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PREFACE

THIS book has been prepared in order to provide students and

draughtsmen engaged in Shipbuilders' and Naval Architects

drawing offices with a text-book which should explain the

calculations which continually have to be performed. It is

intended, also, that the work, and more especially its later

portions, shall serve as a text-book for the theoretical portion

of the examinations of the Science and Art Department in

Naval Architecture. It has not been found possible to include

all the subjects given in the Honours portion of the syllabus,

such as advanced stability work, the rolling of ships, the vibra-

tion of ships, etc. These subjects will be found fully treated

in one or other of the books given in the list on page 488.

A special feature of the book is the large number of

examples given in the text and at the ends of the chapters.

By means of these examples, the student is able to test his

grasp of the principles and processes given in the text. It is

hoped that these examples, many of which have been taken

from actual drawing office calculations, will form a valuable

feature of the book.

Particulars are given throughout the work and at the end
as to the books that should be consulted for fuller treatment of

the subjects dealt with.

In the Appendix are given the syllabus and specimen

questions of the examination in Naval Architecture conducted

840838 a 3
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by the Science and Art Department. These are given by the

permission of the Controller of His Majesty's Stationery Office.

I have to thank Mr. A. W. Johns, Instructor in Naval

Architecture at the Royal Naval College, Greenwich, for

reading through the proofs and for sundry suggestions. I also

wish to express my indebtedness to Sir W. H. White, K.C.B.,

F.R.S., Assistant Controller and Director of Naval Construction

of the Royal Navy, for the interest he has shown and the

encouragement he has given me during the progress of the

book.

E. L. ATTWOOD.

LONDON,

February^ 1899.

PREFACE TO THE NEW
EDITION.

IN the present edition the matter has been somewhat re-

arranged and a number of additions made. Two new chapters
have been added, one on launching calculations, and one on
the turning of ships.

LONDON, 1916.



REMARKS ON EDUCATION IN
NAVAL ARCHITECTURE

FOR the bulk of those who study the subject of Naval Archi-

tecture, the only instruction possible is obtained in evening

classes, and this must be supplemented by private study. The
institutions in which systematic instruction in day courses

is given are few in number, viz. (i) Armstrong College,

University of Durham, Newcastle-on-Tyne ; (2) University
of Glasgow ; (3) University of Liverpool ; (4) Royal Naval

College, Greenwich ; and students who can obtain the advan-

tage of this training are comparatively few in number. An
account of the course at Glasgow is to be found in a paper
before the I.N.A. in 1889 by the late Prof. Jenkins, and at the

Royal Naval College, in a paper before the I.N.A. in 1905

by the writer ; see also a paper by Professor Welch on the

scientific education of naval architects before N.E. Coast

Institution, 1909. There are scholarships to be obtained for

such higher education, particulars of which can be had by

application to the Glasgow, Liverpool, and Newcastle Colleges,

to the Secretary of the Admiralty, Whitehall, S.W., and to the

Secretary of the Institution of Naval Architects, Adelphi

Terrace, Strand. In these courses it is recognized that the

study of other subjects must proceed concurrently with that

of Naval Architecture.

The Naval Architect has to be responsible for the ship

as a complete design, and in this capacity should have some

familiarity with all that pertains to a ship. Thus he should

know something of Marine Engineering (especially of pro-

pellers) ;
of Electricity and Magnetism ;

of armour, guns and

gun-mountings in warships; of masts, rig, etc., in sailing
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vessels
; of the work of the stevedore in cargo vessels

; of

questions relating to the docking and undocking of ships ; of

appliances for loading and unloading of ships ; of the regula-
tions of the Registration Societies and the Board of Trade

regarding structure, freeboard, and tonnage ;
of appliances for

navigating, as well as having a thorough knowledge of the

practical work of the shipyard. In the early stages of a design,
the naval architect frequently has to proceed independently in

trying alternatives for the desired result, and it is not until the

design is somewhat matured that he can call in the assistance

of specialists in other departments. The naval architect

should, therefore, have an interest in everything connected

with the type of ship he has to deal with, and he will con-

tinually be collecting data which may be of use to him in his

subsequent work.

For the average student of Naval Architecture, in addition

to the work he does and observes in the shipyard, mould loft,

and drawing office, it is necessary to attend evening classes in

Naval Architecture and other subjects. The apprentice should

systematically map out his time for this purpose. In the first

place, a good grounding should be obtained in mechanical

drawing and in elementary mathematics. Both of these sub-

jects are now taught by admirable methods. The drawing
classes are usually primarily intended for Engineering students,

but this is no drawback, as it will familiarize the student with

drawings of engineering details which he will find of consider-

able service to him in his subsequent work. Some institutions

very wisely do not allow students to take up the study of any

special subject, as Naval Architecture, until they have proved
themselves proficient in elementary drawing and mathematics.

The time thus spent is a most profitable investment.

The Board of Education now only hold examinations in

two stages, a " lower " and a "higher," see p. 446, but teachers

will probably divide the work between these stages, and

themselves hold examinations.

We will suppose, then, that a student starts definitely with

the lowest class in Naval Architecture. With this subject

he should also take up Elementary Applied Mechanics, and,



Remarks on Education in Naval Architecture, ix

if possible, some Mathematics. The next year may be devoted

to the Board of Education Lower Examination in Naval

Architecture, with a course in more advanced Applied

Mechanics, and a course in Magnetism and Electricity or

Chemistry would form a welcome relief. The next year may
be devoted to further study in Mathematics, Theoretical and

Applied Mechanics, Electricity and Magnetism. The next

year may be devoted to another class in Naval Architecture,

with more advanced Mathematics, including the Differential

and Integral Calculus. This latter branch of mathematics is

essential in order to make any progress in the higher branches

of any engineering subject. If the student is fortunate enough
to live in a large shipbuilding district, he will be able to attend

lectures preparing him for the Board of Education Higher

Stage Examination in Naval Architecture. A first-class

certificate in this stage is worth having, and in preparing

for the examination, the student must to a large extent read

on his own account, and for that year he will be well advised

to devote his whole attention to this subject. Much will

depend on the particular arrangements of teaching adopted
in a district as to how the work can be best spread over a

series of years.

In making the above remarks, the writer wishes to empha-
size the fact that a student cannot be said to learn Naval

Architecture by merely attending Naval Architecture classes.

Teachers in this subject have not the time to teach Geometry,

Applied Mechanics, or Mathematics, and unless these subjects

are familiar to the student, his education will be of a very

superficial nature. Teachers of the subject are always ready
to advise students as to the course of study likely to be most

beneficial in any given case.

Students are strongly advised to make themselves familiar

with the use of the "
slide rule," which enables ship calcula-

tions to be rapidly performed.





CONTENTS
CHAPTER FACE

I. AREAS, VOLUMES, WEIGHTS, DISPLACEMENT, ETC. . . I

II. MOMENTS, CENTRE OF GRAVITY, CENTRE OF BUOYANCY,
DISPLACEMENT TABLE, PLANIMETER, ETC 45

III. CONDITIONS OF EQUILIBRIUM, TRANSVERSE METACENTRE,
MOMENT OF INERTIA, TRANSVERSE BM, INCLINING

EXPERIMENT, METACENTRIC HEIGHT, ETC. ... 90

IV. LONGITUDINAL METACENTRE, LONGITUDINAL BM,
CHANGE OF TRIM 144

V. STATICAL STABILITY, CURVES OF STABILITY, CALCULA-
TIONS FOR CURVES OF STABILITY, INTEGRATOR,
DYNAMICAL STABILITY 174

VI. CALCULATIONS OF WEIGHTS STRENGTH OF BUTT CON-

NECTIONS, DAVITS, PILLARS, DERRICKS, SHAFT
BRACKETS 224

VII. STRAINS EXPERIENCED BY SHIPS CURVES OF LOADS,
SHEARING FORCE, AND BENDING MOMENT EQUIVA-
LENT GIRDER, "SMITH" CORRECTION, TROCHOIDAL
WAVE 258

VIII. HORSE-POWER, EFFECTIVE AND INDICATED RESISTANCE

OF SHIPS COEFFICIENTS OF SPEED LAW OF COM-
PARISON PROPULSION 298

IX. THE ROLLING OF SHIPS 348

X. THE TURNING OF SHIPS STRENGTH OF RUDDER HEADS 381

XI. LAUNCHING CALCULATIONS 400

APPENDIX A. SUNDRY PROOFS, TCHEBYCHEFF'S AND
BROWN'S DISPLACEMENT SHEET, ETC.,
AND MISCELLANEOUS EXAMPLES . . 406

B. TABLES OF LOGARITHMS 431

SINES, TANGENTS AND COSINES . . . 436

SQUARES AND CUBES 438

C. SYLLABUS OF NAVAL ARCHITECTURE
EXAMINATIONS 446

D. QUESTIONS AT NAVAL ARCHITECTURE
EXAMINATIONS 450

ANSWERS TO QUESTIONS 485

BIBLIOGRAPHY 488

INDEX 491



LIST OF FOLDING TABLES

At End of Book

TABLE I. DISPLACEMENT TABLE BY SIMPSON'S RULES.

PLATE I. SHEER DRAWING OF A TUG.

TABLE II. DISPLACEMENT TABLE BY JOINT RULES, TCHEBYCHEFF'S

AND SIMPSON'S.

TABLES III., IIlA. DISPLACEMENT TABLB,

TABLE IV. STABILITY TABLR.



TEXT-BOOK
OF

THEORETICAL NAVAL ARCHITECTURE

CHAPTER I.

AREAS, VOLUMES, WEIGHTS, DISPLACEMENT, ETC.

Areas of Plane Figures.

A Rectangle. This is a four-sided figure having its opposite

sides parallel to one another and all its angles right angles.

Such a figure is shown in D. C.

Fig. i. Its area is the pro-

duct of the length and the

breadth, or AB X BC. Thus
a rectangular plate 6 feet

long and 3 feet broad will

contain

6 x 3 = 1 8 square feet FlG-

and if of such a thickness as to weigh 1 2\ Ibs. per square foot,

will weigh

18 x 12^ = 225 Ibs.

A Square. This is a particular case of the above, the

length being equal to the breadth. Thus a square hatch of

3^ feet side will have an area of

-,1 * ?1 _ 7. y ?! 49.
3a * 3a 2*3 4

= 12^ square feet
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A Triangle. This is a figure contained by three straight

lines, as ABC in Fig. 2. From the vertex C drop a perpen-
dicular on to the base AB

-
(or AB produced, if neces-

sary). Then the area is

given by half the product
of the base into the height,

or

|(AB x CD)
If we draw through the

apex C a line parallel to

the base AB, any triangle

having its apex on this line,

and navmg AB for its base, will be equal in area to the

tiiar.gle ABC. If more convenient, we can consider either A
or B as the apex, and BC or AC accordingly as the base.

Thus a triangle of base
5-5-

feet and perpendicular drawn

from the apex z\ feet, will have for its area

= 6^ square feet

If this triangle be the form of a plate weighing 20 Ibs. to

the square foot, the weight of the plate will be

ff X20=I23 lbs.

A Trapezoid. This is a figure formed of four straight

lines, of which two only are

parallel. Fig. 3 gives such a

figure, ABCD.
If the lengths of the parallel

sides AB and CD are a and b

respectively, and h is the per-

pendicular distance between

them, the area of the trapezoid

a, B.
is given by

FlG - * \(a + b) X h

or one-half the sum of the parallel sides multiplied by the

perpendicular distance between them.
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Example. An armour plate is of the form of a trapeoid with parallel
sides 8' 3" and 8' 9" long, and their distance apart 12 feet. Find its

weight if 6 inches thick, the material of the armour plate weighing 490 Ibs.

per cubic foot.

First we must find the area, which is given by

8' 3" + 8' 9" ^L
^

-
1 X 12 square feet = # x 12

= 102 square feet

The plate being 6 inches thick = \ foot, the cubical contents of the

piate will be

102 x \
- 51 cubic feet

The weight will therefore be

= ii'i5 tons

A Trapezium is a quadrilateral or four-sided figure of

which no two sides are parallel.

Such a figure is ABCD (Fig. 4). Its area may be found

by drawing a diagonal BD
and adding together the

areas of the triangles ABD,
BDC. These both have the

same base, BD. Therefore

from A and C drop per-

pendiculars AE and CF on

to BD. Then the area of

the trapezium is given by

|(AE + CF) X BD

Example. Draw a trapezium FIG- 4-

on scale \ inch = I foot, where
four sides taken in order are 6, 5, 6, and 10 feet respectively, and the

diagonal from the starting-point 10 feet. Find its area in square feet.

Ans. 40 sq. feet.

A Circle. This is a figure all points of whose boundary
are equally distant from a fixed point within it called the centre.

The boundary is called its circumference^ and any line from the

centre to the circumference is called a radius. Any line passing

through the centre and with its ends on the circumference

is called a diameter.
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The ratio between the circumference of a circle and its

diameter is called Tr,
1 and TT = 3*1416, or nearly -^

Thus the length of a thin wire forming the circumference

of a circle of diameter 5 feet is given by

TT x 5 = 5 X 3*1416 feet

= 15*7080 feet

or using TT = ^, the circumference = 5 x "
= i|a = i 5f feet

The circumference of a mast 2' 6" in diameter is given by

2\ X TT feet = f x ^

The area of a circle of diameter d is given by

Thus a solid pillar 4 inches in diameter has a sectional

area of

= 1 2| square inches

A hollow pillar 5 inches external diameter and inch thick

will have a sectional area obtained by subtracting the area of

a circle 4^ inches diameter from the area of a circle 5 inches

diameter

_ r(5)
2
N r(^r\

"\ 4 ) \ 4 )
= 3*73 square inches

The same result may be obtained by taking a mean

diameter of the ring, finding its circumference, and multiplying

by the breadth of the ring.

Mean diameter = 4f inches

Circumference = ~ X ^f- inches

Area = (^ X -
7-) X square inches

=
3' 7 3 square inches as before

1 This is the Greek letter//, and is always used to denote 3*1416, or ?
7
2

nearly ;
that is, the ratio borne by the circumference of a circle to its

diameter.
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Trapezoidal Rule. 1 We have already seen (p. 2) that

the area of a trapezoid, as ABCD, Fig. 5, is given by

i(AD + BC)AB, or calling AD, BC, and AB y^ y* and h

respectively the area is given by

If, now, we have two trapezoids joined together, as in

B.

FIG. 5.

Fig. 6, having BE = AB, the area of the added part will be

given by

The area of the whole figure is given by

\(y-i +y*)h + ite 4- y*)h = \^(y\ +
If we took a third trapezoid and joined on in a similar

manner, the area of the whole figure would be given by

i*c*-

Trapezoidal rulefor finding the area of a curvilinear figure,

as ABCD, Fig. 7.

Divide the base AB into a convenient number of equal

parts, as AE, EG, etc., each of length equal to h, say. Set up

perpendiculars to the base, as EF, GH, etc. If we join DF,
FH, etc., by straight lines, shown dotted, the area required
will very nearly equal the sum of the areas of the trapezoids

ADFE, EFHG, etc. Or using the lengths ylt y* etc., as

indicated in the figure

Area = h +}>*

1 The Trapezoidal rule is largely used in France and in the United
States for ship calculations.
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In the case of the area shown in Fig. 7, the area will be
somewhat greater than that given by this rule. If the curve,

however, bent towards the base line, the actual area would be

somewhat less than that given by this rule. In any case, the

closer the perpendiculars are taken together the less will be

the error involved by using this rule. Putting this rule into

words, we have

To find the area of a curvilinear figure, as ABCD, Fig. 7,

by means of the trapezoidal rule, divide the base into any con-

venient number of equal parts, and erectperpendiculars to the base

meeting the curve ; then to the half-sum of the first and last of
these add the sum of all the intermediate ones ; the result multi-

plied by the common distance apart will give tJie area required.

The perpendiculars to the base AB, as AD, EF, are termed
"
ordinates? and any measurement along the base from a given

starting-point is termed an "abscissa" Thus the point P on

the curve has an ordinate OP and an abscissa AO when

referred to the point A as origin.

Simpson's First Rule. 1 This rule assumes that the

curved line DC, forming one boundary of the curvilinear area

ABCD, Fig. 8, is a portion of a curve known as a parabola of

the second order? In practice it is found that the results given

by its application to ordinary curves are very accurate, and it is

1 It is usual to call these rules Simpson's rules, but the first rule

was given before Simpson's time by James Stirling, in bis
" Methodus

Differentialis," published in 1730.
2 A "parabola of the second order" is one whose equation referred

to co-ordinate axes is of the form^ = a, + a^x + a2*
2
, where a,, alt a2 are

constants.
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this rule that is most extensively used in this country in finding
the areas of curvilinear figures required in ship calculations.

Let ABCD, Fig. 8, be a figure bounded on one side by
the curved line DC, which, as p
stated above, is assumed to be

a parabola of the second order.

AB is the base, and AD and

BC are end ordinates perpen-

dicular to the base.

Bisect AB in E, and draw

EF perpendicular to AB, meet-

ing the curve in F. Then the

area is given by FIG. 8.

|AE(AD + 4EF + BC)

or using y^y^y^ to represent the ordinates, h the common

interval between them

Now, a long curvilinear area *
may be divided up into a

number of portions similar to the above, to each of which the

above rule will apply. Thus the area of the portion GHNM
of the area Fig. 7 will be given by

-te

and the portion MNCB will have an area given by

"On
3

Therefore the total area will be, supposing all the ordinates

are a common distance h apart

~(y\ + 4^2 + 2^3
o

Ordinates, as GH, MN, which divide the figure into the

elementary areas are termed "
dividing ordinates"

Ordinates between these, as EF, KL, OP, are termed
"
intermediate ordinates"

1 The curvature is supposed continuous. If the curvature changes
abruptly at any point, this point must be at a dividing ordinate.

-f
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Notice that the area must have an even number of intervals^

or, what is the same thing, an odd number of ordinates^ for

Simpson's first rule to be applicable.

Therefore, putting Simpson's first rule into words, we
have

Divide the base into a convenient even number of equal parts,

and erect ordinates meeting the curve. Then to the sum of the end

ordinates add four times the even ordinates and twice the odd

ordinates. The sum thus obtained^ multiplied by one-third the

common distance apart of the ordinates^ will give the area.

Approximate Proof of Simpson's First Rule. The
truth of Simpson's first rule may be understood by the following

approximate proof :

1

Let DFC, Fig. 9, be a curved line on the base AB, and

with end ordinates AD, BC perpendicular to AB. Divide AB
equally in E, and draw the ordinate EF perpendicular to AB.

Then with the ordinary notation

Area = -

by Simpson's first rule. Now

+ 4^

divide AB into three equal

parts by the points G and H.

Draw perpendiculars GJ and

HK to the base AB. At F
draw a tangent to the curve,

meeting GJ and HK in J and

K. Join DJ and KC. Now,
it is evident that the area we
want is very nearly equal to

the area ADJKCB. This

will be found by adding to-

gether the areas of the trape-

zoids ADJG, GJKH, HKCB.

+ GJ)AG

FIG. 9.

Area of ADJG =

GJKH = i(GJ + HK)GH
HKCB = i(HK + BC)HB

1 Another proof will be found on p. 77. The mathematical proof will
be found in Appendix A.
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Now, AG = GH = HB = AB = fAE, therefore the total

area is

)
(AD + 2GJ + 2HK + BC)

Now, AE = h, and GJ + HK = 2EF (this may be seen at

once by measuring with a strip of paper), therefore the total

area is

^(AD + 4EF + BC) = -(y, + 4^ +.*)
J O

which is the same as that given by Simpson's first rule.

Application of Simpson's First Rule. Example. A curvi-

linear area has ordinates at a common distance apart of 2 feet, the lengths

being 1*45, 2*65, 4-35, 6-45, 8*50, 10-40, and 11-85 feet respectively.
Find the area of the figure in square feet.

In finding the area of such a curvilinear figure by means of Simpson's
first rule, the work is arranged as follows :

Number of
ordinate.
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decimals of a foot, and are best measured off with a decimal

scale. If a scale showing feet and inches is used, then the

inches should be converted into decimals of a foot
; thus,

6' g" = 675', and 6' 3^" = 6' 3'. In the next column are placed

Simpson's multipliers in their proper order and opposite their

corresponding ordinates. The order may be remembered by

combining together the multipliers for the elementary area first

considered
i 4 i

i 4 i

i 4 i

or 1424241
The last column contains the product of the length of the

ordinate and its multiplier given in the third column. These

are termed the "functions of ordinates" The sum of the

figures in the last column is termed the " sum of functions of

ordinates" This has to be multiplied by one-third the common

interval, or in this case J. The area then is given by

117 X | = 78 square feet

Simpson's Second Rule. This rule assumes that the

curved line DC, forming one boundary of the curvilinear area

H.

A E F B
FIG. 10.

ABCD, Fig. 10, is a portion of a curve known as "a parabola

of the third order" 1

Let ABCD, Fig. 10, be a figure bounded on one side by

the curved line DC, which, as stated above, is assumed to be

1 A "parabola of the third order" is one whose equation referred to

co-ordinate axes is of the form y = a + a^x + a^x* + a,*
8
, where ag, a^

av flg are constants.
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" a parabola of the third order" AB is the base, and AD and

BC are end ordinates perpendicular to the base. Divide the

base AB into three equal parts by points E and F, and draw

EG, FH perpendicular to AB, meeting the curve in G and H
respectively. Then the area is given by

|AE(AD + 3EG + 3FH + BC)

or, using y^ y2 , y3 , y^ to represent the ordinates, and h the

common interval between them

Area = \h(y^ + 372 + 3? + J^)

Now, a long curvilinear area 1 may be divided into a

number of portions similar to the above, to each of which the

above rule will apply. Thus the area of the portion KLCB in

Fig. 7 will be given by

1^4 + 3^5 + 3^6+^7)

Consequently the total area of ABCD, Fig. 7, will be,

supposing all the ordinates are a common distance h apart

The ordinate KL is termed a "
dividing ordinate" and the

others, EF, GH, MN, OP, are termed " intermediate ordinates"

This rule may be approximately proved by a process similar to

that adopted on p. 8 for the first rule.
2

Application of Simpson's Second Rule. Example. A cur-

vilinear area has ordinates at a common distance apart of 2 feet, the

lengths being 1-45, 2^65, 4*35, 6*45, 8*50, 10-40, and 11-85 feet respectively.
Find the area of the figure in square feet by the use of Simpson's second rule.

In finding the area of such a curvilinear figure by means of Simpson's
second rule, the work is arranged as follows :

Number of
ordinate.
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This curvilinear area is the same as already taken for an

example of the application of Simpson's first rule. It will be

noticed that the number of intervals is 6 or a multiple of 3.

We are consequently able to apply Simpson's second rule to

finding the area. The columns are arranged as in the previous

case, the multipliers used being those for the second rule.

The order may be remembered by combining together the

multipliers for the elementary area with three intervals first

considered

or i 3 3 2 3 3 i

For nine intervals the multipliers would be i, 3, 3, 2, 3, 3,

2, 3, 3, i.

The sum of the functions of ordinates has in this case to be

multiplied by f the common interval, or f x 2 = f,
and con-

sequently the area is

103*9 X f = 77*925 square feet

It will be noticed how nearly the area as obtained by the

two rules agree. In practice the first rule is used in nearly all

cases, because it is much simpler than the second rule and

quite as accurate. It sometimes happens, however, that we

only have four ordinates to deal with, and in this case Simp-
son's second rule must be used. When there are six ordinates,

neither of the above rules will fit. The following rule gives

the area : ff . h(\ .y, + 7a + * + y, + y* + I*). This may
be proved by applying the second rule to the middle four

ordinates, and the following 5, 8, i rule to the ends.

To find the Area of a Portion of a Curvilinear Area
contained between Two Consecutive Ordinates. Such

a portion is AEFD, Fig. 8. In order to obtain this area, we

require the three ordinates to the curve yl y?,jv3
. The curve

DFC is assumed to be, as in Simpson's first rule, a parabola of

the second order. Using the ordinary notation, we have

Area of ADFE = ^(5^1 + 8y2
- y3)

Thus, if the ordinates of the curve in Fig. 8 be 8*5, 10-4,



Areas, Volumes, Weights, Displacement, etc. 13

11-85 feet, and 2 feet apart, the area of AEFD will be given

by-

y^ X 2(5 x 8-5 + 8 x 10*4 11*85) = 18-97 square feet

Similarly the area of EBCF will be given by

^ X 2(5 x 11*85 + 8 X 10-4
-

8-5) = 22-32 square feet

giving a total area of the whole figure as 41*29 square feet.

Obtaining this area by means of Simpson's first rule, we

should obtain 41*3 square feet.
1

This rule is sometimes known as the "five-eight" rule.

Subdivided Intervals. When the curvature of a line

forming a boundary of an area, as Fig. n, is very sharp, it is

found that the distance apart of ordinates, as used for the

straighter part of the curve, does not give a sufficiently accurate

result. In such a case, ordinates B
are drawn at a sub-multiple of

the ordinary distance apart of

the main ordinates.

Take ABC, a quadrant of a

circle (Fig. n), and draw the

three ordinates y2) y^ y^ a dis-

tance h apart. Then we should

get the area approximately by

putting the ordinates through

Simpson's first rule. Now, the

curve EFC is very sharp, and

the result obtained is very far

from being an accurate one.

ordinates y\ y".

given by

Now put in the intermediate

Then the area of the portion DEC will be

or we may write this (y6
= o at end)

The area of the portion ABED is given by

1 See Example 25, p. 41.
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or the area of the whole figure

Thus the multipliers for ordinates one-half the ordinary distance

apart are ^, 2, ^, and for ordinates one-quarter the ordinary
distance apart are

-J-, i, , i, \. Thus we diminish the

multiplier of each ordinate of a set of subdivided intervals in

the same proportion as the intervals are subdivided. Each
ordinate is then multiplied by its proper multiplier found in

this way, and the sum of the products multiplied by \ or f the

whole interval according as the first or second rule is used

An exercise on the use and necessity for subdivided intervals

will be found on p. 43.

Algebraic Expression for the Area of a Figure
bounded by a Plane Curve. It is often convenient to be

able to express in a short form the area of a plane curvilinear

figure.

In Fig. 12, let ABCD be a strip cut off by the ordinates

AB, CD, a distance A* apart,

A# being supposed small.

Then the area of this strip is

very nearly

y X A*

where y is the length of the

ordinate AB. If now we

imagine the strip to become

indefinitely narrow, the small

PIG j
triangular piece BDE will dis-

appear, and calling dx the

breadth of the strip, its area will be

y X dx

The area of the whole curvilinear figure would be found if

we added together the areas of all such strips, and this could

be written

fy.J*
where the symbol / may be regarded as indicating the sum

of all such strips as y . dx. We have already found that
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Simpson's rules enable us to find the areas of such figures,

so we may look upon the expression for the area

jy.dx

as meaning that, to find the area of a figure, we take the

length of the ordinate y at convenient intervals, and put them

through Simpson's multipliers. The result, multiplied by \ or

f the common interval, as the case may be, will give the area.

A familiarity with the above will be found of great service in

dealing with moments in the next chapter.

To find the Area of a Figure bounded by a Plane
Curve and Two Radii. Let OAB, Fig. 13, be such a figure,

OA, OB being the

bounding radii.

Take two points

very close together on

the curve PP'
; join OP,

OP', and let OP = r

and the small angle
POF = A0 in circular

measure. 1 Then OP
= OP' = r very nearly,

and the area of the

elementary portion

Fio. 13.
being the length of PP',

and regarding OPP' as

a triangle. If now we consider OP, OP' to become in-

definitely close together, and consequently the angle POP*

indefinitely small = dO say, any error in regarding PO P' as a

triangle will disappear, and we shall have

Area POP' = -
. 46

2

and the whole area AOB is the sum of all such areas which

can be drawn between OA and OB, or

I-.-
1 See pp. 16 and 90.
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Now, this exactly corresponds to the algebraic expression

for the area of an ordinary plane curvilinear figure, viz.

ly.dx (seep. 15)

y corresponding to and dx corresponding to dB. Therefore

divide the angle between the bounding radii into an even

number of equal angular intervals by means of radii. Measure

these radii, and treat their half-squares as ordinates of a curve

by Simpson's first rule, multiplying the addition by \ the

common angular interval in circular measure. Simpson's second

rule may be used in a similar manner.

The circular measure of an angle^- is the number of degrees

it contains multiplied by -^-, or 0-01745. Thus the circular
180

measure of

9=
2

3-I4I6

and the circular measure of 15 is 0-26175.

Example. To find the area of a figure bounded by a plane curve and
two radii 90 apart, the lengths of radii 15 apart being o, 2 '6, 5*2, 7*8, 10*5,

I3'i, 157.

Angle from
first radius.
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TehebyehefFs Rules. We have discussed above various

methods that can be employed for determining the area of a

figure bounded by a curved line. The methods that are most

largely employed are those known as the "
Trapezoidal rule

"

and "
Simpson's first rule." The former is used in France and

America,
1 and the latter is used in Great Britain. The trape-

zoidal rule has a great advantage in its simplicity, but con-

siderable judgment is necessary in its use to obtain good
results. Simpson's first rule is rather more complex, but gives

exceedingly good results for the areas dealt with in ordinary

ship calculations.

In the above rules the spacing of ordinates is constant. A
rule has been devised for determining the area of a curvilinear

figure, in which

the multiplier is

the same for all

ordinates when

these ordinates
y

are suitably /

placed so that /

the lengths of /



18 Theoretical Naval Architecture

result by the length of the figure, and divide by the number of

ordinates. The area by this rule is therefore

20
39-62 X = 158-48 square feet

The exact area is, of course, 157:08 square feet. Example
No. 48, Chapter I., gives an illustration of the number of

ordinates it is necessary to use for such a figure when using

Simpson's first rule in order to obtain a close approximation
to the correct area.

The following table gives the position of ordinates of a

curve with reference to the middle ordinate for different

numbers of ordinates :

No. of
ordinates

used.



Areas, Volumes
', Weights, Displacement, etc. 19

The simplification due to this method consists in the fewer

number of ordinates necessary and the simple process of

addition that is required when the ordinates are measured off.

The method of proof of these rules is given in the Appendix.

Measurement of Volumes.

The Capacity or Volume of a Rectangular Block

is the product of the length, breadth, and depth, or, in other

words, the area of one face multiplied by the thickness. All

these dimensions must be expressed in the same units. Thus

the volume of an armour plate 1 2 feet long, 85 feet wide, and

1 8 inches thick, is given by

12 x 8J X 4 = 12 x ^ X f
= -f

1 =148! cubic feet.

The Volume of a Solid of Constant Section is the

area of its section multiplied by its length. Thus a pipe 2 feet

in diameter and 100 feet long has a section of = "
square

feet, and a volume of ^ X 100 = 2M2 = 3 14^ cubic feet.

A hollow pillar 7' 6" long, 5 inches external diameter, and

\ inch thick, has a sectional area of

3*73 square inches

or -
square feet

144

and the volume of material of which it is composed is

\i44/
*

2 96
= 0-195 cubic foot

Volume of a Sphere. This is given by ? . d?, where d

is the diameter. Thus the volume of a ball 3 inches in dia-

meter is given by

TT
__

22 x 27
6' 27= ~~^~

= i4y cubic inches

Volume of a Pyramid. This is a solid having a base
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in the shape of a polygon, and a point called its vertex not in

the same plane as the base. The vertex is joined by straight

lines to all points on the boundary of the base. Its volume is

given by the product of the area of the base and one-third the

perpendicular distance of the vertex from the base. A cone is

a particular case of the pyramid having for its base a figure

with a continuous curve, and a right circular cone is a cone

having for its base a circle and its vertex immediately over the

centre of the base.

To find the Volume of a Solid bounded by a
Curved Surface. The volumes of such bodies as this are

continually required in ship calculation work, the most

important cases being the volume of the under-water portion
of a vessel. In this case, the volume is bounded on one side

by a plane surface, the water-plane of the vessel. Volumes

of compartments are frequently required, such as those for

containing fresh water or coal-bunkers. The body is divided

by a series of planes
or AO.. spaced equally apart.

The area ofeach section

is obtained by means of

one of the rules already

explained. These areas

are treated as the ordi-

nates of a new curve,

which may be run in,

with ordinates the spac-

ing of the planes apart.
FIG. 14. It is often desirable to

draw this curve with

areas as ordinates as in Fig. 14, because, if the surface is a fair

surface, the curve of areas should be a fair curve, and should

run evenly through all the spots ; any inaccuracy may then be

detected. The area of the curve of areas is then obtained by
one of Simpson's rules as convenient, and this area will re-

present the cubical contents of the body.

Example. A coal-bunker has sections if 6" apart, and the areas of

these sections are 98, 123, 137, 135, 122 square feet respectively. Find the
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volume of the bunker and the number of tons of coal it will hold, taking

44 cubic feet of coal to weigh I ton.

Areas.
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Number of

section.
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Displacement. The amount of water displaced or put
aside by a vessel afloat is termed her "displacement" This

may be reckoned as a volume, when it is expressed in cubic

feet, or as a weight, when it is expressed in tons. It is usual

to take salt water to weigh 64 Ibs. per cubic foot, and conse-

quently
a
jJ4

Q = 35 cubic feet of salt water will weigh one

ton. Fresh water, on the other hand, is regarded as weighing
62^ Ibs. per cubic foot, or 36 cubic feet to the ton. 1 The

volume displacement is therefore 35 or 36 times the weight dis-

placement, according as we are dealing with salt or fresh water.

If a vessel is floating in equilibrium in still water
^
the weight

of water she displaces miist exactly equal tht weight of the vessel

herself with everything she has on board.

That this must be true may be understood from the follow-

ing illustrations :

1. Take a large basin and stand it in a dish (see Fig. 16).

Just fill the basin i
'

i

to the brim with I /

water. Now care-
|||||

| |

v ' -
\ [~~

fully place a

smaller basin into

the water. It \~" \x ~~7

will be found that V ^~- ~-^ S
some of the water FlG - l6 -

in the large basin will be displaced, and water will spill over

the edge of the large basin into the dish below. It is evident

that the water displaced by the basin is equal in amount to the

water that has been caught by the dish, and if this water be

weighed it will be found, if the experiment be conducted ac-

curately, that the small basin is equal in weight to the water in

the dish that is, to the water it has displaced.

2. Consider a vessel floating in equilibrium in still water, and

imagine, if it were possible, that the water is solidified, main-

taining the same level, and therefore the same density. If now
we lift the vessel out, we shall have a cavity left behind which

1 It is advisable to occasionally test the water at any particular place to

obtain the density, which may vary at different states of the tide. Thus we
have at Clydebank the water is 35*87 cubic feet to the ton ; at Dundee the

water is 1021 ozs. to cubic foot at high water, and 1006 ozs. at low water.
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will be exactly of the form of the under-water portion of the

ship, as Fig. 17. Now let the cavity be filled up with water.

The amount of water we pour in will evidently be equal to the

volume of displacement of the vessel. Now suppose that the

solidified water outside again becomes liquid. The water we
have poured in will remain where it is, and will be supported

by the water surrounding it. The support given, first to the

vessel and now to the water we have poured in, by the sur-

WATER SURFACE.

FIG. 17.

rounding water must be the same, since the condition of the

outside water is the same. Consequently, it follows that the

weight of the vessel must equal the weight of water poured
in to fill the cavity, or, in other words, the weight of the

vessel is equal to the weight of water displaced.

If the vessel whose displacement has been calculated on p. 22

is floating at her L.W.P. in salt water, her total weight will be

4052 4-35 = 115*8 tons

If she floated at the same L.W.P. in fresh water, her total weight
would be

4052 4-36 = 112^ tons

It will be at once seen that this property of floating bodies

is of very great assistance to us in dealing with ships. For, to

find the weight of a ship floating at a given line, we do not

need to estimate the weight of the ship, but we calculate out

from the drawings the displacement in tons up to the given line,

and this must equal the total weight of the ship.

Curve of Displacement. The calculation given on p. 22

gives the displacement of the vessel up to the load-water plane,

but the draught of a ship continually varies owing to different

weights of cargo, coal, stores, etc., on board, and it is desirable
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to have a means of determining quickly the displacement at

any given draught. From the rules we have already investi-

gated, the displacement in tons can be calculated up to each

water-plane in succession. If we set down a scale of mean

draughts, and set off perpendiculars to this scale at the places

where each water-plane comes, and on these set off on a con-

venient scale the displacement we have found up to that water-

plane, then we should have a number of spots through which we
shall be able to pass a fair curve if the calculations are correct.

SCALE FOR DISPLACEMENT.

|'OCOTONS~

FIG. 1 8,

A curve obtained in this way is termed a " curve of displacement?

and at any given mean draught we can measure the displace-

ment of the vessel at that draught, and consequently know at

once the total weight of the vessel with everything she has on

board. This will not be quite accurate if the vessel is floating

at a water-plane not parallel to the designed load water-plane.

Fig. 1 8 gives a "curve of displacement" for a vessel, and the

following calculation shows in detail the method of obtaining
the information necessary to construct it.
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The areas of a vessel's water-planes, two feet apart, are

follows :

L.W.L.
2 W.L.
3W.L.
4 W.L.
5 W.L.
6 W.L.
7 W.L.

7800 square feet.

745
6960
6290
5460
4320
2610

The mean draught to the L.W.L. is 14' o",and the displace

ment below the lowest W.L. is 7 1 tons.

To find the displacement to the L.W.L.

Number of
W.L.
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Displacement in tons between I A 2 x

No. i and No. 2 W.L.'s f

= 9'> 64 * TW.X A
= 436 tons nearly

/. the displacement up to No. 2
)

,,, T . , > = 1611 tons without the
W.L. is 2047 - 436 I

appendage

The displacement between i and 3 W.L.'s can be found by

putting the areas of i, 2 and 3 W.L.'s through Simpson's first

rule, the result being 848 tons nearly.

.*. the displacement up to No.

W.L. is 2047
- 848

"" l S Wlth Ut

appendage

The displacement up to No. 4 W.L. can be obtained by

putting the areas of 4, 5, 6, and 7 W.L.'s through Simpson's
second rule, the result being

819 tons without the appendage

The displacement up to No. 5 W.L. can be obtained by

putting the areas of 5, 6, and 7 W.L.'s through Simpson's first

rule, the result being

482 tons without the appendage

The displacement up to No. 6 W.L. can be obtained by
means of the five-eight rule, the result being

201 tons without the appendage

Collecting the above results together, and adding in the

appendage below No. 7 W.L., we have

Disp]
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che ship could never float at a less draught than that given by
the weight of her structure alone, or when she was launched.

Tons per Inch Immersion. It is frequently necessary
to know how much a vessel will sink, when floating at a given

water-line, if certain known weights are placed on board, or

how much she will rise if certain known weights are removed.

Since the total displacement of the vessel must equal the weight
of the vessel herself, the extra displacement caused by putting
a weight on board must equal this weight. If A is the area

TONS PER INCH IMMERSION.

I

10
-,

FIG. 19.

of a given water-plane in square feet, then the displacement

of a layer i foot thick at this water-plane, supposing the vessel

parallel-sided in its neighbourhood, is

A cubic feet .

or tons in salt water
35

For a layer i inch thick only, the displacement is

A
35 X 12

tons
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and this must be the number of tons we must place on board

in order to sink the vessel i inch, or the number of tons we

must take out in order to lighten the vessel i inch. This is

termed the "
tons per inch immersion

"
at the given water-line.

1

This assumes that the vessel is parallel-sided at the water-line

for the depth of i inch up and i inch down, which may, for all

practical purposes, be taken as the case. If, then, we obtain

the tons per inch immersion at successive water-planes parallel

to the load water-plane, we shall be able to construct a "
curve

of tons per inch immersion" in the same way in which the curve

of displacement was constructed. Such a curve is shown in

Fig. 19, constructed for the same vessel for which the displace-

ment curve was calculated. By setting up any mean draught,

say 1 1 feet, we can measure off the " tons per inch immersion,"

supposing the vessel is floating parallel to the load water-plane ;

in this case it is 17-5-
tons. Suppose this ship is floating at a

mean draught of n feet, and we wish to know how much she

will lighten by burning 100 tons of coal. We find, as above,

the tons per inch to be 17^, and the decrease in draught is

therefore

ioo-^i7i= 5| inches nearly

Curve of Areas of Midship Section. This curve is

sometimes plotted off on the same drawing as the displacement

curve and the curve of tons per inch immersion. The ordi-

nates of the immersed part of the midship section being known,
we can calculate its area up to each of the water-planes in

exactly the same way as the displacement has been calculated.

These areas are set out on a convenient scale at the respective

mean draughts, and a line drawn through the points thus

obtained. If the calculations are correct, this should be a fair

curve, and is known as " the curve of areas of midship section"

By means of this curve we are able to determine the area of

the midship section up to any given mean draught.

Fig. 20 gives the curve of areas of midship section for the

vessel for which we have already determined the displacement

curve and the curve of tons per inch immersion.

Coefficient of Fineness of Midship Section. If we
1 For approximate values of the "tons per inch immersion" in various

types of ships, see Example 55, p. 44.
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draw a rectangle with depth equal to the draught of water at

the midship section to top of keel, and breadth equal to the

AREAS OF MID; SEC: SQI FT:

1*00. .300. ,200. 100.

FIG 20

extreme breadth at the midship section, we shall obtain what

may be termed the circumscribing rectangle of the immersed

midship section. The area of the immersed midship section

will be less than the area of this rectangle, and the ratio

area of immersed midship section

area of its circumscribing rectangle

is termed the coefficient offineness of midship section.

Example. The midship section of a vessel is 68 feet broad at its

broadest part, and the draught of water is 26 feet. The area of the immersed

midship section is 1584 square feet. Find the coefficient of fineness of the

midship section.

Area of circumscribing rectangle = 68 X 26
= 1768 square feet

.'. coefficient = |^||
= 0*895

If a vessel of similar form to the above has a breadth at
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the midship section of 59' 6" and a draught of 22' 9", the area

of its immersed midship section will be

59^ x 22f x 0-895 = I2I 3 square feet

The value of the midship section coefficient varies in

ordinary ships from about 0-85 to 0-95, the latter value being

for a section with very full section.

Coefficient of Fineness of Water-plane. This is

the ratio between the area of the water-plane and its circum-

scribing rectangle.

The value of this coefficient for the load water-plane may
be taken as follows :

For ships with fine ends O'7
For ships of ordinary form 0*75
For ships with bluff ends 0*85

Block Coefficient of Fineness of Displacement.
This is the ratio of the volume of displacement to the volume

of a block having the same length between perpendiculars,

extreme breadth, and mean draught as the vessel. The

draught should be taken from the top of keel.

Thus a vessel is 380 feet long, 75 feet broad, with 27' 6"

mean draught, and 14,150 tons displacement. What is its

block coefficient of fineness or displacement ?

Volume of displacement = 14,150 X 35 cubic feet

Volume of circumscribing solid = 380 X 75 X 27-^ cubic feet

.'. coefficient of fineness of 1 14150 X 35

displacement I

~~

380 x 75 X 27^
= 0*63

This coefficient gives a very good indication of the fineness

of the underwater portion of a vessel, and can be calculated

and tabulated for vessels with known speeds. Then, if in the

early stages of a design we have the desired dimensions given,

with the speed required, we can select the coefficient of fineness

which appears most suitable for the vessel, and so determine

very quickly the displacement that can be obtained under the

conditions given.
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Example. A vessel has to be 400 feet long, 42 feet beam, 1 7 feet draught,
and 13\ knots speed. What would be the probable displacement ?

From available data, it would appear that a block coefficient of fineness

of 0^625 would be desirable. Consequently the displacement would be

(400 X 42 X 17 X 0*625) * 35 tons =5ioo tons about

The following may be taken as average values of the block

coefficient of fineness of displacement in various types of

ships :

Recent battleships
Recent fast cruisers

Fast mail steamers

Ordinary steamships

Cargo steamers

Sailing vessels

Steam-yachts

'6O--65

*5o-'55

'5o-*6o

'5S~'^5

'65-' 80

'^5~'7S

*35-*45

Prismatic Coefficient of Fineness of Displace-
ment. This coefficient is often used as a criterion of the

fineness of the underwater portion of a vessel. It is the ratio

between the volume of displacement and the volume of a

prismatic solid the same length between perpendiculars as the

vessel, and having a constant cross-section equal in area to the

immersed midship section.

Example. A vessel is 300 feet long, 2100 tons displacement, and has

the area of her immersed midship section 425 square feet. What is her

prismatic coefficient of fineness ?

Volume of displacement = 2100 X 35 cubic feet

Volume of prismatic solid = 300 x 425
x

0-577

Difference in Draught of Water when floating

in Sea Water and when floating in River Water.

Sea water is denser than river water
;
that is to say, a given

volume of sea water say a cubic foot weighs more than the

same volume of river water. In consequence of this, a vessel,

on passing from the river to the sea, if she maintains the same

weight, will rise in the water, and have a greater freeboard

than when she started. Sea water weighs 64 Ibs. to the cubic

foot, and the water in a river such as the Thames may be
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taken, as weighing 63 Ibs. to the cubic foot.
1 In

Fi^. ,3,1, let

the right-hand portion represent the ship floating in river water,

and the left-hand portion represent the ship floating in -salt //>#&

water. The distance between the two water-planes will be the

amount the ship will rise on passing into sea water.

w
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This may be put in another way. A ship, if floating in river

water, will weigh -^ less than if floating to the same water-line

in salt water. Thus, ifW is the weight of the ship floating at a

given line in salt water, her weight if floating at the same line

in river water is

e^W less

and this must be the weight of the layer of displacement
between the salt-water line and the river-water line for a given

weight W of the ship. If T be the tons per inch for salt water,

the tons per inch for river water will be ffT. Therefore the.

difference in draught will be

-4- |fT
W

inches, as above

Sinkage caused by a Central Compartment of a
Vessel being open to the Sea. Take the simple case of a

box-shaped vessel, ABCD, Fig. 22, floating at the water-line WL.

A. E. G.



Areas, Volumes, Weights, Displacement, etc. 35

Now, this weight remains the same after the bilging as

before, but the buoyancy has been diminished by the opening
of the compartment KPHF to the sea. This lost buoyancy
must be made up by the vessel sinking in the water until the

volume of displacement is the same as it originally was.

Suppose W'L' to be the new water-line, then the new volume of

displacement is given by the addition of the volumes ofW'MFD
and NL'CH, or, calling d the new draught of water in feet

(40 x 20 x d)+ (40 X 20 xd) = 1600^ cubic feet

The original volume of displacement was

100 x 20 X 10 = 20,000 cubic feet

.*. 1600 d = 20,000
= 12' 6"

that is, the new draught of water is 12' 6", or the vessel will

sink a distance of 2' 6".

The problem may be looked at from another point of view.

The lost buoyancy 1320X20X10 cubic feet = 4000 cubic

feet; this has to be made up by the volumes W'MKW and

NL'LP, or the area of the intact water-plane multiplied by
the increase in draught. Calling x the increase in draught, we
shall have

80 X 20 X x = 4000

= 2' 6"

which is the same result as was obtained above.

If the bilged compartment contains stores, etc., the amount
of water which enters from the sea will be less than if the com-

partment were quite empty. The volume of the lost displace-

mt will then be given by the volume of the compartment up
the original water-line less the volume occupied by the

tores.

Thus, suppose the compartment bilged in the above

imple to contain coal, stowed so that 44 cubic feet of it will

reigh one ton, the weight of the solid coal being taken at

Ibs. to the cubic foot.
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i cubic foot of coal, if solid, weighs 80 Ibs.

i as stowed ^-f-f-
= 51 Ibs.

Therefore in every cubic foot of the compartment there is

f cubic feet solid coal

ff- space into which water will find its way

The lost buoyancy is therefore

-|f X 4000 =1450 cubic feet

The area of the intact water-plane will also be affected in

the same way ;
the portion of the water-plane between the bulk-

heads will contribute

f X 20 x 20 = 255 square feet to the area

The area of the intact waterplane is therefore

1600 -1-255 =185 5 square feet

The sinkage in feet is therefore

fHJ=o-78, or 9-36 inches

In the case of a ship the same principles apply, supposing

the compartment to be a central one, and we have

Sinkage of vessel ) _ volume of lost buoyancy in cubic feet

in feet 1

~~
area of intact water-plane in square feet

In the case of a compartment bilged which is not in the

middle of the length, change of the trim occurs. The method

of calculating this for any given case will be dealt with in

Chapter IV.

In the above example, if the transverse bulkheads EF and

GH had stopped just below the new water-line W'L', it is

evident that the water would flow over their tops, and the

vessel would sink. But if the tops were connected by a water-

tight flat, the water would then be confined to the space, and

the vessel would remain afloat.
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Velocity of Inflow of Water into a Vessel on

Bilging.
Let A. = area of the hole in square feet ;

d = the distance' the centre of the hole below the

surface in feet ;

v = initial rate of inflow of the water in feet per

second.

Then v %Jd nearly

and consequently the volume of water

passing through the hole per second

Thus, if a hole 2 square feet in area, 4 feet below the water-

line, were made in the side of a vessel, the amount of water,

approximately, that would flow into the vessel would be as

follows :

Cubic feet per second = 8 X /v/4 X 2

= 3 2

Cubic feet per minute = 32 x 60

Tons of water per minute =
35

A cub. ft.

Weights of Materials. The following table gives

average weights which may be used in calculating the weights
of materials employed in shipbuilding :

Steel 490 Ibs. per cubic foot.

Wrought iron

Cast iron ...

Copper
Brass
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It follows, from the weights per cubic foot of iron and

steel given above, that an iron plate i inch thick weighs 40 Ibs.

per square foot, and a steel plate i inch thick weighs 40*8 Ibs.

per square foot.

The weight per square foot may be obtained for other

thicknesses from these values, and we have the following :

Thickness in
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EXAMPLES TO CHAPTER I.

What is its weight if its

Ans. 95 Ibs.

*"IG - 23-

1. A plate has the form shown in Fig. 23.

weight per square foot is 10 Ibs. ?

2. The material of an
armour plate weighs 490 Ibs.

a cubic foot. A certain

plate is ordered 400 Ibs. per

square foot : what is its

thickness ?

Ans. 9 '8 inches.

3. Steel armour plates,
as in the previous question,
are ordered 400 Ibs. per

square foot instead of 10

inches thick. What is the

saving of weight per 100

square feet of surface of this

armour ?

Ans. 833 Ibs., or 0-37 ton.

4. An iron plate is of the dimensions shown in Fig. 24. What is its area ?

If two lightening holes 2' 3" in diameter are cut in it, what will its

area then be ? .

Ans. 33! square feet ;
i

25-8 square feet. . , j

5. A hollow pillar is 4 inches L _____^
external diameter and

jj
inch

thick. What is its sectional

area, and what would be the

weight in pounds of 10 feet of

this pillar if made of wrought
iron ?

Ans. 4-27 square inches ;

142 Ibs.

6. A steel plate is of the

form and dimensions shown in Fig. 25. What is its weight ? (A steel plate

\ inch thick weighs 25*5 Ibs. per square foot.)
Ans. 1267 Ibs.

\
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8. A solid pillar of iron of circular section is 6' 10" long and 2\ inches
in diameter. What is its weight ?

Ans. 90^ Ibs.

9. A Dantzic fir deck plank is 22 feet long and 4 inches thick, and

tapers in width from 9 inches at one end to 6 inches at the other. What is

its weight ?

Ans. 165 Ibs.

10. A solid pillar of iron is 7' 3" long and 2f inches diameter. What
is its weight ?

Ans. 143 Ibs.

11. The total area of the deck plan of a vessel is 4500 square feet.

What would be the surface of deck plank to be worked, if there are

4 hatchways, each 4' X 2$'
2 ,, ,, 10' X 6'

and two circular skylights, each 4 feet in diameter, over which no plank is

to be laid ?

Ans. 4314-86 square feet.

12. A pipe is 6 inches diameter inside. How many cubic feet of water
will a length of 100 feet of this pipe contain?

Ans. 19 '6 cubic feet.

13. A mast 90 feet in length and 3 feet external diameter, is composed of

20 Ib. plating worked flush-jointed on three T-bars, each 5" x 3" X iS^lbs.

per foot. Estimate the weight, omitting straps, and rivet heads.

Ans. 9^ tons nearly.

14. A curve has the following ordinates, 1*4" apart: IO'86, 13*53, I4'58,

15*05, 15*24, 15*28, 15*22 feet respectively. Draw this curve, and find

its area

(1) By Simpson's first rule
;

(2) By Simpson's second rule.

Ans. (i) 116-07 square feet; (2) 116*03 square feet.

15. The semi-ordinates in feet of a vessel's midship section, starting
from the load water-line, are 26*6, 26*8, 26*8, 26*4, 25-4, 23-4, and 18*5 feet

respectively, the ordinates being 3 feet apart. Below the lowest ordinate

there is an area for one side of the section of 24*6 square feet. Find the

area of the midship section, using

(1) Simpson's first rule ;

(2) Simpson's second rule.

Ans. (i) 961 square feet ; (2) 9607 square feet.

16. The internal dimensions of a tank for holding fresh water are

8' o" X 3' 6" X 2' 6". How many tons of water will it contain ?

Ans. I '94.

17. The yfo^-ordinates of a deck plan in feet are respectively ij, 5^,

10}, 13^, 14!, 14!, I2j, 9, and 3^, and the length of the plan is 128 feet.

Find the area of the deck plan in square yards.
Ans. 296.

1 8. Referring to the previous question, find the area in square feet of the

portion of the plan between the ordinates ij and 5^.
Ans. 106*7.

19. The half-ordinates of the midship section of a vessel are 22*3, 22*2,

217, 20'6, 17*2, 13*2, and 8 feet in length respectively. The common
interval between consecutive ordinates is 3 feet between the first and fifth

ordinates, and i' 6" between the fifth and seventh. Calculate the total area

of the section in square feet.

Ans. 586'2 square feet.
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20. Obtain the total area included between the first and fourth ordinates

of the section given in the preceding question.
Ans. 392 '8 square feet.

21. The semi-ordinates of the load water-plane of a vessel are 0*2, 3-6,

7-4, 10, n, 10-7, 9-3, 6'5, and 2 feet respectively, and they are 15 feet

apart. What is the area of the load water-plane ?

Ans. 1808 square feet.

22. Referring to the previous question, what weight must be taken out

of the vessel to lighten her 3 inches ?

What additional immersion would result by placing 5 tons on board ?

Ans. 15 tons ; I'i6 inch.

23. The " tons per inch immersion " of a vessel when floating in salt

water at a certain water-plane is 44' 5. What is the area of this plane ?

Ans. 18,690 square feet.

24. A curvilinear area has ordinates 3 feet apart of length 97, 10*0, and

13*3 feet respectively. Find

(1) The area between the first and second ordinates.

(2) The area between the second and third ordinates.

(3) Check the addition of these results by finding the area of the whole

figure by Simpson's first rule.

25. Assuming the truth of the five-eight rule for finding the area between
two consecutive ordinates of a curve, prove the truth of the rule known as

Simpson's first rule.

26. A curvilinear area has the following ordinates at equidistant intervals

of 18 feet : 6'2O, 13*80, 21-90, 26*40, 22*35, I4'7O>
and 7-35 feet.

Assuming that Simpson's first rule is correct, find the percentage of error

that would be involved by using
(1) The trapezoidal rule ;

(2) Simpson's second rule.

Ans. (i) i'2 per cent. ; (2) 0*4 per cent.

27. A compartment for containing fresh water has a mean section of

the form shown in Fig. 26. The length 9

of the compartment is 12 feet. How many 8-8.

tons of water will it contain ?

Ans. 17 tons.

28. A compartment 20 feet long, 20
feet broad, and 8J feet deep, has to be
lined with teak 3 inches in thickness.

Estimate the amount of teak required in

cubic feet, and in tons.

Ans. 365 cubic feet; 8"6 tons.

29. The areas of the water-line sec-

tions of a vessel in square feet are re-

spectively 2000, 2000, 1600, 1250, and

300. The common interval between them
is ij foot. Find the displacement of the

vessel in tons in salt water, neglecting the
small portion below the lowest water-line FIG. a6.

section.

Ans. 264! tons.

30. A series of areas, 17' 6" apart, contain 0^94, 2*08, 3*74, 5'33, 8-27,

12-14, 16-96, 21-82, 24-68, 24-66, 22-56, 17-90, 12-66, 8-40, 5-69, 3-73,
2 "6 1, 2 "06, o square feet respectively. Find the volume of which the above
are the sectional areas.

Ans. 3429 cubic feet.
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31. Show how to estimate the change in the mean draught of a vessel in

going from salt to river water, and vice versd.

A vessel floats at a certain draught in river water, and when floating in

sea water without any change in lading, it is found that an addition of 175
tons is required to bring the vessel to the same draught as in river water
What is the displacement after the addition of the weight named ?

Ans. 11,200 tons.

32. The vertical sections of a vessel 10 feet apart have the following
areas : 10, 50, 60, 70, 50, 40, 20 square feet. Find the volume of displace-
ment, and the displacement in tons in salt and fresh water.

Ans. 2966 cubic feet
; 84*7 tons, 82*4 tons.

33. A cylinder is 500 feet long, 20 feet diameter, and floats with, the
axis in the water-line. Find its weight when floating thus in salt water.
What weight should be taken out in order that the cylinder should float

with its axis in the surface if placed into fresh water ?

Ans. 2244 tons
;
62 tons.

34. A vessel is 500 feet long, 60 feet broad, and floats at a mean draught
of 25 feet when in salt water. Make an approximation to her draught
when she passes into river water. (Coefficient ofdisplacement. O'5 : coefficient

ofL.W.P., 0'6.)

Ans. 25' 4".

35. A piece of teak is 20 feet long, 4$ inches thick, and its breadth

tapers from 12 inches at one end to 9 inches at the other end. What is its

weight, and how many cubic feet of water would it displace if placed into

fresh water (36 cubic feet to the ton) ?

Ans. 348 Ibs. ; 5$ cubic feet about.

36. The area of a water-plane is 5443 square feet. Find the tons per
inch immersion. Supposing 40 tons placed on board, how much would the
vessel sink ?

State any slight error that may be involved in any assumption made. If

40 tons were taken out, would the vessel rise the same amount ? What
further information would you require to give a more accurate answer ?

Ans. 12*96 tons; 3*1 inches nearly.

37. Bilge keels are to be fitted to a ship whose tons per inch is 48.
The estimated weight of the bilge keels is 36 tons, and the volume they
occupy is 840 cubic feet. What will be the increase of draught due to

fitting these bilge keels?

Ans. \ inch.

38. The tons per inch of a vessel at water-lines 2 feet apart are 19-45,

18-51, 17-25, 15-6, 13-55, 10-87, and 6-52, the lowest water-line being 18

inches above the underside of flat keel. Draw the curve of tons per inch
immersion to scale, and estimate the number of tons necessary to sink the

vessel from a draught of 12 feet to a draught of 13' 6".

Ans. 344 tons.

39. The steamship Umbria is 500 feet long, 57 feet broad, 22' 6"

draught, 9860 tons displacement, 1 150 square feet area of immersed midship
section. Find

(1) Block coefficient of displacement.
(2) Prismatic ,, ,,

(3) Midship-section coefficient.

Ans. (i) 0-538; (2) 0-6 ; (3) 0-896.

40. The steamship Orient is 445 feet long, 46 feet broad, 21' 4^" draught
mean ; the midship section coefficient is 0-919, the block coefficient of dis-

placement is 0-621. Find
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(1) Displacement in tons.

(2) Area of immersed midship section.

(3) Prismatic coefficient of displacement.
Ans. (i) 7763 tons ; (2) 904 square feet ; (3) 0-675.

41. A steam yacht is 144 feet long, 22' 6" broad, 9 feet draught ; dis-

placement, 334 tons salt water j area of midship section, 124 square ieet.

Find

(1) Block coefficient of displacement.
(2) Prismatic

(3) Midship-section coefficient.

Ans. (i) 0-4; (2) 0-655; (3) 0-612.

42. Find the
displacement in tons in salt water, area of the immersed

midship section, prismatic coefficient of displacement, having given the

following particulars : Length, i68feet ; breadth, 25 feet ; draught, lo'6";

midship-section coefficient, 0*87 ; block coefficient of displacement, 0-505.
Ans. 750 tons ; 228-5 square feet ; 0*685.

43. A vessel in the form of a box, 100 feet long, 10 feet broad, and 20
feet deep, floats at a draught of 5 feet. Find the draught if a central

compartment IO feet long is bilged below water.

Ans. 5' 6J".

44. In a given ship, pillars in the hold can be either solid iron 4! inches

diameter, or hollow iron 6 inches diameter and half inch thick. Find the

saving in weight for every 100 feet length of these pillars, if hollow pillars
are adopted instead of solid, neglecting the effect of the solid heads and
heels of the hollow pillars.

Ans. i -35 ton.

45. What is the solid contents of a tree whose girth (circumference) is

60 inches, and length is 18 feet?

Ans. 35 '8 cubic feet nearly.

46. A portion of a cylindrical steel stern shaft casing is I2f feet long,
ii inch thick, and its external diameter is 14 inches. Find its weight in

pounds.
Ans. 2170 Ibs.

47. A floating body has a water-plane whose semi-ordinates 25 feet

apart are 0-3, 8, 12, 10, 2 feet respectively, and every square station is in

the form of a circle with its centre in the water-plane. Find the volume of

displacement (TT
=

3/&).

Ans. 12,414 cubic feet.

48. A quadrant of 16 feet radius is divided by means of ordinates parallel
to one radius, and the following distances away : 4, 8, 10, 12, 13, 14, 15
feet respectively. The lengths of these ordinates are found to be 15-49,

13-86, 12-49, 10-58, 9-33, 7-75, and 5-57 feet respectively. Find

(1) The exact area to two places of decimals.

(2) The area by using only ordinates 4 feet apart.

(3) The area by using also the half-ordinates.

(4) The area by using all the ordinates given above.

(5) The area as accurately as it is possible, supposing the ordinate 12-49
had not been given.

Ans. (i) 201-06; (2) 197*33; (3) 19975 5 (4) 200-59; (5) 200-50.
49. A cylindrical vessel 50 feet long and 16 feet diameter floats at a

constant draught of 12 feet in salt water. Using the information given in

the previous question, find the displacement in tons.

Ans. 231 tons nearly.

50. A bunker 24 feet long has a mean section of the form of a trapezoid,
with length of parallel sides 3 feet and 4*8 feet, and distance between them

10'5 feet. Find the number of tons of coal contained in the bunker, assuming
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I ton to occupy 43 cubic feet. If the parallel sides are perpendicular to

one of the other sides, and the side 4*8 feet long is at the top of the section,
where will the top of 17 tons of coal be, supposing it to be evenly
distributed ?

(This latter part should be done by a process of trial and error.)
Ans. 22-8 tons ; 2' 3" below the top.

51. The sections of a ship are 20 feet apart. A coal-bunker extends

from 9 feet abaft No. 8 section to I foot abaft No. 15 section, the total

length of the bunker thus being 132 feet. The areas of sections of the

bunker at Nos. 8, II, and 15 are found to be 126, 177, and 145 square
feet respectively. With this information given, estimate the capacity of the

bunker, assuming 44 cubic feet of coal to go to the ton. Stations numbered
from forward.

Ans. 495 tons.

52. The tons per inch immersion at water-lines 2 feet apart are 18-09,

i6'8o, 15*15, I3'I5, I0 4

49, and 6-48. The draught of water to the top
water-line is n' 6", and below the lowest water-line there is a displacement
of 75 '3 tons. Find the displacement in tons, and construct a curve of

displacement.
Ans. 1712 tons.

53. A tube 35 feet long, 16 feet diameter, closed at the ends, floats in

salt water with its axis in the surface. Find approximately the thickness of

the tube, supposed to be of iron, neglecting the weight of the ends.

Ans. 0*27 foot.

54. Find the floating power of a topmast, length 64 feet, mean diameter

21 inches, the wood of the topmast weighing 36 Ibs. per cubic foot.

(The floating power of a spar is the weight it will sustain, and this is

the difference between its own weight and that of the water it displaces.
In constructing a raft, it has to be borne in mind that all the weight of

human beings is to be placed on it, and that a great quantity of provisions
and water may be safely carried Hinder it. For instance, a cask of beef

slung beneath would be 116 Ibs., above 300 Ibs. See "
Sailor's Pocket-

book," by Admiral Bedford.)
Ans. 43 10 Ibs.

55. Show that the following approximate values may be taken for the
" tons per inch immersion " in salt water at the load draught :

(1) For ships with fine ends ^ X L X B
(2) ,, of ordinary form 555 X L X B

(3) with bluff ends 5fo X L X B
L and B being the length and breadth respectively of the load water-plane.

56. Show that a vessel passing from water of density d' into
water^

of

density d (<f being greater than d) will decrease her freeboard by
7p j-

inches, where W is the displacement in tons and T the tons per inch

immersion when in the denser water.

A vessel 400 feet long, 45 feet broad, floats in Belfast water (ion ozs.

to a cubic foot) at a draught of 21' 2^". By how much will the free-

board be increased when in salt water (1025 ozs. to a cubic foot) ? (Coeffi-

cient of fineness of displacement, 0*62 ; coefficient of fineness of L.W.P.,.

07S-)
Ans. 2 '9 inches.
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MOMENTS, CENTRE OF GRAVITY, CENTRE OF BUOY-
ANCY, DISPLACEMENT TABLE, PLANIMETER, ETC.

Principle of Moments. The moment of a force about

any given line is the product of the force into the perpen-

dicular distance of its line of action from that line. It may
also be regarded as the tendency to turn about the line. A
man pushes at the end of a capstan bar (as Fig. 27) with a

w.

FIG. 7

certain force. The tendency of the capstan to turn about its

axis is given by the force exerted by the man multiplied by
his distance from the centre of the capstan, and this is the

moment of the force about the axis. If P is the force exerted

by the man in pounds (see Fig. 27), and d is his distance from

the axis in feet, then

The moment about the axis = P x d foot-lbs.

The same moment can be obtained by a smaller force with

a larger leverage, or a larger force with a smaller leverage, and

the moment can be increased :

(1) By increasing the force;

(2) By increasing the distance of the force from the axis.
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If, in addition, there is another man helping the first man,

exerting a force of F Ibs. at a distance from the axis of <?

feet, the total moment about the axis is

We must now distinguish between moments tending to turn

one way and those tending to turn in the opposite direction.

Thus, in the above case, we may take a rope being wound
on to the drum of the capstan, hauling a weight W Ibs. If the

radius of the drum be a feet, then the rope tends to turn the

capstan in the opposite direction to the men, and the moment
about the axis is given by

W X a foot-lbs.

If the weight is just balanced, then there is no tendency to

turn, and hence no moment about the axis of the capstan, and

leaving out of account all consideration of friction, we have

(P X <*) + (F X O = W x a

The most common forces we have to deal with are those

caused by gravity, or the attraction of bodies to the earth. This

is known as their weight, and the direction of these forces must

gft be parallel at any given place. If we have a number of

weights, Wi, Wa ,
and W8,

on a beam at A, B, and C (Fig. 28),

n

W.
FIG. 28.

whose end is fixed at O, the moment of these weights about O
is given by

(Wj X AO) + (W. X BO) + (W, X CO)

This gives the tendency of the beam to turn about O, due to
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the weights Wt ,
W2,

and W3 placed upon it, and the beam must

be strong enough at O in order to resist this tendency, or, as

it is termed, the bending moment. Now, we can evidently

place a single weight W, equal to the sum of the weights

W1}
W2 ,

and W3 ,
at some point on the beam so that its moment

about O shall be the same as that due to the three weights.

If P be this point, then we must have

W x OP = (W t X OA) + (W2 x OB) + (W8 x OC)
or, since W = Wa + W3 + W,

OP = (Wt X OA) + (W2 x OB) + (W8 x OC)
Wl + W2 + W,

Example. Four weights, 30, 40, 50, 60 Ibs. respectively, are placed
on a beam fixed at one end, O, at distances from O of 3, 4, 5, 6 feet

respectively. Find the bending moment at O, and also the position of a

single weight equal to the four weights which will give the same bending
moment.

Bending moment at O = (30 X 3) + (40 X 4) + (50 X 5) + (60 x 6)
= 90 + 160 + 250 + 360
= 860 foot-lbs.

Total weight = 180 Ibs.

.'. position of single weight = f($
= 4$ feet from O

Centre of Gravity. The single weight W above, when

placed at P, has the same effect on the beam at O as the

three weights Wx,
Wa,

and W8. The point P is termed the

centre of gravity of the weights W1} W2,
and Ws . Thus we

may define the centre of gravity of a number of weights as

follows :

The centre of gravity of a system of weights is that point at

which we may regard the whole system as being concentrated.

This definition will apply to the case of a solid body, since

we may regard it as composed of a very large number of small

particles, each of which has a definite weight and occupies
a definite position. A homogeneous solid has the same

density throughout its volume
; and all the solids with which

we have to deal are taken as homogeneous unless otherwise

specified.

It follows, from the above definition of the centre of

gravity, that if a body is suspended at its centre of gravity,
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it would be perfectly balanced and have no tendency to move

away from any position in which it might be placed.

To Find the Position of the Centre of Gravity
of a number of Weights lying in a Plane. Two lines

are drawn in the plane at right angles, and the moment of the

system of weights is found successively about each of these

lines. The total weight being known, the distance of the

centre of gravity from each of these lines is found, and conse-

quently the position of the centre of gravity definitely fixed.

FIG.

The following example will illustrate the principles in-

volved : Four weights, of 15, 3, 10, and 5 Ibs. respectively,

are lying on a table in definite positions as shown in Fig. 29.

Find the position of the centre of gravity of these weights.

(If the legs of the table were removed, this would be the place

where we should attach a rope to the table in order that it

should remain horizontal, the weight of the table being

neglected.)
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Draw two lines, Ox, Oy, at right angles on the table in

any convenient position, and measure the distances of each of

the weights from Ox, Oy respectively : these distances are

indicated in the figure. The total weight is 33 Ibs. The
moment of the weights about Ox is

(i5 X 7) + (3 X 3) + (10 X 5) + (5 X 1-5)
= 171-5 foot-lbs.

The distance of the centre of gravity from Ox = = 5*2 feet

If we draw a line AA a distance of 5*2 feet from Ox, the

centre of gravity of the weights must be somewhere in the

line AA.

Similarly, we take moments about Oy, finding that the

moment is 150 foot-lbs., and the distance of the centre of

gravity from Oy is

V# = 4*25 ^et

If we draw a line BB a distance of 4*25 feet from Oy, the

centre of gravity of the weights must be somewhere in the line

BB. The point G, where AA and BB meet, will be the centre

of gravity of the weights.

Centres of Gravity of Plane Areas. A plane area has

length and breadth, but no thickness, and in order to give a

definite meaning to what is termed its centre of gravity, the

area is supposed to be the surface of a thin lamina or plate of

homogeneous material of uniform thickness. With this sup-

position, the centre of gravity of a plane area is that point at

which it can be suspended and remain in equilibrium.

Centres of Gravity of Plane Figures.

Circle. The centre of gravity of a circle is obviously at

its centre.

Square and Rectangle. The centre of gravity of

either of these figures is at the point where the diagonals
intersect.

Rhombus and Rhomboid. The centre of gravity of

either of these figures is at the point where the diagonals
intersect.
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D.
FIG. 30.

Triangle. Take the triangle ABC, Fig. 30. Bisect any
two sides BC, AC in the points D and E. Join AD, BE. The

point G where these two lines intersect is the centre of gravity

of the triangle. It can be

proved that the point G is

situated so that DG is one-third

DA, and EG is one-third EB.
We therefore have the following

rules :

i. Bisect any two sides of

the triangle, and join the points

thus obtained to the opposite angu-

lar points. Then the point in

which these two lines intersect is the centre ofgravity ofthe triangle.

2. Bisect any side of the triangle, and join the point thus

obtained with the opposite angular point. The centre of gravity

of the triangle will be on this line, and at a point at one-third its

length measuredfrom the bisected side.

Trapezium. Let ABCD, Fig. 31, be a trapezium. By

joining the corners A and C we can divide the figure into two

triangles, ADC, ABC. The centres of gravity, E and F, of

these triangles can be

found as indicated

above. Join EF. The
centre of gravity of the

whole figure must be

somewhere in the line

EF. Again, join the

corners D and B, thus

dividing the figure into

two triangles ADB,
CDB. The centres of

triangles can be found. The

D. C
FIG. 31.

gravity, H and K, of these

centre of gravity of the whole figure must be somewhere in the

line HK ;
therefore the point G, where the lines HK and EF

intersect, must be the centre of gravity of the trapezium.

The following is a more convenient method of finding the

centre of gravity of a trapezium.
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Let ABCD, Fig. 32, be a trapezium. Draw the diagonals

AC, BD, intersecting at E. In the figure CE is greater than

a

FIG. 39.

EA, and DE is greater than EB. Make CH = EA and DF
= EB. Join FH. Then the centre of gravity of the triangle

EFH will also be the centre of gravity of the trapezium ABCD.
1

(A useful exercise in drawing would be to take a trapezium

on a large scale and find its

centre of gravity by each of

the above methods. If the

drawing is accurately done, the

point should be in precisely

the same position as found by
each method.)

To find the Centre of

Gravity of a Plane Area

by Experiment. Draw out

the area on a piece of card-

board or stiff paper, and cut

out the shape. Then suspend
the cardboard as indicated in

Fig- 33, a small weight, W,
being allowed to hang plumb.
A line drawn behind the string AW must pass through the

centre of gravity. Mark on the cardboard two points on the

string, as A and B, and join. Then the centre of gravity must

lie on AB. Now suspend the cardboard by another point, C,
1 See Example 22, for C.G. of a trapezoid.
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as in Fig. 34, and draw the line CD immediately behind the

string of the plumb-bob W. Then also the centre of gravity

must lie on the line CD. Consequently it follows that the

point of intersection G of the

lines AB and CD must be the

centre of gravity of the given

area.

Example. Set out the section of

a beam on a piece of stiff paper, and
find by experiment the position of its

centre of gravity, the beam being formed
of a bulb plate 9 inches deep and

i inch thick, having two angles on the

upper edge, each 3" x 3" X ".

Ans. 3 inches from the top.

Centres of Gravity of Solids

formed of Homogeneous
Material.

Sphere. The centre of

gravity of a sphere is at its centre.

Cylinder. The centre of

gravity of a cylinder is at one-

half its height from the base, on

the line joining the centres of

gravity of the ends.

Pyramid or Cone. The centre of gravity of a pyramid
or cone is at one-fourth the height of the apex from the base,

on the line joining the centre of gravity of the base to the

apex.

Moment of an Area.

The geometrical moment of a plane area relatively to a

given axis, is the product of its area into the perpendicular

distance of its centre of gravity from the given axis. It follows

that the position of the centre of gravity is known relatively to

the given axis if we know the geometrical moment about the

axis and also the area, for the distance will be the moment
divided by the area. It is usnal to speak of the moment of an
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area about a given axis when the geometrical moment is really
meant.

To find the Position of the Centre of Gravity of
a Curvilinear Area with respect to one of its Ordi-
nates. Let AEDO, Fig. 35, be a plane curvilinear area, and

we wish to find its centre of gravity with respect to the end

ordinate, OA. To do this, we must first find the moment of

the total area about OA, and this divided by the area of the

figure itself will give the distance of the centre of gravity from

OA. Take any ordinate, PQ, a distance of x from OA, and

at PQ draw a strip A* wide. Then the area of the strip is

y x A# very nearly, and the moment of the strip about OA is

(y x &x)x very nearly.

If now A* be made indefinitely small, the moment of the

strip about OA will be

y . x . dx

Now, we can imagine the whole area divided up into such

strips, and if we added up the moments about OA of all such

strips, we should obtain the total moment about OA. Therefore,

using the notation we employed for finding the area of a plane
curvilinear figure on p. 14, we shall have

Moment of the total area about OA = jy . x . dx

The expression for the area i
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and this is of the same form as the expression for the moment.

Therefore, instead of y we put yx through Simpson's rule in

the ordinary way, and the result will be the moment about OA.
Set off on BC a length BF = BC X h, and on DE a length
DG = DE x 2h. Then draw through all such points a curve,
as OFG.1

Any ordinate of this curve will give the ordinate of

the original curve at that point multiplied by its distance from

OA. The area of an elementary strip of this new curve will be

y . x . dx, and the total area of the new curve will be jy . x . dx,
or the moment of the original figure about OA. Therefore, to

find the moment of a curvilinear figure about an end ordinate,
we take each ordinate and multiply it by its distance from the

end ordinate. These products, put through Simpson's rule in

the ordinary way, will give the moment of the figure about the

end ordinate. This moment divided by the area will give the

distance of the centre of gravity of the area from the end

ordinate.

Example. A midship section has semi-ordinates, i' 6" apart, com-

mencing at the L.W.L., of length 8'6o, 8'io, 6-95, 4-90, 275, 1-50, 070
feet respectively. Find the area of the section and the distance of its C.G.
from the L.W.L,

Number of
ordinates.
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finding the moment of the area. In the fourth column we have

the functions of the ordinates, or the ordinates multiplied succes-

sively by their proper multipliers. In the fifth column is placed,

not the actual distance of each ordinate from the No. i ordi-

nate, but the number of intervals away, and the distance apart

is brought in at the end. In the sixth column the products of

the functions in column 4 and the multipliers in column 5 are

placed. It will be noticed that we have put the ordinates

through Simpson's multipliers first, and then multiplied by the

numbers in the fifth column after. This is the reverse to the

rule given in words above, which was put into that form in

order to bring out the principle involved more plainly. The
final result will, of course, be the same in either case, the

method adopted giving the result with the least amount of

labour, because column 4 is wanted for finding the area. The
sum of the products in column 6 will not be the moment

required, because it has to be multiplied as follows : First, by
one-third the common interval, and second, by the distance

apart of the ordinates.

The moment of the half-area )

about the L.W.L. I
= W 2 X X '*> X *

and the distance of the C.G. of the half-area from the L.W.L.

is

1 31*4
Moment -r area =* - - = 3-03 feet

43'35

It will be noticed that we have multiplied both columns

4 and 6 by one-third the common interval, the distance of the

C.G. from No. i ordinate being obtained by

175-20 X (JX 1-5) X 1-5

86-70 X ft X 1-5)

The expression ^ X 1*5 is common to both top and bottom,

and so can be cancelled out, and we have

175-20 x i'5
^7 * = 3-03 feet
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The position of the centre of gravity of the half-area with

regard to the L.W.L. is evidently the same as that of the whole

area.

When finding the centre of gravity of a large area, such as

a water-plane of a vessel, it is usual to take moments about

the middle ordinate. This considerably simplifies the work,

because the multipliers in column 5 are not so large.

Example. T^e semi-ordinates of the load water-plane of a vessel 395
feet long are, commencing from forward, o, 10*2, 20*0, 27*4, 32*1, 34*0",

33'8, 31-7, 27-6, 20-6, 9-4. Find the area and the distance of its C.G.
from the middle ordinate.

In addition to the above, there is an appendage abaft the last ordinate,

having an area of 153 square feet, and whose C.G. is 5 '6 feet abaft the last

ordinate. Taking this appendage into account, find the area and the

position of the C.G. of the water-plane.

Number of

ordinates.
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The total area will then be

19,276 + 153 = 19,429 square feet

To find the position of the C G. of the whole water-plane, we take

moments about ND. 6 ordinate, the distance of the C.G. of the appendage
from it being

197'S + 5'6 = 2 3'i feet

Moment of main area abaft No. ordinate = 19,276 X i6'oi = 308,609
appendage = 153 X 203-1 = 31,074

/.total moment abaft No. 6 ordinate = 308,609 -f- 31,074

and the distance of the centre of gravity \ 339683 _ .

of the whole area abaft No. 6 ordinate /
=

I9429
~ r 7'4 i

To find the Position of the Centre of Gravity of

a Curvilinear Area contained between Two Con-
secutive Ordinates with respect to the Near End
Ordinate. The rule investigated in the previous paragraph
for finding the centre of gravity of an area about its end ordi-

nate fails when applied to such a case as the above. For

instance, try the following example :

A curve has ordinates 10, 9, 7 feet long, 4 feet apart. To
find the position of the centre of gravity of the portion between

the two first ordinates with respect to the end ordinate.

Ordinates.
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remainder by one-twenty-fourth the square ofthe common interval.

The product will be (he moment about the end ordinate.

Using jj, j/2, y^ for the lengths of the ordinates, and h the

common interval, the moment of the portion between the

ordinates y and y2 about the ordinate yl is given by

We will now apply this rule to the case considered above.

OrHinafPC
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and regarding it as a rectangle, its centre of gravity is at a

distance of \y from the base. Therefore the moment of the

strip about the base is Q
\f X A*

If now we consider the strip

to be indefinitely thin, its

moment about the base will

be

and the moment of the total D

area about the base must be

the sum of the moments of all such strips, 01

p
FIG. 36.

This expression for the moment is of the same form as that for

the area, viz. jy . dx. Therefore, instead of y we put \y*
l

through Simpson's rule in the ordinary way, and the result will

be the moment of the area about DC.

Example. An athwartship coal-bunker is 6 feet long in a fore-and-aft

direction. It is bounded at the sides by two longitudinal bulkheads 34 feet

apart, and by a horizontal line at the top. The bottom is formed by the

inner bottom of the ship, and is in the form of a curve having vertical

ordinates measured from the top of 12*5, 15*0, 16*0, l6'3, 16*4, 16*3, 16*0,

15*0, 1 2* 5 feet respectively, the first and last ordinates being on the bulk-

heads. Find

(1) The number of tons of coal the bunker will hold.

(2) The distance of the centre of gravity of the coal from the top.
The inner bottom is symmetrical either side of the middle line, so we

need only deal with one side. The work is arranged as follows ;

Ordinates.
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Common interval = 4*25 feet

Half-area of section = l86'i X J X 4*25 square feet

Volume of bunker = iS6'i x 4
'

2g x 2 x 6
cub ic feet

Number of tons of coal = 186*1 X |J
= 72 tons

Moment of half-area below top = 2901 X - X ^^

And distance of C.G. from the top =-
_

= 78 feet.

In the first three columns we proceed in the ordinary way
for finding the area. In the fourth column is placed, not the

half-squares, but the squares of the ordinates in column i, the

multiplication by \ being brought in at the end. These

squares are then put through Simpson's multipliers, and the

addition of column 6 will give a function of the moment of

the area about the base. This multiplied by \ and by \ the

common interval gives the actual moment This moment
divided by the area gives the distance of the centre of gravity

we want. It will be noticed that \ the common interval

comes in top and bottom, so that we divide the function of the

moment 2901 by the function of the area 186*1, and then

multiply by \ to get the distance of centre of gravity required.

It is not often required in practice to find the centre of

gravity of an area with respect to its base, because most of the

areas we have to deal with are symmetrical either side of a

centre line (as water-planes), but the problem sometimes occurs,

the question above being an example.
To find the Position of the Centre of Gravity of

an Area bounded by a Curve and Two Radii. We
have already seen (p. 15) how to find the area of a figure such

as this. It is simply a step further to find the position of the

centre of gravity with reference to either of the bounding radii.

Let OAB, Fig. 13, be a figure bounded by a curve, AB, and

two bounding radii, OA, OB. Take any radius OP, the angle

BOP being called
*

0, and the length of OP being called r.
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Draw a consecutive radius, OP' ;
the angle POP' being indefi-

nitely small, we may call it dd. Using the assumptions we
have already employed in finding areas, the area POP' =
Jr

2
.<#?, POP' being regarded as a triangle. The centre of

gravity of POP' is at gt
and Og =

fr, and gm is drawn perpen-
dicular to OB, andgm = \r . sin 6 (see p. 91).

-*>>< **<>
= r*.sin Q.dB

The moment of the whole figure about OB is the sum of

the moments of all such small areas as POP', or, using the

ordinary notation

This is precisely similar in form to the expression we found

for the area of such a figure as the above (see p. 15), viz.

so that, instead of putting^ through Simpson's rule, measuring

r at equidistant angular intervals, we put \r* . sin 6 through

the rule in a similar way. This will be best illustrated by the

following example :

Example. Find the area and position of centre of gravity of a quadrant
of a circle with reference to one of its bounding radii, the radius being
10 feet.

We will divide the quadrant by radii 15 apart, and thus be able to use

Simpson's first rule.

O .
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The circular measure of 180 = IT = 3-1416

= ?8'54 square feet

Moment of area about the first radius = 11,452 X -X f -x -

J

therefore distance of centre of gravity from the first radius is

Moment -f- area =

11452 x 2=
l8cx>x 3

= 4-24feet

The exact distance of the centre of gravity of a quadrant

from either of its bounding radii is times the radius, and if

3 71
"

this is applied to the above example, it will be found that the

result is correct to two places of decimals, and would have

been more correct if we had put in the values of the sines of

the angles to a larger number of decimal places.

Centre of Gravity of a Solid Body which is

bounded by a Curved Surface and a Plane. In the

first chapter we saw that the finding the volume of such a solid

as this was similar in principle to the finding the area of a

plane curve, the only difference being that we substitute areas

for simple ordinates, and as a result get the volume required.

The operation of finding the centre of gravity of a volume in

relation to one of the dividing planes is precisely similar to the

operation of finding the centre of gravity of a curvilinear area

in relation to one of its ordinates. This will be illustrated by
the following example :

Example. A coal-bunker has sections 17* 6" apart, and the areas of

these sections, commencing from forward, are 98, 123, 137, 135, 122 square
feet respectively. Find the volume of the bunker, and the position of its

centre of gravity in a fore-and-aft direction.
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Areas.
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of each of these ships must necessarily be in the same position.

But suppose they are engaged in different trades the first,

say, carrying a cargo of steel rails and other heavy weights,
which are stowed low down. The second, we may suppose,
carries a cargo of homogeneous materials, and this has to be

stowed much higher than the cargo in the first vessel. It is

evident that the centre of gravity in the first vessel must be

much lower down than in the second, although as regards form

they are precisely similar. This distinction between the centre

of buoyancy and the centre of gravity is a very important

one, and should always be borne in mind.

To find the Position of the Centre of Buoyancy of

a Vessel in a Fore-and-aft Direction, having given
the Areas of Equidistant Transverse Sections. The

following example will illustrate the principles involved :

Example. The underwater portion of a vessel is divided by transverse

sections 10 feet apart of the following areas, commencing from forward : 0*2,

227, 48-8, 73-2, 88-4, 82-8, 587, 26-2, 3-9 square feet respectively. Find
the position of the centre of buoyancy relative to the middle section.

Number of
station.
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The centre of gravity of a plane area is fully determined

when we know its position relative to two lines in the plane,

which are generally taken at right angles to one another. The
centre of gravity of a volume is fully determined when we
know its position relative to three planes, which are generally

taken at right angles to one another. In the case of the under-

water volume of a ship, we need only calculate the position of

its centre of gravity relative to (i) the load water-plane, and

(2) an athwartship section (usually the section amidships),

because, the two sides of the ship being identical, the centre

of gravity of the displacement must lie in the middle-line

longitudinal plane of the ship.

Approximate Position of the Centre of Buoyancy.
In vessels of ordinary form, it is found that the distance of the

centre of buoyancy below the L.W.L. varies from about -^ to -^
of the mean draught to top of keel, the latter being the case

in vessels of full form. For yachts and vessels of unusual

form, such a rule as this cannot be employed.

Example, A vessel 13' 3" mean draught has her C.B. 5*34 feet below
L.^V.L.

Here the proportion of the draught is

5 '34 8 -06
.sLsCL = o'4.O1 =
13-25

4 6 20

This is an example of a fine vessel.

Example. A vessel 27' 6" mean draught has her C.B. 12*02 feet below
L.W.L.

Here the proportion of the draught is

12-02 __ 875
27-5

~
20

This is an example of a fuller vessel than the first case.

Morrish's Approximate Formula for the Distance
of the Centre of Buoyancy below the Load Water-
line. 1

Let V = volume of displacement up to the load-line in

cubic feet ;

A = the area of the load water-plane in square feet
;

d the mean draught (to top of keel) in feet.

1 See a paper in Transactions of the Institution of Naval Architects, by
Mr. S. W. F. Morrish. M.I.N.A., in 1892.
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Then centre of buoyancy below L.W.L. = J (
- + %

This rule gives exceedingly good results for vessels of

ordinary form. In the early stages of a design the above

particulars would be known as some of the elements of the

design, and so the vertical position of the centre of buoyancy
can be located very nearly indeed. In cases in which the

stability of the vessel has to be approximated to, it is important
to know where the C.B. is, as will be seen later when we are

dealing with the question of stability.

The rule is based upon a very ingenious assumption, as

follows :

In Fig. 36A, let ABC be the curve of water-plane areas, DC
being the mean draught d. Draw the rectangle AFCD. Make

yDE = -r D say. Draw EG parallel to DA cutting the diagonal
*TL

FD in H. Finish the figure as indicated. Then the assumption

A. _ D.

E.

C.

FIG. 36A.

made is that the C.G. ofthe areaDAHC is the same distance below

the water-line as the C.G. of DABC which latter, of course, gives

the distance below the water-line of the centre of buoyancy. It is

seen by inspection that the assumption is a reasonable one.

DAHC and DABC have the same area as we now proceed to

show. The rectangles AH and HC are equal, so that the triangles

AGH and HEC are equal, and therefore

Area of AHCD = area of AGED
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The latter gives the volume of displacement, as it is a rectangle

having sides equal to A and -r respectively. The area of DABC

also gives the volume of displacement, so that DAHC and DABC
are equal.
We now have to determine the distance of the C.G. of DAHC

below the water-line.

Area AGH \ X AG X GH GH
Area AGED ~ AG X AD & 'AD

d being the draught.

/. Area AGH =\- * rectangle AGED

We may regard the figure DAHC made up by taking away
AGH from the rectangle AE and putting it in the position HEC.
The shift of its C.G. downwards is \.d. Therefore the C.G. of

the whole figure will shift downwards, using the principle explained
in p. 100, a distance x, given by

AGED x x = AGH x -

or putting in the value found above for the area of AGH, we have

The C.G. of AGED is a distance below the water-line. There-
2

.fore the C.G. of DAHC is below the water-line, a distance

which is Morrish's approximation to the distance of the C.B. below
the water-line.

The Area of a Curve of Displacement divided by
the Load Displacement gives the Distance of the
Centre of Buoyancy below the Load Water-line. This

is an interesting property of the curve of displacement. The
demonstration is as follows :

Let OBL, Fig. 363, be the curve of displacement of a vessel

constructed in the ordinary way, OW being the mean draught and
WL being the displacement in tons.

Take two level lines AB, A'B', a short distance apart, &z say.
Call the area of the water-plane at the level of AB, A square feet,
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and the distance of this water-plane below the WL, z. The
volume between AB and A'B' is A X As-, or supposing they are

indefinitely close together A X dz. The moment of this layer
about the WL is A x dz x (z + \ . dz) = A . z . dz, neglecting the

t C'C.

or

FIG. 368.

square of the small quantity dz. The distance of the C.B. below

WL is the sum of all such moments divided by the displacement

volume,

j&.z.dz
35 x WL

Now the difference between the lengths of A'B' and AB is the

weight of the water between these level lines or -% . A . dz. The
area of the whole figure is given by the summatim of all such

areas as the strip B'C, which has a length z and a breadth

^g- . Adk. Area of figure is therefore aV/A- .z.dz, and this divided

by the displacement is

35 x WL
which is the expression found above for the distance of the C.B.

below the WL.

Example. Draw a curve of displacement for all draughts of a cylindrical
vessel 20 feet diameter and 150 feet long, and find by using the curve the

distance of the C.B. from the base when floating (a) at 10 feet level draught,

(b) at 15 feet level draught.
Ans. (a) 576 feet ; (b) 8-25 feet.

If a new curve be drawn having for ordinates the area of the curve of

displacement at respective levels, it may readily be shown that the tangent
to this curve at any draught will intersect the scale of draughts at the

height of the centre of buoyancy. This new curve is a curve of moments
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of displacement up to each level line about such level line. By construct-

ing such a curve in the graphic method of finding displacement (see later),

considerable simplification of the process is obtained. Thus, in Fig. 39,
AHL is the curve of displacement. By integrating this curve (still by the

graphic method), a curve of moments of displacements is obtained, the

ordinate of which on BR will be the moment of displacement BL about
the L.W.L. This moment, divided by the displacement BL, gives the

distance of the C.B. below the L.W.L. This may be checked by drawing
the tangent to the new curve, as seen above. In a similar manner, in

Fig. 40 the difference between the areas of BB in the fore and after bodies
divided by the total displacement gives the fore and aft position of the C.B.
with reference to No. 6 station.

Displacement Sheet. 1 We now proceed to investigate

the method that is very generally employed in practice to find

the displacement of a vessel, and also the position of its centre

of buoyancy both in a longitudinal and a vertical direction.

The calculation is performed on what is termed a "
Displace-

ment Sheet" or "Displacement Table" and a specimen calcula-

tion is given at the end of the book for a single-screw tug of

the following dimensions :

Length between perpendiculars 74' o'

Breadth moulded 14' 6'

Depth moulded 8' 3'

Draught moulded forward 5' 5'
aft 6' 2'

,, mean 5' 9

The sheer drawing of the vessel is given on Plate I. This

drawing consists of three portions the body plan, the half-

breadth plan, and the sheer. The sheer plan shows the ship
in side elevation, the load water-line being horizontal, and the

keel, in this case, sloping down from forward to aft. The ship

is supposed cut by a number of transverse vertical planes,

which are shown in the sheer plan as straight lines, numbered

i, 2, 3, etc. Now, each of these transverse sections of the ship
has a definite shape, and the form of each half-section to the

outside of frames is shown in the body-plan, the sections being
numbered as in the sheer. The sections of the forward end
form what is termed the "fore-body? and those of the after

end the "
after-body" Again, the ship may be supposed to be

cut by a series of equidistant horizontal planes, of which the

1 For displacement sheet with combination of Simpson's first rule and

Tchebycheffs rule, see Appendix A.
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load water-plane is one. The shape of the curve traced on each

of these planes by the moulded surface of the ship is given in

the half-breadth plan, and the curves are numbered A, i, 2, 3,

etc., to agree with the corresponding lines in the sheer and

body plan. Each of these plans must agree with the other

two. Take a special station, for example, No. 4. The breadth

of the ship at No. 4 station at the level of No. 3 water-plane is

Oa' in the body-plan, but it is also given in the half-breadth plan

by Oa, and therefore Oa must exactly equal Oa'. The process

of making all such points correspond exactly is known as

"fairing? For full information as to the methods adopted in

fairing, the student is referred to the works on "
Laying-off"

given below.1 For purposes of reference, the dimensions of

the vessel and other particulars are placed at the top of the

displacement sheet. The water-lines are arranged on the

sheer drawing with a view to this calculation, and in this case

are spaced at an equidistant spacing apart of i foot, with an

intermediate water-line between Nos. 5 and 6. The number

of water-lines is such that Simpson's first rule can be used, and

the multipliers are, commencing with the load water-plane

i 4 2 4 ji 2 |

The close spacing near the bottom is very necessary to

ensure accuracy, as the curvature of sections amidships of the

vessel is very sharp as the bottom is approached, and, as we

saw on p. 13, Simpson's rules cannot accurately deal with areas

such as these unless intermediate ordinates are introduced.

Below No. 6 water-plane there is a volume the depth of which

increases as we go aft, and the sections of this volume are very

nearly triangles. This volume is dealt with separately on the

left-hand side of the table, and is termed an "
appendage?

In order to find the volume of displacement between water-

planes i and 6, we can first determine the areas of the water-

planes, and then put these areas through Simpson's rule. To
find the area of any of the water-planes, we must proceed in

the ordinary manner and divide its length by ordinates so that

1 "
Laying Off," by Mr. S. J. P. Thearle ;

"
Laying Off," by Mr. T. II.

Watson ;

"
Laying Off," by Messrs. Altwood and Cooper.
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Simpson's rule (preferably the first rule) can be used. In the

case before us, the length is from the after-edge of the stem to

the forward edge of the body post, viz. 71 feet, and this

length is divided into ten equal parts, giving ordinates to each

of the water-planes at a distance apart of 7*1 feet. The dis-

placement-sheet is arranged so that we can put the lengths of

the semi-ordinates of the water-planes in the columns headed

respectively L.W.L., 2\Y.L., 3"W.L., etc., the semi-ordinates at

the several stations being placed in the same line as the numbers

of ordinates given at the extreme left of the table. The lengths

of the semi-ordinates are shown in italics. Thus, for instance,

the lengths of the semi-ordinates of No. 3 W.L., as measured

off, are 0-05, 1*82, 4*05, 5-90, 6-90, 7-25, 7-04, 6-51 5^
2*85, and 0*05 feet, commencing with the forward ordinate

No. i, and these are put down in italics
1 as shown beneath

the heading 3 W.L. in the table. The columns under the

heading of each W.L. are divided into two, the semi-ordinates

being placed in the first column. In the second column of each

water-line is placed the product obtained by multiplying the

semi-ordinate by the corresponding multiplier to find the area.

These multipliers are placed at column 2 at the left, opposite

the numbers of the ordinates. We have, therefore, under the

heading of each water-line what we have termed the "functions

of ordinates" and if these functions are added up, we shall

obtain what we have termed the "function of area"

Taking No. 3 W.L. as an instance, the "function" of its

area is 144*10, and to convert this "function" into the actual

area, we must multiply by one-third the common interval to

complete Simpson's first rule, i.e. by \ X 7*i ;
and also by 2

to obtain the area of the water-plane on both sides of the ship.

We should thus obtain the area of No. 3 W.L.

144-10 x \ X 7-1 X 2 = 689-07 square feet

The functions of the area of each water-plane are placed at

the bottom of the columns, the figures being, starting with

the L.W.L., 163-70, 155-36, 144-10, 128-74, 105-67, 87-27,

and 60-97. To get the actual areas of each of the water-planes,

1 In practice, it is advisable to put down the lengths of the semi-

ordinates in some distinctive colour, such as red.
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we should, as above, multiply each of these functions by \ X
7* i X 2. Having the areas, we could proceed as on p. 26 to

find the volume of displacement between No. i and No. 6

water-lines, but we do not proceed quite in this way; we

put the "functions of areas'
1

through Simpson's rule, and

multiply afterwards by \ X T i X 2, the same result being
obtained with much less work. Below the " functions of

areas
"
are placed the Simpson's multipliers, and the products

16370, 621*44, etc., are obtained. These products added up

give 1 95 1 "83. This number is a function of the volume of

displacement, this volume being given by first multiplying it

by one-third the vertical interval, i.e. J x i
; and then by

J X 7*1 X 2, as seen above. The volume of displacement,

between No. i W.L. and No. 6 W.L. is therefore

1951-83 x (J X i) X (J X 7'i) X 2 = 3079-5 cubic feet

and the displacement in ) 3Q79'5 = 8rg8 tons
tons (salt water)

x ) 35

We have thus found the displacement by dividing the

volume under water by a series of equidistant horizontal planes ;

but we could also find the displacement by dividing the under-

water volume by a series of equidistant vertical planes, as we
saw in Chapter I. This is done on the displacement sheet,

an excellent check being thus obtained on the accuracy of the

work. Take No. 4 section, for instance : its semi-ordinates,

commencing with the L.W.L., are 6-40, 6-24, 5-90, 5-32, 4-30

3-40, and 2-25 feet These ordinates are already put down

opposite No. 4 ordinate. If these are multiplied successively

by the multipliers, i, 4, 2, 4, i, 2, ,
and the sum of the

functions of ordinates taken, we shall obtain the "function of
area

"
of No. 4 section between the L.W.L. and 6 W.L. This

is done in the table by placing the functions of ordinates

immediately below the corresponding ordinate, the multiplier

being given at the head of each column. We thus obtain a

series of horizontal rows, and these rows are added up, the

results being placed in the column headed u Function of areas?

Each of these functions multiplied by one-third the common
1

Thirty- five cubic feet of salt water taken to weigh one ton.
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interval, i.e. \ X i, and then by 2 for both sides, will give

the areas of the transverse sections between the L.W.L. and

6 W.L.
; but, as before, this multiplication is left till the end

of the calculation. These functions of areas are put through

Simpson's multipliers, the products being placed in the column

headed "
Multiples of areas''' This column is added up, giving

the result 1951-83. To obtain the volume of displacement,

we multiply this by (J X i) X 2 X ( X 7'i). It will be noticed

that we obtain the number 1951-83 by using the horizontal

water-lines and the vertical sections
;
and this must evidently

be the case, because the displacement by either method must

be the same. The correspondence of these additions forms

the check, spoken of above, of the accuracy of the work. We
thus have the result that the volume of displacement from

L.W.L. to 6 W.L. is 3079-5 cubic feet, and the displacement
in tons of this portion 87-98 tons in salt water. This is termed

the
" Main solid," and forms by far the greater portion of the

displacement.
We now have to consider the portion we have left out

below No. 6 water-plane. Such a volume as this is termed an
"
appendage? The sections of this appendage are given in the

body-plan at the several stations. The form of these sections

are traced off, and by the ordinary rules their areas are found

in square feet. We have, therefore, this volume divided by a

series of equidistant planes the same as the main solid, and we
can put the areas of the sections through Simpson's rule and

obtain the volume. This calculation is done on the left-hand

side of the sheet, the areas being placed in column 3, and the

functions of the areas in column 4. The addition of these

functions is 49*99, and this multiplied by \ x 7'i gives the

volume of the appendage in cubic feet, viz. 118-3; and this

volume divided by 35 gives the number of tons the appendage

displaces in salt water, viz. 3-38 tons. The total displacement
is thus obtained by adding together the, main solid and the

appendage, giving 91-36 tons in salt water. The displacement
in fresh water (36 cubic feet to the ton) would be 88-8 tons.

The sheer drawing for this vessel as given on Plate I. was

drawn to the frame line, i.e. to the moulded dimensions of the
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ship ;
but the actual ship is fuller than this, because of the outer

bottom plating, and this plating will contribute a small amount
to the displacement, but this is often neglected. Some sheer

drawings, on the other hand, are drawn so that the lines include

a mean thickness of plating outside the frame line, and when
this is the case, the displacement sheet gives the actual dis-

placement, including the effect of the plating. For a sheathed

ship this is also true; in this latter case, the displacement

given by the sheathing would be too great to be neglected.

When the sheer drawing is drawn to the outside of sheathing,

or to a mean thickness of plating, it is evident that the ship
must be laid off on the mould loft floor, so that, when built,

she shall have the form given by the sheer drawing.

We now have to find the position of the centre of buoyancy
both in a fore-and-aft and in a vertical direction. (It must be

in the middle-line plane of the ship, since both sides are sym-

metrical.) Take first the fore-and-aft position. This is found

with reference to No. 6 station. The functions of the areas of

the sections are 0-5, 23-055, etc., and in the column headed
"
Multiples of areas

" we have these functions put through

Simpson's multipliers. We now multiply these multiples by
the number of intervals they respectively are from No. 6 station,

viz. 5, 4, etc., and thus obtain a column headed " Moments."

This column is added up for the fore body, giving 1505-43, and

for the after body, giving 1913-02, the difference being 407-59

in favour of the after body. To get the actual moment of the

volume abaft No. 6 station, we should multiply this difference

by (^ X i) for the vertical direction, (J x 7-1) for the fore-and-

aft direction, and by 2 for both sides, and then by 7*1, since we

have only multiplied by the number of intervals away, and not

by the actual distances, or 47'59 X (J x i) X (J X 7*1) x 2

X 7' i. The volume, as we have seen above, is given by

1951*83 x (\ x i) x (i x 7-1) x 2

The distance of the centre of gravity of the main solid from

No. 6 station will be

Moment -1- volume
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But on putting this down we shall see that we can cancel out,

leaving us with

W-59.XTI 8feet
1951-83

which is the distance of the centre of gravity of the main solid

abaft No. 6 station. The distance of the centre of gravity of

the appendage abaft No. 6 station is 4'o feet
;
the working is

shown on the left-hand side of the table, and requires no further

explanation.
1 These results for the main solid and for the ap-

pendages are combined together at the bottom
;
the displacement

of each in tons is multipliedby the distance of its centre of gravity

abaft No. 6 station, giving the moments. The total moment
is 143*73, and the total displacement is 91*36 tons, and this

gives the centre of gravity of the total displacement, or what we
term the centre of'buoyancy-, C.B., 1*57 feet abaft No. 6 station.

Now we have to consider the vertical position of the

C.B., and this is determined with reference to the load water-

line. For the main solid the process is precisely similar

to that adopted for finding the horizontal position, with the

exception that we take our moments all below the load water-

plane, the number of intervals being small compared with the

horizontal intervals. We obtain, as indicated on the sheet, the

centre of gravity of the main solid at a distance of 2*21 feet

below the L.W.L. For the appendage, we proceed as shown

on the left-hand side of the sheet. When finding the areas of

the sections of the appendage, we spot off as nearly as possible
the centre of gravity of each section, and measure its distance be-

low No. 6 W.L. If the sections happen to be triangles, this will,

of course, be one-third the depth. These distances are placed in

a column as shown, and the " functions of areas
"
are respec-

tively multiplied by them, e.g. for No. 4 station the function of

the area is 5*92, and this is multiplied by 0*22, the distance

of the centre of gravity of the section of the appendage below

No. 6 W.L. We thus obtain a column which, added up, gives
a total of 13*78. To get the actual moment, we only have to

1 For the vertical C.G. of the appendage Morrish's rule gives a good
approximation.
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multiply this by \ x yi. The volume of the appendage is

49-99 X (5 X 7'i). So that the distance of the centre of

gravity of the whole appendage below No. 6 W.L. is given

by moment -T- volume, or l^J = 0-27 feet, and therefore the

centre of gravity of the appendage is 5-27 feet below the

L.W.L. The results for the main solid and for the appendage
are combined together in the table at the bottom, giving the

final position of the C.B. of the whole displacement as 2*32

feet below the L.W.L.

It will be of interest at this stage to test the two approxi-

mations that were given on p. 65 for the distance of the C.B.

below the L.W.L. The first was that this distance would be

from ~ to Q of the mean draught to top of keel (i.e. the mean

moulded draught). For this vessel the distance is 2^32 feet,

and the mean moulded draught is 5' 9^", or 5*8 feet, and so

we have the ratio -, or exactly ~. The second approxi-
5'8

mation (Morrish's), p. 65, was

(M)
All these are readily obtainable from the displacement sheet,

and if worked out its value is found to be 2*29 feet. This

agrees fairly well with the actual result, 2*32 feet, the error

being 3 in 232, or less than ij per cent.

For large vessels a precisely similar displacement-sheet is

prepared, but it is usual to add in the effect of other appen-

dages besides that below the lowest W.L. Specimen calcula-

tions are given on Tables II. and Ilia, at the end of the book.

In the former the ordinates are to a mean thickness of

plating. In the latter the moulded surface is used, and the

displacement of the shell plating added as an appendage, being

obtained by Denny's formula given on page 86.

Graphic or Geometrical Method of calculating

Displacement and Position of Centre of Buoyancy.
There is one property of the curve, known as the "parabola of

the second order" (see p. 6), that can be used in calculating
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by a graphic method the area of a figure bounded by such a

curve. Let BFC, Fig. 37, be a curve bounding the figure

ABCD, and suppose the curve is a "parabola of the second

order" Draw the ordinate EF

midway between AB and DC ;
then

the following is a property of the

curve BFC : the area of the seg-

ment BCF is given by two thirds

the product of the deflection GF
and the base AD, or

Area BCF =
f X GF x AD

Make GH = |GF. Then-

Area BCF = GH X AD

Now, the area of the trapezoid ABCD is given by
AD x EG, and consequently

The area ADCFB = AD x EH

Thus, if we have a long curvilinear, we can' divide it up
as for Simpson's first rule, and set off on each of the inter-

mediate ordinates two-thirds the deflection of the curve above

or below the straight line joining the extremities of the dividing

ordinates. Then add together on a strip of paper all such

distances as EH right along, and the sum multiplied by the

1 This property may be used to prove the rule known as Simpson's first

rule. Call AB, EF, DC respectively y yz , y3 . Then we have

E.

FIG. 37.

EG andFG=j2
- EG

EH = EG + GH
^'tZJ'LZ.

3

and calling AE = h, we have

Area ADCFB =
|fo

+ 4J2 +J'3)

which is the same expression as given by Simpson's first rule.
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distance apart of the dividing ordinates, as AD, will give the

area required. Thus in Fig. 38, AB is divided into equal parts

FIG

as shown. D and E are joined, also E and C
; MO is set

off = |HM, and NP is set off = fNK. Then-

Area ADEF = AF X GO
and area FECB = FB X LP

and the whole area ABCD = AF X (GO + LP)

We can represent the area ABCD by a length equal to

GO + LP on a convenient scale, if we remember that this length
has to be multiplied by AF to get the area. This principle can

be extended to finding the areas of longer figures, such as

water-planes, and we now proceed to show how the displacement
and centre of buoyancy of a ship can be determined by its use.

The assumption we made at starting is supposed to hold good
with all the curves we have to deal, i.e. that the portions

between the ordinates are supposed to be "parabolas of the

second order" This is also the assumption we make when

using Simpson's first rule for finding displacement in the ordi-

nary way.

Plate I. represents the ordinary sheer drawing of a vessel,

and the underwater portion is divided by the level water-planes

shown by the half-breadth plan. The areas of each of these

planes can be determined graphically as above described, the

area being represented by a certain length obtained by the

addition of all such lengths as GO, etc., Fig. 38, the interval
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being constant for all the water-planes. Let AB, Fig. 39, be

set vertically to represent the extreme moulded draught of the

vessel. Draw BC at right angles to AB, to represent on a

convenient scale the area of the L.W.L. obtained as above.

Similarly, DE, FG are set out to represent on the same scale

the areas of water-planes 2 and 3, and so on for each water-

plane. A curve drawn through all such points as C, E, and G

L.W.I

2.W.L.

FIG. 39.

will give a " curve ofareas ofwafer-planes" Now, the area of this

curve up to the L.W.L. gives us the volume of displacement up
to the L.W.L., as we have seen in Chapter I., and we can readily
find the area of the figure ABCEG by the graphic method, and
this area will give us the displacement up to the L.W.L.

Similarly, the area of ADEG will give the displacement up to

2 W.L., and so on. Therefore set off BL to represent on a
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convenient scale the area of the figure ABCE, DK on the

same scale to represent the area ADEG, and so on. Then
a curve drawn through all such points as L, K will give us a
" curve of displacement" and the ordinate of this curve at any

draught will give the displacement at that draught, BL being
the load displacement.

We now have to determine the distance of the centre

of buoyancy below the L.W.L., and to find this we must get

the moment of the displacement about the L.W.L. and

divide this by the volume of displacement below the L.W.L.

We now construct a curve, BPMA, such that the ordinate at

any draught represents the area of the water-plane at that

draught multiplied by the depth of the water-plane below the

L.W.L. Thus DP represents on a convenient scale the area

of No. 2 water-plane multiplied by DB, the distance below the

L.W.L. The ordinate of this curve at the L.W.L. must evi-

dently be zero. This curve is a curve of " moments of areas

of water-planes" about the L.W.L. The area of this curve up
to the L.W.L. will evidently be the moment of the load dis-

placement about the L.W.L., and thus the length BR is set out

to equal on a convenient scale the area of BPMA. Similarly,

DS is set out to represent, on the same scale, the area of

DPMA, and thus the moment of the displacement up to 2 W.L.

about the L.W.L. These areas are found graphically as in the

preceding cases. Thus a curve RSTA can be drawn in, and

BR -' BL, or moment of load displacement about L.W.L. -7-

load displacement, gives us the depth of the centre of buoyancy
for the load displacement below the L.W.L.

Exactly the same course is pursued for finding the displace-

ment and the longitudinal position of the centre of buoyancy,

only in this case we use a curve of areas of transverse sections

instead of a curve of areas of water-planes, and we get the

moments of the transverse areas about the middle ordinate.

Fig. 40 gives the forms the various curves take for the fore

body. AA is the " curve of areas of transverse sections ;

" BB
is the

" curve of displacement
"

for the fore body, OB being the

displacement of the fore body. CC is the curve of " moments

of areas of transverse sections
"
about No. 6 ordinate

; DD is
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the curve of "moment of displacement" about No. 6 ordinate,

OD being the moment of the fore-body displacement about

No. 6 ordinate. Similar curves can be drawn for the after

body, and the dif-

ference of the mo-

ments of the fore and

after bodies divided

by the load displace-

ment will give the

distance of the centre

of buoyancy forward

or aft of No. 6 ordi-

nate, as the case may be. The total displacement must be the

same as found by the preceding method. 1

Method of finding Areas by Means of the Plani-

meter. This instrument is frequently employed to find the

area of plane curvilinear figures, and thus the volume of dis-

placement of a vessel can be determined. One form of the

instrument is shown in diagram by Fig. 41. It is supported at

three places : first, by a weighted pin, which is fixed in position

by being pressed into the paper ; second, by a wheel, which

actuates a circular horizontal disc, the wheel and disc both

being graduated ;
and third, by a blunt pointer. The instru-

ment is placed on the drawing, the pin is fixed in a convenient

position, and the pointer is placed on a marked spot A on the

boundary of the curve of which the area is required. The

reading given by the wheel and disc is noted. On passing
round the boundary of the area with the pointer (the same way
as the hands of a clock) back to the starting-point, another

reading is obtained. The difference of the two readings is

proportional to the area of the figure, the multiplier required to

convert the difference into the area depending on the instru-

ment and on the scale to which the figure is drawn. Particu-

lars concerning the necessary multipliers are given with the

instrument
;
but it is a good practice to pass round figures of

known area to get accustomed to its use.

1 This method may be considerably simplified by using the property
of the curve of displacement given on p. 66.

G
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By the use of the planimeter the volume of displacement of

a vessel can very readily be determined. The body plan is

taken, and the L.W.L. is marked on. The pointer of the in-

strument is then passed round each section in turn, up to the

L.W.L., the readings being tabulated. If the differences of the

readings were each multiplied by the proper multiplier, we
should obtain the area of each of the transverse sections, and

so, by direct application of Simpson's rules, we should find the

POINTER.

FIG.

required volume of displacement. Or we could put the actual

difference of readings through Simpson's multipliers, and

multiply at the end by the constant multiplier.

It is frequently the practice to shorten the process as

follows : The body-plan is arranged so that Simpson's first rule

will be used, i.e. an odd number of sections is employed.
The pointer is passed round the first and last sections, and

the reading is recorded. It is then passed round all the even

sections, 2, 4, 6, etc., and the reading is recorded. Finally,

it is passed round all the odd sections except the first and last,

viz. 3, 5> 7> etc., and the reading is put down. The differences

of the readings are found and put down in a column. The
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first difference is multiplied by i, the next difference is multi-

plied by 4, and the last by 2. The sum of these products is

then multiplied for Simpson's first rule, and then by the proper

multiplier for the instrument and scale used. The work can

conveniently be arranged thus :

Numbers of

sections.
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"
functions of areas of vertical sections

"
are treated in the

ordinary displacement sheet.

Method of approximating to the Area of the
Wetted Surface 1

by "Kirk's" Analysis. The ship is

assumed to be represented by a block model, shaped as

shown in Fig. 42, formed of a parallel middle body and a

r

FIG. 48.

tapered entrance and run which are taken as of equal length.

The depth of the model is equal to the mean draught, and the

length of the model is equal to the length of the vessel. The
breadth is not equal to the breadth of the vessel, but is equal
to area of immersed midship section -f- mean draught. The

displacement of the model is made equal to that of the vessel.

We then have

Volume of displace-] _ y s
ment )

= AG X area of midship section

V
~

area of midship section

.'. length of entrance} . V
> = length Of Ship

-
c r^r-.or run area of midship section

V
B' X D

1 The area of wetted surface can be closely approximated to by putting
a. curve of girths (modified for the slope of the level lines, see p. 228)

through Simpson's rule.
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where L = length of ship ;

B' = breadth of model ;

D = mean draught.

Having found these particulars, the surface of the model

can be readily calculated.

Area of bottom = AG X B'

Area of both sides = 2(GH -f- 2AE) x mean draught

The surface of a model formed in this way approximates

very closely to the actual wetted surface of the vessel. It is

stated that in very fine ships the surface of the model exceeds

the actual wetted surface by about 8 per cent., for ordinary
steamers by about 3 per cent., and for full ships by 2 per cent.

By considering the above method, we may obtain an

approximate formula for the wetted surface

V
Area of bottom = ~

Area of sides = 2L/D

where L' is the length along ADCB. Then

V
Surface = 2L'D -f- ^

This gives rather too great a result, as seen above ;
and if

we take

V
Surface = 2LD + ^

we shall get the area of the wetted surface slightly in excess,

but this will allow for appendages, such as keels, etc.

Since V = k . LED, where k is the block coefficient of

displacement, we may write

. Surface = 2LD + k . LB

Approximate Formulae for finding Wetted Surface.

Mr. Denny gives the following formula for the area of

wetted surface :
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i- 7LD + ^

which is seen to be very nearly that obtained above.

Mr. Taylor, in his work on " Resistance and Propulsion
of Ships," gives the following formula :

15-5 v/WL

where W is the displacement in tons.

The following formula for the wetted surface is used at the

experimental tank at Haslar

One of these formulae can be used to find the area of

wetted surface to calculate the displacement of the skin plating,

as is necessary when the sheer drawing is drawn to the

moulded surface of the ship. See Brown's Displacement Sheet

in Appendix, in which Denny's approximation is used.

EXAMPLES TO CHAPTER IL

I. A ship has the following weights placed on board :

20 tons

45
15
60

40
30

100 feet before amidships
80

40 ,,

50 feet abaft ,,

80
no

Show that these weights will have the same effect on t. r m.u of the ship
as a single weight of 210 tons placed 15$ feet abaft amidships.

2. Six weights are placed on a drawing-board. The weights are 3, 4,

5, 6, 7, 8 Ibs. respectively. Their distances from one edge are 5, 4|, 4, 3},

3, 2 feet respectively, and from the edge at right angles, &, \, I, i$, 2, 2$,

feet respectively. The drawing-board weighs 6 Ibs., and is 6 feet long
and 3 feet broad. Find the position where a single support would need
to be placed in order that the board should remain horizontal.

Ans. 3*27 feet from short edge, 1-58 feet from long edge.
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3. An area bounded by a curve and a straight line is divided by ordinates

4 feet apart of the following lengths : o, 12*5, 14-3, 15*1, 15-5, 15-4, 14*8,

14*0, o feet respectively. Find

(1) Area in square feet.

(2) Position of centre of gravity relative to the first ordinate.

(3) Position of the centre of gravity relative to the base.

Ans. (i) 423 square feet ; (2) 16*27 feet ; (3) 7*24 feet.

4. A triangle ABC has its base EC 15 feet long, and its height 25
feet. A line is drawn 10 feet from A parallel to the base, meeting AB and
AC in D and E. Find the distance of the centre of gravity of DBCE
from the apex.

Ans. i8'57 feet.

5. The semi-ordinates of a water-plane in feet, commencing from the

after end, are 5'2, ICT2, 14-4, 17-9, 2O'6, 227, 243. 25-5, 26*2, 26*5,

26-6, 26-3, 25-4, 23-9, 2i'8, i8'8, 15-4, 11-5, 7-2, 3-3, 2-2. The distance

apart is 15 feet. Find the area of the water-plane, and the position of the

centre of gravity in relation to the middle ordinate.

Ans. 11,176 square feet; 10-15 feet abaft middle.

6. Find the area and transverse position of the centre of gravity of

"half" a water-line plane, the ordinates in feet being 0*5, 6, 12, 16, 12, 10,

and 0*5 respectively, the common interval being 15 feet.

Ans. 885 square feet
; 6*05 feet.

7. The areas of sections 17' 6" apart through a bunker, commencing
from forward, are 65, 98, 123, 137, 135, 122, 96 square feet respectively.
The length of bunker is 100 feet, and its fore end is i' 6" forward of the

section whose area is 65 square feet. Draw in a curve of sectional areas,
and obtain, by using convenient ordinates, the number of cubic feet in the

bunker, and the number of tons of coal it will contain, assuming that 43 cubic

feet of coal weigh i ton. Find also the position of the C.G. of the coal

relative to the after end of the bunker.
Ans. 272 tons ; 46J feet from the after end.

8. The tons per inch in salt water of a vessel at water-lines 3 feet

apart, commencing with the L.W.L., are 31*2, 3o
-

o, 28-35, 26'2i, 23*38,

19-5, I2'9. Find the displacement in salt and fresh water and the position
of the C.B. below the L.W.L., neglecting the portion below the lowest
W.L. Draw in the tons per inch curve for salt water to a convenient scale,
and estimate from it the weight necessary to be taken out in order to lighten
the vessel 2' 3^" from the L.W.L. The mean draught is 20' 6".

Ans. 5405 tons ; 5255 tons ; 8'OI feet
; 847 tons.

9. In the preceding question, calling the L.W.L. i, find the displacement
up to 2 W.L., 3 W.L., and 4 W.L., and draw in a curve of displacement
from the results you obtain, and check your answer to the latter part of the

question.
10. The tons per inch of a ship's displacement at water-lines 4 feet

apart, commencing at the L.W.L., are 44*3, 427, 40' 5, 37- 5, 33'3- Find
number of tons displacement, and the depth of C.B. below the top W.L.

Ans. 7670 tons ; 7 '6 feet.

11. The ship in the previous question has two water-tight transverse
bulkheads 38 feet apart amidship, and water-tight flats at 4 feet below and
3 feet above the normal L.W.L. If a hole is made in the side 2 feet

below the L.W.L., how much would the vessel sink, taking the breadth
of the L.W.L. amidships as 70 feet? Indicate the steps where, owing to
insufficient information, you are unable to obtain a perfectly accurate result.

Ans. 8 inches.
12. The areas of transverse sections of a coal-bunker 19 feet apart are
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respectively 63-2, 93*6, 121 '6, io8'8, 94-8 square feet, and the centres
of gravity of these sections are ID'S, ir6, I2'2, 117, 11*2 feet respectively
below the L.W.L. Find the number of tons of coal the bunker will hold,
and the vertical position of its centre of gravity (44 cubic feet of coal to the

ton).
Ans. 174-3 tons; ii'68 feet below L.W.L.

13. A vessel is 180 feet long, and the transverse sections from the load
water-line to the keel are semicircles. Find the longitudinal position of

the centre of buoyancy, tke ordinates of the load water-plane being I, 5, 13,

15, 14, 12, and 10 feet respectively.
Ans, 106 '2 feet from the finer end.

14. Estimate the distance of the centre of buoyancy of a vessel below
the L.W.L., the vessel having 22' 6" mean moulded draught, block co-

efficient of displacement 0x55, coefficient of fineness of L.W.L. O'7 (use

Morrish's formula, p. 65).
Ans. 9-65 feet.

15. A vessel of 2210 tons displacement, 13' 6" draught, and area

of load water-plane 8160 square feet, has the C.B., calculated on the dis-

placement sheet, at a distance of 5*43 feet below the L.W.L. Check this

result.

1 6. The main portion of the displacement of a vessel has been calculated

and found to be 10,466 tons, and its centre of gravity is 10-48 feet below
the L.W.L., and 5-85 feet abaft the middle ordinate. In addition to this,

there are the following appendages :

tons.

Below lowest W.L. 263, 24*8 ft. below L.W.L., 4-4 ft. abaft mid. ord.

Forward 5, I2'o 202 ft. forward of mid
ord.

Stern ... ... 16, 2'8 ,, 201 ft. abaft mid. ord.

Rudder 16, 17-5 200 ,,

Bilge keels ... 20, 20 o ,,

Shafting, etc. ... 18, 15 ,, ,, 140 ,, ,,

Find the total displacement and position of the centre of buoyancy.
Ans. 10,804 tons ; C.B. 6'5 abaft mid. ord., IO'86 ft. below L.W.L.

17. The displacements of a vessel up to water-planes 4 feet apart
are 10,804, 8612, 6511, 4550, 2810, 1331, and 263 tons respectively. The

draught is 26 feet. Find the distance of the centre of buoyancy below the

load water-line.

Ans. ro'9 feet nearly.

18. The load displacement of a ship is 5000 tons, and the centre of

buoyancy is 10 feet below the load water-line. In the light condition the

displacement of the ship is 2000 tons, and the centre of gravity of the layer

between the load and light lines is 6 feet below the load-line. Find the

vertical position of the centre of buoyancy below the light line in the light

condition.

Ans. 4 feet, assuming that the C.G. of the layer is at half its depth.

19. Ascertain the displacement and position of the centre of buoyancy
of a floating body of length 140 feet, depth 10 feet, the forward section

being a triangle 10 feet wide at the deck and with its apex at the keel, and

the after section a trapezoid 20 feet wide at the deck and 10 feet wide at

the keel, the sides of the vessel being plane surfaces; draught of water

may be taken as 7 feet.

Ans. 238 tons ; 56*3 feet before after end, 3 feet below water-line.

20. Show by experiment or otherwise that the centre of gravity of 8
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quadrant of a circle 3 inches radius is I '8 inches from the right angle of

the quadrant.
21. A floating body has a constant triangular section, vertex down-

wards, and has a constant draught of 12 feet in fresh water, the breadth at

the water-line being 24 feet. The keel just touches a quantity of mud of

specific gravity 2. The water-level now falls 6 feet. How far will the

body sink into the mud ?

Ans. 4 feet 11^ inches. *

22. Show that the C.G. of a trapezoid, as ABCD, Fig. 5, is distant

I\~L.) from the middle of the tength h. The C.G. must be on a line

joining the centres of the parallel sides. Thus the position of the C.G.
is fully determined. This will also apply to a figure in which the parallel
sides are not perpendicular to one of the other sides.

23. Apply Morrish's rule to find the C.G. of a semicircle, and state the

error involved if the semicircle is 20 feet radius.

Ans. 0*19 foot.

24. For the lower appendage of the ship displacement sheet, Table I.,

find the vertical C.G. by using Morrish's rule.

25. Describe the process of finding the area and position of the C.G.
of a plane figure by radial integration, and apply it to find these in the case
of a rectangle 8 feet wide and 1 2 feet long.

26. A vessel is 300 feet x 36$ teet X 13^ feet draught, 2135 tons dis-

placement. Find the area of wetted surface by each of the formula

given on p. 86.

Ans., Denny, 12,421 square feet.

Taylor, 12,400 square feet.

Froude, 12,350 square feet.

The student is advised to take a sheer drawing and obtain a close

approximation to the wetted surface by putting the half girths to water-

line through Simpson's rule. Then to apply the above formulae and see

what the comparative results are.

27. Show, by means of the result in question 22, that the C G. of a

trapezoid in relation to the parallel sides is given by the construction of

Fig. 126.

28. Having given the mean ordinate/of a trapezoid and the distance

x of its C.G. from the larger end, show that the lengths of the parallel
sides are

/ 6Ar\ ,

(4/--f)and
where h is the length.

1 This example is worked out at the end of Appendix A.



CHAPTER TIL

CONDITIONS OF EQUILIBRIUM, TRANSVERSE META*
CENTRE, MOMENT OF INERTIA, TRANSVERSE BM,
INCLINING EXPERIMENT, METACENTRIC HEIGHT,
ETC.

Trigonometry. The student of this subject will find it a

(

distinct advantage, especially when dealing with the question
of stability, if he has a knowledge of some of the elementary

portions of trigonometry. The following are some properties

which should be thoroughly grasped :

Circular Measure of Angles. The degree is the unit gene-

rally employed for the measurement of angles. A right angle
is divided into 90 equal

parts, and each of these

parts is termed a "de-

gree." If two lines, as

OA, OB, Fig. 43, are

inclined to each other,

forming the angle AOB,
and we draw at any radius

OA an arc AB from the

centre O, cutting OA,
OB in A and B, then

O. A.

Ftc. 43-

length of arc AB -f- radius OA is termed the circular measure

of the angle AOB. Or, putting it more shortly

arc
Circular measure = -

The circular measure of four right )

angles, or 360 degrees

radius

circumference of a circle

radius

27T
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The circular measure of a right angle / =

Since 360 degrees = 2?r in circular measure, then the angle

whose circular measure is unity is

360 = 57'3 degrees

The circular measure of i degree is 7- = 0*01745, and

thus the circular measure of any angle is found by multiplying

the number of degrees in it by

Trigonometrical Ratios?

etc. Let BOC, Fig. 44, be

any angle ;
take any point P

in one of the sides OC, and

draw PM perpendicular to

OB. Call the angle BOC, 6>.
2

PM is termed the perpen-

dicular.

OM is termed the base.

OP is termed the hypo-
tenuse. O.

Then

I-A

BASE.
FIG. 44.

PM perpendicular
7^ = -1 - = sine 0, usually written sin 6OP hypotenuse
OM base
7
~- = . = cosine 6, usually written cos 6
OP hypotenuse
PM perpendicular .

,.= C r - = tangent 6, usually written tan 6

These ratios will have the same value wherever P is taken

on the line OC.

1 An aid to memory which is found of assistance by many in learning

these ratios is

Sin /<rrplexes ^y/ocrites t

Cos of base /y/ocrisy.
9 6 is a Greek letter (theta) often used to denote an angle.
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We can write sin =

cos =

and also tan 6 =

hyp-

base

hyp.
sin

cos e

There are names for the inversions of the above ratios,

which it is not proposed to use in this work.

For small angles, the value of the angle in circular

measure is very nearly the same as the values of sin and

tan &. This will be seen by comparing the values of 0, sin 0,

and tan for the following angles :

Angle in

degrees.
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of the water, or the buoyancy, must act through the centre of

buoyancy. All the horizontal pressures of the water on the

surface of the ship must evidently balance among themselves-.

We therefore have the following forces acting upon the ship :

(1) The weight acting downwards through the C.G. ;

(2) The upward support of the water, or, as it is termed,

the buoyancy, acting upwards through the C.B.
;

and for the ship to be at rest, these two forces must act in the

same line and counteract each other. Consequently, we also

have the following condition :

The centre of gravity of the ship, with everything she has on

board, must be in the same vertical line as the centre of buoyancy.

If a rope is pulled at both ends by two men exerting the

same strength, the rope will evidently remain stationary; and

this is the case with a ship floating freely and at rest in still

water. She will have no tendency to move of herself so long
as the C.G. and the C.B. are in the same vertical line.

Definition of Statical Stability. The statical

stability of a vessel is the tendency she has to return to the

upright when inclined away from that position. It is evident

that under ordinary conditions of service a vessel cannot

always remain upright ;
she is continually being forced away

from the upright by external forces, such as the action of

the wind and the waves. It is very important that the ship
shall have such qualities that these inclinations that are forced

upon her shall not affect her safety ;
and it is the object of the

present chapter to discuss how these qualities can be secured

and made the subject of calculation so far as small angles of

inclination are concerned.

A ship is said to be in stable equilibrium for a given direc-

tion of inclination if, on being slightly inclined in that direction

from her position of rest, she tends to return to that position.

A ship is said to be in unstable equilibrium for a given
direction of inclination if, on being slightly inclined in that

direction from her position of rest, she tends to move away
farther from that position.

A ship is said to be in neutral or indifferent equilibrium
for a given direction of inclination if, on being slightly inclined
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in that direction from her position of rest, she neither tends

to return to nor move farther from that position.

These three cases are represented by the case of a heavy

sphere placed upon a horizontal table.

1. If the sphere is weighted so that its C.G. is out of the

centre, and the C.G. is vertically below the centre, it will be

in stable equilibrium.

2. If the same sphere is placed so that its C.G. is vertically

above the centre, it will be in unstable equilibrium.

3. If the sphere is formed of homogeneous material so that

its C.G. is at the centre, it will be in neutral or indifferent

equilibrium.

Transverse Metacentre. We shall deal first with

transverse inclinations, because they are the more important,

and deal with inclinations in a longitudinal or fore-and-aft

direction in the next chapter.

Let Fig. 45 represent the section of a ship steadily inclined

STABLE.

Fir,. 45.

at a small angle from the upright by some external force,

such as the wind. The vessel has the same weight before and

after the inclination, and consequently has the same volume

of displacement. We must assume that no weights on board

shift, and consequently the centre of gravity remains in the

same position in the ship. But although the total volume of
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displacement remains the same, the shape of this volume

changes, and consequently the centre of buoyancy will shift

from its original position. In the figure the ship is repre-

sented by the section, WAL being the immersed section

when upright, WL being the position of the water-line on

the ship. On being inclined, WL' becomes the water-line,

and WAL' represents tbe immersed volume of the ship, which,

although different in shape, must have the same volume as the

original immersed volume WAL.
The wedge-shaped volume represented by WSW, which

has come out of the water, is termed the "
emerged" or " out"

wedge. The wedge-shaped volume represented by LSL',

which has gone into the water, is termed the "immersed" or
"
in

"
wedge. Since the ship retains the same volume of

displacement, it follows that the volume of the emerged wedge
WSW is equal to the -volume of the immersed wedge LSL'.

It is only for small angles of inclination that the point S,

where the water-lines intersect, falls on the middle line of the

vessel. For larger angles it moves further out, as shown in

Fig. 77.

Now consider the vessel inclined at a small angle from

the upright, as in Fig. 45. The new volume of displacement
WAL' has its centre of buoyancy in a certain position, say B'.

This position might be calculated from the drawings in the

same manner as we found the point B, the original centre of

buoyancy ;
but we shall see shortly how to fix the position of

the point B' much more easily.

B' being the new centre of buoyancy, the upward force of

the buoyancy must act through B', while the weight of the ship

acts vertically down through G, the centre of gravity of the

ship. Suppose the vertical through B' cuts the middle line of

the ship in M ;
then we shall have two equal forces acting on

the ship, viz.

(1) Weight acting vertically down through the centre of

gravity.

(2) Buoyancy acting vertically up through the new centre

of buoyancy.
But they do not act in the same vertical line. Such a system
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of forces is termed a couple. Draw GZ perpendicular to the

vertical through B'. Then the equal forces act at a distance

from each other of GZ. This distance is termed the arm of

the couple, and the moment of the couple is W X.GZ. On
looking at the figure, it is seen that the couple is tending to

take the ship back to the upright If the relative positions

of G and M were such that the couple acted as in Fig. 46,

the couple would tend to take the ship farther away from the

upright ;
and again, if G and M coincided, we should have the

forces acting in the same vertical line, and consequently no

UNSTABLE. /

FIG. 46.

couple at all, and the ship would have no tendency to move

either to the upright or away from it.

We see, therefore, that for a ship to be in stable equilibrium

for any direction of inclination, it is necessary that the point

M be above the centre of gravity of the ship. This point M
is termed the metacentre. We now group together the three

conditions which must be fulfilled in order that a ship may
float freely and at rest in stable equilibrium

(i) The weight of water displaced must equal the total

weight of the ship (see p. 23).
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(2) The centre of gravity of the ship must be in the same

vertical line as the centre of gravity of the displaced water

(centre of buoyancy) (see p. 93).

(3) The centre of gravity of the ship must be below the

metacentre.

For small transverse inclinations, M is termed the transverse

metacentre^ which we may accordingly define as follows :

For a given plane of flotation of a vessel in the upright

condition, let B be the centre of buoyancy, and BM the vertical

through it. Suppose the vessel inclined transversely through
a very small angle, retaining the same volume of displacement,

B' being the new centre of buoyancy, and B'M the vertical

through it, meeting BM in M. Then this point of intersection,

M, is termed the transverse metacentre.

There are two things in this definition that should be noted :

(i) the angle of inclination is supposed very small, and (2) the

volume of displacement remains the same.

It is found that, for all practical purposes, in ordinary ships

the point M does not change in position for inclinations up to

as large as 10 to 15; but beyond this it takes up different

positions.

We may now say, with reference to a ship's initial stability

or stability in the upright condition

(1) If G is below M, the ship is in stable equilibrium.

(2) If G is above M, the ship is in unstable equilibrium.

(3) If G coincides with M, the ship is in neutral or in-

different equilibrium.

We thus see how important the relative positions of the

centre of gravity and the transverse metacentre are as affecting

a ship's initial stability. The distance GM is termed the

transverse metacentric height^ or, more generally, simply the

metacentric height.

We have seen that for small angles M remains practically

in a constant position, and consequently we may say GZ
= GM . sin 6 for angles up to 10 to 15, say. GZ is the

arm of the couple, and so we can say that the moment of the

couple is

W x GM . sin B
H
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If M is above G, this moment tends to right the ship, and
we may therefore say that the moment of statical stability at the

angle is

W X GM . sin

This is termed the metacentric method of determining a

vessel's stability. It can only be used at small angles of

inclination to the upright, viz. up to from 10 to 15 degrees.

Example. A vessel of 14,000 tons displacement has a metacentric

height of 3^ feet. Then, if she is steadily inclined at an angle of 10, the

tendency she has to return to the upright, or, as we have termed it, the

moment of statical stability, is

14,000 x 3 '5 X sin 10 = 8506 foot-tons

We shall discuss later how the distance between G and M,
or the metacentric height, influences the behaviour of a ship,

and what its value should be in various cases ; we must now

investigate the methods which are employed by naval archi-

tects to determine the distance for any given ship.

There are two things to be found, viz. (i) the position of

G, the centre of gravity of the vessel
; (2) the position of M,

the transverse metacentre.

Now, G depends solely upon the vertical distribution of the

weights forming the structure and lading of the ship, and the

methods employed to find its position we shall deal with

separately ;
but M depends solely upon the form of the ship,

and its position can be determined when the geometrical form

of the underwater portion of the ship is known. Before we

proceed with the investigation of the rules necessary to do this,

we must consider certain geometrical principles which have to.

be employed.
Centre of Flotation. If a floating body is slightly

inclined so as to maintain the same volume of displacement,

the new water-plane must pass through the centre of gravity of
the original water-plane. In order that the same volume of

displacement may be retained, the volume of the immersed

wedge SLL1} Fig 47, must equal the volume of the emerged

wedge SWWj. Call y an ordinate on the immersed side, and

y' an ordinate on the emerged side of the water-plane. Then
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the areas of the sections of the immersed and emerged wedges
are respectively (since LI^ = y . dO, WWi = / . dOt

dQ being

the small angle of inclination) .

*/.<#,
'

*(/)' <#

and using the notation we have already employed

Volume of immersed wedge = %fy
z

. dO .dx

emerged =Wf.M.dx
ind accordingly

.dd.dx

SECTION.
-

or

But J/T* . dx is the moment of the immersed portion of the

water-plane about the intersection,

and i/(y)
2

. dx is the moment of

the emerged portion of the water-

plane about the intersection (see

p. 59) ;
therefore the moment of

one side of the water-plane about

the intersection is the same as the

moment of the other side, and

consequently the line of inter-

section passes through the centre

of gravity of the water-plane.

The centre of gravity of the water-

plane is termed the centre offlota-
tion. In whatever direction a

ship is inclined, transversely,

longitudinally, or in any interme-

diate direction, through a small

angle, the line of intersection of

the new water-plane with the

original water-plane must always

pass through the centre of flotation. For transverse inclinations

of a ship the line of intersection is the centre line of the water-

plane ;
for longitudinal inclinations the fore-and-aft position of

the centre of flotation has to be calculated, as we shall see

when we deal with longitudinal inclinations.
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w

Shift of the Centre of Gravity of a Figure due to

the Shift of a Portion of the Figure. In Fig. 48 the

figure PQRSTU is made up of the two portions PQTU and

QRST, with centres of

S gravity at g and g
/

respec-

tively. Let a, d be the

areas, the whole area a -f a'

= A. Then the C.G. of

the whole area is at G, such

that a X gG = a' x /G, or

g=J U the C.G. di-

vides the line joining g and

g' inversely as the areas.

If now the portion QRST
is shifted to the position

UTVW with C.G. g\ the
FIG 48.

C.G. of the new combination PQWV is on the line^g-" at G'

such that

^G'
=

a
=
/G*

Therefore by the properties of triangles GG' is parallel to g'g".

Also

Now, taking moments about g we have a X gg
1 = A x ^G

. GG' = a

"g'g" A

or GG', the shift of the C.G. = ^ x g'g"

or the whole area multiplied by its shift equals the small area

multiplied by its shift, and these shifts are in parallel directions.

Also for the horizontal shift, A X gG' = a x gg", and for the

vertical shift, A X G^ = a X g'g. The above proof is perfectly

general, although a simple figure has been taken by which its

truth may be readily seen. It applies equally to the shift of

weights.
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The uses that are made of this will become more apparent

as we proceed, but the following examples will serve as illus-

trations :

Example. A vessel weighing W tons has a weight w tons on the deck.

This is shifted transversely across the deck a distance of d feet, as in Fig. 49.
Find the shift of the C.G. of the vessel both in direction and amount.

W

A

FIG. 49.

G will move to G' such that GG' will be parallel to the line joining
the original and final positions of the weight w ;

If w = 70 tons, d = 30 feet, W = 5000 tons, then

GG' = 7 X3 =
f& feet = 0-42 foot

5000

Example. In a vessel of 4000 tons displacement, suppose 100 tons ol

coal to be shifted so that its C.G. moves 18 feet transversely and 4^ feet

vertically. Find the shift of the C.G. of the vessel.

The C.G. will move horizontally an amount equal to- = 0*45 ft.

and vertically an amount equal to- = O' 1 1 ft.

Moment of Inertia. We have dealt in Chapter II. with
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the moment of a force about a given point, and we denned it as

the product of the force and the perpendicular distance of its

line of action from the point ;
also the moment of an area

about a given axis as being the area multiplied by the distance

of its centre of gravity from the axis. We could find the

moment of a large area about a given axis by dividing it into

a number of small areas and summing up the moments of all

these small areas about the axis. In this we notice that the

area or force is multiplied simply by the distance. Now we

have to go a step further, and imagine that each small area is

multiplied by the square of its distance from a given axis. If

all such products are added together for an area, we should

obtain not the simple moment, but what may be termed the

01

y

FIG. 50.

moment of the second degree, or more often the moment of

inertia of the area about the given axis.
1 We therefore define

the moment of inertia of an area about a given axis as

follows :

1 This is the geometrical moment of inertia. Strictly speaking, moment

of inertia involves the mass of the body. We make here the same assump-
tion that we did in simple moments (p. 49), viz. that the area is the

surface of a very thin lamina or plate of homogeneous material of uniform

thickness.
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Imagine the. area divided into very small areas, and each such

small area multiplied by the square of its distancefrom the given

axis ; then, if all these products be added together, we shall obtain

the moment of inertia of the total area about the given axis.

Thus in Fig. 50, let OO be the axis. Take a very small

area, calling it //A, distance^ from the axis. Then the sum
of all such products as dh. x 7

2
,
or (using the notation we have

employed) //
2

. dA, will be the moment of inertia of the area

about the axis OO.
To determine this for any figure requires the application of

advanced mathematics, but the result for certain regular figures

are given below.

It is found that we can always express the moment of

inertia, often written I, of a plane area about a given axis by
the expression

where A is the area of the figure ;

h is the depth of the figure perpendicular to the axis
;

n is a coefficient depending on the shape of the figure

and the position of the axis.

First, when the axis is through the centre of gravity of

the figure parallel to the base, as in Figs. 51 and 52

**.
l

FIG 51.

for a circle n

for a rectangle n

for a triangle

FIG. 52.

r, so that I = yV
r,

I =
I

1 9 B * """



IO4 Theoretical Naval Architecture.

Second, when the axis is one of the sides

for a rectangle n = J, so that I =
for a triangle n =

-|,
I =

Example. Two squares of side a are joined to form a rectangle. The
I of each square about the common side is

J(a
2
)a

2
(a

1

area)

the I of both about the common side will be the sum of each taken

separately, or

If, however, we took the whole figure and treated it as a rectangle, its I

about the common side would be

^(2fl')(2a)
= \a> (area = 2a*)

which is the same result as was obtained before.

To find the moment of inertia of a plane figure about an axis

parallel to and a given distancefrom an axis through its centre

of gravity.

Suppose the moment of inertia about the axis NN passing

through the centre of gravity of the figure (Fig. 53) is I
,
the

0.
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Example. Having given the moment of inertia of the triangle in

Fig. 52 about the axis NN through the centre of gravity as TgA/fc
2

,
find the

moment of inertia about the base parallel to NN.
Applying the above rule, we have

A

which agrees with the value given above for the moment of inertia of a

triangle about its base.

Example. Find the moment of inertia of a triangle of area A and

height h about an axis through the vertex parallel to the base.

Ans. JA^2
.

Example. A rectangle is 4 inches long and 3 inches broad. Compare
the ratio of its moment of inertia about an axis through the centre parallel
to the long and short sides respectively.

Ans. 9 : 16.

Example. A square of 12 inches side has another symmetrical square
of half its area cut out of the centre. Compare the moments of inertia

about an axis through the centre parallel to one side of, the original

square, the square cut out, the remaining area.

Ans. As 4 : i I 3, the ratio of the areas being 4:252.

This last example illustrates the important fact that if an

area is distributed away from the centre of gravity, the moment
of inertia is very much greater than if the same area were

massed near the centre of gravity.

To find the Moment of Inertia of a Plane Cur-
vilinear Figure (as Fig. 36, p. 59) about its Base. Take
a strip PQ of length y and breadth (indefinitely small) dx>

Then, if we regard PQ as a rectangle, its moment of inertia

about the base DC is

\(y . dx)y^ y
3

. dx (y . dx = area)

and the moment of inertia of the whole figure about DC will

be the sum of all such expressions as this
; or

that is, we put the third part of the cubes of the ordinates of the

curve through either of Simpson's rules. For the water-plane

of a ship (for which we usually require to find the moment of

inertia about the centre line), we must add the moment of

inertia of both sides together: and, since these are symmetrical,
we have

1 = I /y d* (y
= semi-ordinate of water-plane).
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In finding the moment of inertia of a water-plane about the

centre line, the work is arranged as follows :

Number of

ordinate.
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about the centre line, but it is not convenient to use the area

as we have done above. We know that the area can be

expressed in the form

k x L X B

where L is the extreme length ;

B breadth;
k is a coefficient of fineness

;

so that we can write

I = LB8

where n is a new coefficient that will vary for different shapes
of water-planes. If we can find what the values of the co-

efficient n are for ordinary water-planes, it would be very

useful in checking our calculation work. Taking the case of

a L.W.P. in the form of a rectangle, we should find that n =
0*08, and for a L.W.P. in the form of two triangles, n = 0*02.

These are two extreme cases, and we should expect for

ordinary ships the value of the coefficient n would lie between

these values. This is found to be the case, and we may take

the following approximate values for the value of n in the

formula I = nLE3
:

For ships whose load water-planes are extremely fine ... 0*04

,, ,, ,, moderately tine ... 0*05

,, ,, ,, ,, very full ... ... O'o6

For the water-plane whose moment of inertia we calcu-

lated above, we have, length 280 feet, breadth 35-3 feet, and

I = 508,262 in foot-units. Therefore the value of the coefficient

n is

508262
280 x (35-3)'

= '

41

Formula for finding the Distance of the Trans

verse Metacentre above the Centre of Buoyancy

(BM). We have already discussed in Chapter II. how the

position of the centre ofbuoyancy can be determined if the under-

water form of the ship is known, and now we proceed to discuss

how the distance BM is found. Knowing this, we are able to

fix the position of the transverse metacentre in the ship.
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Let Fig. 45, p. 94, represent a ship heeled over to a very
small angle 6 (much exaggerated in the figure).

B is the centre of buoyancy in the upright position when

floating at the water-line WL.
B' is the centre of buoyancy in the inclined position when

floating at the water-line W'L'.

v is the volume of either the immersed wedge LSL or the

emerged wedge WSW.
V is the total volume of displacement.

g is the centre of gravity of the emerged wedge.

g is the centre of gravity of the immersed wedge.

Then, using the principle given on p. 100, BB' will be parallel

to gg, and

since the new displacement is formed by taking away the wedge
WSW from the original displacement, and putting it in the

position LSL'.

Now for the very small angle of inclination, we may say

tliat

BB'

BM = sln *

or BB' = BM sin

so that we can find BM if we can determine the value of

v x gg t
since V, the volume of displacement, is known.

Let Fig. 54 be a section of the vessel; //, //', the original

and new water-lines respectively, the angle of inclination being

very small. Then we may term wSu/ the emerged triangle,

and /S/ the immersed triangle, being transverse sections of

the emerged and immersed wedges, and a/a/, // being for all

practical purposes straight lines. Ify be the half-breadth of

the water-line at this section, we can say ww' = II' = y sin 0,

and the area of either of the triangles is

\y X y sin = ^y
z
sin 6

Let 0, d be the centres of gravity of the triangles #>Sze/, /S/

respectively ;
then we can say, seeing that 6 is very small, that
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ad = f.y,
since the centre of gravity of a triangle is two-thirds

the height from the apex. The new immersed section being

regarded as formed by the transference of the triangle

FIG.

to the position occupied by the triangle /S/, the moment of

transference is

(l/ sin 0) X & = f/ sin

and for a very small length dx of the water-line the moment
will be

fy sin . dx

since the small volume is \f sin . dx, and the shift of its

centre of gravity is fjy.
If now we summed all such expres-

sions as this for the whole length of the ship, we should get

the moment of the transference of the wedge, or v x gg'.

Therefore we may say, using the ordinary notation

vxgg' = /fy sin e . dx
= fsin0jy.dk

therefore we have

v X gg __ | sin jy . dx

~V
~~ "

vBB' = BM sin =

or BM =

But the numerator of this expression is what we have found to
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be the moment of inertia of 'a water-plane about its centre line,

y being a semi-ordinate
;
therefore we can write

We have seen, on p. 105, how the moment of inertia of a

water-plane is found for any given case, and knowing the

volume of displacement, we can then determine the distance

BM, and so, knowing the position of the C.B., fix the position

of the transverse metacentre in the ship.

Example. A lighter is in the form of a box, 120 feet long, 30 feet

broad, and floats at a draught of 10 feet. Find its transverse BM.
In this case the water-plane is a rectangle 120' X 30', and we want its

I about the middle line. Using the formula for the I of a rectangle about
an axis through its centre parallel to a side, nA/4

2
,
we have

1 = n X 36oo X 900 (k = 30)
= 270,000

V, the volume of displacement, = 120x30x10 = 36,000

BM = 270,000
5feet

36,000

Example. A pontoon of 10 feet draught has a constant sectio*n in the

form of a trapezoid, breadth at the water-line 30 feet, breadth at base

20 feet, length i'2O feet. Find the transverse BM.
Ans. 9 feet.

It will be noticed that the water-plane in this question is

the same as in the previous question, but the displacement being

less, the BM is greater. M is therefore higher in the ship for

two reasons. BM is greater and B is higher in the second case.

Example. A raft is formed of two cylinders 5 feet in diameter, parallel

throughout their lengths, and 10 feet apart, centre to centre. The raft floats

with the axes of the cylinders in the surface. Find the transverse BM.
We shall find that the length does not affect the result, but we will

suppose the length is / feet. We may find the I of the water-plane in two

ways. It consists of two rectangles each /' X 5', and their centre lines

are 10 feet apart.
1. The water-plane may be regarded as formed by cutting a rectangle

/' x 5' out of a rectangle /' X 15' ;

.-. I - (/ x 15) x is
2 -

A(/ x 5) x s
3

= Mi58 -
5

3
)

= af|V

this being about a fore-and-aft axis at the centre of the raft.

2. We may take the two rectangles separately, and find the I of each

about the centre line of the raft, which is 5 feet from the line through the

centre of each rectangle. Using the formula

I = I. + Ay'
|(/

x 5)5* + (/ x 5)5*
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and for both rectangles the moment of inertia will be twice this, or 3
f|

8
/, as

obtained above.

We have to find the volume of displacement, which works out to *$l
cubic feet. The distance BM is therefore

s$o/-4-^./= 1 3- 8 feet

Example. A raft is formed of three cylinders, 5 feet in diameter,

parallel and symmetrical throughout their lengths, the breadth extreme

being 25 feet. The raft floats with the axes of the cylinders in the surface.

Find the transverse BM.
The moment of inertia of the water-plane of this raft is best found by

using the formula I = I + Ay8 for the two outside rectangles, and adding
it to I

,
the moment of inertia of the centre rectangle about the middle line.

We therefore have for the whole water-plane I = <-\p/, where / = the

length ; and the volume of displacement being
-8
2
2
8
5
/, the value of BM will be

35 ^et.

Approximate Formula for the Height of the Trans-

verse Metacentre above the Centre of Buoyancy.
The formula for BM is

We have seen that we may express I as LB8
, where n is

a coefficient which varies for different shapes of water-planes,

but which will be the same for two ships whose water-planes
are similar.

We have also seen that we may express V as LBD, where

D is the mean moulded draft (to top of keel amidships), and k

is a coefficient which varies for different forms, but which will

be the same for two ships whose under-water forms are similar.

Therefore we may say

n X L X B3

BM =

B2

where a is a coefficient obtained from the coefficients n and k.

Sir William White, in the "Manual of Naval Architecture,"

gives the value of a as being between 0*08 and 0*1, a usual

value for merchant ships being 0*09. The above formula

shows very clearly that the breadth is more effective than the

draught in determining what the value of BM is in any given
case. It will also be noticed that the length is not brought in.
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The ship for which the moment of inertia of a water-plane
was calculated on p. 106, had a displacement of 1837 tons up
to that water-plane. The value of BM is therefore

508262
X 35

7*91 feet

The breadth and mean draught were 35*3 and 13! feet re-

spectively. Consequently the value of the coefficient a is

0*084.

To prove that a Homogeneous Log of Timber of

Square Section and Specific Gravity
P5 cannot float

in Fresh Water with One of its Faces Horizontal.

The log having a specific gravity of 0-5 will float, and will float

with half its substance immersed. The condition that it shall

float in stable equilibrium, as regards transverse inclination, in

any position is that the transverse metacentre shall be above

the centre of gravity.

Let the section be as indicated in Fig. 55, with side length
20. And suppose the log
is placed in the water with

one side of this section

horizontal. Then the

draught-line will be at a

distance a from the bot-

tom, and the log, being

homogeneous, i.e. of the

same quality all through,
will have its C.G. in the

middle at G, at a distance

also of a from the bottom.

The centre of buoyancy
FIG. 55. will be at a distance of

- from the bottom. The height of the transverse metacentre
2

above the centre of buoyancy is given by

!
I

j 42a,-

BM
I

V
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where I = moment of inertia of water-plane about a longi-

tudinal axis through its centre

V = volume of displacement in cubic feet.

Now, the water-plane of the log is a rectangle of length /

and breadth 20, and therefore

its I =
j

/. za(2of
and V = /. 2a . a = zla?

:. BM = iV^
3
-r- 2la* = a

But BG = \a

therefore the transverse metacentre is below the centre of

gravity, and consequently the log cannot float in the position

given.

If, now, the log be assumed floating with one corner down-

ward, it will be found by a precisely similar method that

BG = 0-4710

and BM = 0*9430

Thus in this case the transverse metacentre is above the

centre of gravity, and consequently the log will float in stable

equilibrium.

It can also be shown by similar methods that the position

of stable equilibrium for all directions of inclination of a cube

composed of homogeneous material of specific gravity o'5 is

with one corner downwards.

Metacentric Diagram. We have seen how the position

of the transverse metacentre can be determined for any given

ship floating at a definite water-line. It is often necessary,

however, to know the position of the metacentre when the ship

is floating at some different water-line
; as, for instance, when

coal or stores have been consumed, or when the ship is in a light

condition. It is usual to construct a diagram which will show

at once, for any given mean draught which the vessel may have,

the position of the transverse metacentre. Such a diagram is

shown in Fig. 56, and it is constructed in the following manner:

A line W^ is drawn to represent the load water-line, and

parallel to it are drawn W2L2 ,
W3L2 ,

W4L4 to represent the

i
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water-lines Nos. 2, 3, and 4, which are used for calculating the

displacement, the proper distance apart, a convenient scale

being \ inch to i foot. A line L^4 is drawn cutting these

level lines, and inclined to them at an angle of 45. Through
the points of intersection L1}

L2,
L3 ,

L4 ,
are drawn vertical lines

as shown. The ship is then supposed to float successively at

these water-lines, and the position of the centre of buoyancy
and the distance of the transverse metacentre above the C.B.

il

W,

w

FIG. 56.

calculated for each case. The methods employed for finding

the position of the C.B. at the different water-lines have already

been dealt with in Chapter II. On the vertical lines are then

set down from the L.W.L. the respective distances of the

centres of buoyancy below the L.W.L. Thus L^ is the

distance when floating at the L.W.L., and AB3 the distance

when floating at No. 3 W.L. In this way the points B15 B2,

B3 ,
B4 are obtained ;

and if the calculations are correct, a fair
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line can be drawn passing through all these spots as shown.

Such a curve is termed the curve of centres of buoyancy. It is

usually found to be rather a flat curve, being straight near the

load-line condition. The distance BM for each water-line is

then set up from Bi, B2 ,
B3 ,

B4 respectively, giving the points

MU M2 ,
M3 ,

M4 . A curve can then be drawn through these

points, which is termed the curve of transverse metacentres.

Now, suppose the ship is floating at some intermediate water-

line say wl: through /, where wl cuts the 45 line, draw a

vertical cutting the curves of centres of buoyancy and meta-

centres in ]b and m respectively. Then m will be the position

of the transverse metacentre of the ship when floating at the

water-line wl. It will be noticed that we have supposed the

ship to float always with the water-plane parallel to the L.W.P.;
that is to say, she does not alter trim. For water-planes not

parallel to the L.W.P. we take the mean draught (i.e. the

draughts at the fore-and-aft perpendiculars are added together

and divided by 2), and find the position of M on the meta-

centric diagram for the water-plane, parallel to the L.W.P.,

corresponding to this mean draught. Unless the change of

trim is very considerable, this is found to be correct enough
for all practical purposes. Suppose, however, the ship trims

very much by the stern,
1
owing to coal or stores forward being

consumed, the shape of her water-plane will be very different

from the shape it would have if she were floating at her normal

trim or parallel to the L.W.P. ; generally the water-plane will

be fuller under these circumstances, and the moment of inertia

will be greater, and consequently M higher in the ship, than

would be given on the metacentric diagram. When a ship
is inclined, an operation that will be described later, she

is frequently in an unfinished condition, and trims consider-

ably by the stern. It is necessary to know the position of

the transverse metacentre accurately for this condition, and

1 This would be the case in the following : A ship is designed to float

at a draught of 17 feet forward and 19 feet aft, or, as we say, 2 feet by the
stern. If her draught is, say, 16 feet forward and 20 feet aft, she will have
the same mean draught as designed, vk. 18 feet, but she will trim 2 feet

more by the stern.
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consequently the metacentric diagram cannot be used, but a

separate calculation made for the water-plane at which the

vessel is floating.

On the metacentric diagram is placed also the position of

the centre of gravity of the ship under certain conditions. For

a merchant ship these conditions may vary considerably owing
to the nature of the cargo carried. There are two conditions

for which the C.G. may be readily determined, viz. the light

condition, and the condition when loaded to the load-line with

a homogeneous cargo. The light condition may be denned as

follows : No cargo, coal, stores, or any weights on board not

actually forming a part of the hull and machinery, but includ-

ing the water in boilers and condensers. The draught-lines for

the various conditions are put on the metacentric diagram, and

the position of the centre of gravity for each condition placed

in its proper vertical position. The various values for GM, the

metacentric height, are thus obtained.

On the left of the diagram are placed, at the various water-

lines, the mean draught, displacement, and tons per inch.
1

There are two forms of section for which it is instructive to

construct the metacentric diagram.

1. A floating body of constant rectangular section.

2. A floating body of constant triangular section, the apex

of the triangle being at the bottom.

i. For a body having a constant rectangular section, the

moment of inertia of the water-plane is the same for all

draughts, but the volume of displacement varies. Suppose the

rectangular box is 80 feet long, 8 feet broad, 9 feet deep. Then

the moment of inertia of the water-plane for all draughts is

5*5(80 X 8) x 8" = ^4P
The volumes of displacement are as follows :

Draught 6 inches V = 80 X 8 X J cubic feet

1 foot V = 8ox8
2 feet V = 80x8x2
4 V = Sox 8x4 ..

V = 80x8x7"
t 9 V =8ox 8x9

1 For a specimen metacentric diagram, see Example 40, Chap. III.

Specimen diagrams for various types of ships are given in the Author's

"War Ships."
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and the values of BM are therefore as follows :

Draught 6 inches BM = 10*66 feet

1 foot ...
' BM = 5-33

2 feet BM = 2'66

4 BM= 1-33

7 ,,
BM = 076

9 BM = 0-59

The centre of buoyancy is always at half-draught, so that

its locus or path will be a straight line,
1 and if the values obtained

above are set off from the centres of buoyancy at the various

water-lines, we shall obtain the curve of transverse metacentres

as shown in Fig. 57 by the curve AA, the line BB being the

corresponding locus of the centres of buoyancy.

9-0.

6-O.

3-5.

Ox'

FIG. 57-

s. For a floating body with a constant triangular section, the

locus of centres of buoyancy is also a straight line because it is

always two-thirds the draught above the base.
1

Suppose the

triangular section to be 10 feet broad at the top and 9 feet deep,
the length of the body being 120 feet. In this case we must

calculate the moment of inertia of each water-plane and the

volume of displacement up to each. The results are found to

be as follows :

' This may be seen by finding a few spots on this locus.
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Draught I foot BM = 0*20 feet

,, 2 feet BM = 0*41 ,,

4 BM = o-82
6 BM=i-23
9 BM = i-85

These values are set up from the respective centres of

buoyancy, and give the locus of transverse metacentres, which

is found to be a straight line, as shown by CC in Fig. 57, DD
being the locus of centres of buoyancy.

Approximation to Locus of Centres of Buoyancy
on the Metacentric Diagram. We have seen (p. 65) how
the distance of the centre of buoyancy below the L.W.L. can

be approximately determined. The locus of centres of buoyancy
in the metacentric diagram is, in most cases, very nearly straight

for the portion near the load-line, and if we could obtain easily

the direction the curve takes on leaving the position for the load

water-line, we should obtain a very close approximation to the

actual curve itself. It might be desirable to obtain such an

approximation in the early stages of a design, when it would

not be convenient to calculate the actual positions of the centre

of buoyancy, in order to accurately construct the curve.

Let be the angle the tangent to the curve of buoyancy at

the load condition makes with the horizontal, as in

Fig. 56;

A, the area of the load water-plane in square feet
;

V, the volume of displacement up to the load water-line

in cubic feet
;

^, the distance of the centre of buoyancy of the load

displacement below the load water-line in feet.

Then the direction of the tangent to the curve of buoyancy is

given by

tan 9 = -*

(for proof see later.)

Each of the terms in the latter expression are known or can

be readily approximated to,
1 and we can thus determine the in-

clination at which the curve of centres of buoyancy will start,

and this will closely follow the actual curve. 2

1 See Example 39, p. 143, for a further approximation.
9 See a paper by the late Professor Jenkins read before the Institution

of Naval Architects in 1884.
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In a given case

A = 7854 square feet

h = 5*45 feet

V = 2140 x 35 cubic feet

so that

2140 x 35 i

= 0-572*

Finding the Metacentric Height by Experiment.
Inclining Experiment. We have been dealing up to the

present with the purely geometrical aspect of initial stability,

viz. the methods employed and the principles involved in

finding the position of the transverse metacentre. All that is

needed in order to determine this point is the form of the

underwater portion of the vessel. But in order to know any-

thing about the vessel's initial stability, we must also know the

vertical position of the centre of gravity of the ship, and it is to

determine this point that the inclining experiment is performed.

This is done as the vessel approaches completion, when

weights that have yet to go on board can be determined

together with their final positions. Weights are shifted trans-

versely across the deck, and by using the principle explained on

p. 100, we can tell at once the horizontal shift of the centre of

gravity of the ship herself due to this shift of the weights on

board. The weight of the ship can be determined by calculating

the displacement up to the water-line she floats at, during the

experiment. (An approximate method of determining this

displacement when the vessel floats out of her designed trim

1 The best way to set off this line is to set off a horizontal line of 10 feet

long (on a convenient scale), and from the end set down a vertical line

572 feet long on the same scale. This will give the inclination required,

for tan = f^- =^ = 0-572.
base 10

This remark applies to any case in which an angle has to be set off

very accurately. A table of tangents is consulted and the tangent of

the required angle is found, and a similar process to the above is gone

through.
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will be found on p. 152.) Using the notation employed on

p. 100, and illustrated by Fig. 49, we have

rr ,
wxdGG = IT"

Now, unless prevented by external forces, it is evident that

the vessel must incline over to such an angle that the centre of

gravity G' and the centre of buoyancy B' are in the same verti-

cal line (see Fig. 58), and, the angle of inclination being small,

FIG. 58.

M will be the transverse metacentre. If now we call 6 the

angle of inclination to the upright, GM being the "
metacentric

height
"

GG'

w X d
~ W X tan

using the value found above for GG'. The only term that we

do not yet know in this expression is tan 6, and this is found in

the following manner : At two or three convenient positions
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in the ship
x
(such as at bulkheads or down hatchways) plumb-

bobs are suspended from a point in the middle line of the ship,

and at a convenient distance from the point of suspension a

horizontal batten is fixed, with the centre line of the ship marked

on it, as shown by PQ in Fig. 58. Before the ship is inclined,

the plumb-line should coincide, as nearly as possible, with the

centre-line of the ship that is to say, the ship should be prac-

tically upright. When the ship is heeled over to the angle 0,

the plumb-line will also be inclined at the same angle, 0, to the

original vertical or centre line of the ship, and if / be the

distance of the horizontal batten below the point of suspension

O in inches, and a the deviation of the plumb-line along the

batten, also in inches, the angle 6 is at once determined, for

tan 6 = -,

so that we can write l

In practice it is convenient to check the results obtained, by
dividing the weight w into four equal parts, placing two sets on
one side and two sets on the other side, arranged as in Fig. 59.

The experiment is then performed in the following order :

(a) See if the ship is floating upright, in which case the

plumb-lines will coincide with the centre of the ship.

(b) The weight (i), Fig. 59, is shifted from port to star-

board on to the top of weight (3) through the distance d feet,

say, and the deviations of the plumb-lines are noted when the

ship settles down at a steady angle.

(c) The weight (2) is shifted from port to starboard on to

the top of weight (4) through the distance d feet, and the

deviations of the plumb-line noted.

(d) The weights (i) and (2) are replaced in their original posi-

tions, when the vessel should again resume her upright position.
* If two positions are taken, one is forward and the other aft. If three

positions are taken, one is forward, one aft, and one amidships.
* This depends on the assumption that M is a fixed point for the heel

obtained, and this is true for ordinary ships. It fails, however, in the case
of a vessel of very small or of zero metacentric height. See examples in

Appendix A.
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(e) The weight (3) is moved from starboard to port, and

the deviations of the plumb-lines noted.

(/) The weight (4) is moved from starboard to port, and

the deviations of the plumb-lines noted.

With the above method of conducting the experiment,
1 and

using two plumb-lines, we obtain eight readings, and if three

plumb-lines were used we should obtain twelve readings. It is

important that such checks should be obtained, as a single result

might be rendered quite incorrect, owing to the influence of the

hawsers, etc. A specimen experiment is given on p. 123, in

which two plumb-lines were used. The deviations obtained

!
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free water, and boilers either emptied or run up quite full.

Any floating stages should be released or secured by veiy slack

painters.

If possible a fine day should be chosen, with the water calm

and little wind. All men not actually employed on the experi-

ment should be sent ashore. Saturday afternoon or a dinner

hour is found a convenient time, since then the majority of

the workmen employed finishing the ship are likely to be away.

The ship should be hauled head or stern on to the wind,

if any, and secured by hawsers at the bow and stern. When

taking the readings, these hawsers should be slacked out, so as

to ensure that they do not influence the reading. The ship

should be plumbed upright before commencing.
An account should be taken, with positions of all weights to

be placed on board to complete, of all weights to be removed,
such as yard plant, etc., and all weights that have to be shifted.

The following is a specimen report of an inclining experi-

ment :

Report on Inclining Experiment performed on "

at . Density of water cubicfeet to the ton.
-, 189-,

Draught of water

i j

Displacement in tons at this draught

1 6' 9" forward.
22' 10" aft.

5372

The wind was slight, and the ship was kept head to wind during the

experiment. Ballast used for inclining, 50 tons. Lengths of pendulums,
two in number, 15 feet. Shift of ballast across deck, 36 feet.
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No water in boilers, feed-tanks, condensers, distillers, cisterns, etc.

Workmen on board, 66.

Tools on board, 5 tons.

Masts and spars complete.
No boats on board.

Bunkers full.

Anchors and cables, complete and stowed.
No provisions or stores on board.

Engineers' stores, half on board.

Hull complete.

The mean deviation in 15 feet for a shift of 25 tons through 36 feet is

lOfk inches = 10*312 inches.

... GM = 25 x 36 x 15 X 12 =
10-312 x 5372

The ship being in an incomplete condition at the time of

the inclining experiment, it was necessary to take an accurate

account of all weights that had to go on board to complete,
with their positions in the ship, together with an account of

all weights that had to be removed, with their positions. The
total weights were then obtained, together with the position of

their final centre of gravity, both in a longitudinal and vertical

direction. For the ship of which the inclining experiment is

given above, it was found that to fully complete her a total

weight of 595 tons had to be placed on board, having its

centre of gravity u feet before the midship ordinate, and 3*05

feet below the designed L.W.L. Also 63 tons of yard plant,

men, etc., had to be removed, with centre of gravity 14 feet

abaft the midship ordinate, and 15 feet above the designed

L.W.L. The centre of buoyancy of the ship at the experi-

mental water-line was 10*8 feet abaft the midship ordinate,

and the transverse metacentre at this line was calculated at

3-14 feet above the designed L.W.L.

We may now calculate the final position of the centre of

gravity of the completed ship as follows, remembering that

in the experimental condition the centre of gravity must be

in the same vertical line as the centre of buoyancy. The
vertical position of G in the experimental condition is found

by subtracting the experimental GM, viz. 2*92 feet, from the

height of the metacentre above the L.W L. as given above,

viz. 3' 1 4 feet.
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transverse melacentre. The first is dependent on the vertical

distribution of the weights forming the structure and lading 01

the ship, and its position in the ship must vary with differences

in the disposition of the cargo carried. The transverse meta-

centre depends solely upon the form of the ship, and its

position can be completely determined for any given draught

of water when we have the sheer drawing of the vessel. There

are two steps to be taken in finding its position for any given

ship floating at a certain water-line.

1. We must find the vertical position of the centre of

buoyancy, the methods adopted being explained in Chapter II.

2. We then find the distance separating the centre of

buoyancy and the transverse metacentre, or BM, as explained

in the present chapter.

By this means we determine the position of M in the ship.

The methods of estimating the position of G, the centre

of gravity for a new ship, will be dealt with separately in

Chapter VI. ;
but we have already seen how the position of G

can be determined for a given ship by means of the inclining

experiment. Having thus obtained the position of M and G in

the ship, we get the distance GM, or the metacentric height.

The following table gives the values of the metacentric height

in certain classes of ships. For fuller information reference

must be made to the works quoted at the end of the book.

Type of -ship.
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sails the metacentric height must be large. This is seen by
reference to the expression for the moment of statical stability

at small angles of inclination from the upright, viz.
^i#'-'

W X GM sin (see p. 98)

W being the weight of the ship in tons
; being the angle of

inclination, supposed small. This, being the moment tending

to right the ship, is directly dependent on GM. A " crank "

ship is a ship very easily inclined, and in such a ship the

metacentric height is small. For steadiness in a seaway the

metacentric height must be small.

There are thus two opposing conditions to fulfil

j. The metacentric height GM must be enough to enable

the ship to resist inclination by external forces. This is espe-

cially the case in sailing-ships, in order that they may be able

to stand up under canvas without heeling too much. In the

case of the older battleships with short armour belts and

unprotected ends, sufficient metacentric height had to be pro-

vided to allow of the ends being riddled, and the consequent
reduction of the moment of inertia of the water-plane.

2. The metacentric height must be moderate enough (if

this can be done consistently with other conditions being

satisfied) to make the vessel steady in a seaway. A ship which

has a very large GM comes back to the upright very suddenly
after being inclined, and consequently a vessel with small

GM is much more comfortable at sea, and, in the case of a

man-of-war, affords a much steadier gun platform.

In the case of sailing-ships, a metacentric height of from

3 to 3^- feet is provided under ordinary conditions of service,

in order to allow the vessel to stand up under her canvas. It is,

however, quite possible that, when loaded with homogeneous

cargoes, as wool, etc., this amount cannot be obtained, on

account of the centre of gravity of the cargo being higl) up in

the ship. In this case, it would be advisable to take in water

or other ballast in order to lower the centre of gravity, and
thus increase the metacentric height

In merchant steamers the conditions continually vary on

account of the varying nature and distribution of the cargo
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carried, and it is probable that a GM of i foot should be the

minimum provided when carrying a homogeneous cargo (con-

sistently with satisfactory stability being obtained at large

inclinations).
1 There are, however, cases on record of vessels

going long voyages with a metacentric height of less than i

foot, and being reported as comfortable and seaworthy. Mr.

Denny (Transactions of the Institution of Naval Architects
',

1896) mentioned a case of a merchant steamer, 320 feet long

^'carrying a homogeneous cargo), which sailed habitually with

a metacentric height of 0*6 of a foot, the captain reporting her

behaviour as admirable in a seaway, and in every way com-

fortable and safe.

It is the practice of one large steamship company to lay

down that the metacentric height in the loaded condition is no

greater than is required to secure that the metacentric height

in the light condition is not negative.

Effect on Initial Stability due to the Presence of

Free Water in a Ship. On reference to p. 123, where the

inclining experiment for obtaining the vertical position of the

centre of gravity of a ship is explained, it will be noticed that

special attention is drawn to the necessity for ascertaining

that no free water is allowed to remain in the ship while the

experiment is being performed. By free water is meant water

having a free surface. In the case of the boilers, for instance,

they should either be emptied or run up quite full. We now

proceed to ascertain the necessity for taking this precaution.

If a compartment, such as a ballast tank in the double bottom,

or a boiler, is run up quite full, it is evident that the water will

have precisely the same effect on the ship as if it were a solid

body having the same weight and position of its centre of

gravity as the water, and this can be allowed for with very

little difficulty. Suppose, however, that we have on board in

a compartment, such as a ballast tank in the double bottom, a

quantity of water, and the water does not completely fill the

1 Mr. Pescod, before the North-East Coast Institution of Engineers and

Shipbuilders, 1903, dealt with the minimum GM for small vessels. He
there states that it is generally recognized that the GM of cargo vessels

should not be less than O'8 foot provided that a righting arm of like amount
is obtained at 30 to 40 degrees.
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tank, but has a free surface, as wl^ Fig. 60.! If the ship is

heeled over to a small angle 0, the water in the tank must

adjust itself so that its surface w'l' is parallel to the level water-

line W'L'. Let the volume of either of the small wedges wsw',

1st be z> > and g> g
1
the positions of the ircentres of gravity, b, b

1

being the centres of gravity of the whole volume of water in

the upright and inclined positions respectively. Then, if V
be the total volume of water in the tank, we have

V X bV = vQ X gg'

and bb' = =^- X XS*

and bit is parallel to gg.

found the moment of

transference of the

wedges WSW, LSL',

in Fig. 45, we can find

the moment of trans-

ference of the small

wedges wsw', /j/,viz.

^o X gg' = i X B

where i is the moment

of inertia of the free

surface of the water in

the tank about a fore-

and-aft axis through s
;

and 9 is the circular

measure of the angle

of inclination.

Now, in precisely the same way as we

FIG. 60.

Substituting this value for v x gg', we have

i X

Draw the new vertical through ', meeting the middle line in

m\ then

bb' = bmxQ
1
Fig. 60 is drawn out of proportion for the sake of clearness.
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and consequently

bm X =

and bm =
^r-

Now, if the water were solid its centre of gravity would be

at b both in the upright and inclined conditions, but the weight
of the water now acts through the point b' in the line b'm, and

its effect on the ship is just the same as if it were a solid

weight concentrated at the point m. So that, although b is

the actual centre ofgravity of the water, its effect on the ship,

when inclined through ever so small an angle, is the same as

though it were at the point m t
and in consequence of this the

point m is termed the virtual centre of gravity of the water. 1

This may be made clearer by the following illustrations :

1. Suppose that one instant the water is solid, with its

centre of gravity at b, and the following instant it became liquid.

Then, for small angles of inclination, its effect on the ship would

be the same as if we had raised its weight through a vertical

distance bm from its actual to its virtual centre of gravity.

2. Imagine a pendulum suspended at m
t
with its bob at b.

On the ship being inclined to the small angle 0,the pendulum
will take up the position mb\ and this corresponds exactly to

the action of the water.

We thus see that the centre of gravity of the ship cannot be

regarded as being at G, but as having risen to GO, and ifW be

the weight of water in tons = -f (the water being supposed

salt), we have
W X GG = W X bm

and therefore

GG = V Xm = x bm (
v = volume of displacement)

1 See a paper by Mr. W. Hok, at the Institution of Naval Architects,

1895, on
" The Transverse Stability of Floating Vessels containing Liquids,

with Special Reference to Ships carrying Oil in Bulk." See also a paper
in the "Transactions of the Institution of Engineers and Shipbuilders in

Scotland for 1889," by the late Professor Jenkins, on the stability of vessels

carrying oil in bulk.
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But we have seen that

bm = ==-

and therefore

GG, = Y X ^ = 1

The new moment of stability at the angle is

W X G M x sin B = W x (GM - GG ) sin 6

= WX
the metacentric height being reduced by the simple expres-

sion ==. We notice here that the amount of water does not

affect the result, but only the moment of inertia of the free

surface. The necessity for the precaution of clearing all free

water out of a ship on inclining is now apparent. A small

quantity of water will have as much effect on the position of

the centre of gravity, and therefore on the trustworthiness of

the result obtained, as a large quantity of water, provided it

has the same form of free surface. If a small quantity of

water has a large free surface, it will have more effect than

a very large quantity of water having a smaller free surface.

If the liquid contained is other than the water the vessel is

P* i

floating in, the loss of metacentric height is
-^,

where p is the

specific gravity of liquid compared with outside water, and V
the total volume of displacement.

Example. A vessel has a compartment of the double bottom at the
middle line, 60 feet long and 30 feet broad, partially filled with salt water.
The total displacement is 9100 tons, and centre of gravity of the ship and
water is o -26 feet below the water-line. Find the loss of metacentric

height due to the water having a free surface.

We have here given the position of the centre of gravity of the ship and
the water. The rise of this centre of gravity due to the mobility of the
water is, using the above notation

i

V
and / = ^(60 X 30) X (30)*

= 5 X (30)'

Since the free surface is a rectangle 60 feet long and 30 broad

and V = 9100 x 35 cubic feet

therefore the loss in metacentric height = =- = 0-424 feet
9100 x 35
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Metacentric Diagrams for Simple Figures. i. A
rectangular box. This is dealt with on p. 116.

B2

BM =
Ta "n B = breadth D = draught,

D Ba

and M from base is--h ^ jj

By the methods of the calculus this is found to be a minimum
when D2 = \ . B2

, i.e. when M is in the W.L. or where it crosses

the 45 line.

The M curve is a hyperbola referred to the vertical at zero

draught, and the C.B. line as axes, having the equation

the axes being asymptotes.

2. A vessel with a triangular section, vertex down. This is

dealt with on p. 117, where it is seen that the M curve is

straight

BM =
J.^. M from base = f .D + J.jj

M from base B2

/.
-

g
-

f + f-- jJJ I + I tan a = constant

Tt

Pj
= tan a, where a is the semi-vertical angle

i.e. M curve is a straight line, making an angle 0, with the

base line such that tan = (i + tan2

a).

3. Vessel with parabolic section. A parabola has the equa-

tion referred to axes at the vertex, y
2 = 4ax, i.e. for x draught

breadth at waterline is 2y = 4* ax (Fig. 6oA).

The C.G. of a parabola is f the depth, so that the C.B.

locus is a straight line making an angle with the base of

tan^d). Area of parabola = f . circumscribing rectangle.

BM =
f.2.lf

= * ' D
= = C nStant

i.e. the locus of metacentres in metacentric diagram is straight

and parallel to the C.B. locus.
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4. Vessel with circular section (Fig. 6oB). In this case the

metacentre is always at the centre, so that the M curve is a

straight line at mid depth.

FIG. 6oA. FIG. 6oB.

The B curve is a flat curve starting at an angle with the

base, such that = tan"1
^), since there the circle may be

regarded as a parabola.

For mid depth B below W.L. is --
(a being radius), and

3^
the inclination of tangent is an angle a such that tan a = '54

by the formula given on p. 118.

When completely immersed the curve finishes as a tangent
to the M curve.

Curves of Buoyancy, etc. The surface of biioyancy for a

given displacement is the surface traced out by the centre of

buoyancy as the vessel takes up all possible positions while

maintaining that displacement.
The surface offlotation is the surface traced out by the centre

of flotation under the same conditions.

The curve of buoyancy is the curve traced out on the transverse

vertical plane by the projection of the centre of buoyancy as the

ship is continually revolved about a longitudinal axis fixed in

direction while maintaining the same displacement. This curve is

also termed an isovol.

The curve of flotation is the curve traced out by the projection
of the centre of flotation under the same conditions.
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The pro-metacentre is the intersection of any two consecutive

lines of action of buoyancy, as M' in Fig. 6oE. When consecutive

lines do not intersect the pro-metacentre is the intersection of one
of them with the common perpendicular. For a condition of

equilibrium this intersection of consecutive lines of buoyancy is

the metacentre.

The metacentric is the locus of pro-metacentres.
The following are definitions of various sorts of equilibrium:

(1) Rotation in a given direction only.

(a) Stable equilibrium for a given direction of inclination

when, on being slightly displaced in that direction

from its position of rest, the vessel tends, on being

released, to go back to that position.

() Unstable equilibrium is as (a), only that the vessel moves
further from the position of rest.

(c) Indifferent or unstable equilibrium the vessel neither

tends to return to or to go further from the position of

rest.

(rf) Mixed Equilibrium if stable for one direction of in-

clination and unstable for the opposite direction.

(2) Rotation in all directions.

(a) Absolute equilibrium when only stable or unstable for

any direction of inclination.

(b) Relative stability when stable in some directions and

unstable in others.

Thus, in a ship

(i) If the C.G. is below the transverse metacentre M T,
she is

absolutely stable,

(ii) If the C.G. is above the longitudinal metacentre M L,

she is absolutely unstable.

(iii) If the C.G. is between M T and ML ,
she has relative

stability, being stable for longitudinal inclinations and

unstable for transverse inclinations.

The above definitions are well illustrated by a floating cube of

s.g. i.

(a) When floating with a face horizontal, the cube is

absolutely unstable.

(b] With one corner downwards, the cube has absolute

stability.

In going from one point on the surface of buoyancy to the con-

secutive point, B to B', BB' = ^ y^% and BB' is parallel to g^.

Hence, in the limit BB' is parallel to the water-plane, so that the
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tangent plane at any point to the surface of buoyancy is parallel to

the corresponding water-plane, and the normal to it through the

point of contact gives the line of action of buoyancy. The surface

must be wholly convex to the tangent plane or wholly concave to

some interior point. Similar reasoning will also apply to the curve

of buoyancy.
For a position of equilibrium, the line of action of the buoyancy

must pass through the C.G. ; therefore, the number of positions of

equilibrium that a body can take up is equal to the number of

normals that can be drawn from the C.G. to the surface of buoyancy.
For a given direction of inclination the number of positions of equi-

librium equals the number of normals that can be drawn from the

C. G. to the curve of buoyancy.
When BG thus drawn is a minimum, the equilibrium is stable.

When BG thus drawn is a maximum, the equilibrium is

unstable ;

for the stability is the same as that of the curve of buoyancy
rolled along a smooth horizontal plane, the weight being concen-

trated at the C.G. In moving from one position of equilibrium to

another, if the C.G. has to be raised we have stable equilibrium,
i.e. B'G > BG. If unstable, similarly B'G< BG.

The centre of curvature of the surface of buoyancy is what we
have termed the pro-metacentre, and the radius of curvature is

given by R =^ where I is the moment of inertia of the water-

plane about an axis through its C.G. perpendicular to the plane of

rotation, and V is the volume of

displacement. This is proved

exactly as in Chap. III. for the

upright BM.
Lederfs theorem for the radius

of curvature of the curve of

flotation.

In Fig. 6oc WL and W'L' are

consecutive water-lines for the

upright ivl, iv'l', when inclined to

a small angle, the increment of

displacement being AV. Then
when inclined the buoyancy V
acts through M, and that of AV through O, the centre of curva-

ture of the curve of flotation. B and B' are the upright C.B.'s

and M' the metacentre for the water-line W'L', and V + AV acts

through M' for a small inclination.

i

FIG. 6oc.
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Taking moments about C, the C.G. of the layer AV, we
have

(V x CM) + (AV x CO) = (V + AV)CM'
or V(BM - BC) + (AV x CO) = (V + AV)(B'M' - B'C)
now V x BC = (V + AV)B'C
so that (V x BM) + (AV x CO) = (V + AV)B'M'
or I + (AV x CO) = I + Al

d\
i.e. OC =

-jr..
in the Limit, which is

the expression for the radius of curvature of the curve of flotation

usually called r.

It can be readily shown that if a weight be added at the point
O the moment of initial stability is not changed. For ordinary

ships parallel-sided at the water-line d\ is zero or practically so, so

that O is in the water-line. We may therefore say that, generally

speaking, if a weight is added above the water-line it will diminish

the stability ; if added at the water-line there is no change in

the stability ;
if added below the water-line the stability is

increased.

Examples. (i.) r for a body of rectangular section, r o.

(ii.) r for a body of triangular equilateral section, angle 20.

(a) corner downwards, r d tan 2
(d = draught).

(b) corner upwards, r = c tan 2
(c being dis-

tance of water-line from vertex).

(iii.) r for a circular section, radius a, r = a cos 6.

(26 being angle subtended at the centre by the water-line.)

(iv.) Show that an added weight to keep the metacentric

height constant should be placed the same distance

from G as O is distant from M.

(v.) In Example (ii.) () above, if tan 6 = f and depth is 40'
then if the draught is less than 14*4 ft. a small addition

of ballast to the base of the triangle will make the

body less stable, but at greater draughts the stability
increases with the addition of ballast.

GEOMETRY OF THE METACENTRIC DIAGRAM.

r. Tangent to the curve of C.B. In Fig. 6oD, let be the

inclination of this locus to the horizontal at water-line WL.
Then for an increment of displacement AV and of draught by

the C.B. will rise an amount ^ . AV = '

. Ay.
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tan e = IL
s
-
e-2O? =

A-h Where A = area of water-plane,

h = C.B. below water-line,

V = volume displacement.

w
w

V+AV

Mr

FIG. 600.

Examples. (i.) for a box-shaped vessel, tan 6 = O'5-

(ii.) for a triangular section, tan = O'66.

(iii.) for a circular section at) , Q

half depth }
tan = o 54.

For ordinary ships it is found that tan Q = 0*55 about.

2. Tangent to the curve of metacentres. The increment of

volume AV, for a small inclination, has its line of action through O,
the centre of curvature of the curve of flotation. Let OM = k

then (V + AV)MM' = AV x OM . = AV x k (Fig. 6oc)

MM' =
V Ay.

If $ be the angle the tangent to the M curve makes with the

horizontal, then
rise or fall of M A . k .

tan
<}>
= - - = - in the limit

If k = o, then tan
</>
= o and the M curve is horizontal, i.e. when

the M curve is horizontal, the points M and O coincide. This is

otherwise obvious, as the added buoyancy will act through M, which

is therefore fixed in height for a small increment of draught. In a

box-shaped ship the M curve is horizontal when D 2 = \ B2
.

Co-ordinates of the Centre of Buoyancy referred to axes through
the itpright C.B.

In Fig. 6oE, x and y are the co-ordinates of B, the C.B. at

angle 0. For an increment of angle dQ, B' is the new C.B. and
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x + dx, y 4- tf^the co-ordinates, BM', B'M' the normals at B and B'

intersect in M' the pro-metacentre, and BM' = B'M' = R, and

R =
^ . BB' = R . dQ, and dx - BB' . cos 6, dy = BB' . sin 0,

.*. dx = R . cos e . d9 dy = R . sin . dQ

and x = JR . cos 6 . d9 y -
/R . sin e . d9.

Curves of R cos 6, R . sin can be drawn on a 6 base and integrated

up to the various angles. Thus, x and_x can be obtained and so

the curve of buoyancy drawn in. The righting arm at angle is

given by GZ = .r.cos 6 + y sin 9 B G.sin e.

FIG. 6oE. FIG. 6oF.

This is the French method of calculating stability due to

M. Reech

For a box so long as wall sided R = B M . sec2 6

so that x JB M . sec3 & cos 6 dQ B M . tan 9

y =
JB M sec3 B . sin 6 dQ

=
j*B
M . sec2 6 tan d6 - B M . tan2

This is the solution of question 35 in the Appendix.
Question 36 is solved as follows :

G' the new C.G. will lie on BM' and GG' = ^^
GG' cos 6 = x cos 6 + y sin B B G sin 6

GG' x +y . tan B G . tan 6

= B M . tan + JB M . tan3 e - B G . tan 6
= GM . tan e + *B M . tan3 6

Also GG' = w X d
W f
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STABILITY OF A WALL-SIDED VESSEL,

, v x hh 1

In Fig. 6oF, BR = =

v ~
\ -y

2
- tan e

hh' f the projection of aa on to W'L'
= ^ the projection of SL 4- La on to W'L'
= ^ (_y . cos + ^ .y . tan . sin 0)

:= = BM . sin 0(i + tan2
0) taking a unit length

= BR also.

GZ = BR - EG. sin

= BM sin + BM . tan2 sin - BG sin

= sin 0(GM + |BM . tan2
0).

This can be used to construct the curve of stability (see Chap.

V.) so far as the ship is wall-sided above and below water, and

can be used to check the cross curve at 15 say obtained by the

Integrator.

This formula may be used to determine the angle to which a

ship with negative metacentric height will loll over, for GZ will

then be zero, and we have

and the metacentric height when at the angle is 2 -. (See

example 37 in Appendix.)

EXAMPLES TO CHAPTER III.

1. Find the circular measure of 5 , ioj, 15!.
Ans. 0-09599; 0-17889; 0-27489.

2. Show that sin 10 is one-half per cent, less in value than the circular

measure of 10, and that tan 10 is one per cent, greater in value than the

circular measure of 10.

3. A cylinder weighing 500 Ibs., whose centre of gravity is 2 feet from

the axis, is placed on a smooth table and takes up a position of stable

equilibrium. It is rolled along parallel to itself through an angle of 60.
What will be the tendency then to return to the original position ?

Ans. 866 foot-lbs.

4. Find the moment of inertia about the longest axis through the centre

of gravity of a figure formed of a square of side 20, having a semicircle at

each end.
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5. Find the moment of inertia of a square of side 2a about a diagonal.
Am. \ a\

6. A square has a similar square cut out of its centre such that' the

moment of inertia (about a line through the centre parallel to one side) of

the small square and of the portion remaining is the same. What pro-

portion of the area of the original square is cut out ?

Ans. 071 nearly.

7. A vessel of rectangular cross-section throughout floats at a constant

draught of 10 feet, and has its centre of gravity in the load water-plane.
The successive half-ordinates of the load water-plane in feet are o'5, 6, 12,

16, 15, 9, o; and the common interval 20 feet. Find the transverse

metacentric height.
Ans. 8 inches.

8. A log of fir, specific gravity 0*5, is 12 feet long, and the section is

2 feet square. What is its transverse metacentric height when floating in

stable equilibrium in fresh water ?

Ans. o -

47 foot.

9. The semi-ordinates of a water-plane 34 feet apart are 0*4, 13*7,

25*4, 32-1, 34-6, 35-0, 34-9, 34-2, 32-1, 23-9, 6-9 feet respectively. Find
i-ts moment of inertia about the centre line.

Ans. 6,012,862.
10. The semi-ordinates of the load water-plane of a vessel are o, 3*35,

6-41, 8-63, 9-93, 10-44, I0'37, 9'94 8-96, 7-16, and 2-5 feet respectively.
These ordinates being 21 feet apart, find

(1) The tons per inch immersion.

(2) The distance between the centre of buoyancy and the transverse

metacentre, the load displacement being 484 tons.

Ans. (i) 773 tons; (2) 5*2 feet nearly.
11. The semi-ordinates, l6'6 feet apart, of a vessel's water-plane are

0-2, 2-3, 6-4, 9-9, 12-3, 13-5, 13-8, 137, 12-8, 10-6, 6-4, i'9, 0-2 feet

respectively, and the displacement up to this water-plane is 220 tons. Find
the length of the transverse BM.

Ans. 2O'6 feet.

12. A vessel of 613 tons displacement was inclined by moving 30 cwt.

of rivets across the deck through a distance of 22' 6". The end of a plumb-
line 10 feet long moved through 2\ inches. What was the metacentric

height at the time of the experiment ?

Ans. 2 -93 feet.

13. The semi-ordinates of a ship's water-plane 35 feet apart are, com-

mencing from forward, 0*4, 7*12, 15*28, 2i'8, 25-62, 26-9, 26-32, 24-42,
20 '8, I5'I5? 6 -39 feet respectively. There is an after appendage of 116

square feet, with its centre of gravity 180 feet abaft the midship ordinate.

Find

(1) The area of the water-plane.
(2) The tons per inch immersion.

(3) The distance of the centre of flotation abaft amidships.
(4) The position of the transverse metacentre above the L.W.L., taking

the displacement up to the above line as 5372 tons, and the

centre of buoyancy of this displacement 8'6i feet below the

L.W.L.
Ans. (I) 1 3, 292 square feet; (2) 31-6 tons; (3) 14*65 feet ; (4) 3-34

feet.

14. A ship displacing 9972 tons is inclined by moving 40 tons 54 feet
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across the deck, and a mean deviation of 9^ inches is obtained by pendulums
15 feet long. Find the metacentric height at the time of the operation.

Ans. 4* 1 8 feet.

15. A ship weighing 10,333 tons was inclined by shifting 40 tons 52
feet across the deck. The tangent of the angle of inclination caused was
found to be 0*05. If the transverse metacentre was 475 feet above the

designed L. W.L., what was the position of the centre of gravity of the ship
at the time of the experiment ?

Ans. 073 foot above the L.W.L.
1 6. A vessel of 26 feet draught has the moment of inertia of the L. W. P.

about a longitudinal axis through its centre of gravity 6, 500,000 in foot-

units. The area of the L.W.P. is 20,000 square feet, the volume of dis-

placement 400,000 cubic feet, and the centre of gravity of the ship may be

taken in the L.W.P. Approximate to the metacentric height.
Ans. 5^ feet.

17. Prove the rule given on p. 62 for the distance of the centre of

gravity of a semicircle of radius a from the diameter, viz. ^-a, by finding

the transverse BM of a pontoon of circular section floating with its axis in

the surface of the water.

(M in this case is in the centre of section.)

1 8. Take a body shaped as in Kirk's analysis, p. 84, of length 140
feet ; length of parallel middle body, loo feet'; extreme breadth, 30 feet ;

draught, 12 feet. Find the transverse BM.
Ans. 57 feet.

19. A vessel of 1792 tons displacement is inclined by shifting 5 tons

already on board transversely across the deck through 20 feet. The end

of a plumb-line 15 feet long moves through 5J inches. Determine the

metacentric height at the time of the experiment.
Ans. 1-91 feet.

20. A vessel of displacement 1722 tons is inclined by shifting 6 tons of

ballast across the deck through 22\ feet. A mean deviation of loj inches

is obtained with pendulums 15 feet long. The transverse metacentre is

15*28 feet above the keel. Find the position of the centre of gravity of the

ship with reference to the keel.

Ans. 13*95 f et

21. The ship in the previous question has 169 tons to go on board at

lo feet above keel, and 32 tons to come out at 20 feet above keel. Find
the metacentric height when completed, the transverse metacentre at the

displacement of 1859 tons being 15-3 feet above keel.

Ans. i -8 feet.

22. A vessel of 7000 tons displacement has a weight of 30 tons moved
transversely across the deck through a distance of 50 feet, and a plumb-bob
hung down a hatchway shows a deviation of 12 inches in 15 feet. What
was the metacentric height at the time of the operation ?

Ans. 3 '2 1 feet.

23. A box is 200 feet long, 30 feet broad, and weighs 2000 tons. Find
the height of the transverse metacentre above the bottom when the box is

floating in salt water on an even keel. Ans. 12 '26 feet.

24. Show that for a rectangular box floating at a uniform draught of d
feet, the breadth being 12 feet, the distance of the transverse metacentre

above the bottom is given by
24

feet, and thus the transverse meta-

centre is in the water-line when the draught is 4-9 feet.
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25. A floating body has a constant triangular section. If the breadth

at the water-line is A/2 times the draught, show that the curve of metacentres

in the metacentric diagram lies along the line drawn from zero draught at

45 to the horizontal, and therefore the metacentre is in the water-line for

all draughts.
26. A floating body has a square section with one side horizontal.

Show that the transverse metacentre lies above the centre of the square
so long as the draught does not much exceed 21 per cent, of the depth of

the square. Also show that as the draught gets beyond 21 per cent, of the

depth, the metacentre falls below the centre and remains below until

the draught reaches 79 per cent, of the depth ; it then rises again above
the centre of the square, and continues to rise as long as any part of the

square is out of the water.

(This may be done by constructing a metacentric diagram, or by using the

methods of algebra, in which case a quadratic equation has to be solved.)

27. Show that a square log of timber of 12 inches side, 10 feet long, and

weighing 320 Ibs., must be loaded so that its centre of gravity is more than

I inch below the centre in order that it may float with a side horizontal

in water of which 35 cubic feet weigh I ton.

28. A prismatic vessel is 70 feet long. The section is formed at the

lower part by an isosceles triangle, vertex downwards, the base being 20

feet, and the height 5 feet ; above this is a rectangle 20 feet wide and 5 feet

high. Construct to scale the metacentric diagram for all drafts.

29. A vessel's load water-plane is 380 feet long, and 75 feet broad, and
its moment of inertia in foot-units about the centre line works out to

8,000,000 about. State whether you consider this a reasonable result to

obtain, the water-plane not being very fine.
TJJ

30. Find the value of the coefficient a in the formula BM = a

referred to on p. in, for floating bodies having the following sections

throughout their length :

(a) Rectangular cross-section.

(6) Triangular cross-section, vertex down.

(c) Vertical-sided for one half the draught, the lower half of the section

being in the form of a triangle.
Arts, (a) 0-08; (6) c-i6 ; (c) o'li.

For ordinary ships the value of a will lie between the first and last of these.

31. A lighter in the form of a box is 100 feet long, 20 feet broad, and
floats at a constant draught of 4 feet. The metacentric height when empty
is 6 feet. Two bulkheads are built 10 feet from either end. Show that a

small quantity of water introduced into the central compartment will render

the lighter unstable in the upright condition.

32. At one time, in ships which were found to possess insufficient sta-

bility, girdling was secured to the ship in the neighbourhood of the water-

line. Indicate how far the stability would be influenced by this means.

33. A floating body has a constant triangular section. If the breadth

at the water-line is equal to the draught, show that the locus of metacentres

in the metacentric diagram makes an angle with the horizontal of about 40.
34. A cylinder is placed into water with its axis vertical. Show that if

the centre of gravity is in the water-plane, the cylinder will float upright if

the radius -r- the draught is greater than */2.

35. In a wholly submerged body show that for stable equilibrium the

centre of gravity must lie below the centre of buoyancy.
36. A floating body has a constant triangular section, vertex down-

wards, and has a constant draught of 12 feet, the breadth at the water-line
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being 24 feet. The keel just touches a quantity of mud, specific gravity 2.

The water-level now falls 6 feet : find the amount by which the meta-

centric height is diminished due to this.
1 Ans. 2f feet about.

37. A floating body of circular section 6 feet in diameter has a meta-

centric height of I "27 feet. Show that the centre of buoyancy and centre

of gravity coincide, when the body is floating with the axis in the surface.

38. It is desired to increase the metacentric height of a vessel which is

being taken in hand for a complete overhaul. Discuss the three following

methods of doing this, assuming the ship has a metacentric diagram as in

Fig. 56, the extreme load draught being 15 feet :

(1) Placing ballast in the bottom.

(2) Removing top weight.

(3) Placing a girdling round the ship in the neighbourhood of the

water-line.

39. Show that the angle in Fig. 56 is between 29 and 30 for a

vessel whose coefficient of L.W.P. is 075, and whose block coefficient

of displacement is 0-55. In any case, if these coefficients are denoted by

n and k respectively, show that tan =
\ + ^ approximately (use Mor-

rish's formula, p. 65).

40. From the following information construct the metacentric diagram,

using a scale of inch = I foot, and state the metacentric height and

draught in the three conditions given.

Draught.



CHAPTER IV.

LONGITUDINAL METACENTRE, LONGITUDINAL BM,
CHANGE OF TRIM.

Longitudinal Metacentre. We now have to deal with

inclinations in a fore-and-aft or longitudinal direction. We
do not have the same difficulty in fixing on the fore-and-aft

position of the centre of gravity of a ship as we have in fixing

its vertical position, because we know that if a ship is floating

steadily at a given water-line, the centre of gravity must be in

the same vertical line as the centre of buoyancy, by the con-

ditions of equilibrium laid down on p. 93. It is simply a

matter of calculation to find the longitudinal position of the

centre of buoyancy of a ship when floating at a certain water-

line, if we have the form of the ship given, and thus the fore-

and-aft position of the centre of gravity is determined.

We have already dealt with the inclination of a ship in a

transverse direction, caused by shifting weights already on

board across the deck ; and in a precisely similar manner we
can incline a ship in a longitudinal or fore-and-aft direction by

shifting weights along the deck in the line of the keel. The
trim of a ship is the difference between the draughts of water

forward and aft. Thus a ship designed to float at a draught
forward of 12 feet, and a draft aft of 15 feet, is said to trim 3 feet

by the stern.

We have, on p. 97, considered the definition of the trans-

verse metacentre, and the definition of the longitudinal meta-

centre is precisely analogous.

For a given water-line WL of a vessel, let B be the centre

of buoyancy (see Fig. 61), and BM the vertical through it.
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Suppose the trim of the vessel to change slightly,
1
the vessel

retaining the same volume of displacement, B' being the new
centre of buoyancy, and B'M the vertical through it, meeting

FIG. 61.

BM in M. Then the point M is termed the longitudinal

metacentre.

The distance between G, the centre of gravity of the ship,

and M, the longitudinal metacentre, is termed the longitudinal
metacentric height.

Formula for finding the Distance of the Longi-
tudinal Metacentre above the Centre of Buoyancy.
Let Fig. 62 represent the profile of a ship floating at the water-

line WL', the original water-line being WL. The original

trim was AW - BL
;
the new trim is AW - BL'. The change

of trim is

(AW - BL) - (AW -
BL') = WW + LL'

i.e. the change of trim is the sum of the changes of draughts

forward and aft. This change, we may suppose, has been

caused by the shifting of weights from aft to forward. The
inclination being regarded as small, and the displacement

remaining constant, the line of intersection of the water-planes

WL, W'L' must pass through the centre of gravity of the water-

plane WL, or, as we have termed it, the centre of flotation,

in accordance with the principle laid down on p. 98. This

centre of flotation will usually be abaft the middle of length,

and this introduces a complication which makes the calculation

for the longitudinal metacentre more difficult than the corre-

1 Much exaggerated in the figure.
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spending calculation for the transverse metacentre. In this

latter case, it will be remembered that the centre of flotation is

in the middle line of the water-plane.

FIG. '62.

In Fig. 62

Let B be the centre of buoyancy when floating at the

water-line WL ;

B', the centre of buoyancy when floating at the water-

line WL' ;

FF, the intersection of the water-planes WL, WL'
;

v, the volume of either the immersed wedge FLL' or

the emerged wedge FWW ;

-, ^, the centres of gravity of the wedges WFW, LFL
respectively ;

V, the volume of displacement in cubic feet
;

0, the angle between the water-lines WL, WL', which

is the same as the angle between BM and B'M

(this angle is supposed very small).

We have, using the principle laid down on p. 100

v X = V v BB'
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,r PR'or BB =

But BB' = BM x 6 (0 is in circular measure)

The part of this expression that we do not know is v X gg\
or the moment of transference of the wedges. At P take a

small transverse slice of the wedge FLL', of breadth in a fore-

and-aft direction, dx\ length across, 2y; and distance from

F, x. Then the depth of the slice is

x x
and the volume is 2y x xO X dx

This is an elementary volume, analogous to the elementary
area y . dx used in finding a large area. The moment of this

elementary volume about the transverse line FF is

2yx . . dx X x
or 2yx* .6 .dx

If we summed all such moments as this for the length FL,
we should get the moment v X F^', and for the length FW,
v X F-, or for the whole length, v X gg' j therefore, using our

ordinary notation

X gg = f2yx* .O.dx
= 26jyx*.dx (6 being constant)

We therefore have

or

Referring to p. 103, it will be seen that we denned the

moment of inertia of an area about a given axis as

JWA X/
where dA. is a small elementary area

;

y its distance from the given axis.

Consider, now, the expression obtained, 2fyx? . dx. The

elementary area is 2y . dx, and x is its distance from a
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transverse axis passing through the centre of flotation. We
may therefore say

where I is the moment of inertia of the water-plane about a

transverse axis passing through the centre of flotation. It will

be seen at once that this is the same form of expression as for

the transverse BM.
The method usually adopted for finding the moment of

inertia of a water-plane about a transverse axis through the

centre of flotation is as follows
*

:

We first find the moment of inertia about the ordinary

midship ordinate. If we call this I, and y the distance of the

centre of flotation from the midship ordinate, we have, using

the principle given on p. 104

I = I + A/
or I = I - A/

The method actually adopted in practice will be best under-

stood by working the following example.

Numbers
of

ordinates.



Longitudinal Metacentre, Longitudinal BMy
etc. 149

In column 2 of the table are given the lengths of semi-

ordinates of a load water-plane corresponding to the numbers

of the ordinates in column i. The ordinates are 7*1 feet

apart. It is required to find the longitudinal BM, the dis-

placement being 91-6 tons in salt water.

The distance apart of the ordinates being 7*1 feet, we have

Area = 163*42 X (J X 7'i) X 2

= 7 7 3' 5 square feet

Distance of centre of gravity of 1
__ 56*86 X 7'i

water-plane abaft No. 6 ordinate J

"

163*42
2 4^

(the stations are numbered from forward).

The calculation up to now has been the ordinary one

for finding the area and position of the centre of gravity.

Column 4 is the calculation indicated by the formula

Area = 2Jy . dx

Column 6 is the calculation indicated by the formula

Moment = 2Jyx . dx

It will be remembered that in column 5 we do not put

down the actual distances of the ordinates from No. 6 ordinate,

but the number of intervals away; the distance apart of the

ordinates being introduced at the end. By this means the

result is obtained with much less labour than if column 5

contained the actual distances. The formula we have for the

moment of inertia is 2Jy . x* . dx. We follow a similar process

to that indicated above ;
we do not multiply the ordinates by

the square of the actual distances, but by the square of the

number of intervals away, leaving to the end the multiplication

by the square of the interval. Thus for ordinate No. 2 the

actual distance from No. 6 is 4X7*1 = 28 "4 feet. The

square of this is (4)
2 X (7*i)

2
. For ordinate No. 4 the square of

the distance is (2)
2 X (7*i)

2
. The multiplication by (7*i)

2 can

be done at the end. In column 7 is placed the number of

intervals from No. 6, as in column 5 ;
and if the products in

column 6 are multiplied successively by the numbers in

column 7, we shall obtain in column 8 the ordinates put
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through Simpson's rule, and also multiplied by the square of

the number of intervals from No. 6 ordinate. The whole of

column 8 is added up, giving a result 959*14. To obtain the

moment of inertia about No. 6 .ordinate, this has to be multi-

plied as follows :

(a) By one-third the common interval to complete Simp-
son's rule, or \ X 7*1.

(b) By the square of the common interval, for the reasons

fully explained above.

(c) By two for both sides.

We therefore have the moment of inertia of the water-plane

about No. 6 ordinate

959-14 x ( X 7-1) X (7'i)
2 X 2 = 228,858

The moment of inertia about a transverse axis through the

centre of flotation will be less than this by considering the

formula I = I + Ay, where I is the value found above about

No. 6 ordinate, and I is the moment of inertia we want. We
found above that the area A = 773*5 square feet, and y = 2*47

feet;

.Mo =228,858 -(773*5 X 2-47
2

)

= 224,1391

The displacement up to this water-plane is 91*6 tons, and

the volume of displacement is

91*6 x 35 = 3206 cubic feet

The longitudinal BM =

3206

Approximate Formula for the Height of the Longi-
tudinal Metacentre above the Centre of Buoyancy.
The following formula is due to M. J. A. Normand, M.I.N.A.,

2

and is found to give exceedingly good results in practice :

Let L be the length on the load water-line in feet
;

B, the breadth amidships in feet
;

1 See note at end of chapter, p. 167.
8 See "Transactions of the Institution of Naval Architects,

'

1882.
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V, the volume of displacement in cubic feet
;

A, the area of the load water-plane in square feet.

Then the height of the longitudinal metacentre above the centre

of buoyancy
A2 XLH =

0-0735B1TV

In the example worked above, the breadth amidships was

14*42 feet; and using the formula, we find

H = 6 7 '5 feet nearly

This compares favourably with the actual result of 69*9 feet.

The quantities required for the use of the formula would all be

known at a very early stage of a design and a close approxima-
tion to the height H can thus very readily be obtained. A
formula such as this is useful as a check on the result of the

calculation for the longitudinal BM.
We may also obtain an approximate formula in the same

manner as was done for the transverse BM on p. in. Using
a similar system of notation, we may say

Moment of inertia of L.W.P. about a trans-
T * v

verse axis through the centre of flotation
f

nf

being a coefficient of a similar nature to n used on p. 107.

Volume of displacement = xLxBxD
tt X L3 X B

"' ~

where b is a coefficient obtained from the coefficients n' and k.

Sir William White, in the " Manual of Naval Architecture," says,

with reference to the value of
,
that "the value 0-075 may be

used as a rough approximation in most cases
; but there are

many exceptions to its use." If this approximation be applied

to the example we have worked, the mean moulded draught

being 5*8 feet

The value of H = 65 feet
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This formula shows very clearly that the length of a ship is

more effective than the draught in determining the value of the

longitudinal BM in any given case. For vessels which have an

unusual proportion of length to draught, the values of the longi-

tudinal BM found by using this formula will not be trustworthy.
To estimate the Displacement of a Vessel when

floating out of the Designed Trim. The following

method is found useful when it is not desired to actually

calculate the displacement from the drawings, and a close

approximation is sufficiently accurate. Take a ship floating

parallel to her designed L.W.L. ;
we can at once determine

the displacement when floating at such a water-line from the

curve of displacement (see p. 25). If now a weight already

on board is shifted aft, say, the ship will change trim, and she

will trim more by the stern than designed. The new water-

plane must pass through the centre of gravity of the original

water-plane, or, as we have termed it, the centre of flotation, and

FIG. 63.

the displacement at this new water-line will be the same as at

the original water-line. Now, when taking the draught of water

a vessel is actually floating at, we take the figures set up at or

near the forward and after perpendiculars. These draughts,

if not set up at the perpendiculars, can be transferred to the

perpendiculars by a simple calculation. The draughts thus

obtained are added together and divided by two, giving us

the mean draught. Now run a line parallel to the designed
water-line at this mean draught, as in Fig. 63, where WL
represents the actual water-line, and wl the line just drawn.

It will not be true that the displacement of the ship is the same

as that given by the water-line wl. Let F be the centre of

flotation of the water-line wt, and draw WL' through F parallel

to WL. Then the actual displacement will be that up to WL',
which is nearly the same as that up to wl, with the displacement
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of the layer WW'L'L added. The displacement up to wl is

found at once from the curve of displacement. Let T be the

tons per inch at //, and therefore very nearly the tons per inch

at W'L' and WL. SF, the distance the centre of flotation of

the water-plane wl is abaft the middle of length, is supposed

known, and equals d inches, say. Now, the angle between wl

and WL is given by

tan0 =
length of ship

_ amount out of normal trim

length of ship

But if x is the thickness of layer in inches between W'L' and

WL, we also have in the triangle SFH

tan 6 =
-j very nearly (for small angles tan = sin

very nearly)

and accordingly x may be determined. This, multiplied by
the tons per inch T, will give the displacement of the layer.

1

The following example will illustrate the above :

Example. A vessel floats at a draught of 16' 5^" forward, 23' ij" aft,

the normal trim being 2 feet by the stern. At a draught of 19' 9$", her

displacement, measured from the curve of displacement, is 5380 tons, the

tons per inch is 31*1 tons, and the centre of flotation is 12 '9 feet abaft

amidships. Estimate the ship's displacement.
The difference in draught is 23' i" 1 6' 5J" = 6' 8", or 4' 8" out of

trim. The distance between the draught-marks is 335 feet, and we
therefore have for the thickness of the layer

12 x 12-9 X * = 2-15 inches

The displacement of the layer is therefore

2-15 X 31-1 = 67 tons

The displacement is therefore

5380 + 67 = 5447 tons nearly

Change of Trim due to Longitudinal Shift of

Weights already on Board. We have seen that change
1 This may be reduced to a formula, set as an example in Appendix A.

T X y
No. 2, viz. extra displacement for I foot extra trim = 12

j-
, y being

centre of flotation abaft amidships in feet.
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of trim is the sum of the change of draughts forwaid and aft, and

that change of trim can be caused by the shift of weights on

board in a fore-and-aft direction. We have here an analogous
case to the inclining experiment in which heeling is caused by

shifting weights in a transverse direction. In Fig. 64, let w be

FIG. 64.

a weight on the deck when the vessel is floating at the water-

line WL, G being the position of the centre of gravity. Now
suppose the weight w to be shifted forward a distance of d feet.

G will, in consequence of this, move forward parallel to the line

joining the original and final positions of a/, and ifW be the

displacement of the ship in tons, G will move to G' such that

w X d
GG' = W

Now, under these circumstances, the condition of equilibrium

is not fulfilled if the water-line remains the same, viz. that the

centre of gravity and the centre of buoyancy must be in the

same vertical line, because G has shifted to G'. The ship

must therefore adjust herself till the centre of gravity and the

centre of buoyancy are in the same vertical line, when she

will float at a new water-line, W'L', the new centre of buoyancy

being B'. The original vertical through G and B meets the

new vertical through G' and B' in the point M, and this point

will be the longitudinal metacentre, supposing the change of

trim to be small, and GM will be the longitudinal metacentric

height. Draw W'C parallel to the original water-line WL.
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meeting the forward perpendicular in C. Then, since CL =
W'W, the change of trim WW'+ LL'= CL' = #, say. The

angle of inclination of W'L' to WL is the same as the angle

between W'L' and W'C =
6, say, and

CL' x
tan = ;

-
-r = T

length L
But we also have

therefore, equating these two values for tan 6, we have

x _GG'
L GM

w X d .

"" W X GM
using the value obtained above for GG' ;

or

*, the change of trim due to the
"j ^

moment of transference of the >
=

\y x r* vf X L feet

weight a/ through the distance </, j

or

. . .., 12 X w X d?X L
The change of trim in inches = --w v GM

and the moment to change trim i inch is

W x GM rw X d = -= foot-tons
1 2 X \-i

To determine this expression, we must know the vertical

position of the centre of gravity and the position of the longi-

tudinal metacentre. The vertical position of the centre of

gravity will be estimated in a design when dealing with the

metacentric height necessary, and the distance between

the centre of buoyancy and the centre of gravity is then sub-

tracted from the value of the longitudinal BM found by one of

the methods already explained. The distance BG is, however,
small compared with either of the distances BM or GM and

any small error in estimating the position of the centre of

gravity cannot appreciably affect the value of the moment to

change trim one inch. In many ships BM approximately
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equals the length of the ship, and therefore GM also ;
we may

therefore say that in such ships the moment to change trim

i inch = -pa the displacement in tons. For ships that are long
in proportion to the draught, the moment to change trim i inch

is greater than would be given by this approximate rule.

In the ship for which the value of the longitudinal BM was

calculated on p. 148, the centre of buoyancy was 2\ feet below

the L.W.L., the centre of gravity was estimated at i^ feet

below the L.W.L. ; and the length between perpendiculars was

75 feet.

/. GM = 69-9
- i

= 68-9 feet

and the moment to change trim i inch =
12 x 75

=
7 'oi foot-tons

the draughts being taken at the perpendiculars.

Example. A vessel 300 feet long and 2200 tons displacement has a

longitudinal metacentric height of 490 feet. Find the change of trim

caused by moving a weight of 5 tons already on board through a distance

of 200 feet from forward to aft.

Here the moment to change trim I inch is

'-I^f
= 300 foot-tons nearly

The moment aft due to the shift of the weight is

5 X 200 = looo foot-tons

and consequently the change of trim aft is

*ffl
= 3$ inches

Approximate Formula for the Moment to change Trim i inch.

Assuming Normand's approximate formula for the height

of the longitudinal metacentre above the centre of buoyancy

given on p. 151
A2 X LH = 0-0735 -g-^

we may construct an approximate formula for the moment to

change trim i inch as follows.

We have seen that the moment to change trim i inch is

W x GM
12 x L
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V
We can write W = and assume that, for our purpose,

OJ

BM = GM = 0-

Substituting this in the above formula, we have

Moment to change | _ V f A2 x L \

trim i inch ) 35Xi2XLV '735 B x v )

A2

or 0*000175^5-

For further approximations, see Example 18, p. 173.

Applying this to the case worked out in detail on p. 148

Area of L.W.P. = A = 773*5 square feet

Breadth = B = 14-42 feet

so that the moment to change trim i inch approximately

should equal

(77VO 2

o*oooi75
v /J J/ = 7*26 foot-tons

5

14-42

the exact value, as calculated on p. 156, being 7*01 foot-tons.

It is generally sufficiently accurate to assume that one-half

the change of trim is forward, and the other half is aft. In the

example on p. 156, if the ship floated at a draught of 12' 3"

forward and 14' 9" aft, the new draught forward would be

1 2' 3"- if"= 1 2' 4"

and the new draught aft would be

14' 9" + '?' = H' iof

Referring, however, to Fig. 64, it will be seen that when,
as is usually the case, the centre of flotation is not at the middle

of the length, WW' is not equal to LL', so that, strictly speak-

ing, the total change of trim should not be divided by 2, and

one-half taken forward and the other half aft. Consider the

triangles FWW, FLL'; these triangles are similar to one
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another, and the corresponding sides are proportional, so

that

WW; LL'
~ ==

LF
and both these triangles are similar to the triangle W'CL'.

Consequently

WW' _ LU _ CU _ change of trim

WF ~
LF

~
W'C

"
length

WF
/. WW' = .

-
-T- x change of trim

length
T F

and LL' = x change of trim

that is to say, the proportion of the change of trim either aft or

forward, is the proportion the length of the vessel abaft or

forward of the centre of flotation bears to the length of the

vessel. Where the change of trim is small, this makes no

appreciable difference in the result, but there is a difference

when large changes of trim are under consideration.

For example, in the case worked out on p. 156, suppose

a weight of 50 tons is moved through 100 feet from forward to

aft ; the change of trim caused would be

i6 inches

The centre of flotation was 1 2 feet abaft the middle of length.

The portion of the length abaft the centre of flotation is there-

fore Ml f tne length. The increase of draught aft is there-

fore
138 v 8.0. ,-2. inrVips300* 3 13 1Ilcilc:s

and the decrease of draught forward is

162 y _P_ _ n inrhpi300 * 3 9 "H-"Gb

instead of 8 inches both forward and aft. The draught

forward is therefore

1 2' 3" -9"= n' 6"

and the draught aft

M' 9" + 7f = 15' 4f"

It will be noticed that the mean draught is not the same as
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before the shifting, but two-thirds of an inch less, while the

displacement remains the same. This is due to the fact that,

as the ship increases her draught aft and decreases it -forward, a

fuller portion of the ship goes into the water and a finer portion

comes out.

Effect on the Trim of a Ship due to adding a

Weight of Moderate Amount. If we wish to place a

weight on board a ship so that the vessel will not change trim,

we must place it so that the upward force of the added buoyancy
will act in the same line as the downward force of the added

weight. Take a ship floating at a certain water-line, and

imagine her to sink down a small amount, so that the new

waterplane is parallel to the original water-plane. The added

buoyancy is formed of a layer of parallel thickness, and having

very nearly the shape of the original water-plane. The upward
force of this added buoyancy will act through the centre of

gravity of the layer, which will be very nearly vertically over

the centre of gravity of the original water-plane, or, as we have

termed it, the centre of flotation. We therefore see that to

place a weight of moderate amount on a ship so that no

change of trim takes place, we must place it vertically over or

under the centre of flotation. The ship will then sink to a new
water-line parallel to the original water-line, and the distance

she will sink is known at once, if we know the tons per inch

at the original water-line. Thus a ship is floating at a draught
of 13 feet forward and 15 feet aft, and the tons per inch immer-

sion is 20 tons. If a weight of 55 tons be placed over or under

the centre of flotation, she will sink ff inches, or 2f inches,

and the new draught will be 13' 2f" forward and 15' 2f" aft.

It will be noticed that we have made two assumptions, both

of which are rendered admissible by considering that the weight
is of moderate amount. First, that the tons per inch does not

change appreciably as the draught increases, and this is, for all

practical purposes, the case in ordinary ships. Second, that the

centre of gravity of the parallel layer of added buoyancy is in

the same section as the centre of flotation. This latter assump-
tion may be taken as true for small changes in draught caused

by the addition of weights of moderate amount
; but for large
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changes it will not be reasonable, because the centres of gravity
of the water-planes are not all in the same section, but vary for

each water-plane. As a rule, water-planes are fuller aft than

forward near the L.W.P., and this more so as the draught
increases ;

and so, if we draw on the profile of the sheer drawing
a curve through the centres of gravity of water-planes parallel to

the L.W.P., we should obtain a curve which slopes somewhat

aft as the draught increases. We shall discuss further the

methods which have to be adopted when the weights added

are too large for the above assumptions to be accepted.

We see, therefore, that if we place a weight of moderate

amount on board a ship at any other place than over the centre

of flotation, she will not sink in the water to a water-line

parallel to the original water-line, but she will change trim as

well as sink bodily in the water. The change of trim will be

forward or aft according as the weight is placed forward or

aft of the centre of flotation.

In determining the new draught of water, we proceed in

two steps :

1. Imagine the weight placed over the centre of flotation,

and determine the consequent sinkage.

2. Then imagine the weight shifted either forward or aft to

the assigned position. This shift will produce a certain moment

forward or aft, as the case may be, equal to the weight multiplied

by its longitudinal distance from the centre of flotation. This

moment divided by the moment to change trim i inch as cal-

culated for the original water-plane will give the change of trim.

The steps will be best illustrated by the following example :

A vessel is floating at a draught of 12' 3" forward and 14' 6" aft. The
tons per inch immersion is 2O ; length, 300 feet ; centre of flotation, 12 feet

abaft the middle of length ; moment to change trim I inch, 300 foot-tons.

A weight of 30 tons is placed 20 feet from the forward end of the ship.

What will be the new draught of water ?

The first step is to see the sinkage caused by placing the weight over

the centre of flotation. This sinkage is i inches, and the draughts would
then be

12' 4$" forward, 14' 7J" aft

Now, the shift from the centre of flotation to the given position is 142

feet, so that the moment forward is 30 X 142 foot-tons, and the change
of trim by the bow is

22 4_, or 14\ inches nearly
300
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This has to be divided up in the ratio of 138 : 162, because the centre

of flotation is 12 feet abaft the middle of length. We therefore have

Increase of draught forward g X 14!" = 7f say
Decrease of draught aft $j X 14^" = 6^" say

The final draughts will therefore be

Forward, 12' 4^" + 7?" = 13' oi"

Aft, 14' 7*"
-

64" = M' I"

Effect on the Trim of a Ship due to adding a

Weight of Considerable Amount. In this case the

assumptions made in the previous investigation will no longer

hold, and we must allow for the following :

1. Variation of the tons per inch immersion as the ship

sinks deeper in the water.

2. The centre of flotation does not remain in the same

transverse section.

3. The addition of a large weight will alter the position

of G, the centre of gravity of the ship.

4. The different form of the volume of displacement will

alter the position of B, the centre of buoyancy of the ship, and

also the value of BM.

5. Items 3 and 4 will alter the value of the moment to

change trim i inch.

As regards i, we can obtain first an approximation to the

sinkage by dividing the added weight by the tons per inch

immersion at the original water-line. The curve of tons per

inch immersion will give the tons per inch at this new draught.

The mean between this latter value and the original tons per

inch, divided into the added weight, will give a very close

approximation to the increased draught. Thus, a vessel floats at

a constant draught of 22' 2", the tons per inch immersion

being 44*5. It. is requiredi to find the draught after adding a

weight of 750 tons. The first approximation to the increase of

draught is -^ =17 inches nearly. At a draught of 23' 7"
44'5

it is found that the tons per inch immersion is 457. The

mean tons per inch is therefore (44*5 + 45*7) = 45' 1
)
and

the increase in draught is therefore
m

- = 16-63, or J 6f inches

M
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nearly. This assumes that the ship sinks to a water-plane

parallel to the first water-plane. In order that this can be the

case, the weight must have been placed in the same transverse

section as the centre of gravity of the layer of displacement
between the two water-planes. We know that the weight and

buoyancy of the ship must act in the same vertical line, and

therefore, for the vessel to sink down without change of trim,

the added weight must act in the same vertical line as the

added buoyancy. We can approximate very closely to the

centre of gravity of the layer as follows : Find the centre of

flotation of the original W.P. and that of the parallel W.P.
to which the vessel is supposed to sink. Put these points on

the profile drawing at the respective water-lines. Draw a line

joining them, and bisect this line. Then this point will be

a very close approximation to the centre of gravity of the layer.

A weight of 750 tons placed as above, with its centre of gravity

in the transverse section containing 'this point, will cause the

ship to take up a new draught of 23' 6f
"
with no change of trim.

We can very readily find the new position of G, the centre

of gravity of the ship due to the addition of the weight. Thus,

suppose the weight of 750 tons in the above example is placed
with its centre of gravity 16 feet below the C.G. of the ship;

then, supposing the displacement before adding the weight to

be 9500 tons, we have(750 x 16
Lowering of G =

10250
= 1*17 feet

We also have to take account of 4. In the case we have

taken, the new C.B. below the original water-line was 97 feet,

as against io'5 feet in the original condition, or a rise of 0*8

foot.

For the new water-plane we have a different longitudinal

BM, and, knowing the new position of B and of G, we can deter-

mine the new longitudinal metacentric height. From this we
can obtain the new moment to change trim i inch^ using, of

course, the new displacement. In the above case this works

out to 950 foot-tons.
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Now we must suppose that the weight is shifted from the

assumed position in the same vertical line as the centre of

gravity of the layer to its given position, and this distance must

be found. The weight multiplied by the longitudinal shift will

give the moment changing the trim either aft or forward, as the

case may be. Suppose, in the above case, this distance is 50 feet

forward. Then the moment changing trim by the bow is

750 X 50 = 37,500 foot-tons

and the approximate change of trim is

37,5 -T- 95 = 39* inches

This change of trim has to be divided up in the ordinary

way for the change of draught aft and forward. In this case

we have

Increase of draught forward = ~\ X 39^ = 21^ inches say

Decrease of draught aft = Jf-f X 39^= 18 inches say

We therefore have for our new draughts

Draught aft, 22' 2" + i6f"
- 18" =22' of"

Draught forward, 22' 2" + i6f" + 21*" = 25' 4"
For all ordinary purposes this would be sufficiently accu-

rate
;
but it is evidently still an approximation, because we do

not take account of the new GM for the final water-line, and

the consequent new moment to change trim i inch. These can

be calculated if desired, and corrections made where necessary.

To determine the Position of a Weight on Board
a Ship such that the Draught aft shall remain
constant whether the Weight is or is not on Board. 1

Take a ship floating at the water-line WL, as in Fig. 65. If

a weight w be placed with its centre of gravity in the transverse

section that contains the centre of flotation, the vessel will very

nearly sink to a parallel water-line W'L'. 2
This, however, is

not what is required, because the draught aft is the distance

WW greater than it should be. The weight will have to be

1 See also Examples 25, 26 in Appendix.
*

Strictly speaking, the weight should be placed with its centre of

gravity in the transverse section that contains the centre of gravity of the

zone between the water-lines WL and W'L'.
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moved forward sufficient to cause a change of trim forward of

WW -f- LL', and then the draught aft will be the same as it

originally was, and the draught forward will increase by the

amount WW -f LL'. This will be more clearly seen, perhaps,

by working the following example :

It is desired that the draught of water aft in a steamship

(particulars given below) shall be constant, whether the coals

FIG. 65.

are in or out of the ship. Find the approximate position of

the centre of gravity of the coals in order that the desired

condition may be fulfilled: Length of ship, 205 feet; displace-

ment, 522 tons (no coals on board) ; centre of flotation from

after perpendicular, 104*3 feet
; longitudinal BM, 664 feet;

longitudinal GM, 661*5 feet; tons per inch, 11*4; weight of

coals, 57 tons.

From the particulars given, we find that

Moment to change ) 661*5 x 522
.

, }
= = 140 foot-tons

trim i inch j 12 X 205

The bodily sinkage, supposing the coals placed with the centre

of gravity in the transverse section containing the centre of

flotation, will be -**- =
5 inches. Therefore the coals must

11*4

be shifted forward from this position through such a distance

that a change of trim of 10 inches forward is produced.

Accordingly, a forward moment of

140 x 10 = 1400 foot-tons

is required, and the distance forward of the centre of flotation

the coals require shifting is

= 24-6 feet
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Therefore, if the coals are placed

104*3 + 2 4'6 = 128-9 feet

forward of the after perpendicular, the draught aft will remain

very approximately the same as before.

Change of Trim caused by a Compartment being

open to the Sea. The principles involved in dealing with

a problem of this character will be best understood by working
out the following example :

A rectangular-shaped lighter, 100 feet long, 40 feet broad,

10 feet deep, floating in salt water at 3 feet level draught, has

a collision bulkhead 6 feet from the forward end. If the side

is broached before this bulkhead below water, what would be

the trim in the damaged condition ?

Let ABCD, Fig. 66, be the elevation of the lighter, with a

PIG. 66.

collision bulkhead 6 feet from the forward end, and floating

at the level water-line WL. It is well to do this problem
in two stages

1. Determine the amount of mean sinkage due to the loss

of buoyancy.
2. Determine the change of trim caused.

i. The lighter, due to the damage, loses an amount of

buoyancy which is represented by the shaded part GB, and if

we assume that she sinks down parallel, she will settle down at

a water-line wl such that volume wG = volume GB. This

will determine the distance x between wl and VVL.
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For the volume wG = wH X 40 feet X x
and the volume GB = GL x 40 feet X 3 feet

40 x 6 x 3 18 f
.'. x = - -if feet

94 X 40
= 2\ inches nearly

2. We now deal with the change of trim caused.

The volume of displacement = 100 x 4 X 3 cubic feet

The weight of the lighter
= I0 X 40 X 3 = 2^0 tons

oo

and this weight acts down through G, the centre of gravity,

which is at 50 feet from either end.

But we have lost the buoyancy due to the part forward of

bulkhead EF, and the centre of buoyancy has now shifted

back to B' such that the distance of B' from the after end is

47 feet. Therefore we have W, the weight of lighter, acting

down through G, and W, the upward force of buoyancy, acting

through B'. These form a couple of magnitude

W x 3 feet = ^P- X 3 = ^^ foot-tons

tending to trim the ship forward.

To find the amount of this trim, we must find the moment
to change trim i inch

_WxGM
12 x L

using the ordinary notation.

Now, GM very nearly equals BM ;

9400
.". moment to change trim i inch = 7 x BM

12 X IOO

= X BM

where I = the moment of inertia of the intact water-plane about

a transverse axis through its centre of gravity ;

and V = volume of displacement in cubic feet.
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I = ir(94 X 4) X (94)'

V = 12000

I440OO
2 X 40 X (94)*

and moment to alter trim i inch = -
7 X 144000

= 66 foot-tons nearly

.*. the change of trim = ^p- -4- 66

= 15^ inches

The new water-line W'L' will pass through the centre

of gravity of the water-line wl at K, and the change of trim

aft and forward must be in the ratio 47 : 53 ;
or

Decrease of draught aft = TV^ x 15^ = 1\ inches

Increase of draught forward == -f^ X 15^ = 8^ inches

therefore the new draught aft is given by

3' o" + 2j"
-

7f = 2' 7"

and the new draught forward by

3' o" + 2i" + 8J"
=

3' loi"

The correctness of this result may be seen by finding the

displacement and position of the C.B. of the new volume of

displacement. The displacement will be found equal to the

original displacement, and the C.B. will be found to be 50 feet

from the after-end or the same as the C.G.

(For a more difficult example of a similar nature, see No.

34, Appendix A.)

If the sums of the columns 4, 6, and 8 in the table on

p. 148 are called Sj, S2,
S3 ,

then Area = S, X f . h, and the

distance of the C.G. of water-plane from No. 6, viz. :

S /z
3

s = -?X^;In = S3 X2X-
ch 3

I the moment of inertia required.
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This method saves some work as compared with the above

and is used in Brown's displacement sheet given in the Ap-

pendix. In the above case

7-iT (56'S6)
2
-i

I = 2 . '- 959- 14
- v

-^
3
L 7J

163-42 J

This worked out by the aid of the 4 fig. logs, gives 224,300.
To find the Longitudinal Position of the C.G. of a

Ship. If a ship is floating at the trim assumed for the ordinary

calculations, this is a simple matter, as the C.G. must be in

the same vertical line as the C.B., and the longitudinal position

of the C.B. is readily found for the draught at which the ship
is floating. If, however, the ship is floating out of her normal

trim, the following gives a close approximation to the position

of the C.G.

Suppose the ship is trimming by the stern at the water-line

WL, as in Fig. 66A. The water-line cutting off the same

displacement is not wl at the same mean draught as WL, but

w'l' passing through F, the centre of flotation. The excess

displacement over that corresponding to the mean draught is

i2X.yxTx0, where T is the tons per inch, y the C.F.

abaft amidships in feet, 6 is the angle between WL and wl

(i.e. change of trim -4- length). The C.B. of the displacement

corresponding to w'l' is at B
,
and can readily be determined.

The ship, in trimming to the water-line WL, may be said to
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pivot about a transverse axis through F, and the volume F/'L

shifts to Ww'F. Then it can readily be shown that the stern-

ward shift of the C.B. from B to B is BML X 0, BM L being
the longitudinal BM corresponding to w'l' or WL. The
C.G. of the ship must be in the line BML perpendicular to

WL, and therefore G abaft mid-length = B abaft mid-length

-(BGX0).
If the ship trims by the bow, the C.B. shifts forward

BM L x 0, and the C.G. is B abaft mid-length + (BG X 0).

Change of Trim due to passing from Salt to River

Water, or vice-versa, If the C.F. is vertically over the

C.B. there will be no change of trim. If W is weight, and

V and V are the volumes of displacement in salt water and

river water (say 35 and 35-6 cubic feet to the ton respectively),

then V = W x 35, V = W x 35'6. Let V'-V = v.

The vessel floating at the line WL in sea water B and G
must be in the same vertical. Supposing the ship to sink

down parallel to W'L' in river water, the shift aft of the C.B. is

,
where b is the fore and aft separation of the C.B. andv . .

C.F., and the moment changing trim = W X y ,
X b. The

following example will illustrate the above.

Example. A vessel with rectangular sections is 300 feet long, 30 feet

broad, and floats in salt water at a draught of 15 feet forward and 20 feet aft.

C.G. in WL. Determine the draughts forward and aft on going into

river water 63 Ibs. to cubic foot.

W
Bodily sinkage =-r =

3' 34 inches.

Volume of layer = 300 x 30 x 3-34 X T
'

5
= 2505 cubic feet.

C.B. and .*. C.G. abaft amidships =7*15 feet.

C.F. from amidships = nil.

Moment to change trim one inch = 525 feet tons.

W = 4500 tons V = 157,500 v = 2505.

Therefore shift (forward in this case) of C.B. = x 7*15 = O'l I ft.

The C.G. and the new C.B. are therefore o'li feet apart, and the

moment to change trim aft is 4500 X o'li feet tons, and the change -of

trim is I inch, say.
The draughts are therefore 15' 3 "34" 0*5" =15' 2'84".

,, ,, ,, 20' 3-34" +0-5" = 20' 3-84".
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Draught of a Vessel when Launched. It is fre-

quently necessary to make a close approximation to the

draught forward and aft of a vessel on the occasion of launch-

ing, and in addition to the ordinary hydrostatic curves given

in Fig. 153 it is necessary to obtain the weight of the vessel

on the stocks and the position of the C.G. of this weight, both

in a longitudinal and a vertical direction. The weight will

enable the mean draught to be fixed, taking into account the

density of the water. At this draught the position of the

longitudinal metacentre is known, from which the longitudinal

GM can be found, and then the moment to change trim i inch.

The longitudinal centre of buoyancy at the assumed draught

can be found readily, and the moment changing trim is deter-

mined by multiplying the weight and the longitudinal distance

between the centre of buoyancy and the centre of gravity.

The following example will illustrate the methods to be

adopted
A box-shaped vessel, 400 feet by 70 feet, floating when at

designed draught at 22 feet forward and 24 feet aft, weighs

before launching 6400 tons, and the position of the centre of

gravity is i o feet abaft amidships and 3 feet below L. W.L.

What will be her draught whe?i launched into salt water ?

The mean draught is 8 feet, and assume she floats parallel

to the L.W.L., 7 feet forward and 9 feet aft. At this waterline

the C.B. is readily calculated to be 8-3 feet abaft amidships

and 19*0 feet below L.W.L. The longitudinal BM at this

assumed waterline works out to 1,666 feet, and the longitudinal

GM 1650 feet, since BG is 16 feet. The moment to change

trim i inch is 2200 foot tons. The horizontal separation of

the C.G. and the C.B. is 10 8*3 =17 feet, so that the

change of trim is -

2200
= 5 incnes aft - In tnis

case, seeing that the centre of flotation is amidships, this

5 inches is divided equally forward and aft, so that the draught

when launched is 6 ft. 9^ in. forward and 9 ft. 2^ in. aft.

The principal difficulty in such an estimate is the deter-

mination of the longitudinal C.G.
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Information for use when Docking in a Floating
Dock. When a ship is to be docked in a floating dock,

especially if the weight is close to the lifting capacity of the

dock, it is necessary to place the ship in the dock so that its

C.G. is at the centre of length of the dock in order that when

lifted the dock shall be on an even keel.

Information in the following form is now provided to

H.M. ships to enable the position of the C.G. to be closely

approximated to knowing the draughts forward and aft. This

information can be readily calculated from the sheer drawing

by using the principles of the present chapter.

Mean draught
between

draught marks.
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EXAMPLES TO CHAPTER IV.

I . A ship is floating at a draught of 20 feet forward and 22 feet aft, when
the following weights are placed on board in the positions named :

Weight Distance from C.G. of
in tons. water-plane in feet.

'}**
}-

What will be the new draught forward and aft, the moment to change
trim I inch being 800 foot-tons, and the tons per inch = 35 ?

Ans. 20' 5 f
"
forward, 22' 3" aft.

2. A vessel 300 feet long, designed to float with a trim of 3 feet by
the stern, owing to consumption of coal and stores, floats at a draught of

9' 3" forward, and 14' 3" aft. The load displacement at a mean draught of

13' 6" is 2140 tons
; tons per inch, i8 ; centre of flotation, 12$ feet abaft the

middle of length. Approximate as closely as you can to the displacement.
Ans. 1775 tons.

3. A vessel is 300 feet long and 36 feet beam. Approximate to the

moment to change trim I inch, the coefficient of fineness of the L.W.P.
being 0*75.

Ans. 319 foot-tons.

4. A light-draught stern-wheel steamer is very approximately of the form
of a rectangular box of 120 feet length and 20 feet breadth. When fully

laden, the draught is 18 inches, and the centre of gravity of vessel and

lading is 8 feet above the water-line. Find the transverse and longitudinal
metacentric heights, and also the moment to change trim one inch.

Ans. 13-47 feet, 79 1^ feet ; 56^ foot-tons.

5. A vessel is floating at a draught of 12' 3" forward and 14' 6" aft.

The tons per inch immersion is 20 j length, 30x3 feat
; centre of flotation,

12 feet abaft amidships; moment to change trim I inch, 300 foot-tons.

Where should a weight of 60 tons be placed on this vessel to bring her to

an even keel.

Ans. 123 feet forward of amidships.
6. What weight placed 13 feet forward of amidships will have the same

effect on the trim of a vessel as a weight of 5 tons placed 10 feet abaft the

forward end, the length of the ship being 300 feet, and the centre of

flotation 12 feet abaft amidships.
Ans. 30 '4 tons.

7. A right circular pontoon 50 feet long and 16 feet in diameter is just
half immersed on an even keel. The centre of gravity is 4 feet above the

bottom. Calculate and state in degrees the transverse heel that would be

produced by shifting 10 tons 3 feet across the vessel. State, in inches, the

change of trim produced by shifting 10 tons longitudinally through 20 feet.

Ans. 3 degrees nearly ; 25 inches nearly.
8. Show why it is that many ships floating on an even keel will increase

the draught forward, and decrease the draught aft, or, as it is termed, go
down by the head, if a weight is placed at the middle of the length.

9. Show that for vessels having the ratio of the length to the draught
about 13, the longitudinal B.M. is approximately equal to the length.

Why should a shallow draught river steamer have a longitudinal B.M.
much greater than the length ? What type of vessel would have a longitu-
dinal B.M. less than the length ?
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10. Find the moment to change trim I inch of a vessel 400 feet long,

having given the following particulars : Longitudinal metacentre above
centre of buoyancy, 446 feet ; distance between centre of gravity and centre

of buoyancy, 14 feet ; displacement, 15,000 tons.

Ans. 1350 foot-tons.

11. The moment of inertia of a water-plane of 22,500 square feet

about a transverse axis 20 feet forward of the centre of flotation, is found

to be 254,000,000 in foot-units. The displacement of the vessel being

14,000 tons, determine the distance between the centre of buoyancy and
the longitudinal metacentre.

Ans. 500 feet.

12. In the preceding question, if the length of the ship is 405 feet, and
the distance between the centre of buoyancy and the centre of gravity is 13

feet, determine the change of trim caused by the longitudinal transfer of

150 tons through 50 feet.

Ans. 5 1 inches nearly.

13. A water-plane has an area of 13,200 square feet, and its moment of

inertia about a transverse axis 14^ feet forward of its centre of gravity
works out to 84,539,575 in foot-units. The vessel is 350 feet long, and
has a displacement to the above water-line of 5600 tons. Determine the

moment to change trim I inch, the distance between the centre of gravity
and the centre of buoyancy being estimated at 8 feet

Ans. 546 foot-tons.

14. The semi-ordinates of a water-plane of a ship 20 feet apart are as

follows: 0-4, 7-5, 14-5, 2i'o, 26-6, 30-9, 34-0, 36-0, 37-0, 37-3, 37-3,

37'3. 37'3> 37'2, 37'i> 36'8, 35'8, 33'4> 28-8, 21 7, 11-5 feet respectively.
The after appendage, whole area 214 square feet, has its centre of gravity
6'2 feet abaft the last ordinate. Calculate

1
i ) Area of the water-plane.

(2) Position of C.G. of water-plane.

(3) Transverse B.M.
(4) Longitudinal B.M.
(Volume of displacement up to the water-plane 525,304 cubic feet.)

Ans. (i) 24,015 square feet; (2) 18*2 feet aoaft middle ordinate;

(3) 17-16 feet; (4) 447-6 feet.

15. The semi-ordinates of the L.W.P. of a vessel 15! feet apart are,

commencing from forward, o'l, 2'5, 5-3, 8'i, io'8, 13-1, 15*0, 16*4, 17-6,

18-3, 18-5, 18-5, 18-4, 18-1, 17-5, 16-6, 15-3, 13-3, 10-8, 7-6, 3-8 feet

respectively. Abaft the last ordinate there is a portion of the water-plane,
the half-area being 27 square feet, having its centre of gravity 4 feet abaft

the last ordinate. Calculate the distance of the longitudinal metacentre
above the centre of buoyancy, the displacement being 2206 tons.

Ans. 534 feet.

16. State the conditions that must hold in order that a vessel shall not

change trim in passing from river water to salt water.

17. A log of fir, specific gravity o'5, is 12 feet long, and the section is

2 feet square. What is its longitudinal metacentric height when floating in

stable equilibrium ?

Ans. i6'5 feet nearly.
1 8. Using the approximate formula for the moment to change trim i

inch given on p. 157, show that this moment will be very nearly given by

30 . -=, where T is the tons per inch immersion, and B is the breadth.

Show also that in ships of ordinary form, the moment to change trim
i inch approximately equals ^^ . L2B.



CHAPTER V.

STATICAL STABILITY, CURVES OF STABILITY, CALCU-
LATIONS FOR CURVES OF STABILITY, INTEGRATOR,
DYNAMICAL STABILITY.

Statical Stability at Large Angles of Inclination.

Atwood's Formula. We have up to the present only dealt

with the stability of a ship at small angles of inclination, and
within these limits we can determine what the statical stability is

by using the metacentric method as explained on p. 98. We
must now, however, investigate how the statical stability of a

ship can be determined for large angles of inclination, because

in service it is certain that she will be heeled over to much

larger angles than 10 to 15, which are the limits beyond which

we cannot employ the metacentric method.

Let Fig. 67 represent the cross-section of a ship inclined

to a large angle 6. WL is the position on the ship of the

original water-line, and B the original position of the centre of

buoyancy. In the inclined position she floats at the water-line

W'L', which intersects WL in the point S, which for large angles
will not usually be in the middle line of the ship. The volume

SWW' is termed, as before, the
"
emerged wedge" and the volume

SLL' the " immersed wedge" and g; g
1
are the positions of the

centres of gravity of the emerged and immersed wedges respec-

tively. The volume of displacement remains the same, and

consequently these wedges are equal in volume. Let this

volume be denoted by v. The centre of buoyancy of the

vessel when floating at the water-line WL' is at B', and the

upward support of the buoyancy acts through B'; the downward

force of the weight acts through G, the centre of gravity of the

ship. Draw GZ and BR perpendicular to the vertical through

B', and gh,gti perpendicular to the new water-line W'L'. Then
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the moment of the couple tending to right the ship is W x GZ,
or, as we term it, the moment of statical stability. Now

GZ = BR - BP
= BR - BG sin

so that the moment of statical stability at the angle 6 is

W(BR- BG.sinfl)

The length BR is the only term in this expression that we
do not know, and it is obtained in the following manner. The

new volume of displacement W'AL' is obtained from the old

volume WAL by shifting the volume WSW to the position

LSI/, through a horizontal distance hh'. Therefore the hori-

zontal shift of the centre of gravity of the immersed volume

from its original position at B, or BR, is given by

v X hK

(using the principle discussed on p. 100). Therefore the

moment of statical stability at the angle 6 is

W (
V X
y
M - BG . sin (9

)
foot-tons

This is known as " Atwood's formula."
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The righting arm or lever = ^-~- BG . sin

If G is below B, as may happen in special cases

If we want to find the length of the righting arm or lever

at a given angle of heel 0, we must therefore know

(1) The position of the centre of buoyancy B in the up-

right condition.

(2) The position of the centre of gravity G of the ship.

(3) The volume of displacement V.

(4) The value of the moment of transference of the wedges

parallel to the new water-line, viz. v X hH.

This last expression involves a considerable amount of cal-

culation, as the form of a ship is an irregular one. The methods

adopted will be fully explained later, but for the present we
will suppose that it can be obtained when the form of the ship
is given.

Curve of Statical Stability. The lengths of GZ thus

obtained from Atwood's formula will vary as the angle of

heel increases, and usually GZ gradually increases until an

angle is reached when it obtains a maximum value. On
further inclination, an angle will be reached when GZ becomes

zero, and, further than this, GZ becomes negative when the

couple W X GZ is no longer a couple tending to right the

ship, but is an upsetting couple tending to incline the ship still

further. Take H.M.S. Captain
l

as an example. The lengths

of the lever GZ, as calculated for this ship, were as follows :

At 1 degrees, GZ = 4^ inches At 35 degrees, GZ = 7| inches

14 > " ~ "2 > 42 >
~ 5i

,, 21 ,, ,, io| ,, 49 ,, ,,
= 2 ,,

,, 28 ,,
= 10 ,, ,, 54 = nil

Now set along a base-line a scale of degrees on a con-

1 The Captain was a rigged turret-ship which foundered in the Bay of

Biscay. A discussion of her stability will be found in "Naval Science,"

vol. i.
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venient scale (say \ inch = i degree), and erect ordinates

at the above angles of the respective lengths given. If now

we pass a curve through the tops of these ordinates, we shall

obtain what is termed a "curve of statical stability" from

which we can obtain the length of GZ for any angle by drawing

the ordinate to the curve at that angle. The curve A, in Fig.

68, is the curve so constructed for the Captain. The angle

I

14. 21, 2a 35.

ANGLES OF

42. 49. 545.

INCLINATION.

FIG. 68.

at which GZ obtains its maximum value is termed the "
angle of

maximum stability" and the angle at which the curve crosses

the base-line is termed the "
angle of vanishing stability" and

the number of degrees at which this occurs is termed the
"
range of stability" If a ship is forced over beyond the angle

of vanishing stability, she cannot right herself; GZ having a

negative value, the couple operating on the ship is an up-

setting couple.

In striking contrast to the curve of stability of the Captain
is the curve as constructed for H.M.S. Monarch?- The lengths

of the righting levers at different angles were calculated as

follows :

At 7 degrees, GZ = 4 inches

14

21

28

35

1 The Monarch was a rigged ship built about the same time as the

Captain^ but differing from the Captain in having greater freeboard. See
also the volume of "Naval Science

" above referred to.
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At 42 degrees, GZ = 22 inches

49 = 20
" == ~

The curve for this ship, using the above values for GZ, is

given by B, Fig. 68. The righting lever goes on lengthening
in the Monarch's case up to the large angle of 40, and then

shortens but slowly ;
that of the Captain begins to shorten at

about 21 of inclination, and disappears altogether at 54^, an

angle at which the Monarch still possesses a large righting lever.

Referring to Atwood's formula for the lever of statical

stability at the angle 0, viz.

we see that the expression consists of two parts. The
first part is purely geometrical, depending solely upon the

form of the ship ;
the second part, BG . sin 6, brings in the

influence of the position of the centre of gravity of the ship,

and this depends on the distribution of the weights forming
the structure and lading of the ship. We shall deal with these

two parts separately.

(1) Influence ofform on curves of stability.

(2) Influence of position of centre of gravity on curves of

stability.

(i) We have here to take account of the form of the ship

above water, as well as the form of the ship below water. The
three elements of form we shall consider are draught, beam,
and freeboard. These are, of course, relative

; for con-

venience we shall keep the draught constant, and see what

variation is caused by altering the beam and freeboard. For

the sake of simplicity, let us take floating bodies in the form

of boxes. 1 The position of the centre of gravity is taken as

constant. Take the standard form to be a box :

Draught ............... 21 feet.

Beam ............... 50^ ,,

Freeboard ...... ... ... ... 6J ,,

1 These illustrations are taken from a paper read at the Institution of

Naval Architects by Sir N. Barnaby in 1871.
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The curve of statical stability is shown in Fig. 69 by the

curve A. The deck-edge becomes immersed at an inclination

of 14^, and from this angle the curve increases less rapidly

than before, and, having reached a maximum value, decreases,

the angle of vanishing stability being reached at about 38.
Now consider the effect of adding 4^ feet to the beam,

thus making the box

Draught 21 feet.

Beam 55
Freeboard ... ... ... ... ... 6J ,,

The curve is now given by B, Fig. 69, the angle of vanish-

ing stability being increased to about 45. Although the

0. 10. 20. 30. 4O. 50. 60. 70.

ANGLE OF INCLINATION.

FIG. 69.

position of the centre of gravity has remained unaltered, the

increase of beam has caused an increase of GM, the meta-

centric height, because the transverse metacentre has gone up.

We know that for small angles the lever of statical stability is

given by GM . sin 0, and consequently we should expect the

curve B to start as shown, steeper than the curve A, because

GM is greater. There is a very important connection between

the metacentric height and the slope of the curve of statical

stability at the start, to which we shall refer hereafter.

Now consider the effect of adding 4^ feet to the freeboard

of the original form, thus making the dimensions

Draught 21 feet.

Beam ... ... 50^ M
Freeboard II



180 Theoretical Naval Architecture.

The curve is now given by C, Fig. 69, which is in striking

contrast to both A and B. The angle of vanishing stability

is now 72. The curves A and C coincide up to the angle at

which the deck-edge of A is immersed, viz. 14^, and then,

owing to the freeboard still being maintained, the curve C
leaves the curve A, and does not commence to decrease

until 40.
These curves are very instructive in showing the influence

of beam and freeboard on stability at large angles. We see

(a) An increase of beam increases the initial stability, and

therefore the slope of the curve near the origin, but does not

greatly influence the area enclosed by the curve or the range.

(b) An increase of freeboard has no effect on initial

stability (supposing the increase of freeboard does not affect

position of the centre of gravity), but has a most important

effect in lengthening out the curve and increasing its area.

The two bodies whose curves of statical stability are given by
A and C have the same GM, but the curves of statical stability

are very different.

(2) We now have to consider the effect on the curve of

statical stability of the position of the centre of gravity. If

the centre of gravity G is above the centre of buoyancy B, as is

usually the case, the righting lever is less than = by the

expression BG . sin 6. Thus the deduction becomes greater as

the angle of inclination increases, because sin increases as 6

increases, reaching a maximum value of sin 6 = i when =
90; the deduction also increases as the C.G. rises in the

ship. Thus, suppose, in the case C above, the centre of gravity

is raised 2 feet. Then the ordinate of the curve C at any

angle is diminished by 2 x sin 6. For 30, sin =
|, and

the deduction is there i foot. In this way we get the curve D,
in which the range of stability is reduced from 72 to 53 owing
to the 2-feet rise of the centre of gravity.

It is usual to construct these curves as indicated, the

ordinates being righting levers, and not righting moments. The

righting moment at any angle can be at once obtained by

multiplying the lever by the constant displacement. The real
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curve of statical stability is of course a curve, the ordinates of

which represent righting moments. This should not be lost

sight of, as the following will show. In Fig. 70 are given the

1-5.-

75.

curves of righting levers for a merchant vessel in two given

conditions, A for the light condition at a displacement of

1500 tons, and B for the load condition at a displacement of

3500 tons. Looking simply at these curves, it would be

thought that the ship in the light condition had the better

stability; but in Fig. 71, in which A represents the curve of

o. 75.

righting moments in the light condition, and curve B the curve

of righting moments in the load condition, we see that the

ship in the light condition has very much less stability than in

the load condition.

We see that the following are the important features of a

curve of statical stability :

(a) Inclination the tangent to the curve at the origin has to

the base-line ;

(b) The angle at which the maximum value occurs, and the

length of the righting lever at this angle ;

(c) The range of stability.
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The angle the tangent at the origin makes with the base-

line can be found in a very simple manner as follows : At the

angle whose circular measure1

is unity, viz. 57*3, erect a

perpendicular to the base,

and make its length equal to

the metacentric height GM,
for the condition at which

the curve has to be drawn,

using the same scale as for

the righting levers (see Fig.

72). Join the end of this
FIG. 72. .

line with the origin, and the

curve as it approaches the origin will tend to lie along this line.

The proof of this is given below. 2

Specimen Curves of Stability. In Fig. 73 are given
some specimen curves of stability for typical classes of ships.

A is the curve for a modern British battleship of about 3^
feet metacentric height. The range is about 63.

B is the curve for the American monitor Miantonomoh.

This ship had a low freeboard, and to provide sufficient stability

a very great metacentric height was provided. This is shown

by the steepness of the curve at the start.

C is the curve for a merchant steamer carrying a miscel-

laneous cargo, with a metacentric height of about 2 feet. In

1 See p. 91.
2 For a small angle of inclination 0, we know that GZ = GM x 0,

6 being in circular measure ;

GZ GM
or

~0
=
-T

If now we express in degrees, say 6 = <f>, fhen

GZ GM
</> angle whose circular measure is I

G2Z GM

If a is the angle OM makes with the base, then

GM GZ
tana =

5F3
= ^

and thus the line OM lies along the curve near the origin.
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this ship there is a large righting lever even at 90. It must

be stated that, although this curve is typical for many ships, yet

10. 20. 30. 40. 50. 60. 70. 80. 90.

ANGLES OF INCLINATION.

FIG. 73.

the forms of the curves of stability for merchant steamers must

vary considerably, owing to the many different types of ships

and the variation in loading. Fig. 74 gives curves of stability

10 30 40 50 573 60 70
DEGREES OF INCLINATION

FIG. 74.

for several conditions of the T.S.S. Smolensk, 470' X 58'

X 37' (Mr. Rowell, I.N.A., 1905). They may be taken as

typical curves of a modern steamship of the highest class. A
is the curve for the load condition, in which the lower holds

are filled with 1200 tons of cargo, and the 'tween decks are

filled with 600 tons of cargo homogeneously stowed. All coal,

stores, and water are assumed on board. The GM is 1*5 feet,

and the range is 80. B assumes the cargo is all homo-

geneous, the GM being reduced to i foot. The range is

rather over 70. C is for the same cargo as B, but all coal
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is consumed except 200 tons in bottom of bunkers, and half

stores and fresh water only remain on board. The GM is

only o'6 foot, but the lighter draught has the effect of lengthen-

ing out the curve to a range of yi^ . D is the condition

when the vessel is
"
light," having the ballast and reserve feed

tanks full; and the bunkers full of coal. The GM is 2 '8 feet,

and the range is over 90. It will be noticed that the

tangent at the origin has been drawn in each case at the angle
f"

1

TVT

a such that tan a = 5-

57*3

The curves E and F in Fig. 74A have been prepared to

illustrate the effect of raising the centre of gravity of ship when

10
J

70
26 a ^ ___

j

FIG. 74A.

in condition C. If the centre of gravity is raised o'6 foot by
a different disposition of the cargo, the GM is zero, and the

curve of stability starts at a tangent to the base line. At all

angles the GZ is reduced from that in condition C by o -

6

sin 0, so that we get the curve E, in which the range is 66.

If now we suppose the centre of gravity of ship lifted still

higher, viz. 0-5 foot, the vessel has a negative GM in the

upright condition, and is therefore in equilibrium, which is,

however, unstable. This is shown by the way the curve starts

at the origin at an angle of a = tan' 1

7-. The ship will

heel until at 10 the centre of gravity and new CB again get

into the same vertical line and the ship is in equilibrium.

This time, however, the ship is in stable equilibrium, and has

a positive GM, so that the ship will loll over to 10, and there

be perfectly safe in calm weather, as is shown by the way the

curve of stability stretches out to a range of 62. At sea it



Statical Stability, Curves of Stability, etc. 185

would be advisable to fill up some of the ballast tanks, to

improve the stability of the vessel in either of the conditions

E and F.

Ships do occasionally get into the condition represented in

F, Fig. 74A. The following has reference to the S.S. Leo, which

capsized in 1895 (taken from Captain Owen's book "Aids to

Stability "). This ship left port with a cargo of barley and

wheat and 40 tons of coal on deck. Her freeboard was high,

no ballast being taken on board, and she had a list of 10 to

starboard or port, showing a negative GM. There was some

loose water in the bilges which the pump suctions could not

touch, as the ship had a list on one side or the other. The

ship listing to starboard, the engineers, to reduce the list, used

most of the coal from the starboard bunkers. This, however,

had the effect of raising the centre of gravity of the ship still

further, and increasing her instability when forced to the up-

right. The wind and sea both now acted on the starboard

side, so that she returned to the upright and then lurched over

to port. The effect of the motion of the ship, and the force of

the wind sending the ship over to leeward, caused her to go
far beyond her natural position of equilibrium, say 10 to 15,
and this was helped by the loose water rushing across. Conse-

quently such an angle was reached that the shifting boards

gave way and the grain got over to the inclined side, and the

ship went right over. The remedy in such a case would un-

doubtedly have been to fill the water-ballast tanks, so that the

ship had a positive GM in the upright condition.

A ship may start her voyage with a small positive GM, but,

owing to consumption of coal, etc., during the voyage, she may
get a list owing to a negative GM in the upright condition.

The most comfortable ship at sea is one with a small GM,
and if this is associated with such a position of the centre of

gravity and such a freeboard that the curve gives a good
maximum GZ and a good range, say like A in Fig. 74, we

have most satisfactory conditions of comfort and seaworthiness.

For small-cargo vessels it is generally recognized that the GM
should not be less than 0*8 foot, provided that a righting arm

of like amount is obtained at 30 to 40.
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For warships the conditions of stability are special. Here,

although the high freeboard is conducive to a good area of

the curve of stability and a large range, as seen in Fig. 69,

curve C, the conditions of design lead to a high position of

the centre of gravity, because of the disposition of guns and

armour. This discounts the effect of freeboard, as seen by
curve D in Fig. 69.

D, in Fig. 73, is the curve of stability for a sailing-ship

having a metacentric height of 3^ feet.

The curve of stability for a floating body of circular form fe

very readily obtainable, because

the section is such that the

upward force of the buoyancy

always acts through the centre

of the section, as shown in Fig.

75. The righting lever at any

angle 6 is GM . sin 0, where G
is the centre of gravity, and

M the centre of the section.

Taking the GM as two feet,

then the ordinates of the curve

of stability are o, 1*0, 173, 2-0,

I> 73> I<0
>
at intervals of 30.

The maximum occurs at 90, and the range is 180. The
curve is shown in Fig. 76. A similar curve is obtained for a

submarine boat, the ordinate at angle being BG . sin 0, and

the range 180.

180.

Calculations for Curves of Stability. We now pro-

ceed to investigate methods that are or have been adopted in

practice to determine for any given ship the curve of righting

levers. The use of the integrator is now very general for
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doing this, and it saves an enormous amount of work ; but, in

order to get a proper grasp of the subject, it is advisable to

understand the rrfethods that were in use previous to the intro-

duction of the integrator.

In constructing and using curves of stability, certain assump-
tions have to be made. These may be stated as follows :

1. The sides and deck are assumed to be water-tight for the

range over which the curve is drawn.

2. The C.G. is taken in the same position in the ship, and

consequently we assume that no weights shift their position

throughout the inclination.

3. The trim is assumed to be unchanged, that is, the ship
is supposed to be constrained to move about a horizontal longi-

tudinal axis fixed in direction only, and to adjust herself to the

required displacement without change of trim.

It is not possible in this work to deal with all the systems
of calculation that have been employed ; a selection only will

be given in this chapter. For further information the student

is referred to the Transactions of the Institution of Naval

Architects, and to the work by Sir E. J. Reed on the
11

Stability of Ships." The following are the methods that will

be discussed :

r. Blom's mechanical method.

2. Barnes' method.

3. Direct method (sometimes employed as a check on

other methods).

4. By Amsler's Integrator and Cross-curves of stability.

5. Tabular method (used at Messrs. John Brown).
6. Mr. Hok's method (given later).

i. Blom's Mechanical Method. Take a sheet of

drawing-paper, and prick off from the body-plan the shape of

each equidistant section *

(i.e.
the ordinary sections for displace-

ment), and cut these sections out up to the water-line at which

the curve of' stability is required, markirg on each section the

1 In settling the sections to be used for calculating stability by any of the

methods, regard must be had to the existence of a poop or forecastle the

ends of which are watertight, and the ends of these should as nearly as

possible be made stop points in the Simpson's rule.
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middle line. Now secure all these sections together in their

proper relative positions by the smallest possible use of gum.
The weight of these represents the displacement of the ship.

Next cut out sections of the ship for the angle at which the

stability is required, taking care to cut them rather above

the real water-line, and gum together in a similar manner to

the first set. Then balance these sections against the first

set, and cut the sections down parallel to the inclined water-

line until the weight equals that of the first set. When this

is the case, we can say that at the inclined water-line the

displacement is the same as at the original water-line in the up-

right condition. This must, of course, be the case as the vessel

heels over. On reference to Fig. 67, it will be seen that what

we want to find is the line through the centre of buoyancy for

the inclined position, perpendicular to the inclined water-line,

so that if we can find B' for the inclined position, we can com-

pletely determine the stability. This is done graphically by

finding the centre of gravity of the sections we have gummed
together, and the point thus found will give us the position of

the centre of buoyancy fon the inclined condition. This is done

by successively suspending the section ; and noting where the

plumb-lines cross, as explained on p. 5 1 . Having then the centre

of buoyancy, we can draw through it a line perpendicular to the

inclined water-line, and if we then spot off the position of the

centre of gravity, we can at once measure off the righting lever

GZ. A similar set of sections must be made for each angle about

10 apart, and thus the curve of stability can be constructed.

2. Barnes's Method of calculating Statical

Stability. In this method a series of tables are employed,

called Preliminary and Combination Tables, in which the work

is set out in tabulated form. Take the section in Fig. 77 to

represent the ship, WL being the upright water-line for the con-

dition at which the curve of stability is required. Now, for a

small transverse angle of inclination it is true that the new water-

plane for the same displacement will pass through the centre

line of the original water-plane WL, but as the angle of inclina-

tion increases, a plane drawn through S will cut off a volume of

displacement sometimes greater and sometimes less than the
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original volume, and the actual water-line will take up some
such position as W'L', Fig. 77, supposing too great a volume to

be cut off by the plane through S. Now, we cannot say

straight off where the water-line W'L' will come. What we
have to do is this : Assume a water-line wl passing through
S ;

find the volume of the assumed immersed wedge /SL, the

volume of the assumed emerged wedge wSW, and the area of

the assumed water-plane wl. Then the difference of the

volumes of the wedges divided by the area of the water-plane
will give the thickness of the layer between wl and the correct

water-plane, supposing the difference of the volumes is not too

great. If this is the case, the area of the new water-plane is

FIG. 77.

found, and a mean taken between it and the original. In this

way the thickness of the layer can be correctly found. If the

immersed wedge is in excess, the layer has to be deducted ;
if

the emerged wedge is in excess, the layer has to be added.

To get the volumes of either of the wedges, we have to

proceed as follows : Take radial planes a convenient angular

interval apart, and perform for each plane the operation sym-

bolized by ij>
2

. dx, t.e. the half-squares of the ordinates

are put through Simpson's rule in a fore-and-aft direction for

each of the planes. Then put the results through Simpson's

rule, using the circular measure of the angular interval. The
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result will be the volume of the wedge at the particular angle.
For proof of this see below. 1

' The results being obtained for the immersed and emerged

wedges, we can now determine the thickness of the layer. This

work is arranged as follows : The preliminary table, one table

for each angle, consists of two parts, one for the immersed

wedge, one for the emerged wedge. A specimen table is given
on p. 192 for 30. The lengths of the ordinates of each radial

plane are set down in the ordinary way, and operated on by

Simpson's multipliers, giving us a function of the area on the

immersed side of 550*3, and on the emerged side of 477*3.

We then put down the squares of the ordinates, and put them

through the Simpson's multipliers, giving us a result for the

immersed side of 17,878, and for the emerged side 14,251.
The remainder of the work on the preliminary table will be

described later.

We now proceed to the combination table for 30 (see

p. 193), there being one table for each angle. The functions

of squares of ordinates are put down opposite their respective

angles, both for the immersed wedge and the emerged wedge,

up to and including 30, and these are put through Simpson's

multipliers. In this case the immersed wedge is in excess, and

so we find the volume of the layer to be taken off to be 7839
cubic feet, obtaining this by using the proper multipliers. At

the bottom is placed the work necessary for finding the thickness

of the layer. We have the area of the whole plane 20,540

square feet, and this divided into the excess volume of the

immersed wedge, 7839 cubic feet, gives the thickness of the

layer to take off, viz. 0*382 foot, to get the true water-line.

We now have to find the moment of transference of the

1 The area of the section S/L is given by J

'

y* . d6
y
as on p. 15, and the

volume of the wedge is found by integrating these areas right fore and

aft, or

!/.*.*
which can be written

]//>*.'* .4
or f(lfy*.dx)a$

**' i fo* dx is found for each radial plane, and integrated with respect to

the angular interval.
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wedges, v X M' in Atwood's formula, and this is done by using

the assumed wedges and finding their moments about the line ST,

and then making at the end the correction rendered necessary

by the layer. To find these moments we proceed as follows :

In the preliminary table are placed the cubes of the ordinates of

the radial plane, and these are put through Simpson's rule ; the

addition for the emerged and immersed sides are added

together, giving us for the 30 radial plane 1,052,436. These

sums of functions of cubes are put in the combination table for

each radial plane up to and including 30, and they are put

through Simpson's rule, and then respectively multiplied by
the cosine of the angle made by each radial plane with the

extreme radial plane at 30. The sum of these products gives

us a function of the sum of the moments of the assumed im-

mersed and emerged wedges about ST. The multiplier for the

particular case given is 0*3878, so that the uncorrected moment
of the wedges is 3,391, 336,* in foot-units, i.e. cubic feet, multi-

plied by feet.

1 The proof of the process is as follows : Take a section of the wedge
S/L, Fig. 78, and draw ST perpendicular to S/. Then what is required is

the moment of the section about ST, and this

integrated throughout the length. Take P and

P' on the curved boundary, very close together,

and join SP, SP' ; call the angle P'Sl, 6, and a.vcos ,

the angle P6P', d9. -K*2

Then the area PS P' = %y* . de SP -y

The centre of gravity of SPP' is distant

from ST, \y . cos 0, and the moment of SPP'
about ST is

(iy > dQ ) x ^y . cos 0)
FIG. 78.

or \y* . cos . dQ

We therefore have the moment of /SL about ST

\jy
3

. cos B . dQ

and therefore the moment of the wedge about ST is

J(jJ>
3

. cos 6 . d6)dx

or iffy
3

, cose .dx.de

i.e. find the value of ify
3

. cos 6 . dx for radial planes up to and including

the angle, and then integrate with respect to the angular interval. It will

be seen that the process described above corresponds with this formula.
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We now have to make the correction for the layer. We
already have the volume of the layer, and whether it has to be

added or subtracted, and we can readily find the position of

the centre of gravity of the radial plane. This is done at the

bottom of the combination table from information obtained on

the preliminary table. We assume that the centre of gravity

of the layer is the same distance from ST as the centre of

gravity of the radial plane, which may be taken as the case

unless the thickness of the layer is too great. If the layer is

thick, a new water-line is put in at thickness found, and the

area and C.G. of this water-line found. The mean between

the result of this and of the original plane can then be used.

The volume of the layer, 7839 cubic feet, is multiplied by the

distance of its centre of gravity from ST, viz. 177 feet, giving

a result of 13,875 in foot-units, i.e. cubic feet multiplied by
feet. The correction for the layer is added to or subtracted

from the uncorrected moment in accordance with the following

rules :

If the immersed wedge is in excess, and the centre of gravity

of the layer is on the immersed side, the correction for the layer

has to be subtracted.

If the immersed wedge is in excess, and the centre of gravity

of the layer is on the emerged side, the correction for the layer

has to be added.

If the emerged wedge is in excess, and the centre of gravity

of the layer is on the emerged side, the correction for the layer

has to be subtracted.

If the emerged wedge is in excess, and the centre of gravity

of the layer is on the immersed side, the correction for the layer

has to be added.

These rules are readily proved, and are left as an exercise

for the student.

We, in this case, subtract the correction for the layer,

obtaining the true moment of transference of the wedges
as 3,377,461, or v X hh' in Atwood's formula. The volume

of displacement is 398,090 cubic feet; BG is 11-90 feet;

sin 30 = 0-5. So we can fill in all the items in Atwood s

formula
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or GZ = 2-53 feet

In arranging the radial planes, it has been usual to arrange

that the deck edge comes at a stop point in Simpson's first rule,

because there is a sudden change of ordinate as the deck edge
is passed, and for the same reason additional intermediate

radial planes are introduced near the deck edge. In the case

we have been considering, the deck edge came at about 30.
The radial planes that were used were accordingly at

o, 10, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90

These intermediate radial planes lead to rather complicated

Simpson's multipliers, and in order to simplify the calculations

it is thought to be sufficiently accurate to space the radial

planes rather closer, say every 9. For such a series of radial

planes the multipliers for 9, 18, 27, 36, 54, 72, 81, and 90
are readily obtained by one of Simpson's rules. For 45 the

multipliers can be 0*4, i, i, i, I, 0*4, with the multiplier
~ x

OT57. For 63 they can be i, f, f, f, 071, i, i, f, with the

multiplier 0*157. These can be readily proved ; 0*157 is the

circular measure of 9.
Barnes's method of calculating stability has been very largely

employed. It was introduced by Mr. F. K. Barnes at the Insti-

tution of Naval Architects in 1861, and in 1871 a paper was

read at the Institution by Sir W. H. White and the late Mr.

John, giving an account of the extensions of the system, with

specimen calculations. For further information the student is

referred to these papers, and also to the work on "
Stability,"

by Sir E. J. Reed. At the present time it is not used to any

large extent, owing to the introduction of the integrator,

which gives the results by a mechanical process in much less

time. It will be seen that in using this method to find the

stability at a given angle, we have to use all the angles up to

and including that angle at which the stability is required.

Thus a mistake made in the table at any of the smaller angles
is repeated right through, and affects the accuracy of the
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calculation at the larger angles. In order to obtain an indepen-
dent check at any required angle, we can proceed as follows :

3. Triangular or Direct Method of calculating

Stability. Take the body-plan, and draw on the trial plane

through the centre of the upright water-line at the required

angle. This may or may not cut off the required displace-

ment. We then, by the ordinary rules of mensuration, dis-

cussed in Chapter I., find the area of all such portions as S/L,

Fig. 77, for all the sections,
1 and also the position of the centre

of gravity, g, for each section, thus obtaining the distance S//.

This is done for both the immersed and emerged wedges. The
work can then be arranged in tabular form thus

Number of

section.
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volume is readily obtainable. The difference between this and

V
V will give the volume of layer, V\ = V2 , say, where the

layer has to be added. The C.G. of this layer is readily

determined, as it will very nearly be that of the middle-line

plane of the ship, so that the C.G. of the volume V is found

at once, and this gives the GZ at 90.
There is the disadvantage about the methods we have

hitherto described, that we only obtain a curve of stability for

one particular displacement, but it is often necessary to know

the stability of a ship at very different displacements to the

ordinary load displacement, as, for example, in the light con-

dition, or the launching condition. The methods we are now
about to investigate enable us to determine at once the curve

of stability at any given displacement and any assumed position

of the centre of gravity.

4. Amsler's Integrator. Cross-curves of Stability.
The Integrator is an extension of the instrument we have

described on p. 81, known as the planimeter. A diagram of

one form of the integrator is given in Fig. 79. A bar, BB, has

a groove in it, and the instrument has two wheels which run in

this groove. W is a balance weight to make the instrument

run smoothly. There are also three small wheels that run on

the paper, and a pointer as in the planimeter. By passing the

pointer round an area, we can find

(1) A number which is proportional to the area^ i.e. a

function of the area.

(2) A function of the moment of the area about the axis

the bar is set to.

(3) A function of the moment of inertia of the area about

the same axis.

The bar is set parallel to the axis about which moments

are required, by means of distance pieces.

(1) is given by the reading indicated by the wheel marked A.

(2) is given by the reading indicated by the wheel marked M.

(3) is given by the reading indicated by the wheel marked I.

The finding of the moment of inertia is not required in our

present calculation.
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Now let M'LMW represent the body-plan
> of a vessel

inclined to an angle of 30; then, as the instrument is set, the

FIG. 79.

axis of moments is the line through S perpendicular to the

inclined water-line, and is what we have termed ST. What
we want to find is a line through the centre of buoyancy in the

inclined position perpendicular to the inclined water-line. By
passing the pointer of the instrument round a section, as

W'L'M, we can determine its area, and also its moment about

the axis ST by using the multipliers ; and doing this for all the

sections in the body, we can determine the displacement and
also the moment of the displacement about ST. 2

Dividing the

moment by the displacement, we obtain at once the distance

of the centre of buoyancy in the inclined condition from the

axis ST. It is convenient in practice to arrange the work in

a similar manner to that described for the pianimeter, p. 83,
and the following specimen calculation for an angle of 30 will

illustrate the method employed.
3

Every instrument has multi-

pliers for converting the readings of the wheel A into areas,

and those of the wheel M into moments. The multipliers

must also take account of the scale used.

1 The body-plan is drawn for both sides of the ship the fore-body in

black, say, and the after-body in red.
2 This is the simplest method, and it is the best for beginners to employ ;

but certain modifications suggest themselves after experience with the

instrument. See Example 23 in this chapter.
* See Appendix A for calculation, using

"
TchebychefFs rule

" with the

integrator.
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of the ordinary curves of stability we have been considering.

In these we have the righting levers at a constant displacement
and varying angles. In a cross-curve we have the righting

levers for a constant angle, but varying displacement. Thus

in Fig. 79, draw a water-line W"L" parallel to W'L', and for

CROSS CURVES or STABILITY.

C.G.IMLW.L.

3000.

TONS

4000.

DISPLACEMENT.

SOOO

FIG. 80.

the volume represented by W"ML" find the displacement and

position of the centre of buoyancy in exactly the same way as

we have found it for the volume WML'. The distance which

this centre of buoyancy is from the axis gives us the value of

GZ at this displacement, supposing the centre of gravity is at

S. The same process is gone through for two or more water-

lines, and we shall have values of GZ at varying displacements

at a constant angle. These can be set off as ordinates of a

curve, the abscissae being the displacements in tons. Such a

curve is termed the " cross-curve of stability
"

at 30, and for

any intermediate displacement we can find the value of GZ at

30 by drawing the ordinate to the curve at this displacement.

A similar process is gone through for each angle, the same

position for the centre of gravity being assumed all through,
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and a series of cross-curves obtained. Such a set of cross-

curves is shown in Fig. 80 for displacements between 3000

and 5000 tons at angles of 15, 30, 45, 60, 75, and 90. At

any intermediate displacement, say at 4600 tons, we can draw

the ordinate and measure off the values of GZ, and so obtain

the ordinates necessary to construct the ordinary curve of

stability at that displacement and assumed position of the

centre of gravity. The relation between the cross-curves and

the ordinary curves of stability is clearly shown in Fig. 81.

1,500
IS. 30.

DEGREES

45. 60. 75.

OF INCLINATION.

90.

FIG. 81.

We have four curves of stability for a vessel at displacements
of 1500, 2000, 2500, and 3000 tons. These are placed as

shown in perspective. Now, through the tops of the ordinates

at any given angle we can draw a curve, and this will be the

cross-curve of stability at that angle.

It will have been noticed that throughout our calculation

we have assumed that the centre of gravity is always at the

point S, and the position of this point should be clearly stated

on the cross-curves. It is evident that the centre of gravity
cannot always remain in this position, which has only been

assumed for convenience. The correction necessary can

readily be made as follows : If G, the centre of gravity, is

below the assumed position S, then GZ = SZ -f SG . sin 0, and
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if G is above S, then GZ = SZ - SG . sin for any angle 6.

Thus the ordinates are measured from the cross-curves at the

required displacement, and then, SG being known, SG sin 1 5,
SG sin 30, etc., can be found, and the correct values of GZ
determined for every angle.

If an integrator is not available, cross-curves can be calcu-

lated by using a modification of Barnes's tables already discussed.

Three poles, O, O', O", are taken, and Barnes's tables are worked

out for each set of radial planes through these poles ;
but no

correction is made for the layer, as for cross-curves we set off

the lever for whatever the displacement comes to (see Example

22). For each angle there are thus three spots obtained, and

by the method described below tangents are drawn at each of

these places to the curves. At 90 the result found for each

pole should be the same; at 72 and 81, say, the spots come

very close together and do not give reliable curves. A separate

calculation is therefore made for 90 over a wide range of dis-

placement, which can readily be done, and then curves for

constant displacement are run in fair, so that auxiliary spots on

the cross-curves at 72 and 81 are obtained.

5. Tabular Method of calculating Stability. The

following method of obtaining a cross-curve is a very con-

venient one to employ ; the whole of the work being arranged
in tabular form and Tchebycheff's rule being used, the fore

and aft integration is easily performed by addition. Take the

complete body of a ship, inclined as shown in Fig. Si A, the

axis AA being perpendicular to the new water-line, and prefer-

ably always taken through the same spot in the middle line,

say, the intersection of the M.L. and the L.W.L. It is the

practice at Messrs. John Brown and Co., Clydebank, to use

this method as an independent check against the results of the

Integrator, and the tabular form reproduced in Table IV.
1

is

given by the kind permission of Mr. W. J. Luke. Tcheby-
cheffs 10 ordinate rule is used for the fore and aft integration.

In the case given, the water-lines are placed 3' 6" apart, the

lowest one being tangential to the lowest point of the bilge.

For each water-line the moment of the area of water-plane

1 See at the end of the book.
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about AA is J[jy. dxj(y'f. dx\, and the area of the water-plane
is \Jy . dx-\-jy'. dx\. Thus, for No. 4 W.L. the sum of ordinates

port and starboard side is 296-5, and "this is a function of the

area of the plane. As regards moment about AA, the starboard

side sum of squares is in excess of the port side by 980,

which is therefore a function of the moment of the plane on

the starboard side. These functions are converted into area

and moment, giving 15,860 square feet and 26,216 (square feet

X feet). These are obtained in the first part of the table for

all the water-lines considered necessary. In the second portion,

the areas and moments of water-lines are integrated vertically

to 2, 4, 6, 8, 10 water-lines successively as shown. The sum
of functions of areas are turned into tons displacement ; thus, at

2 W.L. : displacement in tons = 19,875 X 5 X 3*5 X -^
= 662

tons. The sum of functions of moments are turned into

moment; thus, at 2 W.L. moment in foot tons = 165,735 x \

X 3*5 X
3*5

= 5524. The division 5524-^-662 = 8-35 feet,

which gives the distance of the C.B. of the displacement to

No. 2 W.L. on the starboard side of AA, and thus one spot
on the cross-curve at 30 is obtained, viz. 8*35 feet, at a dis-

placement of 662 tons. If the moment on the port side is in

excess for any W.L., that is then made negative. Thus, for

Nos. 6, 7, 8 in the table the port side is in excess. Similarly,

when integrating the water-lines forward and aft, if the section

crosses the axis AA, the ordinate is given a negative value. This,

of course, will occur more frequently as the angle gets larger.

Tangent to a Cross-curve. If, as is usual, the cross-

curves are drawn to represent righting levers on base of tons

displacement, the tangent at any point on a cross-curve has an
7

(~* >7

inclination 6 to the base line given by tan 6 = '

- If now

M is the righting moment in foot-tons, GZ = ^ so that

: ,TT Tl TTT )

^y ^^y ^y 2
~

\V\. ^W
~" W
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Now, </M is the increment of moment due to increment of

layer <AV, so that -
is the distance of the C.G. of radial

plane from ST = S^, say. Therefore tan 6 = ^(S^
-

GZ).

Sg is the same distance from ST as the centre of gravity of the

radial plane we are dealing with, cutting off the displacement
at which we are drawing the tangent.

If rlt rz are ordinates of radial plane on immersed and

emerged sides respectively, then with our usual notation

S(r, + rjdx

on the immersed side. These can readily be picked up on

the Barnes's tables. If S^> GZ, and g is to the right of S,

then tan 6 is positive ;
if S^ is to the left of S, tan is negative.

If SG is < GZ, tan 6 is negative. These tangents must be set

off, having in view the scales that are used for righting levers

and for displacement.

Dynamical Stability. The amount of work done by
a force acting through a given distance is measured by the

product of the force and the distance through which it acts.

Thus, a horse exerting a pull of 30,000 Ibs. for a mile does

30,000 X 1760 X 3 = 158,400,000 foot-lbs. of work

Similarly, if a weight is lifted, the work done is the product of

the weight and the distance it is lifted. In the case of a

ship being inclined, work has to be done on the ship by some

external forces, and it is not always possible to measure the

work done by reference to these forces, but we can do so by
reference to the ship herself. When the ship is at rest, we

have seen that the vertical forces that act upon the ship are

(1) The weight of the ship acting vertically downwards

through the centre of gravity ;

(2) The buoyancy acting vertically upwards through the

centre of buoyancy ;

these two forces being equal in magnitude. When the ship is
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inclined, they act throughout the whole of the inclination.

The centre of gravity is raised, and the centre of buoyancy is

lowered. The weight of the ship has been made to move

upwards the distance the centre of gravity has been raised, and

the force of the buoyancy has been made to move downwards

the distance the centre of buoyancy has been lowered. The
work done on the ship is equal to the weight multiplied by the

rise of the centre of gravity added to the force of the buoyancy

multiplied by the depression of the centre of buoyancy ; or

Work done on the ship = weight of the ship multiplied by the

vertical separation of the centre of gravity and the centre

of buoyancy.

This calculated for any given angle of inclination is termed
"
the dynamical stability

"
at that angle, and is the work that

has to be expended on the ship in heeling her over to the

given angle.

Moseley's Formula for the Dynamical Stability
at any Given Angle of Inclination. Let Fig. 67 repre-
sent a vessel heeled over by some external force to the

angle 0; g, g' being the centres of gravity of the emerged
and immersed wedges ; gk, g'h' being drawn perpendicular to

the new water-line W'Lf

. The other points in the figure have

their usual meaning, BR and GZ being drawn perpendicular
to the vertical through B'.

The vertical distance between the centres of gravity and

buoyancy when inclined at the angle 6 is B'Z.

The original vertical distance when the vessel is upright
is BG.

Therefore the vertical separation is

B'Z - BG
and according to the definition above

Dynamical stability
= W(B'Z - BG)

where W = the weight of the ship in tons. *

Now, B'Z = B'R + RZ = B'R + BG . cos

Now, using v for the volumes of either the immersed wedge
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or the emerged wedge, and V for the volume of displace-
ment of the ship, and using the principle given on p. 100,
we have

Substituting in the above value for B'Z, we have_

th

:tsral

which is known as Moseley*s formula.
It will be seen that this formula is very similar to Atwood's

formula, and it is possible to calculate it out for varying

angles by using the tables in Barnes' method of calculating

stability. It is possible, however, to find the dynamical

stability of a ship at any angle much more readily if the

curve of statical stability has been constructed, and the

method adopted, if the dynamical stability is required, is as

follows :

The dynamical stability of a ship at any given angle
is equal to the area of the curve of statical

stability up to that angle (the ordinates of this curve

being the actual righting moments).

Referring to Fig. 67, showing a ship heeled over to a cer-

tain angle 0, imagine the vessel still further heeled through a

very small additional angle, which we may call dB. The centre

of buoyancy will move to B" (the student should here draw his

own figure to follow the argument). B'B" will be parallel to

the water-line W'L', and consequently the centre of buoyancy
will not change level during the small inclination. Drawing a

vertical B"Z' through B", we draw GZ', the new righting arm,
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perpendicular to it. Now, the angle ZGZ' = dB, and the ver-

tical separation of Z and Z' = GZ x dB. Therefore the work

done in inclining the ship from the angle B to the angle B -j- dd

is

W x (GZ . dB)

Take now the curve of statical stability for this vessel. At

the angle B the ordinate is GZ. Take a consecutive ordinate

at the angle B + dQ. Then the area of such a strip = GZ x dB
\

but this multiplied by the displacement is the same as the

above expression for the work done in inclining the vessel

through the angle dB
t
and this, being true for any small angle

dB, is true for all the small angles up to the angle B. But the

addition of the work done for each successive increment of

inclination up to a given angle is the dynamical stability at

that angle, and the sum of the areas of such strips of the curve

of statical stability as we have dealt with above is the area of

that curve up to the angle B. Therefore we have the dynamical

stability of a ship at any given angle of heel is equal to the

area of the ordinary curve of statical stability up to that angle,

multiplied by the displacement.

To illustrate this principle, take the case of a floating body
whose section is in the form of a circle, and which floats with

its centre in the surface of the water. The transverse meta-

centre of this body must be at the centre of the circular section.

Let the centre of gravity of the vessel be at G, and the centre

of buoyancy be at B. Then for an inclination through 90
G will rise till it is in the surface of the water, but the centre of

buoyancy will always remain at the same level, so that the

dynamical stability at 90 = W x GM.
Now take the curve of statical stability for such a vessel.

The ordinate of this curve at any angle = VV x GM . sin 0,

and consequently the ordinates at angles 15 apart will be

W . GM . sin o, W . GM . sin 15, and so on
;

or 0-258

W.GM, 0-5 W.GM, 0707 W.GM, 0-866 W . GM, 0-965
W . GM, and W.GM. If this curve is set out, and its area

calculated, it will be found that its area is W x GM, which is

the same as the dynamical stability up to 90, as found above.
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It should be noticed that the angular interval should not be
taken as degrees, but should be measured in circular measure

(see p. 90). The circular measure of 15 is 0-2618.

The dynamical stability at any angle depends, therefore,

on the area of the curve of statical stability up to that angle ;

and thus we see that the area of the curve of stability is of

importance as well as the angle at which the ship becomes un-

stable, because it is the dynamical stability that tells us the

work that has to be expended to force the ship over. For full

information on this subject the student is referred to the
" Manual of Naval Architecture," by Sir W. H. White, and Sir

E. J. Reed's work on the "
Stability of Ships."

Mr. Hok's Method of obtaining a Curve of Sta-

bility. In this method the ordinary planimeter is used, and

as the use of curves through various spots obtained is a feature

of the method, the work is readily checked as one proceeds.

The method first obtains the curve of dynamical stability for

a given displacement, and then from this curve the curve of

statical stability is deduced. The former curve is the integral

of the latter, and so the latter is the differential of the former.

That is, if H is the dynamical stability at angle 6, then

.GZ.</0 and GZ = ~ ~
Take the body prepared with the sections on both sides in

the ordinary way inclined, as shown in Fig. SIA. Then, by
means of the planimeter, we can determine the displacement

up to the various dotted water-lines, and so construct a curve

of displacement. A line parallel to the base line and distance

away equal to the displacement V, is drawn as shown, and this

gives the draught at which we shall cut off the displacement

required, and for which we desire the righting lever. The
area of owl divided by wl gives the distance of the C.B. below

W.L., so that wb = owl-^-wl. The area owl is readily

obtained by the planimeter. Now, G being the assumed

position of the centre of gravity, and B' the new C.B., B being

the C.B. when upright, the dynamical stability
= W(B'Z-BG),

and B'Z BG can be readily found by measurement. By
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repeating this for a number of angles, a curve of dyna-
mical stability can be drawn, observing that the W portion

can be left out, being constant all through. If h be such

that H = W ./#, and ^ 10 , AJOJ ^o> etc., be the values at 10,
20

} 3> etc
->
and GZ10, GZao, etc., be the values of the righting

arm at 10, 20, etc., then at 10 we have

o
= A- (o'i745)(5 X o + 8 x

(0*1745 . > the c.m. of 10)

n = i(o'i745)(o + 4 X GZ^ +and

By these two equations GZ10 and GZ20 can be obtained. Also

Ao = f(o-i745)(o+ 3 GZ10 + 3 GZso + GZ30),
and GZ10 and GZ^

being known GZ30 is found. Thus values of GZ can be deter-

mined and the ordinary curve of stability drawn in for the

given displacement and assumed C.G. (For all practical

purposes ^10
= JGZ10 X 0*1745, seeing that the ordinary curve

of stability is straight near the origin.) This can be done for

other assumed displacements, and so a set of cross-curves

drawn in for constant angles on a base of displacement, as

already explained. All these, of course, assume a constant

position for the C.G., and if at any displacement another

position of the C.G. has to be allowed for, GG' sin is added

or subtracted, according as the new G' is below or above the

oldG.
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Stability of Self-righting Lifeboats. The stability of

these boats offers several points of interest. The properties of

such boats are

(1) Very large watertight reserve of buoyancy, which

renders the boat practically unsinkable.

(2) The water shipped is automatically cleared.

(3) The loss of stability due to shipping water is not

sufficient to cause instability.

(4) The boat is unstable when upside down.

(1) For this the ends of the boat have great sheer, and the

ends are filled in with air-cases or tanks. These cases are also

placed under the deck and at the sides between the deck and

seats (see Fig. SIB). The cases are in such numbers that even

if some are broached there would still be a sufficient buoyant
volume left.

The large buoyant volume at the ends gives great lifting

power to the boat when encountering a sea.

(2) The deck of the boat is somewhat higher than the

water-line, and in this deck, passing through to the bottom, are

eight tubes with automatic freeing valvest which allow water to

pass down, but not up. These are adjusted so as to drop
down with a small pressure of water above. The rise and

fall of the boat will soon cause any water on the deck to

be discharged.

The deck falls towards midships, and has a " round down,"

so that water will flow to the valves.

(3) Shipping water on the deck has two effects on the

stability, viz.

(a) Will raise the C.G. due to added weight

(b) Will make the virtual C.G. higher than the actual C.G

with the added water, because of the free surface

(Rise of G = where / is the moment of inertia of

free surface, and V is volume displacement with

added water).

In order that these two effects may not render the boat

unstable

*i.) An iron keel is fitted to pull C.G. down j
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(ii.)
The ends remain intact, so that the lost moment of

inertia i shall not be too great.

The GM in this extreme condition should be positive, or

otherwise when the boat, after capsizing, came back to the up-

right she would again capsize, owing to the water on the deck.

This GM will, however, only be small, and as the water-

level falls the i will reduce considerably owing to the presence

of the side tanks, and the water becoming less in quantity also

helps matters.

FIG. 8ic.

(4) This instability when upside down is the property
known as self-righting. In this condition, let B', M' be C.B.

and metacentre respectively, and G the centre of gravity.

Then G must be nearer the keel than M'.

The buoyancy being provided largely by the ends, B' will

be a good way from keel, G is also near keel owing to iron

keel
;
therefore B'G is large. Again, B'M' is not large, because

the moment of inertia is provided largely by the ends
; therefore

we get M' below G, and the boat is unstable.

It is also necessary that the boat should have a curve of

stability as ABC, Fig. 8ic, the only positions of equilibrium

being at upright and 180. If the curve of stability were like

ADFC, there would be a position of stable equilibrium at F,

which would not be desirable. If the curve were as AEC,
then the equilibrium at 180 would be stable.

These boats are tested, when fully equipped, with mast up
and sail set, by immersing to the gunwale by weights to repre-

sent men. The boat is then turned upside down by a chain

attached to a crane. The chain is then slipped, when the boat

should return to the upright position.
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In Fig. SIB the boat is of the type with a drop keel, and

provision is made for water ballast. There are eight automatic

freeing valves.

Stability of Sailing Vessels Power to carry sail.

For comparative purposes the sail area is taken as the "plain"
or "

working
"

sail, and this is assumed all braced fore and

aft. This sail for a ship would include "
jib,"

"
fore and main

courses,"
"
driver," three "topsails," and three "topgallant

sails." The centre of effort vs. assumed as the C.G. of the area

of these sails. The centre of lateral resistance of the water is

taken as the C.G. of the middle line area. The couple heeling
the ship is caused by the resultant of the wind pressure and

the fluid pressure on the opposite side of the ship. If A is

area of sails in square feet, p is pressure in Ibs. per square

foot, h the vertical distance between the C.E. and the C.L.R.,
and 6 the angle of heel, then the moment of the couple heeling

A y A
\^s 7j

the ship is
-

, and this equals the moment of stability

W x GM X sin 0. Taking for comparative purposes a pressure
of i Ib. per square foot (equivalent to a wind of about fourteen

knots).

i W x GM
^InT

=
Ax h

X22*-

This is termed the power to carry sail, and is a measure of the

stiffness of a ship. The greater this is, the less a given vessel

will incline under a given wind. Sailing merchant vessels

have a value 12 to 20
;
the sloops in the Navy, 12 to 15 ; smaller

values are usual in sailing yachts, as the crew have an influence

on the heel by going over to the leeward side.

If a curve of wind moment be constructed on base of

angle and plotted on the curve of stability (ordinates repre-

senting righting moments), where the two cross will represent

where the stability equals the heeling moment, and this is the

angle of steady heel in Fig. 8 ID this is 10. The area of sail

projected on to the vertical plane is A x cos 6, and the lever

of the moment is h x cos 0, so that the heeling moment is

p . A . h . cos2
6, and from this a curve can be drawn as AD,
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Fig 8 ID. If now the ship is supposed upright and exposed
to a sudden squall, the work done by the wind will be the area

10 G2O 30 4-0

FIG. SID.

50 60

under the wind moment curve. The work done to any angle

by the stability will be the area under the curve of stability.

At the angle of steady heel, the former is in excess by the

amount OAB, and the ship will heel over until the area OAB
is equal to the area BEF. If the wind remains constant, the

ship will eventually settle to the angle of steady heel in this

case 10. The area BEDF above the wind curve is thus the

reserve the vessel has against further wind pressure, and this

area is termed the "
reserve of dynamical stability"

If a ship is struck by a squall at the moment of complet-

ing a roll to windward, say 10, the wind moment and the

stability of the ship both act together in taking the vessel to

the upright, the work being represented by the area OAEF,

G

FIG. 81

Fig. 8 IE. It is only after passing the upright that the stability

acts against the wind, and the ship must heel to an angle 29,
such that the area FEABO is equal to the area BCG. It is

thus seen that a sailing vessel with a low curve of stability, like
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the Captain (Fig. 68), may have insufficient reserve of dynamical

stability, and under the above circumstances, might be blown

right over. Mr. Wall, I.N.A.,

1914, introduced this principle

into ordinary ship calculations.

Heel produced by Gun
Fire 1

(Fig. 8 IF). This problem
has to use the principle of

momentum. If w and W be

the weights of projectiles (and

powder) and the ship respec-

tively, v the velocity of the pro-
Vs--

]

^
jectile, then on firing, the C.G. FIG. SIP.

of ship will have a backward

velocity of V, and if I is the impulsive reaction of the water

at rather less than half draught, we have the equation

w W
I = .z/ - .V.

g g

-
. v being the momentum of the shot, and .V that of the ship.

A o

The angular momentum of the ship is . & . , and this
o

has to be equated to the moment of momentum causing the

rotation or

from which

V is practically negligible, so that

w W dd
ATJ-.v. AH = .k* . -r.

g g dt

I 72

= *x/A/ m.
from which kz can be found.

g
/jf)\%

The initial kinetic energy of the ship is J .W . k* .(
-j j ,

and

if 6 is the angle of heel this is equated to the dynamical

1 See Chap. IX. on The Rolling of Ships for the definitions of T and /*.
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stability at 6 supposing resistances are neglected, i.e.

J . W . m .

2

,

regarding the curve of stability a straight line.

v . AH\2

z/.AH w v . AH.TT
!

W' m.g.T
circular measure

As an example, take a case in which 8 guns are fired on the

broadside 25 feet above water, H being 13 feet below water,

w = 1 100 Ibs., velocity of discharge 3000 fs., G.M. 5 feet,

displacement 18,000 tons, T = 8 seconds.

.. . , noo X 3000 X 38 X 8 X 180
6 in degrees =

224O x l8>ooo x 5 x 32
-

2 x 8

= 3j degrees nearly.

Example. Determine the heel caused by firing simultaneously 4 guns
at a muzzle velocity of 1600 feet per second, the weight of projectile and

powder being 2375 Ibs., the height of guns above centre of lateral

resistance being 30 ft., the time of a single oscillation 6 seconds, and the

metacentric height 4^ feet. Displacement of ship 10,000 tons.

A us. 4^ degrees.

Angle of Heel of a Vessel when Turning. On put-

ting a vessel's rudder over the pressure on the rudder which

acts below the centre of lateral

resistance tends

vessel inwards.

FIG. SIG.

to heel the

This inward

heeling is very noticeable in the

case of destroyers, in which the

rudder area is relatively large.

In ordinary ships this is only
of short duration, and when the

the vessel gets on the circle, an outward heel is caused by the

centrifugal action, which acts above the centre of lateral

resistance (C.L.R.). The moment caused by the product of

the centrifugal force and the distance of the C.G. from the

C.L.R. is the moment causing the heel, and this is equated to

the moment of stability at angle 6. This is determined.

The centrifugal force Q caused by a weight W tons moving
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W z/
2

in a circle radius R feet at speed v feet per second is

8 R
W #2

and the moment of the couple causing heel is =? d. This

is equated to the moment of stability at angle 6, viz. W. GM
sin 6, or

sn = = ' 88
(irds) (v in knots) -

The features therefore which lead to a large heel when turning
are (i) high speed, (2) small turning circle, and (3) small

metacentric height.

Example. A vessel whose tactical diameter is 463 yds. at a point on
her circular turn has a speed of 15 knots, the draught being 27 ft. and the
metacentric height 3-5 ft. Approximate to the angle of heel.

In this case V = 15, R = 695 ft. d - 13 ft. about. GM = 3^ ft.

/. sin 6 = 0-088 .
^

.
-12 = 0-106, and 6 = 6.

Metacentric Height when inclined about an Axis
inclined at an Angle a with the longitudinal Middle
Line Plane. We first have to

find the moment of inertia of

the waterplane about an axis

inclined to the principal axes

OX and OY, viz. OZ in Fig. SIR.

O is the C.G. of waterplane.

Drawing as in figure.

I = 2SAxDQ2 whereSA

is an element of

area

= 2SA(j cos a x sin a)
2

FIG. 8iH.

cos2 a + x2
sin

2 a 2xy sin a cos a)

The last term vanishes on summation since the axes are

through the C.G. of plane.

.-. I = cos2 a/f . dK + sin
2
a/*

2
. dh

IT . cos2 a + It sin2 a

.'. BMtt
= BMT . cos2 a + BML . sin

2 a

also BG = BG . (cos
2 a + sin2 a) since cos2 a -f sin2 a = i

/. GMa = GM, . cos
2 a + GML . sin

2
a.
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Example. A box-shaped vessel is 80' long, 20' wide and floats at a

draught of water of 10'. Find the value of the distance between the
centre of buoyancy and the metacentre for inclinations about an axis
coincident with a diagonal of the rectangular waterplane. (Honours B. of
E. 1911).

In this case

a = tan-1

\
sin2 a = T

'

7 , cos2 a = j$
BM

T
= 3'33, BMj = 53-33

/. BMa = (3-33 X tf) + (53-33 X T
'

7 )
= 6-27 feet.

EXAMPLES TO CHAPTER V.

1. A two-masted cruiser of 5000 tons displacement has its centre of

gravity at two feet above the water-line. It is decided to add a military

top to each mast. Assuming the weight of each military top with its guns,
men, and ready-ammunition supply to be 12 tons, with its centre of gravity

70 feet above the water-line, what will be the effect of this change on

(1) The metacentric height of the vessel ?

(2) The maximum range of stability, assuming the present maximum
range is 90, and the tangent to the curve at this point inclined

at 45 to the base-line ?

(Scale used, \ inch = i, \ inch = ^ foot GZ.)
Ans. (i) Reduce 0325 foot, assuming metacentric curve horizontal ;

(2) reduce range to about 86^, assuming no change in cross-

curves from 5000 to 5024 tons.

2. The curve of statical stability of a vessel has the following values of

GZ at angular intervals of 15 : o, 0-55, i'O3, 0-99, 0*66, 0-24, and 0*20
feet. Determine the loss in the range of stability if the C.G. of the ship
were raised 6 inches.

Ans. 16.

3. Obtain, by direct application of Atwood's formula, the moment of

stability in foot-tons at angles of 30, 60, and 90, in the case of a prismatic
vessel 140 feet long and 40 feet square in section, when floating with sides

vertical at a draught of 20 feet, the metacentric height being 2 feet.

4. A body of square section of 20 feet side and 100 feet long floats with
one face horizontal in salt water at a draught of 10 feet, the metacentric

height being 4 inches. Find the dynamical stability at 45.
Ans. 171 foot-tons.

5. Indicate how far a vessel having high bulwarks is benefited by them
as regards her stability. What precautions should be taken in their con-

struction to prevent them becoming a source of danger rather than of safety ?

6. Show from Atwood's formula that a ship is in stable, unstable, or

neutral equilibrium according as the centre of gravity is below, above, or

coincident with the transverse metacentre respectively.

7. A vessel in a given condition displaces 4600 tons, and has the C.G.
in the 19-feet water-line. The ordinates of the cross-curves at this

displacement, with the C.G. assumed in the ig-feet water-line, measure as

follows: 0*63, 1-38, 2-15, 2'o6, 1-37, 0-56 feet at angles of 15, 30,
45, 60, 75, and 90 respectively. The metacentric height is 2-4 feet.

Draw out the curve of stability, and state (i) the angle of maximum

stability, (2) the angle of vanishing stability, and (3) find the dynamical

stability at 45 and 90.
Ans. (i) 5of : (2) iooi; (3) 3694, 9650 foot-tons.
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8. A vessel has a metacentric height of 3-4 feet, and the curve of stability

has ordinates at 15, 30, 37^, 45, and 60 of 0-9, 1*92, 2*02, 1-65, and

0*075 feet respectively. Draw out this curve, and state the angle of

maximum stability and the angle at which the stability vanishes.

Ans. 351, 59^-
9. A vessel's curve of stability has the following ordinates at angles of

15. 3o 45, 60, and 75, viz. 0-51, 0-97, 0-90, 0-53, and 0*08 feet

respectively. Estimate the influence on the range of stability caused by
lifting the centre of gravity of the ship o'2 foot.

Ans. Reduce nearly 6.
10. A square box of 18 feet side floats at a constant draught of 6 feet,

the centre of gravity being in the water-line. Obtain, by direct drawing or

otherwise, the value of GZ up to 90 at say 6 angles. Draw in the curve
of statical stability, and check it by finding its area and comparing that

with the dynamical stability of the box at 90.
(Dynamical stability at 90 = 3 X weight of box.)

11. A vessel fully loaded with timber, some on the upper deck, starts

from the St. Lawrence River with a list. She has two cross-bunkers extend-

ing to the upper deck. She reaches a British port safely, with cargo undis-

turbed, but is now upright. State your opinion as to the cause of this.

12. Show by reference to the curves of stability of box-shaped vessels

on p. 174 that at the angle at which the deck edge enters the water the

tangent to the curve makes the maximum angle with the base-line.

13. The curve of stability of a vessel at angles of 15, 30, 45, 60,
75, and 90 shows the following values of the righting arm, viz. 0*22, 071,
1-05, 1-02, 0*85, and 0*56 feet respectively, the metacentric height being
8 inches and the displacement being 4500 tons. Discuss in detail the

condition and behaviour of the ship if 200 tons were removed from a hold

17 feet below the centre of gravity.

(Assume that the cross-curves from 4300 to 4500 Ions are all parallel to

the base-line.']

14. A vessel of 1250 tons displacement has its centre of gravity loj feet

above keel. The stability curve (on scale \ inch = i, \ inch ^ foot)
ends as a straight line at 20 slope to the base line, the range being 80.
Find the alteration in metacentric height and range of stability due to

taking in 30 tons reserve feed water 3 feet above the keel.

Ans. Increase 0*176 foot in GM.
,, 5 in range.

15. Show that for a wall-sided vessel inclined to an angle
GZ = sin 6 (GM + JBM . tan2 0)

where GM and BM refer to the upright condition.

1 6. Show, by using the above formula, that if a wall-sided vessel has a

negative metacentric height she will loll over to an angle (J>
such that

17. Apply the answer to question 16 to show that the log shown

floating in Fig. 55 with a negative G.M. of
|,

will take up the position

corner downwards if left free.

1 8. A box-shaped vessel is 100 feet long, 30 feet broad, and 16 feet

deep. In the load condition the freeboard is 4 feet and the metacentric
height is 6 feet. In the light condition the freeboard is 10 feet and the
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metacentric height is still 6 feet. Compare fully the stability of the vessel

in these two conditions. (This should be treated in the light of remarks

on p. 181.)

19. A vessel 72 feet long floats at 6 feet draught and has 4^ feet free-

board, with sides above water vertical. Determine the GZ at 90, the C.B.
when upright being 3$ feet above keel, the C.G. I foot below water-line,

the half-ordinates of water-plane being O'8, 3*3, 5*4, 6-5, 6'8, 6*3, 5*1, 2'8,

o'6, and the displacement 100 tons. Ans. + o 67 foot.

20. A prismatic vessel is 32 feet broad, 13 feet draught, 9 feet freeboard,
the bilges being circular arcs of 6 feet radius. GM is 2 feet.

(1) Obtain the first part of curve of stability by formula in question
15 above.

(2) Obtain values of GZ at 45 and 72 by using Barnes's method, using
9 angular intervals.

(3) Obtain GZ at 90 by direct method.
Thus draw in the complete curve of stability.

21. In the above vessel, instead of the sides above water being vertical,

they fall in from I foot above the water-line to the deck, where the breadth
is 24 feet. Obtain the complete curve of stability in a similar manner to

the preceding question.

(The curves in these two questions are given in the author's text-book
on "

Warships," chap, xix.)

22. In obtaining cross-curves by calculation as described above, if v,
v' are volumes of emerged and immersed wedges, between the upright
water-plane and the radial plane through O, and^, A, g y h\ are as in our

ordinary notation, show that the righting lever for displacement V + v' v
is given by

vx - V.OB sing

V+z/' - v

so that, not needing to correct for layer to get the displacement V, we get
for example of Barnes's method in this chapter a lever of 2^52 feet at a

displacement of 10,158 tons and angle 30.
23. In using the integrator for stability calculation, the "figure 8"

method is frequently employed. This consists in using the displacementMWL with its C.B. B as a basis, and running round sections of wedges in

direction SL'L, WW'S. By this means the integrator adds up the

FIG. 8xi.

moments of wedges and subtracts the volumes. If w, itf are displacements
of in and out wedges, the displacement to W'L' is W + (area reading X
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proper factor). The GZ at angle 6 and displacement W 4- w - w' is

given by
(moment reading X proper factor)

- (W . ES . sin 6)

{W + (area reading X proper factor)}

24. A box-shaped vessel 420 feet long, 72 feet broad, and 24 feet

constant draught has a compartment amidships 60 feet long, with a W.T.
middle line bulkhead extending the whole depth. Determine the angle of

heel caused by the vessel being bilged on one side abreast this bulkhead,

the C.G. of the vessel being 23 feet above the keel.

To what height should the transverse bulkheads at the ends of the

bilged compartment be carried, so as to confine the water to this part of

the vessel ?

This is done in two steps : (i) sinkage, (2) heel. See Fig. 81 1.

volume lost buoyancy 60 X 24 X 36 _ e
Bodi* smkage = area intact wfP .

=
39O x 72

= ' 85 feet '

I of intact W.P. about

middlej
= A . 36o . 72

, + j . fo . 36' = 12, 130, 560

C.F. from middle line as also\ _ . f .

the C.B. /
-

Io

Ih'ough CLF:
ab Ut

""I
= I2

' I3 ' 56
~

(39 ' 72 ' lT22)

= 12, 102, 560.
RiSC

u
f bdl

?
g ne-half

j
= 0-92 feet.

the bodily sinkage /

,,,. 12 . 102 . 560 , ,. .New B'M' =- - -=167 feet.

420 x 72 X 24
Vertical distance between Gj _ ,

fi

and M' before heeling /
~ I2 4 07-230
= 6*62 feet.

The vessel must heel until G and M' are in the same vertical, so that,
6 being the angle of heel,

tan 6 = ?-7- = O'l6 .*. 6 = 9 nearly.

The height of bulkhead = 24-0 + 1*85 + (37-12 X tan 0)
= 31-8 feet nearly.

25. Example of a similar nature for a box 400 feet by 75 feet by 26 feet,

midship compartment with a M.L. bulkhead 50 feet long. C.G. of ship

25 feet from keel.

Ans. 6 = 12^, height of bulkhead, 36^23 feet.

26. Example of a similar nature for a box 350 feet by 60 feet by 20 feet,

midship compartment 35 feet with a M.L. bulkhead. G.M. = 8 feet.

Ans. = 6, height of bulkhead 24*19 feet.

27. A prismatic vessel 100 ft. long has a transverse section formed of a
rectangle, height 10 ft. breadth 20 ft. resting on the top of a semicircle of
radius 10 ft. The centre of gravity is 3 ft. above the keel and the draught
of water is 10 ft. Find the volume of the correcting layer and the

righting moment when the vessel is inclined 45, the displacement being
constant.

(B. of E. 1911.)

This is an excellent example to show the application of
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Barnes' method, and the solution is accordingly given here-

with. (Fig. 8ij).

Taking angular intervals of 15 we have the following for

FIG. 8ij.

the first part of the combination tables. The preliminary
tables are not necessary, seeing that the section of vessel is

constant.

IMMERSED WEDGE. EMERGED WEDGE.

Incli-
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and emerged sides of each radial plane being added together

before putting through the necessary multipliers to satisfy

.cvsO.dx. dO (see p. 191).

Angle of
radial

plane.



CHAPTER VI.

CALCULATION OF WEIGHTS STRENGTH OF BUTT
CONNECTIONS DAVITS, PILLARS, DERRICKS, AND
SHAFT BRACKETS.

Calculations of Weights. We have discussed in

Chapter I. the ordinary rules of mensuration employed in find-

ing the areas we deal with in ship calculations. For any

given uniform plate we can at once determine the weight

if the weight per square foot is given. For iron and steel

plates of varying thicknesses, the weight per square foot is

given on p. 38. For iron and steel angles and y bars of

varying sizes and thicknesses tables are calculated, giving the

weight per lineal foot. Such a table is given on p. 225 for

steel angles, etc., the thicknesses being in ygths of an inch. It

is the Admiralty practice to specify angles, bars, etc., not in thick-

ness, but in weight per lineal foot. Thus an angle bar 3" x 3"

is specified to weigh 7 Ibs. per lineal foot, and a Z bar 6" X

3
i" x 3" is specified to weigh 15 Ibs. per lineal foot. When the

bars are specified in this way, reference to tables is unnecessary.

The same practice is employed with regard to plates, the thick-

ness being specified as so many pounds to the square foot.

If we have given the size of an angle bar and its thick-

ness, we can determine its weight per foot as follows : Assume

the bar has square corners, and is square at the root, then, if

a and b. are the breadth of the flanges in inches, and / is the

thickness in inches, the length of material / inches thick in the

section is (a -f b /) inches, or feet
;
and if the bar

is of iron, the weight per lineal foot is
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If the bar is of steel, the weight per lineal foot is

X 4
'8 X / lbs *

Thus a 3" X 3" X f" steel angle bar would weigh 7-17 lbs.,

and a steel angle bar 3" x 3" of 7 lbs. per foot would be

slightly less than f inch thick.

It is frequently necessary to calculate the weight of a

portion of a ship's structure, having given the particulars of

its construction ; thus, for instance, a bulkhead, a deck,

or the outer bottom plating. In any case, the first step must

be to find the area of plating and the lengths of angle bars.

The weight of the net area of the plating will not give us the

total weight of the plating, because we have to allow for butt

straps, laps, rivet-heads, and in certain cases liners. The method

employed to find the allowance in any given case is to take a

sample plate and find what percentage the additions come to

that affect this plate, and to use this percentage as an addition

to the net weight found for the whole. To illustrate this, take

the following example :

A deck surface of 10,335 square feet is to be covered with T
5
s-inch

steel plating, worked flush, jointed with single-riveted edges and butts

Find the weight of the deck, allowing 3 per cent, for rivet-heads.

steel plates are 1275 lbs. per square foot, so that the ne
fg-i

ight

Q.335 x.275 _ 88 tons
2240

Now, assume an average size for the plates, say 1 6' X 4'. f-inch rivet

will probably be used, and the width of the edge strip and butt strap wil

be about 5 inches. The length round half the edge of the plate is 20 feet

and the area of the strap and lap belopging to this plate is

20 X & = 8 -33 square feet

The percentage of the area of the plate is therefore

X ioo = 13 per cent
04

Adding also 3 per cent, for rivet-heads, the total weight is 68 '4 tons.

It is usual to add 3 per cent, to allow for the weight of rivet-

heads. For lapped edges and butt straps, both double riveted,
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the percentage
1 comes to about 10 per cent, for laps, 5^ percent,

for butt straps, and 3 per cent, for liners as ordinarily fitted to

the raised strakes of plating. No definite rule can be laid

down, because the percentage must vary according to the

particular scantlings and method of working the plating, etc.,

specified.

The length of stiffeners or beams required for a given area

can be very approximately determined by dividing the area in

square feet by the spacing of the stiffeners or beams in feet.

For wood decks, 3 per cent, can be added for fastenings.

Example. The beams of a deck are 3 feet apart, and weigh 22 Ibs.

per foot run ; the deck plating weighs 10 Ibs. per square foot, and this is

covered by teak planking 3 inches thick. Calculate the weight of a part

54 feet long by 10 feet wide of this structure, including fastenings.

(S. and A. Exam. 1897.)

Net area of deck = 54 x 10 = 540
Add for butts and laps 7 per cent. = 3 7 '8

.577-8
(Assume single-riveted butt straps and single-riveted laps.)

Weight of plating = 577*8 X 10
= 5778 Ibs.

Running feet of beams = ^ = 180

Weight of beams = 180 x 22
= 3960 lbs.

Total weight of plating and beams = 9, 738 Ibs

Add 3 per cent, for rivet-heads = 292 ,,

10,030

Weight of teak 3 = 540 X % = 7155 Ibs.

Add 3 per cent, for fastenings = 215 ,,

Weight of wood deck 7370 ,,

Summary.

Plating and beams 10,030 Ibs.

Wood deck 7,370

Total ... 17,400 = 7'8 tons.

1 A number of percentages worked out for various thicknesses, etc,
will be found in Mr. Mackrow's " Pocket Book."

2 No allowance made for beam arms, which should be done if a whole
deck is calculated.

a Teak taken as 53 Ibs. per cubic foot.
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Use of Curves. For determining the weight of some of

the portions of a ship, the use of curves i found of very great
assistance. Take, for instance, the transverse framing of a ship.

For a certain length this framing will be of the same character,

as, for example, in a battleship, within the double bottom,
where the framing is fitted intercostally between the longi-
tudinals. We take a convenient number of sections, say the

sections on the sheer drawing, and calculate the weight of the

complete frame at each section. Then along a base of length
set up ordinates at the sections, of lengths to represent the

calculated weights of the frames at the sections. Through the

spots thus obtained draw a curve, which should be a fair line.

The positions of the frames being placed on, the weight of each

frame can be obtained by a simple measurement, and so the

total weight of the framing determined. The curve AA in

Fig. 82 gives a curve as constructed in this way for the transverse

framing below armour in the double bottom of a battleship.

Before and abaft the double bottom, where the character of the

framing is different, curves are constructed in a similar manner.

Weight of Outer Bottom Plating. The first step

necessary is to determine the area we have to deal with. We

FIG. 8a.

can construct a curve of girths, as BB, Fig. 82 ; but the area given

by this curve will not give us the area of the plating, becaus

although the surface is developed in a transverse directk
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there is no development in a longitudinal direction. (Strictly

speaking, the bottom surface of a ship is an undevelopable

surface.) The extra area due to the slope of the level lines is

allowed for as follows : In plate I., between stations 3 and 4,

a line fg is drawn representing the mean slope of all the level

lines. Then the ordinate of the curve of girths midway
between 3 and 4 stations is increased in the ratiofg : h. This

done all along the curve will give us a new modified curve of

girths, as B'B', Fig. 82, and the area given by this curve will give

a close approximation to the area of the outer bottom of the

ship. This is, of course, a net area without allowing for butt

straps or laps. Having a modified curve of girths for the

whole length, we can separate it into portions over which the

character of the plating is the same. Thus, in a vessel built

under Lloyd's rules, the plating is of certain thickness for one-

half the length amidships, and the thickness is reduced before

and abaft. Also, in a battleship, the thickness of plating is the

same for the length of the double bottom, and is reduced

forward and aft. The curves AA and BB, Fig. 82, are con-

structed as described above for a length of 244 feet.

Weight of Hull. -By the use of these various methods,

it is possible to go right through a ship and calculate the

weight of each portion of the structure. These calculable

portions for a battleship are

(1) Skin-plating and plating behind armour.

(2) Inner bottom plating.

(3) Framing within double bottom, below armour, behind

armour, and above armour. Outside double bottom, below

and above the protective deck.

(4) Steel and wood decks, platforms, beams.

(5) Bulkheads.

(6) Topsides.

There are, however, a large number of items that cannot be

directly calculated, and their weights must be estimated by

comparison with the weights of existing ships. Such items

are stem and stern posts, shaft brackets, engine and boiler

bearers, rudder, pumping and ventilation arrangements, pillars,

paint, cement, fittings, etc.
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It is, however, a very laborious calculation to determine

the weight of the hull of a large ship by these means; and

more often the weight is estimated by comparison with the

ascertained weight of existing ships. The following is one

method of obtaining the weight of steel which would be used in

the construction of a vessel : The size of the vessel is denoted

by the product of the length, breadth, and depth, and for known

ships the weight of steel is found to be a certain proportion of

this number, the proportion varying with the type of ship.

The coefficients thus obtained are tabulated, and for a new ship

the weight of steel can be estimated by using a coefficient

which has been obtained for a similar type of ship. The weight
of wood and outfit can be estimated in a similar manner.

Another method is described by Mr. J. Johnson, M.I.N.A.,
in the Transactions of the Institution of Naval Architects for

1897, in which the sizes of vessels are represented by Lloyd's
old longitttdinal number* modified as follows : In three-decked

vessels, the girths and depths are measured to the upper deck

1

Lloyd's numbers (now superseded by the New Rules)
1. The scantlings and spacing of the frames, reversed frames, and floor-

plates, and the thickness of bulkheads are regulated by nun.bers, which are

produced as follows :

2. For one and two decked vessels, the number is the sum of the

measurements in feet arising from the addition of the half-moulded breadth

of the vessel at the middle of the length, the depth from the upper part of

the keel to the top of the upper-deck beams, with the normal round-up,
and the girth of the half midship frame section of the vessel, measured from
the centre line at the top of the keel to the upper-deck stringer plate.

3. For three-deck steam-vessels, the number is produced by the

deduction of 7 feet from the sum of the measurements taken to the top of

the upper-deck beams.

4. For spar-decked vessels and awning-decked steam-vessels, the

number is the sum of the measurements in feet taken to the top of the main-

deck beams, as described for vessels having one or two decks.

5. The scantlings of the keel, stem, stern-frame, keelson, and stringer

plates, the thickness of the outside plating and deck ; also the scantlings
of the angle bars on beam stringer plates, and keelson and stringer angles
in hold, are governed by the longitudinal number obtained by multiplying
that which regulates the size of the frames, etc., by the length of the vessel.

The measurements for regulating the above scantling numbers are taken

as follows :

I . The length is measured from the after part of the stem to the fore part
of the stern-post on the range of the upper-deck beams in one, two, and
three decked and spar-decked vessels, but on the range of main-deck beams
in awning-decked vessels.

In vessels where the stem forms a cutwater, the length is measured from
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without deducting 7 feet. In spar and awning-deck vessels,

the girths are measured to the spar or awning decks respec-

tively. In one, two, and well-decked vessels, the girths and

depths are taken in the usual way. Curves are drawn for each

type of vessel, ordinates being the weight of iron or steel in

tons for vessels built to the highest class at Lloyd's or Veritas,

and abscissae being Lloyd's longitudinal number modified as

above. These curves being constructed for ships whose weights

are known, it is a simple matter to determine the weight for a new

ship of given dimensions. For further information the student

is referred to the paper in volume 39 of the Transactions.

To calculate the Position of the Centre of Gravity
of a Ship. We have already seen in Chapter III. how to find

the C.G. of a completed ship by means of the inclining experi-

ment, and data obtained in this way are found very valuable in

estimating the position of the C.G. of a ship that is being

designed. It is evident that the C.G. of a ship when com-

pleted should be in such a position as to obtain the metacentric

height considered necessary, and also to cause the ship to float

correctly at her designed trim. Suppose, in a given ship, the C.G.

of the naked hull has been obtained from the inclining experi-

ment (that is, the weights on board at the time of the experi-

ment that do not form part of the hull are set down and their

positions determined, and then the weight and position of the

C.G. of the hull determined by the rules we have dealt with in

Chapter III.). The position of the C.G. of hull thus determined

is placed on the midship section, and the ratio of the distance

of the C.G. above the top of keel to the total depth from the

top of keel to the top of the uppermost deck amidships will

the place where the upper-deck beam line would intersect the after edge of

stem if it were produced in the same direction as the part below the

cutwater.

2. The breadth in all cases is the greatest moulded breadth of the vessel.

3. The depth in one and two decked vessels is taken from the upper

part of the keel to the top of the upper-deck beam at the middle of the

length, assuming a normal round-up of beam of a quarter of an inch to a

foot of breadth. In spar-decked vessels and awning-decked vessels, the

depth is taken from the upper part of the keel to the top of the main-deck
beam at the middle of the length, with the above normal round-up of

beam.
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give us a ratio that can be used in future ships of similar type
for determining the position of the C.G. of the hull. Thus, in

a certain ship the C.G. of hull was 20-3 feet above keel, the

total depth being 34*4 feet. The above ratio in this case is

therefore 0-59, and for a new ship of similar type, of depth 39-5

feet, the C.G. of hull would be estimated at 39-5 Xo'59, or 23-3
feet above the keel. For the fore-and-aft position, a similar ratio

may be obtained between the distance of the C.G. abaft the

middle of length and the length between perpendiculars. In-

formation of this character tabulated for known ships is found

of great value in rapidly estimating the position of the C.G.

in a new design.

For a vessel of novel type, it is, however, necessary to cal-

culate the position of the C.G., and this is done by combining

together all the separate portions that go to form the hull.

Each item is dealt with separately, and its C.G. estimated as

closely as it is possible, both vertically and in a fore-and-aft

direction. These are put down in tabular form, and the total

weight and position of the C.G. determined.

In estimating the position of the C.G. of the bottom plating,

we proceed as follows : First determine the position of the

C.G. of the several curves forming the half-girth at the various

stations. This is not generally at the half-girth up, but is some-

where inside or outside the line of the curve. Fig. 83 represents

the section AB at a certain station. The curve is divided into

four equal parts by dividers, and the C.G. of each of these parts

is estimated as shown. The centres of the first two portions

are joined, and the centres of the two top portions are joined
as shown. The centres of these last-drawn lines, g^ g^ are

joined, and the centre of the line g^g^ viz. G, is the C.G. of

the line forming the curve AB, and GP is the distance from the

L.W.L. This done for each of the sections will enable us to

put a curve, CC in Fig. 82, of distances of C.G. of the half-

girths from the L.W.L. 1 We then proceed to find the C.G. of

the bottom plating as indicated in the following table. The

area is obtained by putting the half-girths (modified as already

1 This assumes the plating of constant thickness. Plates which are

thicker, as at keel, bilge, and sheer, can be allowed for afterwards.
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explained) through Simpson's rule. These products are then

multiplied in the ordinary way to find the fore-and-aft position

of the C.G. of the plating, and also by the distances of the C.G.

Fio. 83.*

of the sections below the L.W.L., which distances are measured

off from the curve CC and are placed in column 6. The
remainder of the work does not need any further explanation.

CALCULATION FOR AREA AND POSITION OF C.G. OF BOTTOM PLATING
FOR A LENGTH OF 244 FEET.

Modified
half-girths.
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Common interval = 61 feet

Area both sides = 587*8 x \ X 61 x 2

= 23,904 square feet

C.G. abaft middle of length of plating = -
-= x 61

557-5
= 1*45 feet

C.G. below L.W.L. = Q
>45 * = 21-2 feet

587-8

CALCULATION FOR THE POSITION OF THE C.G. OF A VESSEL.
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Calculation for C.G. of a Completed Vessel. By the

use of the foregoing methods we can arrive at an estimate of

the weight of hull, and also of the position of its C.G. relative

to a horizontal plane, as the L.W.P., and to a vertical athwart-

ship plane, as the midship section. To complete the ship for

service, there have to be added the equipment, machinery, etc.,

and the weights of these are estimated, as also the positions of

their centres of gravity. The whole is then combined in a

table, and the position of the C.G. of the ship in the completed
condition determined.

The preceding is such a table as would be prepared for a

small protected cruiser. It should be stated that the table is

not intended to represent any special ship, but only the type of

calculation.

The total weight is 2630 tons, and the C.G. is 0*86 foot

above the L.W.L. and 11*88 feet abaft the middle of length.

The sheer drawing enables us to determine the position of the

transverse metacentre, and the estimated GM. is found to be

2'ii feet. The centre of buoyancy calculated from the sheer

drawing should also be, if the ship is to trim correctly, at a

distance of 1 1 '88 feet abaft the middle of length.

Strength of Butt Fastenings. Fig. 84 represents two

plates connected together by an ordinary treble-riveted butt

strap. The spacing of the rivets in the line of holes nearest

the butt is such that the joint can be caulked and made water-

tight, and the alternate rivets are left out of the row of holes

farthest from the butt. Such a connection as this could con-

ceivably break in five distinct ways
1. By the whole of the rivets on one side of the butt

shearing.

2. By the plate breaking through the line of holes, AA,
farthest from the butt.

3. By the butt strap breaking through the line of holes, BB,
nearest the butt.

4. By the plate breaking through the middle row of holes,

CC, and shearing the rivets in the line AA.
5. By the strap breaking through the middle row of holes,

CC, and shearing the rivets in the line BB.
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It is impossible to make such a connection as this equal to

the strength of the unpunched plate, because, although we might

i
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The most efficient form of strap to connect two plates

together would be as shown in Fig. 85, of diamond shape.

Here the plate is only weakened to the extent of one rivet-hole.

Such an efficient connection as this is not required in ship con-

struction, because in all the plating we have to deal with, such

as stringers and outer bottom-plating, the plate is necessarily

weakened by the holes required for its connection to the

beam or frame, and it is unnecessary to make the connection

stronger than the plate is at a line of holes for connecting it to

the beam or frame. In calculating the strength of a butt con-

nection, therefore, we take as the standard strength the strength

through the line of holes at a beam or frame, and we so

arrange the butt strap that the strength by any of the modes
of fracture will at least equal this standard strength.

Experimental Data. Before we can proceed to calcu-

late the strength of these butt connections, we must have some

experimental data as to the tensile strength of plates and the

shearing strength of rivets. The results of a series of experi-

ments were given by Mr. J. G. Wildish at the Institution of

Naval Architects in 1885, and the following are some of the

results given :

SHEARING STRENGTH OF RIVETS IN TONS.

(Pan heads and countersunk points.)

Single shear. Double shear.

\ inch iron rivets in iron plates ... 10*0 18

3 ,, steel 8-4

\ inch steel ,, ,, ,, ii'S 21'2

i ,, ,, I5-25
i'o ,, ,, ,, ,, 20-25

It will be noticed that the shearing strength of the steel

rivets of varying sizes is very nearly proportionate to the sec-

tional area of the rivets. Taking the shearing strength of a

f-inch steel rivet to be 11*5 tons, the strength proportionate to

the area would be for a J-inch steel rivet, 15 '6 tons, and for a

i-inch steel rivet 20*4 tons. Also, we see that the double shear

of a rivet is about 1-8 times the single shear.

The following results were given as the results of tests of

mild steel plates :
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Unpunched 28J tons per square inch.

Holes punched 22 ,, ,,

or a depreciation of 22 per cent.

Holes drilled 29^ tons per square inch.

Holes punc/W small, and the hole then \

countersunk /
29

The following give the strength of the material of the plates

after being connected together by a butt strap :

24-9 tons per square inch.

Holes punched small and then countersunk, I

the rivets being panhead, with countersunk > 28*9 ,,

points

It appears, from the above results, that if a plate has the

holes drilled or has them punched and countersunk in the

ordinary way as for flush riveting, the strength of the material

is fully maintained. Also that, although punching holes in a

plate reduces the strength from 28^ to 22 tons per square inch,

a reduction of 22 per cent., yet when connected by a butt strap,

and riveted up, the strength rises to 24-9 tons per square inch,

which is only 12 per cent, weaker than the unpunched plate,

the process of riveting strengthening the plate.

The following table giving the results of more recent experi-

ments, go to confirm the above figures :

TABLE OF BREAKING STRESS IN TONS PER SQUARE INCH (OF AREA
OF PLATING BEFORE TESTING).

Nature of test.
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together in order to obtain a water-tight pitch for the rivets, it

is found that the punching distresses the material in the neigh-

bourhood of the holes, and the strength is materially reduced,

as we have seen above, but after riveting the strength is to

some extent restored. It was formerly the practice to anneal

butt straps of steel plating, but this practice is now discontinued

in both Admiralty and Lloyd's practice.

In our calculations of the strength of butt straps, we assume

that the strength of the material between the rivet-holes is the

same as the strength of the material of the unpunched plate.

Again, the plating, in the cases we have to deal with, has

the riveting flush on the outside, and the holes are made with

a countersink for this purpose. Here also we can assume that

the strength of the material is the same as the strength of the

material of the unpunched plate.

The specified tests for the tensile strength of mild steel

plates are as follows :

For ships built for the British Admiralty, not less than 26

and not more than 30 tons per square inch of section.

For ships built to the rules of Lloyd's Register, not less

than 28 and not more than 32 tons per square inch of

section.

The plates tested above showed a tensile strength of about

28 tons per square inch, or nearly midway between the limits

laid down by the British Admiralty. It seems reasonable,

therefore, in calculating the ultimate strength of riveted joints,

to take as the strength of the material the minimum strength to

which it has to be tested. Thus, in a ship built for the British

Admiralty, we can use 26 tons as the strength per square inch

of section, and in a ship built under Lloyd's rules, we can use

28 tons per square inch of section.

The following two examples will illustrate the methods

adopted in calculating the strength of butt fastenings :

i. A steel stringer plate is 48 inches broad and f5 inch thick. Sketch
the fastenings in a beam and at a butt, and show by calculations that the

butt connection is a good one.

(S. and A. xam., 1897.)
For a fg-inch plate we shall require f -inch rivets, and setting these out
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at the beam, we require 9 rivets, as shown in Fig. 84. The effective breadth
of the plate through this line of holes is therefore

48 9(i) = 41* inches

and the strength is

41^ X ^ X 26 = 470 tons

and this is the standard strength that we have to aim at in designing the
butt strap.

(1) As regards the number of rivets. The shearing strength of a $-inch
rivet being 1 1 '5 tons, the number of rivets necessary to equal the standard

strength of 470 tons is

470
-^-^-

= 40*8, say 41 rivets

If we set out the rivets in the strap as shown in Fig. 84, leaving the
alternate rivets out in the line AA, it will be found that exactly 41 rivets

are obtained, with a four-diameter pitch. So that, as regards the number
of rivets, the butt connection is a good one.

(2) The strength of the plate in the line AA is the same as at the beam,
the same number of rivet-holes being punched in each case.

(3) If the strap is /s inch thick, the strength of the strap in the line BB
is given by

(48 i6(5)} x /fi
X 26 = 410 tons

This is not sufficient, and the strap must be thickened up. If made \ inch

thick, the strength is

(48
-

i6(fl} X i X 26 = 468

which is very nearly equal to the standard strength of 4/0 tons.

(4) The shear of the 9 rivets in the line AA is 103-5 tons so tnat tne

strength of the plate through the line of holes CC and the shear of the

rivets in the line AA are

410 + 103-5 = 5 T 3'5 tons

(5) Similarly, the strength of the strap through the line CC and the

shear of the rivets in the line BB are

468 + 184 = 652 tons

The ultimate strengths of the butt connection in the five different ways it

might break are therefore 47 1, 470, 468, 513^, 652 tons respectively, and
thus the standard strength of 470 tons is maintained for all practical

purposes, and consequently ihe butt connection is a good one.

2. If it were required to so join two plates as to make the strength at

the butt as nearly as possible equal to that of the unpierced plates, what
kind of butt strap would you adopt ?

Supposing the plates to be of mild steel 36 inches wide and inch thick,

give the diameter, disposition, and pitch of rivets necessary in the strap.

(S. and A. Exam., 1895.)
The first part of this question has been already dealt with on p. 237.

To lessen the number of rivets, it is best to use a double butt strap, as

Fig. 85, so as to get a double shear of the rivets. Each of the butt straps
should be slightly thicker than the half-thickness of the plate, say T

5
S inch.

The standard strength to work up to is that of the plate through the

single rivet-hole at the corner of the strap. |-inch rivets being used, the

standard strength is

(36
-

I) X X 26 = 457 tons
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The single shear of a |-inch rivet is 15! tons, and the double shear may be

taken as

15-25 x i'8 = 27^ tons

and consequently the least number of rivets required each side of the

butt is

452 J6-6, say 17 rivets

The strength of the plate along the slanting row of holes furthest from

the butt must be looked into. The rivets here are made with a water-tight

pitch, say from 4 to 4^ diameters. If we set out the holes for a strap 2 feet

wide, it will be found that the strength is below the standard. A strap

3 feet wide will, however, give a strength through this line of about 465
tons, which is very near the required 457 tons. There are 13 rivets along
the edge of the strap, and the inside may be filled in as shown, giving a
total number, of rivets, each side of the butt, of 19.

For the strength of an assemblage of plating like the outer

bottom, we must take the strakes as assisting one another. If

two passing strakes are assumed, then we can take a butt with

a through strake each side, and see how the strengths by
various methods of fracture compare with the standard strength

at a frame.

For the strength of plating at a watertight bulkhead, the

bulkhead liner is associated with the outside strake and one-

half the adjacent inside strakes, and the strength should be

brought up to that at an ordinary frame.

Professor Hovgaard, in " Structural Design of Warships,"
deals very exhaustively with the above. In particular he

allows for the reduction of area caused by countersinking and

the slightly greater diameter of hole in the plate as compared
with the nominal diameter of the rivet.

Strength of Davits. The size of davits for merchant

vessels are usually fixed by the rules of a Registration Society.

The following is the rule adopted by Lloyd's Register, viz. :

For boats and davits of ordinary proportions the diameter

in inches is one-fifth of the length of the boat in feet.

Where the height and spread of davits or dimensions of

boats are not of ordinary proportions the diameter of davit

in inches is found by the formula

= VLXBXD/H X

V 40 \3 /
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Where L.B.D. are the dimensions of the boat, H is the

height and R the outreach from the point of support in feet.

The rule of the British Corporation is of the same form

but slightly different, viz. :

It is usual in H.M. service to test a davit to twice its

working load, and this test load is used to calculate the dimen-

sions. If W be the load in tons, r the outreach in inches, then

the bending moment is W x r inch tons, and we apply the

formula

= y to find the diameter d, (y = J . d).

/w7>'-

Example. A boat weighing 2 tons is carried in davits with an out-
reach of 6 ft. 6 in. Determine the diameter of davit, allowing a stress on
the material of 5 tons per square inch.

The moment WXr=2X78 = i56 inch tons, and the diameter is

given by

Example. A boat weighing I ton is carried in davits with an out-

reach of 6 ft. 6 in. Determine the diameter of davit, allowing a stress on
the material of 5 tons per square inch.

Moment = 78 inch tons

This davit was made sJ in. diameter, and 3$ in. at head and heel, the
bow of davit being flattened out to an oval shape 5^ in. x 4f in.

Example. A davit with outreach of 7 ft. 6 in. is tested to 3 tons.
Find the maximum compressive and tensile tresses, the diameter of davit

being 7 in.

The max. BM is

3 x 90 = 270 inch tons

I of cross-section = Vs .
^

. 49 = ir .
49 * 49

4 64
y = 3'S

. * M 270 X 3-5 X 64'^ =
T'^

= ^9x49 = 8topg **"
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There is an additional compressive force due to the weight, viz.

3 -i
- = = *o8 tons sq. in. The tensile stress will be dimin-

4 49-'7r

ished by this amount.

/. Compressive stress = 8'o8 tons sq. in.

Tensile stress = 7*92 tons sq. in.

Davit Diagram. The following method of drawing once

for all a davit diagram has beea brought to the Author's notice

by J. J. King-Salter, Esq., R.C.N.C. Its use is very simple
and obviates the necessity of calculating davit and similar

diameters.

If units are taken in Ibs. and inches, say a weight of w Ibs.

and an overhang of r inches, then if a working stress is

assumed of 4*5 tons per square inch, the diameter of a davit

can be expressed in the simple form

, // X r
t

.

* m \* ' ...... (i)V 1000

This is seen to depend on the product w X r. It can readily

be shown that for a right-angled triangle, where a is the per-

pendicular from the right angle t< ) the opposite side and b and

c are the divisions of that side by the perpendicular, then

a? = b X c\ or = *] b .c

In Fig. $5A, above the base t the side is set up a scale of

overhang in inches r> and below a scale of weight in Ibs. w.

Along the base is set off a scale of *Jw .r. Thus for w =

10,000 Ibs. and r -
100, */w.r=iooo. This point must

subtend a right angle to the values of w and r taken, and this

will determine the scale to use along the base.

Now at various points along the base set up the corre-

sponding value of d from the formula (i) above. Thus where

Vw . r 1000, w . r = 1,000,000 and d = 10
"

;
d = 5" at an

abscissa of 354, and so on. Through the spots thus obtained

a curve of diameters is drawn as shown.

The method of use is to employ a set square with the sides

forming the right angle passing through the values given by
the problem for w and r, with the right angle on the base line.
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An ordinate from this point to the curve will give the diameter

required. Thus for w = 4000 Ibs., r = 70", d is found to be
6*6 in. If diameter is 8 in. say, and overhang is 80 in., the

load is 6400 Ibs., and
so on.

The diagram can be
drawn out on a large
scale and mounted for

general drawing office

use.

Pillars. Gordon's
Formula. The for-

mula usually employed
to determine the strength
of pillars is that known
as Gordon's formula, as

follows :

W is the crippling

load, A the cross sec-

tion, f the stress given

10,000
* in table, n is obtained

from I= n . A . >
2
, where

h is the least breadth,

5.000

c is a coefficient given in the table.

W
I -\ 75

c.n.tf

n = ^ for a rectangular section and yg for circular section ; for

a circular hollow section n =
|.

Units are taken as tons and inches.

Material
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This formula is empirical. For a discussion regarding its

use the student is referred to such works as Lineham's
" Mechanical Engineering."

Example. A cargo derrick for a vessel is constructed of steel plating

5̂ 5
in. thick and two T bars 5 in, X 3 in. X 5

8 in. The jib is 40 ft. long, and
the topping lift is led to a point on a mast 32 ft. above heel of derrick. The

/S

FIG. 858.

maximum load to be lifted being 16 tons ; calculate the approximate
diameter of the derrick if the maximum stress on the material is not to
exceed 4 tons per sq. in. (neglect effect of T bars).

(Honours B. of E. 1909.)

By setting out the triangle of forces CDE at the head of derrick the
thrust on derrick is found to be 20 tons, DE being parallel to CB (Fig.

In the above formula f 4, c

the unknown diameter.

9000, n J, A = - .d% d being
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'----* ~

"!*.</ ,.+
9000 x |

or o-25^
3

<f>^,&\$

By trial d is found to be 1 1 inches nearly.

Example. A wooden derrick 34 ft. long when tested to twice the

working load is found to be subject to a thrust of 4^ tons. Determine the

diameter, allowing a factor of safety of 6 when being tested.

26
TONS

FIG. 850.

In the above formula, W = 25-5 tons, /= 3, c - 750, / = 34 X 12,

n T
l

s ,
d diameter.

Tr.a' (34 X 12)'

4 750 X T
'

8 X a

= 0-092^

or cro92</
4 - d? = 3550

By trial d is found to be about 14^ in.
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Example. A boat hoisting derrick 60 ft. long, estimated weight 6 tons,

is arranged as shown on figure herewith, the purchase being single through
sheaves A and D. The topping lift has the fixed part at E, and passes

through sheaves B and C. Determine the forces on blocks and ropes and
the thrust on derrick, when holding the test load of 26 tons. Determine
the diameter of the derrick if formed of in. steel plating, the T bars

forming edge strips being neglected, and a factor of safety of 5 being
assumed. (Fig. 850.)

oa is set down = 29 tons, i.e. 26 tons plus half weight of derrick, and
ab is drawn parallel to the purchase AD, and equal to 26 tons. Then ob

is the resultant force at the head of derrick due to the forces on the purchase
and the weight of derrick, be is then drawn parallel to the topping lift.

Then obc is a triangle of forces, giving for the force on topping lift

be 35 tons and the thrust on derrick oc = 59 tons. The force in the link

AB is therefore 35 tons, and the two parts of topping lift have each a

force of 17*5 tons. The force on the block C is found by drawing the

triangle of forces deg, de = eg=\T$ tons from which force on block

is dg 29 tons. Similarly the force on block D is found to be

38 tons.

The length of derrick from pin of sheave to the trunnion is 56*5 feet.

In Gordon's formula we have therefore

W = 59 X5 = 295 tons,/= 30, c 9000, n =
J,
d

y the diameter, is the

unknown, A = . TT . </, / = 56*5 X 12.

We have therefore

30 X j
x y x d

295 ~
!

, (56-5 x 12)*

9000 X 5 X d*

410
or I +

-^

- = O'l2d

or o'izd3 d? 410

from which d is found by trial to be i8 ins. nearly.

It may be noted that the above derrick was actually made
20 in. diameter, of plating, 14 Ibs. per square foot, which allows

for the loss due to the rivets in butt strap.

Fig. 850 illustrates the case where electric winches are

employed for both topping lift and purchase, and the

greater speed of these winches renders more turns of rope

necessary.

The test load is 32 tons, being 'twice the weight of the

boat. This with the weight of the block A gives 32-4 tons,

which is taken by the three ropes supporting A, giving 10-8

tons to each. To find the force at the topping lift and on

the derrick, we draw the diagram of forces, shown on top
of figure, ab = 36 tons, i.e. 32 + 3-6 (half weight of der-

rick) + 0-4 (weight of block A) ; be io'8 is drawn parallel
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to the purchase, so that ac is the force at the head of the

derrick ; cd is drawn parallel to the topping lift, and ad

parallel to the derrick. Then cd is force on topping lift = 59

tons, and ad the thrust on derrick = 60 tons. The topping

lift is in four parts, giving 15 tons to each, and the block C has

59 tons. The block D has three parts, viz. 45 tons. The block

E has 15 tons along each of the ropes, and as shown by the

72 TONS

FIG. 850.

diagram, sustains a force of 26 tons. The block F has 10*8

tons along each of the ropes, and, as shown by the diagram,
sustains a force of 18 tons. The strength at the heel of the

derrick can be allowed for knowing the thrust to be 60 tons.

The test loads of the various parts can now be allowed for,

being usually about twice that due to the 32-ton test load

applied.
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Fig 85 E shows an ordinary form of derrick for a cargo

vessel, the derrick being supported by a stump mast. The

purchase is taken round two single blocks A and B, and thence

DOUBLE
D

FIG. 858.

to the winch. The topping lift has a single block at C, a

double block at D, and a single block at E, and thence to the

winch. Taking a load of 5 tons the triangle of forces abd is

drawn ab ac 5, and the resultant force due to the load is

ad 9 tons, which is the force on the block A. de is drawn

parallel to the topping lift. Then ae = 14 tons is the thrust
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on the derrick, and 67 tons is the force on block C. This

divided into 3 gives 2*2 tons in each portion of the topping
lift. The force on block D is obtained by drawing the

triangle of forces fgh. Similarly the forces on the blocks B
and E are obtained. The forces thus obtained give a basis

for estimating the strength of all the parts, including the

derrick and the stump mast.

Shaft Brackets. (By A. W. Johns, Esq., R.C.N.C.).

The length and diameter of the drum or barrel of a shaft

bracket are determined by the requirements of the engineer.

The inside diameter is arranged to take the shaft and its

bearings and bushes. The outside diameter is usually from

3 to 6 inches greater than the inside diameter, depending on

the size of shaft The inside surface is generally gulleted to

a depth of from i to ij inches. The length of barrel is

governed by the length required by the engineer's bearings

in the bracket (see Fig. 85 F).

The length of the arms or struts must necessarily depenc
on the position of the axis of the shaft at the bracket and the

shape of the ship in the vicinity. The section of the arms is

usually pear-shaped (see Figs. 850 and 108 for examples)
with the blunt end forward. The dimensions of the section

must be governed by the straining action to which the

bracket is subjected. Formerly these dimensions appear
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to have been determined in a rough-and-ready way from the

experience of the designer responsible. Knowing the dimen-
sions in previous cases which on service had proved sufficiently

FIG. 850.

strong, he would vary these dimensions in a new ship accord-

ing to the variation of the horse-power, or perhaps the size and

overhang of the tail shaft. Consequently it will be found that

ships of about the same size, horse-power and revolutions pro-

duced under different designers, have entirely different dimen-

sions (and weights) of shaft brackets.

At first sight a suitable basis of comparison for such dimen-

sions appears difficult to obtain, but investigation proves that

the matter is a comparatively simple one, as is seen by what

follows :

With the centre of gravity of the revolving parts, viz. shaft

and propeller, in the axis of rotation, the straining actions

which may operate on a bracket are as follows, viz. :

1. Forces due to the weight of the propeller, shaft

and bracket. These are equivalent to a downward force

on the bracket, and a bending moment on it, equal to the

difference in the moments of weight on the forward and

after sides. Both the force and the bending moment may
be increased appreciably by the accelerative effect during

pitching.

Thus in a given ship 500 feet long pitching in a "
single

"
period of

3 seconds, the maximum acceleration is 250 X , . X 0, where is angle of

pitching (see Chap. IX. on Rolling).
If 9 = 4, say J4 in circular measure, acceleration = 20 in foot-second

units. This added to the acceleration due to gravity gives 52^2 or a
virtual weight of I '6 times the actual, and all the forces are increased in

this ratio.

2. Forces called into play when pitching or turning due to

the gyroscopic action of the propeller and shaft.
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3. Forces caused by unequal pressure on the blades of the

propeller when the ship is turning. Here, owing to the trans-

verse motion of the stern, the forces on the blades above the

horizontal will be different to those below.

If, however, the centre of gravity of the revolving weights
is not in the axis of rotation, there will be in addition to the

above forces a centrifugal force operating which will tend to

bend the shaft where it enters the strut, and will also tend to

bend and twist the bracket. At high revolutions, which is the

case in turbine machinery, heavy straining actions are set up
if a propeller blade is broken or lost.

The following are approximate values of the various forces

and moments considered above, worked out for the case of

a large cruiser.
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a bending moment T . a on the shaft which will just bring the

material of the shaft to its full working strength, this force T
must be employed in determining the dimensions of the arms

of the bracket and also in determining the number, size

and spacing of the rivets connecting the bracket to the hull.

T acting at propeller is equivalent to

1. A parallel force T acting directly on the bracket, and
2. A moment k . T . m on the bracket, where k has an

average value of about 0-65.

If T is caused by centrifugal action, then as the shaft

revolves it is always being bent in the same way, but the

bracket being fixed the force and moment on it are constantly

altering in direction.
1

Bending alone occurs when the line of

action of T lies in a plane passing through the axis of shaft

and bisecting the angle between the arms. Twisting occurs

when the line of action of T is perpendicular to that plane.

For other directions of the line of action of T combined bend-

ing and twisting occur.

Generally bending alone produces the greatest stress on
the shaft arms, and this produces a stress given by

.T. m. y.cos
p ~- ~ir

where I is the moment of inertia of a right section of the arm
about an axis through the geometrical centre and

perpendicular to the longer dimension of the section.

y is the distance of the most strained layer from this axis ;

and 6 is half the angle between the arms.

For ordinary pear-shaped sections,^ = 0*55 R and I = gV-'R
8

. r,

where R and r are the longer and shorter dimensions of the

section of the arm.

Taking, say, 6 tons as the maximum working strength of

the shaft, the force T necessary to strain the shaft to this limit

can readily be found when a the overhang and D and d the

external and internal diameters of the shaft are known. Sup-

posing the shaft bracket is of cast steel and taking 4^ tons as

the working strength (5 tons is really allowed, but \ ton is

1 The loss of a propeller blade is soon evident, for the ship will vibrate

violently if the revolutions of the engine approach the full number.
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allowed for the force T acting directly on the bracket), the

following relation is obtained

R2 .r=o-63X ^ x^Xcosfl
. . (i)

All dimensions being in inches.

Usually 6 = about 45 and we then have

D4 - m
R2

. r = 0-44 X ^ X -

If, however, 9 is small, we have approximately-

D4 -d* m
R2

. r = 0-63 X D

<*)

(3)

FIG.

As stated above, the stress produced on the bracket by

bending is usually greater than that

produced by twisting, but in the case

where the angle between the arms is

small the stress due to twisting should

also be investigated. This can be

done as follows :

Taking, as in the figure 85 H, was

the distance between the centres of

the arms, A the area of each arm,

q the stress in the arm, the moment

resisting twisting is given by q . A . n.

This must equal k . T . m, and hence the stress due to twisting

becomes

k .T. m . A

q= A n (A =

q is a shearing stress and the equation

shows that if A is constant q increases as

n decreases. Close to the barrel q is a

maximum, and is a minimum where the

arms enter the hull. For q to be constant

A should vary inversely as n. Usually,

however, A is kept constant and the arms

are run tangential, as in Fig. 85;, instead of radial to the

barrel. This has the effect of increasing n near the barrel and

diminishing q.

Equations (i), (2), and (3) above can be used to determine

FIG. 85;.
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the value of R7
r, where the bracket is of cast steel. If the

bracket is of other material the working strength of the latter

must be substituted for the 4^ tons used above.

It will be noticed that economy of material is obtained by

making the ratio R -r r as large as possible, for since the

square of R enters into the relation it has far more influence

than r, which appears in the first power only. Thus if Ra
. r

= 8000 and R = $r, then R = 29 in. and r = Q in. and A
= 212. Whereas if R = 6r, R = 36 in., and r = 6 in., and

A = 162 or a saving in weight of about 25 per cent. There

is also an appreciable reduction in resistance. Taylor's ex-

periments with shaft brackets show that resistance in Ibs. per

foot length of shaft bracket arm is given by

F = -^-(A + 4o)V
a

IOOO V

where V = speed in knots

A = area of section in square inches, for values between

40 and 175 sq. inches.

c = a constant depending on the ratio .

VALUES OF c.

Ratio Jl
r
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allowed for the force T acting directly on the bracket), the

following relation is obtained

= 0-63 X
D 4 -
D

m
x -Xcos0 (0

All dimensions being in inches.

Usually 6 = about 45 and we then have

D4
d* m

r = 0-44 :R2

1)

If, however, 9 is small, we have approximately

D* -d* m
13*. r= 0-63 X ^ X -

(3)D a

As stated above, the stress produced on the bracket by

bending is usually greater than that

produced by twisting, but in the case

where the angle between the arms is

small the stress due to twisting should

also be investigated. This can be

done as follows :

Taking, as in the figure 85 H, was

the distance between the centres of

the arms, A the area of each arm,

q the stress in the arm, the moment

resisting twisting is given by q . A . n.

This must equal k . T . m, and hence the stress due to twisting

becomes

.T. m

FIG.

q is a shearing stress and the equation
shows that if A is constant q increases as

n decreases. Close to the barrel q is a

maximum, and is a minimum where the

arms enter the hull. For q to be constant

A should vary inversely as ;/. Usually,

however, A is kept constant and the arms

are run tangential, as in Fig. 85;, instead of radial to the

barrel. This has the effect of increasing n near the barrel and

diminishing q.

Equations (i), (2), and (3) above can be used to determine

FIG. 8sj.
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the value of R7
r, where the bracket is of cast steel. If the

bracket is of other material the working strength of the latter

must be substituted for the 4^ tons used above.

It will be noticed that economy of material is obtained by

making the ratio R -4- r as large as possible, for since the

square of R enters into the relation it has far more influence

than r, which appears in the first power only. Thus if Ra
. r

8000 and R = 3r, then R = 29 in. and r = Q|- in. and A
= 212. Whereas if R = 6r, R = 36 in., and r = 6 in., and

A = 162 or a saving in weight of about 25 per cent. There

is also an appreciable reduction in resistance. Taylor's ex-

periments with shaft brackets show that resistance in Ibs. per

foot length of shaft bracket arm is given by

F = (A + 40)Va

IOOO

where V = speed in knots

A = area of section in square inches, for values between

40 and 175 sq. inches.
-n

c a constant depending on the ratio .

VALUES OF c.

Ratio IL
r
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been kept the same in the calculation as actually adopted.
All dimensions are in inches.
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7. The half-girths of the inner bottom of a vessel at intervals of 51 feet

are 26*6, 29*8, 32-0, 32 '8, and 31*2 feet respectively, and the centres of

gravity of these half-girths are i8'6, 20*6, 21 '2, 20*0, 17-4 feet respectively
below the L.W.L. Determine the area of the inner bottom and the

position of its centre of gravity both longitudinally and vertically. If the

plating is of 15 Ibs. to the square foot, what would be the weight, allowing

14^ per cent, for butts, laps, and rivet-heads.

Ans. 12,655 square feet ; 105 feet from mer end, 2O feet below the

L.W.L. ; 97 tons.

8. The whole ordinates of the boundary of a ship's deck are "S'5, 24,

29, 32, 33'5, 33'5, 33'5> 32, 3 27, and 6-5 feet respectively, and the

common interval between them is 21 feet.

The deck, with the exception of 350 square feet, is covered with \ inch

steel plating worked flush jointed, with single riveted edges and butts.

Find the weight of the plating, including straps and fastenings.
Ans. 45 tons.

9. A teak deck, 2^ inches thick, is supported on beams spaced 4 feet

apart, and weighing 15 pounds per foot run. Calculate the weight of a

middle-line portion of this deck (including fastenings and beams) 24 feet

long and 10 feet wide. Ans. I '65 tons nearly.
10. Taking the net weight of outer bottom plating of a vessel as 1000

tons, estimate the saving of weight if the average size of plates is 20 feet

by 5 feet as against 18 feet by 3! feet. (Butt-straps double riveted, lapped
edges double riveted, -inch rivets.) Ans. 43 tons about.

n. A longitudinal W.T. bulkhead is bounded at its upper edge by a
level deck (having 9-inch beams, 4 feet apart) and at its lower edge by the

inner bottom. The depths of the bulkhead at ordinates 61 feet apart are,

commencing from forward, g'o, 16*7, 19*3, I5'4> 9'5 feet respectively.
The plating of the bulkhend is 15 Ibs. per square foot worked vertically,

single riveted, and the stiffening consists of Z bars of 12 Ibs. per foot

spaced 4 feet apart with intermediate angles of 7 Ibs. per foot. There is

a single boundary bar of 8'5 Ibs. per foot.

Calculate (i) the weight of the bulkhead.

(2) the distance of C.G. from forward end.

(3) the distance of C.G. below the deck.

Ans. (i) 39 tons ; (2) 120-5 feet ; (3) 8 feet -

12. The half ordinates of upper deck of a ship 360 feet long are (i) o ;

(2) 9'4; (3) l6 '

2
; (5) 24-4; (7) 28-8; (9) 31-2; (ii) 32-4; (13) 32-2;

(15) 31-5 ; (17) 29-6 ; (19) 24 6 ; (20) 20'i ; (21) 13-8. Over the midship
portion (7) to (15) the beams are 24^ Ibs. per foot, 4 feet apart, and the

plating is 20 Ibs. per square foot, with single-riveted edge-strips and
double-riveted butt-straps. At the ends the beams are 24^ Ibs., 3 feet

apart, completely covered with plating 10 Ibs. per square foot, lapped and

single-riveted. The boundary bar is 3 inches by 3! inches of 8 Ibs. per
foot, and the deck is completely planked with 3-inch teak. Find total

weight, neglecting hatches, etc.

Ans. 325 tons about.



CHAPTER VII.

STRAINS EXPERIENCED BY SHIPS CURVES OF LOADS,
SHEARING FORCE, AND BENDING MOMENT-
EQUIVALENT GIRDER "SMITH" CORRECTION
TROCHOIDAL WAVE.

Strains experienced by Ships. The strains to which ships

are subjected may be divided into two classes, viz.

1. Structural strains, i.e. strains which affect the structure

of the ship considered as a whole.

2. Local strains, i.e. strains which affect particular portions

of the ship.

1. Structural Strains. These may be classified as

follows :

(a) Strains tending to cause the ship to bend in a fore-and-

aft direction.

(b) Strains tending to change the transverse form of the

ship.

(c) Strains due to the propulsion of the vessel, either by
steam or sails.

2. Local Strains. These may be classified as follows :

(a) Panting strains.

(b) Strains due to heavy local weights, as masts, engines,

armour, guns, etc.

(c) Strains caused by the thrust of the propellers.

(d) Strains caused by the attachment of rigging.

((?)
Strains due to grounding.

We will now deal with some of these various strains to

which a ship may be subjected in a little more detail.

Longitudinal Bending Strains. A ship may be regarded as

a large beam or girder, subject to bending in a fore-and-aft

direction. The support of the buoyancy and the distribution

of weight vary considerably along the length of a ship, even
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when floating in still water. Take a ship and imagine she is

cut by a number of transverse sections, as in Fig. 86. Each

of the portions has its weight, and each has an upward support

of buoyancy. But in some of the portions the weight exceeds

the buoyancy, and in others the buoyancy exceeds the weight.

The total buoyancy of all the sections must, of course, equal the

total weight. Now imagine that there is a water-tight bulkhead

at each end of each of these portions, and the ship is actually

cut at these sections. Then the end portions (i) and (5) have

considerable weight but small displacement, and consequently

they would sink deeper in the water if left to themselves. 1 In

i

FUG. 86.

the portions (2) and (4), on the other hand, the buoyancy might

exceed the weight (suppose these are the fore-and-aft holds, and

the ship is light), and if left to themselves they would rise. The

midship portion (3) has a large amount of buoyancy, but also

a large weight of engines and boilers, and this portion might

very well have to sink a small amount if left to itself. In any

actual ship, of course, it is a matter of calculation to find how

the weight and buoyancy vary throughout the length. This

case is somewhat analogous to the case of a beam supported

and loaded as shown in Fig. 87. At each point along the

beam there is a tendency to bend, caused by the way the

beam is loaded and supported, and the beam must be made

1
Strictly speaking, each portion would change trim if left to itself, but

we suppose that the various portions are attached, but free to move in a

vertical direction.
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sufficiently strong to withstand this bending tendency. In the

same way, the ship must be constructed in such a manner as

to resist effectually the bending strains that are brought to

bear upon the structure.

When a vessel passes out of still water and encounters

FIG. 87.

waves at sea, the strains to which she is subjected must differ

very much from those we have been considering above.

Suppose the ship to be end on to a series of waves having

lengths from crest to crest or from trough to trough equal to

the length of the ship. We will take the two extremes.

(1) The ship is supposed to have the crest of the wave

amidships.

(2) The ship is supposed to have the trough of the wave

amidships.

HOGGING

ACROSS WAVE TROUGH

FIGS. 88, 89.

(i) This is indicated in Fig. 88. At this instant there

is an excess of weight at the ends, and an excess of

buoyancy amidships. The ship may be roughly compared
to a beam supported at the middle, with weights at the end.
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as in Fig. 90. The consequence is that there is a tendency
for the ends to droop relatively to the middle. This is termed

(2) This is indicated in Fig. 89. At this instant there

is an excess of weight amidships, and an excess of buoy-

ancy at the ends, and the ship may be roughly compared
to a beam supported at the ends and loaded in the middle,

as Fig. 91. The consequence is, there is a tendency for the

middle to droop relatively to the ends. This is termed

sagging.

FIG. oo.

We have seen above how the ship may be compared to a

beam, and in order to understand how the material should be

disposed in order best to withstand the bending strains, we
will consider briefly some points in connection with ordinary
beams.

FIG. 91.

Take a beam supported at the ends and loaded at the

middle. It will bend as shown exaggerated in Fig. 92. The

resistance the beam will offer to bending will depend on

the form of the section of the beam. Take a beam having

a sectional area of 16 square inches. We can dispose the

material in many different ways. Take the following :
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(a) 8 inches wide, 2 inches deep (a, Fig. 93).

(<) 4 inches wide, 4 inches deep (, Fig. 93).

(c) 2 inches wide, 8 inches deep (<r, Fig. 93).

(d) 8 inches deep, with top and bottom flanges 5 inches

wide and i inch thick (d, Fig. 93).

FIG. 92.

Then the resistances of these various sections to bending

compare as follows :

If (a) is taken as i, then (b) is 2, (c) is 4, and (d)

is6f.
We thus see that we can make the beam stronger to resist

bending by disposing the material far away from the centre.

FIG. 93.

The beam (d) has 6f times the strength of (a) against bending,

although it has precisely the same sectional area. A line

drawn transversely through the centre of gravity of the section

of a beam is termed the neutral axis.

In the British Standard Sections it will be found that for

Z bars and channel bars the flanges are distinctly thicker

than the web.

These principles apply equally to the case of a ship, and

we thus see that to resist bending strains the material of the
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structure

axis.
1

should be disposed far away from the neutral

For hogging strains, the upper portions of the vessel are

in tension and the lower portions are in compression. For

sagging strains, the upper portions are in compression and the

lower portions are in tension. Thus the portions of the struc-

ture that are useful in resisting these hogging and sagging strains

are the upper and main decks and stringers, sheer strake and

plating below, plating at and below the bilge, both of the inner

and outer bottom, keel, keelsons, and longitudinal framing.

Strains tending to change the Transverse Form of the Ship.

Strains of this character are set up in a ship rolling heavily.

Take a square framework joined at the corners, and imagine
it to be rapidly moved backwards and forwards as a ship does

when she rolls. The framework will not break, but will distort,

as shown in Fig. 94. There is a tendency to distort in a similar

FIG.

way in a ship rolling heavily, and the connections of the beams

to the sides, and the transverse structure of the ship, must be

made sufficiently strong to prevent any of this racking taking

place. Transverse bulkheads are valuable in resisting the

tendency to change the transverse form.

A. ship, when docked, especially if she has on board heavy

weights, as armour or coals, is subjected to severe strains

tending to change the transverse form. If the ship is supported

1 There are other strains, viz. shearing strains, which are of importance
(see later).
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points along the beam, we shall be able to draw a line through all

the spots as amb, which has a maximum ordinate at the centre

o of J . W . a. This line will give the bending moment at any

point along the beam.
Or take the case of a beam supported at the ends and

loaded uniformly with the weight w per foot run, the total weight
w.o/

being, therefore, 2 . w . a, as Fig.96. The support at each end

is w . a. The bending moment at any point K, distance x from

the end, is Mk
= w . a . x J . w . oc*. When x a this bend-

ing moment is therefore J . w . a2
. If a number of spots be

thus obtained throughout the length of the beam, we can draw

a curve as amb, any ordinate of which will give the bending
moment at that point of the beam.

FIG. 97.

Take now the case of a beam supported at one end and

loaded uniformly. The load can be graphically represented by
a rectangle oabc> ab = w (Fig. 97). At any point K, calculate
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the area of the rectangle ob on one side of k, i.e. w . x, and set off

as an ordinate kf= w .x. This is what is termed the "
shearing

force
"

at K, or the tendency the two consecutive sections of

the beam at K have to slide over one another. Doing this

all along the beam, we should obtain the line afg> the maximum
ordinate of which og = w .1.

The area of the figure akf= .w.x*, and the bending momen*

at K also = % . w . x?. So that to determine the bendingmomem
at any point, we find the area of the curve of shearing force up
to that point.

1 In this way the curve of bending moment
amm is constructed, having a maximum ordinate om of \ . wl2

.

This method of determining the bending moment at any point

from the curve of shearing force is of no value in this particular

case, but is of assistance when dealing with more complicated

cases cf loading.

Take, for example, a beam similar to the above, but loaded

unevenly along its length, such that the intensity of the load

FIG. 98.

at any point is given by the ordinate of the curve //, which we

may term a " curve of loads'' as Fig. 98. Take any point K
and determine the area beneath the curve of loads from the

point k to the end of the beam. This will give the shearing

force at K. Doing this all along the beam, we can draw the

curve of shearing force aff. The area under this curve between

1 For the proof of this in any general case, see any standard work on
*'
Applied Mechanics," as Cotterill, chap. iii.
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k and the end of the beam gives the bending moment at K,
and in this manner the curve of bending moment amm Can

be obtained.

Turning now to the case of a ship floating in still water.

There will be a certain distribution of the weight and also of

the buoyancy. The total weight must, of course, be equal to

the total buoyancy, and also the fore-and-aft position of the

centre of gravity of the weight must be in the same athwartship
section as the centre of buoyancy. But although this is so,

the distribution of the weight and buoyancy along the ship
must vary from section to section.

FIG. 99-

Take the case of a vessel floating in still water in which

the buoyancy exceeds the weight amidships, and the weight

exceeds the buoyancy at the ends. Let BB in Fig. 99 be the

" curve of buoyancy." The area under this curve will give

the displacement of the vessel, and the fore-and-aft position of

the centre of gravity of this area is the same as the fore-and-aft

position of the centre of buoyancy.

Also let WW be the " curve of weight." This curve is

constructed by taking all the weights between two sections and

setting up a mean ordinate to represent the total weight between

the sections. This done throughout the length gives a number

of spots through which a curve may be drawn as nearly as
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possible. This curve should be adjusted as necessary to fulfil

the conditions stated above, viz. that the area under it shall

equal the area of the curve of buoyancy, and the fore-and-aft

position of the centre of gravity of the area under it shall be

in the same section as that of the curve of buoyancy.
The difference at any point between the ordinates of the

two curves WW and BB will give the difference between the

weight and the buoyancy at that point. Where the curves

cross at A and B, the weight and buoyancy are equal, and the

sections at these points are said to be " water-borne"

Now set off ordinates all along, giving the intercept between

the curves WW and BB. Set below the base-line where the

weight exceeds the buoyancy, and above the base-line where

the buoyancy exceeds the weight. In this way we obtain the

curve LLL which is the " curve of loads" At the sections

where the curve of loads crosses the base-line the ship is

water-borne. We now obtain the "curve of shearing force"

FFF from the curve of loads by finding the area under the

curve of loads, as explained above. Also in a similar manner

the curve of bending moment MM is obtained by finding

the area under the curve of shearing force. The maximum
ordinate of this curve will give the greatest bending moment
the ship will be subjected to under the assumed conditions.

In constructing curves of bending moment, moments

tending to cause "
hogging

"
are put above the base-line, and

moments tending to cause "
sagging

"
are put below the base-

line. In the case in Fig. 99 the moments are "
hogging

"

throughout the whole length of the vessel.

The area of the curve of loads above the base-line being
the same as the area below the base-line, it follows that the

ordinate of the shearing force must come to zero at the end.

Also the ordinate of the curve of bending moment must be zero

at the end, and this constitutes a most effective check on the

accuracy of the work.

It is obvious, however, that the strains due to the bending
moment in still water are not the worst that in practice will

affect the longitudinal structure of the ship. The strains in still

water are small in magnitude compared with the strains that
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may affect the ship at sea. For a ship at sea there are two

extreme cases that can be assumed, viz.

(1) The ship being supposed to be momentarily at rest on

the crest of a wave of her own length, the height of the wave

being taken some proportion of the length (Fig. 100).

(2) The ship being supposed to be momentarily at rest across

the trough of a wave similar to that assumed in (i) (Fig. 101).

It is usual to take the height of the wave from crest to crest,

or from trough to trough, ^ the length. The wave is assumed

to be of the form indicated by the " trochoidal theory," but no

account is taken of the internal structure of the wave.1

Construction of a Trochoidal Wave Profile. The wave on

which a ship is supposed to be momentarily poised has for its

profile a curve called a "
trochoid." This is a curve traced out

by a point inside a circle when the circle is rolled along a

straight line. The curve can be traced by its co-ordinates

referred to axes through the crest (Fig. QQA), viz.

T $ h
ax = L . . sin 9

27T 2

hi /l\

y = -(i cos 0)

6 being given the values of 30, 60, etc., in circular measure.

L is the length of wave from crest to crest, and h is the height

from crest to trough. The curve may also be drawn by the

FIG.

construction indicated in Fig. gg\. It is noticed that the

curve is sharper at the crest than in the trough, which is a

characteristic feature of sea-waves.

In order to get the displacement of the ship when on the

1 See the "Manual of Naval Architecture," by Sir W. H. White,
chaps, v. and viii. ; and a paper at the Institution of Naval Architects, by
Mr. (now Sir) W. E. Smith, M.I.N.A., in 1883; see also later.
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wave, it is convenient at each square station to run in a curve

of sectional areas. Then, if the profile of the wave is traced

and put on the profile of the ship, the area of each section up to

the surface of the wave is at once measured off, and these areas

integrated throughout the length give the displacement and

centre of buoyancy. If these are not correct, a further trial must

be made ;
the ship may

have to be trimmed to

get the C.B. right, it

being essential that this

is in the same section

as the C.G.

With these assump-
tions we can proceed
to construct the " curve

of buoyancy" for both

cases (i) and (2), and

from it and the u curve

of weights
" we obtain

the "curve of loads."

Then, by the principles

explained above, we can

determine the " curve of

shearing force
" and the

" curve of bending moment." In Fig.

100 is given a set of curves for a ship on a wave-crest, and in

Fig. 1 01 a set of curves for the same ship astride a wave-trough.

In any case the maximum bending moment may be expressed

in the form
weight X length an(j jt js found that the value of

coefficient

this coefficient will not usually fall below 20 for either of the

extreme cases taken above. The maximum bending moment

in foot-tons for ordinary ships may be generally assumed at

from ^ to the product of the length in feet and the dis-

placement in tons. The latter is frequently taken as a

standard value. In regard to this matter Mr. Foster King
made the following remarks at the I.N.A., 1915: "For

all ordinary vessels such as those with which we have to

deal, and many extraordinary ones, it has been found that

a close approximation to the greatest bending moment

FIG. 100.
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obtained from direct calculations is obtained from the formula

-, where L is the length, B the breadth, and
35 X 35

D is winter draught in feet.

FIG. 101.

Twenty years' experience of the

application of this for-

mula has shown an

agreement of the order

of about 5 per cent, with

the calculated figures

furnished by builders

for vessels of the most

widely dissimilar cha-

racter and dimensions

and give evidence of its

utility as a guide in

strength investigations."

This maximum bending
moment will usually

occur somewhere in the

vicinity of the midship
section.

It is usual to draw the distribution of weight as a series of

steps. For a large ship the length can be divided into sections

bounded by the main bulkheads, and the weights in each section

grouped together and plotted as uniform over each section.

Where extreme accuracy is desired, the work can be done in

greater detail. Fig. IOIA gives the curves for a torpedo-boat

destroyer lying in the trough of a wave of height
~ her length,

all the bunkers being full. The use of a machine called the
"
integraph

"
is of great value in getting quickly the curves of

shearing force and bending moment from the curves of loads.

If the pointer of this machine is run round the boundary of

a curvilinear area, the pen traces out a curve the ordinates of

which give the area of the original up to corresponding points.

This is just what is required in the above calculations. A
paper on the integraph was given by Mr. Johnson at the

Scottish Shipbuilders in 1904, to which the student is referred

for further information. See also a paper by Professor Biles

before the I.N.A. in 1905, for an exhaustive discussion on the
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strength of ships, with special reference to calculations and

experiments on H.M.S. Wolf.

Stress on the Material composing the Section.

Considering now the ship's structure as a girder, a hogging

FIG. IOIA.

moment produces tension in the upper portion of the girder and

compression in the lower portion of the girder, the reverse being
true for a sagging moment.

We now have to consider in some detail how a given beam
T
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is able to withstand the stresses on its material when subjected

to a given bending moment. Take a beam bent as in Fig. 92
and Fig. 102. AB is a longitudinal section and LL is a

transverse section of the beam. The upper layers are shortened

and the lower layers are lengthened. There must be one inter-

mediate layer which is unaltered in length. This layer is

FIG.

called the " neutral surface," and the transverse section SS is

called the " neutral axis." This neutral axis can be shown to

pass through the centre of gravity of the section.
1 The bending

moment at the section LL is resisted by the compressive

stresses in the upper layers and the tensile stresses in the

lower layers.

It can be shown x that the following relation holds :

M

where / is the stress in tons per square inch at distance y
inches from the neutral axis.

M is the bending moment at this section in inch-tons.

I is the moment of inertia of the section about the

neutral axis in inch-units.

It is by this formula that the stress on a particular portion

of the section of a beam can be determined, when we know the

1 See any standard work on "
Applied Mechanics," as that by Professor

Cotterill, F.R.S.
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bending moment at that section, the position of the neutral

axis, and the moment of inertia of the section about the neutral

axis.

Take, for example, the various sections of beams in Fig. 93.

Length of beam 12 feet, beam loaded in the middle with i ton

(neglecting the weight of the beam).

For (a) y = i"

1 = ^x16x4 = $ in inch-units

M = 36 inch-tons

/. p = the stress at the top or bottom
36 X 12= I X ^?-

64
= 6' 75 tons per square inch

For (*) y = 2"

I = ^ in inch-units

M = 36 inch-tons

the stress at the top or bottom

3*375 tons per square inch

For (<:) y = 4"
I

2jjfl
in inch-units

M = 36 inch-tons

/ = the stress at the top or bottom

1*6875 tons Per sc
l
uare

For (rf) y = 4
I = *

$* in inch- units

M = 36 inch-tons

/ = the stress at the top or bottom

= I '02 tons per square inch

Or looking at the question from another point of view, if

we say that the stress on the material is not to exceed 10 tons

per square inch, then we can determine for each of the sections

in Fig. 93 the greatest bending moment to which the beam
can be subjected.

For (a) M = - xl = ^xf$ = 53g inch-tons

jror () M=-Xl =
Tj
Q X^j<5 = lo6l inch-tons
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For (c) M = ^ x I y X 2s = 2I 3J inch-tons

For (</) M=^xl = x*i* = 353$ inch-tons

It is thus seen that the ratio of the bending moments that

these beams can stand is'

53
i :io6| : 2i 3

i
:.353|

or

1:2:4:6!.
The area of each section is the same, the only difference being
in the different distribution of the material of the section with

reference to the neutral axis.

We come now to the case of a ship subjected at a particular

section to either a "
hogging

" moment or a "
sagging

" moment.
To determine the stress on any portion of the section, we con-

sider the vessel to be a large beam subjected to a given

bending moment, and we apply the formula

There are two things to be found before we can apply this

formula to a given section, viz. :

(i.) The position of the neutral axis, which passes through
the centre of gravity of the section.

(ii.) The moment of inertia of the section about the neutral

axis.

In considering the strength longitudinally of a section,

account must be taken only of such material as actually con-

tributes to the strength through an appreciable length in the

vicinity of the section, such as plating of the inner and outer

bottom, keel, continuous longitudinals or keelsons, stringers,

deck-plating, planking, etc.

A distinction must be made between material in tension and

material in compression. In tension, allowance must be made
for the material taken away from the plating, etc., for the rivet-

holes, but in compression this deduction is unnecessary. It is

also usual to consider that wood is equivalent to y^ ^ts area

in steel for both tension and compression. For an armoured
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vessel the armour is not assumed to take any tension, but is

assumed to be effective against compression.
We must accordingly have two separate calculations one

for the section under a hogging moment, and one for the

section under a sagging moment. The position of the neutral

axis and the moment of inertia of the section about the neutral

axis will be different for each case.

With reference to the above assumption, the following

remarks of Dr. Bruhn (I.N.A., 1899), wno ^as given great

attention to this subject, may be noted :

Dr. Bruhn thinks that the correction for the rivet-holes in the calcula-

tion for I is more an act of error than of correction. This correction

assumes the structure highly discontinuous, the I and the position of the

neutral axis varying at- the frame and between the frames. But the whole

theory of bending is based on the assumption that the structure is con-

tinuous, and the bending certainly must be continuous. The I should

therefore be taken for the solid section^ and if it is desired to find the stress

between the rivets, we may increase the stress in the ratio in which the

sectional area is reduced (say g). This method for other than armoured

ships only requires one calculation for the moment of inertia, and when

dealing with shearing stresses, there is no more reason for deducting rivet-

holes on one side than on the other.

The following form may conveniently be used for calculating

the position of the neutral axis and the moment of inertia of the

section about the neutral axis, areas being in square inches and

levers in feet :

I

Items.
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column i, the effective areas in column 2, and the distances of

the centres of gravity from the assumed axis in feet are entered

in column 3. For the items below the axis these levers are

negative. We thus obtain column 4, which gives the moment
of each item about the axis, and the algebraic sum of this

column, M, divided by the addition of column 2, viz. A, gives

the distance of the neutral axis from the assumed axis, in feet,

say d feet.

We now place in column 5 the same levers as in column 3,

and multiplying the moments in column 4 by the levers in

column 5, we obtain the areas of the several items multiplied

respectively by the square of their distances from the neutral

axis. Each of these products is, of course, positive. All these

added give a total I, say. For the portions of the section which

are vertical, an addition is needed for the moment of inertia of

the items about axes through their own centres of gravity, viz.

Y5 . A . fi
2

(see p. 104). For portions of the section which are

horizontal, h is small, and this addition may be neglected. We,

therefore, arrive at the moment of inertia of the section about

the assumed axis, viz. I + i" = IA , say. We now have to transfer

this moment of inertia about the assumed axis from that axis to

the neutral axis, or I = IA
- A X d*

y
as explained on p. 104.

We can now determine the stress on the point of the section

farthest from the neutral axis, as this will be the point at which

the stress is greatest, by using the formula

M

The stresses thus found are only comparative, and must

be compared with those for a ship on service found to show

no signs of longitudinal weakness. Large ships can bear a

stress of 10 tons per square inch, because the standard wave is

exceptional. Ships 300 to 400 feet long have stresses 6 to 7

tons per square inch. In the special case of the Lusitania^

a stress of 10 tons per square inch was allowed when on a

wave of her own length of height one-twentieth the length.

It is to be observed that such a wave is of quite phenomena)

size, and unlikely to be encountered.
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Specimen Calculation for the Moment of Inertia,

etc., of Section. The following specimen calculation for a

torpedo-boat destroyer is given as a guide to similar cal-

culations. The depth of the girder was 17*7 feet and the

assumed neutral axis was taken as 9 feet above underside of

flat keel.

The column for areas was filled in with weight per foot run,

the total being turned into areas at the end (/ (area) means,

proportional to area, i.e. a function of area).

Above assumed neutral axis.

One side only.
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Below assumed neutral axis.

One side only.
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/(Area) = 376-1 + 279 = 655-1

area = -^X 655-1 = 385*4
J T"

N.A. above assumed! __ 2438 - 1743 __ ro6 ft

axis J 655-1

/(I) about assumed axis = 18,575 + 12,630 = 31,205

I about N.A. = -4- [31,205
- 655 >]C X i'o6

2

]
=

i7,920
o 4

N.A. above keel = 10*06 ft. N.A. below deck = 7-64 ft.

Bending moment = 13,000 ft. -tons

Tensile stress in keel = ~ X 10-06 = 7-3 tons sq. in.

Oppressive stress in) 13,000
fi = tons ^

deck J 17,920

Equivalent Girder. Although not necessary for calcu-

lation purposes, it is frequently the practice to draw out for

HOGING. --

FIG. 103.
FIG. 104.

the case under consideration a diagrammatic representation of

the disposition of the material forming the section. Such a

diagram will show at once how the material is disposed relative

to the neutral axis, and gives the section of the girder that

the ship is supposed to be. Such a diagram is termed the
"
equivalent girder," and there must be one for hogging and
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one for sagging, as shown in Fig. 103 and Fig. 104 respectively,

which are the equivalent girders for an armoured battleship.

A number of examples of equivalent girders for merchant

ships are given in Mr. Foster King's paper, I.N.A., 1913.

Shearing Stresses. We have seen above that to dispose
the material of a ship so as to resist most effectively the stresses

due to a bending moment, we must pay special attention to

the upper and lower portions of the girder. There are, how-

ever, also shearing stresses in a loaded structure which, under

certain circumstances, may cause straining action to take place.

Professor Jenkins called attention to these stresses in a paper
before the I.N.A. in 1890, and their importance has been

increased in recent years owing to the great increase in the

size of the vessels built.

It is necessary first to deal with the shearing stresses which

occur in an ordinary loaded beam. In a beam, besides the

bending moment at each section, there is a tendency for each

section to slide over the adjacent one. This is measured by
the

"
shearing force." At each point of the section there is a

shearing stress set up to resist this sliding tendency. It can be

shown that such shearing stress is always accompanied by a

shearing stress of equal intensity on a plane at right angles.

Consider two consecutive sections of a beam K' and K" Sx apart

(Fig. IO4A), at which the^bending moments are M and M + 5M respec-
K' K"

FIG. 104A.

tively. Then, if/ is the normal stress at section K' at a distance y from

the neutral axis, and 5A is the element of area on which this stress acts,

the total normal force on the section above AB is

VI
I

on proceeding to the limit. If now m is the moment of the area above AB
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about the neutral axis, the normal force is y m. At the consecutive

section this will be . m. The difference between these is the

resultant horizontal force on the portion of the beam 5* long above AB,
viz. . 5M. This must be the shearing force causing the section above

CD to slide along. If, now, q is the intensity of the shearing stress

along CD, and b the breadth of AB, we have q . b . 5x .-

. SM, or

in th j ^

ax L . b dx

the shearing force on whole section, so that we have q
'

. This

shearing stress is therefore zero at the top and bottom of the section, and
it will vary at other points of the section.

To illustrate the variation of this shearing stress, take a beam of I

section or hollow section, as Fig. IO4A, subjected to a total shearing force

of 10 tons. It will be found that the variation of the shearing stress is

represented by the right-hand portion of figure. It takes a sudden jump
at bottom of flange from 0*25 to 1*24 tons per square inch, because the

breadth is suddenly diminished from 5 inches to I inch. The maximum
value is 1*56 tons at the neutral axis. It is thus possible, in a beam with

a thin web, that an excessive shearing stress may be set up, and just at

that part of the section where there is no stress due to the bending moment.
It is also to be noticed that the shearing strength of steel is about four- fifths

the tensile strength.

In a ship the shearing force amidships is usually zero (see

Figs. 100, 101), and the shearing force reaches a maximum at

about a quarter the length from each end. This, therefore,

will be the portion at which shearing strains are likely to be

most severe, and the maximum strains will occur in the neigh-

bourhood of the neutral axis, because here the breadth of the

section is usually only twice the thickness of the bottom plating.

This stress has shown itself by the working of the rivets in

these portions of large ships, and the stresses vary also in

opposite directions according as the ship is in the trough or

on the crest of a wave. It is, therefore, becoming the practice

to work treble-riveted fore-and-aft laps at about mid-depth in

the fore and after bodies of large ships.
1

There are also set-up stresses due to bending of the plating

owing to the varying pressure of water, and these, together with
1

Lloyd's Rules say: "In vessels of 480 feet and upwards, with side

plating less than 0*84 inch in thickness, the landing edges are to be treble-

riveted for one-fourth the vessel's length in the fore and after bodies for a

depth of one-third the depth."
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the above stresses, have shown themselves by working in the

parts above mentioned, which has required the special strength-

ening referred to. (The subject has been exhaustively discussed

by Dr. Bruhn in a paper before the Scottish Institution of Ship-

builders, 1902.)

Principal Stress. When the material of a beam is

subjected to a tensile or compressive stress, together with a

shearing stress, these combine together to produce what is

termed the "
principal stress

"
at any particular place. It can

be shown that if/ is the ordinary tensile or compressive stress,

and q is the shearing stress, then the principal stress/ is given

by the equation

Thus, take a place immediately beneath the deck of a ship

with the stern overhanging in dry dock; A =
3' T

> ^ = x '42 -

Then/ = 3*65 tons, which is seen to be greater than the simple

tensile stress.

Unsymmetrical Bending. In the ordinary investiga-

tion we assume that the ship is upright. If a ship is inclined

the depth of section is increased, and it may possibly happen
that an increased stress would be experienced at the corner of

the section.

Let MM (Fig. 1043) be the axis of the bending moment,
the ship being heeled to an angle 0. Then M, the bending

FIG. 1048.

moment, may be resolved into M . cos 6 with the axis OX, and

M . sin 6 with the axis OY, O being the C.G. of section. Each
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of these will produce stress at P as if it acted alone, and

the total stress at P will be

I1}
I2 being the moments of inertia about axes OX, OY. The

position of the neutral axis is where / = o, or where - = -1

x 1 3

X tan 6 = tan
<f>.

If the point farthest from NN has co-ordinates

y and x' referred to OX, OY, then the maximum stress is

x' \
^ . cos 6 + =- . sin 6 }
AI 2

Professor Biles (Scottish Shipbuilders, 1893-4) gives the

results for a ship for all angles from o to 90. He found, for

the ship he took, that the maximum stress was reached at 30,
and was there 20 per cent, greater than when the ship was

upright.

The " Smith " correction due to taking account
of the Internal Structure of a Wave. 1 In order to

understand this it will be necessary to deal with some features

of the trochoidal wave theory.

A trochoid is a curve traced out by a point inside a circle

when the circle is rolled along a straight line. Its co-ordinates

relative to axes through the crest are (Fig. 99A)

_ k u
H

/}!x ~
27r

~
7 S1 1

I where L and H are the length

H I
and height of the trochoid

y= -(i -cos0) }

If we imagine the circle rolled along with a velocity v, and

then a backward velocity v impressed on the system, we have

the points at extremities of tracing arms moving with uniform

angular velocity, and the wave formation will have a velocity

v. Fig. 1040 shows how the wave travels due to the revolu-

tion anti-clockwise of the points P. The particles in the crest

move in the same direction as the wave advance, and in the

trough in the opposite direction. A wave is the passage of

motion, and there is only a relatively small actual motion in

circular orbits of the particles of water composing the wave.

1 See a paper by Mr. (now Sir) W. E. Smith, I.N.A. 1883.
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If R be the radius of the rolling circle then L = 27rR, and

= g . (dimensions in feet and seconds). The line of

FIG. 1040.

orbit centres is above the level of still water an amount J .
' R

where r is the radius OP for the surface trochoid or J . H (see

Fig. 1040).

For sub-surfaces (see Fig. io4E) the rolling circle is the

FIG. 1040.

same. The axis is above the level of the same particles in

still water an amount i .
- where r is the radius for the sub-

j\.

surface in question.

For a sub-surface the centre of whose rolling circle is at a

distance y below that of the surface trochoid, we have

r = r . e~&, where e is the base of Napierian logarithms =2718.
The values of r for values ofy = i, 2, 3, etc. are therefore

_
(y = 2), r2 = r . e R

(y = 3), r, = r
Q .<rl'

etc'

To evaluate these, we take logarithms first to the base

log. n = log. r -
R , since log, e = i

log. r
a
= log. r

^,
and so on.
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The pressure at any point in a trochoidal wave is the same

as at thepoint it occupies when in still water. Thus in Fig. io4E,

along the sub-surface BB, the pressure is the same as at its still-

water level b, and not due to its distance below the surface

trochoid (as is assumed in the standard method of calculation).

We therefore draw the trochoidal profile of the wave we
have to deal with and also the sub-surfaces corresponding to

lines of orbit centres at distances say 2 feet apart. We then

calculate the positions of the corresponding still-water levels,

a, b, c, d, <?,/.

Take as an illustrative example the wave drawn in Fig. io4E,

60 feet long, and 1 2 feet high. (This is, of course, an exagge-
rated ratio of H 4- L, but has been selected for the sake of

clearness). The lines of orbit centres have been taken at

2 feet intervals, and the profile of the surface trochoid can be

drawn as already described In this case R = =
9-55,

and r = 6, being one-half of the height of the surface trochoid.

In order to draw the sub-surface trochoids we have to find the

radii for values ofy = 2, 4, 6, etc.

We have log, r = log, r
Q ^

Turning into ordinary logarithms to the base 10 (See Appendix

B.) we have

2*3 R
Putting in values of r and R, and successive values ofy = 2,

4, 6, 8, 10, we have for values of r\ 4-86, 3-94, 3*19, 2'6 and

2' i. These will be the half heights of the sub-surface trochoids

which can then be drawn in as indicated in the figure. The
level of still water below the lines of orbit centres is then

obtained by putting in the values of r in the expression ,2K
or r88, 1-24, o'8i, 0-53, 0-35, 0*23, which are set down at

the side of the figure giving the levels a, b, c, d, <?, /. Thus

the pressure at any point on the sub-surface DD is that due

to the distance of d below a. At the crest, if the wave pres-

sures were neglected, the pressure at D would be that due to
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a head of 8*8 feet, whereas really it is only a pressure due to

a head of 47 feet.

Take now a ship on the wave and consider the section

that comes at HH. The levels of the surface A, and the sub-

surfaces B, C, D, etc., are placed on the section (Fig. io4F),

A, B, C, etc. At the level of B we set up bb' = ab, at
fche

level of C, cc' = ac> etc., and a curve through ab'c', etc., will

give the line to work to to obtain the true value of the

buoyancy due to the section. In the case of sections in the

crest portion this is less than that up to the level of the wave.

Similarly for a section as at EE (Fig. 1040), where the value

of the effective buoyancy is greater. This done for sections

all along the length will result in a curve of effective areas.

When the ship is on the crest this curve is as dotted in

(Fig. io4H), and in the trough as dotted in (Fig. 104;), as

compared with the full curves obtained in the standard method.

These new curves of buoyancy must, of course, satisfy the

ordinary conditions, viz. that the displacement and position

of the centre of buoyancy are correct.

Trochoidal Wave Theory. The following are the

principal formulae arising out of the trochoidal wave theory,

where

L is length of wave in feet (crest to crest).

H is height of wave in feet.

T is periodic time in seconds, i.e. time of traversing the

length.

V is velocity of wave in knots (i.e.
6080 feet per hour).

v is velocity of wave in feet per second.

R is radius of rolling circle in feet.

;- is radius of tracing arm in feet, i.e. one-half the height

of wave = H.

r is radius of tracing arm in feet at depth ofy where

y is depth of line of orbit centres from that line for the

surface trochoid.

g is acceleration due to gravity, viz. 32-2 in foot second

units.

VQ is a velocity of a particle in its orbit in feet per

second.
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Section, E-E

FIG. 1040.

FIG. io4H.

FIG. T<>4j.
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r =
^- *=*-. R = ^.L =

5-1 2L

V2 =rSL, since V = z,x

r r
de~K, where e = 2718 loge e = i

r = Iog 10 rQ
'jp7

(since log, A = 2-3 Iog10 . A).

log, r = log, r -
j|,

and log, r = Iog 10 rQ
'jp7' g

2vrr TT.H H
vQ
= -y- . v # for surface particle = -y

X # = 7*1 -7^

Height of centre of orbits of a given particle above the level

of that particle in still water = ^ . For the wave surface

7T.H2

this distance = ^- .

R-r
Virtual gravity at crest =

5- . .

R + r
at trough = . g.

EXAMPLES TO CHAPTER VII.

1. Determine the maximum stress on the section of an iron bar, 2

inches square and 20 feet long, when supported at the ends and unloaded
with one side horizontal. Ans. 6000 Ibs. per square inch.

2. An iron bar of the same length, and supported as in the previous
question, is of circular section, 2 inches diameter. Determine the maximum
stress. Ans. 8000 Ibs. per square inch.

3. A vessel floating in still water is subjected at a certain section to a

bending moment of 144 foot-tons. Determine the longitudinal stresses

(in pounds per square inch) in the material at top and bottom of this

section, assuming the section to be rectangular, 21 feet wide, 10 feet deep,
J" thick, and that the whole of it is effective in resisting stresses.

Ans. 223 Ibs.

4. The buoyancy of a vessel is o at the ends and increases uniformly to

the centre, while the weight is o at the centre and increases uniformly to

the ends. Draw the curves of shearing force and bending moment, and
find the maximum values of these quantities in terms of the displacement
and length of the vessel.

Ans. \ W, & W.L.
5. Suppose the skin and plate deck of an iron vessel to have the

following dimensions at the midship section, measured at the middle of

the thickness of the plates. Find the position of the neutral axis and
moment of resistance to bending. Breadth 48', and total depth 24', the
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bilges being quadrants of 12' radius. Thickness of plate g" all round, and
coefficient of strength / = 4 tons.

Ans. Neutral axis 13" above centre of depth.
Moment of resistance to hogging, 32,500 foot-tons.

i> sagging, 39,000
(Examples 4 and 5 are from "Applied Mechanics," by Professor

Cotterill, F.R.S.)
6. A ship on a wave-crest is subjected at the midship section to a

hogging moment of 28,000 foot-tons. The depth of the section is 37-5
feet, and the neutral axis is 18*2 feet from the bottom, the moment of

inertia of the section about the neutral axis is 477,778 (square inches
X feet

2
). Determine the maximum compressive and tensile stresses.

Ans. 1*07 tons per square inch compressive at bottom of section.

1*13 tons per square inch tensile at upper part of section.

7. State the maximum bending moment (in terms of weight and length
of vessel) in the case of a vessel having the weight uniformly distributed

and the curve of buoyancy a parabola. State also the position where
these maxima occur.

W
Ans. S.F. at o'2iL from end = .

10-5

B.M. amidships =

8. In question 3, if the ship has a bulwark each side 2 feet high, J inch

thick, what will then be the maximum stress ? Explain the significance
of your result as applying to actual ships. Ans. 263 Ibs.

Increase of depth of section will not necessarily diminish the maximum
stress.

.

y I p y I

and 8/ will be negative, i.e. stress diminishes only if > ^ .

This point acquires special importance 'in vessels with a light con-

tinuous superstructure, as

(1) Boat deck in large cruisers.

(2) Superstructure in merchant vessels.

If the structure is made continuous, it is found that the influence of the

increased depth is greater than the increased I, and thus greater stresses

are likely to be experienced by the superstructure than it can bear. For
this reason, either

(1) A sliding joint is made, so that the superstructure contributes

nothing to the structural strength ; or, preferably

(2) The superstructure is made an integral part of the ship's structure.

See a paper by Mr. Montgomerie, I.N.A., 1915.
It does not follow that material added to a section will diminish the

maximum stress. We have

M 9y 51

Suppose a small area a is added at a distance /from neutral axis, then

this axis will shift :

JLiL
A+a
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The new I about old axis = 1 + a ./-

The new I about new axis = I + a ./
2 - (A + a}( j^-^ J

... increment of I or 51 = a ./>
-

_ af

and I = A . #

S/ is positive if
l
-> - or -

/.*. the stress increases at distance y if the added material is placed less

&
than from the neutral axis.

/
In a rectangular beam, if material be added less than \ the depth

from mid-depth the stress is increased.

If a square inches of plating, placed at a distance of h feet above the

top of the girder, is such as to give the san,e stress as before (i.e. -is the

same), show that

S.-A.J

A(y + h)* + I

This formula was used by Mr. Montgomerie in his paper before

I.N.A., 1915, on "The Scantlings of Light Superstructures."

New I _ I

New_y y

9. A rectangular vessel is 30 feet broad and 20 feet deep, and has deck

plating \ inch thick, sides and bottom inch. At a certain section it is

subjected to a hogging moment of 20,000 tons-feet, and a shearing force

of 300 tons. Calculate in tons per square inch

(1) Maximum tensile and compressive stresses.

(2) Maximum shearing stress.

(3) Principal stress immediately under deck.

Ans. (i) 7-1, 4-9 ; (2) 1-42 ; (3) 7-2.
10. In the previous example, what would be the stresses if the deck

and bottom were J inch thick, and the sides \ inch ?

Ans. (i) 5, 5; (2) 2-62; (3) 5-86.
11. An I beam 8 inches deep and I inch thick, with flanges 5 inches

wide, overhangs a distance of 5 feet, and a weight of 5 tons is placed at

the end. Determine at the point of leaving support (tons per square inch)

(1) Maximum tensile and compressive stresses.

(2) Maximum shearing stress.

(3) Principal stress immediately below the upper flange.
Ans. (i) 8-5, 8-5; (2) 078; (3) 6-46.

12. In a vessel of 10,000 tons displacement and 450 feet long, the

maximum bending moment is 3\jW.L. The depth of midship section is

39 feet, and the neutral axis for hogging is at 0*49 the depth from keel.
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The I for hogging about the neutral axis is 4000 in foot units. Calculate

the maximum tensile and compressive stresses.

Ans. 5'i8, 4*97 tons per square inch.

13. A vessel of 3000 tons displacement and 360 feet long has a maximum
hogging moment of ^ W.L. The draught is 14^ feet, and the freeboard

to stringer is 7$ feet. The neutral axis for hogging is 3*15 feet below the

water-line, and the moment of inertia about neutral axis is 73,000 (square
inches X feet 2

). What are the maximum tensile and compressive stresses ?

Ans. 5'i8, 5*41 tons per square inch.

14. A vessel is designed with a very large overhang at the stern from
the cut-up of the keel. Indicate what calculations you would make to see

if the ship could safely be dry docked with the stern unsupported. Indi-

cate how you would strengthen such a ship to withstand the strains set up
in dry dock.

15. Two similar vessels are respectively 300 feet long, 2135 tons dis-

placement, and 360 feet long, 3000 tons displacement, the depth being

nearly the same. Indicate the method you would adopt to ensure the

second ship being strong enough, and estimate the increase of maximum
bending moment the second ship has to stand as compared with the first.

Ans. About 68 per cent, greater B.M.
1 6. The effective part of the transverse section of a vessel amidships is

represented by the diagram, the vessel being 42 feet broad and 28 feet deep.
Find the maximum tensile and

; compressive stresses when the vessel

is subjected to a sagging moment of

60,000 foot-tons. The plating is

\ inch thick and no allowance need
be made for rivet holes and laps of

plating. (Honours B. of E., 1908.)
This example is worked out

below. The best way to proceed is

to prepare a table similar to that in

this chapter ; attention is necessary to

the units, the areas being in square
inches and the lengths in feet. We
therefore have, taking in the first

place all distances from the keel

t

Items.
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368,458
17904 _ I2

.86 ft c G from keel> 22,016
*392 390,474 I about keel in sq. in x ft.*

I about neutral axis = 390,474 - 1392 x (i2'86)
2 = 160,224

stress at keel tensile = X 1 2 '86 4 '8 1 tons sq. in,

stress at deck compressive = l6o
x I S' l4 = 5'67 tons sq. in.

17. An Atlantic ocean wave is 600 feet long and 40 feet high. Cal-

culate the radii of the orbits at depths of loo, 200, 300, 400, 500 and

600 feet.

Ans. 7-03, 2-49, 0*87, 0*31, o'li, 0*04 feet.

These results show that even in a wave of large dimensions at a depth
less than the length of the wave the motion of the water is practically nil.

1 8. The successive crests of the wave profile along a ship's side going
at speed in still water are observed to be about 300 feet apart. What is

the speed of the vessel in knots ?

Ans. 23 knots about.

19. What is the speed of a 600 feet wave in knots ?

Ans. 33 knots nearly.

20. What is the length of a wave successive crests of which are observed

to pass a stationary observer at intervals of 8 seconds ?

Ans. 330 feet.

21. A wave is 600 feet long and 40 feet high. Compare the orbital

velocity of the particles in the surface with the speed of the wave.
Ans. 1 1 '6 : 55 '4, or about \.

22. What is the virtual force of gravity in the crest and trough respec-

tively of a wave 600 feet long and 40 feet high ?

Ans. 0.792, I'l ig.



CHAPTER VIII.

HORSE-POWER, EFFECTIVE AND INDICATED RESIST-
ANCE OP SHIPS COEFFICIENTS OF SPEED LAW OF
COMPARISON PROPULSION.

Horse-power. We have in Chapter V. defined the
" work

"

done by a force as being the product of the force and the

distance through which the force acts. Into the conception

of work the question of time does not enter at all, whereas
"
power

"
involves not only work, but also the time in which

the work is done. The unit of power is a "horse-power?
which is taken as "

33,000 foot-lbs. of work performed in i

minute? or "550 foot-lbs. of work performed in i second?

Thus, if during i minute a force of i Ib. acts through 33,000

feet, the same power will be exerted as if a force of 33 Ibs. acts

through 1000 feet during i minute, or if 50 Ibs. acts through
ii feet during i second. Each of these will be equivalent to

i horse-power. The power of a locomotive is a familiar in-

stance. In this case the work performed by the locomotive

if the train is moving at a uniform speed is employed in

overcoming the various resistances, such as the friction of the

wheels on the track, the resistance of the air, etc. If we
know the amount of this resistance, and also the speed of the

train, we can determine the horse-power exerted by the loco-

motive. The following example will illustrate this point :

If the mass of a train is 150 tons, and the resistance to its motion

arising from the air, friction, etc., amount to 16 Ibs. weight per ton when
the train is going at the rate of 60 miles per hour on a level plain, find the

horse-power of the engine which can just keep it going at that rate.

Resistance to onward motion = 150 X 16
= 2400 Ibs.

Speed in feet per minute = 5280
Work done per minute = 2400 X 5280 foot-lbs.

2400 x 5280
Horse-power =

33000
= 384
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In any general case, if

R = resistance to motion in pounds ;

v = velocity in feet per minute
;

V = velocity in knots (a velocity of i knot is 6080 feet

per hour) ;

then

1? ^^ <7J

Horse-power =
33000

X V) nearly

The case of the propulsion of a vessel by her own engines
is much more complicated than the question considered above

of a train being drawn along a level plain by a locomotive.

We must first take the case of a vessel being towed through
the water by another vessel. Here we have the resistances

offered by the water to the towed vessel overcome by the strain

in the tow-rope. In some experiments on H.M.S. Greyhound

by the late Mr. Froude, which will be described later, the tow-

rope strain was actually measured, the speed being recorded

at the same time. Knowing these, the horse-power necessary
to overcome the resistance can be at once determined. For

example

At a speed of 1017 feet per minute, the tow-rope strain was 10,770 Ibg.

Find the horse-power necessary to overcome the resistance.

Work done per minute = 10,770 X 1017 foot-lbs.

TT 10770 X 1017
Horse-power =

33000
= 332

Effective Horse-power. The effective horse-power of

a vessel at a given speed is the horse-power required to over-

come the various resistances to the vessel's progress at that

speed. It may be described as the horse-power usefully

employed, and is sometimes termed the "
tow-rope

"
or "

tug
"

horse-power, because this is the power that would have to be

transmitted through the tow-rope if the vessel were towed

through the water at the given speed. Effective horse-power
is often written E.H.P. We shall see later that the E.H.P. is

entirely different to the Indicated Horse-power (written I.H.P.),
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which is the horse-power actually measured at the vessel's

engines.

Example. Find the horse-power which must be transmitted through
a tow-rope in order to tow a vessel at the rate of 16 knots, the resistance to

the ship's motion at that speed being equal to a weight of 50 tons.

Ans. 5503 H.P.

Experiments with H.M.S. "Greyhound," by the

late Mr. William Fronde, P.R.S. These experiments
took place at Portsmouth as long ago as 1871, and they settled

a number of points in connection with the resistance and pro-

pulsion of ships, about which, up to that time, little was known.

The thoroughness with which the experiments were carried

out, and the complete analysis of the results that was given,

make them very valuable
;
and students of the subject would

do well to consult the original paper in the Transactions of the

Institution of Naval Architects for 1874. A summary of the

experiments, including a comparison with Rankine's "Aug-
mented Surface Theory of Resistance," will be found in vol. ill

of Naval Science. Mr. Froude's report to the Admiralty was

published in Engineering, May i, 1874.

The Greyhound was a ship 172' 6" in length between per-

pendiculars, and 33' 2" extreme breadth, the deepest draught

during the experiments being 1 3' 9" mean. The displacement

FIG. 105.

corresponding to this mean draught being 1161 tons; area of

midship section, 339 square feet
;

area of immersed surface,

7540 square feet. The Greyhound was towed by H.M.S.

Active. It was essential to the accuracy of the experiments

that the Greyhound should proceed through undisturbed water,

and to avoid using an exceedingly long tow-rope a boom was

rigged out from the side of the Active to take the tow-rope (see

Fig. 105). By this means the Greyhound proceeded through
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water that had not been influenced by the wake of the Active.

The length of the boom on the Active was 45 feet, and the length

of the tow-rope was such that the Greyhound's bow was 190
feet clear of the Aciive's stern. The actual force on the tow-

rope at its extremity was not required, but the " horizontal

component." This would be the force that was overcoming
the resistance, the "vertical component" being due to the

weight of the tow-rope. The horizontal force on the tow-rope
and the speed were automatically recorded on a sheet of paper
carried on a revolving cylinder. For details of the methods

employed and the apparatus used, the student is referred to

FIG. 106.

the sources mentioned above. The horizontal force on the

tow-rope was equal to the nett resistance of the Greyhound,
The results can be represented graphically by a curve, abscissae

representing speed, and ordinates representing the resistance

in pounds. Such a curve is given by A in Fig. 106.

It will be seen that the resistance increases much more

rapidly at the higher than at the lower speeds; thus, on

increasing the speed from 7 to 8 knots, an extra resistance

of 1500 Ibs. has to be overcome, while to increase the speed
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from ii to 12 knots, an extra resistance of 6000 Ibs. must

be overcome. Beyond 12 knots the shape of the curve

indicates that the resistance increases very rapidly indeed.

Now, the ratt at which the resistance increases as the speed
increases is a very important matter. (We are only concerned

now with the total resistance.) Up to 8 knots it was found

that the resistance was proportional to the square of the speed ;

that is to say, if R1} R, represent the resistances at speeds

Vj, V2 respectively, then, if the resistance is proportional to

the square of the speed

R, : R2 : : V,
2

: Va
'

By measuring ordinates of the curve in Fig. 106, say at 5 and 6

knots, this will be found to be very nearly the case. As the

speed increases above 8 knots, the resistance increases much

more rapidly than would be given by the above
; and between

1 1 and 1 2 knots, the resistance is very nearly proportional to

the fourth power of the speed.

The experiments were also conducted at two displacements

less than 1161 tons, viz. at 1050 tons and 938 tons. It was

found that differences in resistance, due to differences of

immersion, depended, not on changes of area of midship

section or on changes of displacement, but rather on changes

in the area of wetted surface. Thus for a reduction of 19^

per cent, in the displacement, corresponding to a reduction of

area of midship section of 16^ per cent., and area of immersed

surface of 8 per cent., the reduction in resistance was about

10^ per cent., this being for speeds between 8 and 12 knots.

Ratio between Effective Horse-power and Indi-

cated Horse-power. We have already seen that, the

resistance of the Greyhound at certain speeds being deter-

mined, it is possible to determine at once the E.H.P. at

those speeds. Now, the horse-power actually developed by the

Greyhound's own engines, or the " indicated horse-power
"

(I.H.P.), when proceeding on the measured mile, was observed

on a separate series of trials, and tabulated. The ratio of the
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E.H.P. to the I.H.P. was then calculated for different speeds,

and it was found that E.H.P. 4- I.H.P. in the best case was

only 0*42 ;
that is to say, as much as 58 per cent, of the power

was employed in doing work other than overcoming the actual

resistance of the ship. This was a very important result, and

led Mr. Froude to make further investigations in order to

determine the cause of this waste of power, and to see whether

it was possible to lessen it.

Tf TT T>

The ratio
y
Vj

' '

at any given speed is termed the "pro-

pulsive coefficient" at that speed. As we saw above, in the

most efficient case, in the trials of the "
Greyhound" this co-

efficient was 42 per cent. For modern vessels with fine lines a

propulsive coefficient of 50 per cent, may be expected, if the

engines are working efficiently and the propeller is suitable.

In special cases, with extremely fine forms and fast-running

engines, the coefficient rises higher than this. These values only
hold good for the maximum speed for which the vessel is

designed ;
for lower speeds the coefficient becomes smaller.

The following table gives some results as given by Mr. Froude.

The Mutine was a sister-ship to the Greyhound^ and she had

also been run upon the measured mile at the same draught and

trim as the Greyhound.



302 Theoretical Naval Architecture.

Resistance. We now have to inquire into the various

resistances which go to make up the total resistance which a

ship experiences in being towed through the water. These

resistances are of three kinds

1. Resistance due to friction of the water upon the surface

of the ship.

2. Resistance due to the formation of eddies.

3. Resistance due to the formation of waves.

1.
" Frictional resistance? or the resistance due to the

friction of the water upon the surface of the ship. This is

similar to the resistance offered to the motion of a train on a

level line owing to the friction of the rails, although it follows

different laws. It is evident that this resistance must depend

largely upon the state of the bottom. A vessel, on becoming

foul, loses speed very considerably, owing to the greatly

increased resistance caused. This frictional resistance forms

a large proportion of the total at low speeds, and forms a

good proportion at higher speeds.

2. Resistance due to eddy-making. Take a block of wood,

and imagine it placed a good distance below the surface of

a current of water moving at a uniform speed V. Then

the particles of water will run as approximately indicated

in Fig. 107 At A we shall have a mass of water in a state of

FIG. 107.

violent Agitation, and a much larger mass of water at the rear

of the block. Such masses of confused water are termed

"eddies" and sometimes "dead water." If now we imagine

that the water is at rest, and the block of wood is being towed
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through the water at a uniform speed V, the same eddies will

be produced, and the eddying water causes a very considerable

resistance to the onward motion. Abrupt terminations which

are likely to cause such eddies should always be avoided in

vessels where practicable, in order to keep the resistance as

low as possible. This kind of resistance forms a very small

proportion of the total in well-formed vessels, but in the older

vessels with full forms aft and thick stern-posts, it amounted to

a very considerable item.

3. Resistance due to the formation of waves. For low

speeds this form of resistance is not experienced to any
sensible extent, but for every ship there is a certain speed
above which the resistance increases more rapidly than would

be the case if surface friction and eddy-making alone caused

the resistance. This extra resistance is caused by the forma-

tion of waves upon the surface of the water.

We must now deal with these three forms of resistance in

detail, and indicate as far as possible the laws which govern
them.

i . Frictional Resistance. The data we have to work upon
when considering this form of resistance were obtained by the

late Mr. Froude. He conducted an extensive series of experi-

ments on boards of different lengths and various conditions

of surface towed edgewise through water contained in a tank,

the speed and resistance being simultaneously recorded. The

following table represents the resistances in pounds per square

foot due to various lengths of surface of various qualities when

moving at a uniform speed of 600 feet per minute, or very nearly
6 knots in fresh water. There is also given the powers of the

speed to which the resistances are approximately proportional.

We can sum up the results of these experiments as follows :

The resistance due to the friction of the water upon the surface

depends upon

(1) The area of the surface.

(2) The nature of the surface.

(3) The length of the surface.

(4) The density of the water.

and (5) The resistance varies as the **
power of the speed

where n varies from 1*83 to 2*16.



304 Theoretical Naval Architecture.



HorSB-power> Effective and Indicated, etc. 305

Experiments were not made on boards over 50 feet in

length. Mr. Froude remarked, in his
"

report, "It is highly

desirable to extend these experiments, and the law they eluci-

date, to greater lengths of surface than 50 feet; but this is the

greatest length which the experiment-tank and its apparatus

admit, and I shall endeavour to organize some arrangement by
which greater lengths may be successfully tried in open water."

Mr. Froude was never able to complete these experiments
as he anticipated. It has long been felt that experiments with

longer boards would be very valuable, so that the results could

be applied to the case of actual ships. It is probable that in

the new American experiment tank,
1 which is of much greater

length than any others at present constructed, experiments with

planes some hundreds of feet in length may be carried out.

These experiments show very clearly how important the

condition of the surface is as affecting resistance. The
varnished surface may be taken as typical of a surface coated

with smooth paint, or the surface of a ship sheathed with

bright copper, the medium sand surface being typical of the

surface of a vessel sheathed with copper which has become

foul. If the surface has become fouled with large barnacles,

the resistance must rise very high.

In applying the results of these experiments to the case of

actual ships, it is usual to estimate the area of wetted surface,

and to take the length of the ship in the direction of motion to

determine what the coefficient/ shall be. See below for E.H.P.

due to friction and eddy-making.
Take the following as an example :

The wetted surface of a vessel is estimated at 7540 square feet, the

length being 172 feet. Find the resistance due to surface friction at a

speed of 12 knots in salt water, assuming a coefficient of 0*25, and that

the resistance varies (a) as the square of the speed, and (b) as the 1-83

power of the speed.

(a) Resistance = 0*25 X I '025 X 7540 X (-)
2

= 7728 Ibs.

(b) Resistance = 0*25 X 1*025 x 7540 X (Jf)
1
' 8*

= 6870 Ibs.
2

1 For a description of this tank, see Engineering, Dec. 14, 1900. See

discussion on paper by Mr. Baker on Frictional Resistance, I.N.A., 1916.
2 T.his.hasto be obtained by the aid of logarithms.
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It is worth remembering that for a smooth painted surface

the frictional resistance per square foot of surface is about \ Ib.

at a speed of 6 knots.

It is useful, in estimating the wetted surface for use in the

above formula, to have some method of readily approximating
to its value. Several methods of doing this have been already

given in Chapter II., the one known as "
Kirk's Analysis

"

having been largely employed. There are also several approxi-
mate formulae which are reproduced

(1) Based on Kirk's analysis

Surface = 2LD + Y

(2) Given by Mr. Denny
Y"

Surface = ryLD +-

(3) Given by Mr. Taylor-

Surface = 1 5 '5 VW.L.

(4) Used at the Experiment Tank at Haslar

Surface = '(3 -4 -f ,'

L being the length of the ship in feet
;

D being the mean moulded draught ;

V being the displacement in cubic feet
;

W being the displacement in tons.

2. Eddy-making Resistance. We have already seen the

general character of this form of resistance. It may be

assumed to vary as the square of the speed, but it will vary

in amount according to the shape of the ship and the appen-

dages. Thus a ship with a full stern and thick stern-posts

will experience this form of resistance to a much greater

extent than a vessel with a fine stern and with stern-post and

rudder of moderate thickness. Eddy-making resistance can

be allowed for by putting on a percentage to the frictional

resistance. It is possible to reduce eddy-making to a

minimum by paying careful attention to the appendages and

endings of a vessel, especially at the stern. Thus shaft

brackets in twin-screw ships are often made of pear-shaped
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section, as shown in Fig. 85 E
J and Fig. 108. A conical piece is

always put at the after end of propeller shafts for this reason.

AFT. FOR*

FIG. 108.

The following formula can be used to express the effective

horse-power due to surface friction and eddy-making in salt

water, viz. :

E.H.P. = ^./.S.V2
'

88

V being in knots.

For the coefficient/, we can take/= 0-009 f r a length of

500 feet varying to 0*01 for a length of 40 feet. These values

are rather greater than would be inferred from Froude's

experiments, and include an allowance for eddy-making
resistance.

On page 332, a table is given for the E.H.P. due to skin

friction, based on Mr. Froude's constants, assuming the skin

friction to vary as V1825
,
from speeds of 10 to 40 knots, and

for lengths of 100 to 1000 feet. The reduction of the co-

efficient as length increases has been allowed for in this

table.

Mr. Baker, in his work on
t

" Resistance and Propulsion,"

gives the following values off for salt water and for varying

lengths in the formula

Frictional resistance in Ibs. =/. S . V1825

where S is wetted surface in square feet

V is speed in knots.

Length)
in feet /
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These values are obtained by assuming that the frictional

coefficient of the first 50 feet is the same as that of a 5o-foot

plank, regardless of the ship's length, and that the remainder

of the length has the same frictional resistance as the last foot

of the 5o-foot plank.

The table given for E.H.P. due to frictional resistance per

square foot of wetted surface given on page 332 is calculated

from similar figures to the above, and it is suggested as

an exercise that some of the figures given be checked.

Attention is necessary to the units, as the above is for

resistance in Ibs., and E H.P. = ^ . R . V, so that

E.H.P. = ^./.V 2
'

826

3. Resistance due to the Formation of Waves. A completely

submerged body moving at any given speed will only experi-

ence resistance due to surface friction and eddy-making provided

FIG. 109.

it is immersed sufficiently ;
but with a body moving at the

surface, such as we have to deal with, the resistance due to

the formation of waves becomes very important, especially at

high speeds. This subject is of considerable difficulty, and

it is not possible to give in this work more than a general

outline of the principles involved.
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Consider a body shaped as in Fig. 109 placed a long way
below the surface in water (regarded as frictionless), and

suppose the water is made to move past the body with a uniform

speed V. The particles of water must move past the body in

certain lines, which are termed stream-lines. These stream-

lines are straight and parallel before they reach the body, but

owing to the obstruction caused, the particles of water are

locally diverted, and follow curved paths instead of straight

ones. The straight paths are again resumed some distance at

the rear of the body. We can imagine these stream-lines

making up the boundaries of a series of stream-tubes, in each

of which the same particles of water will flow throughout the

operation. Now, as these streams approach the body they

broaden, and consequently the particles of water slacken in

speed. Abreast the body the streams are constricted in area,

and there is a consequent increase in speed ; and at the rear of

the body the streams again broaden, with a slackening in speed.

Now, in water flowing in the way described, any increase in

speed is accompanied by a decrease in pressure, and conversely

any decrease in speed is accompanied by an increase in pressure.

We may therefore say

(1) There is a broadening of all the streams, and attendant

decrease of speed and consequent excess of pressure, near both

ends of the body ;
and

(2) There is a narrowing of the streams, with attendant

excess of speed and consequent decrease of pressure, along the

middle of the body.
This relation between the velocity and pressure is seen in

the draught of a fire under a chimney when there is a strong wind

blowing. The excess of the speed of the wind is accompanied

by a decrease of pressure at the top of the chimney. It

should be noticed that the variations of velocity and pressure

must necessarily become less as we go further away from the

side of the body. A long way off the stream-lines would be

parallel. The body situated as shown, with the frictionless

\\ater moving past it, does not experience any resultant force

tending to move it in the direction of motion. 1

1 This principle can be demonstrated by the use of advanced mathematics.
" We may say it is quite evident if the body is symmetrical, that is to say,
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Now we have to pass from this hypothetical case to the case

of a vessel on the surface of the water. In this case the water

surface is free, and the excess of pressure at the bow and stern

shows itself by an elevation of the water at the bow and stern,

and the decrease of pressure along the sides shows itself by a

depression of the water along the sides. This system is shown

by the dotted profile of the water surface in Fig. no, which

FIG. no.

has been termed the statical wave. The foregoing gives us

the reason for the wave-crest at the stern of the ship. The
crest at the bow appears quite a reasonable thing to expect,
but the crest at the stern is due to the same set of causes.

This disturbance of level at the bow and stern is described by
Mr. R. E. Froude as the " forcive

"
of the actual wave forma-

tion. If a stone is thrown into water, the sudden disturbance

propagates a series of waves that radiate in all directions. In

the case of a ship, the shape of the ship causes the disturbance

to form diverging and transverse waves as seen below.

Observation shows that there are two separate and distinct

series of waves caused by the motion of a ship through the

water : (i) at the bow, and (2) at the stern.

Each of these series of waves consists of (i) a series of

diverging waves, the crests of which slope aft, and (2) a series

of transverse waves, whose crests are nearly perpendicular to

the middle line of the ship.

First, as to the diverging waves at the bow. " The inevi-

tably widening form of the ship at her entrance throws off on

each side a local oblique wave of greater or less size according
to the speed and obtuseness of the wedge, and these waves

form themselves into a series of diverging crests. These waves

has both ends alike, for in that case all the fluid action about the after

body must be the precise counterpart of that about the fore body j all the

stream-lines, directions, speed of flow, and pressures at every point must be

symmetrical, as is the body itself, and all the forces must be equal and

opposite" (see a paper by Mr. R. E. Froude, on "Ship Resistance," read

before the Greenock Philosophical Society in 1894).
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have peculiar properties. They retain their identical size for a

very great distance, with but little reduction in magnitude.
But the main point is, that they become at once disassociated

with the vessel, and after becoming fully formed at the bow,

they pass clear away into the distant water, and produce no
further effect on the vessel's resistance." These oblique waves

are not long in the line of the crest BZ, Fig. in, and the

waves travel perpendicular to the crest-line with a speed of

V cos 0, where V is the speed of the ship. As the speed of

the ship increases the diverging waves become larger, and

consequently represent a greater amount of resistance.

Besides these diverging waves, however,
" there is produced

by the motion of the vessel another notable series of waves,

which carry their crests transversely to her line of motion." It

is this transverse series of waves that becomes of the greatest

importance in producing resistance as the speed is pushed
to values which are high for the ship. These transverse waves

show themselves along the sides of the ship by the crests and

troughs, as indicated roughly in Fig. no. The lengths of these

waves (i.e.
the distance from one crest to the other) bears a

definite relation to the speed of the ship. This relation is that

the length of the wave varies as the square of the speed at

which the ship is travelling, and thus as the speed of the ship

increases the length from crest to crest of the accompanying
series of transverse waves increases very rapidly.

The waves produced by the stern of the ship are not of

such great importance as those formed by the bow, which we

have been considering. They are, however, similar in character,

there being an oblique series and a transverse series.
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Interference between the Bow and Stern Transverse Series of

Waves. In a paper read by the late Mr. Froude at the Insti-

tution Of Naval Architects in 1877, some very important

experiments were described, showing how the residuary resist-

ance 1 varied in a ship which always had the same fore and

after bodies, but had varying lengths of parallel middle body

inserted, thus varying the total length. A strange variation in

the resistance at the same speed, due to the varying lengths of

parallel middle body was observed. The results were set out

as roughly shown in Fig. 112, the resistance being set up on a

340. 240 i-W 40

LENGTH OF PARALLEL MIDDLE BODY

FIG. 112.

base of length of ship for certain constant speeds. At the low

speed of 9 knots very little variation was found, and this was

taken to show that at this speed the residuary resistance was

caused by the diverging waves only.

The curves show the following characteristics :

(1) The spacing or length of undulation appears uniform

throughout each curve, and this is explained by the fact that

waves of a given speed have always the same length.

(2) The spacing is more open in the curves of higher speed,

the length apparently varying as the square of the speed. This

is so because the length of the waves are proportionate to the

square of the speed.

1

Residuary resistance is the resistance other than frictional.
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(3) The amplitude or heights of the undulations are

greater in the curves of higher speeds, and this is so, because

the waves made by the ship are larger for higher speeds.

(4) The amplitude in each curve diminishes as the length of

parallel middle body increases, because the wave system, by

diffusing transversely, loses its height.

These variations in residuary resistance for varying lengths

are attributed to the interference of the bow and stern trans-

verse series of waves. When the crests of the bow-wave series

coincide with the crests of the stern-wave series, the residuary

resistance is at a maximum. When the crests of the bow-wave

series coincide with the troughs of the stern-wave series, the

residuary resistance is at a minimum.

The following formula l
gives an approximation to the effec-

tive horse-power to overcome wave-making resistance, viz.

The coefficient b, however, has varying values for the same

ship owing to the interference above mentioned, so that it is

not a formula that can be relied upon. The total formula for

E.H.P. can be written

E.H.P. = /. S . V2
'

83 + b . . VB

where / is a coefficient for surface friction and eddy-making

appropriate to the length. If 50 per cent, be taken as a

standard propulsive coefficient at top speed, to 40 per cent.

at 10 knots, say, values of b can be determined from trial data

in the user's possession which may be useful for estimating

purposes. Examples 31 and 32 in Appendix illustrate its use.

The following extracts from a lecture 2
by Lord Kelvin (Sir

William Thomson) are of interest as giving the relative in-

fluence of frictional and wave-making resistance :

" For a ship A, 300 feet long, 31^ feet beam, and 2634 tons

displacement, a ship of the ocean mail-steamer type, going at

13 knots, the skin resistance is 5*8 tons, and the wave resistance

1 See Mr. Johns' paper, I.N.A., 1907, for a discussion of "approxi-
mate formulae for determining the resistance of ships," also Prof. Hovgaard,
1908, I.N.A.

9 Third volume "
Popular Lectures and Addresses," 1887.
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is 3*2 tons, making a total of 9 tons. At 14 knots the skin

resistance is but little increased, viz. 6*6 tons, while the wave

resistance is 6*15 tons.
" For a vessel B, 300 feet long, 46-3 feet beam, and

3626 tons, no parallel middle body, with fine lines swelling out

gradually, the wave resistance is much more favourable. At

13 knots the skin resistance is rather more than A, being

6*95 tons as against 5*8 tons, while the wave resistance is

only 2 -45 tons as against 3*2 tons. At 14 knots there is a

very remarkable result in the broader ship with its fine lines,

all entrance and run, and no parallel middle body. At 14

knots the skin resistance is 8 tons as against 6*6 tons in A,
while the wave resistance is only 3-15 tons as against 6-15

tons in A.
" For a torpedo boat, 125 feet long and 51 tons displacement,

at 20 knots the skin resistance was i'2 tons, and the wave resist-

ance i' i tons."

Resistance of a Completely Submerged Body. The condi-

tions in this case are completely different from those which

have to be considered in the case of a vessel moving on the

surface. In this latter case waves are produced on the surface,

as we have seen, but with a completely submerged body this is

not so, provided the vessel is immersed sufficiently. We get the

clue to the form of least resistance in the shape of fishes, in which

the head or forward end is comparatively blunt, while the rear

portion tapers off very fine. The reason for the small resistances

of forms of this sort is seen when we consider the paths the particles

of water follow when flowing past. These paths are termed the

stream-lines for the particular form. It will be seen that no eddies

are produced for a fish-shaped form, and, as we saw on p. 306,

it is the rear end which must be fined off in order to reduce eddy-

making to a minimum. This was always insisted on very strongly

by the late Mr. Froude, who said,
"

It is blunt tails rather than

blunt noses that cause eddies." A very good illustration of the

above is seen in the form that is given to the section of shaft

brackets in twin-screw vessels. Such sections are given in Figs.

85 E and 1 08. It will be noticed that the forward end is com-

paratively -olunt, while the after end is fined off to a small radius.
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Speed Coefficients. The method which is most largely

employed for determining the I.H.P. required to drive a vessel

at a certain speed is by using coefficients obtained from the

results of trials of existing vessels. They are based upon
assumptions which should always be carefully borne in mind
when applying them in actual practice.

i. Displacement Coefficient. We have seen that for speeds
at which wave-making resistance is not experienced, the resist-

ance may be taken as varying

(a) With the area of wetted surface
;

(b) Approximately as the square of the speed ;

so that we may write for the resistance in pounds

R = KaSV2

V being the speed in knots, S the area of wetted surface in

square feet, and Kj being a coefficient depending on a number

of conditions which we have already discussed in dealing with

resistance.

Now, E.H.P = -
,

as we have already seen

(p. 297). Therefore we may say

E.H.P.=

where K2 is another coefficient, which may be readily obtained

from the previous one. If now we assume that the total I.H.P.

bears a constant ratio to the E.H.P., or, in other words, the

propulsive coefficient remains the same, we may write

I.H.P.=K3SV3

K3 being another new coefficient. S, the area of the wetted

surface, is proportional to the product of the length and girth to

the water-line
; W, the displacement, is proportional to the pro-

duct of the length, breadth, and draught. Thus W may be said

to be proportional to the cube of the linear dimensions, while S

is proportional to the square of the linear dimensions. Take a

vessel A, of twice the length, breadth, and draught, of another

vessel B, with every linear dimension twice that of the corre-

sponding measurement in B. Then the forms of the two vessels



316 Theoretical Naval Architecture.

are precisely similar, and the area of the wetted surface of

A will be 2a = 4 times the area of the wetted surface of B, and

the displacement of A will be 2 3 = 8 times the displacement of

B. The ratio of the linear dimensions will be the cube root

of the ratio of the displacements, in the above case ^8=2.
The ratio of corresponding areas will be the square of the cube

root of the ratio of the displacements, in the above case

(4/8)
2 = 4. This may also be written 8*. We may accord-

ingly say that for similar ships the area of the wetted surface

will be proportional to the two-thirds power of the displace-

ment, or W'. We can now write our formula for the indicated

horse-power

W* x V1

I.H.P. =
ILJ^L

where W = the displacement in tons ;

V = the speed in knots ;

C = a coefficient termed the displacement coefficient*

If a ship is tried on the measured mile at a known displace-

ment, and the I.H.P. and speed are measured, the value of the

W* X Vs

coefficient C can be determined, for C =
j
TT p . It is usual

to calculate this coefficient for every ship that goes on trial, and

to record it for future reference, together with all the particulars

of the ship and the conditions under which she was tried. It

is a very tedious calculation to work out the term Wz

,
which

means that the square of the displacement in tons is calculated,

and the cube root of the result found. It is usual to perform

the work by the aid of logarithms. A specimen calculation is

given here :

The Himalaya on trial displaced 4375 tons, and an I.H.P.

of 2338 was recorded, giving a speed of 12*93 knots. Find the
"
displacement coefficient

"
of speed.

Here we have- W = 4375
V = 12-93

I.H.P.= 2338
1 The coefficients are often termed "

Admiralty constants," but it will

be seen later that they are not at all constant for different speeds of the

same vessel.
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By reference to a table of logarithms, we find

log 4375 = 3'64io

log 12-93 = i'in6

log 2338 = 3-3689

so that log (4375)
1 = I log 4375 = 2'4273

log (i2'93)
3 = 3 log 12-93 = 3'3348

= 2
'

4273 + 3
'

3348 ~

= 2-3932

The number of which this is the logarithm is 247-3,

accordingly this is the value of the coefficient required.

2. The other coefficient employed is the "
midship-section

coefficient"
1 If M is the area of the immersed midship section

in square feet, the value of this coefficient is

M X Vs

I.H.P.

This was originally based on the assumption that the

resistance of the ship might be regarded as due to the forcing

away of a volume of water whose section is that of the im-

mersed midship section of the ship. This assumption is not

compatible with the modern theories of resistance of ships, and

the formula can only be true in so far as the immersed midship

section is proportional to the wetted surface.

In obtaining the W* coefficient, we have assumed that the

wetted surface of the ships we are comparing will vary as the

two-thirds power of the displacement ;
but this will not be true

if the ships are not similar in all respects. However, it is

found that the proportion to the area of the wetted surface is

much more nearly obtained by using W* than by using the

area of the immersed midship section. We can easily imagine

two ships of the same breadth and mean draught and similar

form of midship section whose displacement and area of wetted

surface are very different, owing to different lengths and forms.

We therefore see that, in applying these formulae, we must take

care that the forms and proportions of the ships are at any rate

somewhat similar. There is one other point about these

1 See note on p. 316.
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formulae, and that is, that the performances of two ships can

only be fairly compared at
"
corresponding speeds."

1

Summing up the conditions under which these two formulae

should be employed, we have

(1) The resistance is proportional to the square of the speed.

(2) The resistance is proportional to the area of wetted

surface, and this area is assumed to vary as the two-thirds power
of the displacement, or as the area of the immersed midship
section. Consequently, the ships we compare should be of

somewhat similar type and form.

(3) The coefficient of performance of . the machinery is

assumed to be the same. The ships we compare are supposed
to be fitted with the same type of engine, working with the

same efficiency. Accordingly we cannot fairly compare a

screw steamer with a paddle steamer, since the efficiency of

working may be very different.

(4) The conditions of the surfaces must be the same in

the two ships. It is evident that a greater I.H.P. would be

required for a given speed if the ship's bottom were foul than

if it had been newly painted, and consequently the coefficient

would have smaller values.

(5) Strictly speaking, the coefficients should only be com-

pared for
"
corresponding speeds."

2

With proper care these formulae may be made to give

valuable assistance in determining power or speed for a new

design, but they must be carefully used, and their limitations

thoroughly appreciated. A good method of recording these

y
coefficients is to plot them on base of ^. In this way the

v L
size of ship is eliminated.

We have seen that it is only for moderate speeds that th.e

resistance can be said to be proportional to the square of the

speed, the resistance varying at a higher power as the speed
increases. Also that the propulsive coefficient is higher at the

maximum speed than at the lower speeds. So if we try a

vessel at various speeds, we cannot expect the speed coefficients

to remain constant, because the suppositions on which they are

1 See p. 319.
*
Seep. 319.
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based are not fulfilled at all speeds. This is found to be the

case, as is seen by the following particulars of the trials of

H.M.S. Iris. The displacement being 3290 tons, and the area

of the immersed midship section being 700 square feet, the

measured-mile trials gave the following results :

*
I.H.P. Speed in knots.

7556 18-6

3958 1575
1765 12-5

596 8-3

The values of the speed coefficients calculated from the

above are

Displacement Mid. sec.

coefficients. coefficients.

18-6 knots ... 188 ... 595
1575 ,

2l8 .- 690
12-5 243 ... 770
8'3 214 ... 677

It will be noticed that both these coefficients attain their

maximum values at about 12 knots for this ship, their value

being less for higher and lower speeds. We may explain this

by pointing out

(1) At high speeds, although the "propulsive coefficient"

is high, yet the resistance varies at a greater rate than the

square of the speed, and

(2) At low speeds, although the resistance varies nearly as

the square of the speed, yet the efficiency of the mechanism is

mot at its highest value.

Corresponding Speeds. We have frequently had to use

the terms " low speeds" and "high speeds" as applied to certain

ships, but these terms are strictly relative. What would be a

high speed for one vessel might very well be a low speed for

another. The first general idea that we have is that the speed

depends in some way on the length. Fifteen knots would be

a high speed for a ship 150 feet long, but it would be quite a

moderate speed for a ship 500 feet long. In trying a model

of a ship in order to determine its resistance, it is obvious that

we cannot run the model at the same speed as the ship ; but

there must be a speed of the model "corresponding" to the

speed of the ship. The law that we must employ is as follows :

" In comparing similar ships with one another, or ships with
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models, tfo speeds must be proportional to the square root of their

linear dimensions" Thus, suppose a ship is 300 feet long, and
has to be driven at a speed of 20 knots

;
we make a model of

this ship which is 6' 3" long. Then the ratio of their linear

dimensions is

300

6^5
= 4*

and the speed of the model corresponding to 20 knots of the

ship is

20 4- \/48 = 2-88 knots

Speeds obtained in this way are termed "
corresponding speeds"

Example. A model of a ship of 2000 tons displacement is constructed

on the \ inch = I foot scale, and is towed at a speed of 3 knots. What
speed of the ship does this correspond to ?

Although here the actual dimensions are not given, yet the ratio of the

linear dimensions is given, viz. I : 48. Therefore the speed of the ship

corresponding to 3 knots of the model is

3 \/48 = 20^ knots

Expressing this law in a formula, we may say

where V = speed in knots
;

L = the length in feet ;

c = a coefficient expressing the ratio V : \/L
}
and

consequently giving a measure of the speed.

We may take the following as average values of the co-

efficient
" c" in full-sized ships :

When c = 0*5 to 0*65, the ship is being driven at a

moderate economical speed ;

c = 07 to 1*0, gives the speed of mail steamers and

modern battleships ;

c = i'o to i '3, gives the speed of cruisers.

Beyond this we cannot go in full-sized vessels, since it is not

possible to get in enough engine-power. This can, however, be

done in torpedo-boats and torpedo-boat destroyers, and here we

have c = 1-9 to 2-5. These may be termed excessive speeds.

The remarks already made as to wave resistance gives the

reason for the above. For low speeds the wave-making resist-

ance is small. When, however, the speed increases such that

the length of the wave is about the length of ship, we have the
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maximum interference, and the rate of increase of resistance

with increase of speed is greatest. If V is speed in knots, the

V2

length of accompanying wave is
;
when the wave equals the

I'o

V
length of ship, we have = -

1-33. So that when the ratio
V L

V
-j=-

is unity and somewhat above, the resistance is increasing
v L
very rapidly. If the speed can be pressed beyond the above,

we reach a state of things where the wave is longer than the

length of boat, and although the resistance is very high yet it is

not increasing at so great a rate. This can only be the case in

vessels of the destroyer or motor type. The following figures

show how the total resistance varies in a typical destroyer :

Up to ii knots as second power nearly, at 1 6 knots as V3
,

from 1 8 to 20 knots as (V)
33

,
at 22 knots as (V)

2 '

7
,
at 25 knots

as V2
,
and at 30 knots as V2

nearly. The maximum rate of

increase is at 1 8 to 20 knots, and here the accompanying wave

approximated to the length of the ship.

Froude's Law of Comparison. This law enables us

to compare the resistance of a ship with that of her model, or

the resistances of two ships of different size but of the same

form. It is as follows

If the linear dimensions of a vessel be I times the dimensions

of the model, and the resistance of the latter at speeds V1} V2,
V3 ,

etc., are R15 Rg, R3 , etc., then at the ''corresponding speeds" of

the ship, Vj^TV2A/Z V8 V"Z etc., the resistance of the ship will

be Ri/
3
, R2/

3
,
R3/

3
,
etc.

In passing from a model to a full-sized ship there is a

correction to be made, because of the different effect of the

friction of the water on the longer surface. The law of com-

parison strictly applies to the resistances other than frictional.

The law can be used in comparing the resistance of two

ships of similar form, and is found of great value when model

experiments are not available.

In the earlier portion of this chapter we referred to the

experiments of the Greyhound by the late Mr. Froude. A
curve of resistance of the ship in pounds on a base of speed

Y
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is given by A, in Fig. 106. In connection with these experi-

ments, a model of the Greyhound was made and tried in the

experimental tank under similar conditions of draught as the

ship, and between speeds corresponding to those at which the

ship herself had been towed. The resistance of the model having
been found at a number of speeds, it was possible to construct

a curve of resistance on a base of speed as shown by C in

Fig. 113. The scale of the model was ^ full
size,_jmd

therefore the corresponding speeds of the ship were V"16, or

four times the speed of the model. If the law of comparison

125

SPEED

FIG. 113.

held good for the total resistance, the resistance of the ship

should have been i63 = 4096 times the resistance of the model

at corresponding speeds ;
but this was not the case, owing to

the different effect of surface friction on the long and short

surfaces. The necessary correction was made as follows.

The wetted surface of the model was calculated, and by

employing a coefficient suitable to the length of the model and

the condition of its surface, the resistance due to surface

friction was calculated for various speeds as explained (p. 305),

and a curve drawn through all the spots thus obtained. This
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is shown by the dotted curve DD in Fig. 113. Thus at

250 feet per minute the total resistance of the model is given

by ac, and the resistance due to surface friction by ad. The

portion 'of the ordinate between the curves CC and DD will

give at any speed the resistance due to other causes than that

of surface friction. Thus at 250 feet per minute, these other

resistances are given by cd. This figure shows very clearly

how the resistance at low speeds is almost wholly due to

surface friction, and this forms at high speeds a large propor-

tion of the total. The wave-making resistance, as we have

already seen, is the chief cause of the difference between the

curves CC and DD, which difference becomes greater as the

speed increases. It is the resistance, other than frictional, to

which the law of comparison is intended to apply.

We have in Fig. 106 the curve of resistance, AA, of the

Greyhound on a base of speed, and in precisely the same way
as for the model a curve of frictional resistance was drawn in

for the ship, taking the coefficient proper for the state of the

surface of the ship and its length. Such a curve is given by

BB, Fig. 1 06. Then it was found that the ordinates between

the curves AA and BB, Fig. 106, giving the resistance for the

ship other than frictional, were in practical agreement with the

ordinates between the curves CC and DD, Fig. 113, giving

the resistance of the model other than frictional, allowing for

the " law of comparison
" above stated. That is, at speeds of the

ship V 1 ^, or four times the speeds of the model, the resistance

of the ship other than frictional was practically i63
,
or 4096

times the resistance of the model.

These experiments of the Greyhound and her model form

the first experimental verification of the law of comparison.
In 1883 some towing trials were made on a torpedo-boat

by Mr. Yarrow, and a model of the boat was tried at the

experimental tank belonging to the British Admiralty. In this

case also there was virtual agreement between the boat and

the model according to the law of comparison. It is now the

practice of the British Admiralty and others to have models

made and run in a tank. The data obtained are of great
value in determining the power and speed of new designs.
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For further particulars the student is referred to the sources

of information mentioned at the end of the book.

Having the resistance of a ship at any given speed, we can

at once determine the E.H.P. at that speed (see p. 297), and
then by using a suitable propulsive coefficient, we may deter-

mine the I.H.P. at that speed. Thus, if at 10 knots the resist-

ance of a ship is 10,700 Ibs., we can obtain the E.H.P. as

follows :

Speed in feet per minute = 10 x
Work done per minute = 10,700 x (10 x ^p) foot-lbs.

10700 x
E.H.P. =

33000

328

and if we assume a propulsive coefficient of 45 per cent.

X zoo

45
= 729

By the use of the law of comparison, we can pass from one

ship whose trials have been recorded to another ship of the

same form, whose I.H.P. at a certain speed is required. It is

found very useful when data as to I.H.P. and speed of existing

ships are available. In using the law we make the following

assumptions, which are all reasonable ones to make.

(1) The correction for surface friction in passing from one

ship to another of different length is unnecessary.

(2) The condition of the surfaces of the two vessels are

assumed to be the same.

(3) The efficiency of the machinery, propellers, etc., is

assumed the same in both cases, so that we can use I.H.P.

instead of E.H.P.

The method of using the law will be best illustrated by the

following example :

A vessel of 3290 tons has an I.H.P. of 250x3 on trial at 14 knots. What
would be the probable I.H.P. of a vessel of the same form, but of three

times the displacement, at the corresponding speed ?
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The ratio of the displacement = 3

/. the ratio of the linear dimensions / = -v/3
= i '44

.*. the corresponding speed = 14 X v I '44
= i6'8 knots

The resistance of the new ship will be /* times that of the original, and

accordingly the E.H.P., and therefore the I.H.P., will be that of the

original ship multiplied by / = (1*44)* = 3*6, and

I.H.P. for new ship = 2500 X 3*6

9000

When ships have been run on the measured mile at pro-

gressive speeds, the information obtained is found to be ex-

tremely Valuable, since we can draw for the ship thus tried a

curve of I.H.P. on a base of speed, and thus at intermediate

speeds we can determine the I.H.P. necessary. The following

example will show how such a curve is found useful in

estimating I.H.P. for a new design :

A vessel of 9000 tons is being designed, and it is desired to obtain a

speed of 21 knots. A ship of 7390 tons of similar form has been tried, and
a curve of I.H.P. to a base of speed drawn. At speeds of 10, 14, 18, and
20 knots the I.H.P. is 1000, 3000, 7500, 11,000 respectively.

Now, the corresponding speeds of the ships will vary as the square root

of the ratio of linear dimension /.

We have

/*?and / = i "07

. V*"= 1-035

therefore the corresponding speed of the 739O-ton ship is

21 -T- i '035 = 20*3

By drawing in the curve of I.H.P. and continuing it beyond the 20

knots, we find that the I.H.P. corresponding to a speed of 20*3 knots is

about 1 1,700. The I.H.P. for the gooo-ton ship at 21 knots is accordingly

11,700 x / = 11,700 x 1*26

= 14,750 I.H.P. about

PROOF OF THE LAW OF COMPARISON.

Take the following symbols :

P for force.

m for mass.

/ for acceleration.

/ for time.

v for velocity.
/ for length.
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Then force P = (mass X acceleration)
=

( x/)
velocity = (/ -5- /)

Acceleration is increase of velocity in unit time, = (/-:-

Mass varies as the volume or P.

Force, which equals (in X/), may be written

/. if
-j

is constant, force will vary as /3 .

Progressive Speed Trials, It is now the usual practice

to run vessels at a series of speeds from a low speed up to the

highest speed attainable in order to construct a curve of power,

etc., on base of speed. Such a record is of the highest value

as data for design purposes, and the information obtained as to

slip of propellers will frequently indicate the direction in which

improvements may be made. At each speed it is necessary to

obtain simultaneously the revolutions, I.H.P.,
1 and speed. The

usual practice is to run the ship on a measured-mile course.

Fig. H3A shows such a course. Two pairs of posts, AB and

|

=-.IJ<HfiTL=7

I SMIPS_ _CouRSg

Fie. i ISA.

1 Indicator cards are taken from each piston, showing how the pressure
of the steam varies at each point of a revolution. A calculation from

these cards enables the I.H.P. to be determined. For turbine engines no

corresponding method is available. A method of determining power of

turbine machinery has been introduced by Mr. Johnson of Messrs. Denny
Bros., Dumbarton, by measuring the torsion of the shaft by electrical

instruments. Another method was described by Mr. Gibson of Messrs.

Cammell Laird (see I.N.A. for 1907). For a general discussion of the

subject see N.E. Coast Inst., 1908.
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CD, are placed exactly a knot (6080 feet) apart, and the

ship's course is steered at right angles. The time of transit

is taken by a chronometer stop-watch. In order to eliminate

the effect of tide, several runs are taken both with and against

the tide, and the
" mean of means" is taken. Thus, suppose a

vessel has four runs, and the speeds observed are 15*13, 14*61,

15-66, 14-11 knots respectively. Then the "mean of means"

is obtained as follows :

First Second Mean of

Speeds, means means means
X 2. X 4- X 8.

I5
'

13
i 20-741,

14-61
y/4

}6o'oi
,,\ 30*27 \ \ 120*05
*66

6 '-*,,

15*66] o-04
20*77

14*113
** I*

The true mean speed is therefore 120*05 -r 8 = 15-006 knots.

The ordinary mean of the speeds is 14-88 knots. The same

result as the mean of means is got by multiplying by i, 3, 3, i

and dividing by 8.

The above is based on the assumption that the speed of tide can be

expressed as a quadratic function of the time. That is, if y is speed of

.ide, then

y = a + a^t -f a^t*

t being the time, a
, a,, a2 being constants.

Thus, when t = o, speed of tide yl
at

t=t

'=3* J4 = o

If V is the true speed of ship, then, owing to the tide, the speed at intervals

of / up and down the mile will be

(V + j,), (V -^), (V +j3), (V -y.)

or a mean of means of

V + 1(3^3 -y*-y*-yi)
By substituting in the above values forylt etc., this is seen to be equal to V.

If six runs are taken up and down, the mean of means is obtained by
multiplying by I, 5, 10, 10, 5, I and dividing by 32, and it is easily shown
that if the tide be assumed a cubic function of the time, the " mean of

means "
at equal intervals of time gives the true mean speed.

It is necessary to run measured-mile trials in deep water,

or a falling off in speed will be experienced. If the water is

not deep, the natural stream-lines are not formed round the

ship, and this restriction is a serious cause of resistance. A
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similar thing is noticed in canals. A conspicuous instance

was noticed on the trials of H.M.S. Edgar. When tried at

Stoke's Bay, with a depth of water of 12 fathoms, 13,260 horse-

power was required for 2oJ knots. On the deep-sea course

between Plymouth and Falmouth, 2 1 knots was obtained with

12,550 horse-power, or about f knot difference for the same

power. In consequence of this, trials at high speeds must be

carried out on a deep-water course, the finest probably being
at Skelmorlie, near the Clyde, where the depth of water is 40
fathoms.

Colonel English's Experimental Method of deter-

mining I.H.P. of a New Design by the Use of Models

(I.M.E., 1896). This method of determining the power for

a new design is an interesting application of the principles of

the present chapter.

Two models are made, one of a known ship, the other of

the new design, on such scales that when towed at the same

speed they shall be at the corresponding speeds proper for each.

In the following table the capitals refer to the ships, and the

small letters to the models, and the resistance is divided into

the frictionai and wave-making. It will be remembered that

the law of comparison only strictly holds for wave-making
resistance.
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4 D2 A Vi

This determines the relative scale of models, and

The total resistance of model (i)
=/ + w^ and that of model

(2) =/2 + a/a . Let/2 + a>a = (/ + Wj), say.

The law of comparison indicates that the wave-making
resistance varies as the displacement, so that

w, D,

so that w, = * . . + n ./ -/a

We want to get the wave-making resistance of the new design,

viz. W2 ;
we first find w.2 from the above, and we can calculate

/[ and/2 by the use of appropriate frictional coefficients. To

get W1} we proceed as follows : For the known ship we have

data regarding I.H.P. at speed Vtl this can be turned into

E.H.P. by the use of a propulsive coefficient, and this E.H.P.

FIG. 1136.

can be turned at once into resistance, which is (Fx + Wj). The
frictional resistance can be calculated by the ordinary rules,

and we have left W1} the wave-making resistance of the known

ship. The only part of the above expression we do not know
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is n. This is obtained by towing the models abreast of one

another and adjusting so that they are exactly abreast (Fig.

1133). When this is so, the ratio of the levers determines the

ratio n. We thus can determine a/2 ,
and W2

= w2 .

2
. F2 can

a2

be calculated, so that F2 + W2 is determined. This is turned

into E.H.P. at the speed V2 , and, using the same propulsive
coefficient as before, the I.H.P. is found for the new design
at speed V2 . The models were of yellow pine ballasted to

desired draught. A small electric motor was used for towing,
and when the levers were adjusted so that the models towed

abreast, the only measurement necessary was the ratio between

the levers.

The method may be made clearer by reference to an

example. It is desired to know the I.H.P. to drive a destroyer

of 300 tons displacement at a speed of 30 knots, and a known

destroyer of 247 tons required 3915 I.H.P. for a speed of

27*85 knots. The model of this vessel was made on a scale

of ^, so that the speed corresponding to 27-85 knots was

--, =6*23 knots. The scale of the model of the new ship
v 20

must be such that 6-23 knots of model corresponds to 30 knots

of the ship, giving a scale of ( - H \ = _L-

The wetted surface of known ship was calculated to be

3796 square feet, so that that of model was 3796 x (^j)
2 =

9*5-

The wetted surface of new ship was 4321 square feet, and of

(I
\ 2

-
)

= 8-02. Using these values and

appropriate values for the coefficient of friction, we have

F! (known ship)
= 0-0094 x 379 6 X (27'85)

1-83 = 15,720 Ibs.

/ (its model) = 0-01124 x 9*5 X (6'23)
1>85 = 3-15 Ibs.

F2 (new ship)
= 0*0094 X 4321 X (3o)

1
'

83 = 20,500 Ibs.

/a (its model) = 0-01124 X 8*02 x (6'23)
1W = 2*66 Ibs.

The propulsive coefficient being assumed as o'6, we have

E.H.P. of known ship o'6 X 3915 = 2349, so that the total

resistance of ship was
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therefore Wj = 11,747 Ibs.

From the towing trial at 6*23 knots, n = 0*811, so that

a'2 = o'8n. (^)
3

. 11,747 + '811 X 3*15
- 2'66 == ro8 Ibs.

we therefore have

W2
= ro8 x (23-2)*

= 13,500 Ibs.

The total resistance of new ship is therefore 34,000 Ibs., and

assuming the same propulsive coefficient, we have

I.H.P. = 3^ X 34,000 X 30 X ^ = 5220

Calculation of E.H.P. Mr. A. W. Johns gave before

the I.N.A., 1907, a table which gives the E.H.P. due to skin

friction for a number of speeds and lengths of ship, based on

Mr. Froude's constants and on the assumption that the skin

friction varies as V1825
.

If S is the wetted surface in square feet, then E.H.P. =/. S,

where /"has the values given in table, p. 332.

In the same paper he gave a series of curves based on

model experiments, reproduced in Fig. 1130, from which,

knowing the prismatic coefficient of fineness, the residuary

horse-power can be obtained. The curves are drawn for a

/ V \a V2

number of values of ( -^\
= (where L is under-water

length) varying from 05 to 1*3 on a base of prismatic co-

efficients varying from 0*52 to 0*74. It is very striking to

note how rapidly the residuary horse-power increases, for high
values of speed-length ratio, with increase of prismatic co-

efficient. The prismatic coefficient has been taken with the

length P.P., and Mr. Johns states that for merchant ships

better results are obtained by increasing the prismatic coefficient

by 0*02, this being due to the fact that in such vessels the

length P.P. is practically the immersed length of the ship, and

not, as in the majority of warships, an appreciably smaller

length. In a few ships of exceptionally good form the curves

give too great a result, but for ordinary forms of ships the

curves give a good approximation to the results obtained from
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FRICTIONAL RESISTANCE PER SQUARE FOOT OF WETTED SURFACE.

Speed
in

knots.
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model experiments. The curves apply to vessels in which the

ratio beam/draught varies from about 27 to 2*9. For greater

ratios than the latter the curves give results which are smaller

than they should be, whilst for smaller ratios than the former

the results will be too great.

As an example, take a vessel 500 ft. (P.P.) X 71 ft. X 26ft.

X 14,100 tons, prismatic coefficient 0-582. Under-water length

520 ft.
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The approximate wetted surface by Denny's formula

17 L.D + = i"j X 500 X 26 + 14,100 x 35
26

= 41,100 square feet

and by Taylor's formula

J 5'5 Vw.L = 41,200 square feet

Taking 42,000 and using the coefficients in table, we obtain

the following values of E.H.P. due to surface friction, from

16 to 25 knots, viz.: 2860, 3390, 3980, 4620, 5360, 6150,

7020, 7950, 8960, 10,100.

Now going to the curves and erecting an ordinate at

0*582 prismatic coefficient, the values of coefficient at speeds

16-1, 17*65, 19-1, 20*4, 2 1 '6, 22-8, 23-95, 2 5 knots are

measured as 0-015, C '02I
J 0*029, 0*042, 0*060, 0-081, .0-104,

0*138, which have to be multiplied by (displacement in

tons) t, giving us 1040, 1450, 2000, 2900, 4150, 5600, 7200,

9550 residuary horse-power.
The above results, plotted as in Fig. 1130, give us an

estimated curve of total E.H.P.

To obtain the Space which must be passed over

by a Ship starting from Rest to any Speed short

of the Full Speed, supposing the Engines are
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exerting the Thrust corresponding to the Maximum
Speed. (a) Supposing the resistance is varying as the square

of the speed. When a ship is being accelerated through the

water there is a certain amount of water accompanying the

ship which has to be accelerated as well. This is usually

taken (based on the Greyhound experiments of Mr. W. Froude)
as 20 per cent, of the weight of the ship. The virtual mass

/W\
to be accelerated is therefore f . (

J,
where g is the accele-

ration due to gravity (32*2 in foot-second units).

Let R be the resistance of ship at full speed V.

r lower speed #.

Then the force urging the ship is the constant thrust of the

propeller
= R and the force accelerating the ship is R r.

Now by the principles of dynamics
Force = mass X acceleration

or/=f. W

Now / = acceleration = ~

__dv ds _ dv
~

~ds'~dt~
v
"ds

dv R - r
so that .=!._,_. or

W v

and on integrating-

w rvi v=
s ' T } R _ r

dv to speed Vj from rest.'
g

Now on the assumption that resistance varies as the square
of the speed

V ~VV
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and on integrating

W V2 / V2

and the space from speed Vx to speed V2 is

1 e
W Y! i

/V2 - V2
2\

2 5 - R 10g< -

\V2 - V^/

() Without making any assumptions as to the variation of

resistance with speed, if we have a curve of I.H.P. on base of

speed, we can get a good approximation to the space required

to go from one speed to another short of the maximum suppos-

ing the full thrust due to the top H.P. is exerted from the start.

Take as an example a vessel of 5600 tons, whose I.H.P. at

speeds of 10, 12, 14, 16, 18 and 20 knots are respectively 950,

1640, 2720, 4340, 6660 and 10,060. It is desired to obtain

the space required to increase the speed from 10 to 18 knots,

supposing the engines are exerting the full thrust corresponding

to 20 knots.

Here the virtual weight is x 5600 = 6720 tons, and

assuming I.H.P. = 2 E.H.P. all through

101 X 2240
(I.H.P.),,

= 2 X r X v X
Q

r in tons, v in knots

(I.H.P.). i

'

(I.H.P.n
V J

_
"' R ~ =

137 20

Taking v as 10, 12, 14, 16, and 18 knots respectively

i /io,o6o Q'joX
R - r at TO knots = ~ ~ ~ ~ = 2 9'8 tons

i /io,o6o i64o\
R - r at 12 knots = f

^
---

jy-J
= 26'8 tons

I / 10,060 2720\
R - r at 14 knots = ^(-^- )

= 22<5 tons

i /io,o6o 4UO\ ,

R - r at 1 6 knots = -^(-^
---^) = l6 '

9 tons

i /io,o6o 666o\
R - r at 18 knots =

^(-fe
---

^~)
= 97 tons.
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ds
e
W v

Now -=. .

dv '

g R r

ds\ 6720 6080 10 = ' I8 '5 m foot second unlts

and similarly

'ds\
, (ds\ ids\ /ds\

l = 158,! ) =220,1-77) = 334, (

j =657.

/dsfa. dv, so that we can obtain the integration by

means of Simpson's first rule having values of -T-.

We therefore have

space from 10 to 18 knots

=
\ X 3'38 . [118-5 + 4(i58) + 2(220) + 4(334) + 657]

= 3600 feet

(3*38 being the equivalent in foot-second units of 2 knots, the

interval chosen).

It will have been seen in the above example that special

attention is necessary to the units which have been taken as

tons, feet and seconds.

The time taken can be obtained in a similar manner by

integrating values of
(
-r ) taken at equal intervals of time.

Example. The I.H.P. of a vessel of 14,200 tons at 10, 12, 14, 16, 18,

and 20 knots are 1750, 3150, 5000, 7600, 10,850 and 15,300. Supposing
the vessel is exerting 15,300 LH.P., how far would the ship travel in

going from 10 to 18 knots, and how long would it take.

Ans. 7075 feet. 282 seconds.

PROPULSION.

The following notes have been prepared in order to

provide an introduction to the subject. The subject is too

large to be dealt with adequately in the space at disposal, and

for fuller information reference must be made to the systematic

treatises given at the end of the book.

Wake. We have dealt above with the various resistances

z
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which oppose a vessel's progress through the water. These

are mainly frictional and wave making. The friction of the

water on the surface of the vessel is the cause of a surrounding
zone of water following in the direction of motion and the

forward velocity of this zone increases as we go aft. The

consequence is that at the stern there is a belt of water having
a forward velocity. This velocity is variable in amount and

in direction, but may be assumed, in the case of each propeller,

to have the same effect as a body of water having a certain

uniform velocity forwards. This body of water is termed the

frictional wake. The speed of the wake is conveniently

expressed as a fraction of the speed of the ship, say x . V.

The wake will have a higher velocity nearer the middle line

of the ship than at points farther away. The importance of

this wake is due to the fact that the propeller has thus to work

in water which has this forward velocity, and therefore the

speed of the propeller through the water is not the speed of the

ship V, but (i *)V = V1} say.
1 The propeller derives

increased thrust from this cause, and a single screw will benefit

more than twin screws, owing to the fact above mentioned as

to the greater velocity of the water nearer the middle line.

The frictional wake is caused by the motion of the ship, and

the increased thrust may therefore be regarded as the return

of a small portion of the energy spent by the ship in over-

coming the friction of the water on the surface.

The simple frictional wake above described is complicated

by the existence of other factors, viz. :

(a) The stream line wake. (We have seen that the

stream lines closing round a ship tend to a

diminution of velocity and an increase of

pressure.)

(b) The presence of a wave at the stern. (If the crest

of a wave is over the propeller the particles

1 In Froude's notation the speed of wake is expressed as a fraction of

Vj, say w . VIt so that speed of propeller through the water is V w/V^ or

-

t
= i +w, w being called the "wake percentage." It follows that
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of water in their orbital motion are moving
forwards. If there is a trough the particles are

moving backwards.)
The information as to the value of the speed of the wake

is scanty, and in systematic propeller design it is necessary to

assume some value. Mr. R. E. Froude assumed 10 per cent,

of the velocity of the ship as a standard value for the wake,

i.e. x = 0*1. The following formulae have been obtained as

the results of Mr. Luke's investigations (I.N.A. 1910) :

Twin screws x 0-2 -f 0*55 (block coeff.).

Single screws x = 0-05 4- 0-5 (block coeff.).

The ratio Vx 4- V represents what may be termed the wake

, V(i -
x)

gam factor, and this is - 5 r= - = i x.

Augmentation of Resistance. Anything which inter-

feres with the natural closing in of the stream lines at the

stern of a ship will cause an increase of resistance. The

presence of the propeller at the stern is such an interference,

and gives rise to an augment of resistance. This will be

greater in a single screw than in a twin screw ship, since the

propellers in the latter case are further away from the middle

line of the ship. It is thus seen that, although a single screw

ship stands to gain more from the frictional wake than a

twin screw ship, yet it loses more from the augment of

resistance.

Thrust Deduction. Instead of regarding this loss as an

augment of resistance, it is preferable to regard it as a loss in

the thrust of the propeller. If T be the thrust required to

overcome the resistance of the ship plus the augment, and R
the thrust required to overcome the resistance only, then

T - R is termed the thrust deduction, and T - R = / . T, so

that R = T(i -
/), and (i

-
t) is called the thrust deduction

factor.

Hull Efficiency. The useful work done by the ship is

the product of the resistance and the speed, or R x V. The
work done by the propeller is the product of the thrust and the

speed the propeller passes through the water, or T x Vlt
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The ratio (R X V) -^ (T x VJ is termed the hull efficiency,

and may be written from the above . The usual value
i x

assumed for this is unity, the gain due to the wake being
balanced by the increase of thrust due to the augment of

resistance.

The following table, taken from Prof. Dunkerley's recent

book on " Resistance and Propulsion," expresses admirably
the way the work available in the engines is expended, and
what portion of the work is lost beyond recall. The notation

is that employed in the present notes.

Work of engines in

uniform motion

[I.H.P.].

Loss of work
in friction.

Work delivered to propeller
by the shaft [S.H.P.].

I

Available w
wake = [T(

We

me
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horse-power , P.H.P., makes allowance for the gain due to the

wake = T X Y! = T . V(i -
#), so that

P.H.P. = T.H.P.(i
-

x) and P.H.P. = E.H.P. ^-^,
i.e. E.H.P. = P.H.P. x hull efficiency.

There are certain losses in the propeller due to the

frictional and edgewise resistance of the blades and to the

rotary motion imparted to the water. The ratio between

the P.H.P. and the shaft horse-power, S.H.P., is the measure

of the efficiency of the propeller, or P.H.P. 4- S.H.P. = e.

In reciprocating engines the power actually exerted in the

cylinders, or I.H.P., is greater than the S.H.P., the relation

between the two being the measure of the efficiency of the

machinery, or S.H.P. -r I.H.P. = em.

The ratio E.H.P. 4- I.H.P. is the propulsive coefficient,

and tracing through the various stages,

E.H.P. _ E.H.P. T.H.P. P.H.P. S.H.P.

I.H.P.
~
TJLP7 X

"PlLP;
X

S.H.P.
X

I.H.P.

= - - X X e X em .

i i x

Taking a case in which the engine efficiency em = 0*85,

propeller efficiency e = 0*65, x and / each 0*15, the propulsive

. 0-85 i

coefficient is 4 x ^~ X 0*65 x 0-85 = 55^25 per cent,
i 0*05

With turbine machinery it is usual to assume that the

propulsive coefficient is the ratio between the E.H.P. and the

horse-power being transmitted through the shaft inside the

ship. Owing to the high revolutions at which turbines work,
the propellers connected directly to them have a low efficiency,

and it is found (as e.g. in the Lusitania) that the propulsive

efficiency thus denned is about 50 per cent. 1

Cavitation. The force which pushes the ship along is the

reaction from the projection in a sternward direction of the

water by the propeller. The momentum of this water, per
unit of time, is the measure of the thrust which is transmitted

to the ship through the thrust block. The water will not

1 The use of the geared turbine enables great all-round efficiency to be

obtained, as the turbine can run fast and the propeller run slow.
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follow up at the back of the blades of the propeller if the

thrust is too great and if the velocity of the blades is sufficiently

high. This causes a loss of thrust-producing power, and is

termed cavitation. Mr. Speakman (Scottish Inst. E. and S.,

1905), from an analysis of numerous trials, considers that to

avoid cavitation the limit of pressure per square inch of

projected surface should be about i Ib. for every 1000 feet of

circumferential velocity of blade tips. Mr. Sidney Barnaby

assigns nj Ibs. per square inch as the maximum average
thrust per square inch of projected area. These are for an

immersion of tip of 12 inches; for each additional foot of

immersion f Ib. per square inch may be added. This figure

of nj Ibs., however, may be exceeded for propellers with

turbine machinery, owing to the uniform turning moment. 1

The thrust of the screw is obtained as follows : T.H.P.
P TT p

= T-1 -^; / in the absence of definite information may be

taken as o'i. T.H.P =^ T X V (V in knots, T in pounds),
T.H.P. I.H.P. .

or thrust = 326 = 181 X y , taking a propulsive

coefficient of 0-5. The I.H.P. is that for the screw in question.

Taking 11-25 Ibs. per square inch of projected area Ap,
we

have

Projected area of blades 1 _ 181 I.H.P.

in square feet J

~ A*
~~

11-25 xT44
X V~

I.H.P.= O'll X y
The relation between the developed blade area and

projected blade area for the Admiralty pattern blade 2 is given

by Mr. Barnaby as follows :

Developed area = projected area \/i -f- o'425(pitch ratio)
2

.

The projected blade area is often expressed as a fraction

of the disc area, and Mr. Speakman gives the following as

usual values of this ratio :

1 Mr. Baker in his book takes 13 Ibs. per square inch to obtain the

minimum (developed) area.
2 The Admiralty pattern blade when developed is an ellipse whose

major axis is the radius of the propeller and whose minor axis is the major

axis. Propellers for turbines have greater width ratio than this.
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Reciprocating machinery (naval practice)

Large ships . , , 0-33

Destroyers . 0-33 0*4

Turbines . . . . o -

4 0*56

The reason for the large value in turbine vessels is the

excessive speed of rotation, which causes cavitation unless a

large area is given. The diameter is also brought as small as

possible in order to avoid excessive velocity of the blade tips,

which has, however, been as high as 14,850 feet per minute.

Pitch. A screw propeller usually has the driving face

(i.e.
the after side) in the form of a true screw, and the pitch

of the screw is denned as the distance this face would advance

in one revolution if working in a solid nut. If a variable

pitch is used, then there is an equivalent pitch for the whole

surface which may be found. The speed of screw is the distance

it would advance in one minute if working in a solid nut. If

N is the revolutions per minute and P the pitch in feet, then

speed of screw is P x N feet per minute. The ratio of pitch

to diameter (P -f- D) is the pitch ratio /.

Slip. The advance of a screw through the water when

propelling a ship is not the speed of the ship V, because of

the presence of the wake. This speed is Vx
=

(i #)V, where

^V is the speed of wake. The difference between the speed
of the screw as defined above and its speed forward relative to

the water in which it is working is termed the slip, or

slip
= N.P. - y, Vj (Vi in knots)

N.P.-^.V,oo
The slip ratio, s = ^ p

This is the true slip, but as we do not generally know the

value of V1} the apparent slip is usually dealt with, being the

difference between the speed of screw and the speed of ship.

N.P.-^.V6o
Apparent slip ratio sl

=-
j^p
-

(V in knots)



344 Theoretical Naval Architecture.

Y! being less than V, it follows that the real slip is greater

than the apparent slip. Cases are on record in which a

negative apparent slip has been obtained, which means that the

sternward speed of the water from the screw is less than the

forward speed of the wake. It is, of course, impossible to

have the true slip a negative quantity, as this would involve a

thrust being exerted without the projection of water in a

sternward direction.

It follows from the above that the true slip and the apparent

slip are connected by the following :

s = x + j
x(

i - x).

Thus, an apparent slip ratio of 20 per cent, with a wake of

10 per cent, means a true slip of 28 per cent.

The second volume of Prof. Biles'
"
Design and Construc-

tion of Steam Ships" deals exhaustively with the propeller

question, and gives the methods in vogue for determining

propeller dimensions based on the model experiments of

Froude and Taylor.

See also Mr. Baker's book referred to at the end of the

book.

EXAMPLES TO CHAPTER VIII.

1. The Greyhound was towed at the rate of 845 feet per minute, and
the horizontal strain on the tow-rope, including an estimate of the air

resistance of masts and rigging, was 6200 Ibs. Find the effective horse-

power at that speed.
Ans. 159 E.H.P. nearly.

2. A vessel of 5500 tons displacement is being towed at a speed of
8 knots, and her resistance at that speed is estimated at 18,740 Ibs. What
horse-power is being transmitted through the tow-rope ?

Ans. 460.

3. A steam-yacht has the following particulars given :

Displacement on trial ... 176*5 tons
I. H. P. on trial 364
Speed 13-3 knots

Find the "displacement coefficient of speed."

Ans. 203.

4. A steam-yacht has a displacement of 143*5 tons, and 250 I.H.P.
is expected on trial. What should the speed in knots be, assuming a

displacement coefficient of speed of 196 ?

Ans. I2'2 knots.



Horse-power^ Effective and Indicated, etc. 345

5. The Warrior developed 5297 indicated horse-power, with a speed
of 14*08 knots on a displacement of 9231 tons. Find the displacement
coefficient of speed.

Ans. 233.

6. In a set of progressive speed trials, very different values of the
' '

displacement coefficient
"
are obtained at different speeds. Explain the

reason of this.

7. Suppose we took a torpedo-boat destroyer of 250 tons displacement
and 27 knots speed as a model, and designed a vessel of 10,000 tons dis-

placement of similar form. At what speed of this vessel could we compare
her resistance with that of the model at 27 knots?

Ans. 50 knots.

8. A ship of 5000 tons displacement has to be driven at 21 knots. A
model of this ship displaces 101 Ibs. At what speed should it be tried ?

Ans. 3 knots.

9. A ship of 5000 tons displacement is driven at a speed of 12 knots.

A ship of 6500 tons of similar form is being designed. At what speed of

the larger ship can we compare its performance with the 5ooo-ton ship ?

Ans. 12-53 knots.

10. A vessel 300 feet long is driven at a speed of 15 knots. At what
speed must a similar vessel 350 feet long be driven in order that their

performances may be compared ?

Ans. i6'2 knots.

11. A vessel 300 feet long has a displacement on the measured-mile
trial of 3330 tons, and steams at 14, 18, and 20 knots with 2400, 6000, and

9000 I.H.P. respectively. What would be the I.H.P. required to drive a
vessel of similar type, but of double the displacement, at 20 knots ?

Ans. 13,000 I.H.P. about.

12. A vessel of 3100 tons displacement is 270 feet long, 42 feet beam,
and 17 feet draught. Her I.H.P. at speeds of 6, 9, 12, and 15 knots are

270, 600, 1350, and 3060 respectively. What will be the dimensions of a
similar vessel of 7000 tons displacement, and what I.H.P. will be required
to drive this vessel at 18 knots?

Ans. 354 X 55 X 22-3 ; about 9600 I.H.P.

13. A vessel of 4470 tons displacement is tried on the measured mile at

progressive speeds, with the following results :

Speed. I.H.P.

8-47 485

10-43 8Sl

12-23 J 573

12-93 2II 7

A vessel of similar form of 5600 tons displacement is being designed.

Estimate the I.H.P. required for a speed of 13 knots.

Ans. 2300 I.H.P.

14. Verify the figures given for the coefficients of speed of H.M.S. Iris

on p. 319.

15. A vessel of 7000 tons requires 10,000 I.H.P. to drive her 20 knots,

and the I.H.P. at that speed is varying as the fourth power of the speed.
Find approximately the I.H.P. necessary to drive a similar vessel of 10,000
tons at a speed of 2iJ knots.

Ans. 16,000 I.H.P.
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16. Dr. Kirk has given the following rule for finding the indicated

horse-power of a vessel :

In ordinary cases, where steamers are formed to suit the speed, the

I.H.P. per 100 square feet of wetted surface may be found by assuming
that, at a speed of 10 knots, 5 I.H.P. is required, and that the I.H.P.
varies as the cube of the speed.

Show that this can be obtained on the following assumptions :

/V\ 2

(i.) The resistance can be expressed by the formula R = f. S. ( -? \

where /'= 0*265.

(ii.) The propulsive coefficient assumed to be about 45 per cent.

17. Prove that the Admiralty displacement coefficient of speed is the

same for two similar vessels at corresponding speeds, supposing that the

efficiency of propulsion is the same. What other assumption is made ?

1 8. Draw a curve on base of speed of the Admiralty displacement
coefficient of speed for H.M.S. Drake Qi 14,100 tons, whose curve of I.H.P.,
based on the trial results, give the following figures :

Speed in knots
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The total resistance, therefore, of the ship at 20 knots is 42,100

+ 46,200 = 88,300 Ibs.

The E.H.P. is therefore

88,300x^-^5^=5417.
21. A vessel on successive runs on the measured mile obtains the

following speeds, viz. :

27-592, 28-841, 27-965, 28-943, 27-777, 28-426

knots respectively.

Obtain : (i) Ordinary average speed,

(ii) Mean of means of 6 runs,

(iii) ,, of first 4 runs,

(iv) ,, ,, of second 4 runs,

(v) ,, ,, of last 4 runs.

AHS. (i) 28-257 ; (ii) 28-38 ; (iii) 28-37 ; (iv) 28-418 ; (v) 28-32.



CHAPTER IX.

THE ROLLING OF SHIPS.

NOTE. Throughout this chapter, when an angle is called

$ or < it is measured in degrees ; when it is called or it is

measured in units of circular measure, so that

7T

[So

In dealing with the subject of the rolling of ships, it is neces-

sary to consider first rolling in still water. Although a ship

will not under ordinary circumstances roll in still water, yet it

is necessary to study this part of the subject before dealing
with the more difficult case of the rolling of ships among waves.

Unresisted Rolling in Still Water. This is a purely

theoretical consideration because, even if a ship is rolled in

still water, the rolling will sooner or later cease because of the

resistances which are set up and which drain the ship of her

energy. This energy is potential (i.e. due to position) at the

extremity of each roll, and kinetic (i.e. due to motion) at the

middle of each roll. At intermediate positions the energy of

the rolling ship is both potential and kinetic. Work has had

to be done in the first place to get the ship over, and the ship

has then stored up in her a definite amount of potential energy.

This energy is gradually dissipated by the various resistances

which came into operation until finally the ship comes to rest.

In a ship rolling we cannot fix upon any definite axis about

which the oscillation takes place. It appears, however, that

the centre of oscillation or quiescent point is not far from the
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C.G. of the ship, and this point is usually taken as the centre

of the oscillation.

The period of oscillation of a ship from side to side rolling

unresistedly in still water through small angles is given by

Where m is the metacentric height in feet.

g is the acceleration due to gravity in foot-second units,

viz. 32-2.

k is the transverse radius of gyration of the ship in feet,

denned as follows :

(The moment of inertia of a body about any axis is

found by adding together the product of each

weight and the square of its distance from the axis.

If for a ship this axis is through the C.G., W is the

weight and I the moment of inertia, then k is such

a quantity that I = W X /

2 and k is the radius

of gyration. Expressed in mathematical form
I = W x & = S(w X f).)

The following is the reasoning leading to the above expres-
sion for the period, which may be omitted by students not

having a knowledge of the calculus.

The equation of motion of the rolling ship is

where GZ is the righting lever in feet.

/mass momentN / angular \ _ /couple causing^
Y of inertia J

x
^acceleration^

~
^ the motion J

5? + S-
GZ =

For ordinary ships the curve of stability for small angles is nearly
straight, and we can say GZ = m . 0, so that

d2 e m . g
7? + ^- e = ....... <2>

This is a differential equation, of which the general solution is

(3)
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dQ d^Q
If 6, , are all the same after time /, then

This is the double oscillation. The period of the single oscillation is

/ 2

therefore given by T = ir . / as stated above.

Equation (3) may now be written

6 = A . sin - . / + B.cos . /

and if the initial conditions are assumed, such that when t = o, the ship is

upright, i.e. 6 = O, and the maximum roll of the ship is 0, this equation
becomes

= & sin ^ . / (4)

or the angle of heel on a time base is a curve of sines.

The expression for the period is seen to be independent of

the angle, and it has been found in actual ships that the period

of roll is practically the same for all angles of oscillation when

these angles do not exceed 10 to 15 each side of the vertical.

This is termed isochronous rolling. It is also to be noticed

that to make the period long, i.e. to increase the time of oscilla-

tion, it is necessary to

(i) increase the radius of gyration and, or

(ii) decrease the metacentric height.

An application of the above is seen in the current practice of many
merchant vessels. In some trades, voyages have to be undertaken with
little or no cargo, owing to the absence of return freights. It is necessary
for seaworthiness and the proper immersion of the propellers to sink the

vessel by means of water ballast. This ballast has usually been carried in

the double-bottom spaces, leading to a low C.G. of the ship, and a large
metacentric height. The excessive stability causes a short period, and, in

some cases, has not merely rendered the ship uncomfortable, but actually
unsafe. The practice, therefore, has grown up of providing spaces for the

water in other places. Sometimes deep ballast tanks are provided. In one

patent the triangular space at the side beneath the main deck is made into

a ballast compartment, and in another the tank top is continued upwards
to the deck, forming an inner skin at the side, and in the space thus formed
the water can be carried. It is to be observed that such spaces, exclusively
devoted to water ballast, are exempt from the measurement for tonnage.
The added weight of the ballast produces sufficient immersion for seaworthi-

ness, but does not give excessive stability, and the weight at the sides tends

to lengthen the period by increasing the radius of gyratiop.
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The following are the periods of some typical ships. It

will be noticed that the heavily armoured battleship of moderate

GM has a long period, about 8 sec. In the deck protected

cruisers with no side armour a quicker motion is experienced,

and in the small classes of war vessel with a relatively large

GM there is very quick motion.

H.M.S. Majestic (about 3^ ft. GM and

great moment of inertia due to side T = 8 sec.

armour)

H.M.S. Arrogant, 2nd-class cruiser, deck) _
protected \

H.M.S. Pelorus, 3rd-class cruiser, deck pro- 1 T _ i
tected I

(small period due to (a) small
Gunboats and

mQment Qf inertiaj ^ f T = 2 to 4 sec.

Destroyers
| latively large GM j

Atlantic liner, small GM T = 10 to 12 sec.

Passenger yachts T = 5 to 6 sec.

/ &
The formula T = TTA / - - fails when the metacentricA/ mm g

height is small. In the particular case of a ship with zero

metacentric height it gives an infinite period for the roll which

is absurd. The problem is possible of solution in a wall-sided

vessel, and this was dealt with by Prof. Scribanti at the I.N.A.

for 1904. He took three cases, and for each found Tm the

period from his formula and T from the formula above

m.gV
In a battleship with 3 ft. 1 _T = the errQr being smal]GM ) TIB

T
In a liner with 4 in. GM . = = 1*31, a considerable error.

In^almost
zero GM,

j
_T =



352 Theoretical Naval Architecture.

For a ship with zero metacentric height, assuming wall-

sidedness, he found by advanced mathematical analysis
*
the

following expression for the period, viz.

where is the maximum angle in circular measure.

In the case of a vessel having its curve of stability a curve

of sines, like a circular vessel or a submarine, the equation of

motion becomes

-jp
+ 2

. sin = o

This differential equation can be solved by advanced

mathematical methods, and the following are the periods of

single oscillations for various angles from the upright, taking
the period of a small oscillation as unity.

small
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Forces due to Rolling. One application of the equa-
tion of motion of a rolling ship is to find the maximum force at

73/1 "2

any point of a ship when rolling. We can say -jy -f- $ = o,

72/3 2

or the angular acceleration =
. 6. This is a maximum

when 6 is a maximum, i.e. at the end of a roll. If we take a

ship with a period of 5 sec. rolling through 30, 15 each side

of the vertical, then the angular acceleration at the end of the
2

roll is X 15 X = 0-1035 in foot-second units. The
25 180

linear acceleration, say 100 feet up, is therefore 10-35 ^n foot-

second units. Force = mass x acceleration = X 10-35
O

= 0-32 x weight, i.e. a man 100 feet up would have to hold

on with a force one-third his weight at the end of the roll.

The following is an example of a similar nature worked

out:

A topmast 72 feet in length, height of topmast head being 180 feet above

water, can be assumed of constant diameter, 15 inches. The ship a/8 seconds

period is supposed to roll throtigh 30 each side of the vertical. Make an
estimate of the stress on the material of the topmast at its junction with the

lower mast, supposing it unsupported by stays.

In Fig. 114, w is the weight of the topmast, F the transverse force at

the junction with the mast, L the bending moment, both when at the

maximum at the extremity of the roll. Then we have

(a) resolving the forces at right angles to the mast

w- F = -
(a + h}^

Taking moments about g

( & is for the topmast and =
J

from which the bend-1

ing moment

2 A
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Taking
-j-2

= 7. sin 9, we have

w is 3520 Ibs., taking the wood of topmast as 4olbs. per cubic foot, a 36,
h = 108, sin 6 = %

.'. L = 111,000 ft. Ibs. nearly,

from which, using
- = p the stress at the base of topmast works out to

4000 Ibs. per sq. in.

FIG. 114.

Resisted Rolling in Still Water. It has been found

by experiment that the rolling of a ship is practically iso-

chronous, although resistances to the rolling motion are in

operation. Experimenters on this subject have actually rolled

ships in order to investigate the laws which govern the motion.

A small vessel can easily be set rolling by heaving down with

tackles from a quay. In a large vessel bodies of men can be

run from side to side, their motion being timed to the ship.

In the rolling experiments on H.M.S. Revenge (I.N.A. 1895),

the barbette guns were also trained 15 degrees each side, the
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guns being run out first to make the C.G. eccentric. When
the desired angle of roll was reached, the men and guns were

stationed at the middle line, while the observations were being
taken.

Observing the angles reached on successive rolls a curve

can be constructed as Fig. 115, the abscissae being numbers of

rolls and ordinates the angles reached to port and starboard

successively. Such a curve is termed a a curve of declining

angles. Fig. 116 shows samples of what is termed a curve of

extinction, which is obtained from the curve of declining angles,

the abscissae representing angles of roll and the ordinates

angles lost per swing.

It has been found by analyzing a number of these curves

that the decrement or angle lost per swing can be expressed
as a<j> + ^$

2 where $ is the angle of roll in degrees and a and b

are coefficients which vary for different ships. Thus, calling

A$ the decrement, we have

-A$ = 0$ + $
a

Taking A as a single roll, we have -

I -g = * +v
and in the limit this becomes

which is termed the decremental equation.

Thus we have
d&

Inconstant, T = 8 sec. . . .
- = 0-035$ + 0*0051$*

d<b

Devastation^ T = 675 sec. .
-^ = 0-072$ -f 0*015$*

, wHhout bilge keels,

j _^ = o .oi^ +

wUh^bilge
keels,

j _g
= O .o6^ +

The integral form of the decremental equation is

dn =
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FIG. 1 16 CURVES OF EXTINCTION. Revenge*
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which gives the number of rolls to pass from an angle of roll fa to an angle

<>!. On integrating this becomes

Thus for a ship in which a = 0-05, b = 0*02, starting from 15 degrees, 13
rolls are necessary before the angle of roll is 2 degrees. For the Inconstant,

starting from 15 degrees, the successive angles of roll are 13 '5, 12*2, etc.

If a ship rolls from 1 port to 2 starboard, supposing the

curve of stability a straight line, we have

Dynamical stability at i
= J . W . m . ?

at 2
= i.W.^. 2

2

so that the loss of energy = JW . m(f -
2
2

)

= W . m . m X decrement

taking J(j + 2)
= m .

If R be the moment of the resistance to rolling at angle B,

,,
the work done by the resistances from x to 2 is

/
R . dB.

2

We can then equate this work to the loss of energy, since these

must be equal, viz.

R . dB = W . m . m x decrement,
i

and putting in the value of the decrement from the decremental

equation above (and remembering that <1> =
J

= W. m.(
J

This was the method adopted by the late Mr. Froude to

investigate the laws underlying the resisted rolling of ships.

i Suppose the moment of resistance varies as the angular
JJQ

velocity, or R = k\ . . Then assuming, as in unresisted

rolling, B =
j . sin ^ . /, we have

dB TT TT

^=i. T COS T ./.
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The work done from to zero is

7/J

on putting in the above value for^ and integrating. Similarly

for the other side the work done from o to 2 is J . t .

;p.
2
2

.

So that from x to 2 the work done against the resistance is

J . ki ^ . m
2
, putting m

2 = (/ + 2
2

). Equating this to the

loss of dynamical stability, viz. W . m . TO X decrement, we

have
2

decrement = \ . k^ . ^ rp
. OT

jn

i.e. a resistance which has a moment proportional to
,
the

dt

angular velocity, will give a decrement proportional to the angle of
roll.

2. Suppose the moment of resistance varies as the square

of the angular velocity, or R = k* .

\jjj
Then, by a similar

process to the above and equating the work done by the

resistance to the loss of dynamical stability, we get that

decrement = f . k, .w^^z . m
2

i.e. a resistance which has a moment proportional to the square

(dQ\
of the angular velocity \^J will give rise to a decrement pro-

portional to the square of the angle of roll.

We thus see that if the resistances to the rolling motion

dQ /d0\
are assumed to vary, partly as -r and partly as l~ I

,
the

decrement is given by
2 ^2

This is of the same form as the decremental equation found

to fit the curves obtained from rolling experiments.
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Mr. Froude attributed the first term to the formation of

waves, and the second to friction and the passage through the

water of bilge keels or keel projections (including the flat

portions of the ship).

Waves. The rolling motion of a ship creates waves on

the surface of the water, and these waves pass away and re-

quire energy for their creation. A wave of very small height

represents a considerable amount of energy, and the drain on

the energy of the rolling ship is a distinct resistance tending
to reduce the rolling motion.

Friction. This is of small amount, because the surface

of a ship is kept smoothly painted to reduce the resistance to

steaming to a minimum.

Form of Section. If a ship has a sharp bilge, the water

at the corner has to slip past, and gets a motion opposite to

that of the ship. The effect both as regards friction and on

bilge keels is therefore greater than if the section were more

rounded in form.

Air Resistance. The resistance of the air to rolling is

only small under ordinary circumstances, but it may be made

considerable by the use of steadying sails. If a ship with sails

set rolls to windward, the wind pressure is increased owing to

the greater relative velocity, and this the more so the higher

up we go. The pressure on the sails therefore is greater when

rolling to windward, and the centre of pressure is higher.

When rolling to leeward the effective pressure is less, and there

is a fall in the centre of pressure.

Bilge Keels. Mr. Froude, in his investigations, took the

bilge keels as flat surfaces moving through the water, and by

using data obtained from swinging a flat board in water was

able to make a calculation for the resistance offered by the

bilge keels to the motion (see later for the details of this). It

was found, however, that the observed decrement due to the

b . <
2

portion of the decremental equation could not thus be

accounted for. Professor Bryan, in a paper before the I.N.A.

in 1900, gave further investigations on the subject. Consider

the flow of water round a right-angled bend as Fig. 117. The

water adjacent to the surface has to come to rest at the corner
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and change the direction of its flow. Thus along AB we get

a diminution of the velocity of the stream lines. With this

decrease of velocity there must be associated a rise of pressure

both along AB and BC. Taking now the case of bilge keels

projecting from the surface as Fig. 118, the ship being sup-

posed to be rolling clockwise. The relative velocity of the

ship, and the water along AaAj has to be brought to zero at

A! and there is caused a rise of pressure along A 2Ai and

similarly along A4A3 . These pressures will have resultants as

FIG. 117. FIG. 118.

P and Q, which with ordinary shaped sections will give a

moment tending to stop the motion. The effect will be more

pronounced as the section of the ship is sharper, because of

the greater relative velocity of the water past the bilge as

compared with a round section.

Figs. 115, 116 show very clearly the influence of bilge keels

in reducing rolling. It was found in the Revenge^ starting in

each case from 6, that

without bilge keels 45 to 50 rolls were necessary to reduce to 2

with bilge keels 8 2

Curves are also given, showing the effect of motion ahead on

the rolling. In this case the vessel was proceeding into water

that was undisturbed by the rolling motion of the ship, and

the resistance to rolling was somewhat greater than when the

vessel had no onward motion.

It has been found that the addition of bilge keels adds

slightly to the period of rolling, in the case of the Revenge

about 5 per cent.
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The following is the investigation regarding the work done

by a bilge keel or flat surface, on the assumption that the

pressure varies as the square of the speed of the bilge keel

through the water.

Let A be the area of one side of the bilge keels in sq. feet,

r the mean distance of the centre of oscillation,

c the coefficient of normal pressure at i ft. per sec :

in Ibs. per sq. foot.

/ JQ\ 2

Then pressure = c . A . r2

. (
-j-

} at any instant.

Moment = c . A . r3
. ( -r. }\at /

(The 2 in the former investigation is therefore c. A . /*.)

7T
2

The decrement is given by t*^b*w~~ ^2- m
2

for a

resistance whose moment is proportional to (
-^j

as seen

above, or

decrement = f . c . A . * . 2 . M
2

(W in Ibs.)

Putting W in tons and T = TT*- we haveV m .g

c A . r
3

. P
decrement

which is increased, as one would expect, by increase in the

area of the bilge keels and in the lever. It is also noticed

that the decrement varies inversely as the I of the vessel, so

that the bilge keels are proportionally less effective in a vessel

with large I than with small. The decrement also varies as

the square of the arc of oscillation, so that when large angles

are reached, as in a sea way, the influence of bilge keels will

be most effective.

Boiling among Waves. A wave is not the passage of

water, but the passage of motion. The actual movement of

the particles of water composing a wave is small. The form
moves with considerable speed, but if a piece of wood be
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observed, it is noticed to oscillate about a mean position. In

the generally accepted trochoidal theory the particles of water

for deep-sea waves are supposed to move in circular orbits,

and the diameters of these orbits decrease as the depth
increases. This orbital motion gives rise to centrifugal force

and the pressure at the crest of a wave is less than in still

water, and at the trough the pressure is greater. The buoy-

ancy, therefore, in the crest portion is less than the normal,

and in the trough portion it is greater. This is the explana-
tion of the tenderness of sailing-boats on the crest of a wave.

The virtual weight is less than the actual, and so the righting

moment is reduced as compared with still water. The heeling

moment due to the wind is not affected in this way, and so a

boat of sufficient stiffness in still water is liable to be blown

over on a wave. The virtual force of gravity therefore varies

at different places on a wave, and its direction also varies,

being perpendicular to the wave profile at any particular point.

This direction is termed the virtual upright^ and a small raft

will always tend to place its mast along this virtual upright.

This has its maximum inclination to the vertical at about a

quarter the length of the wave from the crest or trough. A
ship rolling amongst waves will at each instant tend to place

her masts parallel to a virtual upright, and a surface which is

normal to each of these virtual upright positions of a ship in a

wave is termed the effective wave slope^ which is distinctly flatter

than the actual observed wave profile.

In dealing with the subject, it is not usual (except for

sailing-ships) to consider the variation of the amount of the

virtual weight, but allowance must be made for the variation

in its direction. Certain assumptions have to be made to

bring the problem within the scope of mathematical treat-

ment. These are as follows :

(a) The ship is lying passively broadside to the wave

advance.

(b) The waves are assumed to be a regular series, identical

in size and speed.

(c) The waves are assumed long in comparison with the

size of the ship.
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(d) The profile of the wave is taken as a curve of sines.

We have first to express the angle the virtual upright makes

to the upright in terms of the time and other known quantities.

Fig. i :i 9 represents the construction of the wave, L being

the | length, H the height (much exaggerated), x and y the

co-ordinates of a point P referred to axes through the trough.

FIG. 119.

This point P is reached in time /, the time from crest to crest

being 2T1} i.e. Tj is the half period of the wave.

7T L H H 7T

Then a = ^ . / ; x =
^./; y = - --.cos^./

Therefore
dy TT . H

where B l is the slope at P. The slope being small, we may
say that

_ 7T . H 7T

*> ='
117 sra

T,
'

which is also the inclination of the virtual upright to the

vertical.

From Fig. 120 the equation of motion is, 6 being the angle

of ship from the vertical

W //2/9

_^^+W.. (9-00 =

0_ X being the angle from the virtual upright,

72/1 2

or 2 + (0
- 0J = o
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T being the period in still water. Putting in the value of 0,

found above

which is Fronde's general equation for unresisted rolling among
waves.

FIG. 120.

Assuming for the initial conditions, i.e. when / = o that the

ship is upright and at rest in the wave trough, the solution of

this differential equation is

T 7T

i being the maximum wave slope.

i. Take the special case when T = T: ,
i.e. the still-water

period of the ship equals the half period of the wave. This

is termed synchronism. Putting T = T! in the above equation

and using the method of the calculus for dealing with inde-

terminate forms, we have

,= - --./cos-
1

./J

When = ,, etc. 6 =
-^

-
y, etc., showing that the

inclination of the ship is alternately half the maximum wave

slope.
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When / = o, T
x 2T, etc., we have 6 = o, -. 15 TT^

^j, etc., *.*. for every half wave that passes an additional

angle
= J . TT x maximum slope, is given to the roll, and thus

a ship under the given assumptions must inevitably capsize (see

Fig. 121). Thus the Devastation with a still-water period of

6f", if lying broadside with no resistance, to waves of J
maximum slope and period 13^", would increase the roll every

half wave by -.- degrees, and in 67J seconds, or rather over

a minute, would reach 8. Large angles are soon reached

also, if there is only approximate

synchronism between the ship and

the wave. Thus a ship of 5" period

rolling unresistedly broadside to waves

of 4" half period with 8 maximum

slope will, in successive rolls, reach

11, 20j, 2 7J.
These results are borne out by the

experience of ships at sea. It has

frequently been observed that ships

with a great reputation for steadiness

occasionally roll heavily at sea. This

is due to the fact that a succession of

waves has been met with, having a

period approximately synchronizing
with the double period of the ship.

The synchronism may be destroyed

by altering the course, since what

affects the ship is the apparent period of the waves.

2, Suppose the ship has a very quick period as compared with

T
that of the wave, so that

^r
is small. The equation above

then reduces to

FIG.

i.e. the ship takes up the motion of the wave and behaves
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exactly like a raft. The angle of maximum heel will be the

maximum slope of the wave.

3. Now take the case in which the period of the ship is

T
long compared with that of the wave, i.e.

-f^
is small. The

equation above can be written
rr-i

|~
rr\ *

=
j .

'[sin ^
. / - -1

. sin ^ /J

T
This is always small since

^r
is small, and the ship will

never depart far from the vertical. Thus, to secure steadiness

at sea it is necessary to make the still-water period as long as

possible. To do this there must be a small metacentric

height. Such a ship is crank, i.e. easily inclined by external

forces, but in a sea way is most likely to be steady.

Atlantic storm waves are about 500 to 600 feet in length,

and have a period of 10 or n seconds (i.e.
2 . TJ. The

longest wave recorded had a length of about 2600 feet, and

a period of 23 seconds. The battleship and liner, quoted
above as having periods of 8 and 10-12 seconds respectively,

should therefore prove steady ships in a sea way, as synchro-

nism would only be experienced when meeting with waves of

periods 1 6 to 24 seconds, which are quite exceptional.

Resisted Rolling among Waves. If we take the

critical case of a vessel meeting with waves whose half period

is equal to the ordinary period of the ship, then the angle for

7T

each swing is increased by
-

. $a as seen above. The decre-

ment due to resistance is given by 0< + b<$ and the increment

per swing is therefore . $1 (a*j> + & 2

). The angle of swing

will go on increasing until an angle of roll is reached such

7T

that -
. 3>j = a& + ^2

. The increase due to synchronism is

then just balanced by the decrement due to resistance, and we

get a steady roll of 3>. We have seen above that when large

angles are reached a ship is not isochronous in her rolling,

and also that the fitting of bilge keels causes an increase in
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the period. Therefore, under the actual conditions obtaining,
with a synchronous swell the ship will not necessarily capsize, for

(a) As large angles are reached the ship departs from

isochronous rolling.

(b) Resistances come into operation, and there is also

the further condition, viz. :

(c)
A succession of waves of precisely the same period
is a very unlikely occurrence.

Apparent Period of Waves. We have spoken above

about the apparent period of waves as affecting a ship's

rolling. If ft is the angle the direction of the ship's advance

makes with the crest line of the wave, then if v be the speed
. of the ship, v . sin ft is the speed of the ship against the wave
advance \

and z/ being the speed of the wave, the waves will

meet the ship at a speed z> + v . sin ft. If T be the actual

period of wave, then the apparent period T' is given by

T = TO 4- (i + ^ sin ft). If ft is negative, ft' say, i.e. the ship

travels away from the wave advance, T' = T -f- (i .

sin/3').

Thus in the first case the apparent period is diminished and in

the second case increased.

Graphic Integration of the Rolling Equation.
i. Unresisted Rolling in Still Water. The equation of motion

of a ship rolling unresistedly in still water has been seen to be

^0 g^ + ^-GZ = o

This cannot be mathematically integrated, because there is

no relation between GZ, the righting arm and the time. By
assuming that GZ = m . 6, a. solution can be found leading to

/ A3

the expression, T = TTA / , being small. This enablesV m.g
the equation of motion to be written

^0,^ GZ_
<//

2 + T2
'

m
=

where T is the time of oscillation from side to side, or one
half the mathematical period.
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By assuming GZ = m . sin 6 we have the case of a circular

ship or a submarine, and the equation can be solved by
advanced mathematical methods, the solution for various angles

being given on p. 352.

By the process known as
"
graphic integration

"
the solution

can be accurately found and the process can be extended to

the case when resistances operate.

FIG. 122.

To lead up to the subject, take the case of a body falling

freely under gravity. The force causing the motion is constant,

viz. that due to gravity
= P, say. Now force = mass x accele-

ration, or P = /i and/= ^-, /. v f P . dt taking unit mass.
b

dt

If therefore we have a force curve on base of time, Fig. 122

(in this case a straight line), the velocity is found by integrating

the force curve. Again v = -r. or s = jv dt, i.e. the space or

position is found by integrating the velocity curve. Thus, in

the figure the body would have fallen the distance 4D in time
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*,
= 4 seconds. EH being the force curve, OBK the velocity

curve, and OBD the position curve.

Now take the reverse process. Having given the position

curve OD, at any point, as D, the tangent makes an angle with

the base 6 such that tan 9 =
-^ ,

i.e. the velocity. At times

o, i, 2, 3, 4, etc., seconds, the velocities are o, g, 2g, 3^, 4^, etc.,

i.e. tan 6 has values o, *, 2g, etc. Setting down as in lower

figure, the tangents to the position curve at A, B, C, D, etc.,

are parallel to Oa, O, O, O</, etc.

The position curve is the second integral from the force

curve, and conversely the force curve is the second derived

from the position curve, and the intersection of tangents at two

points of the position curve is below the centre of gravity of the

corresponding portion of its second derived
',

i.e. the force curve.

(For proof of this see later.)

Thus to get A we find the C.G. of OE, and at T draw TAV
parallel to Oa in the lower figure. For the second interval we

draw OAW parallel to O^, and so on with succeeding intervals,

which enables the position curve OABCD to be drawn in.

The equation we have to solve is

J^? = 7r!
GZ

df ~T2
'

m
dropping the sign,

dm TT GZ
^ =

T~2 '^r
dO .

to =
,
the angular velocity in circular measure.

In a small time A/ the change of angular velocity is therefore

"* GZ A,Aw =
j

A/
T^ m

It is more convenient to use degrees, so that

7T
2 180 GZ

Aw = A/ degrees,
1 TT m

and taking the interval of time . T,
1 80 GZ

2 B
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If therefore at a certain interval the angular velocity is

represented by the slope of the line OB = tan a, Fig. 123, on a

base AO = i'oi3 T, and BD is set up equal to the mean

value of over the succeeding interval ^j T, then the

FIG. 123. FIG. 124.

slope of OD given by tan /? is the angular velocity at the

end of the interval -^ T, for

/i8o GZ\
AK H- &IJ . \ TT

'

tfl

tan AO
BD V= tan a +

m /

I-OI3 1

If the force curve in this case is one where ordinates are

'

and if force and position curves are as shown in
TT m

Fig. 124 on a time base, then at any ordinate at time / the

180 GZ
position must correspond to the value of at that

angle. Where these two curves intersect on the base line, as

they must do simultaneously, we have the value of the half

time of the oscillation supposing we start from : the initial

angle. At the angle OA there is a definite value for
^-

-

= OB, and we now by a process of trial and error have to

find the curves AP and BP. In the first place we draw a
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modified curve of stability on angle base whose ordinates are

values of (the slope of which is 45 to the base line), as

Fig. 125. A convenient scale to use is found to be J" = i,

J"
= i unit of force, and i" = ^ T.

Set off equal intervals of time ^ T on the base line, i, 2, etc.

2O 4-O 6O 8O IOO

MODIFIED STABILITY
CURVE

FIG. 125.

FIG. i5A. Graphic integration for a simple pendulum.

(Fig. 1 25 A), and mark off OA equal to the initial angle assumed.

Then at angle OA the modified curve of stability has the value

T
which is set down OB. Now over the first interval the

10

force will vary (diminishing if we start before the angle of

maximum stability and increasing if we start after this angle).
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An assumed slope BD is taken for the force curve. The mean
value over the interval is LK ;

the slope given by LK -i- 1-013 T
T

will give the change of angular velocity in interval . Draw

AC parallel to base line and the position curve must be a

tangent to AC at A, since velocity at starting from the extreme

angle is zero. The e.g. of the force curve OD is then found

and squared up to meet AC in C. From C draw CGF parallel

LK
to the slope given by tan a = . Now we check to see

1*0131

if at the angle iG the ordinate of the modified curve of stability

is iD. If not, the process must be repeated until an agree-

ment is found. We then proceed to the second interval and

guess in DE and find F over the e.g. of lE. FH is drawn

MN
parallel to the slope given by tan fi

= tan a -f ^ 2H and

2E are again checked as before. In this way, by a process of

trial and error, the position curve and the force curve may be

obtained and faired in. They must meet simultaneously on

the base line.

Fig. 1 25 A shows the diagram worked out for the case of a

simple pendulum, or a submarine or circular vessel, for which

the equation of motion is

#0
,

7T
2

^a + ,p
sm = o

and the ordinate of the modified curve of stability is sin 6.
TT

The initial angle OA is taken as 120, and it is seen that the

curves cross the base line together at an abscissa of o'685T and

double this, viz. i*37T, is the period of the single swing from

120, T being the time of a small oscillation. The working

of this problem for various initial angles is recommended as

an interesting exercise, the results for 30, 60, 90, 120,

150 should be I'oiy, 1*073, I
'

I ^3) J '373i 1762 times T

respectively.

Example. H.M.S. Devastation, with GM of 4 feet, has a curve of

stability whose ordinates every 5 are o, 0-36, 0*69, O'8o, 0*82, 078, O'66,
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0*44, O'2O, and range 43?. The period T for small angles is 675 sec.

Find the period if heeled to (a) 20, (l>) 30 from the upright and allowed
to roll freely.

Ans. (a) 8-1 sec., (b) io'3 sec.

In the above we have to find graphically the C.G. of a

trapezoid with reference to an ordinate. This is found as

follows : Make AC = J . AE (Fig. 126), DQ being the middle

ordinate. Join CQ and draw SH parallel to the base line,

then H is in the same abscissa as the C.G. of the trapezoid.

Proof. The shift of G. from middle ordinate is due to the shift of the

triangle QS to the position aRQ through a distance of
if

. h, 2h being the

base. The area of triangle QS is . h . PQ. The moment of transference

is therefore 3 . PQ . A2
. This equals (area of rectangle) X (shift of C.G. x).

J

or
h ---

This may also be proved from the result of Example 22, Chap. II., which
is left as an exercise.

FIG. 126. FIG. 127.

Proof that the intersection of tangents at two points of a curve

is at the abscissa of the centre of gravity of the corresponding

portion of its second derived curve. Let the curves EFG, OCD,
OAB (Fig. 127) be three curves such that any ordinate of OCD
is equal to the integral of EFG up to that point, and any
ordinate of OAB is equal to the integral of OCD up to that
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point. Then the tangents to the curve OAB at the points A and
B will intersect at the abscissa of the centre of gravity of the

area HG.
EFG is the second derived from OAB.

Let equation of EFG bejy =/(#)
OCD be ;>=/'(*)
OAB bey =f'(x)

Then we have /' (*) = jf(x)dx, and/"(*) = Jf(x)dx

or/w =
(x} and/

'

(x)
= f"

(x)

Take two abscissae x
1
and x2 for which the ordinates of EFG

nd^2> of OCD are ^/ and j'2
' and of OABj^/' and y* .

The abscissa x of the C.G. of HG is given by

__

r(f\.J *i\dx}

Now the tangent to OAB at A has the equation

> -*-(&?-**
and the tangent at B has the equation
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Solving for x will give their intersection, or

).- <).+*-

dx/z >!/*/,

which is the same expression as the abscissa of the centre of

gravity of HG found above.

We now have to consider the case of : 2. Resisted Rolling in

Still Water. We have seen that with resisted rolling the decre-

ment on a single swing can be written

in circular

2 <?.

or ~ ' = 4---
i.e. a and in the decremental equation d$ = a$ -f- ^^2 can

be written

, __ 4 7T
" 5 ' 2 ' W . m . T2

from which ^ and kz can be determined if a and b are known.
7 n //7fl\%

The moment of resistance = & . + / 2 . ( )

a/ \ a/ /

Substituting for the unknowns ki and / 2 we have

Moment of resistance

n circular

measure

. T d&
. , T2

, /^d>\2
1 d<b C in de-

The equation of motion of the rolling ship is now

W
2

d*Q

g
' '

dtz

+ W . GZ = o
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dze 7T
2

and for in degrees we have

= o
J

In the former investigation we multiply GZ by ,
and we

do the same for the resistance, which becomes

2T d<j> T2

~^'
a

'~dt
+ *v j

which is termed the "resistance indicator" This has to be

added to the modified force, if the ship is swinging away from

the upright when resistance acts with stability in stopping the

motion, and subtracted if the ship is swinging towards the

upright when resistance acts against the stability.

If -? *= 10 degrees per second, then the ordinate of the
eft

resistance indicator is

2T
5
T2

.

__,a. IO + f ._.. IOO

This would be set off as an ordinate at a point C (Fig. 128),

such that AC -J- 1*013 T = 10 degrees per secondhand so on.

Guess in CF resisted and CG unresisted. AD is the mean

force over the interval, and we set up OL = AD. Then the

slope of LQ gives the angular velocity at the end of interval,

MP is therefore the slope of position curve. Then the angle

BN should give on the modified stability curve the distance

BG, FG being equal to the ordinate of resistance indicator at

L. Thus by a process of trial and error we obtain a series

of tangents to the position curve and this crosses the base line

simultaneously with the stability curve. Proceeding past the

upright we should obtain not only the time of the single

oscillation but also the angle from the upright to which the

vessel rolls. The values of a and b for the resistance indicator

are obtained from the decremental equation for the ship.
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As exercises, the "
Inconstant "

may be taken whose decre-

mental equation gives a= 0-035, b = 0*0051. Starting from 30

FIG. 128.

I-O/3J

the angles reached in successive rolls are 25-2, 2 1 -6. Starting
from 25 the angles reached are 21-3, 187. T = 8 sec.,
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GM = 2*3 feet. Stability curve at 10 intervals o, 0*5, 1*03,

i*7> 2 '43. 2 '75> 2
' 6l

>
2

* 6
> i'55

3. Unreststed Rolling among Waves. For a ship broadside

on to a given wave the stability at any instant is determined

by the angle between the centre line of the ship and the virtual

upright, i.e. the normal to the wave surface. This is the angle
between Oa and Ob in Fig. 129. We therefore draw on our

FIG. 129.

base line a curve of wave slope which is taken as a curve of

sines

Thus for a wave of maximum slope 8 and 8" half period we

This then is the base line from
. 180

have i
= 8 X sin -5-o

which to measure the angle of inclination to the virtual upright.

The process is then carried on as before. In Fig. 129 is

worked out the case of a ship upright and at rest in the wave

trough with straight line stability on a wave of 80 maximum

slope, and whose half period Tx is the same as the time of

oscillation T of the ship. These conditions are known from

previous investigations to lead to an increment of roll to every

half wave of - X 8 = 12^. The tangents to the position curve
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are parallel to the lines drawn from i, 2, 3, etc., to the point

given by i'oi3T. The force curve is checked interval by
interval with the angle from the virtual upright, and must cross

the base line at the abscissa of the intersection of the wave

slope curve with position curve. If the example in Fig. 129
be continued to 20 intervals or over the complete wave, an

angle of 25 would be reached. This is recommended as an

exercise. The process can, of course, be applied for a given
curve of stability and any assumed conditions for period of

ship, period of wave, and maximum slope of wave.

4. Resisted Rolling among Waves. In this case the process
is similar, only the effect of the "

resistance indicator
"

is

brought in as in 2.

For an exhaustive account of the application of the process
of graphic integration, see Sir W. H. White's paper (I.N.A.
1 88 1

)
on the rolling of sailing ships. In this paper, in addition

to resisted rolling among waves, account was taken of (a)

moment due to pressure of the wind on the sails, and (b) the

variation of the virtual weight in different portions of the wave,
this being necessary as this variation affects the righting

moment, while (a) is not thus affected.

Pitching. The expression for the period of pitching of

a ship is of a similar form to that for rolling, but we have to

use /&! the radius of gyration of the vessel about a transverse

axis through the centre of gravity of the vessel, and GMt the

longitudinal metacentric height. This period for a single

oscillation is therefore

It would be desirable, if other conditions allowed, to make
the period of pitching as small as possible, and ships with the

heavy weights concentrated near midships are found to be

better sea boats than vessels with heavy weights at the ends.

EXAMPLES.

I. A vessel of 13,500 tons displacement has a GM of 3^ feet and a

period of 8 seconds. Find the period of roll when 600 tons of coal are

added each side of the vessel in a bunker 21 feet deep and 9 feet wide,
the C.G. of the bunkers being II feet below the original C.G. of the
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ship, and 26 feet out from the middle line. The vessel has a horizontal
curve of metacentres over the limits of draughts corresponding to the above
conditions.

V& from which & = 823, so thatm
I = 13,500 x 823 = 11,100,000.

The addition of the coal n'down pulls down the C.G. of the ship
I 2OO X II

'-- = o'9 ft., making the GM 4*4 ft.

We now have to calculate the new I about the new C.G., I of coal

about old C.G. is given by

2[( T
'

5 X 600 X 9
2 + 600 X 207) + ( T̂ j

X 600 X 21* + 600 x ~n-)] = 1,008,600

I of total about old G.C. is accordingly

11,100,000+ 1,008,600= 12,108,600

and about the new C.G.

12,108,600 (14,700 x o'9
2
)
= 12,096,700

The new k1
is therefore

^96,700
14,700

and the new period is accordingly

2. A cruiser of 5000 tons has a metacentric height of 2'8 feet, a period
of 7 seconds, and a horizontal curve of metacentres. Calculate the period
when two fighting tops of 10 ions each are added to the ship at a height
of 70 feet above the C.G.

Ans. 7 '5 sees.



CHAPTER X.

THE TURNING OF SHIPS.

WHEN a ship is moving ahead and the rudder is placed

obliquely to the middle line, the streams of water which flow

aft relative to the ship are deflected in their course and

give rise to a resultant pressure normal to the plane of the

rudder, as P in Fig. 130. The calculation of the amount of

this normal pressure will be dealt with later, but it may be

stated here that it depends on

(i)
The area of the rudder,

(ii)
The shape of the rudder.

(iii)
The angle at which the rudder is placed to the centre

line.

(iv) The square of the speed of the water past the rudder.

The area of the rudder is usually expressed in terms of

the area of the longitudinal middle line plane of the ship, or

approximately the length times the mean draught.

or area of rudder = L.D.m
The value of m varies considerably. In large war vessels

it is from 40 to 50, but in exceptional cases, where great

manoeuvring power was desired, it came out to 33. In the

Lusitania its value was about 60.

As regards the shape, the pressure for a given area will be

appreciably greater for a narrow, deep rudder than for a broad,
shallow rudder.

The usual maximum angle to which rudders are put is 35
to the centre line.

In a sailing vessel the speed of the water past the rudder

is rather less than the speed of the ship, because there is the

frictional wake. The friction of the water on the surface of

the vessel induces a current of water in the direction of the
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ship's motion so that at the stern the water a short distance

away from the ship has a forward motion. In a sailing ship,

in order to get pressure on the rudder, it is necessary that the

ship shall be in motion, and such a ship loses her power of

steering as she loses way.
In a ship driven by a propeller, although there is the same

frictional wake, the action of the propeller sends a stream of

water astern, so that such a ship has steerage directly the

engines are working, a very great advantage. And this effect

will be greater for a ship having the propeller in line with the

rudder, as in a single-screw ship and in ships with double

rudders like the Dreadnought^ than in ordinary twin-screw

vessels. Although in screw vessels there is the frictional wake

mentioned above, the speed of the water past the rudder will

be appreciably greater than the speed of the ship, because the

speed at which the water leaves the propeller is greater than

the speed of the ship, the difference being known as the slip.

In any case it is absolutely necessary for good steering

that the water shall get a clean run past the rudder. Vessels

with very full sterns have been found to steer very badly.

In a ship having a deadwood in front of the rudder the

slackening of the speed of the streams of water gives rise to a

side pressure which has a considerable influence in pushing the

ship over at the start. This is specially noticeable in boats.

But for good turning the deadwood is unfavourable, as will be

seen later, and in ships designed for great manoeuvring power
the deadwood is always cut away. See sterns on pages

390, 39i-

In Fig. 130 let P be the normal pressure acting on the

rudder at C. Introduce at G, the centre of gravity of the ship,

two equal and opposite forces of value P parallel to the line

of action of P.

Then we have acting on the ship

(i) A couple tending to give angular motion of amount

P X DG ; and .

(ii) a force P acting in the line EG.

The couple is approximately equal to P X X cos 6, and
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if P is taken to vary as sin 0, the couple will vary as

sin 6 X cos or sin 26, and it can be shown that this is a

maximum when 6 = 45. The sine law, however, for the

pressure is known to be incorrect, arid it is very probable that

the usual practice of 35 as the maximum helm angle gives

the maximum turning effect. Indeed, it appears quite possible

for certain shapes of rudders that angles of helm as low as 25
will give as good turning results as 35.

The force P acting in the line EG may be resolved into its

components.

(i) FG, tending to move the ship bodily sideways. The
motion in this direction, however, is small because of

the great resistanceof the ship to the side motion.

FIG. 130.

(ii) EF, in a fore and aft direction, and this has a sensible

effect in checking the speed of the ship.

Path of Ship when Turning. On putting the rudder

over the ship will commence to turn in a spiral path, of which

several examples are given later, and this path soon becomes

approximately circular. The distance from the position when
the helm is put over to the position when the ship is at right

angles to her original course is termed the advance. The
distance from the position when the helm is put over to the

position when she has turned through 180 or 16 points is

termed the tactical diameter.

In a ship thus turning, the middle line of the ship points
inside the circular arc and the thrust of the propellers is

accordingly in a direction oblique to the path of the ship.

The resistance to motion is therefore much greater than when
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on the straight, and this, together with the fore and aft com-

ponent due to the rudder, EF in Fig. 130, causes a very
considerable reduction of speed. In one case the reduction

amounted to quite 50 per cent.

If in Fig. 131 the ship is turning in the path GiGG2 passing

through the C.G., AF being the centre line of the ship and O the

centre of the arc G1GG2 ,
then the angle between the tangent

GT and the centre line is termed the drift angle at the point G
If OP is drawn perpendicular to the centre line there is no

drift angle at P, and to an observer on board at P all points of

the ship abaft P will appear to be moving to port, and all

points forward of P will appear to be moving to starboard.

Such a point P is termed a pivoting point, as the ship appears to

pivot about P.

The features of a ship which influence the turning are

principally as follows :

(a) Time taken to put the helm over to the maximum angle.

() Pressure on the rudder.

(f) Moment of resistance of the underwater body of the

ship to turning.
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(d) Moment of inertia of the vessel about a vertical axis

through the centre of gravity, to which has to be

added the mass of water associated with the ship.

(a) The introduction of steam steering gear has rendered

this item of less importance than formerly. In ships steered

by manual power the time taken to put the helm over is

considerable, and consequently the possibility of quick

manoeuvring is small.

The general adoption of balanced rudders has facilitated

getting the helm over quickly, as the centre of pressure of the

rudder is close to the axis and the moment required to be

overcome is comparatively small.

(b) The pressure on the rudder depends on various factors,

which have already been dealt with above.

(c) The ship when turning has angular velocity round the

pivoting point P. If we take any portion of the ship at a

distance /from P and of area A, the velocity through the water
j/3

due to the angular motion is I --71 and the resistance varies

/ .jf\\ o

as A f* - lj ,
and the moment of this about P varies as

A /* (
-ft J

. This therefore varies as the cube of the length

and the square of the angular velocity. This moment at the

early stages is small and less than the couple caused by the

pressure on the rudder, and consequently the angular velocity

increases. A point, however, is reached when the couple

due to the pressure on the rudder is equal to the moment
of resistance, and then the ship has a constant angular

motion.

It is seen by the above that if areas of the ship under

water can be omitted where / is greatest, the resistance to

the angular movement may be considerably reduced. This

is done by the omission of the deadwood^ or the flat vertical

portion of the ship aft, as the pivoting point is usually well

forward.

The above may be illustrated by the three turning circles

2 C
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given in Fig. 132 of Orlando, Astrcea, and Arrogant. The

profiles of the ships are given, from which it will be seen

that

(i) Orlando has a square type of rudder, not balanced, and
the ship is 300 feet long. The former factor will

delay her entry into the circular path.

(ii) Astrcea has a balanced tudder, and the ship is 320
feet long. The ship gets into the circular path

quicker owing to the balanced rudder, but has a

larger turning circle owing to the greater length.

(iii) Arrogant. Here the rudder area is relatively large,

two rudders being fitted. The length is 320 feet,

as Astray but the stern is cut up considerably.

The influence of these factors is seen in the very
small circle, as compared with the Orlando of smaller

length and the Astraa of the same length.

Many merchant vessels now follow the practice of having
balanced rudders with the deadwood aft cut away. In the

Dreadnought the provision of two rudders with propellers

immediately in front and the cut-up shape of the stern (as

Fig. 144) resulted in a marked reduction of the turning circle.

The following is the comparison with two cruisers of nearly
the same length, one having a balanced rudder with no cut-up

and the other having a balanced rudder with cut-up :
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FIG. 132.
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turning circles of Topaze and Amethyst. These were cruisers

of similar dimensions, viz. 360' X 40' x 14^' draught, 3000
tons displacement. The

shapes of the sterns

are given in Fig. 133,
from

seen

ship

which it will be

that the former

was a twin-screw

ship and the latter ship

a triple
- screw ship.

This latter was the

ship fitted with Par-

sons' turbines, with

small screws running
screw immediately in

of the two ships were

FIG. 133.

at high revolutions, and had one

front of the rudder. The rudders

of the same type, viz. balanced, and of much the same
area.

The turning circles are given in Fig. 134, from which it is

seen that the twin-screw ship has a tactical diameter of 870

yards and the triple-screw ship has a tactical diameter of

550 yards, or 7*25 and 4-6 times the length of ship respec-

tively. It is also seen that the latter ship gets into the circular

path much sooner than the former ship. All the condi-

tions are practically identical, except that the ship with the

smaller circle has one propeller operating immediately on the

rudder.

(d) The moment of inertia of a ship about a vertical axis

through the C.G. depends on the longitudinal distribution of

the weight, which of course is decided upon for other reasons

than turning. A ship with great weights at the ends will have

a large moment of inertia, and a given turning moment due to

the pressure on the rudder will take longer to get the ship into

the circle than if the weights were more amidships. (It will

be remembered that moment of inertia about any given axis

is found by adding together the products of each portion of

the wnight and the square of its distance from the axis, or
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Shapes of Sterns and Rudders. Fig. 135 shows the

ordinary type of rudder fitted to merchant vessels.

In some Atlantic and other liners what is termed the
" cruiser type

"
of stern and rudder is adopted, analogous

FIG. 134.

to Fig. 143, the principal advantage being the increase

of the length of the waterline obtained for a given length
over all.

Fig. 136 gives the stern and rudder adopted in the

Aquitania. The normal shape of overhanging stern above



390 Theoretical Naval Architecture.

water is obtained, but the deadwood is cut away and a

balanced rudder obtained with the rudder-head below water.

This gives the important advantage of having the rudder-head

and steering gear under water and less liable to damage due

to gun-fire. The vessel was built to be an auxiliary cruiser in

case of necessity.

FIG. 135. FIG. 136.

Figs. 137 to 145 give a number of different shapes of

sterns and rudders adopted in war vessels.

Fig- J 37 was adopted for many vessels, including the

protected cruisers Powerful and Terrible. The weight of the

rudder is taken inside the ship, a steadying pintle only being

provided at the bottom of the sternpost.

Fig. 138 was adopted in the Arrogant class, designed as

cruisers to company with the Fleet and in which exceptional

turning facilities were desired. Two rudders are employed, and

the deadwood is cut away.

Fig. 139 is on similar lines with a single rudder.

Fig. 140 is for the Japanese battleship Yas/iima, which had

very great facility for turning.

Fig. 141 was the type of stern adopted for many battle-

ships ; the rudder is approximately square, and is unbalanced.

The deadwood is cut away and the sternpost brought down to

take the blocks for docking.

Fig. 142 is the stern adopted in the King Edward VII,

class, the rudder being partially balanced.

Fig. 143 is the stern of the Lord Nelson class, similar to

that of the Yashima.
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Figs. 144 and 145 show the double rudders employed in

most of the Dreadnought battleships and battle cruisers. The
rudder area by this means was made relatively large, and good

powers of turning resulted, in spite of the greatly increased

8A.TTLE -CRUISER

FIGS. 143, 144, 145.

length as compared with previous ships. In recent ships two

rudders on the lines of Fig. 138 have been adopted because

of the resistance caused by the bossing out to take the twin

rudders.

Turning Trials. It is usual to carry out systematic

turning trials on H.M. ships, and these are put on record for

the information of the officers.
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The following is the method employed to determine the

path of the ship when turning. Two points are selected near

the ends of the ship, at a known distance apart, and at these

positions a horizontal circle graduated in degrees, etc., is set

up with a pointer moveable in a horizontal plane, having sights

which can be kept bearing on any given object as the vessel

swings round. Two weighted rafts with a flag attachment are

dropped overboard about a mile or so apart; it is assumed

that these rafts remain stationary relative to the ship.

The ship is brought up to one of these rafts, at the speed

desired, so as to pass the raft as nearly as can be judged at

L-
I

1

TACT i CAL Di AM E

FIG. 146.

the distance of the radius of the turning circle expected away.

Shortly before coming broadside on, a signal is made, when
the rudder is put over, the course is noted and the time is
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taken, and also the angles shown at the positions forward and

aft, viz. OAB, OBA (Fig. 146), are recorded. These angles
with the known distance AB fully determine the triangle OAB
and consequently the position of the ship relative to the raft.

A similar signal is made at four points (45), eight points (90),

etc., and corresponding observations taken until the ship has

completed the circle. The nine triangles found from this

information are then set out on a convenient scale, as shown

in Fig. 146, and the path of the ship drawn in. The "
tactical

diameter
" and the " advance " can then be measured off.

Angle of Heel when turning. On first putting a

rudder over, the force on the rudder being usually below the

centre of pressure on the hull on the opposite side, the resultant

couple will have a tendency to heel the ship inwards, but this

tendency is of short duration, as when the ship gets into her

circular path centrifugal action comes into play and an outward

heel results. It is shown in Chap. V. that this heel is

given by
V 2 d

sin 6 = 0-088 . -5 -qrpR GM
where V.is speed in knots;

R is radius of turning circle
;

GM is metacentric height ;

d is distance of centre of lateral resistance below the

C.G.

A ship, therefore, of high speed, small turning circle, and

small metacentric height will be liable to heel considerably

when turning at full speed.

Strength of Rudder-heads. The formula used by the

British Corporation is as follows :

^=0-26 4/R . A . S2

where A is area up to water-line in square feet ;

R is distance of the C.G. of the area from the pintles ;

S is not to be less than IT knots in vessels of and over

250 feet in length.

In vessels of 100 feet, speed taken as 8 knots. Inter-

mediate lengths at intermediate speeds in proportion.
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Lloyd's Rules do not now give a formula, but give
diameters of rudder-heads for speeds varying between 10 and
2 2 knots for different values of A X R as denned above.

Direct Method of determining the Diameter of

Rudder-head. The normal pressure on a rudder of area A
square feet at angle of helm 6 is usually assumed to be

P in Ibs. = ri2 A . ir . sin 6

= 3-2 A. V2 .sin0

where v and V is speed of water past the rudder in ft. per sec.

and knots respectively.

It is usual to allow a percentage on to the speed of the

ship to allow for the slip of the screw, although at the stern of

the ship there is the "frictional wake." About 10 per cent,

probably is well on the safe side. V is therefore taken at

ri times speed of ship.

In addition to knowing the pressure, it is necessary to know
the point at which the centre of pressure acts in order to find

the twisting moment about the axis. At 35 the centre of

pressure is taken at three-eighths the breadth from the leading

edge for a rectangular rudder. For other shapes of rudder the

area may be divided approximately into rectangles, or we may
adopt the method given later by dividing into a number of

strips.

Having obtained the twisting moment (preferably in inch-

tons), we equate to the formula

T =&../.*
where d is diameter of rudder in inches

;

/ is factor of strength allowed, say

4 tons for wrought iron,

5 ,,
cast steel,

3 phosphor bronze.

The following example will illustrate the method :

A rudder is 243 square feet in area, and the centre of pressure is esti-

mated to be 6' 1 2 feet abaft the centre of rudder-head at 35. If the speed

of ship is 19 knots, estimate the diameter of the rudder-head if of cast

Steel.
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Pressure in tons = - x 243 X 2O'9
2 x 0*574 = 87 tons

Twisting moment = 87x6-12x12 = 6389 inch-tons

.'. T'S
* 5 <** = 6389, taking/= 5

from which d = 187 inches.

Note. If such a rudder is assumed to be a square and supported by two

pintles at the forward edge, one at the bottom and one half-way up, it

can be shown that, where W is the total load and / the total depth, that

Bending moment at head =
3
!

s . W . / 1 , .. f ,

. , , , ITT 7 >both of these are small
mid-depth = T fo . W./j

Force at head = y W
,, centre pintle

= }W
lower pintle

= ^ W

The above is an example of where pure twisting only need

be considered (as for Fig. 141), but there are other cases to

consider
"

(i)
Rudder-head fixed in direction at sternpost, and the

lower part supported at the bottom (as in Figs. 137
and 142).

(ii)
Rudder-head fixed in direction at sternpost, and rudder

supported about half-way up, the bottom being free

(as in Figs. 140 and 143).

(iii) Rudder fixed in sternpost and the lower part un-

supported (as in Figs. 144 and 145).

In (i) and (ii) both bending and twisting come into play.

In (iii) bending is the determining factor in calculating the

diameter of the rudder-head. It is generally assumed that the

sternpost holds the rudder-head fixed in position. This gives

results well on the safe side.

(1) For the case (i) above, if the rudder is regarded as

a beam uniformly loaded, it may be shown that

'

Bending moment at upper end = J x load X depth

Support at head = f X load

heel = | X load.

(2) For the case (ii) above, if the rudder is regarded as a

beam loaded at lower half to twice the intensity of the upper
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half (i.e. the rudder is assumed to be a square with the upper

corner cut out), it may be shown that

Bending moment at upper end = ^ X load x depth

Support at head = ~ x load\ in opposite

heel = H x load/ directions.

(3) For the case (iii) above, the bending moment at the

head is found by multiplying the pressure by the distance of the

C.G. below the top.

When both bending and twisting have to be considered,

we equate -^ . TT . f . a* to the equivalent twisting moment, viz.

M + VM2 + Ta
,
where M is the bending moment and T the

twisting moment.

It may happen that the astern conditions will be the

determining factor, because then the centre of pressure is

nearer the after edge of rudder and farther from the axis than

when the ship is going ahead. The speed astern is usually

taken at half the speed ahead. In any case, in designing a

rudder, sections must be made at various places besides the

p M
rudder-head, and the formula - =

-j-
applied to determine the

value of the stress p.

In fixing the shape of a rudder it has to be borne in mind
that at all angles the centre of pressure should be abaft the axis.

For angles below 35 the value three-eighths from the leading

edge does not apply. The following formula may be used,

based on Joessel's experiments for rectangular plates of

breadth b.

C.P. from leading edge = 0^195 b -f 0*305 b sin

The formula given above, viz. P = 1*12 . A . iP . sin 0, is

known to be incorrect for small plates moving through water,

and the matter was exhaustively considered by Mr. A. W.

Johns, R.C.N.C., at the I.N.A. for 1904. The formula, how-

ever, has been extensively employed for many years for rudder

calculations with satisfactory results. It is to be observed

that

(i) A rudder does not get the full angle at once, so that
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the pressure is not in the nature of a shock. We,
however, use a coefficient of strength giving a large

factor of safety, as if this were the case.

(2) By the time the rudder is over the speed of the ship

suffers an appreciable check.

Centre of Pressure, Calculation of. For rudder

shapes other than rectangular it may be assumed that if the

C.G. is x feet from the mid-breadth, the centre of pressure

is x feet from the position it would have if the rudder were rect-

angular. Preferably the following method may be employed :

Horizontal ordinates are drawn as shown (Fig. 147),

common interval h, and f the length from forward and after

FIG. 147.

edges is set out on each. Such points represent the centre of

pressure of strips of the rudder at the ordinates. Curves of

centre of pressure are drawn as shown.

Simpson's Rules then are applied, as indicated in the

following table :
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CHAPTER XL

LAUNCHING CALCULA TIONS.

BEFORE starting on these calculations it is necessary to

estimate as closely as possible the launching weight of the

ship, and also the position of the centre of gravity both

vertically and longitudinally. The case of the Daphne,
which capsized on the Clyde

1 on being launched, drew

special attention to the necessity of providing sufficient

stability in the launching condition. A ship in the launching
condition has a light draught, great freeboard, and high

position of the C.G. It is possible, by the use of the prin-

ciples we have discussed at length, to approximate to the

metacentric height, and if this is not considered sufficient,

the ship should be ballasted to lower the centre of gravity.

It has been suggested that a minimum G.M. of i foot should

be provided in the launching condition. If the cross-curves

of stability of the vessel have been made, it is possible very

quickly to draw in the curve of stability in the launching

condition, and in case of any doubt as to the stability, this

should be done.

It is necessary to prepare a set of launching curves in the

case of large heavy ships, in order to see that there is (a) no

tendency for the ship to
"
tip," i.e. to pivot about the after end

of the ways (as in Fig. 148 *:),
in which case damage would

probably ensue ;
and (b) to obtain a value for the force which

comes on the fore poppets when the stern lifts.

In Fig. 148 ,
if G is the position of the C.G. of the ship,

and B the centre of buoyancy of the immersed portion, then

assuming a height of tide that may safely be expected for

launching

the moment of the weight abaft the after end of ways =W x d

buoyancy = w x dl

1 See Engineering'(1883) for a report on the Daphne, by Sir E. J. Reed.
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Then for different portions of the travel down the ways the

values of d, w, and d' can be readily found and curves drawn

as in Fig. 149, giving values of (W x d) and (w X d) on a

base of distance travelled. The former will, of course, be a

straight line, starting from the point where the C.G. is over

the aft end of ways. This line should be below the other

curve, and the minimum intercept between them is called the

"Su/

FIG. 148.

"
margin against tipping." If it happens that the curves inter-

sect, it shows that a tendency to tip exists, and either (a) the

ways should be lengthened, or (b) ballast placed forward, both

of which increase the travel required before G comes over the

end of the ways. The buoyancy curve should be drawn out

for various heights of tide, in order to know the minimum

height of tide on which the ship could be safely launched.

This is a point of importance in some shipyards where tides

do not always rise as high as expected owing to adverse winds.

Ships have been launched successfully which had a tipping

moment, but owing to the speed of launching the danger space
was safely passed ; but this is a risk that few would care to

take.

As the ship goes further down the ways a position is

reached when the moment of the buoyancy about the fore

2 D
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poppet equals the moment of the weight about the fore poppet.
At this point the stern of the ship will begin to lift. IfW and w
be the values of the weight and buoyancy respectively at this

point, then the weight W w, instead of being taken over

the length of ways in contact, is concentrated at the fore

poppets. This weight is localized over a short distance both

on the ship and on the slip, and it is desirable to know its

amount and the position on the slip where it will come.

Values of w are obtained at various points of the travel,

and two lines drawn on a base of travel giving values of

2.000.0_Q 10.000

i.ooo.qoo 5.0Q&--

300'

W and w, the former being constant. Then if a and b be the

distances of the C.G. and the C.B. from the fore poppet (as

in Fig. 148 a) at any point of the travel

moment of weight about fore poppet = W x a

buoyancy = w X b

Curves are then drawn as in Fig. 149, giving these moments

on base of travel, and the point where these curves cross gives

the position where the stern begins to lift, and the intercept

between the curves of weight and buoyancy at this point,

viz. aa, gives the weight on the fore poppets. In this case
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the weight on the fore poppets was 2500 tons, the launching

weight being 9600 tons.

The launching curves for H.M.S. Ocean are given in a paper

by Mr. H. R. Champness, read before the Institution of

Mechanical Engineers in 1899. In that case the weight of

the ship was 7110 tons, and the weight on the fore poppets

1320 tons.

The internal shoring of the ship must be specially arranged
for in the neighbourhood of the fore poppets, and the portion

of the slip under them at the time the stern lifts must be made
of sufficient strength to bear the concentrated weight.

Variation of Pressure on the Ways. In addition to

knowing the pressure per square foot when the vessel is on

the slip, it is sometimes desirable to know how this pressure

varies as the ship goes down the ways. It is quite possible

that the pressure might be excessive, and the necessity of

strengthening the slip or shoring the ship internally would

have to be considered.

The support of the ways at any point of the travel is

W w, where W is the weight and w the buoyancy. From
this the mean pressure P can be determined. The support of

the ways must act at a distance x from the fore end, such that

(W-w)x = W.a-w.d
where a and b are the distances of the C.G. and C.B. respec-

tively from the fore poppet. Let y be the distance of the

centre of pressure from the way ends. There are three cases

to consider (see Fig. 150).

(1) If x lies between \l and /, where / is the length of

surface of ways in contact. Then, knowing P the mean

ordinate, and assuming that the curve of pressure is a straight

line, PA and PF ,
the pressures at the after and forward ends,

can be determined. (See Example 28, Chapter II.) \ix~\l
or /, then the maximum pressure is 2P, and occurs at the

forward or after end as the case may be.

(2) If x is less than ^/, the distribution of pressure is

assumed a straight line on a base = 3^, and maximum pressure

. 2
W - w

at fore poppet is f . .
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(3) If y is less than \l we have similarly the maximum
W - w

pressure at the after end of way = f . .

By this means a curve of pressure at fore poppet may be

obtained for all positions of the ship on the slip until the stern

FIG. 150.

lifts, PF,
and similarly for the after ends of ways, PA,

as in

(4) Fig- IS -

The maximum pressure at the after end of the ways thus

calculated in one ship was 3^ tons per square foot as compared

with the mean pressure before launching of 1*7 tons.
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The following papers may be consulted in regard to the

launching of ships :

H. R. Champness, Ocean "
I.M.E.", 1899

W. J. Luke, Lusitania "
I.N.A.", 1907

J. Smith, "I.N.A.", 1909
A. Hiley,

"
I.N.A.", 1913

Example. In a certain ship the length of sliding ways was 535 ft.

and the breadth 5 ft. 4 ins. The launching weight was 9600 tons with
C.G. estimated at 247-5 ft- forward of the after end of sliding ways.
Calculate the mean pressure per square foot on the ways, and assuming the

pressure to vary uniformly as above, calculate the pressure per square foot

at the forward and after ends of sliding ways before launching.

Ans. 1*68 tons j 1*3 tons; 2*0 tons.

(Note. These two latter values are the starting points of the curves in

(4) Fig. 150, the latter rising to a maximum value- of 3| tons after a
travel of 250 ft. The former curve rises to a high (indeterminate) value

when the stern lifts.)
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Proof of Simpson's First Rule. Let the equation of the curve

referred to the axes O.r, Oy, as in Fig. 35, p. 53, be

y = aQ + a\x + a.2x2

a
, a^a2 being constants ;

then the area of a narrow strip length y
and breadth &x is

y x A.r

and the area required between x o and x = 2^ is the sum of all

such strips between these limits. Considering the strips as being a

small breadth A.r, we still do not take account of the small triangular

pieces as BDE (see Fig. 12), but on proceeding to the limit, i.e.

making the strips indefinitely narrow, these triangular areas dis-

appear, and the expression for the area becomes, using the formula

of the calculus

y . dx

o

or, putting in the value for y given by the equation to the curve

J o

which equals

which has to be evaluated between the limits x = 2^ and x o.

The expression then becomes

Now, suppose the area = AJ/J + By2 + Cy3

using the equation to the curve and putting x =
o, x = h and

x 2h respectively,

Area = a (A + B + C) + ^(B + 2C) + a2 . W(B + 4Q . (2)
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By a well-known principle of Algebra we can equate the

coefficients of a
, a^ and a2 in (i) and (2), so that

A + B + C = 2h

K.h
B . #

from which A =

so that the area required is

which is Simpson's First Rule.

It may be shown in a similar manner that Simpson's First

Rule will integrate also a curve which is of the third degree, viz.

y = a + a^ . x + a.j? -F as . Xs . . . . (3)

Simpson's First Rule is thus seen to integrate correctly curves

both of the second and third degree. It is always used, unless the

conditions are such that its use is not possible.

Proof of Simpson's Second Rule. This may be proved

similarly to the above, assuming that the curve has the equation (3)

above.

Proof of the Five-eight Minus-one Rule. The area between

yl
and y2 is given by

I,

Assuming this to be equal to A^ + B/2 + Cy3, substituting for

and J3 ,
and equating coefficients of

, a^ and 2 ,
we find

so that the area required is

5^.

The area between the ordinates y2 and yz is

WGto+W'-'/i)
and adding together, the whole area is

which is Simpson's First Rule.

Proof of the Three-ten Minus-one Moment Rule (given

on p. 58). Assume the equation of the curve is

y - a 4- ,*
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Then the moment about \

end ordinate/ n
J o

= yx.dx

= h\\aQ + \ajt + tf2^
2
)on integrating

Let the moment = (Ajj + By2 + Cy3).

Substituting forylt jrzt y9 the values found from the equation to

the curve, and equating coefficients of a0)
a

1}
a.2) we get

A = ft#, B = !#, C = -sVfc
2

so that moment = ^ih\^yl 4- loja ~J3)

Simple Area Rule for Six Ordinates (for which neither the

first nor the second rules can be used).

This is obtained by using the Five-eight Rule for the ends, and

Simpson's Second Rule for the middle portion, thus

I

A, If, If, II, If, A
ff[o'4, i, i, i, i, 0-4]

Proof of TchebychefF's Rule with Four Ordinates. The

following is the proof in the case where four ordinates are employed.
In solving the equations for eight or ten ordinates imaginary roots

are obtained, but the figures obtained for four and five ordinates

can be combined together for the two halves of the length giving
the figures in the table on page 18.

FIG. 151.

Let the curve BC (Fig. 151) be a portion of a parabola whose

equation referred to the base and the axis OY is

y = a + !.*+ a2 .x* + az .x*+ a.x* . . (i)

where a
,
a

lt
av a3 ,

and 4 are constants.

(For 4 ordinates the curve is taken of the 4th degree.)

( .1 ., ,. th )
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Let 2.1 be the length of the area, and select the origin at the
middle of the length.

/"*'Then the area required = / y doc (2)
J -i

r-

. . (3)
j j /

Now let this area = C x the sum of the 4 ordinates (4)
= C x
C

.... (5)< a ....
substituting forj/u^-j, etc., their values as given by the equation
to the curve (i), and taking the ordinates symmetrical about OY.

Equating coefficients of a^ aa ,
a in the equations (3) and (5),

we have C = - and

From these equations we find

jfi = o'i876/

** = 07947/

which gives the positions of the ordinates such that the area

= L-(yi + y-i + y-i + J- 2), * the summation of the ordinates
4

is multiplied by the length and divided by the number of ordinates.

Displacement Sheet by TchebychefTs Rule. This method

may be extended to rinding the volume of displacement of a ship,

and a table may be employed similar to that on Table I.,
1 and

described in Chapter II. There does not appear to be any advan-

tage in applying Tchebycheffs rule in a vertical direction, as the

number of water-lines are few in number compared with the

number of ordinates usually employed fore and aft
;
and also by

having the waterplanes spaced equally, the displacement and

vertical position of the C.B. for the other water-planes can be

determined. In the specimen table, therefore, given on Table II.,
1

Tchebycheffs rule is employed for the fore-and-aft integration,

and Simpson's first rule for the vertical integration. The figures

shown in thick type are the lengths of the semi-ordinates of the

various water-lines spaced from amidships as indicated at the top
of the sheet. These lengths added up give a function of the area

1 To be found at the end of the book.
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of each water-plane, as 2417 for the L.W.P. These functions are

put through Simpson's rule 1 in a vertical direction, and the

addition of these products gives a function of the displacement,
viz. 1 802-25. This function, multiplied for both rules, etc., as

shown, gives the displacement in tons, viz. 16,067 tons.

This result is obtained in another way, as in the ordinary

displacement sheet, and an excellent check is thus obtained on

the correctness of the calculation. The semi-ordinates of the

various sections are put through Simpson's rule, and functions of

the areas of the sections are thus obtained, as 255*05 for the

section numbered II. These functions are then simply added up,

and the same result is obtained as before for the function of the

displacement, viz. 1802*25. It will have been noticed that the

ordinates at equal distances from the mid-length are brought

together ;
the reason for this will appear as we proceed.

The position of the centre of buoyancy of the main portion
with reference to the L.W.P. is obtained in the ordinary way. To
obtain the position of the centre of buoyancy of the main portion

with reference to the mid-length, we proceed as follows. The
functions of areas I. and IA. are subtracted, giving 2*9, and so

on for all the corresponding sections. These differences are

multiplied by the proportion of the half-length at which the

several ordinates are placed, and the addition of the products

gives a function of the moment of the displacement about the

mid-length. In this case, the function is 36*4755. This, multi-

plied by the half-length and divided by the function of the dis-

placement, 1802*25, gives the distance of the centre of buoyancy of

the main portion abaft midships, 6*07 feet.

The lower appendage is treated in the ordinary way, as shown
in the left-hand portion of the table. The reason of this is that

the equidistant sections of the ship are usually drawn in on the

body plan for fairing purposes, and the areas below the lowest

water-line can be readily calculated. The sections at the stations

necessary for Tchebycheff's rule would not be placed on the body
for this calculation, but the ordinates at the various water-lines

would be read straight off the half-breadth plan.
The summary to obtain the total displacement and position

of the centre of buoyancy is prepared in the ordinary way, and
needs no explanation. The result of this summary is to give
the displacement as 16,900 tons, having the centre of buoyancy
11*2 feet below the L.W.L. and 6*52 feet abaft midships.

1 In this case, instead of i, 4, 2, 4, 2, 4, i, the halves of these are

used, viz. , 2, i, 2, i, 2
,
the multiplication by 2 being done at the end.
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Transverse BM. To determine the moment of inertia of the
L.W.P. about the middle line, we place the ordinates of the L.W.P.
as shown, cube them and add the cubes, the result being 211,999.
This is multiplied as shown, giving 8,479,926 as the moment of
inertia of the main portion of the L.W.P. about the middle line.

Adding for the after appendage, we obtain 8,480,976 as the moment
of inertia of the L.W.P. about the middle line in foot-units.

The distance between the centre of buoyancy and the transverse

metacentre is given by^, or

8,480,976 = 14-34 feet
16,900 x 35

The transverse metacentre is accordingly 14-34 11*2 = 3-14 feet

above the L.W.L.

Longitudinal BM. The position of the centre of gravity of the

main portion of the L.W.P. is obtained by taking the differences

of corresponding ordinates of the L.W.P. and multiplying these

differences by 0-0838, etc., as shown. The addition of these pro-

ducts, 14*6244, treated as shown, gives 18*15 f et as tne distance of

the centre of gravity of the main portion of the L.W.P. abaft

amidships. Adding in the effect of the after appendage, we find

that the area of the L.W.P. is 29,144 square feet, and the centre of

flotation is 19*53 feet abaft amidships.
To determine the position of the longitudinal metacentre, we

need to find the moment of inertia of the L.W.P. about a trans-

verse axis through the centre of flotation. This has to be done in

several steps. First we determine the moment of inertia of the

main portion about amidships. This is done by taking the sum of

corresponding ordinates and multiplying these by (o'o838)
2
, (0*3 127)

2
,

etc., or 0-007, 0-098, etc. The addition of the products, 50*5809, is

multiplied by 2 for both sides, by $ for TchebychefFs rule and

by (300)2, being the square of the half-length, because we only

multiplied by the square of the fraction of the half-length the

various ordinates are from amidships, and not by the squares of

the actual distances. The result gives 546,273,720 in foot-units

for the moment of inertia of the main portion of the L.W.P. about

the midship ordinate. We add to this the moment of inertia

of the after appendage about the midship ordinate, obtaining

539,399,902 in foot-units. This is the moment of inertia of the

L.W.P. about the midship ordinate. To obtain the moment of

inertia of the L.W.P. about a transverse axis through the centre

of flotation, we subtract the product of the area of the L.W.P. and
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the square of the distance of the centre of flotation abaft amidships.
The result is the moment of inertia of the L.W.P. about a trans-

verse axis through the centre of flotation we want, and this divided

by the volume of displacement gives the value of the longitudinal

BM, 927 feet.

The moment to change trim one inch is obtained in the

ordinary way, assuming that the centre of gravity of the ship is

in the L.W.L. and that the draught marks are placed at the

perpendiculars.
To obtain Cross Curves of Stability by means of the

Integrator and using TchebychefF's Rule. The rule we have
been considering can be used with the integrator to determine the

ordinary cross curves of stability in just the same way as with

Simpson's rules. In Chapter V. the process of the calculation

necessary with the integrator is explained. This calculation may
be considerably shortened if Tchebycheff's rule is used instead of

Simpson's rule. Not only can fewer sections be used, but the

integrator itself performs the summation. In this case a body

plan must be prepared, showing the shape of the sections at the

distances from amidships required by the rule. Take, for example,
a vessel 480 feet long, for which by the ordinary method twenty-
one sections would be necessary. By using this rule nine sections

will be quite sufficient, and by reference to the table on p. 18 the

sections must be placed the following distances forward and aft

of amidships, viz. 40*3, 126*9, I44'2 218*8 feet respectively, the

midship section being one of the nine sections.

The multiplier to convert the area readings of the integrator

employed into tons displacement was for this case 1*097, and to

convert the moment readings into foot-tons of moment was 13*164.

All that is necessary, then, having set the body plan to the required

angle as in Fig. 79, is to pass round all the nine sections in turn

up to the water-line you are dealing with, and put down the initial

and final readings. We have, for example

Area readings.

Initial 14*198

Final 25,397

11,199 difference

Displacement in tons = 11,199 x 1*097
= 12,285 tons
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Moment readings.

.. 5215Initial

Final

301 difference

Moment = 301 x 13*164 = 3962 foot-tons

It will at once be seen, on comparison with the example given
on p. 199, that there is a very great saving of work by using this

method. The following table gives the whole of the calculation

necessary to determine a cross curve for the above vessel, values

of GZ being obtained at four draughts, viz. at the L.W.L., one
W.L. above and two W.L.'s below :

Number of W.L.
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O, P, Q, multiplied by ^ length, gives the half area of the water-

plane.
The ordinates B, E, H, M, P (Fig. 152) are the following

.distances from amidships (6, 3, o, 3, 6) . The ordinates A, C, D,

F, G, K, L, N, O, Q, are the following distances from amidships,

viz. (7-06, 4-94, 4-06, 1-94, ro6, ro6, 1-94, 4-09, 4-94, 7*06) .

These are so close to the integers 7, 5, etc., that without appreci-

able error the integers 7, 6, 5, 4, etc., can be used for the levers as

in the ordinary displacement sheet. Thus, for any water-line the

addition of ordinates in column A multiplied by 2 X will give

the area. The algebraic sum of column B, divided by the addition

of column A and multiplied by , gives the distance of the centre

of gravity of water-plane from o to 10 from midships. Column D
is got by multiplying the figures in column B again by the levers,

and the addition of the column properly multiplied leads to the

longitudinal moment of inertia of water-plane about amidships.
This has to be corrected for the after appendage (if any), and then

transferred to the centre of flotation, as explained in Chapter IV.

From this the longitudinal B.M. is readily obtained for the several

water-planes.
In columns C are placed the cubes of the ordinates in columns

A, and the addition of these columns leads to the transverse

moment of inertia of the water-planes, from which values of the

transverse B.M. is obtained for the several water-planes.

The lower appendage is treated by
" Thomson's rule,"

l the

sections used being those on the ordinary body plan. The multi-

pliers are obtained as follows :

1
It is understood that ordinary sections and Simpson's multipliers are

now used in this sheet for the appendage.
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In Fig. 154 let the first diagram represent the ship, floating

freely, having a small inclination. In the second diagram a portion
of the weight, w say, is taken by the blocks. This is equal to the

FIG. 154.

displacement between the lines W'L' and W"L". If M, be the

metacentre corresponding to the water-line W"L", then

Moment of stiffness = {(W - w . OG} sin 6

To find w we can proceed as follows :

1. Accurately. Obtain the displacement and longitudinal

position of C.B. when floating freely. At the instant of taking the

blocks all along, the moment of buoyancy about after block =
moment of weight about after block. This equals moment of

buoyancy about after block when floating freely.

Hence we place a profile of the ship on the line of blocks, and

draw a series of water-lines parallel to the keel. For each of these

calculate the displacement and the longitudinal C.B. Draw out on

a scale of draught a curve giving the moment of buoyancy about

the after block. Where this crosses the constant line of the

moment of weight about after block will give the draught at

which the ship will ground, and so the displacement. This

deducted from the original displacement gives the pressure on the

blocks, and from the above the stability under these conditions can

be determined. In a ship with small metacentric height and large

trim by the stern, we have a combination of circumstances which

would probably cause instability. The course to pursue is to keep
the ship under control while any weight is taken by the blocks.

2. Approximately. Suppose the vessel trims / feet by the stern,
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and let the after block be b feet from the centre of flotation. When
the vessel is floating* freely, imagine a force Q is applied at the

after block just sufficient to bring the vessel to an even keel.

Q = I2 '

,
where M is moment to change trim I inch.

The upward force Q will decrease displacement, and the

mean draught is reduced by + T~^r ^eet T being tons per

inch. Owing, however, to the change of trim, the mean draught is

increased by -j
feet

>
where the centre of flotation is c feet abaft

amidships. If x is the draught at fore end when floating freely,

then the mean draught when just grounding is

. t .c M./

Theory of the Integrator. This instrument, shown in dia-

gram in Fig. 79, gives by using suitable multipliers to the results

obtained

Ci) Area of a closed figure,

(li) Moment of a figure about a given axis,

(iii) Moment of inertia of figure about a given axis,

by tracing out the boundary of the figure with the pointer of the

instrument.

*cr
N

Sx'

FIG. 155.

In Fig. 155 let M be the closed figure and AB the axis, P is a

pointer at the end of an arm PC which is rigidly attached to a

circle CL. The centre C of this circle is constrained to move

along the line AB. Gearing with L is another circle N, centre D,
CD always being perpendicular to AB. At the end of a radius

DE of the circle N is a recording wheel capable of rotating about
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DE, and this wheel can only record movements perpendicular
toDE.

Suppose the ratio of the circles L and N is as n : i. Then
for an angular movement 6 of L the wheel radius DE will move

through nd, and if when PC is on AB, DE is at an angle a, then

when PC is at 0, DE is at an angle < = n6 + a.

In going from P to the consecutive point P' on the curve,

separated by a longitudinal interval 8.*-, we have to consider the

influence of the recording wheel of two separate movements of

PC, viz.

(i) that due to the angular motion of PC
;
and

(ii) that due to the horizontal transfer 5^' of the centre C
along AB.

Consider now the influence of these two movements on the

wheel

(i) Since the curve is a closed curve the net result of the

angular movement is zero.

(ii) The recording wheel moves $x' parallel to AB, and the

record on the wheel, i.e. its movement perpendicular to

DE, is 5^. cos 0,

= 5-r'. cos (n6 + a),

and the total record

=
/cos (nB + a) . dx1

But 5.r = 5.r' + CP . 50 . sin 6.

Hence the total record

=
/cos (nd + o) (8-r

- CP . sin 6 . d&]

=
/cos (nB + a) dx. /CP . cos (n& + a) . sin 6 . d&.

CASE I. Take n -
i, a =

The reading is /sin 6 . dx /CP . sin2
. d& .

The second term vanishes for a complete circuit, and since

ordinate of the curve is CP sin 6, the reading is proportional to

jy . dx, and therefore to the area.

CASE 2 Take n = 2, a = o.

The reading is /cos 26 . dx + vanishing terms,
=

/(i 2 sin2 6) dx
=
fdx

- 2 /sin
2 6 . dx

-
^ jy

2
. dx, since \dx-
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i.e. the reading is proportional to the moment of the area about

AB.

CASE 3. Take n 3, a -- .

The reading is Jsin 3$ . dx 4- vanishing terms

=
J(3

sin 6 4 si

the first term of which is proportional to area and the second

term to the moment of inertia.

Case 3 is little used in ship work. The student on first taking

up the use of the integrator is advised to take simple geometrical

figures of which the exact area and moment are known, and by
this means the accuracy of the instrument may be tested, and, if

necessary, any corrections made.

MISCELLANEOUS EXAMPLES.

1. The tons per inch immersion in salt water at a ship's water-planes
are as follows, commencing with the L.W. P. : 12*9, 12*4, 11*5, 10*2, 8 -

o,

6*0, 2*2. The first five water-planes are 21 inches apart, and the last three

are loj inches apart, the draught being 9 feet to bottom of flat keel.

(a) Determine the displacement and the vertical position of the centre

of buoyancy to the first three water-planes.

(b) Estimate the displacement of the vessel when floating at a draught
of 10 feet I J inches in water of which i cubic foot weighs 63! Ibs.

Ans. (a) 1063 tons, 377 feet below L.W.L.
797 473
545 572

(b) 1228 tons.

2. Construct a formula giving the additional displacement, due to

I foot greater trim aft as compared with the normal trim, in terms of the

tons per inch immersion, length between draught-marks, and the distance

of the centre of flotation abaft midships.
The vessel in question, No. I, whose normal draught is 9 feet on an

even keel, floats in salt water at a draught of 8 feet 7 inches forward and

9 feet 10 inches aft. Estimate the displacement in tons, the centre of

flotation being 7 feet abaft amidships, and the length P.P. 250 feet (draught-
marks at perpendiculars).

Ans. 12 =-^-, i loo tons.
LJ

3. The vessel in question No. I floats at a mean draught of 9 feet

6^ inches in salt water. While in this condition she is inclined, two

plumb-bobs 10 feet long being employed. The following deflections are

observed :
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Forward. Aft.

3 tons through 23 ft. P to S 3 '6" ... 3-5"
6 7* I 5" 7'05"

Weights restored, ship came to upright.

3 tons through 23 ft. S to P 3'55" ... 3'6"
6 ,, ,, ,, 7' 1 5" " 7' 1

"

Estimate the metacentric height at the time.

Ans. 2 feet.

4. A vessel of box form, 150 feet long and 25 feet broad, floats at an
even draught of 8 feet, and has a water-tight deck 8 feet above keel. If

a central compartment, 30 feet long, bounded by two transverse bulkheads

extending up to the deck, is bilged, what will be (l) the new draught of
the vessel ; (2) the alteration of the metacentric height ?

Ans. 9' 8J" nearly ; increase nearly I foot.

5. A body with vertical sides, the plan being an isosceles triangle 150
feet long and 30 feet broad at tLc stern, floats in salt water at a constant

draught of 10 feet. Determine the displacement when floating at a

draught of 9 feet 6 inches forward, 10 feet 6 inches aft

(a) by using formula obtained in question (2) above ;

(6) by direct calculation, thus verifying (a).

6. Obtain a rule for finding the area between two consecutive equi-
distant ordinates of a curve when three are given. Show that the rule.

when used with levers, results in a moment error of X (intercept between

whole curve and chord), where h is the common interval.

7. The half-ordinates of the water-plane of a ship 320 feet long and of

9500 tons displacement are 1*0, 16-5, 25*0, 29*0, 30-4, 306, 30*5, 29*8,

28*1, 24*1, and 15*1 feet. Find the sinkage of the vessel on passing from
the Nore to the London Docks (63 Ibs. to cubic foot).

Ans. 3*9 inches.

8. If the vessel in the last question draws F 24' 3", A 27' 9" when at

the Nore, find her draughts forward and aft when in the docks, the centre

of buoyancy being 5*1 feet abaft middle ordinate and n feet below the

centre of gravity.
Ans. F 24' 7*", A 28' oj".

9. A cigar-shaped vessel with circular sections floats in salt water with

its axis in the surface. The semi-ordinates of the water-plane, 20 feet apart,

are, commencing from forward, o, 3, 6, 8, 7, 4, I feet respectively.

Find (i) Tons per inch immersion.

(2) Displacement in tons.

(3) Position of C.F from after end.

(4) Position of C.B. ,,

(5) Transverse BM.
(6) Position of C.B. below W.L.

Ans. (I) 276 tons; (2) 1577 tons; (3) 57 feet; (4) 567 feet;

(5) 2-84 feet ; (6) 2-84 feet.

Note. Some consideration should be given as to the simplest method

of doing this question ; (6) should be inferred from (5).

10. A vessel of constant triangular section is 245 feet long, 30 feet

broad at the water-line, and floats at 12 feet draught with vertex downwards.
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When a weight of 8 tons is moved 30 feet across the deck, a shift of

8 inches is caused on the bob of a lO-feet pendulum. Find the position
of the vessel's centre of gravity.

Ans. 1 7 '64 feet from base.

n. Assuming that a barge is of uniform rectangular section, 70 feet

long and 20 feet broad, construct the metacentric diagram to scale for all

draughts between 2 feet and 10 feet; state the draught for which the

height of the metacentre above the keel is lowest, and show that in this

condition the metacentre is in the corresponding water-plane.
Ans. 8' 2".

12. A right circular cone is formed of homogeneous material, and the

tangent of the semi-vertical angle is O'5. Show that this cone will float in

stable equilibrium with vertex down in fresh water so long as the specific

gravity of the material is greater than 0*5 1 2.

13. A long triangular prism of homogeneous material having the same
section as the above floats in fresh water with vertex down. Show that

it will float in stable equilibrium so long as the specific gravity of the

material is greater than 0*64.

14. A lighter has a constant section 16 feet at the base, 20 feet across

the deck,iand 10 feet deep. She floats in river water 35*7 cubic feet to the
ton at a constant draught of 8 feet, the length being 80 feet. The C.G.
when laden to this draught is 6 feet above the base.

Determine the angle of heel caused by taking 5 tons of the cargo out,
this cargo being at 6 feet from the base and 6 feet from middle line.

Ans. 2j to 2\ degrees.

15. What relation exists between the transverse and longitudinal
stability of a wholly submerged body ?

Discuss the question of submarine navigation from the point of view of

longitudinal stability.

1 6. A lighter with vertical sides is 132 feet long and 30 feet broad for

a length amidships of 80 feet. The ends are formed of four circular arcs

of 30 feet radius. The draught is 10 feet, and the C.G. at this draught is

7^ feet from the bottom. Determine the metacentric height.
Ans. 4-35 feet.

17. Prove the rule for the distance of the centre of gravity of a hemi-

sphere of radius a from the bounding plane, viz.
jj

. a, by finding the BM
of a sphere floating with its centre in the surface of the water. (See

question 17, p. 141.)

1 8. A ship of length 320 feet, breadth 50 feet, mean draught 19 feet,

has a displacement of 4400 tons. The tons per inch at the L.W.L. is

27, BM is 1 1 feet, and GM is 2-5 feet.

It is proposed to design on similar lines a ship with the dimensions

length 330 leet, breadth 51 feet, mean draught 19! feet. If G is the same
distance above the keel in both ships, what value of GM would you
expect in the new ship ?

(Use approximateformula on pp. 66 and in.) Ans. 2f to 3 feet.

19. A vessel of 700 tons displacement has a freeboard to the upper
deck of 6 feet. The C.G. is i foot above water, and the metacentre locus

is horizontal. A sea breaking over the bulwarks causes a rectangular area
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50 feet long and 20 feet wide on the upper deck to be covered with water
to a depth of I foot. Calculate the loss of metacentric height

Ans. 1-5 foot.

20. Show that for a vessel wall-sided in the neighbourhood of the

water-line, GZ = (GM + JBM tan2
0) sin at the angle of heel 9.

Use this formula to determine the metacentric height in the upright
condition of a box-shaped vessel, 200' X 35' X 10' draught, which is found
to loll over to an angle of 5 (see p. 173). Ans. 0-04 foot.

21. A tank, extending across an oil-carrying vessel, is 35 feet wide, 40
feet long, and 10 feet deep. It has an expansion trunk at the middle line

4 feet wide and 6 feet long. The vessel has a displacement of 2000 tons

in salt water, and a GM of 2$ feet, the C.G. being 10 feet above the

bottom of the tank.

Find the virtual metacentric height when the tank is half full and also

when filled. The density of the oil is 0*8 as compared with sea- water,
and the metacentric curve is horizontal.

Ans. (i) 1-54 foot ; (2) 3-19 feet.

22. ylt yv ytt y^ ys , and yt are six consecutive equidistant ordinates

of a plane curve : obtain the following expression for the area A of the

curve lying between yl
and yt ,

h being the common interval :

A =

23. A foreign vessel, whose form is not known, has a certain draught
at the Nore, the sea-water there being 64 Ibs. per cubic foot. Off Green-

wich, the water there being 63 Ibs. per cubic foot, it is noted that when
loo tons have been unshipped the draught of water is again what it was

at the Nore. What is the sea-going displacement of the vessel ?

Ans. 6300 tons.

24. A vessel 60 feet broad at water-line has the transverse metacentre

12 feet above C.B., the latter being 10 feet below water. Find the height
of metacentre above this water-line when

(a) The beam is increased to 62 feet at the water-line, and in this

ratio throughout, the draught being unaltered ;

() The breadths at water-line are increased as above, but the lines

fined so as to maintain the original displacement and to raise the

C.B. 0-4 foot. Ans. (a) 2'8 feet ; (b) 3-64 feet.

25. In a vessel whose moment to change trim one inch is M, tons per
inch is T, and centre of flotation from after perpendicular is e times the

length between perpendiculars, show that the position for an added weight

such that the draught aft shall remain constant is - feet forward of the

centre of flotation, and thus if the C.F. is at mid-length this distance is

M
2 . feet, or, approximately, one-ninth the length in a ship of ordinary

form.

26. Show that the distance forward of the after perpendicular at which
a weight must be added so that the draught aft shall remain constant is

given by moment of inertia of water-plane about the A.P. divided by the

moment ofwater-plane about the A.P.

27. A long body of specific gravity 0*5 of homogeneous material floats

in fresh water, and has a constant section of the quadrant of a circle of

10 feet radius. Determine the metacentric height when (a) corner upwards,
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(b) corner downwards, and (c) when between the positions (a) and (b).

Draw the general shape of the siability curve from zero to 360, starting

with the body corner upwards. (The C.G. of the quadrant is times the

radius from each of the bounding radii. Positions of stable and unstable

equilibrium occur alternately.)
Ans. (a} +2-33 feet ; (b) +2-33 feet ; (c) -0-36 foot.

28. Two ships of unequal size are made from the same model. Prove
that at the speed at which the resistance varies as the sixth power of the

speed, the same effective horse-power is required for both ships at the same

speed.

29. A vessel 375 feet between perpendiculars is designed to float at

21 feet F.P., 23 feet A. P. At this draught the displacement is 6500 tons

salt water, tons per inch 45, and centre of flotation 13$ feet abaft amidships.
The draught marks are placed on the ship 25 feet abaft the F.P. and

35 feet before the A. P. respectively. Estimate as closely as you can the

displacement when the draught marks are observed at the ship, 19' 6"

forward, 23' 10" aft, when floating in water of which 357 cubic feet

weigh I ton.

Ans. 6293 tons.

30. H.M.S. Pelorus is 300' X 36$' X 13$' mean draught, 2135 tons

displacement, and requires 7000 I.H.P. for 20 knots. On this basis

estimate the I.H.P. required for a vessel of similar form, 325' X 40' X 15!'
mean draught, 3000 tons displacement, at 21 knots speed. State clearly
the assumptions you make in your estimate.

Among others the following assumptions are made :

(1) For increased displacement caused by bodily sinkage, the I.H.P. varies as

displacement for the same speed.

(2) At the speeds mentioned in question, the I.H.P. is varying as the fourth power
of the speed.

Ans. About 10,600 I.H.P.

31. The following formula has been proposed for the E.H.P. of a

vessel at speed V knots, viz.

E.H.P. = ^ |/.
S . (V)

2 -" + b .

(

^- V'J

where S = wetted surface in square feet.

W = displacement in tons.

L = length in feet.

/= a coefficient for surface friction.

b = a coefficient varying with the type of ship.

A vessel 500' X 70' X 26^', draught 14,000 tons, is tried at progressive

speeds, and the curve of I.H.P. on base of speed shows the following

values, viz. at 10, 12, 14, 16, 18, 20 knots, the I.H.P. is 1800, 3100,

5000, 7500, 11,000, 15,500 respectively.

Assuming the above formula to correctly give the E.H.P., determine

the propulsive coefficients at the six speeds given.

(Take/= 0-009, * = '2 S = 1S'SJW x L as P- 262')

Ans. (10) 46-4%; (12) 47'i / ; d4) 47'3/ ; (i6) 48-5 /
;

(i8)48'9/o5 (20)49-8%.

32. Using the above formula for E.H.P. (with/= 0-009, b = o'2s),

determine the I.H.P. for speeds of 18 and 19! knots respectively of a
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vessel 350' x 53^' x 20' x 5600 tons, using propulsive coefficients of

45 / and 47* / respectively.
Ans. 7660 I.H.P. ; 9740 I.H.P.

33. Draw out the metacentric diagram for all draughts of a square log
of 2 feet side, floating with one corner down.

Supposing the log to be homogeneous, determine the limits between
which the density must be in order that it shall float thus in stable equi-
librium in fresh water.

Ans. Between 0*28 and 0*72.
34. A rectangular vessel is 175 feet long, 30 feet broad, 20 feet deep,

and floats at a draught of 8 feet, with a metacentric height of 5 feet. Find
the draught forward and aft, and the metacentric height due to flooding
an empty compartment between bulkheads 120 feet and 150 feet from the

after end. Ans. F. 13' 4!" ; A. 6' 7f" ; 4-2'.

35. In a wall-sided vessel, show that for an angle of heel 6 the co-

ordinates of the C.B. referred to axes through the C.B. in the upright
condition are x = BM, .tan 9 ; y = $BM . tan2 6. (BM, refers to the

upright condition.)

36. Using the above, show that a wall-sided vessel will heel to angle 6

by shifting a weight w a distance d across the deck, 6 being given by the

equation

the suffix o referring to the upright condition.

Thus, for a zero metacentric height the heel 9 is given by

Y wxd
tan = 2 .

37. Show that a wall-sided ship having an initial negative metacentric

height will heel to an angle of 9 = tan. /2 GM
Q, and will then have a

metacentric height of 2GM . /i + 2
GM = 2 ^^.

/\/ BM '

cos 6

38. Prove
(by using BM = -

J
that the C.G. of a segment of a circle

radius a, subtending an angle of 26 at the centre, is distant from the

centre -a. :-: r-^, and thus for a semicircle (
= -

)
the C.G.

3 v sin cos y 2j

is - from centre. (Area of segment is area of sector less area of

triangle, or a*0 a2 sin 6 cos 6.)

39. A vessel of 300 feet length floats at a draught of 12 feet forward,

15 feet aft. (Tons per inch 18 ; moment to change trim I inch, 295 tons-

feet ; C.F. 12 feet abaft midships.) It is desired to bring her to a draught
not exceeding 12 feet forward and aft. How could this be done?

Ans. Remove 350 tons 42^ feet abaft amidships (account is taken

of increase of mean draught due to change of trim. )

40. Draw a curve of displacement for all draughts of a cylindrical
vessel of diameter 20 feet and 150 feet long, and find, by using the curve,
the distance of the C.B. from the base when floating at a draught of

15 feet.
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41. Draw the curve of displacement of a vessel of 14 feet draught
having the following displacements up to water-lines 2 feet apart, viz.

2118, 1682, 1270, 890, 553, 272, 71 tons, and by it find the position of

the C.B. with reference to the top water-line. Suppose the tons per inch
is 18*56, check your result by Morrish's formula.

Ans. 5-45 feet.

42. Prove the rule given on p. 19 for the volume of a sphere, by using

Simpson's rules at ordinates, say, | the radius apart.

(An exact result should be obtained, because the curve of areas is a

parabola, which Simpson's rule correctly integrates.)

43. A box-shaped vessel 140 feet long, 20 feet broad, 10 feet draught
is inclined by shifting 7 tons 15 feet across the deck, and heels to an angle
tan- 1

(J). Find the metacentric height (a) accurately, (b) by ordinary
method.

Ans. (a) 0-42 foot, (b) 0*52 foot.

44. A long iron pontoon, of section 6 feet square and of uniform

thickness, floats when empty in sea-water, but lolls over in fresh water.

Find the thickness of the iron. (When the M curve is at mid-depth the

draughts are 1-268 foot and 4732 feet. Of these the curve drops for

increase of draught only in the former, so that for increase of draught as

occurs in fresh water there is a negative metacentric height).
Ans. J inch.

45. A solid is formed of a right circular cylinder and a right circular

cone of the same altitude h on opposite sides of a circular base radius r.

It floats with the axis vertical, the whole of the cone and half the cylinder
5 y4 21

being immersed. Prove that the metacentric height is
'~T~-jr-**

so that for stable equilibrium r must be greater than 0*934^.

46. A shallow-draught lightly built vessel is being launched. State
the nature of the strains on the structure that will be experienced as she

goes down. (From this point of view, the practice of some firms in

launching torpedo-boat destroyers is of interest.)

47. A vessel has a list to starboard due to negative metacentric height
when upright. It is found that the addition of weights in the 'tween decks
on the port side increases the list to starboard. How do you explain this ?

48. If a swan or duck is floating in a pond, and reaches down to the

bottom for food, why does the bird find it necessary to work with her feet

to keep the head down and the tail up ?

49. When floating in water, why is it necessary to keep the arms
below? If the arms are raised out, what happens, and why?

50. If a certain-sized tin is placed in water it will not float upright.
When a certain quantity of water is poured in it floats upright in stable

equilibrium. State fully the conditions of stability which lead to this

result, bearing in mind the large loss of metacentric height due to the free

surface of the water inside.

51. A cube 12 inches side weighs 10-4 Ibs. Investigate the stability
in fresh water, (a) with two faces horizontal, (b) with two faces only
vertical and one edge downwards, (c) with a corner down.

52. In going through the Caledonian Canal, the writer has noticed

that the level of the water falls amidships. How do you account for this?

53. If the water in question 36, Chap. III., goes right away with the

tide, and the mud is very deep, investigate the stability of the vessel,

the original metacentric height being 4 feet.

Ans. Negative GM of foot.
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54. In a box-shaped vessel, 200 feet long, 30 feet wide, 10 feet draught,
and having its C.G. li'Sfeet above the keel, a central transverse com-

partment 50 feet long (assumed empty) is opened up to the sea. Will
this vessel be stable after damage and free from danger in still water with
a row of sidelights open, the lower edges of which are 1 5 feet above the

keel?
The GM when intact is 07 foot, and when damaged is O'5 foot, and

new draught is 13,} feet, and in the final condition the vessel is all right, but

there are intermediate conditions to consider, and the following table gives
results of calculations with various depths of water in the middle com-

partment :

Height of water in

compartment in !eet.

I

2

3

6

Draught of
water in feet.

Metacentric height
in feet

-0-93
-071

-0-32
croi

+o'34
+0-5

Thus in the early stages the metacentric height is negative, and the

ship will "loll," and if the hole through which the water enters is of

comparatively small dimensions there would be an appreciable time for

the list to develop.
The above is taken from Prof. Welch's paper from the N.E. Coast

Institution, 1915, on "The Time Element and Related Matters in some
Ship Calculations," to which the reader is referred for a further develop-
ment of the subject.

SOLUTION OF QUESTION No. 21, CHAP. II., AND No. 36, CHAP. III.

The author has had a number of requests as to the solution of these

examples, and as they illustrate an important principle the solution is given
below.

FIG. 156.

The metacentre when floating freely is readily obtained, viz. 16 feet

from the base line.

When the water level sinks 6 feet, the lower portion sinks into the

mud, say x feet. Then, since the mud has a s.g. of 2, we take in the area
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Owl twice. We equate the new displacement to the old, or

(x + 6)
2 + *2 = 144

from which x = 4*94 feet.

For a small inclination one half the buoyancy of the portion Ow/will
act through m the metacentre of Owl, and the buoyancy of OWL' will

act through M' the metacentre of OW'L', the portion Owl then being
included twice. Om = 6'59' and OM' = 14*59'. The total buoyancy will

act through a metacentre M such that

(io'94
2 x I4'59) + (4'94

2 X 6-59) = I22 x OM,
from which OM = 13 '2 feet.

That is, the new metacentre is 2 '8 feet below the original metacentre, and
as the C.G. of the ship has not been affected, the loss of metacentric height
is 2| feet, about.
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TABLES OF LOGARITHMS, SINES, COSINES,

AND TANGENTS, SQUARES AND CUBES.

LOGARITHMS. For some calculations considerable trouble is

saved by using logarithms. One instance of this has been already

given on p. 317. A table of logarithms is given on pp. 434, 435,

to four places of decimals, which gives sufficient accuracy for

ordinary purposes. To the right of the table are given the

differences for I, 2, 3, etc., which enables the logarithms of

numbers of four figures to be obtained.

Thus log 2470 = 3*3927. The decimal part is obtained from

the table, the whole number being 3, because 2470 is between 1000

and 10,000 (log 1000 = 3, log 10,000 = 4). The log of 2473 is

obtained by adding to the above log the difference in the table for

3, viz. 5, i.e.

log 2473 = 3*3932.

The following are the principal relations in logarithms, viz. :

log (M x N) = log M + log N

log
(jj)

= log M -logN

log (M)
w = n . log M

logVM = -
. log M

Thus multiplication is turned into addition, division is turned

into subtraction, the raising to a power is turned into multiplication,

and the taking of a root is turned into division.

The decimal portion of a logarithm is always kept positive, and
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the following are the values of the logarithm of the number 239
for various positions of the decimal point :

log 23,900 = 4-3784

log 2,399 = 3-3784

log 239 = 2-3784

log 23-9 = 1-3784

log 2-39 = 0-3784

log 0-239 = - i + 0-3784 = [-3784

log 0-0239 = - 2 + 0-3784 = 2-3784

log 0-00239 = -
3 + o'3784 = 3'3784

Example. To find the cube root of 10*75 :

log 1075 = 1*0315

log t/(iQ75) = J (1-0315)
= 0-3438

0-3438 = 0-3424 + 0-0014

.*. V 10 '75 = 2*207

Example. To find the value of (5725)$:

log 5725 = 07578

log (5725)* = f (07578)
= 2-6523

/. (5725)2 = 449'i

Example.--!* find the value of <9230 *> ('4'o8)

5267

log (9*31)1 = (3-9652)
= 2-6435

log (i4-o8)
3 = 3 (1-1485)
= 3-4455

log 5267 = 37216

.-. Iog
[(9*3.)3x(

14

-o8)*j
= 2 6435 + 3-4455

- 37-6

The number of which this is the log is 233

. (9231)* x (I4'o8)
3

=
5267

Example. Find the value of 512 x 50*5 x 0*0037.

log 512 = 27093
log 50-5 = -7033

log 0-0037 = 3-5682

log (product) = 1-9808
or product required = 95 66
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Example. Find the value of Vo'oo765.

log 0*00765 = 3*8837

= 4 + 1-8837

log Vo-00765 = i + 0*4709

/. Vo'00765 = 0*2957

NAPIERIAN OR HYPERBOLIC LOGARITHMS.

These logarithms, which are also termed "natural," are

calculated to the base e - 2718, and the following relation holds :

log.N = 2*3 log10N

Ordinary logarithms are calculated to the base 10.

TABLE OF SINES, COSINES, AND TANGENTS.

On pp. 436, 437, is given a table showing the values of the

trigonometrical ratios, sines, cosines, and tangents, of angles up
to 90, to three places of decimals, which will be found sufficiently

accurate for ordinary purposes.

2 F
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TABLE OF SQUARES AND CUBES OF NUMBERS
UP TO 50, RISING BY 0-05.

The following table has been prepared, as squares and cubes
of numbers are frequently required in ship calculations. Ordinates

usually will not be measured more accurately than to the nearest

0*05 ; in most cases the nearest decimal point is sufficiently accurate.

The squares and cubes are taken to the nearest whole number,
which is all that is necessary in ship calculations.

,
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Numbers.
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APPENDIX C

SYLLABUS OF EXAMINATIONS IN SUBJECT u.

NAVAL ARCHITECTURE

The students should be encouraged to make good rough
sketches of the different parts of a ship's structure approximately
to scale, using squared paper ; they should also be impressed with

the necessity of noting any detail of work brought before their

notice daily in the shipyard. Questions will be set in the exami-

nation which require rough sketches of parts of a vessel to be

given from memory.
If the class is held in an institution which possesses a testing

machine, the students ought to be allowed to use it occasionally to

test samples of materials used in shipbuilding.

All students should be provided with suitable scales, set

squares, and ship curves, and candidates should bring these

to the examination.

Table of logarithms, functions of angles, and useful constants

will be provided, and candidates will be restricted to use of these

tables, and will not be allowed to bring with them into the

examination room any other mathematical or logarithm tables.

Slide rules may be used.

Compulsory questions may be set in either of the examination

papers.

LOWER EXAMINATION

I. PRACTICAL SHIPBUILDING. The tests to which the various

materials used in shipbuilding are subjected, and the defects to

which those materials are liable ; the tools and appliances used in

ordinary shipyard work, and the general arrangement of blocks,
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staging, derricks, etc., used on a building slip ; plans of flat and

vertical keels, inner bottom, shell, deck and other plating;

framing, beam, keelson, and stringer plans ; watertight and other

bulkheads ; ceiling and wood decks ; pillaring arrangements to

secure clear holds, and details of cargo hatchways to meet Lloyd's

Rules ; rudders, stern frames, and spectacle arrangements for

twin-screw ships ; bilge keels ; supports to engines, boilers, and

shafting ; masts and derricks ; precautions necessary to prevent
deterioration of the hull of a ship while building, and while on

service
;
method of docking ships, how they are placed in position

and supported.
II. LAYING OFF. A knowledge of the work carried on in the

Mould Loft for the purpose of fairing a set of lines, including
traces of keelsons and longitudinals, edges of shell plating, tank

margins, ribbands, etc., and transferring the frame and other lines

to the scrive board ; lifting the bevels and constructing round of

beam mould ;
a ship's block model and the information necessary

for its construction ; obtaining the dimensions for ordering the

shell plating, frames, beams, floors, inner bottom plating, etc. ;

making and marking ribbands
; fairing the edges of shell plating

on the frames ; making templates or skeleton patterns for stem,

sternpost, propeller bracket forgings or castings.

III. DRAWING. Plotting of curves of displacement, tons per
inch immersion, I.H.P., etc., from given data. A rough freehand

dimensioned sketch may be given at the examination, requiring
candidates to make finished scale drawings, and candidates will

be expected to be able to draw, from their own knowledge, the

fastenings suitable for connecting together the parts which are the

subject of the example.
IV. SHIP CALCULATIONS. Calculation of the weights of

simple parts of a ship's structure ; spacing and strength of iron

and steel rivets ; calculation of the strength of the simple parts
of a ship's structure, such as tie plates, butt straps and laps ; tons

per inch immersion ; change of trim, and moment to change trim;

change of trim due to moving weights on board, and that due to

the addition or removal of weights ; the principles and use of

Simpson's and other rules for finding the area and position of the

centre of gravity of a plane area, and for calculating the position of

the centre of buoyancy ; graphic methods of finding displacement
and position of the centre of buoyancy ; curves of displacement
and of tons per inch immersion

;
the fundamental conditions to be

fulfilled in order that any body may float freely and at rest in still

water ; centre of flotation, metacentre, metacentric height, stable
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and unstable equilibrium ; definitions of block, prismatic, water-

plane, midship area, and other similar coefficients.

The questions will be of the same type as those set in Stage 2

of previous examinations.

HIGHER EXAMINATION

I. PRACTICAL SHIPBUILDING. The structural arrangements

necessary to resist longitudinal and transverse stresses to which

ships are liable in still water and amongst waves, and the arrange-
ments to resist local stresses ; description and rough hand sketches

ofdetail fittings of ships, such as anchor and capstan gear, steering

gear, and other appliances used in working a ship ; davits and

fittings in connection therewith ; ventilating and coaling arrange-
ments ; pumping and draining ; the fundamental types of vessels

and modifications thereto, the distinctive features of such vessels

and consequent effect on freeboard
; methods of determining the

sizes of structural parts and of detail fittings making out midship
sections to the Rules of the principal classification Societies for

various types of vessels ; methods of fitting up refrigerating spaces
for shipment of frozen and chilled meat, fruit, etc.

; construction of

oil fuel bunkers, and of vessels for carrying oil ; launching arrange-

ments, and the diagrams and curves generally used in connection

therewith.

LAYING OFF. Expanding the plating of longitudinals and

margin plates by the geometric and mocking up methods
; ex-

panding stern plating, rudder trunking, and mast plating ;

obtaining the true shape of a hawse hole in the deck or shell, and

similar practical problems ; constructing and fairing the form

of a twin screw bossing.

III. SHIP CALCULATIONS. Displacement sheet and arrange-
ment of calculations made thereon ; proofs of Simpson's and other

rules for obtaining areas and moments ; displacement and dead-

weight scales ; approximate and detailed calculations relating to

the weight and position of the centre of gravity of hull ; calculations

of weight and strength of parts of a ship's structure such as decks,

bulkheads, framing, side and bottom plating, etc., also the strength

of fittings such as boat davits, derricks, etc. ; coefficients of weight
of hull, outfit, and machinery for a few of the principal types of

ships, also coefficients of position of the centre of gravity of the

ships ;
curves of loads, shearing forces, and bending moments for

a ship floating in still water, and amongst waves, also equivalent

girder and stress in the material ; calculations of the positions
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of transverse and longitudinal metacentres
; consideration of the

curves of centres of buoyancy, centres of flotation, and pro-meta-

centres; the construction and use of metacentric diagrams;
Attwood's and Moseley's formulae, and methods of calculating

stability based thereon ;
the construction and use of curves of

stability ; inclining experiment and the precautions that must

be taken to ensure accuracy ; change of draught and trim due

to passing from fresh into salt water and vice versa ; effect upon
trim and stability due to flooding compartments of a ship ; effect

of free surface on the stability of vessels carrying liquid cargo ;

methods of determining the size of rudder-heads, and the stresses

on rudders balanced and unbalanced ; resistance of ships ;

Froude's experiments on skin friction ; Froude's law of comparison
for vessels at corresponding speeds ; methods of calculating the

horse-power to propel a vessel of known form at a given speed ;

effective horse-power, propulsive coefficient and Admiralty con-

stants, and values of the two last in typical cases ; speed of ships

on trial, methods adopted and precautions necessary to obtain

accurate speed data
; progressive trials and their uses ; elementary

considerations of the oscillations of ships in still water and

amongst waves; definitions of a "stiff" and "steady" vessel,

and elements of design affecting these qualities ; tonnage of ships,

how measured, etc.

The questions in this stage will correspond generally in type
with those set in the Stage 3 examination held under the previous

regulations, but the standard will be higher, both for a Pass and

a First Class.

2
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1902.

ELEMENTARY STAGE.

General Instructions.

You are permitted to answer only eleven questions.

You must attempt No. II. Three of the remaining questions
should be selected from the Calculations \ and the rest from the

Practical Shipbuilding section.

PRACTICAL SHIPBUILDING.

In Questions I to 9 inclusive your answers may be given in

reference to any type of ship. The type selected should be named
in each question, and the scantlings given in each case.

1. Make a rough sketch showing the cross-section, on a scale

of about ^ the full size, of the flat keel plate and its connections to

the vertical keel plate and to the garboard strake. (6)

2. What is the spacing of the rivets in the edges of the keel

plate and the garboard strake, and in the butt straps of the vertical

keel plate ? (8)

3. Make a sketch showing, for a transverse frame, a cross-

section (a) through a floor, and (b) through a frame above the

floor. (8)

4. Make a sketch showing the section of a stem connection to

ordinary outer bottom plating near the water-line. (6)

5. Make a sketch of the cross-section of the arms of an A
bracket or strut of a twin-screw ship, giving dimensions. (6)

6. Make a sketch showing a horizontal section through a

transverse water-tight bulkhead. (8)

7. Make a transverse section through the sheerstrake and upper
deck stringer, showing the rivet connection of these plates to the

adjacent strakes and to each other ; also the beam and its rivet

connection to the frames. (8)
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8. Sketch one method of constructing the heads and heels of

pillars, showing the rivet connections. (8)

9. Sketch a butt strap connection of outer bottom plating ;

show the spacing and size of rivets in it. (8)

10. Sketch a disposition of butts in the bottom planking of a

sheathed ship, giving specimens of the positions and sizes of the

fastenings. (10)

DRAWING.

11. Enlarge sketch No. n to a scale of twice that upon which

it is drawn. (This sketch was a portion of the after body of a twin-

screw ship, showing frame lines in way of shaft.) (16)

CALCULATIONS.

12. What is the relation which must exist between the weight
of a body floating freely at rest in a liquid and the volume of its

submerged part ? A body of uniform circular transverse section

floats freely in sea-water so that the centres of the circular sections

are in the water surface. What will its weight be if its length is

100 feet and its diameter 20 feet ? (8)

13. Find the area of a half of a ship's water-plane of which the

curved form is defined by the following equidistant ordinates

spaced 12 feet apart :

o-i, 5-1, 7-17, 875, io-i, 9-17, 8-05, 6-4, o-i feet. (6)

14. By what number would you have to divide the area in

square feet of a water-plane in order to obtain the number of tons

weight it would be necessary to add to the ship in order to increase

her draught one inch in salt water ? (6)

15. What is the relative position of the centre of gravity of the

weight of a body floating freely at rest in water and the centre of

gravity of the volume of the submerged portion of the body ! What
is the condition necessary for stable equilibrium ? (8)

1 6. What are the weights of a cubic foot of steel, yellow pine,

and copper? What is the weight of a hollow steel pillar 10 feet

long whose external diameter is 5 inches and internal diameter

4 inches ? What is the diameter of a solid pillar of the same

weight? (10)
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ADVANCED STAGE.

Instructions.

You are permitted to answer only twelve questions.

You must attempt Nos. 22 and 28. The remaining questions

may be selected from any part of the paper in this stage, provided

that one or more be taken from each section, viz. Practical Ship-

building, Laying Off, and Calculations.

PRACTICAL SHIPBUILDING.

Questions 17 to 22, inclusive, may be answered with reference

to any one type of ship to which the question may apply, but each

type referred to must be named in the question in which it is dealt

with.

17. Where is the material of a ship's structure most severely

stressed, and under what conditions ? (10)

1 8. Give a sketch showing the disposition and size of rivets in

a buttstrap connection of (i) a sheerstrake, (2) a weather-deck

stringer bar. Sketch a bulkhead liner. (13)

19. Sketch the transverse framing in a double bottom, giving

the scantlings and the disposition and sizes of the rivets. (14)

20. Describe the operation of framing a ship from the beginning
of handling the unmarked plates and bars to the time the framing

is faired. (20)

21. Sketch the blocks upon which a ship is built, giving the

spacing and sizes of the blocks. (10)

22. Sketch a rudder, giving sizes
;
also give the sizes and dis-

position of rivets, pintles, and bolts. (13)

23. What is the breaking stress and elongation per cent, in 8

inches of mild steel ? Give the same with reference to any high-

tension steel, and name the class of vessel in which it is used.

(10)
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24. What is the relative elasticity of yellow pine and steel in

combination in a deck in compression and extension ? Sketch an

ordinary disposition of butts and bolts in a wood deck, estimating

the effective area in compression and also in extension. (13)

LAYING OFF.

25. What information is given to the mould loft to enable the

loftman to lay down the lines of a ship ? (10)

26. Show how to obtain the development and the projection in

the sheer and half-breadth plans of a diagonal. Explain how to

obtain the ending at the stem in the developed diagonal. (18)

27. Show how to find the point where a straight line not parallel

to any of the planes of projection (the sheer, half-breadth, or body

plan) would cut the surface of the ship. (20)

DRAWING.

28. What does Sketch No. 28 represent ? Enlarge it to twice

the scale upon which it is drawn. (This sketch was the sternpost
and rudder of a screw ship in profile.) (25)

CALCULATIONS.

29. Calculate the volume and position of centre of gravity,

horizontally and vertically, of a form given by the following
ordinates :

ft. ft ft.

No. i W.L. ... o'i 7*17 io -

i 8*05 o'i

No. 2 ... o'i 5'66 8-0 6*46 o'i

No. 3 ... o'i o'i o'i o'i o-i

Horizontal interval, 24 feet ; vertical interval, 3 feet.

(18)

30. The areas of transverse vertical sections of a solid are 1*2,

61-2, 86'o, 121-0, 96-6, 76-8, 1-2 square feet, at distances apart of

12, 12, 24, 24, 12, and 12 feet, respectively. Find the volume and

longitudinal position of the centre of gravity of the solid. (10)
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31. What is the transverse metacentre of a ship in the upright
position ? What is the value of the distance between this meta-
centre and the centre of buoyancy ? Find the value of this distance

for the largest water-line given in Question 33 (assuming a value

for the displacement and position of centre of buoyancy if Question

33 has not been attempted). (18)

32. A hold beam is formed of two beams, each formed of a

-inch plate 12 inches deep, and four angles 4" x 4" x "
I the

beams are connected together by a top plate inch thick, extending
from the fore edge of the flange of the forward beam to the after

edge of the flange of the after beam. Find the weight of 30 feet of

such a beam. The frame spacing is 24 inches. (18)

HONOURS. PART I.

Instructions.

You are premitted to answer only fourteen questions. You
must attempt Nos. 43 and 48 ;

the remainder you may select from

any part of the paper in this stage, provided that one or more be

taken from each section, viz. Practical Shipbuilding, Laying Off,

and Calculations.

PRACTICAL SHIPBUILDING.

Questions 33 to 42 may be answered with reference to any
suitable type of ship, but the type must be mentioned, and the

principal figured dimensions inserted.

33 Make a sketch of a stern-frame of a twin-screw vessel.

(20)

34. Make a sketch of the method of making the following water-

tight in passing through a bulkhead :

(i) A bulb tee ; (2) a keelson formed of a plate and four angle-

bars. (13)
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35. Make a sketch of a boiler hatch-coaming, showing the con-

nection to the half ^ earns and to the casing-plates. Show what
method is adopted to strengthen the deck at the corners of the

hatch. (15)

36. Make a sketch of a right and left-handed screw steering-

gear, giving the sizes and materials of the different parts. Show
the method of working by hand as well as steam. (21)

37. Sketch the stowage of an anchor, showing the position of

the leads to the capstan and cathead. (21)

38. Sketch the arrangements made for the launch of a ship.

State the declivity and camber of the launching ways, and the

declivity of the keel. (21)

39. Describe the pickling process for steel plates. What pro-
tective materials are put upon the various parts of a steel ship ?

(16)

40. Describe briefly the steam pumping and drainage arrange-
ments of a ship, detailing where each steam-pump draws from and

delivers to. (21)

41. Make a sketch showing a section of a steel mast, and show
a disposition of butts of plates, with arrangements of rivets in the

buttstrap. (16)

42. Make a sketch of a pair of davits, giving the cleats and

blocks attached to it. Show the method of securing the boat in-

board, and state how the position of the davits is fixed in relation

to the boat. (21)

LAYING OFF.

43. Make a sketch of a body plan on a scrive-board, showing
all the lines that are put upon it, stating what each line is for.

(22)

44. Show how you would obtain the exact, form of the projection

of the intersection of a large conical pipe, with the outer bottom-

plating of a ship, the axis of the. cone not being parallel to either

the sheer, half-breadth, or body plan. (21)

45. Given the body plan of a ship without any bossing out in

way of the shaft, describe how you would obtain the form of this

bossing in the case of a twin-screw ship. (21)
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CALCULATIONS.

46. Find the displacement up to the 6-feet and lo-feet water-

lines of a ship whose form is defined by the following :
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tons to trim ship one inch are 400, find the change of draft forward

and aft caused by moving 30 tons through 200 feet in a fore and

aft direction. (21)

51. A barge 100' x 20' x 10' of rectangular section, is formed

of -inch plating on ends, bottom, sides, and deck, and has frames

and beams of 4^" x 4" x ", spaced 20 inches apart. The ends

have stiffeners 2 feet apart, of the scantlings of the frames. A floor-

plate, 12" x ", is on every frame. Find the weight of the hull,

assuming that there are no hatches. Suppose the barge to have

weights of 10 tons at 10 feet from the stem, 15 tons at 25 feet, 20

tons at 50 feet, 30 tons at 75 feet. Find the longitudinal position
of the centre of gravity of the loaded barge. (30)

HONOURS. PART II.

Instructions.

You are not permitted to answer more ihanfvurteen questions.

NOTE. No Candidate will be credited with a success in Part

II. of Honours who has not obtained a previous success in Honours

of the same subject.

Those students who answer the present paper sufficiently well

to give them a reasonable chance of being classed in Honours,
will be required to take a practical examination at South Kensing-
ton. Honours Candidates admissible to this Examination will be

so informed in due course.

52. State and prove Simpson's First Rule. State Tchebycheffs
Rules for either three, five, or seven ordinates. (25)

53. Prove that in a curve of loads of a ship floating at rest, the

integral of the area of the curve from one end up to a chosen point

gives the shearing force at that point, and that the integral of the

curve of shearing forces over the same part gives the bending at

the chosen point. (25)

54. Suppose a curve of buoyancy to be a curve of versed sines,

and the corresponding curve of weights to be a common parabola,
whose axis is vertical and at the middle of the length. Find the

form of the curves of shearing force and bending moment. (33)

55. State and prove Atwood's formula. (21)

56. Describe any method of obtaining a cross-curve of stability.

(25)
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57. Find the effect upon the draught of water forward and aft

of opening to the sea one per cent, of the length of a vessel of

rectangular section at any part of the length, supposing this one

per cent, to be confined between transverse water tight bulkheads.

Explain how the deductions from this result can be made use of

to determine the spacing between water tight bulkheads, which

shall not be exceeded, in order that when a compartment is flooded,

the draft in no case shall exceed a certain specified amount. (33)

,58. If B and B
l
be respectively CB's in upright and inclined

position, and R be the foot of the perpendicular from B on to the

vertical through B^ in this inclined position, show that B\R is the

integral of BR between the upright and the angle of inclination.

Show from this how a curve of CB's can be obtained from a curve

of GZ's. (25)

59. A vessel of uniform rectangular section is launched parallel

to her keel. What is the form of the curve of tipping and lifting

moments, supposing the ship to be deep enough to prevent the

upper deck from being immersed ? Suppose such a vessel 100 feet

long, 24 feet wide, having its CG at the middle of the length to be

launched at a slope of one inch to the foot, with two feet of salt

water over the end of the ways, and with a launching weight of 100

tons. What is the maximum pressure on the fore end of the ways

(assumed to be at the fore perpendicular) ? (43)

60. Suppose a vessel to be instantaneously floating on the crest

of a wave of her own length, and of height equal to one-twentieth of

the length. What stress would you expect to find with all coal

burnt out in

(1) a battleship of 14,000 tons
;

(2) a high-speed Atlantic liner ;

(3) a torpedo-boat destroyer ?

Give figures for the stress when in the hollow of the same wave with

bunkers full. (25)

61. Why would a trochoidal wave cause less stress than that

determined in the preceding question? Give results of any
calculations you know of, in which the difference due to the wave

not being actually at rest is taken into account. (25)

62. Prove that in a ship, whose moment of inertia about a

transverse axis through the midship section is the same for the

fore end as for the after end, the pitching does not alter the bend-

ing moment at the midship section. (25)

63. Find the maximum stress upon a section of a vessel floating

upright in still water, and subjected to a bending moment of 1000
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foot-tons. The section is rectangular, 20 feet wide, 10 feet deep,

and has
"
plating on deck, bottom, and sides.

Suppose the vessel to be inclined at some known angle, how
would you find the maximum stress ? (33)

64. What is the Admiralty speed coefficient ? What is its value

for the vessels named in Question 60 at full speed? How does it

vary with speed? What is its value for sea work as compared
with trial trips ? (33)

65. A model 12 feet long, having a displacement of 1000 Ibs.,

has a resistance of 3 Ibs. at 5 feet per second. Find the effective

horse-power necessary to drive a vessel of the same form 192 feet

long at its corresponding speed. Assume the wetted surface of the

model to be 30 square feet, and the frictional resistance of a plane

12 feet long at 5 feet per second to be 0*07 Ib. per square foot, and

that of a plane 192 feet long to be o'8 Ib. per square foot at 12

knots. (25)

66. What conditions should be fulfilled in a ship to make her

easy in her rolling at sea ? (25)

67. What is a curve of extinction? How can it be obtained

experimentally? What can be determined from it in relation to

the resistance to rolling of a ship ? (25)

68. What is the chief cause of vibration in a steamer ? What
are the subsidiary causes ? What precautions are taken to avoid

these ? (25)

1905.

STAGE II.

Instructions.

You are permitted to answer only eight questions.
You must attempt Nos. 32 and 35. The remaining questions

may be selected from any part of the paper in this stage, provided
that one or more be taken from each section, viz. Practical Ship-
building, Laying Off, and Calculations.

PRACTICAL SHIPBUILDING.

21. Sketch a good disposition of butts for outer bottom plating,
assuming your own spacing of frames and length of bottom plates,
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stating the spacing of frames and length of plates you have
assumed. (20)

22. For what purposes are "
liners

" and " bulkhead liners "

fitted in ships ? Describe a system of construction in which

ordinary liners are not necessary. Sketch a bulkhead liner. (20)

23. Sketch and briefly describe any efficient type of steering

gear. (20)

24. State what parts of a vessel are most effective in resisting

longitudinal stresses, and give the reasons for your answer.

(25)

25. Sketch and briefly describe the construction of a steel mast,

stating the size of mast, scantlings, and size and pitch of rivets.

(20)

26. Show by sketches how a modern hawse pipe is secured to

the structure of a ship. Of what materials are hawse pipes made,
and how is the diameter determined ? (20)

27. How is a large transverse watertight bulkhead plated, stiff-

ened, and secured ? (25)

28. State the tests made to ensure that either large or small

steel castings, and steel plates are fit for use in shipwork. Describe

how the mill-scale formed on steel plates during manufacture can

be removed. (20)

LAYING OFF.

29. Briefly describe the contracted method of fairing the body.
If the floor be of small length, what precautions are necessary when

fairing a long ship ? (20)

30. How would you obtain the lines of the inner bottom on the

floor, and fair them ? How would you arrange and fair the plate

edges ? (20)

31. Describe how an account is obtained of the outside plating

of a steel ship in order that the plates may be demanded from the

manufacturer. What margin would you allow at the edges and

butts ? (25)

DRAWING.

32. What does the given sketch represent? It is drawn on a

scale of
"
to i foot

;
draw it in pencil on a scale of

"
to I foot.

(35)

CALCULATIONS.

33. The tons per inch immersion of a ship at seven equidistant

water-lines 3 feet apart are respectively 31-3, 30-2, 28-5, 26-4, 23 9,

19-6, and 14-2. Find the displacement and the vertical position of
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the centre of buoyancy. The appendage below the lowest water-

plane to be neglected. (22)

34. What conditions have to be fulfilled in order that any body

may float freely and at rest in still water ? What is the condition

necessary for stable equilibrium ? (20)

35. State Simpson's second rule.

The equidistant half-ordinates of the load water-plane of a ship

in feet are o'6, 2*9, 9-1, 15*6, i8'o, 187, 18-5, 17-6, 15-2, and 67

respectively, and the length of the ship is 288 feet. Find the area

of the load water-plane and the longitudinal position of the centre

of gravity. (25)

36. Describe the process known as the "graphical process,"

used for finding the displacement and centre of buoyancy of a ship.

(23)

STAGE III.

Instructions.

You are permitted to answer only eight questions. You must

attempt No. 51, and one other question at least should be selected

from the Calculations.

PRACTICAL SHIPBUILDING.

41. To what stresses is the hull structure of a ship subjected ?

Describe how they are set up, and the provision made to meet
them. (35)

42. Describe briefly the principal pumping and draining arrange-
ments of a large ship, naming the type of ship selected. (35)

43. Roughly sketch the midship section of- a vessel, giving

scantlings. Name the type of vessel selected. (35)

44. Sketch and describe the usual methods of constructing and

fitting watertight sliding doors. How are they opened and closed ?

(35)

45. Describe, with sketches, the construction and uses of the

following shipyard machines, viz. :

(a) Plate bending rolls.

(b} Punching and shearing machine.

Show in detail the construction of the latter machine in way oi

the punch. (35)

46. Sketch and describe the special features of the general

arrangement and detail construction of the hull of an oil steamer.

(35)
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47. Sketch and describe the construction of a bridge. How is

it supported and stiffened against rolling strains ? Enumerate the

fittings generally placed on the bridge, and show how they are

arranged. (35)

48. Describe how the scantlings of a ship of known type and
dimensions are determined by Lloyd's Rules. What portions of

the hull structure are determined by the ist and 2nd numbers

respectively ? (40)

LAYING OFF.

49. Describe how the line of centre of shaft is got in on the

floor, and the body faired into the shaft tube of a twin screw ship.

(35)

50. How would you obtain a correct mould for a longitudinal,

or tank margin plate, which has considerable twist and curvature ?

What marks would be placed on the mould for the information

and guidance of the workman ? (35)

CALCULATIONS.

51. Calculate the displacement and vertical position of the

centre of buoyancy of a vessel for which the half-ordinates are

given below, the distance between the sections being 14 feet,

and the keel appendage being 2'6 tons, with centre of buoyancy

4-8 feet below the 5' 6" water-line.

(45)

Sections.
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The areas of a ship's sections at parallel water-lines 3 feet apart

are 9600, 9500, 9000, 7700, 5000, and 2000 square feet. Neglecting
the volume below the lowest section, find the tons per inch at each

water-plane, and plot the curve of tons per inch. Find also the

total displacement. (35)

54. What are the ultimate shearing and tensile stresses of steel

rivets and plates respectively ?

Two tie plates 24" wide by f" thick, are connected together by
a lapped joint. Show by calculation the number and sizes of rivets

required, indicating how they should be arranged in order that the

butt and plate may be nearly of equal strength. (35)

55. Define "centre of flotation,"
" centre of buoyancy," "meta-

centre," and
" metacentric height."

Determine the distance between the centre of buoyancy and

the transverse metacentre of a vessel 72 feet long and 95 tons

displacement, floating at a water-plane whose half-ordinates are,

0-8, 3'3, 5*4, 6-5, 6-8, 6-3, 5-1, 2-8, and 0-5. (40)

56. A fore-and aft watertight bulkhead, extending from the

tank top to main deck, is 50 feet long and 24 feet deep. Find the

total weight of the bulkhead, including stiffeners, connecting angles,

etc., having given the following particulars :

Plating jV thick for the lower half depth, and J" above, with

single-riveted edges and butts ; stiffeners alternately 6" x 3" x 3^"
zed bars of 15 Ibs. per foot run, and 3^" x 2^" angle bars of 7 Ibs.

per foot run, spaced 2 feet apart ; bounding angles 3^" x 3" of

8'5 Ibs. per foot run. (35)

HONOURS.

Instructions.

You are not permitted to answer more than eight questions.
NOTE. No Candidate will be credited with a success in this

examination who has not obtained a previous success in Stage II7.

or in Honours, of the same subject.

61. State and prove Simpson's second rule for approximating
to the area and centre of gravity of a plane surface.

The half-ordinates of a water-plane are 0*2, i'8, 4'8, 7*4, 5*5, 2*3,

and 0*6 feet. The ordinates are spaced 23 feet apart. Find the

distance of the centre of gravity of the half water-plane from the

middle line. (40)
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62. Obtain an expression for the height of the metacentre above

the centre of buoyancy in a floating body.
The half ordinates of the water-plane of a vessel, 27^ feet apart

are o'i, 6*9, io'o, 10-5, 10*1, 7*2, and o'i feet respectively. Deter-

mine the transverse metacentric height, having given that the dis-

placement to the water-plane (salt water) is 275 tons, and that the

centre of gravity of the vessel is 5 feet above the centre of buoyancy.
State the values of the metacentric heights in any two types

of ships with which you are acquainted, naming the types of vessels

selected. (50)

63. The maximum speed of a vessel is 17 knots, and the rudder,

which is 12 feet broad and approximately rectangular in shape, has

an area of 200 square feet and a maximum working angle of

35 degrees. Estimate the diameter required for the rudder head

if made of cast steel.

How does the case of a balanced rudder differ from that of an

ordinary one in the case (a) when the ship is going ahead, and (b}

when she is going astern ? (45)

64. What are "
cross curves of stability

"
?

Describe fully how you would construct a set of cross curves of

stability for a vessel of known form. Explain clearly the great

advantages of having stability calculations recorded in this form.

(45)

65. Show how you would estimate the angle of heel to which

a ship under sail in still water would be driven, when struck by a

squall of known force, (a) when the ship is upright and at rest ; and

() when the ship has just completed a roll to windward, when the

squall strikes her. (45)

66. Prove that in a curve of loads of a ship floating at rest, the

integral of the area of the curve from one end up to a chosen point

gives the shearing force at that point.

At the section of a ship at which the shearing force is at a

maximum, show how the shearing stress on the material varies,

and state under what circumstances this shearing stress would cause

straining action to take place. (50)

67. Describe the principles governing the watertight subdivision

of war or merchant ships. Is there any legal enforcement for

merchant ships ?

State briefly the recommendations of the Bulkheads Committee

(1890-91).
A barge is of uniform rectangular section, 70 feet long and

20 feet broad, and the draught of water when the vessel is

intact is 8 feet. What would be the minimum height of a bulkhead
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lo feet from one end of the vessel in order that if the end compart-
ment were flooded, the adjacent compartment should remain dry ?

(50)

68. Define Statical Stability and Dynamical Stability.

A submarine vessel 140 feet long has a uniform cross section

of which the upper part is a semicircle 10 feet in diameter, and the

lower a triangle 8 feet deep with vertex downwards. The centre of

gravity of the vessel is 6 feet above the keel.

Construct, to scale, the curve of statical stability, and state

in foot-tons the dynamical stability at 60 degrees. (50)

69. State what is meant by
"
effective horse-power,"

"
propulsive

coefficient," and
"
corresponding speeds." State the values of the

propulsive coefficients of any two types of vessels with which you
are acquainted, naming the types selected. How does the pro-

propulsive coefficient vary with the speed in a particular ship, and

why?
A vessel of 1800 tons displacement is propelled at 15 knots by

engines of 2500 I.H.P. Estimate the I.H.P. you would consider

necessary to drive a vessel of similar model, but of 4000 tons dis-

placement at a speed of 18 knots. What assumptions are made in

passing from the one vessel to the other ? (45)

70. Describe briefly the causes which produce vibration in the

hulls of steamships, and state under what circumstances these

vibrations reach a maximum.

(a) State whether you consider vibration to be indicative of

structural weakness, giving reasons for your answer.

(b] How would you attempt to reduce vibration when excessive ?

(f) At the lowest number of vibrations possible, where would

you expect to find the nodal points ?

(d) What recent modifications in design are known to produce
less vibration ? (50)

71. Describe fully the method of conducting measured-mile

trials and arriving at the measured-mile speed.
State the possible sources of error to which such trials are

liable, and how they are reduced. (40)

72. How would you obtain the wetted surface of a ship of known
form ?

Quote any formula giving a close approximation to the wetted

surface.

What use can be made of the wetted surface when obtained ?

The wetted surface of a ship of 6000 tons displacement being

25,000 square feet, find the wetted surface of a vessel of similar

form, but of 2000 tons displacement. (40)

2 H
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73. A vessel runs bow-on to a shelving beach
; investigate her

stability, as compared with her condition when afloat.

A box-shaped vessel, 100 feet long and 20 feet broad, floats at a

draught of 6 feet forward and 10 feet aft, the metacentric height

being T.\ feet. Find the virtual metacentric height when she just

grounds all along on level blocks. (45)

74. Sketch and describe the launching arrangements for a large

ship, stating the dimensions of the vessel, declivity of the blocks

and launching ways, and the pressure per square foot allowed on

the surface of the ways. What is the meaning of the term
" camber " as applied to the ground ways, and to what extent is it

admissible ?

The launching weight of a ship is 2800 tons, its centre of gravity

is 9 feet abaft the midship section, and the fore end of the launching
cradle is 120 feet before the midship section. When the midship
section of the vessel is respectively o, 10, 20, 30, 40, and 50 feet

abaft the after end of the ways, the corresponding buoyancy is

respectively mo, 1310, 1530, 1770, 2030, and 2310 tons, and the

distances of the corresponding centres of buoyancy abaft the after

end of the ways are respectively 43, 51, 60, 68, 77^, and 86 feet.

Construct to scale the corresponding launching diagrams,

stating where the stern begins to lift, and the pressure on the fore

poppet. Are the ways sufficiently long to prevent tipping ? (55)

75. Investigate the value of the metacentric height of a vessel

with free water in the hold.

A mud hopper of box form is 200 feet long and 40 feet broad,

the mud chamber being the amidships portion 50 feet long. When
empty, the draught is 10 feet and the centre of gravity 15 feet

above the keel. Find the metacentric heights when (a) Empty,

() Discharge-port is open, and (c) Chamber is filled to a height of

10 feet with sludge of specific gravity 2. (45)

76. Describe in detail how you would proceed to fix the dimen-

sions and underwater form of a combined passenger and cargo

carrying steamer, having given the speed, length of voyage,
maximum draught permissible, cargo capacity (both by measure-

ment and dead-weight), number of passengers, and type of vessel.

State what you consider satisfactory limits of stability for such

a vessel as you select. (50)
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1908.

STAGE II.

Instructions.

You are permitted to answer only eight questions.

You must attempt Nos. 32 and 33 ; also three questions in

the Practical Shipbuilding Section, and one in the Laying Off

Section. The two remaining questions may be selected from any

part of the paper in this stage.

PRACTICAL SHIPBUILDING.

21. Describe, and show by sketches in section and side

elevation, how an intercostal plate keelson (or vertical keel) is

worked and secured in an ordinary transversely framed vessel

with a flat-plate keel. (20)

22. Show how a large transverse watertight bulkhead is built,

stiffened, and riveted.

How would you check the position of such a bulkhead at

the ship, and how would you test its watertightness when

completed ? (25)

23. Sketch the portion of the midship section extending from

the margin plate to the upper deck in a mercantile vessel, or,

from the 4th longitudinal to the upper deck in a war vessel. Show
the arrangement in detail, with scantlings of outer bottom plating,

framing, stringers, etc., and name the type of vessel selected.

(22)

24. Sketch and describe the construction of the stem of any

large vessel, showing in detail its connections to the keel, decks,
and shell plating. Name the type of vessel selected, and state

the material of which the stem is made.

What tests would you apply to ascertain the fitness of the

stem ? (20)

25. Sketch a good shift of butts for the tank top or inner

bottom plating of a vessel, with reference to the butts of the

girders or longitudinals. Give details of the butt and edge con-

nections of the plating, and state the spacing of the frames, length
of plates, etc. (22)

26. Sketch in detail, and describe a good arrangement of

boiler-bearers, giving scantlings, etc., and name the type of vessel

selected. (20)
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27. Compare the qualities of " mild " and "
high-tensile

"
steel,

and state the tests you would expect high-tensile steel plates to

satisfactorily comply with.

In what parts of the structure of a ship would it be of advantage
to fit high-tensile steel, and what precautions should be taken in

working it ? (23)

28. What permanent arrangements are made for protecting the

side of a ship which has frequently to lie alongside quay walls, etc. ;

such as cargo vessels, tugs, etc.

Sketch and describe the construction of any suitable arrange-

ment, giving scantlings and particulars of the fastenings, and state

where such an arrangement should be fitted. (20)

LAYING OFF.

29. Define the following terms, viz.
"
Length over all,"

"
Length between perpendiculars,"

" Moulded breadth,"
" Moulded

depth,"
" Rise of floor,"

" Dead flat,"
" Tumble home,"

"
Depth of

hold,"
" Camber of beam," and "

Bilge diagonal." (20)

30. How would you make a beam mould ? Show how to obtain

the beam end line in the sheer and body plans, taking into account

the round-up and sheer of the deck. (22)

31. What information would be required, and how would you

proceed to demand the materials, for rapidly building a steel

vessel, indicating the order in which you consider the materials

should be demanded ?

What margins are allowed over the actual dimensions

required? (25)

DRAWING.

32. The given sketch represents not to scale five equidistant

sections, obtained by taking measurements from the outside of

a vessel in dry dock. Offsets to the various water lines, level

lines, and bow lines are given in the table accompanying the

drawing.
With the given offsets and particulars on the drawing, draw

the five sections neatly, in pencil, to a scale of \" equals i foot.

(35)

CALCULATIONS.

33. Write down and briefly explain the rules in common use

in ship calculations, for finding the areas of plane surfaces and

volumes of displacement.
The semi-ordinates of the boundary of a deck of a vessel
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are :~o*5, 4*5, 88, io'o, 8'2, 3-8, and 0-4 feet respectively, including

the end ordinates. The length of the vessel being 85', find the

area of the deck, and the position of its centre of gravity. (25)

34. A deck of a vessel is composed of flush plating &" thick,

secured to channel bar beams 8" x 4" x ", spaced 3' 6" apart.

Calculate the weight of a part of the deck 63' long by 10' wide,

including rivets, but omitting edge strips and butt straps. (20)

35. What are the curves of "
displacement

" and " tons per inch

immersion," and what are their uses ?

The area of a ship's load water plane is 6050 square feet, the

body below is divided by equidistant horizontal sections 3' apart,

whose areas are 5500 ; 4750 ; 3500 ; 2050 ;
1000

; and 250 square
feet respectively.

Find the tons per inch at each water plane, and plot the curve

of tons per inch, on the squared paper supplied.

What is the total displacement of the vessel ? (23)

36. Explain, in detail, a method of determining graphically the

displacement of a vessel of given form. (22)

STAGE III.

Instructions.

You are permitted to answer only eight questions.
You must attempt No. 52. The remaining questions may be

selected from any part of the paper in this stage, provided that one

or more be takenfrom each section, viz. Practical Shipbuilding, Lay-

ing Off, and Calculations ; but you must not attempt more than

three questions', including No. ^from the Calculations section.

PRACTICAL SHIPBUILDING.

41^ Describe with the aid of rough sketches, the fittings neces-

sary for efficiently working the anchors ofany vessel with which you
are acquainted, naming the type of vessel selected. (35)

42. Describe the difference between an "
ordinary

" and a

"balanced" rudder, and tate why the latter are sometimes fitted

in ships.

Sketch a sternpost suitable for a balanced rudder, and show how
it is connected to the keel, decks, and shell-plating. (35)

43. Roughly sketch the midship section of any vessel with which

you are acquainted, naming the type of vessel selected.

Indicate the scantlings of the various parts comprising the

section. (35)
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44. Sketch and describe in detail the construction of an accom-
modation or gangway ladder, showing how it is raised and stowed.

(35)

45. What precautions are taken in oil-carrying steamers to avoid

risk Of explosion ?

How are the bulkheads of such vessels constructed? Give

scantlings of plates, etc., and size and spacing of rivets. (35)

46. Describe, with sketches, the construction of a horizontal

punching machine, and explain how the machine can be adapted
to do riveting, beam-bending, and angle bar cutting. (35)

47. Explain how the Rules of Lloyd's Register determine the

scantlings of a three-decked merchant steamer, distinguishing
between the transverse and the longitudinal portions of the

structure.

In a vessel as above, it is desired for convenience of stowage
to omit the

" hold " beams. Describe the modifications you would

adopt to the ordinary construction consequent upon that omission.

(40)

48. Describe, with sketches, the method of coaling a large ship,

such as an Atlantic liner or a warship, from a collier or barge

alongside.

Show, by a sectional sketch of the vessel, how the coal is passed
from the upper or coaling deck, to the bunkers. (35)

49. Sketch and describe the construction of a steel deck-house.

In the case of a vessel which has a long bridge-house to be

worked amidships, how should this bridge-house be constructed in

order that it maybe made an efficient pa/t of the structural strength
of the vessel? (35)

LAYING OFF.

50. Distinguish between a "
ribband," a "

harpin," and a "
sheei

harpin."
Show how to lay off and obtain the bevellings of a sheer

harpin. (33)

51. The lines of a steel vessel, sheathed with wood, having been

given to the outside of sheathing, show how you would obtain Ithe

body plan to outside of framing (i) approximately, and (2)

accurately. (35)

CALCULATIONS.

52. The given sketch represents part of the fore body of a ship.

Calculate the displacement in tons, and the vertical position of the

centre of buoyancy of the form represented by the sketch, between
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the water-lines A and B, 12' apart, and between the sections C and

D. The sketch given is on a scale of \" equals I foot, and the

sections are spaced 20' apart. Four water-lines at depths of 3', 6',

9', and 10' 6" below A water-line are to be introduced between A
and B for the purpose of the calculations.

Ordinates to be measured to the nearest first decimal place.

(45)

53. State and prove Simpson's ist Rule, for approximating to

the area and centre of gravity of a plane surface.

The equidistant half-ordinates of a water-plane being 3*0, 5*4,

7- 1, 9-32, 12-2, 14-17, and 19-5 feet respectively, and the length of

the base being 84*0 feet, find the area of the water-plane, and the

transverse position of the centre of gravity of half the water-plane.

(40)

54. The half-ordinates of a portion of a ship's deck, covered with

&" plating, are 4-2, 9-36, 12-3, 14-84, 16-5, 17-53, and 187 feet in

length respectively, the common interval being 1 5 feet.

Calculate the weight of the beams, plating, planking, and

fastenings, etc., for this part of the deck, the beams being 8" X 4"
x j$y" channel bar, spaced 3' 6" apart, and the plank being of pitch

pine 3$" thick.

Estimate the cost of laying the deck with planks 6" wide at

1\d. per foot run. (35)

55. What is the ultimate shearing and tensile stresses of mild

steel rivets and plates respectively ?

The shell plating of a vessel is formed of plates 50" wide and

^" thick, worked on the raised and sunken system ; the spacing
of the rivets in the frames are 7 diameters apart, and in the

boundary angles of the watertight bulkheads 4 diameters apart.

Sketch an arrangement you would make in order that the strength

of the shell plating in wake of the bulkheads and ordinary frames

shall be approximately the same. Show, by calculations, that

your arrangement is a good one. (35)

56. Define " centre of gravity,"
" centre of buoyancy,"

"
centre

of flotation,"
" metacentre."

A vessel 140' long, and whose body plan half-sections are

squares, floats with its sides upright, and the centres of all the

sections lie in the plane of flotation. The lengths of the sides of

the sections, including the end ordinates, are o'8, 3 '6, 7'o, 8'o, 6*4,

3'o and 07 feet respectively, equispaced.

Calculate the distance between the centre of buoyancy and the

transverse metacentre. (35)
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HONOURS.

Instructions.

You are not permitted to answer more than eight questions.

Note. No candidate will be credited with a success in this

examination who has not obtained a previous success in Stage III.

or in Honours, of the same subject.

Those candidates who do well in the following paper will be

admitted to a practical examination held at South Kensington or

some other centre. Candidates admissible to that examination will

be so informed in due course. No candidate will be classed in

Honours who is not successful in the Practical Examination.

61. Having given the value of six equidistant ordinates of a plane

curve, deduce a formula that will give the area of the surface lying

between the extreme ordinates and the curve.

Four consecutive polar radii of a curve, taken in order, are

io'9, 1 1 '6, 13x3, and 14/1 feet; the common angular interval

between them is 15 degrees. Find the area, in square feet, included

between the curve and the extreme polar radii, and prove the rule

you use. (45)

62. Obtain an expression giving the height of the longitudinal

metacentre above the centre of buoyancy. What use is the

information when obtained for any particular vessel ?

Draw, to scale, the ordinary metacentric diagram for a vessel

whose uniform section throughout her length is a quadrilateral of

breadth 50' at the load line and 25' at the keel, the draught of

water being 20'. (45)

63. Under what circumstances may it be expected that the

cargoes of vessels will shift ?

In a cargo-carrying vessel, the position of whose centre of

gravity is known, show how the new position of the centre of

gravity, due to a portion of the cargo shifting, may be found.

A ship of 4800 tons displacement, when fully laden with coals,

has a metacentric height of 2*6 feet. Suppose 120 tons of coal to

be shifted so that its centre of gravity moves 19 feet transversely

and 5 feet vertically, what would be the angle of heel of the vessel,

if she were upright before the coal shifted ? (45)

64. Prove that for any floating body revolving about an axis

fixed in direction, positions of maximum and minimum stability

occur alternately.

Investigate all the positions of equilibrium for a square prism
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of uniform density revolving about a horizontal axis, assuming its

density to be three-fourths that of the fluid it is floating in. (50)

65. Quote Moseley's formula for the dynamical stability of a

floating body, and prove that the value of the dynamical stability

obtained from that formula is identical with that obtained by

integrating the curve of statical stability.

A vessel of constant rectangular section is 260' long, 30' broad,

30' deep, and draught of water 15'. The metacentric height of the

vessel being 2-5', find (i) the statical stability, 0</(2)the dynamical

stability of the vessel when she is inclined at 45 degrees. (50)

66. A box-shaped vessel 420' long, 72' broad, and draught of

water 24', has a compartment amidships 60' long, with a water-

tight middle line bulkhead extending the whole depth of the vessel.

Determine the angle of heel caused by the ship being bilged on

one side abreast this bulkhead, the centre of gravity of the vessel

being 23' above the keel.

To what height should the transverse bulkheads at the ends of

the bilged compartment be carried, so as to confine the water to

this part of the vessel ?

If the bilging be caused by a collision, making a hole 1*5 square
feet in area at a depth of 18' below the load water-line of the

vessel, in wake of the compartment referred to above, and the

pumps be in working order, calculate the capacity of the pumps
required to just keep the leak under. (45)

67. Define "
freeboard," and state what determines it. Describe

the arrangement of the tables giving
"
freeboard."

How is the statutory deck-line marked ?

Distinguish between "flush-deck,"
"
spar-deck," and "

awning-
deck" vessels. How is thefreeboard determined in each case ? (50)

68. Prove the relation which exists between the load curve and
the curves of shearing force and bending moment.

A vessel 300' long has a uniform section below water. The
weights of hull, machinery, and cargo are 840, 300, and 300 tons

respectively. The weight of machinery extends uniformly over

rd of the length amidships, and the weight of cargo extends

uniformly over th of the length from each end. The weight of

hull curve is of the form

I

1H

I

->k

FIG. 157
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Draw the curves of shearing force and bending moment and
state their maximum values when the vessel is at rest in still

water.
(45 )

69. The effective part of the transverse section of a vessel amid-

I
ships is represented by the dia-

gram (Fig. 1 58), the vessel being
<o I 42' broad and 28' deep.

Find the maximum tensile

and compressive stresses when
the vessel is subjected to a sag-

ging bending moment of 60,000
foot-tons. The plating shown in

the diagram to be taken as i"

u 14.' >{ 14.'
I J< |4/ J thick, and no allowance need be

' made for rivet holes or laps of
FlG - '58'

plating.

Assuming I* and Iv are the moments of inertia of a section

about axes at right angles to each other, deduce a formula for

finding the stress on the section at any point when a vessel is

inclined at an angle to one of the axes. (50)

70. Enumerate the component parts of the total resistance to

propulsion of a ship. What is the relative importance of these

component parts at (i) low speeds, and (2) at high speeds?
A ship, 290' long, 45' beam, 17' 6" draught, and 3200 tons

displacement, steams 17^ knots. Find the horse-power necessary
to overcome frictional resistance, having given that the resistance

varies as the 1-83 power of the velocity, and that in fresh water, at

a speed of 10 feet per second, the average resistance for a length
of 50' is 0*246 Ibs. per square foot, whilst over the last square foot

the resistance is 0*232 Ibs. (45)

71. Explain in detail how the indicated horse-power for a new

ship is estimated.

A model of a vessel, 400' x 65' x 24' draught, of 8560 tons

displacement, is run, and the curve of E.H.P. on a base of speed
of ship is 3250, 4035, 5020, 6195, and 7660 E.H.P. for 16,

17, 18, 19, and 20 knots respectively. Make an estimate of the

I.H.P. of a ship of 16,000 tons, of similar form, for speeds of 20 and

21 knots, and give the dimensions of the new ship. (45)

72. The draught of water, the desired speed, and the load to be

carried being given for a new design, state in detail how you would

obtain the approximate dimensions of the ship.

Obtain suitable dimensions for a vessel to carry uoo tons of

cargo on a limiting draught of 21', the speed of the vessel to be
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12 knots, with coal sufficient for a voyage of 1500 miles, and

300 tons of passengers and stores. (50)

73. Deduce a formula for the period of a ship whose rolling is

unresisted and isochronous.

A vessel of 13,500 tons displacement has a metacentric height
of 3*5 feet and a period of 8*5 seconds. Find the period of rolling

when 600 tons of coal are added each side of the vessel in a bunker

21' deep and 9' wide, the centre of gravity of the bunkers being
n' below the original centre of gravity of the ship and 26' out

from the middle line. The vessel has a horizontal curve of

metacentres over the limits of draught corresponding to the above

conditions. (50)

74. Define the terms "effective wave slope" and "virtual

upright." Explain under what circumstances the rolling of a

vessel amongst waves is likely to be most severe, and state what

resistances are in operation to prevent overturning in such critical

cases.

What conditions should be fulfilled in a ship to make her easy
in her rolling at sea ? (45)

75. Discuss the distinctive features of torpedo vessel design.

What are the most recent developments in the design of this class

of vessel in this country ?

What is the effect of depth of water upon the speed of a

vessel ?

State the deductions that have been made from recent trials

with vessels in shallow water. (50)

76. Describe how to construct a set of lines, having given the

type of vessel, dimensions, displacement, and the position of the

longitudinal centre of buoyancy.

Having obtained the sheer drawing of a vessel, how would you

proceed to obtain the structural midship section on the under-

standing that the vessel is to be built to meet Lloyd's require-

ments ? (50)
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1911.

STAGE II.

Instructions.

You are permitted to answer only eight questions.
You must attempt Nos. 32 and 33 ; also three questions in the

Practical Shipbuilding Section, and one in the Laying Off Section.

The two remaining questions may be selected from any part of the

paper in this stage.

PRACTICAL SHIPBUILDING.

21. Describe briefly, with sketches, the tools and appliances

used in ordinary shipyard work. State the advantages and dis-

advantages of machine-riveted work, as compared with hand-

riveting. (20)

22. Sketch, and describe, the construction of a transom frame,

showing how it is connected to the other parts of the vessel. Show
how the frames of the stern or counter are connected to it. (20)

23. For what purposes are web-frames fitted in ships ?

Sketch, and describe, any arrangement of web-frames asso-

ciated with side stringers. A plan, section, and elevation to be

shown representing the arrangement described. (22)

24. How would you construct a small hatchway in an upper
deck which is planked, but not plated ? (20)

25. Show by sketches, and describe, an efficient arrangement
of butts of an upper deck stringer plate, stating spacing of beams,
and give details of the butt connections. State the scantlings of

the plating, the size and pitch of rivets in edges and boundary
bar. Also, show the relative position of the butts of the adjacent

sheer strake, and boundary angle. (23)

26. For what purposes are bilge keels fitted to ships ?

Describe in detail, with sketches, the construction of a bilge

keel, showing how the several parts are connected to each other,

and to the bottom plating. State the scantlings of keel, diameter

and pitch of rivets, etc. How is the bilge keel lined off at the

ship ? (25)

27. A steel plate is intended to be fitted to the side of a ship,

where great curvature and twist exists ; describe the whole of the

operations in connection with the plate, from the time it enters

the yard until it is finally riveted in place. (22)
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28. Describe, with sketches, how a ship is supported during

building, and roughly mark the position of the ribbands in relation

to the lands of bottom and deck plating. How is a ship's form

checked during building? Describe how frames, and lands of

shell plating, are faired at the ship. (20)

LAYING OFF.

29. What is meant by
"
fairing

" the body plan ? How is a

line tested for fairness ? Describe, with sketches, the appearance
of the following lines, in the profile, half-breadth and body plans,

viz. :
" transverse frames,''

"
diagonals,"

" bow and buttocks,"
"
levels

" or
"
water-lines," and

" deck "
lines.

Which of the above lines represent the true form of the ship,
in the particular plans ? (25)

30. Show how to find the point where a straight line, not

parallel to any of the planes of projection, viz. : sheer, half

breadth, or body plan, would, if produced far enough, cut the

surface of a ship of known form. (22)

31. Show, by rough sketches, the general appearance of the

sight edges of the outer bottom plating in the fore and after body
plans of a vessel. A sufficient number of frames in each body
should be shown, so as to indicate thereon the character of the

sight edges.
Show also, on the sketch, the trace of a keelson, inner bottom

frame line, and a girder or longitudinal. (20)

DRAWING.

32. The given sketch represents (not to scale] the stem and

part of the framing, etc., of the fore part of a vessel. Draw it

neatly, in pencil, to a scale of
"
equals I foot. (35)

CALCULATIONS.

33. The area of a ship's loadwater-line section is 13,200 square

feet, and the areas of other parallel sections 3' apart, are as

follows, viz. : 12,700, 12,000, 11,100, 10,000, 8,200 and 6,000 square

feet respectively. Neglecting the volume below the lowest section,

calculate (i) the tons per inch immersion at each water-plane, and

(ii) the total displacement of the vessel.

Construct, on the squared paper supplied, the curve of tons

per inch. (25)
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34. The half-ordinates of the transverse section of a coal bunker
of uniform section are as follows, viz. : 31*0, 31*3, 30*8, 29^0, and

24-6 feet respectively, the ordinates being spaced 5' apart. The

length of the bunker is 25 feet.

On the basis of the coal being stowed only up to the level of

the underside of beams, which are 5" deep and spaced 4' apart, cal-

culate the weight of coal that can be so carried in the bunker. (20)

35. What is meant by the shear of a rivet ? Explain clearly,

with sketches, the difference between "single" and "double"

shear.

What is the single shear strength of a f
"
diameter mild steel

rivet?

Two test bars, of circular section, \" diameter, are prepared
from the following materials, viz. : (a) mild steel, and () rolled

Naval brass, or yellow metal : what breaking force would you

expect the testing machine to register when the bars are broken ?

What elongation would you expect, in each case, on a length
Of 2"? (23)

36. Explain why vessels passing from salt water to fresh water

change their draught. What condition must be fulfilled in order

that a vessel may not change trim in going from fresh to salt

water, or vice versa f

A box-shaped vessel is 175' long, 30' broad, 20' deep, and floats

at a uniform draught of 8' in salt water. Calculate the mean

draught when the vessel is floating freely in fresh water. (20)

STAGE III.

Instructions.

You are permitted to answer only eight questions.

You must attempt No. 52. The remaining questions may be

selected from any part of the paper in this stage,provided that one

or more be taken from each section, viz., Practical Shipbuilding,

Laying Off, and Calculations ; butyou must not attempt more than

three questions, including No. ^from the Calculations section.

PRACTICAL SHIPBUILDING.

41. The drawings of a large vessel having been received by
the Builders, describe the preliminary work necessary in order to

ascertain whether the ship can be built and launched from the

building slip intended to be used.
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A slip is 480' long from the sill to the foremost block, and has
a declivity of f" to i foot. The building blocks are to be
laid at a declivity of f" to i foot, and the launch is to be at a

declivity of
"
to i foot. Determine the height of the foremost

block. (35)

42. Enumerate the principal transverse stresses experienced

by ships. Describe how they are set up, and the provision made
to meet them.

In the case of a large machinery, or cargo, hatch in the deck
of a vessel, show what means are adopted to compensate for the

loss of transverse strength due to cutting the deck, etc. (40)

43. Show how a transverse watertight bulkhead extending
the whole depth of the vessel, in a merchant ship of say 50' beam
is built, stiffened, and riveted. State the scantlings, and size and

pitch of rivets. How would you test the watertightness of such a

bulkhead ?

State the number, and positions, of the watertight bulkheads

required by Lloyd's Rules for a steamship 400' long. (35)

44. Roughly sketch, giving figured dimensions of, an anchor

davit or anchor crane to be used in connection with the anchor

arrangements of a vessel, and show all the necessary fittings, etc.,

for working the crane. State what tests are sometimes applied to

such davits or cranes. (35)

45. Describe, with rough sketches showing transverse and

longitudinal midship sections, the method of construction of a

large wood pulling boat forming part of the equipment of a ship.

Indicate the materials and the fastenings used. (35)

46. Having given the particulars and materials for building an

ordinary steel lower mast of a ship, how would you proceed with

the construction so as to ensure its being made to its correct

form ? Show a section of the mast, and the disposition of the

butts of the plates.

State the sizes of the plates, rivets, etc., and show the riveting

at a butt. (35)

47. Sketch and describe the construction of a boat's davit, with

fittings complete, and state the object of the various fittings shown.

How is the position of the davits fixed in relation to the boat ?

Show the method of securing the boat in-board, and of rapidly

getting the boat in the water. (35)

48. Describe in detail, with sketches, the special arrangements
for towing purposes, as fitted in a large tug boat.

State where such fittings are placed, and why ? (35)

49. Sketch, in detail, the arrangements of a Seaman's head, or
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water-closets, for a ship's crew of say 150, or more. Show how
the soil pipes are arranged.

What ventilation arrangements are made for such spaces, in

the case which you select ? Name the type of vessel selected.

LAYING OFF.

50. Show how to lay off the stern, and obtain the true expanded
form of the stern plating above the knuckle line and abaft the

transom, in the case of a vessel having such part formed by the

rolling of a cylinder about the knuckle line. (35)

51. Describe the method adopted for laying off a longitudinal,
or tank margin plate, in cases where (i) there is little twist, and

(ii) where considerable twist occurs.

Describe, in detail, the information supplied to the workmen in

both these cases. (35)

CALCULATIONS.

52. The given sketch represents part of the after-body of a

ship. Calculate the displacement in tons, and the vertical position

of the centre of buoyancy, of the form represented by the sketch,

between the waterlines A and B, spaced 10' 6" apart, and between

the sections C and D which are 60' apart. The sketch given is

to a scale of
"
equals I foot.

Three waterlines, at depths of 3' 6", 7' o", and 8' 9'* below A
waterline, are to be introduced between A and .Z?,

for the purpose
of the calculations.

Ordinates are to be measured to the nearest decimal place.

(45)

53. Define the terms :

" centre of flotation,"
" centre of

buoyancy," and " metacentre."

A prismatic log of wood, of specific gravity 075, whose uniform

transverse section is that of an isosceles triangle, floats in water

with the base of the section horizontal and vertex upwards. Find

the maximum vertical angle of the section for these conditions to

hold. (35)

54. Describe fully the method of making and arranging the

various calculations on a displacement sheet, and state fully what

information is usually shown thereon.

Explain the relation which exists between a curve of tons per

inch and the corresponding curve of displacement, and show how

either curve may be derived from the other.
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Distinguish between displacement and deadweight scales, and

show clearly how each is generally arranged. (40)

55. What conditions must be fulfilled in order that a vessel

may not change trim in going from fresh to salt water, or vice

versa ?

A rectangular vessel, 300' long and 40' broad, floats at a

draught of 10' forward and 12' aft in sea water. Find the draught
at which she will float in fresh water weighing 62^ Ibs. per cubic

foot, the centre of gravity being situated in the original waterline.

(35)

56. Define the term " Statical Stability." Show, by means of

a diagram, the forces acting on a ship when inclined. What is

the "
righting lever "

?

Sketch a typical statical stability curve, indicating the principal

points of importance on it. (35)

HONOURS.

Instructions.

You are not permitted to answer more than eight questions.
Note. No candidate will be credited with a success in this

examination who has not obtained a previous success in Stage 3,

or in Honours, of the same subject.

Those candidates who do well in the following paper will be

admitted to a practical examination held at South Kensington or

some other centre. Candidates admissible to that examination

will be so informed in due course. No candidate will be classed

in Honours who is not successful in the practical examination.

61. Deduce a rule for finding the area of a curvilinear figure?

by means of 5 ordinates, so spaced that the area of the figure is a

multiple of the sum of the ordinates.

Five consecutive polar ordinates of a curve, taken in order, are

5'o, 5 '2, 57, 6'4 and 7*3 feet respectively, and they are spaced at a

common angular interval of 5 degrees. What is the area, in square

feet, included between the curve and the extreme polar radii ?

(So)

62. State fully, and prove, the conditions of equilibrium of a

floating body.
Define the terms "

stable,"
"
unstable,"

"
neutral," and

" mixed "

equilibrium.
Show that, in the case of a floating body, the equilibrium is

2 r
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stable when the distance between the centre of gravity and centre

of buoyancy is a minimum, and unstable when that distance is a

maximum. Discuss the relation between the number of positions
of stable and unstable equilibrium. (50)

63. A vessel is inclined about an axis, in the water-line plane,

which makes an angle, other than a right angle, with the longi-

tudinal middle line plane of the ship. Obtain an expression con-

necting the metacentric height under these conditions with the

transverse and longitudinal metacentric heights of the ship.

A box-shaped vessel is 80' long, 20' wide, and floats at a

draught of water of 10'. Find the value of the distance between

the centre of buoyancy and the metacentre, for inclinations about

an axis coincident with a diagonal of the rectangular waterplane.

(45)

64. Describe, in detail, how an inclining experiment is carried

out. What observations are made? Show how to deduce. the

correct height of the centre of gravity, if loose water was lying in

the bilges when the observations were made* How would you
determine the amount of ballast to be used on an inclining

experiment ?

What special calculations would you make, if the vessel at the

time of inclining were considerably out of her normal trim? (45)

65. Investigate, and sketch, the metacentric diagram for a

vessel of constant parabolic section throughout, and show that in

such a vessel the presence of free water in the hold, in any number
of compartments, leads to an increase of stiffness.

Draw, roughly, the metacentric diagrams for three distinct

types of modern vessels, naming the types chosen. Figure on the

diagrams the values of the metacentric heights for the load and

light conditions in each case. (45)

66. State, and prove, Atwood's formula for the moment of

statical stability of a floating body when inclined at any angle from

the upright. State clearly how to determine the sign of the

moment of the correcting layer.

A prismatic vessel, 100' long, has a transverse section formed

of a rectangle, height 10' and breadth 20', resting on the top of a

semicircle of radius 10'. The centre of gravity is 3' above the

keel, and the draught of water is 10'. Find the volume of the

correcting layer, and the righting moment when the vessel is

inclined 45, the displacement being unaltered. (45)

67. Define " Reserve Dynamical Stability/' and explain its

importance in the case of sailing ships.

Define "
power to carry sail," as applied to sailing ships, and
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explain clearly why it is usually less in small ships than in

large, and why in yachts a small value can generally be safely

accepted. (50)
68. Define "

Freeboard," and "
Range of Stability," and state

what determines each.

Explain clearly why, in general, high freeboard is conducive

to a long range of stability, and low freeboard to a short range.

Show, by simple illustrations, that in certain cases a low freeboard

may be associated with a considerable range, and a high freeboard

with a short range. (45)

69. Find an expression for the heel produced in a vessel by
flooding a compartment extending to the upper deck, and bounded

by two transverse bulkheads and a middle line bulkhead.

A vessel of square transverse section, 40' broad and deep is

270' long and floats at a uniform draught of 20'. It has 8 equi-
distant watertight transverse bulkheads, excluding the ends, and a

longitudinal middle-line bulkhead over the midship portion. Find

the heel produced by bilging the centre compartment, on one side

of the middle line, the original metacentric height of the vessel

being 5'.

70. Prove the relation which exists between the curves of loads

and shearing forces.

Plot a shearing stress curve for a rectangular beam 12" deep
and 8" wide, at a section where there is a shearing force of 180

tons. What is the maximum shearing stress at the section ? (50)

71. State the assumptions upon which the trochoidal wave-

theory is based, and the propositions and conditions which must

be fulfilled.

How would you construct a trochoidal wave-profile of given
dimensions ?

Show clearly how to obtain the supporting force per foot, taking
into account wave-pressures. What is the effect upon the maximum
stresses caused by taking wave pressures into account, and why ?

(50)

72. Deduce the equation of motion for a vessel rolling unre-

sistedly in still water. Obtain its solution, making the necessary

assumptions. Show that the motion is oscillatory, and deduce a

formula giving the period of oscillation of a vessel. (50)

73. A vessel has 12 guns capable of firing on each broadside,
the mean height of the centre of guns being 26' above the water-

line, and the draught of water 27'. The ship has a displacement
of 22,500 tons, and a metacentric height of 5'. Taking the weight
of the shot as 850 Ibs., powder 270 Ibs., and muzzle velocity of
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projectile as 2,900 feet per sec., estimate the maximum angle of

roll of the ship caused by the simultaneous firing of all the guns
on the broadside, omitting any resistance to the heel. The period
of oscillation of the ship in still water is 9 seconds. (50)

74. Sketch six different types of merchant steamships, naming
the several decks and part decks in each case, as well as the name
of the type. Explain the particular advantage of each type, and

trace the evolution of the modern merchant steamer from the

original flush one-deck type.

75. What is the "
Admiralty displacement coefficient of speed

"
?

State the assumptions on which it is based.

How is it obtained for any particular vessel, and what use is

made of it ? What is its value in three distinct types of vessels ?

Name the types selected.

Show that this coefficient is the same for two similar ships at

"corresponding" speeds, supposing that the engines, etc., work

with the same efficiency.

What is the value of the coefficient for sea work, as compared
with that deduced from trial trips ? (50)

76. What are the most important developments, from a

designer's point of view, that have taken place in recent years, in

any two of the following types of vessels, viz. :

(a) Ships of the Mercantile Marine ;

(b) Motor Boats of high speed ;

(c) Armoured Ships of War
;

(d) Torpedo Boat Destroyers ? (50)
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ANSWERS TO QUESTIONS.
EXAMINATION

No.

12. 449 tons.

13. 674 square feet.

14. 420 ; see p. 28.

16. See p. 37 ; 240 Ibs. ; 3 inches.

29. 5,459 cubic feet ; 2-29 feet

below No. i W.L. ; 49*1

feet from fine end.

30. 8280*8 cubic feet j 49-4 feet

from fine end.

31. 5-48 feet.

32. 2| tons if of steel.

46. 797 tons; 1515 tons.

47. 4-38 feet from lo-feet W.L. ;

1 1 6-6 feet from No. i

section.

48. 1 3*49 feet.

49. 297 tons ; 346 tons (assuming

28 tons per square inch).

50. 8 inches forward, 7 inches aft.

61. About 50 tons if of steel ; 0-2

foot forward of midships.

53. Take two consecutive sections

of beam K and K', distance

A* apart ;
w = load per

foot run ; F and F + AF
are shearing forces at K
and K' respectively ; M
and M + AM are 'bending

moments at K and K 7

respectively.

Consider the equilibrium of

beam between K and K'.

Vertical forces up, F + AF ;

,, ,, down, F and

iu X A* ;

.% F + AF = F + (w X A#)

or AF WY. A*

and F = ^wdx in the

limit.

PAPER, 1902.

No.

Also for equilibrium
M + AM = M + (F X A*)

or AM = F x A#

and M = JYdx in the

limit.

54. The equations to the curves

of weight and buoyancy re-

ferred to the base-line and

one end are as follows :

Weight

, = 6- (/.*-**)

Buoyancy

58.

A being the area of each,

and / the length ;

from which the curves of

shearing force and bending
moments may be obtained

by a process of successive

integration.

Maximum shearing force at

about T
3
S length from either

end = T5 weight about.

Maximum bending moment

amidships = ^ (weight x
length} about.

Take consecutive normals

to the locus of centres of

buoyancy at and 6 + A0,

BR' being perpendicular to

the latter normal from B,

cutting B^ in R". Then
RR" is the increment of

B tR, i.e. A^R) and RR"
also equals (BR X A0) ; so

that

A(B t R) = BR x A0
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No.

59.

61.

Proceeding to the limit

</(B tR) = BR x dO

and therefore by integrating

B
VR =

J BR . dQ

A curve of GZ's enables a

curve of BR's to be plotted,

and the area of this curve

up to a given angle (angles
in circular measure) will

give B,R, and so enable

the position of the centre of

buoyancy at that angle to

be obtained.

52 tons about.

On account of the orbital

No.

03.

65.

motion of the particles of

water in a wave, the virtual

buoyancy is less in the crest

portion and greater in the

trough portion than at the

same depth below the sur-

face in still water. Calcu-

lations, taking this into

account, show that the

bending moment is less

than when calculating as

described in the text.

See a paper by the late Mr.

T. C. Read, Jnst. Nov.

Arch, for 1890.

ii}
tons per square inch about.

360 E.H.P. nearly.

EXAMINATION PAPER, 1905.

No.

33.

35.

53.

54.

55.

5461 tons, 8 '04 feet below

L.W.L.

7860 square feet, 167 feet from

first ordinate.

3200 tons.

About twenty $-inch rivets

disposed in lozenge-shaped

lap.

2-13 feet.

No.

61.

62.

68.

69.

72.

73.

2-67 feet.

2-3 feet.

Ordinates of stability curve 1*7

sin 6, range 180, 270 foot-

tons.

7800 I.H.P., assuming I.H.P.

oc V4
.

12,000 square feet.

07 foot.

EXAMINATION PAPER, 1908.

No.

52.

61.

63.

66.

68.

This question had to be done

in two parts : (i) upper 9
feet by Simpson's second

rule, (2) lower 3 feet by

Simpson's first rule, and

the portions combined.

60 '4 square feet.

10 degrees.

See example 24, Chapter V.

The following are the curves

required: S.F.max = 60

No.

tons, B.M.max = 1740 foot

tons.

69. See example 16, Chapter VII.

70. 1420 about.

(50 x 0-246) + (240 X 0-232)
J ~

290
X i '025 = 0-241 at 10 f.s.

71. 10,400, 12, 700,492' x 80' x 29-5'.

73. See example at end of Chapter
IX.
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FIG.

EXAMINATION PAPER, 1911.

No.

53. If D is depth of section and

the semi-vertical angle,

then

B above base = \ . D
M above base = | . D + J . D . tan'0

G above base = \ . D

Equating the latter two ex-

pressions tan2 =
I, from

which 6 is 45 and the vertical

angle should not be less

than 90.
55. A similar example to that

No.

61.

63.

66.

69.

71.

73.

worked out at the end of

Chapter IV.

TchebychetPs rule worked

out similarly to that for 4
ordinates in Appendix A.

See end of Chapter V.

This is worked out fully,

Example 27, Chapter V.

Similar to Examples 24, 25,

26, Chapter V.

See " Smith "
correction,

Chapter VII.

See end of Chapter V.
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BOOKS, ETC., ON " THEORETICAL NAVAL
ARCHITECTURE."

"Transactions of the Institution of Naval Architects."
" Transactions of the North-East Coast Institution of Engineers

and Shipbuilders."
" Transactions of the Institution of Engineers and Shipbuilders

in Scotland."

The papers of these Institutions are usually reproduced in the Engineer-
ing Journals shortly after the time of the meetings.

" Transactions of the American Society of Naval Architects."

The papers of this Society are usually reproduced in the New York

Journal Marine Engineering, which can now be obtained in this country,
price 6d.

"
Shipbuilding, Theoretical and Practical." By Prof. Rankine and

Mr. F. K. Barnes, M.I.N.A.
A book of great historical interest.

" Naval Science." Edited by Sir E. J. Reed, K.C.B., F.R.S.

This was issued for four years, and then discontinued.

" Theoretical Naval Architecture." By Mr. Samuel J. P. Thearle,

M.I.N.A.
This book does not appear to have undergone any revision since its first

publication.
" Yacht Architecture." By Mr. Dixon Kemp, Assoc. I.N.A.

An indispensable volume to those engaged in the design and con-

struction of yachts.
" Manual of Naval Architecture." By Sir W. H. White, K.C.B.,

F.R.S.

The standard treatise on the subject.

"
Stability of Ships." By Sir E. J. Reed, K.C.B., F.R.S.

Contains much information as to French methods of dealing with

stability.

" Text Book of Naval Architecture," for the use of Officers of the

Royal Navy. By Prof. J. J. Welch, M.I.N.A.
A very useful text-book on construction, etc., of war vessels.
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" Know your own Ship," for the use of Ships' Officers, etc. By
Mr. Thomas Walton.

A most valuable book ; although written for ships' officers, the student

of Naval Architecture will find much useful information.

" Naval Architects', Shipbuilders', and Marine Engineers' Pocket

Book." By Mackrow and Woollard.

The latest edition has been completely remodelled.

" The Marine Engineer's Pocket Book." By Messrs. Seaton and
Rounthwaite.

Contains much useful information in Naval Architecture.

"The Speed and Power of Ships," a Manual of Marine Propulsion
(2 volumes, plates and text). By Mr. D. W. Taylor, M.I.N.A.
A standard book.

" Resistance and Propulsion of Ships." By Professor Durand.
A systematic treatise by an American professor.

"
Applied Mechanics "

(Appendix on " Resistance and Propulsion
of Ships "). By Professor Cotterill, F.R.S.

This appendix is worth consulting.

"Encyclopaedia Britannica" (nth edition), article on "Ship-
building." By Sir Philip Watts, K.C.B., F.R.S.

This article is of great value. It is specially rich in diagrams and
illustrations and up-to-date information about many types of ships, also

some hitherto unpublished matter on resistance.

Marine numbers of " Cassier's Magazine," August, 1897 ; November,
1908.
These numbers form books of permanent value.

" The Design and Construction of Steam Ships." By Professor

Biles, LL.D.
The first volume deals with ship calculations and strength. The

second volume deals with stability, waves, resistance and propulsion. The
third volume, to be issued, will deal with design.

"The Marine Steam Engine." By the late R. Sennett, R.N.,
and Eng. Vice-Adm. Sir H. J. Oram.
A standard treatise. Contains much valuable information for Naval

Architects.

"Address to Mechanical Science Section, British Association,
1899." By Sir William White, K.C.B., F.R.S.
A valuable address which is worth reading.

" Screw Propeller Computer." By Professor McDermott.
The little book on the Screw Propeller which accompanies this Com-

puter contains a most succinct account of the principles of the screw

propeller.

" Naval Architecture." By Professor Peabody.
This book is the substance of the author's lectures at the Massachusetts

Institute of Technology. It is largely based on the French methods.
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" War Ships." By E. L. Attwood, R.C.N.C.

Specially prepared for officers of the Royal Navy. It, however, forms
an introduction to Naval Architecture, so far as regards war vessels,
which may prove useful to students of the subject.

" Resistance and Power of Steamships." By W. H. Atherton,
M.Sc., and A. L. Mellanby, M.Sc.
An excellent little book. It, however, does not deal with propulsion.

" Presidential Address to Institution of Civil Engineers, 1904." Sir

W. H. White, K.C.B., F.R.S.
A most admirable survey of the position of Naval Architecture in the

year 1904.

"Aids to Stability." Captain Owen, A.I.N.A.
Written for officers of the Mercantile Marine.

" A Complete Class Book of Naval Architecture." By W. J. Lovett.

Contains many worked-out examples.
" Marine Propellers." By S. W. Barnaby, M.Inst.CE.

This is the standard English work on the subject.

"The Naval Constructor." By G. Simpson, M.I.N.A.
A pocket-book issued by an American naval architect. Contains a

mass of useful information.

"
Hydrostatics." By Prof. Greenhill, F.R.S.

This book treats the subject in a practical manner likely to be of great
use to students in Naval Architecture.

"
Lloyd's Report on Masting." A masterly survey of problems con-

nected with sailing vessels. By the late Mr. William John.
"
Shipyard Practice as Applied to Warship Construction." By

Neil J. McDermaid, R.C.N.C.
The author of this work was the Instructor on practical ship building

to naval construction students at Devonport Dockyard.
" Turbines." By Prof. Biles.

Gives much information on propellers.
" The Carriage of Liquid Cargoes." By Captain Little.

" Unsolved Problems of Shipbuilding." By Dr. Elgar.
Being the " Forrest

"
Lecture before the Institution of Civil Engineers

for 1907.
"
Steamship Coefficients, Speeds and Powers." By Mr. Fyfe.

An exhaustive collection of data.

" Resistance and Propulsion." By Prof. Dunkerley.
The author of this work was formerly Professor at the Royal Naval

College, where he lectured on this subject.

"Ship Construction and Calculations." By G. Nichol, Lloyd's

Surveyor.
Includes matter relating to the revised Lloyd's Rules.

" Structural Design of Warships." By Professor Hovgaard.
Based on lectures delivered at the Massachusetts Institute of Technology.

"
Ship Form Resistance and Screw Propulsion." By G. S. Baker,

Superintendent of the William Froude Experimental Tank.
" The .Strength of Ships." By A. J. Murray.
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ALGEBRAIC expression for area of a

curvilinear figure, 14
Amsler's integrator, 197, 419
Angles, measurement of, 90
Area of circle, 4

figure bounded by a plain curve

and two radii, 15

portion of a figure between two
consecutive ordinates, 12

rectangle, I

square, I

triangle, 2

trapezium, 3

trapezoid, 2

wetted surface, 85, 86
Atwood's formula for statical sta-

bility, 175
Augment of resistance, 339

BARNES' method of calculating sta-

bility, 1 88

Beams, 262, 265, 274
Bilge keels, effect on rolling, 359
Bilging a central compartment, 34

an end compartment, 165
Blom's mechanical method of cal-

culating stability, 187
BM, longitudinal, 145

, , approximations, 150
, transverse, 107
, , approximations, ill

Books on theoretical naval archi-

tecture, 488
Brown's Displacement Sheet, 414
Buoyancy, centre of, 63, 64

, strains due to unequal distri-

bution of weight and, 268
Butt fastenings, strength of, 235,

239

Butt straps, treatment of, Admiralty
and Lloyd's, 239

CALCULATION of weights, 224
Captain, stability of, 176
Cavitation, 341
Centre of buoyancy, 63, 64

, approximate position,

65
of flotation, 98
of gravity, 47

of an area bounded by a

curve and two radii, 60
of an area with respect to

an ordinate, 53, 57
of an area with respect to

the base, 58
of a plane area by experi-

ment, 51
of a ship, calculation of,

231
of outer bottom plating,

232
of solid bounded by a

curved surface and a plane, 62
of solids, 52

Change of trim, salt to river, 169
Circle, area of, 4
Circular measure of angles, 90
Coefficient of fineness, displace-

ment, 31, 32
midship section, 29
water-plane, 31

speed, 315
Combination table for stability, 193

Comparison, law of, 321
Conditions of equilibrium, 92

stable equilibrium, 96
Corresponding speeds, 319
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Crank ship, 127
Cross-curves of stability, 197,413
Cubes and squares, 438
Curve of areas ofmidship section, 29

of bending moment, 271-273
of buoyancy, 133
of displacement, 24
of flotation, 133
of loads, 271-273
of sectional areas, 21
of shearing force, 271-273
of stability, 176, 182, 183

, calculation of, 186
tons per inch immersion, 29

Curves, use of, in
'

calculating

weights, 228

DAVITS, strength of, 241
Derricks, strength of, 245
Difference in draught, salt and

river water, 32
Direct method of calculating sta-

bility, 196

Displacement, 23
, curve of, 24
of vessel out of the designed

trim, 152
sheet, 69, 410, 414

Draft aft remaining constant, 163
, change of, due to different

density of water, 32
Draught when launched, 170
Dynamical stability, 204

EDDY-MAKING resistance, 302, 306
Edgar> trial in shallow water, 328
Effective horse-power, 297

calculation of, 331
English's, Col., model experiments,

328
Equilibrium, conditions of, 92

, stable, conditions of, 96
Equivalent girder, 281

Examination of the Board of Edu-

cation, questions, 450
, syllabus, 446

Experimental data as to strength of

plates and rivets, 237

Experiments on Greyhound, 298
to determine frictional resist-

ance, 303

FIVE-EIGHT rule, 12

Floating dock, information for, 171

Framing, weight of, 228
Free water in a ship, 128
Frictional resistance, 302, 303
Froude, Mr., experiments of, 298,
303

GM by experiment, 119
GM, values of, 125
Graphic integration of rolling equa-

tion, 367
method of calculating dis-

placement and position of C.B.,
76

Greyhound, H.M.S., experiments
on, 298

Grounding, loss of stability, 416
Gun fire, heel produced by, 215

HOGGING strains, 261
Hok's method of calculating sta-

bility, 208

Horse-power, 296
, effective, 297
, indicated, 300

Hull efficiency, 339
, weight of, 229

INCLINING experiment, 119
Indicated horse-power, 300
Inertia, moment of, 101

Integraph, 272
Integrator, Amsler's, 197, 419
Interference between bow and stern

series of transverse waves, 312
Iron, weight of, 37, 38

LAUNCHING, calculations for, 400
draught, 1 70

Leclert's theorem, 137

Lifeboats, stability of, 210

Lloyd's numbers for regulating

scantlings, 230
Logarithms, table of, 434
Longitudinal bending strains, 258,

265
BM, 145
C.G. of a ship, 234
metacentre, 144
metacentric height, 1 54

MATERIALS for shipbuilding, weight
of, 37

Measured-mile trials, 326
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Mechanical method of calculating

stability, 187
Metacentre, longitudinal, 144

, transverse, 94
Metacentric diagram, 113

for simple figures, 132

height by experiment, 1 19
when inclined about another

axis, 217
, values of, 125

Miscellaneous examples. 421
Moment of an area about a line,

52
Moment of inertia, 101

of curvilinear figure, 105
, approximation to,

106
Moment to change trim one inch,

155

, approximate, 156,

173 (Ex. 18)

Monarch, stability of, 177
Morrish's formula for position of

C.B.,65
Moseley's formula for dynamical

stability, 205

NORMAND'S approximate formula
for longitudinal BM, 150

OUTER bottom plating, weight of,

228

PANTING, 258, 264
Pillars, 244
Pitch, 343
Planimeter, 81

Preliminary table for stability, 192

Principal stress, 284
Prismatic coefficient of fineness, 32
Progressive speed trials, 309
Propulsion, 337
Propulsive coefficient, 301

QUESTIONS set in examination of
the Board of Education (late the

Science and Art Department),
45

RACKING strains, 263
Rectangle, area of, I

Reserve of dynamical stability, 214
Resistance, 302
Rolling of ships, 348

Rolling, strains due to, 263, 353
Rudder-head, strength of, 395

SAGGING strains, 261

Sailing ships, stability of, 213
Shaft brackets, form of, 306

, strength of, 250
Shearing stresses, 282
Sheer drawing, 69
Shift of G.C. of a figure due to shift

of a portion, 100

Simpson's first rule, 6

, approximate proof,
8

, proof, 407
second rule, 10

proof, 408
Sinkage due to bilging a central

compartment, 34
Slip, 343
"Smith" correction, 285
Space passed over by ship, 334
Speed, coefficients of, 315

Squares and cubes, 438
Stability, curves of, specimen, 182

dynamical, 204
, Moseley's formula, 205

statical, 93
,
at large angles, 174

, cross-curves of, 197, 413
, curve of, 176
, calculations for, 186

, definition, 93
Steadiness, 127
Steel, weight of, 37
Stiffness, 126
Strains experienced by ships, 258
Strength of butt fastenings, 235
Stress on material composing the

section, 273
Subdivided intervals, 13

Submerged body, resistance of, 314
Syllabus of examinations of the

Board of Education (late the

Science and Art Department),
446

TANGENT to cross curve, 203
to curve of centres of buoy-

ancy, 1 1 8, 136
of metacentres, 137

curve of stability at the origin,
182

Tchebycheffs rules, 17, 409
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Tensile tests for steel plates,

Admiralty, 239
, Lloyd's, 239

Thrust deduction, 339
Timber, weight of, 37
Tons per inch immersion, 28
Transverse BM, 107

metacentre, 94
strains on ships, 263

Trapezium, area of, 3
, C.G. of, 50

Trapezoid, area of, 2

Trapezoidal rule, 5
Trochoidal wave, construction of,

285
theory, 285, 289

Triangle, area of, 2

, C.G. of, 50
Trigonometry, 90
Trim, change of, 153

moment to change, 155
Turning, heel due to, 216

Turning of ships, 381

UNSYMMETRICAL bending, 284

VELOCITY of inflow of water, 37
Volume of pyramid, 19

of rectangular block, 19
of solid bounded by a curved

surface, 20
Volume of sphere, 19

WAKE, 337
Water, free, effect on stability, 128

Wave, internal structure, 285
Wave-making resistance, 308, 313
Weight, effect on trim due to adding,

159, 161

of hull, 229
of materials, 38
of outer bottom plating, 228
of steel angles, 225

Wetted surface, area of, 85, 86

Wood, weight of, 38

THE END.
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