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ABSTRACT

In the past few years some entirely new broadband antennas have

been developed. At the present time it is easy to construct practical

antennas which have essentially the same pattern and impedance over

a 10 to 1, or larger, frequency range. One group of broadband antennas

utilizes the useful property of the equiangular (logarithmic) spiral

curve that a scale change and a rotation are equivalent.

In this paper theoretical methods for determining the electric

and magnetic fields produced by an equiangular spiral structure are

considered. The equiangular spiral structure consists of two thin

conducting strips (arms) with edges defined by equiangular spiral

curves developed on a cone. The structure is considered infinite in

extent with an arbitrary rate of spiral and an arbitrary cone angle. The

planar equiangular spiral is included as a special case. To make the

problem amenable to analysis it is necessary in some cases to restrict

the gaps between the spiral arms to be small.

Expressions for the static (DC) electric fields are derived from

separated solutions of Laplace' s equation. The static electric fields

are shown to be a function of only two variables. The separated solutions

are a product of the circular functions, and associated Legendre functions

of imaginary degree and real order. An infinite summation of the separated

solutions is necessary to meet the required boundary conditions. For

a small gap between the spiral arms the coefficients in the summation

are expressed independently in a simple mathematical form. For an





arbitrary gap the coefficients can not be determined independently, and

the solutions are approximated by a finite sum. The least squares

criterion is used to obtain the best values of the coefficients, and

the coefficients are expressed as the simultaneous solutions of a finite

set of linear algebraic equations.

For the electromagnetic problem, separated solutions of the vector

Helmholtz equation are obtained in an oblique spiral coordinate system.

The separated solutions are similar to those of the spherical coordinate

system. They are a product of Bessel functions of complex order,

associated Legendre functions of complex degree and real order, and the

circular functions. A double summation is required to satisfy the

boundary conditions. Expressions for the coefficients in the summation

are derived in terms of the tangential electric fields in the gap

between the spiral arms.

For the special case of a balanced antenna with narrow gaps between

the arms, expressions are derived for the fields produced in the gaps

by a source at the origin. These solutions make available a means of

calculating the input impedance, the current distribution, and the

pattern of an equiangular spiral antenna.





iv.

CONTENTS

Page

1. Introduction 1

2. The Equiangular Spiral Antenna 4

2.1 The Equiangular Spiral 4

2.2 The Equiangular Spiral Antenna 5

3. The Static (DC) Electric Fields 9

3.1 Laplace's Equation with Spiral Variables 9

3.2 Separated Solutions for Laplace's Equation 10

3.3 The Potential in Terms of Potential at = O 14
3.4 Potential on the Boundary for a Small Gap 15

3.5 Potential on the Boundary for an Arbitrary Gap 16
3.6 Expressions for the Electric Field Intensity 19

4. The Electromagnetic Fields 21

4.1 Introduction 21

4.2 An Orthogonal Spiral Coordinate System 21
4.3 An Oblique Spiral Coordinate System 22

4.4 The Vector Helmholtz Equation with Spiral Variables 24

4.5 Separated Solutions 24

4.6 The Fields from Specified Conditions on the Boundary 30

4.7 The Mixed Boundary Conditions 35

5. The Balanced Antenna with Narrow Gaps 37

5.1 The Electric Fields at = % 37

5.2 Expressions for Cm .m and C .m 40
n+j- n+j-

5.3 The Continuity of Tangential H from Regions I and II 42

5.4 The Far Fields and the Radiation Condition 45
5.5 The Input Admittance 48

5.6 The Problem of Numerical Calculation 49

6. Conclusions 50

Bibliography 51

Appendix A 53

Appendix B 54





ILLUSTRATIONS

Figure
Number Page

1. Spherical Coordinate System 4

2. The Equiangular Spiral Antenna. Developed in the Plane 9 = 7T/2 7

3. The Equiangular Spiral Structure Developed on the Cone 6 = 22.5 8
"o

4. Boundary Conditions at = © 13

5. Electric and Magnetic Fields in a Narrow Gap 38

6. The Summation Method 56





vi

LIST OF SYMBOLS

Page

(3 Phase shift constant 21

V Defined on 18

r Gamma function 12

£ Dielectric constant of the medium 21

ti Intrinsic impedance of the medium 29

9 Conventional spherical coordinate variable 4

Antenna cone angle 4
o

A
6 Unit vector normal to a constant 6 surface 23

u. Permeability of the medium 21

V Separation constant (TE) 27, 34

v Separation constant (TM) 29, 33

li' Separated solution (TE) 26
K

II' Scaler function (TE) 26

II" Scalar function (TM) , 29

t Spiral variable 10, 26

T Antenna parameter 11
n

(f>
Conventional spherical coordinate variable 4

<j) Unit vextor normal to a constant
(f)

surface 23

<4j Potential function of (r, ©, (j)) 8

* Complex conjugate

a Antenna parameter - rate of spiral 4

A Coefficient 11
m

a' Coefficient (TE) 26





LIST OF SYMBOLS (CONTINUED)

vii

Page

A Coefficient for 0<O (TE) 28

11 m
A_ Coefficient for O < (TM) 29
V o

32r| Gegenbauer *s polynomial
n, K

b Power series coefficient 40
P

B Coefficient 14
m

B
m

Coefficient for 0>O (TE) 29
v o

B
m

Coefficient for 6> (TM) 29
V o

C Coefficient 15
m
l m

C .m Coefficient (TE) 33
n+j-

i' m
C .m Coefficient (TM) 32
n+j-

e Naperian base

E Electric field vector of (r, 9, (j), t) 21

E Electric field vector of (r, 6, 0) 21

f Electric field in the gap (r comp.

)

31

F Scalar function 39

r Hypergeometric function 12

g Electric field in the gap
((f)

comp„

)

31

H Magnetic field vector of (r, 6, (f),
t) 21

H Magnetic field vector of (r, 6, (j)) 21

J , Bessel function of the first kind 28
v+h

L Defined on 19

M
n'

M
n

Defined on 44





n n

n n
.

5"
n

N ,

n

P

P
m

V
(cc

viii

LIST OF SYMBOLS (CONTINUED)

Page

Defined on 47

Defined on 44

Defined on 47

Unit vector 22

(cos 6) Associated Legendre function of the first kind 12, 27

Q (cos 6) Associated Legendre function of the second kind 12, 27

<y
m

m (cos e) Defined on 44

„+J-

fp
m

(cos 9) Defined on 44

r Conventional spherical coordinate variable 4

r Spiral variable 8

A
r Unit vector normal to a constant r surface 23

s Spiral variable 8, 23

s Unit vector normal to a constant s surface 23

s Antenna parameter 4
n

u = (3r 23

V Potential function of (O, t) 10

V Gap voltage 40

V Potential function of (r, 9, s) 10

V Separated solution 11

V Potential of spiral arm 8
o

Subscript I identifies the quantity with the region 0<0

Subscript II identifies the quantity with the region 6>6

Prime identifies a TE component

Double prime identifies a TM component





1. INTRODUCTION

Recent years have seen the development and use of a number of

broadband antennas. Experimental techniques have been used to provide

entirely new types of antenna structures which maintain essentially

the same pattern and impedance characteristics over a 10 to 1, or

larger, frequency range. One basis for the design of broadband

antennas has been the "angle method" whereby the boundaries of

the antenna are specified primarily in terms of angles, and thus

lengths are avoided which are resonant at one frequency and not at

others. The biconical antenna, the disc-cone, the fin, and the

equiangular spiral are all examples of practical antenna structures

which are specified primarily in terms of angles.

While the angle concept specifies in general what boundaries

can be used to construct an antenna which might be broadband, it

does not predict what the actual pattern or impedance will be.

To date almost all of the development of broadband antennas has

been of an experimental nature with only a minimum amount of

2
theoretical development, Schelkunoff has derived theoretical

expressions for the pattern and impedance of the infinite biconical

structure by showing that the TEM mode is excited by a source at

3
the origin. Carrel has devised methods for analyzing theoretically

an infinite biconical structure of arbitrary cross section showing

that the infinite structure has characteristics which are independent

of frequency. However, the finite over-all size required in a

practical antenna gives rise to an "end effect" which seriously
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limits the bandwidth obtainable with the biconical antennas of

arbitrary cross section.

Using the "angle method", Rumsey in 1954 proposed a class of

antennas based on the equiangular spiral. The balanced planar

equiangular spiral has been very thoroughly investigated experimentally

4
by Dyson who has shown that it is easy to construct a practical

antenna having frequency independent characteristics over a 20 to 1

bandwidth. He has also shown that over a range of frequencies the

input impedance and the pattern of this antenna are not affected

by increasing the length of the antenna arms. Thus, the equiangular

spiral structure does not have an appreciable "end effect," and

after a critical size is passed the characteristics of the finite

antenna are the same as for the infinite structure.

Experimentally, the balanced planar version of the equiangular

spiral antenna radiates a circularly polarized, bidirectional pattern,

with the two lobes of the pattern perpendicular to the plane of the

antenna. Theoretically, the pattern rotates about a line perpendicular

to the plane of the antenna as the frequency is changed. However,

in the useful frequency range the pattern is nearly symmetrical

about the axis of rotation, and, therefore this rotation has a

small effect on the experimental patterns of the antenna. Recently,

5
Dyson has shown that the balanced equiangular spiral developed

on, a cone can be made into a practical broadband antenna with a

unidirectional pattern.

This paper presents the results of a theoretical study of the

electric and magnetic fields produced by an equiangular spiral structure.
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As the boundaries of the equiangular spiral antenna can be specified

in reasonably simple mathematical terms, it was felt worthwhile to

investigate methods of obtaining exact theoretical expressions for

the fields. To obtain a feeling for the problem, the static (DC)

electric fields were determined first by obtaining separated solutions

of Laplace 1 s equation. The static solutions pointed the way to a

set of coordinate variables which were used to obtain the electro-

magnetic fields as solutions of the vector Helmholtz equation.

While it was desired to determine mathematical expressions for the

fields under the most general conditions, several simplifying

assumptions were necessary. In all cases the spiral structure is

considered infinite in extent, and the spirals are assumed to

continue indefinitely close to the origin. Also, in some places

in the analysis the gap between the spiral arms is assumed arbitrarily

small

.





2, THE EQUIANGULAR SPIRAL ANTENNA

2.1 The Equiangular Spiral

A general equiangular (or logarithmic) spiral curve can be defined as the

intersection of the two surfaces,,

v = * **0

and (2-1)

e = e„

where s , a, and Q are real parameters, and r, 0-, and (pare the conventional

spherical coordinates shown in Fig» 1.

FIGURE 1 SPHERICAL COORDINATE SYSTEM
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The equiangular spiral curve has the useful property that a change

in scale is equivalent to a rotation. If the scale of the coordinate

system is changed by a factor c such that

r = cr (2-2)

the defining equations for the spiral can be written as

v
1
= c

Sf)
ea = s

b
ea(0+4>o ) (2-3)

© = 9

where

O = (ln c)/a . (2-4)

Thus a change in scale by the factor c produces the same spiral as would

be obtained by rotating the original curve by an angle (in c)/a about the

polar axis.

2.2 The Equiangular Spiral Antenna

Equiangular spiral curves can be used to define the boundaries of an

antenna by using four curves having the same values for the parameters a

and eo j
but different values s±, S-, s3 , and S4 for the parameters s .

The parameters s-^ , s 2 , 83, and S4 must be chosen such that

277 a
s
1
< s

2
< s

3
< s

4
< s

1
e (2-5)

One arm of the antenna is formed by placing a thin conducting strip on

corresponding to s- = s and s = s . In a similar manner another strip

with edges coinciding with the spirals s, = s„ and s = s forms a second6 * '© 3 9 4

arm. Near the origin the two arms of the antenna come arbitrarily close

together, and the origin is a convenient place to excite the antenna.
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Examples of equiangular spiral antennas are shown in Figs. 2 and 3.

The infinite equiangular spiral antenna defined above has the use-

ful property that a scale change is equivalent to a rotation. This

assures that the space variations of the fields produced by different

excitation frequencies can be related simply by rotating the reference

axis of the coordinate system. Therefore, the pattern of the infinite

equiangular spiral antenna rotates as the excitation frequency is changed,

and the input impedance is independent of frequency.





FIGURE 2 THE EQUIANGULAR SPIRAL STRUCTURE DEVELOPED IN THE PLANE Q = 2T/2





Q*O c

FIGURE 3 THE EQUIANGULAR SPIRAL STRUCTURE
5°.





3. THE STATIC (DC) ELECTRIC FIELDS

3.1 Laplace's Equation with Spiral Variables

With one of the arms of an equiangular spiral structure at the

potential + V and the other at -V , the potential ^(r, ©,</>) at any point

in space is given by the finite solution of Laplace's equation.

V2
+ = (3-1)

which satisfies the boundary conditions at = 9 that

4> = +V for s_ e < re r < s e

4> = -V for s e < re r < s„ e
o 3 4

k = 0, -1^ -2, . . . . . (3-2)

The potential *\> and the boundary conditions are functions of all three of

the coordinate variables, but the boundary conditions are expressed in

-ad)
terms of © and re . This suggests the introduction of a new set of

—ad)
variables, one of which is re . A set of variables which has been

found convenient is

r = r

-ad)
s = re

9=9 . (3-3)

Laplace's equation in spherical coordinates

r r sin 9 r sin © dmT
(3-4)
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provides a convenient starting point, and in terms of "r, 0, and s Eq. 3-4

becomes

t-,2- 1 9 ,2 8v, 2s32V x l 3 ,2 dy a
2
s 3 , 8v\

^2 8r 8r :r Q s Q-t ^2 8S 3S -2
sin2 8S «s

1 3 3v
* —4 — (sin jg) = (3-5)

r sin °

with ^(r, 0, 0) = V(r,0,s).

The boundary conditions on V are independent of r. If Eq. 3-5 is

independent of r when 3v/3r is assumed zero, the V which satisfies the

boundary conditions is independent of r. Assuming By/dr = in Eq. 3-5

gives

3 2 3v a
2

s 3 3v 1 3 3v

sin 9

which is independent of r, and the assumption is justified.

Therefore, the original three dimensional problem in spherical coordinates

is reduced to a two dimensional problem, and the static potential can be

expressed in terms of only two variables s and, 0.

3.2 Separated Solutions for Laplace,s Equation

A further simplification in the two dimens

the boundary conditions is obtained by use of the substitutions

t = in s, V(0, t) = V(r, 0, s)

which reduces Eq. 3-6 to

a
2

3
2
V 3v 1 8 3Vv

sin 6 or
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Letting t = in s , the boundary conditions in terms of and T are

V = +V
q

for T + 27Tak < T < T + 27Tak

V = -V for t + 277ak < t < T. + 27Tak
o 3 4

k = 0, -1, -2, -3, . . . . (3-8)

which are periodic in t with period 27Ta. Separated solutions of

Eq. 3-7 can be obtained by assuming a solution of the form

m
V =A 6eJaT (3-9)
m m

where

A is a complex constant dependent only on
m

st (0) is independent of T,

and

m is required to be an integer to have solutions with a

periodicity in t agreeing with the boundary conditions. The use of a

sum of complex functions to represent a real potential is convenient as

separated solutions of the form (0) cos = t or (0) sin — T
, individu-a a

ally, will not satisfy Eq. 3-7. It is shown in Appendix A that, if the

potential is assumed real at O = , the solutions presently obtained

give real values for the potential for all and t„ It is found that

V
ffl

will satisfy Eq. 3-7 if ©satisfies

4f *ot.«i|* [«=)(! J =)--4-]0 =0 . (3-10)
d© sin

Eq. 3-10 is a form of the associated Legendre equation of degree j — and
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order m. Many of the references on the associated Legendre equation

consider only the special case of integral order and degree. References

7
which consider the general case of complex degree and order are Hobson,

8 9
Snow, and Schelkunoff . The notation used in the following is the same as

used by Hobson.

The two linearly independent solutions of Eq„ 3-10 are the associated

Legendre functions of the first kind P. m (cos ©X and the second kind
JT

Q.m (cos 9) . For integral m and real 9, P. (cos 6) is finite for all ©
Ja~

Ja

except 9 = 7T, and Q m (cos 9) is finite for all © except 8 = or 7T,

ja
*

As Q^in (cos 9) becomes infinite at both © = and 7T, it is not useful in

the representation of the desired potential function and need not be

considered further,, For 9 real and m a positive integer, P»& (cos 9) is

given by

I*M (cos ©) .^ X
(m*I

*-^
)

X ^^foa-jf; »+l+jf ; m+l; sin
2

f ) (3-11)

and for m a negative integer by

A (cos 9) =
S±n 9

.
PVm-j^, -m+l +J S; -a+1 ; sin2 §) (3-12)

J
a"

2-m(-m)."
a a 2

where h is the hypergeometric function

and T represents the gamma function.

The fact that there are no solutions of Eq„ 3-10 which are finite

13)
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for all real values of © makes it necessary to divide the space about the

spiral structure into two regions with a different mathematical representa-

tion for the fields in each of the regions. The logical boundary to use is

the cone © = © as shown in Fig. 4„

.©=0

REGION I

©^T©

27Ta

REGION II

©>©

s .= s„w 2

W s = s
4
e

7
27Ta

I

I

CONSTANT PLANE

•-5

In region I for © <£ © , F^m (cos ©) can be used in representing the

potential, and in region II for © >© , P . m (~ cos 9) is appropriate,
° J a
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On the boundary surface 6=6 the potential from both regions must be +V

or -y on the arms of the spiral; also, the expressions for the potential
o

from the two regions and their normal derivatives must match along the

gap between the arms. The forced separation of the potential expressions

into two regions greatly complicates the problem as it becomes a boundary

value problem with mixed boundary conditions.

The appropriate separated solutions of the two dimensional Laplace! s

equation with spiral variables are

A
V = A: P™ (cos 9) e

&
9 <

m m .m — o

and (3-14)

v = b p"... (-cos e ) e eye
m m .m — o

J
a

A single value of m.in Eqs. 3-14 is not sufficient to meet the required

boundary conditions, but a summation of terms of this form over all

integer values of m will be found adequate. The expressions for the

potential at any point are

V(9,t) = \ A P
m

(cos 6) e
a

6^9
/ m .m o

and
mst"°°

„ <3 ~15 >and w ^m
r

(-cos 0) e
a

e>eV(0,t) =\b P
m

Z_ m
J;

Expressions for the coefficients A and B will be derived in the
m m

succeeding sections.

3.3 The Potential in Terms of Potential at Q = 9

The coefficients A and B will be determined first in terms of
m m

the potential distribution; V(9 ,t) existing on the boundary 9=0.
The potential on the boundary is a continuous periodic function of t,
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and may be expanded in a Fourier series as

<v t
> £ C

m
G

(3-16)
m = *-e»

with the coefficients C given by
m

t +-2fla

i r -*
c
. 5m V(V T) e dT <3 "17 >

From Eqs. 3-15 and 3-16 the relations between A , B , and C aremm m
C

A = E
m

P
m

(cos )
.m o

and
a

(3-18)

C

B =
"

•

m
P
m

(-cos e )m o
JI

Eqs. 3-17 and 3-18 express the coefficients A and B in terms of an
m m

arbitrary distribution of potential in the gap with respect to r, and

they assure that the potentials from regions I and II match at the

gap. The potential distribution in the gap is not arbitrary, but

is restricted by the requirement that the normal derivatives of the

potential match at the gap.

3.4 Potential on the Boundary for a Small Gap

As the gaps between the spiral arms are made small

t — t and t —T + 277a . (3-19)

For arbitrarily small gaps the potential is specified over the entire

cone = as
o

V = + V t + 27Tak < T < t + 27Tak = T
3

+ 27rak

V = - V T + 27Tak < t < t + 2?rak = t + 27Ta(k+l)
O J 4 1

k = 0, + 1, + 2, ... (3-20)





L6

C is given by
m

C =
m 27Ta

•A T
i+

27Ta

V e dT -
o

J?T
V e dT
o

(3-21)

and

C = V
o o

-Pm 77 m

" T2- T
l

-
J;

T
2 -JiTi

m * (3-22)

Substitution of C from Eq. 3-22 into Eqs. 3-18 and 3-22 gives an
m

explicit expression for the potential at any point in terms of the

parameters a, t t and as

o I
*3

77a

.m -t P (cos 6)

- e
J a J a 0^0

e - o

p
m

(cos e )
.m o
J-

m _

-Jf
T
2 'J?!

e - e

P (#cos 6)

P
m

(3-23)

Ja
e 0>0

(-cos )
o

3.5 Potential on the Boundary for an Arbitrary Gap

With an arbitrary gap between the arms of the spiral the problem

of determining the potential distribution in the gap is complicated

by the mixed boundary conditions.

Exact solutions for some two dimensional potential problems

with mixed boundary conditions can be obtained by using conformal

mapping techniques . For example, an exact expression can be obtained

for the potential distribution across a slit in an infinite plane
12

sheet . For a small gap in the equiangular spiral structure the

potential in the gap might be approximated by iising the distribution

obtained from the plane sheet case, however, there does not appear

to be a simple method of deriving an exact expression for the potential

in the gap. Any method seems to depend on an iterative procedure,
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the simultaneous solution of an infinite set of equations, or the

equivalent. However, if the gap potential is approximated by using

a finite number of terms in the Fourier expansion of Eq. 3-16, the
13

least squares criterion provides a method for determining the best

values for the coefficients. Approximating with 2M+1 terms of the

series and using the subscripts I and II to identify the approximate

solutions for 6<6 and 0>0 respectively, the expressions for the
o o

potential are from Eqs. 3-15 and 3-18,

i, p
»

v (0,t) = \ c J& e " 9<0
i / m „m -_ _

„, o

(3-24)

0>©
o

In terms of C the potential at 9 = is
m o

(3-25)

m=-M
For t <t<t the error in the potential due to using a finite number

of terms is

and for t'<t <t the error is

-V
o

For Q<LQ the normal derivative Of the potential is

*i
0=0 / m d0 "

(3-26)
. o
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where

and for 9>8

d P
m

(cos 9 ) d P
m

(cos 0)m o m

d6

de

d©

dP (-cos )
.m o

0=0

0=0 m d0 (3-27
m = -M

As the normal derivatives should be equal in the gap at = , the
o

error is

where

96

Vm =

0=0 ~5e
o

0=0
v C e
'm m
^

dP (cos )
;m o
J a

d0

P (cos )
T&. O

Ja

dP (-cos )
m o

J a

d8

P
111

(-cos 6 )
.m o
J~

(3-28)

(3-29)

The mean square error M over a period is

2

n 2

u
Vo-

J#T
C e

m=-M

dT +

3-r

v C e
'm m

m = -M

dT

-r 2

C e

3 m = -M

dT +

U

J +2lTa
-, 2

Y C e
"m m

dT

(3-30)

By setting the derivative of M with respect to each C equal to zero,
m

a system of 2M + 1 equations and 2M + 1 unknowns is obtained for any

ndn-2*o width of the spiral arms. As V is real, C is the complex
o -m

conjugate of C , and the equations may be reduced to M + 1 equations
m

and M + 1 unknowns. Using * to indicate the complex conjugate, the
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first of these equations is

(
[
(T

2
" T

l
+ T

4 " V (1 " Wo* >
+ 27ral Vo* ]

" £ U " Y Y*

[C L + C L 1 = V [t - T
L m m m -mJ o L 2 1

m=l

4
+ V (3-31)

and the remaining M equations are obtained by using integer values of p

from 1 to M in

C* [(i .)(i v v £ ) + 27Ta v v
Y
p

Y
p

Y
p

T
C* L (1
m p-m "Yr,Y * ^

P'm

m =
m p+m

v y ) = -7- V
'Pm JP o

^2 J a 1

1
m^p

J
a 4

J
a 3e + e

^(3-32)

where

\ ~ Jk
*. iiSr

a 1 a 4
e + e

KT
3

(3-33)

The simultaneous solution of the M + 1 linear algebraic equations of

Eqs. 3-31 and 3-32 gives the best values for the C s in the least

squares sense for arbitrary parameters in the spiral structure, and

Eq. 3-24 expresses the potential in terms of the C s„
m

Even though Eqs. 3-31 and 3-32 may be simplified somewhat by an

appropriate choice of the various parameters, the labor involved in

making a numerical calculation of the potential does not seem justified.

The static solutions were originally considered to obtain a feeling

for problems with spiral boundaries and, also, with the faint hope that

there might be a simple relation between the static and time-varying

solutions. The fact that relatively simple expressions for the

potential can be derived when the gap between the spiral arms is

small indicates that it is worthwhile, at least for this special case,

to consider the much more difficult problem of determining the

electromagnetic fields produced by the equiangular spiral antenna.

3.6 Expressions for the Electric Field Intensity

The three spherical components of the electric field intensity
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can be determined by taking the negative of the gradient of the potential,

E = - grad V (3-34)

The resulting expressions for the electric field intensities in terms

of the C s for 8<0 are
m o

P
m

(cos 0)

1 \ .m _ J a J a
E *= — / i— C e
T r / Ja m m , _ .

P (cos 9 )
.m o
J a

dp (cos 9)

a .hi

de JI
T

m _m . _ N (3-35)
P (cos 6 )

oo P (cos 9)
3~ JTT

- jm C
r sin / " m m n .

P (cos )
.m o

m=- oo J a

and for 0>9 the expressions are the same except that P (cos 9)
o .m

J a

and dP (cos 9) are replaced by P (-cos 9)

d9

and dP (-cos 9) respectively. It is noted that E and E . for any

3Z

d9

spiral structure and all 9 are simply related by

E0=-sTn-9 E
r (3-36)

for the static fields.
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THE ELECTROMAGNETIC FIELDS

4.1 Introduction

To determine exact solutions to a general antenna problem.

Maxwell s equations are often used as a starting point. In differential

form for a homogeneous, isotropic, sourcefree region they are

3H
curl E = - u. ^=

(4-1)
- 3e

curl H = € £= -

The elimination of E (or H) in Eq. 4-1 results in the vector wave

equation

a
2i

curl curl E + u. e -*—— =
at

2 (4-2)

in E (or H) . By considering monochromatic sinusoidal oscillations

the time dependence may be removed. Using the complex number

iwt
representation with e time convention

E = Re

H = Re

and the vector wave equation reduces to the vector Helmholtz equation

in E (or H)

* :-"']J"t|
(4-3)

H e
JUt

]

curl curl E = (3

2
E (4-4)

2 2
with (3 = " u.e

It is desired to find solutions of Eq . 4-4 which satisfy the boundary

conditions of an equiangular spiral structure and meet the physical

requirements of an electromagnetic field.

4.2 An Orthogonal Spiral Coordinate System

To obtain the needed solutions of the vector Helmholtz equation,
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it is very desirable to have an orthogonal coordinate system which "fits"

the boundaries of the equiangular spiral structure. When the antenna

is developed in the plane 6 = 11/2 an orthogonal coordinate system which

"fits" the antenna may be developed. In terms of the usual cylindrical

coordinates p, (f),
and z let

8 - P .-*

r\ = p e^/
a

(4-5)

z = z

and £, "H, and z form an orthogonal system. In the plane z = a line

of constant £ coincides with an edge of the antenna, and lines of constant

Tl form a set of equiangular spirals which are perpendicular to the edges

of the antenna. However, this coordinate system is not one of the limited

number of orthogonal systems in which the vector Helmholtz equation is

separable, and no method could be found to adapt it to an exact solution

of the equiangular spiral antenna problem. This system is useful

in solving spiral problems in which there is no variation in the z

direction, and is mentioned here as it seems to be an "obvious" system

to use.

4.3 An Oblique Spiral Coordinate System

The fact that the static potentials can be expressed in terms of

only the two variables s and 6 suggests their use as the basis of a

spiral coordinate system. The time-varying fields can not be expressed

in terms of s and only, and the "logical" choice for a third variable

is one which will complete an orthogonal system. Letting p =p(r
i
,0

i) 0)

represent the third coordinate variable, a unit vector p which is





23

normal to a surface of constant p is given by

A '

To form an orthogonal system p must satisfy

A A *
p = £ X 6 (4-7)

A A
where s and 8 are unit vectors normal to constant s and p surfaces

respectively. The expression for s is

grad s sin 9 a

- |grad s|

A
r - 6

J a
2

+ sin
2
% yja

2
+ sin

2
6 (4-8)

Combining Eqs. 4-6, 4-7, and 4-8 gives

grad p a a sin 6 £
r
5—;r-t- = r +
grad p ' '- ' ~

y2 2 / 2^ 2
a + sin

\J
a + sin G (4-9)

which leads directly to the three separate equations

. 2
9p I .

I
a 3p _ , 9p I . I r sin 9

|f
= grad p , 3q- = 0, and ^ = grad p

y a + sin 9 y a +
2

sin 9

(4-10)

From Eqi 4-10, p must be both independent of ©, and

9p/or _ a

The desired function p(r,6,^>) does not exist, and it is not possible

to form an orthogonal coordinate system using s and 9 as two of the

variables.

For lack of a better set, the variables

u = (3r

e = e (4-ii)

-ad)
s = re T

are used. This oblique coordinate system has two distinct advantages.

It permits separated solutions of the vector Helmholtz equation which
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are similar to those obtained with the sbherical coordinate system.

Also, with it both the vector Helmholtz equation and the boundary

conditions are independent of p. As this system is oblique it is

often convenient to express the various components of the field

vectors in a mixed system using the spherical unit vectors r, 9,

A
and (£, and the spiral variables u, 9 and s. At times the spiral unit

vectors s and p given by

a sin 9 a .
'„ £

\/~2
. 2 " /~2 ". 2 'v a + sin va + sin 6

(4-1^)
a a a sin 9 2
2 =

;
£ +

;

<p

/~2
, 2 ' /~2

. 2
'

v a + sin va + sin

and the field intensities in these directions will also be used.

4.4 The Vector Helmholtz Equation with Spiral Variables

14
The vector Helmholtz equation expanded in spherical coordinates

is given in Eq. 4-13. For |3 ^ in a mixed spherical spiral system

Eq. 4-13 becomes Eq. 4-14. Originally the vector Helmholtz equation

is a function of four variables r, 0,
(f),

and (3, but Eq. 4-14 (and the

boundary conditions) are a function of only the three variables u,

s, and 0.

4.5 Separated Solutions

As Maxwell s equations include the relation div E = O, the vector

solutions of Eq. 4-14 may be expressed in terms of only two scalar

functions. One of the scalar functions can be chosen to generate a

transverse electric (TE) field with E =0, and the second scalar
r

function chosen to generate a transverse magnetic (TM) field with

Hj. = 0. Using a prime to indicate the fields of the TE solution

and double prime for the fields of the TM solution, the total electric
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and magnetic fields are

H = h'+ H" (4-15)

Considering first the TE case, a scalar function IT = n (u,6,s) which

gives a field with E' = may be derived from

/ _ curl r II

^ (3 (4-16)

E satisfies all three of the equations contained in Eq„ 4-13 if II

is a solution of

.n e |_

a . an' 1 a
2

v a an' a
2
n'

(1 + —2~
) s n (s

ai>
+ us 3IS5

sin 9
sinel^ (sine

ae >

2 a /S an' 2 a
2
n' 2U > n tA ,„ x+ u -a- (- -S-) + u —^ + u n = . (4-17)

3u u 3s g 2

The solutions of Eq. 4-17 will be obtained in separated form, and as

more than one of the separated solutions will be needed, let

H'-5V« (4-18)
K

where A is a constant and [_± indicates a summation over all appropriate
K

K

values of the separation constants. Making use of the same substitution

that proved useful in the static solutions,

t = In s,

n' satisfies Eq. 4-17 if Tl ' is a solution of

i_[8

Ln e[_a"uTelae
(sin 8 ST

. fU a
2

,

8X, 9X
+ 2,1**,

sin 9 8t

a
2
?r'

u
2 —^ + uV = (4-20)

3u
K
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Assuming a separated solution of the form

\ " U(U
> *»> e

(4-21)

with U independent of 8 and t, and independent of u and t, TT
K

is a solution of Eq. 4-20 if U and e satisfy the ordinary differential

equations
o

d^Q + ptn e ^ + [v(v+i>-
m

] 0=0
d0 sin 6 (4-22)

»'§*jh.£ + r«^vc*a>-jSo-#]u.-o •

(4.23)

V is a separation constant, and the appropriate values for v and m

are still to be determined. TQ have fields which vary periodically in

<f)
with a period of 27Ta, m must be integral. It will later be shown

that the required values of v are complex.

Eq. 4-22 is similar to Eq. 3-10 obtained in the static solutions

and is a form of the associated Legendre equation of degree v and

order m. The two linearly independent solutions of Eq. 4-22 are the

associated Legendre functions of the first kind P (cos 6) and the

second kind Q (cos 0) . For m zero or a positive integer there are

no solutions of Eq. 4-22 which are finite for all real values of 6

unless v is an integer greater than or equal to m. Since v is not to

be an integer, it is again necessary to consider solutions in two

regions as illustrated in Fig. 4. For the required values of v,

m
Q (cos 0) becomes infinite both at = and 11 and is not useful

for representing a physical field. P (cos 0) is finite for all
v

except = fl", and for m zero or a positive integer is given by

r>
m

, ^ (-)
mr (ft+m+1) sin

m
rp.

, . .2 6,P (cos 0) = ~——^ ^-X j- r (m-v,v+m+l; m+1 ; sin ^-)

2 r (v-m+1) m

!

(4-24)
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and for m a negative integer by

« m / «x sin ©IT7
/ , j 2 6\

P (cos 9) = |- (v-m+1, -m-v: 1-m: sin -)
2"",(-m,i

r 2
(4-25)

m
P (cos 0) may be used in representing the fields in region I for

0<© , and P (-cos 0) used in region II for 0> .

o v o

Solutions of Eq„ 4-23 can be expressed in terms of the Bessel

functions as
-i-

U(u) = u2u Z ,(u) (4-26)

where Z i(u) represents a Bessel function of order v+|. Watson

has given a very detailed account of the properties of the Bessel

functions of complex order. The Bessel function of the first kind

17
J i (u) of order V+^is defined by

(-)
p
(y*5

J
v+i

(u) =
/_,pV r(v+P+l) (4-27)

For complex values of v, J A (u) and J x (u) are linearly independent
V+2 ~V~2

solutions of Bessel 's equation, and, therefore the needed solutions of

Eq. 4-23 can be expressed by using only Bessel functions of the first

kind.

Using the subscripts I and II to indicate solutions valid for

-CQ and 0>0 respectively, the general forms for the scalar function
o o

II which generates the TE part of the field are

for region I, 0<0

^ =Y A
/m Ju 3a

J 1
U)

P
m

(cos 0) e
a

1 L± v v+h v
(4_2g)
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for region II, 6 > 9

.m .m

i V^ ,m h
J
a (u) m „

'

n
= =2, E

"
J^ p

"
<_cos e) e

<4 -28 >

vm
In a similar manner the expressions for the scalar II which generates

the TM part of the field are

for region I, 8< 9 .

o
.m .m

n // V > m £
~
J a T (u) „ m . ^ -V

II = > A- iru J_ i P_ (cos 9) e
i l_^ v v+£ V

for region II, 9>9 (4-29)

n // V^ r>
//m £

"
J
a T (u) „ m , ^ J an^

=2^ b
p

u u J
v+£

p
v

(
"cos e) e

vm
where v is the separation constant.

From Eqs. 4-16, 4-28, 4-29, and Maxwell 's equations, the following

expressions for the electric and magnetic fields with spiral variables

may now be derived.

TE Components - Region I 9 < 9

E' = (4-30a)
r .m .m

T

E
9 = " u-tilT9 ^V (j

a>
U U Vi P

V
(C°S 6) G

(4-30b)
mv

.jHl ^ dP
n
(cos 9) j?r

1 V^ /m £
J a T (

9 u l_± V V4-|

(u) v

d8 (4-30c)

777V
.m m

/m i
"
Ja T (u) -

"JT|H
r
= ^2 7

v(v^ 1 >
V v+i v (4-30d)

u mv





J 1 Y /m \
"
JI

L = — / . A u u
e u i-—

> v
mv

V (U ) (u)
—J 1 + J 1

u v+i v-£

dP
v
(C0S 0) j-T

de

30

(4-30e)

JTIH
(j) u sin

a'- (j-) A~
J
* L*j « +

v
U a'

[ u v+* V*
(u)

P (cos 0)e

(4-30f)

TM Components - Region I 0<G

J- = 1. ) v<v+l) A-
m

u^u"
Ja

J_ <
u)

P_
m

(cos 0) e^
r

u
2 ^ V v+i V

(4-30g)

A_ u u
v

v . (u) (u)

u v+* v-\

_ _s TV"*Au*u

"
Ja

f- ^j (u)
+ j

(u)

u sin Z^ A
v CVU u

L u
J
v+| + J

v-|

d P_
m

(cos 0) j-T
v a

d0 (4-30h)

h J
(U) m. _ x

J a
P-(cos 0)e

(4-30i)

jtih; = (4-30j)

JHH*
u sin

) "m,.m. |

L>\ (JI ) U U
mv

-j- j-'
"

J- 1

(U)
P_
m

(oos 0) e
a

v+i V (4-30k)

j^lH / . A u u
4> u <-e v^ mv

m m . m
, ,

d P_ (cos 0) j-T
a (u) v _ a

J
V+* d0

e
(4-301)

In region II for 6> the general expressions for the fields are the
. o

same as those given in Eq. 4-30 with A , A_ , P (cos 0),& M
v v v

d p (cos 0) d P (cos 0)
v

do '
p
v

m
<cos e)

>
and

as
replaced by B , B_ ,

v v '

P
y

(-cos 0)

d P (-cos 0)

d~0

d P. (-cos 0)
m v

P_ (-cos 0) , and ——
:

—

v atf

4.6 The Fields from Specified Conditions on the Boundary

The values of v, m. A , A_ , B and B_ of Eq. 4-30 can be
v v v v

determined in terms of the tangential electric field at 9 = ,

o
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For an antenna developed on the cone 0=6 with one conducting arm

between T and T and the other between T and t , the fields are

periodic in Tj the tangential field intensity over one period may

be expressed as

E 1 ^a = T-,< T < To» T < T < t\
r J 0=0 1 2

'

3 4
-* o

(4-31)

= f(u,T) T < T < T T < T < T +27Ta

E,1QQ =0 T
1
< T < T „» T < T < T

(j)Je=Q^ 1 2 3 4

= g(U,T) T < T < T T < T < T +27Ta

f(u,T)and g(u,T) are the r and components, respectively, of the

electric field intensity in the gap and are assumed specified.

* w

As E ; =0, A_ and B_ are determined from E 1 n „ only.
r v v r J 0=6

o

For any constant u, if E 1 in one period is continuous except
o

for a finite number of finite discpntenuities and has only a finite

number of maxima and minima, it may be represented by a Fourier

series whose coefficients are functions of u alone.

Thus

,

r-7 j-t
i? 1 - ) -e fa's o a

(4-32)

(4-33)

18
Making use of Gegenbauer^ generalization of Neumann } s expansion ,

uf (u) may be expanded in a series of Bessel functions. Considering

u, as a complex variable, if uf: (u) is an entire function it may be

Ofir- —oo

a
e

with
f™ (u) :

m 27Ta
(

[ 3 _JI
T

1

T
2

T
i+

27Ta _.m
T

f (u,t) e
a

dT -
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expanded in the series

-%(-> - 1o ^«~J

° u&
n=0

(4-34)

which converges for all u. The coefficients Cm may be found by

making use of Gegenbauer's polynomial/-
] defined by

r* 2p

R (u) 2
n+/C

(n+/C) ) r(n-p+/Q /u\
n>*

=
u
n+1 £o " ~^n2

J

19

(4-35)

R
n,K

(u) and the Bessel functions of the first kind satisfy the relations

«-*j <u>R <u > 2 2
J x/ '

i « ' du = ° k * n

(4-36)

-K T (u)
u J R £

U)
du = 2Tj

n, a

where C is a closed contour encircling the origin once in a positive

direction. Using these expressions, Cm can be expressed in terms

of f (u) as
m

C
Um
m= J— /uf (u)R <">».,

n+j- 2?Tj / ni " 'n,£+j-du, (4-37)

or in terms of f(u,r) as

C ,
.m

n+j
a ja(27T)

>& t +27Ta .m
1 -j-t

uf(u,T) e dT + uf(u,T) e dT
p (u)

M
n,*fj5

dU

(4-36)

E has now been expanded in the double series

o

E
rl e=e

,. -f M (u) A
' m 2 -j— a

C .m u a J t .m e
n+j— u n+S+j-

m=-oo n=0
(4-39)
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Comparing Eqs. 4-39 and 4-30g the characteristic values of v are

9 = n+JI (4-40)

with n taking on integer values from to + c», and m integer values

from - o* to +oo . Also, .„

J'm
C + .m

« ii
n+j—nm l m Ja

A- = A
. j =

v n+j- .
,
.m. , , .

.m. _ m (cos )J a (n+j-)(n+l+j-) P^m
(4-41)

and * m
C .m

"m »m n+J a
B_ = B

,
.m

V n+j— .
,

.nu .
,

. . .m. _ m (-cos 6 )a (n+j-) (n+l+j-) P .
.m o'

<* a- nr J

—

Therefore, Eqs. 4-38, 4-41, and 4-30 used in this order give explicit

expressions for the TM components of all the electric and magnetic

fields in terms of the specified tangential electric field in the gap.

After the TM components of the field are determined, the TE

components may be obtained in a similar manner.

Expanding EjJ in a Fourier series,
^ o

= / g (u) e
/ \ m
m=-

T .m />T +27Ta .m /OT +27Ta .m
3 "JrT I 1 "Jtt I 1 „-i ~JrT

g„(u) =
I

g(u,T)e dT +
f

g(u,T)e dT -
J

E^ I

q
e dT

X.

Expanding ug (u) in a series of Bessel functions,
" "• .m

, x > „
v m 4

J a (u)
j (u) = / C , .m u 2u J , J, .m
'm Z_a n+j- n+|+j-

n=-l

with

-'""ii / . in -;-• a—- (];-..;;
:i

(4-44)

m-j- s»j / m n+l,-§tj-
(4.45)
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These equations express E
<P e=o

in a double series as

e=e L^ / C j u 2u
l_L n+j-

-J-
(u)

J i
.m e

n+i+j-
oo n=-l (4-46)

Comparing Eq. 4-46 with Eq. 4-30b the characteristic values of v are

v = n + j- (4-47)
a

with n taking on integer values from - 1 to +<** , and m integer values

from - e=° to +<=*>. Also,

A = A .m =
v n+j-

-C .m
n+j-

d P .m (cos 9 )n+j- o

and

de

-C .m
n+j-

B = B .m
v n+j-

d P .m (-cos )
n+j- o

d6

(4-48)

In terms of g(u,T). Eq. (4^-45) can be expressed as

+27Ta

C .m =
n+j

a ja(27T)

jm

3 -3-r 1' -j-T

ug(u,T)e dT + I ug(u,T)e dT

sin 6

C .m
n+l+j-

C m
n-l+j-

(n+l+j-) (2n+3+2j-) (n+j-) (2n-l+2j-)

R /
U

> mdu

(4-49)

where C m is taken as zero for k< 0.
k+j-

Eqs. 4-49, 4-48, and 4-30 used in sequence give explicit expressions

for the TE components of all the electric and magnetic fields in

terms of a specified tangential electric field in the gap.
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4.7 The Mixed Boundary Conditions

Having derived expressions for the electromagnetic fields at all

points in terms of the tangential electric field at 6 = 9 , one is

faced with the more recondite problem of determining E, at 6 =
—tan o

when the antenna is excited by a source at the origin. Assuming E

in the gap, and from it calculating the performance of the antenna,

is essentially the equivalent of assuming the current distribution

on an antenna. Useful results are often obtained from assumed current

distributions, and an assumption for E in the gap based on experimental
—tan

measurements could be made. However, this procedure somewhat avoids the

problem, and it would be much more desirable if exact expressions could

be derived. The cqrrect E in the gap will make H continuous
-tan -tan

across the gap, will correspond to a finite input voltage at the origin,

and will make the origin a source of energy. The complication of

making H continuous across the gap is due to the fact that there
—tan

are no solutions of the associated Legendre equation of order m and

degree n + j— which are finite for all 0. This makes the general

problem one of mixed boundary conditions with E^ specified as
—tan

zero over the surface of the metal arms and H specified as continuous
-tan

across the gap. The solution of problems in electromagnetic theory

with mixed boundary conditions normally lead to an iterative procedure

where an approximate solution is assumed and from it better approximations

calculated, or to the simultaneous solution of a large (infinite) set

of simultaneous equations.

Regardless of the method used it seems highly desirable at
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this point to consider approximations or simplifications which will

reduce the complexity of the problem. Using the static solutions as

a guide, the logical simplification is to consider that the gaps

between the antenna arms are small. The equiangular spiral antenna

with small gaps is a practical antenna having broadband characteristics.

To determine E^ in a wide gap one must find both E and E ., each
—tan r 9

of which is a function of two variables, u and t. For a narrow gap,

however, the electric field is always across the gap, so it is necessary

to find only E which is a function of u only. Also, by making the

arms of equal width the variations of E in the gap with u will be
s

the same for both gaps. For these reasons the next section will

develop a routine for determining the electric field produced in a

small gap of a balanced equiangular spiral antenna by a source at

the origin.
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5. THE BALANCED ANTENNA WITH NARROW GAPS

5.1 The Electric Fields at = 6
o_

As the gaps between the arms of the equiangular spiral antenna are

made narrow, T — t and t —t +27Ta. If the antenna is also balanced

(i.e. the arms are the same width) T = t +77a. Without loss of

generality, the antenna can be rotated on the coordinate axis to make

T =0
(5-1)

r
3

= TTa.

When the gaps are narrow it is convenient to consider the components

of the electric and magnetic fields which are in the directions of the

unit vectors s and p defined by Eq. 4-12. Using Eq. 4-12 the s and p

components of the electric (magnetic) fields E (H ) and E (H ) are
s s P P

sin a _ „
E -

v/~2 . 2
r J 2

y a + sm © y a + sin
2
e

and (5-2)

a sin 6
E„ = E + E

,

p r^ 2
r

/ 2 2
y a + sin y a + sin

The s component of the field is "across" the gap, and the p component

is "along" the gap.

The fields in the gap are illustrated in Fig. 5. As the antenna

arms are made of thin sheets of conducting material, the thickness of

the arms A is assumed arbitrarily small, but not zero. As the gap

width A t approaches zero, E evaluated in the gap must approach zero.
P

The field vectors satisfy Maxwell' s equations and the well known

20
conditions at the boundary surface between different media . E is
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FIGURE 5 ELECTRIC AND MAGNETIC FIELDS IN A NARROW GAP
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zero inside the metal arms, and since the tangential components of E

are continuous across a boundary surface, E is zero just inside either
P

edge of the gap at the points T = t and T = T_ . If E evaluated in
£ 3 p

the gap did not approach zero as At—>0, E would be discontinuous
P

with respect to t between T = t and T = t
. However, this discon-

2 3

tinuity in E is not allowable as the media is uniform between T = T +

P 2

and T
t When the gaps are made small the determination of the tangential

electric fields on the cone 0=6 is simplified as the p component
o

approaches zero, and only the s component need be found.

As the gaps are made small, E evaluated on the cone 6 =< 6 is
s o

zero for all values of u and t except T =0, 77a where it becomes

infinite. The integral of E-dl across the gap represents a voltage and

must be finite. Therefore, when the gaps are small an approximation

for the tangential electric fields on the cone 6=6 is

E
sle=e

= F(u)
[
6(T_0) " 5 (T " 7ra)]

o

(5-3)

E
p]6=6 = ° •

o

6(t-t ) represents the Dirac delta "function" defined as
o

6(T-T ) = T 4 T
v o r o

6(T-T
o
) = c^> T = T

O

^
T
o
+€

.

6(T

T -€
o

-T )dT =
O

^ 1 >

(5-4)

and F(u) is an arbitrary function of u still to be determined.
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The voltage V(u) across the gap is given by

V(u) =
j
E'dl (5-5)

^across gap

Integrating Eq. 5-5 relates V(u) and F(u) by

P V (u) =
U F(U)

(5-6)

v a + sin ©
o

Since the antenna is balanced the voltage distribution V(u) will be

the same for both gaps, and li.m V(u) gives the input voltage exciting
u->0

the antenna. By restricting the gap width to be very small, the problem

of finding all of the fields produced by the spiral antenna has been

reduced to finding the voltage along the gap.

x m $m
5.2 Expressions for C .m and C .m

n+J
a~

n+J
a-

To have the antenna excited at the origin by a finite voltage,

lim V(u) must be finite. Since V(u) represents the physical voltage
u-^0

obtained, it is reasonable to assume that V(u) is continuous and has

continuous derivatives for all values of u, and can be expanded in

the power series

P V(u) = /__N
b. uP • (5-7)

p=0 p

It is assumed that this series converges for all values of u, and that the

series derived using it also converge. The coefficients C .m and
n+J

a
\ ( m

C .m of Section 4 may be expressed in terms of the coefficients b ,

n+J- P

and, therefore, all of the fields expressed in terms of a single set

of unknown coefficients. The substitution of Eqs. 5-3, 5-6, and 5-7

into Eq. 4-30 gives an expression for C .m as
n+j-





for m even
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C .m =
n+j-

for m odd, n = 0,1,2,3,...

~ ^hn __, , m.
.N

sin 1 .m m y=-n p'fn-p+i+i— )

n+J- TTa a Z^ p'(2)
2p n_2p -

p=0
" v

(5-8)

Substituting into 4-49 gives C .m as

for m even

for m odd, n = -1

for m odd, n = 0,1,2,3,

C .m =
n+j-

C ' .m =
-1+j-

<-) 2)
n+^jI(n+^JE)

-i<n+1 >r(n-p+l+^)
C .m =
n+j

a 7T(n+l+j!><«<>
- U p ' (2)

2p
n(n+l)+j-(n+2p+l)

(5-9)

n+l-2p

One aspect in the derivation of the preceding equations should be

considered here. If f (u) is derived from Eq. 4-33, it is
m

• ^sin 6
f (u) =

° — F(u) m odd
m /~2 2

-1

7Ta /a + sin 9 (5-9)

f (u) =0 m even
m

which combined with Eq. 4-12 expresses the variation in electric field

intensity along the gap F(u) as

F(u)

/2 2
7Ta /a + sin

sin

3 .m

> «m 2 J a T (u)
/ C .m u u J i .m

Z__, n+Ja n+i+J
a

n=0 (5-10)

F(u) does not depend on the method used in solving the problem; that

is, F(u) must be independent of m and n. For any one value of n,

.m

u J 1
.m is not independent of m, and the series must be summed
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over many values of n to obtain a solution. If only one value of n

could be used to represent a solution, the operation of the antenna

could be described in terms of '^modes'' existing on the structure, and

it would only be necessary to determine what ^mode'' is excited by a

source at the origin. Unfortunately, the summation over n must be

rnade^ and F(u) does not seem to have a simple mathematical form.

5.3 The Continuity of Tangential H from Regions I and II

If the voltage along the gapV'(u) is to correspond to that produced

by a source at the origin, it is restricted by the condition that the

components of H tangential to the cone 6=0 must be continuous as

the gap is crossed from Region I to Region II. Referring again to

Fig. 5, the s component of H must approach zero as the gap width is

made small. In terms of the magnetic flux density B given by B = uJH,

any time-varying component of B is zero in the conducting arm. The

normal component of B is continuous across a surface, so B is zero

just inside the gap at the points T = T
+

and T = t ~ If B in the

gap did not approach zero as At—>0, B would be discontinuous in
s

a continuous media. Therefore, B —>0 as A *r—>0j, and H in the gap

approaches zero as the gap is made narrow. To insure continuity of

the tangential components of H in the gap the relation to be enforced is

H
*Lap-V] (5-11)

gap

where the subscripts I and II refer to the field evaluated from 6<0

and 0>0 , respectively. The magnetic fields in the two gaps are the
o

same except for sign, so it is sufficient to enforce Eq. 5-11 only at

the gap at t =0.
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In Appendix B expressions for H evaluated at the gap are derived

in terms of the coefficients b of the power series expansion for V (u)

.

It is shown there that for Eq. 5-11 to be satisfied for all values of

u except u = 0, u =&?, the b coefficients must be related as follows:
P

for p = 1,2,3, ..

.

(5-12)

(-l)
n+1

(2)
2n+1

(2n+^) „ m
- rMl2>o .m (cos 6 )

2 i—±, ,j .„ ,mv ,„ , ,m> r, i .m. ' nJ^C2n+j— o
n=0(p-n-l)! (2n+j-) (2n+l+j-)r(p+n+J+j-) ° a

a a a

^(-l) n+1
(2)

2^1
(2n-J+j|)[(2n-lX2n) +jH(4n-2p-l]

r ^^

odd

[M Yp (cos e )
.m v

L n i[J
, .m j

SSI (p-n)l(2n + j^)(2n-l+Ar(p+n+|+j^) " "~ 2n-l+ji

~ (-)
P (2)'^- 1

(2p-l)(2p)(^^
p_1+j

m (cos 0^

E
m=- e»

m odd

m=-~| a
2

^.(p-n-l)j

(5-13)

(-l)
n+1

(2)
2n+2

(2n+|+jf)
5 [n'^c?, (cos e

o )

m=-~l a" ^(p-n-l)l(2n+l +j-)(2n+2+j^)r(p+n^+jH)
n ^n+l+j^

l n=u 3. a & a a
odd

^(-l) n+1
(2)

2n
(2n+i+A[2n(2n+l)+j|2(2n-p)]

+ ) ^-1 4 HN'l/p (cos e )

£j (p-n)l(2n+l +jf)(2n+jf)r( p+n+|+jf)
LnJ(

^2n+j£
°

b
2p+l V (-)

P
(2)

2p
(2p)(2p+l) (P2p+j

m (cos 6
q )

m=- o°

m odd
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CPm
.m (cos ) =

n+j- o

rV .m (cos )

P Jm (cos 6 ) P .m (-cos 9 )n+j- o

d P .m (cos 9 ) d P .m (-cos )
n+j- o' n+j- o

d0 de

d P .m (cos ) d P .m (-cos )n+j- o n+j- o

de d©

P
m

.m (cos © ) P
m

.m (-cos )
n+j- o n+j- o

dP .m (cos )

d0

dP .m (cos 0)n+j-
stands for

de
e = e

+j-2(n+k)l b

y r(2n-2k+i+j^)
M
»

= h k i(2)
2k

b^
y r(2n-k-i+j^)

i = jL 2k [
(2»-l) (2n)

n
k=0 k.'(2)

K

y r(2P-k-j+jf)
M
n = A

k)(2)
2k [tfP-D(WJi 2 <P+k>] b

2(p-k )

f
1 r(2n-k4+jH)

k=0

2(n-k) for n 4 p

for n = p

S k! C 2)
2k 2 <""k)+1

,

, -IT- [2n(2n+l) +jj(2n+2k+l)] b
a(n.k)+1

for n ^ p

K—U K . ( £ )

r(2P-k+i+j-—. ^_[2p(2p+l) +j-(2P+2k+l)] b
2(p_k)+1

for n = p
k=l ki (2)

Eq. 5-12 expresses b in terms of b ; b. in terms of b_, and b ;^2 o' 4 2 o'

b. in terms of b., b , and b ; etc. Eq. (5-13) expresses b in terms
b 4 2, o o

of b ; b in terms of b , and b,

;

etc. Therefore, all of the coefficients
1 5 3 1

in the power series expansion are expressed in terms of b and b .
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Since b is proportional to the input voltage, the coefficient b
o 1

is the only one still to be determined.

5.4 The Far Fields and the Radiation Condition

The relation between b and b, must be such that the radiation
o 1

21
condition is satisfied. Tbis condition insures that the antenna is

a source of energy, and for a finite antenna requires that the fields

at large distances from the antenna be represented by divergent

traveling waves. Making use of the relations

-J- -3-r -jm^ + T* )

u e = e (5-14)

and lim ((3r)
2 J

(
!?
r)
m = (|)* cos pr-Jirfci+l+j-). (5-15)

r_>oo n+f+j- Ti l a J

the electric fields for large values of r are given by Eqs. 5-16,

5-17, and 5-18. The magnitude of E varies as —^ for large r, and
r &

r

thus becomes insignificant. As the antenna considered here is infinite

in extent it is not possible to be a large distance from it. However,

since only the relation between b and b
n

is desired, it can be obtained
o 1

by requiring a wave traveling away from the origin in one direction.

The most convenient direction to choose is 9 = 9 as
o

P .m (cos
n+J-

9)

=

9=G

for all m except m = + 1

= for all m except m = + 1

e"o sin e

dp .m (cos
n+J-

9)

d9
and

and the summation with respect to m becomes trivial,
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icot
Using the e time convention a wave traveling away from the origin

varies as — e ^
. Making use of the fact that many terms from m = 1

and m = - 1 are related as complex conjugates, E 1 _ and E.l in

Eqs. 5-17 and 5-18 will have this r variation for all values of (p if

(n.l^-Xn^) C^J— + 1 a

n=0 P . (cos 6 ) d P . (cos 6 )
1 n+j o J o'

(5-19)

de
rt

i *i
Substituting for C . and C' from Eqs. 5-8 and 5-9, and letting

n+- n+j-

=

£o k! (2)
2k

b2
<"-k)

y r(2n-k-4+;

n
tt, k!(2)

2k

y ntZn-k-ini)

"°
=

So k!(2)
2k t

2"' 211-1^ 2(n+k
>]

b
2(n-k)

y r(2n-k+ | 4)
"»

=

fco k!(2)
2k

b
2("-W +l

n

V IX2n-k+iA
\ = Zjl —

—

ir-[2n(2n+1 ) +f
(2n+2k+l)] b

2(n_k)+1
k=0 k.'(2)
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Eq 5-19 becomes

y f(-l)
n
(2)

2n
(2n+J +i) sin 9

o ( -l)
n
(2)

2n+1
(2n+ | 4)

__ _

\

^ a a /

Z

de
(5-20)

(-l)
n
(2)

2n
(2n+|44) (-l)

n
(2)

2n+1
(2n+ § 4) sin 0^

. N'] + j = — [N"-
.1 . , _ L nJ 1 . „ _ v

L n-
h=° dW (COS e

P>
a P

2n+l4 <C°S V
de

The LHS of Eq. 5-20 is proportional to b , and the RHS is proportional

to b . Therefore, it gives the relation between b and b required

for waves traveling from the origin for large r along the = axis.

Eq. 5-20 is a convenient form for this relation as M" , M' , N", and N'
n n n n

are needed in Eq. 5-12 and 5-13 for the calculation of the b coefficients.
P

5.5 The Input Admittance

The input voltage V(Q) can be obtained by taking the limit of

V(u) as u-*0, and using Eq. 5-7

V(0) - lim V(u) = j2
u-^0 K

The input current 1(0) can be determined by integrating H-dl around

one of the arms and taking the limit as u—*0. Using Eq. 4-30, 4-41,

4-8, and 5-2, an expression for the input admittance Y(0) can be

derived as f, ,.m m , ^ . . ,.m m , _ .

(-1) P (cos 9 ) (-1) P (-cos ^0 )mo .m o

»(0) z
1 L ^J^ -m

modd
1

e
o m=-»|d P

m
(cos ) d P (* cos ) >mo .m o '

K _K
d© d0

(5-22)
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5.6 The Problem of Numerical Calculation

To be completely satisfying from an engineering viewpoint, the

rather complex mathematical expressions derived for the equiangular

spiral antenna must be evaluated for various parameters of the structure.

The fact that the expressions obtained are in series form makes them

well adapted for computation using a digital computer. It is presently

planned by the Antenna Laboratory of the University of Illinois to

program the high-speed digital computer, ILLIAC, to make numerical

calculations using the expressions derived here. Appropriate tables

20
of the gamma function of complex argument are available, but no

tables of complex order Bessel functions or complex degree associated

Legendre functions are known. The series converge most rapidly with

respect to n when r is small. In the limit as r— O only the n =

terms are needed, and the electric fields approach those given by the

static solutions. This fact makes the near fields, including the current

distribution on the antenna arms, the easiest to calculate. It will

probably be better to use the conventional methods of obtaining the

far fields for a known current distribution than to use the series

developed here.





50

6. CONCLUSIONS

Theoretical expressions for the fields produced by an infinite

equiangular spiral structure have been obtained. It has been demonstrated

that the static electric fields are a function of only two variables

s and ©. For the static case exact expressions have been derived for the

structure with narrow gaps, and approximate expressions using the

"least squares" criterion for arbitrary gaps.

For the electromagnetic problem, solutions of the vector Helmholtz

equation suitable for the spiral geometry have been obtained by using

the separation of variables technique in an oblique coordinate system.

These solutions express all of the electromagnetic fields in terms of

the tangential electric fields existing in the gaps of an equiangular

spiral antenna.

For the special case of the balanced antenna with narrow gaps

between the arms, exact expressions for the fields in the gaps are

derived. These solutions make available a means of calculating the

input impedance, the current distribution, and the pattern of an

equiangular spiral antenna.
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APPENDIX A

If the potential on the cone 6=0 is real, the solutions for the
o

potential in Section 3 are real for all values of 6 and T, This may

be shown by first combining Eq. 3-15 and 3-18 for <6 to obtain

V(0,t)

(cos e) &
P (cos )

m=-T°° .m o
J a

(A-l)

From Eq. 3-17 pX +2lTa.

27Ta

&
V(0

Q
,T) e dT

(3-17)

C = (C ) , and C is real if V(0 ,t) is real. By Eq. 3-11, 3-12,
m -m o o

and 3-13, P ° (cos 0) = 1
o

and

P (cos 0)

P (cos )

3-

P (cos 0)
.m

-J-

P (cos )
.m o

(A-2)

Therefore, in Eq A-l the m = term is real; for other values of m

the + m and - m terms are complex conjugates for all values of G

and t. This assures that the potentials obtained from Eq. A-3 or

Eq. 3-24 are real for all values of 6 and T.
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APPENDIX B

DERIVATION OF THE b COEFFICIENTS
P

The relations between the coefficients b of the power series expansion

for the voltage along the gap are determined by requiring that the p compo-

nents of the magnetic field at the gap from regions I and II are equal. By

Eq. 5-2 H is related to H and HA by
p r (j>

H +
sin ©

H^.
r

+
v/ 2 .a J*tyY a + sin 6 ^

(B-l)

Using Eqs. 4-30, 4-48, and 4-49, H in region I is
P

^.inV^-iJ £
m =—oo n=o

(u)

, i m (n+j-)(n+l+j2-) (u)

C
m

.m u^ u"J a [ £ ^J 1 ...

P .m (cos 0)

(A J 1 M 1
^^

j
m
T

a n-- + j- J eJa

d"C* (C° S V
d ©

^11
C
n+j|

u u a Jnj ± . m

m= -oo n=o

n4S* J» d e .*
(n+j-)(n+l+j-) P . m (cos © )

a a n+j_ o

(B-2)

The expression for H in region II is similar.
P

Let

C^r - m (cos e )^/ n+ j- o

P .m (cos 6 ) P .m (rcos © )
n+j- o n+j- o

P • m(cos6) d P™ ,m(-cos © )n+j- o n+j- o

(B-3)

d © d ©
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d P .m (cos ) d F m (-cos 9 )
n+j- o n+j- o

a a

(cos ) =
d d

(B-3)
P .m (cos ) P .m (-cos ) (Cont.)
n+j— o n+j— o

Equating, H evaluated at t = , = from regions I and II gives
P o

\~~
' V~f J*

.ni\ • , . ~m.
.m (n+j-)(n+l+j2-) (u) (u)

5 > > C
m

m u* u"J a [
* *- J 1 .m - (j2) J 1 >BH? ..(cose )

m=-oo n=o
2 "a 2 J a

| -jS (U)
oo ooC .m u u a J 1 .m

n 6
o V V n+JI "V3^

u EI
n= -co m=—oo

(n+j-)(n+l+j-)
m. «~ft+j

-3 .m (cos 6 ) =
^--n+.i- o'

(B-4)

If Eq. B-4 is to be satisfied for all u except u =0, oo, the coefficients of

each power of u must be zero. Expanding the Bessel functions in a power

series gives
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'.ILL
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Letting p = n + 2k the method of summing can be changed as shown in

Fig. 6. This is not a rearrangement as the terms in one row (or column)

are in the same order as before.

n=o k=o

CO oo

is equivalent to ) /

n=o k=o p'=o (n)=o

is equivalent to/

n=l k=o p=l (n)=l
I

V. (n) =0, 2, 4, 6, ... when p is even

(n) =1, 3, 5, 7, ... when p is odd

FIGURE 6 THE SUMMATION METHOD

The coefficient of u is always zero for p » 0, and for the other coefficients

of u to be zero, for p = 1, 2, 3, ...

f,
X [n(n+l) +j2(2n-p)]q) 11-'
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—

-m ^ '
^ -, ;
—^ C .m q+j .m

Z_» Z-J
(
2lB) f (2)

P +i+Ja p( P+*1*3
+ jfi) n+JI n+J

a

(cos e )
o

m=-°o (n)=o 2

+ sin 9 II
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— ffila C^> ! (2)
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Substituting the values of C .m and C , J from Eq . 5-8 and 5-9 gives

for IP = 1, 2, 3, ...

. 2 „sin

°-Z I
m odd (n)-l

'. Z m(cos O ) /i, . .

, . i~n ,.,n , i .m. ci ... m — 5 v. n-i j „_

(J) (2) (n-i^q^jl ^It,-t-^S)
(*?> j ( n-l +j2)(n+J5) r (

ii|±«W2) Z, *
! (2)

2k n"2k'1
2 ' a a 2a,

k=o

I L
m=-oo (n)=o
m odd

a)"
n
(2)

n (n+^)[n(n+l)+j^(2n-p)]
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+ ^

Kn+1)

Z
Itn-k+i+A

k | (2)
2k

[n(n+l) + j-(n+2k+l)] h:
h^2k+l

= (B-7)

Iq. B-7 then gives Eq„ 5-12 when p is odd and Eq. 5-13 when p is even,
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