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PREFACE

For the past nine years I have been lecturing in this subject to

students taking courses in Mechanical and Electrical Engineering
at the Woolwich Polytechnic, and this book is based on the work
done by the senior students there. So as not to make the book
too cumbersome for a text-book, a preliminary knowledge of the

fundamental principles of Algebra, Trigonometry, and Mensuration,
and the use of Logarithms and squared paper, has been assumed,
this being well within the scope of the elementary student. The
book is meant to cover a two- or three-years' course, and it is

roughly divided into three sections :

(1) Algebra and Trigonometry.
(2) The Differential and Integral Calculus.

(3) The application of the subject-matter of the two previous
sections to concrete examples.

The work in Section I has been carefully selected in such a

way as to help the student with the later work in the Calculus.

There is no doubt that after the idea of the Calculus has been

thoroughly grasped, a great many of the so-called difficulties

which arise out of the work are entirely due to a weakness in the

knowledge of the fundamental principles of Algebra and Trigono-

metry. For instance, many students fail in the integration of

sin 2
x, not because they do not know how to integrate, but because

they fail to see or fail to remember that

sin 2 oc= -
(1 cos 2x)

Again, many fail to integrate algebraic functions because they
have such weak notions of partial fractions and simple substitu-

tions. Section I has been written with the idea of removing this

weakness.

The Calculus has been treated as thoroughly as the size of the

book allows. It might be said that this part of the work has

been elaborated too much for the practical side of Mathematics ;

but it must be remembered that the Calculus cannot be success-

fully applied to the problems which occur in actual practice
until the student has become thoroughly familiar with its under-
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lying principles and methods, and this familiarity Can only be

obtained by steady practice. It is unfair to a student to give
him as a standard form

\x
n dx =

n+ 1

and then expect him to use it as a formula to integrate any func-

tion which might resemble it, or by some means reduce to it.

This might be working along the line of least resistance, but it

is not educational : neither is it to the best interests of the student,

to whom sound work in Differentiation and Integration is an

absolute necessity.
The work in Section III consists of the Mathematics involved

in those problems more or less familiar to the technical student,

and before this work should be attempted it is essential that the

work in the two previous sections should be fully grasped.
I have devoted a chapter to the study of Interpolation and the

best way of dealing with tabular values, and I have endeavoured
to put this part of the subject in a reasonable form. The method
of Harmonic Analysis given in Chapter XXII is the one I have
found from experience to be best adapted to class work.

The examples are numerous, and have been chosen in accor-

dance with the text. The answers are given, and these have been

carefully checked
;

but it is possible, as may be expected when

dealing with such a number, that errors might occur, and I should
be grateful to any teacher or student drawing my attention to

them if such is the case.

H. LESLIE MANN.

June 191 5.
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1

length of the diagonal AC
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1 where x = and x = 5.'
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CHAPTER I

1. The resolution of a quadratic expression into factors.

Taking the most general form for an expression of the second

degree

ax2 + bx + c = a(x2 + -x +
-J

( o b > c V\= a( x2 +-x + fc-+ -J-)
\ a Ui a 4a/

and the expression can be written as

{(flr-r^n
in terms of the difference of two squares.

Hence the factors will be

/ b Vb2
-4,ac\/ ,

b Vb2 - 4ac\
a
\
X+

Ya
+

2a-h
X
+2-a ^T)

The nature of the factors depends upon the form taken by the

expression b2 &ac.

If b2 4<ac is a perfect square, the factors are exact.

If b2 4ac is positive and not a perfect square, the expression
can be split up into factors, but the numerical* parts of each

factor can only be given correct to as many significant figures as

desired.

If b2 4>ac is negative, then the factors can only b given in

terms of complex quantities.
If b2 4>ac m 0, then the actual expression is itself a perfect

square.
To find the factors of 8a?2 + 13a? - 22

8x2 + 13a? - 22 =
8(a?

2 + 1.625a? - 2-75)
- 8{x

2 + 1.625a? + (-8125)
2 - 2-75 -

(-8125)
2
}

= 8 {(a? +0-8125)
2 -3-410}

=
8{(a? + 0-8125)

2 -
(1-847)

2
}

= 8(x + 2-659)(a? -1-035)
A
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2. The previous method can be replaced by the solution of

a quadratic equation ; for if x a
x
makes the expressionbe x

x2 + - x + -
disappear, then x a, is a factor. Also if x = <x

makes the expression disappear, then x a
2

is a factor. Con-

sequently a(# a
1)(a; a

2)
will be the factors of ax2 + bx + c

where 04 and a
2

are the roots of the quadratic equation
b c

x2 + -x + - = 0.
a

To find the factors of 5x2 - 7x - 22

5^2 _ 7x _ 22 = 5(#
2 - 1.4a; -

4-4)

Solving the equation x2 l-4# 4-4 -
x2 - 14z + (0-7)

2 - 4-89

X -07= 2211
x = 2911 or - 1-511

The factors are 5(x
-

2.911)(a> + 1-511)

3. Partial Fractions. For the integration of algebraic fractions

it is necessary that the fraction must be expressed in its simplest
and most convenient form for integration. For such purposes a

fraction is much better dealt with when it is expressed as the

sum or difference of simpler fractions. These simpler fractions

are spoken of as
"
Partial Fractions," and the number of partial

fractions which can represent a given fraction depends upon the

number of factors, linear or otherwise, in the denominator of

that fraction.

If, for example, the denominator contains three factors,

then there will be three partial fractions, the respective de-

nominators of which are the three factors taken in order. Thus,

Sx + 2 , A B C
can be written as H +

(x
-

2)(x + 3)(2# -5) x -2 x + & %x - 5

providing the necessary values of A, B, and C are found. Also
x*

or ; rr; , w , tt can be written as
(x + l)(a;

3 -
1) (x + l)(x

-
l)(x

2 + x + 1)

A B Cx +D
a? + 1 x-l + x2 +x+l

Care must be taken that the numerator of any partial fraction

shall always be of one degree less than that of its denominator.
4. Our work in partial fractions can be divided up into four

different cases.

Case I. When the denominator of the fraction is the product
of a certain number of different linear factors.

3x + 2 A B C

(x - 2)(x + 3)(2a> -5)
"
x - 2

+
a;+3

+ 2a?-5
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Then A(a? + 3) (2a?
-

5) + B(a?
-

2) (2a?
-

5) + C(a?
-

2){x + 3)

=3a? + 2 for all values of x,

when a; - 2
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Then A(cc
-
2)(20+l) + B(20 + 1) + C(x

-
2)

2 - 40+3 for all

values of 0,

when = 2 5B =11 B = y
5

. 1 25 r 4
when0 = -- T C - 1 C=-

when 0=0 - 2A + B + 4C =3 A = - --

The partial fractions are -^-^ +
-gJl-j,

+
25(J + x)

Case JF. When the denominator of the fraction contains a

quadratic factor which cannot be resolved into linear factors.

x2 x2 A Bx + C

x3 - 1 (a;
-

1)(0
2 +a; + l) 0-1 2 +0+1

Then A(0
2 + + 1) + {Bx + C)(0

-
1)

= 2 for all values of x,

when 0=1 3A =1 A = -
o

when 0=0 A-C =0 C = i
o

when 0=2 7A+2B+C =4 B =
|o

The partial fractions are
-jyi-j

+
3(/*

+
^_ 1}

5. If the numerator is of higher degree than the denominator,
then the denominator must be divided into the numerator, and
the fraction whose numerator is the remainder must be split up
into partial fractions.

Thus by division
j^

= x + ^
-

;_. 80 80 A B0 + C
Then - : -rr-z = Tv = +

x* _ 8 (0
-

2)(0
2 + 20+4) 0-2 2 + 20 + 4

A(0
2 +20+4) + (B0 + C)(0 2) m 80 for all values of 0,

4
when 0=2 12A =16 A = -

B

when 0=0 4A - 2C =0 C = |o

when 0=1 7A-B-C =8 B = - -
o

4 4 8-40
+03-8 3(0 - 2) 3(0

2 +20+4)
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In general the best method of dealing with the work on partial
fractions is to begin by selecting values of x which will make

particular factors disappear ;
this can be done for all linear

factors : then, if necessary, make x zero and use the results

already found. After this, if the solution to the question is still

incomplete, a further step must be taken, and this is best done

by 'equating coefficients of like powers of x.

Sometimes we have to deal with an example which can only be
done by equating coefficients of like powers of x and solving the

resulting simultaneous equations for the quantities A, B, C, &c.

~ . . x2 ',....
xa * xi + xi + i

^ a11 CAC
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and since a, (3, y . . . are derived only from A, B, C . . . they
must be independent of x and a.

Thus (x + a)
n can be written as a series of terms containing

descending powers of x and ascending powers of a, such that in

any one term the sum of the powers of x and a is always w.

If we can find how the coefficients A, B, C . . . depend upon
n, then we can establish a general way of expanding (x + a)

n
.

By multiplicationABC 1) E
{x + a)

1



THE BINOMIAL THEOREM

As B is of the second degree in n, C will be of the third

in n, and its most general form will be b + en + dn2 + /m3

b, c, d, and ft are constants.

Let C - b + en + dn2 + ftn3

when n = 3 C= 1 b + 3c + 9d + 27ft - 1

when w = 4 C = 4 6 + 4c + I6d + 64/* = 4

when n = 5 C = 10 b + 5c + 25d + 125ft - 10

when n - 6 C = 20 6 + 6c + 36d + 216ft - 20

subtracting (1) from (2) c + Id + 37ft = 3

subtracting (2) from (3)

subtracting (3) from (4)

subtracting (5) from (6)

subtracting (6) from (7)

subtracting (8) from (9)

from (8)

from (5)

from (1)6 -

Thus

c + 7d +
c + 9d +
c + lid +

2d +
2d +

37/i

Gl/i

91ft

24ft

30ft

= G

= 10

= 3

= 4

6ft = 1

2d = 3 - 24ft

3 - 7d - 37ft

1 - 3c - 9d - 27ft

>/ tr //

degree

,
where

(1)

(2)

(3)

(4)

(5)

(6)

(?)

(8)

(9)

1

G

1

2

1

3

C = - +
6 2 3

-
^(n

2 - 3n + 2)

_ n(n -
l)(n

-
2)

6

This result agrees with the anticipated result for C. Hence

{x + a)
n = xn -f &axn~ l + Ba2#n-2 + Ca3xn~3 + &a*xn-*+ . . .

where A = -

B =A

C =B x

n 1 _ n(n 1)

~~7F~" 12

n - 2 7i(n l)(n
-

2)

3
"

123
n - 3 rc(n

-
l)(n

-
2)(n

-
3)

4 1-234

The expansion can also be written as

(x + )"=*" + ruue-i +!*lW- +
" (" -

|

1

j
(w-2)q3^-3 + . . .

|2 |3
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Expand (%x - -\ . Here n =

2xJ
'
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Then (1
-

2x)~*
= {l+(-2x)}~

3

-1 + (-8) (-2a?) + 6( -2x)
2 + ( -10) {-2xf

+ 15(-2a?)
4 +.

= l+6a?+24a:2 +8(ta3 +240;r4 + . . .

_ 3 3
Expand (1 x) l to five terms. Here n = -

A
1
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The second approximations are :

(1 4- a)
n r 1 + na + -n(n l)a

2

(1
-

a)
n X 1 - na + -n(n -

l)a
2

(1 + a)~
n s 1 - no + -n(n + l)a

2

(1
-

a)~
n S 1 + na + -n(w + l)a

2

To find the first and second approximations of ^130.

^130 - (125 + 5)
J =

5(l +
iL)*

Since n-1 *-}-
B = A - 1 1 1

C

2 ~3
X

3
"

9

Then
^TF0=5{x + i.l-l.(l)

3

...}

The first approximation is 5(1 + -) = 5*0667 given to four

places of decimals.

The term to be subtracted from the first approximation to give
5 1

the second approximation is - x - 00009 given to four
*

1 >

places of decimals.

The second approximation is 5*0658.

Also 5066 is the result correct to four significant figures.

To find the first and second approximations of VlOOO.

VlOOO = (1024 - 24)* -
4(1

-
-|~)*

Since n = - A = J = -
5 15

-|.-H"S
Then W-{-H| -J.(A)P...)

The first approximation is 4(1 -) = 3*98125 given to five

places of decimals.
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The term to be subtracted from the first approximation to give

the second approximation is -- x (

j

- 000018 given to five

places of decimals.

The second approximation is 3-98107.
Also 3-981 is the result correct to four significant figures.

8. Applications of the approximate use of Binomial Theorem.

(1) To find the position of the crosshead corresponding to a

given angular position of the crank.

Let OA, Fig. 1, represent the crank, of length r, rotating about
the fixed centre O, and let AB represent the connecting rod, of

length I.

In the extreme position C of the crosshead, the crank and

L>^

Fig. i.

connecting rod are in the same straight line and the distance

OC - I + r.

Let 6 represent the angular position of the crank and x the
distance of the crosshead from C.

Then x + I cos
fi + r cos = I + r where

(3
is the angle the

connecting rod makes with the line of centres.

Also Z sin p
= r sin

but cos p
= V 1 - sin2 P

(l
-
J sin*

e)

1
2/~

2
sin2 approximately,

since sin2 is small compared with 1.

Then x = r r cos + I I cos
(3

r2=
r(l

- cos 0) + - sin2

r2= r(l
- cos 0) + 7-7 (1

- cos 20)
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If the crank is making n revolutions per second, the angle
turned through per second is 27ra radians, and if 6 is the angle
turned through in t seconds

Then 6 = lirnt radians

r2

and x = r(l cos 2-nnt) + 77 (1 cos 4>7rnt)

(2) The effect of heat on the pendulum.

The time of swing of a pendulum is given by ^\\- where

I is the length of the pendulum in feet.

Let lx be the length of a pendulum making n
1 beats per second

at a temperature of T x C.

Then tx =?r/y-
1 and n

x
t 1
= 1

o
Let l 2 be the length of the same pendulum at a temperature of

T 2 C. and at this temperature it makes n
2 beats per second.

Then t 2
=
^^J

- and n
2
t 2
- 1

but l2
= Z

X {1 4- a(T 2
- T

x)} where a is the coefficient of ex-

pansion of the pendulum rod.

Now r =
/

h Vl + a(T2-T 1)

and 2-{l +a(T2
-T

1)}^n
1

71 7.

Then - = 1 -(T2 T
2 )

to the first approximation and
tit Ji

^ = 1 -
|(T a

- TJ +
5|!(T2

- TJ 2 to the second approxi-

mation, since <x(T 2 TJ is small compared with 1.

Working to the first approximation

2 v 2 lf n
x

n
x

Then n
1

n
2
= ^w 1a(T 2

T
x ) giving the loss of the pendulum

per second due to the temperature increasing from T
x

to T 2 .

If the range of temperature is great, it might be necessary to

take the second approximation.

Then
|(T2

-T
1)-2|!(T2 -T1)

2 =l-^ =^3
and Bl-n, =

^{ffT.-TJ -SpT.-T,)*}

-i^aCr.-Tjfl-^CT.-Tj}
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If the pendulum actually beats seconds at the lower tempera-
ture, then we can put n

x
= 1 in the relation which gives the loss

per second.

9. The Exponential and Logarithmic Series.

Putting a =- in the expansion

k

'

- n(n \) . n(n-l)(n-2) _

(l+a)
n =l+na+ ;

a2 +
r^

-a3 + . . .

we get

Making n infinitely great, all of the fractions having n for their

denominators become infinitely small and can therefore be

neglected. Thus in the limit the right hand side becomes

_ _ 111
a quantity having a definite value, calling this quantity e

then e= i+i + .A. + _!.+ ...

By evaluating the series the value of e can be found correct to

as many significant figures as required.

To find e correct to six significant figures.

1-000000

1-000000
500000
-166667

-041667

-008333

-001389

-000198

-000025

-000003

2-718282

e 2-71828 correct to six significant figures.

1+-) =
iv 1 + ~J J

= e* wnen n *s made infinitely
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/ i\nx
great, but ( 1 + -

) can be expanded by means of the Binomial

Theorem.

/ l\ nx
, /1\ nx{nx 1)/1V nx{nx l){nx 2)/l\

3

= 1+ * +
-[i

+
[8

+

Making n infinitely great, we get

#2 #3

^- 1+ * +
|2

+
T3

+
-\-

By giving x different values we can use this series to calculate

the corresponding values of e*. Thus when x = -

2 22
|
2 23

|

3

2
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But (1 + z)
y can be expanded by means of the Binomial

Theorem.

(! + z)*
- 1 + yz + ^-L) z2+ ^-|f-

2
)
,3 + ., . (2)

Equating coefficients of y in (1) and (2)

<~2
n;3 ty&

loge (l + S)= S -^-+~-~ ... (3)

This series can be conveniently used for values of z less than 1,

and it can therefore be employed as a means of calculating the

logarithms of numbers between 1 and 2.

Replacing z by z we have

log.(l-*)~ *-!__-. .. (4)

a series which can be used for the calculation of the logarithms
of numbers and 1.

Subtracting (4) from (3) gives

log.(l + *)
- log.(l

-
z) or log, Lij

-
2-{z

-f j + + . .

.}

... 1 + s n+1 1 ,, .

putting - = or 2 - the series becomes
1 - z n 2n -f 1

n+1 f I_ 1 1
|gc

ft

-
I2n + 1

+
3(2n + l)

3 +
5(2n -f l)

5 + * * *

/

a series in which the terms rapidly become smaller and smaller

as n is made larger, and it can be used for the calculation of the

logarithms of numbers greater than 2.

For log.(n + I)
- logcn -

i{jJ^
+
--J_p + . .

.}

when -l loge
2 = 2g + ?

L +^ + . .

.}

- 0-6931

when n - 2 logc3 - loge2 =
2^ + Jp +

^-L
. .

.}

= 0-4055

Then logc3 - 1-0986

Now logc4 = 2 loge2 - 1-3862

when n - 4 loge5 -
logc

4 - 2
{1 + -^ + -^ . . J

= 02231

Then loge
5 - 1-6093
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10. In working with logarithms to the base 10, and logarithms
to the base e t many students find difficulty in changing from one

system to the other.

Let y be the common logarithm and x the Napierian logarithm
of a certain number N.

Then log10
N = y and N - 10"

Also logcN - x and N = e*

Hence 10" = e*.

Taking common logarithms of both sides

y = x log10
d = 0-4343o;

Thus common log - 6-4343 Nap. log or Nap. log

23026

j xt i common log ^ nn ,

and Nap. log = or 2-3026 common log.

Examples I

(1) Working correct to four significant figures, find the
factors of

(a) x2 + 394a; - 5-62

\b) x2 - 5-72x + 4-77

(c) x2 - 892a; - 4-86

Find the partial fractions of
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(is) "zir+i m
(20) rr7^-r (2i)

(X-
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(32) Find the Napierian logarithms of 1-492, 0-01964, and

3261.

(33) Find the numbers whose Napierian logarithms are 0-1624,

2-9214, and -20732.
T

(34) If $ =
log,

- where T = 273 + t, find
<j>
when t has the

values 50, 100, 150, 200, 250, and 300.

(35) If I = 3-11 x 10~4w log, and u = 300, I = 004. Find r
ri

when rx has the values 00115, 00120, 00125, and 00130.



CHAPTER II

11. Tlie Solution of Triangles. It is possible to perform the

solution of triangles without the aid of formulae, and the work
can easily be done from first principles ; a knowledge of the

definitions of the trigonometrical ratios and of the properties
of the right-angled triangle is all that is necessary. The method
affords an excellent example of the' application of the trigono-
metrical ratios to practical work.

We have three cases to consider, viz. :

Case I. When the three sides are given.
Case II. When two sides and one angle are given.
Case III. When one side and two angles are given.

Case I. Here it is best to take the longest side as the base

and find the angles at the base, for since the base is the longest
side the angles at the base must be acute. Let the three sides

be 18, 14, and 9.

Let h be the length of the perpendicular drawn from the vertex

to the base, and let x and (18 x) be the segments into which
the foot of the perpendicular divides the base.

Then h2 = 142 - x2

and h2 = 92 -
(18

-
x)

2

196 - x2 = 81 - 324 + 36# - x2

36# - 439

x - 12-19

Then cos A = ^ = l^r^ - 0-8709
14 14

Also cos B = 18 - x 5-81

9 9

C - 180 - (A + B)
19

= 0-6456

A = 29 27'

B = 49 48'

C = 100 45'
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Case II. This case gives rise to three distinct examples accord-

ing to the position the given angle occupies with respect to the

two given sides. This angle may be :

(a) Contained by the two sides.

(b) Opposite the smaller side.

(c) Opposite the larger side.

(a) Let the two sides be 31 and 22 and the included angle 62.
Take the longest side as the base.

C

zL - sin 62 c

22
0-8829

0-8829 x 22 = 19-42

22
= C S 62 0-4695

0-4695 x 22 = 10-33

CB = Vh2 + (31
-

x)
2

Also tan B = h

Vl9422 + 20-672 = 28-36

19-42 = 0-9393 B - 43 12'
31 - x 20-67

C = 180 - (A + B) C = 74 48'

(b) Let the two sides be 9 and 8, and the angle opposite to the

smaller side be 56.
To draw the triangle, let AD be a line of indefinite length,

/\
make AB = 9 and BAD = 56. With B as centre and radius

equal to 8 draw an arc of a circle cutting AD in the points C
x

and C. The triangles ABC and AB^ satisfy the given
conditions.

Since the triangle BCC X is isosceles, the perpendicular BE
bisects the base.
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Let C XE = CE =
y, and AE = ft.

h

9

h

x

= sin 56 = 0-8290

- 0-8290 x 9 = 7-461

0-5592- - cos 56

x = 0-5592 x 9 = 5033

y = V82 - h2 - VS2 - 7-4612

= V15-46 x 0-539 = 2-887

7-461
sin0 = -

8
0-9326

6 - 68 51'

Fig. 4.

For the triangle ABC

For the triangle ABC^

AC = x + y = 7-920

C = = 68 51'

B - 180 - (A + C)
= 55 9'

AC X
- x - y = 2-146

C1= 180- 0= 111 9'

B = 180 - (A + C x)
= 12 51'

It must be noticed that the nature of the triangle drawn to

fulfil these conditions depends upon the relation which the smaller

side bears to the height of the triangle. For if BC > h the arc

of the circle cuts the line AD in two points, thus giving rise to

two triangles.
If BC = h the arc touches the line AD, and a right-angled

triangle results.
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If BC< h the arc does not cut the line at all, and it is im-

possible to draw the triangle.

Working the question in the above manner enables us to decide

upon the particular form the question takes, for as we begin by
finding the value of h, it is a simple matter to compare that value

with the length of the smaller side.

(c) Let the two sides be 17 and 20 and the angle opposite to

the larger side be 38. /\
Make AB = 17 and BAD = 38. With B as centre and radius

equal to 20 draw an arc of a circle cutting AD in the points Cj

Fig. 5.

The triangle BAC X
does not satisfy the given conditions, since

the angle BAC X is the supplement of 38.

4 = sin 38 = 0-6157
17

h = 0-6157 x 17 = 10-47

^- = cos 38 = 0-7880
17

x = 0-7880 x 17 = 13-40

y= V202 - h2 = V202 - 10-472

= V30-47 x 9-53 = 1704
. r h 1047
SinC=

20
=
-20" 5235

C - 31 34'

B - 180 - (A + C)
= 110 26'

AC = x + y = 30-44

Case III. Let the base be 17 and the angles at the base 34

and 61.

Then - = tan 34 = 0-6745
x
h = 0-6745*

- tan 61 - 1-804,

h = 30-67 - l-804o;
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Then 0-6745#
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Let P (Fig. 7) be a point taken on the moving arm such that

OP is the same length in each case. From P draw a perpendicular
to the fixed arm. In Cases II and III this perpendicular meets

the fixed arm produced. The triangle OPR will give us the

trigonometrical ratios of the angle in each case.

If in each case the angle POR is made equal to a, then the

-L.

CASE. 2. CASE.I.

CASE.3 CASE.A.

Fig. 7.

right-angled triangle OPR is equal in all respects, for four distinct

positions of the moving arm OP. Thus the angles a, 180 a,

180 + a, and 360 a have the common property that their

trigonometrical ratios are all derived from the same right-angled

triangle, and therefore the sines of these angles will all be numeri-

cally equal. This also holds for the other trigonometrical ratios.
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If we take a = 50, then sin a = 0-7660
;
but the sines of the

angles 130, 230, and 310 will all have this same numerical value.

It must be noticed, however, that in each case the position
of the right-angled triangle is different, and therefore we have

to make allowance.for that difference in position.
If we take a reference circle and draw two diameters inclined

at an angle a to the horizontal diameter, then we can show the

triangle POR placed in its different positions with reference to

the circle ; obviously there is one triangle in each quadrant.
Let the radius of the circle always be positive. Taking the

180

centre of the circle as origin and using the rule for positive and

negative quantities, as is usual in ordinary cases of plotting, then :

Horizontal lines drawn to right of perpendicular diameter are +.
Horizontal lines drawn to left of perpendicular diameter are .

Perpendiculars drawn above the horizontal diameter are +.

Perpendiculars drawn below the horizontal diameter are .

We can now assign to the perpendicular and base of the right-

angled triangle POR the algebraic sign according to the position
with respect to the horizontal and vertical diameters.

Tabulating the results :

360 - a
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If an angle is such that the movable arm takes up a position in

a certain quadrant, then the trigonometrical ratios of that angle
must be given the algebraical signs peculiar to that quadrant.

To find sin 123 32', cos 209 19', and tan 324 43'.

(a) 123 32' is an angle in the second quadrant.
Then sin 123 32' is +
But 123 32' - 180 - a

a - 56 28'

Hence sin 123 32' = + sin 56 28' = + 0-8335

(b) 209 19' is an angle in the third quadrant.
Then cos 209 19' is -
But 209 19'= 180+ a

a - 29 19'

Hence cos 209 19' = - cos 29 19' = - 0-8720

(c) 324 43' is an angle in the fourth quadrant.
Then tan 324 43' is -
But 324 43' = 360 - a

a - 35 17'

Hence tan 324 43' = - tan 35 17' = - 0-7072

13. Angles greater than 360. The rotation of the moving arm
with reference to the fixed arm is not limited to one complete
revolution : each revolution increases the magnitude of the angle

by 360 : but for a certain angle the moving arm is sure to take

up a position in one of the four quadrants. Thus an angle greater
than 360 can be taken to be made up of two parts : an exact

multiple of 360, and an angle between and 360; and it is

the second part which must be used in order to determine the

trigonometrical ratios.

To find cos 829.

829 = 2 x 360 + 109
Then cos 829 = cos 109

But 109 is in the second quadrant
Then cos 109 is -
But 109 = 180 - a

a =71
Then cos 829 - cos 109 = - cos 71 = - 0-3256

14. Negative Angles. Up to now we have taken the moving
arm as rotating in anti-clockwise direction, but that arm can

also rotate in the opposite direction that is, in clockwise direc-

tion. In order to distinguish between these two directions we
take an angle measured in clockwise direction as negative. Now
an angle of ( a) represents an angle a measured in clockwise

direction, and the moving arm takes up a certain position in one

of the four quadrants ;
but that same position could be obtained
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a in anti-clockwiseby measuring an angle 360 a or n x 360

direction.

Thus - 121 = 360 - 212 =

- 589 = 720 - 589
- 872 - 1080 - 872

148
131

- 108
c

and the trigonometrical ratios of the corresponding positive

angles can be found in the usual way.

15. The Area of a Triangle. If h and h x are the perpendiculars
drawn from A and C to the opposite sides respectively

Then area = - ah or - ch x

but

and

- = sin B or h - c sin B

= sin C or h = b sin C

also -r1 = sin (180 A) = sin A or 7i
1
= b sin A

Hence area = - ac sin B = - ab sin C = - be sin A
SB Z 31

Putting these relations in words, the area of a triangle is half
v

the product of two sides and the sine of the included angle.

Let h be the perpendicular drawn from A, and x and (a x)

the segments into which the foot of the perpendicular divides

the base.

Then h? = c2 - x2

and h2 = b2 -(a- x)
2

b2 -a2 + 2ax - x2 = c2 - x2

2ax = a2 + c2 - b2

a2 +c2 - b2

X =
2a
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But h2 = c2 - x2 -
(e + x)(c

-
x)

l/2ac + a2 +c2 - b2\(2ac
- a2 - c2 + b2\

h - y\ Ta A Ta )

= h V{(a+c)
2 - b2 }{b

2 - (a-c)
2
}

= V(a + b-\- c)(a- b+ c)(a + b - c){b
- a+ c)

Ad

Ya VlGs{s - a)(s
-

b)(s
-

c)

where 2s = a+ b -\- c the perimeter of the triangle

Then h = - Vs{s - a)(s
-

b){s
-

c)

Fig. io.

This is the perpendicular drawn to the side a. It can be easily
shown that the other two perpendiculars are

2

I
n6

=
i ^s

(
s ~a)(s

-
b)(s c)

he
= - Vs{s - a){s

-
b)(s c)

c

The area of the triangle
= -ah

Vs(s a)(s b)(s c)

16. The Compound Angle. It is sometimes necessary to express
the trigonometrical ratios of the sum or difference of two given

angles in terms of the trigonometrical ratios of those angles.
/\

Let POM = A and POR = B, the angles being measured in anti-

clockwise direction in the first case, thus producing the compound
angle ROM = A + B, and in the second case B is measured in
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clockwise direction, thus producing the compound angle ROM =

A-B.
P is a point taken on the line of separation of the angles A

and B, and PR is the line drawn perpendicular to OP, meeting
the arm of the angle (A + B) or (A - B) in R.

PN and RM are perpendiculars drawn to OX from P and R
respectively, while PQ is drawn through P parallel to OX, meeting

RM, or RM produced in Q.

Fig. ii.

Then sin (A + B)
RM
OR
RQ

RQ + QM RQ + PN

OR + OR
RP

OR
PN

cos (A + B) =
^g

=

ON
"
OR

= cos A

OR
PN RQ

RP
cos A sin B -f sin A cos B
OM ON - MN ON - PQ

OR + OP
OP
OR

Also sin (A B) - -^ =

OR OR
PQON OPPQ RP
OR "OP OR RPOR
cos B sin A sin B

MQ - QR PN - QR

cos(A-B)= -

RM
OR OR OR
PNQRPN OPQR RP
OR OR "OP OR RPOR

= sin A cos B cos A sin B
OM ON + NM ON + PQ
OR" OR

~
OR

ON PQON OP PQ RP
OR + OR OPOR + RPOR
cos A cos B 4- sin A sin B
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sin (A + B)
cos (A + B)

sin A cos B + cos A sin B

Tan (A + B)v ' cos (A + B)

cos A cos B sin A sin B
tan A + tan B= = -

r 7 7T on dividing numerator and de-
1 tan A tan B to

nominator by cos A cos B.

Also tan (A -B)^
51

"^-^v ' cos (A - B)

_ sin A cos B cos A sin B
cos A cos B + sin A sin B
tan A tan B ,. . _. ,= _

,
, t 7 ri on dividing numerator and

1 + tan A tan B
denominator by cos A cos B.

These relations for the trigonometrical ratios of the angles

(A + B) and (A B) are of utmost importance, and they should
be treated as fundamental relations, since so much of the higher
work in Trigonometry depends upon them.

17. The expression a sin -f b cos 0. By comparing the ex-

pression a sin + b cos with the relations

sin (A + B) = sin A cos B + cos A sin B
cos (A + B = cos A cos B sin A sin B

we are enabled to put it as either a sine function or a cosine

function, according as to whether the algebraic signs of a and b
are alike or unlike.

(1) When the signs are alike

a sin + b cos = Va2 +62
(sin . .

a
+ cos ,

h
]

y Va2 + b2 Va2 + b2f

This converts the quantities a and b into fractions which are

trigonometrical ratios of the angle (3,
the base angle of a right-

angled triangle whose perpendicular is b and whose base is a.

(Fig. 12.)

The expression thus becomes

Va2 + b2 {sin cos p + cos sin p}

and finally, Va2 + b2 sin (0 + p) where tan p
- -

If both the signs are negative, then

a sin b cos =
(a sin + b cos 0)

= - Va2 + b2 sin (0 + p) where tan p = -

(2) When the signs are unlike

ft cos - a sin = Va2 + ft
2
(cos .

.

h - sin .

a
)

i Va2 + b2 Va2 + b2f
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This converts the quantities a and b into fractions which are

trigonometrical ratios of the angle a, the base angle of a right-

angled triangle whose perpendicular is a and whose base is b.

(Fig. 13.)

The expression thus becomes

Va2 + b2
{cos cos a sin . sin a}

. a
and finally, Va2 + b2 cos (0 + a) where tan a =

j-

If b is negative and a is positive, then

a sin b cos =
(b cos a sin 0)

= Va2 + b2 cos (0 + a) where tan a -
j

These results may be summarised as follows :

(b cos + a sin 0)
= V a2 + b2 sin (0 + p) where tan

(3 a

a
(b cos a sin 0)

= Va2 + &2 cos (0 f- a) where tan a

18. By taking the relation y - a sin 0+6 cos and putting it

in the form y - Va2 + &2 sin (0 + (3),
where tan

(3
= -, we are en-

ft

abled to very easily ascertain some of the impor ant features of

the function. Since the sine of an angle is never greater than 1

and never less than 1, y will be greatest when sin (0 + P)
= 1

that is, when 0+ p has the values -, , , etc., or when hasall
xi i

IT n 57T 97T _

the values - -
p,

-
p,

- -
p, etc.

Z Z A

Thus the greatest value of / is Va2 + &2
,
and this occurs when

5tt
has the values -

p p, etc., at intervals of 2-rr.
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Similarly the least value is Va2 + b2
, and this occurs when 6

has the values p,
-

p, etc., at intervals of 2tt.
-

Also y vanishes when sin (0 4 })
= 0.

That is, when 6 4 p has the values 0, 7r, 27t, etc., or when
has the values -

p, ir p, 27r
(3, etc., at intervals of ic.

This method of treatment can be applied to the other three cases.

19. The equation a sin 4 b cos = c.

Dividing throughout by Va2 4 b2 , the equation becomes
. Q a n b c

sin , 4- cos - =
.

Va2 + b2 Va2 + b2 Va2 + b2

orsin(0+ P^ v^ (1)

and tan p- (2)

(1) gives the values of the angle + (5, (2) gives the value of

the angle p, and the values of can be found by subtraction.

(*

When the fraction is positive, the angle 4- S has two
Vfl2 + b2

values, one between and 90 and the other between 90 and
180. When the fraction is negative, the angle + p has two
values, one between 180 and 270 and the other between 270
and 360.

Solve the equation 8 sin + 11 cos = 12.

Then sin . 4 cos
Vl85 Vl85 Vl85

sin . cos p 4- cos . sin p
= - 0-8822

sin (0 4 P)
- - 0-8822

tan p
= ~ = 1-3750

o

4 p
= 241 55' or 298 5'

P
- 53 59'

= 187 56' or 244 6'

The equation b cos a sin = c.

Dividing throughout by Va2 4 b2
,
the equation becomes

o ^ a c
cos . , sin

Va2 + b2 Va2 4 b2 Va2
4- b2

or cos (0+ a)
= ^=p . *,. 0)

and tan a = t (2)

(1) gives the values of the angle 4a
(2) gives the value of the angle a.



THE EQUATION a sin + b cos = c 33

When the fraction , is positive, the angle + a has two
Vfl2 + b-

values, one between and 90 and the other between 270 and
360. When the fraction is negative, the angle + a has two

values, one between 90 and 180 and the other between 180

and 270.
Solve the equation 9 cos - 14 sin = 15.

9 a 14 15
Then cos , sin

V277 V277 V277
cos . cos a sin . sin a - 0-9014

cos (0 + a
)
= - 0-9014

14
tan a = - 1*5555

y

+ a - 154 20' or 205 40'

a - 57 16'

- 97 4' or 148 24'

It should be noticed that the nature of the fraction
Va2 + b2

decides upon the possibilities of the equation, for since the value

of the fraction represents the sine or cosine of an angle, when

c > Va2 + b2
, the fraction is greater than 1 and there is no solution

to the equation, since the sine or cosine can never be greater
than 1 or less than 1.

If c<Va2 + b2 the fraction is less than 1 and the equation has

two roots.

If c - Va2
-f- b

2 the fraction is equal to 1 and the equation has

one root, for

(1) Sin (0 + P)
= 1 and = 90 -

(3

(2) Sin (0 + (J)
= - 1 and = 270 -

(S

(3) Cos (0 + a)
= 1 and = 360 - a

(4) Cos (0 + a)
= - 1 and = 180 - a

When c = the equation can be solved in a much simpler way,
for if a sin b cos =

then a sin = T b cos

and tan =
=p -, giving the values of at once.

20. The Multiple Angles. The relations for sin (A + B) and

cos (A + B) can be used for expressing the trigonometrical ratios

of multiple angles of a given angle in terms of the trigonometrical
ratios of that angle.

sin (A + B) = sin A cos B + cos A sin B
c
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When A = B sin 2A = 2 sin A cos A
cos (A + B) = cos A cos B sin A sin B

cos 2A = cos2 A sin2 A
= 2 cos2 A - 1

= 1-2 sin2 A
2 sin A cos A

tan 2A =
cos2 A sin2 A
2 tan A

1 - tan2 A

Also sin2 A = -
(1 cos 2A)

and cos2 A = -
(1 + cos 2A) ,

a n ft

Putting A = - sin - = y- (1
- cos 0)

^/i(l + cos0)

V

cos
2

^COS0
tan

2
-
Virion

(1
- cos 0)

2

1 - cos2

= 1 cos

sin

sin 3A = sin (2A + A) = sin 2A cos A + cos 2A sin A
= 2 sin A cos2 A + sin A (1

- 2 sin2 A)
- sin A {2(1

- sin2
A) + 1 - 2 sin2 A}

= sin A (3
- 4 sin2

A)

The relations for cos 3A, sin 4A, etc., can be obtained in a similar

manner, and they can be well left as exercises for the student.

Example. The general term of the series for e sin bx is

- x h
(a

2 + b2
)
2 r- sin noc where tan a = Taking a = 2, b = 1, find

|n_
a b

the first five terms of the series.

Then #* sin bx = (a
2 + b2)^ x sin a + (a

2 + b2
) f.

sin 2a + . . .

1?
cE
2 a? /

and e2x sin x = xv5 sin a 4- rr 5 sin 2a -f r^ 5 V 5 sin 3a . . .

|2 |j3

Thus to obtain the first five terms we have to find the values of

sin a, sin 2a, sin 3a, sin 4a, and sin 5a, knowing that tan a = -.
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If tan a = -, then sin a = 7= and cos a = 7=

2 V5 V5
sm 2a - 2 7= . 7= = -, cos 2a = - - = -

V5 A/5 5 5 5 5

. 4 2 3 1 11 3241 2
sin 3a =

7= H 7=
-

7=, cos 3a
5 V5 5 a/5 5a/5* 5 a/5 5 V5 5V5

. _ 4 3 24 . 9 16 7
sin 4a = 2. --=-, cos 4a = - - - = -_

. 24 2 7 1 41
sm 5a

25 V5 25 a/5 25V5'

7 2 24 1 38
cos 5a = -

25 a/5 25 A/5 25^5

_, .- 1
,

x2 4 x3 11 #4 24Then^.sm a;
=
a:V5^

+
^.5.i

+
^5V5-^7S

+
jj.25_

+ . . .

11 41= <r+2;c2 + ar
J + #4 + -j-

5 + . . .

o 120

21. Now sin (A + B) = sin A cos B + cos A sin B . . . (1)

sin (A
-

B) = sin A cos B - cos A sin B . . . (2)

cos (A + B) = cos A cos B - sin A sin B . . . (3)

cos (A B) = cos A cos B + sin A sin B . . . (4)

Adding (1) and (2)

sin (A + B) + sin (A - B) = 2 sin A cos B . . . (5)

Subtracting (2) from (1)

sin (A + B)
- sin (A - B) = 2 cos A sin B . . . (6)

Adding (3) and (4)

os (A + B) + cos (A - B) = 2 cos A cos B . . . (7)

Subtracting (3) from (4)

cos (A - B)
- cos (A + B) = 2 sin A sin B . . . (8)

In these relations A is taken as being greater than B.

The relations (5), (6), (7), and (8) can be used in two different

ways :

(a) To express the sums or differences of sines or cosines as the

products of sines and cosines.

(b) To express the products of sines and cosines as the sums
or differences of sines or cosines.

(a) Comparing sin (x+ h) sin x with relation (6).

Then A + B = x + h and A - B = x

Hence A = x + - and B = -

and sin (x + h) sin x = 2 cos f x + -
)

sin -
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Using relation (8), cos (x + h)
- cos x - 2 sin ( x + -

J
sin -

These results will be used in the differentiation, from first

principles, of sine and cosine functions.

(b) If A = pt and B = pt
- c

Then A + B = 2pt
- c and A - B = c

From (5) sin pt cos (pt c)
= -{sin (2pt c) -f- sin c}

From (6) cos 2?/ sin (pt c)
= -{sin (2pt

-
c) sin c}

From (7) cos jtf cos (pt c)
= ~ {cos (2p/ c) + cos c}

From (8) sin pt sin (p*
-

c)
= -{cos c cos (2/rt c) }

a

This method of transformation, and these results, will be found

to be very useful in our subsequent work on Fourier's Series, and
also to find the mean values of periodic functions.

Examples II

Solve the following triangles :

(1) (a) 3 sides 18, 14, 9.

(b) 3 sides 7-36, 5-72, 3-84.

(2) (a) Sides 22 and 31, included angle 62.

(b) Sides 5-16 and 3-96, included angle 55.

(3) (a) Sides 9 and 8, angle 56 opposite to the smaller side.

(b) Sides 3-72 and 2-25, angle 32 opposite to the smaller

side.

(4) (a) Sides 17 and 20, angle 38 opposite to the larger side.

(6) Sides 3-92 and 5-72, angle 44 opposite to the larger
side.

(5) (a) Base 17, angles at the base 29 and 44.

(b) Base 2-96, angles at the base 34 and 61.

(6) The sides of a triangle are 5-6, 4-4, and 2-8. Find the area,

the angles, and the lengths of the perpendiculars.

(7) ABC is a triangle, right-angled at C; the angle ABC
is 75 ; the side AC is divided into four equal parts by points

D, E, and F. Find the angles DBC, EBC, and FBC.

(8) ABCD is a quadrilateral. AB = 1-8", BD = 2-4", DC = 3-4",

DA = 2-6", and BC - 3-2". Find the area, the angles, and the

length of the diagonal AD.

(9) Write down the values of sin 215, cos 93, tan 321, cos

236, sin 112, tan 184, sin 527, cos 412, tan 729, sin (
- 312),

cos (
- 196), and tan (

- 521).
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(10) Write down the values of sin 101 20', cos 198 32', tan

278 43', sin 386 22', cos 557 53', tan 785 39', sin
(
- 221 17'),

cos
(
- 86 19'), and tan

(
- 394 49').

(11) If m - r(l
- cos 6) +77(1 - cos 20) and r - 1, I = 5. Cal-

culate the values of x when has the values 0, 30, 60, 90,
120, 150, and 180.

(12) If y = ef*
sin 9 and a = 2, calculate the values of y when

fjr* *rp 72" 77" 77* 77"

has the values - - -
0,

- - -* Plot ?/ and on squared2 3 6 6 o 2

paper, and use your graph to solve the equation e2 siu e = 2.

Verify your result by calculation.

(13) Put 9 sin + 13 cos in the form A sin (0 + a), giving
the values of A and a. From the result find the value of which
causes the expression to vanish.

(14) Put 21 cos 016 sin in the form A cos (0 + a), giving
the values of A and a. From the result find the greatest and least

values of the expression and the values of producing them.
Solve the equations :

(15) 3 sin + 7 cos = 7-5.

(16) 8 sin + 12 cos = - 14-1.

(17) 13 cos - 8 sin = 15.

(18) 11 cos - 15 sin = - 18.

(19) 35 cos - 12 sin = - 37.

(20) 5 sin + 12 cos - 13.

(21) 8 sin 0+ 11 cos = 0.

(22) If tan A = - without using the tables find the trigono-

metrical ratios of the angles > 2A, and 3A.

(23) If x = tan -> show that a sin + b cos = c can be put

in the form 2ax + b(l x2
)
= c(l + x2

),
and hence solve the equa-

tion 9 sin + 13 cos - 15.

(24) From a circular disc of metal 8" radius, a sector whose

angle is 54 is cut away, and the remainder is formed into a conical

vessel. Find the volume of that vessel.

Solve the equations, keeping r always positive :

(25) r cos = 6, r sin = 11.

(26) r cos = -
5, r sin = 13.

(27) r cos = -
10, r sin = - 15.

(28) r cos = 12, r sin = - 7,



CHAPTER III

22. The Complex Quantity. The quantity V 9 can be taken

as V9 x -
1, which reduces to 3\/ - 1. Treating V - 8 in the

same way, it becomes 2-828V 1, the number being correct to
four significant figures. Thus the square root of any negative

quantity can be reduced to the form bV 1 or bi where b is a
real number which can be exact, or given correct to as many
significant figures as desired. The result of multiplying a real

quantity by i or V 1 is to make the product imaginary.
Many quadratic equations are spoken of as having imaginary

roots, but it is only in a few special cases for which the roots

are wholly imaginary.

Taking the quadratic equation x2 - 16# -f 100 =
Then x2 - lQx + 64 = - 100 + 64 = - 36

x-8 = 6i

and x = 8 + 6t or 8 - 6i

We can thus have quantities consisting of two distinct parts,
a real part and an imaginary part. Such quantities are spoken
of as being complex.
A complex quantity can be expressed generally in the form

a + bi, where a and b are numbers which can be exact or given
correct to so many significant figures.

23. Two complex quantities can only be equal providing the
real parts are equal and the imaginary parts are equal.
Thus if a + bi - c + di, then a = c and b - d.

For, if not, suppose a>c, then a = c+ x, where x is the differ-

ence between two real quantities and must therefore be real.

Then c+x+bi=c+di
x= di bi

This makes x imaginary, because it is equal to the difference

of two imaginary quantities, but x must be real, therefore a cannot
be greater than c. In the same way it can be shown that a
cannot be less than c. Hence a must be equal to c.

If a = c, then b must be equal to d.

24. The Powers ofi. Positive Powers :

= i

= - 1

i x t
2 = i

(i
2
)

2 - 1

i = i x iA = i = i

i* x i* = i2 = - 1

i*s x i4 = i
3 = i

i* x i* = iA = 1

38

i
9 = i

ill = p
;i2 = i*

x i8 = i = i

x is = i2 = 1

x i
8 = i3 = i

x i8 = i* = 1
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Thus the first four powers of i give i, 1, i, and 1
;

the

next four powers give the same quantities in the same order, as

also will the next four powers. It follows, then, that any positive

integral power of i will give 1 when the power is even and i

when the power is odd.

Negative Powers :

i i
2

i-.-2.J-1
.i _ i

- 1<

r-l

x %'

*'-2 *"-4

^-i -

*'-2

i-1 -4 _ -3 _

x %-

Thus the negative integral powers of i will give 1 when the

power is even and i when the power is odd. The complex
quantity can be treated algebraically, provided the treatment is

combined with a knowledge of the values of the different powers
of i.

25. Multiplication of Complex Quantities. They can be multi-

plied algebraically and the value of i
2
put, where it occurs, in the

result.

Thus (5
-

8i)(2 + 5i)
= 10 + U - 40i2

= 50 + 9* since i
2 = 1

Also (5
-

8t)(2 + 5i)(2
-

Si)
- (50 + 9i)(2

-
Si)

= 100 - 132* - 27i2

= 127 - 132i

When two complex quantities are multiplied together, care

should be taken to reduce the product to the form a+ hi before

multiplying by a third complex quantity.
26. Division of Complex Quantities. If we consider the com-

plex quantities a+ bi and a bi, we notice that the product is

a2 b2
i
2

, which reduces to a2 + b2
,
and this provides us with a

means of removing the imaginary term from a complex quantity.
Hence if we wish to divide 50 + 9i by 5 Si we can represent

50 -f- Qi
the process by the fraction -- -r and simplify the fraction.

By multiplying numerator and denominator of the fraction by
5 + 8i, we can make the denominator entirely real without altering
the value of the fraction.

Then
50 + 9i 5 + 8i 250 + 445* + 72i2

5-8i 5+8i 25 - 64i2

178 + 445z

89

= 2+ 5i
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T? 1 C VX 18+181
Example. Simplify

(g+ g^ _
Qj)

18 + ISi 18 + ISi

(2 + 3i)(5
-

6i)

~
10 + Si - ISi2

18 + 13i"
28 + Si

=
18 + 13* 28 - Si

28+3*
X
28 - Si

504 + 3101 - S9i2

784 - 9i2

_ 543 + 310i

793

= 0-6847 + 0-3909*

27. Extraction of tlie Square Root of Complex Quantities. This
can be done by a purely algebraic process.

For if Va bi - x yi
Then a bi = x2

2xyi + y
2
i
2 = x2

y
2

2xyi
Equating the real and imaginary parts, we get

x2 - y
2 = a

2xy = b

a pair of simultaneous equations to be solved for x and y.
To find the square root of 21 - 16i.

Then
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Thus V -21 +16i= V -
1(21

-
16f)

= V21 - 16*
= i {4-868 l-645i } from the previous example
= 4-868i- l-645i2

= 1-645+ 4-868i

28. The Trigonometrical Form of a Complex Quantity. When
we wish to raise a complex quantity to an integral or fractional

power, the work is simpler and more definite if we transform it

into its equivalent trigonometrical form.

Thus if a + bi = r(cos + i sin 6)

Equating the real and imaginary parts

r cos = a\
r sin = bf

Squaring and adding r2(cos
2

-f sin2 0)
= r2 - a2 + b2

Dividing tan = -

Hence a+ bi = r(cos + i sin 0) if r = Va2 + b2 and tan = -
a

It must be remembered that this transformation is to be done

with the direct object of raising a complex quantity to a power
or extracting the root of a complex quantity. Hence if we wished

to find the nth root of a -f- bi, we should have to find the nth root
i l

of r(cos + i sin 0), or the value of r(cos + i sin 0). Now if r
i

is negative and n is even, we cannot find the value of r without

introducing a further imaginary quantity, but when n is odd we

could extract the nth root. If r is positive, the value of r is real

whether n is odd or even. It is therefore advisable to perform
the above transformation with the condition that r must always
be positive, and so the value of the angle depends not only

upon the values of a and b, but also upon the signs of a and b.

We will next consider the different cases depending upon the

signs of a and b. Let A be the acute angle whose tangent is -.

Case I. When a and b are positive.

Then r sin = b and r cos = a

The angle must be such that its sine and cosine are both

positive : an angle between and 90. Thus = A.

Therefore a + bi = Va2 + b2 (cos A + i sin A) where tan A =
a

Case II. When a is negative and b is positive.

Then a + bi = r(cos + i sin 0)

and r cos = a and r sin = 6
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The angle must be such that its sine is positive and its cosine

negative, an angle between 90 and 180. Thus = 180 - A.

Therefore - a + U = Va2 + 62 {cos(180
- A) + isin (180

- A)}

where tan A = -.
a

Case III. When a and b are both negative.

Then a bi = r(cos + i sin 0)

and r cos = a and r sin = b

The angle must be such that its sine and cosine are both

negative : an angle between 180 and 270. Thus - 180 + A.

Therefore - a-bi= Va2 + b2 {cos (180 + A) + isin (180 + A) }

where tan A = -.
a

Case IV. When a is positive and b is negative.

Then a bi = r(cos + i sin 0)

and r cos = a and r sin = b.

The angle must be such that its sine is negative and its cosine

positive : an angle between 270 and 360. Thus = 360 -A.
Therefore a - bi = Va2 + 62 {cos (360

- A) + i sin (360 - A) }

where tan A = -.
a

Example 1. Express 7 + 5i in the form r(cos + i sin 0).

Then 7 + 5i = r(cos + i sin 0)

and r cos = 7, r sin =5
r = V49 + 25 = V74 - 8-602

Since sin is + and cos is

Then = 180 - A, where tan A = ? = 0-7143

= 180 - 35 32'

= 144 28'

and - 7 + 5i = 8-602(cos 144 28' + i sin 144 28^

Example 2. Express 8 Hi in the form r(cos + i sin 0).

Then 8 Hi =
r(cos + i sin 0)

and r cos = 8, r sin - 11

r = V64 + 121 = Vl85 = 13-60

Since sin is and cos is

Then = 180 + A, where tan A = ~ = 1-375
o

= 180 + 52 59'

- 232 59'

and - 8 - lit - 13-60(cos 232 59' + i sin 232 59^

29. Multiplication of Trigonometrical Complex Quantities. In

multiplication and division we are more concerned with the
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behaviour of the portion (cos + i sin 6), for r, being a positive

number, is quite easily dealt with.

(cos A +i sin A) (cos B +i sin B) =cos A cos B +i2 sin A sin B
+i(sinA cosB +cos A sin B)

= (cos A cos B sin A sin B)
+ i(sinA cos B +cosA sin B)

= cos (A + B) + i sin (A + B)
Thus the product of two trigonometrical complex quantities

gives a trigonometrical complex quantity, the angle of which is

the sum of the two angles in the factors. This can be extended
to the product of any number of factors.

For (cos A + i sin A) (cos B + i sin B)(cos C + i sin C)
= {cos (A + B) + i sin (A + B) }(cos C + i sin C)
= cos (A + B + C) + i sin (A + B + C)

and in general (cos A + i sin A) (cos B + i sin B) . . . n factors

= cos (A -f B + . . . n angles) + i sin (A + B + . . . angles).

Division can be performed by representing the process by a

fraction and then simplifying that fraction.

To divide (cos A + i sin A) by (cos B -f i sin B) we must simplify

the fraction ^ and this can be done by multiplying;
cos B + i sin B J v y &

numerator and denominator by cos B i sin B.

^ cos A + i sin A cos A + * sin A cos B i sin B
cos B + i sin B cos B + i sin B cos B i sin B

_ cos A cos B i
2 sin A sin B + {sin A cos B cos A sin B }

cos2 B p sin2 B

_ (cos A cos B + sin A sin B) + i(sm A cos B cos A sin B)
cos2 B + sin2 B

= cos (A - B) + i sin (A - B)
Thus division or the simplification of a fraction gives a trigono-

metrical complex quantity whose angle is the angle in the numerator
diminished by the angle in the denominator. Thus, in general,
if we have a fraction whose numerator is the product of factors

of the form (cos A+i sin A), and whose denominator is the

product of factors of the form (cos a + i sin a), the fraction reduces

down to (cos + i sin 0), where is the sum of the angles in the

numerator diminished by the sum of the angles in the denominator.

(cos A + i sin A) (cos B + i sin B) . . . n factors

(cos oc+ i sin a) (cos (3 + i sin
(J)

. . . m factors

cos (A + B + . . . n angles) + i sin (A + B + . . . n angles)

cos (a -f p + . . . m angles) + i sin (a + (5 + . . . m angles)
= cos {(A + B . . . n angles) (a + (3

. . . m angles) }

+ i sin {(A + B . . . n angles) (a + (J
. . . m angles) }

= cos + i sin
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. c . ... (cos 20 + i sin 20)(cos 110 + i sin 110)
Example. Simplify ^ 3QO +

.

sin^^ 5QO +
.^ 5QO)

-, . , cos 130 + i sin 130
This becomes 5 3-

cos 80 + t sin 80
and finally cos 50 + i sin 50

30. The Powers of(cos + i sin 0). It has already been shown that

(cos A + i sin A) (cos B + i sin B) . . . n factors
= cos (A + B + . . . n angles) 4- i sin (A + B + . . . n angles)

If A = B =
. . . 0, making all of the angles equal

Then (cos + i sin 0)
n = cos n0 + i sin nQ

To raise a trigonometrical complex quantity to a power, multiply
the angle by the power, and the product will give the angle of

the resulting complex quantity.
So far this rule only applies when the power is a positive integer.

(a) If n is negative and this rule holds

Then (cos -f i sin 0)~
n = cos (

-
w0) 4- i sin (

-
n0)

= cos n0 i sin n0
and this can be proved

for (cos + isin 0)-
n

(cos + i sin 0)
n
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be proved in the same way as (cos + i sin 6)
~n = cos

( n0)
+ i sin ( n0) has been proved.
Thus in general (cos + i sin 0)

n cos nO + i sin nO, whatever form
n may take : n may be positive or negative, integral or fractional

Example 1. Reduce r to the form a+ bi.

(
- 8 - Si)

f

Now 5 - 4i = 41* (cos + i sin 0)

4
where - 360 - A and tan A = - = 0-8

5

A - 38 40'
= 321 20'

Then (5
-

4i)* - 41*(cos 321 20' + i sin 321 20')^

- 41*(cos 160 40' + i sin 160 40')

Next - 2 + Si - 13*(cos + l sin 0)

where = 180 - A and tan A = ? = 1-5

A = 56 19'

= 123 41'

Then (Si
-

2)* = 13*(cos 123 41' + i sin 123 41')^

= 13*(cos 82 27' + i sin 82 27')

Next - 8 - Si - 73*(cos + i sin 0)

where = 180 + A and tan A =
| - 0-375
o

A = 20 32'
= 200 32'

Then (
- 8 - Si)

f = 73^(cos 200 32' + i sin 200 32')
?

= 73*(cos 80 13' + i sin 80 13')

Hence (->*("-)'
(
- 8 - 3t)

T

_ 41 x 13
r (cosl60

o
40' + tsinl60

o
40')(cos82

o
27' + ^sin8227)

^

I I (cos 80 13' + i sin 80 13') J

cos 243 7' + i sin 243 7'
fCOS 243" 7' + l Sin 243" 7'

)= 5
Icos 80 13' + i sin 80 13'/

= 2-523(cos 162 54' + i sin 162 54')
- 2-523(

- cos 17 6' + i sin 17 6')

m 2-523(
- 0-9558 + 0-2940&)

- - 2-411 + 0-7415i
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Example 2. Reduce (3 7%)
~3 to the form a+bi.

Now 3 - 7i = 58*(cos + i sin 0)

where = 360 - A and tan A = - - 2-3333
3

A = 66 48'

= 293 12'

Then (3
-

7^)-
3 = 58~*(cos 293 12' + i sin 293 12')

-

= 0-002264 {cos ( -879 36') +i sin (
- 879 36') }

= 0002264(cos 200 24' + i sin 200 24^
= 0-002264( - cos 20 24' - i sin 20 24^
= 0-002264( - 0-9373 - 0-3486i)
= - 10-4

(21-21 + 7-894i)

Examples III

Simplify the following expressions, giving each in the form

a+bi, the values of a and b given correct to four significant

figures.

(I) (5 + 4t) (3 + 7t) (2
-

Si) (2) (7
-

2t) {5i
-

3) (8 + 3i)

(2- 8t)(8+2i) 5-6i
K}

(4-8t)
lj

(2+8i)(8-5t)
(7t-g)(5-2t) (2t-7)(8+10t)w
(8+5i)(3-7i)

K)
(8-i)(4+3i)

Extract the square roots of :

(7) 15 + 7% (8) 9 + 13*

(9) 12 - 19i (10) 15 - Si

(II)
- 8 + 13i (12)

- 18 + Hi
(13)

- 14 - 19i (14)
- 21 - 16/

(15) (16)

1

Express the following complex quantities in the form r(cos
+ i sin 0), always keeping r positive :

(17) 8 + 3i

"

(18) 18 + lit

(19) 11 - loi (20) 9 - 8i

(21)
- 7 + 5i (22)

- 10 + 17i

(23)
- 14 - 9i (24)

- 12 - 17i

1 i

(25) Express p + 7= in the form r(cos + i sin 0), giving the

(1
i \* / 1 i \ -3

t=H 7= ) , ( 7= H 7=) ,

V2 vV \a/2 a/2/

(72
+
72)'

and
(72

+ 7if
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_/_L_J

(27) Simplify (1 + Vsi)
5 + (1

- V3i)
5

(28) Simplify (V3 + *)
4 - (Vs - i)

4

Simplify the following expressions, giving each result in the

form a + bi :

(29) {5i
-

7)
3

(30) (7 + lOi)
5

1

I

(8-5^)
4

(32) (-6-13i)
3

(33) J (34)
(1^L

^8- 3*
(2+5i)

3

(35)

<5

y
7^

, (36)
(*+)*(-*-*)

(2+7*)*(3t- 4)* (8i-8)
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31. The Graphical Representation of a Complex Quantity.

Now i - r(cos + i sin 6) where = 90 and r = 1

= cos 90 + i sin 90

Thus i can be represented as the radius, drawn vertically up-
wards, of a unit circle.

i
2 =

(cos 90 + sin 90)
2

- cos 180 4- i sin 180

Then i
2 or 1 can be represented as the radius, drawn hor'

zontally to the left, of a unit circle.

i
3 = (cos 90 + i sin 90)

3

= cos 270 + i sin 270

Then i3 or i can be represented as the radius, drawn vertical!

downwards, of a unit circle.

i* = (cos 90 + i sin 90)
4

= cos 360 + i sin 360

Then i
4 or +1 can be represented as the radius, drawn hon

zontally to the right, of a unit circle.

We therefore see that each time we multiply by i we are turnin{
the radius of a unit circle, in anti-clockwise direction, through a

right angle. Also the odd powers of i always involve the angle
90 and odd multiples of 90, while the even powers of i always
involve the angle 180 and multiples of 180. Now the odd

powers of i give i, and the even powers give 1. Thus,

taking the horizontal direction as the direction of measurement
for real quantities, we can take the vertical direction as the

direction of measurement for imaginary quantities. The complex
quantity a+ bi can be represented graphically as the sum of two

magnitudes, a measured horizontally and b measured vertically,

but in this representation we have also to take into consideration

the algebraic signs of a and b.

Case I. Representation of tf4- .

OC = a measured to the right
BC = b measured vertically upwards
OB - Va2 + b2 = r

/\
BOX = A = in the relation

>+$=/Rcos 0+ isin 0)
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Case IL Representation of a + bi.

OC m a measured to the left

BC = b measured vertically upwards
OB = Va2 + b1 = r

BOX = = 180 - A in the relation

a + bi - r(cos + i sin 0)

Jk

CASCZ. CASc.r.

CASE1.3.

i \

h \

CASC4

IT.

Fig. 14.

Case III. Representation of a bi.

OC = a measured to the left

BC - b measured vertically downwards
OB - Va2 + b2 - r

BOX = = 180 + A in the relation

a bi = r(cos + i sin 0)
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Case IV. Representation of a bi.

OC = a measured to the right
BC - b measured vertically downwards
OB - Va2 + b2 = r

BOX = = 360 - A in the relation

a bi = r(cos + i sin 0)

It is evident from the above that a complex quantity can also

be represented by the radial line OB, which makes an angle
with the initial line OX. The real part is the projection of OB
on the horizontal axis, and the imaginary part is the projection
of OB on the vertical axis.

32. The Use of i as an Operator. It has already been shown
that i = cos 90 + i sin 90

i
2 - cos 180 + i sin 180

P = cos 270 + i sin 270
i* = cos 360 + i sin 360

Hence if we work with a circle of unit radius and commence
with the perpendicular radius as the initial line, the effect of

raising i to a power is equivalent to turning this initial radius

through a certain number of right angles. This number is fixed

by the power.
Also, if we commence with a horizontal radius in this circle,

the process of multiplying by i is represented by turning that

horizontal radius anti-clockwise to the vertical position ; while

multiplying by i would be represented by turning it clockwise

to the vertical position. If we operate in the same way on a

quantity a, then the result is expressed by turning a horizontal

radius of length a, anti-clockwise or clockwise, to the vertical

position.
The quantity b sin pt measured horizontally can be represented

as the horizontal projection of a radial line of length b, inclined

at an angle pt to the initial vertical line. Then operating on this

by i would have the effect of turning this radial line through a

right angle. The horizontal projection of the radial line in its
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new position is b cos pt, and this is the real result of the

operation.
If a complex quantity a+bi operates on sin pt, we have to

consider two radial lines OA and OB each inclined at an angle pt
to the initial vertical line.

OA a OD = a sin pt
OB = b OE = b sin pt

OD and OE being the horizontal projections of OA and OB
respectively. The effect of the operation is to turn the radius

Fig. 16.

OB through a right angle, while the position of the radius OA
remains unchanged.
CjD is the horizontal projection of the radial lines after the

operation has been performed.
But CjD = a sin pt + b cos pt, and this is the real result of the

operation.
If a bi operates on sin pt, the radius OB is turned through

a right angle in clockwise direction, and C 2D is the horizontal

projection of the radial lines after the operation has been per-
formed.

Thus the result of operating with a bi on sin pt is

a sin pt b cos pt

. _ 1 a bi a bi ~, 1
Now j-.

- -a 5-TT5
- -5 7v Then r-., operating on

a + bi a2 - bh2 a2 + b2 a+bi * &

sin pt, will give a result which can be obtained by dividing the

result of operating with a bi on sin pt by a2 + b2
.

1 . . . a sin ptb cos pt

j-j-gj
operating on sin pt gives ^-j-^

1 a+bi a+bi
Also, since

a bi b2
i
2 a* +
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; 1 .. ... sin pt + b cos pt
Then

j-. operating
on sin pt gives 2 , 2

Classifying these results we get :

(1) a + bi operating on sin pt gives a sin pt+ b cos p

or Va2 + b2 sin (p* + a)

(2) abi operating on sin pt gives a sin ptb cos p

or Va2 + b2 - sin (p*
-

a)

(3) j-. operating
on sin pt gives 2 j-^ { sin ptb cos pt)

(4) j-. operating
on sin pt gives -5 ^ ia sm pt+ b cos pf }

or ^TF -sin(p<+a)

In each case tan a - -
a

Example. The voltage applied at the sending end of a long

telephone line being i; sin qt, the current entering the line is

where per unit length of cable, r is resistance, I is inductance,

s is leakance, and k is permittance or capacity.
If r = 6 ohms, I = 3 x 10~3 henries, fc=5x 10~9

farads,

s = 3 x 10"6 mho, and is ^ = 6 x 103 , find the current.

s + t'Arg
= Vs2

4- &2
<7

2
{cos a + t sin a} where tan a =

s

r+ Uq= Vr2 + *V {cos p -f t sin p} where tan p =

_, IsTlkq [s
2 + k2

q
2
\* /cos a 4- i sin a\*Thenu

oV7T%
=
M^T7Y/ leosp + isinp i

= Ar {cos (a
-

p) + t sin (a
-

p) f where A -
| --^|
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Current = v a/ ~
operating on sin qt

= Ai;
|cos( jr-j + i sin ( B

Vj operating on sin qt

~ Aujcosf
-*-

J
sin

gtf + sin f
^-*-J

. cos
<#j

- Ai;
sin{-(a- p) + ^}

, f9 x 10"6 36 x 106 J
|~9

x 10-12 +
"
L 36 +

|~

9 x 10-12
(1 + 100)1*=

L 36(1 + 9) J

= 10-3

(i^)
= 10-3

(2-525)* = 1-261 x 10~3

tana^
5xlr

9

ln

6

:
103 ^Q oc - 84 18'

3 x 10~b

tan P
= 3xl0

-3

6

6x103 ^ P
= 7134'

a -
(3
= 12 44' 1

(a _ p)
= e 22' = 0-1111 radians

Then current - 1-261 x 10~3 v sin (6000*+ 0-1111)
the angle being expressed in radians.

33. The Exponentialform of (cos + i sin 0)

(cos + i sin 0)
n = cos n0 + i sin w0

Taking to be 1 radian

Then (cos 1 + i sin l)
n = cos n + % sin n

Putting k - cos 1 + sin 1

Then kn = cos n + i sin w, or k? = cos a + i sin a, where n or a

represents any angle taken in radians.

It must be remembered that A: is a complex quantity of the form a

+ bi, for cos 1 = 0-5403, and sin 1 - 0-8415, and k = 0-5403 + 0-8415*.

If = cos a + i sin a

&""*= :
= cos a i sin a

cos a + i sin a

and 2t sin a = ka
A;~

a
by subtraction

= l+alogc/b+-^-(loge/c)
2 + . . .

_(l_alog^+-^(log^)
2 + . .

.)

2
(aloge

/b+-^(logA;)

3 + . .

.)
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Then i 25L? \ogJc + *L
(logjkf + . . .

When a is made infinitely small = 1, and the terms in-

volving the powers of a become negligibly small

and i log^, or A; ei

Hence cos a + i sin a = hf
1 =

(e?*)

a = e*

and cos a i sin a = k~a = e-ia

It should be noted that since k = ei

i* i
2 i2

ft_ 1 + f>^ +_ +
^H-

...

1 i 1
1 + *-

L> F +
"F

+ ---

- 0-5403 + 0-8415i, which agrees with the value given above.

34. TJie Series for sin a and cos a.

J* - cos a + i sin a c""* - cos a i sin a

Subtracting 2i sin a = e^ - e^

and sin a = -. (e*
-

*-**)

Adding 2 cos a = ^ + *-*"

and cosa=-(^+ e~**)

Fromtheserelationswecan readilyfindtheseries for sin a and cos a.

For e* = 1 + ia +
Po[2 t

-3a3 z
4a4

. . Pa1 tW t
4a4

Subtracting e" - e~w = 2 (w +
j^

+
-tj-

+ . . .

j

and sin a-^-e-)- a +"
/ i*a2 i

4a4 \
Adding

* + -* - 2
^1

+
-rj

+
-rj

+
)

-(-4+4-)
andcos a-

g(
to + -*)-! -

-^-
+

-yj-

. .
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The method of finding the relation which gives the approximate
length of a circular arc is a good application of the use of the

sine series.

Let ABC (Fig. 17) be the circular arc and AB the chord of the

whole arc, BC the chord of the semi -arc.

A

Fig. 17.

Let arc ABC - I chord AB = c, chord BC = h, angle AOB =

radians.

T, AD . I

Then -r~ = sin
AO 2r

c . I

or - sin
2r 2r

A1 CE l k
Mso

CO
= Sm T

Tr

. I
sin -

4>r

Then

and

c

2r

L
2r

L L J *
5

Sin
2r

"
2r

8|3r*

+
32fp . .

Sm
4r ~4r 64|^

+
102^5r*

J
3

I
5

4|3r
2

16|5r
4

.

73 /5

8ft = 4Z - -r = +

By subtraction Sh c = 31

4|3r
2

64|5r
4

. .

3Z5

64l5r4 . . .

and
Sh- c

3
" l

V
1

7680r4
" '

7
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If the fraction - is less than 1, all terms on the right-hand side,
T

except the first, may be neglected, and approximately

j _ Sh- c

35. If we put k = cos a + t sin a

then - = cos a t sin a
x

and x + - - 2 cos a (1)x

x = 2i sin a (2)x

Also xn = (cos a + i sin a)
n = cos na + i sin na11

- = cos na - i sin na
xn cos na + i sin na

and xn -f - = 2 cos na (3)xn x '

xn = 2i sin na (4)
xn v ;

These results are very useful for expressing powers of sines and

cosines, and also products of powers of sines and cosines, in terms

of sines and cosines of multiple angles.

(a) Working with sin5 a

(2* sin a)
6

=(*-!)

32i5 sin5 a = x5 - 5x* + 10# - 10 - + 5-^ r
x or x 5

S2i sin' a =
(*

-
I)

-
i(a- I) + lo(-l)

= 2i sin 5a - 10t sin 3a + 2(H* sin a

1 5 5
and sin5 a = sin 5a - sin 3a + - sin a

lo 10 o

(b) Working with cos4 a
/ 1\4

(2 cos a)
4 -

[x + -
)

16 cos4 a=tf4 +4#2 +6+4-i +-5x xr

= 2 cos 4a + 8 cos 2a + 6113
and cos4 a = - cos 4a + - cos 2a + -
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(c) Working with sin6 a cos4 a

(2t sin a)
6
(2 cos a)

4 =
(x
-
-J(x +

IV

- 64 sin6 a 16 cos4 a -
(x

2 - ^fU - -

- 1024 sin6 a cos4 a - (x* -4>x* +6 -44 + 4Ytf2 -2 +-\
\ X* X8J\ X2

J

- a;
10 - 2x8 - 3x + 8x* + 2x2 - 12+ 2 4

= 2 cos 10a - 4 cos 8a - 6 cos 6a
+ 16 cos 4a + 4 cos 2a - 12

and sin6 a cos4 a =
-=tt;{q

- 2 cos 2a - 8 cos 4a + 3 cos 6a
DIM

+ 2 cos 8a- cos 10a}

36. The Hyperbolic Functions. The expressions -(e"
- e~a

)
and

zi^+e"") are spoken of as the hyperbolic sine and cosine re-

spectively, of the angle a

and symbolically sinh a =
-(e* e-)
3S

cosh a - -(e + e~a
)

e* e~a
also tanh a =

+*-

(a) Then cosh2 a - sinh2 a - l{(e* + e")
2 -

(*"
-
*-)

2
}

=
l{^2a + 2 + -2a __ g2a + g - e?-

2a
}

= 1

{b) 2 sinh a cosh a - 2 1
(e

-
<?-)(<* + <?-)4

-J (a*-*-*)

= sinh 2a
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(c) cosh2 a + sinh2 a - ] {(e
a + e-)

2 + {* - e~*f }

= i
{e

2* + 2 + *-2a + e2a - 2 + e"2 }4

= l(^+^-2a
)

= cosh 2a

Then cosh 2a = 2 cosh2 a 1

or cosh 2a = 1 + 2 sinh2 a

(d) cosh2 a = -
(cosh 2a + 1)

28

sinh2 a = -
(cosh 2a 1)

Putting 6 = 2a Then cosh
\
=^h *+ l

. , 8 /cosh 6-1anh- = y -

37. The Seriesfor sinh a and cosh a.

a2 a3 a4

- , a2 a3 a4

e -'-*= 2
(
a+

i
+
if

+
---)

sinh a =
!(<-- <-<)= a

+-pT
+
-jT+

Subtracting

and

Adding e +e-. =
2(l +

-^-
+ -2l+ . .

.)

and cosh a = -
(e* + *-) = 1 +

-yy
+
-yL

...

38. It is important that we should be able to find the angle
when we are given one or other of its hyperbolic functions.

(a) If sinh a = x

Then -
(e

-
e-*)

- x
38

e2a - 1 = 2x e*

e2* - 2x e* + x2 = x2 + 1

e- x= Vx2 + 1

<?" = # + V#2 + 1

and a = loge {a; + Vx2 + 1}
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(b) If cosh a = x

Then = {? + e~a
)
- x

z

59

M 2x

e2a + 1

e?+x2

2x ea

1

(c) If tanh a

Then

e? - x = Vflr 1

ea = a? + Va;2 - 1

and a = logc {a: + Vx2 1 }

r"

e + <r

e" - e~ = a? e + x *r

g(l - a?)
= e-a(l + x)

1 + x
e* =

x

Then

1

1, 1 + a?

2
l z<T;

39. The following table will give a means of comparing the

circular functions with the hyperbolic functions :

Circular Functions.



60 PRACTICAL MATHEMATICS

Examples IV

Find the result of operating with each of the following complex
quantities on sin qt :

(1) 2 + 5i (2) 5 + lit

(3) 5 - 8i (4) 12 - 5i

(5) ^ (
6
)

W 7r-a

5+ 6i

1

7-5i



CHAPTER V

40. In order to determine the position of a point in space, it is

necessary to refer the point to three fixed planes. These three

planes intersect at a point which is taken as the origin ; while any
pair of these planes intersect in a straight line which passes

through the origin. Thus for the three planes of reference there

will be three different pairs of planes, and therefore there will

be three different lines of intersection, each one passing through
the origin. These three lines of intersection are called

"
the axes

of reference
"
or

"
the co-ordinate axes."

Generally the three planes of reference are rectangular that

is, one plane is at right angles to each of the other two. The

Fig. i 8.

three co-ordinate axes will therefore be mutually perpendicular
that is, one axis will be perpendicular to each of the other two.

This can be well illustrated by means of a cube, with its base

horizontal. One corner of the cube can be taken as the origin ;

the three edges which radiate from this corner will be the three

axes of reference, while these three edges are the lines of inter-

section of the three adjacent plane faces of the cube, two of these

being vertical and the other horizontal.

The position of a point with reference to the three rectangular

planes of reference is completely defined by the perpendicular
distances of the point from these three planes.

If the co-ordinates of a point P are (x, y, z), then x is the per-
61
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pendicular distance of the point from the plane YOZ, and the

point must therefore lie on a plane parallel to YOZ, the distance

between these planes being x. y is the perpendicular distance

of the point from the plane ZOX, and the point must therefore

lie on a plane parallel to ZOX, the distance between these planes

being y. z is the perpendicular distance of the point from the

plane XOY, and the point must therefore lie on a plane parallel
to XOY, the distance between these planes being z.

The intersection of these three new planes will give the position
of the point P, and these three planes combined with the three

planes of reference produce a right rectangular prism one corner

Y

+X

of which is the origin and the opposite corner the point P, while
OP is a solid diagonal of the prism. The lengths of the three

edges, PL, PM, and PN, meeting at the point P, are the co-ordi-

nates of that point ; while the lengths of the three edges OA,
OB, and OC, meeting at the origin, are also the co-ordinates of

the point P. Hence, to find the position of the point whose
co-ordinates are (x, y, z), we have to measure OA = x, along OX,
OB =

y, along OY, and OC = x, along OZ. Take OA, OB, and
OC to be the three adjacent edges of a right rectangular prism,
and complete the prism. The required point will be the corner

opposite to the origin.
41. The plane ZOY (Fig. 19) is taken as a front vertical plane,

and any line drawn parallel to the axis OX will be perpendicular
to that plane. The x co-ordinate of a point P may be positive
or negative. It is positive when P lies in front of the plane ZOY,



THE POSITION OF A POINT IN SPACE 63

and is therefore measured along OX ; it is negative when P lies

behind the plane ZOY, and is therefore measured along OXx .

The plane ZOX is taken as a side vertical plane, and any line

drawn parallel to the axis OY will be perpendicular to that plane.

The y co-ordinate of a point P is positive when P lies to the right

of the plane ZOX, and is therefore measured along OY. It is

negative when P lies to the left of the plane ZOX, and is therefore

measured along OYr The plane XOY is taken as a horizontal

plane, and any line drawn parallel to the axis OZ will be per-

pendicular to that plane. The z co-ordinate of a point P is

positive
if P lies above the plane XOY, and is therefore measured

Fig. 20.

along OZ. It is negative when P lies below the plane XOY, and

is therefore measured along OZ!.

Fig. 19 is drawn to illustrate this, the co-ordinates of P x being

(1, 3, 2), while the co-ordinates of P2 are (
-

1, 3, 2).

42. Let P (Fig. 20) be a point whose co-ordinates are (x, y, z).

Then OA = x, OB =
y, and OC = z.

Since OC is perpendicular to the plane containing PC, the

angle PCO is a right angle,

and OP2 - OC2 + PC2

But CP = OQ
and OQ2 = OB2 + BQ2

= OB2 + OA2

Hence OP2 = OC2 + OB2 + OA2

= z2 + y
2 + x2

or OP = Vx2 + y
2 + s2
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This gives the distance of a point P from the origin in terms
of the co-ordinates of that point.

Let a, p, y be the angles which OP makes with the axes OX,
OY, and OZ respectively.

(1) The triangle POA is such that the base angle POA = a,
/\

and PAO = 90 since OA is perpendicular to AP.

Hence cos -
g

Vx2 + y
2 + z2

(2) The triangle POB is such that the base angle POB -
(J,

and PBO = 90 since OB is perpendicular to BP.

Hence cos p - ^p
.'/

Vx2 + y
2 + z2

(3) The triangle POC is such that the base angle POC =
y, and

PCO = 90 since OC is perpendicular to CP.

Hence cos y - 7%p

Vx2 + y
2 + z2

The cosines of the angles a, p, and y, which the line joining a

point to the origin makes with the axes OX, OY, and OZ respec-

tively, are spoken of as the
"
direction cosines

"
of that line,

and are usually denoted by I, m, and n.

The sum of the squares of the three direction cosines is 1 ; for

X2
II2 "*

n _i_ m2 4- n2 = I iL i

~
+ m I"

x2 + y
2 + z2

^
x2 + y

2 + z2+ x2 + y
2 + z2

= 1

43. Let P x and P2 be two points whose co-ordinates are

(x\, t/i, 2X ) and (x2 , y^ zz). If the axes of reference are so chosen
that Px is taken as the origin, then the co-ordinates of Pa with
reference to these axes will be (x2 a^), (y2

~
2/i)> an^ (z2 %i).

Then P^ = V{x2
- xx )

2 + (y2
- y x )

2 + (z2
- zj

2
, thus giving

the length of a line joining two points in terms of the co-ordinates

of those points.
If a, p, and y are the angles which the line PaP2 makes with

the true axes of reference OX, OY, and OZ, they will also be the

angles which the line makes with the parallel axes PjX, P2Y,
and PXZ.
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Then I - cos a
P

XP2

m = cos p
= ^T-1

cos y
P1P2

thus giving the direction cosines of any line in terms of the co-

ordinates of any two points taken on the line. It follows that if P
is any point on a line, the co-ordinates of P being (x, y, z) , and Q
is a given point on the same line, the co-ordinates of Q being
(a, b, c).

If r is the length of line between P and Q,

,, , x a
then I - cos a

or

or

or

Hence

x a

m = cos S - -
r

r

m
z c

n = cos v =
'

r

z-c = r
n

-a y b z c - r
/ m n

This is known as the symmetrical equation to a straight line.

44. Let Pj, P 2 , and P3 be three points whose co-ordinates are

(*i. 2/i, *i) (*2> V2> *i), and (a? 8> y3 , z3).
If P

1 be taken as the origin, the co-ordinates of P 2 will be

(x2 -x^, (2/2-2/1)' and
(z2~ zi), while the co-ordinates of P 3

will be (x3
-

&J, (2/3
-

2/J, (z3
- zx).

Hence (P^)* =
p\

=
(x2

- xj* + (y2
- y^ + (z2

-
tj*

and (V 1P3)
2 = pl =

(x3 -x1)
2 +(y3 -y1)

2
+(z3 -z1)* *

If P 2 be taken as the origin, the co-ordinates of P3 will be

(*3
~

a). (2/3
-

2/2), and (a8
- z2).

Hence (P 2P3)*
-
p[

-
(*,

- x2)* + (2/3
-

2/ 2)
2 + C*a

- *2)

2

Thus the three sides of the triangle PJ^Pg can be determined
if the co-ordinates of the three angular points are known.

E
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If A is the area of the triangle,

where

A = Vs{s - Pl )(s
- p 2){s

- pa)

s =
2 (Pi + Pz + Ps)

then

If 7^, /&2 ,
and h3 are the lengths of the perpendiculars drawn

from the points P^ P 2 , and P3 to the opposite sides respectively,

1 2A
A =

2 Plhl or hl
=
Ti

1 2A

* P2

A !
I. 7

2A
A
=2 P33 r 3==

"^

Fig. 21.

- If X , G 2 ,
and 3 are the angles of the triangle,

then

H

1 2AA = -
pg>3 sin X or sin 0,2 P2P3

1 2AA =
o PaPi sin ^2 or sin 0, =
2 "

PzPi

A 1 A ' Q 2AA =
o P1P2 sm 63 or sin 3

=
2 P1P2

and from these relations the angle between two given lines can
be determined.

Also the angles 8lf 2 , 03 can be found by means of the following
relations :

cos 0!
=

cos 2
=

cos 3
=

P 2
+ P s -P 1

2

p3



THE ANGLE BETWEEN TWO STRAIGHT LINES 67

Now cos X

*s
~

*i)
2 + (2/3

-
2/i)

2 + (*
-

*i)
2 + (*i

-
*i)

2

ZPzPz
+ (2/2

-
2/l)

2 + (*2
- 2l)

2 -
(*8

-
^2)

2 -
(2/3

-
2/ 2)

2

-fe-^2) 2
}

=
jetjj-W**

" x*Xl
~
**l +

x*x^ + 2(2/
" ~

VzVl
~y^x +2/32/2'

+
2(z[

- zzzx
- z#x + z3z2) }

=
^rzr tt*

~ ^1)^3 - *i) + (2/2
-

2/1K2/3
-

2/1) + (*i
-

*i)(*s
-

*i)}
P2P3

m fxt -*iV*3 -*?A ,

(
2/2 -2/1Y2/3 ~2/A + ^2 -*iV*3 -A

If a3 , p 3 ,
and Y3 are the angles which PxP 2 makes with the axes

OX, OY, and OZ respectively, and Z3 ,
ra3 ,

and n3 are the corre-

sponding direction cosines,

then Z3
= cos a3

=
Pz

mz
= cos p 3

= y*
~

Vl

Pz

2>o Z-t

nz
= cos y3

Pi

Also, if a2 , p 2 ,
and y 2 are the angles which VJ?3 makes with

the axes OX, OY, and OZ respectively, and Z2 ,
ra 2 , and ?i 2 are the

corresponding direction cosines,

then Z2
= cos a2

m 2
= cos p 2

n
2
= cos y 2

^3
~ x i

Pz

2/3-2/i

P2

?2

Hence cos X
- Z3Z 2 + m3m 2 + n3w2

Similarly it can be proved that

cos 2
= lzl1 + m 3m1 + ngnj

and cos 3
= l2l + m 2m1 + n^

thereby giving the cosine of an angle between two lines in terms

of the direction cosines of those lines.

In general, if is the angle between two lines whose direction

cosines are l
lt m lt nx and Z2 , ra 2 ,

n 2 respectively,

then cos = lxl 2 -f m 1
m 2 + wxn2

If the two lines are at right angles,

then lx
l2 + m x

m 2 -f n-ji^
=
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Erample 1. The co-ordinates of two points P and Q are (3, 7, 5)

and (5, 2, 8) respectively. Find the length of PQ, its direction

cosines, and the angles it makes with the axes of reference.

Taking P as the origin, the co-ordinates of Q are (2, 5, 3),

and

/ = cos a

PQ = V22 + (
-

5)
2 +

= 6-164

2

m = cos
(3

6164
0-3244

71 4'

- 5

6164
- - 0-8112

P
= 144 12'

n = cos y 6164
0-4866

60 53'

"Example 2. The co-ordinates of three points P, Q, and R are

(3, 6, 2), (5, 9, 7), and (8, 3, 9) respectively. Find the lengths of

the lines joining these points, the angles between the lines, and
the lengths of the perpendiculars drawn from each point to the

opposite line.

Taking P as the origin, the co-ordinates of Q are (2, 3, 5), and
the co-ordinates of R are (5,

-
3, 7).

Then PQ = V22 + 32 + 52

- 6164

PR= V52 + (
-

3)
2 + T2

= 9110

Taking Q as the origin, the co-ordinates of R are (3, 6, 2).

QR= V32 + (
-

6)
2 + 22

= 7
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Working with the triangle PQR and calling the sides p, q, and r,

then p = 7,q= 9-110, and r - 6164.

= 11137

Area = A = Vll-137 x 4-137 x 2-027 x 4-973
- 21-55

4310
sin P

sin Q -

9110 x 6-164
= 0-7676

P = 50 8'

4310

sin R

7 x 6-164

= 0-9989

Q = 87 18'

4310

7 x 9110
- 0-6759

R - 42 32'

These are the angles between the lines.

If hp ,
h
Q , and hr are the perpendiculars drawn from the points

P, Q, and R respectively,

then hp
= = 6-157

The angles between the lines can also be found in the following
manner :

cos P q
2 + r2 p

2

2qr
= 0-6410

P - 50 8'

p2 + y2 _ q
2

cos Q = *- -

2pr
= 0-0463

Q - 87 20'

p2 + q
2 _ ^

COS R --= -
rf
2pq

= 0-7370

R = 42 31'
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45. The Plane. The plane is represented by the general equa-
tion of the first degree in x, y, and z. Then the equation

Ax+By+Cz+T> =

represents a plane, and the values of the constants A, B, C, and
D can be given in terms of the intercepts the plane makes on

the axes of reference. For if the intercepts are a, b, and c on
the axes OX, OY, and OZ respectively

Then when x =



Hence

THE PLANE

I
V

cos a = -
a

m cos p
-
I

COS V = -

71

but

and

P + m2 + n2 - 1

U2 + 62
II

p
2 =

-o+ro +p

Fig. 23.

thus giving the length of the perpendicular drawn from the

origin to the plane.

Next V x\
cos a = - = -

a p

1 b p
V *i

cos y - - = ~

Hence x-, =

2/i

c

a

= 2!

1
c

thus giving the co-ordinates of the point P.
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x y z
Now -++- = 1 is the equation to the plane.

Then x -- + y % + z-- = p
a b c

or x cos a + y cos
(3 + z cos y = p

lx+ my + nz = p
thus expressing the equation to a plane in terms of the direction

cosines and the length of the perpendicular drawn from the origin
to the plane.

Also a, p, and y are the angles made by the line OP with the

axes OX, OY, and OZ respectively, but OP is perpendicular to

the plane. Hence the angles the plane makes with these axes

will be the complements of these angles, and therefore the plane
makes angles (90- a), (90- p), and (90- y) with the axes

OX, OY, and OZ respectively.

Example. For the plane 2\x + 35t/ + 152 - 105 = 0. Find :

(1) The intercepts on the axes of reference.

(2) The length of OP, the perpendicular drawn from the origin
to the plane.

(3) The angles which OP makes with the axes of reference.

(4) The angles which the plane makes with the axes of reference.

(5) The co-ordinates of P.

21a; + 85y + 152 = 105

T, x y 2
Then

5
+
8
+
7
=1

Hence the plane makes intercepts of 5, 3, and 7 on the axes OX,
OY, and OZ respectively.

If p is the length of OP and a, (S,
and y are the angles OP

makes with the axes OX, OY, and OZ,

then
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2-414
cos a - - = 0-4828

5

OC- 61 8'

2-414
cos p - . = 0-8047

3

P
= 36 25'

2-414
cos y = = 0-3449

y = 69 50'

The plane makes angles 29 52', 53 35', and 20 10' with the
axes OX, OY, and OZ respectively.

If x lt ylt *j are the co-ordinates of P

Then xx
- - 1-168

5

p2

=4 - 0-8328
7

46. To find the perpendicular distance of a given point from a

given plane.

Let - + ^ +
- = 1 be the equation to the plane. Then if p

is the perpendicular distance from the origin to the plane, and
I, m, and n are the direction cosines of that perpendicular

Then I = -, m = y, and n = -
a b c

Hence lx+my+nz = p will be the equation to the plane, and

1111P
2

Let xv yv zx be the co-ordinates of the given point, and through
this point let a plane be drawn parallel to the given plane.
Since the two planes are parallel, the perpendiculars drawn to

these planes will be parallel, and will therefore have the same
direction cosines.

Hence Ix + my + nz = p x will be the equation to the parallel

plane, where p x is the perpendicular distance from the origin to

the plane.
Also lx x + my 1 + nz1

= p lf since the plane passes through the

point whose co-ordinates are (x lt yv z x). Now p x p is the dis-
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tance between these two parallel planes, and this will also be the

perpendicular distance of the given point from the given plane.

Then p x p = \x
x + my1 + nz 1 p
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These relations give the direction cosines of the perpendicular
to this plane.

If is the angle between the two planes, then this will also be
the angle between the two perpendiculars,

and cos = lj 2 + m-gn^ + nxnz

PtP2
|

P1P2
|

P1P2
a la 2 ^1^2 C 1

C2

(
1 1 1 }

Example. Find the angle between the planes 21#+ 35y+ 152
--= 105 and 15x - 9t/ + 5z = 45.

Then for the first plane - + %+ % - 1r 5 3 7

and P*" l 1
J.

25
+
9
+
49

p x
= 2-414

For the second plane
-

| + r = 1

and
p;-| J J

9
+

2i

p 2
= 2-474

9
+

25
+

81

Then cos = 2-414 x 2-474

= 0-0948

= 84 34'

|l5 15
+
63j

48. The Polar Co-ordinates of a Point.

The polar co-ordinates of a point P are :

r, the distance the point is from the origin.

0, the angle between the plane containing OP and the

plane ZOX.

cj>,
the angle OP makes with the axis OZ.

Then CPO is a triangle, right angled at C

Hence OC = r cos
<j>,

and PC = r sin
<f>

But OQ = PC = r sin
<f>

Also AOQ is a triangle, right angled at A

Then ^ - cos

and AO = r cos sin
</>
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Also
AQ .

fl

OQ
= Sm0

and AQ = r sin sin
<f>

If x, y, z are the rectangular co-ordinates of the point P, they
can be expressed in terms of the polar co-ordinates.

x = AO = r cos 6 sin
<f>

y = AQ - r sin sin <

z = OC = r cos
</>

Z

v

Fig. 24.

Conversely, the polar co-ordinates can be expressed in terms of

the rectangular co-ordinates.

r - Vx2 + y
2 + z2

tan = ^

cos < =
V#2 + t/

2 + 22

If a, p, and y are the angles OP makes with the axes OX, OY,
and OZ respectively, and I, m, and n are the corresponding
direction cosines

x
1 =
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Examples V

(1) The co-ordinates of a point P are ( 3, 5, 7). If O
is the origin, find the length of OP and the angles OP makes
with the axes of reference.

(2) The co-ordinates of a point P are (2T, 34, 4*7). If O is

the origin, find the length of OP and the angles OP makes with
the axes of reference.

(3) The co-ordinates of a point P are
(
- 32, 5T, 39). If O

is the origin, find the length of OP and the angles OP makes with

the axes of reference.

(4) The co-ordinates of a point P are (2, 4, 6), and of a point

Q (3,
-

7, 5). Find the length of PQ and the angles PQ makes
with the axes of reference.

(5) The co-ordinates of a point P are (1*8, 5*3, 2-9), and of a

point Q (3-7, 2-9, 5-4). Find the length of PQ and the angles

PQ makes with the axes of reference.

(6) P and Q are two points whose co-ordinates are (3, 7, 2) and

(5, 3, 7) respectively. Find the length of the perpendicular
drawn to the fine PQ from the origin.

(7) The co-ordinates of three points P, Q, and R are (3, 2, 4),

(5, 4, 7), and (4, 7, 2) respectively. Find the lengths of the sides,

the area, and the angles of the triangle PQR.
(8) The co-ordinates of three points P, Q, R are (5, 2, 4),

(7, 5, 2), and (9, 3, 7) respectively. Find the angle between the

lines PQ and QR, and also the perpendicular distance from the

point R to the line PQ.

(9) For each of the three planes

x-2y +z-2 =
12* + 15y - 102 - 60 =

and 6x + 4t/ + 3z-12 =

Find (a) the intercepts on the axes of reference ; (b) the length
of OP, the perpendicular drawn from, the origin to the plane ;

(c) the angles which OP makes with the axes of reference
; (d)

the angles which the plane makes with the axes of reference ;

(e) the co-ordinates of P.

(10) Find the angle between the two planes

Sx + 2y + 6z - 6 =

and 4>x + 5y + lOz - 20 =

(11) Find the direction cosines of the perpendiculars drawn from

the origin to each of the planes

3x - 2y + 6z - 6 -
6x + Sy

- 2z - 6 =

Do these two planes intersect at right angles ?
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(12) Find the length of the perpendicular drawn from the point
whose co-ordinates are (8, 3, 5) to the plane whose equation is

21# - S5y + 152 - 105 =

(13) The rectangular co-ordinates of a point are (1-9, 3*7, 2-4) :

find the polar co-ordinates.

(14) The polar co-ordinates of a point are (r
= 7-2, = 62,

<f>
= 43

)
: find the rectangular co-ordinates.

(15) The polar co-ordinates of a point P are (r
= 3-2, = 51,

<f>
- 78), and of a point Q (r

= 6-5, = 69, <f>
= 38). If O is

the origin, find the angle POQ.



CHAPTER VI

49. The Slope of a Line. The slope of a line could be measured

directly by means of the angle it makes with the axis of x, but

generally, in cases of plotting, the quantities plotted horizontally
and vertically are not taken to the same scale, and therefore we
do not get a true representation of the angle of slope. Now this

angle can be given in terms of any of its trigonometrical ratios,

and we have to consider which of these ratios can be most con-

veniently adapted to squared paper work. The tangent is given
in terms of the quantities plotted vertically and horizontally,

and therefore, if we take the line to form the hypotenuse of a

right-angled triangle, then the perpendicular of this triangle can

Fig. 25.

be measured by means of the vertical scale, and the base by
means of the horizontal scale. Hence the angle of slope of a

line can be obtained definitely by means of its tangent.
To find the slope of a line, take two points A and B (Fig. 25)

on the line, as far removed as the limits of the question allow.

Make AB the hypotenuse of the right-angled triangle ABC.
Then the slope of the line = tan

AC
BC

where AC must be measured on the vertical scale and BC on the

horizontal scale.

50. The Slope of a Curve. The slope of a curve at a given point

may be approximately taken as the slope of a very small chord

of the curve drawn from that point, and the smaller the chord is

79
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made the more nearly correct does the approximation become.

Thus, if we can find the slope of an infinitely small chord, one

extremity of which is at the point, then we have found the actual

slope of the curve at that point.
Let P be a point on a curve (Fig. 26), PQ a chord, and PT the

tangent to the curve at the point P. Let PT make an angle 6

with the axis of x and the chord PQ make an angle a with PT.
Then the slope of the chord PQ = tan (0 + a).

As the point Q approaches P, the chord PQ becomes smaller

and smaller, and so does the angle a, and when the chord PQ is

made infinitely small the angle a becomes negligible in com-

parison with 0.

Thus the slope of the infinitely small chord = tan 0.

It follows, therefore, that the slope of the infinitely small chord

Fig. 26.

PQ, which gives the actual slope of the curve at the point P,

is the same as that of the tangent to the curve at the point P.

We can now take the slope of a curve at a certain point to be

given by tan 0, wfifcre is the angle which the tangent to the

curve, at that point, makes with the axis of x.

This provides us with a graphical way of finding the slope of

a curve. We can draw the tangent to the curve at the required

point, take two points on this line as far removed as the paper
permits, make that part of the line between these two points the

hypotenuse of a right-angled triangle, measure the perpendicular
of this triangle to the vertical scale and the base to the hori-

zontal scale, and

perpendicularthe slope of the curve = tan
base

We cannot obtain the true value of the slope of a curve in this

way, because we have no definite construction for drawing the

true tangent to the curve ;
we can only draw what appears to

be the true tangent. If the supposed tangent is inclined to the

axis of x at an angle slightly smaller than that of the true tangent,
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its effect is to make the perpendicular of the right-angled triangle

slightly less, and at the same time to make the base slightly

more. This makes the error in the fraction -
, quite
base ^

pronounced.
51. If we are given the law of a curve, then we are in a position

to find the slope of the curve without using the graphical method,
and the errors introduced by that method will not affect the result.

Let the co-ordinates of the point P (Fig. 26) be x, y, and the

co-ordinates of the point Q (x + Bx), (y + By), where Bx and By
are the increases in the values of x and y respectively.

Bx and By are also the base and perpendicular of the right-

angled triangle PQR, whose hypotenuse is the chord PQ.

Then the slope of the chord PQ - tan (0 + a)
= ^

When the chord PQ. becomes infinitely small, the slope of the

curve is the limiting value of the fraction
j{

when Bx is made

infinitely small, and this limiting value is represented by ~.

Then the slope of the curve = = tan 6.

As an example on the application of this method, let the law
of a curve be y - a + bx + ex2 where a, b, and c are constants.

Then at the point P, y = a -f bx + ex2

at the point Q, y +By = a + b(x + Bx) + c(x + Bx)
2

= a +bx +6 Bx +cx2 +2cx Bx +c(Bx)
2

Subtracting By = b Bx + 2cx Bx+ c (Bx)
2

Slope of the chord PQ, ^ = b + 2cx + c Bx

making Bx infinitely small.

Slope of the curve at the point P, -~ = b + 2cx

Referring again to Fig. 26, since ~ = tan (0 + a), it necessarily

Bx
follows that TR- = cot (0 -f a).

In the limit when Bx becomes infinitely small, ~- becomes

dor
tan and -j- becomes cot 0. Because tan and cot are mutu-

dy
dij dy

ally reciprocal,
~ and -j- are mutually reciprocal.
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_ dx 1 dy 1 dy dx _

Then -j-= rr> j - or t1 x
:j-

= *
dy ay ax ax ax ay

dx dy

52. In general, if the law of the curve is y =f(x),

then y + By = f(x + &r)

and then ~ is the hmiting value of the fraction J- *-"

when Bx is made infinitely small.

This gives us a general method of determining the slope of a

curve when the law of the curve is known, and this process of

finding the slope is called differentiation.

In order to avoid going through this process each time we
wish to work with a certain curve, we establish the results of

differentiating well-known functions of x and use these as standard

results.

y = axn where a and n are constants.

If y = axn

then y + By - a(x + Bx)
n

=
a{*+ nx-1 &B+ w(n

|^
1)

g-'(&g) . .

.}

By = a
[nx-* Bx + n(,t

[~

X) *-2
(&r)

2 + . .

.}

When &r is made infinitely small, all of the terms on the right-

hand side involving Bx and powers of Bx can be neglected

and ~ = anxn~x

dx

It should be noticed here that a and n, the constants of the

curve, are constants of different types, a is a constant multiplier,
and remains a multiplier during differentiation

;
n is a constant

power and differentiation diminishes it by unity, while the result

is multiplied by n.

We can apply this result to differentiate any function of x
of the form y = axn .





84 PRACTICAL MATHEMATICS



DIFFERENTIATION 85

(2) If y = cos (ax + b) where a and b are constants,

then y + By = cos {a(x + Bx) + b }

By = cos (ax + & + a Bx) cos (a# -f- &)

= - 2 sin f ax + 6 + -
) sin -

Bit . / , a &c\ 2

s-
- asinr +6+ )"w

2

Sln

Making Bx infinitely small, ~ = 1
(l ox

2

and -~- = a sin (a# + 6)

(3) If y = tan (or + 5) where a and b are constants,

then

sin (ax + 6)
1/
= -

cos (ax + b)

and

_ sin{(a? + Bx) -f b}
y + dy

~cos{a(x-[-Bx) + b}

~ _ sin (ax + b + a &r) sin (or + 5)
^ cos (a# + 6 + a Bx) cos (a# + b)

sin (&r + b+ a Bx) cos (ax + b) -cos (ax + b + a Bx) sm(ax+b)
cos (ax + b-\- a Bx) cos (a*c + b)

sin a &r

cos (ax -\- b-]- aBx) cos (a# + b)

sin a &r

By a Bx

Bx cos (ax + b+ a Bx) cos (ao? -f b)

Making Bx infinitely small = 1

and -j-
=

5-t 7T = a sec2 (ax + 6)
da? cos2 (ax + o)

These results enable us to work with the trigonometrical func-

tions of all forms of angles, by properly adjusting the constants

a and b.

If b = the angle becomes ax, the ordinary multiple angle.

If b = and a - 1, the angle is simply x.
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56. The Inverse Trigonometrical Functions.

(1) If y = sin-1 x

Then x = sin y

dx

dy

dy

and cos y - Vl x2
(Fig . 27)

Vl - x2
(Fig. 28)

Fig. 29.

(2) If y = cos"1

then # = cos t/

dx
and -=- = - sin =

dy_ 1 _ 1

dx
dx_ ^/i _ #2'

(3) If
2/
= tan-1 a

then a? = tan t/

(US
and

-j-

= sec2 7/
- 1 + #2

(Fig. 29)

dy 1 1

do; d# 1 + a2
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57. The Hyperbolic Functions.

(1) If y = sinh x

then y=he*- e-*)
28

= -
(r

8 + -*)
= cosh a;

(2) If y = cosh

then 2/
=

g
(^ + e-a!

)

da; 2
V '

- sinh a;.

58. Tfo Rules for Differentiation.

(a) Now ^ = k^ x -R- since /is a fraction, and the value of a
v ' Bx Bx Bz Bx

fraction remains the same when numerator and denominator are

multiplied by the same quantity. Let Bz represent the increase

in some function z, which itself depends upon x, then when Bx

is made infinitely small Bz becomes infinitely small.

~, By By Bz
Then t2 =

* x f~
Bx bz ox

Now is the slope of a chord of the curve obtained by plotting z
bz

horizontally and y vertically, and this becomes -p the actual slope

of the curve when Bx, and therefore Bz, become infinitely small.

Similarly, when Bx is made infinitely small ^-
becomes -r-, the

actual slope of the curve obtained by plotting x horizontally
and z vertically.

Thus, in the limit, when Bx is made infinitely small,

dy dy dz

dx dz dx

The following examples will illustrate the use of this rule :

(1) To differentiate sin" x.

Then y = zn where z = sin x

dy m . , dz~ = nzn
~x and -7-

= cos x
dz dx
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When we differentiate the logarithm of any function of x, we

get a fraction the denominator of which is that function of x and
the numerator is the differential coefficient of the denominator.

For if y =
\oge f(x),

then y = loggS where z=f(x)

dy 1 dz d r

But dy dy dz

dx dz dx

- gfM>

(6) To differentiate the sum of a certain number of functions

of x.

For if?/
= w+5y+a?+ . . . where u, v, w . . . are functions of x,

then y + By - (u + Bu) + (r + &>) + (w + &e>) + . . .

and By = Bu+ Bv+ Bw + . . .

&/ Bu Bv Bw

Bx Bx Bx Bx

Making Bx infinitely small,

dy _ du dv dw
dx dx dx dx

Hence the differential coefficient of the sum of a certain number
of functions of x is the sum of the differential coefficients of each

function.

Thus if y = a + bVx -\ ym + dx3

\x

Then y = a + bx* + ex
- + dx*

dy * 1, i"1 1 -i"1
OJ

3_1
JL = 0+ -bx - -ex + 3d#
da; 2 2

2
_

i -^
= -bx

"
-ex + 3dx2

+ 3dx2

2Vx tyx*
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(c) To differentiate a product.
If y - uv where u and v are functions of #,

then y + &/ -
(u + Sw)(z; + &;)

= wu + w 8i> + v Bu + Sw Bv

and &/ = w Bv + Sw + Bu Bv

By _ Bv Bu - &;

8a; 8a; So; &c

Making &r infinitely small,

dy _ du dw

<r dx dx

Since Sw becomes infinitely small along with Bx, the term
dv

Bu J- becomes negligibly small when So; is made infinitely small.

To differentiate xn nx
,

y = xn nx = u v

Then u = xn and -5-
= nx"-1

dx

v = nx and = nx log^w

, dw di; dw
but -f-

= u -j- + v -j-dx dx dx

= xn nx log^n + nx nx11'1

= nx xn~1
(x \ogen + n)

Tr dy dv du . ,..,.., ,

If-^-
= w-r-+t;-7- when 1/

- uz;, dividing throughout by 1/ we get

1 dy _ 1 du 1 dv

y dx u dx v dx

Sometimes this second form is more easily worked with than
the first form. Also each term on the right-hand side is built

up from one term of the product only. For example, the first

term only contains u, the second term only contains v, and there-

fore we can extend the result to suit the case when the product
contains any number of factors.

Thus if y = u v w
:

then

(d) To differentiate a fraction.

u+Bu

1 dy _ 1 du 1 dv 1 dw

y dx u dx v dx w dx

T i.
u

Let y = -
y v

then y + By =
v +
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and
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Then if z = log^t/, -*- is required,

, dz _ dz dy
dec dy dx

, dz 1
and t- = -

dy y
TT dz 1 dyHence -r- = - ~

dx y dx

That is,
-
-p

is the result of differentiating log^/ with respect

to x.

To differentiate xn e1^ sinn a;.

y = xn e"* sinn a;

log^ = n log^a: + nx + n log^ sin a?

^. A - x- 1 dy (1 cos a?)
Differentiating

- ~r = n\-+l+ -. \

y dx ^x sin xj

=
-{ 1 -f a? + x cot

a:}
a?

Multiplying throughout by t/ or a?
w e"* sinn a?

-p
= nx11-1 e1^ sinn a?{l + x + a; cot a;}

We can use logarithmic differentiation to establish the dif-

ferential coefficients of cot (ax + b), sec (ax + b), and cosec (ax + &),

and these results can be used as standard forms.

** Li, ia cos (aa? + b)
(1) y = cot (aa; + b)

= -: ) nv ' * v '
sin (ax + b)

Then log^ =
log, cos (ax-\-b) loge sin (aa; + b)

sin (oa? + 6) a cos (aa? + 6)

>s (ax + 6) sin (ax + b)

fsin2
(aa; 4- b) + cos2 (aa; + bU

I sin (aa: + b) cos (aa: + b) i

^. rf . A . 1 dy - a sin (ax + b) a cos (ax + b)
Differentiating

- =
.

v

i
,

'

-.

- r^
y dx cos (ax + b) sin (ax + 6)

ai
v sin (ax

a

Then

sin (ax + b) cos (aa; + b)

dy _ a cos (ax + 6)

da: sin (ax + b) cos (aa? + b) sin (aa; + 6)

a

sin 2
(aa: + b)

= a cosec2
(aa; + b)

(2) t/
= sec (ax + b)

=
cos (aa; + 6)

Then log,*/
-

log, cos (ax + b)
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Differentiating

93

1 dy f a sin (ax + b) \
I cos (ax 4- b) j

and

(3)

Then

y dx y. cos {ax 4- 6)

= a tan (a# 4- b)

dy^
dx

a tan {ax 4- &) sec (a# 4- b)

1

?/
= cosec (ax 4- 6)

=
sin (aa; 4- 6)

log#

^. . . 1 dty a cos (ax 4- &)
Differentiating

- -p = r-r -^
y dx sin (a# 4- b)

logc
sin (a# 4- b)

a cos (a# 4- b)

sin (a# + b)

a cot (aa? 4- b)

and ~ = a cot (ax + b) cosec (a# 4- 6)

Table of Standard Forms

y



94 PRACTICAL MATHEMATICS

Rules for Differentiation.
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(b) Treating it as a product and working with the rule
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Example 2. Differentiate e sin bx.

. x tt ,1 t dy dv du
(a) Using the rule _ = - + ,_

u= ex and -^ - ae
ax

v = sin bx and -7-
= 6 cos for

Then -y-
= be? cos 6a; + a^ sin 6a;

ao;

= &* {b cos 6a; + a sin 6a;)

.

= e sin 6a;(6 cot 6a; + a)

/tx tt ^ i
1 dy 1 du 1 dv

(6) Using the rule --r = --r- + --r-
y ax u ax v ax

du _, , 1 aw
u^e**, = a^ and - - = a

aa; war
. , du . . 1 du 6 cos 6a; , ,

,

v = sin bx, -7-=b cos 6a;, and - -r- = : r = o cot oo;

do; v dx sin 6a;

Then -
-r-

= a + 6 cot 6a;

2/ aa;

and ~ = e** sin 6a;(a + 6 cot 6a;)
dx

(c) Working logarithmically

\ogey = ax+ loge sin 6a;

1 dy 6 cos 6a;

?/ aa; sin 6a;

= a + 6 cot 6a;

and -j^
= e sin 6a; (a + 6 cot 6a:)

1 + a;
2

Example 3. Differentiate /

(a) Working logarithmically

loge2/
- log (1 + x2

)
- 1

log, (1
-

a?)

1 dy _ 2x If -2x \

ydx
=

1 + x2
"
ni^Pj

2a; a;

1 + a;
2 1 - x2

2a;(l
- a;

2
) + x(l + a;

2
)

(1 + a;
2
)(l

- x2
)

x(S
- x2

)

(l + a;
2
)(l-a;

2
)
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1 + x2

VT^~x2

(b) Using the rule
-j-dx

dy a
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x*
(21) e?* tan nx sec nx (22) .

v ' v '
e* sin x

(25) loftji; (26) logei^
<27> >*?=iTT (^) "*$T*==
(29)

"
log, (x + a) (30) a* log, (a; + a)

(31) log, (x + ) (32) ** + log, a

(33)

*
(34) log, (a**)

^ . sin x sin 2a;

(35) cos x cos 2a; cos Sx (36) s
-

v ' v '
sin 3a?

(37) *
V*15"*

(38) f?*'
1
*

1 x2 k

(39) cos- 1

5 (40) a? tan"1 x
\ -\- x

(41) log, x tan- 1
a? (42) a? log, (tan"

1
x)

(43) tan x sin" 1
a? (44) tan" 1 x sec a?

(45) ^sin- 1 * (46) JI

(47) iJp (48) JH*

/ci\ / 1 X X1

(51) ViTi^ <52> 3
a;
2 + a; + 1

l+a;+a;2 ^ ^2 _ ^ + x

(53) )~*i (54) sin-i ,

*
1

Vl + a;
2 v ' VT+F

/KKX . .5+ 4a;

<
55>

sinW



CHAPTER VII

61. Successive Differentiation. When we are given y as a func-

tion of x and we find -r, then ~ is also expressed as a function
ax ax

of x, and therefore it is possible to differentiate again with respect

to x. This process is represented symbolically by j-y-r)
or j^*

In fact, with a few exceptions the process of differentiation can

be performed as many times as we please, and the result is repre-

sented symbolically by -7-^
where n gives the number of times

the differentiation has been performed.

Thus if y = xn

JL = nxn-l
ax

g=n(n-l)*-2

g=*i(n-l)(n-2)*-
3

and y = n(n- l)(n-2) . . . (n-r+l)xn~r

ax

while taking n as a positive integer and putting r = n

g-<-l)(n-2)...l
=

l

If n is a positive integer, xn can only be differentiated n times
;

but if n is a negative integer or a fraction, positive or negative,
there is no limit to the number of times x11 can be differentiated.

For successive differentiation it is convenient, if possible, to find

dny
the general result of differentiating n times, i.e. -=- and then

any differential coefficient can be found by giving n the required
value in that general result. There are some functions for which

99
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the nth differential coefficient can be readily obtained, such as

xn , log^a?, ef**, a?, sin (ax + 6), cos {ax 4- 6), &* sin bx, ef* cos bx.

To find the nth differential coefficient of e?* sin bx.

y = e?* sin bx

-r-
= aef* sin bx 4- 6e?* cos 6a;

or
= ^(a sin 6a; + b cos 6a;)

= Va2 + b2 eP* sin {bx 4- a), where tan a - -
a

It appears in this example that differentiation is equivalent to

multiplication by Va2
4- b2

,
and at the same time increasing the

angle by a. If this is so, then

-^
-

{a
2
4- b2

)
<?* sin (bx 4- 2a)

4^ =
(a

2
4- 62

)^ e"* sin (bx 4- 8a)
oar

and ^ =
(a

2 + 62
)* <** sin (to 4- na)

If this result is true for all integral values of n, it must be true

for (n 4- 1), and ^fx
- (a

2
4- ft

2
)"

2
"
*" sin {6a; + (n + l)a}, and

this result can be established by differentiating -t~

dn+lv 5
and -r-^

=
(a

2
4- 62

) {a*** sin (6a; 4- na) 4- be?* cos (6a; 4- na) }

n
=

(a
2
4- 62

)

7 e" {a sin (6a; 4- na) 4- 6 cos (6a; 4- na) }

-
(a

2
4- 62)* e?* Va2

4- 62 sin (to 4- na 4- a)

n-H
-

(a
2
4- 62

)
2 *** sin {6a; + (n + l)a}

which agrees with the anticipated result, and therefore

dtHj 5 6
_JL = (a

2 + 62r e"* sin (6a; 4- na) where tan a = -

for all integral values of n.

62. Other functions are of such a form that it is impossible to

obtain the nth differential coefficient, but the work of successive

differentiation can be made as simple as possible by working
to some general rule. Functions such as tan x, cot x, sec x,

cosec x, e* sec x, e* cosec x, can be treated in this way.
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For example, to successively differentiate tar. x; We want as'

a general rule to be able to differentiate tann x.

y = tann x = zn where z = tan x

dy , ,
dz m

~y-
= nz 11'1 and -7- - sec2 x

dz ax

dy
-f-

= nzn~l sec2 x
ax

= n tann_1 x(l + tan2
x)

= n tan" -1 x + n tann+1 x

If we give n any integral value, we are enabled to differentiate

any integral power of tan x.

When n = 1 y = tan x and
-p

= 1 + tan2 x

n = 2 y = tan2 x and ~ = 2 (tan a? + tan3
a?)

n = 3 t/
= tan3

a- and
-^

- 3 (tan
2

a? + tan4
a?)

Successively differentiating tan x

y = tan x

- = 1 -f tan2
a;

dv

dhi
-r- = 2 tan x + 2 tan3

a;

^ = 2 (1 + tan2
a-) + 6 (tan

2 x + tan4 a;)

2 + 8 tan2 x + 6 tan4

16 (tan a; + tan3
x) + 24

16 tan x + 40 tan3
a? + 24 tan5

a?

16 (1 + tan2
a;) + 120 (tan

2
a?+ tan4

16 + 136 tan2
a? + 240 tan4 x + 120 tan6 x

-r = 16 (tan a; + tan3
x) + 24 (tan

3
a? + tan5

x)

^ = 16(l + tan2
a?) + 120(tan

2
a:+ tan4 ai

) + 120(tan
4 a;+tan6

a;)

-t-|
= 272 (tan x + tan3

x) + 960 (tan
3 x +tan5

a?) + 720 (tan
5 x

+ tan 7
a?)

= 272 tan x + 1232 tan3 x + 1680 tan5
a? + 720 tan 7 x

Similarly, if we find the differential coefficients of cotn x,

sec x, tann x, and cosec x, cotn x, we can use them to differentiate

successively cot x, sec x, and cosec x respectively.



102 PRACTICAL MATHEMATICS

As a further application of the use of this method, let us find

the first four differential coefficients of e* sec x.

"$6 "differentiate 6* "sec x successively, we require to be able to

differentiate e* sec x tann x.

y = e* sec x tann x

log y = x + log sec x -f n log tan x

1 dy sec x tan x sec2 x--1+ + n-
y ax sec x tan x

= - {tan x + tan2 x + nil + tan2
x) }

tan x K

-j-
= e* sec x tann-1 x{n + tan x + (n + 1) tan2

#}

= * sec x{n tan" -1 x + tann x 4- (n + 1) tanw+1 a?}

when n = 0, y = e* sec x, -p
= e* sec x (1 + tan

a?)

when n = 1, y = e* sec x tan #, -^
= ? sec a? (1 + tan x

d\i
when n =2, y = e* sec x tan2

a?, -p
=e* sec a* (2 tan x + tan2 a?

when n = 3, y = e* sec x tan3
a:, -p

= c35 sec a? (3 tan2
a? + tan3

a?

+ 2 tan2
a*)

c sec a* (2 t

+ 3 tan3 x)

f sec x (3 t

+ 4 tan4
a?)

Thus if y = & sec a?

^ - * sec a; (1 + tan x)

dhj
-t4 = e* sec #{(1 + tan

a?) + (1 + tan x + 2 tan2
x)}

= e* sec a? (2 + 2 tan a; + 2 tan2
#)

d3w
-r-g

- c* sec a:{2(l + tan x) + 2(1 + tan x + 2 tan2
a;)

+ 2(2 tan x + tan2
a? + 3 tan3

a-) }

= e* sec x (4 + 8 tan x + 6 tan2 # + 6 tan3
a?)

d4w
-7-3

= * sec a? {4(1 4- tan a?) + 8(1 + tan x + 2 tan2
a;)

+ 6(2 tan a?+tan2
a?+ 3 tan3

a?) +6 (3 tan2 x + tan3 x
+ 4 tan4

a?) }

= e* sec a? {12 + 24 tan x + 40 tan2 x + 24 tan3 a; + 24 tan4
a? }
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63. Development of Functions. If z=f(x+y) where x and y
are independent variables,

Then (f) -(D\ay/x const \ax/y const

for let z = f(w) where w = x + y

Tr dz rf2 dro

Keeping a; constant "1~
^

~T~ ~T~

dz . fdw\

dw y

\dy / a

= 1
ly / x const

Tr dz dz dw
Keeprngy constant ^-g^gg

^2
-j- , since
dW \iuc / v const

(dw\
\dx)

Thus (p\ =m
\ay/x const XOtr/v const

Then
[-?-)

= B + 2Cy + 3Di/
2 + 4Ey* +

The function 8 = f(x + ?/) can be expressed as a series of terms

of descending powers of x, or ascending powers of y.

Then z = /(# + y)
- A + By + Q/

2 + Di/
3 + . . .

where the coefficients A, B, C . . . are functions of x but are

independent of y.

(dz\

*>y'x const

fdz\ _ dA dB
2
dC

3
dD

\dxJy oomt dx dx dx dx

Since these two expansions are equal, we can equate coefficients

of like powers of y.

And
ax

c 1#A
2 dx*

D= -L*
|3 da;3

|d#4

.

"~

A dA #
2 d2A f/

3 d3A
Therefore -/I^).A + 5 +

.|F +| ff+ . . . ,

in which A can be easily expressed as a function of x by putting

2/
= 0, for then A =/(#). This expansion is known as Taylor's

Expansion.
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(a) To expand (x + y)
n

Then z = (x + y)
n

; and when y = 0, z - xn , and this gives A as

a function of x.

If A = xn

'dor

^A_= n(n- l)(n- 2) . . . (n-r+l)^n_r

when r = 1 -* - w^n_1

d2A
i r = 2

-7-Y
- n(n - l)x

n-2
, and so on.

But z= (x + y)
n

dA y
2 d2A y* <PA

V2 V*=xn+ynxn- x +f- n(n-l)x
n-2

+f-n(n-l)(n-2)x
n-*+. ..

Ll L-

~xn+nxn~1
y+ \ > xn-2

y
2+ r^ -a?*-3!/

3*. . .

(6) To expand logc(# + t/)

Then z = loge(# + y) ; and when t/
= 0, z = log^, and this gives

A as a function of x.

If A =
loggtf

dA_l
dx x

d?A = _1.

<fo2 x2

But z - log^jr + t/)

_ iota,+1 _j + j_.2L



TAYLOR'S EXPANSION 105

Putting a? = 1, we get

64. Application of Taylor's Expansion to the solution of equations.

xt iv x a <*A ?/
2 d2A s/

3 d3A
Now/(a?+*/) = A +2/ - +

^-_
+ J S5 +...

But if y is taken as a small quantity
dA 1 d2A

then /(a? + ?/)
- A + y ^ + - y

2

-^ approximately.

Thus if we are solving an equation and we find by trial that
a root of the equation lies between two definite limits, say x = xx

and x = x2 .

Then calling the equation /(a?)
-

and when x = x lf f(x^)
= a

also when x = a?2 , jf(a? 2)
h

Then, if a is nearer to than b, the actual root of the equation
can be xx + h and h will be small.

But f(x x +h) =

j x. a t.
<*A 1 . , d2A

and hence A + /i -^- + - /*
2 - =

cte 2 da?2

dA d2A
where A =/(a?) and A, j-,

and
-j-^

have the values when x a^.

This gives a quadratic equation for &.

Next, if 6 is nearer to than a, the actual root of the equation
can be a?2 k, and k will be small.

But f(x2 -k) =

and hence A k -j- + rA?
2
-r-s =

da? 2 dx2

where A =/(a?) and A, -^-, and -r-^- have the values when x =a? 2 .

dx dx2

This gives a quadratic equation for k.

Example 1. To find the root of the equation a:
3 10a?2 + 40a?

35 - 0, knowing that it lies between 1 and 2.

Then A or f(x)
= a?

3 - 10a?2 + 40a? - 35

when x =
l,/(a?)

= 4, and when x = 2, /(a?)
= 13.

Hence the root is nearer to 1 than it is to 2

and A = a?
3 - 10a?2 + 40a? - 35 = - 4 when a? =1

dX_ = 3#2 _ 20a? + 40 - 23 when a? = 1
dx

d2A m .

'

-r-5 = 6a? - 20 = 14 when a? = 1
dx2
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a i^A l,d2A
But A + k

te
+

2
h2M=

-4+23h-7h2 =

h2 - 3-286/* + 0-571 =

h - 1-643 - 1-459

h - 0-184

The root lies between 1-18 and 1-19.

To get a better approximation for the root

A = x* - 10z2 + 40.Z - 35 = - 008097 when x = 1-18

dA = 3x2 - 20a; + 40 = 20-5772 when x = 1-18
ax

d2A^ = Qx - 20 = - 12-92 when x = 1-18

. . dA l t9 d
2A

But A + hE +2&-
- 008097 + 20-5772^ - 646fc2 =

h2 - 3-18536& + 001253 =

h - 1-59268 = 1-58874

h - 000394
The root will be 1-1839.

Example 2. Solve the equation = -.

The root is evidently between 1 and 2.

The equation is sin x - x =

and A = sin x 0*75 x = 0-0915 when x = 1

dA
-r- - cos x - 0-75 = - 0-2097 when x = 1
ax

d?A
-r-s-

= sin x 0-8415 when x = 1
da?2

But/(* + *) -A + + I*.J

and 00915 - 0-2097/i - 0-4207&2 =

h2 + 0-4985& - 0-2175 =

h + 0-2493 - db 05287

h = 0-2794
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The root is between 1-27 and 1-28 and is nearer to 1-28.

To get a nearer approximation take the root as (1-28 k).

Then A = sin x - 0-75x - - 0-0020 when x = 1-28

dA
r- = cos x - 0-75 - - 0-4633 when x = 1-28
ax

d2A = - sin x = - 0-9580 when x = 1-28

But ^*)-A-* +I***
- 00020 + 0-4633/c - 0-4790&2 =

k2 - 0967224 k + 00041754 -

k - 0-483612 = 0-479276

k = 0004336

The root is 1-28 - 0004336 - 1-275664.

Working to five significant figures the root is 1-2757.

65. Maclaurin's Theorem. If we start with Taylor's Expansion
and put x = 0.

TU r/ %
. dA y

2 d2A y*d
2A

Thenf(x + y)
= A + y^ +^ + ^ + . . .

* n a fdA\ y
2
/d2A\ v

5
fd

*A\and
/fo,-A^+^^^

. . .

where A, -z- ,
-

. . . have their respective values when x = 0,
dx dx2

and these will be constant coefficients, since they are independent
of x and y. The expansion may therefore be expressed as

r/
. A /dA\ x2

fd
2A\ xs

fd*A\
fix)

= ax=0 + x
[^)x=o f^^=o

+
jg (-^3 )x=o

+ . . .

where A =
f(x) .

An alternative proof can be obtained in the following manner :

Let y =f(x) = A + A^ + A^2 + A 3a?
3 + . . . Anx

n + . . .

where A
,
A

lf A 2 , etc., are constant coefficients.

Then when x =
0, A = yx=Q

y = A x + 2A 2# + 3A 3#
2 + . . . nAna;n

-1 + . . .

dx

.*.-.and when x

J = |2A 2 +3x 2A3# + . . . n(n - l)An^
n~2 + . . .
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and when *-0, |2A 2
-
(g)

and A 2
-
*{g)

+ .

x=0

g =
[3A3 + . . . n(n-l)(n-2)A^-s + . . .

and when *-0, |8A,
=
(g)^

and A, --g^
Differentiating w times and putting a;=0we get

(aL.-laS-".-E-<SL

xn /dny\

We have therefore a means by which we can expand a function

of # in a series of terms of ascending powers of x. The success

in the working with this expansion depends upon the ease with

which we can obtain the successive differential coefficients of

f{x). Thus any function whose general differential coefficient is

readily obtained can be as readily expanded.
To expand eP* sin bx.

It has been already shown that the n"1 differential coefficient

5
of ef* sin bx is (a

2 + b2
)
2 &* sin (bx + no), where tan a

Then
(g3()

- (a
2 + b2

)"* sin na

(!L=<a2+ *2
>isina

(8L= (a2+62)sin2a

but -iw.i- +.(4L +
g-(-a-L+--;

1 #2
and t/

= ^ sin 6a; = x(a
2 + b2y sin a + j- (a

2 + b2
)
sin 2a + . . ,

/y>n
ft fc

i (a
2 + fe

2
)* sin wa + . . . where tan a = -

\n
v ' a
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66. We can also apply Maclaurin's Theorem to the case in

which the process of finding the successive differential coefficients

is rendered simple by working to a general rule. Functions

such as tan x, cot x, sec x, cosec x, can be expanded in this manner.

Thus, to find the expansion for sec x, we have to find the suc-

cessive differential coefficients of sec x, and to do this we shall

require the differential coefficients of sec x tann x.

y = sec x tanw x

-r- = n sec x tann_1 x sec2 x + tanw x sec x tan x
ax
= sec x{n tann_1 x(l + tan2

x) + tann+1 x]

= sec x{n tann_1 x + (n + 1) tanw+1 x}
du

Thus when n = 0, y = sec x and = sec x tan x

when n = 1, y = sec x tan x and ~ = sec x{l + 2 tan2
a?}

du
when n = 2, ?/

= sec x tan2
a? and -~ = sec x {2 tan x+ 3 tan3

a? }

MM
when n = 3, ?/

= sec a? tan3
a? and

-p
= sec a? {3 tan

2
a?+4 tan4

x)

Using these results we can now successively differentiate sec x.

y = sec x

dy
-rf-

= sec x tan x
ax

-^|= seca?{l + 2 tan2
a;}

<Pu
-7-^

= sec a? {tan x +2(2 tan x + 3 tan3
a?)}

= sec x{5 tan a? + 6 tan3 a?}

-3^
= sec x{5(l + 2 tan2

x) + 6(3 tan 2 x + 4 tan4
a;) }

= sec #{5 + 28 tan2 x + 24 tan4
a?}

-r-|
= sec a; {5 tana?+ 28(2 tana?+ 3 tan3 a?) + 24(4 tan

3
a?+ 5 tan5

a?) }
OXr

= sec a? {61 tan x -f- 180 tan3 x + 120 tan5
x}

j^- + sec x {61(1 + 2 tan2
x) + 180(3 tan

2 a?+ 4 tan4
a?) + 120(5 tan

4 x
ax

+ 6 tan6 x) }

= sec a? {61 + 662 tan2 x + 1320 tan4 x + 720 tan6
x}
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When x = 0, sec x and its successive differential coefficients

become 1, 0, 1, 0, 5, 0, 61, and therefore there are no odd powers
of x in the expansion.

, x2 5x* 61#6

+
2
+

24
+

720
+ ' ' '

67. There are some functions which can be expanded without
the aid of Maclaurin's Theorem, and this remark applies more to

the inverse trigonometrical functions.

To find an expansion for sin -1 x.

y = sin -1 x = A + A^ -f A^c
2 + Ayr

3 + A^x
4 + AgP + . . .

and when x = 0, y = 0, and therefore A^
=

^ =
Vl - x2

= A
i +2A^+ 3V2 +4A/-f5A^+ . . .

1 _4
But . or (1

- x2
)

2 can be expanded with the aid of the
Vl - x2

Binomial Theorem and

Equating coefficients of like powers of x, it should be noticed

that there are no terms in the second expansion involving odd

powers of x, and therefore the coefficients of these terms in the
first expansion must all be zero.

Then A 2
- A

4
= A

6
=
Ag

=
. . .

Then A x
=

1,

and y = sin -1 x

lx*
IJtx* 1-3-5

x*_
1 3-5-7 s?

= X +
2 3

+
2-4 5

+
2-4-6 7 +

2-4-6-8 9*
+ * ' *

68. If we have a simple relation between the first and second
differential coefficients, and this is combined with a knowledge
of some of the initial conditions, we are enabled to express y as

A 3
-

2'
5A

5
~

I'
7A7

=
is'
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a series of terms of ascending powers of x. In other words, we
can solve a differential equation and give the result as a
series.

Example. If -~ - 2-~ + 2y = 0, and when x - 0, y = 0, and

S 1, express ?/ as a series of terms of ascending powers of x.

Then ?/
=
Aq + A^ + A^2 + Agtf

3 + A4
#4 + A

6
#5 + . . .

= A x + 2A^ + 3Agaj
2 + 4A

4
#3 + 5A

5
#4 + . . .

_| = 2A 2 + 6A3# + 12A
4
#2 + 20A

5
ar* + . . .

When x = 0, t/
= 0, then Aq =

;
and when x - 0, -^ 1,

then A x
= 1.

Also j-|
= 2A 2 + 6A 3# + 12A

4<r
2 + 20A

6
#3 + 30A

6
#4+ . . .

ax

_ 2 ^ = - 2A X
- 4A^ - 6Aga;

2 - 8A
4
#3 - 10A

5
#4

. . .

dx

2y = 2A + 2A!ir + 2A^2 + 2A 3
#3 + 2A

4
#4 + . . .

Since ^-2^-+2y =
dx2 dx

Then 2A2
- 2A X + 2A =
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Thus if y = 4*'lx

logc y = sin -1 x

Idy 1

ydx Vl- x2

dy e*n
~
lx

and -f-
-

.

- z
<fc Vl - a;

2

log, z = sin"1
a; - -

loge (1
- x2

)

1 dz 1 #
+

z dx Vl - a:
2 1 - #2

.sin""
1^ds d2

y e x
1 x \

and t- or -5-^
= --=1 -7==+- r[

dx dx1 Vl-^2Vl -a:2 l-^,2
i

Then (l-^2)^
d22/ ^"W ?
dx2 Vl - *2

= y +xI
We can therefore use the relation (1 x2

) -j-^ x ~ y = 0,7
tto2 cte

*

combined with the condition that when x - 0, y =
1, to express t/

as a series of terms of ascending powers of x.

Examples VII

d2 v dx
(1) If x - &H sin 3/, prove that -jTr+ 2

-jr
+ MXr = 0.

(2) If a? = 10* c-2*, prove that
-p-

+ 4 -3- + 4a? = 0.

d2x dx
(3) If x = 4 (tf-

2* -
*-*), prove that

-p-
+ 6

-j-
+ 8a: = 0.

d2x dx
(4) If x = 5 (1 + 41) e"2*, prove that

-p-
+ 4 -3- + 4# = 0.

d2x dx
(5) If = 4 (3<?-

2< - 2c-41), prove that -p + 6 -3- + 8a; - 0.

(6) If y = csin x , prove that
j-|

- ^ cos x -\- y sin x = 0.

(7) If y = e sin bx, prove that -t-
- 2a + (a

2 + fc
2
)?/

= 0.

(8) Iiy=ea* COS to, prove that - 2a^ + (a
2 + 62)?/

= 0.
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(9) If y = e* tan x, prove that
-7-^

-
(1 + 2 tan x) -p+y (tan x

cot x)
= 0.

(10) If -.*. find |-g.g, and hence find g-
(11) Using Maclaurin's Expansion, find the first five terms in

the expansions for sin nx and cos nx.

(12) If y - tan (x + 2/), show that g= -
l^J?

and g
2
(
1 + y

2\

r
(13) Find the first five terms in the expansion for tan-1 x.

(14) If y = * tann #, find
-^,

and use the result to find the first

five differential coefficients of e* tan x. Hence find the first five

terms in the expansion for e* tan x.

(15) If -I* prove that -
(1 -)% 2| -

(1
-

)%
dx2 v /

cto3
'

dxn



114 PRACTICAL MATHEMATICS

(22) Using Taylor's Expansion, find the approximate root of

the equation x5 8X3 + 12# 185 = 0, knowing that the root lies

between 3 and 4.

(23) If -~ - 2
-j-

+ 5y = 0, express y as a series of ascending

d\i

powers of x, knowing that when x = 0, y = and
-j-

= 2.

d/hj dii

(24) If (1 -f- x) -t^ + 2~ = 0, express y as a series of ascend-

ing powers of x, knowing that when x = 0, y = and S-L
d^ti du

(25) If a? j^ + ~ + 2/
= 0, express t/as a series of ascending

powers of x, knowing that when x = 0, y - 1.



CHAPTER VIII

70. Curves may be divided into two classes according to the

algebraic sign of the slope.

(1) If y increases as x increases, then a tangent drawn to such
a curve will be inclined to the axis of x at an acute angle, and

tan will be positive and therefore ~- will be positive. Hence

dti
when

-p,
or the slope of a curve, is positive y increases as x

increases.

Y

O X O X
Fig. 31.

(2) If y decreases as x increases, then a tangent drawn to such

a curve will be inclined to the axis of x at an obtuse angle, and
115
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tan will be negative and therefore
-p

will be negative. Hence

when -r-, or the slope of a curve, is negative, y decreases as x
ax

increases.

When we wish to find the highest or lowest point of a curve,

we do so by drawing the horizontal tangent to the curve and the

point of contact is the required point. As the tangent is horizontal,

it is parallel to the axis of x and therefore its slope, or
-p,

is zero.

Thus the condition
-j-

= gives a point on the curve at which

the tangent is horizontal, and such a point may be either a maxi-

mum point, a minimum point, or a point of inflexion.

Fig. 32.

71. Case I. The maximum point. Let C be the highest point

of a curve, and at C ^ =
(Fig. 32).

Moving along the curve from A to C, the angle 8 is acute and

decreases to 0. Then
-^

is positive and decreases to 0.

Moving along the curve from C to B, the angle 6 is obtuse and

dy
decreases from 180 c

Then
-j-

is negative and decreases from 0.
ax

Therefore in the neighbourhood of a maximum point
~ is

always decreasing, and also
-j- changes in sign from positive,

through zero, to negative.
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If .J. is decreasing as x increases, then the curve obtained by
dx

plotting x horizontally and
-j- vertically is such that its slope or

dry

dx*
is negative.

Thus at a maximum point on a curve we have the conditions

d2y
(2) ^-|

is negative.

72. Case II. The minimum point. Let C be the lowest point

of a curve, and at C dy
dx

=
(Fig. 33).

Fig. 33.

Moving along the curve from A to C, the angle 6 is obtuse and

increases to 180.

dy :Then
-j-

is negative and increases to 0.

Moving along the curve from C to B, the angle is acute and

increases from 0.

Then
-j-

is positive and increases from 0.

Therefore in the neighbourhood of a minimum point ^ is

always increasing, and also
-^ changes in sign from negative,

through zero, to positive.

dy
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If ~r- is increasing as
1 x increases, then the curve obtained by

ax
*

f^fj

plotting x horizontally and
-j- vertically is such that its slope or

^ is positive.

Thus at a minimum point on a curve we have the conditions

dhj
(2) -r^r

is positive.

73. Case III. The point of inflexion. Here we only have to

consider the case of the point of inflexion at which the tangent
to the curve is horizontal.

The horizontal line TjCTg touches the upper branch of the

curve at C and also the lower branch at C.

ThenatC,^= (Fig. 34).

(a) Moving along the curve from A to C, the angle G is acute

and decreases to 0.

Then - is positive and decreases to 0.

Moving along the curve from C to B the angle is acute and

increases from 0.

Then ~ is positive and increases from 0.

dti
Therefore in the neighbourhood of a point of inflexion -p

is
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always positive and - decreases to a zero value and then

increases.

Since -E decreases to a zero value and then increases as x in-
dx

dii

creases, the curve obtained by plotting x horizontally and

vertically is of such a form that its lowest point occurs when

-~ -
; hence at this point the tangent to the curve must be

ax
d"tf

horizontal, and so the slope or -~ is zero.

Thus at a point of inflexion on a curve we have the conditions

<>!-

(b) Moving along the curve from A to C, the angle 6 is obtuse

and increases to 180.

Then -^ is negative and increases to 0.

Moving along the curve from C to B the angle is obtuse and
decreases from 180.

Then
-j*-

is negative and decreases from 0.

dn
Therefore in the neighbourhood of a point of inflexion is

always negative, and~ increases to a zero value and then decreases.

Since -r- Increases to a zero value and then decreases as x
dx

dii

increases, the curve obtained by plotting x horizontally and -r-

vertically is of such a form that its highest point occurs when

-j-
=

; hence at this point the tangent to the curve must be
CLX

d2
y .

horizontal, and so the slope or -~ is zero.

Thus at a point of inflexion on a curve we have the conditions
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du
74. If the law of a curve is y = f(x), then

-j-
will give the slope

of the curve at any point, the condition for a horizontal tangent
du

is obtained by putting
~ = 0. This is an equation to be solved

for x, and the root will give a point on the curve at which the

tangent is horizontal. This point may be a maximum point, a

minimum point, or a point of inflexion. In order to decide which
d2y . ^>

it happens to be, -~ is found and the value of x obtained by

solving the equation -p
= is substituted in the resulting ex-

pression. If the result is negative, the point is a maximum point ;

if positive, a minimum point ;
if zero, a point of inflexion.

Example 1. State the nature of the points on the curve

y = 2X3 9x2 60x 25 at which the tangent is horizontal.

y = 2x* - 9x2 - 60r - 25

JL = 6x2 - 18a? - 60
dx

The tangent is horizontal when - =

That is, when 6x2 - 18a: - 60 =

x2 - Sx - 10 -

(x- 5)(x+ 2)
=

x = 5 and x = 2

There are two points at which the tangent is horizontal.

dry
Now

-r^
= 12x- 18

d2yWhen x = 5, -r-^
= 42, a positive value, and y is a minimum

when x = 5.

d/hj
When x = 2, j~

= 42, a negative value, and i/ is a maxi-

mum when x = 2.

Then the expression 2.Z3 9#2 60# 25 has its maximum
value 43 when x = 2, and its minimum value 300 when x = 5.

Example 2. State the nature of the points on the curve

y = 3x* 8X3 24#2 + 96x 30 at which the tangent to the curve

is horizontal

y = 3#4 - 8x* - 24x2 + 96# - 30

4- = 12a? - 24a;2 - 48* + 96
dx
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du
The tangent is horizontal when -2- = 0.

That is, when 12a:3 - 24a?2 - 48a? + 96 =

or a?
3 - 2a?2 - 4a? + 8 =

(a?
2
-4)(a?-2) =

x = 2 and a? = 2

There are two points at which the tangent is horizontal

Now -r|
= 36a?2 - 48a? - 48

dry
When x = 2, -~ = 0, and a point of inflexion occurs when x 2,

When a? = 2, j-^
- 192, a positive value, and y is a minimum

OX"

when a? = 2.

Then the expression 3a?4 8x3 24a?2 + 96a? 30 has a minimum
value 206 when a? = 2, and there is a point of inflexion when
a?= 2.

75. Example 3. Find the dimensions of the cone of greatest
volume which can be cut from a sphere of given radius.

Fig. 35.

Let a? be the perpendicular distance of the base of the cone
from the centre of the sphere and let R be the radius of the sphere.

Height of cone = R + a?

Radius of base of cone = VR2
a?
2

Volume of cone - ^(R + a?)(R
2 - a?

2
)3

v - (R3 + R2# - Ra?2 - a?
3
)o

Now v is a maximum when -=- =
ax
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That is, when
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Volume of vessel = nx2
y

s /"

= 5 IK"
3>3tt:

(2) With lid.

S - surface area of vessel - 2izxy + 2tct2 , where a? = radius of

base, and y =
height.

Volume of vessel - izx2y

2 /S
- 2nx2

\

= i{Saj-2Tu^
3
}

Then =
|(

S - te2
)

Now V is a maximum when -r- -

That is, when 5 (S
- 6nx2

)
-

Then a - <\/-

Height of vessel = y = S - 2tt 2

2ro

2S /6rc

Gtt'V S

-
6tt

Volume of vessel = izx
2
y

vs= 7T 2

= S /IT

77. Example 5. A sector is removed from a circular disc of

sheet metal of given radius, and the remainder is formed into a

conical vessel. Find the angle of the sector, so that the volume
of the conical vessel shall be greatest.

Let be the angle of the sector ACB. Then 2tu 6 is the

angle of the sector which has to be removed.

Length of arc ACB = R0, where R is the radius of the circular

disc.
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Now the circumference of the base of the conical vessel must

be the same as the length of the arc ACB.

Circumference of base = R0

Radius of base =
2n

Length of slant side = R

R2-:
4tc2VR2 2

R2 -

R2 2

Volume of conical vessel = ^ ;~4-\/R2 - -tt?5!5!JR2 _
3 4tu

2 V

Fig. 36.

4 - - - is greatest : that is, when
47T

6
4 - - is a maximum.

47C
2

04 ^ U a to 605 A4 -
;
is a maximum when 403 -5 =

4tc2 4tc2

That is, when 2 = | 4tt2

8

or =
27i>y

-

The angle of the sector = 2n -

-*<-VS
= 1-153 radians or 66 6'.
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The dimensions of the conical vessel can now be given.

Radius VI"

Height =
^R*-|

=
j\
R

Volume

2ttR3

"

9\/3

78. Example 6. The cost of a ship per hour is c where
c = a+ bsn and a, ft, and n are constants and 5 is the speed in

knots. Find the speed of the ship so that it will travel a passage
of m nautical miles at a minimum total cost.

Time of passage - hours

Total cost of passage =
(a -f bsn

) pounds = y
s

V = m(j+bs
n

-^

y will be a minimum when
-p

-

^ - m{ - as-2 + fc(n
-

l)s
n~2

}

and -^ = when bin - l)s
n~2 = ^

as s2

sn =
b(n

-
1)

\b{n- l)i

giving the speed in terms of the known constants a, b, and n.

79. The function y = ae~kt

s'm(pt c) affords a striking example
of alternating maximum and minimum values.

a, k, p, and c are constants.

Since e~kt
is never zero, y = when sin (pt c)

= 0. That is,

when (p c) has the values 0, iz, 2iz, Stz ... niz ... ov when
. . .- ,

c c iz c 2n c niz
t has the values -, -+-, - H . . . - H ...

p p p p p p p
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Now
-j-

= a { ke~u sin (pt c) + pe~
u cos (pt c) }

and
-j|

= when - fcc
-** sin (p c) + pc

-** cos (p/
-

c)
=

k sin (p* c)
= p cos (pZ c)

tan (pt c) =j-

If a = tan -1
^>

then tan (pt
-

c)
- tan a

and p - c = a, tc + a, 2:r + a, . . . niz + a

Hence -^ = when has the values
at

a+c a + c 7r a+c 2tc a + c niz

p p p p p' p P
Some of these values of t will give maximum values of y, while

the other values of t will give minimum values of y.

Taking the general value of t, t
1

P P
Then pt c = niz + a

and sin (pt c)
= sin (mz + a)

When n is an even integer, sin (pt
-

c) is positive, and hence

maximum values of y occur when t has the values

a+c a+c 27T a+c 4tc
, + > + , etc.

p P P P P

When n is an odd integer, sin (pt c) is negative, and hence

minimum values of y occur when t has the values

a+c tc a+c 37T a+c 5n

P P V
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when t = b-i y = ae V x>> sin a

Me" i>

Thus the successive maximum values of y are in geometrical

progression, the common ratio of which is e~ p

Also when t = 6 + - y = ae~ \
+
p) sin a = N

P
s*

when / = 6 H y = ae
k
\
b+

p) sin a
V

= Ne ?

when t= b-\ y = ae \ v) sin a

= Ntf j

Thus the successive minimum values of y are in geometrical

progression, the common ratio of which is e p

Examples VIII

Find the maximum and minimum values of y and the values

of x, producing them in each of the following examples :

(1) y - 2#3 - 9x2 + 12* + 30.

(2) y = x*-75x + 24.

(3) y = 3x* + 4>x3 - 24a;2 - 48# + 64.
Q

(4) Find the minimum value of -
2 + 5x3

, and the value of x
x

which produces it.

In each of the following examples find the maximum value of

x, and the value of t which produces it.

(5) x -
&?^_sin

3t.

(6) x - VlO e-
4 sin (3* + 1-249).

(7) x - 5e~l sin (3/ + 0-6428).

(8) x - lOt e~2t
.

(9) x - 5 (1 + 2t) e~2t
.

(10) a? = 5 (1 + U)e~
2t

.

(11) #=4 fc-*-*-
41

).

(12) x = 4 (2e~
2< - e-4

<).

(13) *- 4 (3e-
2t -2e-*t

).

(14) If
2/
- A-

*, find the maximum value of y, and the value

of x producing it.

(15) Find the dimensions of the cylinder of greatest volume

which can be inscribed in a sphere of 10 inches radius.
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(16) Find the dimensions of the cylinder of greatest curved

surface which can be inscribed in a sphere of 10 inches radius.

(17) Find the dimensions of the cylinder of greatest total sur-

face which can be inscribed in a sphere of 10 inches radius.

(18) Find the dimensions of a conical tent of greatest capacity,
the area of canvas used being 500 square yards.

(19) If y = x2n x1+n where n = 0-885, for what value of x is

y a maximum, and what is the maximum value ?

s3

(20) The cost of a ship per hour is c where c = 8-21 + 775777:,
s

1200

being the speed in knots. Express the total cost of a passage
of 3400 nautical miles in terms of s. What value of s will make
this total cost a minimum ? Show that at speeds 10 per cent,

greater or less than this, the total cost is not very much greater
than what it is at the best speed. (B. of E., 1911.)

s3

(21) The cost of a ship per hour is c where c = 4* + rrrrrr, *

being the speed in knots relatively to the water. Going up a

river whose current is 5 knots, what is the speed which causes

least total cost of passage ? (B. of E., 1905.)

(22) In Q. 21, if the ship is going down the river, what is the

speed which causes least total cost of passage ?

(23) From a rectangular sheet of tin 12" x 10" equal squares
are cut from each corner, and the remainder is formed into a

rectangular vessel. Find the length of the side of the square
so that the volume of the vessel shall be greatest.

(24) ABCD is a sheet of tin 10" square. From the corners A
and B squares of x" side are cut away, and from the corners C
and D rectangles of breadth x" are cut away. The remainder is

formed into a rectangular vessel with a lid. Find the dimension
x so that the volume of this vessel shall be greatest.

(25) The stiffness of a beam of rectangular cross-section varies

as bh3 where b is the breadth and h is the depth of a cross-section.

Find the dimensions of the stiffest beam which can be cut from
a cylindrical log of 24 inches diameter.

(26) If y = ae-* sin (pt-c), ,and c = 0-135, a = 4, k = 300,

p = 500, find the first maximum and the first minimum value

of y, and the values of t which produce them.

(27) Find the dimensions of the cylinder of greatest volume
which can be inscribed in a cone 5" high, radius of base 2".

(28) Find the dimensions of the cylinder of greatest curved
surface which can be inscribed in a cone 5" high, radius of

base 2".

(29) Find the dimensions of the cylinder of greatest total

surface which can be inscribed in a cone 5" high, radius of

base 2".
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(30) The annual cost of giving a certain amount of electric

light to a certain town, the voltage being V and the candle-power
of each lamp C, is found to be

A = a + - for electric energy

V



CHAPTER IX

80. The Equation of the Tangent to a Given Curve. The equation
of a line is y = mx + c where m is the tangent of the angle of

slope, or if the line is inclined to the axis of x at an angle 0, then

m = tan 0.

The tangent to a curve is a straight line which passes through
a given point on the curve and also has the same slope as the

curve at that point.
Let the co-ordinates of a point on a curve be h, k. Then the

slope of the curve at that point is the value of
-j-

when x = h,

and this must be the slope of the tangent.

The equation of the tangent is y - x
\-r-)

+ c.

But this line also passes through the point,

and k = hi g) + c

Therefore
=,(|)^

+ * -
,(g)^

The normal to a curve is the line drawn perpendicular to the

tangent through the point of contact.

If the tangent to a curve is inclined to the axis of x at an angle
0, then the corresponding normal is inclined to the axis of x at

an angle (90+ 0).

Slope of the normal - tan (90 + 0)

= - cot

=
, where m = tanm

Then the slope of the normal to the curve at the given point is

1 (dx\

dy\ \dy/.

/0W x=h

x=h
130
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The equation to the normal is y - x (-=- )
+ c x

But this line passes through the given point,

and k = h( -7- ) + c-.

\dy/x=b

ly/x=h

Therefore y - x (-=- ) + k 4- /*( -r- )*
\dy/x=h \dyj,

da?
s

Example 1. To find the equations of the tangent and normal
to the curve ?/

2 = 4# at the point where x = 4.

Then 1/
= 2ar and -^ = 7=u dx Vaj

when # = 4, v = 4, and ~ = -
07

da; 2

Equation of the tangent is y = - + c
SI

but 4 = - x 4 + c

and c = 2

^ 1
Then 1/

= - a; + 2, or 2y = x+ 4>

9

Equation of the normal is y = 2a; + cx

but 4= - 2 x 4 + c x

and c x
= 12

Then y = - 2a; + 12, or 2a; + y = 12.

Example 2. To find the equations of the tangent and normal
to the curve y = & sin a?.

When =
1, y = e sin 1 = 0-8415e

dy
-f-

- e* sin -f e* cos a;

= e* (sin a: + cos x)

When - I,$ - e(0-8415 + 0-5403) = l-3818e
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Equation of the tangent is y = mx + c, or y = x 1-3818* -f c

but 0-8415* = 1-3818* + c

and c - - 0-5403*

and 2/
- 1-3818*# - 0-5403*

- 3-758#- 1-469

1

Equation of the normal is y

but 0-8415* =

+ d

and

1-3818*

cx
= 2-554

z
2/= ~

+ *i

+ 2-554
1-3818*

02663^ + 2- 554.

81. The Angle between a Line and a Curve at their Point of
Intersection. In this case the required angle is the angle between
the line and the tangent to the curve at the point of intersection.

Fig. 37-

Let ABC (Fig. 37) be the curve and KL the line. C is the point
of intersection, and PC is the tangent to the curve at the point C.

/\
Then the required angle is PCL.
If y =

f(x) be the equation to the curve, and y = mx+ c the

equation of the line, the co-ordinates of the point C are the values

of x and y which satisfy these two equations simultaneously.
Let these values be x = h and y = k.

Then the slope of the tangent =
f-pj

and hence %n

x=h
tan 0!

This gives the inclination of the tangent PC
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The slope of the line = m, and hence m = tan 2 . This gives
the inclination of the line KL.

Then PCL -
fr,
-

0^

Example. Find the angle between the curve xy = 1 and the

straight line y = 2x + 1 at the point of intersection.

Fig. 38.

xy = 1

x (2x + 1)
= 1

2x2 + x - 1 =

(2a>-l)(a>+ 1)
=

or a? = - and x = 1

There are two points of intersection : A, whose co-ordinates

are -, 2 ; B, whose co-ordinates are 1,
- 1. The slope of the

line is 2, and hence the inclination of the line is tan"1 2 = 63 26'.

For the curve
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At the point A. Inclination of the tangent - tan -1
( 4)

= 104 2'

Required angle = 104 2' - 63 26' = 40 36'

At the point B. Inclination of the tangent - tan -1
( 1)

= 135

Required angle = 135 - 63 26' = 71 34'

82. The Change in Direction along a Curve between two Given

Points. This is the angle between the tangents to the curve at

the given points. Let P and Q (Fig. 39) be the two points whose

co-ordinates are xv y 1
and x2 , y 2 respectively.

Fig. 39.

Let a be the inclination of the tangent at P and 2 the inclina-

tion of the tangent at Q.

dy
But tan G x

= ~ when x = x lt thus giving the value of Q x

and tan 0,
dy then x = x 2 ,

thus giving the value of 2

The change in direction = 2 X

83. Curvature. Curvature is the rate at which the direction

changes with the arc. Let PQ (Fig. 40) represent the small arc

of a curve, and let and + 80 be the inclinations of the tangents
to the curve at P and Q respectively. Then the change in direc-

tion is 80, and this occurs over a length of arc 8s.

80
The average curvature of the arc PQ -

^-, and, making 85 in-
oS

finitely small, this becomes the actual curvature at the point P.

Actual curvature at P = -v-
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If 8s be taken as a very small arc, it can be approximately
taken as the small arc of a circle, the radius of which is R and the

angle at the centre is 86, since the radii must be at right angles
to the tangents at P and Q respectively.

**.^,
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When $s is made infinitely small,

-*

and ^=cos0 (2)
as

Taking the first relation and differentiating both sides with

respect to s,

dhj dx , J0_2 =* Sec2

dx2 ds ds

-=4 cos = sec2 -T-
dx2 ds

&y_
d _ dx2

ds
=

sec3

ffiy

dx2

(1 + tan2
0)*

ffiy

dx2

d2/^
2 ^ f{-}

and since
d0 = 2_
ds R

R =

dx2

For a very flat curve -~ is very small compared with 1

and _. = ._ =
_-| approximately

a result which is used in the consideration of the deflection of

beams.

84. The Co-ordinates of the Centre of Curvature. Let P be a

point on a curve, and let R be the radius of curvature at that

point (Fig. 42). The co-ordinates of P are xlf yv Let Oj be
the centre of curvature and x, y its co-ordinates.
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Then x = cc 1
CP

= x x R sin

and y = Vi+ OxC
= y x + R cos

d/u
where is the angle whose tangent is

-j-
when x = a^.

Fig. 42.

Example. Find the radius of curvature of the cycloid

x = a(a sin a), y = a(l cos a)

dx
.., N

a(l cos a)Then

and

Then

To find

dcf.

dz

da.

doc
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*y = 1
dx2

a(l cos a)
:

Then

*- {-T-{-(T^i.}*
J

2 .8
sin-oc

(1 cos a)
1

/l 2 cos a + cos2 a + sin2 a\s=

I (1
- cos a)

2 J

_ /2(l-cos a) jf=

1(1
- cos a)

2/

2\/2

Then

(1 cos a)
2

dz2

2a/2 a(l
- cos a)

2

(1 cos a)^

= -
2a\/2(l

- cos a)

When a = 180, that is, at the highest point of the curve,

R = 4a, or twice the diameter of the rolling circle.

Example. Find the radius of curvature and the co-ordinates

of the centre of curvature of the curve y
2 = 8x at the points where

x = 0, x - 2, and x = 8.

y = 2V2 x^

ax > x

^= - *!,-*- -JJ"
dr2 2 >ar>

R =
<Py

dx2

- V2
a?*(-l

+
?)'

- a/2 (# + 2)*
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4
When x = 0, R1 --V2x 2 3 - - 4
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dyThus - is evidently a minimum at the point C, and if -~dy
dx

d*y

dx

is a minimum, then -~ - 0.

Case II. When the angle a is obtuse. Let tan a = m.

Moving along the curve from A to C, the angle is obtuse, and
increases to a.

Then ~ is negative and increases to m.

Moving along the curve from C to B, the angle 6 is obtuse, and
decreases from a.

CASE.I.
X o-

Fig. 43.

CASE 2.

dyThen is negative and decreases from m.

Thus ~ is evidently a maximum at the point C, and if ~
d?v

is a maximum, then -~ = 0.

In general a point of inflexion may be defined as a point on a

curve at which the slope is greatest or least, while its position is

dHi
given by the relation -r^

= 0.

Example. Find the points of inflexion of the curve

y = x* + 2x* - 36a;2 + 48# - 52

4- - 4T3 + 60? - 72a? + 48
dx

dx*
- 12#2 + 12# - 72
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A point of inflexion occurs when -=-^ =
CLX

That is, when 12#2 + 12a; - 72 =

or x2 + x - 6 =

(x+3)(x-2) -

at points where x = 3 and x = 2

Examples IX

(1) Find the values of the slope of the curve y = x5 8x + 5

at the points where x = 1-5 and # = 2-0. Find the equations
of the tangents to the curve at these points. What is the angle
between these tangents ?

(2) Find the value of the slope of the curve y = Sx2 4# -f 3

at the point where x = 2. Find the equations of the tangent and
normal to the curve at that point.

(3) The curve y - x2 1 is cut by the line y = x + 5. Find the

co-ordinates of the points of intersection. Find the angles be-

tween the line and the curve at these points.

(4) Find the equations of the tangent and normal to the curve

y = 4>x
3 at the point where x - 2.

(5) Find the equations of the tangent and normal to the curve

y
3 = 8x2 at the point where x =2.

(6) Find the co-ordinates of the point of intersection of the

curves x2
-f y

2 = 5 and x2
y
2 = 2, and find the angle between the

curves at that point.

(7) The two curves xy = 1 and x2
y
2 = 4 intersect at a point P.

Find the co-ordinates of P and the angle between the two curves

at that point.

(8) The curve xy = 4 is cut by the line lOy = 7x + 4. Find the

co-ordinates of the points of intersection and the angles between
the line and the curve at these points.

(9) The curve y - axn passes through the points (3, 10) and

(6, 17). Find a and n. Find the value of the slope of the curve

at a point P where x = 2. A second point Q is taken on the

curve, and this point can be on either side of P. Find the

co-ordinates of the two positions of Q, so that the angle turned

through in moving along the curve from P to Q is 7.

(10) The two curves y
2 - 8x and x2 = Sy intersect at a point P,

other than the origin. Find the co-ordinates of P and the angle
between the curves at that point.

(11) The curve y = ae** passes through the points (1, 3-5) and

(10, 12-6). Find a and b. Find the value of the slope of the

curve at the point where x = 5. Find the equations of the tangent
and normal to the curve at that point.
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(12) Find the values of the radius of curvature of the curve

y = 3-2 + 1-7&C1
'

75 at the points where x - 1, x = 2, and x = 3.

(13) The curve y = a+ for
1

"

5
passes through the points (1, 1-82)

and (4, 5-32). Find a and b. Find the value of the radius of

curvature at the point where x = 2 ; find also the co-ordinates of

the centre of curvature for that point.

(14) The curve y = a+ be* passes through the points (0, 28-62),

(1, 35-70), and (2, 49-81). Find a, b, and c. Find the value of

the radius of curvature at the point where x = 1.

(15) The curve y = 10#* is cut by the line y = 2x 10. Find
the co-ordinates of that point of intersection for which y is posi-
tive. Find the angle between the curve and the line at that

point. (B. of E., 1913.)

(16) Find the values of the radius of curvature of the ellips'

+ 2-r = 1 at the points where x = and x = 4.
) lu

(17) Find the value of the radius of curvature of the curve

xy = 4 at the point where x = 2. Find also the co-ordinates of

the corresponding centre of curvature.

(18) Find the co-ordinates of the point of inflexion on the
curve 4y = 6x2 x3

.

(19) Find the co-ordinates of the point of inflexion on the

curve y = e~x .



CHAPTER X

86. Integration. Integration is the converse of differentiation.

If we differentiate a certain function with respect to x, the effect

of integrating the result with respect to x will be to produce the

original function. For example, if y = axn , then ~ - nax"-1
,ax

%nd integrating naxn ~x with respect to x will produce axn .

The process of integration is denoted by the symbol , and

4
if a? is the variable, the expression to be integrated is terminated

by dx. This at once distinguishes the variable from the con-

stants in the expression to be integrated.

Thus \y dx means that y must be integrated with respect to x,

and this can be done provided we know the relation which gives

y in terms of x. Also \x dy means that x must be integrated

with respect to y, and to do this we must know the relation which

gives x in terms of y.

To integrate axn
,
or to find \axn dx.

dn
If y = axm, then -j-

- maxm~1

Since integration is the converse of differentiation,

m|a#
m-1 dx = axm

J
M1 , axm

ax"1-1 dx = m
Replacing m 1 by n,

Then axn dx =
J n+1

f xn+1
When the constant a = 1, then \x

n dx = - This result
J n+1

holds for all values of the power n, except the case when n = 1.

Cdx
To integrate x _1 or to find I

143
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If y = log, x then ~ -
* toe dx x

and conversely I
= loge x

This result can be used in a more general sense, for if we con-

......
! ((2ax+ b) dx .

sider the integral ^ r^ as an example on the use of it,
J cue -\- OX -p c

by putting y = ax2 + bx + c

then -j
= 2ax+b

dx

and di/ can replace (2ax +b) dx'm the integral.

The integral then becomes =
loge y

j y
=

loge (ax
2 +bx+ c)

It should be noticed that the fraction 5 ; belongs to a
ax2 + bx+ c

particular type in which the numerator is the differential co-

efficient of the denominator, and the above method of treatment

will do for all fractions belonging to this class. In general, if

we integrate a fraction whose numerator is the differential co-

efficient of the denominator, the result will be the Napierian

logarithm of the denominator.

We can now use as standard integrals

"*"S+T W
Cdx ,

.J
-log.* (2)

, fdiff. coeff. of denominator . . ,and
J denominator

=
log. (denominator) . . . (3)

and employ them to integrate expressions which resemble them,
or expressions which can ultimately be reduced down to resemble
them.

87. The fraction whose numerator is the differential coefficient

of the denominator or of some part of the denominator, can be

readily integrated. The following examples will illustrate this

Jcote
do =f^

=
log, sin
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... r cos G dO . n
(o) 1 . , A . Let x = sin Uv '

J sin4

and -^ = cos 6

or do; = cos 9 d0

The integral becomes -^
= la;

4 dx

x -3

3~

1

3 sin3 8

V ;

J Vftu2 - 7a; + 12

and -^ = 10a; - 7

or dt/
-

(10a; 7) da?

The integral becomes I

y=
=

l?/~
5

d?/

1

= 2\/5o;
2 -7a;+ 12

fcpr>2

/v> /Art

-t35nr
Let

?/
= tan *

and -r-
= sec2 a;

da;

or dy - sec2
a; da;

The integral becomes 1-^
- \y~

2
dy

= -2/-
1

tan x

88. Tfo Integration of Algebraic Fractions whose Denominators

split up into Linear Factors. In this case the fraction can be

split up into its partial fractions, and then each partial fraction

can be integrated separately.
K
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Case I. When the denominator is the product of unlike linear

factors.

. ~ . 5x + 4
\U) iu mie
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Also -p
= 2 and dx = -dydx 2

Then

2L4J2/
"
1

"2j 2/
2 + 4j 2f>J

irs- 7 2/-
1 5 y-

2 1=
2L4

l0^ + 2^1 + i32j
5
log,(2a-8)-8 oev '

4(2#
-

3) 16(2
-

3)
2

Knowing the standard form I xn dx =
, we are in a posi-

tion to evaluate \y~
2
dy and I*/

-3
d?/.

Case III. When the denominator of the fraction contains

unlike linear factors, some of which are raised to powers.

x2 + 4
To integrate

(x
2 -4!)(x + 2)

x2 + 4 #2 + 4 A B CNow = =
1 1

(x
2 -

4>){x 4- 2) (x+ 2)
2
(x
-

2) x + 2 (0 + 2)
2 x - 2

and A(a? + 2)(a?
-

2) + B(.z
-

2) + C(x + 2)
2 - a;

2 + 4

When * - - 2 -4B =8 B = - 2

When x=2 16C -= 8 G:- 1

When = -4A-2B+4C =4 A = 1
2

r (,r
2 + 4) <fo it dx r <to ir

6n
J(tf

2
-4)(a:+2) 2J0+2 J(a;+2)

2
+

2jtf

dta

lloge(0+2) +^ + iloge(a;-2)

1

loge(^
2
-4) +

2 oev ' '

* + 2

The first and third integrals are such that the numerator is the

differential coefficient of the denominator, while the second, on
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putting y - x + 2, becomes -^, since
-j-

= 1 and -|
- I z/

-2
dy

- 1 y x+2
Case IV. When the numerator is of higher degree than the

denominator.

Tointegrate
(*-iT(*+i)

x5
i 2 + x - 2x2

By division
777 77

= x2 x+ 2 +
(a*-l)(x+l) (x

2
-l)(x+l)

2 + a? - 2a:2 A B C
but r-T,

- +
(x

2 - l)(x+ 1) a?+ 1 (# + l)
2 #- 1

and A(a> + l)(a;
-

1) + B{x - 1) + C(x + l)
2 - 2 + a; - 2a:

2

when cT-1 4C = 1 C = 1
4

when x= -1 -2B - - 1 B -
|

when a? = -A-B+C =2 A = - ?
1

x5 dx

~X)
Hence I _

_
}*-}* + 2X-

|log.(*
+ 1) -2^1)

+
J log. ( 1)

-|(8-8.+ 12)
-
--L-y-ifl log, (*+ l)- log, (*- 1)}

89. We next have to consider the integration of algebraic
fractions the denominators of which are of the second degree but
cannot be resolved into linear factors. In this case the method
of integration depends upon the nature of the denominator.

For ax2 + bx+ c = a Ix2 + - x + -
)

\ a a)

~<(-s"2)+e-s

according as 4gc is greater or less than b2
.
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Hence ax2 + bx + c = a(X.
2 + A2

)
or a(X

2 -A2
)

, v ,

b ,a a 2
4>ac-b2 b2 -4>ac

where X = x + - and A* - - or
2a 4a2 4a2

Thus a quadratic expression which will not factor may be

expressed as the difference or the sum of two squares.

Case I. When the denominator of the fraction reduces to the

forma(X
2 - A2

).

(a) To integrate :w b
a?
2 + 10a? + 13

Then a?
2 + 10a; -f- 13 = a;

2 + 10a? +25-12
=

(x + 5)
2 - 12

= X2 - A2

where X = x + 5, A2 = 12, and also dX. = dx.

Then f

** - f

^X
6

Ja?
2 +10a?+13 JX2 -A2

__J .

,

P
X2 - A2 X + A "*" X - ABut

and a(X - A) + p(X + A) = 1

when X = A 2A(i =1 p = -L

when X = - A 2Aa =1 a = r2A

T , f dX l rr (DC f dX
^Thus

Jx^ZTa^
^
2a(Jx^a

-
JsTTa)

=
^{log (X-A)-loge(X+A)}

1 . X-A
2A be X

and
I o

~
-7^ = T-7^ log

r da? 1_ . a; + 5 - 2\/3

Ja?
2 + 10a? + 13

"
4\/3

ge
x + 5 + 2\/3

(b) To integrate
a?
2 + 12a; + 15

5x - 4 5 2a? + 12 34
en

a?
2 + 12a? +15 2 a?

2 + 12a? +15 a2 + 12a? + 15

The first fraction is one obtained by making the numerator
5

the differential coefficient of the denominator ;
the multiplier

-
a

is so chosen that full account is taken of the part 5x in the

numerator of the original fraction. This has the effect of re-

placing the fraction to be integrated by two fractions, the first
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of which can be integrated at once, while the second can be inte-

grated by the method of the previous example.

Jdx
C dx

x2 + Wx + 15
~
)(x + 6)

2 - 21

dx
where X = x + 6 and A2 = 21

JX2 -A2

1 . X-A
2A l0g XTA

1 . x + 6 - V21
log.

2A/21 x + 6 + V21

[
(5x -4)dx _

5 U2x+12)dx _
f dx

eU
)x2 + 12x+ l5 2j^

2 4-12a;+15 J*
2 +12#+15

-
log, (*+ 12,+ 15) lLlog.ii^2 V21 a?+6+V21

/XT-* *
to* -15

(c) To integrate ^ +2&c _ 7

In this example the numerator is of higher degree than the

denominator, and the first step then is to divide the numerator

by the denominator.

_, 8^-15 40&r-113
Then -5 - 2x 14 +

4a;
2 + 28a; - 7 4a;2 + 28a; - 7

1 r406cr-
113^

Also

1/ 203(23? +7) 1534
-|

4

\x
2 +7x-l x*+7x-lf

r dx r dx

y
2 + 7*-l^\(* +

l)

2

- 14>

fx2<^A2
whereX = *+ andA2 = 14

1 . X-A
2A b* X + A

2
x + - + Vl4

=
2V!i l0ge 7

loge

a;+-- V14

2x + 7 - 2Vl4

2Vl4 5e
2a? + 7 + 2Vl4
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_, f (&r
3 -

15) dx
Then

j4a+2te-7
dx

y
~7

7x T
4

r f 203 r^+7)^ f_
=
2)^-14)^+ J^

2+7a; _7-
j^

2 +

- x2 - 14# + -7- loge ( #2 + 7# - -
) 7= loge 7==4 be

\ 4/ 4Vl4 2# + 7+2\/l4

(d) Care should be taken when the term involving x2 in the de-

nominator is negative, for then the denominator reduces to the

forma(A
2 -X2

).

To integrate 8 - 12I - *2

Now 8 - 12o? - x2 = 44 - (x
2 + 12a: + 36)

= 44 - (x + 6)
2

I-
- =

Y8 - 12a? - x2
J44 - (a; + 6)

2

f dX

Now

|A2 -X2
where A2 = 44 and X = x + 6

A2 -X2 A+X'A-X
and a(A-a?)+ P(A + X) = 1

when X=A 2A = 1 p -^

when X = - A 2Aa =1 a -^
f dX 1 ff dX fdX \Then jjmp

=
2A\JATX +

JA^XJ
1 ff dx _ r^x\

"2AUA+X JA-XJ
= l{logc(A+X)-loge(A-X)}

1 . A + X=
2A l0g

^A^X___
2Vll + #+ 6

loge^77TT4Vll 8e 2Vll-a?-6

frywe notice that the numerator is not

the differential coefficient of the denominator, but making the

integral negative and the numerator negative such is the case.
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90. Case II. When the denominator can be expressed as the

sum of two squares that is, it reduces to the form a(X
2 + A2

)

(a) To integrate 9 ,

_ . ^7-v '
a?
2 + 14a? + 60

Then a?
2 + 14a? + 60 = x2 + 14a? +49+11

-
(X + 7)

2 + 11

Th f
^ = f

<fa

Ja?
2 +14tf?+60 J(a?+7)

2 + 11

^ r-5 where X = a? + 7 and A2 = 11X2 + A2

put X2 = A2 tan2 or X = A tan

Then X2 + A2 = A2
(tan

2 + 1)
= A2 sec2

also ^ = A sec2 or rfX = A sec2 d0
00

Hence
JX2 +A2

J

A 'sec2 dO

A2 sec2

d0
if

1
'

.a?+ 7= -7= tan-1 =
Vn V11

(ft) When the numerator of the fraction is of the first degree in x,

the fraction should be expressed as the sum or difference of two
fractions, the first being formed so that its numerator is the

differential coefficient of the denominator.

To integrate

Now

x2 + 12a? + 52

7x - 3 7 2a? + 12 45

a?
2 + 12a? +52 2 a?

2 + 12a? + 52 a?
2 +12a?+52

Al f <fo = f dx
A3SO

)x
2 + 12a? +52 J (a? + 6)

2 + 16

-f
where X = x +6 and A2 = 16X2 + A2

1
i
X

A tan A
1 a?+ 6

4
tan -T"



INTEGRATION OF ALGEBRAIC FRACTIONS 153

r (7x-S)dx = 7f (2a; + 12)dx _
f

dx_

Jo;
2 + 12a; + 52 2)x

2 + 12a; + 52 Jo;
2 + 12a12a; +52

7 45 <r
-

loge (o;
2 + 12a; + 52)

- 2* tan- 1

2 oev
4 4

(c) When the numerator of the fraction is of the same, or higher,

degree than the denominator, before proceeding to integration the

denominator should be divided into the numerator.

t j-x * 2a;3 -1
T mte^rate

2a;
2 - 6o; + 11

2a;
2 - 6a; + 11 2a;

2 - 6a; + 11

= x+3 +
If 7x- 34

1
f

47

ja;
2 - 3a; +

a;+3 +

2 J

-3
2 2 11 11

a;
2-3a; + - - x2 - 3a? +

- 2

I

dx C dx

f (K , 3 ... 13=
Jx^TX*

where X = " "
2
and A =T

"
A tan

A

Lt^" 1

Vl3 Vl3
2

2 . 2a; - 3 ,

?=. tan
-1 ;=- and

Vl3 Vl3

, , .v 7 ^ /. ~ P (2a;-3)da; ._, f dx

1 o 7. / 2 11\ 47 . ,20^-3- a?
2 + 3a; + -

logc a;
2 -3a;+ tan"1

2 4 5\ 2/ 2Vl3 Vl3

91. When the fraction is of such a form that the denominator

is the product of linear and quadratic factors, the method of
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integration must be a combination of the methods used in Case I.

and Case II.

x4
To integrate ^~S

x* Sx
By division



EXAMPLES X 155

Examples X
Solve the following integrals :

(3x + 2) dx f (3x + 2) dx

(9)

(13)

(27)

(29)

(31)

(33)

(35)

f (to +2) dx r

w
Jar

2 + to + 7 w IVstf+ix

(7)
Jtanh**

(8) fH^

a;
2 sin-1 a;vr

(^
_x

)
da?

a? dx
2

sec2 a? dx

Vtan a?

fsin^da?
r
*da^

v '

JVcosa? JVtf2 -7

[Jj^Y (14)
J
(4a?

"
3)^2a?2 ~ 3x + ldx

1

(5oj 3) do?
/t o\ f ^

l(3a?-2)(4a?-3)

r (2x + 3) da? f (5a;
-

2) dx

J(a?-4)(5a?+2)
K ]

J (3
-

4a;) (a; + 2)

a?
2 da: /oo, f (x

2 + 3) da;

(17)

(19)

fa1 da? (*

(X- l)(a;+2)(a-3)
^

J "(to + 1) (x
-

2) (3
-

2a;)

(^}

J (*-l)
(jSi>

J (^+3)3

f(^-to+4)(to fflte-7+8)<fe
(25)

J (2* +3)*
(Jb)

J (to -4)3

f (x+2)dx f__f!i_
J(

2 -
!)(* + 1)

K '

}(x*
-

4)(x
-

2)

(x -f- 4) dx

J(a?
2
-1)

2 (30)
J(a?

2
-4)(a?-2)

2

)&+l
(32) Ja^Ts

J a?
2 +l (34)

J *2 +5
da? , v f a? da?

f <fe
( ^

r i

Ja?
2 +8a?+41 v '

Ja?
2 + 6a? +25
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(37) ]*+lte+ 112 (38) )^+to+16

ffe^ fA
<*>

j54$ .

<> Jft^t5
,45} [

(-*)<*
(461 f

***

<) jA frS

(57) Jinrr (58) J^-to+n

<59> ho-*,-** (60) J^T^TT



CHAPTER XI

92. The standard forms for I sin (ax + b) dx and I cos (ax + b) dx.

If y = cos (ax + b), then
-j-

= a sin (ax + b)

Hence I a sin (ax + b) dx = cos (ax + ft)

j f / , iA j cos (#'+ &)and Isin (a#+ 6) &r = i
. . . . (1)

Also if y = sin (ax + b), then
-j-

= a cos (a# + b)

Hence I a cos (ax + b) dx = sin (a# + b)

a f / , iA j sin (a# + 6)and cos (a<r + 6) d# = -
(2)

93. The Hyperbolic Functions.

If y = cosh (a# + 6), then -r- = a sinh (a# -f )

Hence la sinh (ax + b) dx = cosh (a# + b)

j f . , , , . , cosh (ax +b)and Isinh (ax+ b) dx = - -
(3)

Also if y = sinh (o# + b), then -r-= a cosh (a# + 6)

Hence I a cosh (ax + b) dx = sinh (a# + b)

, f , , 7 . , sinh (ax +b)and Icosh (ax + b) dx = s -
(4)

94. These results may be applied to the integration of algebraic
fractions, the denominators of which consist of the square root

of a quadratic expression.
It has been shown in the previous chapter that an expression

of the form ax2 + bx + c reduces down to one of the three forms

a(A
2 - X2

), a(X
2 + A2

),
or a(X

2 - A2
),
where X is a linear function

of x and the consideration of these integrals depends upon the

particular form the denominator takes.
157
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Case I. (a) When the denominator reduces to the form

VA2 X2
. This is obviously the case when the term involving

x2 in the quadratic expression is negative.

(a) To integrate ,

K } 6
a/8 - 12* - x2

Then 8 - 12<r - x2 = 44 - (x
2 + 12# + 36)

- 44 - (x + 6)
2

Hence I .
=

I ,

J VS - 12# - x2 JV44 -
(x + 6)

2

f dX
JVa2-x2

put X2 = A2 sin2

where X = x + 6 and A2 = 44

Then ^/A2 - X2 = AVl - sin2 = A cos

and X = A sin 0, -jTT-
= A cos 0, and dX = A cos d0

at)

_. . f_^L_ fAcos0d0Therefore I , .
= =

I r s~
J VA2 - X2

J A cos

=J
de

=

= sin -1 -T-

A
.... f dx . x + 6

and finally, I ,
= sin -1 m

JV8- V2x- x2 2Vll

(b) When the fraction has for a numerator a linear function of

x, before proceeding to integration the fraction must be split

up into two fractions, the first of which must have for its numerator
the differential coefficient of the quadratic expression under the

square root.

(6) To integrate .

V ' 5
Vl5 - 7x - x2

Sx-9 -2x -7 37
Then ,

- 4
V15 - 7x - x2 Vl5 - 7x - x2 V15 - 7x

Nowf
(

7
2*- 7) ^

=f4Lwhere y= 15-7*+*2

J Vl5 - 7x - x2 Wy
= %Vy
= 2\/l5 - 7x - x2
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r dx f do;

- f
^

where X=tf + andA2 = i^
Ja/a2 -x2 2 4

X= sin -1 -j-A
7

= sin-1 -,.==
Vl09
2

.
,

2o? + 7= sin-1 ,

V109

Then f (^~ 9)^ ,
f (-2E-7)cfe 0? f <fe

Vl5 - 7a; - x2 J Vl5 -7a? -a?2 J Vl5 - 7a; - x2

2a; + 7
= - 8Vl5 - 7a; - a;

2 - 37 sin"1 f=

(c) When the square root of the quadratic expression appears
in the numerator, the same substitution can be used for X, but a
different integral is the result.

(c) To integrate V32 + 18a; - x2
.

-
J
V32 + 18a; - x2 dx =

J
Vll3- (x

-
9)

2 da;

-
J
VA2 - X2 dX where X = a; - 9

and A2 =113

put X2 =A2 sin2

Then VA2 - X2 - AVl - sin2 = A cos

also X = A sin 0, -p^
= A cos 0, and dX. - A cos d0

JVA
2Then VA2 - X2 dX = A2

[cos
2 d0
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Finally,

f
. 113 r . ,x~9 (a;-9)\/32 + 18a;-a;2

)

JV32
+T&^ *-_ (,-_ + S L_

}

(d) When the numerator of the fraction is of the second degree ;

before proceeding to integration the fraction must be split up
into three fractions, the first of which can be obtained by division.

^ 2a;2 - 8x + 9
(d) To integrate7 v 17 14a; x2

_ 2a;
2 - 8a; + 9

Then
Vl7 14a; a;

2

- 2(17
- 1 4>x -x2

) 36a; - 43

Vl7 - 14a; - x2 Vl7 - 14a; - x2

. f-18(-2x- 14) 295
^

18( -2a;- 14) 295
- -2V17- 14a;-a;2 4- , + ,

V 17 -14a; -a;2 V 17 -14a; a;
2

and each of these expressions can be integrated

[a/17
- 14a; - x2

dx=\ V66 -
(x + 7)

2 da;

- f\/A2 -X2 da; whereX -* +7 and A2 -66

= A2

[cos
2

<20 where X2 = A2 sin2

=
^![(1

+ cos 20) <J0

=
^{0 +

lsin20}

A2
/ . . X XVA2 - X2

\

T\Sm
"1

A + A2 )

a; + 7 i
- 33 sin-i

-^= + -
(x + 7)V17 - 14a; - x2

n-2x-U)dx = Cdy where 17_ 14p_^
J Vl7- 14a; -a;2

JVt/

-2V5
2\/l7 - 14a; - x2
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r dx r <^

J Vl7 - 14a? - x2
J V66 -

( +7)
2

f dX-
. = whereX=a?+7 and A2 =66

i
X= sin-1

A
. ,0+7= sin -1 =

V66

r f 2a;2 -8ai+9 . f ,

y
J Vl7-14^-^

^ = - 2
]Vl7-lte-a*dx

+ 18rc-^-i4)^ + 295 r

JV17- 14a:- a;
2 Ja/17- 14a: - a:

2

= - 66 sin"1

^gg
-

(# + 7)\/l7-14a:-a;
2 + 36\/l7 - 14a? - x2

+ 295 sin-i J
V66

(29
- a?)Vl7- 14a: - x2 + 229 sin"1 +_7

V66
It is evident that integrals of this type depend upon two

standard forms.

(1) JvF^x^
- sml X

(2) JvA^2^{s^
95. Ca^^ II. (a) When the denominator of the fraction reduces

to the form VX2
-f- A2

,
for this type we have to use hyperbolic

functions.

(a) To integrate
Vx2 + 12a: + 48

Now x2 + 12a; +48 = x2 + 12a: +36+12
=

(a: + 6)
2 + 12

JVa;2 + 12a; + 48 JVto

. r g
"JVx^T A2

put X2 = A sinh2

f 6)
2 + 12

where X = a? + 6 and A2 = 12
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then VA2 + X2 - AV'l + sinh2 - A cosh 6

and X = A sinh 0,^ = A cosh 0, or dX = A cosh d0

A cosh dQC dX
(*

A cosh c

JVX2 +A2
J A cosh

i
d0

=

= sinh-1 -r-
A

Finally, I ,
= sinh"1

J )Vx2 + 12# + 48 2V2\/3

We also know that sinh - -r-A

A
2X X X2 X2 + A** A^ + A2

~ 1+ A2
~

A2

- X VX2 + A2

e$ 'A =
A

. X+VX2 +A2

C* = :

and 6 =
log,{

X+
^f

+A2
}

Ullc f <fe
- /(*+6)+ a/*2 +12*+48\ThUS

Jv*2 +12*+48
- l0&\ iV3 /

f <*x
The integral

J
-7====== where X is a linear function of x, will

give (1) an angle expressed in terms of its hyperbolic sine, or (2) a

logarithmic function, and the results can be used as standard
forms.

dX X
I:
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(b) When the fraction has for a numerator a linear function
of x, before proceeding to integration, the fraction must be split

up into two fractions, the first of which must have for its

numerator the differential coefficient of the quadratic expression
under the square root.

(b) To integrate

Then

Vx2 - 18a; + 106

4a; - 5 2(2a;
-

18) 31

Vx2 - 18a; + 106 y^2 ~ lSx + 106 Vx2 - 18a; + 106

Wy
= 2Vy

'

(2a; -18) da; f dy
,\ ,

=
~7= where y = x2 - 18a; + 106

Vx2 - 18a; -f 106 Wy *

Also f
** , f

J Vx2 - 18a; + 106 J V(x

2Vx2 - 18a; + 106

dx

V(x - 9)
2 + 25

dX
where X = x 9 and A2 - 25

JVX2 + A2

. . .x . rx + Vx2 + aM
sinh-1

-^
or

log,|
-r /

. . f x - 9 . f(a?
-

9) + Va;2 - 18a; + 1061
sinh-1 or

log,^
* -

J

Then

f

(4a?
-

5) dx _ f (2a;- 18) dx C dx

Vx2 - 18a; + 106
~

J Vx2 - 18a; + 106 J Vx2 - 18a; +

- Wx2 - 18a; + 106 + 31 sinh"1

106

; f(x
-

9) + Vx2 - 18a; + 106\
or 4Va;2 - 18a; + 106 + 31 loge\-

'

^ j

(c) When the square root of the quadratic expression appears
in the numerator, the same substitution can be used for X, but

a different integral is the result.

(c) To integrate Vx2 + 24a; + 244

JVa;
2 + 24a; + 244 dx = W{x+ 12)

2 + 100 da;

=
[
VX2 + A2 dX where X = x + 12

and A2 = 100

put X2 = A2 sinh2
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Then \/X2 + A2 - AVl + sinh2 - A cosh

also X = A sinh 0, -^ = A cosh 0, or dX = A cosh d0

Then |Vx
2 + A2 dX

= A2 fcosh2 0d0

= __f(l + cosh 20) d0, since cosh 20 = 2 cosh2 0-1

-ffe + lsinh*)}

_
^|e + sinh cosh

e}

AH . .
,
X

,

XVX' + A'\=
T\Sinh A +

A* J W

ah, /x + yW+A?\ , xyx^+A^
or t11o<h a ;

+
a^ / (2)

}
\/x2 + 24# + 244 dx

^ f u i
x + 12

, (x + 12)V#2 + 24a> + 244^ .

50
{
sinh

"1

^o- +
loo )

' * (1)

Ji fa + 12 + V^ + 24# + 244\
or

50{loge {
-

)

{x + 12)Vx2 + 24a; + 244\+
Too J (2)

The integral I VX2 + A2
dX, where X is a linear function of x,

can be solved by means of two standard forms.

(2) jv^TX^^{iogt (

x^^^>^A!}-
(d) When the numerator of the fraction is of the second degree,

the fraction must be split up into three fractions.

x2 + 5x 7
(d) To integrate Vx2 + 4# +12
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Then
a;
2 + 5a? - 7

Va;2 + 4a? + 12

a?
2 + 4a? + 12 x - 19

Va?2 + 4a? + 12 Va;2 + 4a? + 12

1 2a? + 4 21
= Va;2

4- 4a? + 12 +
2 Va?2 + 4a? + 12 Va?2 + 4a? + 12

and each term can be integrated separately.

J
Va?2 + 4a? + 12 dx = W(x+ 2)

2 + 8 dx

=
I VA2 + X2 dX where X = x + 2

and A2 = 8

A2
r . , . X XVX2 + A2

\=
Y\Smh A + A2 f

m 4/sinh- +g + (^+2)V,2 + 4, +
12|

I 2V2 8 J

f (2a?+4)<fr? [dy where y = x* + ^ + 12
JVx2 + 4a? + 12 Wy

= 2\/y

= 2V a?
2 + 4a? + 12

J

dx f___^__
Va?2 + 4a; + 12

~
JV(a? + 2)

2
"

8

where X =a? -{- 2 and A2 = 8_ f ^x

= sinh-1 -7-A

A2

sinh -1 7=
2a/2

Then [(*+
-7)**

J VV + to + 12

f . , If (2x+4)dx ( dx
-

\
Vx' + iX+ 12 *" +

2jV^ +4a;+12
- 21

Jv^ + to + 12

- 4
{sinh-: l+l

+ (+2)vW*>+ }
+ V,2+to+12

_ 2i Sinh-i i+2
2V2
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- - W sinh_1
fj|

+ Vx2 + 4*
+12(1

+ ^?}

= - 17 sinh-1

|i + -
(# + 4)V#2 + 4# + 12

The result can also be expressed as

C(x
2 + 5x - 7) dx

J Vx2 + 4# + 12

_. r*+ 2+ V#2 +4# + 12^ 1. . / -,= -17
10&I ^= J

+ -(*+ 4)V;r
2 + 4tf+ 12

96. CW 777. (a) When the denominator of the fraction

reduces to the form VX2 A2
, and in this case hyperbolic

functions must be used.

(a) To integrate
Vx2 + I6x + 36

Now x2 + 16# + 36 = x2 + 16x + 64 - 28

=
(x + 8)

2 - 28

Then f - -
f ,

**

J Vtf2 + 16a; + 36 J V(x + 8)
2 -

t

28

dx

VX2 - A2

put X2 = A2 cosh2

where X =a? +8 and A2 = 28

f f

JVX2 -A2 J

then VX2 - A2 AVcosh2 - 1 = A sinh

and X = A cosh 0, -^r = A sinh 0, or dX = A sinh d0
do

A sinh d

VX2 - A2 ~J A sinh

=

= cosh-1 -7-A

, f dx , . x+ 8
and I

;
= cosh-1 7=

J V*2 + 16# + 36 2a/7

We also know that cosh = tA
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2X X* X2
,

X2- A2

,20 pO _J = I =6 A + A2 A2 A2

X VX2 - A2

^ A" A

_, X+VX2 -A2

* A

and 6 = logcj ^ )

Tu f
^

, fix + 8) + Va?2 + 16a? + 36)
Thus

J v*2 + i6, + 36
= l0H iy? '

, ? where X is a linear function of a?, will
VX2 A2

give (1) an angle expressed in terms of its hyperbolic cosine or

(2) a logarithmic function, and the results can be used as standard

forms.

-cosh-*? . (1)
jVX2 - A2 A

j^-i*|*v*E2| ... (2)fafep^
(6) When the fraction has for a numerator a linear function

of a?, before proceeding to integration the fraction must be split

up into two fractions, the first of which must have for its

numerator the differential coefficient of the quadratic expression
under the square root.

8x- 7

(b) To integrate y^2
- -

_ -

8a? - 7 4 6x + 12 23
Now

VSx2 + 12a? - 10 3 VSx2 + 12a? - 10 V 3a?2 + 12a? - 10

'

(6x + 12)tfa? Cdy
/

a

' ^ - -7= where y =3a?2 + 12a? - 10
V 3o?2 + 12o? - 10 J V 2/

y

= 2Vy
= 2V3o?2 + 12o? - 10
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Also
[

dx

PRACTICAL MATHEMATICS

dx

V3x2 + 12a; - 10
=

Vs I
\Jx'

I
dx

1 r dx v
V3j7S^ whereX = * +2

22
'

and A2 =
o

= cosh-1 V
V3 A

= T= cosh-1

V3

g?+ 2

V?

V3 V22

Or, expressing the result as a logarithmic function,

j.

*
V3x2 + 12a; - 10

=
73

lo

&{

VX2 - A2

X + VX2 - A2

!

log.

r n w
+ 2H-'ya;

2 + 4r

Hence
i

vr"~
1

vi
1 - fV5(aJ+ 2) + V3x2 + 12a; -

V22 )

dx

(Sx
-

7) fa,

V&xfi I- 12a; - 10

4f
(&i?+12)dg op f

3J VSo;2 + IS - 10 "J V3a;2 + 12a? - 10

., A/3(a;+2)

V22

8
, 23 ,-

3V3a;
2 + 12 - 10 -

77-
cosh

or
!W + 12* - 10 - -g. log, {

^ + *) + Vgf + "* - 10
}3 V8 l V22 -1
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(c) When the square root of the quadratic expression appears
in the numerator.

(c) To integrate Vx2 - 10# + 20

J

yV - 10^ + 20 dx = 1 V{x - 5)
2 - 5 cfo

-Jy*
2 -A2 dX where X - -5 andA2 =5

put X2 - A2 cosh2

Then VX2 - A2 - AVcosh2 - 1 = A sinh

also X = A cosh 0, -jrr
= A sinh 0, or dX = A sinh dQ

Then IVx2 - A2 dX = A2 fsinh2 dO

- ^ f(cosh 20 - 1) d0, since cosh 20 = 2 sinh2 0+1

-{I sinh
26-6}

-- {sinh 8 cosh 6- 6}

A2 rXVX2 - A2
, , X

TV cosh-'3 a>

or
A2 rXVX2 - A2

. (X + VX2 - A2
))

Tl A* log A }
' &

Wx2 - 10a;+ 20 da?

= 5|(^-5)V^-10^
+ 20_ cQsh

_1 ^|
2\ 5 V5) W

5f(;z-5)V:r
2 -10#+ 20 . /a?-5 + Va:z -10a?+ 20Yl . .

or ^L-i lo&
( -^ )}

(2)

The integral IVX2 - A2 dX can therefore be solved by means

of two standard forms.

(J) {VX^^^^-cosh-^}
(2) fvxrrx

2 - {*v^_^xv|^)}
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(d) When the numerator of the fraction is of the second degree,
the fraction must be split up into three fractions.

. T, . 2x2 - 7x + 10
(a) To integrate

Then

Vx2 - 6x + 6

2x2 - 7x + 10

Vx2 - 6x + 6

2(#
2 - 6T + 6) 5x- 2

=

V#2 - 6# + 6 Va?2 - 6x + 6

5 2a; - 6 13

- 2\/x2 - 6x + 6
'

2 Va;2 - 6# + 6 V#2 - Ox + 6

and each term can be integrated separately.

J
Vx2 -Qx+Qdx = \V(x - 3)

2 - 3 dx

= l\/X2-A2 </X where X=a?-3 and A2 = 3

A2/XVX2 - A2
. , X\

-T\ 3? cosh--)

3f(x- 3)Vx2 - 6x+6 vi*- 3\"
2\ 8

COsh
"7?)

f (2x
-

6) &r f dy

-2V

f
^

f
JV 2 - 6x + C J V(tf

-I

2Vx2 - 6x + 6

dr

V(l
-

3)
2 -3

dX
VX2 - A2

= cosh-1 -r-

A

= COSh-1
y=r

10) rfa?

where X = # - 3 and A2 = 3

Then [(**-
7* +10

of / , 5f (2a:-6)<z f dx
(*Wx2 -(Sx + 6<to+- , + 13 -==
J 2J Va?2 -6x+6 J Va:2 - 6a; ?
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f{x
- 3)Vx< -6x+6 x - 3\ .

3\" g
cosh_1

7g)
+ 5Vx2 - 6a; + 6

'(a;
-

3) Vx* - Qx + 6 u_, a;
- 3W

+ 13 cosh"1
t=-
V3

x- 3
10 cosh"1

7-- + (a;
- 3 + 5) Va;2 - 6a; + 6

V3

#- 3
10 cosh"1 -= + (a? + 2)Va?

2 - 6a; + 6
V3

The result can also be expressed as

'x - 3 + Va?2 - Qx + 6f(2,
2 -7a; + 10)^ fi

J V? - 6a; + 6
&c

I V3
+ (x+ 2)Vx

2 -6x + 6

Examples XI

Solve the following integrals :

a) yb i
(3a? -2) das

V9~^x2

-7x+ 3) dxf ,A, f(3a;

(3) JVO-a;
2 ^ W

J Vr^
f ^

(6)
f(to-l)fe

* '

JVeaT^a^ J V6a;-a;2

(7)
JV6a;-a;

2 da; (
8

)

J V 6a? - x2

-3) dx
(9) f (10) fJ"L()

JV9+8a;-a;2
' JV9 +

11) jVoTSa^^
2"^ (12)

Ji5f

8a; -a;2

! -
5) da;

V9 + 8a; - a;
2

(13) [

'

**
(14) Ui^tojitoV '

JVlO+ea-Sa;2 l ;

JVlO + 6a; - 3a;2

(15) [Vl0+6x-3x*dx (16)
f (5^

2 +12)^
'

J JVlO+ 6a; -3a

f ,
_ f(3a;

2 + 4a; +
(19) JVa;

2 +25^ (20)
j ^==

JV10+ 6x-3x2

-7) dx

25

2) dx

25
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(21) \vWz
<te

(22)
f (te

-
5) <fe

(23)

(27)

(29)

(31)

(41)

12 + 52 JVz2 - 12.E + 52

f /-s , /o^ IV - 8* + 4) die

^ /oe\ f (3# 7) d#

V2#2 + 6,r + 7

(4r
2 -

3) dx

V2x2 + 6a; + 7

12) <fo

16

(25) f
,

^
(26) f

JV2a?2 +6a;+7 J

J
\/2#2 + Qx+7 dx (28)

J

f
<**

,30) [(5*z21
iVx2 - 16 J Vx2 -

J J Vx2 - 16

(33) UjL- (34) p;-
5^

JV^+lOa; ' JVWIO*

(35) [VxTTWxdx (36)
f^

2

+^-7)^
J J Vx2 + 10a;

(37) f-__ (38) [-fl*
T>*

JV^-4a;-21 V ;

)Vx2 - 4>x - 21

U/tf2 - 4z - 21 <fo (40)
'

J J V a?
2 4# 21

f
**

/42) f (lte-8)fe
J V&r2 + 10,r - 16 J\/5a;

2 + l(te- 16

(43) [V<fe+ia-l d (44) f /

(m2+7)<fa
J J"\/5.r

2 + l(te- 16



CHAPTER XII

97. The work of this chapter is devoted to some of the different

methods involved in the integration of well-known trigono-
metrical functions.

/ \ f* j fsln x &
(a) I tan x dx =

\w
J J cos x

dx

v

sin x dx

(b) Icot x dx = I

J COS X

= loge COS X

-=
loge sec x

cos x dx

sin x

logg sin x

(c) Icosec x dx =
\-.w

J J sin a;

j

4

dx

X X
sin - cos -

sec2 - dx

tan-

x
on dividing numerator and denominator by cos2 -.

x x
Put y = tan -. Then dy = - sec2 - dx

and Icosec x dx = I

J )y
- iog y

-
log* tan

|
JL73
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(d)
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dx

{sec
x dx = I

J cos x

i

i

dx

2
x . 9 xcos2 - sin2 -
2 2

sec2 - da;
28

X

on dividing numerator and denominator by cos2 -.

Put y = tan -. Then dy = - sec2 - d#.
- -

Then

but

v/hen

when

Isec x dx =
2|-

:
%

A B
+

1-2/
2 l + yl-y

A(l
-

t/) + B(l + y)
= 2

t/=l 2B = 2 B = 1

y= -1 2A =2 A=l
dyHence Isec x dx = r + It

/y

=
log.(l + 2/)

-
log,(l

-
y)

=
log.

loge

i + y

i-y

1+ tan
x

lo&-

1 - tan -
2

tan - + tan -
4 2

1 tan - tan -
4 2

since tan = 1
4

-lo&tang
+ D

98. To integrate tann x, where w is an even or odd integer.
dz

By putting z = tan x, j-
= sec2 a? - 1 +

| tan
n x dx becomes | s

J J 1 + z2



THE INTEGRATION OF tann x 175

By division

[tan
tt x dx = \zn

~2 dz - \zn~* dz + . . .

|^=p |-

da

when n is even and

ftann x dx = \z
n~2 dz - Is*-4 dz . . . ^ \z dz

ly
1^

when n is odd.

(a) When n is an even integer.

To integrate tan6 x

f C z6 dz
Itan6 x dx= I- ~ where 2 = tan x
J Jl + 22

=
[z

4 dz - [z* dz + [dz - f~

= - z5 -J^ + s tan-1 z
5 o

= - tan5 x - tan3 x + tan x x
5 3

(b) When n is an odd integer.

To integrate tan 7
a;

Itan 7 x dx - 1

*

2
where 2 = tan a;

= ^6

-3 s4+ ^2 - l0^ (
" +1)

= - tan6 x - tan4
a; + - tan2 x loge sec a?

6 4 2

1
99. (a) To integrate r-s -7-7 o"~:v ' b a sin2 x cos2 a

f da? f sec2
a? da?

^'
)a sin2 a; + 6 cos2 x~ )a tan2

a; + b

rlti

- where t/
= tan xf fr

Vab 'a

U tan-1
f*/l tan a}
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dx f sec2 x dx
(2)

r dx cj
]a sin2 x b cos2 x )a tan2 x b

dy= 7^t where y = tan x
)ay

2 -b

2Vab

2Vab yVa + Vb

1 . Va tan x Vb
2Vab Va tan a; + Vb

(3)
f

^
f

^
v '

J (a sin a; + 6 cos x)
2 )a2 sin2

a; + 2ab sin # cos x + b2 cos2 #

sec2 a? dx

2ab tan a; -f b2
= f !

J a
2 tan2 x +

I 2 2 o i rrr where t/
- tan x

ja2
y
2 + 2aby + b2 a

f %
J(at/+ft)

2

]f(fe .= ~~
T5 wnere 2 = ay + o

a j z

Is-
a

1 1

a ay + b

1

a(a tan r + 6)

, f <fe i r <& &
100. I : -r I-, - where tan a = -

Ja sin x +b cos x Va2 + 62Jsin (# + a) a

log, tan - (x+u)
VatTb2 e 2



THE INTEGRATION OF , i-, 177a sin x + b cos x

This integral can be taken another way, only the method entails

more work.

dx
f dx

f-i . ___ = i x x
)a sin x-\- b cos x If2a sin - cos - + b ( cos2 - sin2

-J

sec2 - dx
36

2atan- + fc-6tan2

2 2

2/
2

I

_
= 2

l6+2fy-6^
where y =tan |

2 f ^L
b

j
1+T ,J

of %

2 f
*

=
r|a

2 +fe2 / \2

2f dX v a . A2 a2 +=
SjA

2̂ X^ whereX =
2/ -6 andA = ~F

"
& V^T^^Ja + x +

Ja - xJ

{log,(A+X)-loge (A-X)}

2 + fc
2

Vfl2 + b2

1 . A+X
loge'Va2 +b2
b*A--X

1 , Va2 + b2 + &w - a
log.

Va2 + &2 V 2 + b2 -by+a

A/V + b2 - a + b tan -

loge

2

M
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101. The integration of sinn when n is an integer

(1) When n is odd,

[sin

7 d0 =
[sin

6 6 sin d0

Put x = cos 0, then dx - sin d0

also sin2 0=1- cos2 - 1 - x2

Then
[sin

7 d0 = -
[(1
- x2

)* dx

- -
[(1

- 3x2 + 3x* - Xs
)
dx

= -pc
1 -X5 + X3 X

1 3= - cos 7 - cos5 + cos3 COS
7 5

(2) When n is even, this method fails, for by putting sinn

= sinn_1 sin and making the substitution x = cos

sin**"1 sin d0
[sin*

d0 =
[s

= -
[(1

- x2fT dx

and (1 x2
) is raised to a fractional power, since (n 1) is odd.

This will not give a definite expansion, but a series of an infinite

number of terms. It is necessary to work in an entirely different

manner and deal with the multiple angles of 0.

To integrate sin6 0.

Now if x = cos + i sin

- = cos i sin
x

and 2 cos = x + -, 2f sin = x
X X

Also xn = cos n0 + i sin n0

= cos w0 i sin w0
x*

and 2 cos w0 = xn + ~, 2i sin nO =#w
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1\ 6

Then (2* sin 6)
8 =Ya; -

-)

- 64 sin6 - #6 - 6#4 + 15#2 - 20 + 15 \ - 6~ + -
X2 X* X6

~( + z)-(* +*y i*(*+i)- 20

sin6 0= -
{2cos 60-12 cos 40 + 30 cos 20-20 >64 y

Therefore
[sin

6 d0 =
J
(20 -30 cos 20 + 12 cos 40 -2 cos 60) d0

= rr(2 9 - 15 sin 20+3 sin 40-1 sin 60\
541 3 J

= {600
- 45 sin 20+9 sin 40 - sin 60}

102. The integration of cosn when n is an integer

(1) When n is odd,

[cos
5 d0=

[cos
4 0cos0d0

Put x = sin 0, then dx = cos dd

Also cos2 0=1- sin2 - 1 - x2

Then
[cos

5 d0 -
[(1

- x2
)

2 dx

=
[(1

- 2x2 + a?
4
)
dx

*= X -Xs + -X5

3 5

2 1= sin - sin3 + - sin5

o 5

(2) When n is even, this method fails for the same reason that

it does in the case of sinn 0, but a result can be obtained by
working in terms of the multiple angles of 0.

To integrate cos4

(2 cos 0)
4 =

(x + i)

4

16 cos4 = #4 +4a?2 +6+4-r+-r
X2 X*

=
(*

44) +42+i) +6

cos4 6 =
-^{2

cos 46 + 8 cos 29 + 6}
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Therefore
[
cos4 6 d9 =

^[(2
cos 48+8 cos 26 + 6) </8

-
Tjj(s

sin 46+4 sin 28 +
68^

=
^r{sin 48 + 8 sin 26+ 128}

103. The integration of sinn 6 cosm 8 where n and m are integers.
The substitutions x = sin 6, or x = cos 8 will enable us to inte-

grate this expression, except the case when n and m are both

even.

(1)
[sin

? 8 cos3 6 dd =
[sin

3 8 cos2 6 cos 8 d8

= 1^(1 x2
) dx, when x = sin 6

= -vC4 x6

- 1 sin4 8 - \ sin6 8
4 o

(2) [sin
4 8 cos3 8 dB = (sin4 6 cos2 6 cos 8 d6

= 1^(1 x2
) dx, when x = sin 8

1 .

t
= -zX

5

^x
7

- - sin5 6 - sin 7 8
5 7

(3) [sin
3 8 cos4 8 dft -

[sin

2 8 cos4 8 sin 8 d6

=
\x*(l x2

) dx, when x = cos 6

1
7

l^

= - cos7 8 - cos5 8
7 5

(4) When n and m are both even we must use the application
of De Moivre's Theorem.



THE INTEGRATION OF sinn cos 181

To integrate sin2 cos4

Now (2i sin 0)
2
(2 cos 0)

4 -U - !Y (x + -Y

- 64 sin2 cos4 = fx2 - iY
(a?
+ 1Y

=
(^-2 + |4)(^ + 2 + I

2)

-(f + S)
+X^+ 5i7:(<*S)-

sin2 cos4 0= - -{2cos60 + 4cos40-2cos20-4}
64 v '

Therefore Isin 2 cos4 dQ

=
1(4

+ 2 cos 20 - 4 cos 40-2 cos 60) d0

=
^40 + sin 20 - sin 40-1 sin 60

j

-
T3o{l

2Q + 3 sin 20 - 3 sin 40 - sin
60J

Examples XII

Solve the following integrals :

(1) I sec2 x dx (2) Icosec2 x dx

,^. fsin
2 x dx , M% fcos

2 x dx

(5) ftan (ax -\- b) dx . (6) (cot (ax + b) dx

(7) [tan
5 x dx (8) (tan6 x dx

(9) |cot
3 #da; (10) fcot4 x dx

fdx C dx

3 sin x + 4 cos x '

J 4 sin x 3 cos x

(
18

)
L_*5

(14) [-^v '

Jsin x + cos x Jsin x cos a?

(15 '

J3sin2
ar + 4cos2 # ^

j3sin
2 ^-4 cos* a;
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dx
at) f

tan g<fa f

(19)
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105. (1) To integrate xn loge a\

Now I xn log6 x dx = uv \v du

Here we can put u = xn or dv = xn dx, but we must differ-

entiate xn in the first case and integrate xn in the second case.

As we can easily do both operations, it is perfectly immaterial

which selection we make. We can also put u =
\oge x or dv

= loge x dx, but we find that although we can easily differentiate

\oge x, we shall have great difficulty in integrating \oge x, and in

consequence we are led to make the selection u =
loge x.

Thus u =
logc

x and du = - dx
x

dv = xn dx and v = \xn dx
-|

a
n+ 1

f xn+l C xn+1 1
Then \x

n
log. x dx = log. a; I - dx

J n+ 1 Jn + 1 a*

W + 1 tt +

n+1 (n + l)
2

When n = the integral becomes
|loge

a? dx, and
|loge

a: dx

=
x(loge

x- 1).

(2) To integrate a^e**

Now \xn eP* dx = uv \v du

If w - xn , then dw = ru,n_1 dx

eP* dx= -

Therefore \xn dai dx=-xn ^x -- fa?"-1 g da?

In this case the result of applying the rule is to produce on
the right-hand side an integral of the same form as the original

integral, but in which the power of x has been diminished by 1.

We can, however, use the above result as a standard form in

which n and a can be given their assigned values.
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To integrate x4^*

ix4(?x dx = i#V* -
|
L3^ dx

- lx*(?x - yXx
z<?

x - U2eZx dx\

o y y y ^o oj J

-
jW*

- iuV* + izV* -
^-xe*

x

+^<?
x

eta f . 4 , 4 _ 8 8\
3 \ 3 3 iT 27J

To integrate tf
n
(loge x)

m
, put log,, a: = y

Then a? = ev and dx = ev dy

\xn (log^)"
1 dx = \env y

m ev dy

=
[y
m

e(
n
^)v

dy

The integral thus reducing down to a form similar to pV* dx.

Thus, to integrate #4
(loge x)

2
, put loge

x = y.

Then x = ev and dx = ev dy

and
f**(lo& #)

2 <& =
[^ */

2 ^ <fy

m
fee**

dy

=^v - S^v +

e*v ( 9
2 2)= TF-^ +

25}

a?
5
f 2 2 1



186 PRACTICAL MATHEMATICS

106. (3) To integrate x
n sin ax and xn cos ax. From the previous

example it is obvious that by putting u = xn the integral on
the right-hand side will contain xn ~ 1

,
that is, by applying the

rule once we diminish the power of x by unity in the result-

oring integral. Hence to completely evaluate I xn sin ax dx

\xn cos ax dx, we should have to apply the rule n times. We

can make the work more methodical by applying the rule once
to each of these integrals and using the results as standard forms
for integral values of the power n.

Now \xn sin ax dx --= uv \v du

where u = xn , du = nxn~x dx

and dv - sin ax dx, v - 1 sin ax dx = cos ax
J a

Then \x
n smaxdx = xn cos ax + -|#n

~1 cos ax dx . . . (1)
J a a)

Also \xn cos ax dx = uv \v du

where u = xn
,
du = nx"-1 dx

and dv = cos ax dx, v = I cos ax dx = - sin ax
J

Then \x
n cosaxdx = - xn sin ax l#n

""1 sin ax dx . . . (2)
J a a)

As an example, let us apply these results to integrate xs sin 2x.

Then \xn sin 2x dx = - xn cos 2x + -
|a?

n-1 cos 2# da;

and \xn cos 2a; da? - - xn sin 2a; - la;"-1 sin 2a; dx

xx5 sin 2a; da;

1 5 f= -
^r

6 cos 2x + - la^ cos 2x dx

x5 5 rl f 1= cos 2x -f -
j
-ir4 sin 2a? 2 ix3 sin 2a; ctr >

= cos 2a; H sin 2x 5 I - x3 cos 2a;+ -la;2 cos 2a; dx \
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(x
5

5<z
i3
\ 5#4 15 rl f ^

H- )cos 2x-\ sin 2x -\ -x2 sin 2x \x sin 2x dx\2^2/ 4 2\2 J J

/ x5
5x*\ . /5a;

4 15^r2\ r> 15 r 1
=

(^

- - +
J
cos 2x +

{ )
sin 2x +

j
- -* cos 2*

/ x5 5x* 15;z\ :

/5a?
4 15#2 15\ . A=

(-2 +
"2-- )

C0S2X +(t- + T) Sm2"

107. (4) To integrate
"* sin for and g * cos for.

Now I^ sin bx dx = uv \v du

where u = sin for, du = b cos fo? do;

e?x dx=
a

Then | ^ sin bx dx - - eP
x sin bx I eP* cos bx dx, and

J
a a }

denoting I eP* sin bx dx by X and 1 eP* cos bx dx by Y,

X=l^sinto--Y (I)
a a

Also le
* cos bx dx = uv \v du

where u = cos bx, du= b sin bx dx

IgaxeP
x dx =

a

Then Xe
* cos for dx = - e * cos bx + - le * sin bx dx

J a aj

or Y = I*** cos fa + -X (2)a a '

Thus giving a pair of simultaneous equations to be solved for

X and Y.

Solving for X, X = - eP* sin bx ? eP* cos bx 5Xa a2 a2

X (a
2 + b2

)
= eP

x
{a sin bx - b cos bx}

X - -s j-5 {a sin bx b cos fa}
a2 + b2 l

feP* b
e"* sin bx dx = . sin (bx - a) where tan a = -
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1
7 7 2

Solving for Y, Y = - &* cos bx+-9 eP* sin bx 5 Ya a2 a2

Y(a
2 + b2

)
- eP

x
(a cos bx + b sin bx)

a2 +b2 {a cos bx+ b sin bx }

JeP* b
eP
z cos bx dx = . cos (bx a) where tan a = -

Va2 + b2 a

108. For the integration of eP* sinn x or e * cosn a;, sinn and
cosn a; must be expressed in terms of the sines or cosines of the

multiple angles of x. Then each of the integrals will split up

into a number of integrals each of the form I &* sin bx dx or

y?* cos bx dx, and these can be integrated by the previous

method. In this case though, because it will be necessary to

work with I e^ sin bx dx and Xe"* cos bx dx for various

numerical values of b, it is best to establish the results working
with a and b, and use them as standard forms.

(a) To integrate e2* sin5 x.

Now (2i sin x)
5 - (y J

,
if y = cos x + i sin x

S2i sin5 a; - t/
5 -

St/
3 + 10t/

- 10- + 5-^
-

-g
9 9 9

= 2i sin 5a; lOi sin 3a; + 20i sin a;

and sm5 x = sin 5a; -- sin 3x + ^ sm a;
lb lb 8

Then I c2* sin5 x dx = I e2* sin 5a; da; I e2* sin 3a; dx

1-^ sin a; da; and each of these integrals can be determined

by using as a standard form

(P* b
eP
x sin bx dx =

. sin (bx a), where tan a = -
i

Hence I e2* sin5 x dr = sin (5a; a) r= sin (3a; 6)
J lbV29

'

16V13
KJ

5^ 5 3 1
-} -;= sin (a; y), where tan a = -, tan p - - and tan y = -
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e* sin* x
<fa=-(-^=sin^-tan-'-)--^=s sin^

- tan
" 1

l)
+^ Sin

(
iB - tan_18}

(b) To integrate e3* cos4 x.

Now (2 cos a?)
4 = (y + -Y, if ?/

= cos a? + i sin a?

16 cos4 -
?/
4 + 4?/

2 + 6 + 4 - + -j

= 2 cos 4a? + 8 cos 2a? + 6

1 1 3
cos4 a; - - cos 4a? + - cos 2a? + -

o o

Then
|
e3* cos4 x dx m - \e?

x cos 4 a? da? 4- - le
3* cos 2a? dx

+ - If?
3* da? and using e * cos 6a? <fc - cos (6a?- a)

where tan oc = -, as a standard form,
a

{^3as
g3a ^335

g3
*5 cos4 a? dx - t cos (4a?

-
a) H ^= cos (2a?

-
p) +

4 , 2
where tan a = - and tan p

= -

Then I e** cos4 a? da? =
|-

cos Ua? - tan -1 -)

+ ^b cos
(
2a; - tan~i) +1 }

(c) To integrate e** sin2 a? cos3 x.

(1\
2 / 1\

3

y- -) ly + -\, i* y= cos x+ i smx

- 32 sin2
a? cos3 x = (y

2 -
-^ (j/

+
-)

-('pM^i.)-'^?)
= 2 cos 5a? + 2 cos 3a? 4 cos a?

sin2 x cos3 a? = - cos a?
- cos 3a? - cos 5a?

8 16 lo -
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Then U4* sin2 x cos3 x dx

= -I e4* cos x dx I e4* cos 3a; da? -I e4* cos 5

^4a! g4a; ^x
7=1 cos (a? a) cos (Sx p) r=r cos (5x -^

8A/17 80 r '

16V41

where tan a -
7, tan i = 7, and tan y = - '

e4* sin2
a; cos3 x dx = --{ 7= cos

(
a; tan -1 '-'

16lVl7 V

- cos ( Sx tan -1 -
) 7= cos [5x tan-1 ^

5 \ 4/ V41 \ 4/

Examples XIII

Solve the following integrals :

(1) la:
7
logfl

a; dx (2) I Vx logjc dx

(3) ps* *>
1
loga; da;

(5)
jar*

(log^r)
2 dx

(6) jVaT (log^)
3 dx

(7) [x^dx (8) \xH-?*dx

(9)
je

81** -cos3 da; (10) fc8111 * sin 2a; da;

(put sin x =
2) (put sin a? = 2)

(11) fa;
2 sin 2a; dx (12) fa? cos 3a? da;

(13) la;
4 sin 2a; dx (14) fa;

2 sin2 x dx

(15) far* cos2 x dx (16) fa;
2 sin3 x dx

(17) fa?
2 cos3 x dx (18) fe2* sin 3a; da?

(19) U2* cos 3a; da; (20) ftf"3
* sin 2a? da?
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le _3a! cos 2x dx



CHAPTER XIV

109. The Meaning ofan Integral.

Let P, Q be two points taken on the curve y=J\x), Fig. 44,
and let the co-ordinates of P be x, y, and of Q x + dx, y + dy.
When the ordinates are drawn to P and Q, the strip PQTS is

produced, the top part of this strip being bounded by the arc PQ
of the curve. If the breadth &r is small, the strip may be

approximately taken as a trapezium.

Area of the strip
- -(2y + By) Bx

SI

If Bx is taken as being very small, then By is also very small

and can be neglected in comparison with y.

Hence the area of the strip or SA = y x.

Then y-^
In the limit when &r is made infinitely small

dA

Therefore A, the area under the curve, is a function of x, which,
when differentiated with respect to x}

will give y. Now as integra-
192
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tion is the converse of differentiation, it follows therefore, that in

order to obtain A, y must be integrated with respect to x.

Then \ydx

Considering the area KLMN, which is bounded by the axis

of x, the ordinates at x = a and x = b, and the portion KN of

the curve. Let this area be divided up into a number of thin

strips, the breadth of each strip being $x.

The number of strips will be ^

The area of each strip will be approximately y $x.

Now, when 8x is made very small, the number of strips taken is

considerably increased, the area of each strip is considerably
decreased, but at the same time the quantity y x represents
more nearly the true area of each strip.

In the limit, when &x is made infinitely small, the area of each

strip becomes infinitely small, but in order to find the area KLMN
an infinitely great number of these strips must be added

together.
Hence A, the area, is the sum of all such terms of the form

y $x when &c is made infinitely small, or A = Hy $x when $x

is infinitely small. But it has already been shown that A =
\y dx;

therefore I y dx = 2y x when &r is infinitely small. In other

words, an integral is the limiting value of the sum of an infinitely

great number of infinitely small terms.

110. The Definite Integral. It has been shown that the area

under a curve is given by \y dec, and if the law of the curve

is known that is, y is given as a function of x this integral
can be determined and the area expressed as a function of x.

We have now to consider what we really have when the area

is expressed as a function of x, for at present we only know that

it represents the area under some part of the curve. Before the

value of this area can be found, we have to fix upon its actual

position with respect to the axes of reference, and this can be

done by fixing upon the initial and final ordinates.

Thus, if we erect ordinates at x= a and x = b (Fig. 44), we
decide upon the actual position of the area and also fix upon the

breadth, or the length of the base line. Therefore the values

x = a and x = b are values of x which actually decide what the

area under the curve will be.

N
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Taking the relation Area = \y dx, and after the integration

has been performed, x is given the value a, the result will give
the value of the area HOLK, the area which is bounded by the

ordinates at x = and x = a.

Also taking the same relation Area = I y dx, and after the

integration has been performed, x is given the value b, the result

will give the value of the area HOMN, the area which is bounded

by the ordinates at x = and x = b.

Now area KLMN = area HOMN - area HOLK

=
\y dx (when x = b) \y dx (when x =

a)

or area KLMN = I y dx, where, after the integration has been

performed, x is given the values b and a respectively and the

difference of the two results is taken.

We notice now that integration can be performed with respect
to x over a definite range, or between two definite values of x.

These two limiting values of x are spoken of as the superior and

inferior limits respectively, and the result obtained by replacing
x by the value of the inferior limit must be subtracted from the

result obtained by replacing x by the value of the superior limit.

It must be clearly understood, however, that before we can sub-

stitute the values of the limits we must have performed the

necessary integration.

111. Areas. Let P and Q be two points on a curve (Fig. 45),
the co-ordinates of P being (a, h) and the co-ordinates of Q being
(b, k). Let A be the area bounded by the curve, the axis of x,

and the ordinates h and k. Let B be the area bounded by the

curve, the axis of y, and the abscissae a and b. Then A can be taken
as the sum of vertical strips of area y &r taken from x = a to

x =
b, while B is the sum of horizontal strips of area x By taken

from y = h to y = k,

and A Yy dx

I xdywhile B

A study of the figure will show that

dy + ah = bk\ydx+\x
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As an example, let the law of the curve bey = cxn, where c and n
are constants.

Then area A

Now h = can and k = cbn

Then area B = bk ah area A

c6n+1 - can+1 (6
n+1 - an+n

n+ l
x f

The area B can be determined independently.

For area B -
j
xdy

1 Ccb
n

1

=
7 I y"dy
cn
Jca

This is an awkward integral to evaluate, more particularly on

account of the nature of the limits, and the work is rendered

more simple by expressing the integral in terms of x.
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Since y = cxn

dy = ncxn~x dx

and x dy = ncxn dx

Therefore area B

dx

-
ycdy

= nc I xn

n + 1
x x

A comparison of the results for the areas A and B shows that

if the law of the curve is of the form y = cxn , then the area B is

n times the area A.

112. Example 1. Working between the limits x = 2 and x = 3

for the curve y = &r*. Find (1) the area bounded by the ordinates

at x = 2 and x = 3, and (2) the area bounded by the abscissae

which correspond to the ordinates at x = 2 and x = 8.

Then area (1)

= 3 x dx

-M!
= l-2{3*- 2*}

- l-2{9\/3-4\/2}
- 11-92

and area (2)
= \x dy

it

-Pl
= l-8{3#-2*}

- l-8{9V3-4\/2}
- 17-88

s 9 1
x% dx, since dy = -x* dx
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Example 2. Find the first two points at which the curve

y m e~x sin x crosses the axis of x, and then find the area bounded

by the curve and the axis of x between these points.

Now sin x = when x has the values 0, iz, 2iz, etc., and there-

fore y = when x has these values.

The first two points at which the curve crosses the axis of x
occur when x = and when x = 7r.

Then the area y dx

i
e~x sin x dx.

To integrate e
-* sin x we must integrate by parts.

I e~x sin x dx = uv \v du

where u = sin x, du = cos x dx

and dv = e~* dx, v = e~*

Then I e~x sin x dx = -* sin a? -f U-* cos x dx . . . (1)

Also I e-* cos x dx = uv lu dw

where w = cos x, du = sin a; dx

and di? = e~x dx, v = e
-*

Then U~z cos xdx = e-* cos a? U"05 sin a; da; . . . (2)

Solving (1) and (2) for Itf
-* sin x dx

I e-* sin a; dx = e
-* sin a? e

-* cos U-35 sin a?

and \e~* sin x dx =
^{e~^

sin a? + e~x cos a?}

Then area - e* sin x + e
-* cos a?

l
f n>= -{e

_ir cos n 1}

= 0-5216

da;
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Example 8. Find the area enclosed by the curve xy 1 and
the straight line by + 3x = 11.

The points of intersection P and Q have for their co-ordinates

the values of x and y, which satisfy the equations xy - 1 and

4y + to 11.

Then

and

j(ll
-

to)
- 1

11a? - to2 = 4

to2 - 11* + 4 =

x = 0-408, x - 3-259

Area =
It/ <r where y is the length of ordinate between the

line and the curve.

Hence area = I \ -(11 Sx) \ dx

-Gr*-g"!, - l0&rI
3259

408

11 3-259= T(3-259
-

0-408)
-

-(3-259
2 - 0-4082

)
-

log,^^
= 7-840 - 3-291 - 2-078

- 1-841
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113. Surfaces of Revolution. When an area rotates about an
axis in its plane, it describes a surface of revolution, and the

property of such a surface is that any section taken perpendicular
to the axis of revolution is circular.

If the area under a curve (Fig. 47), bounded on the left and

right by the ordinates at x = a and x = b respectively, be made
to rotate about the axis of x, it describes a surface of revolution,
and any section of this surface taken perpendicular to the axis

of x will be circular.

Hence if this area is divided into a very large number of thin

strips, each of breadth Sx, each strip will describe a thin cir-

cular disc.

The volume of an elementary disc = izy
2 &r.

The total volume will be obtained by taking the sum of all

these elementary discs between the limits x = a and x = b.

Total volume

and, when 8x is made infinitely small,

7T > y
2
aw,

for the area A, ox *f/
dx

If the area B, that bounded by the abscissae which correspond
to the ordinates at x = a and x = b, be made to rotate about the

axis of y, another surface of revolution is described, and the

section of this surface taken perpendicular to the axis of y will

be circular.

Hence if this area is divided into a very large number of thin

strips, each of breadth y, each strip will describe a thin circular

disc.

The volume of an elementary disc = tzx2 &y.
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The total volume will be obtained by taking the sum of all

these elementary discs between the limits y = h and y = k.

Total volume =
tc^ x2

$y

and, when y is made infinitely small,

for the area B, VOY = 7cl x2
dy

When the area A rotates about the axis of y, the surfaces of

revolution described by the rectangle DQHO, the rectangle
EPGO and the area EPQD must be considered.

The rectangle DQHO describes a cylinder of volume izb2k, the

rectangle EPGO describes a cylinder of volume iza2h, and the

area EPQD describes a surface of revolution of volume
7r|

x2 dy.

Hence for the area A, Voy = izb2k iza2h tz\ x2
dyh

n(b2k - a2h - \x2
dy\

When the area B rotates about the axis of x, the surfaces of

revolution described by the rectangle DQHO, the rectangle
EPGO and the area PQHG must be considered.

The rectangle DQHO describes a cylinder of volume izk2b t the

rectangle EPGO describes a cylinder of volume izh2a, and the

area PQHG describes a surface of revolution of volume 7t I y
2 dx.

Hence for the area B, Vox = nk2b - izh2a -iz\y2 dx

= Tztk2b - h2a - P y
2

dx}

As an example, let the law of the curve be y = ex11 where c and n
are constants.

Then for the
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For the area B, V0Y = tc I x2
dyh

7r ncxn+1 dx, since dy = ncx"'1 dx

{b
n +2 - an+2

}n+ 2

For the area A, Voy - tt fb2k - a2h -
|

x2
dy\

= tt fcbn+2 - can+2 - JUL
(b
n+2 - an+2

) ]

-^(l-=Ti)"-^-STlfl
=jZL{6n+2_ an+2}n+2 x

.

f

For the area B, Vox = n fk2b - h2a - ?y
2 dx\

-c

- 7u [ c
262n+1 - cV^ 1 (b2n+1 - a2w+1)\

t 2n+l v

'/

,

[*
H,

(
1-ra)-*

M,
(
1 -ra)]

Fig. 48 shows these four different surfaces of revolution.

114. Example 1. In the curve y - 5,r2
, taking A as the area

bounded by the ordinates at x = 1 and x = 2, and B as the area
bounded by the abscissae corresponding to the ordinates at x = 1

and x = 2, find the volumes of the surfaces of revolution :

(1) when the area A rotates about the axes of x and y respec-

tively ;

(2) when the area B rotates about the axes of x and y respec-

tively.

For the area A, Vox 7T I y
2 dx

h:

25tt I x4 dx

if

= 5n

= 5n{2
5 -

1}
- 1557T = 486-8
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J

20

x2
dy

-m:
~

{202
_

52}

37-571 = 117-8

Fig. 49,

For the area A, V0Y = n
[20(2)

2 -
5(1)

2 -
[

dy\

= ?r{80- 5-37-5}

= 37-5tc - 117-8

For the area B, Vox = tt
J2(20)

2 -
1(5)

2 -
J
y
2 dx\

= tt{800-25- 155}

= 62071 - 1947

Example 2. In the curve y - e~*, taking A as the area bounded

by the ordinates at x = 1 and x = 2, and B as the area bounded

by the abscissae corresponding to the ordinates at x = 1 and'a? = 2,

find the volumes of the surfaces of revolution :

(1) when the area A rotates about the axes of x and y respec-

tively ;

(2) when the area B rotates about the axes of x and y respec-

tively.
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*dx

tz\ e-* dx

For the area A, Vox =711/

i

= -Tz{e~*-e-
1
}

= 0-7307

For the area B, V0Y - 71 \x2
dy

= tz I xH~* dx, since dy = e~* dx

\xe~* dx

To integrate x*e~*.

htPe-* dx = e~*x2 + 2 L

= - *-*a?2 + 2
j
- a*?-* + U-*

da?j

-f1 !2 - 2a-* - 2<r

= -
e-*(a:

2 + 2x + 2)

Hence for area B, V0Y = 7r -*(a;
2 + 2a: + 2)

- ^{s^-ioe-2
}

= 1-528

For the area A, V0Y = tu|^-
2
(2)

2 + fa?
2
dy - e-^l)

2

}

=
7c{4*?-

2 + Be-1 - 10e~2 - e~1
}

=
7c{4e-

1 -Cc-2
}

= 2072
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For the area B, Vox = ttJ^"
1
)

2 + [if dx - 2(e~
2
)

2\

= n{e-
2 +e-1 -e-2

-2e-*}
=

izie-
1 -

2e~*)

= 0-9255

Examples XIV

nd the values of the following definite integrals :

I (a + bx + ex2
)
dx1)

J
(a + bx + ex2

)
dx

f3) I
e* dx

o

5)

r^dx

Jo *

7) 1 3f cos2
a; dx

9) I e* cos x dx

I a:
2 sin x dx

J (a + for*) dx
o

5) |Vl6
- x2 dx

7) fv
:
2 + 9 dx

Ml

9)
J5

V*

,, f
3 *

(2l) L
2 -25<iz

(2

(4

(6

(8

(10

(12

(14

(16

(18

(20

(22

f2 sin 2 #

I c* sin #

jr.Jo

Jo

I'

4
(to

Vl6 - x2

J

3
(to

oV*2 + 9

*-* (to

(to

(to

sin x dx

10 (to

5Vx2 - 25I
r3 dx

I a?Va?2 + 2 (to

(23) The curve y = a+ bx1
'

5
passes through the points (1, 1-82)

and (4, 5-32). Find a and b. Find the area under the curve

between x = 2 and x = 4.

(24) The curve y = ae** passes through the points (2, 4-2) and

(8, 10*4). Find a and b. Find the area under the curve between

x = 4 and x = 8.

(25) Find the area enclosed by the line 2x+ y = 8 and the

curve xy = 4.
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(26) The curve y = a+ be* passes through the points (0, 26*62),

(1, 35-70), and (2, 49-81). Find the values of a, b, and c. What
is the value of the area under the curve between x = and x = 1 ?

(27) The curve y = x2 1 is cut by the line y =x + 5. Find
the co-ordinates of the points of intersection and the area between
the line and the curve.

(28) Find the area enclosed by the axes of reference and the

curve y = Sx2 8x + 4. Find also the area enclosed by the

curve and the axis of x.

(29) Find the area enclosed by the two curves y
2 = 4# and

x2 =
4>y.

(30) Find the first two points at which the curve y = e* sin x
crosses the axis of x, and then find the area bounded by the curve

and the axis of x between these points.

(31) Find the area of the loop of the curve y
2 - x2(x+ l).

(32) Find the area enclosed by the axes of reference and the

curve x = y
2

9y + 18. Find also the area enclosed by the

curve and the axis of y.

(33) Find the area of the loop of the curve y
2 = x2

(x + 4).

(34) Find the area enclosed by the curve y = 10#2 41# + 21

and the axes of reference. Find also the area enclosed by the

curve and the axis of x.

\ (35) The curve y = loVS rotates about the axis of x, generating
a surface of revolution. Find the volume between the sections

at x = 1 and x = 9. (B, of E., 1908.)

(33) The curve y - 1 -f 0-2cT2 rotates round the axis of x, gener-

ating a surface of revolution. What is the volume between the

sections at # = and x = 10 (B. of E., 1912.)

(37) If the same part of the curve in Question 36 rotates about

the axis of y, what is the volume of the surface of revolution

generated ?

(38) The curve y = axn passes through the points (2, 7*46),

(4, 22 72). Find a and n. Let A be the area bounded by the curve,

the axis of x and the ordinates at x = 1 and x =
3, and let B be

the area bounded by the curve, the axis of y and the abscissae cor-

responding to the ordinates at x = 1 and x - 3. Find the volumes of

the surfaces of revolution generated by the area A rotating about
the axes of x and y respectively, and by the area B rotating
about the axes of x and y respectively.

(39) The curve y = a+ bx15 passes through the points (1, 1-82)
and (4, 5-32). Find a and b. Let the curve rotate about the

axis of x describing a surface of revolution. Find the volume
between the sections at x = 1 and x = 4.

(40) The curve y = a&* passes through the points (1, 3-5) and

(10, 12-6). Find a and b. The curve rotates about the axis of x,

describing a surface of revolution. Find the volume between the

sections at x = 1 and x = 10. (B. of E., 1913.)
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(41) Find the volume of the surface of revolution formed by
that part of the curve y = sin x between x = and x = n, rotating
about the axis of x.

(42) That part of the line y + 2x = 3 intercepted between the

axes of reference rotates about the axes of x and y respectively.
Find the volumes of the two cones thus formed.

(43) That part of the circle x2 + y
2 = 25 between x - 1 and x = 5

rotates about the axis of x. Find the volume of the zone of the

sphere thus produced.

(44) That part of the ellipse + y = 1 between x = and x = 5

rotates about the axis of x. Find the volume of the surface of

revolution generated. What would be the volume of the surface

of revolution generated if the same part of the curve rotates

about the axis of y ?

(45) That part of the curve y = x2 8x + 15 intercepted be-

tween the axes of reference, rotates about the axes of x and y
respectively. Find the volume of the surface of revolution

generated in each case.
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115. The Centre of Gravity or Centroid.

Fig, 51.

Let an irregular area (Fig. 51) be so placed with reference to

the axes of x and y, that the co-ordinates of its centroid P are

x% y. Let this area be divided up into a very large number of

small areas, a lt a2 , a3 . . ., situated at the points A, B, C . . .

respectively, the co-ordinates of these points being (xv yx),

(#2. 2/2). (*3 Vz)

The centroid of the two small areas a x and a2 can be taken

to be a point M on the line AB, such that

ax AM = a2 BM
Let the co-ordinates of this point be xv yv
Since the triangles AKM and BLM are similar

AM KM
BM~ ML

But

Then
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The two areas a x and a 2 can now be replaced by a single area

{ax + a 2 )
situated at the point M, and this can now be combined

with the third area a3 ,
the centroid of this system can be taken

to be a point N on the line MC, and if the co-ordinates of N are

^2> 2-

Then K + a2

)^+03*3
(a, + a 2) + s

a 1CC1 + d 2X2 ~t" ^3^3

a + a 2 + a3

This fraction is such that the numerator is the sum of the
moments of the areas about the axis OY and the denominator is

the sum of the areas. The effect of introducing to the system
another area a

4 ,
situated at a point whose co-ordinates are x

4 , y,
is to increase the numerator by the moment of that area, and at

the same time to increase the denominator by that area.

This process must be continued until all the small areas which
make up the total area are taken into account

an(j r; _ aV^\ + #2^2 + a zxz + . .

ix + a 2 + a 3 + . . .

or Ax = Hax.

Working with the ordinates yv y 2 , y z , etc., it can be shown in

a similar manner that

a
1y l + a 2y 2 + a zy z + . . .

a
x + a 2 -f a 3 + . . .

or Ay = ^ay

The relations Ax = lax, and Ay = 2ay enable us to deter-

mine the position of the centroid P of the whole area.

116. Let P be the position of the centroid of the irregular area

(Fig. 52) the co-ordinates of P being x, y.

Let this area rotate about the axis of x, describing a surface of

revolution.

Taking the whole area to be built up from a system of small

areas av a 2 , a z , a
4 , etc., situated at points A, B, C, D, the

co-ordinates of these points being (x^-^), (x 2y 2), (xjy 3), (x^yj,
then each of these small areas will describe an elementary

ring, the area a
x describing a ring of volume 2iza 1y 1 ,

the area a 2

one of volume 27za 2y 2 , and so on. The volume of the whole
surface of revolution will be the sum of the volumes of all of

these elementary rings.

Then Vox = 2na 1y1 + 2na 2y2 + 2na3y3 + . . .

=
2iz{a 1y1 + a 2y 2 + a$z -\- . . .}

- 2izAy
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If the area rotates about the axis of y, another surface of

revolution is described, which can be taken as the sum of a large
number of elementary rings whose volumes will be 2Tia 1x1 , 2iza^c 2 ,

2na 3x 3 , and so on.

Then V0Y = 2na1x1 + 2sza^c2 + 2iza 3x3 + . . .

= 2n {a1x1 + a^Xi + #3^3 + . . . }

= 27rA

These results can be expressed in this way :
" That if an area

rotates about an axis in its plane, the volume of the surface of re-

volution generated will be given by the area multiplied by the cir-

cumferential distance travelled by the centroid in one revolution."

Fig. 52.

Also if x and y are the co-ordinates of the centroid of a given
area

M)YX =
>

2ttA

and
11
= y ox

2ttA

These relations enable us to find the position of the centroid,

providing we know the area and the volumes of the surfaces of

revolution described as that area rotates about the two axes of

reference.

117. Example. The curve y = axn passes through the points

(2, 5) and (4, 11). Find the values of the constants a and n.

Taking A as the area bounded by the ordinates at x = 2 and
x = 4, and B as the area bounded by the abscissae corresponding
to the ordinates at x = 2 and x =

4, find the positions of the

centroids of the areas A and B.

Now 5 = a2n

11 = a4n

2-2 = 2n
,
and n 1137



Also

Then

THE CENTROID

a - - 2-273

2/
= 2-2730J1 - 137

211

2-273
/ 42.137 _ 221371

2137'

- 15-92

Area B = 44 - 10 - 15-92

= 18-08

4

For the area A, Vox = 71 y
2 dx

J2

= iza
2

I x

[
r2n+l I*

J2

?n dx

2n

=
TC(2

'273
)

2

3-274

= 415-9

(43274 _ 23-274|
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For the area B, V0Y = iz \x2 dy

= 7zna\ xn+1 dx, since dy = naxn+1 dx

w+2L J L

>.OTQ
f 43.137 _ 23137 \

2

7T x 1-137 x 2-27

3137

177-5

For the area A, V0Y = tt x 11 x 42 - 71 x 5 x 22 - tt
j*

2
dy

Finally for the area A, x =

17671 - 20tt - 177-5

312-6

= 484tu - 50tt - 415-9

= 9471

For the area B, Vox = tu x 4 x ll 2 - 71 x 2 x 52 - tz Uf

OY
2tcA

312-6

2ti x 15-92

3126

y
2tiA

415-9

2tc x 15-92

4159

y
and for the area B, x -

177-5

2tt x 1808

= 1-563

'-&
9471

27c x 18-08

= 8-335



THE CENTROID

Tabulating these results :

213
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and in the limit when &r is made infinitely small,

Total moment = I xy dx
Ja

Hence Ax =
I xy dx, where A = I y dx
Ja Ja

If the whole area is divided into a very large number of thin

strips each of breadth $y

Then area of one strip
=

(b x) y
Moment of the strip

=
(b x)y $y

since y is the perpendicular distance of the strip from the axis OX.
Then for the area PQR,

Total moment = ^ (b x)y %
and in the limit when $y is made infinitely small,

Total moment =1 (b x)y dy

This only gives the moment of the area PQR, and to this must
be added the moment of the rectangle PRNM, in order to obtain
the moment of the whole area PMNQ.

Area of rectangle
= h(b

-
a)

Moment of rectangle = - h2
(b a)

Hence Ay = I (b x)y dy + ^h
2
(b a), where A =

|
y dx

The expression for y could also be obtained by taking the area

as being divided up into thin vertical strips, each of breadth &c.

Area of one strip
= y &r

Moment of strip
=

-t/
2 $x

since -y is the perpendicular distance of the centroid of this
it

strip from the axis of x.

Then for the whole area PMNQ,

Total moment = - ^ y
2 $x

2 ^^ x=a

and in the limit when &r is made infinitely small,

Total moment = -
I y

2 dx

Hence Ay = -
I y

2
dx, where A =

I y dx
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119. Considering the area PLKQ (Fig. 55) bounded by the

arc PQ of the curve, the axis of y, and the abscissae which corre-

spond to the ordinates at x = a and x = b
;
let this area be divided

into a large number of thin strips each of breadth 8?/.

Then area of one strip
= x y

Moment of the strip
= xy %y

since y is the perpendicular distance of the strip from the axis OX.
Then for the whole area,

Total moment = > xy y

Fig. 55.

and in the limit when $y is made infinitely small,

Total moment =
I xy dy

Hence B*/ = I xy dy, where B = I x dy
J& Jft

If the whole area is divided into a very large number of thin

strips each of breadth &x,

Then area of one strip
=

(k y) x

Moment of the strip
=

(k y)x $x

since x is the perpendicular distance of the strip from the
axis OY.
Then for the area PQS,

(k y)x dx
x=a

and in the limit when $x is made infinitely small,

I (&
~"

y)x dvTotal moment
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This only gives the moment of the area PQS, and to this must
be added the moment of the rectangle PLKS, in order to obtain

the moment of the whole area PLKQ.
Area of rectangle

= a(k h)

Moment of rectangle = ^n
2
(k h)

J

5 1 f*
(k y)x dx + rfi

2
(k h), where B = I x dy

The expression for x could also be obtained by taking the area

as being divided into thin horizontal strips each of breadth y.

Area of one strip
= x $y

Moment of strip
= -x2

y

since -p is the perpendicular distance of the centroid of this strip

from the axis of y.

Then for the whole area PLKQ,
1 ^ iv-fe

Total moment = - > x2 $y

and in the limit when St/ is made infinitely small,

Total moment = -
I x2

dy2 Ja

Hence B = - I x2
dy, where B = I x dy

As an illustration of the application of this method of finding
the position of the centroid of an area, let us take the curve of

the previous example, y = 2-273J?1
'

137
, and work, as before, with

x = 2 and x = 4 as the limits for x, and y = 5 and y = 11 for the

corresponding limits of y.

It has already been shown that area A = 15-92 and area

B - 1808.

(1) For the area A, and taking vertical strips each of breadth &c.

Moment of strip
= xy x

Total moment I xy dx

xn+1 dx
2

n+2l J.
0.070
Z_Z /A3.137 _ o3.137\

3137 X *

49-72
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Then
_ 49-72
x

15-92

= 3123

Taking horizontal strips each of breadth St/,

Moment of strip
=

(4 x)y y

Jii
(4
-

x)y dy
5

= 4 I y dy na2
I x2n dx

1
i

ll-W

4-x

-0/

M

1137 x 2-2732

Fig. s6.

= 2{ll
2 -52}-1 ; 3-274

= 192 - 150-7

- 41-3

Moment of rectangle PRMN = 25

For the whole area,

Total moment = 41-3 + 25 = 66-3.

66-3

{43-274 __2
3,274

}

Then y = 15-92

= 4-164

Or by taking vertical strips,

Moment of strip
= - y

2 x
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Total moment = -
I y

2 dx

dx

2(2n + 1) I J

2-2732

{43.274
_ 23-274 J

Then y =

2 x 3-274

66-24

66-24

15-92

4160

(2) For the area B, and taking horizontal strips each of

breadth by.

Moment of strip
= xy y

f
11

Total moment = \ xy dy

na2
\ x2n dx

2n+l[_ Ji

Then y =

1-137 x 2-273*

3-274 l *

150-7

150-7

1808

= 8-335

Taking vertical strips each of breadth &r,

Moment of strip
- (11

-
y)x &c

Total moment of area PQS = 1 (11
-

y)x dx

[ I x dx a I xn

2

111 x dx a\ xn+1 dx
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II 2'273

2 1 ' 31371 '

= 66 - 49-72

= 16-28

Moment of rectangle PQLK = 12

For the whole area,

Total moment = 16-28 + 12 = 28-28

r% - 28 *28
Then * =

HTo8

- 1-564

Or by taking horizontal strips,

Moment of strip
= - x2

$y

..'11

Total moment "
5

If
11

{33.137
_ 23'137>

Then x =

xn+1 dx
2

na

2{n

1137 >

2 x 3- 137

28-26

28-26

1808

1-563

Example. Find the height of the centroid of the area bounded

by the curve y = sin x and the axis of x, between the limits x =

and x = 71.

= \ydxArea

I sin x dx

- "
[
cos

"I
= -

{COS 711}
-2
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Taking a vertical strip of breadth &r,

Moment of strip
= - y

2 $x

Total moment

Height of centroid

-i.J/*
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(7) A body is composed of a cone with a hemispherical base,
the radii of the base of the cone and the hemisphere each being
5 inches. Find the height of the cone so that the centroid of

the body shall lie in the surface common to the cone and hemi-

sphere.

(8) Find the co-ordinates of the centroid of the section (Fig. 73,

No. 1) with reference to the axes OX and OY.

(9) Find the height of the centroid of the section (Fig. 73,

No. 2) above the base AB.

(10) Find the perpendicular distance of the centroid of the

section (Fig. 73, No. 4) from the side AB.

(11) Find the co-ordinates of the centroid of the section (Fig. 73,

No. 6) with reference to the axes OX and OY. (The full depth is 6".)

(12) Find the perpendicular distance of the centroid of the

section (Fig. 73, No. 7) from the side AB.

(13) Find the distance from the centre, of the centroid of a

quadrant of a circle of radius 4 inches.

(14) ABCD is a square, 8 inches side. From the corner D a

quadrant of a circle, 4 inches radius, is cut away. Find the

co-ordinates of the centroid of the remainder, with reference to

the sides AB and BC as axes.

(15) Find the co-ordinates of the centroid of the area bounded

by the curve y = 3x2
, the axis of x, and the ordinates at x =

and x = 3.

(16) Find the co-ordinates of the centroid of the area bounded

by the curve y - x2 9x + 18 and the axes of reference.

(17) Find the co-ordinates of the centroid of the area bounded

by the curve y x2 9x + 18 and the axis of x.

(18) Find the co-ordinates of the centroid of the area enclosed

by the two curves y
2 = 8x and x2 =

8y.

(19) Find the co-ordinates of the centroid of the area bounded

by the curve y = 5Vx, the axis of x, and the ordinates at x - 2

and x = 4.

(20) Find the co-ordinates of the centroid of the quadrant of

an ellipse, the equation of the ellipse being + ^- 1.

(21) The curve y = axn passes through the points (2, 5*37) and

(5, 28-62). Find a and n. Find the co-ordinates of the centroid

of the area bounded by the curve, the axis of x, and the ordinates

at x = 2 and x = 5.

(22) Find the first two points at which the curve y = e? sin x
crosses the axis of x. Find the height above the axis of x, of the

centroid of the area bounded by the curve and the axis of x

between these points.

(23) The curve y = x2 + 5 is cut by the line y = 4>x + 5. Find
the co-ordinates of the centroid of the area enclosed by the curve

and the line.
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120. The moment of inertia of a body about an axis is the sum
of the products of the elementary masses which make up the whole

body, and the squares of the perpendicular distances of these

elementary masses from the given axis.

The moment of inertia of a lamina could be found in the same
way by considering the elementary areas which make up the
whole area and the squares of the perpendicular distances of these

elementary areas from the given axis.

Thus, if there is a system of elementary masses mlt ra2 ,
m3 , . . .

whose perpendicular distances from a given axis are xlf x2 , x3 . . .

respectively, the moment of inertia of that system about the

given axis is m xxf + m 2x 2
2 + m^g2 + ... or 2 mx2

. Or if there
is an area which is made up of a number of elementary areas a lt

a2 , a3 . . . whose perpendicular distances from a given axis are

xi> x 2> x3 respectively, the moment of inertia of that area
about the given axis is a xx^ + a 2#2

2 + a3#3
2 + ... or lax2

.

The two following examples will illustrate how the expression
for the moment of inertia is introduced in actual problems :

(1) A body is rotating about a fixed axis with a uniform angular
velocity of w radians per second. Taking a small elementary
mass m 1 situated at a perpendicular distance xY feet from the
axis

;
in 1 second this mass turns through an angle of w radians,

and therefore describes a circumferential distance of wxx feet.

The circumferential velocity of the mass tn 1
= wx1 ft. per sec.

Kinetic energy of rotation = ^i^^i)
2

** P^s*

The kinetic energy of rotation of the body will be the sum of

the kinetic energies of all the elementary masses m lt m 2 , m3 . . .

situated at distances xv x2 ,
x3 . . . respectively from the axis.

Hence the total kinetic energy

= -m^2
^!

2 + -m2mr2
2+ ^m3wx3

2 + . . .

- -^{m^!2 + m^^2 + m 3x3
2 + . . .}

= \\w
2

ft. pdls.
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where I is the moment of inertia of the body about the axis of
rotation.

If the whole mass of the body was considered to be concen-
trated at a point situated at a distance k from the axis, the
circumferential velocity of this point - kw ft. per second.

Hence the total kinetic energy = -Mk2w2
ft. pdls.

Then I - MA;2

and k is defined as the M
radius of gyration

"
of the body.

(2) Considering the case of a lamina immersed in a liquid to

a certain depth. Then the pressure at any depth is px, where x
is the depth and p is the weight of unit volume of the liquid.

Let the whole area be made up of a large number of small

elementary areas, a lt a 2 , az . . . situated at depths x lf x2 , x3 . . .

respectively.
Pressure at the depth x x

- pxY

Thrust on the area a x
=
pa lx1

The resultant thrust on the whole area will be the sum of all

of the thrusts on the elementary areas.

Resultant thrust = p{a 1x1 + a 2x2 4- a 3x3 -\- . . .}

= pAx
where x is the depth of the centroid of the area below the surface.

Moment of the thrust on the area a
x
- pa xx^.

The moment of the resultant thrust on the whole area will be

the sum of the moments of all the thrusts on the elementary
areas

Total moment -
p{d\Xi -f a2x2 + a3^3

2 + }

-
Pi

where I is the moment of inertia of the area about the free surface.

If z is the depth of the
"
centre of pressure," that is the point

at which the resultant thrust acts

_ _ Total moment
Resultant thrust

pAx
I

Ax

X

where k is the radius of gyration of the area about the free surface.
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121. Let P be a point on a lamina about which there is a small

elementary area a. (Fig. 57.)

Let G be the centroid of the lamina, and GX, GY, be two axes

at right angles to one another, drawn in the plane of the figure.
The co-ordinates of P with reference to the axes GX and GY
are x and y.

Let O be any point in the lamina, and the axes OX and OY be
drawn parallel to the axes GX and GY respectively.
The moment of inertia of the elementary area a about the

axis GY is ax2
, then the moment of inertia of the whole area

about that axis is Lax2
,

or LGY Lax2

Fig. 57.

Also the moment of inertia of the elementary area a about the
axis OY is a(x -f I)

2 where I is the distance between the two

parallel axes GY and OY.

Hence I0Y = La(x + I)
2

= Sew?2 + 2Lalx + So/2

= "Lax2 + 2lLax + PLa

= IQY + 21 Ax + l
2A

= Igy+AZ2
(1)

Since Ax = as the axis GY passes through the centroid.

Similarly if m is the distance between the axes OX and GX,

then Lox IGX + Am2
(2)

Let GZ and OZ be axes drawn perpendicular to the plane of

the lamina through the points G and O respectively.
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Then
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OP and OQ be another pair of rectangular axes inclined to the

first pair at an angle a.

If G represents the position of an elementary area a, and the

co-ordinates of G are x and y with reference to the axes OX and OY,
then the moment of inertia of the lamina about OX = lay

2 = X,
and also I0Y

= 2a#2 = Y

and

Now

and

Then

Also

Hence

Also

Fig. 58.

With reference to the axes OP and OQ,
lor = Za GL2 = P

IOQ
= Sa GH2 = Q

GL = GM - ML
= GM - KN
= y cos a x sin a

GH = OK+KL
= OK+NM
= x cos a + y sin a

GL2 =
(y cos a - x sin a)

2

= y
2 cos2 a 4- x2 sin2 a 2 xy sin a cos a

= y
2 cos2 a -f x2 sin2 a - xy sin 2a

GH2 -
(x cos a + y sin a)

2

= x2 cos2 a + y
2 sin2 a + xy sin 2a

P = 2a GL2 - cos2 aSai/
2 + sin2 aEatf2 - sin 2aZart/

= X cos2 a + Y sin2 a - Z sin 2a
'

where Z =
Ijixy

Q = Sa GH2 = sin2
aSa?/

2 + cos2 aSa^2 + sin 2aSary
- X sin2 a + Y cos2 a 4- Z sin 2a

Then P - Q = X(cos
2 a - sin2 a)

- Y(cos
2 a - sin2 a)

- 2Z sin 2a
= (X - Y) cos 2a - 2Z sin 2a
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If the axes OP and OQ are so chosen that they are the prin-

cipal axes of inertia, then, if P is a maximum, Q must be a minimum,
and P Q will be a maximum.

For P Q to be a maximum 5
=

act.

That is,
- 2(X - Y) sin 2a - 4Z cos 2a -

or Z = -
\ (X - Y) tan 2a

Thus, if P and Q are the principal moments of inertia,

P - Q = (X - Y) cos 2a + (X - Y) sin 2a tan 2a

(P
-

Q) cos 2a = (X - Y)(cos
2 2a + sin2 2a)

= (X-Y)
Then X - Y = (P

-
Q) cos 2a

Also X + Y - P + Q
v /l + cos 2a)

, n fl- cos 2a\X=P
1 2 / +Q l 2 J

= P cos2 a + Q sin2 a

Also Y = P
[

l ~ C

2

0S 2a
}
+ Q

I

1 C

2

0S 2a
}

= P sin2 a + Q cos2 a

Therefore if P and Q are the greatest and least moments of

inertia respectively, taken about a pair of rectangular axes which

pass through the centroid, the moment of inertia I about any
other axis passing through the centroid is given by the relation

I = P cos2 a + Q sin2 a, where a is the angle between that axis

and the axis of greatest moment of inertia.

123. The Momenta! Ellipse. Let OX and OY be the principal
axes of a plane figure and P and Q be the principal moments of

inertia, P being greater than Q. Let OR be any axis making an

angle with OX. If I is the moment of inertia of the figure about

OR,
Then I = P cos2 8 + Q sin2

Let the lengths OP, OR, and OQ be measured, to the same

scale, along the axes OX, OR, and OY respectively, such that

OP = P = Vp

(I

Q
and OQ - q = yj^

A being the area of the figure.
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Since

Then
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1 I

r2 A

= ? cos2 0+5 sin2

A A

cos2 sin2

P2 f
r2 cos2 r2 sin2 _

P2 f

Fig. 59,

Let the co-ordinates of the point R, with reference to the axes

OX and OY, be x and y.

Then r cos = x and r sin = y

Therefore ^! + ^!= i

P
2 f

This is the equation to an ellipse whose semi-axes are p and q,

and the point R must he on this ellipse. It follows, therefore,
that if P and Q, the principal moments of inertia, are known,

then p =
"Y p and q = y tz, the semi-axes of the momental ellipse

can be calculated. This ellipse can then be drawn, and if any
radius be drawn and its length measured to the same scale as

p and q, the moment of inertia about that radius = ^.r6
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If the principal moments of inertia are equal, then P = Q, and

consequently p =
q. The momental ellipse becomes a circle of

radius p, and therefore the moment of inertia about any axis

drawn through the centroid in the plane of the figure is constant.

124. The Rectangle. Let OX and OY be two axes drawn

parallel to the sides and passing through the centroid. These
are axes of symmetry, and are consequently principal axes of

inertia.

Consider an elementary strip of breadth y drawn parallel to

the axis OX and at a distance y from it.

M
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Let KL be another axis drawn parallel to OX and at a distance

y x
from it.

Then IKL = |_ +
ab

y\

side AB, and LAB

nes the mon

U2 4j

Putting yx
= -> this becomes the moment of inertia about the

ab*

3

Let KM be an axis drawn parallel to OY and at a distance xx

from it.

Then IKM = + ab x\

ah
(5-;)

Putting x x
= -, this becomes the moment of inertia about the

side AD, and IAD = ab
|~ + 1

J

3

Fig. 61.

The figure shows the rectangle placed in isometric projection,
OZ being the axis drawn through the centroid perpendicular to

the plane of the figure.
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Then Ioz
= Iox + IOY

abz ba3=
l2 +

T2

-3 (*+.)

Let PN be an axis drawn parallel to OZ at a distance zt from it.

2
>>

b2

Then IPN = Ioz + ab z

,ca2 b2- a
Ki2

+
iS
+2

?j

Va
2 b2

+ ,
this becomes the moment of inertia about

an axis BQ which is perpendicular to the plane of the figure and

passes through a corner.

. (a* b* a* b*}

If E and F are the mid points of the sides AB and AD respec-

tively, and ER and FS are axes drawn perpendicular to the plane
of the figure through these points :

Putting z1
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Also

and
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p = Vp
= '6928

?=Vq=
1782

These are the semi-minor and semi-major axes of the momental

ellipse.

Yl

1

(1) r30. = 0-78 T 10
l30

=
"(o^fsp

= 16 '44

10
(2)
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Example 2. For the given section find the greatest and least

moments of inertia. Draw the momental ellipse for the section

and use it to find the moment of inertia about the axis OR.

Fig. 63.

I0Y =2 x - x 43 + 5 x 7 x
(i12 2 12 \4/

= 5-342 = Q

= 63-48 - P

The area of the section = 5-75

I 5-75and

VJ
5-75

Also

5-342

*V = 0-445, I
50

- 1038

5-75

0-445 2
- 29 03
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126. The Parallelogram and the Triangle.

(1) Let a be the base and h the height of a parallelogram, and
let OX be an axis drawn parallel to the base through the centroid.

/
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Consider an elementary strip of breadth $y drawn parallel to

the base at a distance y from it.

If I is the length of this strip,

I a

h y h

and l=-(h~ y)

Area of strip
- I $y = -(h y) $y

Moment of inertia of the strip about AB =
j-
(h y)y

2
$y

For the whole triangle IAB = t I (h y)y
2
dy

= a_
'

~
h 12

_*
12

Let OX be an axis drawn parallel to the base and passing

through the centroid of the triangle.

ah/h\2

2\3,
Then IAB = Iox + ( :

_ ah3 ah3

lox ~12""l8

36

Example. Find the principal moments of inertia of the section

of an angle iron 3J" x Z\" x \",
and draw the momental ellipse

for the section.

XT
13 - 7 1

_L
3 Q olNow I^I X

I
+

2
X2=3

16

ti. _ 55 4 55
Then ^.x-^-^l-OSS

The centroid O is evidently situated on the axis OX, and its

perpendicular distances from the sides AB and BC are each

1058".
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NowIAB = 1 x 3 x Q\
3
- x g)\ ^ x

I
x Q

3

+ I xQ
2

= 7-271

IOL = 7-271 - 3-25 x (1-058)
2

- 3-632

Evidently I0K = I0L
= 3-632

The axis OX, being an axis of symmetry, is a principal axis,

and by means of lines drawn parallel to OX the section can be
divided into triangles and parallelograms.

Fig. 66,

For the triangle ADE,

Base = =, height = j=, area = -

3 *

Distance of centroid from axis OX = ^ +
19

\/2 6V2 6\/2

Iox = ^ x
71

x
(^2)

3

+ x
(

19 \ 2

4V2/
1 361

+
1152 576

= 0-628

For the parallelogram EDFB
1

Base = -7=, height - -
7=. area -

V2 5 V2 2
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Distance of centroid from axis OX =
2V2

1 1 / 3 y 3 / 3 \2

lox " 12
x
V2

x
W2J

+
2

x

V^Ti/

_9 .
27~

16
"^

16
= 2-25

For the whole section Iox = 2 {2-25 + 0-628}
= 5-756

Let the axis OY be drawn perpendicular to OX.

Then . I0Y + Iox - I0L + I0K
and I0Y = 7-264 - 5-756

= 1-508

Hence the principal moments of inertia are 5-756 and 1-508.

To draw the momental ellipse,

/3-25= V = 0-751
5-756

3-25
1-468

1-508

and these are the semi-minor and semi-major axes to be measured

along OX and OY respectively.

127. The Circle. Consider an elementary ring of width $x

bounded by concentric circles of radii x and (x + x) respectively.

Fig. 67\

Area of the ring
= 2tzx Sx.

Moment of inertia of the ring about an axis OZ which is

perpendicular to the plane of the circle and passes through the

centre = 2tzx? $x.
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j*
For the whole circle Ioz

= 2tc \ x? dx

-
|
AR2

>
where A is the area.

For a circular ring, if R 2 and R x be the external and internal

x3 dx
R

i

= ~A(R
2
+ R ), where A is the area.

Y

Fig. 68.

Fig. 68 shows the circle placed in isometric projection, OX and
OY being two axes drawn at right angles to one another in the

plane of the figure. Because the circle is symmetrical about any
diameter, the moment of inertia is the same for all diameters.

Hence

But

Therefore

*ox
~ *0Y

loz
= lox + *oy

= 2l v or 21Lox oY

J-mr *nv ~ ,

LOX OY Loz

7rR4

iAR2

4
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Let PT be a tangent to the circle.

Then

For a circular ring,

IpT
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It is evident that

and

Iox= I2
M

(62 +^2
)

Ioz=^M(a* + c*)
12

129. The Cylinder. Consider an elementary slice of thickness

&x, cut by planes parallel to the base.

Fig. 70.

Mass of slice - 7r?nR2 &e

Moment of inertia of the slice about the axis OX = - 7rraR4 $x

1 d
For the whole cylinder Iox = - 7tmR4

| (

dx

= -7umR4

[L
TtmRH

-MR2 where M is the mass.

If the cylinder is hollow, R 2 and R x being the external and

internal radii respectively.

The moment of inertia o
r

the elementary disc about the axis

AB = - TrraR4 8a>,
4
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Hence the moment of inertia of the elementary disc about the

axis OY = 1 TuraR4 Bx + nmR2x2 &c.
4

i (i
For the whole cylinder I0Y = jTimR* I

x
dx -f- 7rmR2

J> dx

izmRH + izmR2ki
7TzmRn+nmR2P
4 12

M /R
2

Z
2
\

130. The Cone. Considering an elementary slice of thickness

$y situated at a distance y from the base of the cone.

Fig.
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For the whole cone

T
1

I0Y = - nm I cc* dy
'

R 4 Ch

TrmR4
f (h

- yT

1 R4
(*= -7rm

Z
'0

2h* L

TrmR4 h5

2h* 5

= TrmR4&

= MR2
, where M is the mass of the cone.

Moment of inertia of the slice about the axis AB - - mux* St/

Moment of inertia of the slice about the axis OX = - mx* S
4

+ Tzmx2y
2 %.

For the whole cone

t _ 7zm

fee*
dy + iztn I x 2

y
2
dy

o Jo

wR4
J* .. . TrmR2

|* ...

-JJ5- j
{h- yydy + Er

-
j
y*{h-y)*dy

TrmR4
f\. .. , TumR2

f* . .. .

-5JT- J
(*
-

y) dy + -#r- J
(*v - 2/^ + y

4)^

TrmR4
fc
5 TrmR2 #>

4/i4 *~5
+

h?
*
30

TrmR2
ft
(RJ

m
10 I 2

+
3 1

_8_

10
M {T +

3J

131. The Sphere. Considering an elementary slice of thickness

%, situated at a distance y from a horizontal plane passing

through the centre of the sphere.
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If x is the radius of this slice,

Then x - VR2
y
2 where R is the radius of the sphere.

Mass of the slice = izmx2
$y.

Moment of inertia of the slice about the axis OY = - nmx* dy2

Fig. 72,

For the whole sphere IOY = -
1 x4

2 J-r
dy

izm

~2~[r*2/-?RV+^
5

]

7cm 16R5

2
X

15

= TzmR5

15

2= -MR2
,
where M is the mass

5

of the sphere.

If the sphere is hollow, R 2 and R x being the external and in-

ternal radii respectively. The moment of inertia can be taken
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as the difference between the moments of inertia of the external

and internal spheres.

i = |m r
2 - |m r

2

UY 522 5 i i

Examples XVI

(1) A rectangular lamina 5 ft. x 7 ft. is immersed in water with
its plane vertical and the smaller edge horizontal

; the centroid

of the lamina is 12 ft. below the surface of the water. Find the

depth of the centre of pressure.

(2) A circular lamina, 3 ft. radius, is immersed in water with
its plane vertical and its centre 7 ft. below the surface of the
water. Find the depth of the centre of pressure.

(3) Find the moment of inertia of a trapezium whose parallel
sides are a and b respectively and whose height is h*

(1) About the side b

(2) About an axis parallel to the side b and passing
through the centroid.

(4) A trapezoidal lamina whose parallel sides are 8 ft. and 5 ft.

respectively and whose height is 6 ft. is immersed in water with
its plane vertical and its parallel sides horizontal. The larger of

the two parallel sides is situated at a depth of 10 ft. below the
surface of the water. Find the depth of the centre of pressure
when the smaller of the two parallel sides is situated (1) below the

larger, and (2) above the larger.

(5) Find the moments of inertia of the section, Fig. 73, No. 1,
about axes parallel to OX and OY respectively and passing
through the centroid.

(6) Find the greatest and least moments of inertia of the

section, Fig. 73, No. 2.

(7) Find the principal moments of inertia of the section, Fig. 73,
No. 3, and find the lengths of the major and minor axes of the
momental ellipse.

(8) Find the greatest and least moments of inertia of the

section, Fig. 73, No. 4, and then find the moment of inertia about
an axis which passes through the centroid and makes an angle
of 30 with the side AB.

(9) Find the greatest and least radii of gyration of the section,

Fig. 73, No. 5.

(10) Find the moments of inertia of the section, Fig. 73, No. 6,

about the axes OX and OY, and hence find the moments of

inertia about axes parallel to OX and OY respectively and passing
through the centroid. (The full depth is 6".)

(11) Find the moment of inertia of the section, Fig. 73, No. 7,

about the side AB, and hence find the moment of inertia about
an axis parallel to AB and passing through the centroid.
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F=T
r
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(12) Find the greatest and least radii of gyration of the section,

Fig. 73, No. 8.

(13) Find the principal moments of inertia of the section,

Fig. 73, No. 9, and find the lengths of the major and minor axes

of the momenta! ellipse.

(14) Find the moment of inertia of the section, Fig. 73, No. 1,

about an axis passing through the centroid and making an angle
of 45 with OX.

(15) A circular lamina of mass 5 lbs. and radius 5 ft. rotates

uniformly about an axis perpendicular to its plane and just

touching its circumference. Find the kinetic energy of rotation

if the lamina makes 50 revolutions per minute.

(16) If the lamina in Question 15 rotates uniformly about a

tangent and makes 50 revolutions per minute, what will be the

kinetic energy of rotation ?

(17) Find the radius of gyration, about an axis passing through
the centre and perpendicular to its plane, of a circular lamina
of radius a, when the density d is such that d= kx where k is

a constant and x is the distance from the centre.

(18) In Question 17, if d = k(a x) where x is the distance from
the centre, what will be the radius of gyration about the same
axis ?

(19) Find the moment of inertia of the rustum of a cone about

its axis, the height being 8 inches, radius of the top 3 inches,
and the radius of the bottom 5 inches. A cubic inch of the material

weighs 0-26 lb.

(20) ABCDE is a figure made up of a square ABCD, 5 inches

side, and an equilateral triangle ADE, 5 inches side, the vertex,

E, of the triangle lying outside the square. Find the greatest
and least moments of inertia of the figure, and hence find the

moment of inertia about BD, the diagonal of the square.

(21) If I is the moment of inertia of an area about a straight
line in the same plane passing through its centre, and I is its

moment of inertia about a parallel line in the plane, there is a
rule which enables us to calculate I if we know I . Prove the

rule : If for a circle I is r4 , what is I about a tangent to the

circle ? (B. of E., 1913.)



CHAPTER XVII

132. The work of this chapter will be devoted to the considera-

tion of areas, centroids, and moments of inertia of irregular figures.

The Trapezoidal Rule. Let the base line be divided into a
certain number of equal parts and ordinates erected to the curve
from the points of division. The area is thus divided into a

number of strips of equal breadth, and for n strips there will be

n-{- 1 ordinates (Fig. 74).

v, \ ys h
i i i i

t t t I t t

I I

i
!u

Fig. 74.

Let these ordinates be denoted by ylt y2 , y3 . . . yn+1
Let h be the breadth of a strip.

Considering the first strip, an enlarged view of the upper portion
of which is shown in Fig. 75

; by drawing the chord AB the strip

may be approximately taken as a trapezium, the area of which

is
2(2/1

+ 2/2)

If the other strips are taken in the same way, the whole area

will be approximately equal to the sum of all these trapeziums.

Area =
-(yx + y2) + -(y> + y3) + -(y3 + ft) + . . .

^(yn
+ yn+1 )

-
o{(2/i + 2/+i) + 2(?/2 + 2/3+2/4+ - 2/)}

= -{A+2B}
where A = sum of the first and last ordinates

and B = sum of the remaining ordinates.
247

(1)
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133. The Mid-ordinate Rule. If the mid-ordinate is drawn

meeting the curve at C (see Fig. 75), and the tangent ECF is drawn
to the curve at that point, the strip may then be taken approxi-

mately as a trapezium, the top side of which is the tangent ECF.
In this case the lengths of the parallel sides of the trapezium are

not known, but it is evident that the mid-ordinate is half the sum
of the parallel sides, and therefore the area of the strip is hy[
where y[ is the mid-ordinate. It should be noticed that this is

equivalent to taking the strip as being approximately a rectangle
the height of which is the mid-ordinate.

I

l
|H_.
i

Fig. 75.

If the other strips are treated in the same way, the whole area will

be approximately equal to the sum of all these equivalent rectangles.

Area%; + 0j+yJ+ . . . t/'n)

= breadth of strip x sum of the mid-ordinates ... (2)

For good work it is not safe to use these rules separately, but
it is better to take the mean of the results obtained by working
with each. The reason for this may be seen from a study of

Fig. 75. Using the trapezoidal rule for that strip will give a
value for the area in excess of the true value by an amount equal
to the area ACB. Using the mid-ordinate rule for the same

strip will give a value for the area which is less than the true
value by an amount equal to the sum of the areas AEC and BFC.
The errors thus involved are opposite in nature, and by taking
the mean of the two results there is the tendency for these errors

to neutralise each other.

134. Simpson's Rule for an Odd Number of Ordinates.

Let the base line be divided into an even number of parts and
the ordinates drawn to the curve from the points of division

(Fig. 76). The figure is thus divided into an even number of

strips of equal breadth.
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Let h be the breadth of a strip, 2n the number of strips, and

Vi> V2> 2/3 V2n> 2/2+i the ordinates.

Considering the first two strips, the ordinates for which are

y lt y2 ,
and yz . Let OX and OY, the axes of reference, be so

chosen that the ordinate y 2 coincides with the axis OY. There-

fore, with reference to ;hese axes the co-ordinates of the points

A, B, and C will be ( h, y^), (0, y2),
and (h, yz) respectively.

Let that part of the curve which passes through the points A,

B, and C be represented by the equation y = a + bx + ex2 where

a, b, and c are constants.

These constants can be expressed in terms of the ordinates.

For when x = h, y = yv and y x
= a bh+ ch2

when x = 0, y = y 2 ,
and y2

= a

when x = h, y = yz ,
and yz

= a + bh -f- ch2

Fig. 76.

Then *-
^{2/3-2/1}

and c
=^2(2/! -22/2+2/3}

Denoting the area of the first two strips by A lt

Then A^P y dx

rh

=
I (a + bx + ex2

)
dx

J -h

r 1 1 i h

= 2ah + I ch3
3

= 2%2+
g{2/l

- 22/2+2/3}

=
3{2/l+42/2+2/3}
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This gives the area of the first two strips in terms of the ordi-

nates y lt y 2 ,
and yz . Taking the other strips in pairs and treating

each pair in a similar manner,

Ai =
g&x + %2 + 2/3}

A 2 =g{t/3 + %4 + 2/5}

A3 =0(2/5 + 4
2/ + 2/7}

AK =g{y2n-i+42/2n +2/2n+1}

Hence total area

- A x + A, + A, . . . + An

= S {(yi + 2/2n+l) + 4(2/2 +2/4 + - 2/2n) + 2(1/3 + 2/5 + - ' 3/2-l)}

= -{A+4B+2C}o

where A = sum of the first and last ordinates

B = sum of the even ordinates

C - sum of the remaining odd ordinates.

It should be noticed that as this rule has been obtained by
adding the strips in pairs, it can only be used when the figure is

divided into an even number of strips and then there must be

an odd number of ordinates.

135. Simpson's Second Rule. There is no such general rule

that can be applied when the figure is divided into an odd number

Y
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Let three strips be taken together, and let the axes of reference

be so chosen that the axis of y comes midway between the ordi-

nates y 2 and y3 (Fig. 77).

The curve must pass through the four points A, B, C, and D,
and will be of the form y = a + bx + ex2 + dx* where a, b, c, and d

are constants.

3 9 27
Vi

= a- -bh +
jc/i

2 - dh3 . . (1)

yi
=
a-\bh+\clfi-\dh*

. . (2)

y3
= a+-bh+-ch2 +-dh* . . (3)

q q 97

y^a+^bh+^cW+^dh*. , (4)

and these equations can be solved for the constants.

3fc

dx

X =
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Hence A x
-

fc[
(- Vl + 9y 2 + 9y3

- y4) + JL(yi -y 2 -y3 + yj}

-jg^i+lSS/t+lfya+fyJ

=
-g-{2/l+%2+%3+2/4 }

If A 2 be the area of the next three strips,

A 3
=

-g-{2/7 +%8+%9+2/io}

and An
-

{t/3n_ 2 + Si/^ + 3y3n + y3n+1}

where 3n is the number of strips into which the figure has been
divided.

Hence Total area = A x + A2 + A3 + . . . A,

3/

8
-

IT* ft* + 2/3n+l) + %4 + 2/7 + ' '
2/3n+l) + %* + 2/3 + i/6

+ 2/6 + - 2/3 -i + 2/aJ}

- ^{A+8B+2C}o

where A = sum of the first and last ordinates

B - y* + 2/s + 2/5 + 2/6 + 2/sn-i + 2/3,

C =
2/*+ 2/7

+ 2/10+ 2/3 + i

This rule cannot be used in the same general manner as the first

rule, since from the nature of its formation, in taking three strips
at a time, the number of strips into which the figure is divided

must be a multiple of three.

In actual practice the result is too approximate if the figure is

divided into a number of strips less than 10, and for a number

greater than 10 Simpson's second rule only provides for the few
cases when the number of strips is 15, 21, 27, etc.

136. Tlie Prismoidal Rule. Simpson's first rule can be applied
to find the volume of the frustum of a pyramid or a cone, a wedge,
or to any solid in which the area of a section taken parallel to

the base is proportional to the square of the perpendicular dis-

tance of that section from the base.

Taking the case of the frustum of a rectangular pyramid of



THE PRISMOIDAL RULE 253

height h, the sides of the base being a and b. Let H be the height
of the imaginary vertex, and let k and I be the sides of the

rectangular section at a distance x from the base.

Then

also

k H - x . a .

I H - x
?

b .

_ = __, 0X1=^-*)
Thus the area of section = kl.

A = u-xy

If the curve connecting x and A is drawn between the limits

x = and # = h (Fig. 79), the area under this curve will give the
volume of the frustum, but the curve is a parabola, and as
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Simpson's rule is derived from such a curve, the rule can

applied by dividing the area into two strips of equal breadth.

h

be

The breadth of each strip is
2"

Let the ordinates be yv y 2 , and y3 .

Then The volume =
-(y 1 + 4y 2 + y3)

where y1
= area of the base

y3
= area of the top

y2
= area of the mid-section.

137. The Centroid. In dealing with a closed, irregular figure,
the figure can be enclosed in a rectangle and two adjacent sides

of this rectangle can be taken as the axes of reference. The

position of the centroid of the figure can then be determined with

respect to these axes.

Y
C
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Taking the second strip and treating it as a rectangle,

Area of the strip
= by 2

Distance of the centroid of the strip from OY -
m

Q
Moment of the strip about OY =

o^
2
2/2-

The whole area will be obtained by taking the sum of all these

strips.
A = %i + 2/2 +2/3+ yJ

The moment of the whole area will be obtained by taking the

sum of the moments of all these strips.

b2

=
"2(2/1

+ %2 +%+- (2n
-

l)yn }

If x is the perpendicular distance of the centroid from the

axis OY,

f _ MOY

J>_ Vi + 3y 2 + 5t/3 + . . (2n
-

l)yn

2
"

yx + y% + y + y*

If the area is made to rotate about the axis OY describing a

surface of revolution,

Voy = 2nkx
= 2n M0Y
= ti62 {y +Sy2 + 5y3 + . . . (2n-% ft }

Let the side OC be divided into n equal parts and the figure
divided into n strips of equal breadth by lines drawn through
the points of division, parallel to the axis OX. Let a be the

breadth of each strip, and x
lt

x 2 ,
x3 . . . xn the mid-ordinates

of the strips.

Then A = a(x1 + x2 + x3 4- . . . xn)

a2

Mox =
2 ^ + Sx* + 5x* + * * * (2n ~ ^^

If y is the perpendicular distance of the centroid from the

axis OX,
- Mox
y = -f-

a x
r + 3x2 + 5x3 4- . . . (2n l)xn

4 X-^ -\~ x 2 1
x 3 ~\~
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If the area is made to rotate about the axis OX describing a

surface of revolution,

Vox - 2ttA

= 2ttM0X
= iza2 {x1 + Sx 2 + 5xz + . . . (2n

-
l)xn }

138. The Moment of Inertia. Considering the figure (Fig. 80)
to be divided into vertical strips, each of breadth b, and yv y2 ,

2/3 Vn being the mid-ordinates of the strips.

Taking each strip as a rectangle,
Moment of inertia of the first strip about the axis OY = l lt

and Ii= i2%i+%ix Q
2

-b3
y1+ -b3

yi

/3&\21 /36\ :

For the second strip I 2
= b3y2 +by 2 x ( )

For the last strip In
= 1 Vy% + fo/n x

{
(2n " 1)6

}

2

1 (2n-l)2 M

The moment of inertia of the whole figure about the axis OY
will be obtained by taking the sum of the moments of inertia

of all these strips.

b3 b3
Ioy= 12 &i + 2/2 + t/3 + . */} + j {yx + 9y2 + 25y3

+ ...(2n-l)2t/n }

=
12
A+ 4 {2/l + 92/2+ 25^+ (2n-l)2t/n }

If the figure is divided into horizontal strips each of breadth

a, and x lt x 2 , x3 . . . xn are the mid-ordinates of the strips,

Then
CL
3

Q,
3

I x "
i2^Xl

+ ^2 + #3+ #n } + 4-^1 +9^2 +25aj3

+ . . . (2n-l)*.}

- ^ A +
i"^i

+ 9,r 2 + 25*3 + (2w
- 1)X}
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139. In dealing with irregular figures, the work is rendered much
simpler by adopting a tabular method of working, and this will

be seen by a consideration of the following example. The given

irregular figure (Fig. 81) is contained in a rectangle whose base

is 9 inches and height 6 inches. The figure is divided into 10

vertical strips each of breadth 0-9 inches, and 10 horizontal

strips each of breadth 0-6 inches. The mid-ordinates of these

strips have been measured, and are given in the tables below.

(1) Working with the vertical strips :

Vn
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(2) Working with horizontal strips :

*n
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Let the length of one of these strips be AB, the perpendicular
distance of this strip from the axis OX being y.

The area of the strip
= AB y

The moment of the strip about OX - AB?/ $y

Let QT be the projection of AB on LN and the lines PQ and
PT drawn cutting AB in A x and B x respectively.

Fig. 82.

Then if h is the height of the rectangle,

^ . .. . . . QT A^
By similar triangles -p

=

or

and

y QT = hAA
y AB = h AiBp

yAB$y=h A^ %
since AB = QT

Hence the moment of the strip about OX = ^A^ $y.

The moment of the irregular area about OX would be obtained

by taking the sum of the moments of all these strips,

and Mox = SAB y Sz/

- ASAjBi St/

Now SAjBj &/ is the area of the figure obtained by joining
all the points derived in the same manner as A x and B

x
for

different positions of the horizontal line AB between the limits

y = and y = h. This figure is spoken of as the
"

first derived

figure."
Then Mox = h x area of the first derived figure
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If y is the perpendicular distance of the centroid from the
axis OX,

Then y =
ârea

_ h x area of the first derived figure

area of the figure

Let RS be the projection of A 1B 1 on LN and the lines PR and
PS drawn cutting Ajl^ in A 2 and B 2 respectively.

By similar triangles -r- - 2 2

h y
Then h A 2B 2

- y RS
= y A^Bp since RS = A^

i/
2

= y AB, since y AB = h A^
and h2 A 2B 2

= y
2 AB

Hence h2 A 2
B

2 8y = AB if St/

But AB y
2
$y is the moment of inertia of the strip about

the axis OX. The moment of inertia of the irregular area about
OX would be obtained by taking the sum of the moments of

inertia of all these strips,

and Iox - SAB y
2
ty

- ft
22A 2B 2 hj

Now EA 2B 2 y is the area of the figure obtained by joining
all the points derived in the same manner as A 2 and B 2 for

different positions of the horizontal line AB between the limits

y = and y = h. This figure is spoken of as the
"
second de-

rived figure."

Then Iox = h2 x area of the second derived figure

If K is the point where the axis OY touches the boundary of

the irregular figure and vertical lines are drawn across the

figure, then by working with the projections of these lines on NM,
the other pair of derived figures can be obtained,

_ _ k x area of the first derived figure

area of the figure

I0Y
~ k2 x area of the second derived figure

when k = OM, the length of the rectangle.

141. Working with the irregular figure given in the previous

example, and let this figure be divided into 10 horizontal strips

of equal breadth and the mid-ordinate of each strip drawn.
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Find for each mid-ordinate the corresponding points on the de-

rived figures (Fig. 83), and in this way the corresponding mid-

ordinates of the derived figures can be found.

xn
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Breadth of strip - 0-9"

Area of figure
= 42-43 x 0-9 = 38-19 sq. in.

Area of first derived figure
= 20-75 x 0-9 = 18-67 sq. in.

Area of second derived figure
= 12-69 x 0-9 = 11-42 sq. in.

* =9X
3809

= 4-399 in.

Ioy
= 92 x 11-42

= 925-1 inch units

Examples XVII

(1) The following values of y and x being given, tabulate $y/$x
and y $x in each interval. If y &x be called SA, tabulate the
values of A if A is where x - 0. (B. of E., 1905.)

X
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(5) The following values of x and y give the co-ordinates of a

number of points on a curve. Plot the points and draw the curve.

x inches
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(11) In the figure of Question 9, take P as the point of contact of

the bounding line of the figure and the axis of x. Use this point to

draw the first and second derived figures. Find the areas of these

figures, and use your results to find (1) the height of the centroid

above the axis of x, (2) the moment of inertia about the axis of x.

(12) In the figure of Question 9, take Q as the point of contact of

the bounding line of the figure and the axis of y. Use this point to

draw the first and second derived figures. Find the areas of these

figures, and use your results to find (1) the distance of the centroid

from the axis of y, (2) the moment of inertia about the axis of y.

(13) Draw a circle of 3 inches radius, and let PT be a tangent
to the circle, P being the point of contact. Using this point P,
draw the first and second derived figures. Find the areas of these

figures, and use your results to find the height of the centroid

above the tangent PT, and the moment of inertia about that tan-

gent. Verify your results.

(14) The co-ordinates of five points A, B, C, D, and E are (1-5, 0),

(3-5, 0), (6, 3-5), (2, 6), and (0, 2-5) respectively, and these are the

five angular points of a polygon ABCDE. Plot the points and
draw the polygon. Let P be the mid-point of the side AB. Using
this point, draw the first and second derived figures, and find

their areas. Use your results to find the height of the centroid

of the polygon above the side AB and the moment of inertia about
the side AB.

(15) The top of a reservoir is a rectangle of sides 2a and 26,

the depth is h, and the sides are inclined to the horizontal at 45.
Prove that the volume contained by the reservoir is

(16) A wedge has a rectangular base 24 inches by 16 inches and
the height is 6 inches. The faces corresponding to the larger
sides of the base are inclined to the horizontal at 45, while those

corresponding to the smaller sides are inclined to the horizontal

at 60. Find the volume of the wedge.

(17) In Question 16, what would be the height of the wedge so

that the top surface becomes a straight line ? What is the length
of this edge and what is the volume of the resulting wedge ?

(18) The basis of Simpson's Rule is that if three successive

equidistant ordinates (distant h apart), ylf y2 , y3 , are drawn to

any curve, the three points may be taken as lying on the curve

y = a + bx + ex2 . Imagine y2 to be the axis of y, so that ( h, y ),

(0, y 2), and (h, y3) are the three points. Substitute these values

in the equation, and find a and c. Integrate a + bx + ex2 between
the limits h and h and divide by 2h. This gives the average
value of y. Express it in terms of ylf y 2 ,

and y3 . (B. of E., 1907.)
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142. Lengths of Curves. If P and Q are two points taken very
close together on a curve, the length of that part of the curve

between P and Q being $s. Then $s can be taken approximately
as the hypotenuse of a right-angled triangle, the base of which
is 8x and the perpendicular $y. The smaller x is made the more

nearly true does this approximation become, and it becomes

actually true when Sx is made infinitely small.

Then &?2 - &r2 + $y
2

r

;
and also

(|)

2

= 1 +
(g)*

In the limit when &z is made infinitely small,

Thus, to get s, the length of a certain portion of the curve,

the first of these expressions must be integrated with respect
to x between assigned limits, or the second expression must be

integrated with respect to y between assigned limits.

V-f dx

l

V
_

2

f
2

dyP
Example 1. Find the length of the arc of curve of y

2 - 8X3

between the limits x = 1 and x = 3.

8

y = 2V2arr

3^2-*

2G8

3V2x<
ax
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Then V 1 + (i)

2

= vrTT^
and

5=| \/l 4- IE do;

Let z - I + 18a?

dz = 18dx

1 f
55 *

and s = 1 2 2 dz
IS J 19

im
27l/

2

Jl9

= 1205

Example 2. Find the length of the arc of the curve y
2 = 8x

between the limits x = 2 and x = 4.

The limits for ?/ are y = 4 and /
= 4\/2.

w2

Now x = ^~o

da? _ t/

<&/ 4

2 M\/2

Then 5 = -
I yl6 + y

2
dy

Put y
2 = 16 sinh2

and Vl6 + y
2 = 4 cosh

dy = 4> cosh d0

Then 5=4
[cosh

2 d0

= 2 f(l + cosh 20) dd

= 2
[
6 +

\
Sinh 20

1

2
[
sinh

-
lf+ ^tl!]
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=
2[log

e

y + Vl6+ y
2

t
yVl6 + y*!*^

4

W2 +W3

T y+ V16+y yV16+yn
L

e 4 16 J 4

1
log

4 + 4V2 16\/6 16V2-I

4
+
~16 16~J

- 2 floir V2 + A/3
, 1

= 2(0-2648+ 10353}
= 2-6002

143. The Sag in a Telegraph Wire. Let 7 be the half span,
d the sag, and s the whole length of the wire, and suppose that
the resulting curve is a parabola whose equation is x2 - 4ay.

. -* I
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Hence s = 4>a I cosh2 d0

= 2af(l + cosh 20)d0

=
2a[~0

+
|
sinh

20~]

n r u 1
*

,

#W + 4a2
~]=2r^ g J

"l", + Vcc2 + 4a2 aVtf2 + 4a27" 2110^ 25
+

4a' J

r. I + VP + 4a2 Ja/P + 4a2
-|=

2a[log,
-+ jj J

- 2afloge {a + Va2Tl}+ aVa^Tl]

where
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This result can be obtained in quite a different manner. For
since the sag d is very small compared with the half-span I, the

dtj
curve is one of very small slope, and

-j-
is therefore very small

for any value of x between and I.

HenCe
I
1 + (S)T

- 1 + id/ approximately

Then

= 1 +w

and

21 +
12a2

d =
\V3ls

- e/2

144. yirms of Surfaces of Revolution. Let PQ be a small arc of
the curve of length $s, and this may be approximately taken as

a small chord of length 8s. (Fig. 86.)

Y
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QS, and the other whose slant side is CP and the radius of the
base is PR.

Area of
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and s-:f,d.

-JIM
7C r 3l 4V^

-e[(i+iO*J
71 3 3

= -{48^" -322}D

327T

3

79-36

{3V3 - 2V}

145. Let the whole arc of a curve be divided into a very large
number of small elementary arcs.

and

Fig. 87.

Let lv l 2 ,
l3 . . . be the lengths of these arcs,

#1, #2> *s .

their distances from the axis OY,

Vv Vi> Vd thdr distances from the axis OX (Fig. 87).

Let the whole area rotate about the axis OX and Sox be the
area of the surface of the resulting surface of revolution.

The elementary length lx will describe a surface of area 2Tzliyv
The elementary length Z2 will describe a surface of area 27zl$ 2 -

The total surface will be the sum of all these elementary
surfaces.

Hence Sox = 2n{l1y 1 + l$ 2 + l<& 3 . . . }

=
2izsy

where s is the whole length of the curve and y is the height of

the centroid of that length of curve above the axis OX.
If the whole area rotates about the axis OY, then

'oy 2izsx
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Example. To find the area of the curved surface of a spherical

cap of height h and radius of base r.

Let a be the radius of the sphere. The whole surface of the

sphere can be produced by the semicircle rotating about the

vertical diameter or the axis OY. The surface of the spherical

cap is produced by the arc AC rotating about the axis OY.

Choosing the centre of the circle as origin, the equation to the

circle is x2 + y
2 = a2

,
while the limits of y for the arc AC will

be y = a h and y = a.

Since

Then

and

x2 + y*

Now 'OY

2x+ 2y
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But

Hence

Then

146. The Cycloid.

PRACTICAL MATHEMATICS

r2 = a2
(a h)'

2h {r
2 +h2

}

Soy-^*+*>
-

7r(r2 + h2
)

Let a be the radius of the rolling circle.

Then OQ - arc PQ = a0

If x, y are the co-ordinates of P,

Then x = OQ - PR
= a sin

- a(0
- sin 0)

Also y = CQ - CR
= a a cos

- a(l
- cos 0)

The curve is evidently symmetrical about a vertical centre

line and for half the curve, the limits of are to 7t radians,

the limits of y are to 2a, and the limits of x are to iza.

Also
^=fl(l-COS0)

j( = a sin
do

dy
dx

sin

1 cos
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(a) To find the area.

Area =
li/ <io?

=
a(\

- cos 0) x a(l
- cos 0) d0

= a 2
\ (1-2 cos + cos2

20) d0

- a2

J *{l
- 2 cos + 1

(1 + cos
20)}d0

= a2r^_ 2 sin0+lsin20l
2

- 3to*2

(b) To find the volume of the surface of revolution generated
as the area rotates about the base.

vox =
7tl?/

2 ck

J

Off

a2
(l
- cos 0)

2 x a(l
- cos 0) d6

j
'(1

- 3 cos + 3 cos2 - cos3 0) d0

| |l-8cos0 + |(l+cos28)-|(cos8e + 8cos0)jd0

- 3
f'(s - cos + 2 cos 20 - \ cos 30)^0
Jo 12 4 2 4 J

. wfl3 2 _ f sin + sin 2 - -L sin 30
l_2 4 4 12 J

= 5iz
2a?

(c) To find the height of the centroid of the cycloidal area

above the base.

By symmetry the centroid is evidently situated in the vertical

centre line. Let y be the height.

Then Vox =
2iz\y

*-M
57z2a3

= iza3

= iza3

2tz 3na2

5a

~6
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(d) To find the length of the cycloidal curve,

dy _ sin

dx 1 cos

i + ftft'-n
sin2e

(1
- COS 0)

2

2(1
- cos 6)

(1
- cos 0)

2

2

V--
(
T3

1 cos

A/2_
I

COS0)

Now 5- IV 1 -f (

y

^-\dx

paq-ccfl)^J (1- cosO)*

=
\/2af(l-cos0)*d0

Jo

=
2a\ sin?d0

Jo 2

- -4c s

If
= 4a {cos 7r cos 0}

= 8a

(e) To find the area of the surface of revolution generated as

the curve rotates about the base.

V-' i

(1
- cos 0)'

-
2n\ a(l

- cos 0) x . x a(l
- cos 0)d0

Jo
(1
- cos 0)*

= 2\/27ra2

|
(1
- cos 6)* d0

"J>
I sin3 5 rfl

'o
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16tu 2
cos-* - COS

= 167m2

B< i)-(-i-i)]

- 16Tia2
(2
-

Z)
\ d/

_ 647ca2

3~~

(/) To find the height of the centroid of the cycloidal curve

above the base.

By symmetry, the centroid is evidently situated in the vertical

centre line. Let yc
be the height.

Then Sox = Bicaft

Jc
2tzs

647TA2

48tui

_ 4ct

147. Polar Co-ordinates. If P is a point whose rectangular
co-ordinates are x, y, its position with respect to the axes

of reference can also be determined by means of a distance r

measured from the origin along a radial line which is inclined to

the axis OX at an angle 0. r and are spoken of as the polar
co-ordinates of the point. (Fig. 90.)

The relations between the rectangular and polar co-ordinates

can be very easily determined.
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For

also

x = r cos 0, and y = r sin

#2
+2/

2

These relations can be used to transform the equation of a

curve from one system to the other.

For example, the equation of a parabola in rectangular co-

ordinates is y
2 = 4>ax.

Then r2 sin2 = 4>ar cos

cos
\<i

sin2

8a cos

28COS

148. The Area of a Curve in Polar Co-ordinates. Let P and Q
be two points on a curve, taken very close together. (Fig. 91.)

T T

Fig. 91,

The polar co-ordinates of P being r, 0, and of Q (r + Sr), (0 + 80).

Let PR be drawn perpendicular to OQ. Then if 80 is small

the following relations are approximately true,
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The area of the sector OAB (working with X and 2 as the

limits for 0) will be the sum of the areas of all these elementary
sectors.

Area of sector AOB = > - r2 S0
0,

r.\

-if"
dQ

when S0 is made infinitely small.

Tojind the length of the curve.

For a very small arc PQ

PQ2 = QR2 + PR2

That is 8s2 - Sr2 + r2 802

V'Then _ = ^_) +r2

When becomes infinitely small,

>\2
or s-vms

Hence to get s, the length of a certain part of the curve, the

first expression must be integrated with respect to and the

second with respect tor; in each case the integration being taken
between given limits,

fe

2

0i

l)
'

or s =

J\M8f*
149. Example 1. To find the area and the length of the

cardioid, the equation of which is r = a(l cos 0).
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To draw the curve, give some well-known values and calculate

the corresponding values of r.
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Length-frf^

283

dQ

=
2V2af(l

- cos 6)2 ffi

=
4a| sin - d0

Jo *

r e>= 8a cos -

= 8a \ cos - cos

= 8a

150. Example 2. Transform the equation x3 + y
3 = Sxy into

polar co-ordinates, and then find the area of the loop.

x3 + y
3 = Sxy

r3 cos3 + r3 sin3 = 3r2 sin cos

3 sin cos
Then

sin3 + cos3

Now r = when has the values and -, and so the loop

evidently occurs between these values of 0.

To draw the loop, give some intermediate values and calculate

the corresponding values of r.
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Area - i
fV

2 ^0
-Jo

-if.

sin2 cos2 dQ

(sin
3 + cos3 0)

2

"S sin2 cos2 dQ

cos6 /sin3 y

9 f5 tan 2 sec2 dQ9f:

(tan
3 + l)

2

Putting x = tan

Then dx - sec2 dd

d
ftan 2 sec2 d0 _ f a2 dx

J (tan
3
0+l) 2

-J(^+i)2
Putting x3 + 1 -

t/

Then
<fy

-.= 3#2 ^
and

f f
*

-If*
J (*+!)* 3L2

Hence area = -
2 L 3(tan3 + 1)J

8(a* + 1)

1

3(tan
3
0+1)

3(tan
3 + 1)1

so-.]

Examples XVIII

(1) Find the length of the curve y - i(e* + <-*) between m -

and a; - -.

(2) Find the area of the surface of revolution produced by that

1

2
part of the curve y = -{? + e-*) between x - and x - i

rotating

about the axis of x.
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(3) Find the length of the curve y
2 = 4>x between x = and

*-l.
(4) Find the area of the surface of revolution produced by that

part of the curve y
2 = 4<x between x = and x = 1, rotating about

the axis of x.

(5) Use the results of Questions 3 and 4 to find the height
of the centroid of the arc of the parabola y

2 = 4>x between x =

and x = 1 above the axis of x.

(6) Find the height of the centroid of a semicircular arc of

radius a above the diameter.

(7) Find the length of the curve y
2 = 9x3 between x 1 and

x=2.

(8) Find the length of the curve xz + y
3 4 between # =

and # = 8.

(9) Find the area of the surface of revolution produced by

that part of the curve or + y* = 4 between x = and # = 8,

rotating about the axis of x. What is the height of the centroid

of this part of the curve above the axis of x ?

(10) Find the length of that part of the curve y = 2x x2

between x = and x 1.

(11) Find the length of that part of the curve y =
loge x between

x = 1 and x = 2.

(12) Express the equations of the following curves in polar
co-ordinates :

/r
3

(2) x2
y
2 = a\x

2 -
y
2
)

(3) V = *4
(a

2 - x2
)

(13) Trace the curve r2 = 16 sin2 0+25 cos2
0, and find the area

enclosed by it.

(14) Transform the equation of the curve (x
2 + y

2
)

2 - 9(x
2

y
2
)

into polar co-ordinates. Trace the curve, and find the area of

a loop.

(15) Trace each of the following curves between = and
0=2tt:

(1) r0 = 4

(2) r$ - 4

(3) r02 = 4

For each curve find the area of a sector between = and = tt.
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151. When a beam is subjected to some system of loading, the

beam is slightly bent out of its horizontal position. The bending
action depends upon the extent, the character, and the position
of the loads, and also this bending action varies at different

sections of the beam. If A is the section of a beam (Fig. 94)
situated at a distance x from the point of support, and R is the

reaction of the support, then all the forces to the right of A help
to produce the bending action at A.
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If R x and R 2 are the reactions at the supports

Then 30R 2^ 5 x 25 + 10 x 15 -f 7-5 x 5 <-

R, 10 tons
12

Also 30R X
= 7-5 x 25 + 10 x 15 + 5 x 5

*
Rl = 12

12
t0nS

ton. )>er ft rum I tdH>er-fc Km.~ <%t:<S>tfcer ft mii*u.rv-*J^A
i

Fig. 95.

(1) Considering a section situated between A and B at a dis-

tance x feet from the end. The forces acting to the right of this

section are :

(a) R. 10 tons vertically upwards at a distance x ft.
12x x

(b)
- tons acting vertically downwards at a distance - ft. from
-

- 2

the section.

125 x2

Bending moment -
-7s-# t ft. tons, and this expression can

only be used when x has values between and 10 ft.

(2) Considering a section situated between B and C at a dis-

tance x feet from the end. The forces acting to the right of this

section are :

5
(a) R 2

- 10 tons acting vertically upwards at a distance x ft.

(b) 3 tons acting vertically downwards at a distance (x 5) ft.

(c) (x 10) tons acting vertically downwards at a distance

> 10) ft.

Bending moment
125

"l2~
5(x

-
5)
- -

(x 10)
2

ft. tons and

this expression can only be used when x has values between
10 ft. and 20 ft.



288 PRACTICAL MATHEMATICS

(3) Considering a section between C and D situated at a dis-

tance x ft. from the end. The forces acting to the right
of this section are :

5
(a) Ra

= 10 tons acting vertically upwards at a distance x ft.

(b) 5 tons acting vertically downwards at a distance (x 5) ft.

(c) 10 tons acting vertically downwards at a distance (x 15) ft.

g
(d) 7 (# 20) tons acting vertically downwards at a distance

1(0-20) ft.

Bending moment = - x - 5(x 5)
-

10(#
-

15)
- -

(x
-

20)
2
ft.

12 8

tons, and this expression can only be used when x has values

between 20 ft. and 30 ft.

Taking these three expressions for the bending moment and

giving x values suitable to each, values of the bending moment
can be calculated for different sections of the beam.

Between A and B.
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Example 2. A beam 30 ft. long, supported at the ends, carries

a load which increases uniformly from at one end to 1 ton at

the other end. Find the expression for the bending moment at

any section and draw the bending moment diagram. What is

the greatest bending moment and where does it occur ?

The total load on the beam is given by the area of the

load diagram ABC and it acts at the centroid of that diagram.
Hence the total load is 15 tons acting at a distance of 10 ft.

from B.

The reactions of the supports are evidently

and

5 tons at A
10 tons at B

Considering a section D of the beam situated at a distance

x ft. from A.

The forces acting on that part of the beam to the left of

D are :

(a) R x
= 5 tons acting vertically upwards at a distance x ft.

(b) That part of the load, the magnitude of which is given by
the area of the load diagram ADE ;

this acts vertically
downwards through the centroid of the area ADE. Hence

x2

the magnitude of this force is tons and the distance

from D is - ft.
o

Xs

Bending moment = 5x - ft. tons.
180
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If x be given any value between and 30 ft. the value of the

bending moment at any section can be calculated :

xft
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algebraic sum of the moments of all the external forces acting
on that portion of the beam to the right, or to the left, of that
section. The moment of resistance is the algebraic sum of the
moments of all the induced tensile and compressive stresses,

taken about the neutral axis.

153. Let Fig. 97 represent a portion of a bent beam, so taken
that the form assumed is a circular arc of radius equal to the
radius of curvature. C is the centre of curvature.

Fig. 97-

The top part of the beam is in tension and the lower part is

in compression, while there is one surface in an unstrained con-

dition, known as the Neutral Surface. The intersection of the

neutral surface with a certain section of the beam gives the neutral

axis of that section.

Let ab be a fibre situated at a distance y from the neutral

surface. This fibre is in a strained condition, and

The strain in ab
increase in length

original length

bc_

ac

be
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But the figures bch and ghc are similar,

Hence
be he y

Then the strain in ab = where R is the radius of curvature

measured from the neutral surface.

But stress = E x strain, where E is Young's Modulus,

Then

or

Stress in ab = E ~

Neutral ^xls 1.

Fig. 98.

Let AB (Fig. 98) be any section of a beam, and considering a
thin horizontal strip of that section, the breadth of the strip

being $y, the length of the strip z, and y the height above the

neutral axis,

Then Stress at height y E R
Total force on the strip

- Stress x Area

where 5*A = z y = Area of the strip.

Total force acting on the whole section = ^ y 8A

E A-=
R Ay
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where y is the height of the centroid of the area above the neutral

axis and A is the whole area.

But since a plane section always remains plane, the total force

acting on that section must be zero, or the resultant pull must
be equal to the resultant thrust.

E
Hence ^ Ay -

or y =

Therefore the neutral axis must pass through the centroid of the

section.

Referring again to the elementary strip,

Total force on the strip
= E

-^
z y

= e|sa
E

Moment of this force about the neutral axis = ^ y
2 SA

JLV

The moment of resistance for the whole section - ~ ^ y
2 SA

I-
where I is the moment of inertia of the section about the neutral

axis.

Now the moment of resistance = Bending moment,
E

Hence M = I

M E
T

=
R

Also, since R is the radius of curvature and the slope of the

beam is very small, ^ ^y

Then M=Elg
In general, for any section of a loaded beam, if

I = moment of inertia of the section about the neutral axis

M = bending moment at the section

E = Young's Modulus for the material

R = radius of curvature at the section

p = stress induced in the strained fibre

y = distance of that strained fibre from the neutral axis
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Then

and also

PRACTICAL MATHEMATICS

M E _p
I ~R~y

-8
154. The Deflection of Beams. (1) A cantilever of length I ft.

carrying a load W tons at one end.

Fig. 99,

Let A be a section situated at a distance x ft. from the fixed

end.

Bending moment at A = W(Z x) ft. tons.

Hence EI
^|

== W(Z -<r)

EI
\\

= W
(
fa " h

2

)
+ C nSt

du
But at O, where x = 0, -j-

= 0, since at that point the direction

of the beam is horizontal. Therefore Const = 0.

and Ely =
wQte

2 -
gr

8

)
+ Const

But at O, where x = 0, y = 0. Hence Const =

Then , = g(^
2

_^)
W
6EI(3^

2 - x3
)

This gives the deflection at any point distant x it. from the

fixed end. The deflection is evidently greatest when x = /.

_ WZ_
3

Vmax
~
3Ej

Then
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155. (2) A cantilever of length I carrying a uniformly distributed

load of w tons per foot run.

Fig. ioo.

Let A be a section situated at a distance x ft. from the fixed

end. The load on the portion of the cantilever to the right of A

is w(l x) tons, and this acts at a distance of -(I
-

x) ft. from A.

w
Bending moment at A =

(I x)
2

ft. tons.
J*

Hence

and

W 2
(EI5f2 = (/
2 -2Z*+^)

EI^ = -(l
2x -lx2 + V) + Const

ax 2\ 3 /

dyBut at O, where x = 0,
- = 0. Then Const =
ax

B*. -ft*-*+*)dx 2\
L

Then EI</ -
|(|

l
2x2 - 1 lx3 +

-^
A + Const

But at O, where x = 0, y - 0, Then Const -

and v-shilM-lv+i*}
W

24EI {GPx
2 -4/^ + x*}

This gives the deflection at any point distant x feet from the

fixed end. The deflection is evidently greatest when x = I.

wl*
Then y^ -

-^j

~8EI

where W = wl, the total load on the cantilever.
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156. (3) A beam of length I ft. supported at both ends and

carrying a concentrated load W tons at the middle.

-x-

i

a-x- h

O
Fig. ioi.

The reaction at each support is -W tons.
A

Let the centre of the beam be the origin, and let a be the length
of the half span.

Let A be a section situated at a distance x ft. from O.

W

Hence

and

Bending moment at A = -
(a x) ft. tons

WT <Pu w,

EI 2=T(^-^) +Const

dyBut at O, where x - 0, -j-
= 0. Then Const =

^ T dy W / 1 A
EI ? - (aa:--xt

)
dx 2 \ 2 /

Then Ely y Q oa:
2 - 1

a)
+ Const

But at O, where x = 0, y = 0. Then Const =

and y-m&^-l*)
w

(3oo;
2 -

a?)12EI

This gives the value of y for any point distant x ft. from the

centre, and y is greatest when x = a.

TO
Vmax

-
6Ej

=
i8ET

since "=2
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This also gives the maximum value of the deflection.

In order to obtain S, the deflection at any point,

Wo3 W
6EI

=7^-^t(3^2 -*3
)12EI

W=
12EI {2a3

~ to2 + *3}

157. (4) A beam of length I ft. supported at both ends and

carrying a uniformly distributed load of w tons per foot run.

laj(cl-oc)

1 1
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But at O, where x = 0, y - 0. Then Const =

-am*6"*-*4
)

This gives the value of y for any point distant x feet from the

centre, and y is greatest when x = a.

5wa*

24EI

5w>Z4 I
since a

Umax

384EF 2

5WP
"
384EI

where W = wl tons, the total load on the beam.
This also gives the maximum value of the deflection.

In order to obtain S, the deflection at any point,

& - y~* - y
5wa* w=
24Ei-2lEI^

2-^
=
2^i(5a

4 -6a^2 + -r4
)

158. (5) A beam of length / ft, fixed at both ends, carrying a
concentrated load W tons at the middle.

The effect of keeping each end horizontal is the same as applying
at each end a couple of magnitude u, which acts in a clockwise

direction. Also, since at the ends and at the centre the direction

of the beam is horizontal at these points, -r- = 0.r ax

W
The vertical reaction at each point of fixing is - tons.

Let a = the half span, and let the centre of the beam be taken
as the origin.

Let A be a section situated at a distance x ft. from O.

W
Bending moment at A = -(a - x) u ft. tons

2

2<-*)
Hence EI^ = ^(

da? 2
v

du W / 1 \
and EI

-^
= - ( ax - -x2

\ - ux + Const
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But at O, where x - 0, -^ = 0. Then Const =
ax

VJ dy W/ 1 A
ax 2 \ 2 /

At the end, that is, where x = a, -r =

and

or

W/
2 (.-ia.)

wa =

Wa

a-jc-H

BM diagram

Fig. 103.

This gives the actual magnitude of the fixing couple

and YA^ = ^-(aw- \x2
) -\waxdx 2 \ 2/4

W
-r-{ax cc

2
)

Then my = W/l
4 \2~~

ax' w 4- Const

But at O, where a; = 0, t/
= 0. Then Const =

W /l
and ^ = 4-EiG^

2

-^)
W

24EI (Sax
2 - 2X3

)
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This gives the value of y for any point distant x feet from the

centre, and y is greatest when x = a.

W

Wa3

24EI

WZ3
I

since a = -
192EF 2

This also gives the maximum value of the deflection.

In order to obtain 8, the deflection at any point,

8 =
Vmax

~
V

W/z3 W
24EI _ 1 1 . 1

w
Since the bending moment at any point is -(a x) u and

Wa
u =

4

Then M =
-(a x)

= T(a-2x)

Thus when x = a, M = -Wa
;
when x = 0, M = -Wa ; and

4 4

when x = -, M = 0.
it

Therefore the bending moment increases uniformly from -Wa

at the point of fixing to + -Wc at the centre of the beam, and
4

at a point half-way it vanishes.

159. (6) A beam of length I feet fixed at both ends, carrying
a uniformly distributed load of w tons per foot run.

The effect of keeping each end horizontal is the same as applying
at each end a couple of magnitude u, which acts in a clockwise

direction. Also, since at the ends and at the centre the direction

of the beam is horizontal, at these points
~ = 0.

The vertical reaction at each point of fixing is wa tons, where a
is the length of the half span.
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Let the centre of the beam be taken as the origin, and let A
be a section situated at a distance x ft. from O. The portion of

the load on that part of the beam to the right of A is w(a x)

tons.

Bending moment at A = wa(a x) 5 iv(a x)
2 u

a
(a

2 x2
)

u ft. tons
2

^0-577(1
--

BM diagram

Fig. 104,

Hence

and dy w
El|j[

-
(a*

- I*8

)
- w* + Const

<fyBut at O, where x = 0, -/ - 0. Then Const =

ete 2 V 3 /
ux

Qfll

At the end, that is, where x = a,
~ =

and SO"-**) ua =

or m
M)fl^
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This gives the actual magnitude of the fixing couple,

and EI^ = (*r-V)-ldx 2 \ 3/3 zva'x

IB

-g(a
2x-x*)

Then Yly =
^ (g

a2*2 -
\ <A + Const

But at O, where # = 0, y = 0. Then Const =

and y.^gaw-^)

This gives the value of y for any point distant x feet from the

centre, and y is greatest when x = a.

w
y ==

2iEll2a4
"

a4)

zoa4
"
24EI

rcZ4 /
since a = -

384EF

384EI

where W = wl, the total load on the beam.
This also gives the maximum value of the deflection.

In order to obtain S, the deflection at any point,

* = Vmax
~
y

WCL* W

Since the bending moment at any point is -{a
2 x2

)
u and

wa2

u ~

Then M = IV_*S) _^!2 o
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Thus when x = a, M = WCl'
when x = 0, M wa<

and

when x = -m = 0-577a, M = 0.

V3
Therefore the bending moment curve is a parabola, and the

bending moment increases from - at the point of fixing to
o

zva?
+ - at the centre of the beam, while at a point situated at a

6

distance 0577a from the centre of the beam the bending moment
vanishes.

160. Let A and B be two sections of a beam taken very close

together (Fig. 105), $x being the distance between these sections

and w x the load on this elementary length of the beam.

ujEx

Tp-Mop
8m

_E

-<5xi -

Fig. 105.

Let M be the bending moment at A and M + SM the bending
moment at B. Also F is the shearing force at A.

Taking moments about O,

M+SM M + F&z--w&c2

2

or SM = F %x

taking w Sr2 to be negligibly small in comparison with F $x.

When $x is made infinitely small,

ax

that is, the shearing force at a section is the rate at which the

bending moment is changing with respect to the length.

161. Let CD and C
1
D

1 be two sections of a beam, &r apart

(Fig. 106), the bending moment at CD being M, and at CjDj^
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M + SM. Considering a fibre situated at a distance y from the

neutral axis, z being the breadth of this fibre.

1

--
zj

*
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situated at a distance y x from the neutral surface (Fig. 106
(2))

is acted upon by two horizontal forces.

Ri

R,

T X Vz ^y acting from right to left, and

"f / VZ ^V acting from left to right.

The result is a horizontal force R x R 2 , tending to make this

portion of the beam slide over the horizontal surface which is

situated at a distance y x
from the neutral axis. This tendency

to slide is resisted by the shearing action at that surface, and if

q is the intensity of the shearing stress there,

Then gz to = R x R 2

= tA yz %

When y is made infinitely small,

sm in
to IzX^

dy

When to is made infinitely small,

(M

"
l2lJ Vl

yzdy

where F - -r-, the shearing force at the section.

Example 1. A beam of circular section, to investigate the distri-

bution of shear stress over a section at which the shearing force is F.

Fig. 107.
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Now

Then
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z
1
= 2R cos X

yx
= R sin X

z = 2R cos

y = R sin

eft/
= R cos d0

-

[

'

cos2 sin d0
FR2

I cos

FR2

Icos0-i-^ ]

cos3 01 2

FR2 cos3
X

I cos X
3

FR2

=
-gj-

COS* 9,

31 V R2/

; l-fi 1 since I =
\ R2y 43ttR2

Taking a circle of 3 inches radius and calculating the values

of q corresponding to horizontal sections situated at distances

0, \", \"> etc., from the centre.

4F / v
2
\

For any section q
= -

I 1 _i_ )

4F
where A; = - -

27tz

2/i
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Example 2. A beam of rectangular section, depth b, breadth a.

To investigate the distribution of shear stress over a section at

which the shearing force is F.

r- a!

Now

and

Fig. 108.

Z = Zj

F r
3

lJv,

Zf 2

*/<&/

?1>*

inci
1

I[_2

21 V 4 V
6F/&2 2\= -tt( -: V )> since I
ab3 \ 4 y i/ 12

Taking a rectangle 6 inches deep and 3 inches in width and

calculating the values of q at horizontal sections situated at

distances 0, \" , V', etc., from the neutral axis.
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6F
For any section q

=
-75 (9

6F
kp-yj. wherefc =

jp

2/1
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Then Ri = ^TV S2/

These two horizontal forces R
x
and R 2 acting in opposite direc-

tions on the parts of the sections C
1
D 1 and CD above A

1
B

1 and
AB respectively, are equivalent to a single horizontal force

Rj R 2 acting in the direction of R x . This will tend to make
the portion of the beam under consideration (Fig. 106 (2)) slide

over the surface ABB^j. If q is the intensity of the shear

stress at that surface

Then
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Example 1. To investigate the distribution of shear stress

over the given section.

r
1__4J_J
b"

Shear Stress_
Dlaomm

Fig, 109.

(1) For the flange, let q be the shear stress at a distance y
from the neutral axis.

Then

and

AS-
B(2-j,) *!(+!,)

F B/D* x

=
IB

X 2VT- y
J

F /D*
2
\

D
and this relation will only hold for values of y between and

d , D , ,

-, when y =
, q =- 0, and when ?/

- - 2' (--*>

(2) For the web let q be the shear stress at a distance y from

the neutral axis.

Then A}-5(D-j)xi(D + j)
+ ^-,)!g+ ,)

and 9 =
FA
1*1
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-0-*>+l(?-*)}

and this relation will only hold for values of y between - and 0.

Wfcay-f-jgxJ(IP-)
F R FflP

and when
2/
- 0, q

= x - (D
2 - d2

) + -^r-81 01

FrB
-si{b^- d^ + d

'}

It should be noticed that, in passing from the flange to the

F
web, the shear stress increases suddenly from --= (D

2 d2
)
to

81

FB
816 (D

2 d2
) ,

and a consideration of the shear stress diagram

for this section will show that the web practically takes all the

shear.

Example 2. To investigate the distribution of shear stress

over a square section in which the diagonal is horizontal.

Fig. 1 10.

Let 2d be the length of the diagonal, and let q be the shear

stress at AB, at distance y from the diagonal.

Then AB - 2(d
-

y)

Area of the triangle ABC -
(d y)

2
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and y = y + s(d-y)

Hence

=
3(^+22/)

FAy

F (d-y)*(d+2fi
3 21 (d

-
y)

=
^(d-y)(d+2y)

Hence q = when t/
= d and when ?/

= -
;
and q is greatest

when d2 + dy 2y
2

is greatest.

Differentiating this with respect to y and equating the result

to zero,

d - \y =

or
1 .

The maximum value oi a = -=r x - x -r-
61 4 4

9Fd2

and at the centre

321

F^2
61

163. Tzvisting Moment. Let a cylinder of length I and radius r

be fixed at one end and a twisting moment T applied at the other
end. Let AB be the position of a generator of the cylinder before

Fig. hi.

the twisting moment has been applied. If is the angle of twist,
the point A moves to the position C, and the generator AB takes

up the position CB on the surface of the cylinder (Fig. 111).
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AC
Now Shear strain = -pp.AB

= tan 9
=

9, if 9 is a small angle.

Thus 9 radians measures the shear strain at the surface of the

cylinder.
Also AC -

ty
= r0

r6
and 9 = y

But shear stress = Nx shear strain where N is the modulus of

rigidity.

Then /,
= N9
N0= r

wherefs
is the shear stress at the surface of the cylinder.

Let q be the intensity of the shear stress at a point in the

cylinder whose radial distance is x.

Then q = r- x

r
Js

Let this shear stress take place over an elementary ring of

width &r, situated at a radial distance x.

Area of elementary ring - 2n:x $x

Total shearing force =
q x area

= 5f
/, x* Zx

r
J *

The moment of this force about the axis of the cylinder

r
j8

Hence T = twisting moment - /J x* dx
f Jo

=
T7;cPf8 where d is the diameter.
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If I is the moment of inertia of the circular section about the
axis of the cylinder,

Then I = 2

7TT3

and T=^-/s

-hi-

Now e -
r̂

NrJ*

I 2T

2ZT

Nr nr3

tiNV
radians

=
*tt radians
NI

Let the cylinder be hollow, and let rx and rt be the internal

and external radii respectively.

Tnen - T f* \ a? dx

where d2 and d
1
are the external and internal diameters respec-

tively.
If I is the moment of inertia of the section about the axis of

the cylinder,

Then I_*(r _ r
J)
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Nr/S

I 2rT
Nr2 7r(r-*

-
r*)

2ZT
radians

=
=^=r radiansNI

If a shaft is making n revolutions per minute, and H is the

horse-power transmitted,

Th6n H=
12x33000

TrnT

6 x 33000

where T is the twisting moment or torque in inch pounds.

rp 6x33000H. un%Also T inch lb.
nn

and these two relations can be combined with those already
obtained for solid and hollow cylindrical shafts.

Examples XIX

(1) A beam 30 ft. long is supported at the ends A and B. It

carries loads of 5 tons, 10 tons, and 8 tons at points situated at

distances of 5 ft., 16 ft., and 22 ft. respectively from A. Find

the reactions at the supports and the values of the bending
moment at points situated at distances of 10 ft., 18 ft., and 25 ft.

from A.

(2) A beam 20 ft. long is supported at the ends and is divided

into two equal lengths. The first length carries at its centre a

load of 10 tons, while the second length carries a uniformly dis-

tributed load of 1 ton per foot run. Calculate the values of the

bending moment at points situated at distances 5 ft., 10 ft., and
15 ft. from one end.

(3) A beam 20 ft. long is supported at the ends and is divided

into two lengths of 8 ft. and 12 ft. The first length carries a

uniformly distributed load of 1 J tons per foot run, and the second

length carries a uniformly distributed load of f ton per foot run.

Find expressions for the bending moment at any point for each
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length and draw the bending moment diagram. What is the

maximum bending moment and where does it occur ?

(4) A beam 30 ft. long is supported at the ends A and B ; C is a

point 10 ft. from A. The part AC of the beam is unloaded, while

the part BC carries a load which increases uniformly from at C
to 2 tons at B. Find expressions for the bending moment for the

two parts of the beam and draw the bending moment diagram.
What is the maximum bending moment and where does it occur ?

(5) A beam 30 ft. long is supported at the ends A and B
; C is a

point 12 ft. from A. The part AC carries a uniformly distributed

load of 1 J tons per foot run, while the part CB carries a load which
decreases uniformly from 1J tons at C to at B. Find expres-
sions for the bending moment for the two parts of the beam and
draw the bending moment diagram. What is the maximum
bending moment and where does it occur ?

(6) A cantilever of length I ft. is loaded at the free end with

W tons ; it also carries a uniformly distributed load of w tons per
foot run. Find the bending moment, the slope and the deflection

at a point P, which is situated at a distance x ft. from the point
of fixing. What is the deflection at the free end ?

(7) A beam of length 2a ft. is supported at the ends and is

loaded withW tons at the centre ; it also carries a uniformly dis-

tributed load of w tons per foot run. P is a point situated at a

distance x ft. from the centre of the beam. Find the bending
moment, the slope, and the deflection at P.

(8) A beam of length 2a ft. is fixed at both ends and is loaded

withW tons at the centre ; it also carries a uniformly distributed

load of zv tons per foot run. Find the magnitude of the fixing

couple. If P is a point situated at a distance x ft. from the centre

of the beam, find the bending moment, the slope, and the deflec-

tion at P. For what value of x is the bending moment zero ?

(9) A cantilever of length I ft. carries a load which decreases

uniformly from w tons at the fixed end to at the free end.

Find the bending moment, the slope, and the deflection at a

point situated at a distance x ft. from the fixed end. What is

the maximum deflection ?

(10) A beam of length 2a ft. is supported at the ends and
carries a load which decreases uniformly from w tons at the centre

to at the ends. Find the bending moment, the slope, and the

deflection at a point which is situated at a distance x ft. from

the centre. What is the maximum deflection ?

(11) A beam of length 2a ft. is fixed at the ends and carries a
load which decreases uniformly from w tons at the centre to at

the ends. Find the magnitude of the fixing couple. If P is a

point situated at a distance x ft. from the centre, find the bend-

ing moment, the slope, and the deflection at P. What is the

bending moment at the end ?
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(12) A cantilever AB, of length I ft., A being the fixed end,
carries a load of W tons at a point C distant b ft. from A. Find

expressions for the bending moment, the slope, and the deflection

for the two parts AC and CB of the cantilever. What is the

deflection at C, and the deflection at B ?

(13) A beam AB, of length 2a ft., is supported at the ends and
carries equal loads, each W tons, at points D and E on either side

of the centre C and at distances b ft. from it. Find expressions
for the bending moment, the slope, and the deflection for the
two parts CE and EB of the beam. What is the greatest deflec-

tion, and what is the deflection under one of the loads ?

(14) ACB is a cantilever of length I ft. A is the fixed end and
C is a point situated at a distance b ft. from A. The part AC
carries a uniformly distributed load of w tons per foot run, while

the part CB is unloaded. Find expressions for the bending
moment, the slope, and the deflection for the two parts AC and
CB of the cantilever. What are the deflections at C and B ?

(15) ADCEB is a beam, of length 2a ft., supported at the ends
A and B

;
C is the centre and D and E are points situated at

equal distances b ft. on either side of C. The part DE of the

beam carries a uniformly distributed load of w tons per foot run,
while the remainder is unloaded. Find expressions for the bend-

ing moment, the slope, and the deflection for the two parts CE
and EB of the beam. What is the maximum deflection and what
is the deflection at E ?

(16) If =
-=-^, -^

= S and -t-*=w. Let w be a constant, find
c ax2 ax ax

S. Let S = W, a constant, when x = I. Find M and let M =

dy
when X =

I, c is a given constant, find
-j-

and let its value be

when x = 0. Find y and let its value be when x = 0. (B. of E.,

1908.)

(17) There are two cantilevers of equal length and of the same
cross section. The first carries a load which decreases uniformly
from 2 tons at the fixed end to at the free end, and the second
carries a uniformly distributed load of w tons per foot run. What
must be the value of w so that the free ends of the cantilevers

will be deflected to the same amount, and what is the ratio of the

deflections at the mid points ?

(18) If the section Fig. 63 is subjected to a shearing force of

1000 lb., what is the intensity of the shear stress at the neutral

axis ? What are the intensities of the shear stresses at the under

edge of the flange and at the top of the web ?

(19) If the section Fig. 73, No. 5, is subjected to a shearing
force of 1000 lb., what is the intensity of the shear stress at the

neutral axis (1) when the web is vertical (2) when the web is

horizontal ?
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(20) Find the intensity of the shear stress at the neutral axis,

if the section Fig. 73, No. 8, is subjected to a shearing force of

1000 lb.

(21) If the section Fig. 73, No. 9, is subjected to a shearing
force of 5000 lb., what is the intensity of the shear stress at the
neutral axis, and what fraction is it of the average shear stress

for the whole section ?

(22) A hollow circular section, external radius 5 inches, internal

radius 3 inches, is subjected to a shearing force of 2000 lb. What
is the intensity of the shear stress at the diameter ?

(23) What is the diameter of a steel shaft which will stand a

twisting moment of 16,000 inch pounds, the maximum shear stress

being 10,000 lb. per sq. inch ? If a hollow steel shaft of 4 inches

external diameter will stand the same twisting moment, what is

its internal diameter ? If the length of each shaft is 9 ft., what
is the angle of twist in each case ? N = 13 x 106 lb. per sq. inch.

(24) A hollow steel shaft is subjected to pure twisting and
transmits 5000 H.P. at a speed of 95 revolutions per minute. If

the shear stress must not exceed 10,000 lb. per sq. inch and the

internal diameter is to be 75 per cent, of the external diameter,
find the external diameter.



CHAPTER XX

164. A differential equation is an equation connecting x, y and
a differential coefficient, or differential coefficients of y with

respect to x. The order of a differential equation is the order of

the highest differential coefficient occurring in it. Thus an equa-

tion of the first order is one containing -j- y
one of the second order

dry
would contain

-7-^,
while an equation of the nth order would con-

. . dny
tain

?
A differential equation can be obtained by the elimination of

the constants in a law connecting x and y, and the following ex-

amples will show how differential equations can be obtained in

this way.

(a) If
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It will be seen from these examples that if one constant is

eliminated a differential equation of the first order is formed,
while the elimination of two constants produces a differential

equation of the second order. Therefore the solution of a dif-

ferential equation of the first order may contain one arbitrary

constant, while the solution of a differential equation of the second

order may contain two arbitrary constants. Confining our work
to differential equations of the first order, the two types which
occur most frequently in actual practice are those equations in

which the variables can be separated, and those equations which

can be solved by the use of an integrating factor.

165. When the Variables can be Separated. Equations of this

type are such that all the terms involving x can be placed with dx

on one side, and all the terms involving y can be placed with dy
on the other side. Then one side can be integrated with respect
to x and the other side with respect to y.

These equations have the form, or can be reduced to the form,

X+Y l =

Y+X l =

where X is a function of x and Y is a function of y,

and IX dx - - (V dy + Const (1)

J--J*+Const (2)

Example 1. Solve the equation x
-j-

= y + xy.

Now x
-j-

= y(x + 1)

- dy x

fi <fc + Const -f*
J x i y

x + log, x + c = log, y

x+c= log, X̂

ex+c = y
X

and y = xe* x e?

= Axe" where A = e

x
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in
Example 2. Solve the equation xhp-

- 4a?2 = (x
2
y
2

9y
2
)
-~

Now x2
(y

2 -
4)
= y

2
(x

2 -
9) ^

H
^ y

2
dy

x*-9
2/
2 -4 tiz

f^.J^ .Const

J\ 2\a:-3 tf+3// J I y-2 J/+2J
"

3, a:- 3 , w- 2
ir+

2
l0
6'^T3

=
2' + l0

S|T2
+ C

Example 3. Solve the equation

sin2 # sin2 */ cos2 x cos2 t/ -^
=

Now sin2 # sin2 y - cos2 a; cos2 t/
~

and
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and *.and-P
dw dx

but
dz dz dw
dx dw dx

dx

or (
"'

dx^

Then
jLfyeS***}

= yFe$* + ^ x e&**

Thus, if the differential equation is multiplied throughout

by e* , the left-hand side becomes the result which would

be obtained by differentiating ye*
F m

,

and ^ x e\
*** + VyA*

* = Qe$
p*

-(ye$
Fdx \ = Qel

Integrating, ye*
** = 1 Qp dx + Const

e> is known as the integrating factor.

dy
Example 1. Solve the equation -j-

+ 2xy = a?.

Now IP dx =
2|# cte

= *2

The integrating factor is e**

Hence ye*'
= \xe*

2

dx + c

To find IcTtf*
2
dr, put x2 = z

Then dz = 2# d#

If 1
and the integral becomes z\e

z dz = -e*

2 1 2

Therefore ye*
= -e* + c

1 2

and y = - -f ce
-*
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Example 2. Solve the equation -f y cos x = cos3 x.

Now I P dx = I cos x dx

= sin x

The integrating factor is e sin x

Hence ye
fdnx = \ e Bi3XX cos3 xdx+c

To find \e 8lnx cos3 x dx, put z = sin x

Then dz = cos x dx, and cos2 x = 1 z2

and L? 8ina; cos3 * da; = \e* (1
- z2

)
dz

z2 * dz=
JVdz-J:

= e*-
{zV-2[ze*dz}

= <*- {zV-2(z^- k*dz)}

= e*-z2et +2ze*-2et

= - e* (z
2 - 2z + 1)

= -* 8lna:
(l-sina;)

2

Therefore ye
8in * = c - e 8in x

(1
- sin x)

2

and y = ce?"
rin x -

(1
- sin

a;)
2

Example 3. Solve the equation x~ + y = x2 sin x.

Then
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- x2 cos x + 2 {x sin x I sin x dx } -y c

= x2 cos x + 2x sin x + 2 cos x + c

=
(2 x2

)
cos x+ 2x sin x+ c

167. Tfo Motion of a Projectile. One law of air resistance is

that, if R lb. is the resistance, d ft. is the diameter of the projectile,
and v ft. per second is the horizontal component of the velocity
at any instant.

Then R = 2d2
(v
-

850)

If m lb. is the mass of the projectile,

R = x acceleration

dv 2gd? , wr^

Ju-850 m y1 ^^

loge(t;-850) = -^t+C
Let v ft. per second be the initial horizontal muzzle velocity

Then, when t = 0, v = v
,
and loge (z; 850)

= C.

Hence loge (i;
-

850)
-

log,(t;
-

850)
= -^ t

log
v - 850 2gd?

*v -850 m
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But when * 0, *= 0, and = _ (
po J) + Q
2gd

1

Hence s = 850* + m(v -
850)

2p {!-.-#}
This gives the horizontal distance in terms of the time of flight.

As an exercise, let the diameter of the shot be 12 inches and
the mass 850 lb. The shot starts with a horizontal muzzle

velocity of 2700 ft. per second.

2g<P
= 2 x 32-2 = 64-4

m
m
2gd

2

s = 850* + 13-2(fl
-

850) (1
- e-o.o7577<)

- 850* + 24420(1
-

a), where a = e" '07577'

007577

13-20

t
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(1) Taking an initial vertical velocity of 100 ft. per sec.

1

327

Then y-UNK-jjP
= /(100

-
16-1/)

The highest point is reached after 3-106 sees, and the full time
of flight is 6-212 sees.

/
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The highest point is reached after 9-315 sees, and the full time

of flight is 18-63 sees.

t
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The highest point is reached after 15-52 sees, and the full time

of flight is 31-04 sees.

t
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Fig. 112 shows the curves obtained by plotting the values of

s horizontally and the values of y vertically.

168. If the voltage in an electric circuit is v volts, the current

is C amperes, the resistance R ohms, the self-inductance L henries,

then v = RC + L -j- where t is time in seconds.
at

(1) To express C in terms of t when v is constant.

Now v - RC + L
ât

Ti- T^C
v - RC = L-r-

at

*_ c LdC
S "S3

and I
= t- \dt + Constfcva

E"

Integrating, logJ C
j

= =- 1 + Const.

(a) Let the initial condition be C = when t = 0.

Then

Hence

and

log*
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and -
loge(g

- C
J
- Const

*fr)-SrS)--x
--C
u L
R~ C

--Cr c
-m

--CR L

(2) To express C in terms of t when v = i> sin

Then RC + L-^-
- u sin pt

dC R v . .

and -3- + =-C = ^ sin p*
( L L

Now

fti

The integrating factor is therefore e L

and Ol - y U
L

sinp* eft + Const

m

(j-
sin pt p cos pt) + Const

L R2

r2 -M>
2

(a) Let the initial condition be C = when t = 0.

Then 0= --7^2 + Const
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lit

, _ S 7j Le L /R .

J
A

,

u Lp
and CeL =

r + Ly II
sm **

-
* CQS yV

+ WTup
VJ

T T"

Hence c =
R' + Ly (R sin^ " pL cos p0 +R2 + Ly

g
"r

where 8 = t ari-

se

VR2 + Ly R2 + L2
?

2

R
_R

It should be noticed that as t becomes large e T becomes

small, and therefore C tends to the form == sin (pt 0),VR2 + Ly ^

a periodic function of the same frequency as v, but of amplitude

VR2 + L2p
2

(b) Let the initial condition be C = C when t - 0.

Re
Re T"

Then Cer =
t (R sin p<

- pL cos p<) + Const

and C " -
R^TLV + C nSt

Re

CgT - Co Ri+Ly (R sin pt
- pL cos pt) + Rf+ y

Re

Ce? "
TPTIy <R sin * " Ph cos^ +

(
c +b%?)

and C =
RMnCV (R S'nP' ~ Ph C Spt) + (

C +
R" + LVKr

169. To investigate the motion of a body falling from rest under
the action of gravity, the resistance of the air being taken into

account.

(1) When the air resistance is proportional to the velocity of

the body.
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If R lb. is the resistance of the air, then R = kv where k is a

constant and if m lb. is the mass of the body.

mg Hg = m x acceleration

dvm n = mg ~ kgv

and

Now

dv kg

k
JL\dt

- %
mj m

hot

and the integrating factor is therefore e m

Hence
Ojct

ve m -f
qM

em dt+ Const

T-e
m + Const

k

but when t = 0, v = 0, since the body falls from rest.

Then = ? + Const
k

and ve m = -re
m -

7-
k k

?("->)

-?(--*)
qkt

It should be noticed that as t becomes large, e m becomes

small, and therefore the velocity of the body tends to the limiting

value -7-.
k

Now

Integrating,

but when

and

.-*-?(--*)

-?(<+%*)+"'
m-

t - 0, s - 0, then - -^ + Const

= -[ t + -re
m
j-gk

2

gk*
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(2) When the air resistance is proportional to the square of the

velocity of the body.
If R lb. is the resistance of the air, then R = kv2 where A; is a

constant ; and if m lb. is the mass of the body,

mg'Rg = mx acceleration

and mg gkv
2 = m

-j

dv ( kv2
\

k
g{l a2

!;
2
} where a2 =

Hence g\ di + Const =
(Vt^-

gt +Const = -I- h -l-6
2J1 + at; 2J1-

c/
2v2

XV

{log,(l+ai>)-logd (l-ai;)}

JLi
1 + aP

2a ge
1 - av

But when t = 0, v = 0. Hence Const =

, 1 . 1 + (XV
and

2S
los-nr^

= ^

. 1+ OLV _ .

1 ai>

;(** + 1)
= e2** - 1

l g**-l
U

a^^H- 1

= - tanh ctgt
a ^

V?tanhW|.A;
6 > m

giving the velocity of the body in terms of the time.

Now u = = _ tanh atM
dt ol

^

Integrating 5 = -j- log, cosh cngt + Const
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But when t = 0, s = 0. Hence Const =

and t -=- loge cosh cngt

-g
log, cosh^*

h ag, put ag = x.

Then Itanh ag dt = Itanh x dx

Note. To integrate tanh ag, put ag = x.

a&)<

1 fsinh # .

cte

_ cosh x

= log. cosh x

Since the numerator is the differential coefficient of the de-

nominator,

hence Itanh oLgt dt = loge
cosh cngt

170. To investigate the motion of a body projected vertically

upwards with an initial velocity v , the resistance of the air being
taken into account.

(1) When the air resistance is proportional to the velocity of

the body.
If R lb. is the resistance of the air, then R = kv where ft is a

constant and if m lb. is the mass of the body,

then mg Rg = mass x acceleration

dom
di

== - m&~ kg

do kg
and -37+ 0- - g

dt m a

raj m
hot

and the integrating factor is therefore em

hat r hot

Hence ve m =
g\e

m dt+ Const

= - em + Const
k

but when t = 0, v = v
,
since v is the velocity of projection

then v =
77 + Const
K
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and ve m vQ = t--- e

tot

7- = _
k k

tot m / tot

ve m = v
rC

and

Now

(e -
1)

-M m f -M\
v = v e m ~-

( 1 e m
J

ds -Mm/ -toL\

mi; -M m/ m -&L\ n
Integrating s = 7^ e m -r- \t + e m

) + Const

but when Z = 0, 5=0, = - -^ - + Const
kg kl

g

and s =
TiV~

e m

)+W-gV-
e mhh i

fmv m2\/ -*l\ m

At the highest point the velocity is evidently 0,

m.tot ~n , tot.

and v e m
-(

1 e m \ =

or 1^ m = (1 e m
J

M m

tot m
kv + m

kg A . m
m Ge kv + m

, m yb + m
and I - r- log

kg
be m

and this gives the time taken to reach the highest point. By
giving t this value in the expression for s, the vertical distance

of the highest point above the point of projection can be de-

termined.

c- m f ,

m\ f\ -l m u
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kv -f m_, , m ckv + m\ f m \ m2

Then h= T-{ 2- 1- -,
; \

- ts- log
kg I k J V kv + m) k2

g m
m rkv + wn

f
kv -\ m2

. kv + m=
kg \ k J \kv + m)

~
Wg

ge m

_ mv m2
. kv + m

~~kg~Wg ge m
m r m . kv + m\-
5r~* **-!*-}

(2) When the air resistance is proportional to the square of the

velocity of the body.
If R lb. is the resistance of the air, then R - kv2 where & is a

constant, and if m lb. is the mass of the body,

then mg Rg = m x acceleration

and mg gkv
2 = m

-j

dv / kv2
\

k- -
(1 + a2^2

). where a2 =
' m

Hence I- ^ - - s\dt + Const

Integrating
- tan-1 olv = g* + Const
a

Since the initial velocity of projection is v
,
then when t = 0,

jy = u
,
and - tan -1 aa " Const,

a

Hence gt
= -{tan

-1
olv tan -1 olv}

. x CLVq
- OLV

OLgt
= tan -1 96

1 + 0L
2VnV

n7J^ mi
and

olv OLV
tan oLgt

- "

(1 + a2u
i>)

tan OLgt
= olv - olv

v(ol + ol
2v tan ag/)

= olv - tan oc$

olv tan OLgt
v =

a(l + olv tan a$)

= - tan (0
-

o:gt) t where tan G olv
0L
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At the highest point the velocity is evidently 0,

and tan agt
= olv

oigt
= tan-1 cw

t = tan-1 olvq

ds 1
Also v = -j-

- - tan (0
-

oigt)
dt a

and s = -I tan (0 oigt) dt + Const

_1

*2
g
r logg

sec (0
-

cLgt) + Const

but when t = 0, s = 0, and =
5- log- sec + Const

Hence s - {logc
sec loge sec (0 oigt) }

1 . sec
Jog*

a.
2
g

b
sec (0

-
oigt)

J_ COS (0
-

Kgt)

?g
be

cos

The vertical distance of the highest point above the point of

projection will be obtained when t = tan"1
ccvQ ; that is, when

=
<xgt.

Then h = -5- log, sec
a2 6c

but
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If P is the principal at any time t years and compound interest

at r per cent, per annum is payable at. every instant, then

(P + SP) would be the principal at (t + &) years and SP is the

interest on P for Bt years at r per cent.

^ Pr &
ience
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172. The Slipping of a Belt on a Pulley. Let a be the angle
of lap and T x and T2 the tensions in the belt at P and Q respec-

tively (Fig. 113).

Fig. 113.

Considering an elementary length of belt subtending an angle
86 at the centre, and let the tensions on either side of this length
of belt be T and T + ST.

The normal pressure N of this length of belt on the rim of the

pulley will be found by resolving T and T + ST in the direction OR.

Thus N - (T + ST) cos
(90

-^ + T cos Uo -~j

=(2T+ST)sinÂ

- (2T + ST) %-, taking S0 as being small
A

= T S6, taking ST as being small

Force of friction = normal pressure x coefficient of friction

= wTS6

When the force of friction is just equal to ST, slipping begins.

Then ST = uT S0

ST
S0

or uT

and

Hence

rTY

-r^-
= uT, when S0 is infinitely small

j?-jdB + Const

log/T - w0 + Const

At P, = and T = T
x log^ - Const

At Q, = a and T = T2 log e
T2

= wa + Const

log/T.-log/IY-tta
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T

and
' T

2
= T^

If v ft. per sec. is the speed of the rim of the pulley and H is

the horse-power transmitted,

Then H-tT'- Tl)P
550

Also T
2
- T

x
- T

x(^ - 1)

Hence n-^gfJl550

-
rp

550H
and Tx

Also To -

v(e
M -

1)

550H g
'

v(e
w -

1)

550H

(1
- - fl

)

173. Tfo Variation of Atmospheric Pressure with the Altitude.

Let p lb. per sq. ft. be the pressure of the air at a place h ft. above
some datum level, and let (p + $p) lb. per sq. ft. be the pressure
of the air at a place (h + h) ft. above the same datum level.

The pressure of the air at distance h ft. - pressure of the air

at distance (h + $/*) ft. + the weight of h cubic ft. of air.

If w is the weight in lb. of a cubic foot of air at a distance

h ft. above the datum level,

Then p = p + Sp + w %h

or Sp
= w 8fc

and -77-
= w, when 8/1 is made infinitely small.

an

(1) If the temperature remains constant,

Then pv = Const, and w - cp

dp
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Hence \ogep - logj?
= - ch

log.*- -cH

P - Poe
~ rJl

Let p lb. per sq. ft. be the pressure and w lb. the weight of a
cubic foot of air at datum level.

Then w = cp , or c =
Po

__wnh

and p =
p^e v

(2) When the temperature does not remain constant,

i_

Then pv
n = Const, and w = cp

n

dp I

\p
n
dp = - c \dh + Const

i

= ch+ Const

but when h = 0, p = p ,

- - Const

n

^ri{po
l-Ln-p^

1

n}
= ch

J^{i-(Y*}.dkn - 1 I W J

but when h= 0, p = p and w> = w

Then w> = cp n and c =
y-

Hence jk-
*

&{i_ (ZY"*}

Also pv = RT, where T is the absolute temperature

p_v_ _ T
Po ^o

~
To

and

but (l)".-.l. or()"
Po VV W
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Then J-*(*Y*T p W
-"

Hence fc. s{i_j}n 1 wQ
v T J

174. Tfo FForfc dow % aw Expanding Gas. If W is the work
done in foot-pounds, p is the pressure in lb. per sq. ft. and V is the

volume in cub. ft.

Then p =
-^

or W = I p dv

Let the gas expand from volume v t to volume X7 2 ,
the pressure

falling in consequence from p x to p 2 .

If the law of expansion is pv
n = Const

Then p - cv~n

v~n dv

1-nL J*!

If the law of expansion is pv = Const

Then p = -

and W - c\
Jv

t
V

- c
[log

e
uJ

!
V 2= PiViloge
-
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175. The Hypothetical Steam Engine Diagram. Steam is ad-

mitted into the cylinder at constant pressure pv the volume in-

creasing from to vv

Fig. 114,

pv

Work done = p x
v

Let the steam then expand to volume v2 according to the law
>
n = Const.

Work -.^-"i
If pz is the back pressure, Work done during exhaust = p 3v 2

Total work done = p xv x + ^-k{ 1 - r1_n }
- pzv 2 , where r -

If pe
= mean effective pressure,

Total work done = pe
v2

and Pe
v 2

= Pi"! + ^^{ 1 - r1
""}

- p 3v 2

r I

2

. l-n

- 1

l-n

?3}-

If the law of expansion is pi;
= Const
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Then pe
v 2

= Plv x + Plv x log, ^ - p 3v2

^P^} Ps

Examples XX

Solve the following equations, evaluating the constants by
using the special condition given in each case.

., . dy x3 1

^fa =
yr^l'

Slven 2/
=1 > when a; =0

(2) (a?y + y)
-- = x2

y
2 + x2

, given y = 0, when x =0

dy y2 1
(3) ^ =

;?TT given t/ =2, when * =0

u?/ tl
2

-4- 1
(4' 3

=
I^TT' given y = 0, when x = 2

(5) -p
= sin (# + t/)

sin (x y), given y - -, when a? =0

(6) -^
= sin2

(# + 2/)
- sin2 (x y), given y = -, when a? =

(7) Cos2
a; ~ + y = 1, given */ =0, when a? =0

(8)
-~ + 2#i/

- x, given y = j,
when a? = 1

(9) (#
2

y
2
) -r-= xy, given ?/

=
1, when a? = 1

(11) x2

-p
= a;

2 + i/
2
, given ?/

=
r, when a; = 1

(In Questions 9, 10, and 11 put y - zw, then -~ = w + a? -y-.

Express the equation in terms of i> and a?, and solve

by separating the variables.)

(12) -j-
-f-

- = sin x, given y - 0, , when a? = -

(13) -p + y - sin 2a;, given t/
=

1, when a? =
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dy
(14) V 1 x2 + y = 1, given y = 2, when # =

dy
(15) -f-+ y tan a? = sec a?, given y = 0, when # =

(16)
-~ + y tan # = sin2 2x, given t/

=
0, when # =

dy ?
(17) -p + y = x2

, given y = 0, when a? =

(18) Show that the differential equation -^ + yx
m = y

nxv

dz
reduces to the form

j- + (1 n)z x
m =

(1 n)x* if z = t/
1_n

(19) Apply the result of Question 18 to solve the differential

dii

equation x3 ~r-+x2y=y3
subject to the condition that y = 1

when x= 1.

(20) Plot the values of s and t given in paragraph 167 on

squared paper between t = 20 and t = 28. Use the graph to find

the time of flight necessary for a horizontal range of 40,000 ft.

What is the angular elevation at which the projectile must be

fired to give this range ?

(21) The projectile in paragraph 167 is given an elevation of

2
tan -1 - ; that is, for the horizontal muzzle velocity of 2700 ft.

per sec, the vertical velocity must be 600 ft. per sec. Find the

horizontal and vertical components of its velocity, 36 seconds

after projection. What is the magnitude of the velocity at this

instant and in what direction is it travelling ?

(22) A body of mass 5 lb. is projected upwards in a resisting
medium with an initial velocity of 200 ft. per sec. ; the resistance

of the medium being kv lb., where v is the velocity of the body
and k is a constant. If the body takes 3-5 seconds to reach its

highest point find the value of k (k lies between 0-04 and 0-05).

What is the greatest height to which the body will rise and what
will be the velocity of the body 2 seconds after projection ? Take

g - 32-2 ft. per sec.2 .

(23) A body of mass 5 lb. is projected upwards in a resisting
medium with an initial velocity of 200 ft. per sec.

;
the resistance

of the medium being kv2
lb., where v is the velocity of the body

and & is a constant. If the body takes 3-5 seconds to reach its

highest point, find the value of k (k lies between 0-0004 and

0-0005). What is the greatest height to which the body will

rise, and what will be the velocity of the body 2 seconds after

projection ? Take g = 32-2 ft. per sec.2 .
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(24) A body of mass m lb. falls from rest in a resisting medium,
the resistance of which is kv lb., where v is the velocity of the

body and A; is a constant. If after the 1st second the velocity
is 20 ft. per sec. and after the 2nd second it is 35 ft. per sec,
show that the body after falling for a great length of time
will tend to have a velocity whose value is 111-9 ft. per sec.

(g
= 32-2 f.s.s.).

(25) In dealing with the strength of thick cylinders, if p is the
radial compressive stress and / the hoop tensile stress at a point
whose distance from the axis is r,

Then p + f= 2a and p+ r-~=f where a is a constant. If at

the internal surface p = p when r = r and at the external sur-

face p = p x when r = rls express p in terms of r.

(26) In a hollow cylinder of nickel steel subjected to internal

pressure p, and no pressure outside, when the material is all

yielding, if p is the radial compressive stress and f the hoop
tensile stress at a point whose distance from the axis is r, and
if /+ ap = b where a and b are constants for a particular kind

of steel, and if we also have the usual relation rj- + p+f=0,
find p as a function of r. If the inside radius rx is 3 inches and
the inside px is 30 tons per sq. inch, what is r ,

the outer radius.

(Take for nickel steel a = ? b = 30.) (B. of E., 1911.)4

(27) A quantity of gas expands from 2-5 cubic ft. to 9 cubic ft.,

the law of expansion being pv
n const. If the pressure at the

beginning of the expansion is 80 lb. per sq. inch, find the work
done during expansion : (1) when n = 1-0646, (2) when n 1-131.

(28) In the previous example, if the law of expansion is

pv = const. Find the work done during expansion.

(29) Let p denote the population of England and Wales in

millions and t the time in years that has elapsed since 1801. If

the increase of population per year is proportional to the popu-
lation that is, it follows the compound interest law express p
in terms of t. If p was 8-9 in 1801, and it was 36-1 in 1911, what
is p likely to be in 1921 ? (B. of E., 1914.)

(30) If y = AeP* what is ~ ? An electric condenser, of capacity

k farads and leakage resistance R ohms, has been charged and

dv v
the voltage v is diminishing according to the law -r- = p~.

Express v in terms of the time, t seconds. If k is 0-8 x 10-6

farads
;
if v is noted to be 30 and 15 seconds afterwards it is noted

to be 26-43, find R. (B. of E., 1912.)
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(31) In the atmosphere, if p is pressure and h height above
datum level, if w cp

1^ where c and y are constants, and if

-^
= w, find an equation connecting p and h. What is the

above c if p = feoR ? Assume p = pQ and / = Iq where & = 0.

R is a known constant for air. Find an equation connecting
h and t. (B. of E., 1904.)

(32) Water leaves a circular basin very slowly by a hole at the

bottom, every particle describing a spiral which is very nearly
circular. Let v be the speed at a point whose distance from the

axis is r and height above some datum level h. Assume no

"
rotation

"
or

"
spin "that is, -(- +

-j-j
= and show that

this means v - - where c is some constant. Now at the atmo-
r

v2

spheric surface - + h = C where C is a constant. Find from
2g

this the shape of the surface^ that is, the law connecting r and h.

(B. of E., 1905.)

(33) It v volts is the voltage in an electric circuit, C amperes
the current, R ohms the resistance, L henries the self-inductance,

jp
and t seconds the time, then v = RC -f L =-

at

If v is constant and equal to 8 volts, R = 0-75 ohms, and
L 0-08 henry, express C in terms of t, knowing that when
/ = 0, C = 0. What would be the value of C when t = 01 sec. ?

(34) If v volts is the voltage in an electric circuit, C amperes
the current, R ohms the resistance, L henries the self-inductance,

and t seconds the time, then v - RC + L -r
at

If v = v sin pt where v and p are constants, and if R = 50

ohms, L = 0-1 henry, v = 100 volts, and p = 500, express C in

terms of t, knowing that when t = 0, C = 0. To what value does
C ultimately tend if t is taken sufficiently great ?
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176. If y = A sin nx + B cos nx,

-r-
= nA cos nx nB sin nx

ax

-r4 - n2A sin fix n2B cos nx
dx2

= n2
{A sin nx 4- B cos nx }

= -n2
i/

dhi
Thus the solution of the differential equation j-^ 4- n2

y - can

be assumed to be i/
= A sin nx 4- B cos nx where A and B are

constants.

If y = Ae"* + Be-"*,

-- - nAe"* - nBe-
ax

-f{
--= n2Ae + n2Be~

ax

-i w2
(Ae

wa5 + Be-"*)
= nhj

dhi
Thus the solution of the differential equation -~ n2

y = can

be assumed to be y = Ae 4- Be_nx where A and B are constants.

d2y
Also for the differential equation j^

= n2
y a general solution

t/
= keP* can be assumed, k being a constant.

For if y = ke,

dx

= a2
y

d2w
Hence y = fo?

*
is a solution of the equation ^

= n2
?/ if a2 = n2

or a = n,

and ?/
= Ae** 4- Be-1*8

is the complete solution
349



differential equation -7-^ + 2a~ -f bhj
= 0.

dx
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Also y = A;^ is a solution of the equation -7^
= n2

o; if

a2 = n2 or a = m,
and y = Aeinx + Be-*"* is the complete solution

but y = A(cos nx + i sin rw:) + B(cos nx i sin no:)

(A + B) cos nx + i(A B) sin nx
= C cos nx + T> sin nx where C and D are constants

177. The general solution y = ke** can also be assumed for the

ferential equati

For if y =
ke?*,

Then ^ + 2a^ +% - a2**** + 2a aA* * + b2 h**

= fo^a2 + 2aa + 62
)

- 0, if a2 + 2aa + b2 =

Hence y = Atf
035 will be a solution of the equation -r~ +

2a-^-

4- &2
*/
= 0, providing a has the values which will satisfy the

quadratic equation a2 + 2aa + b2 = 0.

Let ol 1 and a 2 be the two roots of this equation.
Then y = he?lX + Be ** will be the complete solution of the

differential equation.
For since cn 1 and a 2 are the roots of the equation a2 + 2aa

+ b2 --= 0.

Then a* + 2aoi 1 + b2 =

and a* + 2aa2 + J2 -

If y = A^* + B^,

^ = a^i* + Ba2 V

3=a^A^ + a^B^

Th- S+-2+*
=
ajA^i

85 + a*BeV + 2a(a 1
A a i* + a 2B***)

+ ^(Ae^* + Be?**)

- Ai a:

(a^ + 2aa 1 + 62
) + Be*(a* + 2aa2 + 62

)

=
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Solving the quadratic equation for a,

a2 + 2aa + a2 = -
ft
2 + a2

a + a = Va2 - b2

and a x
= - a -f Va2 -

ft
2

a 2
= a Va2 b2

The form of the solution of the differential equation depends
entirely upon the nature of the values of <x x and <x 2 that is, upon
the relation between the quantities a and b.

(1) If a = 0,

Then ax
=

bi, and a 2
= bi

and ?/
= Aeite +Be- i6a;

= C cos bx + D sin foe

(2) If a = b.

Then a x and oc 2 are each equal to -
a, and ?/= e~ ax(C+ Da?)

is the complete solution. For let a and a + ft be the values

of a x
and <x 2 respectively, ft being small,

Then y = Ae-* + Be <-**
= *- (A + Be**)

= e
{A+B(l +

te+5^!+
. . .

)}
and if ft is taken to be very small,

y = e-^{(A+B) + Bhx}
= e- x

(C+ Bx)

This result can be proved by direct differentiation.

For y = e- (C + Bx)

J. - Be~ - ae-"1C + Bx)ax

tJ
= - aBe- - a {Be- -

ae-**(C + Bx)}

= - 2aBe~ax + a2*-(C + Da?)

Then
-rj[

+
2a-^

+ a2
y = - 2aBe-ax + a^-^C + Da?) + 2D-"

- 2a8*-" (C + Da?) + ate-* (C + Da?)

=

(3) When a< ft, Va2 b2 becomes imaginary, and a x and a,
become complex quantities.

cn1
= a + iVb2 a 2

,
or a + di

and a 2
= a - zVft2 - a2

,
or - a - at
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Then y - Ae -*+** + Be (
-a -di)x

- e-* (Ae*** + Be-***)

= e-"* (C cos dx + D sin d#)

or y = e-9* (C cos Vb2 - a2 x + D sin V62 - a2
x)

178. Simple Harmonic Motion. This is denned as the motion
of a body in which the retardation is proportional to the distance

the body is from some given position ; and if x is this distance

d?x
and t is the time, the equation of motion will be

-r-%
m n2

x,

where n2
is the constant of proportion.

The solution will be x = A sin nt + B cos nt, where A and B are

constants which can be evaluated if the initial conditions are

known.

(1) Let the initial conditions be x = and v = v when t = 0.

Since x =,A sin nt + B cos nt

and x = when t = 0. Then B = 0,

Hence x = A sin nt

also

but

dx
v = -r- = nA cos nt

at

v = v when J = 0. Then nA

The final solution is x = sin nt.
n

Fig. 115.

If a circle be drawn of radius and OP is a radius inclined at
n

an angle nt to the vertical diameter, then P lf the projection of

P on the horizontal diameter, is such that OP x
- -^ sin nt

(Fig. 115).
n
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If a particle P describes a circular path of radius ft. with

uniform angular velocity n radians per second, the projection
of this circular motion on the horizontal diameter will satisfy

the condition that x = sin nt, and consequently -^ n2x.

The body describes a complete oscillation, after passing from

O to P 2 ,
from P 2 through O to P , and from thence backwards

again to O. This would take the same time as a complete revolu-

tion in the corresponding circular motion.

The periodic time = time of one complete revolution

t= 2tu

n

The frequency = number of complete oscillations per second

/
n

2rc

(2) Let the initial conditions be x = a and v - when t = 0.

Then x = A sin nt + B cos nt

and x = a when t = 0, then B = a

Also v = -5- = wA cos nt nB sin n
at

and w=0 when * = 0, then A =

The final solution is x = a cos nt.

Fig. ii6.

If a circle be drawn of radius a and OP is a radius inclined at

an angle nt to the horizontal diameter (Fig. 116), then P^ the

projection of P on the horizontal diameter, is such that OP x

z



354 PRACTICAL MATHEMATICS

= a cos nt, and this satisfies the condition x = a cos nt, and con-

d2x
sequently -t-%-

- n2x.

Here again the motion of the body is the horizontal projection
of the motion of a particle describing a circular path of radius a

with uniform angular velocity n radians per second.

The periodic time =r n

Frequency
n

Amplitude = a

(3) Let the initial conditions be x = a and v = v when t = 0.

Then x = A sin nt + B cos n*

and a; = a when / = 0, then B = a

Also

and

dx
v -37 nA cos rtf nB sin n*

at

v = vn when J = 0, then A =
n

The final solution is x = sin n* + a cos rtf

v- + sin (nt + e)

where tan e =

Fig. 117.

If a circle be drawn of radius y a2 + f
j

and OQ is a radius

inclined at an angle e to the vertical diameter, while OP is another
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radius making an angle nt with OQ (Fig. 117), then Qx the pro-

jection of Q on the horizontal diameter, is such that

v- + (?yOQi = V a2 +l~) sine

-4^W
v~&)"

= a

Qi is evidently the initial point.
P x, the projection of P on the horizontal diameter, is such that

OP 1
=
'ya

2 +( ) sin (nt + e), which satisfies the condition

V- +
' d2x

sin (nt + e), and consequently -gj
- n2x.

Here again the motion of the body is the horizontal projection
of the motion of a particle describing a circular path of radius

V-+(;)
!

with uniform angular velocity n radians per second.

Periodic time =
n

Frequency = -

Amplitude - ^a2
-f (-Y

The angle e is spoken of as the Epoch of the simple harmonic
motion.

179. The resultant of two simple harmonic motions of the same

period and in the same straight line is a simple harmonic motion.

Let xx
= A x sin (nt -f cj

and x2
= A 2 sin (nt + e2)

be the two simple harmonic motions.

Then x
x -\-x 2

= A x sin (nt + ex ) +A 2 sin (nt+ e 2) is the resultant.

Let OR be drawn making an angle nt with the vertical line

OY (Fig. 118). Let OP
x and OP 2 make angles x

and e 2 respec-

tively with OR ;
also OP

x
= A x

and OP 2
*- A 2 . Complete the

parallelogram, of which OP
x
and OP 2 are adjacent sides, OP

being the diagonal of this parallelogram and Q the horizontal

projection of P.

Then OQ - OQ 2 + Q 2Q
= A 2 sin (nt + e 2) + A x sin (nt + ej
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But OQ = OP sin (nt + E), which is a simple harmonic motion,
of amplitude equal to the length of OP and the epoch E =

angle
ROP.

Then OP - VaJ + A* + 2A 2
A

2 cos (e 2
-

Jj

-AgSinfrkO SbTOflB^"
Fig. i i 8.

Let PiRi and PR be drawn perpendicular to OR and PjS
parallel to OR
Then OR = ORj + RjR

= A x COS 6j -f- A, COS 2

and PR = PS + SR
= PS + P 1R 1

= A 2 sin e 2 + Aj sin e x

Now tanE =
OR

_ A 2
sin

j + A 2 sin e 2

A 1 cose 1 + A 2 cose 2

180. The Vibration of a Spring. Let h be the stiffness of the

spring-that is, a force of 1 lb., will elongate the spring h ft. If

the spring is elongated x ft. the force required will be ^ lb.

Let a body of mass m lb. be hung from this spring and then

displaced from its equilibrium position and then let go.
If there are no frictional resistances to the motion of the body,

the only force acting on the body will be the resistance of the

spring, and when the body is at a distance x ft. from its equili-

brium position this resistance is T lb.
n



X
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Bending moment at A = Wy

but bending moment = EI
X̂V

Hence

-3
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Bending moment at A = u Wy

Then EI^ = u - Wy

W u=
~EI (2/_a^ Wherea = W

W= n2
(y a), where n2 = .=

Ti. ., dz du , d2z d2y
tt*-y-a then s = ^ **&-&

Hence -r- = n2z
dx2

The solution of this is :

z = A sin nx + B cos nx

and
2/

a = A sin ?w? + B cos na;

then ~ = nA cos nx nB sin zw;

but when x = 0, -^ = 0, then A =

and y a = B cos n#

Also, when # = 0, y = 0, then B = a

Then y a = a cos rw;

t/
= a(l cos nx)

when x =
I, y = 0, then a(l cos rcZ)

=

That is 1 cos nl = 0, or cos nl = 1

Hence nl must have the values 0, 2tz, 4tc . . .

Considering the least value, 27t, for the zero value is clearly
inadmissible.

nl m
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take up its proper direction when bending occurs. Let the free

end be considered to slide in a frictionless guide, the normal

reaction at the guide being Q.

Fig. 121.

Considering the fixed end as the origin.

Bending moment at A = Q(Z
-

x)
- Wy

Elg=Q(*-*)-W,
<T-,, Wf Q ,\

= -
n*{y -^(l- *)}.

where n* = g.

Let



THE RANKINE-GORDON FORMULA 361

But when x =
I, y - 0, then - sin nl I cos nl =

or tan nl = nl

This equation must be solved by means of a graph and neglect-

ing the zero value, the least value of nl which satisfies the equation
is found to be 4-493 radians or 257J.

Then n2
/
2 -

(4-493)
2

= 2-0477T5

W/2

Then -^
- 2-047tc2

. w 2-047ti2EI
and W =

^

182. The Rankine-Gordon Formula for Struts. For a very short

strut where buckling plays no part, the breaking load should be

A/, where / is the crushing strength of the material and A the

cross sectional area. For a very long strut where crushing plays
C7C

2EI
no part, the buckling load should be r- where c is a constant

depending upon the nature of the ends.

Then if W is the load under which a strut of any length gives

A/
way, and if W

1+-A&
C7t

2EI

When I is small, W becomes A/ approximately.

When I is great, W becomes
-^ approximately.

This formula therefore makes W approximate to Af for very

short struts, and to ^ for very long struts.

Thus W = Af

i + c4
2

where C = -~rr^ a constant depending upon the material and the

nature of the ends of the strut.

Now I = A&2 where k is the radius of gyration of the section

with respect to that axis about which bending is most likely to

take place that is, the axis about which I is least.

A/Then W
.sr
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If p is the intensity of the breaking load per square inch of

section,
W

Then p

and *

p =

A

/

When the ends are free c = 1 and C =
7C

2E

When the ends are fixed c = 4 and C -
4tt2E

When one end is fixed and the other end is free c = 2-047 and

C /
2-047t:2E

Example. A hollow cast-iron column 24 feet long has to carry

safely a load of 50 tons. The external radius is 5 inches, find the

internal radius, (1) when the ends are free, (2) when the ends
are fixed, (3) when one end is free and the other fixed. /=* 36
tons per sq. in., E = 6000 tons per sq. in., factor of safety

= 6.

Let x be the internal radius.

Area =
7i(25 x2

) sq. in.

Moment of inertia = (625 x4
)
inch units

4

Allowing for the factor of safety, the column must be designed
to carry a load of 300 tons.

T, 300
Then p =

: = tons per sq. inr
7i(25 X2

)

r -t

(1) When the ends are free,

36
608 x 10-4

7t
z x 6000

anft
and

n2 x 6000

300 36

7i(25
- x2

)
6-08 x 1Q-4 x (288)

2 x 4
+

25 + a;
2

_ 36(25 + x2
)"

226-8 +x2
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Then
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When the body is at a distance x feet from its position of

equilibrium the resistance of the spring is t lb., while the resistance

of the medium is kv lb., where A; is a constant depending upon
the nature of the medium ; both of these forces tend to urge
the body back to its equilibrium position.

Hence the total resistance to the motion is f-r + kv) lb.

and

or

X ,

h
+kv =
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(b) Let the initial conditions be x = 3 and v = when 2 = 0.

x = e-*(C cos 3* + D sin 32)

dx
V -

-j
- - <H(C cos 3* + D sin 3/) + <H( - 3 C sin 32 + 3D cos 32)

But when 2 = 0, x = 3. Then C = 3

Also, when 2 - 0, i; = 0. Then 3D - C =
0, or D = 1

x = eH(3 cos 32 + sin 32)

= VlOe-1 sin (32 + a), where a - tan"1 3

= 3-162 "' sin (32 + 1-248)

(c) Let the initial conditions be x = 3 and u = 9 when 2=0.

x = *H(cos 32 + D sin 32)

dx
v = -=- - -

*H(cos 32 + D sin 32) + e~\ - 3C sin 32 + 3D cos 32)

But when 2 = 0, x - 3. Then C = 3

Also, when 2 - 0, t> - 9. Then 3D - C =
9, or D = 4

x = e-1

(3 cos 32+4 sin 32)
Q

- 5e~l sin (32 + (J),
where

|3
= tan"1 -

= be-1 sin (32 + 0-6435)

Fig. 122.

Fig. 122 shows the three relations plotted for values of 2 be-

tween and 3. They each represent periodic functions of con-
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tinuously diminishing amplitude, but in each case the periodic
time is the same.

2tu
Periodic time = - = 2-0944 sees.

o

Frequency = - = 0-4775
27U

Case II. When a - b. Let a = b = 2.

Then a - 2

* = e~%\ + BO
where A and B are constants depending upon the initial con-

ditions.

(a) Let the initial conditions be x = and v = 10 when / = 0.

x - e~2
'(A + BO

i> - y 2e~2
'(A + BO + Be-2'

But when t = 0, x = 0. Then A =

Also, when t = 0, i> - 10. Then B = 10

Hence x = 10te"2'

(6) Let the initial conditions be x = 5 and v = when J - 0.

x =-- e~2
'(A + B/)

(It
v = j=- 2e~2

'(A + BO + Be-2'

But when t -= 0, x = 5. Then A = 5

Also, when * = 0, v = 0. Then B - 2A = 0, or B =- 10

Hence x = e~2t
(5 + 100

= 5e~*{l + 20

(c) Let the initial conditions be x - 5 and i> = 10 when / = 0.

x = e~2
'(A + BO

v = ^ = - 2e~2
'(A + BO + Be- 2'

But when t = 0, x = 5. Then A = 5

Also, when t = 0, = 10. Then B - 2A = 10, or B = 20

Hence x = e~2
'(5 + 200

- 5e~2
'(l + U)
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Fig. 123 shows the three relations plotted for values of t between
and 2. In each case the maximum displacement of the body

from the equilibrium position is quickly attained, and then the

body goes slowly back to its equilibrium position although it

never reaches it.

6 -^
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(b) Let the initial conditions be x = 4 and v = when t = 0.

x = A*-2' + Be-4*

dx
v = -r=- 2Ae 4B*

But when t = 0, a? = 4, and A + B = 4

Also, when * = 0, v = 0, and - 2A - 4B -

Hence A - 8 and B = - 4

x = 8e~2t - 4e-*

- 4(2e-
2' - e-4

*)

(c) Let the initial conditions be x = 4 and r> = 8 when 2=0.

x =Ae~2t + Be-4*

v-- - 2A*- - 4B*"4*

a/

But when / = 0, x - 4, and A + B = 4

Also, when t = 0, v =
8, and - 2A - 4B = 8

Hence A = 12 and B = - 8

x = 12e-2' - 8e- il

- 4(3*-* - 2*"41
)

Fig. 124 shows the three relations plotted for values of t between
and 2. In each case the maximum displacement of the body

from the equilibrium position is quickly attained and then the
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body goes slowly back to its equilibrium position although it

never reaches it.

184. Forced Vibrations. A study of the curves obtained

from the examples given in the previous paragraph indi-
/72/vi dor

cates that the equation -r-j + 2a -r- + b2x =
represents a motion

which is damped that is, it gradually dies away. In some
cases this motion is oscillatory, while in other cases it is

not. If the whole system has a vibration of known frequency
forced upon it and it is necessary to make a study of this

forced vibration, it is as well to remember that when the

natural or damped vibration dies away, this forced vibration
/-72/vi dor

will remain. Let the equation -7-5- + 2a -7- + b2x = c sin pt
at* at

represent the motion of a body which has a forced vibration of

2tz

periodic time impressed upon it. When the natural vibration

dies away, the motion of the body will be one solely due to the

forced vibration, and as the periodic time remains unchanged this

motion will be given by x = A sin pt + B cos pt, and this solution

must satisfy the complete equation of motion and the values

of the constants A and B must be determined so that this

will be so.

-T- = pA cos pt pB sin pt

d2x = _ p2A sin pi p2B cos pt

i\ t* (1 if*

But c sin pt = -T-r + 2a -3- + b2x
at" at

m p
2A sin pt p

2B cos pt + 2a(pA cos pt pB sin pt)

-f b2
(A sin pt + B cos pt)

-
(
- p2A - 2apB + b2

A) sin pt + (
- p2B + 2apA

+b2
B) cos pt

Equating coefficients of sin pt,

(b
2 - p

2
)A - 2apB = c (1)

Equating coefficients of cos pt,

2apA + (b
2 - p

2
)B - ...... (2)

and relations (1) and (2) can be solved as a pair of simultaneous

equations for A and B.

A{b
2 - p2

)

2 -
2ap(b

2 - p2
)B =

c(b
2 - p2

)

4>a
2
p

2A + 2ap(b
2 - p

2
)B =

and {(b
2 - p2

)

2 + 4>a
2p2

}A - c(b
2 - p

2
)

2 A
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c(b*-p*)Hence A

Also B

(b
2 -p2

)

2 + 4a*p
2

2apA_~
b2 -p2

2apc

(b
2 - p2

)
2 + 4ay

As an example, let a =
2, b = 3, c = 3, and p = 2.

d x dx
Then -^ + 4 -3- + 9# = 3 sin 2t

dt2 dt

Let
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Let v = AeP* be the solution of this equation.

dt
aA6^

= OLV

Hence a - - y^
t

and v = Ae~ fcR

But when t = 0, =
, and v = A

Thus w = i; e~ fcR is the relation expressing v the voltage in

terms of t the time.

If the connecting wire is of resistance R and inductance L,

Then Q = kv, C- -, andu = RC+L~
at at

Thus
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It should be noticed that the form of the final solution depends
upon the nature of the values of a; that is, according as R2

is

4L
greater than, equal to, or less than

-j-.
The method of procedure

is exactly the same as that adopted for the analogous differential

d x dx
equation -j-^ + 2a-=- + b2x = 0.

car - at

Examples XXI

Solve the following differential equations

3-*

3 + J+M -

3-
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d2x
(12) ^2

= 20x> where x ft. is distance and t sees, is time, repre-

sents the equation of motion of a body. Find an expression
giving x in terms of / when the initial conditions are : (1) t = 0,

x m 0-5, and ^ =
; (2) t - 0, x =

0, and ^ - 4
; (3) * - 0,

a? = 0-5, and -r- = 4.

d x dx
(13)

-7^
+ 4

-j-
+ 20# = 0, where # ft. is distance and / sees, is

time, represents the equation of motion of a body. Find an

expression giving x in terms of t when the initial conditions are :

(1) / = 0, m - 0-5, and ^ =
; (2) t= 0, =

0, and ~ = 4 ;

(3) * - 0, - 0-5, and
-j

- 4. What is the periodic time of the

motion ?

d"X dx
^ ^ 7P + 4

7ft
+ 4a? =

' where a? ft. is distance and t sees, is

time, represents the equation of motion of a body. Find an

expression giving x in terms of t when the initial conditions are :

dv fly

(1) t = 0, x= 0-5, and ^ =
; (2) / = 0, x = 0, and ^ - 4

;

dx
(3) / = 0, x = 0-5, and = 4. In each case find the maximum

value of x and the time at which it occurs.

d2x dx
(15) -f 4-7- + 3x = 0, where ft. is distance and t sees, is

time, represents the equation of motion of a body. Find an

expression giving x in terms of t when the initial conditions are :

dx dj1

(1) t = 0, x = 0-5, and -r- =
; (2) * - 0, - 0, and

-^
= 4

;

(3)
= 0, x = 0-5, and 4. In each case find the maximum

value of x and the time at which it occurs.

(16) A force of 10 lb. extends a spring by 1-6 inches. A mass
of 8 lb. is suspended from such a spring and is displaced 2 inches

from its equilibrium position and then let go. If x ft. is the

distance of the mass from the equilibrium position at any sub-

sequent time, t sees, find the equation of motion for the body
and then find an expression giving x in terms of t. What is the

periodic time of the motion and how many complete oscillations

does the body make per minute ? (g
= 32-2 f.s.s.)



374 PRACTICAL MATHEMATICS

(17) A force of 10 lb. extends a spring by 4 inches. A mass of

8 lb. is suspended from such a spring in a medium whose resistance

to the motion is 2v lb. where v ft. per sec. is the velocity of the

body at any instant. The body is displaced 3 inches from its

equilibrium position and is then allowed to oscillate in the medium.
If re ft. is the distance of the body from the equilibrium position
at any subsequent time t sees., find the equation of motion for the

body, and then find an expression giving x in terms of t. What
is the periodic time of the motion ?

(18) The two simple harmonic motions x x
= 3-2 sin (nt + 0-732)

and x2
= 5-6 sin (nt -f 1-346) can be expressed as one simple har-

monic motion x = A sin (nt + E) . Find the values of A and E.

(fix dx
(19) Solve

-^
+

2f-j-
+ n2x = 0. Take n2 = 200, /= 7-485.

dx
Let x - and also

-^
= 10 when t = 0. (B. of E., 1912.)

(20) A body capable of damped vibration is acted upon by
simply varying force which has a frequency /. If x is the dis-

placement of the body at any instant /, and if the motion is

defined by
(fix , dx . rt

.

di2
+ H + nx=asm 2lzft

we wish to study the forced vibration.

Take a - 1, 6=1-5, n2 - 4 find x, first when /= 0-2547 and
second when /= 0-3820. (B. of E., 1910.)

cPx dx
(21) -^ +

2f-j-
+ n2x = a sin qt expresses the forced vibration

of a system. Imagine the natural vibrations to have been damped
out. Take n2 = 49, /= 3, q = 5

; find x. (B. of E., 1913.)

(22) A weight W lb. hangs from a spiral spring whose stiffness

is such that a force of 1 lb. weight elongates it h feet. A down-
ward force F lb., in addition to the force of gravity, acts upon
the weight. At any instant the weight is x feet below the mean

position it would have if F were zero. Neglecting friction and

drx
the mass of the spring, prove that -^ + n2x = n2hF where n2 =gfWh

ft

If the natural frequency,for , is 10 and if h = a sin qt, neglecting

the natural vibration, find the forced vibration ; first when the

forced frequency fx or qj2iz is 2
;
second when it is 5

; third when
it is 15. (B. of E., 1914.)

(23) A condenser of capacity k farads is charged so that the

potential difference of the plates is vQ volts. The plates are con-
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nected by a wire of resistance R ohms and inductance L henries.

If v is the voltage at any subsequent time t seconds then

If R = 100 ohms, k= 5 x 10~ 7 farad and L - 10~3 henry.

Express v in terms of t, having given that v - 500, = when

t= 0.

(24) In Question 23, if L = 1-25 x 10"3
henry, all the other con-

ditions remaining the same, express v in terms of t.

(25) In Question 23, if L - 8 x 10"3
henry, all the other con-

ditions remaining the same, express v in terms of t.

(26) A straight steel rod of uniform circular section and 5 feet

long is found to deflect 1 inch under a central load of 20 lb. when
tested as a beam simply supported at the ends. Determine the
critical load when the same rod is used as a vertical strut with
free ends. (U.L., 1910.)

(27) A hollow cylindrical steel strut has to be designed for the

following conditions : length G feet, axial load 12 tons, ratio of

internal diameter to external diameter 0-8, factor of safety 10.

Determine the external diameter of the strut and the thickness

of the metal, if the ends of the strut are firmly built in. Use
the Rankine-Gordon formula, taking / 21 tons per sq. inch,

and the constant for free ends as - (U.L., 1908.)
7500 v '

(28) A mild steel I joist, 9 inches deep over all, flanges 4-5 inches

wide by 0-5 inch thick, web 0-5 inch thick, is used as a column,
20 feet high, loaded centrally. If the ends are firmly fixed, find

the allowable load. Use the Rankine-Gordon formula
;
take the

safe compressive stress as 12,000 lb. per sq. inch and the coefficient

for free ends as -
(U.L., 1909.)yuuu



CHAPTER XXII

186.

.2,

(a) \
sin 7*0 dQ - cos w0 (cos 2nn - 1)

=
Jo nl J

o n

I sin w6 d0 = cos nd\ = {cos mz cos ( mi)} =

I sin riQ d0 = cos n0 = (cos nn 1)
Jo n L

-"o
n

'0

when n is even

^ - when w is odd
n

(b)
[

cos w0 d0 =
i[sin n0j

-

[
cos w0 d0 = i

[sin w0J
=

f cos ?i0 d0 = i
|sin n0| -

Jo nL J

since sin nn = if n is a positive or negative integer.

(c) I sin ri0 sin mQ d0 = -I {cos (n
- m)0 - cos (m + ti)0} d0

and it follows at once from (b) that this integral vanishes between

the limits and 2tz ; 7c and 7c ; and and jc.

(d) (cos 7i0 cos 7?i0 dO - -I {cos (n -f w)0 + cos (n
-
m)0} d0

and it follows at once from (b) that this integral vanishes between

the limits and 2n ; 7u and iz ; and and n.

f
2'

(e) I sin ?i0 cos m0 d0
Jo

= -1 { sin (n + 7/i)0 + sin (n m)0} d0

376



THE INTEGRATION OF PERIODIC FUNCTIONS 377

cos (n + 7n)0 cos (n m)61
?i + m n m

l[~
cos 2(n + m)7r 1 cos 2(n m)7r 1~|

2 L ti h m nm J

I sin 710 cos ra0 d0

l[~
cos (w + m)0 cos (n ra)0T

2L n+ m n m J_n-\- m n m
cos (71+ 771)71 cos{ (n+ m)} 71

2L n + mit

cos (n m}7i cos { (

n m
n m)n}l

sin n0 cos m0 d0

cos (n+ m)0 cos (n m)"]"
n-\- m nm

1
1~

cos (n + 771)71 1 cos (n ra)7r ll

2 L n + m nm J

- 0, when n + m is even,

H when n + m is odd
w + m nm

Hence the integrals Isin7i0rf0, I cos 7*0 d0, I sin ti0 sin m0 d0,

I cos 7i0 cos ra0 dQ, and I sin w0 cos m0 d0 all vanish when taken

between the limits and 2tz, and they all vanish when taken

between the limits - n and 7r. If and n are taken as the limits

of the integrals, then the integrals
J

cos n0 d,
J

sin n0 sin ra0 d0,

and I cos 7i0 cos ttc0 dQ vanish, while the integrals
J

sin ti0 dQ

and I sin ti0 cos ra0 d0 do not vanish.

187. These results do not apply to the case when n= m, except

for the integral I sin 7i0 cos md d0



378 PRACTICAL MATHEMATICS

for sin n0 cos n0 dd = -
I sin 2n0 dQ

i
l [cos2ne]'

- (COS 4717T - 1 }
-

J

sin w0 cos 710 dQ - ~
TZ\

cos 2n^

= - t- {cos 2n7u - cos ( 2nn) }

=

1 sin 710 cos n0 d0 = cos 2n0

- -
{cos 2nn - 1}

The integral I sin n0 sin mO d0 becomes Isin2 n0 d0

l* sin2 n0 d0 - i Td0 - i P cos 2n0 d0

= 71

f Sin2 7i0d0c=irrf0-ircos2n0d0

["sin

2 7i0 d0 =i frfO - i
["cos

2n0 dQ

_ 7T
"

2

The integral I cos w0 cos ?n0 <20 becomes I cos2 ti0 dO

f'cos2
7i0 d0 = 1

pd0 + 1 Tcos 2n0 d0
o

= 7t
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J
*cos2 n0 dti = 1 f *d0 + I [

'cos 2n0 d0

-
g ["

~
(
~ w)]

= *

Tcos2
710 d0 = I Trf0 + 1 Tcos 2n0 d0

~
2

These results may be used as a means by which a periodic
function can be expressed as a series of sines or cosines of multiple
angles.

188. The Sine Series. The sine series is expressed in the form

V =
f(x)

- A t sin x + A2 sin 2x + A 3 sin 3a: + . . . An sin nx +
where Aj, A 2, A3, etc., are constant coefficients, and any integration
which might be necessary must be taken between the limits

x = and x = ic.

If we multiply throughout by sin nx and integrate each term
with respect to x between the limits and n,

Then I y sin nx dx
Joi

= Ajl smxsinnxdx+AA sin 2x sin nx dx+ . . . Al sin2 wa; da?+. . .

Jo Jo Jo

and all the integrals on the right-hand side vanish except

Afsi^, whichbecomes^
Jo 2

Hence n7^ =
\ y sin nx dx

* Jo

and A = -
I y sin nx dx

rcJo

If y is known in terms of x, the integral can be determined, and

by giving n the values, 1, 2, 3, etc., the values of A lt A 2 , A 3 can
be found.

Example. Expand the function y = mx as a sine series, knowing
that when x =

tz, y - c.

c c
Then m = - and ?/

= -x.

Then ?/
= A

1
sin a* + A 2 sin 2x + A 3 sin Sx + . . . An sin w<r -f .
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I y sin nx dx = A I sin2 nx dx = s^A,,

y sin nx dx = -
I x sin nx dx

Jo tcJo

5[
x cos n# sin w#

+ :V
n

=
( 7U COS W7T)7W '

n2
J

Hence

n

2c

when n is odd

when n is even

A- - when n is odd

2c
when n is even

TBI

2c 2c . 2c . 2c .

Thus y = sin ir - sin 2a: + - sin 3a: -- sin 4a: + . . .

7C 27T 3tc 47C

1 1 1 \
sin 2a; + - sin &r - sin 4r + . . . r

2c f .

{ sin x
7T I 2 3

working in terms of c.

or /
= 2m

|
sin a; - - sin 2x + - sin Sx - sin 4r -f . . .

}

working in terms of m.

Example. Expand the function y = mx as a sine series, knowing

that when x = 0, y =
; when x = -,y =

c, and when a; = tz, y = 0.
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when n = 3 sin - = - 1 and A3
=

2 7U
Z 3Z

when n = 4 sin - and A4
=

when n = 5 sin - = 1 and Ac = -

2 7U
2 52

_ 8c r l . l . . 1 . . I . *, ^Then
2/
=

|t-2
sin x - ^ sin Sx + -^ sin 5a; - -3 sin 7a;+ . . .

|

working in terms of c.

or y - J_ sin a: -
g3

sin 3a; + -To sm 5a; -
2
sin 7a?+ . . . \

189. T/?c Cosine Series. The cosine series is expressed in the

form y =
f(x) ^Bq+B^^ cos x + B2 cos 2a; + . . . Bn cos na; + . . .

where B
,
B

lf
B 2 , B 3 , etc., are constant coefficients and any

integration which might be necessary must be taken between the

limits a? = and x = it. It should be noticed that the cosine

series differs from the sine series in having an initial constant

term B .

In working with this series two operations are necessary, one

operation to find the initial term B and the other to find the

general coefficient Bn .

If we integrate throughout with respect to x between the limits

and 7C.

Then I y dx

= B I cte+ Bi I cos xdx+ B 2 I cos 2a;da;+ . . . Bn |
cos nx dx+ . . .

Jo Jo Jo Jo

and all the integrals on the right-hand side vanish except

B I dx, which becomes 7rB .

Hence 7cB = I y dx
Jo

and B = -I y dx
rcjo

If we multiply throughout by cos nx and integrate each term
with respect to x between the limits and 7u,

Then I y cos nx dx

= B I cos nx dx-\-B 1
I cos x cos nx dx+. . . Bn I cos2 nx dx+. . .

Jo Jo Jo
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and all the integrals on the right-hand side vanish except

Bn I cos2 nx dx, which becomes -izBn .

Jo 2

Hence o^-^n
=

I V cos nx dx
* Jo

and Bn
== - I y cos nx dx

tcJo

If y is known in terms of x, the integral can be determined
and by giving n the values 1, 2, 3, etc., the values of B v B 2>

B 3 , etc.,

can be found.

Example. Expand the function y = mx as a cosine series,

knowing that y = c when x = iz.

c c
Then m = -, and y = -x

y = B + B x cos x + B 2 cos 2x + . . . Bn cos nx + . . .

and 1 y dx = B I dx = 7rB

Then 7iB = -
I x dx

Two

_ C 7t
2

"
7U *2

and B = -

Also I y cos nx dx = Bn I cos2 n# cfo = - 7rBw

Now I y cos nx dx =---\ x cos ti# d#
Jo ^Jo

c Vx sin n# cos
ritT"]'

r

~
tz\_ n ri* J

c= 7 (COS 717U 1)

and Bn
=
^^(cosn7i-l)

When n is even, cos nn:
= 1, and Bn

- 0.

Hence B 2 ,
B4 ,

B6 , etc.7 all become zero.

4c
When w is odd, cos rnz - 1, and Bn

= ^-2

4c 1 r> 4c 1 4c 1
andB t

- -
2 p B 3

=
-^p, Bb

- - _ _ etc.
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tm c 4>c C 1 1 1 * ^Then y = ~ -A cos x + - cos 3x -l-- cos 5x +-- cos 7a; + . . . }
2 7i"l 9 25 49 J

working in terms of c.

1 4m f 11^ 1
or y = -m7t

]
cos a; + - cos 3a; + -^z

cos 5a; -f- . . .

\2 7C V. 9 25 J

working in terms of m.

Example. Expand the function y = mx2 as a cosine series,

knowing that y = c when x = 7t.

c c
Then ra = r, and ?/

= a;
2

and y = B -f B x cos a; + B 2 cos 2x + ... BB cos n# + . . .

Then B I dx = I y dx

*B =^x2 dx

c I*? a r c ^
1?T>

andB =5?3

Also I y cos na? da; = Bn
|

cos2 nx dx -
57rBn

But I t/ cos nx dx =
^1 a;

2 cos na; da;

Jo ^"Jo

c pr
2 sin Tia? 2a; cos nx 2 sin

naf|
7i

2L n n2 n3 J

C 27C=
-J o cos mz
7r

2 n2

c 4
Then B_ = - r cos wtc

7c
2 n2

c 4
When w is even, cos mz =

1, and B_ = -

7T
2 n2

and B 2
= -

2 ^ ( 3,= -,-, B, = --,etc.

c 4
When n is odd, cos mz = 1, and Bn = -s

7C
2 W2

and 6,= ---, B3
- -^, B, - -

-, j*
etc.
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Therefore

C 7T
2

4cf 1
rt

1 1
A \

y -
, S

J cos a; - - cos 2a; + - cos Sx - -- cos 4a:+ . . .}^ r 3 ttH 4 9 16 J

c 4cf I A 1
'

1
'

1=
;i cos a? - cos 2a: -{-

- cos 3a: -~ cos 4a:+ . . . J-

3 7i
2 l 4 9 16 J

working in terms of c

miz2
( 1

rt
1 n 1

^i

or
2/
=

-"5 4m i cos x ~ t cos 2a? + t:
cos 3a? ~ t^ cos 4# \3 v. 4 9 lo J

working in terms of m.

190. Fourier's Series. The general form of Fourier's Series is

y =
f(x)

= B + B L cos x + B 2 cos 2a: -f . . . Bn cos nx + . . .

+ A x sin a: + A 2 sin 2a: + . . . An sin nx + . . .

Since the integrals I sin nx dx and I sin nx cos ma: da: do not vanish

when taken between the limits and iz, but they do vanish

when taken between the limits and 2n, or between the limits

7r and 7u. Fourier's Series can only be worked when the

necessary integration is performed between the limits and 2n,

or between the limits 7T and w.

In working with this series, three operations are necessary,

the first to find the initial term B , the second to find the general
coefficient Bn ,

and the third to find the general coefficient A.
(1) If we integrate throughout with respect to x between the

limits and 2tz.

Then I y dx

- B daj+BJ cosa:da:+ B 2 cos 2a: dx+ . . . Bn cosnxdx+. . .

+AA 'sina?da:+A 2 sin 2xdx+ . . . An l sin nx dx+ . . .

and all the integrals on the right-hand side vanish except B dx,
Jo

which becomes 27rB .

Hence 2ttB -
j y dx

and ^-hfa**
' 2 B
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(2) If we multiply throughout by cos nx and integrate each

term with respect to x between the limits and 2tc,

Then I y cos nx dx

cos nxdx+ J$A cosxco$nxdx+ . . . Bn |
cos2 nx dx+ . . .

Jo Jo

+ AJ smxcosnxdx+ . . . An l sinnxcosnxdx+...
Jo Jo

and all the integrals on the right-hand side vanish except

Bn
|

cos2 nx dx, which becomes izBn .

Hence nBn
= I y cos nx dx

1 f
2*

or Bn
=-

\ y cos nx dx
ttJo

(3) If we multiply throughout by sin nx and integrate each

term with respect to x between the limits and 2tt,

Then I y sin nx dx

= B
|
sinn^dr + Bjl cosxsmnxdx+ . . . Bn |

zosnxs\nnxdx+ . .

Jo Jo Jo

+ A<\ smxs>mnxdx + . . . A^i sm2 nxdx+. . .

and all the integrals on the right-hand side vanish except

An l sin2 nx dx, which becomes 7uAn .

Hence 7rAn =1 y sin nx dx

1 f
2*

or A = I y sin nx dx
^Jo

Working with the same series In a similar manner between the

limits n and iz, it can be shown that

B =
I V dx

and A = I y sinmx dx
TZ J a-

Bn = - v cos nx dx
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Example. Expand the function y^e* as a Fourier's Series,

working between the limits x iz and x w.

Then
2/
= B + B x cos a? + B

2 cos 2a; + . . . Bn cos nx + . . .

A x sin x + A 2 sin 2a; + . . . An sin nx + . . .

and 2tzB = 1 y dx

ie* dx

= en e~*

Bo = 4(e
" ~ e~^

Lyaalso 7rBn =1 y cosnx dx

= I e* cosnx dx

-5
- ^ cos wa? + ne* sin n#

-5 -{6* cos mz e~* cos (
- mz)}n2 + V \ n

cos mz,

and Bn
= 75 cos n7u

iz{n
2 + 1)

^ g-
When n is odd, cos mz = 1 and Bn

=
7r(n

2 + 1)

a -d e e-* e* e-* ^ **-*-
and B, =

,
B,=

,
B* = - -

1 2n
' 3

IOtc
5

267U

When n is even, cos mz = 1 and Bn
=

tu(w
2 + 1)

also 7rA - v sin nx dx

l
-

\
e* sin nx ne* cos ^r

n2 + 1 L J -

=
1 e sin wa; da;
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n=
^

-
{g* cos mz ~* cos ( mz) }

n cos mz . .

*Tr<*-^
. . rc(g*

- g)and An
= \ 2 ,

./ cos wu
7u(n

2
4- 1)

When w is odd, cos mz - 1 and A,.
= V . -?

7c(n
2 + 1)

^ a
g'-g" A _ 8(g

- g-) . _ 5(g
-

g-)and A x
- -_-

t, A3 , A5

When n is even, cos mz - 1 and An
= -

7r(n
2 + 1)

, . 2(g*-g-
,r

) . 4(g'-g-) . efg'-g-*)and A 2=-^-^,A4=-A__J, A(1= _A___'

^v ^e-*ri /l l l
Then ?/

= ^
[

-
I
- cos x - cos 2# 4- cos Sx

TZ \m \a 5 10

1 \ (\ 2
tz cos \x . . . ) + I - sin x - - sin 2a?
17 / \2 5

+
Jo

sin ar - sin 4x . .

.)}

191. Hitherto we have been working with and w, and 2tc,

and 7c and 7r as the limits for x, but the work is not restricted

to these limits; it is possible to work with any limits. Taking
the function y =

/(0) and expressing it as a sine series between
and 7T.

Then 2/^/(0) = A x sin + A 2 sin 26 + ... A* sin n0+ . . .

If is replaced by x in such a way that when = 0, x = 0,

TC.TC

and when -
tz, x =

c, then we have the relation =
, which

c

renders it possible to work in terms of between the limits

and tz.

Example. Expand the function y = x2 as a sine series working
between the limits x = and x = c.

Then y - A 1 sin 4- A 2 sin 20 + A 3 sin 30 + . . . A sin w0+ . . .

taken between the limits and 7c.

Since , then y = x2 = r
C 7w

2

c2 2

and y = - = A, sin + A 2 sin 20 4- . . . A sin w0 4- . . .

7C
2

working between the limits and tz,
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Then -r:An = I y sin nd dQ
Jo

-7rAn - I,y sii

^ I
02 Sin n d

= l T _ Q 2 CQS ^Q 26 sin n9 2 cos
n0~]

w

C2 / 7I
2COS W7T 2

, x 1=
2 1 h -z (COS W7U - 1) J"

j A 2c2
r 7t

2cos ?itc 2
, ,,1and A = \ f (cos mz-l)\

7i
3 ^ n n3 v

')

When n is odd, cos nn = - 1 and A = -^- ( J
7i

3 \n n3/

an , A
2c2

. 2c2 At2 4\ 2c2
/ti2 4\

and A, - -(re2 -
4), A 3

- ^ (
- -

-> A5 -^- -
_), etc.

2c2
7T

2

When n is even, cos n7r = 1 and A = -
7T

3 n

, A 2C2
7I

2
. 2C2

TI
2

A 2c2
7T

2

andA = A. = X. , _ etc.
tu

3 6
M* ,
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Let the base line of such a curve be divided into m equal parts
and the ordinates y , y lt y 2 , . . . ym drawn to the curve at each

point of division. The lengths of these ordinates will give the

27T 47T QtZ
values of y when has the values 0, , , . . . 2tz, re-

spectively.

% y.

I !

y. y,

2TT

I i i

i
I I

h t-H
i i L

9 IS m tixjgar e^iiit J,,-

(1)

Fig. 126.

*-!> (10

B is evidently the average ordinate of the curve obtained by
plotting horizontally and y vertically, and therefore

B = (sum of the ordinates)

= -(yo + yi + yi+ 2/*-i)

The ordinate ym is not to be included, since it forms the initial

ordinate of the next period.

(2) Now
1 f

2'

cos n0 rf0

Bn is evidently twice the average ordinate of the curve obtained

by plotting horizontally and y cos w0 vertically.

Then Bn = {sum of the ordinates of the 0, t/ cos n0 curve}m l a

2( _ 2mz ^niz 2n(m\)-K=
\y

cosO +2/1 cos -
z:r -\-y 2 cos-::r +. . .ym . 1 om m m

This will give the coefficient of any cosine term in the resulting
series by giving n the required value.



HARMONIC ANALYSIS 391

For when n = 1,

B
i
=

\ 2/o + 2/i cos + 2/2 cos + .m m
2(m- 1)tz\

Vm-icos z
Jm

when n = 2,

2 r 4tc 871B 2
-

J
2/o + 2/i cos + y2 cos hm cosm

4(m- 1)7T )

m J

(3)

If
2"

Now An
= -I y sin w0 d0

TCJO

A is evidently twice the average ordinate of the curve obtained

by plotting 6 horizontally and y sin n0 vertically.

Then An
= {sum of the ordinates of the 0, y sin n% curve}

2 ( . nQ . 2mz . 4n7r . 2n(m l)iz\= {y sin + ?/! sin + y 2 sin + . . . ym _ l
sin :

'

\

and this will give the coefficient of any sine term in the resulting
series.

It follows, therefore, that in the operation necessary to obtain

any coefficient of the form An ,
the ordinates y , yv y 2 . . . must

be multiplied by the sines of the corresponding angles 0, ,

in

-^, -^, etc., and twice the average of the sum of thesem m
products taken. While to get Bn the ordinates must be multi-

plied by the cosines of the corresponding angles and twice the

average of the sum of the products taken.

If a = and from a fixed point radial lines are drawn makingm
angles 0, a, 2a, 3a, etc., to the horizontal (Fig. 127).

7,
.11 /

"

v- :^i

r
H-

Fig. 127.
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Then if the ordinates y , ylt y2 , etc., are measured from the

fixed point along these radial lines respectively,

2A = {sum of the vertical projections}

2
Bn

= {sum of the horizontal projections}

It should be noticed that the work will be made considerably

simpler if the number of ordinates is so chosen as to make the

angle a simple fraction of 27c.m
193. Considering a harmonic curve, the base line of which

extends from to 2n for a complete period. Let the base line

be divided into 12 equal parts and the ordinates y , yv t/2 , . . . y xl

drawn to the curve at the points of division.

Then each division of the base will correspond to an angle -
or 30. 6

Then B - {y + yx + y% + . . . yxl}

1 f
2' 1 f

2'

(1) Now Aj = - y sin G dQ, and B x
= -

I y cos
71 J 7tJ

dti

Hence A
x
= - {sum of the ordinates of the 0, y sin curve}

and B
x
= - {sum of the ordinates of the 0, y cos curve}

or Aj = -
{y sin + yx sin 30 + 2/2 sin 60 -t- . . . ylx sin 330}

and B x
= -

{y cos + y x cos 30 + y 2 cos 60 + . . . ylx cos 330 }

If from the point O radial lines are drawn at intervals of 30
and the ordinates y , yv etcv are measured along these lines.

(Fig. 128.)

Then, resolving vertically,

Ai -
^{(2/1

- y7)
sin 30 + (y2

- ya)
sin 60 + (y3

- y9)

+ (2/4
-

2/io) sin 6 + (2/s
-

2/n) sin 30 }

=
g{(2/i

+ 2/5-2/7-2/ii) sin30 + (2/2+ 2/4-2/8-2/io) sin 60 + y3 -yQ }

and resolving horizontally.

Bi =
g{(2/

-
2/e) + (2/i

"
2/7)

cos 30 + (y2
- y8) cos 60

-
(2/4

-
2/io) cos 60 -

(t/5
-

yil)
cos 30}

-
g(2/o

~
2/e + (2/i + 2/n

-
2/s
~

2/7) cos 30

+ (2/2 + 2/io
-

2/4
"

2/s) cos 60}
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1 f
2* l f

2,r

(2) Now A 2
= - y sin 26 dQ, and B 2

= - y cos 20 dQ
71J o tcJ o

393

Mrt. VrV7

>*. .*. jo i % y&

Fig. 128.

Hence A 2
= - {sum of the ordinates of the 0, y sin 20 curve }

and B 2
- -{sum of the ordinates of the 0, y cos 20 curve}

or A 2
- hy sin + y x

sin 60 + y 2 sin 120 + ...y 1
sin 660}

and B 2
-

-{2/ cos0 + 2/ 1cos60
o + 2/ 2cosl20 + . . . 2/HCOS660 }

UftrW wy.

V/^^-Ve

Fig. 129.

If from the point O radial lines are drawn at intervals of 60 c

and the ordinates y , yv etc., are measured along these lines.
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Then, resolving vertically,

A 2
=

g{(2/i
+ 2/7

-
2/4
-

2/io + 2/2 + 2/s
-

2/5
-

2/n) sin 60}

or A 2
=

-{(2/i + 2/2 + 2/7 + 2/s
-

2/4
-

2/5
-

2/io
-

2/u) sin 60}

and resolving horizontally,

+ 2/6-2/3-2/

(2/2+2/8-2/5-2/u) cos 60}

B 2
=
g {(2/o + 2/6

-
2/3
"

2/9) + (2/i + 2/7
~

2/4
-

2/io) cos 60

g {(2/o + 2/6 -2/3 -2/9) + (2/1 + 2/5 + 2/7 + 2/11-2/2-2/4-2/8-2/10) cos60}

(3) Now A 3
= if y sin 38 d0, and B3

= if y cos 30 d0
7UJo 7tJ

Hence A 3
- - {sum of the ordinates of the 0, y sin 30 curve}

and B 3
= - {sum of the ordinates of the 0, y cos 30 curve}

or A 3
-

-{t/ sin0 + i/ 1sin90
o + 2/ 2sinl80

o + . . .yn sin990}

and B 3
=

-{2/ cos0 + ?/ 1cos90 + 2/3cosl80 + ...i/11cos990 }

Fig. 130.

If from the point O radial lines are drawn at intervals of 90
and the ordinates y , y lt etc., are measured along these lines.
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Then, resolving vertically,

A3=q {Vl + 2/5 + 2/9
-

2/3
-

2/7
-

2/ll}

and resolving horizontally,

B3=G (2/o + 2/4 + 2/s
-

2/2
-

2/e
-

2/io}

The other coefficients can be obtained in a similar manner.

194. Example 1. The following values are 12 equidistant
ordinates of a periodic function taken for a complete period.

Express the function as a Fourier's Series neglecting terms higher
than 36.

3-40 5-41 6-42 5-40 3-58 2-29

1-60 1-43 1-92 2-80 2-78 2-47

Then B. = (sum of the ordinates)

39-50

12

= 3-29

To get Aj and B x (Fig. 131).

2-60

2-98

SO

OI8

Fig. 131.

A, = -
{3-98 sin 30 + 4-5 sin 60 +2-6 + 0-80 sin 60 - 0-18 sin 30 }

= 1(2-60 + 3-80 sin 30 + 5-3 sin 60}

At -l*ffl
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B
1
= -{l-80 + 3-98cos30

o + 4-5cos60-0-80cos60o + 0-18cos30}

=4 {1-80+ 4-16 cos 30+ 3-7 cos 60}6

Bx-1-21

To get A 2 and B 2 (Fig. 132).

5-ZO

Fig. 132.

A2
-
g{'

48 sin 60 + 3-58 sin 60}

= l{4-06 sin 60}

= 0-59

B 2
-
^{

0,4-8 cos 60 - 8-58 cos 60 -
3-20}

= -{ - 310 cos 60 -
3-20}

- -0-79

To get A 3 and B 3 (Fig. 133).

A 3
= ^=02

B. L2
6

-0-32

Hence y = 3-29 + 1-21 cos - 0-79 cos 20 - 0-32 cos 30

+ 1-51 sin + 0-59 sin 20 + 0-20 sin 30
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also 1-51 sin 0+1-21 cos = 1-93 sin (0 + 38-7)

0-59 sin 20 - 0-79 cos 20 - 0-97 sin (20
-

53-2)

0-20 sin 30 - 0-32 cos 30 - 0-38 sin (30
- 58)

Then y - 3-29 + 1-93 sin (0 + 38-7) + 0-97 sin (20
-

53-2)

+ 0-38 sin (30
- 58)

1-20

397

Fig. 133.

195. Example 2. The value of a periodic function of t is here

given for twelve equidistant values of t covering the whole period.

Express it in a Fourier's Series. Terms of the fourth and higher
orders are negligible. (B. of E. ; 1911.)

2-340
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and Bj = -
{1-515 + 2-499 cos 30 + 2-810 cos 60

- 2-496 cos 60 - 0-566 cos 30}

{1-515 + 1-933 cos 30 + 0-314 cos 60}

2-8IO

2Z.99

1-515

Fig. 134.

To get A 2 and B 2 (Fig. 135).

Then A 2
= -

{0-720 sin 60 - 1-349 sin 60}

0-629 sin 60

2-069

I-3A9

Fig. 135.
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B 2
=

a i
~ 2 '069 ~ '720 cos 60 ~ 1>349 cos 60 }

= -
{
- 2-069 - 2-069 cos 60}

0-517
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Curve (1) shows y x
= 2 sin x

(2) shows y 2
- 2 sin x sin 2x

2
(3) shows ?/ a

= 2 sin a? sin 2x + - sin Sx
o

2 1

(4) shows ?/4
= 2 sin x sin 2# + - sin Sx - sin 4#

o 2

2 12
(5) shows f/5

= 2 sin x sin 2# -f
- sin 3# - sin 4#+ - sin 5x
3 2 5

and it should be noticed how the addition or subtraction of a
sine function brings the resultant curve nearer to the straight line

y = x.

Examples XXII

(1) If y = a sin qt and x = b sin (qt c) where t is time and

a, q, b, c are constants ;
if q

=
-^ where T is the periodic time.

Find the average value of xy during the time T. (B. of E., 1908.)

(2) Express sin at cos bt as the sum of two terms and integrate

with regard to t. If a is -=- and b is 3a, what is the value of the

integral between the limits and T ? (B. of E., 1913.)

(3) If y = a sin qt and x = b cos (qt c) where t is time and

a, q, b, c are constants. Find the average value of xy during the



EXAMPLES XXII 401

periodic time T
2tc

What is the average value of y
2
during

the periodic time ?

(4) If y - a cos qt and x = b cos (qt
-

c) where t is time and
a, q, b, c are constants. Find the average value of xy during

the periodic time T -
. What is the average value of x2

during

the periodic time ?

(5) If y - a cos qt and x = b sin (qt
-

c) where t is time and
a, q, b, c are constants. Find the average value of xy during the

periodic time T - . What is the average value of x2
during

the periodic time ?

(6) Find a sine series for y = mx2 between x - and x = w.

(7) Find a sine series for
2/
= ra^3 between a? - and x = w.

(8) Find a cosine series for y = mx3 between x = and
# = 7C.

(9) Find a cosine series for y = e* between a? = and x = n.

(10) Find a cosine series for y = e~* between x = and x = w.

(11) Find a Fourier's series for ?/
= x2 between x = n and

(12) Find a Fourier's series for y = ar
3 between a? = 7U and

a? = 7r.

(13) Find a Fourier's series for y = e~ x between x = n and
X = 7C.

(14) Find a sine series for z/
= aj between x = and a? = c.

(15) Find a cosine series for y = x2 between a? = and x = c.

The value of a periodic function of t is given below for twelve

equidistant values of t covering the whole period.

Neglecting terms of the fourth and higher orders, express it

in a Fourier's series for the six different examples.

(16)
22-81
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(19)

(20)

(21)

(22) The value of y, a periodic function of t, is here given for

twelve equidistant values of / covering the whole period. Express
t/in a Fourier's series : 13-602, 18-468, 20-671, 20-182, 17-820,

14-346, 10130, 5-612, 1-877, 0-486, 2-500, 7-506. (B. of E.,1910.)

(23) A sliding piece has a periodic motion. Its distance x
from a point in its path is measured at twenty-four equal intervals

into which the whole periodic time is divided. Express # in a
Fourier's series : 1604, 16-74, 16-66, 15-86, 14-68, 13-42, 12-26,

11-16, 9-98, 8-76, 7-60, 6-68, 5-96, 5-34, 4-68, 414, 3-98, 4-50, 5-74,

7-46, 9-36, 11-24, 1306, 14-70. (B. of E., 1906.)

2200



CHAPTER XXIII

197. If we consider the series

1, 4, 10, 20, 35, 56 . . .

there does not seem to be any apparent connection between one
term and the term immediately following it, neither is it obvious
that the series is derived from some definite law of formation,
but if successive differences are taken, a study of these differences
will enable us to find the law of formation, providing such a
law does exist.

Au A2u A3u A4w
u = 1



404 PRACTICAL MATHEMATICS

198. Let a certain series be denoted by u , uv u 2 ,
u3 , etc.

Then u Aw A2u Azu A4w Ahu Au
Ur[ o

Au
u x

A2u

Au t
A3u

u2 AX AX
Aw2 AX AX

w3 AX AX AX
Au3 AX AX

w4 AX AX AX
Aw4 AX AX

% AX AX
Aw5 AX

uQ A2ub

Au6

u,

Then u x
= u + Au (1)

w 2
= u i + Am x

= m + Aw + Au + A2w
= w +2Aw + AX (2)

W 3
=

2 + AW2

= K + 2Au + AX) + (At* + 2AX + AX)
= u + 3Au + 3A2u + AX (

3
)

u
\
= uz + Aw3

- (w + 3Am + 3AX + A3u
) + (Aw + 3AX + 3AX

+ AX)
= u + 4Att + 6AX + 4AX + AX (

4
)

= (m + 4Aw + 6A2w + 4AX + AX) + (Awq + 4AX
+ 6AX + 4A4w + AX)

= u + 5Au + 10AX + 10AX + 5AX + AX (5)

The multipliers of the differences are evidently the same as the

Binomial coefficients in the expansions for which the powers are

1, 2, 3, 4, and 5 respectively.

Hence

A n(n 1) . n(n l)(n 2) A _

un
= u + nAu +

|
2 AX +

r^ ^AX + . . . etc. (6)
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This result enables us to find the value of any term, providing
the first term u is known and also the successive differences

Au ,
A2u

, AX . . . are known. These differences evidently lie

on a diagonal line running downwards from u .

Symbolically, then,

i*!
-

(1 + A)u -
(l + A)u

u 2
=

(1 + 2A + A2K =
(1 + A)X

u3
=

(1 + 3A + 3A2 + A3K =
(l + A)X

w4
=

(1 + 4A + 6A2 + 4A3 + A4
)w *

(1 + A)X
ub

=
(l + 5A + 10A2 + 10A3 + 5A4 + A5

)w =
(1 + A)X

and,w Hl +^ +^A2 +^-[f-
2)
A3,.^ ^(l + A)X

In which (1 + A)X means that (1 + A) operates on u twice,

or more generally (1 + A)X means that (1 + A) operates n times

on u .

Example 1. Find the 9th term and the general term of the series

1, 4, 10, 20, 35, 56 . . .
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Also un
=

(1 + A)X
A n(n 1) A9 n(n l)(n 2) ._

- u + wAw + -V^
' A2w + -i

1-^

1 AX
3 1= 1 + 3n + - n

(
n -1

) + g(" 1)("
-

2)

= 1
{6 + 18n + 9n2 - 9n + n3 - 3n2 + 2n}

=
g {w

3 + 6n2 + llw + 6}

This result enables us to find the value of any term by giving
n its necessary value.

The 9th term is obtained by putting n = 8

and wfl
= - 165

G

Example 2. Find the 10th term and the general term of the

series

1, 5, 15, 35, 69, 121 .. .
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= -{3 + 12n + 9n2 -9n+ 2n3 - 6n2 + 4>n}

- -{2n
3 + 3n2 +7n+S}3

Using this relation for un as a means of verifying the result ob-

tained for the 10th term.

w9
=
^{2 x 93 + 3 x 92 + 7 x 9 + 3}3

1767

3

589

199. In the preceding work it should be noticed that u repre-
sents the first of the given values, and therefore the work can only
be done by using the values of the successive differences which
occur at the top of the table. It is possible to work with the

differences lying on a diagonal line in any part of the table by
altering the position of uQ.

Thus if u is taken to be situated somewhere in the middle of

the table, then we have to distinguish between the values of u,

which occur on either side of u . Those values going downwards
from u are denoted, as before, by uv u 2 ,

u3 , etc., while those

working upwards from u are denoted by u~v U- 2 , w_ 3 , etc.

u Au A2w A3w A4w Arw AGu
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Hence from the term u there can now be taken two different

sets of successive differences. There is the first set Aw
, A2w

,

A3
i* , etc., running diagonally downwards, and from these values

we are enabled to find the value of any term below u , for it has

been already shown that un = (14- A)
nu .

There is the second set of differences 8w > 8X> 83w , etc.,

running diagonally upwards, and from these values it should be

possible to find the value of any term above i* .

Now w_! = u 8i* (1)

i*_ 2
- t*_ x Stt-!

- t* - $u -
(8i*

- 8X)
= 1*0-281*0+8*1*0 (2)

W_ 3
= t*_ 2 8t*-2
=

?*o
- 28m + 8X -

(8i*
~ 2S2mo + $X)

= u - 38w + 38X - &X (
3
)

t*_4
- W_ 3

- 8W_ 3

=
i*o
- 38w + 382

t* - 8X -
(8t*

- 38X + 383
t*

-8X)
= u - 48t* + 682

i* - 483m + 84
t* (4)

t*_5
= W_ 4

- 8l*_ 4

- t* - 48i* + 68 :
t* - 483

l* + 8X -
(8w

- 48X
+ 683

i* - 4$X+&X)
-

f*o
- 58m + 108X ~ 10 X + 58*i*o

- &X ... (5)

The multipliers of the differences are evidently the same as the

binomial coefficients in the expansions for which the powers are

1, 2, 3, 4, and 5 respectively, but the signs are alternately positive
and negative.

. n(n
-

1) .
'

w(n - l)(n
-

2) .
Hence i*_B

= i* - w 8i* +
,

78X = r 8X +
|_2_ |_3_

Symbolically, then,

t*-!- (l-8)!*o =(l-8)i*
i*_ 2

= (l-28 + 82K . =(1-8)X
i*_ 3

=
(1
- 38 + 382 - 83)i*

=
(1
- 8)X

i*_4
= (l-48 + 682 -483 + 84)i* =(l-8)X

i*_ 5
= (l-58 + 1082 -1083 + 584-85K =(! -8)X

andu_ =
(l-n8 +^lV-^-y-

2^3 +
.,.)

Wo = (1 -8)nMo

In which (1 8)X means that (1
-

8) operates on i* twice, or

more generally (1 B)
nu means that (1 8) operates n times

on i* .
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Thus if u represents a term, in the middle of a set of given
values, u-n = (1 S)

nw will give the value of any term above uQ,

and the differences to be used must lie on the diagonal line running
upwards from u

;
while un

=
(1 + A nu will give the value of

any term below u
, and the differences to be used must lie on the

diagonal line running downwards from u .

E.romple. The values 12, 12, 6, 0, 0, 12, 42 are seven con-

secutive terms of a series of which the number 6 is the 5th term.

Find the 1st term and the 11th term.

w 3
- 42

If the middle value is denoted by u , the 1st term will be w_ 5 ,

and w_ 5
-

(1
-

$)hi =u - 5Sw + 1082% - 108%

this relation ends at the 4th term, since S4w = 0, and taking
the differences on the diagonal line running upwards from u
8w = -

6, S2w = 0, 83w = 6.

Then w_ 5
= - 5 x

(
-

6) + 10 x - 10 x 6

= -30

Also, the 11th term is w5

and ub
-

(1 + A)
5w = u + 5Aw + 10A2w + 10A3w

and taking the differences on the diagonal line running down-

wards from w , Au = 0, A2u - 12, and Asu - 6

Then m5
= 0+5 x 0+10 x 12 + 10 x 6

- 180

200. The results un = (1 -i- A)% and w_n
=

(1
- 8)% will hold

for all values of n besides positive integers, and if the differences

in a certain column, say Ar
n, are zero ;

exact results can be

obtained by simply taking the binomial expansion for (1 + A)
n

or (1
- S)

n as far as the term involving Ar~X or Sr-1w . Thus

if the value of w 2 .4 was needed, it would be better to alter the

notation and call u2 u0) then w 2 .4 could be taken as w .4 and the
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diagonal line of differences to be used would be the one going
downwards from u . Or taking it another way, u3 could be

denoted by u
, then w2 .4 could be taken as w_ .6 and the diagonal

line of differences to be used would be the one going upwards
from u .

As an example of the application of the method of finite differ-

ences to interpolation, let us work with the following values of

and p where is temperature in C and p pressure in pounds
per square inch.
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allowing a certain amount of latitude for this, let the values of

A4
p be neglected.

(1) To find the value of p when - 106.

If = 105 be denoted by u , then = 106 will be denoted by w -2

and u . 2
-

(1 + A)-
2w

= u + 0-2Aw - 0-08A2w + 0-048AX
where Au , A2u ,

and A3u are the successive differences running

diagonally downwards from u = 105.

Then w02 = 17-53 + 0-2 x 3-27 - 0-08 x 0-47 + 0-048 x 0-08

= 1815

Or if = 110 be denoted by u
,
then = 106 will be denoted

by w_ .

8

and w_ .

8
==

(1 S)
8u

- u - 0-8Sw - 0-08SX - 0-0328X

where S%, 82w ,
and S3w are the successive differences running

diagonally upwards from u - 110.

Then m_ .

8
= 20-80 - 0-8 x 3-27 - 0-08 x 0-44 - 0-032 x 0-05

= 1815

Hence when - 106, p = 18-15.

(2) To find the value of p when = 92.

If - 90 be denoted by uQ ,
then = 92 will be denoted by w .

4

and w .

4
=

(1 + A)'%
= u + 0-4Aw - 0-12A2w + 0-064AX

where AuQ , A2w
,
and A3w are the successive differences running

diagonally downwards from u - 90.

Then w .4
= 1016 + 0-4 x 210 - 012 x 0-34 + 0064 x 005

= 10-96

Or if = 95 be denoted by u
,
then = 92 will be denoted

by w-o-6

and w. .

6
=

(1
- S)X

= u - 0-6Sw - 0-12SX - 0-056S3w

where 8w , S2w ,
and S3w are the successive differences running

diagonally upwards from u - 95.

Then w_06 - 12-26 - 0-6 x2-10 - 0-12 x 0-32 - 0-056 x 006

- 10-96

Hence when = 92, p = 10-96.
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Example 1. The following values are the cubes of numbers
from 8-0 to 8-5. Find the cube of 8-23.

80
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ax

(1) If tan 70 be denoted by u , then tan 70 36' will be denoted

by %6

and w .

6
=

(1 + A)'X
- u + 0-6Aw - 012A2w + 0056A3w - 0-0336AX

where Au , A2u , A3uQ , and AX are the successive differences

running diagonally downwards from uQ .

Then tan 70 36' = 2-7475 + 0-6 x 01567 - 0-12 x 0-0168

+ 0056 x 00029 - 00336 x 0-0007

= 2-8396

(2) If tan 77 be denoted by w
,
then tan 76 36' will be denoted

by w_ .

4

and w_ .
4
= (1- S)'X
- u - 0-48w - 0-12SX - 0-064&X - 0-0416SX

where Sw ,

2u0> 8X, and &X are *he successive differences

running diagonally upwards from uQ
.

Then tan 76 36' = 4-3315 - 0-4 x 0-3207 - 0-12 x 00420
- 0-064 x 0-008 - 00416 x 00018

= 41976

201. The Method offinding tlw Best Value of
-^- from Tabular

Values of x and y.

Taylor's theorem states that if A =
f(x)

Then /(tf+Z^A+fc^ +r^ +
rj^r

...

S^ {//,w}=r,w ' andsoon -

h2 h3

Hence f(x + h) -/(*) + hf'(x) +
-jy/^W

+
Tg-/"**)

+

If in a given set of tabular values of x and y, x and x+h repre-

sent two consecutive values of x, and ux and i^.^ represent the

two corresponding values of y.

Then ux+h - ux + Awx
-

(1 + AK
Also ux =f(x)
Then ux+h =f(x+h)

. * f(x+h)-f(x)
But X "

s

when ft is made infinitely small.
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Now h is a given increment in the value of x, and in conse-

quence cannot be taken as becoming infinitely small. We have

therefore to find the best value of h -sr- or hA for a definite

value of h.

Now ux+h =f(x + h)

h2 h*

-/(*) + kfix) +
y-.n*)

+
p-r'w

+ .

=
(l +

fcA4--|^A
2

--^A
3 + . . .)/(*)

h2A2 h3A3

and (1 + A)ux = (1 + hA + -^ +
-y^-

+ . . . )t^

or 1 + A = **A

Hence &A =
loge (1 -i- A)

a A2 A3 A4
,

2 8 4
^

or *g
- Awz

- lAX + lAX - lA%x + . . .

where Aux , A2ux , A3wz , A*uz represent the successive differences

running downwards in a diagonal direction from the term ux .

As uz represents any term, the value of
h-j-

can be obtained for

any value of x given in the table, provided that the successive

differences corresponding to that value of x are accessible.

If ux _ h is the value of y preceding ux ,

Then ux _ h ^f(x-h)
and also ux _ h - ux - $ux = (1

-
$)ux

h2 A3
now ji*

-
h)
- /(*)

-
hf(x) +

-p-r
(*)

-
p-r'w

+ . .

h2A2 #>A3

/ h2 \ 2

and (1
-

S)ux -
(l
- ftA +

^rj-
-

or l-8 = <?-*A
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ax

or ^_^=84-_ + _ + _
r _...

So; 2 3 4

where 8W3, S2
^, S3wx , S4wx represent the successive differences

running upwards in a diagonal direction from the term ux .

Thus the best value of for a given value of x is given by

h^
= Aua

-
\&ux + ^AX

-
^A

4^ + . . .

h^
= k + l&ux + Isx + jSX + . . .

where h is the increment in the value of x.

As an example, from the given values of x and y it is required

to find the value of -^- when x = 6.

#
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dii
Thus when x = 6, -^

ax

4-82

9-64

The above values have been calculated from the law

= 0-08&3 -r- x 2-1, and therefore this value of
-^

can easily bey

verified.

For if y = 008a!3 + x - 2-1

^ - 0-24*2 + 1

= 9-64 when x = 6.

202. If the set of tabular values for x and y is such that ulti-

mately some difference column contains equal terms throughout
and in the next column all of the terms are zero the two values

of h
, one obtained by working diagonally downwards, and

the other by working diagonally upwards, would be equal. But
when dealing with experimental values or tabular values calcu-

lated correct to a certain number of significant figures, this is

dy
not the case, the two values of h

-j-
differ slightly.

Hence the best value is taken as the mean of the two and

h i=hSu* +Au' l(SX-AX) + i(8X+A3
x) +

Example. The following table of values of x and y is given.
dy

Find -p when x = 3 with as great accuracy as possible. (B. of E.,

X
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dx2

Working along the diagonal lines indicated, it is evident that
account can only be taken of the first three successive differences,
the values of the following successive differences are clearly
inaccessible.

h, the increment in the value of x, is 1.

Now 8wx + Aux
- 0-34762 + 0-32185

- 0-66947

$2ux - AX = - 0-03026 + 0-02222

- - 0-00804

<*X + AX = 0-00579 + 000288
- 0-000867

Then * % =
I (S^ + Au*] + 1 (SX

~ AX) +
s (SX + A3^

= i x 0-66947 - 1 x 000804 + i x 000867
2 4 6

= 0-33417

Hence when x - 3, -^ = 0-33417
dx

d2y
203. The Best Value of -r-^ that can be obtained from Tabular

Values ofx and y.

It has already been shown that

hA= A-iA2 +iA3 -lA4 +iA5 -
. . .

s o 4

Thenfc2A2 = A2 - A3 + ^A 4 -
|A5

-f ^A6 -
. . .

or h^ = A2wx - AX + ~AX -
^AX +

^fi
A*u*

where AX AX> AX etc - represent the successive differences

running downwards in a diagonal direction from the term ux .

Also AA - a + ^2 + ^S
3 + 1 4 f h5 + . . .

a o 4 O

and/i2A2 =S2 +S3 +iis4

+^5 + 15ZS6 + . ; #

or fc
2A2 - SX + SX + SSX + ^X + lSS%a: + * *

where S wx , X, 8X> etc -> represent the successive differences

running upwards in a diagonal direction from the term ux .

2 D
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As an example, take the set of values of x and y given in para-
de

graph 201, and find the value of -^ when x = 6. Thus working

diagonally downwards, A?ux = 0-78, A3ux =0-06, and A*ux = 0.

Then
dx2
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differ slightly. Then the best value is taken as the mean of

the two,

and h2

dx2 \ (AX + X) - 1(AX - 8X) + H (AX + X)

^(AX-SX)+ . .

204. The Case whenAX =
- Very often in dealing with tabular

values slight errors in the values themselves render the values
of the higher differences worthless for interpolation ; probably
the first three difference columns can be relied upon. Also in

many cases the actual number of tabular values given is not
sufficient to enable us to find all of the successive differences.

For example, if seven tabular values are given, the successive

differences corresponding to the middle of these values can be
found up to AX> but the successive differences higher than this

are inaccessible. In order to provide for these cases, formulae

have been established which give the values of h and h2
-t4 in

dx ax2

terms of the first three successive differences
; these formulae

have been based on the assumption that AX =
-

Att.
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The above table gives some of the successive differences which
have been obtained by working backwards from the seventh
difference column, assuming that AX => 0.

-
I (Aux

+ Ux)
-
\ (AX

- SX) +
I (AX + SX) - 1 (AX

- X)

.
+1 (AX + &X) -1 (AX - SX) + ig (AX+ *X)

But AX + SX =

AX - &X =

AX + SX =2b+ a

AX " 8X = 46 + 2a = 2(26 + a)

5bAX + &X =2d+c+ + a

AX - ^X = 2d + C + jr

Hence (AX + SX) - (AX - X) = 26 + a

and AX + &5mx - (AX + $X) - (AX - &X)
also AX - X - 2(AX + ^X) - 2(AX ~ 5X)

Therefore /* -^
or

= i (Aux + SuJ - i (AX - 8X) +
^ (AX + 8X)

-i{(AX+8j_ (AX-8X)}

+ i
{
(A x + 8X> - (AX -

8X)}

- I (Aw, + Sux) - (AX - X)(|
"
J
+ J)

+ (AX+SX)(|-i+^)

= i (A x + 8 x)
- ^ (AX - 8X) + ^(AX + SX)

= ^ J30
(Au^+Su,) -6 (AX-SX) +(A3

, +SX)} (!)

(2) A*S =
I (A2"' + 82"J _ I (A%*

_ S%J + S (A4"" + SX)

- A
(ax _ SX) + Jg (AX + SX)
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But x-



422 PRACTICAL MATHEMATICS

Example. Using the given tabular values of and p, find the

best values of ~ and -^ when = 95.
au ay"

80 85 90 95 100 105 110

p 6-86 8-38 1016 12-26 14-70 17-53 20-80

In this case, as only seven tabular values are given, the first,

second, and third successive differences can be worked with, but
the higher differences are inaccessible.
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But ll*m
=
iso {222(Ap

_
Zp)

~
21(A2p + 82^ + 2(A3p - 83?> >

- -^{222 x 0-34 - 21 x 0-71 - 2 x 0-01 }180

- 0-3364

d2
p 0-3364

Se2 25~

- 001346

Examples XXIII

(1) Find the 8th term and the general term of the series

20 30 42 56 72 . . .

(2) Find the 10th term and the general term of the series

10 4 - 2 - 2 . . .

(3) Find the 9th term and the general term of the series

18 9 6 15 42 . . .

(4) Find the 7th term and the general term of the series

3 9 20 38 65 . . .

(5) Find the 11th term and the general term of the series

36 27 12 27 132 411 .. .

(6) Find the 6th term and the general term of the series

32 38 44 56 80 . . .

(7) Working with the tabular values of p and given in

paragraph 200, and denoting =-- 90 by u
,
find p when = 92.

Also denoting = 95 by u
Q)

find p when = 92.

(8) Working with the tabular values of p and given in

paragraph 200 and denoting - 120 by u
,
find p when 123.

Also denoting - 125 by u
,
find p when - 123.

(9) The following values are taken from the table of cubes :

6-1 6-2 6-3 6-4 6-5 66 6-7

226-981 238-328 250-047 262144 274-625 287-496 300-763

Denoting (6-3)
3 as u

,
find the value of (6-36)

3
,
also denoting (6-4)

3

as uQ , find the value of (6-36)
3

.
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(10) The following values are taken from the table of cube roots:

61 6-2 6-3 6-4 6-5 6-6 6-7

1-827160 1-837091 1-846915 1-856636 1-866256 1-875777 1-885204

Denoting -^6-3 as u
, find the value of ^6-36. Also, denoting

-v
7^ as u , find the value of i/WsG.

(11) The following values are taken from the table of tangents :

60 61 62 63 64 65 66 67
1-7321 1-8040 1-8807 1-9626 20503 21445 2-2460 2-3559

Denoting tan 61 as u
,
find the value of tan 61 24'. Also, denot-

ing tan 66 as u
,
find the -value of tan 65 48'.

(12) From the given table of values of x and y, find the best

dtf
value of -T- when x = 0-95.

ax

x 0-8 0-85 0-9 0-95 1-0 1-05 1-1

y 0-7174 0-7513 0-7833 0-8134 0-8415 0-8674 0-8912

(13) The following values of p and being given, find - when
6 - 115.

d{5

6 100 105 110 115 120 125 130

p 14-70 17-53 20-80 24-54 28-83 33-71 39-25

(B. of E., 1905.)

(14) The following values of x and y being given, find the most

probable value of
-j-

when x is 3.#01 23456
y 11-8 160 200 23-9 27-6 311 34-5

(B. of E., 1906.)

(15) If L = ct -~ where L is latent heat (in foot-pounds), t is

absolute temperature centigrade, p is pressure in pounds per

square foot, c cubic feet is increase of volume if 1 lb. changes
from lower to higher state. Calculate c at t = 428, if the following
numbers are given for steam. When t = 428, L is 497-2 x 1393.

t 413 418 423 428 433 438 443

p 7563 8698 9966 11380 12940 14680 16580

(B. of E., 1907.)

dii

(16) The following table of values of x and y is given. Find
-j-

when x - 3. (B. of E., 1913.)

x 1234 56
y 6-98970 7-40363 7-78151 8-12913 8-45098 8-75061 903090
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(17) From the given table of values of x and y, find the best

values of -^ and -^ when x =4-5
dx ax1

x 30 3-5 40 4-5 50 5-5 60
y 4-780 4-405 6-780 12-655 22-780 37-905 58-780

(18) Working with the tabular values of and p given in

dv d u
paragraph 200, find the best values of -~ and - when = 100.

(19) Working with the tabular values of and p given in

paragraph 200, find the best values of -^ and -^ when = 125.



CHAPTER XXIV

205. The Vector. A vector is a quantity involving magnitude
and direction, and in dealing with it as much importance must
be placed upon its direction as is placed upon its magnitude. A
force, a displacement, a velocity, an acceleration are examples of

vectors, inasmuch as they have both magnitude and direction ;

while in the case of a velocity and an acceleration the magnitude
and the direction can each be functions of the time. If, for ex-

ample, a body is describing a circular path with uniform angular

velocity, the linear velocity of the body at any instant is a vector

Xf\ Fig. 138.

of constant magnitude and of varying direction ;
this direction

is directly proportional to the time.

The four things which completely specify a vector are :

(1) The point of application.

(2) The magnitude.

(3) The line of action.

\i) The sense, or the direction along the line of action.

The "
line of action

"
is determined by the angle it makes with

some fixed direction, and usually this fixed direction is taken to

be horizontal. The "
sense

"
is fixed according as the vector

acts away from or towards the point of application. Consequently
a vector can be represented graphically by means of a straight line ;

for let p be the magnitude, the direction, and the sense be posi-

tive, that is, the vector acts away from the point of application.

Let O be the point of application, OX the horizontal direction,

and OA the line of action of the vector. If XOA =0, OP =p to

some convenient scale, and the arrow indicates that the vector
426
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acts along the line of action from O to P, then the line OP repre-
sents the vector completely.

If the sense is negative, that is, the vector acts towards the point
of application and the direction of the arrow must be reversed,
then the length OP' =/> must be measured from O along OA in

the opposite direction.

It is obvious that OP and OP' represent two equal and opposite
vectors, which, if taken together, would neutralise one another.

Also if OP represents a positive vector, then OP' will represent
the corresponding negative vector, and therefore a positive vector

can be made negative by simply changing its sense
;

this is very
important, and has to be used in all cases of subtraction of vectors.

206. Resolution of Vectors. A vector can be resolved along any
two assigned directions ; that is, it can be replaced in effect by two

vectors, the first of which acts along one of these directions, and
the second along the other.

V7

Thus if OX and OY (Fig. 139) are the two given directions, the

angle XOY = a, and OP = p is the given vector whose line of

action makes an angle with OX, then by making OP the diago-
nal of the parallelogram ONPM, ON represents the resolved part
of the vector in the direction OY, and OM represents the resolved

part in the direction OX. It is obvious that ON and OM should

be measured to the same scale as OP.

Working with the triangle PMO and applying the sine rule.

OP PM OM
sin (180

-
a)

~
sin 6

~
sin (a -6)

Hence PM - ON .

P si" 6

also OM

sin (180
-

a)

p sin Q

sin a

OP sin (a
-

6)

sin a

P sin (a 6)

sin a
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When x = 90, ON and OM become the rectangular components
of the given vector :

and ON =
p sin

OM= psin (90 -0)
=

p cos 0.

207. Addition and Subtraction of Vectors. In the previous para-

graph, since the vector OP can be replaced in effect by the vectors

OM and ON, it necessarily follows that the vector OP can replace
in effect the two vectors OM and ON. Thus OP can be taken as

the vector sum of OM and ON, and the sum of two vectors can be

obtained by making two adjacent sides of a parallelogram repre-
sent in every respect the two vectors, and the diagonal of the

parallelogram which passes through the point of intersection of

their lines of action will represent in every respect the sum of the

two vectors.

Let A be a vector of magnitude p and direction 1 ; let B be

another vector of magnitude p 2 and direction 2 .

Fig. 140.

To find (A +B).
Let OX (Fig. 140) be the reference line, and let OP x and

OP 2 make angles X and 2 respectively with OX. Let OP x
= p x

and OP 2
= p 2 ,

and the parallelogram completed by drawing P 2P
parallel to OP x and P XP parallel to OP 2 . Then OP will re-

present the sum of the two vectors, or (A + B), being the angle
its line of action makes with OX, and OP measured to the same
scale as OP 2 and OP 2 ,

the magnitude. The parallelogram law
can be used to find the difference of two vectors, since by altering
the sense of the vector which has to be subtracted the question
becomes one of addition of vectors.

To find (A-B).
Let OPj and OP 2 make angles X and 2 respectively with the

reference line OX (Fig. 141), and let OP x
- p x and OP2

- p 2 ; the

length OPa being now measured in the opposite direction.
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The parallelogram is completed by drawing P 2P parallel to

OPj, and P XP parallel to OP2 . Then OP will represent the dif-

ference of the two vectors, or (A- B), being the angle its line
of action makes with OX, and OP the magnitude.

a a /

Fig. 141.

208. The Vector Polygon. In order to find the sum of a system
of vectors the parallelogram law must be used time after time,
and this continued application of the parallelogram law gives rise

to the vector polygon.
Let A, B, C, D . . . be a system of vectors whose magnitudes

are p lt p 2 , p z , />4 . . . and whose directions are X , 2 , 3 , 4 . . .

Let OA, OB, OC, OD . . . make angles 6 lf 2 , 3 , 4 . . . with

OX, and OA - Pv OB = p 2 ,
OC -

/> 3 ,
OD =

/>4 (Fig. 142.)

By completing the parallelogram OAB, the diagonal Oa will

represent the sum of the vectors A and B.

By completing the parallelogram OabC, the diagonal Ob will

represent the sum of the vectors Oa and C, that is the sum of the

vectors A, B, and C.

Similarly Oc will represent the sum of the vectors A, B, C, and
D. It is evident that by drawing OA x parallel to OA, and making
OA t

= OA = pv by drawing A-^ parallel to Aa and making
Aa 1

= Aa = p2 ,
Oax will be exactly the same as Oa, and can there-

fore represent the sum of the vectors A and B.

By drawing a xb^ parallel to ab, and making a
1
b
1
= ab = pZ) Ob x

will be exactly the same as O&, and can therefore represent the

sum of the vectors A, B, and C. Similarly Oc lt being exactly
the same as Oc, will represent the sum of the vectors A, B, C,

and D. Thus OA 1a 1b 1c 1 gives a polygon in which the arrows,

denoting the sense of each vector, follow each other round in

cyclic order ; Oc 1 is the closing line of this polygon. If this
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polygon be drawn, the closing line Oc x will give the sum of the
vectors A, B, C, and D, just as well as drawing the parallelogram
of vectors time after time. It should be noticed that although
the sense of each vector forming the sides of the polygon follow

a cyclic order, the sense of the vector sum, or the closing side of

the polygon, must be in the opposite cyclic direction.

If one of the vectors is to be subtracted its sense must be reversed,
and the work can be proceeded with as in the case of addition.

b

/ //I

Fig. 142.

Example. A, B, C, and D are four vectors whose magnitudes
and direction are given in the table below

A 5 30

B 7 90

C 6 150

D 9 300

Find (1) A + B + C 4- D, (2) A + B - C + D, (8) A - B + C - D.

Fig. 143 shows the vector polygons drawn to scale
;

the scale

of magnitudes being shown at the bottom of the diagram. By
actual measurement

(2) A + B - C + D
Magnitude = 11-9

Direction = 15

(1) A+B+C+D
Magnitude = 9*1

Direction - 83

(3) A - B + C - D
Magnitude = 3-5

Direction - 146
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I , 1 I I

2
1 |A t ,6 , ,8 , ,

IQ

A+B+C+D

A+B-C+D A-B+C-D

Fig. 143-
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It should be noticed that in the second case the sense of C is

changed, while in the third case the senses of B and D are changed,
in their respective vector polygons.

209. Addition and Subtraction of Vectors by 'Resolution. If two
vectors have the same line of action, their magnitudes can be added
or subtracted according as their senses are like or unlike. This

enables us to add and subtract vectors by resolving them in the

horizontal and vertical directions, and then finding the algebraic
sum of their horizontal and vertical components. Referring to

the system of vectors in the previous paragraph, the horizontal

components are p x
cos 1 , p 2 cos 2 , p3 cos 8 3 , p4 cos

4
. . . and

since all these have the same line of action they can be reduced

to one vector, of magnitude H, in the horizontal direction

and H - p 1
cos X + p 2 cos 2 -f- /> 3 cos 3 + p4 cos 4 + . . .

The vertical components are p x
sin 1? p 2 sin 2 , p 3 sin 3 , p4 sin

4

. . . and since all these have the same line of action, they can be

reduced to one vector, of magnitude V, in the vertical direction

and V =
Px sin

X + p 2 sin 2 4- p z sin 3 + />4
sin

4+ . . .

Thus the whole system is reduced to the sum of two vectors :

one, of magnitude H, acting horizontally ;
the other, of magni-

tude V, acting vertically. On applying the parallelogram law,

the parallelogram becomes a rectangle.

Then

and

/>=\/H^+ V 2

ft

-lV
- tan

ry

where p is the magnitude and the direction of the resulting sum
of all the vectors.

If one of the vectors is to be subtracted, then the algebraic signs
of its horizontal and vertical components must be changed. Tak-

ing the same example as in the previous paragraph and working
it in this manner

Vector.
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(1) To find A + B -f C + D
II = 4-330 - 5-196 + 2000

= 1-134

V = 2-500 + 7-000 + 3000 - 3-464

= 9036

/
> = V/

1-1342 + 9-0362

= 9109

n , 9036
6 = tan-1

1134

= 82 52'

(2) To find A + B - C + D
II = 4-330 + 5196 + 2000

- 11-526

V = 2-500 + 7000 - 3-000 - 3-464

= 3036

P = V 11-5262 + 3-0362

= 11-92

6 = tan -1

11-526

= 14 46'

(3) To find A - B + C - D
II =4-330 - 5196 - 2000

= -2-866

V = 2-500 - 7000 + 3000 + 3-464

= 1-964

P= V2-8662 + 1-9642

= 3-474

A * 1
1#964

6 = tan -^866
= 145 35'

210. So far the work has been confined to vectors which are in

the same plane. In dealing with vectors which are not in the same

plane, the line of action of such a vector must be determined by
means of the three angles it makes with the axes OX, OY, and OZ
respectively.

2 E
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Thus in space, a vector is specified completely by

(1) O, the point of application.

(2) The line of action which makes angles a, p, and y with

the axes OX, OY, and OZ respectively.

(3) A length OP measured from O along the line of action

and equal to p, the magnitude of the vector.

(4) The sense ;
this is positive if the vector acts away from

O and negative if the vector acts towards O.

Only two angles need be given since the third can always be
found from the relation cos2a + cos2

[3 + cos2
y - 1.

Thus in dealing with a system of vectors in space, having a

common point of application,

If Pv Pi> Pz are tne magnitudes

<*!, <x 2 , a 3 . . . the angles made with the axis of x

or llt l 2 , l3 ... the corresponding direction cosines

Pi ?2 Pa *ne angles rnade with the axis of y

or m ltm2 ,
m 2 . . . the corresponding direction cosines

Yi> Y2 Ya *ne angles rnade with the axis of z

or n
lt
n 2 ,

n 3 . . . the corresponding direction cosines

The components in the direction OX are p x cos olv p 2 cos oc 2 ,

p3 cos <x3 . . . and since all these have the same line of action they
can be reduced to one vector, of magnitude X, in the direction OX,

and X = p L cos a 2 -f p 2 cos a + pd cos a 3 . . .

=
IjPi + I2P2 + J3P3 +

Similarly, resolving the vectors in the direction OY, and if Y
is the algebraic sum of the components in that direction,

then Y = p 1 cos p x + p 2 cos p 2 + p3 cos (3 3 . . .

-
w>iPi + fn 2p 2 + m^ps + . . .

Also resolving the vectors in the direction OZ, and if Z is the

algebraic sum of the components in that direction,

then Z = p x cos Yi + P2 cos Y2 + Pa cos Yt
= n1p 1 + Wg/Og -f nzpz + . . .

Thus the whole system can be reduced to one of three vectors

whose magnitudes are X, Y, Z, and whose lines of action are the

three axes of reference, OX, OY, and OZ. If p is the magnitude
of the vector sum, and a, (3,

and y the angles it makes with the

axes of reference,
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then P - VX2 + Y2 + Z2

i
X

a = cos-1

P

D 1
Y

B = cos-1

v - cos- ]

P

Example. A, B, and C are three vectors whose magnitudes and
directions in space are given in the table below. Find A + B + C
and A - B + C.

Vector
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The scalar product = ON x
x ON 2

- PlP 2 cos (0 X
-

6) cos (0 2
-

0)

-
\piP* {cos (0 2 + X

-
20) -f cos (0 2

- 0J }

This is evidently a maximum when

cos (0 X + 2
-

20)
= 1

or
_

6-i(0i+6 2)

That is when the line OP bisects the angle between the vectors

+ cos ({

2
-

0!

The maximum value - -
Plp 2 {l + cos (0 2

-
X) }

PxP 2 cos'

Fig. 144.

Also if 6 = G x , that is, when OP coincides with the line of action

of the first vector,

the scalar product = -
Plp 2 {cos (0 2

-
X) -f cos (0 2

-
X) }

=
PlP2 cos (0 2

- 0J

and if =
2 ,

that is, when OP coincides with the line of action of

the second vector,

the scalar product = - p xp 2 {cos (0 X 2) + cos (0 2 0J }

- P1P2 cos (6 2
- 0J

Hence if the scalar product is taken in the direction of one or

other of the two vectors, it becomes the
"
product of the magni-

tudes of the vectors and the cosine of the angle between them."
This is the definition of the scalar product as applied to actual

practice.
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If, for example, a body is made to move with uniform velocity
v feet per second, in a given direction, under the action of a force

F lb., the line of action of this force making an angle a with the

direction of motion,

The displacement of the body per second - v ft.

The work done per second is the scalar product of the force and
the displacement, taken in the direction of the displacement.

Hence the work done per sec. = F v cos a ft. lb.

212. The Mathematical Representation of a Vector. A vector

can be considered to be the vector sum of its horizontal and verti-

cal components, and the parallelogram of vectors used to find

this sum becomes a rectangle.
It has already been shown in paragraph 31 that a complex

quantity can be represented graphically by a magnitude measured
in the direction of real quantities, that is, the horizontal direction,

and a magnitude measured in the direction of imaginary quantities,
that is, the vertical direction. The two directions, then, in which
real and imaginary quantities are measured correspond to the two
directions in which the horizontal and vertical components of a

vector are taken. A vector can therefore be represented mathe-

matically by a trigonometrical complex quantity, in which the

real part represents the horizontal component of the vector, while

the imaginary part represents the vertical component.

Thus the vector = p (cos + i sin 0)

where p is the magnitude and the direction.

It should be noticed that if this is recognised as a standard ex-

pression for a vector, then all vectors should ultimately reduce to

this form, and this enables us to test whether this is a suitable ex-

pression for a vector. A velocity is a vector for which both magni-
tude and direction can be functions of the time

;
an acceleration

is also a vector for which magnitude and direction can be functions

of the time, but an acceleration is the direct result of differentiating

a velocity with respect to the time.

Thus let ubea velocity, whose magnitude p and direction are

both functions of t, the time.

Then v = p (cos + i sin 0)

dv dp . a n\ dQ a as

w7
=

Ti (
cos 9 + * sin 0) + p -it ( sin + t cos 0)

/dp n d0 . n\ .(dp . - d0 n\=
^cos0-^sin0J + i^sin0+^cosOJ

= (A cos - B sin 0) + i (A sin + B cos 0)

where A = -r- and B - p -1-
<// at
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Now % = VA2 + B2
{ (cos ;

A
-sin

,

B
^

at v V Va2 + b2 Va2 + b2/

+ i
(
sin e VWTW + cos e vi^p)}

= VA2 + B2
{(cos cos a sin sin a)

+ i (sin cos a + cos sin a) }

= VA2 + B2
{cos (0 + a) + i sin (0 + a) } where tan a = ^

and this gives the acceleration in the recognised form for a vector.

Hence if a velocity is a vector of magnitude p and direction 0,

then the corresponding acceleration is also a vector of magnitude

V(SM')tand direction (0+a) where tan * =p
Tt/dp

it

The angle a is evidently the angle between the direction of the

velocity and the direction of the acceleration corresponding to

that velocity.

Taking the case of a body describing a circular path, of radius

r feet, with uniform velocity v feet per second. This velocity
can be expressed as a vector of magnitude p and direction

vt
and p = v a constant and 6 =

.r
r

~, dp , dO v
Then

af-
0and a-F

48

dt

Now the velocity
=

p (cos + i sin 0)

also P ,r
dt r

and the acceleration = \ (^) +
(
p^) ^cos (

9 + a) + ' sin ( + a
) }

r

<*0
and tana=/>

^/dp

^P n= oc since -7T =
dt

Hence a - 90.

Thus the acceleration - -{cos (0 + 90) + i sin (0 +90) }
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That is, the acceleration is of magnitude and its direction is
r

at right angles to the direction of the velocity. Now the direction

of the velocity at any instant is along a tangent, hence the direction

of the acceleration is along the corresponding radius. Thus if a

body describes a circular path of radius r ft., with uniform velocity

. v2

v ft. per sec, the acceleration is ft. per sec. 2
, and is directed to-

wards the centre.

213. Example 1. The value of a vector may be stated as a where

a is the amount and is the angle measured anti-clockwise from
a found direction. The vector keeps in a plane. A point has

the following velocities in feet per second at the following times

(seconds). (B. of E., 1911.)

Velocity .
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It is evident that when t = 10-02 - 195.
at

Also
d0 800tt

13-96
dt 180

the angle being expressed in radians,

dQ
a -5-

= 105-7 x 13-96 - 1476
at

Then V'+(
d0\2

,

jj)
- V 1952 + 14762

tan a

= 1489

1476 = 7-568
195

a = 82 28'

Thus when t = 10-02 the magnitude of the acceleration is 1489
ft. per sec. per sec, and its direction makes an angle of 82 28'

with the direction of the corresponding velocity.
It also makes an angle of 124 28' with the fixed line.

Example 2. The velocity of a body is continually changing in

direction and magnitude. The values given in the table below

give p, the magnitude, and 0, the direction measured from a fixed

line, at any time t seconds. Find the value of the acceleration

when t - 5-3.

t
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When

or

also

t

50

51

5-2

5-3

5-4

5-5

5-6

5-7

When

also

PRACTICAL MATHEMATICS

dp

2"
- 7317

*--+

4-2

10-8

- 20-6:

34-4

530

77-2

107-8

S0

42

6-6

^9-8*

*13&

18-6

24-2

30-6

S2 S3 8*0

2-4

.3-2-

40

"4-8-

5-6

6-4

.os-

os

0-8

*0-8.

0-8

/ = 5-3 01
dQ

dt
9 -8+

-2-
+ -F

- 116-7

Expressing the angle in radians,

dQ 116-77T

eft

"

dQ
and

s

180

= 252 x 2036

2036

= 5133
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Now velocity
-

p (cos 6 -f * sin 0)

and acceleration - ^{) +
(p gh {cos (0 + a) + i sin (0 +a) }

. d0
where tan a - p -=-*

/dp
1

dt

V(|)

2

+ (^)
2

-V73-172 +

tan a

51 -332

= 89-37

51-33

7317

a - 35 3'

Hence when t = 5-3 the magnitude of the acceleration - 89-37

f.s.s., and the direction = 20 36' + 35 3' - 55 39'.

214. The Multiplication of Vectors. If A is a vector of magni-
tude p x and direction X

then A = p x (cos X + i sin 0J.

Also if B is a vector of magnitude p 2
and direction 2

then B = p 2 (cos 2 + i sin
2).

The product AB - p p 2 (cos X + i sin X) (cos 2 -f i sin
2)

=
Plp 2 {cos (0 X + 2) + i sin (0 X + 2) }

=
Pjp2 {cos (a 4- 26J + i sin (a + 20J }

where a =
2 X , the angle between the vectors, and X is the

inclination of the line of action of vector A with the initial line.

If 0j
= 0, that is, the initial line is so chosen that it coincides

with the line of action of vector A,

then the product AB = p lp 1 (cos a + i sin a).

This is an expression in the form of a complex quantity, the

real part being p xp 2 cos a and the imaginary part p tp 2 sin a.

Now the imaginary part represents a quantity which must be

measured in a direction perpendicular to the direction in which
the corresponding real part is measured. It has already been

shown that the real part, the product p xp 2 cos a, is the scalar pro-
duct of the two vectors taken in the direction of either of the vec-

tors. Hence the product p^ 2 sin a must be taken in a direction

which is perpendicular to the lines of action of the two vectors.

That is, this product must be taken in a direction which is per-

pendicular to the plane containing the lines of action of the two
vectors.
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Thus the effect of multiplying two vectors is to give rise to two
distinct products :

(1) The product p^ 2 cos a ; this is the
"
scalar product," and

must be taken in a direction corresponding to either of the lines

of action of the vectors.

(2) The product p xp 2 sin a ; this is the
"
vector product," and

must be taken in a direction perpendicular to the plane containing
the lines of action of the vectors.

Examples XXIV

(1) A and B are two vectors
;

if A - 832 and B - 5
77 , find

(1) A + B and (2) A - B.

(2) A and B are two vectors
;

if A = 13
57

and B = 22231 , find

(1) A + B and (2) A - B.

(3) Find the components of a vector of magnitude 12 along direc-

tions which make angles of 25 and 55 with the line of action of

the vector.

(4) A and B are two vectors
;

if A = 12^, find B so that

A+B-17*.
(5) A and B are two vectors : if A = 14

40 ,
find B so that

B = 6
1:V

A, B, C, and D are four vectors whose magnitudes and directions

are given in the table below :
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(10) Find A + B + C.

(11) Find B + C - A.

(12) FindA+B-C.
(13) Working with the values given in Example 1 of paragraph

213, find the acceleration when t = 10-03.

(14) Working with the values given in Example 2 of paragraph
213, find the acceleration when t = 5*4.

(15) A body is moving in such a way that the velocity at any
instant is given by v = a -f bt, and the direction is given by
(radians) = a -f $t, where t is time in seconds and a, b, a and

(3

are constants. Find the magnitude and direction of the accelera-

tion at any instant.

(16) A vector a is changing in direction and magnitude ; what
dai

is
-j-

if t is time ? Illustrate this by one example, say, by centri-

petal acceleration of a point moving with constant speed in a
circular path. (B. of E, 1909.)

(17) A body is moving in such a way that the velocity at any
instant is given by v a -r bt, and the direction is given by
6 (radians)

=
p/

2
, where t is time in seconds and a, b, and p are con-

stants. Find the magnitude and direction of the acceleration at

any instant.

(18) The scalar product of two vectors is 12-74 and the vector

product is 15-76. Find the angle between the vectors. If the

magnitude of one of the vectors is 5-6, what is the magnitude of

the other ?

(19) Fifty pounds of shot per second moving horizontally with
a velocity of 2,500 feet per second due north strike an armour-

plate and leave the plate horizontally with a velocity of 800 feet

per second due east. What force is exerted on the plate ? Note
that momentum and force are vectors.

Force is rate of change of momentum per second.

Momentum is mass multiplied by velocity.
The mass of 50 lb. of shot is 504-32-2. (B. of E., 1906.)

(20) An aeroplane which is propelled at a speed of 50 miles per
hour relatively to the air, is steered in a circular course during a

steady wind of 15 miles per hour from the south. What are the

actual speeds of the aeroplane when going north, south, east, and
west ?

(21) Rework Question 20. For a steady wind of 20 miles per
hour from the north-east.



CHAPTER XXV

215. The Straight Line Law.

Fig. 145

Let PQ (Fig. 145) be any straight line, Q being the point where
this line cuts the axis of y ; let OQ - c, when c is positive this

point is above the origin and when c is negative the point Q is

below the origin.

Let be the inclination of the line to the axis of x, the slope of

the line is therefore tan
;

let this be denoted by m.

If P is any point on the line, its co-ordinates being (x, y) ;
then

by drawing PR parallel to the axis of y, and QR parallel to the

axis of x, the right-angled triangle PQR is produced.

Then
PR
QR

= tan0

or m

Hence y = mx + c.

This is the general equation of a straight line, and m and c are

constants for any particular straight line. A straight line will be

completely determined if the numerical values of m and c are

found.

In dealing with questions on the straight line law, it is well to

give to the quantities x and y their most general meaning, x re-

446
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presents the quantity plotted horizontally, and y the quantity

plotted vertically. For greater generality the straight line law
could be stated as

V - mB. + c

where V is the quantity plotted vertically, and H the quantity

plotted horizontally. It does not matter in what way the quantities
V and H have been derived, or what form they take, but if the

above relation connects them, and m and c are constants, then a

straight line must be the result of plotting V vertically and H
horizontally. Thus, for example, if a set of tabular values of

x and y is given, the quantity V can be derived in some way from
the values of both x and y, and this also can be the case for the

quantity H ;
there can be a straight line law connecting V and H,

although there need not necessarily be a straight line law connect-

ing y and x.

216. The Determination of the Constants. If a straight line has

been obtained by plotting some quantity V vertically and another

quantity H horizontally, this line can be expressed in the form of

an algebraic law connecting V and H if the numerical values of the

constants in and c are found. The values of the constants can
be found in two different ways.

(a) It has already been shown that m represents the slope of

the line and c is the distance, above or below the origin, of the

point of intersection of the line and the axis of y. Thus the values

of these constants can be found from these statements. If the

origin is accessible the point of intersection of the line and the axis

of y can be found and the value of c can be read off along the axis

of y. The slope m can be measured in the usual way. Take two

points A and B on the line, make AB the hypotenuse of a right

angled triangle, the base of which is parallel to the axis of x. Let
the perpendicular of this triangle be measured by means of the

vertical scale and the base measured by means of the horizontal

scale,

.. perpendicular
then m = - -=

base

Generally speaking, this is not the best way of determining the

values of the constants, because in actual practice it need not

be necessary, except in a very few cases, to work from the origin,
and if the origin is inaccessible the value of the constant c cannot
be found directly. Then the constants can be found by solving
a pair of simultaneous equations, and this gives rise to the second

way.
(b) Take two points on the line as far removed as the range of

values permits ; it is unwise to work outside this range. If
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V - raH + c is the equation of the line, and the co-ordinates of

the two selected points are (Rv VJ and (H 2 , V 2) respectively

then for the first point V t
= mHx + c

and for the second point V 2
= mH 2 + c.

Solving these two equations for m and c,

and c =
H _ H

217. In actual practice the work with the straight line law can

be considered in the following way. A set of tabular values of

two varying quantities, x and y, is given ;
a probable law connect-

ing x and y is known or assumed, and it is necessary to prove that

the given tabular values do actually satisfy the law. This can only
be done by obtaining a straight line, and, in order to do this, the

probable law must be so changed or adapted that it reduces to a

form which can be compared with the general straight line law

V = mH + c.

This adaptation is a very simple matter, for in the general

straight line law the constant c stands alone. Hence, before the

probable law can be compared with the straight line law, it must be

so changed that it contains an isolated constant. This process of

isolation oj constant is very easily done by division.

Thus, for example, if a given set of tabular values of x and y are

supposed to follow the law y = ax2 + b log10#, the constant a can

be isolated by dividing throughout by x2
, and the law becomes

Comparing this with the straight line law V = mH 4- c, it follows

that if V - 4 be plotted vertically, and H - 1

-^|2̂
be plotted

horizontally, and the result is a straight line, then the given tabular

values of x and y will follow the law.

Again, the constant b can be isolated by dividing throughout

by log10#, and the law becomes

y-a^+b
Comparing this with the straight line law V - mH + c, it follows

11 x2

that if V = r-^ be plotted vertically, and H = . be plotted
loglcfc

F J
logio*

horizontally, and the result is a straight line, then the given tabular

values of x and y will follow the law. The values of the constants

a and b can be found from the straight line which proves the law.
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218. Example. The following values of x and y are supposed
to follow the law y = ax2 + b log10ir. Test if this is so, and if so,

find the most probable values of the constants a and b.

X

V
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For the point A when -^ = 1-297, -^E = 0-015r x2 x2

then a+0-015& = 1-297

logifcFor the point B when % - 2-037, %E o-055,r #2 #2

then a + 00556 = 2-037

Subtracting (1) from (2) 0-04& = 0-738

b = 18-45

and a = 1-297 - 0015 x 18-45

- 1020

The law is y - 102#2 + 18-45 log 10#.

(b) Dividing throughout by log10#, the law becomes

(1)

(2)

y

logio*
b+ a

logiaz

Hence, plotting
-

vertically and horizontally will give
logio^ iogio^

a straight line if the values follow the law

y

,r
2

logio*

36-59

17-93

44-83

25-57

52-50

32-48

62-91

42-87

7.3-05

53-74

87-04

67-79

99-56

8013

Fig. 147 shows the resulting straight line.

Let A and B be two points taken on this straight line.

2

For the point A when r-^ = 38-8, r-? - 20,
log10z logiaz

then b + 20a = 38-8

For the point B when r-^ - 100-0, . - 80,
log 10tf log10t

r

then b + 80a - 100-0

Subtracting (1) from (2) 60a - 61-2

a - 102

and b = 38-8 - 20 x 1-02

- 18-40

The law is y = l-02a?2 + 18-40 log10#.

(1)

(2)
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219. As a further example, let us take a few laws and investi-

gate, in each case, the treatment necessary to make them com-

parable with the general straight line law.

(1)
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Hence, to obtain a straight line r - must be plotted vertically

Of

and i horizontally.
log10a>

() y b+ x

Then by+xy=a
a 1

Hence, to obtain a straight line y must be plotted vertically and

xy horizontally.

(4) y= ae**

Taking common logarithms of both sides

Iogio*/
= logio + bx log10e

=
log10a + 0-4343&r

Hence, to obtain a straight line log10t/ must be plotted vertically
and x horizontally.

(5) y = aft-

Taking common logarithms of both sides

logio2/
-

togioa + x log106

Hence, to obtain a straight line log 10y must be plotted vertically
and x horizontally.

(6) y =aa*x

Taking common logarithms of both sides

logio2/ =1ogio + hx log10a;

Hence, to obtain a straight line log102/ must be plotted vertically
and x log10# horizontally.

220. General Determination of Laws. In actual practice a ques-
tion often arises of finding a law connecting a set of tabular values,
and nothing further is known of these values except that they give
a regular curve when plotted on squared paper.

It is highly probable that one of the three laws

y = a + bxn ... (1)

y= b(x+a)
n

. . . (2)

y=a+ be ... (3)

will suit the given values.

It should be noticed that these three laws are chosen as typical
laws on account of the general nature of them. By adjusting the

constants many simpler algebraic laws can be derived from them.
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For example, the first law becomes y = bxn if a = o
;

or the second

law becomes 11 if w = 1.^ x + a

The selection of the best of these three laws can easily be effected,

because there is for each of them a simple relation connecting the

variables, x and y, and the slope .

(1) Taking the law y = a+ bxn

then y a - bxn

also -3T (or s)
= ribx71 '1

dx

,. . . y a x
By division 2 -

J s n

1
or y = - xs+ a

Hence, if the tabular values of x and y suit the law, then a straight
line must be the result of plotting y vertically and xs horizontally.

(2) Taking the law y = b (x + a)
n

g (or *)
m nb (x + a)**-

1

,. . . y x+ a
By division - =

1 fl

Hence, if the tabular values of a? and y suit the law, then a straight

line must be the result of plotting
-

vertically and x horizontally.
s

(3) Taking the law y = a + fo

then 2/
- = &"*

By division

-^ (or 5)
= 7166"*

y~ a

or 2/
= w* + a

Hence, if the tabular values of x and y suit the law, then a straight
line must be the result of plotting y vertically and s horizontally.
Thus the discrimination can be carried out in the following

way :

Draw the curve connecting the tabular values of x and y on

squared paper, and take a series of points on the curve. For each
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point it will be necessary to find the values of x, y, and s ; the value

of s can be found by drawing the tangent to the curve at the point
and measuring its slope in the usual way. When a sufficient number
of values has been obtained, plot the following three curves on the

same sheet of squared paper, so adjusting the scales that the curves

practically cover the same space.

Curve I. y vertically, xs horizontally ;
for the law y = a -f bxn .

Curve II. -
vertically, x horizontally ;

for the law y = b(x + a)
n

.

s

Curve III. y vertically, .9 horizontally ;
for the law y = a + be.

Then select the curve which most nearly approaches a straight

line, and this will indicate the most suitable law.

This method is open to the objection that there is no way of

drawing the correct tangent to a curve, but, if reasonable care is

taken in drawing the tangent, the errors should not be great enough
to make the discrimination impossible.

221. Example. The following values of x and y give a number
of points on a curve obtained by bending a thin spline of wood.
Find the law of the curve.

X
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Fig. 148 shows the three curves :

(1) y vertically, xs horizontally ;
for the law y - a + bxn .

(2)
-

vertically, x horizontally ;
for the law y - b (x + d)

n
.

(3) y vertically, s horizontally ;
for the law y = er + fee"

31
.

so-

3'0
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27-5
from (4)

27-5

0-6982 x 0-3018

= - 130-5

from (1) a = 20-1 + 130-5 x 0-6982

- 111-2

The probable law is therefore

y = 111-2- 130-5 0-o-owte

222. Another question arises out of the work of the previous

paragraph ; that is : knowing that a certain curve follows one
or other of the laws, to find the constants of the law. In general,
if a law contains three constants, then three points must be taken
on the curve, and, substituting the values of the co-ordinates of

these points in the law will give three equations to be solved for

the three constants. The solution of these equations depends
upon the way the values of x are chosen when taking the points on
the curve.

Case I. For the law y = a+ bxn
,
let the values of a? be so chosen

that they are in Geometrical Progression ; that is, they increase

by a common ratio.

Let the co-ordinates of the three points be (h, yj, (hr, y2), and

(ftr*. 2/3)-

Then for the first point a + bhn

for the second point a + bhnrn

for the third point a -f bhnr2n

subtracting (1) from (2) bhn (r
n -

1)

subtracting (2) from (3) bhnrn (r
n -

1)

dividing (5) by (4) rn

Vi~ 2/i

Thus giving a relation from which the value of n can be calcu-

lated, and knowing n, a and b can be found.

Example. The curve y=a+bxn
passes through the three

points (3, 21-47), (6, 37-09), and (12, 94-36). Find the values of

the constants a, b, and n.

=
2/1
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57-27
HenCG 2n =

T^62

n = 1-875

also b = p
3" (2

n -
1)

= 0-747

and a = 21-47 - b 3"

= 15-65

223. Case II. For the law y - b (x + a)
n

, the only way in which
the value of a can be found is by the graphical solution of an equa-
tion, but it will simplify the calculation if very simple values of x
are chosen.

Let the co-ordinates of the three points be (xv yj, (x 2> 2/2)* and

(** 2/3)-

Then for the first point b (xx + a)
n = yx (1)

for the second point b (x2 + a)
n = y 2 (2)

for the third point b (x z + a)
n = y 3 (3)

dividing (2) by (1) g$"-g <*>

log^
2/1

or n { log (x 2 +a)- log (x x + a) }
--=

log y2
-

log y, . . . (5)

dividing (3) by (2) (SgJT
-*

or n{ log (#3 + a)
-

log (#2 + a) }
=

log y.3
-

log y 2 . . . (6)

dividing (6) by (5)
log

fi
+ )

-
log fa + a) tog y,

-
log y.

log (a?2 + a)
-

log fa + a) log y 2
-

tog yx

thus giving an equation which must be solved graphically for a.

Example. The curve y =
b(x-\-a)

n
passes through the three

points (2, 9-49), (6, 30-03), and (10, 59-70). Find the values of the

constants a, b, and n.

b{2 + a)
n - 9-49

5(6 + a)
n = 30-03

Z>(10 + a)
n - 59-70

Then ri^Y- 8-188

H+D" - 1-988

f
6 + aV
\2 + J
10
V~6
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Hence n{ log 10 (6 + a)
-

log10 (2 + a) }
= 0-5002

and n{ log 10 (10 + a)
-

log10 (6 + a) } 0-2985

log10 (lQ + q)-log 10 (6+ a) _
log 10 (6+a)-log 10 (2+a)

Giving a the values 2, 2-1, 2-2, 2-3, 2-4, the values of the fraction

are 0-5849, 0-5893, 0-5939, 0-5980, and 0-6023 respectively.

Fig. 149 shows the curve obtained by plotting these values

with their corresponding values of a, and the point P is the point
on the curve for which the value of the fraction is 0-5967. This

corresponds to a value for a of 2-26.

0K>

OS95

0-590

05S5

Then n =

and b =

0-5002

log 10 8-26 - log10 4-26

1-74

9-49 x 1-74

4-26

= 0-762.

224. Case III. For the curve y = a+ be let the values of x
be so chosen that they are in Arithmetical Progression ; that is,

they increase by the same amount.
Let the co-ordinates of the three points be (h, y^) t (h -f d,

and (h + 2d, y 2) .

a + bevh

a + ^n(ft-M)

a + 6^n <ft+2d )

be^ie**
-

1)

foen{h+d)fehd

y 2)>

Then for the first point

for the second point
for the third point

subtracting (1) from (2)

subtracting (2) from (3)

dividing (5) by (4)

1]

,nd

=
2/i
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Thus giving a relation from which the value of n can be calcu-

lated, and knowing n, a and b can be found.

A fully worked out example for this curve will be found in

paragraph 221.

Examples XXV

(1) There are errors of observation in the following values of

y and x :

X
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numbers, the investigation would be easy. Find if there is approxi-

mately such a law within the limits r = 0-5 and r = 0-7, and what
is the maximum error in making such an assumption. (B. of E.,

1908.)

(5) When a shaft fails under the combined action of a bending
moment M and a twisting moment T, according to what is called

the internal friction hypothesis, M + a\/M2 + T2
ought to be con-

stant where a is a constant. Test if this is so, using the following
numbers which have been published. Considerable errors in the

observations must be expected. (B. of E., 1910.)

M
T
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(9) The following values of x and y were observed in a laboratory
and theory suggested that there might be a law y = ax2 + b x lO*.

There are errors of observation. Try if there is such a law, and
if so, find the probable values of a and b. (B. of E., 1913.)

X

y
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(17) Find which of the three laws y - a+ bx11
, y=b(x + a)

n
,

and y = a+ be suit the following value of x and y.

X
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) 64\40+~3 (40+3p
'

(40+ 3)
3 '

(40+3)'
. 'It 1 20+1 ^k /irN 4f 1 2-0 )

1 f 2 1 - 20 ^W x+ l\xTi
+ x*=xTV

lr 2 1 __J1_\
(
17

'

61(0+ 2)
2
~~

0+ 2
+

02 - 20 + 4/

<) it
2
14,

(19)

1

0+2 + 02-20 +
44 3

3
+
(0-3)

10+ lJ

19

27(0+1) 9(0+ l)
2

27(0-2) 9(0-2)
2

463



464 PRACTICAL MATHEMATICS

. , x x 0-7034 2-296
^

'2(a?-a?+l) 2(a?+a;+l)
* ' x- 1112

+
x + 5052

/oox
1

, _1 /9on
0-0409 0266 - 0-0409*

a?- 4-707 a? -1013 v ' #+3 a? - 3-5a; + 4-94

(24) (a) 1 + 14a> + 84a? + 280a? + 560a* + . . .

(b) 1 + 5aj+ 15a? + 35a? + 70a* + . . .

, . x2 x* 5a*
(c)1+ *__ + _.__ + ...

.. , x 2a? 14a? 35a*
{d) 1 -3 + X-"8T + 243-

'

(c) 1 - a? + a* - a? + a? - . . .

mi- - 35x*

U' 2
+

8 16
+

128
~

* ' *

(25) (a) 11-75, 11-74740; {b) 25-04, 25-03997; (c) 9-02058,
902053 ; {d) 7-9375, 7-93701 ; (e) 7-95313, 7-95272 ;

(/) 501, 5-00997.

/o*x ^ a; 3a? 5a? 35a*
(26)1 + _ +_ +_ + __+..., a.0260.

(27) (a) 0-3429, 0-3429 ; (b) 0-3762, 0-3781, 0-503 per cent.

(28) 16-41 sees, lost, 12-31 sees, gained.

(29) 1823. (30) 1 6487, 1-3956, 0-60653.

(31) 0-69315, 109861, 1-38629, 1-60944.

(32) 0-4002, - 3-93, 5-787. (33) 1176, 18-58, 01258.

(34) 01681, 0-3119, 0-4376, 0-5495, 0-6498, 0-7413.

(35) 001766, 001843, 001919, 001995.

II (pages 36, 37)

(1) (a) 29 11', 50 3', 100 46'. (b) 31, 50 13', 98 47'.

(2) (a) 2836, 43 12', 74 48'. (b) 4-343, 48 19', 76 41'

(3) (a) 7-92, 68 51', 55 9' ; 2146, 111 9', 12 51'.

(b) 4-239, 61 10', 86 50'
; 2-069, 118 50', 29 10'.

(4) (a) 30-44, 31 33', 110 27'. {b) 7-848, 28 26', 107 34'.

(5) (a) 12-35, 8-618, 107. (6) 2-599, 1-662, 85.

(6) 6071, 29 31', 50 45', 99 44', 2-168, 2-759, 4-336.

(7) 43 1', 61 48', 70 20'.

(8) 5-762, 63, 106 17', 148 12', 42 31', 4-651.

(9)
- 0-5736, - 00523, - 0-8098, - 0-5592, 0-9272, 0-0699,

0-2250, 0-6157, 01584, 0-7431, - 0-9613, 0-3443.

(10) 0-9805, - 0-9481, - 6-535, 0-4441, - 0-9517, 2-2096, 0-6598,

00642, -0-6954.

(11) 0, 0159, 0-3429, 0-575, 11, 1-575, 1-891, 2.

(12) 7-389, 5-652, 2-718, 1, 0-3679, 01769, 01353, 6 = 20 16'.

(18) A = 15-81, a = 55 18', - 124 42'.
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(22) C - 0-0002596 sin (5000* -3-798) (23) i{3 sin 6 -sin 30}

(24) -L{10-15 cos 26+6 cos 40-cos 60}

(25) j^{cos
50+5 cos 30 + 10 cos 0}

(26) -Ucos 60+6 cos 40 + 15 cos 20+10}

(
27

) ^(3 sin 20 -sin 60} (28)
-i-

{cos 80 - 4 cos 40 + 3}

(29) -i-{6 sin 20+2 sin 40-2 sin 60 -sin 80}128

(30)
J-

{cos 60-2 cos 40-cos 20 + 2}82

V (pages 77, 78)

(1) 9110, 109 14', 56 42', 140 13'

(2) 6170, 70 6', 56 33', 40 23'

(3) 7174, 116 30', 44 42', 57 4'

(4) 15-59, 86 19', 134 53', 45 7'

(5) 3-952, 61 16', 127 24', 50 46' (6) 7-668

(7) 4123, 5-477, 5-916, 10-88, 74 33', 42 13', 63 14'

(8) 59 33', 4-952

(9) (1) 2,
-

1, 2, 0-8166, 65 54', 144 45', 65 54', 0-333, - 0667,
0-333. (2) 5, 4,

-
6, 2-771, 56 20', 46 9', 117 30', 1-535,

1-919, - 1-279. (3) 2, 3, 4, 1-536, 39 49', 59 12', 67 25',

1-1805, 0-787, 0-5902

(10) 9 18' (11)
|.

-
\

5
;

5,
|,

_
| ; Yes (12) 0-7588

(13) 4-801, 62 41', 60 (14) 2-305, 4-335, 5-265 (15) 42 33'

VI (pages 97, 98)

2\/x
(1) (*

in x cos x -
(2) t= (3) cot x (4) x cos x + sin x

.. cos x sin x .

(5) (6) cosec x(l x cot x)

(7) x 2
(3 sin x + x cos x) (8) x2e? (x + 3)

(9) a^-^l + n \oge x) (10) xn-'f h n logc
x\

(11) tf
3^ tan2 x + 4 tan # + #) (12) af1-1^ cot x+ n logc

sin #)
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n
(13) nxn~x cosec nx(\ x cot nx) (14) -^^{x cos nx sin wa;)

(15) ne-7lx

(cos nx sin wa;) (16) ne cosec na?(l cot nx)

(17) ^"^(cos na; sin nx) (18) tta;
n_1 e sin w#(l + a? + x cot no;)

(19) /^(tan2 na; + tan raa; -f- 1) (20) ne sec nx(l + tan wa?)

(21) ne sec wa;(2 tan2 wa; + tan nx + 1)

f-.>~ w '-'g:^^"
(24) (a; + a)

n
~\x + 6)

OT-1
{a?(w + n) + am + 6n}

1 - tf
2 V ' 1 - tf

4 v ;
1 + x2 + jc

4 Vl + x2

(29) ^{jTS + loge{x + a)
}

(30) ^{iTTS
+ loge{x +a)x log a

]

(
31

)

X~^ (
32

)
^ + -

(
33

) ! I 1 - -r
1-

1 (
34

)1
a; + e?

v '
a;

v '

loge a; I a? loge
xi

x ' x

(35) cos x cos 2a? cos 3a?(tan x + 2 tan 2a; -f 3 tan 3a?)

(36)

Sln x Sln 2*
(cot a; + 2 cot 2a; - 3 cot 3a;) (37)

sin 3a; 2Vsin x

(43) Vi-1 + sin_1 * (1 + tan2 ^

(44) sec (tan a; tan-1 a; + ^ I

<
45 7T^5 {1 + Vl ~ x* sin_1 * } (46)

a - *)Vi~

W -7T7-^7T=3 (
48>

"
(l + a;)Vl-a:

2 (1+^Vl-it4

(*) % ,
w -

(l + a?
3
)\/l-a;

6
(1 + a;

2
) Vl + a;

2

, v a;
2 - 2a; - 2 2(1

- a;
2
)

1 '

2(1 + x + a;
2
)VT^tf ( '

(a?
2 - a; + l)

2

^ -
(l + a!

2
)

+

Vl + a;
2 ^ "ITr2 (55) 2̂ - 5a; - 2a;2
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VII (pages 112, 113, 114)

(10) e*(x + 1), e*(x + 2), e*(x + 3), e*(x + n)

#_, % . w3^3 w5
a:
5 w 7

a;
7

(11) sinna; =
M;-jg-

+
-|-j jy

+ . . .

n2x2 n*x* n6x*

,,_v . , a?
3

a:
5 # 7

a?
9

(14) ^(n tann_1 a? + tann a? + n tann+1 x), ^(1 + tan a? + tan2
x)

e*(2 + 3 tan x + 2 tan2
a? + 2 tan3

x)

e*(5 + 7 tan x + 11 tan2
a? + 6 tan3 x + 6 tan4

a;)

^(12 + 29 tan a?+ 36 tan2 x+ 52 tan3 a?+ 24 tan4 a?+ 24 tan5 x)

^(41 + 101 tan x + 221 tan2
a? + 220 tan3 x + 300 tan4 a?

f 120 tan5 x + 120 tan6
x)

5x* . 41#5^ tan x = x + x2
-f + X* + - + . . .

6 120

(18)
- 1

(19) 4-4936 (20) 0-765 (21) 1-172
v '

a(l cos 0)
2

(22) 3-424 (23) 2x + 2x* - - x* - ^- + i^+ . . .

(24) a;-s2 + iC
3 -^+iE5 -iE+ . . .

qn /yi2
/>>3

<j>4 -jiO

(25) 1_
(^ +

riir
2 "nir2+ riiT

2

"(ilT
2+ * *

VIII (pages 127, 128, 129)

(1) 2/max
- 35 when x - 1, y^ = 26 when a? = 2

(
2

) 2/max
- 124 when x - -

5, t/^ = - 76 when a; - 5

(
3

) 2/mm
- 8 when a? - -

2, y^ = 87 when a? - -
1, y^ = 48

when a? = 2

(
4

) 2/min
- 7*213 when x = 0-8236

(5) x - 1-877, * = 0-4163 (6) a' - 3, t =

(7) x = 3-877, * = 0-2019 (8) x - 1-840, * - 0-5

(9) a? = 5, t = (10) a? = 6-065, * - 0-25

(11) a; - 1, i 0-3465 (12) x = 4, * =

(13) a? = 4-5, t = 0-1439 (14) ymax = 1-345 when a; = 3

(15) rad. = 8-166", ht. = 11-54" (16) rad. = 7-07", ht. = 14-14"

(17) rad. = 8-507", ht. - 10-51"

(18) rad. - 9-588 yds., ht. - 13-56 yds.

(!9) 2/max
= 0-231 when x = 0-5777

(20) 17-01 knots, 2488, 2460, 2483 (21) 15-7 knots
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(22) 10-6 knots (23) 1-81" (24) If" (25) h = 20-78", b - 12"

(
26

) 2/max
- i'705 when t = 0-002331, i/min

= - 0-265 when
t - 0-008414 (27) rad. = l", ht. = If"

(28) rad. = 1", ht. = 2J" (29) rad. - If", ht. = "

(30) a - 900, b = 60,000, m = - 406, n = 733-6, V = 358-3

(81)
- 79 16', x m 0-9103 ft.

IX (pages 141, 142)

(1) 3-75, 9, 4t/
= 15a? - 7, y - 9x - 11, 8 36'

(2) 8, y = 8x - 9, Sy + a? = 58

(3) (3, 8), (
-

2, 3), 35 32', 59 2'

(4) ?/
- 48a; - 64, x + 48?/

= 1538

(5) 2/
- 1059a? + 3-539, y + 0-9535a? - 7-564

(6) (1-871, 1-225), 66 26' (7) (2-058, 0-4897), 90

(8) (2-121, 1-885), (-2-693,
-

1-485), 103 21', 116 8'

(9) a - 4-315, n = 0-765, 2-805, (0-2782, 1-621), (8-507, 22-20)

(10) (8, 8), 36 52'

(11) a - 3-036, b - 0-1423, y = 0-88a? + 1-744, y = 11-86 - 1136a?

(12) 14-27, 73-16, 196-3

(13) a - 1-32, b = 0-5, 11-68, (
- 6-507, 10-75)

(14) a - 21-49, ft - 7131, c = 1-993, R - 141-6

(15) (34-27, 58-55), 22 56' (16)
- 6-25, - 3-2

(17) 2-828, (4, 4) (18) (2, 4) (19) (0-7071, 0-6065)

X (pages 155, 156)

1

(1)
g log,(3a?

2 + 4a? + 7) (2) V3*2 + 4a? - 7

(3) loge (log, a?) (4) log, sin-1 x

(5) log, tan-1 x (6) logc (e* + er*)

(7) logc cosh x (8) i(tan-
x

a?)
2

Si

(9) ^(sin-
1

a?)
2

(10) 2Vt^Tx

(11) -2Vcosa (12) V*2 -7

(13)
I
lg,(

-
1) (14)

|(S*
- 8e + 1)*

(15) \ log,(*
-

5)
-
| log,(*

-
3) (16) x+ log, jj|

(17)
- 2 log (3

-
)
- loge(3 + X) (18) log, g=J

(19)llo& (ir-4)--Lloge(5*+2)
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(20)
- 1

loge (3
-

4o?)
- 12

loge (o7 + 2)

(21) Ys
lo^x + 2

) + 15
l 8e(*-Z) ~ I log.(a?- 1)

21 * 4
(22)

-
loge (3

-
2x)

-
logc (o7

-
2)
-- logc (3o7 + 1)

(23) 5logc(o7-l)-

(24) logc(o7+3) +

1515

a?- l~2(a?- l)
2_

3(o7- l)
3

6 9

o?+3 2(07+3)'

(25) ^{6106,(^+8)
+^--^,-^^}

(28) 1 loge (z
-

2) + I lo&(* + 2)
- -2-

vS^S^f+ I
+SF^ (31) tan-. (32)

-L tan-

1 a? 1

(33) tan- 1 x + lo&fa* + 1) (34) V5 tan- 1

775
+
2

lo&(*
2 + 5

)

/OCX !
4. 1^+4

(35) -tan-

(37) JL tan-1 J
V87 V87

(39) 07 - log^x
2 + 2x + 4)

- VS tan- 1
7=

(36) I log^a* + Or + 25)
- 2 tan-1 2

J 44
(38)Iloge(^ + 4r +

16)--Ltan-|+i
07+1

^iVr 1^^
fAO\

1
1 V3+ 07

<"> 575
loS.

VST",

(-)iw- +s5,i^j
,,. Vs. rVs +
(43) los

LvT"
+ 071

-07J

(44) tan-^07 + 2) (45)
I

log,(a*- 6x+6)-JL log,2=2z^|* 2V3 07 3+V3

(46) 07-I logc(ir
2 + *+!)__* tan-1?l

J V3 V3



(47) _ log.
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VT5 + a? + 2

2VlO Vl0-a?-2

(48) -log<(12-10,-,*)-^lo& ^!+*+J
(^hog.^^ti-Ltan-

2^ 1

6 be
a?
2 + tf + 1 V3 V3

(50)
-

loge
- -= tan- 1 -=1 6 6e

1 - 2a: + a?
2 V3 V3

/kin 1
!

#2 -#+l /ro , 1, a?
2 +4a?+4 V5 .

ir - 1
<
51

> 8
l0&^+^+1 (52) 12

lo&^-2^+4 + tan_1"W
3 <* 4 _ 4a? + a;

2 V3 y3

,-. 1, 07-1 1
, , 1 a?

2 -l
(54> 4

l0&7+1
-

2
tan *

<
55

) 4
l0& ?+l

(56) i lp& fri +
i
tan-1 * (57) 3 log>4 - x

)

(58)
I

loge(3*
2 - to +14) +^L tan-1

V8
^T

1}

/ Krt\ li^rtA i o n 1
1 V34+3a?+2

(59)
- -

loge(10
- 4a? - 3a?2

)
r=- log, .__

6 &eV
3V34

8c
V34 -3a? -2

1 2a?2+l

XI (pages 171, 172)

(1) sin-1

1 (2)
- 3V9^P - 2 sin"1 1

(3)^1 +^}
(4) -|33

sin"1

1
+ (14

-
3a?)V9~^"2

J (5) sin"1 ~~
x 3

(6)
- WGx - a?

2 + 11 sin"1

ô

(8) i|37
sin-1

^-2
_

(^ + i3)V6a?-a?
2

}

(9) sin"1 2__1
(10)

_ 2V9+8a?-a?2 + 5 sin"1 tZ
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(11)

(12)

(13)

(14)

(15)

(16)

(17)

(19)

(20)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(31)

(32)

PRACTICAL MATHEMATICS

25

2

( . .
,
x - 4 (x - 4)a/9 + 8x - x2

\

|
sln-i__ + i l_

1

52 sin"1 ^z (# + 12)V9+ 8x-x2

o

1 . .V3(a;-1)__ sin"1 \ '

V3 Vl3

IVlO+te-Jte' - 4= sin"1 V%Z_L)3 V3 Vl3
iri3 . -VSte-i) ^

2l7S
Sm

V13
+ <*

~W10 + 6X ~ 3X1
1 f - Vs(x - 1) . ^

Yg[l67V3 sin-1 \ " 15
(
x + 8)VlO + 6a; - 3a;

2

j

sinh"

Vl3

(18) 2Vx2 + 25 - 7 sinh-1 2
5

i
J25

sinh"1

1
+ aVa;2 +

25J

i{(3a;
+ 8)Va;

2 +25 - 71 sinh"1

1} (21) sinh"
x- 6

6Va;2 - 12a; +52+31 sinh-1
x- 6

-|l6
sinh-1

^-^ + (*- 6)Va;
2 - 12a; +52}

gf
28 sinh"1

^-^ + (x + 12) Vtf
2 - 12a; + 52

j

1 . . . 2x + 3
7= smh-1

jm-
V2 VI

l{<SV2x*+6x+7
- 23\/2 sinh"1 ^p}

If - 2a; +3 . 1

g|5V2 sinh-1 ,- + 2(2a; + 3)V2a;
2 +

6a;+7j
\ r 2a; + 3 i

j[7V2 sinh"1

j~ + 2(2a;
-

9)V2a;
2 + 6a; +

7J

cosh -1 -
4 (30) 5Vx2 - 16- 12 cosh"1

-jaVa;
2 - 16 - 16 cosh"1

||

-J50
cosh-1

1
+ (3a;

-
16) Va;

2 -
ie| (33) cosh"1 ii
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(34) eV^TlOx- 35 cosh-1 5J*

(35) -{ (a? + 5)Va?
2 + 10a? - 25 cosh"1

5)

(36) U{x + 9)V^TlO* - 59 cosh"1

^i_5| (37) cosh"1

(38) 3\/a?
2 - 4a? - 21 - cosh"1 ^

(39) \Ux
- 2)V#

2 - 4a? -21 - 25 cosh"1

^-j^\

1 r . x - 2\
(40) -I (3a? + 4)Va?

2 - 4a; - 21 + 97 cosh"1

5 J

(41) rm Cosh"1 > -
V ' V5 V21

(42) 3V5x*+ 10a?- 16 - ^L cosh"1 V5(*l X)
V ' V5 V21

(43)
i((a?

+ l)V5a?
2 +10a?-16 -

^-^ cosh"1
^5

^1
1}

}

(44) ^{30(a?
-

3)V5a?
2 + 10a?- 16 + 221VI cosh"1

^
1H

XII (pages 181, 182)

(l)tana?' (2)
- cot a? (3) \

tan3
a? (4)-^

(5)
-

loge sec (aa? -f b) (6)
-

loge sin (ax + 6)

(7)
- tan4 - tan2

a? + loge sec a?

(8)
- tan5

a?
- - tan3 a? + tan a? a?

o o

(9)
- cot2 a? loge sin a? (10)

- cot3
a? + cot x-\- x

2 o

(11) Ilog^tanl^
+ tan-^)}

(12)
I

log, {tan \ (.
- tan- J} (18)

-L
log, tan

(f
+
=)

(14)
-L l0ge tan (l

-
*) (15) -1= tan- ^ tan *

V2 \2 8/
V '

2\/3 2
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tia\ 1
l
^ tan X - 2 /ir\ 1

i
X + tan #

(16)
ITS l0ge

V3tan, + 2
(1?) 2

to& f^ta^
" tan '

V7 + tan
|

3 tan
|
+ 4 - V7

(18) 779 log 2 (19 > Tr 1o& 1V7 V7_ tan
|

V7 3 tan
|
+ 4 + Vt

, %
2 4 tan + 3 2 tan

(20) -7=
tan-1 2

(21) 775
tan"1

V7
V7 V7

V7

(22)
- cos3 a? - cos a? (23) (sin 4a; - 8 sin 2x + 12a;)

2 1
(24) sin x - sin3 a; -+-

- sin5 x
3 5

(25) -jT^ (sin
6a; + 9 sin 4a; + 45 sin 2a; + 60x)

(20)
- cos5 x - - cos3 x (27)

- sin5 x - sin 7
a;00 5 7

(28)
i sin6 a; - i sin 8 a; + ^- sin10 a?

4 10

(29) 77-T77(sin 8a; - 8 sin 4a; + 24a;)10J4

(30) T^(sin
Gx - 3 sin 4a; - 3 sin 2a; + 12a;)12 1

(31)
- sin3 x - sin5 x + - sin 7 x
o o 7

XIII (pages 190, 191)

(1) j(8l0ge *-l) (2)^-(8log,-S)

(3)
"
1^5(4 l0& * + J) (4) 2Vi (lo& * - 2

)

(5) j{8(loge *)i_ 4 log, x+1)

(6) ^r{9(loge a;)
3 -

18(loge xf + 24 log, x - 16}

(7)
-g-t

4r3 ~ 6x* + 6* ~ 3> (
8

)
-

i 2x
* + 2a; + 1}

(9)
-

(1
- sin a?)

2
<*

to x
(10)

-
2(1

- sin x) ^
in *



(11

(12

(13

(14

(15

(16

(17

(18

(20

(21

(22

(24

(25

(26

(28

(29

cos 3a:

ANSWERS

/I x2
\ ~ *

(
-

)
cos 2a: + - sin 2x

\4 2/ 2

(x
z

2x\ . (x
2 2\

/ xx 3x2 8\ a 7. 3a:\ .

t-i+T "iJ
cos *H*-t) Sln 2*

^ * A*
2 A ^

^-4 cos2^li-8; sin2'

* Z^3 3aA . /3a:2 3\

3a? . /3a:2 3\ a? /a:2 1 \_ sma? _(__^cos*--sm 8* +
^--_)

/3a:2 3\ . 3a: (x
2 1\

\-2J SmX +
-2

COSX + \T2-TJ

475

cos 3a:

sin 3a: + - cos 3a:
18

e2x (
,2

--
(2 sin 3a: - 3 cos 3a:) (19)

--
(3 sin 3a: + 2 cos 3a:)

- -
(3 sin 2a: + 2 cos 2a:)lo

e-3x

To" (
3 cos 2a: 2 sin 2a:)lo

18

(2
- cos 2a: - sin 2a:) (23)

-
(2 + cos 2a? + sin 2x)8 8

e3* (1 / 4\ 4 / 2\ "i

Tls
cos

I
4* " tan_1 V ~

755
cos

(
2x " tan_1 U + *

J

e3*
(1 / 4\ 4 / 2\ ^

T\a
cos

V
4* " tan"

s)
+
vTS

cos
\
2x ~ tan_1 V + x

|

g-2x
(27)

m
(sin 2a: - cos 2a: - 2)o

-

(cos 2a: sin 2a: 2)8

x tan -1 x -
log^(l + x2

)

a*
tan-1 x - 4 -

loge (l + a:
2
) (30) x sin-1 a? + Vl - a:

2

XIV (pages 205, 206, 207)

h 9/j

(1) ~{6a+3bh+2ch2
) (2) -~{3a+ ch2

) (3)6-389 (4)0-8647o 3

1

2

16V2

(5) 1 (6)
5

(7)
?

(8) 5 ( + 1) (9)
- i(r + 1) (10) tt

(11) tt
2 - 4 (12) 2a2 + ~- ab+ 4b2

(13) 2a + -
(c

2-
1)
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(14) ^ (15) 4tu (16) 0-8812 (17) 10-328 (18) 1-3168

(19) 26-84 (20) 0-2028 (21) 0-1419 radians (22) 3-957

(23) a = 1-32, b = 0-5, 7-909 (24) a = 3106, b = 0-1509, 31-22

(25) 4-264 (26) a = 10-19, b - 16-43, c = 1-553, 30-79

(27) (3, 8), (- 2, 3), 20-83 (28)
~ -

(29)
-

(30) 12-07

(31) 0-7541 (32) 22-5, 4-5 (33) 17-07 (34) 5-94, 40-65

(35) 12566-4 (36) 2964 (37) 3141-6

(38) a = 2-451, n = 1-606 ; for area A, Vox - 453-1 and Voy - 220-1 ;

for area B, Vox = 1457 and Voy = 176-8

(39) a = 1-32, b = 0-5, 118 (40) a - 3036, b = 0-1423,1617

(41)
2L

(42) 14-14, 7-069 (43) 184-4 (44) 94-25, 157-1

(45) 520-4, 98-97

XV (pages 220, 221)

2/7

(1) x = 2-15", y = 2-28
/r

(3) (6) 3-5355" (7) 8-660'
37C

(8) x - 0-869", y = 2-618" (9) 1-074" (10) 1-009"

(11) x = 4-174", y = 3-423" (12) 2-411" .(13) 2-401"

(14) x - 3-438", y -= 3-438" (15) x - 2-25, y = 8-1

(16) x = 0-9, y - 5-58 (17) x - 4-5, y = 0-9

(18) x = 3-6, y = 3-6 (19) x = 3-056, t/
= 4-351

(20) x = 2-122, y = 1-697

(21) a - 1-515, n - 1-826, = 3-871, - 9-264

(22) 2-77 (23) x = 2, y = 11-4
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XVII (pages 265, 266, 267)

(1) When X = 0-9, A - 1-80155

(2) When * - 0-09, A = 0-16567

(3) When x = 0-8, A - 6-7840

(4) True area 78-54 sq. in., area by Simpson's Rule 78-177 sq.

in., error 0-458 per cent. ; area by Trapezoidal Rule 77-614

sq. in., error 1-171 per cent.

(5) Area - 31 sq. in., x = 5-392", V0Y - 1051 cub. in., I0Y = 1099
inch units

(6) Area - 31-14 sq. in., y - 1-935", Vox = 378-7 cub. in., Iox
= 171-1 inch units

(7) 1st derived fig. 10-11 sq. in., 2nd derived fig. 4-81 sq. in.,

y - 1-947", Iox " 173 '2 inch units

(8) 1st derived fig. 18-67 sq. in., 2nd derived fig. 13-59 sq. in.,

x = 5-419", Ioy = 1101 inch units

(9) Area = 36-19 sq. in., x = 4-127", Voy = 938-5 cub. in., I0Y
- 764-3 inch units

(10) Area = 36-36 sq. in., y = 2-827", Vox = 645-9 cub. in., Iox
= 369-5 inch units

(11) 1st derived fig. 17-025 sq. in., 2nd derived fig. 10-25 sq. in.,

y = 2-809", IoX - 369 inch units

(12) 1st derived fig. 18-73 sq. in., 2nd derived fig. 12-06 sq. in.,

x = 4141", I0Y - 771-8 inch units

(13) 1st derived fig. 14-137 sq. in., 2nd derived fig. 8-836 sq. in.,

y . 3", I = 318-09 inch units

(14) Area = 21-19 sq. in., 1st derived fig. 9-74 sq. in., 2nd derived

fig. 5-63 sq. in., y = 2-758
,/

,
I - 202-7 inch units

(16) 1268-3 cub. in. (17) h = 8", volume = 1338-9 cub. in.

(18) I (Vi + %2 + Vz)

XVIII (pages 284, 285)

(1) 0-5211 (2) 3-418 (3) 2-295 (4) 15-31 (5) 1-062

(6) |
(11) 1-222

(12) r = 2<

(13) 64-42 (14) r2 = 9 cos 26, 4-5 (15) 2-546, 1-386, 1-215

(6)
fr

(7) 5-576 (8) 12 (9) 241-3, 3-2 (10) 1-479

J22

q2 cos 20
(12) r = 2a sin tan 0, r2 = 4a2 cot 20 cosec 20, r2 = r-^-v ' cos6



478 PRACTICAL MATHEMATICS

XIX (pages 315, 316, 317, 318)

(1) 84-67 ft. tons, 112-4 ft. tons, 60-17 ft. tons

(2) 50 ft. tons, 50 ft. tons, 37-5 ft. tons

(3) M - 12-3 x - 0-75x2
,
M - 12-3# - 12(a>

-
4)
-

0-375(a?
-

8)
2

,

Mmax - 50-46 ft. tons when x = 8-4'

(4) For AC, H - % ; for CB, M - 8
- _t^L . M_ - 144-8

ft. tons when x = 19-43'

(5) For BC, M = 117a? - ; for CA, M = 11-7* - 13-5(a>
-

12)

_
| (x

-
18)

2
; 1^ = 130-74 ft. tons when x = 16-76'

W fix
2

x*\ w (l
2x2 la* x*\

^ =
Ei(t--6) + 2EIV -T + 12>

at the end

W/3
wP_6 "

3EI
+
8EI

(7) M --(- *)+^(a
2-*2

),J^ ^-T)+5n ^-8").
ft

Wa3 5wa*
at the centre 8 = -=rr +

6EI 24EI

(8) Fixing couple - + ,
M =

{-
-
x)

+ -
(-

-^
dw W /a# ir

2\ a; /a2# a^\ _ ., . Wa3 zoa4

^ =
2MlT-2>) +2ml-3--> attheCentreS =

24Ei
+
24El

(9) M- a (i
- 4 s

. i - 6iEi{^-- + ^-i}'
= j^r/

3 2

_/
2 3

^_f^\ /
4

27
"
6/EIl 2 2

+
4 20/'

2/max
~
30EI

(10) M- - (a-x)- -(a- xr.Uavt-iwl

dy wa f x2\ w ( 3a2#2
_ x*\

-T- - ^7T7 (
a# ) n _ T I a3# I- Otf3

<to 2EI \ 2/ 6aEI \ 2 4/

. . __. . 5wa2 wa w . . 5roo2

(11) Fixing couple - ,
M -

{a
-

x)
-

{a
-

x)*
-

,

dy wa / x2
\ w / 3a2x2

x*\ 5wa2x

dx 2EI V 2 / 6aEI \ 2 4/24
7wa4

2/max
-
240EI
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WfcK.-W-*J-5(M&.-i?f-{);

W62

at B, 8 -JJ(tf -6)

(13) AtB, S = -^.{2a
3 -3ai2+ 63

}; at E, 8 =^ {a
3- 3a&2 + 2&3

}

(14) AtC,S =
^;atB,8

=
^(4a-6)

(15) AtB, S =^1
{8a

3-4^+ &3 }
.

atE)S==^ {a
3^ 2a62_l

. 63 }

(16) 2/
- ^ (a*

- 4fa + 6W) +
W

(aj8
_ 3^2) (17) _|

,

136

(18) 569- 2 lb. per sq. in., 472-6 lb. per sq. in., 29-53 lb. per sq. in.

(19) Web vertical 234-8 lb. per sq. in., web horizontal 31-88 lb.

per sq. in.

(20) 163-5 lb. per sq. in. (21) 536 lb. per sq. in., 4-074

(22) 76-45 lb. per sq. in. (23) 2012", 3-867" (24) 13-52"

XX (pages 345, 346, 347,-348)

(1) (a:
4 -

y*)
-

4(a>
-

y)
- 8 - (2) (?/

2 + l)
3 -

(a* + l)
2

(5) 2/
- 2 tan-1^ 8

**) (6) y = tan"1
^-

0082
*)

(7) y=l-e-^* (8) y-|{l~JL}

(9) */
= <?" ^

(10) xy^ey
/ii\ i

2
* _i 22/-^ *.* sinaj-1

(11) loge
* =

-p.
tan -^ (12) y _ _ cos *

(13) ?/
- im sin (2a;

-
a) + l-4e-* where tan a = 2

1 4
(14) ?/

= 1 + e-*111 x
(15) ?/

= sin x (16) ?/
= - sin3 x cos a?

r3 2r2

(17) */(l + ^) =
| +^2 -2*+2)-2 (19) 2/

2 =^n
(20) * - 23-26 sees., 7 54'

(21) 971 f.s., 559-3 is. downwards, 1120 f.s., 150 4'

(22) k = 0-04682, 289-2 ft., 61 f.s.
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(23) k = 0-0004728, h = 256-9 ft., 90-6 f.s.

/__ 2/2 2\ 2/2 2X ,
2 2, v

(25) pr {r
x

-
rj

- r (p^
-
pjj +

rrjp^
-
pj

(26) p - Ar "1 + t, A - 197-4, r - 7-324"
v ' r a- 1

(27) 36130 ft. lb., 33950 ft. lb. (28) 36890 ft. lb.

(29) P - VQ&\ c - 001273, P = 41-01

(30) v - v c"E5, 1-48 x 108

(32) A - C - ~1 (33) C = 10-67(1
- e^ 375

'),
6-5

(34) C = 0-707 sin(500*
-

0-7854) + tf"500', C = 0-707 sin(500*
-
0-7854)

XXI (pages 372, 373, 374, 375)

(1) A sin 2V&B + B cos 2VSx (2) Ae8^ + B*"3V2*

(3) A*"2* + Be-5*
(4) ^(A + Baj)

(5) -*(A sin 3a; + B cos 3.r) (6) A** + Bs2* + Ce'2*

(7) Ae* + B sin 2x + C cos 2#

(8) Ae-2* + e*(B sin VSx + C cos V&r)

(9) Ae2* + *^(B sin V&z + C cos V&c)

(10) (Ae* + O-*) sin VSx + (B^ + De-*) cos V&x

(11) 0-5 cos 2V5t, 0-8944 sin 2\/5*, 1*024 sin (2-\/5* + 0-5096)

(12) 0-25(^5t + e-2V5), 0-4472(^Vm _ -2Vm)
0-6972d 2V5 _ 0-1972^-2^

(13) 0-559*-2'
sin (4* + 1-108), e~* sin 4*, 0-9434 sin (4* + 0-5585)

(14) e-2<
(0-5 + *), Ue-

2i
,
*-2

<(0-5+ 5*)

(15) 0-75<H - 0-25^"3', 2(e~*
-

*-*) 2-75<H - 2-25*-8 '

(16) x = i cos 17-38*, T = 0-3616 sec., n = 166

(17) x = 0-1927e-4 - 025* sin (10-22* + 1-196), T = 0-6148 sec.

(18) 8-422 sin (nt + 1-125) (19) 0-8333tf" 7 485'
sin 12*

(20) 0-3574 sin (1-6*
-

1-030),
- 0-2496 sin (2-4* + 1-116)

(21) 0-02625a sin (5*
-

0-896)

(22) 1 0417a sin 47T*, l-333a sin 107T*,
- 0-8a sin 307rf

(23) v - 809-le-2764(W - 309-le- 72360*

(24) v - 500g-40000< (1 + 40000*)

(25) v = 354-6e- 250< sin (7262* + 0-859)

(26) 246-7 lb. (27) 4-666", 0-4666" (28) 16-44 tons
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(1)
- ab cos c

XXII (pages 400, 401, 402)

(2)0 (3)
- ab sin c,

- a2

L 2

(4)
- ab cos c,

- b2 (5) -ab sin c,
- 62

<> = /7t2 4\ . /7t2 4\ o /7t
2 4\ . .

i---aj
s *+U~iO SIn to + It

-
sv

Sln 5a;+

/7T2 . _ tt:
2

. 7T
2

. _ \-i
I

- sin 2x + - sin 4a; + - sin 6a; + . . . \

(7) 2m ^---^^-^--5^^ +^-^^ 3a;-

/ox m7i3 6mrr/7r\ 2 4\ /tu\ 2
. f/*Y ^

-(j)

1

cos4b+ . .

.]

(9) |[iK-l)-(^+l){icos^+icos3^
+ ~cos5o:+ . .

.}

+ if
-

1)1- cos 2a; + cos 4a; + -- cos 6a; . . .

j

(10) -[-(l-^-'
r

) + (l + e-
,r

)|-cosa;
+ ~cos3a;+ cos5a;+ . . A

+ (1
- e~

w

)<
- cos 2x + y=

cos 4a; + - cos 6a; + . .

A~|

(11) 4 i cos x - cos 2a;+- cos 3a; 77: cos 4a;+ cos 5x .

o v. 4 9 Id 25

(12) 2 [(y- J)
sin -(7-}) sin 2*+(f-|) sin 3a;- .

,,-s e'-^-'ri /l . 2.^3 4 .

(13) --1- sin x - sin 2r+ sin 3a; sin 4a; + .

71 \_a \Jj 5 10 17

f 1 1 1 1 \1-
(
- cos a; - - cos 2a; + 77: cos 3a; - - cos 4a; + . . .

)

\2 5 10 17 yj
2r r 1 1 1

(14)
- sin sin 20 +- sin 30 -7 sin 40 + . . .

7r L 2 3 4 J

c2 4c2Till 1
(15) cos 0-7 cos 20 + - cos 30 - 7- cos 40 + . . .v 3 7r

2 L 4 9 16

where =
c

(16) ll-798-l-292sin0+ 9-96Ocos0+l-O5Ocos 20+0-015 sin 30
4- 0012 cos 30

2 H

where =
c
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(17) 11-226 -4-790 sin + 9-956 cos + 0-013 sin 20 + 1-431 cos 20

+ 0-175 sin 30 + 0013 cos 30

(18) 11-724-2-816 sin + 9-949 cos 0-0-001 sin 20+ 1-122 cos 20

+ 0037 sin 30 + 0015 cos 30

(19) 10-810+ 0-664 sin + 10-408 cos + 0-794 sin 20 + 0-890 cos 20

+ 0022 sin 30 - 0065 cos 30

(20) 10-731 + 2-417 sin + 10-236 cos + 1-108 sin 20+ 0-528 cos 20
- 0032 sin 30 - 0-073 cos 30

(21) 13-627+ 3-157 sin + 11-055 cos + 1-657 sin 20-0-065 cos 20
- 0-188 sin 30 - 0-145 cos 30

(22) 11-100+ 9-848 sin + 1-736 cos + 0-643 sin 20+ 0-766 cos 20

(23) 10 + 3-265 sin + 5-030 cos + cos 20 + 0-2 sin 40

XXIII (pages 423, 424, 425)

(1) (n + 4)(n + 5), 132 (2) (n
-

2)(n
-

5), 28

(3) w3 - 10w + 18, 450 (4)
i
|2n

3 + 9n2 + 25n + 18
j,

154

(5) n4 - lOn2 + 36, 9036

(7) 10-96, 10-96

(9) 257-259456

(11) 1-83409, 2-22510

(13) 0-8013

(15) 5-456

(17) 15-75, 170

(19) 10402, 002678

(6) n3 - 3n2 + 8ri + 32, 122

(8) 31-68, 31-68

(10) 1-8527598, 1-8527597

(12) 0-5827

(14) 3-813

(16) 3-340755

(18) 0-5252, 001560

XXIV (pages 444, 445)

(1) A + B = 120749o r ,
A - B = 5-694sMo 3r

(2) A + B - 9-181222o 29,, A - B =
34-96530 M.

(3) 5-148, 9-982 (4) 6-23379o 66
,

(6) 10-09
7fl

. 4r (7) 13-21 100o 2^

(9) 5-416, 72 47', 35 32', 59 58'

(10) 29-68, 54 48', 55 4', 54 20'

(11) 16-90, 78 54', 40 21', 51 41'

(12) 9-69, 54 23', 55 10', 54 32'

(13) 1874187048, (14) 130-780o 10
.

(5) 8-93366. 28
'

(8) 16-44*21. 2
,

(15) Magnitude - Vb2 + a2
(3

2 + 2ab$H + 62(W,

direction = + tan -1 p ft +
|J

(16) See paragraph 212.
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(17) Magnitude - Vb* + 4aa
p
a
*
a + 8ab$H

3 + 4&2
p
2
*
4

,

direction = 6 + tan"1
2$t(t + |)

(18) 51 3', 3-62 (19) 4076 lb.

(20) Going N., 35 m.p.h. due N. ; going E., 522 m.p.h. 16 42' S.

of E. ; going S., 65 m.p.h. due S. ; going W., 52-2 m.p.h.
16 42' S. of W.

(21) Going N., 65-69 m.p.h. 12 26' E. of N. ; going E., 65-69

m.p.h. 12 26' N. of E. ; going S., 38-56 m.p.h. 21 81' E.

of S. ; going W., 38-56 m.p.h. 21 31' N. of W.

XXV (pages 459, 460, 461, 462)

(1) y = 56 '8*
; y = 8.718*- - 08504a:w u x + 4-984'
u

(2) t = 110-7m121
, sm021 = 0-009036

(3) y - 552-7 x 36-52-" (4) F = 254-5r - 17

(5) M - 608VM2 + T2 - 26190 (6) a - - 00646

(7) y - 0-0443a? + 3-275 log 10 x (8) y = 10-14'2717x

(9) y= 908a:2 + 1-206 x 1035

(10) y = 7-591 + 1-36901 ' 518
,
23-34

(11) y = 0-5 + 4-454*' 3465a!
,
18-31

(12) y = 2-452 x 1-523* - 0-387, 8-275

(13) y =
2-76(# + 5-72)

1 ' 24
,
34-79

(14) y = 0-404a? + l-225# log10 x

(15) y = 0-986x' 202x
(16) y = 10-12 + V76e' 2l5x

(17) y = 0-762(# + 2-26)
1

'

74
(18) y - 15-62 + 0-746*1

' 875



INDEX
abi operating on sin pt
Addition of vectors

Angle between a line and a curve

Angle between two planes
Angle between two straight lines

Angles greater than 90 .

Angles greater than 360 .

Approximation for the length of a circular

Approximations
Area of a triangle .

Areas .....
Areas of surfaces of revolution

Bending moment .

Best value of
dy
die

d2yBest value of ,

dx2

Binomial Theorem .

Case when A 7ux =
Centre of curvature
Centre of pressure .

Centroids of arcs of curves
Centroids of irregular areas
Common logarithms
Complex quantities
Compound angles .

Compound interest law .

Cosine series .

Curvature
Curves of negative slope .

Curves of positive slope .

Damped vibrations.
Definite integral
Deflection of beams
De Moivre's Theorem
Derived figures
Determination of constants

Development of functions
Differential equations of the first order

second order
Differentiation of a fraction

,, product
sum .

484

PAGE
51

428, 432

419
136
223
274
254
16
38
28

338
54, 382

364
193
294
42

258

447, 456
103
319
349
91
90
89



INDEX 485

Differentiation of algebraic functions

hyperbolic functions
inverse trigonometrical functions

,, trigonometrical functions

Direction cosines of a line

Distribution of shear stress

Division of complex quantities

Effect of heat on a pendulum .

Electrical examples involving differential equations
Elimination of constants

Equation of the normal ....
Equation of the tangent....
Euler's formulae for struts

Examples on maxima and minima .

Exponential form of cos + i sin 6 .

Exponential series.....
Factors .

Finite differences .

Forced vibrations .

Formation of series

Fourier's series

General determination of laws .

Graphical representation of a complex quantity

Harmonic analysis .

Hyperbolic functions

Hypothetical steam-engine diagram

i as an operator
Integration by parts

,, of algebraic fractions

of hyperbolic functions .

,, of periodic functions
of sinn $ and cosn

of trigonometrical functions

using partial fractions .

Interpolation. ....
Irregular areas ....
Lengths of curves .

Limits of integration

Logarithmic differentiation

Logarithmic series .

Maclaurin's Theorem
Mathematical representation of a vector
Maximum point
Mid-ordinate rule

Minimum point
Momental ellipse
Moment of inertia

PAGE
82
87
86
84
64
303

12

331, 360
. 319

130
130
357
120
53
13

1

403
369
111
385

452
48

57, 87, 157
. 344

. 50

. 183

. 149

. 157

. 376

. 178

157, 173
. 145
. 409
. 247

194
91
15

107
438
116
248
117
227
222
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PAGE

Moment of inertia of a circle ....... 237
cone . 241

cylinder 240

parallelogram 234

rectangle 229

rectangular prism..... 239

sphere 242

triangle 234
an irregular area ..... 256

Moment of resistance ........ 290
Motion of a body in a resisting medium ..... 332
Motion of a projectile ........ 325

Multiple angles ......... 33

Multiplication of complex quantities ..... 39

Multiplication of two vectors ....... 443

Napierian logarithms . . . . . . . .16
Negative angles ......... 26
Neutral axis 290

Partial fractions ......... 2

Perpendicular distance of a point to a plane . . . .73
Point of inflexion . 119, 139
Polar co-ordinates 75, 279
Position of a point in space . . . . . . .61
Powers of

"
z
" 38

Principal axes of inertia........ 225
Prismoidal rule

'

252

Radius of curvature ........ 135
Radius of gyration . . . . . . . .223
Rankine-Gordon formula for struts . . . . . .361
Resolution of vectors . . . . . . . .427
Resultant thrust 223
Rules for differentiation........ 94

Sag in a telegraph wire ........ 270
Scalar product of two vectors....... 437

Separation of the variables . . . . . . .321
Shearing force ......... 290

Simple harmonic motion........ 352

Simpson's Rules 248
Sine series ......... 54, 379

Slipping of a belt on a pulley 340

Slope of a curve ......... 81

Slope of a line ......... 80
Solution of equations . . . . . . . .105
Solution of triangles . . . . . . .19
Specification of a vector....... 426, 434

Square root of a complex quantity ...... 40

Straight line law . . 446

Subtraction of vectors ....... 428, 432

Successive differentiation ....... 99

Table of standard differential coefficients ..... 93

Taylor's expansion . . . . . .103
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