AB and the saturation line CD is cylindrical.

Its elements are parallel to the z>-axis. This illustrates the

condition noted above, that at constant pressure increase
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in volume occurs at constant temperature as long as some

liquid is present.

To fix our ideas let us follow the point representing the

state of say one pound of water while it is heated from

32° F under a constant pressure. At 32° F the volume

of this water will be less than LM (or Im) Fig. 38, its state-

point thus lies in the horizontal plane thru LM but

nearer the /?t;-plane than LM. As the water is heated

its volume and its temperature both increase until the

temperature reaches the value corresponding to the assumed

constant pressure as given in the steam tables, then the

volume of the water equals LM and the state-point is at

M. Vapor now begins to form. The volume of the water

and its vapor rapidly increase at constant temperature

and constant pressure and the state-point moves from

M to N. At N the volume of the dry saturated vapor is

that given in the steam tables for the given pressure and

its saturation temperature. The supply of more heat now

superheats the vapor and the state-point leaves the cyl-

indrical surface upon which it moved during the formation

of the vapor. It now follows some curve, such as NP,

lying in a horizontal plane. Volume and temperature

now both increase; corresponding values are given in the

tables for superheated steam.

The portion of the characteristic surface upon which the

state-point for the superheated condition of the vapor

lies approximates a hyperbolic paraboloid (Fig. 2) more

and more closely as the corresponding condition of the

vapor recedes more and more from the saturated condition.

This simply means that very highly superheated vapors may

be assumed to obey the laws of ideal gases.
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In fact actual gases under low temperatures and high

pressures pass thru the state of superheated vapor to

the wet vapor and the liquid states. The distinction

between vapors and gases is thus one of degree, highly

superheated vapors are gases and highly compressed and

cooled gases are vapors.

The equation of the characteristic surface of superheated

vapors is usually given in the form of a corrected equation

of the characteristic surface of an ideal gas in the form

pv= RT-B,

or p{v-b) = RT-B.

Here B is the correction term which indicates the deviation

of the superheated vapor from the corresponding ideal

gas, and h represents the least volume (or co-volume as

it has been called) of the substance. This co-volume is

practically the volume of the substance in the liquid state

at low temperature; compared to the volume of the super-

heated vapor or gas it is very small.

As examples, Zeuner for steam put B= Cp^, where C
is a constant, in the first equation. Callendar proposed

the equation

P(v-b)=RT-^„

where m is a constant for all vapors.

Linde proposed for superheated steam

^ rr^ / >
./i =50,^00,000 „ \

pv= o.sg62T-p{i+o.ooi4p)l yg 0.0833),

where p is in pounds per square inch absolute, v is in cubic
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feet, and T'= /+459-6, the absolute Fahrenheit temperature,

as an equation expressing experimentally determined facts.

Exercise 157. According to Linda's equation for superheated

steam (o) what value of R for steam corresponds to 53.3 for

air? (b) Does steam become an ideal gas when sufi&ciently

superheated?

Section XXVII

ISOTHERMALS

If the temperature of a vapor is maintained constant

while its volume is diminished the changes in volume

Fig. 39.

and pressure are related as illustrated by the line abed in

Fig. 39-

In the superheated region the pressure rises with de-

creasing volume, ab. Saturation is reached at b. Further

decrease in volume does not cause increase in pressure

but condensation of vapor. The vapor becomes wetter

and wetter as compression contmues until all vapor has
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been condensed to liquid, at c. During the change of

state be the vapor is continually saturated. After the

vapor has wholly disappeared decrease in volume is accom-

panied by great increase in pressure always at constant

temperature.

Isothermals for higher temperatures have the general

form shown in Fig. 39. As already indicated in Fig. 38

the liquid and the saturation lines approach each other

as the pressure increases. This means that some isothermal

will exist for which the horizontal, straight portion is re-

placed by a point of inflection, the point at which the

liquid and the saturation lines meet. This point is called

the critical point and the corresponding pressure, tem-

perature, and specific volume are the critical pressure,

the critical temperature, and the critical volume of the

particular gas considered.

Provided the temperature of any substance remains

above its critical temperature, i.e., provided its state-

point lies above and to the right of its critical isothermal

(Fig. 39) the substance cannot be liquefied.

A gas may even be compressed into a liquid without

ever condensing any part of it. This may be done as

follows. Referring to Fig. 39, assume the gas heated

well above its critical temperature (.4), compress it at this

temperature {AB). Under the conditions represented by

B the substance is still a gas as its temperature is still

above its critical temperature. Next cool the substance

at constant pressure until the temperature falls below

its critical temperature {BC). The gas has thus been

reduced to the liquid state without passing thru the con-

ditions of dry saturated and wet vapor.



158 THERMODYNAMICS

Exercise 158. Indicate in Fig. 39 the region in which the

state-point must He if the substance is to

(a) be wholly liquid,

(b) be partly liquid,

(c) exist as a vapor,

(d) exist as a superheated vapor,

(e) exist in the gaseous state.

The Equation of Van der Waals.—The continuity of

the properties of a substance in gaseous and liquid states

indicated above led van der Waals to apply his equation

(^p^^y,-b)=RT,

to the liquid as well as the gaseous states of substances,

altho this equation was originally designed to represent

the deviation of actual gases from the ideal conditions

represented by pv= RT.

In van der Waals' equation b represents the least volume

of the gas and a is a measure of the attraction of the

molecules. R, a, and b are usually considered constant

altho a and b most likely vary with both temperature and

pressure.

Van der Waals' equation is an attempt to represent

in one equation the surfaces of the saturated and of the

superheated vapors in Fig. 38 together with the extension

of the latter surface into the gaseous region.

If in ip-\—2)(^~^) — -^^j T is made constant the equa-

tion of the ^iJ-projection of this isothermal is obtained.

If in addition p is made constant the intersection of this

isothermal on the pv-plsLue with the constant pressure line

on the same plane is obtained. Under these conditions
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we have a cubic equation in v and the three roots of this

equation give the volumes corresponding to the points

A, B, and C, Fig. 40. Points A and C lie upon the liquid

and the saturation lines

respectively while B has only

an indirect physical inter-

pretation. When the three

roots of the cubic equation

are equal then the points

A, B, and C coincide with

each other and with the

critical point of the sub-

stance. For any temperature

higher than the temperature

which causes A, B, and C to coincide the cubic equation

will have only one real root.

Exercise 159. Show that the critical temperature Tc, the

critical pressure pc, and the critical volume Vc as computed from

van der Waals' equation are

Fig. 40.

b a I a

27 bR 276'

Van der Waals' equation does not completely represent

the changes of state of a substance when a and b are con-

sidered constant not only on account of the curve between

A and C, Fig. 40, but also because no second jog occurs

in the isothermal at such points as would represent the

change from the liquid to the solid states.



CHAPTER IX

FORMATION OF VAPORS AT CONSTANT PRESSURE

Section XXVIII

DRY SATURATED VAPORS

Heat Required to Warm the Liquid.—It is usual to

assume the heat of the substance to be zero at 32° F.

Referring to Fig. 36 assume the liquid under the piston

to be at 32° F and under any pressure, p pounds per

square foot. Then the heat required to warm one pound

of liquid from 32° F to any temperature /° F, less than

the temperature corresponding to the pressure as given in

the vapor tables is

q= ) c'dt,

where c' is the specific heat of the liquid.

This specific heat is the specific heat at constant pres-

sure and it varies with the temperature, but not appreciably

with the pressure.

The heat of the liquid is defined as the heat which must

be added to one pound of the liquid in order to change

its temperature from 32° F to the temperature /' at

which vapor forms under the constant pressure at which

the liquid is heated.
ft'

Therefore q'=
) c'dt.

Jli2°

In what follows a prime (') affixed to a letter always

denotes a condition applying to liquids and especially to

160
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the conditions along the liquid line. A double prime (")

always denotes conditions along the saturation line.

In this case g' is the heat added to change the tem-

perature of the liquid from 32° to the temperature at the

liquid line, /', or which is the same thing the temperature

for the same pressure at the saturation line, t".

For approximate calculations the specific heat of water

may be assumed constant and equal to unity. Under this

assumption

q'= t"-^2.

For accurate results the variation of the specific heat

of water must be recognized.

At 40° 80° 120° 160° 200° 400° 600°

c' equals 1.0045 0.9970 0.9974 1.0002 1.0039 1.064 1-172

Fig. 41.

In order to integrate the equation

q'= C c'dt
^32°

either the variation of c' must be expressed as a function

of / and the integral evaluated or c' must be plotted with

respect to /, as shown in Fig. 41, and the area under the

curve must be determined from the plot.
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Exercise i6o. By means of the steam tables, find the dif-

fi"
ference between (/"— 32) and I c'dt for water heated at 0.505,

5, 14.7, 100, and 300 pounds per square inch absolute.

The fact that at 14.7 pounds or 212° F the values of

/"— 32 and I c'dt are alike is due to the definition of

the mean B.t.u. used. It is the ^\-^ part of the heat re-

quired to warm one pound of water from 32 to 212° F

under a pressure of one standard atmosphere.

The Total Heat of Dry Saturated Vapor.—This is

defined as the heat required to transform at constant pressure

one pound of liquid, originally at 32° F and under the

pressure at which the vapor is to form, into dry saturated

vapor. It will be denoted by q". Thus referring to

Fig. 36, we start with one pound of liquid at 32° F under

the piston which produces the given pressure at which the

vapor is to be formed. When q" heat units have been

supplied then the space below the piston contains dry

saturated vapor.

For water Regnault found as the result of his experi-

ments that

9"= io9i.7-i-o.305(/"-32),

see also page 164.

The Latent Heat of Vaporization.—This is defined

as the heat required in order to change one pound of liquid

at the saturation temperature corresponding to the con-

stant pressure into dry saturated vapor at the same tem-

perature. Denoting the latent heat of vaporization by

r we have
r= q"-q'.



FORMATION OF VAPORS AT CONSTANT PRESSURE 163

For water, according to Regnault,

r= 1091.7— o.695(/"— 32).

External and Internal Latent Heat.—During the ab-

sorption of the latent heat of vaporization a large increase

in volume occurs. Therefore external work must be done

in overcoming the constant pressure. The volume of

one pound of the liquid at saturation temperature is v',

the volume of one pound of the dry saturated vapor at the

same temperature is v", the constant pressure is p, and the

external work done equals p{v"—v') foot-pounds which

is equivalent to

^(^ E.t.u.

Thus of the r B.t.u. supplied during vaporization only

p{v"-v')

J
=p B.t.u.

remain as increase in internal energy within the vapor.

This is the internal latent heat.

———— is called the external latent heat, this repre-

sents energy stored without the vapor.

The Internal Energy.—The internal energy of a sub-

stance, that is, the increase of the internal energy over its

value at 32° F, will be denoted by u.

For the liquid at saturation temperature the heat sup-

plied is q'. The increase in the specific volume is v'—V32,

where 1^32 is the specific volume of the liquid at 32° F
which for water equals 0.01602. Therefore if q' is supplied
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at a constant pressure p the increase in the internal energy is

,_ , p{v'-V:i2)U-q
J

.

The last term is relatively small and is usually neglected-

Under these assumptions

u'= q'

or it is assumed that the whole heat absorbed remains

in the liquid as increased internal energy because v' is

practically equal to Vz2'

Exercise 161. Compute the external work done during the

heating of one pound of water from 32° F to saturation tem-

perature under a pressure of 300 pounds per square inch. Com-

pare this with the heat which must be supplied.

For dry saturated vapor the internal energy is

,/ ,/ p{v"-VZ2)
"^=^^ ^

or u"= u'-\-p,

where p is the internal latent heat.

The Total Heat of Dry Saturated Steam as Given in

Marks and Davis' Steam Tables is denoted by H and

is defined by the equation

^-=^^"-1-^-0.04,

where H is expressed in mean B.t.u.

To interpret this quantity physically it may be trans-

formed so as to contain q"

.

,,,_,, p(v"-V32)
As

E=q -\—^ 0.04.



FORMATION OF VAPORS AT CONSTANT PRESSURE 165

H therefore is not equal to the total heat as defined on

page 162.

^-j- represents the heat equivalent of the work done

in introducing one pound of liquid (existing at 32° F under

zero absolute pressure) under a piston (Fig. 36) producing

a pressure of p pounds per square foot absolute.

0.04 equals the heat equivalent of the work done by

the atmospheric pressure during the transfer of one pound

of liquid at 32° F and under zero absolute pressure into

the cylinder (Fig. 36) for

14.7X144X0.01602— = 0.0436.
778

^^

Therefore H represents the total energy (expressed in

heat units) that must be supplied in order to produce dry

saturated steam at any pressure from water originally at

32° F and under a pressure of one atmosphere.

q" represents the energy which must be supplied if the

start is made with water at 32° F and under the pressure

at which the dry saturated steam is to be produced.

~ 0.04, represents the heat equivalent of the work

done by a feed-pump in introducing the water at 32° F
into the boiler in which it is to be heated under constant

pressure. H is greater than q" by this amount.

Exercise 162. By how much docs // for water exceed q"

at 300 pounds per square inch absolute?

What is the value of 11 under the above conditions?

The Heat Content of Dry Saturated Vapor.—The
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heat content of a dry saturated vapor is denoted by i"

and is defined by the equation

Its physical significance becomes more apparent when we

substitute for u" its value

J

thus i" = q"+ ^''

J

From this equation it follows that the heat content repre-

sents the heat equivalent of the total energy which must

be expended to produce the vapor from liquid initially

at 32° F and under zero absolute pressure.

p'V'lo

At low pressures —r-^ is very small so that under such

conditions we may assume that

:" «"
t =q .

The difference between H and i" (i.e., —0.04) is always

negligible when the degree of accuracy of the steam table

is considered so that under all conditions

The Heat Content of the Liquid is denoted by /' and

by definition

Substituting the value of u' in terms of q' we have
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Thus again at low pressures i' is practically equal

to q'.

The total heat of the liquid, h, as given in Marks and

Davis' Steam Tables is defined by the equation

h= u'-\-^— 0.0436.

Therefore h is practically equal to i'.

Exercise 163. One pound of water at 32° F and under a

pressure of 247 pounds per square inch absolute is to be trans-

formed into dry saturated steam under a constant pressure

of 247 pounds.

{a) How much heat is required?

{b) By how much is the internal energy of this water in-

creased during the above change of state?

Section XXIX

WET VAPORS

The Quality of Wet Vapors.—During the transformation

of the liquid into dry saturated vapor the substance is

partly liquid and partly saturated vapor. Under these

conditions the substance is called a wet vapor. That part

of one pound of wet vapor which consists of saturated vapor

is denoted by x and this fraction x is a measure of the

quality of the wet vapor.

At the temperature of the wet vapor one pound of liquid

occupies v' cubic feet and one pound of dry saturated vapor

occupies v" cubic feet. If the quality of the wet vapor is

X its volume denoted by v equals

v = v"x+v'(i-x).
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Exercise 164. Compute the volume of dry saturated vapor

and of liquid in one pound of steam at 247 pounds per square

inch absolute, the quality being 75 per cent.

The Total Heat, Internal Energy, and Heat Content

of Wet Vapor.—It follows from the definitions already

given that if x parts of one pound of liquid have been

evaporated

q= q'-\-xr,

u=u'-\-xp,

and as i=M+^, by definition,

we also have i= u'-{-xp-\-—p{v"x-{-v'{i — x)}

= («'+^)+xjp+|(/'-/)

or i=i'-\-xr.

Lines of Constant Quality.—In Fig. 42 are shown the

liquid and the saturation lines of a vapor. Let the point

A represent the state-point of the wet vapor when its

quality is x and its pressure p. Then

aA'^v'

aA"= v"

aA = v={:D"-'-c'yx-^v',

and as A'A = aA — aA'

= {v"-v')x.

Therefore A'A is the xth part of A'A", and for any other

pressure we would have

B'B= x(B'B").



FORMATION OF VAPORS AT CONSTANT PRESSURE l6g

If X represents a constant quality then the locus of the

points A or B as determined above is called a line of constant

quality.

Exercise 165. On the plot of Exercise 156 (a) draw lines

of constant quality for steam whose quality is (a) 50 per cent

and (h) 75 per cent.

From the above discussion it should be noted that a given

temperature and the corresponding pressure are not suffi-

FlG. 42.

cient to determine the specific volume of a wet vapor (as

was the case in an ideal gas). For wet vapors the quality

must be known as well as the temperature or the pressure

(these are not independent) before the volume can be

computed.

Section XXX

SUPERHEATED VAPORS

The Heat Required to Superheat Vapors at Constant

Pressure.—After the dry saturated state has been passed

the temperature of the vapor rises with added heat at

constant pressure. The specific heat of superheated vapors
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varies with the pressure and with any given pressure it

varies with the temperature.

Let Cp represent the specific heat of the vapor,

/", the saturation temperature,

ts, the temperature of the superheated vapor,

q, the total heat of the superheated vapor,

then q—q" represents the heat that must be added to

one pound of dry saturated vapor in order to increase its

temperature to ts under a constant pressure and

q—q"= \,,Cpdt,

^{Cp)m{t-t"),

if {cp)m represents the mean specific heat of the super-

heated vapor for the given pressure p and between the

temperatures t" and ts. The range of temperature {tg—t")

is called the degrees of superheat.

As both Cp and {cp)m vary with pressure and with tem-

perature, q—q" is not easily calculated without the use

of vapor tables.

The Internal Energy and the Heat Content of Super-

heated Vapor.—The internal energy of a superheated

vapor equals

_ p{v—vz2)

/ '

u=q—

where v is the volume of the superheated vapor.

The heat content of superheated vapor is

pv
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The total heat of steam, h, as given in Marks and Davis'

Steam Tables is practically equal to the heat content of the

vapor.

As 9=^~j~

and q =t —,

q-q"=i-i".

Exercise 166. (a) From the steam tables find the heat required

to superheat one pound of dry saturated steam 200° F at 300

pounds per square inch absolute.

{b) Compute the mean specific heat of superheated steam for

this pressure and this range of temperature.

Exercise 167. How much heat must be added per pound

of steam, quaHty 0.80, in order to change it to steam at 427.8°

F under a constant pressure of 100 pounds per square inch

absolute?

RESUME

The Heat Content or the total energy (expressed

in heat units) required to change one pound of substance

originally at 32° F and under zero absolute pressure to

any other state under any given constant pressure is

where xi is the change in the internal energy (measured

in heat units) of the substance due to the above change

of state,

V is the volume of one pound of the substance in its final

state, measured in cubic feet,
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p is the constant pressure under which the change of

state occurred, measured in pounds per square foot.

The heat content of the liquid, i', at saturation tem-

perature is given in the vapor tables.

The heat content of the dry saturated vapor, i", is

given in the vapor tables.

The heat content of wet vapor, i, must be computed

by means of the relation

i=i'-\-xr,

where x is the quality of the vapor, and r is the latent

heat of evaporation which is given in the vapor tables

and which also equals i"—i'.

The heat content of the superheated vapor, i, is given

in the vapor tables.

The Internal Energy or more properly the change

in the internal energy from its value for the substance

at 32° F and under zero absolute pressure due to any

change of state is

. pv
u=^-J.

The internal energy of the liquid, w', at saturation

temperature is

u -I
—J-,

where i' is the heat content of the liquid at p the pressure

corresponding to the temperature, and v' is the specific

volume of the liquid at the same pressure (or temperature)

as given in the vapor tables.

The internal energy of the dry saturated vapor, u",
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is sometimes given in the vapor tables. It may be com-

puted from

u -I -—

,

where i" is the heat content of the dry saturated vapor

at p, the pressure corresponding to the temperature, and

v" is the specific volume of the dry saturated vapor at the

same pressure (or temperature) as given in the vapor tables.

The internal energy of wet vapor, u, must always be

computed by means of the relation

u= u'-\-xp,

where x is the quality of the vapor and p is the internal

latent heat which is sometimes given in the vapor tables

but may always be computed by means of the relation

P-r J—,

where r, v" , and v' are all taken from the vapor tables

for the pressure (or temperature) for which p and u are

sought.

The internal energy of superheated vapor must be

computed from the relation

. pv

where i and v are the heat content and the specific volume

of the superheated vapor for the pressure p at which u

is required, all given in the vapor tables.
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ENTROPY OF VAPORS

Section XXXI

COMPUTATION OF THE CHANGE IN ENTROPY

The change in entropy of a substance depends only

upon the initial and the final states of the substance and

not upon the process followed in making the change.

The entropy tabulated in the vapor tables is the increase

in the entropy over its value at 32° F.

By definition the change in entropy during any reversible

process per pound of substance is

The Entropy of the Liquid or the increase in the entropy

of the liquid during the warming at a constant pressure

from 32° F to the saturation temperature due to the absorp-

tion of the heat of the liquid q' is

*/492

dT

492 T

If c' is constant and as ^'32 is assumed to be zero, we

have

174
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Actually c' is not constant. The computation of 5'

may be carried out by graphical integration of

>/492 ^492 J-

c'
This form of the integral suggests plotting — on an axis

of T and finding the area under the curve.

The values of s' are given in the vapor tables.

Exercise 168. Plot the liquid line for water upon axes of

absolute temperature and of entropy by means of the steam

tables.

The Entropy of Evaporation.—The heat absorbed

during evaporation is r, the latent heat of evaporation.

During this absorption of heat the temperature remains

constant. Let this absolute temperature be T, then the

increase in entropy during evaporation equals

Y

It is given in the vapor tables.

Exercise 169. Check three values of the entropy of evapora-

tion as given in the steam tables.

The Entropy of Dry Saturated Vapor or the increase

in entropy of dry saturated vapor over the entropy of

one pound of the substance at 32° F, denoted by s'\ is

given by

and may be found in the vapor tables.

Exercise 170. Plot the saturation line for steam by means

of the steam tables upon the plot used for E.xercise 16S.
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The Entropy of Wet Vapors, of quality x, is not

given in the vapor tables. It must be computed from

the relation

5= 5 +x—

.

Exercise 171. Plot lines of constant quality of o.i, 0.5, and

0.8 upon the results of Exercises 168 and 170.

The Entropy of Superheated Vapor, s, may be com-

puted from the equation

Jt" dT Jt' T

where T" and Ts are the absolute temperatures of saturation

and of superheat respectively. 5 is given in the vapor

tables for superheated vapors.

Exercise 172. Plot the path of the state-point representing

the formation of superheated steam at a constant pressure of

(a) 40, (i) 200 pounds per square inch absolute starting with

water heated to the temperature of evaporation for the given

pressure on the plot already used for Exercises 168, 170, and 171.

Section XXXII

THE TEMPERATURE-ENTROPY DIAGRAM FOR VAPORS

In this diagram the state of the substance is repre-

sented by its absolute temperature and by its entropy per

pound. The liquid line and the saturation line have already

been plotted in Exercises 168 and 170. These are shown

in Fig. 43.
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During the evaporation of a liquid the state-point rep-

resenting the change of state on the Ts-plane moves from

B to C, Fig. 43. The entropy increases with the addition

of heat and the temperature remains constant. The area

under BC represents the heat supplied during evaporation.

If more heat is supplied to the dry saturated vapor

(state-point C) while the vapor remains under the same

constant pressure which existed along BC the path of

the state-point will resemble the line CD (see Exercise

T
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Thus the line representing the change at constant pressure

starting with a liquid at any given temperature and ending

with superheated vapor is ABCD, Fig. 43.

The areas under the lines AB, BC, and CD extending

down to the axis of s, the line of absolute zero temperature,

represent the heat required to produce the respective changes

of state, or

the area under AB = q'B—q'A,

the area under BC= r,

the area under CD= qD—q"c-

Lines of Constant Quality.—These lines may be plotted

on the r^-diagram by means of the relation

s= s +x—

,

T . . .

s' and — being given in the vapor tables s can be com-

puted for various temperatures and any given quality.

Note also that the above equation in the form

s—s =A-f

suggests a convenient way of plotting lines of constant

quality.

Lines of Constant Heat Content.—The heat con-

tent of a wet vapor equals

i=i' -\-xr.

Thus for any given heat content x may be computed

for various temperatures after i' and r have been read

from the steam tables. The corresponding entropy need
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not be computed, for x is evidently the ratio of the dis-

tance from B to the point sought to the distance BC,

Fig. 43-

In the region of superheated vapor the temperature and

the corresponding entropy of one pound of vapor for any

given heat content must be found by interpolation in

the vapor tables for superheated vapor.

Exercise 173. Plot on the result of Exercise 168 the lines

of constant heat content for iioo B.t.u. in the wet region and

for 1 1 50 B.t.u. in the superheated region.

Lines of Constant Volume.—For the wet region x

the quality of the vapor for any given volume may be

computed from

v=v"x-\-v'{i— x)

or

Thus for various temperatures find v" and v' from the

tables and compute the corresponding x. This value of

X is sufficient to locate a point on the constant volume

line corresponding to the temperature.

For the superheated region the entropy and the tem-

perature corresponding to any given volume can be found

from the tables for superheated vapors.

Exercise 174. Plot on the result of Exercise 168 the line of

constant volume for 7.5 cubic feet per pound of wet and of

superheated steam.

The following graphical construction of lines of con-

stant volume in the wet region is interesting because it

introduces the characteristic surface of the wet vapor
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referred to the coordinate axes of T, s, and v. It has

already been pointed out that the state of a substance

need not be given in terms of p, v, and T only.

Fig. 44 represents the elevation and the plan of the

characteristic surface referred to the axes of T, s, and v.

The line A'A" represents the T^-projection of the inter-

section of the surface and a plane parallel to the i;5-plane.

Fig. 44.

We must find the nature of the i)5-projection of this same

intersection represented on the figure by a'aa".

As 5= 5'-}-x(—

j

or s—s —X
T

it follows that (.4 'A ) = x{A 'A ")
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or
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shown projected on the iJ5-trace of the constant volume

plane.

The r5-projection of the required constant volume line

is obtained as indicated in Fig. 45.

A Complete Temperature-Entropy Diagram for any

given vapor contains, in addition to the vertical lines

representing constant entropy and the horizontal lines rep-

resenting constant temperature, lines of constant quality,

constant degrees of superheat, constant volume, constant

pressure, and constant heat content all drawn for constant

intervals of the quantities represented.

Such a diagram more than replaces the vapor tables.

When sufficient conditions of the vapor are known to

determine the state-point on the diagram this diagram

not only allows all other conditions to be read directly

but it performs graphically all necessary interpolations in

the superheated region and all the calculations involving

quality in the wet region which must ordinarily be per-

formed when the tables are used.

Moreover the diagram allows the direct reading of the

final conditions due to various changes of state of the

vapor for which the various lines are drawn as will shortly

be explained.

Temperature-entropy diagrams were formerly much used

but they have now been superseded by

The MoUier Diagram.—This diagram contains the

same line as the T^-diagram just described excepting the

constant volume lines which are usually omitted. Instead

of plotting these lines on axes of temperature and entropy

Mollier devised the scheme of using axes of heat content

and of entropy. The resulting diagram is more open
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and therefore more easily and accurately read than the

r^-diagram in the region near the saturation line, where

such diagrams are of principal use to engineers.

A Mollier diagram for steam accompanies Marks and

Davis' Steam Tables * and a Mollier diagram for ammonia

has been drawn by Goodenough.f

Exercise 175. Plot the liquid and the saturation lines on

axes of heat content and of entropy. Use the steam tables.

Exercise 176. Compute the heat content and the entropy

of one pound of wet steam, quality 0.50, for pressures of (a)

200 and (b) one pound per square inch absolute.

Exercise 177. On the plot already used in Exercise 175

draw the constant pressure Unes for (a) 200, and (b) one pound

per square inch absolute, also the constant quality line for 0.50

and the lines of constant superheat for 100° and 300° of superheat.

Other Diagrams have been devised. One using axes

of specific volume and " total heat " (in this case the

total heat H as defined by Marks and Davis in their

Steam Tables) has lately been drawn by Ellenwood and

published by Wiley. §

* Marks and Davis, Tables and Diagrams of Steam, Longmans,

Green, & Co., New York, 1914.

t Goodenough, Properties of Steam and Ammonia, Jolin Wiioy &
Sons, Inc., New York, 1915.

§ Ellenwood, Steam Charts, John Wiley and Sons, Inc., New York,

1914.



CHAPTER XI

CHANGES OF STATE OF VAPORS

Section XXXIII

WET VAPORS

In this chapter are to be considered the energy changes

occurring during various changes of state of vapors. Up
to the present only changes of state occurring under con-

stant pressure have been discussed.

The fundamental equation for these energy changes

during which thermal equilibrium exists, i.e. during which

the temperature thruout the vapor is uniform, altho not

necessarily constant, is

where AQ represents the heat energy supplied to the

substance by some external source,

Ai^, the change in internal (intrinsic) kinetic energy,

AP, the change in internal (intrinsic) potential energy,

AW, the external work performed by the substance

during the change of state considered.

It is seldom necessary to separate the two kinds of

intrinsic energy, so that we may put

AU=AK-\-AP,
184
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where AU represents the total internal energy of the sub-

stance, and the fundamental energy equation becomes

AQ =AU+AW,

or when one pound of substance is considered

Aq = Au-+-Aw.

It is usual to represent all changes of state on either

the pv- or the T^-plane. These planes are selected because

the area under the curve representing the process on the

/)i'-plane represents external work done and the area under

the r5-curve of the process, provided the process is re-

versible, represents the heat supplied by an external source.

For wet vapors we have

i= i' -\-xr

U=li -f-Xp= t— —r

U -t -—
p{v"-v')

P=r-~—j—
v=v"x-\-v'{i — x)

r
s= s'-\-x^

Pressure and Temperature Constant.—This change of

state is represented on both the pv- and the T^-planes

in Fig. 46.

Let subscripts i denote initial and subscripts 2 final

conditions, then

v\ = v"xi-\-v'{i — x\)

V2 = v"x2-\-v'(l— X2)
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or Vi =1)2 —V,

and vi'= V2'= v'.

Thus the change in vobame equals

V2— V] = (X2— Xi)(v"— V').

1 2

/I 2

1.1.

V

Fig. 46.

The heat received from (or rejected to, if negative) ai

external body per pound of substance is

Aq= q2-qi,

where

and

so that

But

and

thus

52= «2

q\ = ir

pV32

J

PV32

J '

Aq= 12— h .

i2= i'-\-xir

ix = i'-\-X2r,

Aq=(x2 — Xi)r.
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The change in the intrinsic energy of one pound of sub-

stance is

where U2 = u'-\-X2P and ii\=^ti'-\-x\p,

so that Au = (x2 — Xi)p.

Finally the external work performed per pound equals

Aw=—p{v2— v{) = —p{x2—xi){v"—v') = iS.q—L^u.

Exercise 178. {a) Show that Mv = i\q— Mi by means of the

above-developed expressions.

(6) Find Ag directly from Fig. 46.

Exercise 179. The volume of one pound of wet steam at

200 pounds per square inch absolute, quality 0.30, is increased

by 0.50 of a cubic foot at constant pressure. Compute

(a) the final quahty,

(i) the heat required,

(c) the change in intrinsic energ}^,

{d) the external work done.

Volume Constant.—The graphical representation of the

change of state of wet vapor at constant volume is shown

in Fig. 47.

Under these conditions we have

V2 = X2i'2"+ (l — .V2)l'2'

and as vi = vo

Xi{:Vx"-Vi')+ Vi'= X2{v2"-V2')+ V2'.

Thus the final quality can be computed when the initial
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quality and the initial and the final pressures or tempera-

tures are known.

From the pv-ip\a,ne, Fig. 47, it is evident that

Aw = 0.

From the T^-plane we see that Aq is now not equal

to qo— qi-

Exercise 180. Show in Fig. 47 an area representing (a) q^,

(b) qi. Is Aq= q2—qi?

Fig. 47.

The change in intrinsic energy is always equal to

Au= U2—ni

u = ii'-\-xp

AU = U2'— Ui'+X2P2 — Xipi.

and as

As

we may also write

. pv

. . . P2V-P1V

where the i's may be read from the Mollier diagram and
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the V from any diagram which contains constant volume

curves, or v may be computed from the vapor tables.

Finally, as Aw=o

Aq = Au.

Exercise 181. Compute the quality of one pound of wet

steam after the pressure drops at constant volume from 200

pounds per square inch absolute, when the quality was 0.90,

to a vacuum of 28 inches of mercury.

Exercise 182. (a) What is the volume of the steam during

the change of state described in Exercise 181?

(b) At what temperature and at what pressure would this

steam become dry saturated, its volume remaining constant?

(c) Solve (a) and (b) by means of the steam diagrams.

Exercise 183. Compute the heat absorbed by the steam

during the change of state indicated in Exercise 181.

Exercise 184. (a) Compute the entropy of one pound of

steam at 90 poirnds per square inch absolute, the volume being

4.5 cubic feet.

(b) Solve (a) by means of the steam diagrams.

Entropy Constant, Reversible Adiabatic Change.—

By definition A^= o,

thus Au=—Aw.

The process is represented in Fig. 48. To compute the

final quality use is made of the fact that the entropy

remains constant. Thus

from which X2 may be found.
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Knowing xo the final volume is found from

v-z — V'/'x-z-hv-Zii — X'^).

The change in intrinsic energy is always

Au = l{2— Ui = {u2'-\-X2P2)— (Wl'+ ^lPl)

and the external work done must equal

Aw= — Am.

V

|Ag=o
I

J

Fig. 48.

The Mollier diagram does not give the values of the

intrinsic energy but as

pv
u= t—

J

Au=i2— ii
— P2V2—P1V1

J

in which all quantities are either given or may be read

from the vapor diagrams.

Exercise 185. Compute the quality of steam after a reversible

adiabatic expansion

(a) from dry saturated steam at 245 pounds per square inch

absolute to 15 pounds per square inch absolute, ::
:*
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(b) from 245 pounds per square inch absolute with a quality

of 0.20 to 15 pounds per square inch absolute.

(c) Check the results by means of the Mollier diagram.

As the results of the above exercise show, the quality

of low-quality steam is increased and the quality of high-

quality steam is decreased by adiabatic expansion. The

r^-diagram for steam illustrates these facts. These con-

ditions do not hold for all sub-

stances. For ether the liquid and

the saturation lines both slope

in the same direction, as shown

in Fig. 49.

Exercise 186. Show that dry

saturated steam condenses during

adiabatic expansion and does not Fig. 40.

condense during adiabatic com-

pression. How does ether behave under the same condi-

tions?

Exercise 187. Compute the volume of one pound of wet

steam before and after reversible adiabatic expansion from

350 pounds per square inch absolute and a quality of 0.90 to

50 pounds per square inch absolute.

Check by means of the steam diagrams.

Exercise 188. Compute the work performed during the

reversible adiabatic expansion of 10 cubic feet of steam, quality

0.90, from a pressure of 80 pounds per square inch absolute to

an absolute pressure of 10 inches of mercury.

Exercise 189. Solve Exercise 188 by means ci the steam

diagrams.

The pv-curve representing the reversible adiabatic of

wet steam is of the approximate form shown in Fig. 48.
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For an initial quality, xi, lying between 0.70 and i.oo

the equation of this curve may be expressed by

pv"*=a, constant.

Rankine assumed m= —,
9

Zeuner placed m= i.035+0. ixi,

and calculations based upon Marks and Davis' Steam

Tables seem to show that

m= 1.059— 0.0003 1 5/)i+ (o.o7o6+o.ooo376/'i).vi.

Thus m may vary between i.io and 1.13 in problems

usually arising in engineering.

As the area under any curve having the equation

pi^=2i constant, where w is constant, equals

plV\— p2'V2

m—i

this expression affords another method of computing the

work done during a reversible adiabatic change of state of

wet steam. This method is not as accurate as the method

based on the vapor tables on account of the questionable

value of m and even of the equation pv^= a. constant.

Exercise 190. Using Zeuner 's value of m, solve Exercise 188.

Quality Constant.—A change in state at constant

quality is illustrated in Fig. 50. Under these conditions

the final volume is evidently

V2 = V2"x-\-V2{l — X),

where V2" and V2' correspond to the final temperature

or pressure and x is the constant quality.
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The final entropy is

193

52= ^2'+^;
T

In all changes of state heretofore discussed either one

or all of the quantities Ag, Aw, or Aw could be computed

by means of the vapor tables. This is not possible for

all changes of state. The case under consideration is an

illustration.

Here Aq is not equal to either qo— qi or io— ii.

Fig. 50.

The change in intrinsic energy is however equal to

Am=M2— "1

= (H2'— Xp2)—{ui'— Xpi)

_ . p2V2\ (. P\V{

The external work done cannot be computed from the

relation ^q = Au-\-\w for A^ is not known.

In order to find Aw the equation of the pv-cnrxe represent-

ing the process must be found. It has been found empirically
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that the equation of the saturation line on the pv-plane

may be very closely represented by the equation
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Section XXXIV

SUPERHEATED VAPORS

Pressure Constant.—The change in specific volume

and in entropy for a given change in temperature during

a change of superheated vapor at constant pressure, illus-

trated in Fig. 51, may be obtained from the vapor tables

by interpolation or may be read directly from the vapor

diagrams.

Fig. 51.

As may be seen from Fig. 51, the heat supplied during

this change of state is

Aq=q2—qi = 72— h-

The change in intrinsic energy is always

pl'y

T
and the external work done

p{V2— Vi)Aw=——=

—

-.

-{ii-
J
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Exercise 192. (a) How much heat must be suppHed to

change one pound of dry saturated steam to superheated steam

at a temperature of 600° F under a constant pressure of 200

pounds per square inch absolute?

(5) What is the mean specific heat of the steam under the above

conditions?

Exercise 193. Compute the increase in the intrinsic energy

during the change of state described in Exercise 192.

Temperature Constant.—If the temperature and the

initial and the final pressures are known, the initial and

V/ ^
V/////A s

Fig. 52.

the final volumes and entropies of one pound of vap-

r

may be found by means of the vapor tables or the vapo'

diagrams.

As Fig. 52 shows
Aq^qo— qi.

Exercise 194. Show 172 and qi on Fig. 52.

The heat supplied is, from Fig. 52,

Aq=T(s2— si).

The intrinsic energy is not constant even tho the
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temperature remains constant for the superheated vapor

is not an ideal gas. Here as always

T= I ^2
— pivi\

To compute the external work done we have

Aw^ Aq— All.

Exercise 195. One pound of steam expands at constant tem-

perature from 300 pounds per square inch absolute and 50^

superheat to 40 pounds per square inch absolute. Compute

(o) the final degrees of superheat.

(b) the increase in volume,

(c) the heat supplied,

{d) the change in intrinsic energy,

(e) the external work performed.

Fig. 53.

Volume Constant.—In this case Au'= o and Aq= Au.

But be careful to note that as Fig. 53 shows

^q7^q2— q\9^ 12— h-

Again Au=U2— ui—
(
12
— ^y-]— ( 'i~^)-
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Exercise 196. During a reduction in the pressure on one pound

of steam from 290 pounds per square inch absolute and 140°

superheat to 235 pounds per square inch absolute, the volume

remained constant. Compute the heat supplied.

Entropy Constant, Reversible Adiabatic Change.—
The changes in temperature, pressure, and volume of

superheated vapor during a reversible adiabatic change

of state, Fig. 54, can be found from the vapor tables by

Fig. 54.

interpolation or can be read directly from the diagrams if

it be remembered that the entropy remains constant.

Under these conditions we have

Aw= — Aw,

and AM=i<2— wi

P'lV-lX ( p\V\= \12--

Exercise 197. One pound of steam under 200 pounds per

square inch absolute, superheated 160° F, expands adiabatically

to 100 pounds per square inch absolute. Compute

(a) the final degrees of superheat,

{b) the work performed during expansion.

(c) Check the results by means of the steam diagrams.
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The equation of the /)y-curve representing reversible

adiabatic change of state of superheated steam has been

empirically determined to be

^^,i.3i_.g constant.

The external work performed may thus also be computed

by means of

_ plVl— p2V2

altho this method is not as accurate as the method

based upon the vapor tables.

Exercise 198. Solve Exercise 197 by means of the above

formula.

Exercise 199. Steam initially under 160 pounds per square

inch absolute and superheated 100° F expands with constant

entropy to 0.50 pound per square inch absolute. Compute -

(a) the final condition of the steam,

(b) the external work performed.

(c) Check these results by means of the steam diagrams.

Exercise 200. Assuming the equation of the pv-curve of the

saturation line of steam to be

p{v")^-^^^ = ii constant

and that of the adiabatic expansion line of superheated steam

to be

pv^'^^ = a, constant,

find the pressure at which the steam in Exercise 199 becomes

dry saturated.

Check this result by means of the steam diagrams.



CHAPTER XII

VAPOR CYCLES

Section XXXV

THE CARNOT CYCLE

The Carnot cycle for ideal gases has been described

on page 86. This cycle always consists of two isothermal

and two adiabatic processes. For vapors this cycle can

best be represented on the r5-plane as shown in Fig. 55.

Here the vapor thruout the

various processes remains wet

vapor.

The whole cycle may be

conceived to occur while the

vapor remains in one cylin-

der. Starting with the state

represented by the point i

the first process consists of

the reversible adiabatic compression, i 2, during which

the quality decreases with the volume while the pressure

increases with the temperature. During this process no

heat is supplied to or rejected by the vapor but work must

be done on the vapor. During the next process 2 3 heat

is supplied at the constant temperature of the hot body, Tb-

If the vapor remains wet the pressure must remain con-

stant while the volume increases. Then follows a reversible

adiabatic expansion 3 4 during which the quality of the

Fig. 55.
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vapor diminishes as the temperature drops to the tem-

perature of the cold body, Tc. During both the processes

2 3 and 3 4 external work is done by the vapor. Finally

the wet vapor decreases in volume while in contact with

the cold body at a constant temperature Tc (and necessarily

constant pressure) until the quality returns to the initial

quality at i.

Actually the processes above described would hot be per-

formed in one cylinder for this would require the heating

and the cooling of the cylinder between the extreme tem-

peratures and this would entail a waste of heat. The

evaporation 2 3 would be performed in a boiler, the con-

densation 4 I in a condenser, and the adiabatic expansion

3 4 in one cylinder, the working

cylinder, while the adiabatic

compression i 2 would be per-

formed in another cylinder

that of the feed-pump.

The /)i>-diagram of this cycle

would appear as shown in

Fig. 56. Here the wet vapor

would leave the feed-pump

with a volume b 2 and return from the boiler to the

working cylinder with the volume b 3. After adiabatic

expansion 3 4 the wet vapor would leave the engine cylinder

with a volume 4 a and after passing thru the condenser

would return to the feed-pump with a volume a i.

No heat engine has been built to operate upon this

cycle for it would require a stoppLng of condensation

at a definite quality while in practice complete conden-

sation of the vapor is by far a simpler operation.
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However as has already been shown the Carnot cycle

gives an efficiency which cannot be surpassed by any other

cycle and therefore sets a standard which it is desirable

to approach as closely as possible, see page 122.

Exercise 201. Sketch on both the pv- and the T^-planes

a Carnot cycle in which the lowest quality of the vapor is zero

and the vapor during its adiabatic expansion (o) changes from

the superheated to the wet state, {b) remains superheated, for

both water and ether.

Exercise 202. Show from the T^-diagram that the efficiency

of the Carnot cycle is under all conditions

Th-Tc
Th

'

where Th is the absolute temperature of the hot body and Tc

is the absolute temperature of the cold body.

Exercise 203. A Carnot cycle operates with steam between

(a) 150 and 15 pounds per square inch absolute,

{b) 1 50 and i pound per square inch absolute,

(c) 200 and I pound per square inch absolute.

Compute the efficiencies.

The Efficiency, the Mean Effective Pressure, the

Heat Consumption, and the Mass of Substance, the last

two per hour per indicated horse-power, may readily be

computed for any cycle in the following manner.

The thermal efficiency of a cycle is

^~—
7.
—

'

where qn is the heat received from the hot body and qc

is the heat rejected to the cold body per pound of the

working substance.
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As the work performed per pound of the working sub-

stance passing thru the cycle is J{qH—qc), the mean
effective pressure may be found by dividing this work by

the largest volume of one pound of the substance at the

lowest pressure of the cycle.

One horse-power equals 33,000 foot-pounds per minute

and this is equivalent to 2545 B.t.u. per hour. Even under

ideal conditions a working substance passing thru a

cycle can only transform a certain fraction rj of the heat

supplied to it by the source into mechanical energy (see

page 128). Therefore the heat which must be supplied

per hour in order to yield one indicated horse-power under

the conditions under which 77 is computed or the heat

consumption equals

-^ B.t.u. per i.h.p. hour.

The mass of the substance which must pass thru

the cycle per hour per indicated horse-power, measured

in pounds, is evidently equal to the heat supplied per i.h.p.

hour divided by the heat supplied per pound of substance.

Exercise 204. Compute the work per pound of steam and

the steam consumption in pounds per indicated horse-power

hour when steam is used in a Carnot cycle between 150 and 3

pounds per square inch absolute with a quahty varying between

o and I.

Section XXXVI

THE RANKINE CYCLE

It has not been found practicable to transform heat

into mechanical energy by means of a vapor carried thru

a Carnot cycle of changes of state.
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The cycle which approximates most closely the cycle at

present used in heat motors employing vapors as working

substances is the Rankine cycle, illustrated in Fig. 57.

During this cycle the heat is received and rejected by the

substance while it is under constant pressure. This cycle

further differs from the Carnot cycle in so far that the con-

densation of the vapor is continued until the vapor is com-

pletely liquefied, process 4 i. Fig. 57.

The liquid is then heated under a constant pressure

corresponding to the highest pressure in the cycle, process

Fig. 57.

I 2, then vaporized in part, or wholly, or even possibly

superheated, all under the highest constant pressure in

the cycle, process 2 3, then expanded under reversibly

adiabatic conditions 3 4, and finally cooled and condensed

to the liquid state under the lowest pressure existing in

the cycle.

It will be noted that the process i 2 as shown in Fig.

57 is not a constant pressure process. Actually the pres-

sure suddenly increases (as shown by the dotted line)

due to the action of the feed-pump and the heat is then

supplied to the liquid under a constant pressure until vapor
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forms at 2. The line i 2 is however so close to the p-SLxis

and so nearly vertical (due to the small volume and the small

change in the volume of liquid) that this distinction need

not be made as it does not appreciably affect the calcu-

lations.

During the heating of the liquid, process i 2, Fig. 57,

the temperature of the liquid is below the temperature of

the hot body, therefore the criterion for best efficiency,

page 100, is not fulfilled and the efficiency of the Rankine

cycle must be less than the efficiency of the Carnot cycle.

For the same reason the Rankine cycle is irreversible in

the thermodynamic sense.

The pv-disLgram of the Rankine cycle must not be con-

fused with the indicator diagram showing the conditions

existing in the cylinder of an engine operating under this

cycle. As actually carried out in practice the processes

shown in Fig. 57 do not occur while the vapor is in the

same cylinder. The processes i 2 and 2 3 are performed

in the feed-pump, the boiler, and the superheater, the

process 3 4 occurs in the engine cylinder, and the process

4 I in the condenser.

Fig. 58 shows the action of the engine cylinder. Here

J c is the ideal reversible adiabatic expansion corresponding

to 3 4, Fig. 57. Only part of the ex-panded vapor is now

displaced from the cylinder. The volume g d remains in

the cylinder and is compressed adiabatically to the volume

fa. The quality of the vapor at d is the same as the quality

at c (or 4, Fig. 57) while at a the state is the same as

the state of the vapor about to be admitted to the cyl-

inder, i.e., the state at b (or 3, Fig. 57). Thus vapor

whose volume is d c (Fig. 58) and whose quality is the
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same as the quality at 4 (Fig. 57) has been turned into the

condenser, then as a liquid after condensation into the

boiler, and finally is returned to the cylinder with a volume

a b (Fig. 58) and superheated as indicated at 3 (Fig. 57).

Fig. 58.

Exercise 205. Show from Fig. 57 that the net work performed

by one pound of vapor during a Rankine cycle is very nearly

J{i3—ii) foot-pounds, that the hot body supplies very nearly

ii—ii B.t.u. during the cycle, and that therefore the efficiency of

the cycle is

V= -. r.
ts— ti

Exercise 206. An ideal engine operates under a Rankine

cycle between 160 and i pound per square inch absolute and

the cylinder is supplied with dry saturated steam. Compute

(a) the thermodynamic efficiency,

{b) the work obtained per pound of steam,

(c) the steam consumption.

Exercise 207. Compare the results of Exercise 206 with

the corresponding values for an engine operating under a Carnot

cycle during which the steam is returned to the boiler in the

liquid form and suppUed to the cyUnder as dry saturated steam.
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Exercise 208. Compare the results of Exercise 206 with the

results obtained when the steam in the Rankine cycle is supplied

to the cylinder superheated 200° F instead of dry saturated.

Exercise 209. Sketch on both the pv- and the T^-planes

a Rankine cycle during whose adiabatic expansion the steam

remains superheated.

The Rankine Cycle with Incomplete Expansion.—The

large specific volume of steam at low pressures after expan-

sion makes it impracticable to expand steam in the cylinders

of a reciprocating engine down to a very low back pressure

Fig. 59.

as shown in Figs. 57 and 58. The large cylinders required

for complete expansion cause large friction and radiation

losses which more than neutralize the gain even if the

size, cost, and weight of the required engines were not pro-

hibitive.

In reciprocating engines the steam is released at some

pressure higher than the back pressure (5, Fig. 59) and

the toe of the indicator card is cut ofi". The steam changes

its state at constant volume during the added process 5 6.

In the steam turbine these disadvantages accompanying

complete expansion do not exist, in fact the losses due to
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leakage past the blades and due to friction (windage)

diminish with increasing specific volume of the steam so

that the steam turbine is particularly fitted to utilize com-

plete expansion to very low back pressures.

Steam can therefore be employed most advantageously

in cylinders of reciprocating engines at high pressures and

in turbines at low pressures. For this reason the exhaust

of high-pressure reciprocating engines can be used in low-

pressure turbines with higher efficiencies than could be

Fig. 6o.

obtained with either an all reciprocating or an all turbine

installation.

The r^-diagram of the Rankine cycle with incomplete

expansion (Fig. 60) shows the loss in efficiency due to the

drop in pressure at constant volume. Note that the work

performed with the same heat supply is diminished by the

area 546 due to incomplete expansion. The extreme

case in which the steam is used non-expansivelyis shown by

the cycle i 2 3 7 i.

Exercise 210. Compare the results of Exercise 206 with

the results obtained under the same conditions with the excep-

tion that the expansion is continued to only 21 pounds per

square inch absolute.
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Section XXXVII

ENGINE EFFICIENCIES

The thermal efnciencies computed in the exercises of the

previous sections do not give the complete facts concerning

the operation of an actual engine. These efficiencies were

computed under the assumptions that the engine parts

were non-conducting, that the expansions were reversibly

adiabatic (occurred with unchanging entropy), and that

no losses due to throttling or wiredrawing occurred.

As the temperature of the steam varies during expansion

the temperature of the cylinder must also vary. The high-

pressure steam entering the cold cylinder must heat it.

This causes a condensation of some of the incoming steam

and not only reduces the quality of this steam below the

quality in the steam-main but necessitates a greater supply

of steam per stroke for the actual cylinder than would be

the case in an ideal non-conducting cylinder. Some of

this condensed steam is re-evaporated at the end of the

stroke after the steam in the cylinder has been cooled

by expansion.

Several methods may be used to overcome at least

partly this cylinder condensation which greatly lowers the

thermal efficiency of the engine. One of these is the use

of superheated steam. As Exercise 208 shows, but little

is gained in efficiency under ideal conditions by the use

of superheated steam. Practically however a greater gain

is produced due to the superheated steam losing its super-

heat in heating the cylinder and yet allowing ex-pansion

to begin with practically dry saturated steam.
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Starting with the heat supplied by the hot body we

have first the unavoidable losses even under ideal conditions

which according to the second law of thermodynamics

must accompany any transformation of heat into mechan-

ical energy. Of the heat ideally transformable into work

only a part is transmitted to the piston owing to unavoidable

cylinder losses. Of the work actually reaching the piston

only a part is delivered by the engine due to the mechanical

friction in the mechanism.

These conditions may be represented as follows:
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of Steam supplied to the cylinder of the actual

engine as determined by an indicator,

Zi'b, the work obtained at the brake per pound of

steam supplied to the engine,

we have as defining equations the following,

ideal thermal efficiency =cvcle efficiency=77r =—

,

1

actual thermal efficiency= indicated thermal efficiency= 77a =—
,

9

cylinder efficiency —y]c= —,

mechanical efficiency = 7?m= -y-

.

Jqa

Exercise 211. (a) Show that the actual thermal efficiency

equals rjc-vr-

(b) Show that the total engine efficiency equals vt-vc- vm-

If nir represents the pounds of vapor required per indi-

cated horse-power hour with the Rankine cycle, and

iria represents the pounds of \apor required per indicated

horse-power hour under the conditions existing in the actual

engine,

the heat transformed into work per indicated horse-power

hour= qriflr= qania-

As the cylinder efficiency is defined as

it follows that

Mr
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Exercise 212. An engine supplied with steam at 115 pounds

per square inch absolute and containing one per cent of moisture

was found to use 21 pounds of steam per indicated horse-power

hour when the temperature in the condenser was 140° F. Com-

pute

(a) the cylinder efficiency,

(b) the heat supplied per i.h.p. per minute,

(c) the actual thermal efficiency of the engine.

Exercise 213. An engine test showed the i.h.p. to be 500

and the heat supplied per i.h.p. per minute to be 290 B.t.u.

with a boiler pressure of 170 pounds per square inch gage, quahty

of steam 0.98, vacuum 27 inches, and the barometer at 31

inches. Compute

(a) the ideal thermal efi5ciency,

(b) the ideal and

(c) the actual steam consumption,

(d) the cylinder efficiency,

(e) the actual thermal efficiency.

Exercise 214. An engine has a cylinder efficiency of 0.60,

a mechanical efficiency of 0.85, and operates under conditions

for which the Rankine cycle would transform 200 B.t.u. per

pound of steam into work. What is the steam consumption

of this engine per brake horse-power hour?



CHAPTER XIII

FLOW OF FLUIDS

Section XXXVIII

FUNDAMENTAL EQUATIONS

In the following discussions the particles of the flowing

fluid are assumed to move along stream lines. Any surface

composed of stream lines and enclosing a portion of the

flowing fluid may be regarded as a tube thru which the

fluid flows. Note that no fluid passes thru the walls of

this imaginary tube.

Steady flow is also assumed. This means that at any

fixed point on any stream line the pressure, the specific

volume, the temperature, the velocity, and in the case of

wet vapors, the quality of the fluid remain constant.

As shown in Fig. 6i consider a portion of the moving

fluid bounded by stream lines and by two sections (marked

I and 2) normal to these stream lines. These sections may

be assumed to be plane.

Let the following notation apply to any section, such

as I or 2.

W is the weight of fluid passing any section per second

in pounds per second,

V, the volume per unit weight of fluid at this section,

in cubic feet per pound,

213
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w, the velocity of the fluid, in feet per second at this same

section for which

A, represents the area in square feet.

Then the volume of fluid passing this section per second

equals both Aw and Wv so that

Aw=Wv.

As no fluid accumulates between sections the weight

of the fluid passing any section must be constant, so that

W =— = ——^- = a constant.
V Vi

This is the equation of continuity, the first of the two

fundamental equations governing the flow of fluids.

1.

Fig. 6i.

The second fundamental equation, a special form of

the law of conservation of energy, will now be deduced.

The various forms of energy which may be present

during a flow from section i to section 2 (Fig. 61) are

kinetic energy, energy due to pressure, potential energy

due to gravitation, internal energy of the fluid, and heat

energy which may be supplied to the flowing fluid during

its passing from section i to section 2.
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Let p represent the absolute pressure at any section,

h, the position of that section with reference to any

horizontal datum plane,

n, the internal energy of one pound of fluid at that

section, in heat units,

then the kinetic energy of one pound of the fluid is

•up'

The energy of one pound of the fluid due to the existing

pressure is

P,

because as one pound of fluid occupies v cubic feet it could

displace a piston (area A square feet) thru — feet at the

same time exerting a force of Ap pounds and therefore

perform {Ap){ — ) =pv foot-pounds of work.

The potential energy due to gravitation of one pound of

the fluid with reference to the datum plane would be h

foot-pounds.

The changes in these various forms of energy in one

pound of fluid due to its transfer from section i to section

2 (Fig. 61) are

,
p2'V2— p\V\, 112— ll\

H

and at the same time the change in the internal energy

of the fluid is

«2— «i-
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The sum of the changes in all these forms of energy

must equal the heat which has been supplied from some

outside source to the flowing fluid during its motion from

I to 2, let this heat per pound of fluid be denoted by 152,

then

\-{p2V2— piVi)-\-{h2— hi)+J{u2— ui)^Jiq2

which is the energy equation.

Introducing the concept of the heat content i, defined

by the equation

the energy equation becomes

'^''~'^^%
(fe-/^i)+/fe-n) = /ig2.

It will be of interest to note that if no heat is supplied

(192= 0) and if no change in the internal energy occurs

(w2= wi) the energy equation reduces to

\- {p2V2— p\V\)-\- {112— h\) = O.

This is Bernoulli's equation as used in hydraulics. For

water flowing under these conditions z'2 = i'i = ^— , and we°
62.4

have
•W2^

, p2 .

J
Wi^ pi

J

2g 62.4 2g 02.4

In the derivation of the above energy equation no

mention is made of the effect of frictional resistances.
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These would decrease the final kinetic energy owing to

the transformation of mechanical energy into heat. This

heat would either remain in the fluid or pass to some other

body of the system. Thus the frictional resistances would

not change the sum of the energies, but would effect a redis-

tribution of energy among the various kinds present in the

system.

Another form of the energy equation in which the

effect of the frictional resistance appears is derived as

follows.

In the fundamental equation

dq = du-\-—pdv,

in which we may replace w by i by means of the relation

and obtain da= di ^,

q represents all the heat received by the substance either

from an external source or generated by frictional resistance

from mechanical energy within the substance itself.

Let 1^2 be the heat energy received from external sources

during the flow from i to 2, Fig. 61, and 1/2 the mechanical

energy which disappears during this flow to reappear as

heat, then we have

I I C^''
192 + -^ 1/2 = {h-h)-

-JJ
vdp.
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But from the energy equation already deduced

J{i2-ii)= {h2— hi)+Jiq2,

therefore

I I W') — Wi I I C^^

vdp.

.2_,„,2W2 — Wi
or

2g

Section XXXIX

ADIABATIC, FRICTIONLESS FLOW

In most practical examples, at least as a first approxi-

mation, the flow may be considered frictionless and no

heat may be assumed to be exchanged between the fluid

and any external body.

Under these conditions 1/2 = and 1(72 = and the change

of state becomes isentropic.

The equation of continuity is still

W =— = a constant,
V

and the energy equations reduce to

^\^= ^ = J(ll-l2),
\2g/ 2g

and
^w:\ "^-w, 2 /'Ps

-=- vdp.
Jpi2g/ 2g

The term {ho— In) is omitted as the difference in heads is

usually small in practical applications to vapors and gases.
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The second form of the energy equation is so important

that it may be well to explain its derivation from the first

form under the special conditions of reversible adiabatic

change of state.

Under these conditions, by reason of

as Aq= o

we have An= — Aw

pdv.
"1

Thus the energy equation

Ag)=/(.-.-.y

or as it may be written

A{—j=J{ui-H2)-\-plVl — p2V2

becomes A I
— 1= I pdv-\- piv\ — p2V2.

In Fig. 62, point i represents the state of the fluid existing

at section i, Fig. 61, and point 2 the state existing after

flow to section 2, Fig. 61. Under the special conditions

the process i 2 is reversibly adiabatic and the area under

pdv. Also the shaded area, Fie;.

62, represents I pdv-\- piv\ — P2V2 which in turn equals

^^
up or -^^^vdp,

vdp.
n.

thus A
2g
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Remember that during reversible adiabatic flow the

change in kinetic energy of the flowing fluid equals the work

represented by the area behind the curve representing the

process on the pv-plsine, the shaded area in Fig. 62.

Exercise 215. Show that

ipiVi-p2V'^,

where m=k= 1.40 for ideal (diatomic) gases,

w= 1.035 +0.100x1, for wet steam with an initial quality Xi,

and m— 1.2,1 for superheated steam.

Fig. 62.

Exercise 216. Starting with d{ — I =/(/i— ja), show that

for adiabatic flow

for ideal gases,

a( — )= 7(9/-.r,rO-/(g2'+X2r2) +(/»!- />2)f32

for wet vapors,

2g
Jqi— J{q2—XiH) +(pi— p2)vs2

for superheated vapors changing to wet vapors during the flow.
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Exercise 217. If the initial veiocity of one pound of steam

is zero and the conditions under which expansion occurs are

such as to render 300 B.t.u. available for the production

of velocity, what will be the velocity of the steam _after

expansion?

Solve this problem by means of the equations deduced above

and check the result by means of the velocity scale on the Mollier

diagram.

Section XL

FLOV/ THRU AN ORIFICE

A very short channel whose section continually decreases

in the direction of the flow so that the last section has the

smallest area is called an ori-

fice. The area of the orifice

is the least sectional area of

the channel. The flow thru

an orifice may be regarded as

both adiabatic and frictionless,

owing to the small suifaces of

contact and to the short time

the fluid requires to pass thru

the orifice.

Let the state of the fluid

on the up-stream side of the

orifice be represented by p\ and v\ at a point where its

velocity is practically zero (Fig. 63), also let Ao be the area

of the orifice, Wq, the velocity of flow at the section whose

area is Ao, and p2 and V2, the state of the fluid on the down-

stream side of the orifice.

Fig. 63.
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From the energy equation

we find
'^''^^^^^i^''''Y~{yJ

"

I'

where m is the exponent of the equation of the adiabatic

process pv"* = piVi"^.

Exercise 218. Deduce the value of Wq- given above.

From the equation of continuity

T„ Aw AoWo

if we assume that the pressure and the specific volume of

the fluid at the mouth of the orifice equal the pressure and

uhe specific volume on the down-stream side of the orifice

we find that the pounds of fluid passing the orifice per second

equal

^ ""m-i vil\pi/ \pi

Exercise 219. Deduce this value of W.

As a special case of the abo\'e equations assume the

pressure on the down-stream side of the orifice to be main-

tained at absolute zero, so that p2= o. If we also assume,

as the conditions seem to justify, that the pressure at the

section whose area is ^o is also p2= o we find the velocity

at this section to be
m

Wo=2g pivim—i

and the discharge in pounds per second to be

W=o.
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This last conclusion can surely not agree with the facts

especially as the velocity attained by the fluid is not zero.

Further investigation of the expressions for Wo and W
shows that as the pressure on the down-stream side of the

orifice is made gradually less than pi the value of Wo steadily

increases, which is to be expected, but the value of W
at first increases, reaches a maximum when the pressure

on the down-stream side has been diminished to

,=Pi{,w+i

and then decreases with diminishing down-stream pressure

until it becomes zero when p2 becomes zero. The par-

ticular pressure pc which yields a maximum discharge is

called the critical pressure.

Exercise 220. Deduce the value of the critical pressure

given above.

In 1839, Saint Venant and Wantzel advanced the hy-

pothesis that the pressure at the mouth of an orifice is not

always equal to the pressure on the down-stream side of

the orifice, that is that po is not always equal to p2 and

that for values of p2<pc, po no longer equals p2 but re-

mains constant and equal to pc.

Exercise 221. The velocity of sound in any fluid equals

'\' gmpv,

where g is the acceleration due to gravity,

m is the exponent of adiabatic expansion,

p is the pressure,

V is the specific volume,
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the last three of the fluid under the conditions existing when

the sound is transmitted. Show that the greatest possible

velocity attainable by a fluid flowing thru an orifice equals

the velocity of sound in this fluid when in the state existing

at the mouth of the orifice.

The conclusion reached in Exercise 221 indicates a pos-

sible explanation for the existence of the critical pressure.

Assume p2<pc then the jet issuing from the orifice at a

pressure greater than p2 and being surrounded by fluid

under lesser pressure explodes and the pressure in the

jet is suddenly reduced to p2- This pressure p2 is prop-

agated toward the mouth of the orifice with the velocity

of sound but the transmission of this pressure p2 up to

the mouth of the orifice is prevented by the outrush of

the fluid which also moves with the velocity of sound.

Thus according to the hypothesis of Saint Venant and

Wantzel, which has been fully confirmed by experiment,

two cases arise during the flow of fluids thru an orifice,

namely

(i) when p2>pc,

(2) when p2^pc-

In the first case {p2 > pc)

ni—i
I \pi

m— \

pp\ m

and IF=^o(f^)"V^«^^ ^i

-{f) \

the values depending upon the back pressure.
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In the second case {po < pc)

'^o=\\2g 7—p\Vi

and w=aJ^Y"'J^J^,
\m-\-i/ \m-]-i\ vi

which values are independent of the back pressure.

Exercise 222. Deduce the values of Wo and W given above.

Exercise 223. Show that the critical ratio equals 0.528 for

air and 0.577 for dry saturated steam.

Exercise 224. Dry saturated steam escapes to the atmosphere

thru an orifice (area 0.3 square inch) from a boiler in which

the pressure is maintained at 150 pounds per square inch abso-

lute. Find the velocity of discharge

(a) by means of the above theory,

{b) by means oi w= v 2g/(/i— z^),

(f) by means of the MoUier diagram.

Exercise 225. What would be the velocity of discharge in

Exercise 224 if the whole fall in pressure could be utilized in

producing velocity?

The Discharge thru an Orifice.—The discharge thru

an orifice may be computed in any case for any fluid by

means of the equations given above, provided the value

of m is known. Two well-known formulas which are

special cases of the more general formulas already given

will now be deduced.

Fliegner's formula for air, for the discharge thru

an orifice when p2<pc, in terms of the initial pressure

Pi and the initial temperature Ti of the air may be

derived from

W = Ao
2 \m-l / 2gm Ipi

m-{-i) \m-\-i\v\



2 26 THERMODYNAMICS

by eliminating Vi by means of the relation

piVi = RTi.

In this way we obtain

\m-\-i/ \m-{-i\RTi

and as m = k=i.4o, and R—S3-3

where W is the discharge of air in pounds per second,

Ao, the area of the orifice in square feet,

Pi, the pressure in pounds per square foot,

Ti, the absolute temperature in degrees F,

the last two on the up-stream side of the orifice.

As the critical ratio for air is 0.528, approximately c.5,

this formula for W can only be used for the discharge into

the atmosphere when the reservoir pressure is at least

twice the atmospheric pressure. Under these conditions

the formula agrees with the results of Fliegner's experiments.

For the discharge of air from reservoirs in which the

pressure is less than twice the atmospheric pressure into

the atmosphere Fliegner proposed the empirical formula

^^'^W=i.o6A.
/.''(/'i-^)

Ti

where pa is the atmospheric pressure in pounds per square

foot. This formula may be used instead of the more

cumbersome formula given on page 224.
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Grashofs formula for wet steam when the discharge

occurs under the condition p2<pc,

, J 2 \m-l
where Pc=pi]—;

—

[m-f-i

and m= 1.035+0.100.V1

Pc
so that for a*i = i.o, ^ = 1.135, and — = 0.577

p\

rt;i = o.9, m=i.i25, and —= 0.580
pi

0:1 = 0.8, w=i.ii5, and —= 0.582
pi

.Yi = o.7, w=i.io3, and ^= 0.584

is based upon the relation

Pi(vi"y= C= SL constant

between the pressure and the specific volume of dry sat-

urated steam for which 5 may be assumed to be 1.063

and for which

C= 14.7X 144X (26.79)1-063= 69,600.

By means of this relation Vi may be eliminated from

the formula for W. As .ri is the initial quality of the steam,

fl = -Vl"c'l"+(l-.Vl)l'l'

and as the quality xi is usually high and the pressure never

excessively great we may assume as an approximation
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Thus p,(vi"y=pi(z-J=C

or vi = xii— 1 , approximately.
\Pi/

Also from m= 1.035+0.100x1, as xi remains near one we

have approximately

m= 1.135.

Substituting these values of vi and m in the formula

\m-\- 1/ \ m-\- 1 \ J^i

we obtain W= o.oig °
,— ,

V xi

where y4o is measured in square feet, pi in pounds per

square foot, and W in pounds per second.

If Ao is ex-pressed in square inches, pi in pounds per

square inch and W in pounds per second then

TF= o.oi65^^^^.
V.V1

Exercise 226. Deduce Grashof's formula.

Napier's formula for dry saturated steam discharging

under the conditions ^2<o.58/'i is

70

where ^0 is to be measured in square inches, pi in pounds

per square inch and W in pounds per second. It was
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deduced by Rankine from experiments by Napier. This

formula altho not as accurate as Grashof's is still used on

account of its simplicity.

The discharge of a vapor thru an orifice can most

accurately be computed directly from the fundamental

equations

Wo= V2gJ{ii— io),

and W=^^.
Vo

When the back pressure is less than the critical pressure

(p2<pc) it must be remembered that Pc and not p2 must

be used in finding to and I'o- Both Zo and Vq can most

readily be found from the vapor diagrams.

Exercise 227. Compute the discharge in pounds per minute

under the conditions described in Exercise 224, by means of

(a) Napier's formula,

(b) Grashof's formula,

(f) the steam diagrams.

The formulas for the flow of vapors deduced in this

section are strictly applicable only to the flow of vapors

initially slightly wet. The moisture must be present in

very small drops distributed uniformly thruout the mass

of vapor so as to approximate a homogeneous condition.

These drops of liquid seem to serve as nuclei or centers of

condensation and become larger as the quality of the

flowing vapor decreases. If the vapor supplied is dry

saturated or superheated it is found that the vapor does

not change its quality with the expansion according to

the theoretical indications but remains in a supersaturated

condition owing to the lack of centers of condensation

which seem necessary to start condensation.
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If the liquid has separated from the vapor, if it is not

uniformly distributed thruout the vapor as fog, it does

not serve the purpose above described. It then simply

flows along the walls of the orifice with much smaller velocity

than the issuing vapor and the formulas deduced do not

apply. The liquid under these conditions partially ob-

structs the orifice, lessens the discharge and if present in

considerable amount, causes a sneezing action during dis-

charge.

For further information on this subject the reader is

referred to

Callendar: On the Steady Flow of Steam thru a

Nozzle or Throttle, Journal I. Mech. E., p. 53, February,

1915; and

Leblanc: Machine Frigorifique a Vapeur D'Eau et a

Ejecteur. Gauthier-Villars, Paris, 191 1.

Section XLI

FLOW THRU A NOZZLE INCLUDING THE EFFECT OF
FRICTION

As shown in the last section the velocity attained by a

fluid flowing thru an orifice increases with decreasing

back pressure until the back pressure attains a value

equal to the critical pressure

Pi
/ 2 \m-l

\W+I/

and then remains constant irrespective of any additional

decrease in back pressure.

Under these conditions the energy I vdp which is lib-
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1

erated by the drop in pressure cannot be wholly converted

into kinetic energy of the flowing fluid when the back

pressure is less than the critical pressure.

A nozzle is a tube of such form that the fluid flowing

thru it attains the full velocity and therefore kinetic

energy which may be expected from a given drop in pressure.

The Form of a Nozzle.—Let us investigate the

variation in the cross-section of a stream under frictionless,

adiabatic flow during which the pressure gradually falls

from an initial pressure pi to a final pressure p2 and during

which the velocity increases from zero to W2 in accordance

with the law

w^—wr r^' ,= I vdp

no matter how low p2 may be made.

Under these conditions w continuously equals

m — 1

and the varying cross-section of the stream

A=—

,

w

where W is a constant.

As pv'" = pivi'"

.P

1

Pi"

1

Mr I
pi

so that A =

^^,p4-{i-y]
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To investigate the variation of A as the pressure p falls

we first seek maximum and minimum values, by placing

dA

dp

As A =
JL _J.

Wvipi"" p
"»

^ m—i

any value of p that makes A a maximum or a minimum

will also make

2 1 — J7» m+ 1 _1_

= {P^-Pl'^p "^
\

2

2 1 — W» CT+1

or even ^"= />^-/^i~^/?^^

a maximum or a minimum.

Thus the equation

dp m'^ \ m /

yields as a critical value

p = pi w+i

The cross-section of the stream will thus reach a maxi-

mum or a minimum value when the pressure in the fluid

drops to the critical value just found. Let the critical

pressure be denoted by pc, the corresponding velocity and
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specific volume of the fluid by Wc and Vc respectively, and

the corresponding cross-sectional area by Ac, then the

velocity of the fluid at the critical section is

Wc= \h- 7~pin =VgmpcVc,

the velocity of sound in the fluid under the conditions

existing at this section, see Exercise 221.

In order to demonstrate that Ac is a minimum cross-

section of the stream it will be more convenient as well

as more profitable to develop and study another form of

-r— instead of using —^ which may be obtained from the
dp " dp-

^

dA
value of -z— already found.

The fundamental equations governing the flow under

consideration are

^(jgj^-'^P ^'^

Aw=Wv (2)

and />!>"'= a constant (3)

As we desire to find the change in area of the cross-

section due to a change in pressure we must express dA

in terms of dp. To obtain dA differentiate equation (2)

wdA-{-Adw=Wdv (4)

Next eliminate dv and dw and introduce dp. From equation

(I) dw=-^-^
w

and from equation (3) or its equivalent
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log p-\-7n log v= \og (a constant)

dp
,

dv
—^-\-m—= o
p V

or dv= -dp.
in p

Substituting these values in equation (4) we find

wdA ^

—

-= dp
w ni p

dA Aev Wv
dp w^ wmp

Eliminating W by means of equation (2) we obtain

dA _A{gmpv—w^

}

dp mpw^

Note that gmpv is the square of the velocity of sound

at any section A at which the velocity of the fluid is w
in a medium whose pressure and specific volume are p
and V.

All quantities in the right-hand member of this equation

are necessarily positive; negative values of these quantities

are excluded by our physical conception of the problem.

However dp is always negative, for the pressure is assumed

to decrease continually from the section Ai to the section A2'

Let us now study the signs of dA. This sign will deter-

mine whether the cross-section of the stream is increasing

or decreasing at any point.

(i) As dp is never zero, dA is zero when

w=\ gmpv.
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That is, the cross-section of the stream is neither increasing

nor decreasing, when the velocity of the fluid equals the

velocity of sound in the fluid under the conditions existing

at the section considered.

(2) As dp is negative, dA is negative when

w<\ gnipv.

That is, the cross-section must decrease during that portion

of the flow for which the velocity of the fluid is less than

the velocity of sound in the fluid at the section considered.

(3) As dp is negative, dA is positive, when

w^w gmpv.

That is, the cross-section of the stream must increase

during that portion of the flow for which the velocity of

the fluid is greater than the velocity of sound in the fluid

at the section considered.

Therefore a nozzle in which a continuous decrease in

pressure with a continuous increase in velocity is to occur

irrespective of any limiting pressures must at first diminish

in section from a very large to a minimum section (called

the throat of the nozzle) and then the section must con-

tinually increase with increasing velocity and decreasing

pressure.

The length of the whole nozzle should be made as short

as possible so as to keep down the losses due to friction.

The portion of diminishing sectional area can be made

very short, the section at first diminishing rapidly and

then more slowly up to the throat of the nozzle. For

practical reasons of manufacture an extremely short length

of the nozzle at the throat is usually made cylindrical.
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The portion of increasing sectional area cannot be made

as short as the portion of diminishing sectional area for

if the section of the nozzle enlarges too rapidly it is found

that the stream no longer fills the nozzle, no longer follows

the wall, and therefore ceases to expand in the desired

manner. The diverging portion of the nozzle is commonly

made conical in form and the angle of the coneshould

be about 6°.

Design of a Nozzle, Neglecting Friction.—The pressure

at the throat of a nozzle is

pc= p\

the velocity at the throat may be computed by means of

Wc=^ 2gJ{i\— ic)

or it may be read directly from the velocity scale on the

Mollier diagram. Note that 4 is the heat content corre-

sponding to the critical pressure pc after a reversible adia-

batic expansion from the initial state.

The sectional area at the throat is fixed by the number

of pounds of fluid that must be discharged per second.

From the equation of continuity we have

Ac= ,

Wc

where Vc is the specific volume of the fluid under the con-

ditions existing at the throat.

The exit area of the nozzle is found in the same manner

by means of

and Wv2= A2'W2,
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where the subscripts 2 refer to the conditions existing at

the end of the nozzle.

If the nozzle is to deliver energy at a certain rate in

the form of kinetic energy the pounds of fluid passing

thru the nozzle are computed as follows,

\Y^
(horse-power) (550)

J{h— i2)

Exercise 228. A nozzle is to deliver 5 horse-power in the

form of kinetic energy of the moving fluid. It is to be supplied

with steam at 125 pounds per square inch absolute, quality

0.93, and is to discharge against a pressure of 0.50 pound per

square inch absolute. Compute the sectional area of the required

nozzle at the throat and at exit, neglecting the effect of friction,

(a) by means of the jVIollier diagram,

{h) by means of the steam tables.

The Ts-plane.—The solution of Exercise 228 by means of

the steam tables involves the computation of the quality

of the steam and the use of this quality in the computation

of the drop in the heat content. By means of the graphical

representation on the T^-plane formulas may be developed

in which the drop in the heat content is expressed in terms

of quantities given in the vapor tables.

A •
I

/'"''32

As i^q+'—j-,

^\^\=J{H-i-2}^J{q\-q2)+ {pl-p2)n2.

If we assume that the liquid line during heating at the

constant pressure p2 coincides with the corresponding

portion of the liquid line during heating at the constant
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pressure pi, see page 204, then q\ — q2, the shaded area Fig.

64, may be expressed as follows when x\ is the initial

quality.

qi-q2 = qi"-(^yi-x{){Ti-T2)-{q2"-{s2"-S2')T2].

Thus

in which each expression is either given or can be read

directly in the vapor tables.

f^////////////////^ '
(y),U-^P

K
dy^

Fig. 64.

Exercise 229. Show by means of the T^-plane that

when the vapor is initially dry saturated and expands at con-

stant entropy.

Exercise 230. Compute the energy available for transfor-

mation into kinetic energy when one pound of steam expands

adiabatically without friction from 200 to 10 pounds per square

inch absolute, the initial quality being 0.95

(c) by means of the formidas just developed,

{h) by means of the MoUier diagram.
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Exercise 231. Deduce a formula similar to the one developed

in Exercise 229, but for vapors initially superheated.

Exercise 232. Show on the T^-plane an area representing the

energy available for transformation into kinetic energy during

an isentropic expansion of an ideal gas and from it compute

this energy. Compare the result with the result obtained in

Exercise 216.

Adiabatic Flow with Friction.—During frictionless,

adiabatic flow the increase in kinetic energy due to a

Fig. 65.

given drop in pressure may be represented on the pv-pla.ne

(Fig. 65) by the area behind the reversible adiabatic process

I 2, whose equation is

'Iherefore

|2— •751,2 /»piW2 —Wi
2g

vdp (l)

Under these same conditions we have

2g
= J{i\-i2) • (2)
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SO that on the T^-plane (Fig. 66) this increase in kinetic

energy is represented by the heavily outHned area behind

(pi ~ p2)VZ2
the Hne i 2, plus a small quantity

/

. . P1J32
for by definition i = q-\-~~

and therefore ii— i2= qi— q2-\-
(pl— p2)V32

J

but qi— q2 is represented by the area just described.

Fig. 66.

Now as an extreme case conceive sufficient frictional

resistance during the adiabatic flow to destroy completely

all velocity as it develops then Wi = w= W3 and from

equation (2)

Let this final condition be represented by the points 3 in

both Figs. 65 and 66 and the process altho adiabatic

is now one of constant heat content represented by the

line I 3.
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1

Note carefully that the areas behind the adiabatic, con-

stant heat content lines no longer represent either the work

or the heat transformed into kinetic energy. For surely

more kinetic energy would not be obtained with the same

drop in pressure when energy must be used in overcoming

the frictional resistances.

The same reasoning applies to an actual nozzle for which

the process lies between lines i 2 and i 3. Let the process

be represented by i 4. This also is an adiabatic but it is

now neither an isentropic nor a line of constant heat con-

tent. The equation

wi—w^ ^,. . .

still holds but now
,2W4 .,j2 /»pi—[-1/4= I vdp,

where 1/4 is the energy lost in friction between states i and 4

per pound of fluid, must be used instead of equation (i)

given above, see page 217. Thus the area on the ^I'-plane

behind the curve i 4 not only represents the mechanical

energy which appears as kinetic energy but also the

mechanical energy re-transformed by friction into heat.

If thru the point 4 a line of constant heat content be

dra\\Ti until it intersects the constant entropy line i 2 at

4', the areas behind the line i 4' represent the kinetic energy

available after adiabatic frictional expansion.

The difference between the areas behind the lines i 2 and

I 4' does not represent a total loss. This energy is returned

to the fluid as heat and causes the final state-point to lie

at 4 instead of 4' or 2, and therefore if a further trans-
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formation of heat into mechanical enregy is to occur the

fluid contains more available heat energy than it would

have contained if its state-point were at 2.

In Fig. 66 we have 14 = 14' so that

i2— i4=i2— i4,

therefore the area behind 2 4' and up to the liquid line

is practically equal to the area below the line 2 4 and down

to the axis of absolute zero temperature.

Exercise 233. Deduce formulas for computing the quality

of a wet vapor leaving a nozzle after an adiabatic expansion

during which y per cent of the ideal heat drop is lost in friction.

Exercise 234. Sketch diagrams similar to Figs. 65 and 66

for a vapor expanding from a superheated to a wet condition.

On the is-plane, the MoUier diagram, the" process

described above on the pv- and the T^-planes would appear

as shown in Fig. 67. The numbering corresponds thruout

with that on the preceding figures.

As it is impossible to locate the state-point 4 directly and

as the process i 4 is unknown it is customary to compute the

difference between the heat contents at i and 2 assuming

reversible adiabatic change of state (at constant entropy

and therefore without frictional losses) and then subtract

a certain fraction, y, of this heat drop, i\— i2, so as to

allow for the loss due to friction. On the w-plane the

distance i 2 represents ii— i2 and the distance 4' 2 repre-

sents y{ii—i2) so that the distance i 4' represents

(i — y)(ji— ^2).

The final velocity of the vapor is computed from

'"^'=J(i-y)(u-W.
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The final quality of the vapor however must be read

from the point 4 and not from either 4' or 2.

Design of Nozzles Including Friction.— Computa-

tions involving the flow of vapors thru nozzles can

most readily be performed by means of the Mollier dia-

gram, Fig. 67. The flow is first assumed reversibly adia-

batic and the state-points i and 2 are located, then the

point 4' is located so that the distance 2 4' is the yth. part

of the distance i 2 where y is the given fraction of the

Fig. 67.

ideal heat drop that is lost in friction as determined by

experiment. This fraction may vary from 0.08 to 0.20.

The actual velocity can then be found from the velocity

scale or by means of the fundamental formula.

From the available heat drop and the given conditions

the mass of fluid which must pass thru the nozzle can be

determined.

To find the exit area of the nozzle the specific volume

of the vapor at exit must be found and this in turn re-

quires that the quality of the vapor leaving the nozzle be
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known. This quality can be read directly from the MoUier

diagram at the state-point 4, Fig. 67, or it may be com-

puted by means of the formulas developed in Exercise 233.

In computing the area at the throat of the nozzle it

is customary to assume that the whole loss due to friction

occurs between the throat and the exit section of the nozzle.

That this assumption is reasonable appears from the facts

that the length of the nozzle between entrance and throat

is very short and that the velocity in this part of the

nozzle is relatively low. Under these assumptions the

velocity at the throat is due to the whole difference be-

tween the heat contents at the initial pressure and at the

critical pressure existing at the throat.

As regards the length of the nozzle nothing can be

determined by simple computations. In practice the rules

laid down on page 236 are usually followed. For an in-

teresting discussion on the determination of the form of

nozzles see the pamphlet by Leblanc referred to on page 230.

Exercise 235. Design a nozzle for the conditions given in

Exercise 228 assuming the ratio of the loss due to friction in the

expanding portion of the nozzle to the total energy available

under ideal frictionless conditions to be 10 per cent.

Section XLII

THROTTLING

A fluid is said to be throttled or wiredrawn when its

pressure is diminished due to its flow thru a contracted

passage. The flow thru pressure-reducing valves, ex-

pansion valves in ammonia refrigerating machinery, valves

of steam and gas engines are cases in which throttling

occurs.
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The pressure on the down-stream side of the constric-

tion depends upon the nature and the state of the fluid,

the amount of constriction, and the velocity of approach.

It is usually unnecessary to determine this pressure. The

determination of the drop in temperature, of the change

in specific volume, and of the loss in availability of the

energy of the throttled fluid for a given drop in pressure

is however of great importance.

During the throttling process illustrated in Fig. 68 some

of the potential energy of the fluid is transformed into

kinetic energy at the constriction. This kinetic energy

Fig. 68.

is then re-transformed, wholly or in part, into heat by

internal friction.

If the flow is adiabatic (altho not isentropic) we have

= JKJLI— 12)H
as the fundamental equation.

In most cases the kinetic energies per pound of fluid

at sections i and 2 are relatively small and practically

equal so that their difference is zero. This implies that

'W2 = 'W\ and then

ii=i2.

Under these conditions the throttling process is a curve of

constant heat content.
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Exercise 236. Show that for ideal gases

u — CvT, i= CpT,

also that the temperature remains unaltered, and that

piVi = P2V2

during throttling for which w^— Wi.

Exercise 237. Show that for ideal gases

A1V2
W2= Wi -—

A2V1

and that

I Wi-
ll— ^2= ";:

JCp 2g .(iS)"-']

Exercise 238. Air flows from a pipe, in which ^£'1 = 300 feet

per second, into a large receiver. Compute the change in tem-

perature of the air.

Exercise 239. Show that for superheated vapor

1 pv .1 fnpv
«= — , ?=

J m—i Jm—i

and that for throttUng in which the change in velocity may be

neglected

PiVi = P2V2.

Exercise 240. Assuming as the characteristic equation for

superheated steam

pv= 8s.85T-.2s6p,

show by means of this equation that the throttling of superheated

steam for which 7^1 = ^2 is always accompanied by a drop in

temperature.

Von Linde's Process for the Liquefaction of Gases.—
An ideal gas suffers no change in temperature when throttling

occurs with wi = iV2. Thomson and Joule showed, in 1853,

by means of their porous plug experiments that the throttling

of actual gases such as air, nitrogen, oxygen, and carbon
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dioxide produces a slight drop in the temperature of these

gases. This slight cooling of the gases due to throttling

was utilized by von Linde for the production of liquid

air as follows.

A compressor supplied compressed air at say 100 at-

mospheres to the inner tube of a long double worm thru

which the air passes to a throttling valve. This valve

reduces the pressure to say 20 atmospheres and the air

suffers a drop of about 27° F in temperature. The air

after throttling passes thru a vessel arranged to catch

the liquid air produced and then returns thru the outer

tube of the double worm to the compressor.

If the original temperature of the air after leaving the

cooHng coils placed between the compressor and the double

worm is say 70° F, the temperature after throttling

will be 43° F. This colder air returning thru the

outer worm to the compressor cools the air on its way

to the throttling valve. The air arriving at the valve soon

has a temperature of 43° F, and the throttling cools it

to 16° F. After the machine has been running for several

hours the air finally reaches the state of a saturated vapor

and Hquid air is deposited after throttling. The whole

machine must of course be thoroly lagged and a separate

compressor must transfer air from the atmosphere to the

high-pressure cycle.

The Throttling of Wet Vapors.—As already shown

ii = 12 whenever wi = wo.

Exercise 241. Show that the quality of a wet vapor equals

Xi= h-Vi—

after throttling provided 'u!i = 'u:i.
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Exercise 242. What percentage of moisture may steam at

150 pounds per square inch absolute contain if throttling to

15 pounds per square inch absolute is to dry it?

Solve by means of (a) the steam tables, (b) the MoUier diagram.

Exercise 243. Steam initially at 150 pounds per square inch

absolute is throttled to 20 pounds per square inch absolute.

The observed temperature after throttUng is 248° F. Find

the initial quality by means of (a) the steam tables, (b) the

MoUier diagram.

Exercise 244. Develop a formula for obtaining the initial

quality of steam by means of the readings made on a throttling

calorimeter and by means of the steam tables.

The Loss of Availability Due to Throttling.—On page

241, during the discussion of the efifect of friction on the

flow of fluids, it has already been shown that an adiabatic

is not necessarily an isentropic curve.

During a reversible adiabatic process the fluid does

work during the frictionless expansion either upon a piston

or by imparting kinetic energy to its own mass. Under

these conditions the entropy of the fluid remains constant

and the adiabatic process is also an isentropic process.

During an irreversible adiabatic process the entropy

increases even tho no heat reaches the fluid from an

external source. Under these conditions some, or all, of

the kinetic energy developed during the flow is transformed

back into heat and this heat so returned to the fluid causes

the increase in entropy.

During throttling for which wi = W2 and during which

adiabatic conditions exist no heat is lost and yet the ability

of the fluid to do work has decreased. No energy has been

lost or gained but the availability of this energy has been

diminished.
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To illustrate, consider an adiabatic flow of an ideal gas

for which wi = W2 and therefore ii = i2, T\ = T2, and

piVi = p2V2. Thus this process altho adiabatic is also iso-

thermal as represented by the lines i 2 in Figs. 69 and 70.

The gas has passed thru the process i 2 and yet the

area under i 2 in Fig. 69 does not represent the work done.

That is even under ideal conditions no mechanical energy

results from this change of state so that no energy can

be stored so as to be available in assisting the return of

Fig. 69.

the gas to its initial condition. It might be supposed

that as the whole heat energy in the gas at i is still in the

gas under the conditions represented by 2 the return of

the gas to the condition i would require no external supply

of energy.

That this is not so is evident when we consider the effect

of compressing the gas isothermally from 2 to i. The
external work required to do this is rejiresented by the

area under 2 i in Fig. 69. When this work has been sup-

plied the gas is exactly in its original state but some asso-



250 THERMODYNAMICS

dated body must contain the heat rejected by the gas

during this process. This heat, equivalent to the work

done, cannot be completely transformed into work, thus

availability has been lost. The work done by and the

heat stored in bodies associated with the gas during the

reversible isothermal compression equals

-^1.1 log-

heat units per pound of gas. If T^ is the lowest obtainable

temperature then only

(Ti-Tl\i . ,
V2

can be again transformed into work under even the most

ideal conditions.

^Q I pivi V2
As S2-si =~ =-h^log-

the loss of availability due to the process i 2 may be ex-

pressed as follows,

= (S2-Si)Ti,

the product of the change in the entropy of the gas due

to the irreversible process and the lowest obtainable tem-

perature expressed in absolute degrees.

It should be noted that the area under the process i 2

in Fig. 70 does not represent heat supplied to the gas

during the irreversible adiabatic process 12. It does rep-

resent the heat equivalent of the work that must be per-
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formed and of the heat that must be extracted from the

gas during its change back to the initial state by reversible

isothermal compression from 2 i along the same process

line.

The gas may be returned to its initial state i by a

smaller expenditure of work than that required by the

isothermal compression explained above. For instance let

the horizontal dotted line in Fig. 69 represent the lowest

obtainable pressure (the atmospheric pressure) then the

Fig. 70.

gas may under ideal conditions be conceived to be expanded

along a reversible adiabatic from 2 to 3, then cooled at

constant pressure from 3 to 4, and finally compressed

along a reversible adiabatic from 4 to i. The energy

expended during these processes is less than the work

required for the isothermal compression discussed above.

Exercise 245. Show that the energy required to produce

the changes of state indicated by the processes 2341, Fig.

6g, amovuits to Jcp{Tz—T^ per pound of gas.

Exercise 246. Obtain the result of Exercise 245 from Fig. 70,
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Even less energy than this would suffice to return the

gas from state 2 to state i if instead of the lowest obtain-

able pressure use is made of the lowest obtainable tem-

perature. As shown in Figs. 69 and 70, the gas at 2 may

be expanded along a reversible adiabatic to 5, then com-

pressed along a reversible isothermal at the lowest obtain-

able temperature to 4, and finally compressed adiabatically

at constant entropy to i. The work obtained from the

gas during the process 2 5 is equal to the work required

to compress the gas from 4 to i. But during the process

5 4 work must be done on the gas by some associated body

and heat equivalent to this work must be rejected by the

gas to some associated body. This heat, as may be seen

from Fig. 70, equals

where Tz, is the lowest obtainable temperature, and it is

wholly unavailable for transformation into mechanical

energy for its temperature is already the lowest obtainable.

The loss of availability due to the irreversible adiabatic

process equals the increase in entropy during the irre-

versible process multiplied by the lowest obtainable tem-

perature expressed in absolute units. It is still the same

as the loss due to the direct reversible isothermal com-

pression from 2 to I.

During the throttling of a vapor similar conditions

exist. As shown in Fig. 71 in which the points are num-

bered so as to agree with Figs. 69 and 70, the irreversible

adiabatic i 2 coincides with a constant heat content line,

for now i\ = i2- The series of processes by means of which

the vapor at 2 can be returned to its initial condition i

with the least expenditure of external energy is evidently
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represented by the line 2541, provided the temperature

along 5 4 is the lowest obtainable temperature Tx,. Here

also the loss of availability due to the irreversible process

I 2 is

Tl{s2-Si).

Fig. 71.

Exercise 247. Steam is supplied to an engine the back

pressure in which is 3 pounds per square inch absolute. The

steam is throttled from 150 pounds per square mch absolute and

a quaUty of 0.99 to 1 20 pounds per square inch absolute before

entering the engine. Compute the loss of available energy per

pound of steam due to throttling.

Section XLIII

VENTURI METERS

Vcnturi meters are used for measuring the flow of fluids

in pipes. These meters are especially useful when the

quantity of fluid to be measured is so large that the dis-

placement meters of the usual sort capable of handling the

flow would be very large and correspondingly costly.
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As already described in hydraulics the Venturi meter,

Fig. 72, consists simply of a gradual reduction in the cross-

section of the pipe line and a gradual enlargement of the

section to its original diameter. Provision must be made

for measuring the pressures at the up-stream section of the

pipe before contraction occurs and at the throat of the

meter.

By means of these pressures, the areas at the corre-

sponding sections of the pipe, and the physical constants

of the fluid, the velocity and the quantity of fluid passing

any section can be computed.

Fig. 72.

Let the subscripts i denote the state of the fluid in the

up-stream section of the pipe and the subscripts 2 the

state at the throat, then the fundamental equation is

2g
vdp= (pivi— P2V2)

p., in— I

pm I - h-w—i [ \p\

where m is the exponent of the equation for reversible

adiabatic change of state which is assumed to occur between

I and 2, so that

p2 \Vlj
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If W represents the pounds of fluid passing any section

per second

AiWi A2'W2W=
Vl V2

and
AiVo Ai/pi\m

102= Wi—.— = 'i^i-r\
A2V1 A2\p2

Exercise 248. Show that in a V'enturi meter

and that

W=A,

For air ^=^=1.40 and vi may be computed from

piVi^RTi by means of the temperature of the air taken

in the up-stream section of the pipe.

For steam the value of W may be computed more readily

and more accurately from the fundamental equations and

the steam tables or diagrams than by means of the formulas

developed in Exercise 248.

Thus we have
,2.W2 —IVr

2g
= J(ii— i2) (i)

where (11— ^2) can be read from the MoUicr diagram.
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AiWi A2'W2
Also as W='

Vi V2

A1V2 . .

W2 = Wi- (2)
A2 Vi ^ ^

from which, by means of the specific volumes vi and V2,

W2 can be found in terms of wi. Substituting this value

in equation (i), we find wi and finally

AiWiW=
Vi

yields the number of pounds of steam passing thru the pipe.

Experiments have shown that the Venturi meter fur-

nishes a very reliable and accurate means of measuring

the flow of fluids.

Exercise 249. A Venturi meter has a diameter of 6 inches

at entrance and 3 inches at the throat. The steam entering this

meter contains one per cent of moisture and is under a pressure

of 120 pounds per square inch absolute. The pressure at the

throat is 100 pounds per square inch absolute. How many

pounds of steam pass thru the meter per second?

Section XLIV

FLOW THRU PIPES

The Hydraulic Formula.—The flow thru pipes of con-

stant diameter will now be considered. As demonstrated

in hydraulics the flow of liquids thru pipes is accompa-

nied by a loss in pressure head and therefore of energy due

to the frictional resistances encountered. This loss of head is

,2pi-p2 _4fl v'

nf= — —i— ,
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where / is the friction factor,

w the specific weight of the liquid in pounds

per cubic foot,

V the velocity of flow in feet per second,

/ the length of the pipe in feet,

d the diameter of the pipe in feet,

p\— p2 the loss of pressure in pounds per square foot,

and g= 32.2 feet per second per second.

This formula expressed in the notation we have used

in thermodynamics becomes

ftf=(pl-p-2)v=^-,

where v is the specific volume in cubic feet per pound

and w is the velocity of flow in feet per second.

When dealing with gases and vapors v and w cannot be

regarded as constant because a decrease in pressure causes

an appreciable change in the specific volume v.

The equation of continuity is now

W= = a constant,
V

and not Aw=-d constant,

as is the case when the flow of liquids is considered.

If however the drop in pressure is slight it may be assumed

that the change in specific volume is small and as an approx-

imation V may be regarded as constant.

The friction factor, /, is not constant. It depends upon

the diameter of the pipe and the nature of and the specific

volume of the fluid. Unwin deduced from experiments

on the flow of gases

/= 0.0027 f I+^j, for air.
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and /= 0.0044! i-\—^ j, for illuminating gas,

where d is the diameter of the pipe in feet.

Assuming the specific volume of the fluid to remain

constant we have

hf=(pi-p2)v=fj—,

so that Pi— p2=f-^ —

.

vd 2g

It is customary to express this result in terms of V,

the volume of fluid passing into the pipe per second.

A T/ H"\ 4F
As V= 'w\— I or w=^,

\ 4 / T^d^

where the velocity w is assumed to remain constant

thruout the length of the pipe,

we have p,-p,=-^—^

y^ \T^'^gvd^{p\-p2) _^ \vd^{p\-p2)

\ 32// \ I

This is known as D'Arcy's formula.

Exercise 250. The following formula based upon D'Arcy's

formula is used by engineers for all gases and vapors. When

pi— p2 is small it yields fairly accurate answers.

where W represents the pounds, and

Vi the cubic feet of fluid passing into the pipe per

minute.
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d is the internal diameter of the pipe in inches,

/ is the length of the pipe in feet,

Vi is the specific volume of the fluid entering the pipe

in cubic feet per pound,

pi— pi is the drop in pressure in pounds per square inch.

What is the value of / used in this formula?

Exercise 251. What weight cf dry saturated steam under

an initial pressure of 120 pounds per square inch absolute may

be expected to pass thru a 4-inch pipe 700 feet long when the

drop in pressure is 6 pounds per square inch?

Exercise 252. If the quality of steam flowing thru the

pipe in Exercise 251 were doubled what would be the drop

in pressure provided the initial pressure is maintained at its

original value?

Exercise 253. Ten drills require iioo cubic feet of free air

(measured at 14.7 pounds and 60° F) per minute, what should

be the diameter of a pipe 5000 feet long supplying these drills

with compressed air at 55 pounds per square inch gage, the

drop in pressure in the pipe line not to exceed 5 pounds and

the air entering the pipe having a temperature of 60° F?

How fast does the air flow thru this pipe?

Exercise 254. It is stated that the approximate diameter

of a pipe line may be obtained from the following formula

\ (Pi

ooo^W'Hv

in which the letters have the same significance as in Exercise 250.

(a) For what value of d is this formula correct?

(b) Solve Exercise 253 by means of this formula.

A More Accurate Formula for the flow of fluids thru

pipes may be deduced by taking into consideration the

variation of the specific volume and of the velocity of the

flowing fluid.
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The fundamental equations are the equations of con-

tinuity

TTr AwW=—=a constant,
V

and the energy equation deduced on page 217,

W2^-Wi^ . ^ fP'^
hi/2=-| vdp,

where 1/2 represents the energy lost thru friction per

pound of fluid. This 1/2 equals hj so that

1/2 = ///=/ -7 —

•

As w is a variable /// varies. Assuming / constant for

a given pipe and a given gas and placing

2gd

the head lost per differential length of the pipe line may

be expressed as follows,

d(hf) = C(dl)u>^.

Substituting this value into the differential form of the

energy equation which is

d(i^)

2g
-\-d(if2)+vdp= o

we have • \-C{dl)w^-irvdp = o

I d(j^ vdp_
or 5

—

\-(-dH—9=0.
2g w^ w~

The first two terms of this equation can be readily inte-
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1

grated. The third term must first be expressed in terms of

a single variable, preferably p, before it can be integrated.

The equation of continuity affords a means of expressing

w in terms of v

Wiw=—V,

Vi

for the diameter of the pipe is assumed constant.

To express v in terms of p let us assume that the favorite

polytropic relation of thermodynamics pv**=pivi'*, where

w is a constant, holds during the flow thru the pipe.

Then
1

vdp _vi^dp_ v\ (

p

S>
and the integral of the energy equation is

I
1 9 , ^7 1

^^ ^1
ra+l

log, K'2_f_Q_| . p „ =(J

Wi^pin
2g "+ I

„,. 2

To determine the constant of integration Ci, note the

following conditions at the beginning and at the end of

the pipe,

p— p\, w= wi, 1=0

P= p2, 1V= W2, l=L,

where L is the length of the pipe. By means of the con-

ditions at the beginning of the pipe we obtain

C\=— log, wi-^H j S--
2g n-\-i wi"

The energy equation becomes
n+l

I w^ n vipi
\ ( p\ ^

]— loge—2+C/H—— S- f- -i}=o.
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As we seek the velocity at entrance to the pipe note that

1

•W _V _ /pl\n

and solve

iiog.(^)+«a+j^'J4i
n \p

/

n-f-i Wi"

for wi, obtaining

^ -I =o

pm I - . .«+I
I \pl

n+l

2/L I pi~-+- loge T-
a n p2

When L is large, the term - log^ — may be neglected.
n p2

Also the temperature of the gas in the pipe may be assumed

to remain constant, because any heat generated by friction

would be dissipated by radiation and conduction. There-

fore in pv^=a, constant, w may be assumed to be unity.

With these assumptions

Wi =V^
gdpiv i

\
pr—p2

AfL pi'

or

Exercise 255. Show that

4^[-m
Tr^d^g(pi'-p2^)

64fLRTi

where W is in pounds per second.
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Exercise 256. Show that the cubic feet of free air (measured

at 14.7 pounds and 60° F) flowing per minute thru a pipe d

inches in actual diameter and L feet long is

--Wf!-te)l.
the pressures being in pounds per square inch absolute and

the temperature of the air entering the pipe being 60° F.

Exercise 257. If the drop in pressure in the pipe line is small

show that D'Arcy's formula may be derived as an approximation

from the result of Exercise 255.

Exercise 258. A cast iron pipe 10.3 miles long and 0.98

foot in diameter is to deliver 135 cubic feet of free air per second.

For this pipe /= 0.0023. The initial pressure is 92 pounds per

square inch gage. Compute the terminal pressure, the tem-

perature thruout the pipe Une being 60° F

(a) by means of the more accurate method,

(b) by means of the hydraulic method.

(c) Compute the initial and the final velocity of flow in this

pipe.



CHAPTER XIV

GENERAL EQUATIONS OF THERMODYNAMICS

Section XLV

DIFFERENTIAL EXPRESSIONS FOR THE HEAT SUPPLIED

The State of a Body is not determined by its temper-

ature alone. It has already been shown that for ideal gases

and even for superheated vapors three quantities are

sufficient to determine the state of the body. These

may be the temperature, the pressure, and the specific

volume and they are always so related by means of a

characteristic equation that any two being arbitrarily

assumed the third can be found.

It is by no means true that these or any other three

quantiti;is always determine the state of any body. For-

tunately three variables suffice for many cases and to

such cases the following discussions and equations are

limited.

Mathematically this condition is expressed when the

characteristic equation of the substance is

f{p,v,t) = o,

or t=^(f){p,v).

The Heat Absorbed During any Change of State.

By reason of the above assumption any two of the

three variables p, v, and / may in general be assumed to be

the independent variables during any change of state and

264
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the heat absorbed during this change of state may be com-

puted in terms of these variables and of certain thermal

capacities.

Assume p and v as the independent variables. Geomet-

rically this means that the projection on the /)D-plane of

the actual change of state which occurs on the charac-

teristic surface (Fig. 2) is to be considered.

The heat absorbed during any differential change of

state when projected on the /?z)-plane may be conceived

Fig. 73.

to occur in two steps one while v remains constant, the

other while p remains constant (Fig. 73).

Let ®r"'

and

be the heat absorbed by a unit mass of

the substance per unit change in volume

while the pressure remains constant,

(— ) ^//,. be the heat absorbed by a unit mass of

the su])stance per unit change m pres-

sure while the volume remains constant.

Then if dq represents the whole heat absorbed per unit

mass of the substance during the complete change of state

^=(1);'"+ (i-;)/^'
(l)
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because the actual change in volume is dv and the actual

change in pressure is dp.

The change in temperature does not appear explicitly

in this equation. It is taken care of by the relation

fip> v, t) = o which means that p and v cannot change with-

out a corresponding definite change in t.

dq is not the heat absorbed along a differential element

of a line on the pv-p\a.ne, but it is the heat absorbed during

the corresponding actual change represented on the char-

acteristic surface.

Two other expressions, similar to equation (i), for the

same dq can be deduced from the projections of the actual

change of state upon the other two coordinate planes.

If (—^) =Cp represents the heat absorbed by a unit

mass of the substance per unit change

in temperature while the pressure re-

mains constant,

and (
—- )

=ip represents the heat absorbed by' a unit

mass of the substance per unit change in

pressure while the temperature remains

constant,

then ,,.(|)^,,+ (|),, (.)

Also if {—) =Cv represents the heat absorbed by a unit

mass of the substance per unit change

in temperature while the volume re-

mains constant,

and (^) —^'> represents the heat absorbed by a unit
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mass of the substance per unit change in voliime while

the temperature remains constant,

we have ,,= (|)^,,+ (|) ,, (3)

It will be noticed that Cp and Cc are by definition the

familiar specific heats at constant pressure and at constant

volume respectively.

Ip and Iv are called latent heats because the temperature

does not change during the changes of state to which they

apply.

hp and h„ have received no special names.

These six coefl&cients in the differential expressions for

the heat absorbed are called thermal capacities.

In order to use equations (i), (2), and (3) the relations

of the thermal capacities to each other and to the variables

p, V, and t must be established.

Relations Between the Thermal Capacities.—Only

four equations are available to determine the six ther-

mal capacities. They are the characteristic equation of

the substance, f(p, v, t) = o, and the three expressions for

dq. Therefore two thermal capacities must be known

before the others can be computed. Four independent

relations between the thermal capacities can be established.

From equations (2) and (3) we obtain by elimination of dq

Cpdt-{-lpdp = Cvdt-\-lvdv (4)

This equation contains the differentials of the three var-

iables p, V, and /. Any one of these can be eliminated

by means of the characteristic equation

J{p,v,t) = o.
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Let us eliminate dt. To do this put J{p, v, t) = o in

the form t=^(j){p, v), from which we obtain

Exercise 259. Find dt for an ideal gas by means of this

equation.

The above indicated elimination gives

Altho the value of dt depends upon the values of

both dp and dv, dp and dv are themselves independent of

each other (no definite line on the characteristic surface

having been assumed), dp and dv may thus vary in any

manner with various changes of state. Therefore the only

way in which the last equation can be true for all values

of dp and dv is under the condition that the coefficients

of dp and dv be both separately equal to zero.

Thus icp-Cp) = lvl~)
, (5)

and ^^^"'^''^^~^^(^) ^^^

Other relations between the thermal capacities may be

found by eliminating v from equation (4) by means of

obtained from f(p, v, t) = o.
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In this way the relations

and ^'='\'^p

are established.

The first one of these has already been found, equation

(5). The second one altho apparently a new relation is

really a result which may be obtained from equations (5)

and (6) as follows.

From the calculus we have

when 2=/(-v, y),

9.1- 9z

ay
Therefore from the equation

t= ci>{p,v)

di

dp_ dv

dp
From equations (5) and (6)

or h=—TT^e
op

dt

and Ip^TrrU.
dp
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By the elimination of p from equation (4), we obtain

the relations

and
'•-'(f).'

both of which have already been obtained.

Thus so far we have found two relations for the deter-

mination of four thermal capacities.

Exercise 260. Assuming Cj, and k to be known for a certain

ideal gas, compute the latent heats of this gas.

Starting with equations (i) and (2), we have

lipdv-\-livdp= Cpdt-\-lpdp (7)

Eliminating dv the relations

and '•='"{^),

are obtained.

Exercise 261. Deduce the relations

dt

to
— ftp— — Cb I

and ''M§);
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1

The nine relations between the thermal capacities de-

duced above are not independent relations. As there

exist only four equations which can be used to determine

these relations only four independent relations can be

found. Any four of the above nine relations involving

the six thermal capacities will serve to compute the six

thermal capacities when two of them are known.

Section XLVI

EXACT DIFFERENTIALS

Definition.—Many of the differential equations of ther-

modynamics are of the form

dz= Mdx-\-Ndy,

where M and N may be constants or functions of the var-

iables X and y.

As an example we have

dt=(^) dv+C^dp, .... (a)
v9^7p \dp

which is obtained by differentiating

t=4>{p,v).

Here M=(^ and N
\dv/p

As another example consider

"^-(BMU)."' ^«

where M=(^]=hp and N=(^)=/i^
\dv/p \dp/v
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Expressions of the form Mdx-\-Ndy are divided into

two classes. For every expression belonging to the first

class, of which the right-hand member of equation (a) is

an example, a definite relation exists between the variables,

in the example the relation is t=(l>{p,v). For all expres-

sions belonging to the second class, of which the right-

hand member of equation {b) is an example, no such func-

tional relation exists.

Whenever a functional relation between the variables

exists the value of 2 depends only upon the initial and the

final values of the independent variables x and y and not

in any way upon the manner in which the change is made

from the initial to the final condition.

Referring to the first example, note that its integral

t=(f)(^p^i,) definitely fixes the change in the temperature

when the values of p and v are known for both the initial

and the final conditions without any reference to the path

the state-point may have followed on the characteristic

surface, as given by some relation between p and v, during

its motion from the initial to the final point.

When these conditions are satisfied Mdx-\-Ndy is called

an exact differential.

Under these conditions the integration of

can be performed without using a relation between p and

V and

I dt=t2— h,

the change in temperature, is always the same when con-

puted between the same initial and final points, {pi, Vi)
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and {p2, V2), irrespective of the line on the surface, t= <l>(p, v),

joining these points along which the integration may be

performed.

Exercise 262. Write equation (a) so that it applies to an ideal

gas and from it determine the change in temperature due to

a change from (pi, Vi) to {p2, V2).

If no functional relation exists between the variables

X, y, and 2 in

dz=Mdx+Ndy

then the integration cannot be performed. No value of

2 can be found unless some assumption regarding the re-

lation between x and y is made so that Mdx-\-Ndy can

be expressed in terms of one variable. If some relation

between .v and )' is arbitrarily assumed each assumption

will yield a different value of 2.

Referring specifically to equation (b), the second exaniple

above, we know from physical considerations that the value

of q2—qi is not a definite constant quantity depending

only upon the initial and the final values of p and v. The
heat supplied between any two states of a substance de-

pends not only upon these states but also upon the

manner in which the heat is supplied. Therefore

is not an exact differential.

MUh
F^XERCiSE 263. Find Zi—Zi between the limits (x=o, v = o

and {x=i, y=i) when
(i) dz= xdy— ydx,

(2) dz = xdy+ydx,

provided (a) y = 2iX, {b) y- = gx.
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Which of these expressions is an exact differential? Which

can be integrated directly?

The Test for an Exact Differential.—The following

criterion which is used to test expressions of the form

Mdx-\-Ndy for exactness may also be used in another way.

Suppose an expression in this form is known to be exact,

let us say from physical considerations, then the test about

to be developed may be used to establish relations between

the quantities involved in this expression.

If Mdx-\-Ndy is exact then, by definition, some function

z=f(x, y) must exist which on differentiation gives

dz= Mdx-\-Ndy.

From z=f{x, y)

we have dz==(i)-+(l)>

so that M=|^ and N=^.
dx dy

Differentiating these identities the first with respect to

y and the second with respect to x we have

and
dy dxdy dx 9y ax-

But as has been shown in the calculus

dxdy dydx'

so that ~^^=^l~-dy dx
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That is, if the change in a function z of two independent

variables x and y, between fixed limits, for which

dz= Mdx-\r^^y

is independent of the manner in which the change is pro-

duced, i.e., if Mdx-\-Ndy is an exact differential, then

av ax*

Exercise 264. The following differential must be exact,

{x^^S^y^y)dx^{y^^Ax--Vx)dy.

What is the value of ^4?

Section XLVII

THE DIFFERENTIAL EQUATIONS OF THERMODYNAMICS

Entropy As a Coordinate.—The coordinates we have

already used in defining the state of a substance are the

pressure, the specific volume, and the temperature (/?, i>,

and /).

To these may be added the entropy, s, which for re-

versible processes is defined by

dq

where T represents absolute temperature, so that

r=/-l-a constant.

It is important to show that the change in entropy

dcDends only upon the change of state which occurs and not
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in any way upon the manner in which the change is made.

In passing from one state to another the change in the

entropy of the substance will be the same no matter what

reversible path is followed in passing from the initial to

the final state. That this is so may be shown as follows.

Any cycle may be divided into differential elementary

Carnot cycles as shown in Fig. 74. The sum of these

elementary cycles will be the same as the given cycle.

Fig. 74

For each of these elementary cycles we have

dqi^dqz

dqi dq2_

Ti T2~°'

where dqi and dq2 are the quantities of heat absorbed

and rejected by the working substance during the cycle

at the absolute temperatures Ti and T2 respectively, see

page 133. t

or
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Therefore in any reversible cycle for any substance

r T
--0,

or the sum of the changes in entropy of any substance

undergoing a reversible cycle of changes must be zero.

Now consider the change in entropy of a substance

during any change of state represented by the line i .1 2,

Fig. 75. It would at first sight appear that as the heat

P

Fig. 75-

supplied during the change of state varies with the nature

X^dq-j; would also vary with

the path.

That this is not so becomes evident when we consider

the return from state 2 to state i by any other path such

as 2 .S I. As
I

-f=o, the gain in entropy from i to 2

along the path i A 2 must equal the loss in entropy from

2 to I along the path 2 B i, or

I — along path i A 2 =J ^ along the path 1^2.
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Therefore 5 depends only upon the state of the sub-

stance and not upon the manner in which the state was

reached. Also

An
and ds=-;^ must be an exact differential.

Of the four coordinates p, v, t, and s which are functions

of the state only and do not depend upon how the state

may have been attained any two may be used as inde-

pendent variables to determine the state of the substance.

Two of these variables are alwavs sufficient for this pur-

pose; by means of these the other two can always be

computed.

Thermodynamic Potentials. — The internal or in-

trinsic energy, u, of unit mass of a substance under cer-

tain conditions may be regarded as the energy in the

substance due to its present state. It may also be regarded

as the ability the substance possesses to perform work due

to its thermal condition. From this point of view u may be

called a thermal potential; m is a measure of the potency

of the substance.

Evidently u depends only upon the state of the sub-

stance and not upon how the state may have been attained,

therefore du is an exact differential.

dq= du-\-—pdv

du=dq—jpdv.
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Thus dq—jpdv is also an exact differential, altho neither

dq nor pdv are exact.

The five quantities, p, v, T, s, and n are all functions of

the state only therefore any combinations of these quan-

tities must also be functions of the state only. Three

such combinations have been found very useful in ther-

modynamic discussions. They are denoted by the letters

i, f, and 4> and are defined by the identities

i = u-|-jpv,

f = u-Ts,

= i-Ts.

u, i, f, and are called thermodynamic potentials. - Of

these u and i are the most useful to the engineer. They

have received special names, u is the internal energy

whose physical significance is well known, and i is called

the heat content for the physical significance of which

see page 166.

The other two potentials / and 4> have received no spe-

cial names; they are simply known as thermodynamic

potentials. Applications of these potentials are to be

found in physics and in chemistry.

The differentials of the four thermodynamic potentials

u, i, f, and are

du= dq——pdv,

di= du-\-—pdv-\—jvdp,
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dj= du— Tds—sdT,

and dcf)= di— Tds—sdT.

These may all be expressed in terms of the four coor-

dinates p, V, T, and 5 and each one in terms of two of them

as independent variables. ,

For instance, as dq = Tds

du =Tds-^pdv (8)

Using this relation we may transform dl into

di= I Tds— —pdv \ -\-—pdv-\--jvdp

or di=Tds+^vdp (9)

Exercise 265. Show that

df= —sdT—-pdv, (lo)

and d(f)= -vdp— sdT (n)

Note that as u, i, f, and 4> depend only upon the state of the

substance their differentials are exact.

Maxwell's Relations.—The following four relations

between the variables p, v, T, s, which are used as coor-

dinates for the determination of the state of a substance

in thermodynamics may be readily derived from the four

differentials of the potentials. These relations, known

as Maxwell's relations, are used in establishing relations

between the thermal capacities and the variables p, v,

and T.
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1

From equation (8), if we remember that the differential

is exact, we have

\d(n

ds

.l^U-ifl-^), (.)dv/s~ J\ds

Exercise 266. Show that

'dT\ ^i/dv_

,dp/s J\ds (13)

Wr^A^).' ^''^

dp/T~ J\dT (is)

These are Maxwell's relations. They hold for all revers-

ible changes of state and for all substances whose char-

acteristic equation is f(p,v,T) = o. Note the physical

meaning of these equations. For instance from equation

(13) we see that the rate of change of the temperature with

respect to the change in pressure along an isentropic path

must always equal — times the rate of change of the vol-

ume with respect to the change in entropy along an iso-

piestic path for any substance at any particular state.

Exercise 267. WTiat geometrical interpretation may be

attached to equation (15)?

Equation (12) may be written in terms of q instead of s.

This will show its connection with the thermal capacities

defined on pages 265-267. As dq= Tds we have

\dv)a AdqJi
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Note that in {— ) q now takes the place of 5 as the
\dv/g

variable which remains constant during the change con-

sidered.

But as by definition
( :r^ ) = /?p

we may write /?o= —— I — I .

Also from equation (3),

dq= Cvdt-\-kdv;

now as q is constant, dq= o, and

'd'v\ ^_^

and
^^
= 7(^1'

Exercise 268. Show that
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This relation is true for all substances having a characteristic

equation of the form/(^, v, /) = o.

Exercise 269. Show that altho cp and Cv vary Cp—Cv must

be constant for all substances whose characteristic equation is

pv= RT.

Exercise 270. Find Cp— c^ for superheated steam assuming

that Zeuner's characteristic equation

pv^RT-Cp"*,

where R, C, and n are constants, is correct.

The Heat Supplied, dq.—The heat supplied during

any change of state to any substance whose characteristic

equation is f{p, v, t) = o or t=4>{p, v) can now be expressed

in terms of Cp, Cv, and the partial derivatives of p and of v

with respect to /. To do this the thermal capacities h,

Ip, hv, and hp must be eliminated from equations (i), (2),

and (3) by means of the relations just deduced from Max-

well's relations.

From equation (3) by means of equation (16)

dq = c„dt+^(^)^dv, .... (19)

and from equation (2) by means of equation (17)

dq = c.dt-^(|^)^dp (20)

Exercise 271. From equations (19) and (20) deri\e expres-

sions for dq for ideal gases.

To simplify equation (i), i.e.,

HfX^-HM)/"'
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note that
I ;r- ) =lip = lv-\-Cvi ;—] , Exercise 261,

that ^"—^{^i J
equation (16),

and that (:ti) =fh— Cvi-:—) , Exercise 261.
\dp/v \dp/v

Substituting these values in equation (i)

—-] and (t—) use equation (18)
dv/p \dp/v

from which
T/dp\

'dt\ J\dt)v

dv/p (cp—cv)'

T

and
,d'\_Adl),
,dp/v {Cp—CvY

Finally equation (i) becomes

Exercise 272. What form does equation (21) take for ideal

gases? Compare the result with the third equation in Exercise 26.

Clapeyron's Fomuila.—Let us apply equation (19), i.e.,

which is true for any substance and which has already

been applied to an ideal gas in Exercise 271, to a vapor
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during the process representing the change from a liquid

to a saturated vapor.

For a wet vapor we have

p=m
and v= (f){p,x),

where x is the quality of the vapor, see page 133.

Therefore \^] is simply -77- and as
V9/ /v ^ -^

(It

dp .

-7^ IS a constant for any temperature.
dl'

If the vapor forms at constant pressure the temperature

is constant and dt is zero so that

As q"— q' = r= ihe latent heat of vaporization

rj I
we have ^" ~" '^'

^ T ' Td^Y ^^^^

U)
This is Clapeyron's formula for the increase of volume

during the evaporation of a liquid. From it when r and

the relation between p and / have been determined experi-

mentally v"— v' can be computed.

Exercise 273. Deduce Clapeyron's formula directly from

Maxwell's relation given in equation (14).
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Other Important Relations.—The change in internal

energy

du=dq——pdv

may with the aid of equation (19) be expressed in terms

of Cv, thus

/9cA ^2
\dv)t J-

rentialand as du is an exact differential

""air

dt

or

which shows the variation of Cv with respect to v while the

temperature remains constant.

Similarly in

di= dq-\-—vdp, equation (9),

Cp may be introduced by means of equation (20), and we

obtain

M=c^,-^AT{^)-.\ip

Exercise 274. Show from this equation that

9Cp\ _ T/d-v\

dp/t~ J\dr-)v '

which is" called the relation of Clausius.

(24)
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Exercise 275. Show by means of equations (23) and (24) that

for ideal gases Cv does not depend upon the volume, that Cp

does not depend upon the pressure, and that nevertheless both

Cp and Ce probably vary with the temperature.

From the equation

di= c.dt-jlT{gj-v\dp

we find that during an isothermal process for which dt

must equal zero

l)r-7{<i)r+ • • •
<-'

Also during throttling, for which i remains constant so

that di= o, such as occurs in the Joule-Thomson porous

plug experiment the same equation yields

\dp/i CpJ ] \di/

p

(— ] , the ratio of the drop in temperature to the droj)

in pressure during a process for which the heat content

is constant, is called the Joule-Thomson coefficient.

Exercise 276. What drop in temperature occurs during the

throttling of an ideal gas?

The equality of the absolute temperature used in the

general equations of thermodynamics and the absolute

temperature in the characteristic equation of an ideal gas

may be shown by means of the equation

du=c^t^j\ tI^^- p\dv.
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Note that in this equation du, the change in internal energy,

is independent of the change in volume when this equa-

tion is appKed to an ideal gas, therefore the coefficient

of dv must be zero, or

(l)rl-

But from pv=RT

(dp\ ^R^p

therefore the two T's must be alike.
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277. Determine the position of the absolute zero on the

Fahrenheit scale from the following experimental result found

by heating air at constant volume,

pressure at 100° C
, o r^

= 1-3665.
pressure at o C

278. Compute the internal energy of a mass m of an ideal

gas whose state is p, V, T in terms of p, V, and k.

279. State four laws governing the behavior of an ideal gas.

280. Deduce the law pV= mRT from the laws of IJoylc and

of Charles.

281. Fifty pounds of air enclosed in a receiver at a pressure of

200 pounds per square inch gage and at 210° F are cooled by

radiation. What will be the final pressure if the temperature

of the air becomes 50° F?

282. If one cubic foot of o.xygen at n.t.p. weighs w pounds,

compute the gas constant, R, for a gas whose molecular weight

is tx.

283. At a pressure of 14.7 pounds per square inch absolute

and a temperature of 32° F one pound of air occupies a volume

of 12.39 cubic feet. The specific heats of air arc said to be

Cp= o.2375 and (:o
= o.i685. From these data compute the gas

constant for air by two methods.

284. Deduce a formula for the gas constant of a mixture

of three ideal gases the gas constants of which are known.

285. A receiver (capacity 5 cubic feet) contains 9 pounds

280
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of SO2. At what temperature will the pressure in the tank

reach 200 pounds per square inch gage? Assume that one

pound of oxygen occupies 11.2 cubic feet at n.t.p. and that

SO2 behaves as an ideal gas under the above conditions.

286. Deduce the relation between Cp and Cv of an ideal gas

and state the law (or laws) governing the behavior of ideal gases

used in deducing this relation.

287. Develop from fundamental equations the relation between

the pressures and the temperatures of two states of a given mass

of gas during an adiabatic expansion.

288. Prove that

_R k

289. How much external work is performed by a gas during

(a) an adiabatic, {b) an isothermal, (c) a polytropic change from

the state determined by pi and Vi to the state determined by

pi and V2.

290. During the compression of one pound of air 10 B.t.u.

are removed by the cooling water and 30,000 foot-pounds of

work are required. The initial temperature of this air was

80° F, compute the final temperature.

291. The temperature of air expanding in an air motor drops

120° F. The expansion follows the process pv^-^= c. How much

heat was transferred to or from the cylinder walls per pound

of gas during this expansion?

292. Compute the least amount of work required per pound

of dry air to draw it from the atmosphere at 70° F and deliver

it to a receiver at 100 pounds per sci''are inch gage under ideal

conditions. The available cooling water has a temperature of

7o°F(i?=53-3)-

293. Define polytropic change of state.

What is the value of the specific heat of an ideal gas during

polytropic change of state?
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Do the various polytropic changes include all possible changes

of state?

294. How would you determine whether or not a given expan-

sion or compression line on an indicator card represents a poly-

tropic change of state?

295. The equation of the compression line of an air com-

pressor card is found to be pV^-^^= a constant. During the

compression the temperature of the air is raised 200° F. How
much heat is transmitted to the cylinder walls during the com-

pression of one pound of gas?

296. During a compression following the law />T^>-^ = constant

the temperature of the air rises from 80 to 200° F. How
much heat has been absorbed per pound of air?

297. How much external work was done by each pound of

air during the change of state described in 296?

298. A balloon, capacity 9000 cubic feet, is filled with air at

300° F. The temperature of the surrounding air is 70° F. What

total weight (including the weight of the balloon) is required

to prevent its rising in still air?

299. Deduce a relation between T and v for an adiabatic

change of state of a gas for which Cv= a+bT, the result to con-

tain the constants a, b, R, and /.

300. The state of one pound of a certain gas for which ^=1.4

is changed from 15 pounds per square inch absolute, 80° F.

and 192 cubic feet to 30 pounds per square inch absolute and

250° F. Compute the change in internal energy.

301. During the compression of an ideal gas 40,000 foot-

pounds of work are expended and 8 B.t.u. are taken from it

by conduction. What change in internal energy occurs during

this process?

302. A tank held 40 cubic feet of air at 200 pounds per square

inch gage. This air is cooled in the tank to 70° F and its pres-

sure is now 1 50 pounds per square inch gage.

(a) How much heat has been extracted?
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(b) How much has the entropy of this gas decreased?

303. Compute the change in the entropy of an ideal gas due

to a change of state from (pi, Vi, Ti) to {p2, V2, T2) in terms of

the temperatures and the volumes.

304. What is the temperature in the exhaust pipe of an air

engine if the air is supplied at 100 pounds per square inch gage

and 70° F and the expansion is assumed to be adiabatic to

atmospheric pressure?

305. Three cubic feet of air at atmospheric pressure are to

be compressed at constant temperature to 100 pounds per square

inch gage.

(a) How much heat must be withdrawn from the gas to ac-

complish this?

(6) Where does this heat come from?

306. (a) Sketch the /»i)-diagram showing the operation of an

air compressor without clearance in which the compression is

completed in two adiabatic stages.

{b) Sketch upon the 7'5-plane that portion of the diagram

drawn in (o) which shows the saving effected by compounding.

307. (a) Indicate on the />ZJ-plane an area, finite in all its

dimensions, which is proportional to the heat supplied during

a change of state from {pu Vi, Ti) to {pi, V2, T2). Prove that

this area represents the heat supplied.

(b) Indicate an area on the T^-plane which represents the heat

supplied during the above change of state.

308. In an air-compressor 10 cubic feet of air at a temper-

ature of 100° F and under a pressure of 14 pounds per square

inch absolute are compressed adiabatically. The final pressure

is 60 pounds per square inch absolute, (a) Compute the volume

of this air after compression, (b) Find the temperature of

this air after compression.

309. Compute the most advantageous intermediate pressures

for a three-stage compressor with perfect intercooling.

310. Compressed air is to be stored in cylinders 6 inches
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in internal diameter and 6 feet long. These cylinders can with-

stand an internal pressure of 2000 pounds per square inch

absolute. The greatest temperature to which they are liable

to be exposed is 120° F. (a) What weight of air can be safely

stored in each cylinder? (b) What should be the charging pres-

sure at 60° F?

311. Air is compressed adiabatically from pi and Ti and

delivered at p^. How much work must be suppUed per pound

of air? Assume ideal conditions and no clearance. Express

the result in terms of the given pressures and temperature.

312. Compressed air is admitted to the cyUnder of an air

motor without clearance. Compare the work done during

admission with the work it could perform if expanded indefi-

nitely according to the law pv^ = c after admission to the cyUnder.

313. An air-compressor has a displacement volume of 10

cubic feet and a clearance of 5 per cent. What volume of air

is taken in per stroke when the compressor operates adiabatically

between o and 60 pounds pe*: square inch gage?

314. Sketch on the ^F-plane the cycle thru which the

air passes during the operation of a dense-air refrigerating

machine under ideal conditions. Indicate clearly on this diagram

the points at which the air attains the temperature of (a) the

cooling water, (b) the cold storage room.

315. In a dense-air refrigerating machine operating on a

reversed Joule cycle the compressor takes in air at a pressure

of 40 pounds per square inch gage and delivers it at a pressure

of 1 20 pounds per square inch gage. At the beginning of compres-

sion the temperature is 34° F and the coohng water maintains

the temperature of the cooling coils at 70° F. Determine the

ratio of the heat extracted from the cold body to the heat equiv-

alent of the work expended in driving the machine.

316. In a dense-air refrigerating machine operating on a

reversed Joule cycle, the compression cyUnder takes in air at

40 pounds per square inch gage and delivers it at 120 pounds
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per square inch gage. At the beginning of compression the

temperature is 34° F and the cooling water maintains the tem-

perature of the cooHng coils at 70° F. Compute the work expended

per pound of air passed thru the cycle. {R= 53.3.)

317. Sketch the T^-diagram corresponding to the />i)-diagram

shown in Fig. 76. Letter your diagram to correspond with

Fig. 76.

318. Compute the change in entropy which occurs during

the process A B, Fig. 76.

319. The clearance space of a Diesel engine is o.i of its piston

displacement. If the cylinder is full of air at 160° F and 14

pounds per square inch absolute at the beginning of com-

pression, determine the temperature at the end of compression

provided no leakage occurs.

320. One pound of air is heated at constant pressure from 60

to 150" F. Compute

(a) the change in entropy,

(b) the heat supplied.

321. Prove that the efficiency of the Carnot cycle is i —
I

~

where - is the ratio of the least volume to the volume before
r

adiabatic compression.

322. Air is compressed isothermally from 70° F and 14.7

pounds per square inch absolute to 100 pounds per square
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inch absolute, then expanded at constant pressure, and finally

reduced to its initial state along an isometric process.

Compute (a) the eflSciency of this cycle,

(b) the work performed per pound of air.

323. In Fig. 77 is shown a special case of the Atkinson cycle.

This may be considered as an Otto cycle in which the expansion

is carried to the atmospheric line. Compute the efficiency of

this cycle in terms of Ti, T^, i\, Vo, Vt, and the physical con-

stants of the gas.

324. Compute the efficiency of the Lenoir cycle (Fig. 78)

\fr/ ^^p Atmospheric

X?«, ^.^ /Lino

1

Fig. 77. Fig. 78.

in terms of the constant specific heats of the gas, the temper-

atures at I and 2, and the ratio of the volumes —

.

Vl

325. Sketch the Lenoir cycle (Fig. 78) on the r5-plane.

Number the important points so as to correspond with Fig. 78.

326. One pound of air at 80° F is compressed at constant

temperature from o to 150 pounds per square inch gage. It

is then expanded at constant pressure and finally expanded

adiabatically to its initial state. Compute the highest tem-

perature reached during the cycle.

327. Compute the greatest and the least volume occupied

by the air during the cycle described in 326.

T,
328. The efficiency of an Otto cycle is i — ;p, where Ti is
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the absolute temperature at the beginning and T^ is the absolute

temperature at the end of compression.

The clearance space of a 6 X 12-inch Otto gas engine was

found to hold 4 pounds of water. Compute the ideal effi-

ciency of this engine assuming adiabatic expansion and com-

pression.

329. The indicator card of an Otto engine shows that the

pressure rises during compression from 15 to 200 pounds per

square inch absolute. After ignition it is 400 pounds per square

inch absolute.

Assuming the initial temperature of the gas to be 300° F

and the compression to be polytropic {n— 1.3) what is the probable

temperature of the gas after ignition?

330. The inventor of an oil engine claims for it a consumption

of 0.31 pound of fuel (yielding 19,000 B.t.u. per pound) per

indicated horse-power hour. The edges of a nickel cube (melting

point 2600° F) fuse in the cyhnder of this engine and the exhaust

temperature is 800° F. Test the probability of the inventor's

claim by means of Carnot's principle. State this principle and

your conclusion.

331. A room is heated by means of radiators maintained at

220° F. The temperature of the room is 70° F, that of the

outside air 30° F. How many B.t.u. at 70° F could be trans-

ferred from the outside air to the room by means of an ideal

heat-motor combined with an ideal heat-pump for every 100

B.t.u. furnished by the radiator?

332. (a) Explain the physical significance of a negative specific

heat.

(6) For what values of n in the equation pv^= a, constant

is the specific heat of a diatomic gas negative during the change

of state described by this equation?

333. State the second law of thermodynamics and prove

Carnot's principle.

334. Determine analytically whether the temperature of an
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ideal gas increases or decreases during a polytropic compression

for which h = o.9o.

335. A tank (capacity 10 cubic feet) contains air at atmospheric

pressure and 70° F. Air is forced into this tank until the pres-

sure rises to 200 pounds per square inch gage, and the tem-

perature to 75° F. How many pounds of air have passed into

the tank?

336. A certain producer gas is said to contain 0.6 per cent of

H2, 23.0 per cent of CO, 1.4 per cent of CH4, n.o per cent of

CO2, and 64.0 per cent of X2 by weight. Compute its gas

constant.

337. Compute the mean specific heat of air at constant volume

between 60 and 300° F.

338. What change in intrinsic energy occurs when 20 cubic

feet of air expand to 30 cubic feet under a constant pressure

of 60 pounds per square inch absolute?

339. (a) During an adiabatic change of state the temperature

of 20 pounds of air changed from 80 to 150° F. How much

work was done by 'the gas during this change?

(b) If the change had been polytropic with 11=1.2, how much

work would have been done by the gas?

340. Show without the aid of calculus, that the work re-

qiiired to compress and deUver a gas when the compression is

isothermal equals the work done during compression.

341. Thru what per cent of the stroke must the piston ot

a compressor, having a displacement volume of 10 cubic feet

and a clearance of 5 per cent, move before the outlet valves

open when the compressor operates between 0.5 and 100 pounds

per square inch gage? («= 1.3 and pa= 14.7.)

342. The displacement volume of the working piston of an

engine operating on an Ericsson cycle is to be 100 cubic feet,

the extreme pressures to be used 15 and 30 pounds per square

inch absolute, the available e.xtreme temperatures 70 and

500° F. (a) Compute the displacement volume of the compressor
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piston neglecting all clearances, (b) What horse-power would

be obtained under ideal conditions if the engine is single-acting

and runs at lo r.p.m.?

343. What is the most important diflference between the

conditions existing during the absorption of heat by the gas

during a Carnot and a Joule cycle?

344. During an Otto cycle the heat supphed causes an in-

crease in pressure from 60 to 250 pounds per square inch

absolute. Compute the change in entropy per pound of air.

345. Air contained in a receiver is withdrawn until the gage

shows 28.9 inches of vacuum. If the receiver originally contained

air at atmospheric pressure and the barometer read 30.0 inches,

what per cent by weight of the air originally present has been

removed?

346. (a) Define total heat of vapors.

(b) Write the defining equation of the heat content of

vapors.

(c) Develop the relation between the total heat and the heat

content of a vapor. Explain each symbol.

(d) Which of these values are given in your steam tables?

347. (a) Compute the internal energy of steam, quality

0.90, at 100 pounds per square inch absolute.

(b) What does the result represent?

(c) What is the mean specific heat of superheated steam at

a constant pressure of 150 pounds per square inch absolute

between 100 and 300° F of superheat?

348. Compute by means of the steam tables the quality of

steam after reversible adiabatic expansion from 200 pounds

per square inch absolute and 100° F superheat to 10 pounds

per square inch absolute.

349. Fourteen pounds of steam are confined in a closed re-

ceiver (capacity 20 cubic feet). The initial temperature is 400°

F. The temperature then falls to 70° F. (a) What is the greatest

and the least pressure to which the receiver is subjected if the
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atmospheric pressure is 14.5 pounds per square inch? (b) Com-

pute the heat lost by the steam.

350. One pound of steam occupies 1.5 cubic feet. Compute

its entropy, the pressure being 250 pounds per square inch

absolute?

351. One pound of dry saturated steam expands adiabatically

from 250 to 15 pounds per square inch absolute. Find the

external work performed measured in B.t.u. (Use the steam

diagrams.)

352. Find the volume of 3 pounds of steam at 100 pounds

per square inch absolute and 402° F.

353. The volume of an engine cylinder is 5 cubic feet. How
many pounds of steam, quality 0.80 at 225 pounds per square

inch absolute, are required to fill it?

354. How much heat must be extracted per pound of steam,

initial quality 0.90, confined in a closed receiver in order to

reduce the pressure from 120 to 15 pounds per square inch

absolute?

355. Assxmiing that steam expands adiabatically in a frictionless

nozzle from 125 pounds per square inch absolute, quality 0.95,

to a temperature of 40° F, what would be the final quality?

356. A nozzle is to deliver 5 horse-power in the form of kinetic

energy. It is supplied with steam at 125 pounds per square inch

absolute, quality 0.93, and discharges at a pressure of 0.60 pounds

per square inch absolute. Compute the area at the throat

and at exit, assuming the critical ratio to be 0.579 and neglecting

all frictional resistances.

357. Compute the mean specific heat of steam at a constant

pressure of 103 pounds per square inch absolute between 440

and 500° F.

358. Steam is cooled at constant volume from 150° F super-

heat at 160 pounds per square inch absolute until the pressure

drops to 15 pounds per square inch absolute. How much heat

must be removed per pound of steam?
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359. Express ii—i2, for a reversible adiabatic flow of steam

(initial quality Xi) during which the pressure drops from pi

to p2, in terms of X\, pi, p2, and quantities which may be found

in the steam tables. Use a T^-diagram.

360. In a cycle steam changes its state at constant volume

from 50 pounds per square inch absolute, quality 0.80, to one

pound per square inch absolute. How much heat must be

added per pound of steam during this process?

361. Sketch a Carnot and a Rankine cycle for steam on the

r^-plane. In both cases the expanding steam is to change its

state from superheat to wet.

362. Develop, by means of the T^-diagram, a formula from

which the heat converted into work per pound of wet steam

during a Rankine cycle with complete expansion may be com-

puted by means of the steam tables.

363. Steam initially at 160 pounds per square inch gage

and 500° F leaves a De Laval nozzle at one pound per square

inch gage. What is the quality of the issuing steam if 10 per

cent of the available energy is lost in friction?

364. (o) How much work can be obtained from one pound of

steam passing thru a Rankine cycle between pressures of 140

and 0.50 pound per square inch absolute, provided the steam

is superheated 250° F?

(b) How many pounds of steam must be circulated under

the above conditions per i.h.p. hour?

365. Sketch the cycle described in 364 on the Ts- and oa

the w-planes.

366. An engine during a test developed an indicated horse-

power of 170 with a boiler pressure of 130 pounds per square

inch absolute, a condenser pressure of 2 pounds per square inch

absolute, and a supply of 2500 pounds of dry saturated steam

per hour. Compute the cylinder efficiency and the actual

thermal efficiency of this engine.

367. A test on a compound steam engine shows that 386 B.t.u.
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are supplied by the boiler per i.h.p. per minute when the total

i.h.p. is 104.6, the boiler pressure 102 pounds gage, the vacuum

24.4 inches, the barometer 29.2 inches, and the priming i.oo per

cent. Find the ideal and the actual thermal efficiencies.

368. The test of a non-condensing, high-speed engine showed

the i.h.p. to be 130, the b.h.p. 120, the steam pressure 11 5.3

pounds gage, the back pressure 0.30 pound gage, the atmospheric

pressure 14.7 pounds, the quality of the steam i.oo, the steam

per i.h.p. hour 30.5 pounds. Compute

(c) the ideal Carnot efficiency,

(b) the ideal Rankine efficiency,

(c) the actual thermal efficiency,

{d) the cylinder efficiency

under these conditions.

369. The test of an engine shows that 14 pounds of steam

are consumed per indicated horse-power hour. The pressure

and the temperature in the steam main aie 150 pounds gage

and 450° F. The vacuum maintained in the condenser was

28 inches, while the barometer read 30 inches. Compute (a)

the actual thermal efficiency of this engine, (6) the thermal effi-

ciency of a Rankine cycle with complete expansion operating

vmder the same conditions.

370. Develop the two fundamental equations by means of

which problems in the flow of fluids may be solved.

371. Compute the critical pressure for the flow of a fluid

thru an orifice from

I 2_ TO+l

IF-.

where the letters have their usual significance.

372. Steam, quality 0.93, e.xpands from a pressure of iod

pounds per square inch absolute to 0.40 pound per square inch

absolute in a nozzle. If 10 per cent of the heat transformed
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into kinetic energy under ideal conditions is required to over-

come the frictional resistances, what would be (a) the velocity,

(b) the quality of the issuing steam?

373. A De Laval turbine rated at 350 horse-power has seven

nozzles. The steam supplied to this turbine at 180 pounds

per square inch absolute is superheated 70° F. The pressure of

the steam leaving the nozzles is one pound per square inch

absolute. The loss of energy due to friction in the nozzles is

12 per cent and 70 per cent of the kinetic energy developed

by the nozzles is available at the brake. Find

(a) the velocity of the steam leaving the nozzles,

(b) the quality of the steam leaving the nozzles,

(c) the steam required per brake horse-power per hour.

374. How many pounds of dry saturated steam pass per

second thru a Venturi meter when pressures of 100 and 90

pounds per square inch absolute exist at the sections whose

areas are 3 and 2 square inches respectively?

375. Steam before passing thru a throttling calorimeter was

under a pressure of 150 pounds per square inch gage. On the

down-stream side of the orifice the pressure is 10 pounds per

square inch gage, and the temperature 260° F. What was

the initial quality of the steam?

376. A throttling calorimeter shows a temperature of 287°

F at 16 pounds per square inch gage. The initial temper-

ature of the steam in the main was 382° F, the atmospheric

pressure being 14.6. What was the quality of the steam in

the main?

377. A superheat of at least 10° F must be recorded when

a reliable determination of the quahty of steam is to be made

with a throtthng calorimeter. What is the greatest percentage

of moisture which can be measured in steam at 200 pounds per

square inch absolute when the steam is throttled to 15 pounds

per square inch absolute?
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Indicate your method of solution on a sketch of a Mollier

diagram.

378. How much dry saturated steam will escape thru an

orifice (area | square inch) into the atmosphere (14.7 pounds)

from a receiver in which a pressure of 30 pounds per square

inch absolute is maintained. Solve by means of the steam

diagrams only.

379. Sketch a Rankine cycle with incomplete expansion on

(c) the pv-plane, (b) the T^-plane, and (c) the total heat entropy

diagram.

380. Sketch on the w-plane three adiabatics between the

same pressures and with the same initial point, one for friction-

less flow thru a nozzle, another for flow thru a nozzle including

friction, and the third for throttling without appreciable change

of velocity.

381. Compute the heat content of one pound of steam con-

taining 3 per cent of moisture at 150 pounds per square inch

absolute in two different ways by means of the steam tables.

382. It is said that in the notation and according to the

formula of Exercise 250 the velocity of the fluid entering the

pipe is

„ kpi-p2)dvi . ^ ,

Wi= C /
-^.—-—r-, feet per second.

Show that this is so, and And the value of C.





ANSWERS
Marks and Davis Steam Tables and Diagrams have been used.

2.

4.

7.

8.

9.

11.

12.

14.

15.

16.

17.

21.

23.

25.

29.

38.

43.

47.

52.

53.

57.

53.3. 3. 204° F.

1280 lbs. per sq. in. abso. 6. 54.9.

238° F.

(a) 86.4 lbs. per sq. in. abso.; (h) 76.7 lbs.

24 lbs.

(a) 53.2; (b) 6.4 and 23.6 ins. of Hg.

28.9. 13. 0.0806 lb. per cu. ft.

(a) 51.1; (b) 30.1; (c) 0.0842 lb. per cu. ft.

(a) 80° F.; (fo) 4.4%.

4.^[-:-

(a) 4.914, 6.904, 1.406; (6) 5.020, 7.010, 1.-397.

777. 22. (a) 24.0 B.t.u.; (b) 17.1 B.t.u.

(a) 183° F; (6) 5.75 B.t.u. 24. 389 B.t.u.

(a) 36 B.t.u.; (6) 25.6 B.t.u.; (c) 10.4 B.t.u.

29,300. 33. 218 B.t.u.

144 mct,vi{p2— pi)

R
39. 52.5; 1.016 cu. ft.

(a) 188° F; (6) +76.3 B.t.u.; (c) 191 B.t.u.; {d) 267 B.t.u.

t-i

(a) ?Jf* = piri'; (6) 7^7
= (~

(a) -180° F; (6) 0.814 cu. ft.; (c) 6.94 cu. ft.

(o) 731° F; {b) — =18.3; (c) 883 lbs. per sq. in. abso.
Pi

50,400 ft.-lbs. 58. -89,500 ft.-lbs.
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T, \vj 7\ \]h

75. (o) -83,700 ft.-lbs.; (b) +83,700 ft.-lbs.

76. (a) +7460 ft.-lbs.; (b) -38.4 B.t.u.; (c) -48.0 B.t.u.

77. -116,000 ft.-lbs.

91. (a) 187 horse-power; (b) 170 horse-power.

„, ,1 P3F3 —
92. (a)

J

-p-iVi . P2V2 P3V3] cv n-k
— 1 k — l k — l\ Kn — \

both of these expressions
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134. 49.5%. 135. (a) 35.7%; (b) 81.8%.

136. 75.7%. 140. (a) 0.109; (b) 0.109.

141. -loge—

.

143. 0.188.
J P2

150. 2.85 ins.; -00. 155. (a) 0.01602 cu. ft.; (6) 0.0187 cu. ft.

157. (a) 85.9; (6) It becomes more than ideal.

160. -0.03; +0.18; 0.00; -2.5; -7.2 B.t.u.

161. 0.167 B.t.u.; ,392.7 B.t.u. 162. 0.844 B.t.u.; 1204.1 B.t.u.

163. (o) 1201.3 -.732+ .044 = 1200.6 B.t.u.; (b) 1115.7 B.t.u.

164. 1.404+0.0047 = 1.409 cu. ft.

166. (a) 115.2 B.t.u.; (6) 0.576. 167. 231.0 B.t.u.

176. (a) 776.5 B.t.u., 1.045; (6) 587.1 B.t.u., 1.0541.

179. (a) 0.52; (6) 185.5 B.t.u.; (c) 167.0 B.t.u.; (d) 18.5 B.t.u.

181. 0.0058.

182. (a) 2.062 cu. ft.; (b) 223 lbs. per sq. in. absc, 391° F.

183. -965 B.t.u. 184. (a) 1.515.

185. (a) 0.842; (fe) 0.308. 187. 1.20 cu. ft.; 6.83 cu". ft.

188. 317 B.t.u. or 246,000 ft.-lbs.

192. (a) 118.5 B.t.u.; {b) 0.542. 193. 88.5 B.t.u.

195. (a) 200.2° F; (b) 12.01 cu. ft.; (c) 223.8 B.t.u.; (d) 18.5

B.t.u.; (e) 205.3 B.t.u.

196. -59.8 B.t.u. 197. (a) 62.46° F; (6) 51.5 B.t.u.

198. 55 B.t.u. 199. (a) 0.793; (b) 327 B.t.u.

200. 68 lbs. per sq. in. absc; 71 lbs. per sq. in. ab.so.

203. (a) 0.178; (6) 0.314; (r) 0.334.

204. 77=0.265; 178,000 ft.-lbs.; 11.1 lbs. per h.p.-hr.

206. (0) 0.286; (b) 250,000 ft.-lbs.; (c) 7.9 lbs. per i.h.p.-hr.

207. (a) 0.318; (6) 212,500 ft.-lbs.; (c) 9.33 lbs. per i.h.p.-hr.

208. (a) 0.294; (6) 282,500 ft.-lbs.; (c) 7.01 lbs. per i.h.p.-hr.

219. (a) 0.189; (&) 166,000 ft.-lbs.; (c) 11.98 lbs. per i.h.p.-hr.

212. (a) 49.5%; {b) 376 B.t.u. per i.h.p. per min.; (c) 11.3%.

213. (a) 26.9%; (6) 8.72 and (c) 16.0 lbs. per i.h.p.-hr.; (d) 54.5%;

(e) 14.7%.
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214. 25 lbs. per b.h.p.-hr. 217. .3878 ft. per sec.

224. (a) 1491 ft. per sec; (b) 1489 ft. per sec.

225. 2910 ft. per sec.

227. (a) 38.6; (6) 38.2; (c) 38.1 lbs. per min.

228. 0.00606 sq. in.; 0.188 sq. in. 230. 204 B.t.u.

231. aT^J =j{h-Z2+ (s2"-s,)7^2|.

yiii—ii)
233. Si'+XiSi"=S2'+X2S2 ; Xi=^X2-\——

100r2

235. 0.0925 in.; 0.535 in. The corresponding values for Exercise

228 are 0.0879 in., 0.489 in.

238. +7.5° F. 242. 5%.

243. 0.967. 244. xi = -—-.

n

247. 14.4 B.t.u. 249. 10.1 lbs. per sec.

251. 93.2 lbs. per min. 252. 24 lbs. per sq. in.

253. 5.2 ins.; 24 ft. per sec. 254. (a) 3.3 ins.; (6) 5.6 ins.

258. (a) 71.8; (6) 73.5 lbs. per sq. in. gage; (c) 24.6, 30.3 ft. per sec.

263. (1), (a) 0, (6) -1; (2), (a) 3, (6) 3.

5 R RT
264. -. 270. cp-cc=-

2 J in-l)Cp''+RT
pV

277. -459.6° F. 278. ^.
oo« 137.5

281. 149 lbs. per sq. in. gage. 282. ——

.

283. 53.3; 53.7. 285. 255° F.

290. 247° F. 291. 6.8 B.t.u.

292. 58,000 ft.-lbs. 295. 4.86 B.t.u.

296. -6.84 B.t.u. 297. -21,300 ft.-lbs.

298. 203 lbs.

299. a log, Uf +^(^2 - ^i) = -7 ^oge -.
\ / 1/ J Vi
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300. 418 B.t.u. 301. 43.4 B.t.u.

302. 920 B.t.u.; 1.53. 304. -165° F.

305. 16.8 B.t.u. 308. 3.54 cu. ft.; .390" F.

t-i

310. nibs.; 1794 lbs. per sq. in. 311. -—^J (-) " -1
k-l\\pjk

312. (n-1). 313. 8.9 cu. ft.

315. 3.42. 316. 4660 ft.-lbs.

318. .0473. 319. 1160° F.

320. 0.0381; 21.6 B.t.u. 322. 0.193; 142.5 B.t.u.

cp{T,-T,)
323. 1-

324.

c.\TA'^Y"-tJ'^^'~'

Vl/
\

\Vy
mc,iT2-Ti)-mcv{ -

1 ^ 7'2l - 1 - T, \ -mcpT{©-'
7nc„iT2-Ti)

326. 620° F. 327. 1.212 cu. ft.; 13.6 cu. ft.

328. 42.9%. 329. 2306° F.

330. 43.2%; Carnoteffi., 58.8 9o- 331. 371 B.t.u.

335. 10.1 lbs. 336. 57.7.

337. 0.173. 338. 277 B.t.u.

339. -186,000,-373,000 ft.-lbs. 341. 82.7%.

342. 55.2 cu. ft., 20.3. 344. 0.242.

345. 96.3%. 347. (a) 1023.7 B.t.u.; (c) 0.496.

348. 0.882.

349. 233, 14.1 lbs. per sq. in. gage; 12,600 B.t.u.

350. 1.3436. 351. 204 B.t.u.

352. 14.88 cu. ft. 353. 3.05 lbs.

354. 734 B.t.u. 355. 0.707.

356. 0.00606, 0.188 sq. in. 357. 0.4965.

358. 867 B.t.u. 360. -836.2 B.t.u.

363. 0.941. 364. 400 B.t.u., 6.36 lbs.
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366. 63.5%; 15.8%. 367. 46.5%; 10.99%.

368. 16.7%; 15.8%; 8.28%; 52.0%. 369. 15.5%; 29.2%.

372. 3750 ft. per sec; 0.762.

373. 3900 ft. per sec; 0.837; 12 lbs.

374. 2.4 lbs. per sec 375. 0.97.

376. 0.98. 377. 5%.

378. 0.218 lb. per sec.

381. 330.2+837.2; 1193.4-25.9. 382. 256.
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Absolute scale, Kelvin's, 123

Absolute, temperature, 13, 123

zero, 12

Adiabatic, change, 38, 144^ i8c

198

flow, 218, 239

Answers, 305

Availability, of heat energy, 1 28

loss of, 248

Avogadro's law, 16

B

Boyle's law, 11

Brayton cycle, 109

British thermal unit, 4

Carnot cycle, 86, 200

Carnot's principle, 120

Changes of state, ^i, 160, 184

Characteristic, equations, 30, 155

surfaces, 31, 153

Charles' law, 11

Clapeyron's equation, 284

Clausius' relation, 286

Clearance, 75

Compound compressors, 77

Compressors, 71

Conservation of energy, 3, 115

Continuity, equation of, 214

Critical, pressure, 157, 223

states, 157

temperature, 157

Cross-products, 100

Cycles, gas, 83, 147

vapor, 200

Cylinder efficiency, 211

D

D'Arcy's formula, 258

Dalton's law, 18

Degradation of heat energy, 128

Diesel cycle, 112

Differential equations, 264

Discharge, thru a nozzle, 237

thru an orifice, 225, 229

thru a pipe, 258, 262

Dry saturated vapor, 152, 160

Efficiency, 86, 202, 209

Energy, i

conservation of, 3

equation of, 4, 216

internal, 2, 65, 66

Engine efficiencies, 209

Entropy, 131, 174

Entropy as a coordinate, 135, 275

Ericsson cycle, 93

3"
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Exact differential, 271

Experimental determination of w.

External work, 3, 64

First law of thermodynamics, 5,

116

Fliegner's formula, 225

Flow of fluids, 213

thru a nozzle, 230

thru an orifice, 221

thru pipes, 256

thru Venturi meters, 253

Friction, 217, 239, 243, 257

Frictionless flow, 218

Gas constant, 15, 16

of mixtures, 18

Gas cycles, 83, 147

Gases, 9

General law for ideal gases, 13

Grashofs formula, 227

H
Heat, content, 165, 168, 171

pump, 102

supplied, 68, 264, 2S3

Hydraulic formula, 256

Ideal gas, 9

Internal energy, 2, 65, 165, 168,

172

Irreversible processes, 119

Isodynamic change, 37

Isometric change, 36, 143, 187, 197

Isopiestic change, 37, 140, 185, 195

Isothermal change, 34, 144, 185,

196

Isothermals, 34, 64, 156

Joule cycle, 94

Joule's, experiment, 10

law, 10

Joule-Thomson coefficient, 287

K
Kelvin's scale of temperature,

123

L
Latent heat, 163

Liquefaction of gases, 157, 246

Logarithm temperature-entropy

diagram, 145

Loss of availability, 248

M
Maxwell's relations, 280

Meters, Venturi, 253

Mollier diagram, 182, 242

N
Napier's formula, 228

Nozzles, 230, 236, 243

Orifice, flow thru an, 221

Otto cycle, 109

P
Perfect gas, 9 «

Perpetual motion, 129

Pipes, flow thru, 256

Polytropic, change, 45, 144

plotting, 61

Potentials, 278

Problems for review, 289
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Quality, 167, 168

Rankine cycle, 203, 207

Refrigerating machine, 102

Reversible processes, 117

Review, problems for, 289

Saint Venant, 223

Second law of thermodynamics,

116, 122

Single-stage compressors, 71

Specific heat, 6

of gases, 20

at constant volume, 21

at constant pressure, 23, 26

Specific heats, negative, 52

Stirling cycle, 91

Temperature-entropy diagram,

140, 145, 176, 182, 237

Thermal, capacity, 5, 267

efficiency, 86, 211

unit, 4

Thermodynamic potentials, 278

Three-stage compressors, 80

Throttling, 244

Total heat, 162, 164, 168

Transformation of energy, 115

Turbo-compressors, 81

V
Van der Waals' equation, 158

Vapor cycles, 200

Vapors, dry saturated, 152

wet, 167, 184

superheated, 169, 195

Venturi meters, 253

Volumetric efficiency, 77

Von Linde, 246

W
Warming engine, 106

Wet vapors, 167
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