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PREFACE. 

tract  is  written  in  connection  with  the  previous  tract,  No.  4  of 

this  series,  on  Projective  Geometry,  and  with  the  same  general 

aims.  In  that  tract,  after  the  statement  of  the  axioms,  the  ideas 

considered  were  those  concerning  harmonic  ranges,  projectivity,  order, 

the  introduction  of  coordinates,  and  cross-ratio.  In  the  present  tract, 

after  the  statement  of  the  axioms,  the  ideas  considered  are  those 

concerning  the  association  of  Projective  and  Descriptive  Geometry  by 

means  of  ideal  points,  point  to  point  correspondence,  congruence, 

distance,  and  metrical  geometry.  It  has  been  my  object  in  both 

tracts  to  extend  the  investigations  just  far  enough  to  assure  the  reader 

that  the  whole  of  Geometry  is  really  secured  by  the  axioms  stated. 

My  hopes  for  a  comparative  freedom  from  typographical  errors  are 

based  upon  my  experience  of  the  excellence  of  the  University  Press. 

A.  N.  W. 

CAMBRIDGE. 

March,  1907. 
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CHAPTER   I. 

FORMULATIONS   OF  THE  AXIOMS. 

1.  THE  general  considerations  which  must  govern  a  mathematical 

investigation  on  the  foundations  of  Geometry  have  been  explained  in 

iChapter  I  of  the  previous  tract  of  this  series,  on  the  Axioms  of 

Projective  Geometry*.  It  is  explained  there  that  'Descriptive 

Geometry'  is  here  used  as  a  generic  term  for  any  Geometry  in  which 
I  two  straight  lines  in  a  plane  do  not  necessarily  intersect.  Also  it  is 

I  pointed  out  that  the  purely  classificatory  portions  of  a  Descriptive 
i  Geometry  are  clumsy  and  uninteresting,  and  that  accordingly  the  idea 
I  of  order  is  introduced  from  the  very  beginning. 

There  are  three  main  ways  by  which  this  introduction  of  order 

can  be  conveniently  managed.  In  one  way,  which  is  represented  by 

.Peano's  axioms  given  below  (§§  3 — 6),  the  class  of  points  which  lie 
between  any  two  points  is  taken  as  a  fundamental  idea.  It  is  then 

I  easy  to  define  the  class  of  points  collinear  with  the  two  points  and 

[lying  beyond  one  of  them.  Thus  these  three  classes  of  points,  namely 

the  two  classes  lying  beyond  the  two  points  respectively  and  the  class 

[Vying  between  the  two  points,  together  with  the  two  points  themselves 

form  the  straight  line  defined  by  the  two  points  Then  a  set  of  axioms 

of  the  straight  line  are  required,  concerned  with  the  idea  of  *  between,' 
^and  also  axioms  are  required  respecting  coplanar  lines. 

Another  way,  which  was  pointed  out  by  Vailatif  and  Russell  J,  is 

[to  conceive  a  straight  line  as  essentially  a  serial  relation  involving  two 

berms.  The  whole  field  of  such  a  relation,  namely  the  terms  which  are 

[uhus  ranged  in  order  by  it,  forms  the  class  of  points  on  the  straight 

[line.  Thus  the  Geometry  starts  with  the  fundamental  conception  of  a 

*  In  the  sequel  this  tract  will  be  referred  to  as  '  Proj.  Geom.' 
t  Cf.  Rivista  di  Matematica,  vol.  iv. 

J  Cf.  Principles  of  Mathematics,  §  376, 

w.  1 



2  THE    INTRODUCTION    OF    ORDER  [CH. 

class  of  relations.  The  axioms  of  the  straight  line  are  the  axion 
which  secure  that  each  of  these  relations  is  a  serial  relation.  Tb 

points  are  the  entities  occurring  in  the  fields  of  any  of  these  relation 
The  axioms  of  the  plane  are  the  same  as  in  the  previous  mode  c 
development. 

The   third  way,   recently   developed  by  Prof.   0.   Veblen*,  is  t 
consider   the   science   of  Descriptive  Geometry  as  the  study  of  tl 

properties  of  one  single  three-termed  relation  of  order.     The  entiti 
forming  the  field  of  this  relation  are  the  points.     When  this  relatio 

holds  between  three  points  A,  B,  and  C,  it  is  said  that  'the  poim 
A,  B,  and  C,  are  in  the  linear  order  ABC.'    This  method  of  conceivir 
the  subject  results  in  a  notable  simplification,  and  combines  advantage 

from  the  two  previous  methods.     Veblen's  axioms  will  be  stated  in  fti; 
(cf.  §  8). 

2.  The  enunciation  of  the  axioms  of  Descriptive  Geometry,  whicl 

is  given  in  the  sections  (§§  3 — 6)  immediately  following,  is  that  due  t< 
Peanot.  His  formulation  is  based  upon  that  of  Pasch  j,  to  whom  is  du. 
the  first  satisfactory  systematic  exposition  of  the  subject.  The  unde 
fined  fundamental  ideas  are  two  in  number,  namely  that  of  a  class  o 

entities  called  f  points,'  and  that  of  the  '  class  of  points  lying  betwee) 
any  two  given  points/  It  has  already  been  explained  §  that  thi; 
undetermined  class  of  points  is  in  fact  any  class  of  entities  with  inter 
relations,  such  that  the  axioms  are  satisfied  when  considered  as  referring 
to  them. 

The  symbol  AB  will  represent  the  class  of  points  lying  betweei 
the  points  A  and  B.  This  class  will  be  called  the  segment  AB. 

The  first  group  of  axioms,  eleven  in  number,  secure  the  ordinar; 
properties  of  a  straight  line  with  respect  to  the  order  of  points  on  it 
and  also  with  respect  to  the  division  of  a  line  ||  into  three  parts  by  an 

*  Cf.  A  System  of  Axioms  for  Geometry,  Trans,  of  the  Amer.  Math.  Soc.,  vol.  v 
1904. 

t  Cf.  I  principii  di  Geometria,  Turin,  1889.  These  axioms  are  repeated  t 
him  in  an  article,  Sui  fondamenti  della  Geometria,  Rivista  di  Matematica,  vol.  r 
1894.  In  this  latter  article  the  minute  mathematical  deductions  are  omitted,  ar 

their  place  is  taken  by  valuable  observations  on  the  main  points  to  be  considere. 
Also  a  treatment  of  congruence  is  given  which  does  not  appear  in  the  earli< 
tract.  This  article  should  be  studied  carefully  by  every  student  of  the  subject 

£  Cf.  Vorlesungen  ilber  neuere  Geometric,  Leipzig,  1882.  This  treatise  is  tl 
classic  work  on  the  subject. 

§  Cf.  Proj.  Geom.  §  2. 

||  Note  that  'line'  will  be  habitually  used  for  'straight  line.' 
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two  points  on  it,  and  into  two  parts  by  any  single  point  on  it.  The 

Dedekind  property*  is  not  secured  by  them,  but,  compactness t  is 
secured  by  axiom  IV. 

3.     Peano's  axioms  of  the  straight  line  are  as  follows  : 
I.  There  is  at  least  one  point. 
II.  If  A  is  any  point,  there  is  a  point  distinct  from  A. 
III.  If  A  is  a  point,  there  is  no  point  lying  between  A  and  A. 
It  follows  that  the  class  A  A  possesses  no  members. 
IV.  If  A  and  B  are  distinct  points,  there  is  at  least  one  point 

lying  between  A  and  B. 
Thus  the  class  AB  is  not  the  null  class. 

V.  If  the  point  C  lies  between  A  and  B,  it  also  lies  between 
B  and  A. 

It  easily  follows  that  the  classes  AB  and  BA  are  identical. 
VI.  The  point  A  does  not  lie  between  the  points  A  and  B. 

Thus  the  class,  or  segment,  AB  does  not  include  its  end-points 
A  and  B. 

Definition.  If  A  and  B  are  points,  the  symbol  A  'B  represents  the 
class  of  points,  such  as  C,  with  the  property  that  B  lies  between 

A  and  C.  Thus  A'B  is  the  prolongation  of  the  line  beyond  B,  and 
B'A  is  its  prolongation  beyond  A. 

VII.  If  A  and  B  are  distinct  points,  there  exists  at  least  one 

member  of  A'B. 
VIII.  If  A  and  D  are  distinct  points,  and  C  is  a  member  of  AD, 

and  B  of  AC,  then  B  is  a  member  of  AD. 
IX.  If  A  and  D  are  distinct  points,  and  B  and  C  are  members  of 

AD,  then  either  B  is  a  member  of  AC,  or  B  is  identical  with  C,  or  B 
is  a  member  of  CD. 

X.  If  A  and  B  are  distinct  points,  and  C  and  D  are  members  of 

A'B,  then  either  C  is  identical  with  D,  .or  C  is  a  member  of  JBD,  or  D 
is  a  member  of  BC. 

XL  If  A,  B,  C,  D  are  points,  and  B  is  a  member  of  AC,  and  C 
of  BD,  then  (7  is  a  member  of  A  D. 

Definition.  The  straight  line  possessing  A  and  B,  symbolized  by 

str  (A,  B\  is  composed  of  the  three  classes  A'B,  AB,  B'A,  together 
with  the  points  A  and  B  themselves. 

Then  by   the   aid   of  the   previous   axioms   the  usual   theorems, 

*  Cf.  Proj.  Geom.  §  19,  and  §  9  of  the  present  tract, 
t  Cf.  Proj.  Geom.  §  16. 

1—2 



4  DEFINITION   OF   A   PLANE  [CH.  I 

excluding  the  Dedekind  property,  respecting  the  order  of  points  on  a 
line  can  be  proved.  Also  any  two  points  are  both  contained  by  one 
and  only  one  line. 

4.  Peano  uses  the  following  useful  notation  which  is  an  extension 
of  his  notation  for  segments  and  prolongations.  If  A  is  a  point  and 
u  is  a  class  of  points,  then  Au  is  the  class  of  points  lying  on  the 

segments  between  A  and  points  of  M,  and  A'u  is  the  class  of  points  on 
the  prolongations  of  these  segments  beyond  the  points  of  u. 

Then  in  conformity  with  this  notation  the  seven  regions  into  which 
a  plane  is  divided  by  three  lines  are  as  in  the  figure. 

C(A'S)       /  A'(BC) 

The  plane  determined  by  the  three  non-collinear  points  A,  B,  C — 

written  pie  (Ay  B,  (T) — is  defined  to  be  the  class  of  points  consisting  of 
the  points  on  the  three  lines  str  (B(T),  str  (CA),  and  str  (AB\  and 

of  the  points  in  the  seven  regions  A  (BCf),  A  (BO),  B'  (CA\  C'  (AB\ 
A'(B'C\B'(C'A\  C'(A'B). 

5.  Three  axioms  are  required  to  establish  the  Geometry  of 
a  plane. 

XII.  If  r  is  a  straight  line,  there  exists  a  point  which  does  not 
lie  on  r. 

Note  that  it  would  be  sufficient  to  enunciate  this  axiom  for  one 

straight  line. 

XIII.  If  A,  B,  C  are  three  non-collinear  points,  and  D  lies  on 
the  segment  BC,  and  E  on  the  segment  AD,  there  exists  a  point  F 

on  both  the  segment  A  C  and  the  prolongation  B'E  (cf.  fig.  i,  p.  5). 
XIV.  If  A,  B,  C  are  three  non-collinear  points,  and  D  lies  on  the 
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segment  BC,  and  F  on  the  segment  A  C,  there  exists  a  point  E  lying 

on  both  the  segments  AD  and  BF '(cf.  fig.  ii). 

Fig.  i. 

With  these  axioms  all  the  usual  properties  of  the  division  of  a 
plane  by  a  line,  and  of  the  inside  and  outside  of  a  plane  closed  figure, 

Fig.  ii. 

can  be  proved.  Thus  if  ABC  form  a  triangle  and  a  coplanar  line 
intersect  the  segment  BC,  it  must  intersect  one  and  only  one  of  the 
segments  CA  and  AB. 

Also  any  three  non-collinear  points  lie  in  one  and  only  one  plane  ; 
and  the  line  determined  by  any  two  points  lying  in  a  plane  lies  entirely 
in  that  plane.  But,  as  the  case  of  Euclidean  Geometry  shews,  we 
cannot  prove  from  these  axioms  that  any  two  lines  in  a  plane 
intersect. 

6.     For  three-dimensional  Geometry  two  other  axioms  are  required. 
XV.     A  point  can  be  found  external  to  any  plane.     The  enuncia 

tion  of  this  axiom  can  be  restricted  to  a  particular  plane. 



AXIOMS    OF   THREE    DIMENSIONS 

[CH.  I 
XVI.  Given  any  plane  p,  and  any  point  A  outside  it,  and  any 

point  Q  on  it,  and  any  point  B  on  the  prolongation  A'Q,  then,  if  Xis 
any  other  point,  either  X  lies  on  the  plane  p,  or  AX  intersects  the 
plane  p,  or  BX  intersects  the  plane  p. 

The  annexed  figure  illustrates  the  axiom,  the  points  X^  X%,  X$ 
being  positions  of  X  which  illustrate  the  three  alternatives  contem 

plated  in  the  axiom.  Thus  X±  lies  on  the  plane  p ;  Xz  lies  on  the 

same  side  of  p  as  B,  so  that  AX^  must  cut  p  in  some  point  L ;  X$ 
lies  on  the  same  side  of  p  as  A,  so  that  BX$  must  cut  p  in  some 
point  M. 

Axiom  XVI  secures  the  limitation  to  three  dimensions,  and  the 

division  of  space  by  a  plane.  It  can  also  be  proved  from  the  axioms 
that,  if  two  planes  intersect  in  at  least  one  point,  they  intersect  in 
a  straight  line. 

7.  A  point  will  be  said  to  divide  a  line  into  two  half-rays  which 
emanate  from  it. 

A  line  will  be  said  to  divide  a  plane  into  two  half-planes  which 
are  bounded  by  it. 

A  plane  will  be  said  to  divide  space  into  two  half-spaces  which  are 
bounded  by  it. 
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A  sheaf  of  lines  is  a  complete  set  of  coplanar  lines  concurrent 

at  one  point  (the  vertex).  A  sheaf  of  half-rays  is  a  complete  set  of 
coplanar  half-rays  emanating  from  one  point  (the  vertex). 

A  bundle  of  lines  is  a  complete  set  of  lines  concurrent  at  one  point 

(the  vertex).  A  bundle  of  half-rays  is  a  complete  set  of  half-rays 
emanating  from  one  point  (the  vertex). 

If  p,  q,  r  are  three  half-rays  belonging  to  a  sheaf  of  half-rays,  then 

r  is  said  to  '  lie  between '  p  and  q,  if  points  A  and  B  can  be  found  on 
p  and  q  respectively,  such  that  the  segment  AB  intersects  r. 

It  can  be  proved  that  if  r  lies  between  p  and  q,  then  p  does  not 
lie  between  r  and  q. 

The  complete  set  of  planes  through  a  given  line  (the  axis)  is  called 

a  sheaf  of  planes.  The  axis  divides  each  plane  into  two  half-planes. 
These  half-planes  form  a  sheaf  of  half-planes. 

If  p,  q,  r  are  three  half-planes  belonging  to  a  sheaf  of  half-planes, 

then  r  is  said  to  '  lie  between '  p  and  q,  if  points  A  and  B  can  be  found 
on  p  and  q  respectively,  such  that  the  segment  AB  intersects  r. 

It  can  be  proved  that  if  r  lies  between  p  and  q,  then  p  does  not  lie 
between  r  and  q. 

The  theorems  indicated  in  this  and  in  the  preceding  sections,  and 
allied  theorems,  are  not  always  very  easy  to  prove.  But  their  proofs 
depend  so  largely  upon  the  particular  mode  of  formulation  of  the 
axioms,  that  it  would  be  outside  the  scope  of  this  tract  to  enter  into 
a  consideration  of  them.  In  the  sequel  we  shall  assume  that  the  whole 
class  of  theorems  of  the  types,  which  have  been  thus  generally  indi 
cated,  can  be  proved  from  the  axioms  stated. 

8.  Formulations  of  the  axioms  of  Descriptive  Geometry  have  also 

been  given  by  Hilbert*,  and  by  E.  H.  Moore t,  and  by  B.  Russell^, 

and  by  0.  Veblen§.  Veblen's  memoir  represents  the  final  outcome  of 
these  successive  labours,  and  his  formulation  will  be  given  now.  The 

axioms  are  stated  in  terms  of  '  points '  and  of  a  relation  among  three 
points  called  '  order.'  Points  and  order  are  not  defined. 

I.     There  exist  at  least  two  distinct  points. 

*  Grundlagen  der  Geometric,  Leipzig,  1899,  English  Translation  by  E.  J. 
Townsend,  Chicago,  1902. 

t  On  the  Protective  Axioms  of  Geometry,  Trans,  of  the  Amer.  Math.  Soc., 
vol.  in.,  1902. 

£  The  Principles  of  Mathematics,  Cambridge,  1903,  ch.  XLVI. 
§  A  System  of  Axioms  for  Geometry,  Trans,  of  the  Amer.  Math.  Soc.,  vol.  v., 

1904. 
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II.  If  the  points  A,  B,  C  are  in  the  order  ABC,  they  are  in  the 
order  CBA. 

III.  If  the  points  A,  B,  C  are  in  the  order  ABC,  they  are  not 
in  the  order  BCA. 

IV.  If  the  points  A,  B,  C  are  in  the  order  ABC,  then  A  is 
distinct  from  C. 

V.  If  A  and  B  are  any  two  distinct  points,  there  exists  a  point  C 
such  that  A,  B,  C  are  in  the  order  ABC. 

Definition  1.  The  line  AB  (A±B)  consists  of  A  and  B,  and  of 
all  points  X  in  one  of  the  possible  orders  AB X,  AJCB,  XAB.  The 

points  X  in  the  order  AXB  constitute  the  'segment'  AB.  A  and 
B  are  the  'end-points '  of  the  segment,  but  are  not  included  in  it. 

VI.  If  points  C  and  D  (C$  D)  lie  on  the  line  AB,  then  A  lies  on 
the  line  CD. 

VII.  If  there  exist  three  distinct  points,  there  exist  three  points 
A,  B,  C  not  in  any  of  the  orders  ABC,  BCA,  or  CAB. 

Definition  2.  Three  distinct  points  not  lying  on  the  same  line  are 

the  'vertices'  of  a  'triangle'  ABC,  whose  sides  are  the  segments  AB, 
BC,  CA,  and  whose  'boundary '  consists  of  its  vertices  and  the  points 
of  its  sides. 

VIII.  If  three  distinct  points  A,  B,  C  do  not  lie  on  the  same  line, 
and  D  and  E  are  two  points  in  the  orders  BCD  and  CEA,  then  a 

point  F  exists  in  the  order  AFB  and  such  that  D,  E,  F  lie  on  the 
same  line. 

Definition  5.  A  point  0  is  '  in  the  interior  of  a  triangle,  if  it  lies 
on  a  segment,  the  end-points  of  which  are  points  of  different  sides  of  a 

triangle.  The  set  of  such  points  0  is  '  the  interior '  of  the  triangle. 

Definition  6.  If  A,  B,  C  form  a  triangle,  the  'plane'  ABC 
consists  of  all  points  collinear  with  any  two  points  of  the  sides  of  the 
triangle. 
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IX.  If  there  exist  three  points  not  lying  in  the  same  line,  there 
exists  a  plane  ABC  such  that  there  is  a  point  D  not  lying  in  the 
plane  ABC. 

Definition  7.  If  A,  B,  C,  and  D  are  four  points  not  lying  in  the 

same  plane,  they  form  a  'tetrahedron  '  A  BCD,  whose  'faces'  are  the 
interiors  of  the  triangles  ABC,  BCD,  CD  A,  DAB,  whose  'vertices' 
are  the  four  points  A,  B,  C,  and  D,  and  whose  'edges'  are  the 
segments  AB,  BC,  CD,  DA,  AC,  BD.  The  points  of  faces,  edges, 

and  vertices  constitute  the  '  surface '  of  the  tetrahedron. 

Definition  8.  If  A,  B,  C,  D  are  the  vertices  of  a  tetrahedron,  the 
space  ABCD  consists  of  all  points  collinear  with  any  two  points  of  the 
faces  of  the  tetrahedron. 

X.  If  there  exist  four  points,  neither  lying  in  the  same  line,  nor 
lying  in  the  same  plane,  there  exists  a  space  A  BCD,  such  that  there  is 
no  point  E  not  collinear  with  two  points  of  the  space  A  BCD. 

The  above  axioms  of  Veblen  are  equivalent  to  the  axioms  of  Peano 
which  have  been  previously  given.  Both  Peano  and  Veblen  give  an 
axiom  securing  the  Dedekind  property  (cf.  §  9).  Also  Veblen  gives  an 

axiom  securing  the  '  Euclidean '  property  (cf.  §  10). 

9.  Dedekind's  original  formulation*  of  his  famous  property  applies 
directly  to  the  case  of  a  descriptive  line  and  is  as  follows : 

"If  all  points  of  the  straight  line  fall  into  two  classes  such  that 
every  point  of  the  first  class  lies  to  the  left  of  every  point  of  the  second 
class,  then  there  exists  one  and  only  one  point  which  produces  this 
division  of  all  points  into  two  classes,  this  severing  of  the  straight  line 

into  two  portions." 
It  is  of  course  to  be  understood  that  the  dividing  point  itself 

belongs  to  one  of  the  two  classes. 

It  follows  immediately  that  the  boundary  of  a  triangle  consists  of 
points  in  a  compact  closed  order  possessing  the  Dedekind  property  as 
already  formulated  for  closed  series  t. 

This  definition  may  be  repeated  here  to  exhibit  its  essential  in 

dependence  of  the  special  definition  of  protective  segments  upon  which 
the  previous  formulation  rests. 

Let  A,  B,  C  be  any  three  points  of  a  closed  series.     Then  by 

Cf.  his  Continuity  and  Irrational  Numbers,  ch.   in.  ;    the  quotation  here  is 

from  Beman's  translation,  Chicago,  1901. 
t  Cf.  Proj.  Geom.  §  19  (a). 
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hypothesis  the  series  is  such  that  there  are  two  ways  round  from  A 

to  C,  namely,  one  through  B  arid  one  not  through  B.    Let  segm  (ABO) 

denote  the  points,  excluding  A  and  (7,  which  are  traversed  from 

A  to  C  through  B,  and  let  segm  (ABO)  denote  the  remaining 
points  of  the  series.  Again  let  a  class  u  of  the  points  of  the  series 
be  called  a  segment  of  the  series,  when  (1)  there  is  a  point  B  of  the 
series  which  does  not  belong  to  u,  and  (2)  if  P  and  Q  be  any  two 

points  of  u  then  segm  (PBQ)  belongs  entirely  to  u. 
Then  the  series  possesses  the  Dedekind  property  if  any  segment 

such  as  u  (which  excludes  more  than  one  point  of  the  series)  must 
possess  two  boundary  points,  that  is  to  say,  if  there  must  exist  points 

A  and  C  such  that  segm  (ABO),  with  the  possible  exception  of  either 
or  both  of  A  and  (7,  is  identical  with  u.  Here — as  above — B  is  a 
point  which  does  not  belong  to  u. 

Hence  a  sheaf  of  half-rays  can  also  be  considered  as  a  closed 
compact  series  with  the  Dedekind  property.  This  is  made  immediately 
evident  by  surrounding  the  vertex  by  a  triangle  in  the  plane  of  the 

sheaf.  Then  each  half-ray  of  the  sheaf  intersects  the  boundary  of  the 
triangle  in  one  and  only  one  point.  Also  the  order  of  the  points  on 

the  boundary  is  the  order  of  the  corresponding  half-rays  of  the  sheaf. 
But  the  boundary  of  the  triangle  is  a  closed  series  with  the  Dedekind 
property. 

10.  By  the  aid  of  the  Dedekind  axiom  and  of  the  preceding 
axioms,  it  can  now  be  proved  that,  if  /  be  any  line  and  A  be  any  point, 
not  incident  in  /,  then  in  the  plane  Al  at  least  one  line  can  be  drawn 
through  A,  which  does  not  intersect  I. 
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For  take  any  point  B  on  /,  and  let p  and  q  be  the  two  supplementary 

half-rays  of  /  which  emanate  from  B.     Consider  the  sheaf  of  half-rays, 

vertex  A,  in  the  plane  Al.  Some  of  these  half-rays  intersect  p  and 
some  intersect  q,  and  these  classes  are  mutually  exclusive. 

Also,  from  the  Dfidekind  property,  there  exist  two  semi-rays  which 

are  limits  of  the  semi-rays  intersecting  p.  AB  is  one  of  the  semi-rays, 
let  r  be  the  other.  Now  the  semi-ray  p  has  no  end-point.  Hence  r  is 

not  among  the  semi-rays  intersecting  p.  Again  by  similar  reasoning 
there  is  a  semi-ray  s  which  is  the  limit  of  the  semi-rays  inter 
secting  q,  and  s  does  not  intersect  q. 

Now  first  let  r  and  s  be  not  collinear,  and  let  r  and  s'  be  the 
half-rays  supplementary  to  r  and  s  respectively.  Consider  the  set 
(a,  say)  of  lines  through  A  with  one  set  of  their  half-rays  between 
r  and  s,  and  therefore  with  their  supplementary  half-rays  between 
r  and  s.  There  are  an  infinite  number  of  such  lines.  Now  all  half- 

rays  emanating  from  A  and  lying  between  the  half-ray  AB  and  r 
intersect  p,  and  no  other  half-rays  from  A  intersect  p.  Similarly  for 

the  half-rays  AB  and  s  and  q.  Also  if  s  lie  between  the  half-ray  AB 
and  r,  then  /  lies  between  the  half-ray  AB  and  s ;  and  in  this  case 
every  line  of  the  set  a  intersects  the  line  I  twice,  namely  once  for  each 

of  its  pair  of  supplementary  half-rays  emanating  from  A.  But  this  is 
impossible.  Hence  neither  the  supplement  of  r  nor  that  of  s  can 
intersect  /.  Secondly  if  r  arid  s  are  collinear,  then  the  complete  line 
formed  by  r  and  s  cannot  intersect  /.  For  neither  r  nor  s  intersects  /. 

Thus  taking  any  point  A  and  any  line  /,  the  sheaf  of  lines, 
vertex  A  and  in  the  plane  Al,  falls  into  two  parts,  namely  the  lines 

which  intersect  /,  called  the  lines  '  secant '  to  /,  and  the  lines  which  do 
not  intersect  /,  called  the  lines  '  non-secant '  to  /.  The  non-secant  lines 
of  the  sheaf  may  reduce  to  one  line.  The  supposition  that  this  is  the 

case  is  the  '  Euclidean  Axiom.' 



CHAPTER   II. 

THE  ASSOCIATED   PROJECTIVE   SPACE. 

11.  WE  have  now  to  establish  the  relation  of  Descriptive  Geometry 
to  an  associated  Projective  Geometry.  In  a  Projective  Space  let  a 

'  convex  region  '  be  denned  to  be  a  region  which  (1)  does  not  include 
the  whole  of  any  line,  and  (2)  includes  the  whole  of  one  of  the  two 
segments  between  any  two  points  within  it.  It  is  easy  to  prove  that 

such  regions  exist.  For  remembering*  that  we  can  employ  the 
ordinary  theory  of  homogeneous  coordinates,  the  surface 

is  well  known  to  enclose  such  a  region.  Let  a  quadric  enclosing  a 

convex  region  be  called  a  '  convex  quadric.'  Again  in  two  dimensions 
let  A,  B,  C  be  any  three  non-collinear  points,  and  let  P  be  any  point 
not  collinear  with  any  two  of  them.  Let  AP  meet  the  line  BC  in  L, 

BP  meet  CA  in  M~,  CP  meet  AB  in  N. 

Define  the  triangular  region  (ABCjP}  to  be  the  set  of  points 
formed  by  the  collection  of  segments  such  as  segm  (A  QR)  t,  where 
Q  is  any  point  on  segm  (BPM\  and  R  is  the  point  where  the  line 

*  Cf.  Proj.  Geom.  §§  37  and  42. 
t  Cf.  Proj.  Geom.  §  13. 
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AQ  intersects  BC.  The  points  A,  B,  C  can  be  interchanged  in  this 
definition  without  altering  the  region  obtained. 

Similarly  in  three  dimensions,  if  A,  B,  C,  D  are  the  vertices  of  a 
non-degenerate  tetrahedron,  and  P  be  any  point  not  on  any  of  the 
planes,  ABC,  BCD,  etc.,  the  '  tetrahedral  region'  (ABCD/P)  can  be 
similarly  defined.  From  the  ordinary  theory  of  homogeneous  coordinates, 
it  is  well  known  that  a  triangular  region  in  two  dimensions,  and  a 
tetrahedral  region  in  three  dimensions,  are  both  convex  regions. 

Again  the  triangular  region  (ABC/P)  considered  above  has  as  its 

'boundary'  the  segments  (BLC\  (CMA\  (ANB\  together  with  the 
points  A,  B,C.  Also  considering  the  tetrahedral  region  (ABCDJP\ 
let  AP  intersect  BCD  in  L,  BP  intersect  CD  A  in  My  CP  intersect 
DAB  in  N,  DP  intersect  ABC  in  0.  Then  the  'boundary'  of  the 
tetrahedral  region  (ABCDJP}  consists  of  the  triangular  regions 
(BCDIL\  (CDAjMl  (DABjNl  (ABCJO\  together  with  the 
boundaries  of  these  triangular  regions. 

It  is  now  a  well-known  result  from  the  use  of  coordinates  that  in 
two  dimensions  any  line  through  a  point  in  a  triangular  region  cuts 
the  boundary  in  two  points  only;  and  that  in  three  dimensions  any 
line  through  a  point  in  a  tetrahedral  region  cuts  the  boundary  in  two 
points  only. 

12.  Now  consider  a  convex  region,  let  it  be  either  the  region 
within  a  convex  quadric,  or  a  tetrahedral  region.  Call  the  points 
within  it  'Descriptive  points';  and  call  the  portions  of  lines  within  it 
1  Descriptive  lines.'  The  protective  order  of  points  on  a  line  becomes 
an  open  order  for  Descriptive  points  on  Descriptive  lines.  Then  by 
the  use  of  coordinate  Geometry  it  is  easy  to  prove  that  all  the 
Descriptive  axioms  of  the  present  tract,  either  in  Peano's  form  or  in 

"-'-— 

Veblen's  form,  are  satisfied,  including  the  Dedekind  axiom,  but  exclud ing  the  Euclidean  axiom.     Thus  in  the  figure  the  lines  AB  and  CD 
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intersect  at  a  point  Hm  Descriptive  Space;  but  the  lines  AB  and  EF 
do  not  intersect  in  Descriptive  Space,  since  K  lies  outside  it.  Also  it 
is  evident  that  through  any  point  P  an  infinite  number  of  lines  can  be 
drawn,  coplanar  with  AB,  and  not  intersecting  it  in  Descriptive  Space. 

13.  The  previous  article  (§  12)  proves*  the  existence  theorem  for 
Descriptive  Space  with  the  negation  of  the  Euclidean  axiom  ;  in  other 
words,  it  proves  the  independence  of  the  Euclidean  axiom. 

The  existence  theorem  for  Descriptive  Space  with  the  Euclidean 

axiom  is  immediately  proved  by  considering  the  region  of  Projective 
Space  found  by  excluding  all  the  points  on  one  projective  plane.  The 
region  is  convex  according  to  the  above  definition ;  also  all  the 
Descriptive  axioms,  together  with  the  Dedekind  axiom  and  the  Euclidean 
axiom,  hold  for  itf. 

14.  The  independence  of  the  Dedekind  axiom  of  the  other  axioms, 
combined  with  the  negation  of  the  Euclidean  axiom,  is  proved  by  con 
sidering,  as  in  §  12,  Descriptive  Space  to  be  a  tetrahedral  region  in 
Projective   Space,  but   confining  ourselves   to   the   points  whose  co 
ordinates  are  algebraic  numbers  t,  as  in  the  corresponding  proof  for 
Projective  Geometry. 

The  independence  of  the  Dedekind  axiom  of  the  other  axioms, 

combined  with  the  Euclidean  axiom,  is  similarly  proved  by  considering 
Descriptive  Space  to  be  the  region  in  Projective  Space  found  by 

*  Cf.  Proj.  Geom.  §  43. 
f  In  the  later  Greek  period,  and  during  the  seventeenth  and  eighteenth  centuries, 

the  discussion  of  the  foundations  of  Geometry  was  almost  entirely  confined  to 

attempts  to  prove  the  Euclidean  axiom.  The  explicit  recognitions  of  its  inde 
pendence  by  Lobatschefskij  (1828),  and  by  J.  Bolyai  (1832)  laid  the  foundation  of 

the  existing  theories  of  non-Euclidean  Geometry.  For  the  literature  of  the  whole 
question  cf.  Stackel  and  Engel,  Die  Thcorie  der  Parallellinien  von  Euklid  bis  auf 

Gauss,  Leipzig,  1895,  and  also  their  Urkunden  zur  Geschichte  der  Nichteuklid- 
ischen  Geometric,  I.  Lobatschefskij,  Leipzig,  1898. 

£  Cf.  Proj.  Geom.  §  43  (a).  An  oversight  in  this  proof  may  be  here  corrected. 
The  proof,  as  printed,  proceeds  by  considering  only  points  with  rational  coordinates. 
But  then  a  difficulty  arises  as  to  the  theory  of  segments  given  in  Chapter  IV.  of 

Proj.  Geom.  For  it  is  necessary  that  the  real  double  points  of  a  hyperbolic 
involution  should  belong  to  the  points  considered.  But  these  double  points  are 

given  by  a  quadratic  equation.  Thus  algebraic  numbers  (i.e.  numbers  which  can 
occur  as  the  roots  of  equations  with  integral  coefficients)  should  be  substituted  for 
rational  numbers.  The  proof  proceeds  without  other  alteration.  I  am  indebted  to 
Mr  G.  G.  Berry  of  the  Bodleian  Library  for  this  correction. 
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excluding  a  particular  plane ;  and  further,  as  before,  we  confine  our 
consideration  to  the  points  whose  coordinates  are  algebraic  numbers. 

15.  It  has  been  proved  in  §§  12  and  13  that  a  convex  region  of  a 
Projective  Space  is  a  Descriptive  Space.  The  converse  problem  has 
now  to  be  considered  in  this  and  in  the  next  chapter ;  namely,  given 
a  Descriptive  Space,  to  construct  a  Projective  Space  of  which  the 
Descriptive  Space  is  part.  This  effects  a  very  considerable  simplifica 
tion  in  the  investigation  of  the  properties  of  Descriptive  Space  owing 
to  the  superior  generality  of  the  analogous  properties  of  Projective 
Space.  Thus  a  Projective  Space  affords  a  complete  interpretation  of 
all  the  entities  indicated  in  coordinate  geometry.  It  is  in  order  to 

gain  this  simplification  that  the  'plane  at  infinity'  is  introduced  into 
ordinary  Euclidean  Geometry.  We  have  in  effect  to  seek  the  logical 
justification  for  this  procedure  by  indicating  the  exact  nature  of  the 
entities  which  are  vaguely  defined  as  the  'points  at  infinity';  and  the 
procedure  is  extended  by  shewing  that  it  is  not  necessarily  connected 
with  the  assumption  of  the  Euclidean  axiom.  This  investigation  is 

the  Theory  of  Ideal  Points*,  or  of  the  generation  of  'Proper  and 

Improper  Projective  Points '  in  Descriptive  Geometry.  The  Euclidean 
axiom  will  not  be  assumed  except  when  it  is  explicitly  introduced. 
The  remainder  of  this  chapter  will  be  occupied  with  the  general 
theorems  which  are  required  for  the  investigation. 

16.  If  A  be  any  point  and  /  be  any  line  not  containing  A,  then 
the  plane  Al  divides  the  bundle  of  half-rays  emanating  from  A  into 

three  sets,  (1)  the  half-rays  in  the  plane  Al,  (2)  the  half-rays  on  one 
side  of  the  plane,  (3)  the  half-rays  on  the  other  side  of  the  plane. 
The  sets  (2)  and  (3)  are  formed  of  half-rays  supplementary  one  to 
the  other. 

Lemma.  With  the  above  notation,  it  is  possible  to  find  a  plane 
through  the  line  /  and  intersecting  any  finite  number  of  the  half-rays 
either  of  set  (2)  or  of  set  (3). 

For  let  «j,  ...  an  be  n  half-rays  of  one  of  the  two  sets.  Let  B±  be 
any  point  on  alt  and  £2  be  any  point  on  «2.  Then  either  the  plane 

*  Originally  suggested  by  Klein  (extending  an  earlier  suggestion  of  von  Staudt), 
Math.  Annal.  vols.  iv.  and  vi.f  1871  and  1872  ;  first  worked  out  in  detail  by  Pasch, 
loc.  cit.,  §§  6 — 9.  In  the  text  I  have  followed  very  closely  a  simplification  of  the 
argument  given  by  E.  Bonola,  Sulla  Introdvzione  degli  Enti  Improprii  in  Geometria 
Projectiva,  Griornale  di  Matematiche,  vol.  xxxvin.,  1900. 
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[CH.  II BJ  lies  between  the  planes  BJ  and  A  I,  or  the  plane  BJ  lies  between 

the  planes  BJ  and  A  I,  or  the  planes  BJ  and  BJ  are  identical.  But 
in  either  of  the  first  two  cases  the  intermediate  plane  intersects  both 

semi-rays  a^  and  a,.  Hence  a  plane  is  found  through  /,  intersecting 

both  «!  and  «2.  Call  it  the  plane  R2'l.  Again  take  any  point  Bs  on  as ; 

and  the  same  argument  shews  that  at  least  one  of  R3'l  and  B3l  inter 
sects  «!,  «2,  and  «3.  Proceeding  in  this  way,  a  plane  is  finally  found 

which  intersects  each  of  the  n  semi-rays. 

17.  Desargues'  Perspective  theorems*  can  be  enunciated  in  the 
following  modified  forms  : 

(1)  If  two  coplanar  triangles  ABC  and  A'B'C'  are  such  that  the 
lines  A  A',  BB',  CO'  are  concurrent  in  a  point  0,  then  the  three  inter 

sections  of  BC  and  B'C',  CA  and  C'A't  AB  and  A'B',  if  they  exist,  are 
collinear. 

*  Cf.  Proj.  Geom.  §  7. 
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(2)  If  the  pairs  of  homologous  sides  of  the  two  coplanar  triangles 

ABC  and  A'B'C',  namely,  BC  and  B'C',  CA  and  C'A't  AB  and  A'B\ 
intersect  in  three  collinear  points,  then  the  lines  A  A,  BB\  CC'y  if  any 
two  intersect,  are  concurrent  in  the  same  point. 

Considering  the  first  proposition  let  AB  and  A'B'  intersect  in  L, 

BC  and  B'C'  in  M,  CA  and  C'A  in  N.  Now  it  is  not  possible  both 
for  A  to  lie  on  the  segment  OA,  and  for  A  to  lie  on  the  segment  OA. 

Assume  that  A'  does  not  lie  on  the  segment  OA.  Let  R  be  any  point 
external  to  the  given  plane  (a,  say).  Now  by  the  lemma  of  §  16,  it  is 
possible  to  find  a  plane  through  LM,  lying  between  the  planes  LMR  and 
LMA  (i.e.  the  plane  a),  and  intersecting  the  three  lines  RA,  RB,  EC, 

say,  in  the  points  A",  B",  C"  (in  the  figure  C"  is  not  shewn).  Then 
evidently  A"  must  lie  in  the  segment  RA.  Hence  A' A",  since  A 
does  not  lie  in  the  segment  OA ,  must  intersect  OR  in  the  segment  OR. 

Thus  the  intersection  of  the  lines  A' A"  and  OR  is  secured.  Let  it 

be  the  point  O.  Again  the  lines  0' A  and  O'B'  are  the  projections 
from  R  on  the  plane  A'O'B'  of  the  lines  OA  and  OB'.  Now  A'B" 

passes  through  L.  Hence  B"  lies  on  the  plane  A  A'B',  i.e.  on  the 
plane  OA'B'.  Hence  B"  is  on  the  projection  of  the  line  OB'  on  the 
plane  O'A'B',  i.e.  B"  lies  on  O'B'.  Thus  B'B"  passes  through  0'. 

Reasoning  in  exactly  the  same  way  for  BC  and  B'C',  it  follows  that 

C'C"  passes  through  O.  The  same  figure  has  now  been  constructed  as 
in  the  proof  of  the  corresponding  theorem  for  Projective  Geometry*. 
Accordingly  the  theorem  follows  by  the  same  reasoning. 

In  order  to  demonstrate  the  converse  theorem,  we  proceed  exactly 
as  above,  except  that,  L,  M,  N  are  now  assumed  to  be  collinear,  0  is 

the  point  of  intersection  of  A  A'  and  BB'.  Then  the  same  construc 
tion  is  made  as  before,  and  it  is  successively  proved  by  similar  reasoning 

that  every  pair  of  the  lines  A' A",  B'B",  C'C"  intersect.  But  the  lines 
are  not  coplanar.  Hence  they  intersect  in  the  same  point  O.  But  O 

must  lie  on  RO.  Thus  CC'  passes  through  0. 

Corollary.  The  enunciation  of  the  first  theorem  can  be  modified 

by  removing  the  assumption  that  A  C  and  AC'  intersect,  but  by  adding 
the  assumption  that  A  C  intersects  LM. 

18.  A  trihedron  is  the  figure  formed  by  three  lines  concurrent 
in  the  same  point,  and  not  all  coplanar.  The  three  lines  form  the 
edges  of  the  trihedron ;  the  three  planes  containing  the  lines,  two  by 

*  Of,  Proj.  Geom.  §  7. 

w.  2 
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two,  form  the  faces  of  the  trihedron ;  the  point  of  concurrence  of  the 
three  edges  is  the  vertex  of  the  trihedron. 

It  follows  (cf.  §  6)  that,  if  two  trihedrons  have  the  same  vertex,  any 
two  faces,  one  from  each  trihedron,  must  intersect  in  a  line  through 
the  vertex ;  also  that  any  two  planes  each  containing  two  edges,  one 

edge  from  each  trihedron,  must  intersect  in  a  line  through  the  vertex. 

Desargues'  theorems  can  be  applied  to  two  trihedrons  with  the 
same  vertex ;  only  in  this  case,  as  in  Projective  Geometry,  there  are 

no  exceptional  cases  depending  on  non-intersection. 
The  enunciations  are  as  follows  : 

(1)  If  a,  b,  c  and  a,  b',  c  are  the  edges  of  two  trihedrons  with  the 

same  vertex,  such  that  the  planes  containing  a  and  a',  b  and  b',  c  and  c', 
are  concurrent  in  a  line  s  (i.e.  belong  to  the  same  sheaf),  then  the  three 

intersections  of  the  planes  be  and  b'c,  ca  and  c'a',  ab  and  a'b'  are 
coplanar. 

(2)  If  a,  b,  c  and  a',  b',  c  are  the  edges  of  two  trihedrons  with  the 
same  vertex,  such  that  the  three  intersections  of  the  planes  be  and 

b'c,  ca  and  ca',  ab   and  a'b',  are  coplanar,  then   the   three  planes 
containing  a  and  a',  b  and  b',  c  and  c  belong  to  the  same  sheaf. 

These  propositions  immediately  follow  from  the  case  of  triangles 
by  noticing  that,  by  the  lemma  of  §  16,  the  six  edges  of  the  trihedrons 
can  be  cut  by  a  plane,  not  through  the  vertex.  Hence  by  the  previous 
remarks  on  trihedrons,  Desarguesian  triangles  are  obtained  without  the 

exceptions  due  to  non-intersection. 

19.  The  two  theorems  of  the  present  and  next  articles  are  the 
central  theorems  of  the  whole  theory  of  Ideal  Points. 

If  the  lines  a,  b,  c  are  the  intersections  of  three  planes  a,  /?,  y  of  a 
sheaf  with  a  plane  TT,  not  belonging  to  the  sheaf,  and  if  0  be  any 
point  not  incident  in  TT,  then  the  three  planes  Oa,  Ob,  Oc  belong  to 
one  sheaf. 
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If  the  axis  (r)  of  the  sheaf  intersect  the  plane  TT  in  a  point  S,  then 
the  three  lines  a,  b,  c  pass  through  S,  and  the  line  OS  is  evidently 
contained  in  Oa,  Ob,  Oc,  and  thus  forms  the  axis  of  the  new  sheaf. 

Consider  now  the  case  when  the  axis  (r)  of  the  sheaf  does  not 
intersect  it.  Then  a,  b,  c  are  not  concurrent,  and  no  two  of  them 

intersect.  Hence  one  of  the  three  (b,  say)  must  lie  between  [i.e.  any 
segment,  joining  a  point  on  a  and  a  point  on  c,  intersects  b]  the  other 
two.  Take  any  two  points  L  and  N  on  a  and  c  respectively,  then  the 
segment  LN  intersects  b  in  a  point  M.  Take  two  other  points  P  and 
Q  on  LN  so  that  we  have  the  order  P,  L,  M,  N,  Q.  Take  any  point 
D  on  c ;  then  the  segment  PD  must  intersect  a  and  b  in  two  points 
A  and  B  respectively;  and  the  segment  AQ  must  intersect  the 
segment  DN  in  a  point  C.  Then  the  line  BC  must  intersect  the 
segment  NQ  in  a  point  R.  Thus  a  triangle  ABC  has  been  formed, 
whose  vertices  lie  on  a,  b,  c,  and  whose  sides  AB,  AC,  BC  pass 
through  P,  Q,  R  respectively. 

By  taking  another  point  D'  on  c,  another  triangle  A'B'C'  can  be 
similarly  formed,  whose  vertices  lie  on  a,  b,  c,  and  whose  sides  A'B' 

and  AC'  pass  through  P  and  Q  respectively. 
We  have  first  to  shew  that  B  C'  passes  through  R.  For  taking 

any  point  T  on  the  axis  (r}  of  the  sheaf,  the  lines  TA,TB,  TC  form 

the  edges  of  one  trihedron,  and  the  lines  TA',  TB',  TC'  form  the 
edges  of  another  trihedron  with  the  same  vertex. 

Also  the  planes  TAA,  TBB',  TCC'  belong  to  the  same  sheaf. 
Hence  the  three  intersections  of  the  pairs  of  planes  TAB  and  TAB', 
TAG  and  TAG',  TBC  and  TB'C'  are  coplanar ;  hence  they  lie  in 
the  plane  TPQ.  Hence  B'C'  passes  through  R. 

Now  considering  the  two  trihedrons  with  edges  OA,  OB,  OC,  and 

OA,  OB',  OC',  the  intersections  of  the  pairs  effaces  OAB  and  OA'B', 
OAC  and  OAC',  OBC  and  OB'C',  are  respectively  OP,  OQ,  OR', 
and  these  are  coplanar.  Hence  by  the  converse  part  of  Desargues' 
theorem  for  trihedrons,  the  planes  OAA,  OBB',  OCC'  belong  to  the 
same  sheaf.  Hence  Oa,  Ob,  Oc  belong  to  the  same  sheaf  (i.e.  have 
a  common  line  of  intersection). 

20.  If  any  two  of  the  lines  a,  b,  c  are  coplanar,  but  the  three 
lines  are  not  coplanar,  and  similarly  for  the  lines  a,  b,  d,  then  c  and  d 
are  coplanar. 

If  a  and  b  intersect,  the  theorem  is  evident ;  for  a,  b,  c  are  con 
current,  and  a,  b,  d  are  concurrent.  Hence  c  and  d  are  concurrent. 
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Assume  that  a  and  b  do  not  intersect.  Then  it  is  easy  to  prove 

that  no  two  of  the  lines  intersect.  It  follows  that  no  one  of  the  lines 

c,  b,  d  can  intersect  any  of  the  planes  ab,  ac,  ad  in  which  it  does 
not  lie. 

Fig.  i. 

Fig.  2. 
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Hence  it  follows  that  either  c  and  d  lie  on  opposite  sides  of  the 
plane  ab,  or  d  and  b  on  opposite  sides  of  the  plane  ac,  or  b  and  c  on 
opposite  sides  of  the  plane  ad. 

First,  let  c  and  d  lie  on  opposite  sides  of  the  plane  ab  (cf.  fig.  1). 
Take  any  point  C  on  c.  Then  the  plane  Cd  must  intersect  the  plane 

ab  in  a  line,  d',  say.  Then  the  lines  a,  b,  d'  are  the  intersections  of 
the  three  planes  da,  db,  d  C  with  the  plane  ab  ;  and  these  three  planes 
belong  to  the  same  sheaf.  Hence  (cf.  §  19)  the  three  planes  through 

the  lines  a,  b,  d'  respectively  and  through  any  point  not  on  ab  belong 
to  the  same  sheaf.  But  C  is  such  a  point.  Hence  the  planes  Ca, 

Cb,  Cd'  belong  to  the  same  sheaf.  But  c  is  the  common  line  of  Ca 
and  Cb.  Hence  Cd '  contains  the  line  c.  Hence  c  and  d  are  coplanar. 

Secondly,  let  the  plane  ad  lie  between  b  and  c.  Then  the  plane  be 

must  intersect  the  plane  ad  in  some  line,  d'  say.  Thus  the  three  lines 
b,  d',  c  are  the  intersections  of  the  three  planes  ab,  ad,  ac  with  the 
plane  be.  These  three  planes  belong  to  the  same  sheaf.  Hence 

(cf.  §  19),  if  D  is  any  point  on  d,  not  on  be,  the  planes  Db,  DC,  Dd' 
belong  to  the  same  sheaf.  But  Db  and  Dd'  intersect  in  the  line  d  • 
hence  DC  passes  through  the  line  d.  Thus  c  and  d  are  coplanar. 

Thirdly,  let  the  plane  ac  lie  between  b  and  d.  Then  the  proof  is 
as  in  the  second  case,  interchanging  c  and  d. 



CHAPTER   III. 

IDEAL   POINTS. 

21.  Definition.  An  'Associated*  Projective  Point/  or  an  'Ideal 

Point,'  is  the  class  of  lines  which  is  composed  of  two  coplariar  lines, 
a  and  b,  say,  and  of  the  lines  formed  by  the  intersections  of  pairs 
of  distinct  planes  through  a  and  b  respectively,  and  of  the  lines  in  the 
plane  ab  which  are  coplanar  with  any  of  the  lines  of  the  protective 
point  not  lying  in  the  plane  ab. 

It  follows  immediately  from  §  20  that  the  lines  forming  a  projective 
point  are  two  by  two  coplanar ;  and  further  that  (with  the  notation 
of  the  definition)  the  lines  of  the  projective  point  lying  in  the  plane 
ab  are  the  lines  in  ab  coplanar  with  any  one  of  the  lines  of  the 
projective  point  not  lying  in  ab. 

Definition.  A  projective  point  is  termed  'proper,'  if  the  lines 
composing  it  intersect.  Their  point  of  intersection  will  be  called  the 

'  vertex '  of  the  point. 
Thus  a  proper  projective  point  is  simply  a  bundle  of  lines,  and 

every  bundle  is  a  proper  projective  point. 

Definition.  A  projective  point  is  termed  'improper,'  if  the  lines 
composing  it  do  not  intersect. 

It  is  proved  (cf.  §§  24—30)  that  Projective  Geometry  holds  good  of 
projective  points  as  thus  defined,  when  a  fitting  definition  has  been 

given  of  a  'projective  line.' 

Definition.  A  projective  point  will  be  said  to  be  '  coherent  with ' 
a  plane,  if  any  of  the  lines  composing  it  lie  in  the  plane. 

Definition.  A  'projective  line'  is  the  class  of  those  projective 
points  which  are  coherent  with  two  given  planes.  If  the  planes 

*  The  word  'Associated  '  will  usually  be  omitted. 
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intersect,  the  projective  line  is  called  'proper' ;  and  the  line  of  inter 
section  is  the  'axis.'  If  the  planes  do  not  intersect,  the  projective 
line  is  called  'improper.' 

Since  Projective  Geometry  has  been  developed*  from  the  two 

fundamental  ideas  of  'point'  and  'straight  line,'  the  other  definitions 
of  projective  elements  must  simply  be  those  which  have  been  given 
in  considering  Projective  Geometry.  Thust  a  projective  plane  is  the 
class  of  those  projective  (ideal)  points,  which  lie  on  any  projective 
line  joining  any  given  projective  point  A  to  any  projective  point  on 
any  given  projective  line  not  possessing  the  given  projective  point  A. 

Definition.  If  a  projective  plane  possesses  any  proper  projective 

points,  it  will  be  called  a  'proper  projective  plane/  Otherwise  it  is  an 
'improper  projective  plane.' 

The  vertices  of  all  the  proper  projective  points  on  a  proper  pro 

jective  plane  will  be  seen  to  form  a  plane  (cf.  §  26  (a)). 

Definition.  A  proper  projective  point  and  its  vertex  are  said  to  be 

'associated,'  so  likewise  are  a  proper  projective  line  and  its  axis,  and 
also  a  proper  projective  plane  and  the  plane  constituted  by  the  vertices 
of  its  proper  projective  points. 

22.  Since   any   two   lines   belonging  to   a  projective   point   are 
coplanar,  it  easily  follows  that  any  two  lines  of  the  projective  point 
can  be  used  in  place  of  the  two  special  lines  (a  and  b}  used  in  the 
definition  (cf.  §  21).     Hence  it  can  easily  be  proved  that  any  plane, 
containing  one  line  of  a  projective  point,  contains  an  infinite  number 
of  such  lines.     In  other  words,  if  a  projective  point  is  coherent  with 
a  plane,  an  infinite  number  of  the  lines  of  the  projective  point  lie 
in  the  plane.     In  fact  it  follows  that,  through  each  point  of  the  plane, 
one  line  passes  which  belongs  to  the  projective  point. 

23.  If  three  projective  points  are  incident  in  the  same  projective 
line,  then  with  any  plane,  with  which  two  of  the  projective  points 
cohere,  the  third  projective  point  also  coheres. 

First,  if  the  three  projective  points  are  proper,  the  theorem  is 
immediately  evident. 

Secondly,  let  two  of  the  projective  points,  M  and  Nt  say,  be 
proper,  and  let  the  third  projective  point,  L,  say,  be  improper.  Let 

*  Cf.  Proj.  Geom.  t  Cf.  Proj.  Geom.  §  4. 
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TT  and  TT'  (cf.  Definition  of  §  21).  Then  the  three  projective  points  cohere 
with  TT  and  TT'.  Let  TT"  be  any  third  plane  with  which  two  of  the  three, 

Fig.  1. 

L,  M,  and  Nt  cohere.  Let  MI  and  NI  be  the  vertices  of  the  proper 

points,  M  and  N.  Then  M^N-i  is  a  line  in  the  plane  TT  (cf.  fig.*  1) ; 
also  the  line  M^N^  belongs  to  L.  Again  (cf.  §  22)  another  line  r 

exists  in  TT  belonging  to  L  •  and  Ml  and  NI  must  lie  on  the  same 

side  of  r.  Let  r'  be  any  line  in  TT  belonging  to  L,  and  on  the  opposite 
side  of  the  line  r  to  Ml  and  NI  ;  such  a  line  exists  (cf.  §  22).  Let  0 

be  any  point  of  -n-  on  the  side  of  r  remote  from  MI  and  ̂ V^.  Then 

the  segment  OM\  intersects  r  and  r',  in  A  and  A',  say ;  and  the 
*  Note  in  drawing  an  illustrative  figure,  it  is  convenient  to  make  the  assump 

tion  of  §  12,  and  to  consider  Descriptive  space  as  a  convex  region  in  a  larger 
Projective  Space.  This  region  is  marked  off  by  an  oval  curve  in  the  figure,  and  an 
ideal  point,  such  as  L,  is  a  point  outside  the  oval.  Note  that  the  existence  of  L, 

as  an  analogous  entity  to  Ifj  and  Nlt  must  not  be  assumed  in  the  present 
reasoning. 
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segment  ON^  intersects  r  and  r',  in  B  and  B',  say.  The  segments 
ANT  and  SMl  intersect,  in  C,  say;  the  segments  B'Ml  and  A'N± 
intersect,  in  C',  say.  Now  project  from  any  point  0'  in  -n-',  and  two 

trihedrons  are  formed,  namely  O'A,  OB,  O'C,  and  0'A'y  OB',  O'C', 
with  the  same  vertex  0'.  Also  the  homologous  faces  intersect  in  the 

three  coplanar  lines  O'L,  OM^  O'N^.  Hence  the  three  planes  O'A  A', 
O'BB',  O'CC'  are  concurrent  in  a  line.  Hence  the  plane  O'CC'  con 
tains  the  line  O'O.  Therefore  CC'  passes  through  0.  Again  project 

from  any  point  0"  in  TT"  ,  and  consider  the  trihedrons  0"A,  0" B,  0"C, 
and  O'A',  0"ff,  O'C'.  Then  the  planes  O'A  A!,  O'BB',  0"CC'  are 
concurrent  in  the  same  line  O'O.  Thus  the  three  lines  O'L,  0"M^ 

O"N!  are  coplanar.  Hence  if  two  of  them  lie  in  IT",  the  third  must  do 
so  also.  Hence  if  two  of  L,  M,  N  cohere  with  TT",  the  third  also 
does  so. 

Fig.  2. 

Thirdly,  let  either  two  or  three  of  L,  M,  N  be  improper.     Thus 
let  L  and  M  be  certainly  improper  (cf.  figs.  2  and  3).     In  the  plane  IT 
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form  a  triangle  ABC,  such  that  its  sides  AS,  BC,  CA  belong  to 
L,  M,  N  respectively.  Thus  if  N  is  a  proper  point,  CA  passes 
through  N,,  the  vertex  of  N:  also  since  the  lines  BC  and  AB  do  not 
intersect  the  line  N^ML,  the  points  A,  B,  C  lie  on  the  same  side 
of  this  line  (cf.  fig.  2) :  also  since  the  lines  BC  and  BA  do  not 
intersect  the  line  N,ML,  either  C  lies  on  the  same  side  of  the  line  AB 
as  Nlt  or  A  lies  on  the  same  side  of  the  line  BC  as  Nlm  Assume  that 

C  lies  on  the  same  side  of  AB  as  Nl  (cf.  fig.  2).  The  rest  of  the  proof 
for  figures  2  and  3  is  now  identical.  In  the  plane  TT,  let  r  be  any  line 

Fig.  3. 

belonging  to  L,  on  the  side  of  AB  remote  from  C.  In  the  plane  TT, 
take  any  point  0  on  the  side  of  r  remote  from  C.  Then  the  segments 

OA  and  OB  intersect  r,  say  in  A'  and  B'.  Also  the  line  A'N 
intersects  the  segment  OA,  and  does  not  intersect  the  segment  AC ; 

hence  it  must  intersect  the  segment  OC,  say  in  C'.  Then,  by  pro 
jecting  from  any  point  O  in  the  plane  TT'  and  by  similar  reasoning 
to  that  in  the  second  case,  it  is  proved  that  the  line  B'C'  belongs 
to  M.  Then,  as  in  the  second  case,  by  projecting  from  any  point 

0"  in  TT",  it  follows  that,  if  any  two  of  the  projective  points  L,  M,  N 
cohere  with  TT",  so  also  does  the  third. 

24.     (a)    It  follows  from  §  23  that  any  two  planes,  with  which 
both  of  two  given  projective  points  cohere,  define  the  same  projective 
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line  as  any  other  pair  of  such  planes.     Hence  two  projective  points 
determine  not  more  than  one  projective  line. 

(/?)  Two  projective  points  determine  at  least  one  projective  line. 
For  if  the  points  are  proper,  this  is  immediately  evident.  But  in  any 
case  let  the  projective  points  be  A.  and  B,  and  let  0  be  any  point. 
There  are  at  least  two  lines,  a±  and  «,,  which  are  members  of  A  and 

such  that  the  plane  a^a2  does  not  contain  0.  Then  the  planes  Oa-^ 
and  0«2  intersect  in  a  line  which  passes  through  0  and  is  a  member  of 
A.  Hence  through  any  point  there  passes  a  line  which  is  a  member  of 
a  projective  point.  Hence  through  0  there  are  lines  belonging  to  A 
and  B  respectively.  But  these  lines  determine  a  plane,  with  which  A 
and  B  both  cohere.  Similarly  a  second  such  plane  can  be  determined. 
Hence  there  is  a  projective  line  possessing  both  A  and  B. 

25.  The  Axioms  of  Projective  Geometry*  can  now  be  seen  to  be 

true  for  the  '  Projective  Elements '  as  thus  defined.     Thus  we  have  the 
following  theorems  corresponding  to  those  axioms  of  the  previous  tract, 
of  which  the  numbers  are  enumerated  in  the  initial  brackets. 

(I,  II,  III.)  There  is  a  class  of  Projective  Points,  possessing  at 
least  two  members. 

(IV,  V,  VI,  VII,  VIII.)  If  A  and  B  are  Projective  Points,  there 
is  a  definite  projective  line  AB,  which  (1)  is  a  class  of  projective 
points,  and  (2)  is  the  same  as  the  projective  line  BA,  and  (3)  possesses 
A  and  B,  and  (4)  possesses  at  least  one  projective  point  distinct  from 
A  and  B. 

Note  that  two  improper  projective  points  may  possess  no  common 
line. 

(IX  and  X.)  If  A  and  B  are  projective  points,  and  C  is  a  pro 
jective  point  belonging  to  the  projective  line  AB,  and  is  not  identical 
with  A,  then  (1)  B  belongs  to  the  projective  line  AC,  and  (2)  the 
projective  line  A  C  is  contained  in  the  projective  line  AB. 

(XL)  If  A  and  B  are  distinct  projective  points,  there  exists 
at  least  one  projective  point  not  belonging  to  the  projective  line  AB. 

26.  Before  considering  the  proof  of  the  '  axioms '  of  the  projective 
plane  t,  some  further  propositions  are  required. 

(a)  Since  a  line  exists  through  any  given  point  and  belonging 
to  any  given  projective  point,  it  easily  follows  that  the  set  of  projective 

*  Cf.  Proj.  Geom.  §§  4,  7,  8,  14. 
f  Cf.  Proj.  Geom.,  Axioms  XII,  XIII,  XIV. 
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points  cohering  with  a  plane  form  a  proper  projective  plane  ;  and  that 
conversely,  any  proper  projective  plane  is  the  set  of  projective  points 
cohering  with  some  plane. 

(ft)  Any  projective  line  intersects  any  given  proper  projective 
plane.  For  through  the  vertex  of  any  proper  projective  point  on  the 
projective  plane,  a  plane  passes  with  which  every  point  of  the 
projective  line  coheres  (cf.  §  23).  This  plane  intersects  the  plane 
associated  with  the  projective  plane  in  a  line.  Two  such  planes  can 
be  found.  The  two  lines  in  the  plane  associated  with  the  projective 
plane  define  a  projective  point  which  lies  both  in  the  projective  line 
and  the  projective  plane. 

(y)  Two  projective  lines  in  a  proper  projective  plane  necessarily 
intersect. 

For  let  m  and  n  be  the  projective  lines  and  a  be  the  proper 
projective  plane,  and  ax  its  associated  plane.  Take  any  point  0 
outside  ttj.  Then  two  planes  Om  and  On  exist,  with  which  re 
spectively  all  projective  points  of  m  and  n  cohere.  These  planes 
intersect  in  a  line  through  0,  I,  say.  Let  A  be  any  point  in  ax. 

The  plane  A I  intersects  %  in  a  line,  /',  say.  The  two  lines  /  and  /' 
define  a  projective  point  which  lies  in  both  the  projective  lines  m 
and  n. 

(8)  Desargues'  Theorem  holds  for  triangles  formed  by  projective 
lines  and  projective  points  in  a  proper  projective  plane. 

By  (y)  immediately  above,  no  exception  arises  from  non-intersec 
tion.  Then  by  taking  a  point  external  to  the  associated  plane,  two 
trihedrons  can  be  formed  for  which  the  theorem  holds.  Hence  the 

theorem  holds  for  the  proper  projective  plane. 
(e)  The  projections  upon  a  proper  projective  plane  of  three 

projective  points  belonging  to  the  same  projective  line  also  belong  to 
a  projective  line. 

The  theorem  is  immediately  evident,  if  the  centre  of  projection, 
or  if  any  one  of  the  three  projective  points,  is  proper.  Assume  that 
all  the  projective  points  are  improper.  Let  L,  M,  N  be  the  three  pro 
jective  points,  and  S  the  projective  point  which  is  the  centre  of 
projection.  Let  IT  be  the  proper  projective  plane  on  to  which  L,  M,  N 
are  to  be  projected.  Let  a  be  any  plane  with  which  L,  M,  N  all 
cohere.  On  a  construct  figure  3  of  §  23.  Project  (remembering  (ft) 
above)  the  whole  figure  of  associated  projective  points  from  S  on  to  the 
plane  TT.  Then  by  the  first  case  of  the  present  theorem,  all  collinear 
groups  of  projective  points  which  possess  a  proper  projective  point  are 
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projected  into  collinear  groups.     Let  A,  B,...M,  N  be  projected 
into  Alt  J$lt  ...  Mlt  N!. 

Thus,  in  the  plane  TT,  two  homological  triangles  A&Ci  and 

AiBi'Ci  are  obtained,  J-i^-/,  ̂ A',  CW  being  concurrent  in  Oi ; 
also  B^A  1  and  B-fA^  B&  and  Bi'Ci,  J-i^i  and  ̂ 4/07  are  concurrent 
respectively  in  L1}  Ml}  Nlt  Hence,  by  (3)  above,  A>  -3/n  ̂ Vi  belong 
to  the  same  projective  line. 

27.  The  next  group  of  propositions  correspond  to  the  three  axioms 
concerning  the  projective  plane. 

(XII.)  If  At  B,  C  are  three  projective  points,  which  do  not 

belong  to  the  same  projective  line,  and  A'  belongs  to  the  projective 
line  SC,  and  B'  to  the  projective  line  CA,  then  the  projective  lines 
A  A'  and  BB'  possess  a  projective  point  in  common. 

If  the  projective  plane  ABC  is  proper,  the  theorem  follows  from 
§  26  (y).  If  the  projective  plane  ABC  is  improper,  consider  any  plane 

with  which  all  the  projective  points  of  the  projective  line  BB'  cohere. 

Such  planes  exist.  Thus  the  associated  projective  plane  of  such  a 

plane  is  a  proper  projective  plane  containing  the  line  BB'.  But  by 
§  26  (/?)  the  projective  line  A  A'  intersects  this  proper  projective  plane, 
in  the  projective  point  D,  say.  Also  by  §  26  (e)  the  projections  of 
B,  A,  C  from  A  on  to  this  proper  projective  plane  belong  to  the 

same  projective  line.  Hence  D  belongs  to  BB'.  Thus  A  A'  and  BB' intersect. 

(XIII.)  If  A,  B,  C  are  three  projective  points,  not  belonging  to 
the  same  projective  line,  then  there  exists  a  projective  point  not 
belonging  to  the  projective  plane  ABC. 

This  follows  immediately  from  Peano's  Axiom  XV  given  in  §  6 
above. 
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28.     The  theory  of  Harmonic  Ranges  must  now  be  considered. 
Let  A,  B  be  any  two  points,  C a  point  in  the  segment  AB.  Take 

F  any  point  outside  the  line  AB,  and  H  any  point  on  the  segment 
FC,  and  let  EG  be  as  in  figure  1.  Then  the  point  D,  if  it  exist,  is 

the  harmonic  conjugate  of  C  with  respect  to  A  and  B.  By  considering 
the  associated  projective  points  and  the  associated  projective  lines,  the 
requisite  harmonic  conjugate  (as  a  projective  point)  always  exists. 
Thus,  on  the  basis  of  the  axioms  of  Projective  Geometry  already 
proved,  the  proof  for  the  uniqueness  of  the  harmonic  conjugate  in  the 
associated  projective  geometry  holds  good*.  Thus  in  the  original 
Descriptive  Geometry,  the  harmonic  conjugate,  if  it  exist,  is  unique. 

Furthermore,  since  H  is  on  the  segment  FC,  E  and  G  are  re 
spectively  on  the  segments  AF  &nd  FB.  Hence  D,  if  it  exist,  cannot 
lie  on  the  segment  AB.  Conversely,  if  D  is  any  point  on  the  line  A  B, 
say  on  the  side  of  B  remote  from  A,  take  E  any  point  on  the  segment 
AF,  then  DE  must  intersect  the  segment  BF.  Hence  AG  and  BE 
must  intersect  in  H,  on  the  segments  AG  and  BE.  Therefore  FH 
intersects  the  segment  A  B.  Thus  the  harmonic  conjugate  with  respect 
to  A  and  B  of  any  point  on  the  line  AB,  not  on  the  segment  AB, 
must  exist,  and  lies  on  the  segment  AB. 

Furthermore,  if  D  lies  on  the  side  of  B  remote  from  A,  and  C' 
lies  on  the  segment  BC,  let  FC'  and  EB  intersect  in  H' \  and  AH' 
intersect  the  segment  FB  in  G'.  Then  since  C'  lies  in  the  segment 
BC,  H'  lies  in  the  segment  BH,  and  G'  lies  in  the  segment  BG. 
Hence  D'  exists  and  lies  in  the  segment  BD.  Thus  as  C  moves towards  B,  D  also  moves  in  the  opposite  direction  towards  Bj. 

*  Cf.  Proj.  Geom.  §§  6  and  7.  f  Cf.  Proj.  Geom.  §  17  (£). 
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Hence  it  is  easily  seen  that  the  segment  AB  is  divided  into  three 
parts  by  reference  to  the  harmonic  conjugates  of  points  in  it  with 
respect  to  A  and  B.  The  part  formed  by  the  segment  AK^  (cf.  fig.  2), 

Fig.  2. 

exclusive  of  A  and  K^  contains  the  points  whose  harmonic  conjugates 
lie  on  the  side  of  A  remote  from  B ;  the  segment  BK^  exclusive  of 
B  and  K2,  contains  the  points  whose  harmonic  conjugates  lie  on  the 
side  of  B  remote  from  A  ;  the  segment  K^K^,  inclusive  of  KI  and  JT2, 
contains  the  points  for  which  the  harmonic  conjugates  do  not  exist. 
It  is  not  necessary  that  the  points  K±  and  K2  be  distinct.  If  they 
coincide,  the  segment  K±K»,  inclusive  of  K^  and  K^  shrinks  into  a 
single  point  K.  Thus  in  Euclidean  Geometry  the  middle  point  of  any 
segment  AB  is  this  degenerate  portion  of  the  segment. 

It  immediately  follows  that  Fano's  axiom*  is  satisfied  for  proper 
projective  lines.  Hence,  remembering  that  the  harmonic  relation  is 
projectivet,  we  have : 

(XIV.)  If  A  and  B  are  distinct  projective  points,  and  G  is  a 
projective  point  of  the  projective  line  AB,  distinct  from  A  and  B, 
then  the  harmonic  conjugate  of  (7,  with  respect  to  A  and  B,  is 
distinct  from  C. 

Also  the  restriction  to  three  dimensions  follows  at  once  from 

Peano's  Axiom  XVI  of  §  6,  giving  the  same  restriction  for  Descriptive 
Geometry.  Hence  we  find  : 

(XV.)  If  a  be  any  projective  plane,  and  A  be  any  projective  point 
not  lying  in  a,  any  projective  point  P  lies  on  some  line  joining  A  to 
some  projective  point  on  a. 

29.  The  order  of  the  projective  points  on  a  projective  line  must 
now  be  considered. 

If  the  projective  line  is  proper,  the  order  of  the  proper  projective 
points  on  it  will  be  defined  to  correspond  to  the  order  of  the  associated 
points.  Thus  (cf.  fig.  2  of  §  28)  if  the  points  marked  in  the  figure  are 
projective  points,  as  C  moves  from  A  to  K^  excluding  K^,  the  projec 

tive  point  Z>,  which  is  the  harmonic  conjugate  to  (7  with  respect  to  A 
and  B,  moves  from  C  through  all  the  proper  projective  points  on  the 

*  Cf.  Proj.  Geom.  §  8.  f  Cf.  Proj.  Geom.  §  9  (5). 
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side  of  A  remote  from  B ;  and  as  0  moves  from  K^  excluding  K2) 
to  B,  D  moves  towards  B  through  all  the  proper  projective  points 
on  the  side  of  B  remote  from  A. 

Now  let  the  order  of  the  improper  projective  points  be  denned  so 
as  to  make  the  above  theorem  hold  generally  :  thus  as  C  moves  from 

KI  to  K^  including  KI  and  K2,  let  the  order  of  the  improper 
projective  points  through  which  D  moves  be  such  that  D  passes 
continually  in  the  same  direction  round  the  line  from  the  proper 
projective  points  on  the  side  of  A  remote  from  B  to  the  proper 
projective  points  on  the  side  of  B  remote  from  A. 

Then  by  theorem  (a)  of  §  17  of  the  Tract  on  Projective  Geometry, 
the  order  as  thus  denned  agrees  with  the  order  as  defined  in  §§14 
and  15  of  that  Tract.  Also  the  order  on  the  improper  projective 
lines  is  obtained  from  the  order  on  the  proper  projective  lines  by 
projection.  Since  the  harmonic  property  is  projective,  the  orders 

obtained  thus  by  different  projections  must  agree.  Also  from  Peano's 
axioms  of  the  segments  of  the  Descriptive  line  given  in  §  3  above, 

it  follows  that  the  Projective  axioms  of  order*  are  satisfied,  namely  : 
(XVI.)     If  A,  B,  C  are  distinct  projective  points  on  the  same 

projective  line,  and  D  is  a  projective  point  on  segm  (ABC)^}  not 
identical  either  with  A  or  C,  then  D  belongs  to  segm  (BCA). 

(XVII.)  If  A,  B,  C  are  distinct  projective  points  on  the  same 
projective  line,  and  D  is  a  projective  point  belonging  to  both 
segm  (BCA)  and  segm  (CAB},  then  D  cannot  belong  to  segm  (ABO). 

(XVIII.)  If  A,  B,  C  are  distinct  projective  points  on  the  same 
projective  line,  and  D  is  a  projective  point,  distinct  from  B,  and 
belonging  to  segm  (ABC)  [which  excludes  A  and  C],  and  E  belongs 
to  aogm(ADC)t  then  E  belongs  to  segm  (ABC). 

30.  Finally,  the  Dedekind  property  J  for  the  projective  line 
follows  immediately  from  its  assumption  for  Descriptive  Geometry 
(cf.  §  9  above). 

Thus  all  the  axioms  for  Projective  Geometry,  including  the  axioms 
of  order  and  the  Dedekind  property,  are  satisfied  by  the  Projective 
Points  and  the  Projective  Lines.  Furthermore  the  proper  projective 
points  evidently  form  a  convex  region  in  the  projective  space  formed 
by  the  projective  points.  Also  the  geometry  of  this  convex  region  of 

*  Cf.  Proj.  Geom.  §  14. 
f  i.e.  on  the  segment  between  A  and  C  not  possessing  £,  cf.  Proj.  Geom.  §  13. 

+  Cf.  Proj.  Geom.  §  19  (a). 
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proper  projective  points  corresponds  step  by  step  with  the  geometry  of 
the  original  descriptive  space.  Thus  the  geometry  of  descriptive  space 
can  always  be  investigated  by  considering  it  as  a  convex  region  in  a 
projective  space.  This  simply  amounts  to  considering  the  associated 
proper  projective  points  and  adding  thereto  the  improper  projective 
points.  A  particular  case  arises  when  the  Euclidean  axiom  (cf.  §  10, 
above)  is  assumed.  The  improper  projective  points  then  lie  on  a  single 
improper  projective  plane.  Thus  in  Euclidean  Geometry  when  the 

'plane  at  infinity '  is  considered,  the  associated  projective  geometry  has 
been  introduced,  and  this  plane  is  the  single  improper  projective  plane. 



CHAPTER  IV. 

GENERAL  THEORY  OF  CORRESPONDENCE. 

31.  IN  this  chapter  the  general  ideas  of  Correspondences,  or 
Transformations,  and  of  groups  of  transformations  are  explained,  and 
thus  the  idea  of  continuous  motion  is  led  up  to. 

Consider  any  proposition  respecting  two  entities  p  and  q  ;  let  it  be 

denoted  by  <j>(p,  q).  The  proposition  may  be  varied  by  replacing 

p  and  q  by  two  other-  entities,  say  u  and  v,  so  that  the  new  proposition 
is  <f>  (u,  v).  Thus  we  arrive  at  the  notion  of  a  constant  form  common 
to  all  the  propositions  of  the  type  <j>  (at,  y\  where  x  and  y  are  any  two 
entities  such  that  a  significant  proposition  results  when  x  and  y  replace 
p  and  q  in  <£  (p,  q).  Note  that  a  false  proposition  is  significant ;  an 
insignificant  proposition  is  not  in  truth  a  proposition  at  all,  it  is  a 

sequence  of  ideas  lacking  the  type  of  unity  proper  to  a  proposition. 
The  constant  form  of  the  proposition  <j>  (x,  y\  as  x  and  y  vary,  may 

be  said  to  constitute  a  relation  between  x  and  y,  in  those  special  cases 

for  which  <£  (a,  y)  is  a  true  proposition.  The  order  of  x  and  y  in 
respect  to  this  relation  represents  the  special  roles  of  x  and  y 
respectively  in  the  proposition  <£  (x,  y}.  Thus  if  this  relation  is  called 

JR,  ( x  has  the  relation  R  to  ?/,'  or  more  briefly  xRy,  is  equivalent  to 
the  proposition  <j>  (x,  y),  however  x  and  y  be  varied.  It  is  evident  that 
we  might  have  considered  the  relation  indicated  by  the  proposition  in 

such  form  that,  if  it  be  denoted  by  R,  yE'x  represents  <j>  (#,  y).  Then 
R  and  R'  are  called  mutually  converse  relations.  It  is  evident  that 
each  relation  has  one  and  only  one  corresponding  converse  relation. 

When  xRy  holds,  x  is  called  the  referent  and  y  the  relatum.  A 
relation  is  said  to  be  a  one-one  relation  when  to  each  referent  there  is 
only  one  relatum,  and  to  each  relatum  there  is  only  one  referent.  For 
example,  if  aRb  and  aRc  both  hold,  where  b  and  c  are  distinct  entities, 
then  the  relation  R  is  not  one-one. 
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The  class  of  all  the  referents  in  respect  to  a  relation  is  called  the 
domain  of  the  relation,  and  the  class  of  all  relata  is  the  converse 

domain.  In  mathematics  a  one-one  relation  is  often  spoken  of  as  a  trans 
formation  (or  correspondence)  of  the  members  of  its  domain  into  (or 
with)  the  corresponding  members  of  the  converse  domain.  The  corre 
spondence  is  definite  and  reversible,  and  constitutes  a  rule  by  which 
we  can  pass  from  any  member  of  one  class  to  a  corresponding  definite 
member  of  the  other  class. 

For  example,  the  equation, 

2a;  +  3y  =  4," 
constitutes  a  one-one  relation  of  all  real  numbers,  positive  or  negative, 
to  the  same  class  of  real  numbers.  This  brings  out  the  fact  that  the 
domain  and  the  converse  domain  can  be  identical. 

Again,  a  projective  relation  between  all  the  points  on  one  line  of 

projective  space  and  all  the  points  on  another  (or  the  same)  line- 
constitutes  a  one-one  relation,  or  transformation,  or  correspondence, 
between  the  points  of  the  two  lines.  Any  one-one  relation  of  which 
both  the  domain  and  the  converse  domain  are  each  of  them  all  the 

points  of  a  projective  space  will  be  called  a  one-one  point  corre 
spondence. 

32.  By  reasoning*  based  upon  the  axioms  of  Projective  Geometry, 
without  reference  to  any  idea  of  distance  or  of  congruence,  coordinates 
can  be  introduced,  so  that  the  ratios  of  four  coordinates  characterize 

each  point,  and  the  equation  of  a  plane  is  a  homogeneous  equation  of 
the  first  degree.  Let  X,  F,  Z,  U  be  the  four  coordinates  of  any 

point ;  then  it  will  be  more  convenient  for  us  to  work  with  non- 
homogeneous  coordinates  found  by  putting  x  for  XjU,  y  for  Y/17, 
z  for  Zl  U.  Accordingly  the  actual  values  of  as,  y,  z  are,  as  usual,  the 
coordinates  characterizing  a  point.  All  points  can  thus  be  represented 

by  finite  values  of  #,  y,  z,  except  points  on  the  plane,  U=  0.  For  these 
points  some  or  all  of  a?,  y,  and  z  are  infinite.  In  order  to  deal  with 
this  plane  either  recourse  must  be  had  to  the  original  homogeneous 
coordinates,  or  the  limiting  values  of  x  to  y  to  z  must  be  considered  as 
they  become  infinite. 

The  plane,  x  =  0,  is  called  the  yz  plane,  the  line,  y  -  0,  z  -  0,  is 
called  the  axis  of  x,  and  the  plane,  U=0,  is  called  the  infinite 

plane. 

*  Cf.  Proj.  Geora.  chs.  vi.  and  vn. 

3—2 
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When  the  fundamental  tetrahedron  is  changed,  the  coordinates  are 
changed  according  to  the  formula 

l3Z  +  au  U}, 
Z+a-a,  17}, 

Z  =<r  {flfo  JT+  a32  F+  a33  Z  +  au  U}, 

Uf  =  <r{ai  X+a2  Y+a3  Z+a,  U}. 
Hence  the  non-homogeneous  coordinates  are  transformed  by  the formula 

x'  =  (aux  +  al2y  +  alsz  +  a14)/(«!#  +  a2y  +  a3z  +  a4), 
y'  =  (a^x  +  a^y  +  a23z  +  a24)/(a^  +  a2y  +  asz  +  «4), 
z  =  (a3lx  +  a32y  +  a33z  +  a^)l(a^x  +  a2y  +  asz  +  «4). 

But  if  the  infinite  plane  is  the  same  in  both  cases,  the  formula  for 
transformation  becomes 

x  =  a^x  +  al2y  +  al3z  +  au, 

with  two  similar  equations. 

33.  A  one-one  point  correspondence  can  be  characterized  by 
formulae  giving  the  coordinates  of  any  relatum  in  terms  of  those  of 
the  corresponding  referent.  It  must  be  remembered  that  every  point 
is  both  a  relatum  and  a  referent.  Let  the  correspondence  under 
consideration  be  called  T,  then  the  coordinates  of  the  relatum  of  any 
point  x,  y,  z  will  be  written  Tx,  Ty,  Tz.  Thus  we  have, 

Tx  =  &  O,  y,  z\  Ty  -  <£2  (#,  y,  z\  Tz  =  <£3  (>,  y,  z), 
where  the  functions  &,  <f>2,  <f>3  are  defined  for  every  point  of  space  and 
are  single-valued.     Furthermore,  since  the  correspondence,  being  one- 
one,  is  reversible,  it  must  be  possible  to  solve  these  equations  for  x,  y, and  z,  obtaining 

x  =  ̂(Tx,Ty,Tz\    y  =  ̂ (Tx,Ty,Tz\    z  =  *>(TxtTy,Tz). 
Let  this  converse  relation  be  written  T1}  and  let  the  coordinates  of 

the  relatum  of  any  point  #,  y,  z  be  written  7>,  T,y,  T^z.     Then 
x=T,Tx=TT^    y=T1Ty=TT1y,    z  =  T1Tz=TT1z. 

Then,  remembering  that  by  properly  choosing  x,  y,  z  we  can  take 
Tx,  Ty,  Tz  to  be  any  point  of  space,  we  find 

where  fa,  ̂ 2)  fa  are  defined  for  every  point  of  space  and  are  single- valued. 
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34.  Consider*  the  one-one  point  correspondence  (T)  defined  by 

Tx  =  fa  (x,  y,  z,  alt  «2,...ar),  Ty  =  fa  (x,y,  z,  aly  aa,...a,.), 
Tz  =  fa(x,  y,  z,  «!,  «2,...ar), 

where  al}  a.2)...ar  are  r  parameters.  Let  the  parameters  be  assumed  to 
be  effective,  so  that  two  different  choices  of  special  values  for  them 
necessarily  produce  different  correspondences.  Then  by  varying  the 
parameters  an  assemblage  of  correspondences  is  produced,  each  corre 
spondence  being  defined  by  a  particular  choice  of  the  parameters 

«!,  a^...ar. 

Now  let  8  and  T  be  any  two  members  of  this  assemblage.  Then 
STa,  i.e.  S(Tx),  STy,  and  8Tz  obviously  are  the  coordinates  of  a  point 

which  is  related  to  the  point  (#,  y,  z)  by  a  one-one  point  correspondence. 
This  correspondence  is  denoted  by  ST.  Now,  if  8T  is  necessarily  a 
member  of  the  assemblage  whenever  8  and  T  are  both  members  of  it, 
the  assemblage  is  called  a  group.  When  each  correspondence  of  the 
group  is  defined  by  r  effective  parameters,  where  r  is  a  finite  number, 

the  group  is  called  finite  and  r-limbed.  The  group  is  said  to  be 
continuous,  if,  8  and  T  being  any  two  different  transformations  of  the 
group,  whenever  the  parameters  of  8  vary  continuously  and  ultimately 
approach  those  of  T  as  their  limits,  then,  for  every  value  of  #,  y,  z, 
also  Sxt  Sy,  Sz  vary  continuously  and  approach  Tx,  Ty,  Tz  as  their 
limits. 

The  assumption  that  fa,  fa,  fa  are  analytical  functions  of  their 
arguments,  x,  y,  z,  a^...ar,  secures  that  the  group  is  continuous. 

35.  The  identical  one-one  point  correspondence,  O  say,  is  such 
that,  for  every  value  of  #,  y,  z, 

«#  =  #,    %  =  y,    Qz  =  z   (1). 

Finite  Continuous  Transformation  Groups  exist  which  do  not 
contain  the  identical  transformation.  But  the  chief  interest  of  the 

subject  is  concerned  with  those  which  do  contain  it.  Let  a®,  $2°,  •••dr 
be  the  value-system  of  the  parameters  for  which  the  corresponding 
transformation  of  the  group  is  the  identical  transformation  O,  so  that 

Cl«  =  a?  =  ̂ (^y,«,<aa°J...ar0)      (2), 

with  two  similar  equations. 

*  Cf.  Vorlesungen  uber  Continuierliche  Gruppen,  by  Lie,  ch.  vi.  §  2. 
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For  brevity  put 

(3). 

Now  any  transformation  (I)  of  the  group  can  be  expressed  in  the form 

Tx  =  &  (#,  y>  3,  ttlo  +  Ci  t)  af  +  eat,...,  ar°  +  ert)  \ 

Ty=ts(x,y,z,a1'  +  e1ttctf  +  6stt...,ar9+ertn     .........  (4). 
Tz  =  ̂  (xt  yt  z,  of  +  eit,  a2°  +  e2t,...,  ar°  +  ert)} 

Hence,  since  the  functions  &,  <j>t,  </,3  are  analytic,  if  t  is  not  too 
large,  we  find,  remembering  equations  (2)  and  (3), 

Tx  =  x  +  t  (X  fe  +  3,&  +  .  .  .  +  er^  +  terms  involving  £2,  #»,  etc.  ) 
Ty  =  y  +  t(elT1l  +  e2i]2+...  +  er^  +  terms  involving  ̂ 2,  ̂3,  etc.  I-  (5). 

I7^  =  z  +  t  (el  d  +  e^  +  .  .  .  +  er£r)  +  terms  involving  t2,  ts,  etc. 
Hence  in  the  limit  when  t  diminishes  indefinitely,  writing 

we  find 
dx 

dz 

  (6). 

These  equations  define  the  infinitesimal  transformations  of  the 
group,  every  value-system  of  ratios  of*,  e2,...er  defining  one  Infini tesimal  Transformation. 

36.  Conversely  by  integrating  equations  (6)  of  §  35,  it  can  be 
proved  that  the  form  of  any  finite  transformation  of  the  group  can  be 
recovered.  Assume  that  we  have  found  in  this  way 

where  Q,  <7a,  Cs  are  the  constants  introduced  by  the  integration.     Let 
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#o»  #o>  zo  be  the  values  of  #,  #,  £  when  £  =  0.     Then  from  the  above 

equations  it  can  be  proved  to  be  possible,  owing  to  the  properties  of  - 
the  continuous  group  of  one-one  transformations,  to  solve  for  Ci,  C2,  Cs 
in  terms  of  x^y^z^.     Thus  we  obtain  again  equations  (4)  of  §  35, 
namely 

X  =  <j>i  (>o>  2A»  ̂ O,  «1°  +  01  ̂  •  •  •  «r°  +  M), 

with  two  similar  equations,  where  #0,  #0,  £0  now  correspond  to  #,  #,  2 
in  those  equations,  and  #,  y,  0  to  7k,  Tfy,  7k 

But  it  is  not  true  that,  if  any  equations  of  the  same  form  as 

equations  (6)  of  §35  be  written  down,  where  &,...,  £r  are  any 
arbitrarily  chosen  functions  of  #,  y,  z,  the  integral  forms  give  the  finite 
transformations  of  an  r-limbed  finite  continuous  group.  For  in 

equations  (6)  of  §  35,  &,...,&  are  derived  from  equations  (3)  of  §  35, 
that  is  to  say,  they  are  partial  differential  coefficients  of  functions  with 

special  properties.  The  enunciation  of  the  conditions  to  be  satisfied 

by  £,...,  £r,  so  that  a  finite  continuous  group  of  transformations  may 
result  from  the  integration  of  the  corresponding  equations,  is  called  the 
Second  Fundamental  Theorem  of  the  subject.  It  is  not  required  here. 

Also  if  61,  e2,...er  are  kept  unchanged,  then  the  assemblage  of 
transformations  found  by  the  variation  of  t  in  equations  (4)  of  §  35 

form  a  one-limbed  continuous  group,  which  is  denned  by  the  single 

infinitesimal  transformation  which  it  contains,  namely  that  one  corre 

sponding  to  the  given  value-system  of  <?15  e.2,...er.  Also  every  finite 
transformation  is  a  member  of  the  one-limbed  group  produced  by  the 

indefinite  repetition  of  some  infinitesimal  transformation. 

37.  A  latent  point  of  a  transformation  is  a  point  which  is  trans 
formed  into  itself.  A  latent  curve  or  surface  is  such  that  any  point  of 

it  is  transformed  into  some  point  on  the  same  curve  or  surface. 

It  is  evident  that  the  latent  points,  lines,  and  surfaces  of  any 
infinitesimal  transformation  are  also  latent  for  every  finite  transfor 

mation  belonging  to  the  one-limbed  group  defined  by  it.  They  are 
called  the  latent  points,  lines,  and  surfaces  of  the  group. 

The  transformations  which  leave  a  given  surface  latent  must  form 

a  group,  for  the  successive  application  of  two  such  transformations  still 
leaves  the  surface  latent.  Also  the  assemblage  of  the  infinitesimal 
transformations  which  leave  a  surface  latent  must  be  the  infinitesimal 
transformations  of  a  continuous  transformation  group. 
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38.  If  a  reentrant  single-branched  curve  a  (which  may  be  a  straight 
line)  is  transformed  by  an  infinitesimal  transformation  of  a  continuous 

group  into  a  curve  ft  then  the  senses*  round,  or  directions  round,  the 
curves  correspond  in  a  perfectly  definite  manner,  the  same  for  all  such 
infinitesimal  transformations. 

In  order  to  make  clear  the  correspondence  of  directions  round  any 

two  reentrant  single-branched  curves  a  and  ft  let  OP^L  and  OP2L 

define  two  complementary  segments  round  a,  and  let  O'QiM  and  O'Q^M 
define  two  complementary  segments  round  (3.  Now  consider  any 

one-one  point  transformation  which  (1)  transforms  a  into  ft  (2)  trans 

forms  segments  of  a  into  segments  of  13,  (3)  transforms  0  into  0'. 
Then  one  of  the  two  following  mutually  exclusive  cases  must  hold,  either 

one  of  the  two,  O'QiM  and  the  relatum  of  OP^L,  contains  the  other,  or 
one  of  the  two,  O'Q^M  and  the  relatum  of  OP^L  contains  the  other. 
If  one  of  the  two,  O'Q^I  and  the  relatum  of  OPiL,  contains  the  other, 
then  the  segments  OP^L  and  0'Q^M  will  be  said  to  correspond  in  sense 
where  0  and  0'  are  corresponding  origins.  Also  we  shall  consider  an 
arbitrary  small  portion  of  a  containing  0  as  the  neighbourhood  of  0 ; 
thus  0  divides  its  neighbourhood  into  two  parts,  one  lying  in  the 

segment  OP^,  and  the  other  in  the  segment  OP2L.  Similarly  0' 
divides  its  neighbourhood  on  (3  into  two  parts.  Then  the  case  con 

templated  above,  when  the  segments  OP^L  and  O'QiM  correspond  in 
sense  with  0  and  0'  as  corresponding  origins,  will  also  be  expressed  by 
saying  that  0  corresponds  to  0'  and  the  neighbourhood  of  0  in  the 
segment  OP^L  corresponds  to  the  neighbourhood  of  0'  in  the  segment 
O'Q^M. 

Now  considering  the  case  of  an  infinitesimal  transformation,  the 
curve  (3  must  lie  infinitesimally  near  to  the  curve  a,  so  that  the  point 
Ql  may  be  assumed  to  be  a  point  infinitesimally  near  to  the  point  Pl 
and  the  point  Q2  to  be  a  point  infinitesimally  near  to  the  point  P2. 
Then  no  point  of  the  segment  OPJj  which  is  infinitesimally  near  to  Pl 

is  infinitesimally  near  to  any  point  on  the  segment  0'Q.2M.  Hence  the 
segments  OP^L  and  O'QiM  must  correspond  in  sense  with  0  and  0'  as 
corresponding  origins.  Thus  only  one  of  the  two  cases  of  corre 
spondence  in  sense  is  now  possible. 

Notice  that  for  this  theorem  the  curves  a  and  /3  need  not  be  distinct, 

nor  need  the  points  0  and  0'. 
If  a  straight  line  I  is  latent  for  a  transformation,  and  0  is  a  latent 

point  on  it,  and  segments  with  origin  0  correspond  in  sense  with 

*  Cf.  Proj.  Geom.  §  15,  extended  to  any  reentrant  lines. 
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themselves,  then  the  line  is  said  to  be  transformed  directly  in  the 

neighbourhood  of  0,  in  the  other  case  it  is  said  to  be  transformed 
inversely  in  the  neighbourhood  of  0. 

Thus  it  follows  as  a  corollary  from  the  above  proposition  that  an 
infinitesimal  transformation,  which  leaves  latent  a  line  and  also  a 

point  0  on  it,  transforms  the  line  directly  in  the  neighbourhood  of  0. 

Hence  also  it  follows  that  any  finite  transformation  of  the  one-limbed 
group  defined  by  the  infinitesimal  transformation,  transforms  the  line 
directly  in  the  neighbourhood  of  0. 

Similar  theorems  hold  with  respect  to  surfaces.  It  is  sufficient  for 
us  to  consider  a  transformation  for  which  (1)  a  given  straight  line  /  is 
latent  and  also  a  point  0  on  it,  and  (2)  the  relata  of  planes  through  / 
are  planes  and  the  relata  of  straight  lines  through  0  are  straight  lines. 
The  general  extension  is  obvious. 

The  portion  of  a  plane  through  0,  which  lies  within  an  arbitrarily 
small  convex  surface  (cf.  §  11)  which  contains  0  within  it,  will  be 

called  the  neighbourhood  of  0.  The  axis  I  divides  into  two  parts  the 
neighbourhood  of  0  on  a  plane  p  through  / ;  call  them  p^  and  p2.  Let 
the  plane  q  be  the  relatum  of  p  with  respect  to  the  transformation,  and 
let  the  two  parts  of  its  neighbourhood,  as  divided  by  /,  be  ql  and  q.2. 
Let  a  line  through  0  in  p  cut  the  convex  surface  in  Plt  P2;  and  let 

the  relatum  of  the  line  in  q  cut  the  surface  in  Qu  Qi'>  ̂ °  ̂   OP\ 
stand  for  the  segment  of  the  line  in  the  neighbourhood^,  and  so  on. 

Then  (assuming  that  continuous  lines  are  transformed  into  con 
tinuous  lines)  if  OPi  and  OQi  correspond  in  sense,  the  same  must  hold 

for  all  similar  parts  of  corresponding  lines  through  0  in  the  neighbour- 
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hoods  P!  and  ql.  The  neighbourhoods  p±  and  ql  will  then  be  said  to 
correspond  in  sense.  Also  if  p  is  latent,  it  will  be  said  to  be  trans 
formed  directly  in  the  neighbourhood  of  0  with  /  as  axis,  if  the 
neighbourhood  pl  corresponds  to  itself  in  sense. 

Now,  if  the  transformation  is  infinitesimal,  it  follows  at  once  from 

the  case  of  curves,  that  a  definite  one  of  the  two  neighbourhoods 
q±  and  q^  must  correspond  in  sense  with  j^,  and  that,  if  the  plane  p  is 
latent,  it  must  be  transformed  directly  in  the  neighbourhood  of  0  with 
/  as  axis. 

39.  The  general  protective  group  of  one-one  point  correspondences 
is  the  group  of  those  transformations  which  transform  planes  into  planes. 
Such  transformations  must  therefore  transform  straight  lines  into 
straight  lines,  and  must  leave  unaltered  all  projective  relations  between 
sets  of  points  on  lines. 

Now,  if  in  such  a  transformation  three  points  A,  B,  C  on  a  line  / 

are  known  to  be  transformed  into  A',  B',  C'  on  a  line  /',  the  relatum 
on  /'  of  every  point  on  I  is  determined.  For,  by  the  Fundamental 
Theorem*  one  and  only  one  projective  relation  can  be  established 

between  the  points  on  I  and  those  on  /',  such  that  A  corresponds  to  A', 
B  to  B',  and  C  to  C'.  Thus  the  given  transformation  must  transform 
/  into  /'  according  to  this  relation. 

Hence  it  follows  that  if  four  points,  A,  B,  C,  D  on  a  plane  p,  no 

three  of  which  are  collinear,  are  known  to  be  transformed  into  A,  B', 

C',  D'  on  a  plane  p,  the  relatum  on  p  of  every  point  oup  is  determined. 
For  let  AD  meet  BC  in  E,  and  A'D'  meet  B'C'  in  E'.  Then  E' 

corresponds  to  E.  Hence  A,  B,  E  on  AB  correspond  to  A,  B',  E'  on 
A'B'.  Hence  the  relatum  on  AB'  of  every  point  on  AB  is  determined, 
and  similarly  for  BC  and  B'C',  and  for  CA  and  C'A'.  But  through  any 
point  P  on  p  a  line  I  can  be  drawn  cutting  BC,  CA,  AB  in  L,  M,  N. 

Thus  the  relata  on  p'  of  L,  M,  N,  namely  Lr,  M',  N'  on  /',  are  deter 
mined.  Thus  the  relatum  of  every  point  on  /  is  determined.  Hence 
the  relatum  of  P  is  determined. 

Similarly,  if  A,  B,  C,  D,  E  are  five  points,  no  four  of  which  are 
coplanar,  and  if  for  any  projective  transformation  their  relata  are 
determined,  then  the  relatum  of  every  point  is  determined.  Accordingly 
a  projective  transformation  is  completely  determined  when  the  relata 
of  five  points,  no  four  of  which  are  coplanar,  are  determined. 

*  Of.  Proj.  Geom.  §  9  (7). 
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40.     Now  consider  transformations  of  the  type 

Tx  =  (anx  +  al2y  +  alsz 

Ty  -  (a^x  +  a^y  +  a&z 
Tz  =  #31  a?  + 

+  a.2y  +  asz  +  1) 

+  a.2y  +  asz  +  1) 
.  .  .(1). 

They  obviously  belong  to  the  general  projective  group  as  defined 
above.  Also  there  are  fifteen  effective  parameters.  But  if  we 

substitute  for  a?,  y,  z  the  coordinates  of  a  given  point  A,  and  for 

Tx,  Ty,  Tz  the  coordinates  of  a  given  point  A',  three  equations  are 

obtained  between  the  parameters.  Let  the  same  be  done  for  B  and  B', 
C  and  C',  D  and  D',  E  and  N.  Then  in  all  fifteen  equations  are 
found.  Also  if  no  four  of  A,  B,  C,  D,  E  are  coplanar,  and  no  four  of 

A,  B',  C',  D\  E'  are  coplanar,  these  equations  are  consistent,  and 
definitely  determine  the  transformation  T.  Hence  (cf.  §  39)  the 

equations  (1)  can,  by  a  proper  choice  of  parameters,  be  made  to 

represent  any  assigned  transformation  of  the  general  projective  group. 
Hence  the  transformations  represented  by  them  are  those  of  the  whole 
general  projective  group. 

It  is  obvious  from  the  form  of  these  equations  that  the  group  is 
a  fifteen-limbed  continuous  transformation-group.  To  find  its  infini 
tesimal  transformations,  put 

+  ant,  «ia  =  a12£,  «13  =  a13tf,  a14  =  aHt,  ax  =  a^,  a2  =  a2#,  a3  =  ast,  etc. 

Then  we  find  that  the  analogues  of  equations  (6)  of  §  35  are 

dz 

dt 

a14  -  X 
  (2). 

These  equations  give  the  general  form  of  an  infinitesimal  trans 
formation  of  the  general  projective  group. 



CHAPTER  V. 

AXIOMS  OF  CONGRUENCE. 

41.  THE  logical  analysis  of  the  method  of  superposition  as  applied 
to  geometrical  proofs  is  now  to  be  undertaken.  In  this  method  a 
figure  is  said  to  move  unchanged  till  it  arrives  at  coincidence  with 
some  other  figure.  But  what  moves  ?  Certainly  not  the  points  of  the 
space.  For  they  remain  where  they  are.  If  it  is  some  physical  body 
occupying  space  which  moves,  then  the  assumption,  that  the  body 
remains  unchanged  in  its  motion,  involves  the  very  comparison 
between  the  assemblage  of  points  occupied  in  one  position  with  that 
occupied  in  another  position,  which  the  supposition  was  designed  to 

explain.  Accordingly  we  find  that  Pasch*  in  effect  treats  'congruence' 
as  a  fundamental  idea  not  definable  in  terms  of  the  geometrical  concepts 
which  we  have  already  acquired.  He  states  ten  axioms  of  congruence 
in  a  form  applicable  to  Descriptive  Geometry.  They  are  as  follows, 
where  the  single  capital  letters  represent  points,  and  the  figures  are 
the  ordered  assemblages  of  the  points  mentioned,  ordered  in  the  order 
of  mention. 

I.  The  figures  AB  and  BA  are  congruent. 

II.  To  the  figure  ABC,  one  and  only  one  point  B'  can  be  added, 
so  that  AB  and  AB'  are  congruent  figures  and  B'  lies  in  the  segment 
A  G  or  C  in  the  segment  AB'. 

III.  If  the  point  C  lies  in  the  segment  AB  and  the  figures 

ABC  and  A'B'C'  are  congruent,  then  the  point  C'  lies  in  the  segment A'ff. 

IV.  If  the  point  Cl  lies  in  the  segment  AB,  and  the  segment  ACl 
is  lengthened  by  the  segment  dC2  which  is  congruent  to  it,  and  AO2 
is  lengthened  by  the  segment  CzCSt  congruent  to  ACit  and  so  on,  then 
finally  a  segment  CnCn+1  is  arrived  at  which  contains  the  point  B. 

*  loc.  cit.  §  13. 
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V.  If  in  the  figure  ABC  the  segments  AC  and  BC  are  congruent, 
then  the  figures  ABC  and  BA  C  are  congruent. 

VI.  If  two  figures  are  congruent,  so  also  are  their  homologous 
parts  congruent. 

VII.  If  two  figures  are  each  congruent  to  a  third  figure,  they  are 
congruent  to  each  other. 

VIII.  If  of  two  congruent  figures  one  is  enlarged  by  the  addition 
of  a  point,  the  other  can  be  similarly  enlarged  so  that  the  enlarged 
figures  are  congruent. 

IX.  If  AB  and  FGH  are  any  two  given  figures,  Ft  G,  H  being 
not  collinear,  and  AB  is  congruent  to  FGt  then  in  any  plane  containing 
AB  exactly  two  points  C  and  D  can  be  found  such  that  the  figures 
ABC  and  ABD  are  each  congruent  to  FGH,  and  furthermore  the 
segment  CD  has  a  point  in  common  with  the  line  AB. 

X.  Two  figures  ABCD  and  ABCE  which  are  not  plane  figures 
are  not  congruent. 

42.  These  axioms  at  once  suggest  the  analysis  and  definition  of 
congruence  in  terms  of  our  previously  stated  geometrical  concepts. 

This  analysis  was  first  successfully  achieved  by  Lie*. 
Any  point  of  space  may  be  supposed  to  move  with  the  rigid  figure 

when  the  method  of  superposition  is  applied.  Accordingly,  considering 
the  explanations  of  chapter  IV,  we  see  at  once  that  a  superposition 

is  in  fact  a  one-one  point  transformation.  Let  this  special  class  of 
point  transformations  be  called  motions.  We  have  now  to  consider 
whether  the  peculiar  properties  of  motions  can  be  defined  in  terms  of 
the  geometrical  ideas  already  on  hand. 

If  a  rigid  body  is  transferred  from  position  a  to  position  /?,  and 
then  from  ft  to  y,  the  final  transformation  defined  is  the  same  as  if  it 

were  transferred  directly  from  a  to  y.  Thus  the  successive  application 
of  two  motions  produces  a  motion.  But  this  is  the  characteristic  group 
property. 

What  Lie  has  succeeded  in  doing  is  to  define  in  geometrical  terms 
the  properties  which  must  be  possessed  by  a  complete  group  of  motions. 
But  now  the  explanations  of  the  preceding  paragraphs  are  found  to  be 

*  Cf.  two  papers  by  Lie  in  the  Leipziger  Berichte,  1890.  These  investigations 
are  reproduced  in  a  much  enlarged  form  in  the  Theorie  der  Transformationsgruppen, 

vol.  in.  part  v.  But  Lie's  line  of  thought  was  not  that  suggested  above.  He  starts 
from  an  almost  successful  solution  of  the  same  problem  by  Helmholtz,  cf.  Ueber  die 
Thatsachen,  die  der  Geometric  zu  Grunde  liegen,  Gott.  Nachr.  1868,  and  Collected 
Works,  vol.  ii. 
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to  some  extent  faulty.  For  they  implicitly  assume  that  there  is  one 
definite  group  of  motions,  as  indeed  our  sensations  of  the  physical 
world  do  in  fact  seem  to  give  us  special  intelligence  of  one  such  definite 
group  in  physical  space.  However  it  will  be  found  that  an  indefinite 

number  of  groups  of  one-one  point  transformations  exist  which  satisfy 

Lie's  definitions  of  the  properties  of  a  complete  group  of  motions. 
Accordingly  a  motion  when  one  special  group  is  being  considered  is  not 
a  motion  when  another  such  group  is  considered. 

A  group  of  motions  is  called  a  congruence-group,  and  the 
definitions  of  the  characteristics  of  such  a  group  are  called  the  axioms 
of  Congruence. 

43.     Lie's  results,  as  expressed  by  himself,  are  as  follows  : 

Definition*.    A  finite  continuous  group  in  the  variables  x^  x^...xn 
is  called  transitive,  if  in  the  space  (#15  #2> •••#»)  an  w-fold  extended 
region  exists,  within  which  each  point  can  be  transformed  into  any 
other  point  through  at  least  one  transformation  of  the  group. 

Definition!.  A  real  continuous  group  of  three-fold  extended 
space  possesses  at  the  real  point  P  free  mobility  in  the  infinitesimal, 
if  it  satisfies  the  following  conditions  :  If  a  point  P  and  an  arbitrary 

real  line-element  passing  through  it  are  fixed,  continuous  motion  is  still 

possible  ;  but  if,  in  addition  to  P  and  that  line-element,  an  arbitrary 
real  surface-element,  passing  through  both  is  held  fixed,  then  shall  no 
continuous  motion  be  further  possible. 

Theorem  I.  (1)  If  a  real  continuous  protective  group  of  ordinary 

three-fold  extended  space  possesses  without  exception  in  all  real  points 
of  this  space  free  mobility  in  the  infinitesimal,  then  it  is  six-limbed  and 
transitive,  and  consists  of  all  real  protective  transformations  through 

which  a  not-exceptional  imaginary  surface  of  the  second  degree,  which 

is  represented  by  a  real  equation  [e.g.  xz  +  y2  +  z2  +  1  =  0],  remains 
invariant  (latent). 

(2)  If  a  real  continuous  protective  group  of  ordinary  three-fold 
extended  space  possesses  free  mobility  in  the  infinitesimal,  not  in  all 

real  points  of  this  space  but  only  in  all  real  points  of  a  certain  region, 
then  it  is  six-limbed  and  transitive  and  is  either  the  continuous  real 
projective  group  of  a  not-exceptional  real  not-ruled  surface  of  the 

*  Cf.  Theorie  der  Transformations  gruppen,  vol.  i.  §  58. 
t  Cf.  loc.  cit.,  vol.  m.  §  98. 

I  Cf.  Lie,  loc.  cit.  vol.  in.  §  98. 
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second  degree  [i.e.  with  this  surface  latent],  or  it  is  by  means  of  a  real 
projective  transformation  similar  to  the  group  of  Euclidean  motions. 

The  above  constitutes  what  Lie  calls  his  'first  solution  of  the 
Riemann*-Helmholtz  Problem.' 

The  axioms  which  are  implicit  in  this  solution  appear  to  be  the 
following  : 

(1)  A  congruence-group  is  a  finite  continuous  group  of  one-one 
point  transformations,  containing  the  identical  transformation. 

(2)  It  is  a  sub-group  of  the  general  projective  group. 
(3)  An  infinitesimal  transformation  belonging  to  it  can  always  be 

found  satisfying  the  condition,  that  any  definite  line  and  any  definite 

point  on  the  line  are  latent. 
(4)  No  infinitesimal  transformation  of  the  group  exists  such  that 

a  line,  a  point  on  it,  and  a  plane  through  it,  shall  all  be  latent. 

44.  Lie'sf  '  second  solution  of  the  Riemann-Helmholtz  Problem  ' 
consists    of    the    theorem    that    the    following    axioms    completely 

characterize  a   complete  assemblage   of  Euclidean   or   non-Euclidean 
Motions  : 

(1)  The  motions   form   a  real  continuous  group  defined  by  in 
finitesimal  transformations. 

(2)  If  any  arbitrary  real  point  (y±,  y£,  y3°)  is  fixed,  then  the  real 
points  (o71}  #2,  #3),  into  which  it  is  possible  to  move  any  real  point 

(%i,  #2°,  #3°),  satisfy  a  real  equation  of  the  form 

Wfa0,  y^  y8° ;  *a°;  ̂ 2°,  ̂   5  #1,  #a,  #3)  =  0, 

which  is  not  satisfied  by  x-^-y^  #2  =  #20>  x$  =  yz,  and  which  represents 
a  real  surface  passing  through  (x?,  x£,  #8°). 

(3)  Round  any  point  (j^0,  y£t  y3°)  a  finite  three-fold  region  exists, 
such  that,  when  (j/x0,  y£t  y3°)  is  fixed,  any  other  point  fc°,  #2°,  #3°) 
can  be  moved  through  an  irreducible  continuous  sequence  of  points  up 
to  any  point  satisfying  the  above  equation  of  (2). 

45.  The  conception  of  a  finite  continuous  group,  though  it  is 
simple  enough  analytically,  does  not  seem  to  correspond  to  any  of  the 

obvious  and  immediate  properties   of  congruence-transformations   as 
presented  by  sense-perceptions.     The  following  set  of  axioms  conform 
more  closely  to  the  obvious  properties  of  congruence-transformations ; 

*  Kiemann's  work  in  this  connection  is  contained  in  his  Habilitationsrede, 
Ueber  die  Hypothesen,  welche  der  Geometric  zu  Grande  liegen,  1854,  cf.  his  Collected 
Works,  and  also  a  translation  in  the  Collected  Works  of  W.  K.  Clifford. 

t  Cf.  loc.  cit.  vol.  in.  §  102. 
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they  are  based  upon,  and  are  modifications  of,  a  set  of  congruence- 

axioms  given  by  Peano*. 
(1)  The  assemblage  of  congruence-transformations  is  a  sub-group 

of  the  general  projective  group. 
(2)  The  group   contains   the   converse   of  every  transformation 

belonging  to  it. 

(3)  Given  any  two  points  0  and  0',  and  any  two  lines  /  and  /' 
through  0  and  0'  respectively,  and  any  two  planes  TT  and  if  through 
/  and  /'  respectively,  one  and  only  one  transformation  of  the  group 
exists  which  transforms  0  into  0',  /  into  /',  TT  into  TT',  so  that  the  two 
neighbourhoods  of  0  on  /  correspond  in  an  assigned  manner  with  the  two 

neighbourhoods  of  0'  on  /',  and  the  two  neighbourhoods  of  0  on  TT  as 
divided  by  /  correspond  in  an  assigned  manner  with  the  two  neigh 

bourhoods  of  0'  on  if   as  divided  by  /'. 
(4)  Given  any  line  and  any  point  on  that  line,  an  infinitesimal 

transformation  of  the  group  exists  such  that  the  line  and  the  point 
are  latent. 

Comparing  these  axioms  with  those  of  §  43  which  are  required  for 

Lie's  'first  solution,'  it  will  be  found  that  practically  'finite  and 
continuous '  is  left  out  of  the  first  axiom  of  §  43,  but  on  the  other 
hand  the  fourth  axiom  is  strengthened  into  the  form  of  axiom  (3)  of 
this  article. 

The  following  chapters  will  be  based  upon  these  axioms. 

Proposition.  It  follows  immediately  from  axioms  (2)  and  (3)  that 
the  identical  transformation  is  the  only  member  of  the  group  for 
which  a  given  point  is  latent,  and  a  given  line  through  the  point  is 
latent,  being  transformed  directly  in  the  neighbourhood  of  the  point, 
and  a  given  plane  through  the  line  is  latent,  being  transformed  directly 
in  the  neighbourhood  of  the  point  with  respect  to  the  line  as  axis. 

For  with  the  notation  of  axiom  (3)  let  T  be  such  a  transformation 
with  respect  to  the  point  0,  the  line  /,  and  the  plane  ?r.  Also  let  S  be 

the  transformation  of  the  group  which  transforms  0,  I,  and  TT,  into  0', 

I',  and  TT',  in  a  specified  way  according  to  axiom  (3)  ;  and  let  /Si  be  the 
converse  of  $  which  also  belongs  to  the  group.  Then  the  transforma 

tion  ST  belongs  to  the  group,  and  transforms  0,  /,  TT  into  0',  I',  if 
according  to  the  same  specified  way  as  JS.  Hence  by  axiom  (3),  we 

have  ST=  S.  Thus  operating  with  /Si,  we  have  /Si/ST=  S,S.  But  by 
axiom  (2)  /Si/ST  and  8$  belong  to  the  group ;  also  SlST  =  nT=T,  and 

Q.  Hence  T-O. 

*  Cf.  loc.  cit.  Eiv.  Mat.  vol.  iv. 



CHAPTER  VI. 

INFINITESIMAL   ROTATIONS. 

46.  AN  infinitesimal  transformation  of  the  projective  group  (cf. 
§  40,  equations  (2)),  which  leaves  the  origin  and  the  axis  of  x  latent,  is 
of  the  form 

dx 
u  ^        alsz.  -  X   o 

p  ct22?/ 
dz 

We  proceed  to  consider  the  specialization  necessary  for  the  co 

efficients  in  order  that  this  may  be  a  '  rotation  round  the  axis  of  x '  in 
a  congruence  group. 

There  is  in  a  congruence  group  only  one  infinitesimal  'rotation' 
round  any  given  line  with  a  given  point  on  the  line  latent.  For  consider 

the  motion  of  the  plane,  y  =pz,  round  the  axis  of  x  with  the  origin 
latent ;  after  the  infinitesimal  transformation  (1),  we  have 

dt        dt        dt 

Substituting  from  (1),  and  putting  y  =pz,  we  find 

~T7  =  «23  +  (°2i  ~  a3*)  P  ~  a&P2' 

Hence  when  p  is  changed  to  p  +  dp  by  the  infinitesimal  transformation 
(1)  we  find 

dj  =   _dp          j   (2). 

w.  4 
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Now  consider  a  second  infinitesimal  transformation  of  similar  form 

to  (1),  only  with  an',  a12'5  etc.  as  coefficients.  Let  d.2t  be  the  incre 
ment  of  t  requisite  to  change  p  into  p  +  dp.  Then  we  have 

Now  consider  the  transformation 'dx^ 

dx (dx\    ,  . 

-(ad  *'- 
with  two  similar  equations  ;  where  (  -vr  )  comes  from  the  first  trans- 

formation,  and  \-nj  from  the  second.     But  this  transformation  leaves 

the  plane,  y  =pz,  latent.  Hence  by  the  proposition  of  §  45,  it  is  the 
identical  transformation.  Thus  we  find  dx  =  0,  dy  =  0,  dz  =  0,  for  every 
value  of  x,  y,  z,  and  p.  Thus 

-  X 

Z  -  X    a1  X 

"23    +  (<%'  -  "33')^  ~  "V'P2 

with  corresponding  equations  for  y  and  z.     These  three  equations  hold 
for  every  value  of  x,  y,  z,  and  p.     Hence  it  is  easy  to  prove  that 

Thus  the  infinitesimal  transformations  are  identical. 

47.  The  plane,  my  +  nz=0,  is  latent  for  the  rotation  of  §  46  (1), 

if,  m  Jf  +  n  -^  =  0,  is  satisfied  whenever  the  point  (x,  y,  z)  lies  on  the 
plane.  Hence 

and  a-  is  given  by 

(o--a22)(o--a33)-a2;ja32-0   .....................  (1). 

But  by  the  proposition  of  §  45,  there  can  be  no  real  latent  plane  of 
this  form.  Hence  the  roots  of  equation  (1)  are  imaginary.  Thus 

-  (a22  +  aa3)2  >  0  ..................  (2). 
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48.     In  the  neighbourhood  of  the  origin  the  rotations  of  §  46  (1) 
can  be  expressed  by 

dx  . 

—  = 

dt 

Thus,  writing  7/cc  e**,  z&  eP*,p  satisfies  equation  (1)  of  §  47.     Hence 
p  is  complex.     Thus  we  may  write 

y  =  0i(«*2  +  «3s)<  (y0  COS  vt  +  q  Sill  vt)) 

z  =  e*  («** + fl33)  t  (z0  cos  vt  +  q'  sili  vt)  f 

where  v  =  ̂{a^a^  -  a.23a32  -  J  (a-a  +  a^,)2},  and  q  and  #'  can  be  determined 
in  terms  of  y0,  ZQ,  and  of  the  coefficients.  Thus,  putting  X  =  0Ka»+aM)ir/*'J 
when  £  =  TT/V, 

and  when  £  =  27T/V,  y=\y()j     z  =  X*zQ       (4). 
By  the  proposition  of  §  45,   the   equations   (4)   must   reduce   to 

y=y<>->  z  =  Zo'     Hence  A  =  1,  and  therefore 

«-  +  «33  =  0         (5). 

Thus  for  a  value  of  t,  not  zero,  the  integral  form  of  equations  (1)  yields 
the  identical  transformation. 

Also  equations  (2)  become 

.(6). 

=  z,  cos  vt  +    ayo  '  ~aa~°  sin  vt V 

Hence  a  value  of  t  can  be  found  such  that  by  the  corresponding 
transformation  of  the  type  of  equations  (6),  any  plane  y0  =poZ0  is  trans 
formed  into  any  plane  y  =pz,  the  axis  of  a  being  transformed  directly, 
and  the  neighbourhoods  of  0  on  the  planes  as  divided  by  the  axis  of  x 
corresponding  in  assigned  manners.  Hence  by  axiom  (3)  of  §  45,  this 
is  the  only  transformation  of  the  group  for  which  these  conditions  are 
fulfilled. 

Hence  the  transformations  for  which  the  origin  and  the  axis  of  x 
are  latent,  the  axis  of  x  being  transformed  directly  in  the  neighbour 
hood  of  the  origin,  form  a  one-limbed  continuous  group  produced  by 
the  infinitesimal  transformation  which  fulfils  these  conditions. 

4—2 
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49.     The  transformation   of  §  46   (1)    on    the   latent  axis   of  x 
(i.e.  y  =  0,  3  =  0)  is  given  by 

dx 
-      =  an%  ~  a-iX  . 

If  an  =f=  0,  the  solution  is 
X 

If  «n  =  0,  the  solution  i s —  =  a-i  t. 
X       #0 

But  (cf.  §  48)  when  t  =  2ir/v,  we  find  &  =  jc0  for  every  value  of  #0. 
Hence  an  =  0,     a3  =  0. 

^  Thus  every  point  on  any  line  is  latent  for  a  rotation  round  it  with  one 
point  of  it  latent.  This  fundamental  theorem  will  be  cited  by  the 
shortened  statement,  that  'every  point  on  an  axis  of  rotation  is 
latent.' 
^  Thus  equations  (1)  of  §  46  for  the  infinitesimal  rotation  round  the 

axis  of  a?,  reduce  to 

•(1), 

dx_ 

dy  _ 

dz  _ 

dt 
 = 

w
h
e
r
e
 
 

a.22
    

 
+  «33 

    
=0
| 

and  022033  -a.23a32>0/ 

50.     The  condition  that 

0,      ̂ O        (1), 

should  be  a  latent  plane  for  the  rotation  (1)  of  §  49  is  that 
,  dx        dii       dz 
l-j-  +  m-jt  +  n^r=Q    (»} 

dt         dt        dt  '~\*}t 

whenever  (1)  is  satisfied.     Hence  substituting  for 
dx     dy     dz 
~di>   ~dt>    It' 

and  using  (1),  we  find 
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From  the  inequality  (2)  of  §  49,  it  follows  that  the  solution  of  this 
equation  satisfies  the  condition,  1 4=  0. 

Let  this  plane  be  taken  to  be  the  plane  of  yz,  i.e.  the  plane  x  =  0. 
This  requires 

51.     With  this  specialization  of  the  plane  of  yz,  the  condition  that, 
Ix  +  my  +  nz  +1=0    (1), 

should  be  a  latent  plane  for  the  rotation  (1)  of  §  49  is  that 
,  dx        dy        dz 

whenever  (1)  is  satisfied.     Hence  substituting  from  equations  (1)  of 
§  49  and  using  equation  (1),  we  find  (cf.  §  50,  equation  (4)) 

Hence  there  is  a  family  of  latent  planes  of  the  form  (1),  where  /  is 
the  variable  parameter,  and  m  and  n  are  definitely  determined  in  terms 
of  the  coefficients  of  the  infinitesimal  rotation.  Now  let  one  member 

of  this  family  be  taken  to  be  the  infinite  plane.  Then  from  equations 
(2),  we  find 

«*=<>,      a3  =  0        (3). 

Hence  with  these  choices  for  the  plane  of  yz  and  for  the  infinite 
plane,  the  infinitesimal  rotation  round  the  axis  of  x  is  reduced  to  the 
form 

- 

dt~ 

dz 
=    ftoo?/   "^ 

=  01 

>o| 

•(4), 

where  a22     +a33      =0 
a22a33-a23a32 

.  Then  every  plane  of  the  family,  Xx  4-  /u,  =  0,  is  latent. 

52.     Any  infinitesimal  motion,  which  keeps  the  origin  fixed,  is  of 
the  form 

dx  . 
2    +  ez  -  x     x  +  €     +  * 

with  two  similar  equations 
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If  the  line,  x  =  la-,  y  —  mo-,  z  —  no-,  is  latent,  then 

da_jd(r     dy  _     dor     dz  _    dcr 
dt~   dt'    dt=mdij   dt=ndt' 

Hence  putting  p  for  -  ~,  the  equations  (1)  become 

with  two  similar  equations. 

These  equations  hold  for  all  values  of  a-.     Accordingly,  near  the 
origin,  when  a-  is  very  small, 

with  two  similar  equations. 

Hence  p,  in  the  neighbourhood  of  the  origin,  satisfies 

€  €.     —  '    —   0 

i    €31  )         €33  5         €33~  P    I 

But  this  equation  has  always  one  real  root.  Thus  there  is  always 
one  real  latent  line  through  the  origin.  Hence  every  infinitesimal 
motion  for  which  one  point  is  latent  possesses  an  'axis.'  Also  (cf.  §49) 
every  point  on  this  axis  is  latent.  Accordingly  for  every  point  on  the 
axis,  x-la^y  —  ma;  z  =  no-,  we  have 

^  _  n       dy  _         dz 
^~U'      <fc~°'      dt  =  (l 

Hence  en/  +  e^m  +  elsn  -  a-  (l^  +  mc2  +  ??e3)  =  0, 
with  two  similar  equations. 

These  equations  hold  for  every  value  of  a-.     Thus 

€23n  =  0 

•(2).' 
Hence  we  find  the  equation,  |er.|  =  0,  and  that  the  values  of 

l:m  :  n  which  satisfy  the  first  three  equations,  must  satisfy  the fourth. 
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53.     The  infinitesimal  rotation  round  the  axis  of  y  as  axis  is  of  the 
form  (cf.  §  49,  equations  (1)  and  (2)), 

—  =  P  x  +  8  z-x(px  +  B~) dt 

\    (i), 

where  Ai      +  As      =  (h  ^ 
and  AiA!:!-A:3Ai>0/ 

Then,  since  (cf.  §  45,  axiom  (1))  the  motions  form  a  group,  by 
combining  this  infinitesimal  rotation  with  that  round  the  axis  of  x, 
another  infinitesimal  rotation  of  the  group  is  found.  Thus  (cf.  §  51, 

equations  (4))  an  infinitesimal  rotation  of  the  group,  assuming  the 
special  axes  and  infinite  plane  of  §  51,  is  of  the  form 

-^  =  farf  +  fa«Z  -  X  (fax  +  faz)  \ 

jj  =  An*;  +  Ko^y  +  (fa.  +  Ka23)  z-y(fax  +  faz)  \  .........  (3), 

-  faiX  +  Ka^y  +  (A,3  +  Ka,o)  z-Z  (fax  +  faz) 

where  K  has  any  arbitrary  value. 
Hence  (cf.  §  52)  we  have 

Ai,         0, 

An,      Ka-22, 
-0   (4). 

But  equation  (4)  holds  for  every  value  of  K.     Hence 

Ai  («22a33  -  023032)  =  0. 
Hence  (cf.  §  51,  equations  (5)), 

Ai  =  0    .................................  (5). 

Thence,  again  from  equation  (4),  we  find 

A3Ai«32-A3Aia22-o  ........................  (G). 
From  equations  (2)  and  (5)  we  find 

AS-O  .......................  ;  .........  (7). 
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54.  Now  (cf.  §  50)  the  plane  of  yz  is  the  latent  plane  through  the 
origin  of  the  infinitesimal  rotation  round  the  axis  of  #,  and  the  axes  of 
y  and  z  are  any  distinct  lines  in  this  plane  through  the  origin.     Any 

point  on  the  latent  plane,  Ix  +  my  +  nz  =  0,  of  the  rotation  round  the 
axis  ofy  satisfies  (cf.  §  53,  equations  (1),  (5),  and  (7)) 

Hence  w»Aa  +  ̂ An  =  °>     ̂ Ais  +  m> 

Thus  the  equation  of  the  latent  plane  is 

But  (cf.  §  53,  equations  (2))  AisAn  cannot  vanish.  Hence  the 
latent  plane  cannot  contain  the  axis  of  y.  Thus  we  may  assume  its 

intersection  with  the  plane,  x  =  0  (i.e.  with  the  latent  plane  of  the 
rotation  round  0#),  to  be  the  axis  of  z.  With  this  assumption  we 
have 

Aa  =  0     (2). 

Then  from  equation  (6)  of  §  53,  we  find 

"s^O    (3). 

And  from  equations  (5)  of  §  51,  we  find 

"33  =  0      (4). 

A  latent  plane  of  an  infinitesimal  rotation  round  an  axis  will  be 
said  to  be  perpendicular  to  the  axis.  The  set  of  axes  of  coordinates 

with  any  given  origin,  found  by  taking  the  axis  of  x  to  be  any  line, 
the  axis  of  y  to  be  any  line  in  the  latent  plane  through  the  origin  of 
the  infinitesimal  rotation  round  the  axis  of  x,  and  the  axis  of  z  to  be 
the  line  of  intersection  of  the  latent  planes  through  the  origin  of  the 
infinitesimal  rotations  round  the  axes  of  x  and  y,  will  be  said  to  be 
mutually  perpendicular,  or  mutually  at  right  angles. 

It  has  now  to  be  proved  that  a  set  of  axes  mutually  at  right  angles 
have  reciprocal  properties  in  respect  to  each  other. 

55.  With  the  mutually  perpendicular  axes  of  §  54,  the  equations 
(2)  of  §  52,  as  applied  to  the  infinitesimal  rotation  of  equations  (3)  of 
§  53,  become 

Ais»  =  0,     (Ass  +  *<%)  n  =  0,     pj  +  Ka^m  =  0, 

Hence  K  can  be  given  any  arbitrary  value,  and  then  the  corresponding 
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values  of  /  :  m  :  n  are  to  be  found.     Also  As*  ftx,   a.2,,   a32   cannot 
vanish. 

Hence  we  have        n  =  0,     //*a32  =  m/(—  Ai). 

Thus  A  =  0  .................................  (1). 

56.  Again,  let  lx  +  my  +  nz+  1  =0,  be  any  one  of  the  family  of 
latent  planes  of  the  rotation  round  the  axis  of  y.  Then  for  all  points 
on  the  plane, 

7  dx       dy       dz 

ldi+mdt+ndt=()- 
Hence  substituting  from  equations  (1)  of  §  53,  remembering  that 

Ai,    A-.,    Ai,    A 

have  all  been  proved  to  vanish  for  the  special  axes,  we  have 

w  Ai#  +  (/As  +  ̂ As  +  A)  *  =  0 

for  all  points  on  the  plane.     Also  /?13,  Ai  do  not  vanish.     Hence 

Thus  there  is  one  latent  plane  for  which  wi  —  0,   w  =  0,   /  =  —  A/As- 
This  is  the  plane 

-A#+As=o. 

But  this  plane  is  a  member  of  the  family  (cf.  §  51)  of  latent  planes 
of  the  rotation  round  the  axis  of  x.  Also  the  infinite  plane  has  been 
chosen  to  be  any  member  of  this  family.  Thus  we  now  choose  the 
infinite  plane  to  be  the  one  common  member  of  the  two  families  of 
latent  planes  of  the  infinitesimal  rotations  round  the  axes  of  x  and  of 
y.  This  plane,  since  As^O,  can  never  pass  through  the  origin.  With 
this  choice,  we  find 

A  =  o  .................................  (i). 
Then,   with  this  special   tetrahedron   of  reference,  the   equations 

defining  the  infinitesimal  rotation  round  the  axis  of  x  are  reduced  to 

dx  dy  dz 
~^        =***>        = 

where  a23a32  <  0  ..............................  (3). 

Also  the  equations  defining  the  infinitesimal  rotation  round  the  axis 
of  y  are  reduced  to 

d'x     o          dy     0          dz     0 

di=^'  dt=^'   dr^  ...............  (4)' 
where  /2,:IA,  <0    ..............................  (5). 
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_  57.     The  equations  defining  the  infinitesimal  rotation  round  the 

axis  of  z  are  (cf.  §  53,  equations  (1),  (5)  and  (7)), 
das 

dz 

•(1), 

where 

712721  <  0 

.(2). 

Thus  the  transformation  found  by  combining  three  infinitesimal 
rotations  round  the  axes  of  x,  of  y,  and  of  z  is  by  equations  (2)  and (4)  of  §  56, 

dx 

dy_ 

fa  -  K372i®  +  (OJB  +  K2/?23)  z  —  y(Ksy\a  + 

fa  =  (*2#u  +  K;;73i)  x  +  (>3y32  +  a32)  y-z  (*# 

Hence  applying  equations  (2)  of  §  52,  we  find 

  (3). 

J         *37l2 

0 

<2&3 

This  equation  holds  for  every  value  of  *2  and  KS. 
Thus  the  term  involving  K2V3  yields  y13  ̂3fti  =  0.      Hence,  since 

712  and  /?31  cannot  vanish,  we  have 

fe  =  0  .................................  (4). 

The  term  involving  K*  yields  712y;ila23  -  0.      Hence,  since  y12  and  a23 cannot  vanish,  we  have 

731^0  .................................  (o). 

The  coefficient  of  *32K2  is  712y31fe  +  ft^y^.     Hence,  using  (4)  and  (5), and  noting  that  /?13  and  y21  cannot  vanish,  we  find 

The  coefficient  of  /c2K3  gives 

.(6). 
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Now  equations  (2)  of  §  52,  applied   to   this   case,  become,  after 

simplifying  by  (4),  (5)  and  (6), 

nl  +  a^m  =  0, 

Hence  "3271  -  KA\yi  -  0. 

This  equation  holds  for  all  values  of  *c2,  and  a32  and  /331  do  not  vanish. 

Hence  yi  =  0,     ya  =  0      (8). 

Thus  the  infinite  plane  is  the  common  latent  plane  of  the  three  infini 

tesimal  rotations  round  the  three  rectangular  axes. 

58.  Thus  using  equations  (4),  (5),  (6),  (8)  of  §  57,  the  equations 

for  the  infinitesimal  rotations  round  the  three  mutually  perpendicular 

axes,  the  infinite  plane  being  the  common  latent  plane  of  the  rotations, 
are 

dx  dy  dz  /-.N 

3T°'    dt=a**>     5=**   (1)> 

-      —  r^liV^')  TJ.  '  J-i          f«"*l      ...•••    *  **\     /' dt  dt  at 

dx  dy  dz  /Q-\ 
=-=y1o?/,     -ji=1v&*     ~j;=®    (°)> dt  dt  at 

where  o^sflss  <  0,     &  A  <  0,     712721  <  ®   W» 

and  7i2a2.Ai  +  ftuflitfn  ~®   W" 

It  at  once  follows  from  the  symmetry  of  these  equations,  that  a  set 

of  axes  mutually  at  right  angles  have  reciprocal  properties  in  respect  to 
each  other. 

The  mention  of  equations  (4)  and  (5)  is  avoided  by  altering  the 

unit  points*  on  the  axes,  that  is,  by  writing  \x  for  #,  py  for  ?/,  and 
vz  for  z,  where  X,  /A,  v  are  constants  at  our  disposal.  Let  them  be 
chosen,  so  that 

and  v/3i;>/A  =  -  X/331/V  =  o>2  (say). 

By  equations  (4),  the  ratios  of  X  :  /x  :  i/  are  real.     Then  by  equation 

(5),  we  have 

*  Cf.  Proj.  Geom,  §  42. 



> 
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Hence  remembering  that  wj,  o)2,  w:!  are  arbitrary  parameters,  we  find 
that  any  infinitesimal  rotation  round  an  axis  through  the  origin  can  be 
expressed  in  the  form 

dx  _  dy  _  dz  _ ,., 

...(6). 

The  latent  line  of  the  rotation  is  given  by 

Thus  this  form  gives  one  and  only  one  infinitesimal  rotation  round  any 
line  through  the  origin.  Hence  the  form  (6)  can  include  no  infini 
tesimal  transformation  other  than  those  of  the  congruence  group  under 
consideration. 

A  tetrahedron  formed  by  three  mutually  perpendicular  axes,  with 
the  common  latent  plane  of  the  three  rotations  round  the  axes  for  its 

fourth  plane,  and  with  the  unit  points  of  its  axes  chosen  so  as  to  produce 
equations  (6),  will  be  called  a  normal  reference  tetrahedron. 

When  the  congruence  group  is  given,  the  normal  reference  tetra 

hedrons  are  determinate,  though  infinite  in  number.  But  a  congruence 
group  can  be  found  so  that  any  given  tetrahedron  is  a  normal  reference 
tetrahedron. 



CHAPTER  VII. 

THE  ABSOLUTE. 

59.  CONSIDER  the  surfaces  which  are  latent  for  a  rotation  round 

the  axis  of  x.  Let  the  axis  system  form  a  normal  reference  tetrahedron. 
Then  the  infinitesimal  rotation  can  be  written 

^_0       ̂ --(o  —=(0?  (1) 

Let  u  =  0  be  any  latent  surface.     Then  we  have 

as  the  requisite  condition.  Solving  this  linear  equation  by  Lagrange's 
rule,  and  remembering  that  x  has  been  treated  as  a  constant,  we  find 
that  the  latent  surfaces  are  of  the  form 

f(f  +  z\  <p)  =  0   (2), 

where /is  an  arbitrary  function.  Surfaces,  whose  equations  are  of  the 

form  of  (2),  will  be  called  surfaces  of  revolution  round  the  axis  of  x. 

60.  A  necessary  and  sufficient  condition,  that  a  surface  may  be 
latent  for  any  congruence  transformation  which  leaves  the  origin  at 
rest,  is  that  the  surface  be  a  surface  of  revolution  round  each  of  the 
three  axes.  Hence  by  equation  (2)  of  §  59  this  family  of  surfaces  is 
represented  by 

X(^  +  ̂   +  ̂ )  +  /x-0   (1), 

where  A.  and  /u,  are  arbitrary  parameters.  Let  these  be  called  spheres, 
with  the  origin  as  centre. 

The  infinite  plane  is  the  common  polar  plane  of  the  origin,  with 

respect  to  each  of  the  spheres  with  it  as  centre.  Thus  transforming  to 
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homogeneous  coordinates  by  putting  x^XI'U,  y=  Y/C7,  z  =  Z/U} where,  £7=0,  is  the  equation  of  the  infinite  plane,  the  equation  of the  family  of  concentric  spheres  is 

A(X2+  Y*  +  Z*)  +  pU*  =  0   (2). 
Thus  returning  to  the  original  coordinates,  if  <£  (#,  y,  z)  =  0,  is  the 

equation  of  any  sphere,  centre  at  (#0,  y0,  z,\  the  equation  of  the'family of  spheres  with  that  centre  is 

yo     +  ,0+         =  0    ......  (3), 

where,  as  usual,  t  is  introduced  to  make  the  equation  homogeneous and  is  put  equal  to  1  after  differentiation. 

61.  By  recurring  to  equation  (2)  of  §  60,  we  see  that  the  plane 
of  yz,  which  is  the  plane  perpendicular  to  the  axis  of  #,  is  the  plane 
through  the  origin  and  through  the  common  conjugate  line  of  the  axis 
of  x  with  respect  to  any  of  the  spheres,  centre  the  origin.  Hence  if, 
<£  (*'»  y>  z)  =  0,  is  any  sphere  with  centre  A0  (>0,  y0>  z,\  and  A,  is  the 
point  fo,  y1}  Zl\  then  the  plane  through  A0  perpendicular  to  A0A1  is 

+   l  +  X)      =  0     ...(1), 

where 

aild  ̂°'        /o'  etc<  are  tlle  results  of  substituting  the  coordinates  of 

A0  iii  <f)  (a,  y,  z\  ̂  ,  etc. 

Let  the  left-hand  side  of  (1)  be  written  (A0,  A1}  P)0,  where  P  is 
the  variable  point  (#,  y,  z).  Thus  the  equation  of  the  plane,  perpen dicular  to  the  line  A0A1  and  through  the  point  A0,  is 

0  ...........................  (2). 

A  quadratic  surface  of  revolution  round  the  axis  of  x  is  of  the  form 
(cf.  equation  (2)  of  §  59) 

c  =  0    ..................  (3). 

This  can  be  written  in  the  form 

X  {a  (x>  +  7/2  +  £-')  +  ft]  +  a'a?  +  %gx  +  c'  =  0. 
Thus,  if  <£  (x,  y,z)  =  0  is  the  equation  of  a  sphere,  centre  A0  (^0,  y9,  z0), 
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the  equation  of  a  quadric  surface  of  revolution  round  the  line  joining 
A0  to  Al  (#u  ylt  £j)  is 

The  family  of  quadric  surfaces  of  revolution  round  any  line  must 
include  every  family  of  concentric  spheres  with  its  common  centre  at  a 

point  on  the  line.  Accordingly  taking  A  „  to  be  the  origin,  and  <j>  (a,  y,  z) 

to  be  or  ±  y*  +  z2  +  1,  the  family  of  spheres  at  any  point  (xlt  ylt  z^)  is 
included  in  the  family 

\  (3?  +  f  +  z*  +  1)  +  n  (x&  +  y$  +  z&J  +  '2v  (xtf  +  yfl  +  z&)  +  p  -  0, 
that  is,  in  the  family 

X  (a?  +  y"  +  z2}  +  ft  (xiX  +  y^y  +  z-^zf  +  2v  (x\x  +  y^y  +  z^z)  +  a-  =  0  . .  .(5). 
For  this  is  the  family  of  quadrics  of  revolution  round  the  line  joining 
the  origin  to  the  point  (x^,  yi}  Zi). 

62.  Consider  any  two  infinitesimal  projective  transformations  in 
the  plane  of  xy.  One  transformation  is  defined  by 

dx 

The  other  is  defined  by 

dx 
—  =  i) 

(2). 

6.53  -  y  (b& 

Now  each  of  these  transformations  leaves  a  family  of  curves  latent, 
the  locus  of  points,  which  either  are  the  points  of  contact  of  members 
of  the  respective  families,  or  are  points  on  a  curve  common  to  the  two 
families,  is  given  by 

_ 

bnx  +  bl2y  +  bu  -  x  (b&  +  b.2y)  ~  b^x  +  b^y  +  b23-  y  (b 
This  locus  is  a  cubic  curve. 

Now  consider  two  rotations  belonging  to  the   congruence   group 
under  consideration.     Let  one  be  about  the  point  (0,  0,  0),  and  the 
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other  about  the  point  (xlt  ylt  0),  and  let  the  plane  of  xy  be  latent  for 
them  both.  Then  for  the  first  rotation,  the  family  of  latent  curves 
(cf.  §  60,  equation  (1))  in  the  plane  of  xy  is  given  by 

AC^  +  yO  +  f^O      (4); 

and  for  the  second  rotation,  the  family  of  latent  curves  (cf.  §  61, 
equation  (5))  in  the  plane  of  xy  is  included  in  the  family 

A!  (x*  +  ij2)  +  fr  (x^x  +  y^yf  +  2v\  (x^x  +  y^y]  +  o-j  =  0   (5). 
It  is  easy  to  prove  that  the  locus  of  points  where  members  of  the 

family  (4)  touch  members  of  the  family  (5)  is  the  line,  xjxl=ylyl. 
Hence  for  the  case  of  these  two  rotations  the  cubic  curve  of  equation 

(3)  above  becomes  a  straight  line  and  a  common  member  of  the  two 

families  (4)  and  (5).  Thus  these  two  families  must  possess  a  common 
member.  Let  it  be 

Ci(x*  +  f)  +  1  =0. 

Then  (cf.  §60,  equation  (1),  and  §  61,  equation  (5))  the  sphere, 

(^(0^  +  ̂   +  ̂   +  1=0    (6), 

belongs  to  the  family  of  spheres  centre  (0,  0,  0),  and  also  to  the  family 
of  spheres  centre  (x^ ,  v/i ,  0). 

Hence  any  two  distinct  families  of  concentric  spheres  with  different 
centres  possess  one  member  in  common. 

63.  Let  (a?!,  ylt  z^  and  (#2,  yz,  z2)  be  any  two  points  which  are 
not  collinear  with  the  point  (0,  0,  0).  Let  (cf.  §  62) 

cl(a?  +  f  +  ̂ )  +  l=Q    (1) 

be  the  sphere  common  to  the  two  families  of  spheres  with  centres  at 
(0,  0,  0)  and  (xlt  ylf  zj  respectively ;  and  let 

C2(x*  +  ?f  +  Z2)  +  l=0   (2) 

be  the  sphere  common  to  the  two  families  of  spheres  with  centres  at 

(0,  0,  0)  and  (#2,  ya,  z2)  respectively.  Then  (cf.  §  60,  equation  (3))  the 
family  of  spheres,  centre  (xlt  ylt  z^,  is  given  by 

A!  {Cl  (x*  +  f  +  z2)  +  !}  +  /*!  {d  (xtf+ytf  +  z&)  +  \  }2=  0  ...(3), 
and  the  family  of  spheres,  centre  («r25  y^  z*),  is  given  by 

\2 {c2 (x?  +  yt  +  z'2')  +  1}  +  /x2  {c.2 (x&  +  yzy  +  z<#)  +  1}2=  0  ...(4). 
But  (cf.  §  62)  it  is  possible  to  find  a  common  member  of  the  families 
(3)  and  (4).  Then  remembering  that  the  two  centres  are  not  collinear 
with  the  origin,  it  is  easy  to  prove  that  we  must  have 

^1  =  0,     /*2  =  0,     Cx  =  c2       (5). 
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Thus  the  three  families  of  concentric  spheres  with  centres  at  three 

non-collinear  points  have  one  member  in  common.  Hence  it  is  easy  to 
prove  that  there  is  one  sphere  common  to  all  families  of  concentric 

spheres.  Let  this  sphere  be  called  '  The  Absolute.' 

64.  By  a  rotation  round  a  suitable  axis  any  point  can  be  moved 
to  any  neighbouring  position.     For,  if 

c(^  +  y2  +  z^  +  1  =  0   (1) 
is  the  absolute,  then  (cf.  §  63,  equation  (3)) 

c(z?  +  f  +  z^  +  l-feC^  +  ̂   +  ̂ +lP^O   (2) 
is  the  equation  of  the  sphere,  centre  (xlt  y^  z^  touching  at  the  origin 
the  plane 

x-iX  +  yiy  +  z-^z  =  0. 

Hence  if  xjl  =  yjm  =  Zi/n,  the  sphere  touches  at  the  origin  the  plane 

Ix  +  my  +  nz  —  0. 
Now  let  this  be  any  plane  through  the  origin  and  through  the  neigh 

bouring  position  to  which  the  origin  is  to  be  displaced.  Then  it 
follows  that  a  rotation  round  a  suitable  axis  through  the  point  (X,  ylt  Zi) 
can  effect  the  required  displacement  of  the  origin. 

Thus  the  effect  of  any  infinitesimal  congruent  transformation  can 

be  produced  by  combining  a  rotation  round  some  line  not  passing 
through  the  origin  with  a  rotation  round  some  line  through  the  origin. 
Hence  (cf.  §  45,  axiom  (3))  the  absolute  is  latent  for  any  congruent 
transformation  of  the  group. 

65.  Conversely  the  group  of  projective  transformations,  for  which 
a  given  imaginary  or  convex  quadric  is  latent,  forms  a  congruence  group. 

For  take  a  tetrahedron,  self-polar  with  respect  to  the  given  surface  of 
the  second  degree,  as  the  fundamental  tetrahedron.    Then  the  equation 
of  the  surface  can  be  reduced  to  the  form 

c(^  +  y2  +  z2)  +  l  =  0    (1), 

and,  when  c  =  0,  the  surface  degenerates  into  the  infinite  plane. 
The  most  general  form  of  infinitesimal  projective  transformation  is 
dx  , 

.(2). 

—  x 

dz  =  w  +  a  x  +  a 

w. 
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This  is  to  satisfy 
dx       dii       dz  ,«N 

when  (1)  is  satisfied. 
Hence  (3)  becomes,  after  simplifying  by  (1), 

CX  (u  +  au#  4-  a12?/  +  a13z)  +  Cy  (v  +  a2lx  +  a22?/  4-  a 

4-  CZ  (w  4-  a3lx  +  a.^y  +  0.33?)  +  (a-iX  +  a.2y  +  a.jp)  =  0  ......  (4). 

Then  (4)  must  either  be  identical  with  (1),  or  must  be  an  identity. 
But  it  cannot  be  identical  with  (1).     Hence  it  is  an  identity. 

Thus  cu  +  «!  =  0,  cv  +  a2  =  (),          cw  +  0.3  =  0, 

Can  —  0,  Ca^  =  0,  Ca^  -  0, 

C  (a13  4-  a21)  =  0,       C  (a13  4-  a31)  =  0,     C  (a23  +  a32)  =  0. 

Thus  the  general  form  of  transformation  is 

dx  N  \ 
—  =  u  —  Wzy  +  u>2z  4-  cx  (iix  +  v-y  +  wz)   \ Cit 

-j-  =  v-ulz  +  w,x  +  cy  (ux  +  vy  +  wz}  \  ............  (5). (Jilt 

dz  , 
-ji=w  —  utfc  4-  ̂ y  4-  cz  (ux  +  vy+  wz)  J Cut 

But  when  the  origin  is  fixed,  these  equations  reduce  to  the  equations 
(6)  of  §  58  for  the  general  infinitesimal  rotation  round  the  origin  of  the 
corresponding  congruence  group.  Also  it  is  easy  to  see  that  the 
above  equations  give  one  and  only  one  infinitesimal  transformation 
which  transports  the  origin  to  a  given  neighbouring  point  (udt,  vdt, 
wdt\  and  at  the  same  time  transforms  a  given  line  /  through  the 
origin,  and  a  given  plane  TT  through  /,  into  a  neighbouring  line  and 
plane  respectively  through  the  new  position  of  the  origin  and  the  new 
position  of  /.  Thus  by  §  64  and  by  axiom  (3)  of  §  45  all  the  transforma 

tions  of  the  form  (5)  belong  to  the  associated  congruence  group.  - 
Hence  these  equations  give  the  general  form  of  an  infinitesimal 

congruence  transformation,  referred  to  a  normal  reference  tetrahedron. 
The  equation  of  the  absolute  is  then 

c024-?/2  +  22)4-l=0  ........................  (6). 

It  follows  from  equations  (5)  by  applying  the  '  Second  Fundamental 

Theorem'  (cf.  §  36)  that  a  congruence  group  is  a  six-limbed  finite 
continuous  group, 
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66.  The  congruence  groups  are  divisible  into  three  types. 
In  Type  I,  c  is  positive.  Then  the  absolute  (cf.  §  65,  equation 

(6))  is  an  imaginary  quadric.  The  congruence  axioms  hold  for  the 
transformation  of  all  points  of  the  projective  space  by  any  members 
of  such  a  congruence  group.  Such  a  congruence  group  is  called 
Elliptic. 

In  Type  II,  c  is  negative.  Then  the  absolute  is  a  real  convex 
quadric.  The  congruence  axioms  only  hold  for  all  points  within  the 
space  enclosed  by  the  absolute  for  transformations  by  any  members 
of  the  corresponding  congruence  group.  Such  a  congruence  group  is 
called  Hyperbolic. 

In  Type  III,  the  numerical  value  of  c  has  diminished  indefinitely. 
Groups  of  this  type  require  further  investigation.  They  are  called 
Parabolic. 

67.  In  the  Parabolic  case,  when  c  diminishes  indefinitely,  the  point 
equation  of  the  absolute 

c  O2  +  y*  +  22)  +  1  =  0, 

reduces  to  that  of  the  infinite  plane.     Hence  for  every  parabolic  group 
a  plane  is  latent. 

Again  in  equation  (3)  of  §  63  by  putting  \c  —  a,  //,  =  &  —  A,  we  find 
that  the  equation  of  any  sphere,  centre  (#n  ylt  zj,  can  be  written 

a  (z2  +  y2  +  z2-  Ix^x  —  2y-^y  —  2ziz)  +  b  4  c  {(be  -  a)  (x^x  +  y^y  +  z&f 

Hence  when  c  diminishes  indefinitely,  and  the  coefficient  of  no  term 

is  infinite,  the  general  equation  for  spheres,  centre  (^15  y^  ̂ ),  becomes 

a  (V  +  3/2  +  z°  -  Ix^x  -  Zy^j  -  2ZiZ)  +  b  =  0  ............  (1). 
Hence  every  sphere  cuts  the  infinite  plane,  which  is  latent  for  this 

special  choice  of  coordinates,  in  the  imaginary  conic  where 

a*  +  y*  +  s?=o, 
cuts   it.      Thus   this   imaginary   conic   in   the   infinite  plane  is  also 
latent. 

Accordingly  in  the  parabolic  form  the  absolute  is  represented  by 
the  latent  infinite  plane,  and  by  the  imaginary  latent  conic  in  the 
infinite  plane.  A  set  of  concurrent  rectangular  axes  are  a  set  of 
concurrent  lines  intersecting  the  infinite  plane  at  the  angular  points 

of  a  triangle  self-conjugate  with  regard  to  the  absolute  conic. 
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The  general  form  of  the  infinitesimal  transformation   (cf.   §  65, 
equations  (5)),  referred  to  a  normal  reference  tetrahedron,  reduces  to dx 



CHAPTER   VIII. 

METRICAL  GEOMETRY. 

68.  THE  theory  of  distance  follows  immediately  from  that  of  con 
gruence  by  noting  two  facts.  In  the  first  place  let  the  anharmonic 

ratio*  of  the  range  (PQRty  be  denoted  by  {PQRS} ;  then  if 
AI,  A2,   -*i>   -t  a,  PS 

are  collinear  points,  we  have 

or,  in  another  form, 

log  {A^AiPJ  +  log  {AftAJ**}  =  log  {A^AiP,}   (1). 
In  the  second  place,  let  Al  and  A.2  be  the  two  real  or  imaginary 

points  in  which  the  line  containing  the  points  Plt  P2,  P3  meets  the 
real  or  imaginary  absolute  of  some  definite  congruence  group.  Then 
for  any  transformation  of  that  group  (a)  the  anharmonic  ratios  are 
unaltered  because  the  transformation  is  projective,  and  (/3)  the  points 
A-L  and  A.2  are  transformed  into  the  points  in  which  the  transformed 
position  of  the  line  P^P^P^  cuts  the  absolute. 

Thus  if  some  multiple  t  of  log  {A^A^}  be  defined  as  the 
distance  between  the  points  P1  and  P,,  where  Al  and  A.2  are  the 
points  where  the  line  P^P*  cuts  the  absolute,  then  equation  (1)  secures 
the  characteristic  addition  property  of  distance  in  respect  to  collinear 
points,  and  the  second  consideration  secures  the  characteristic  in 
variability  of  distances  in  a  congruence  transformation. 

*  Cf.  Proj.  Geom.  §38. 
t  This  definition  is  due  to  Cayley,  Sixth  Memoir  on  Qualities,  Phil.  Trans. 

1859  and  Coll.  Papers,  vol.  IL,  and  to  Klein,  Ueber  die  sogenannte  nicht-euklidisch'e Geometric,  Math.  Ann.  vol.  iv.  1871. 

5—3 
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69.  Now  let  P1  be  the  point  fa,  ylf  Zl\  and  P2  the  point 
fa,  7/2,  s2).  Then  the  coordinates  of  any  point  on  the  line  P,P2  take the  form 

Thus  the  points  4,  and  A2,  where  the  line  P,PS  cuts  the  absolute, 
c  (x-  +  if  +  z2)  +  1  =  0, 

are  given  by  the  roots  X^  and  A2//*2  of  the  quadratic  equation 

X2  {c  (^  +  y*  +  Zfi  +  !  }  +  2  Aft  {c  ̂ a  +  Wa  +  ̂   +  l  } 
+  ̂ 2{c(^2  +  ?/22  +  %2)  +  l}-0     ...............  (1). 

For  the  elliptic  case,  when  c-is  positive,  put 

cos  Q  _  cfaaz  +  ihy.,  +  z,z^  +  1 

{c  (a?!2  +  ̂ 2  +  ̂ 2 

Then*  {^-iPi^2P2} 
Thus  the  distance  P.P,,  written  dist  (P1P«)»  can  be  denned  by 

1P1J[tft}    ...............  (2). 
Hence 

—  - 

y?  +  z?)  +  1  p  {c  (^  +  2/,2  +  ̂ )  +  i  p 

...(o). 

It  is  evident  that  there  will  be  two  distances,  associated  with  the  two 
segments  into  which  the  point-pair  P,  and  P,  divides  the  line  P,P2. 
If  one  distance,  say  the  smaller,  is  called  dist  (P^),  the  other  will 
be  Try- dist (PiP2).  Thus  the  whole  length  of  a  straight  line  is  Try. 
This  system  of  metrical  geometry  embraces  the  whole  of  Projective 
Space  t. 

70.     For  the  hyperbolic  case,  when  c  is  negative,  put 

cosh  0  =  — —  — ^— 

*  Cf.  Proj.  Geom.  §38. 
f  The  possibility  of  a  Metrical  Geometry  with  closed  lines  of  finite  length  was 

first  suggested  by  Riemann,  cf.  loc.  cit.  For  a  full  account  and  amplification  of 
Riemann's  treatment  of  distance,  cf.  Forms  of  Non-Euclidean  Space,  by  F.  S.  Woods, 
printed  in  The  Boston  Colloquium,  New  York,  1905. 
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Then  if  Pl  and  P»  are  both  within  the  region  enclosed  by  the  absolute, 
0  is  necessarily  real. 

Hence  (cf.  §  69,  equation  (1)) 

Thus  the  distance  PJ?»,  written  dist(PiP2),  can  be  defined  by 

dist  (P.P.)  =  Jy  log  {A^AsPJ  ..................  (1). 
Therefore 

,  dist  (PiP2)  1  +  c  to-zv,  +  y1?/o  +  3iSo) 
cosh-  —7-=-  —;...(2> 

y  {1  +  C  (^  +  y?  +  Z?W  {1  +  c  (^2  +  ̂ 2  +  zfi}* 

There  will  only  be  one  distance  between  Pl  and  P2.  This  must  be 

associated  with  the  sole  segment  of  the  line  P^P2  which  lies  wholly 

within  the  region  enclosed  by  the  absolute.  This  system  of  metrical 

geometry  only  embraces  those  points  which  lie  within  the  region 

enclosed  by  the  absolute*.  Any  point  in  the  region  to  which  the 
metrical  geometry  applies  is  at  an  infinite  distance  from  every  point 
on  the  absolute. 

71.  The  parabolic  formula  for  the  distance,  arising  when  c  is  in 

definitely  diminished,  can  be  derived  as  a  limit  from  either  of  the  other 

two  cases.     Put  y2c=±l,  according  as  c  is  positive  or  negative,  so 
that  y  increases  as  c  diminishes  numerically.     Then  expanding  both 
sides  of  equation   (3)  of  §  69,  or  of  equation  (2)  of  §  70,  and  pro 
ceeding  to  the  limit,  we  find 

{dist  (PiP,)}2  =  to  -  .r,)2  +  (^  -  y.y  +  &  -  ztf    ......  (1). 

The  parabolic  system  of  metrical  geometry  embraces  all  projective 

space  with  the  exception  of  points  on  the  latent  plane,  which  is  the 

infinite  plane  in  our  system  of  coordinates.  This  is  the  ordinary 
Euclidean  Geometry. 

72.  Exactly  the  same  procedure  can  be  applied  for  the  measure 

ment  of  the  angle  between  planes.     Let  p^  and  2h  be  any  two  planes, 
and  let  ̂   and  t,  be  the  two  real  or  imaginary  planes   through   the 

intersection  of  p^  and  p,  and  tangential  to  the  absolute.     When  the 

*  Metrical  Geometry  of  this  Hyperbolic  Type  was  first  discovered  by  Lobat- 
schefskij  in  1826,  and  independently  by  J.  Bolyai  in  1832.  This  discovery  is 
the  origin  of  the  modern  period  of  thought  in  respect  to  the  foundations  of 
Geometry. 
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congruence  group  is  elliptic,  or  when  the  congruence  group  is  hyper 
bolic,  and  the  line  of  intersection  of  Pl  and  pa  passes  through  the 
region  enclosed  by  the  absolute,  then  t,  and  t,  are  necessarily  not  real. 

Then  the  angle  between  the  planes  is  denned  to  be  ̂  Thus  if  the  two  planes  are  given  by 

^y  +  n&  +  pl  =  0,     /^  +  m.2y  + 

and  6  is  the  angle  between  them,  we  have 

+  n?  + 

As  before,  there  are  two  angles  6  and  .  -  0-  but  it  can  be  proved  that the  whole  angle  round  a  line  is  2ir,  owing  to  the  existence  of  dia- ncally  opposite  regions  in  the  neighbourhood  of  the  line. 
In  the  parabolic  case,  when  c  is  indefinitely  diminished,  the  angle between  the  planes  is  given  by 

73.  The  same  procedure  can  also  be  applied  for  the  measurement 
the  angle  between  two  concurrent  lines.  Let  I,  and  /.,  be  any  two 

concurrent  lines  in  a  plane  p.  Let  t,  and  t.2  be  the  real  or  imaginary tangents  from  the  point  ft .  /2)  to  the  conic  which  is  the  section  of  the 
absolute  by  the  plane/,.  When  the  congruence  group  is  elliptic,  or  when the  congruence  group  is  hyperbolic  and  the  point  ft  .  I)  lies  within  the 
region  enclosed  by  the  absolute,  then  t,  and  t,  are  necessarily  imaginary. 
Then  the  angle  between  the  lines  is  defined  to  be  t-  log  {t&t&}.  Thus 
there  are  two  angles  0  and  v-O  between  two  intersecting  lines,  and tne  whole  angle  round  a  point  is  2?r. 

In  the  degenerate  parabolic  case  the  section  of  the  absolute  by  the 
plane  p  becomes  two  conjugate  imaginary  points  in  the  plane  at iity.  These  are  known  as  the  circular  points  at  infinity.  Then 
*i  and  t,  are  the  imaginary  lines  from  the  point  ft .  /.,)  to  these  points respectively*. 

*  This  projective  view  of  Euclidean  Metrical   Geometry  was   elaborated    by Laguerre  m  1853,  previously  to  the  rise  of  the  general  theory  which  is  explained 
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74.  Thus  Metrical  Geometry  is  in  fact  the  investigation  of  the 
properties  of  a  particular  congruence  group.     Any  set  of  axioms  of 
congruence  (cf.  §§  43  to  45)  form  the  definition  of  what  we  mean  by 
a  congruence  group.     The  investigations  which   are   summed  up   in 
equations  (5)  of  §  65  and  in  equations  (2)  of  §  67  form  the  proof  of  the 
existence  of  congruence  groups  in  a  projective  space  for  which   the 
axioms  of  order  and  of  Dedekind  continuity  hold.     It  is  proved  that 
to  any  convex  quadric  and  to  any  imaginary  quadric   with   a   real 
equation  exactly  one  congruence  group   corresponds.     Also   there   is 
one  congruence  group  corresponding  to  each  imaginary  conic  lying  in 
a  real  plane  and  defined  by  a  real  equation. 

If  the  absolute  is  a  real  quadric,  the  metrical  geometry  applies  only 
to  the  region  within  it.  If  the  absolute  is  an  imaginary  quadric,  the 
metrical  geometry  applies  to  all  the  projective  space.  If  the  absolute 
is  an  imaginary  conic  in  a  real  plane,  the  metrical  geometry  applies  to 
the  whole  of  the  projective  space  with  the  exception  of  the  real  plane. 

75.  It    follows    that    in   relation    to    Projective    Geometry    no 
additional  geometrical  axiom  is  required  in  order  to  establish  metrical 
properties.      But   the   case   is   otherwise   in    respect    to    Descriptive 
Geometry.     The  transformations  of  a  congruence  group  in  Descriptive 

Geometry  are  to  be  one-one  transformations  of  descriptive  points  into 
descriptive  points,  and  all  the  other  axioms  of  congruence  can  be 
enunciated  without  change  of  form.     Thus  when  the  associated  pro 
jective  space  is  formed,  associated  congruence  groups  in  the  projective 
space  must  exist,  which  however  satisfy  the  further  conditions  (1)  that 
proper  projective  points  are  to  be  transformed  into  proper  projective 
points  and  (2)  that  the  congruence  conditions  are  to  hold  throughout 
the  whole  region  of  the  proper  projective  points. 

It  follows  therefore  that  the  convex  boundary  surface  of  the  proper 
projective  points  (cf.  §  30)  must  be  a  quadric  surface,  or  in  the  degene 
rate  case  a  real  plane.  Unless  this  is  the  case  no  congruence  group 
can  exist  in  the  original  descriptive  space. 

Thus  the  Euclidean  axiom  (cf.  §  10)  is  sufficient  to  secure  the 
existence  of  parabolic  congruence  groups  having  as  their  latent  plane 
the  single  plane  of  improper  projective  points  (the  points  at  infinity). 
Also  with  this  axiom  no  other  types  of  congruence  groups  can  exist. 
But  it  is  to  be  noticed  that  alternative  congruence  groups  exist,  namely 
one  for  each  imaginary  conic  lying  in  the  plane  at  infinity. 

In  order  to  secure  the  existence  of  hyperbolic  congruence  groups  an 
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axiom  is  required  which  secures  that  the  boundary  of  the  proper  pro- 
jective  points  is  a  quadric.  Then  it  is  to  be  noticed  that  one  and  only 
one  congruence  group  exists  in  the  descriptive  space,  namely  that  one 
which  corresponds  to  this  definite  quadric.  Perhaps  the  most  direct 
form  of  the  axiom  is  to  assert  that  a  hyperbolic  congruence  group 
exists. 
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