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TRANSLATOR S PREFACE

FOR a number of years there has been a feeling among many
teachers of mathematics that students would accomplish more

if they had an introductory treatise on the Theory of Functions

of a Complex Variable written in English and adapted in other

ways to the use of students beginning their graduate work.

Professor Burkhardt s book Einfnhrung in die Theorie der ana-

lytischen Funktionen einer komplexen Verdnderlicheti has seemed

admirably suited to this purpose both in the matter of material

and arrangement. The translation of this text into English

was undertaken at the suggestion and encouragement of promi

nent American mathematicians, sinct there is no book in the

English language treating the subject from the point of view

adopted here.

The translation preserves the same arrangement of material

as the original book, even to the numbering of sections and

theorems. Footnotes not in the original text are always signed.

All of the exercises, which include a number of additional fig

ures and which follow various sections and each of the chap

ters, are added by the translator. It is hoped that they will

prove of assistance not only in illustrating and fixing the ideas

contained in the text but as well in stimulating the reader to

independent attack and further study in larger treatises. It

seemed best not to give the sources from which many of these

exercises were obtained some of them being original, some

the results of courses with the late Professor Maschke of the
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University of Chicago, some furnished by Professor Osgood of

Harvard University, and others seeming by this time to have

become common property.

In any case, the aim has been to place at the disposal of

students such a book as will be of greater service in obtain

ing a knowledge of the fundamental principles underlying the

theory of functions.

I wish to acknowledge my indebtedness and gratitude to

Professor N. J. Lennes of the University of Montana for his

interest and help in reading much of the manuscript ;
to Pro

fessor E. G. Bill and Dr. F. M. Morgan of Dartmouth College

for readfng the proof-sheets and making use of them in class-

work; and especially to Professor J. W. Young of Dartmouth

College for valuable counsel and criticism.

In the second edition, minor corrections have been made in

the text and a few changes, rearrangements, and minor additions

made in the lists of examples.
S. E. RASOR.

THE OHIO STATE UNIVERSITY,

April, 1920.



FROM THE PREFACE TO THE FIRST EDITION

NEARLY all * of the numerous present German textbooks on the

theory of functions treat the subject from a single point of view

either that of WEIERSTRASS or that of RIEMANN. More recent French

and English textbooks (PICARD, FORSYTH. HARKXESS and MORLEY)
have endeavored to close the gap between the two methods

;
in Ger

many, too. lectures and scientific works have gradually sought to unify

the two theories. But we are yet in need of a book of moderate extent

. . . suitable to introduce beginning students to both methods. I ap

preciated very much the need of such a book as I undertook to write

. . . this introduction to the theory of functions. RIEMANN S geo

metrical methods are given a prominent place throughout the book
;

but at the same time an attempt is made to obtain, under suitable

limitations of the hypotheses, that rigor in the demonstrations which

can no longer be dispensed with when once the methods of WEIER

STRASS are known.

The extended account of the theory of functions from RIEMANN S

standpoint is in reality a preparation for his theory of integrals of alge

braic functions. This was entirely relevant while this theory was the

only part of RIEMANN S plans concerning the theory of functions which

had been carried out. In the meantime the linear differential equa

tions and the automorphic functions have come into prominence

through the work of POINCAR and KLEIN. In an elementary book

we must consider this most important change ;
the conception of the

fundamental region must have a prominent place in such a book and

must be fully explained in connection with the simplest examples, such

as 2n and ez . To make room for this I have omitted a part of the

usual material, the first of which is the general analysis situs of the

RIEMANN S surface with a finite number of sheets.

* A possible exception is HARNACK S Outlines of the Differential and Integral

Calculus ; but this cannot be recommended to beginners.
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The details in the arrangement of the material may be seen from

the table of contents
; however, we mention the following particulars.

In the first chapter, I have introduced the algebra of complex num

bers as an algebra of number-pairs without giving a general theory of

number systems of two (or more) units
;

I have rather assumed with

out discussion the hypotheses characteristic of the theory of &quot;

ordinary

complex numbers.&quot;

The second chapter contains a detailed geometrical theory of the

elementary rational functions of a complex variable and the conformal

representations determined by them. The transition from the plane

to the sphere by stereographic projection is also considered
;

it is used

at various places in the following chapters. The chapter closes with

a discussion of the symmetric invariants of four points as a function

of their double ratio
;

this takes the place of an example (in itself

unimportant) of a rational function of a more general character.

The fourth chapter gives the theory of single-valued functions of

a complex argument essentially according to CAUCHY and RIEMANN.

After deriving the properties of such functions in domains in which

they are regular, a special discussion of the sine and the cosine and

the exponential functions is added. Then follows the theory of

isolated singular points in connection with LAURENT S theorem
;

FOURIER S series are studied at the same time. The discussion of

MITTAG-LEFFLER S theorem is limited to the simple case for which

the degree of the additional polynomial does not become infinite.

The chapter closes with the applications of this theorem to singly

periodic functions.

In the fifth chapter, which treats of many-valued functions, I have

ventured a change in the usual arrangement which may not meet with

general approval : I have put the logarithm and the infinitely-sheeted

RIEMANN S surface accompanying it first and then used its properties

in the investigation of even the simplest irrationalities. It is possible

to do this without in any way making use of transcendental functions
;

but to be consistent we must then avoid the trigonometric form of a

complex number, which is nothing else than introducing its logarithm,

and prove the existence of the n roots of complex numbers by the fun-
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damental theorem of algebra. This appeared to be too cumbersome

for an elementary book. Moreover, the general theory of algebraic

functions is entirely omitted from this chapter and in its place a de

tailed discussion of the simplest cases is given. At the close of the

chapter the properties of the logarithm are used to obtain the repre

sentation of a transcendental integral function by means of an infinite

product from the division into partial fractions of its logarithmic

derivative.

I have named the sixth and last chapter
- General Theory of Func

tions.&quot; The general conception of analytic continuation, the analytic

function, the RIEMANN S surface, the natural boundary, are first treated.

Besides this the chapter contains a discussion of the principle of

reflection.

Statements as to the authorities for the definitions and theorems are

omitted. At particular places as they happen to occur in the text I

have given references to the literature for such readers as wish to

study any of the questions further
;
in this, original sources have not

always been named but where possible just such references have been

given as seem suitable for the beginner. . . .

ANSBACH, March 26, 1897.

PREFACE TO THE SECOND EDITION

SINCE the first two and the last three chapters have met with general

approval outside of the strict disciples of WEIERSTRASS. I have no occa

sion to make essential changes in these chapters. I have given the

proof of CAUCHY S fundamental theorem in the simple form made pos

sible by the researches of PRINGSHEIM. GOURSAT, and MOORE; this

necessitated a few other changes and rearrangements. Besides, I hope

to have gained in clearness at a few places by minor additions.

On the contrary, the third chapter is entirely remodeled: elementary

things are put in my algebraic analysis which has appeared in the

meantime as part one of these lectures, while a few other theorems

which were not in their place there but which are needed here now
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appear with proofs. Since the idea of the double integral is no longer

required in the proof of CAUCHY S theorem, the space thus required is

kept within moderate bounds. . . .

ZURICH, October 12, 1903.

PREFACE TO THE THIRD AND FOURTH EDITIONS

IN the third edition I have further added a few examples of con-

formal representation and in connection with them a discussion of the

cyclometric functions of a complex argument. ... In the fourth edi

tion the theorem of MORERA (XIII, 38) and the proof of the theorem

of WEIERSTRASS ( 50) based upon it are added, besides many im

provements in details.

H. BURKHARDT.
MUNICH, May 11, 1912.
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THEORY OF FUNCTIONS OF A
COMPLEX VARIABLE

CHAPTER I

COMPLEX NUMBERS AND THEIR GEOMETRICAL
REPRESENTATION

1. On the General Arithmetic of Real Numbers

ELEMENTARY ARITHMETIC is concerned with integers as its

primary elements or objects. It shows how a third number

can be found by simple combinations (addition, subtraction, mul

tiplication, etc.) of any two numbers. It then derives laws by
which the result of a certain series of combinations taken in

order, for example a(b-\-c), can also be found by another series

of combinations, in this example by ab-\-ac. It finally makes

use of these laws to determine how a quantity, which is to be

combined in definite ways with other quantities, must be chosen,

so that the result of these combinations shall be a value pre

viously determined. The proofs of these laws and rules given

in arithmetic are of two entirely different kinds (cf. A. A.* i).

In deducing the fundamental laws it makes use of the real sig

nificance of these objects (or numbers) and the operations

to which they are to be subjected. Farther on this real sig

nificance is not considered, but manipulations are performed

* In this way BURKHARDT s Algebraic Analysis (26. edition) will be desig

nated. It is the first part of Vol. I of BURKHARDT S (1908) Vorlesungen iiber

Funktionentheorie.

I
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merely with the symbols for the objects and the operations on

the basis of the doctrines of formal logic and those laws of

arithmetic already deduced. This distinction is later of much

importance. Originally the name number was given only to

&quot;positive integers&quot; But the needs of geometry require that still

other elements be regarded as numbers (negative, fractional,

irrational) and as objects of the &quot;general arithmetic.&quot; For these

more general numbers combinatory operations are then defined.

They are quite analogous to the operations with integers and

receive the names applied to the latter operations. It is shown

on the basis of the definitions that these operations with the more

general numbers satisfy the fundamental laws mentioned above
;

hence it follows at once that the derived theorems are also true

for them. The earlier proofs given only for positive integers are

valid here word for word, since we no longer make use of the

properties of the objects, but rely only upon the characteristics

of the operations already established (A. A. i, 9).

That it is permissible to introduce these more general numbers

is based upon fa&freedom of scientific thought to choose its own

objects ;
that it is desirable to introduce such numbers is shown

by the result. The negative and fractional numbers represent

relations between objects of daily experience in a broader sense

than can be done by the exclusive use of positive integers. The

irrational numbers arise from the desire to conceive, for scientific

purposes, as absolutely exact those laws of space which enter

only approximately into our experience. This desire cannot be

satisfied by relations between integers alone.

In what follows, we shall suppose the negative and the frac

tional numbers to be introduced
;
on the contrary, the irrational

number will be used at only a few places in the first two

chapters.



2. ADDITION AND SUBTRACTION OF NUMBER-PAIRS 3

2. Introduction of Number-pairs ; their Addition and Subtraction

From the algebra of the simple number we pass next to an al

gebra of the number-pair the so-called &quot;double
algebra.&quot; It

deduces a new number from two number-pairs and seeks the

laws which underlie these combinations of number-pairs. The

algebra of simple numbers finds its counterpart in the geometry

of one-dimensional configurations in so far as it is possible to

assign a definite number to each point of such configurations, a

straight line for example, and one definite point to each number.*

We shall see that the double algebra is represented geometri

cally by the relations between the points of two-dimensional con

figurations or surfaces, and in particular upon the simplest of

these, the plane and the sphere.

What kind of combinations of number-pairs we are to consider

is arbitrary with us; whether the choice we make is adapted to

our purposes is a question which can be answered in the affirma

tive when and only when results have been obtained which could

not be obtained at all by other methods, or at least not so easily.

But we have two requirements to govern our choice. We shall

seek first those combinations which obey the same or nearly

the same laws as those of simple numbers
;
and besides, we shall

always keep in mind the relations to geometrical configurations.

We shall not raise the question as to what might be the most

general combinations which satisfy the first requirement and

are also adapted to the second
;
but we shall begin with the defi

nition of the combinations to be considered and then prove that

they obey the above laws and show how they are represented

geometrically. In this manner we follow the historical de

velopment. Number-pairs first appear in the form of &quot; im-

* Known as the CANTOR-DEDEKIND axiom
; cf. PlERPONT, The Theory of

Functions ofReal Variables, Vol. I, p. 79, S. E. R.
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aginary&quot;
numbers a + b~\/ i in the solution of algebraic equa

tions of the second, third, and fourth degrees. Any hesitation

on first using these &quot;

imaginary&quot; numbers was easily overcome

by being able to operate with them as with real numbers, even

without justifying the process or without knowing what such

an imaginary symbol in general signified. The following defini

tions are all given with the understanding that we operate with

the imaginary number a -f bi as with a real binomial and reduce

higher powers of i to the first power by the relation z
2 + i = o.

To operate with number-pairs it is necessary to define when

two number-pairs are equal to each other. Definition :

I. Two number-pairs (a, b] and (c, d) are equal to each other

when and only when

a = c and b = d

(but not when a = d and b =
c). One equation between number-

pairs therefore represents two equations between simple numbers.

The concepts
&quot;

larger
&quot; and &quot; smaller

&quot;

are not immediately

applicable to number-pairs.

II. From the two number-pairs (a, b) and (c, d) a third number-

pair

can be formed in the simplest manner. A name and a symbol

are needed for this operation. We shall not introduce new ones,

but we shall borrow the name addition with its symbol + from

the algebra of simple numbers. Accordingly the third number-

pair is called the sum of the other two and is written :

(i) (a,b)+ (c,&amp;lt;I)
=

(a + c,t + d
).

A new meaning is thus attached to these terms and symbols

(addition, sum, -f, =).
This combination of number-pairs is a definite operation,
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possible and unique in ever}
- case. Moreover, this operation

obeys the commutative law (A. A. IV, 2) :

(2)

and the associative law (A. A. Ill, 2) :

(3) [(

The first of these laws is proved by applying definition (II)

to the operations indicated by each side of equation (2). The

resulting number-pairs (a + c, b + d) and (c + a, &amp;lt;/+ )
are equal

to each other according to definition (I), since a + c=-c+ a and

b + d=d+b according to the commutative law for the addition

of simple numbers. Equation (3) is proved in a similar manner.

The further theorems in elementary algebra about the rear

rangement of the terms in a sum of three or more summands,

can be proved by purely logical deduction from the commutative

and associative laws without returning to the fundamental mean

ing of the operation of addition. It therefore follows that these

extended theorems are valid for the operations with number-

pairs just as for ordinary numbers (cf.. the general remarks of

i). Hence we may state the following general theorem of

which equations (2) and (3) are special cases :

III. /;/ a sum oj any number of number-pairs, the separate sum

mands may be combi?ied into a smaller number of other summands

by an arbitrary selection and arrangement.

We define further :

IV. The number-pair (a, b) is called the opposite of tht

number-pair (a, b\

V. The difference of two number-pairs is that number-pair

which, when added to the subtrahend, gives the minuend.

From this definition, the definition of sum (II), and the prop

erties of addition and subtraction of simple numbers we obtain
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Theorem VI, which is expressed by the equation :

(4) (a,b)-(c,d) = (a-c,b-d)-,

also Theorem VII : Subtraction of a number-pair is the same as

addition of the opposite number-pair ,
and hence is a definite opera

tion, possible and unique in every case.

In elementary algebra the sum of (m) (a positive integer)

equal summands a 123 m-l m
a + a + a + a-\- a

is called &quot; the product of the number a by the positive integer m&quot;

This definition has a definite meaning in consequence of Theorem

III when applied to number-pairs ;
we say :

VIII. The product of an integer m and a number-pair (a, b} is

the sum of m equal number-pairs (a, ^).

If we form this sum according to definition II and Theorem

III we obtain a

Theorem IX, which is expressed by the equation :

(5) m(a, b}
= (ma, mb).

X. In case m is a negative number, equation (5) is the definition

of the product ofm and the number-pair (a, fr).

XI. Division of a number-pair by an integer is defined as the in

verse of multiplication. Therefore, in consequence of equa
tion (5):

(6) m m m

XII. Multiplication of a number-pair by a fraction is defined

as,
&quot;

Multiplication by the numerator and division by the denomina

tor&quot; (A. A. 15); and thus, from the equations (5) and (6), it

follows that :

f \ m, ,\ (m m
(7) -0, *)=[-*,

-
n n n
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XIII. On the basis of the definitions II and XII, every number-

pair can be represented in the form

(8) (&amp;lt;z, ) =**! + &?2

as the algebraic sum of multiples of the two special number-pairs :

which are accordingly named UNITS.

3. Multiplication of Number-pairs ; Number-pairs as Complex
Numbers

In elementary arithmetic multiplication is considered, after

addition, as a second kind of combination of two numbers to

produce a third number. Among the properties characteristic

of this operation are the commutative law (A. A. Ill, 4) ex

pressed by the equality

(
i
)

ab = ba,

and its distributive relation with respect to addition (A. A. VI,

4) expressed by the equality

(2) a(b+ c)=-ab-\-ac.

We now inquire whether there exists also a combination of

number-/rt7&amp;gt;.r which obeys both of these laws, that is, which is in

itself commutative and which obeys the distributive law for

addition of number-pairs stated in 2. If such a combination

exists, we name it multiplication and designate it by juxtaposition

of the factors, with or without the point to connect them.

In accordance with the representation of number-pairs given

by equation (8), 2 and in accordance with the requirements

of the commutative and the associative laws, the result of the
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multiplication of any two number-pairs is determined when we

have determined the product of the two units each by itself and

each by the other (the result being, of course, a number-pair).

We shall not attempt to answer the questions as to what are the

most general assumptions we are here able to make consistent

with the above hypotheses or which of these different assump
tions lead to essentially different &quot;double algebras&quot;; but we

shall introduce directly those hypotheses which characterize the

theory of the so-called &quot;

ordinary complex numbers.&quot;

I. The products of the units are accordingly defined by the equa

tions :

(3) (i,o).(i,o) = (i,o),

(4) (o, i) (i, o)
=

(i, o)
.

(o, i)
=

(o, i),

(5) (o, i)(o, i)
= (-i,o).

The meanings of these equations must be made clear.

From equation (3) and from the results of the previous para

graphs it follows that all computation with number-pairs, whose

second elements are equal to o, is to be performed just as if the

second elements were entirely absent and that therefore we are

to operate only with the first elements just as with simple num

bers. Equation (4) and the distributive law tell us that the

number-pair (a, o) is to be treated as a simple number when

multiplying it by another number-pair. We identify these

special number-pairs directly with simple numbers as follows :

II. Since we may put

(6) (i,) = i,

itfollows according to equation (5), 2, that in general

(7) (&quot;, 0)=-
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Finally, equation (5), on account of equation (7), can be

written

(8) (o, i)-(o, i)=-i.

Accordingly, it follows that :

III. While there does not exist a simple number which mul

tiplied by itself gives I, there is a number-pair, viz. (o, 1) which

has this property.

The problem, to find a number which multiplied by itself

produces a given number, is called in elementary algebra
&quot; Extraction of the square root

&quot; and is designated by -&amp;gt;/

(A. A. 46). If we apply this symbol (provisionally without

further discussion) to operations with number-pairs we can

formulate Theorem III as follows:

IV. The operation i?idicated by V / is impossible in thefield

of simple numbers, but has (o, i) for a solution with number-pairs.

(Whether there are other number-pairs which satisfy this

operation, remains temporarily undecided; but cf. 58.)

Moreover, we shall put

(9) (o, i)=V^7 = /,

thus using the symbol generally accepted since the time of

GAUSS.

V. Therefore according to equation (8) , 2, every number-pair

can be written in theform

(10) (a t &)
= a + bi.

We shall henceforth use a different terminology as follows :

VI. What was heretofore named merely &quot;a number 1

will

hereafter be called
&quot; a real number &quot;

/ and what we heretofore

called a number-pair will henceforth be named &quot;a number&quot; or

where a more explicit statement is desired,
&quot; a complex number &quot;

(a complex quantity).
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We therefore enlarge the custom of representing an indeter

minate number by a letter, by designating an arbitrary complex

number by a letter when the limitation to real numbers (or any
other limitation) is not expressly stated or is not evident from

the context.

VII. In the complex number a-\-bi, a is called the realpart and

bi the imaginary part. A complex number whose real part is o

is called a pure imaginary number.

One must not be led to a wrong conception by this name ; as

we shall soon see, complex numbers are very well suited to

represent definite relations between real objects.

The symbols thus introduced will be used at once to state

explicitly the following result:

VIII. For the multiplication of any two complex numbers we

have, by applying formulas (i) to (5) :

(i i) (a -f bi) (c+ di) = ac bd+ i(ad+ be).

The multiplication of complex numbers defined by this equa

tion is thus possible in every case and the result is unique.

That the methods for the multiplication of real numbers hold

for these complex numbers is not self-evident, but must be

proved (just as we proved the corresponding property for addi

tion). In this it is sufficient to prove that the fundamental laws

are valid permanently, in order to show that the laws derived

from them remain valid
;
this has been so completely discussed

in A. A. i, 9 as well as here, i, 2, that further discussion

is not now necessary. Multiplication possesses three such fun

damental laws, viz., the two stated at the beginning of this

paragraph and the following:

(12) (ab)c=a(bc),

which is called the associative law (A. A. IV, 4). To verify

the fact that these three laws hold also for the multiplication of
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complex numbers as defined by equation (n), it is only neces

sary to carry out the indicated operations ;
this is left to the

reader, and we state at once the theorem :

IX. The three laws (/), (2), (12), as well as all the laws de

ducedfrom them, holdfor multiplication as defined by equation (//).

All deductions from equations are naturally again equations.

But there is another important property of multiplication of real

numbers which is not expressed by an equation, but by an in

equality, and on this account cannot be deduced from the above

three fundamental laws alone. We refer to the theorem that

a product cannot be zero unless one of the factors is zero

(A. A. 13). We must then show in particular that this same

theorem holds for complex numbers. If the right side of equa

tion (n) is to be equal to zero, then, according to the definition

of equality of two complex numbers given in I, 2, we must

have acMO c

It follows from these equations by multiplying by the adjoining

factors that

&amp;lt; 3&amp;gt; *(^+^=o!

The equation (c--\-d^)
= o can be satisfied by real values of

c, d, only when c= o and d=o. But if r
2
-f d-= o then it fol

lows from equations (13) that a must = o and b must = o, since

the theorem just cited holds for real numbers. If therefore

either a -f bi must = o or c-\- di must = o, that is, the following

theorem holds for complex numbers :

X. A product cannot be zero unless one of thefactors is zero.
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4. Geometrical Representation of Complex Numbers by the

Points of the Plane

At the beginning of our investigation (in 2) we recalled a

one-to-one correspondence between the totality of real numbers

and the totality of points of a straight line, that is, an arrange
ment such that to each point there corresponds a definite num
ber (the &quot;abscissa&quot; of the point) and to each number there

corresponds a definite point. We have likewise pointed out

that number-pairs can be arranged in correspondence with the

points of a surface as a two-dimensional configuration. The

simplest arrangement of this kind for the points of the plane

is the following one due to DESCARTES : let us draw through a

given point, the &quot;

origin
&quot;

of coordinates, two straight lines,

&quot; the x- and the
jy-axis,&quot; perpendicular to each other

; drop per

pendiculars from any point of the plane on these axes, and

designate the lengths cut off on the axes by these perpendicu

lars, measured from the origin and taken with the proper sign,*

as the &quot; coordinates
&quot;

x, y of the given point (Fig. i). In this

representation we need only to replace the number-pair (x, y)

by the complex number x + iy; we have thus the relation of

the complex numbers to the points of the plane due to GAUSS

and ARGAND :

I. We associate with each complex number x -\- iy that point of

the plane which has, in reference to a fixed rectangular system, the

coordinates x, y ; and conversely, to each point with the coordinates

x, y we associate the complex number x +
iy&amp;gt;

* In general we shall take the positive .r-axis to the right and the positives-axis

in front of the observer. But in any case let us think of the positive directions of

the axes as so chosen that they can be brought into the position just indicated by
mere turning in the plane without reflection. Whether we use this or the opposite

arrangement is entirely immaterial. However, it is often convenient for the form

of certain expressions to use a particular arrangement and at times, when the desig

nation of signs is important, to use the usual arrangement. (Cf. A. A. n, 14.)
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1

FIG. i

In this way there corresponds to each complex number one

and only one point of the plane ;
and conversely, to each point

of the plane there corresponds one and only one complex num
ber. Accordingly, to each definite relation between points of

the plane there must be a

corresponding definite re

lation between complex

numbers, and conversely.

From each theorem about

complex numbers there

follows a geometrical

theorem about points

of the plane ;
and con

versely, to each geo

metrical theorem concern

ing points of the plane

there is a corresponding theorem about complex numbers. Of

course, every such theorem must be proved
&quot;

purely
&quot;

by methods

which belong only to each particular case
;
but powerful aids to

investigation are furnished us by the application of known geo

metrical theorems to our function theory. This procedure is

justifiable from the standpoint of rigor, whenever we are certain

of the one-to-one correspondence between the objects analytically

related and the geometrical picture, and whenever we use only

rigorous geometrical theorems.

In particular, the points of the ^c-axis correspond to the real

numbers (VI, 3). It will therefore be called the axis of real

numbers ; to the pure imaginary numbers (VII, 3) correspond

the points of the j-axis (axis ofpure imaginary numbers)*
From the rectangular coordinates of a point we obtain its well-

known polar coordinates, radius vector r and polar angle &amp;lt;, by
* Also called

&quot;

real axis&quot; and &quot;

imaginary axis.&quot;
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the equations (cf. Fig. i):

whose solution is :

(2)

The formulas (i) are also correct in sign if the positive direction

of the angle be so chosen that the positive 7-axis makes an

angle of + - with the positive je-axis * and if r is always taken
2

as positive. The foundation for these statements from the theory

of trigonometric functions of a real angle (A. A. 76) is sup

posed to be known here.

II. On the basis of equations (/) every complex number can be

written in theform :

(3) z = x -\- iy = r (cos &amp;lt; -f- i sin
&amp;lt;).

III. Here r is the positive square root

/ is called the ABSOLUTE VALUE f of the complex number

= x + iy and is designated by

The square of the absolute value is called the NORM.

The absolute value of a positive real number is the number

itself. The absolute value of a negative real number is the

same number with the opposite sign (A. A. 10).

* And thus with the usual arrangement for positive direction of axes,
&quot; counter

clockwise
&quot;

(A. A. $ n).

f Also called
&quot; modulus

&quot;;
but this word has also other meanings.
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IV. There is no definite name for the angle &amp;lt;. \Ve find it

designated as argument, declination, arcus, anomalie, amplitude*

We shall use the last-named term.

V. The factor cos $ + / sin &amp;lt;

(direction factor of the complex number) has the property that

its absolute value = i .

VI. All the points corresponding to the numbers of absolute

value I lie upon the unit circle, that is, upon the circle whose center

is at the origin and whose radius is unity.

Whether it is possible to put a complex number in the form

(3) in only one way is quite an essential question. We notice

in this connection that :

VII. The absolute value r is u?iiquely defined, but there is an

infinite number of values of &amp;lt; (as shown in goniometry) which

satisfy the conditions; all these values can be obtaitied from any

one of them by the addition and subtraction of arbitrary integral

multiples of 2 TT (A. A. 76). We must continually give atten

tion to this many-valued character of the amplitude when using

complex numbers in the form (3). It will be discussed again

more completely in 54.

VIII. The number

(4) a bi= rfcos ( &amp;lt;)
+ /sin ( &amp;lt;)]

= r(cos &amp;lt;f&amp;gt;

/sin
&amp;lt;)

is called the complex number conjugate to a + bi. Its geometrical

representation is (cf. Fig. 2) the reflection of the point a + bi on

the real axis. The number conjugate to the conjugate is the

original number. The conjugate of the opposite (IV, 2) is

the opposite of the conjugate.

*
Amplitude is used by the translator instead of arcus and is denoted when con

venient by am. S. E. R.
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a+zb

FIG. 2

6. Geometrical Representation of Addition and Subtraction

of Complex Numbers

From the points which represent geometrically the two com

plex numbers a -+- bi and c + di, we construct as follows the point

which represents their sum :

I. Connect the two given points with the origin by straight lines

and complete the parallelogram thus determined ; the fourth vertex

is the point required,

The proof is obtained from Fig. 3, in which the necessary

auxiliary lines are drawn. That it also holds when the points

do not both lie in the first quadrant follows from the agreements

made in 4 about the signs.

Another form of the rule is the following :

II. Draw a line segment from the point a + bi in the same di

rection, of the same length, and parallel to the onefrom o to c+ di ;

its endpoint is then (a + bi) + (c + di).

The commutative law for addition, the properties of which

were discussed in 2, follows from the first form of the above

rule and the associative law from the second form. Moreover
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we obtain from this the first example of using a geometrical

theorem for the purposes of analysis. We refer to the elementary

geometrical theorem that in any triangle any side is not greater
*

FIG. 3

than the sum (and not less than the difference) of the other two

sides. The following important theorem having particular appli

cation in convergence proofs is obtained from this on the basis

of definition III, 4 :

III. The absolute value of the sum of two complex numbers is

not greater than the sum (and not less than the difference] of their

absolute values.\

* This form of expressing the theorem brings to mind a limiting case which

must not be excluded here, viz. where the triangle degenerates to a straight line,

t An algebraic proof of this theorem is the following :

Since

then

|

a + bi
|

= + -, \c-\-di\-

\a + bi + c + &amp;lt;ii

|2
= (a + O 2 +

( |

a + bi
|
+

|

c + di
\
)
2 -

|

a 4- bi + c + di

= 2. V (a
2 + -) (c- -\- d-) 2 ac 2 bd

ti~d* -f bV2 - 2 + 2 abed +
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Repeated application of the first half of this theorem gives

the following more general one :

IV. The absolute value of the sum of an arbitrary number of

complex numbers is notgreater than the sum of their absolute values,

The geometrical representation of subtraction is obtained by

reversing the construction given in Fig. 3 :

V. To construct geometrically the point which represents the

difference (a + bi~) (c + *#), connect the points (a + bi} and

(c + di) with the origin by straight lines and complete the paral

lelogram thus determined ; itsfourth vertex is the point required.

Or:

Let a + bi be the origin of a line segment which is parallel and

equal in length but oppositely directed to the one drawn from o to

c -\- di ; its endpoint is then the requiredpoint.

6. Geometrical Representation of Multiplication of Complex
Numbers

The definition of the product of two complex numbers given

in 3, equation (n) may, according to the results of 4, be

put in a form by means of which the product can be con

structed geometrically. Let

a -f- bi= r (cos ^ -f- / sin ^J,

c + di = r2 (cos &amp;lt; 2 + i sin &amp;lt; 2),

But

(&amp;lt;/_&)
2

2&amp;gt;Q,

and accordingly && + W2.*abcd\
therefore the expression in [ ] is not negative since the first root is to be taken as

positive (the second root might be taken positive or negative).

Hence

|
+ bi

|
+

|

c +di
|
^

|
#+ bi + c + di\. Q.E.D.



6. REPRESENTATION OF MULTIPLICATION 1 9

and therefore

(a + bt] (c + &amp;lt;#)

= r! r2 [(cos &amp;lt;fo

cos
&amp;lt;f&amp;gt;

2
- sin

&amp;lt;fo

sin &amp;lt; 2)

+ / (sin &amp;lt;fo

cos &amp;lt; 2 + cos
&amp;lt;fo

sin

But by the addition theorem for trigonometric functions (A. A.

^74)
this is

(1)
= /ir2 [cos (&amp;lt;fo

+
&amp;lt;fe)

+ * sin
(&amp;lt;fo
+

&amp;lt;fo)].

The following theorem is thus evident :

I. The absolute value of a product is equal to the product of the

absolute values of the factors, tJie amplitude is equal to the sum of

the amplitudes of thefactors.

We have seen in 3 that the product of two complex num

bers is single-valued ;
then the value of this product must be

the same whichever ones of the infinitely many values of the

amplitude of the separate factors (VII, 4) we select. In fact

this is evident directly : if we increase the amplitude of a factor

by an arbitrary multiple of 2 TT, the amplitude of the product in

creases by the same multiple of 2 TT and hence the value of the

product itself is not changed.

A special case worthy of notice is that for which r2 = r and

&amp;lt;fo= ~&amp;lt;i&amp;gt; viz.,

(2) (a + bi)(a-bi)=&amp;lt;* + P\

in other words :

II. The product of two conjugate complex numbers is real and

equal to their common norm.

That the associative and the commutative laws hold for a

product is at once evident from equation (i). Furthermore,

this equation enables us to construct a product geometrically.

In Fig. 4, let c be the point which represents the product ab
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O

geometrically ;
and if

then, in accordance with

equation (i),

FIG. 4

and thus

^ boc =
&amp;lt;J&amp;gt;i

=
~%.ioa ;

and 01 : oa = ob : oc.

Hence the triangles oia and obc are similar to each other

in all respects and the required construction is the following :

III. If a, b are the points which represent geometrically the

numbers to be multiplied, construct the triangle obc similar in

all respects to the triangle oia ; the third vertex c of this triangle

represents the product ab.

In this construction we use in addition to the origin the unit

point on the #-axis
;

this was not the case for the construc

tion of a sum in Fig. 3.

7. Division of Complex Numbers

I. The quotient of two complex numbers a : b is defined as that

complex number c which, when multiplied by b, gives a.

Following the method of representing a product as given in

I, 6, the solution of the problem indicated by this definition is
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at once evident
;
thus

(!)
2 = 3

[cos (^ - &amp;lt; 2) + i sin
(&amp;lt;fc

-
],

b r2
and hence

II. The absolute value of the quotient of two complex numbers is

equal to the quotient of their absolute values ; its amplitude is equal

to the difference of their amplitudes (equal to the angle boa\

Here also the many-valuedness of the amplitude has no effect

upon the result. For, if we increase the value first selected for

the amplitude of the dividend or of the divisor by 2 TT, the

amplitude of the quotient increases or decreases, respectively,

by 2 TT according to the above rule for determining the amplitude

of a quotient. Neither the one nor the other changes the value

of the result. Therefore,

III. The division of two complex numbers is always a possible,

single-valued, definite operation excepting the case where the divisor

is equal to zero.

Returning now from this trigonometrical representation of

complex numbers to the original, we find

, . a + #= (ay + 8) + (- 8 + fly&amp;gt;

y + 8* y
2 + S2

On investigation of the special case where ?\
= r,

&amp;lt;j&amp;gt;-2
=

&amp;lt;i,

we find that

IV. The quotient of two conjugate complex numbers is a number

whose absolute value is I .

V. The quotient of I by a complex number a is called (as with

real numbers) the reciprocal of a.

If a = a -f fti
= r (cos $ -f / sin

&amp;lt;)

then

(3) --3^ (cwr#-/ain.
a -

-f-
~ r
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From these formulas it is evident that, as with real numbers,

the following theorem holds :

VI. A complex number is divided by another when it is multi

plied by the reciprocal of the latter.

It therefore follows for division of complex numbers, that

all the rules for manipulating are valid just as with real num
bers. This result and the results of the preceding paragraphs

are stated in the following theorem :

VII. In the field of the four fundamental operations we may

operate with complex numbers as with real numbers.

It is important that we make the meaning of this state

ment entirely clear. It contains at once the proposition that

there are combinations of number-pairs, which obey the

same rules as the combinations of single, real numbers

designated by the names addition, subtraction, etc. It

contains further the conventional agreement that we shall

retain for these combinations the same name and the same

symbol which are already used for such combinations of single

numbers.

There are no corresponding theorems for triple numbers,

quadruple numbers, etc. It is possible to give combina

tions of these and indeed in many ways which obey

nearly all the laws for operating with real numbers
;

but there are no such numbers which can be combined

according to all of these laws. The proof of this theorem

is not within the scope of this book.* We cannot even

discuss the question whether or not it is desirable from

certain points of view to introduce such &quot;

higher complex

* Cf. D. HILBERT, Gott. Nach., 1896, or O. STOLZ and A. GMEINER, Theo-

retische Arithmetik, Lpz. 1902, Chap. X.
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numbers&quot;* and whether they would at once obey the laws of

general arithmetic. t

If the order in elementary algebra is to be followed in the

development of these numbers, we should take up next the so-

called operations of the third grade, raising to powers, extrac

tion of roots, and the finding of logarithms ;
but we shall postpone

the discussion of them to later chapters ( 18, 56, 63) and at

present seek new results in the field of the four fundamental

operations by applying to the conceptions of algebra the notions

of a variable quantity and of function belonging to analysis

(A. A. 19).

EXAMPLES

1. Show that (cos 6 + i sin 0)
n = cos nO + /sin n9 for n posi

tive or negative, integral or fractional.

2. Put the following expressions in the form r (cos + /sin 0) :

(cos *
A -f sin04-gcos0y
\i + sin0 icosOJ

3. Find all the values of

(a) i*; ft (-/)*; to (VI-O1
;

(J) /*; 00 (i+/V3)*; (/) 32*-

Find the values of V/ in the form x + iy, x and y real, and

represent them graphically.

4. Find and represent graphically the cube roots of unity.

Show that their sum is zero and that they form a geometrical series.

Show also that the n nth roots of unity form a geometrical series.

* An article by CHAPMAN, Bulletin N.Y. Math. Society, Vol. I, p. 150, entitled

&quot; Weierstrass and Dedekind on higher complex Numbers&quot; may be of interest to

the reader from the point of view of the general theory. S. E. R.

t Cf. H. HANKEL, Theorie der complexen Zahlensysteme, Lpz. 1867; also

S. LIE, Kontinuierliche Gruppen, edited by G. Scheffers, Lpz. 1893, chap. 21.
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5. Show that the two lines joining the points z = a, z = b

and z = c, z = d will be perpendicular if

that is, if f -
j

is purely imaginary. Find the condition that

these two lines shall be parallel. (Cf. I, 9 and following.)

6. Show that if M is the middle point of CD, OM=
OD) in which O is the origin in the complex plane.

7. Let A and B be any two points in the complex plane ;
we

wish to find the complex quantity represented by AB. Connect

each point with the origin O. Then, according to the definition

and construction of the difference of two complex quantities,

AB is equal to OB OA (where AB means from A to B}.

8. Given four points A, B, C, D on the axes at unit distance

from the origin. Find the complex quantities which represent

the distances AB, BC, CD, DA.

9. What complex quantities represent the vertices of the

hexagon inscribed in the unit circle about the origin ? What

complex quantities represent the sides of this hexagon ?

10. Given any three points A, B, C in the plane such that

OA, OB, OC are non-collinear. To prove that it is always

possible to express the relation between them in the form

OC = a - OA + b - OB (a and b are real) ;

and further that this representation is itnique.

PROOF. Draw MC parallel to OB. In the triangle OMC, OM+ MC =

OCby addition. But OM a OA since OM and OA differ only in abso

lute value ; likewise MC = b OB. It follows that

OC=a&amp;gt; OA + b. OB.
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Next, suppose a second rep

resentation

OC = a - OA + V - OB.

Therefore

(a -a }

but this means that O, A. B are ^-^&quot;^^
^

0^^
collinear, contrary to the hy

pothesis, since then OA is equal to a constant times OB. Hence the repre

sentation is unique.

11. Construct w = 1/0, i.e. iv : i = i : z.

12. Multiply 2 times 3 graphically. Illustrate WEIERSTRASS
definition of multiplication that to multiply a by b, operate on b

as was done on unity to get a.

a 4- ib
13. Prove geometrically that

a
= i,

14. Find the points which divide the line segment from o to

i in the ratios (i -f- 1).

15. Show by expanding (cos B + /sin 0)
n and equating reals

and imaginaries that

cos nO = cos&quot;
- n n ~ *

cosn
~2 sin2

-\

2

sin nO = n cos 71
&quot; 1

sin
n n ~ I n ~ 2

cos n~3 sin 3 6+
i -2-3

16. Show that

(a) sin 3 = 3 sin cos2 sin3 = 3 sin 4 sin3
;

(b) cos 30= cos3

3 cos sin2 = 4 cos303 cos
;

(c) cos 4 = cos4 6 cos2 sin2 + sin4
0.

Find similar expressions for sin 40, cos 5 0, cos 6 0, sin 7 0.

17. If cos + / sin = #, show that 2 cos ;*0 = xn + ,
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2 i sin nd = xn --
. Show also that

xn

(2 cos ey = (W )&quot;= (*&amp;gt;

+ -L

= 2 cos n& + 2 n cos ( 2) H---- .

Derive a similar expression for sinn 0, discussing the cases for

n even and odd.

18. Expand cos5 in a series of cosines of multiples of

HINT. Put (2cos6)$ = *
= 2 COS 50 + ....

Expand similarly the following expressions :

sin5
0, cos7

0, sin 8
(9, cos 5 sin7

0.

19. Show that

(x + y&amp;lt;3 + so&amp;gt;3
2
) (x + _yw3

2 + zo&amp;gt;3)
= x2 +y* + z* yz zx xy.

20. Prove that (.#
2n 2^n

tf&quot;cos0 -f a2n
)
=fx2 2xacos-

HINT. Make use of the formula

(yzn
_ 2 xnan cos + 2n

)
= {^

n #n (cos^+zsin^)}{^
n an (cos t sin (?)},

resolving each of the last two expressions into n factors.

21. Show that the triangle xyz is equilateral if

x2 + y
2

-{- z2 xy yz zx = o.

HINT. If ABC be the triangle, the line segment CA is BC turned

through an angle ; and, since cos --M sin = w3 and cos

3 3 o J

- zsin = = w3
2

,
we have *-z=(&amp;gt; /) o&amp;gt;3 or (x z) =(z y) o&amp;gt;3

2
.

3 ws

Hence ^ + _yw3 + 2o&amp;gt;3
2 = o, etc., and the result follows from Ex. 19.

22. Show that \a -f ^|
2
-f \a

-
&\

2=
2\a j|

2 + 2
J.

How is

this related to the geometrical theorem that, if M is the middle

point of PQ and O is the origin, ~OP
2 +^2 = 2 &amp;lt;9J/

2+ 2
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23. Show that the roots of 8 x3
4 x- 4 x + i = o are

cos-, cos 3^, cos 5-E.

7 7 7

HINT. Put (cos + z sin
#)&quot;

= I, z .^. cos 7
= I. From this

= 1 2z ir. zr, i^
?

iu:
?
uzr.77 7 7 7 7 7

Expand (cos0 -f *sin0)
7 = I by the binomial theorem and equate the

real parts on each side. This gives

COS7 e 21 cos 5 6 sin5 e + 35 cos3 6 sin 4 6 7 cos sin6 d + i = o, i.e.

(i) 64 cos7 6 1 12 cos 5 6 + 56 cos 3
7 costf + i = o,

and its roots are

cos-, cos 2-^, cos 5-^, Cos 2-?
?

COs2-?
?

cos , cos ^ ^
.777 7 7 7 7

since (i) is the original equation cos j 6 = i. But

7 7T Q IT ? 7T I I 7T 7 IT I 7 7T 7T
cos = i

,
cos - = cos &amp;gt;

2
,

cos = cos
,

cos ^ = cos .

7 777777
The roots of (i) are thus : I, and cos , cos ^, cos 5 repeated twice.

Now put x = cos 6 and (i) becomes

(x + i) (8-r
3 - 4*2 - 4 * + 1)2 = o.

Thus cos -
,
cos

,
cos 5_- are the roots of

7 7 7

8 x3 4 .r2 4 * + i =: o.

24. Show that the two sets of points a, b, c and x, y, z in the

complex plane form similar triangles if

a, x, i

b, y, i = o.

25. If the points x, y, z are collinear, show that real numbers

/, q, r can be found such that

/ + g -f- r o and /AT -f qy + rz = o.

HINT. Use the condition for the similarity of the triangle xyz and a

certain other triangle on the real axis.



CHAPTER II

RATIONAL FUNCTIONS OF A COMPLEX VARIABLE AND THE
CONFORMAL REPRESENTATIONS DETERMINED BY THEM

8. General Introduction
;
the Function z + a and the Parallel

Translation

IN this and the following paragraphs we discuss the case

where one of the two complex mumbers to be combined by our

elementary operations is regarded as fixed (constant), the other

as variable, that is, as a symbol which is supposed to take differ

ent values throughout the course of the investigation. We state

more definitely that we consider this variable as a number of

unlimited variation, that is, as a symbol which may be regarded

as representing any complex quantity whatever.* We exhibit

this distinction in the notation in that we follow the usual custom

of designating constant quantities by the first and variables by

the last letters of the alphabet.

This difference between constants and variables is clearly

displayed in the form of an equation between two different

variables. To begin with the simplest example, let us put

(i) z = z + a-}

thus z and z are both quantities which vary together. The

variation of z
, however, depends in a definite way upon the

variation of z according to the equation (i) ;
on this account it

* Thus a variable is a symbol which represents any one of a set of numbers

while a constant is a special case of a variable where the set consists of but one

number. For this and the definition and history of a function, cf. VEBLEN and

LENNES, Infinitesimal Analysis (Wiley and Sons) , p. 44. S. E. R.

28



8. THE FUNCTION z + a 2Q

is called a function * of z and in fact a rational function. We
define as follows :

I. A complex variable z
1

is called a RATIONAL FUNCTION of

another variable, z, when it is possible to deduce it from z and con

stants by a finite number of additions, subtractions, multiplications,

and divisions.

II. If there are no quotients^ in this function it is called a

rational INTEORAL function.

If we represent z and z geometrically in two different planes,

then an equation of the form :

(2) , =/(*)

determines a representation \ (a map) of the s-plane on the

s -plane in such a manner that to each point z of the first plane,

there corresponds a point z of the second. If, however, we

represent z and z on the same plane and refer them to the same

axes, then by such an equation each point z of the plane is set

in correspondence with a definite point z of the same plane. It

represents, as we say, a transformation of the plane into itself.

In regard to equation (i) in particular, it is shown in Fig. 3

that each point z is obtained from the corresponding point z

by moving the whole plane parallel to itself in the direction

and the length of the line segment oa :

* We shall later (in $ 33) define the phrase
&quot; Function of a Complex Variable

&quot;

in a sense more restricted than the one given here. It will then be shown that the

rational functions to be treated in this chapter are also in that restricted sense
&quot; Functions

&quot;

of their arguments. For this reason it is allowable to define &quot; Rational

Function of z
&quot;

without giving a previous formal definition of what is in general

understood by
&quot; Function of z.&quot;

t Only such divisions are to be excluded for which the denominator depends

upon z. Division by a constant is multiplication by its reciprocal, that is, by a con

stant (A. A. 20).

J This idea of the geometrical representation of the dependence of z on z as a

transformation or a mapping of the z -plane on the z-plane is due to RlEMANN,
Grundlagen fur eine allgemeine Theorie der Funktionen, Werke, p. 5. S. E. R.
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III. The transformation of the plane into itself determined by

equation (i) is a parallel displacement (a translation) in direction

and distance equal to oa.

In particular,

IV. When the relation between z and z is represented by equa

tion (7), any figure formed by d-points is congruent to the one

formed by the corresponding z-points.

9. The Function az

The next simple rational function of z to be considered is the

product of z and a constant a, viz. :

(1)
z

1 = az.

We ask now what kind of transformations of the plane into itself,

that is, what kind of mappings of the s-plane on the z -plane,

are possible by means of this equation ? We exclude first of

all the case
= 0,

since in this case z = o whatever the value of z may be, and

consequently there is no proper transformation. We now con

sider two important special cases :

First: let a be a number whose absolute value is i
;
then

(V, 4)

(2) a = cos a + i sin a,

in which a is a real angle. The graphical construction
j&amp;gt;f

a

product given in Fig. 4, 6, shows that the line segment oz is

equal in length to the line segment ~oz, but that it makes with

the *-axis an angle increased by the constant a. Each point z

will then be obtained from its corresponding point z by rotating

the whole plane about the origin through the angle a
;
in other

words :
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I. The transformation of the plane into itself by means of the

equation g
, = (CQS ft +

.

sjn ^ (a m?/)

w effected by rotating it about the origin through the angle a.

(In particular, s = iz determines a rotation through a right

angle, z = z a rotation through two right angles.)

Moreover,

II. /;/ this case (as in 8), the figuresformedfrom the z -points

are congruent to tJie onesformed by the corresponding z-points.

Second: let a be a real positive number r. Then any point z

and its corresponding point z lie on a straight line through the

origin (cf. Fig. 4) and are so related that the length of the line

segment oz
1 has a constant ratio to that of oz. We say :

III. The transformation of the plane into itself by means of tJie

equation ,y z = rz

(in which r is real and positive] is effected by stretching it from the

origin.

(If r &amp;lt;
i

,
the distance from the origin is shortened instead of

lengthened; the word &quot;

stretching&quot; will include both cases.)

IV. Any figure formed by the z -points bv means of this trans

formation is not congruent to the one formed by the corresponding

z-points, but is similar to it.

Having thus disposed of these two special cases, let us con

sider the general case of the transformation (i). Multiplication

a = r (cos a + /&quot; sin a),

obeys the associative law for products (equation (12), 3) ;
we .

may therefore first multiply by r and then by (cos + * sin a).

Consequently,
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V. The general transformation (/) is effected by a rotation

about the origin through the angle a (= the amplitude of a) and a

stretchingfrom this point in the ratio \a : I. It is a&quot; similarity
&quot;

transformation with the origin as center of the similarity (that is,

figures are transformed into similarfigures*}*

Moreover, from the commutative law for multiplication we

have the theorem that the result is independent of the order of

the operations of stretching and rotating. It is customary to

express it in this way :

VI. Stretching from a point and rotating about it are permut-

able operations.

10. The Linear Integral Function and the General &quot;

Similarity
&quot;

f

Transformation

I. If a complex variable z depends upon another, z, according

to the relation

(1) z = az + b,

in which a, b are arbitrary complex constants, then we say that z

is a linear integralfunction of z.

As in 9 we exclude the case a = o
; for, in this case equa

tion (i) represents no proper transformation of the plane into

itself, since the fixed point 5 = b corresponds to an arbitrary

point z (that is, the 2-plane is transformed into the fixed point

* = ).* But if

(2) a =0,

transformation (i) can be compounded in various ways from

the simpler transformations already discussed. We can, for

* Words in the parenthesis inserted by the translator,

t Cf. V, 9, and V, 10. S. E. R.
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example, introduce the auxiliary variable 2&quot; by the equation

(3) *&quot;
=

&amp;lt;&amp;gt;*&amp;gt;

it then follows that

(4) z = z&quot; + b.

II. The transformation determined by (i) is therefore obtained

by stretchingfrom the origin and rotating about it (equation j), fol

lowing with a translation (equation 4).

But we might also introduce first an auxiliary variable z
&quot;

(always assuming equation 2) by the equation

(5) Z
&quot; = Z +

a&amp;lt;

in consequence of this

(6) , = .

III. Therefore, the general transformation (i) is also performed

by first displacing the plant parallel to itself, then stretching and

rotating.

In this connection we notice that the coefficient of stretching

and rotating in (6) is the same as in (3), but that the coefficients

of the parallel translations in (4) and (5) agree only for = 1,

that is, when there is no stretching and rotating. We now state

this explicitly as follows (cf. Theorem VI, 9) :

IV. Parallel translation on the one hand, stretching and rotat

ing on the other, are notpermutable operations.

We come now to a third important representation of the

transformation of the plane into itself by means of (i) by dis

cussing the question whether there are definite points which

remain fixed for this transformation, that is, expressed analyti

cally, whether there are values z which coincide with the values

2 corresponding to them according to (i). For every such value,

(7) z = az+ b;
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for a = i
,
this equation has one and only one root

;
denote it

by and we obtain :

&amp;lt;&quot;&amp;gt;

&amp;lt;-;

By substituting the value of b from equation (8) in equation

(i), it becomes :

Transformation (i) can therefore be performed by applying

successively the three simpler transformations :

in other* words, we so translate the plane parallel to itself that

the fixed point z = coincides with the origin ;
we then apply

a stretching from this point and a rotation about it
;

and

finally return this point to its first position z = . But, as is

evident geometrically, we obtain the same result if we stretch

from the point z = and rotate about it. Hence the following

theorem :

V. If a = i the transformation of the plane into itself accord

ing to (/) is performed by rotating through the amplitude of a

about the point :

and stretching from this point in the ratio \a\\i. In this way
each figure is transformed into a similar one.

We can also obtain the same result in a somewhat different

manner. An equation of the form

(10) Z=/(z)

can be given a different interpretation from that in 8. In

stead of regarding Z and z as complex numbers which belong

to two different points of the plane in reference to the same sys-
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tern of coordinates, we can look upon this equation as assigning

anotJier complex number Z to that point which, for a definite sys

tem of coordinates, represents the complex number z. For a

particular form

(n) Z=z-
of equation (io), this number Z can be defined as follows: By

making the point called in the old system the origin of a new

system of coordinates, whose axes are parallel to the old and

whose unit of length is the same as in the old system, we obtain

the point which is called z in the old [Z in the new] system of

coordinates. The point called z
1

in the old coordinates is, in

the new system, assigned to the number:

(12) Z = * -.
The relation between the points z and 2

, expressed in the old

system of coordinates by equations (i), (9), is expressed in the

new system by the equation :

(13) Z = *Z,

that is, it is a &quot;

similarity
&quot; transformation whose center of simi

larity is called o in the new system and in the old. We have

thus deduced Theorem V in a new way.

But we can also prove the converse of this theorem. For, a

&quot; direct
&quot;

similarity transformation of the plane is determined

whenever the points z, z2 corresponding to two different

points z, z2 are given ; every third point z3 then has its corre

sponding point z3 fixed uniquely from the fact that the tri

angles z&Zs and z^z^z^ must be similar throughout, including

the sense of corresponding angles. But we can always deter

mine a transformation of the form (i) which transforms z^ zz

respectively into % ,
z2 . For this purpose it is only necessary

that a and b satisfy the equations :

(14) zj=azi + b, zJ=az + b;



36 II. RATIONAL FUNCTIONS

but from these equations the values :

are finite and determinate providing 2
= ZA ;

we can say :

VI. Every transformation of the plane into itself, which trans

forms any figure of the plane into a similar one, including the sense

of corresponding angles, is expressed in theform (i).*

For the purposes of later applications we express the condi

tions for the similarity of two triangles, including the sense of

corresponding angles, in terms of the complex numbers repre

senting their vertices. If the triangles ZyZfa and SiVV are

similar, then the values of a and b in (15) must also satisfy the

equation :

zj = az, + b;

this is true if and only if

In this equation we can put the letters with primes on one side

and those without primes on the other side of the equality sign

and formulate the theorem as follows :

VII. The necessary and sufficient condition for the similarity in

all of their parts of two triangles z&z^ and z^z^z^ is, that the

quotient

We can obtain the same result geometrically. For, the abso

lute value of the difference z^ z is, according to V, 5, equal

* As an example of how geometrical theorems result from operations with com

plex numbers, we cite the theorem following from V and VI :

Every direct similarity transformation of the plane which is not merely a paral

lel translation can be considered as a rotation about a point which is fixed by the

transformation, and a stretching from this point.
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to the length of the line segment from zl to %, its amplitude is

equal to the angle which this segment makes with the positive

half of the real axes
;
and similarly for the difference z3 z

t .

The absolute value of the quotient on the left side of equation

(17) is then equal to the ratio of the lengths of two sides of the

triangle SiZz3 , its amplitude is equal to the angle inclosed by

these lengths ;
and since corresponding interpretations can be

made for the right side of (17), the equation expresses the sim

ilarity of the two triangles z^z^ and ^ z2V- That the sense of

corresponding angles is also the same follows from the fact that,

in this kind of investigation, the amplitude of a complex number

has a definite sign.

Occasionally equation (17) is used in the determinant form:

(18)
= o.

EXAMPLES

1. Given z = iz : Determine the change effected by this

transformation in the following figures (that is, determine the

figure in the s -plane which corresponds by this transformation

to the following figures in the s-plane, the two planes regarded

either as coincident or as separate).

(a) The square whose vertices are the points i /
;

(b) The unit circle whose center is at the origin ;

(c) The triangle whose vertices are the points o, i +/, i +2 / .

2. Apply each of the following transformations to the con

figurations of Ex. i and note the change :

(a) * = * + /;

(b) z = z + 3 i;
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3. Discuss the transformation z = 2 + (i + -\/3 /) by putting

z = x 1

-f ty
1 and z = x + iy.

4. Regarding the z -plane and the z-plane as coincident,

determine the configuration corresponding to each of the con

figurations of Ex. i for each of the following transformations :

(a) z
1 = 2 z

;

(b) * =(l/2)*;

00 * = (l + l&amp;gt;+(

5. Determine the linear integral transformations of the form

z = az + b which transform :

00 The point i into the point o and the point o into the

point + 2
;

(/) The point i into the point o and the point o into the

point 2
;

(c] The points i and * respectively into the points + 2 and
- 2 ;

6. Perform geometrically the transformations in Ex. 5.

7. Perform the transformation

i st. By stretching and turning and then rotating.

2d. By translating and then stretching and turning.

3d. By reducing the equation to the form z G a (z G),

G being the invariant point, transferring the origin to the point

G, stretching and rotating, etc.

11. The Function - and the Transformation by Reciprocal Radii

The investigation of the quotient, considered as a function of

the dividend, resolves itself, on account of theorem VI, 7,

into the investigation of a product discussed in 9 ;
considered
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as a function of the divisor its investigation may be referred, on

account of the same theorem, to the case in which the numera

tor is i. The question then is: What transformation of the

plane into itself is determined by the function :

(1 )

_

=!?
To investigate this, put

z = x-\- iy = r (cos &amp;lt; -+- i sin
&amp;lt;),

z = x + /y = r (cos &amp;lt;f&amp;gt;

-f / sin &amp;lt;

) ;

according to equation (3), 7, we therefore obtain :

(2) ^=1, $ =
-&amp;lt;!&amp;gt;

and therefore x =

The transformation determined by these equations may be re

garded as compounded from two simpler geometric transforma

tions, each of which considered by itself is not determined by

rational functions of a complex variable. Let us first introduce

the auxiliary transformation :

(4) r=r&amp;lt; ? = -&amp;lt;,

or

(5) *-* J=-y-

And therefore to obtain transformation (i), we must after this put

(6) r1 =
i/V, &amp;lt;

=
&amp;lt;,

or

(7) * &amp;lt;

*

I. Equations (4), (5) (cf. VIII, 4) effect the transition from

any complex number to its conjugate, thus determining geometrically

a reflection on tJie axis of reals.
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II. The transformation determined by equations (6) is called

(on account of the first one of them) the transformation by recipro

cal radii with reference to the unit circle also called reflection
*

on the unit circle. It is important that we investigate its most

essential properties.

III. Transformation (d) is involutoric ; that is, by means of it

pairs of points correspond mutually to each other ; (or more ex

plicitly, if P be transformed into P and by the same transfor

mation P goes into P, the transformation is involutoric).f

Equations (6) are unchanged if r is interchanged with ~r and &amp;lt;

with &amp;lt;. This same property does not follow so directly from

equations (7), but is

easily deduced.

IV. If the point

(r,
&amp;lt;)

lies outside of

the unit circle, the

point (r ,
&amp;lt;

)
is the

intersection of the

chord of contact of

tangents from (r, &amp;lt;)

to the unit circle

with the diameter

prolonged through

(r, *) (cf. Fig. 5).

The point which corresponds to a point lying inside of the unit

circle is obtained (on account of III) by reversing this construc

tion. Every point on the unit circle corresponds to itself.

A further important property of this transformation is that

* In an applied sense the law of reflection in optics is different. On the other

hand, the transformation treated here is important in electrostatics. When used

there it is spoken of as
&quot; The Principle of the Thomson Images.&quot;

f Words in the parenthesis added by the translator.
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circles transform into circles, that is, all the points on a given

circle are transformed into points which lie again on a circle.

For if the coordinates x, y of a point satisfy the equation :

(8) tf(*
2 + /) + bx +

cj&amp;gt;
+ d= o,

which represents any arbitrary circle for suitably chosen coeffi

cients, then, according to (7), x , y satisfy the equation :

(9) &amp;lt;-v

2 +/2

) + ^v f + cy + a = o,

which in general again represents a circle except for d= o when

it is a straight line. The above statement is therefore correct

if a straight line is regarded as a special case of a circle. The

following are more precise statements of these facts :

V. To a circle which does not go through the origin (a -= o,

d= 6] there corresponds a circle which does not go through the

origin; to a circle through the origin (a=f=o, d=o) there corre

sponds a straight line which does not go through the origin ; a

straight line through the origin (a = o, d=o) corresponds to itself.

We also add :

V#. To parallel straight lines correspond circles with a com

mon tangent at tlie origin.

Further, the transformation by reciprocal radii has the prop

erty that angles are preserved, that is, that the angle of inter

section of two curves is equal to the angle of intersection of the

corresponding curves. The correctness of this statement can

be shown best by considering first the special case in which one

of the two curves is a straight line through the origin. Thus if

PP and QQ are two pairs of corresponding points (Fig. 6), it

then follows according to equation (6) that

OP- ~OP =
OQ&amp;gt; OQ = i

;

and hence A OPQ ~ A OQ P1

;
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and in particular :

(10) OPQ = %-OQ P1

.

If we allow the point Q to approach the point P along a given

curve, then the point Q approaches the point P upon the cor-

.

FIG. 6

responding curve
; PQ, P Q become the directions of the tan

gents to the curves, % OQ P in the limit will be equal to

O P Q ,
and it therefore follows that in the limit

(n) OPQ = % O P Q . Q.E.D.

We notice further in this connection that the equality sign refers

only to the absolute value of the angle ;
the two angles corre

sponding to each other are opposite in sense, and the resulting

theorem is completely formulated as follows :

Two curves corresponding to each other form with any

straight line corresponding to itself, angles which are equal but

of opposite sense.

Moreover, since the angle between any two lines is equal to

the sum (difference respectively) of the two angles which the

two lines make with a third, it follows that :

VI. The angle in which any two curves intersect is equal in the

opposite sense to the angle of intersection of the two curves which

correspond to the first two by the transformation by reciprocal radii.
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Since this transformation is of frequent occurrence, a name is

given to it as in the following definition :

VII. A transformation, under which the angle between any two

curves is equal to the angle betu&amp;gt;een the corresponding curves, is

called a conformal representation
*

(also isogonctl representation, or

a mapping with preservation of angles, or one &quot; similar in infini

tesimalparts &quot;).

Therefore, according as the sense of the angle obtained is

preserved or changed, we speak of the representation as con-

formal &quot;without&quot; or &quot;with inversion of angles&quot; With this

terminology Theorem VI is stated as follows :

VIII. The transformation by reciprocal radii is a conformal

representation with inversion of angles.

Reflection on the jc-axis determined by equations (4) or (5) is

a representation of the same kind. If we now combine trans

formations (4) and (6) in order to obtain the original transfor

mation (i), the two changes in the sense of the angle, being

opposites, mutually disappear. We can then say and it is the

most important result of this paragraph :

IX. The transformation effected by z =i/z ?s a conformal repre

sentation without inversion of angles.

EXAMPLES

1. Prove analytically that every circle which cuts the unit cir

cle orthogonally is transformed into itself by the transformation

by reciprocal radii.

2. Prove Ex. i geometrically.

* Konforme Abbildungw=&amp;gt; the term used by GAUSS, Ges. Werke, Vol. IV, p. 262,

and adopted universally by German mathematicians. CAYLEY used the term

ortfiomorphosis or orthomorphic transformation. In general it is the process of

establishing the infinitesimal similarity of two planes by means of a functional

relation between the variables of the planes. Cf. also 34. S. E. R.
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3. Prove the converse of Ex. i for the same transformation.

4. Transform by reciprocal radii a given system of parallel

straight lines. Do the same for the system of straight lines

orthogonal to the given system. Compare the two systems of

circles obtained.

5. Transform by reciprocal radii the system of straight lines

through a fixed point (a H- bi). Discuss four cases according as

this fixed point is

(a) At the origin ;

(V) On the unit circle
;

(c] Inside of the unit circle
;

(d} Outside of the unit circle.

6. Transform by reciprocal radii the system of circles with

their centers at (a + bi) and orthogonal to the system of Ex. 5,

discussing the same four cases as in Ex. 5. Draw carefully the

accompanying diagrams for both Exs. 5 and 6.

HINT. The lines through P (a + bt) transform into circles through the

origin and through /&quot;(the transform of P), while the circles with their centers

at (a + bi) are transformed into circles orthogonal to the first set.
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12. Division by Zero : Infinite Value of a Complex Variable

While addition, subtraction, and multiplication in the field

of complex numbers are, as we have seen, without exception

possible operations, this is not the case with division. Among
the numbers introduced by us so far there are none which, when

multiplied by zero, give a definite number a different from zero,

and hence none which could be the result of the division indi

cated by a

o

as this operation is defined in 7. The function z = i/z dis

cussed in the above paragraph is accordingly not defined for

2 = 0. We may express it otherwise in this way : when the

s-plane is represented conformally upon the z -plane, the origin

in the z-plane is an exceptional point in the representation since

there is no point in the s -plane which corresponds to it.

But it is customary in mathematics to remove such exceptions

by suitable agreements. We make such an agreement here in

the following definition :

I. /;/ addition to the complex numbers and their symbols already

introduced we introduce now a new one,
&quot;

infinity,
1 1 with the symbol

oo
,
which is to be regarded as the result of tJie division i/o.

This analytic definition is parallel to the following geometrical

one :

II. /// addition to tJie points of the plane at finite distancesfrom
the origin let us assign to tJie plane an infinitely distantpoint which

may be regarded as the one corresponding to the origin in the trans

formation by reciprocal radii.

It is necessary now to determine the application of these

terms and symbols. Analytically, we state the following

definitions :



46 II. RATIONAL FUNCTIONS

(1) III. a -\- oo = oo -\-a = oo
,

(2) IV. a oo = oo a = oo
, (a

=
o),

from which it is evident that the fundamental laws of addition

and multiplication spoken of in 2 and 3 are satisfied. From
these we get the following definitions for the inverse operations :

(3) oo a = oo
,

(4) a oo = oo
,

(5) ^ =0

00
(6)

^ = oo
, (a * o).

a

The symbols oo oo
,

o oo, ,

O 00

remain completely undetermined, inasmuch as any number satis

fies the operations demanded by them. Thus it is evident that

the desire to remove by these definitions the exceptions to the

theorems has been very imperfectly attained. For, while we

have no additional case for which one of our operations would

be impossible, yet we now have five indeterminate forms instead

of the one, o/o.

Geometrically, we shall be content for the present to observe

that the expression
&quot; A circle through two points in the finite

part of the plane and the point at infinity
&quot;

signifies the same

thing as &quot; A straight line through these two points.&quot; Thus Theo

rem V, ii takes the following simple form : A circle through

three points corresponds to the circle through the three corresponding

points ; further details are postponed to later paragraphs.

According to conventions of this kind, certain words and

symbols previously defined are assigned a wider meaning. That

this procedure is permissible we have repeatedly stated in the

first chapter ;
that it is useful is justified by results. We can

not object to this on the ground that in another province of
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plane geometry, the protective, another convention (infinitely

many infinitely distant points, which lie on a straight line at

infinity) proves to be of practical value
;
we cannot expect that

one and the same convention will suffice for all our purposes.

In elementary analysis the word &quot;

infinite
&quot;

is used only in

theorems in a qualified sense (cf. A. A. 63). We speak here of

infinite as a fixed value. The relation of these two ideas will

be determined at our convenience
( 31) after we have fixed

upon the elementary meaning of infinity as applied to complex

numbers.

13. Transition from the Plane to the Sphere by Stereographic

Projection

Up to this time we have represented the complex numbers by
the points of the plane, but in introducing this representation

(in 4) we called attention to the fact that any surface could be

used. In particular, the sphere lends itself readily to this pur

pose. We therefore wish to apply to it the representation of

complex numbers by the points in the plane, which we have

already introduced. We proceed as follows :

I. Place a sphere
*
of unit diameter on the xy-plane (considered

horizontal) so that it touches the plane at the origin O. The highest

point of the sphere that one which lies diametrically opposite to

O will be called O . From this point O , project the points of the

plane on the sphere by straight lines.

This kind of projection has been used since the earliest times

in cartography under the name of stereographic projection. Its

most important properties are the following :

* This sphere is called NEUMANN S sphere. In following out one of RlEMANN S

ideas Neumann chose the sphere instead of the plane as the field of the complex
variable. It is used by Neumann throughout his treatise, Vorlesungen uber

Riemann s Theorie der Abelschen Integrate (Leipzig, Teubner, 2d ed., 1884).

S.E.R.
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II. To each point of the plane there corresponds one and only

one point of the sphere, since each projector cuts the sphere in

only one point besides the point O .

III. Conversely, to each point of the sphere there corresponds one

point of the plane. The point O is apparently an exception ;

however, the theorem is made general by supposing as in pre

vious paragraphs that the plane has one infinitely distant point

and assigning this point to correspond to O .

IV. To each straight line of the plane there corresponds a circle

of the sphere passing through O
;
and conversely.

V. Two such circles of the sphere intersect in the same angle as

the two corresponding straight lines of the plane.

To prove this theorem, let us pass the plane of reference,

Fig. 7, through the vertices P, TT of both angles. The angle at

P makes with O P
a solid angle. The

planes tangent to

the sphere at O
and at TT cut this

solid angle in two

angles, the first

of which is the

angle between the
FIG. 7

straight lines of the plane, while the second is equal to the angle

between the corresponding circles on the sphere, since its sides

are tangents to these circles. But both of these planes are

normal to the plane of reference, and their intersections irT,

PT make with irP oppositely equal angles. (That is, ^ icPO

,
each being complementary to the angle TrO O; and

^O OTT, being measured by half of the same arc

O TT.) Moreover, the two tangent planes with reference to the

edge of the solid angle are antiparallel (equally inclined to
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irP]
* and cut it accordingly in the same angle. Hence, the two

angles under comparison are equal. Q.E.D.

In this projection, points of the plane indefinitely near each

other are transformed into points indefinitely near each other

on the sphere, and hence curves in the plane tangent to each

other are transformed into curves tangent to each other on

the sphere. Consequently, the following generalization of

Theorem V is at once possible :

VI. Any two curves of the sphere cut each other at each of

their points of intersection in the same angle as the corresponding

curves of the plajie at the corresponding points of intersection.

We deduce further theorems with the aid of analytical geom

etry. We introduce the , 77, rectangular space coordinates of

which the - and the 7/-axes coincide respectively with the x- and

the j -axes of the (x + /v)-plane, while the positive direction of

the -axis is that of OO . In this system of coordinates the

equation of the sphere is

The point (, 77, ) of the sphere corresponds to the point

of the plane whose coordinates are x, y and radius vector

r= V^+jv2
. To obtain the ^-coordinate of this point on the

sphere and its distance p from the -axis, the similar triangles

&amp;lt;9
&amp;lt;7r, 7r&amp;lt;f&amp;gt;O,

O OP in Fig. 7 furnish the following double pro

portion :

( f\* Y

From this it follows that

(2} r=
p

=
^i

and from these further :

(3) **--., I + ^ = -^,

* Words in the parenthesis added by the translator.
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and conversely :

(4) C ,
-

i r i r

By construction it follows that

x:y:r= :rj: P .

We find therefore that

VII. The coordinates of a point of the sphere are expressed as

follows in terms of the coordinates of the corresponding point of the

plane :

/ % t x y f r 2-

(5) = -
, iy

=
,

, 4 = ----

i -f r2
i -f r2

i + r 2

VIII. Conversely, the coordinates and radius vector of a point of

the plane are expressed as follows in terms of the coordinates of the

corresponding point of the sphere :

(6) XSS-L-

The following theorem is obtained at once from these

formulas :

IX. To any circle of the plane there corresponds a circle of the

sphere, and conversely.

For, to the points of the plane satisfying the equation of the

circle

(7) ar^ + bx + cy + d=o,

there correspond the points of the sphere whose coordinates

satisfy the equation

(8) ^ +^ + ^-f&amp;lt;i-0
= o.

But this is the equation of a plane and it cuts the sphere in a

circle. This converse theorem, however, supposes the word
&quot; circle

&quot;

(in the plane) to be taken, as in the previous para

graph, in its extended sense to include the straight line.
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We now transfer the geometrical representation of complex

numbers from the plane to the sphere :

X. We assign to each point of the sphere the same complex num

ber z = x + iy which heretofore belonged to its stereographic projec

tion on the plane.

Thus to the real numbers and the pure imaginaries, for ex

ample, there correspond on the sphere the points on the

&quot; meridians &quot;

77
= o and = o respectively ;

to the points of ab

solute value i, there correspond the points on the &quot;equator&quot;

=1/2. To opposite complex numbers (IV, 2) correspond

points of the sphere which are symmetrical to the -axis, and to

conjugate complex numbers (VIII, 4) correspond points

symmetrical to the -plane. To the number oo introduced in

12 there corresponds on the sphere, just as to any other com

plex number, one and only one point, viz. O .

By means of this interpretation of complex numbers on the

sphere we can now answer the question as to what transforma

tions of the sphere (instead of the plane) into itself are repre

sented by the functions heretofore investigated. The functions

discussed in 8-10 furnish nothing simpler for the sphere than

for the plane. However, it is different with the function z = - of
z

ii. Let
(jc, y) and (x , y )

be two points of the plane which

correspond to each other by the transformation by reciprocal

radii in reference to the unit circle
;
and let (, 77, ) and ( , r/, )

be respectively their stereographic projections on the sphere.

Then substitute in equations (2), n, the values of x, y, r 1 and

x
, y ,

r12 respectively from equations (6) of the present para

graph and from the corresponding equations writh accented

letters, and we obtain :

= -n.

,-{{ ,_{ { I-
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from these it follows that

(9 ) r~w=*r-i=----i)&amp;gt;
that is :

XI. The transformation by reciprocal radii in reference to the

unit circle in the plane corresponds, by stereographic projection on the

sphere, to a reflection on the equatorialplane 1/2 = o.

The transformation of the plane into itself by means of z = z~ l

is performed by first transforming by reciprocal radii in refer

ence to the unit circle and then reflecting on the axis of real

numbers. The corresponding transformation of the sphere into

itself is thus performed by two reflections, one on the equatorial

plane and the other on the meridian plane t]
= o. Now these

two reflections on the two planes perpendicular to each other

are compounded by merely
&quot;

Reflecting on the line of intersec

tion of the two planes,&quot; that is, by taking for each point another

one symmetrical to the first in reference to the line of intersec

tion. This transformation is performed also by rotating the

sphere through 180 about this line of intersection as an axis.

Hence, we state the following theorem :

XII. The transformation z
1 = z~ l determines a rotation of the

sphere through 180 about the diameter passing throttgh the points

z = i and z = i.

In the plane the origin was an exception to the transforma

tion in that there was no proper point corresponding to it. On
the sphere, as we have seen, it is different, since the origin cor

responds to its opposite pole O . Hence we say :

XIII. The transformation z = z~ l
is reversibly unique for all

points of the sphere ; to any point z there corresponds one and only

one point 2
,
and conversely.

From the geometrical representation given in XII we infer

further that :
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XIV. For the transformation z
1 = z~ l there are two and only tu&amp;gt;o

points z which coincide with their corresponding points z
{

,
viz.

z = i and z = I.

We return now to the question postponed in a previous para

graph as to how the theorems of plane geometry appear in refer

ence to the convention introduced there
;

it is evident that this

convention amounts to regarding the plane as an infinitely large

sphere and transforming the theorems of ordinary spherical

geometry to the plane. We shall not go into further details here

except to remark that the circles of the plane corresponding to

great circles of the sphere are then characterized by the prop

erty that they cut the unit circle in the end points of a diameter.

Further : If we combine with the transformation (XII) that

reflection on the ^-plane perpendicular to the diameter, which

puts x -f- 1y into x + iy, we find :

XV. The transformation, which replaces every point of the sphere

by the one lying diametrically opposite to it, is expressed analytically

by the equation :

Two complex numbers having the relation to each other

expressed in equations (10) are called diametral.

EXAMPLES

1. The sphere may be projected stereographically upon a plane

as follows : Let the center of the sphere be taken as the origin

of coordinates
, 77,

of a point on the sphere. Let the points

of the sphere be projected from the south pole (whose co

ordinates are 0,0, i) upon the tangent plane at the north
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pole and take the Cartesian axes ox and oy on the tangent plane,

parallel to the axes and
17 respectively. Show that the co

ordinates of the projected point are

2J 2r)-~
f\

and that x -f- iy= 2 tan -
(cos &amp;lt; + / sin

&amp;lt;),
where &amp;lt; is the longi

tude measured from the plane rj
= o and 6 the north polar dis

tance of the point on the sphere.

2. A circle 4 .r2

-f 4
_&amp;gt;

2 ^x 4y + i = o is projected upon

the sphere as in Ex. i
;
find the equation of the plane whose

intersection with the sphere represents this projection.

3. A circle, the equation of whose plane of intersection with

the sphere is
^ + ^ + ^

_
5/4 = Oj

is projected upon the plane as in Ex. i
;
find the equation of

the projection.

4. Solve Ex. 2 according to the method of projection in I, 13.

5. Find the equation of the projected circle of Ex. 4 for the

plane and sphere as in I, 13.

14. The General Linear Fractional Function and the Circle

Transformation *

In the process of investigating rational functions of a com

plex variable by proceeding from simpler to more complicated

forms we consider next the general linearfractionalfunction :

* The transformation determined by the linear fractional function, that is, by the

linear substitution, is called bilinear by some authors. On Kreisverwandtschaft,

that is, circle transformation between the planes, see MOBIUS: Abhandlung der

Sachs. Gesellsch. der Wissensch., 1855, and earlier notices on the same subject in

Gesammelte Werke, Vol. II, p. 243. S. E. R.
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We take up first the case

(2 )
adbc=o*

or a : b = c : d.

In this case the transformation becomes

all points z, except z = bja, correspond then to the one point

z = a/c, and all points z
, except z

1 = a/c, correspond to the one

point 2 = b/a. We are thus dealing with a degenerate trans

formation ;
this case is therefore excluded in what follows. We

shall discuss two additional cases :

I. Incase c = o,

z reduces to the linear integralfunction :

Since the discussion of this case is already disposed of in 10,

we omit it here.

II. In case

(5) +*
transformation (i) can be compounded from the following three

simpler ones ;
we first put

(6) *-.+,
then

(7)
&quot; =

77.

and finally

* That is, the determinant ofthe transformation equals zero. S. E. R.
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The second of these is disposed of in u, while the first

and third are similarity transformations ( 10). All three of

these relations have the property that they transform circles

into circles. Hence the same property must belong to the

transformation (i) compounded from them. By definition,

therefore :

III. Two planes having a one-to-one correspondence are said to

be circularly transformed into each other if every circle of one plane

corresponds to a circle of the other ;

and hence the theorem :

IV. The z-plane is transformed circularly into the z -plane by

the linear fractional function (/).

Since each of the three transformations (6)-(8) preserves

angles, the same will be true for the transformation resulting

from their combination. We therefore add (cf. VII, n):

V. The representation is conformal without inversion of the

angle.

We shall call the circle transformation &quot; direct
&quot; or &quot; in

verted
&quot;

according as the sense of the angle remains the same

or is changed. In the present case we are dealing with a direct

circle transformation. An inverted circle transformation between

the z- and the s -planes is obtained by putting z equal to a linear

function of the value z conjugate to z.

The set of all transformations (i) possesses an important

property which must be discussed. If in addition to (i) we

put also

(9) *&quot; =
&quot;

it follows that

(10) z&quot;
=

^
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where the doubly accented coefficients are related as follows to

the unaccented and singly accented ones :

(i i) a&quot; =aa + cb b&quot; = ba + db

c&quot;
= ac + ccf d&quot; = be

1 + dd .

The conclusion therefore is that

VI. A linear function of a linear function is itself a linear

function. But it is desirable to formulate this theorem somewhat

differently by making use of an important general concept stated

in the following definition :

VII. A set of transformations is called A GROUP when the com

bination of any two transformations selected from the set gives

always a transformation which is itself contained in tJie set*

Theorem VI therefore reads :

VIII. The set of all linear transformations forms a group.

(The special sets of linear transformations treated in 8, 9. 10

each form a group. All these groups are contained as &quot; sub

groups
&quot;

in the group of all linear transformations.)

It is to be noticed too that the transformation (i) can be

compounded in various other ways from simpler transformations.

(Cf. the corresponding results of 10.) Considering the z-

and the z -planes coincident, let us next inquire about the fixed

points of transformation (i), that is, those points which corre-

* Present usage insists further that the set must also contain the inverse of every

transformation of the set in order that it may be a group, (z z-\- a,a real and

&amp;gt;o,
satisfies the definition according to VII, but is not a group.) The inverse

transformation is defined as follows : Given a transformation A and suppose A
another transformation such that when A and A are performed successively each

point is transformed into itself, that is, the identical transformation is obtained, then

A is called the inverse of A. This is denoted symbolically by A A~^-= A~^ A = I

where i is the identical and A~ l is the inverse transformation of A. Cf. Ila, 22.

S.E.R.
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spond to themselves by this transformation and in the determi

nation of which we put z = z . We thus obtain the following

equation of the second degree :

(12) cz* + (d- a)z- b = o.

If the roots of this equation, 1} 2 ,
are different, we form the

following linear function of z :

According to VI this is a linear function of z which can be com

puted. We shall effect our purpose more directly, however, as

follows : For z=^ we have z
f= ^ and Z = o

;
for z = 2 ,

^= 2

and Z = oo . But a linear function of z which becomes zero for

z = fi and infinite for z = 2 must be of the form

7 -
z,

,-2
where k is a factor to be determined. This may be done by

noticing that for z o, z = /*/* and therefore

hence

(The last form of this result is obtained from the fact that t
and

2 both satisfy equation (12).) We have thus found that

IX. If the roots of equation (12) are unequal, relation (i) be

tween z and z
r

may be put in theform :

f \ d 1 _ & ~ ^1 z 1

z 2 a ^ 2 z 2

* Any other pair of corresponding values of z and z must naturally give the same

result
;
thus for z = d/c, z &amp;lt;x&amp;gt; ,
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But if the roots of equation (12) are equal, both = , we form

the function

This is then a linear function of z which is infinite for z = and

hence must be of the form :

az + ft

The coefficients a, ft may be determined from the fact that the

equation :

(az + ft- i)(* -{)=&amp;lt;&amp;gt;,

I Q

resulting from =

for z
f = z, must be identical with equation (12), and likewise

that must be a double root
;
therefore

K + ft
-

i)
= o,

and Z takes the form : \- a.

Here again is determined from any two corresponding values

of z and z
,
the simplest of which are z = oo

,
z =

a/c. Thus

or, since = in this case,
2 c

( 7) a+d
* & may also be obtained as follows :

i f
;
but this is of the form &amp;lt;to + P

&amp;gt;

+ rf a - c

since = f from (12). It follows that rt = ^ = -^~
. S. E. R.a^c a + d
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Therefore,

X. If the roots of equation (12) are equal, both =
,
the relation

(i) between z and z may be put in theform

( &amp;gt; -7^--^+ 2C
r

-C z-^a + d

The equations (15) and (18) permit of a simple geometrical

interpretation. To interpret equation (15), put

Z t = p(cos &amp;lt;f&amp;gt;
-f- i sm

&amp;lt;i&amp;gt;)

/ = ;;/ (cOS \\l + 2 sin
l/f).

It therefore follows from equa

tion (15) that

Now (cf. II, 7) p is the ratio of the two lengths zi and z
t,^

&amp;lt;f&amp;gt;

is the angle 4Vi- From elementary geometry, the geometri

cal locus of the points for which

(20) p = const.

is a circle whose center lies on the line connecting & and 2

which has the property that 1
and 2 can be obtained from

each other by the transformation by reciprocal radii in reference

to this circle. The locus of the points for which

(21) &amp;lt;

= const.

is a circle through 1 and 2 - Therefore,

XI. Transformation (15) transforms each of the two systems of

circles (20) and (21) into itself. Allpoints of a circle p = a (or of
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a circle
&amp;lt;f&amp;gt;

= a) are transformed respectively into points of the circle

p = ma (or
&amp;lt;f&amp;gt;

= a + ^) belonging to the same system.

Let us notice the two special cases m = i (that is, \k\
=

i)

and
\l/
= o or = TT (that is, k real).

XII. In the first of these special cases each circle of the first sys

tem is transformed into itself, and in tJie second case each circle of tJie

second system is transformed into itself.

An important property of the two systems (20) and (21) is

that

XIII. Every circle of the one system cuts every circle of the

other system at right angles.

This is proved either by elementary geometry or as follows :

The two given systems are transformed respectively by the

linear transformation

into the system Z = const., that is, into the system of concentric

circles about the origin, and into the system amZ = const., that

is, into the system of straight lines through the origin. But both

of these systems are orthogonal to each other
;
and since by (V)

a linear transformation leaves angles unchanged, the two first-

named systems are also orthogonal to each other.

The special case (X) follows from the general one (IX) by a

suitable limiting process. If we allow the point & to approach

the point 2 in a given direction, then the system of circles

through x and 2 goes over into the system of circles through 2

and having at this point the given direction for the direction of

the tangents ;
the system of circles which have their centers on

the line ^0 and divide the line segment ^0 harmonically are

transformed into the system of circles which pass through 2 and

whose centers lie on the common tangent of the circles of the
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first system, and which have also at 2 a common tangent per

pendicular to the common tangent of the first system.

Analytically, this limit is determined as follows : put

equation (15) now takes the form :

(22) I+^-=(l+

Multiply out, cancel i on each side, divide by 8, and then let 8

approach zero; equation (18) is the result. In this process the

direction in which L approaches 2 is left entirely undetermined.

Therefore (as an indirect result from the first geometrical process)

we always obtain the same special transformation (18) from the

general one (15) in whatever direction x approaches 2 . It is

to be noticed also that while we found for each such limit pro

cess just two systems of circles which are transformed into

themselves by (18), there are others having this property ;
in

fact the conclusion is evident that every system of circles

through having a common tangent is transformed into itself

by (18).

To show this analytically let us again put

-^-= Z=jr-MK,

a = (3 + *y,

so that equation (18) reduces to the two following ones :

(23) x
from these it follows that

(24) (XX
1
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that is, every system of straight lines

(25) AJf -h /A K= const-

is transformed into itself by (18). But, in the Z-plane, equa

tion (25) represents a system of parallel straight lines
; by the

transformation I

~^ = Z

this system is transformed, according to Va, u, into circles

with a common tangent at the point . Consequently all sys

tems of this kind are transformed into themselves by (18). It

follows therefore that :

XIV. There are infinitely many systems of circles each of which

is transformed info itself by the special transformation (18) : that is,

every system of circles through with a common tangent has this

property.

However :

XV. Among these systems there is o?ie such that any circle belong

ing to it is transformed into itself.

We obtain this last system by choosing X and p.
in (24) so

that

EXAMPLES

1. Prove that the general linear fractional transformation

transforms circles into circles starting from the fact that

(z a)/(z p)
= \ is the ^-circle and then substituting for z its

value in terms of z .

2. What is the condition that the transformation

, _ az + b

transforms the unit circle in the s -plane into a straight line ?

Ans. \a =\c\.
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3. If the invariant points for the transformation

cz-\-d

are
, ft show that it can be put in the form

z a __ yZ a~~

4. Find the invariant points for the transformation

i z

Put it in the form given in Ex. 3.

5. Prove the statement in the text which says that the geo

metrical locus of the points for which p = const, (equation 20,

14) is a circle.

6. Discuss the transformation (i) by putting it in the form

z,_a == _ (ad-be]

H)
Transform the origins in the z - and the ^-planes into the

points ajc and djc respectively. A s -locus is therefore ob

tained from a s-locus by transferring the origin to d/c, turn

ing the plane through two right angles about the line z =

j-am[~z

a

]
&amp;gt; inverting the locus in the new position with

be ad
a constant of inversion equal to

,
and finally moving

the origin to the point a/c.

7. Show by the process in Ex. 6 that a circle is transformed

into a circle by the transformation (i).

8. Show from the particular form used in Ex. 6 that the

bilinear transformation is equivalent to two inversions in space.
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9. Show geometrically that the bilinear transformation is

equivalent to two inversions in space.

[HARKNESS AND MORLEY, Introduction, etc. p. 42.]

10. Prove that the determinant of the product of two linear

transformations equals the product of the determinants of the

two transformations (understanding the product of two trans

formations to be the result of performing them successively).

15. The Double Ratio Invariant under the Linear Trans

formation

In 10 we saw that two given s-points can be transformed

into two given s -points by a similarity
&quot; transformation

z = az -+- b ;
the two constants a, b at our disposal are deter

mined according to the conditions of the problem.

The general type of linear fractional transformation (i, 14)

appears at first to contain four arbitrary constants, but there

are really only three. For,

I. If u&amp;lt;e multiply the four coefficients a, b, c, d by tJie same

factor /a, the linear transformation remains unchanged; it depends

therefore not upon four, but upon three arbitrary constants inde

pendent of each other.

(If we put m equal to the reciprocal of one of the coefficients,

unity takes the place of this coefficient, and the formula appears

with only three constants in it. But in so doing we must ex

clude that transformation for which this coefficient is equal to

zero.)

It is therefore always possible to determine the coefficients

of a linear transformation to satisfy three given conditions. In

particular cases we should investigate whether or not these

conditions are contradictory among themselves. If, for ex

ample, it is required to determine the linear transformation
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which transforms three given distinct points %, zz ,
zs into three

other given points, we have the three equations

i -f- #

t \
, (*=I,2, 3),(0

or, fZf

These three equations are sufficient to determine the three

ratios of the four coefficients. As shown in the theory of de

terminants (A. A. 31) it is always possible to determine these

ratios for equations (i), and in fact in only one way, provided

that not all of the four third order determinants of the matrix :

ZL ,
I

Z2Z2

are zero. But, according to equation (18), 10,

means that the triangles (^%s3)
and (z

other
;
and if

are similar to each

= o or

Zi, I, I/Zi

then the A (zjzjzj)
~ A f- -1 i\ If both are true the

\Zi Z2 Z3J

A f
i
V% 2

and therefore

= or
= 0,
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that is, (zl
- Z2)(z2

- Z3)(z3
-

zj = o
;

in other words, two of the z-pomts then coincide.* The follow

ing theorem is therefore true :

II. There is always one and only one linear transformation

which transforms three given distinct points z into three given

points z .

Of course, if the transformation is not degenerate ((2), 14),

the three s -points must be distinct.

As an example of theorem II we will treat the problem to map
the inside of the unit circle of the z-plane conformally upon that

half of the s -plane whose points represent complex numbers

with the coefficients of / positive. For this purpose let us asso

ciate three arbitrary points of the unit circle of the s-plane with

three arbitrary real values of z
f

;
it then follows that if, in

passing over the series of values %, z2 , z3 upon the unit circle,

we have the area of this circle to our left, then in passing over

the corresponding series of values Zi, z2 ,
z3 upon the real axis

the given half-plane (called briefly the &quot;

positive half-plane &quot;)

lies also to our left. This, for example, is the case when we

set the points

respectively in correspondence with the points

,
z3 = oo.

We thus obtain the equations :

, ^ a-\- b ai + b a b
(2) ! = o,

! = i, =00,
c+d ci + d c-d

or, (a + 3)
= o, (b-d) = i(c-a), (cd) = o.

* In this discussion z, z%, zs are understood to be different from zero. The
case where one of these numbers = o can be brought under the general case by an

auxiliary transformation of some such simple form as 2 =
z-\-f.
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Since we may put d=\, it follows that a = i, b i, c=i,
that is,

(3) z = i and hence z = -

We investigate further the mapping of the s-plane upon the

plane by means of these formulas. To the values

i,

correspond the values

oo

00, I, t.

To the s-axis of real numbers corresponds the s -axis of pure

imaginaries ;
to the z-axis of pure imaginaries corresponds the

unit circle of the s -plane (cf. IV, 7). By means of these

z -p/ane

.

j
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already considered in 10, equation (16), becomes, by the lineal

transformation (i),

z\ z 2 _cz3 + d Zi z?.
j r r~v

&quot;

]z 3 z 2 czl + a z3 z2

that is, it is in its original form multiplied by a factor which

does not contain z.,. If we now form the quotient of this func

tion and a corresponding one in which z4 is used instead of z2 ,

this factor disappears. We thus find :

/ \

The following definition enables us to state this result more

conveniently :

III. The double ratio offour points (z^ z2 ,
z3 ,

z4) taken in this

order is understood to be the quotient :

(5)
Z^^:*^^=(zl,^z3 ,z&amp;lt;);

z3 z.2 z2 z

therefore,

IV. The condition for the existence of a linear transformation

which transformsfour given z-points intofour given z -points is, that

the double ratio of the z points shall be equal to the double ratio of

the z
1

-points taken in the same order.

And further :

V. This condition is necessary and sufficient providing thefour

given points are distinct.

For, when that linear transformation which puts the points

%, z2 ,
z3 respectively into z\, s , s 3 is found by II, it has the

property of transforming the point z4 into z providing the

double ratios (%, z, zs , z4) and (z^, z.2

f

,
z3 ,

z4 ) are equal. But there

is only one such point since equation (4) is of the first degree in

2^4. It must therefore be the given one, Q.E.D.
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The double ratio of four complex points is of course in gen

eral complex ;
but more precisely :

VI. The double ratio offour points is real when, and only when,

thefourpoints lie on a circle.

The amplitude of (zv
z2)/(z3 z2) is the angle z^z^ and the

amplitude of (zl
z4)/(z3 z4) is the angle ZAZ^. If the quad

rilateral z^z2zzz^ is inscribable in a circle, then these two angles

are inscribed angles measured by the same arc or by arcs whose

sum is a whole circumference. In the first case these angles

have the same sense, in the second case opposite sense. More

over, in the first case %. z3z^ = ^ z&Zi, in the second case it

=
y. z&Zt TT. Therefore the amplitude of the double ratio is

zero in the first case and TT in the second, and the double ratio

itself is real in both cases. But if the four points do not lie on

a circle, then ^ z3z^ is different from ^ z3z2zlt and from z&fa

TT, and therefore the double ratio is not? real.*

If, in particular, zz = o, z3 = i, z = oo
,
we find that

(Zj, O, I, oo )=;&!,
that is :

VII. The double ratio of an arbitrary point z with the three

points O, I, oo is equal to z itself.

As already stated, the double ratio of four points depends upon

the order in which the points are taken. But four points can

be arranged in twenty-four different ways. Of these the fol

lowing four

(0!, Z2 ,
Z3 ,

Z4), (&amp;gt;
2 , 0!, Z4 ,

Z3), (Z3 , Zi, Z,, Z2), (S4 ,
Z3 ,

Z2 , Z^

* To students acquainted with projective geometry we remark, without proving,

that the double ratio of four points of a circle as here defined is exactly equal to the

double ratio of four such points as defined in projective geometry : the complex

double ratio defined here for four given points of the plane is equal to their double

ratio upon that imaginary conic section determined by them and one of the &quot;

cir

cular points at
infinity.&quot;
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give the same double ratio, as a glance at formula (5) shows
;

thus only six different double ratios can be formed from the

same four points. However, there are simple relations connect

ing these six ratios. If we put

(6) (X, 32 ,
23 ,

24)
= A,

it follows at once that

(7) Oi, Zi, z3J Zz)
= i/A.

Simple calculation shows further that

(8) fa, z *,, *4)
= i-A;

and, by combination of these two results,

(9) (%, 23 ,
24 , 22)

= i (2X , 34 , 23 , 2,)
= i - = -

,

(\ / \
10) ($!, $2,34,23)

=
A -

\**/ \~LJ &quot;V ~H ~d/ \~17 -LI ~&amp;lt;*1 -O/ v

I A

It thus follows that :

VIII. Each of the six double ratios which can beformedfrom

fourpoints is a linear function of each of the others.

The six values (6)-(n) are in general all different from each

other. Two or more of them can be made equal only for par

ticular values of A. Closer investigation shows that all the

possible cases can be made to depend upon the two following

types by a change of symbol :

A i _ x A- i

A

and

A

(13)
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IX. In case (12) we call the four points &quot;harmonic&quot; in (zj)

they are called
&quot;

equianharmonic ,

&quot; *

For example, i, o, i, oo are four harmonic points ;
also the

four vertices of a square ;
the three vertices of an equilateral

triangle and the center of its circumscribed circle are four

equianharmonic points (or upon the sphere, the vertices of a

regular tetraedron).f

Equation (4) may now be expressed by means of a term

which is important in other respects. For this purpose we

define :

X. A function of one or more points which remains unchanged

when one and the same arbitrary transformation of a given group

is applied to all of the points is called an invariant of the group.

Thus equation (4) expresses the fact that

XI. The double ratio offour points is an invariant of the group

of linear transformations. \

We can assert further that it is the only invariant of this

group. This is to be understood as follows : Three points can

have no invariant of this group on account of theorem II. The

equality of the double ratio of two sets of four points each is

a sufficient condition for the existence of a linear transformation

which transforms the one set into the other. Any other func

tion of four points, invariant under the linear transformation,

must therefore have for all sets the same value for the same

double ratio. Hence it is expressed only by this double ratio

* That is, if A = i the six ratios reduce to i, o, oo
;

if A = i they reduce to i,

1/2, 2
;

if A = w they reduce to &amp;lt;&quot; or w2 where w is a primitive cube root of unity.

S.E.R.

f Also the four points OPQR are harmonic when made by any chord of a coni-

coid drawn through a point O to intersect the surface in P and Q and the polar plane

of Oin R. S.E.R.

J The theorem that a double ratio is unchanged by a bilinear transformation

was stated by MOBIUS, Ges. Werke, Vol. II. S. E. R.
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and accordingly is not counted as a new invariant. But there is

no new invariant for more than four points. That is, suppose

F(zl , *2,
&quot; zn) to be a function of n (^ 4) points invariant under

the group of linear transformations. In place of n 3 points,

z4 , 5 ,
zn , let us put the n 3 double ratios which are formed

by the remaining three points, z
t , z,, z3 ,

with each of these n 3

points. F is then a function of the n 3 double ratios and of

21? ^2, z3 . If now it is an invariant, it must take on the same

value for pairs of sets of n points : z, z2,~- zn and z, z2
f

,
zn

which are set in correspondence by the linear transformation

(i). But since the ;/ 3 double ratios take on the same value

for even- pair of sets, either a relation between 1} z2 ,
z3 and 0/,

% ,
z3

f must remain or F must be a function of the n 3 double

ratios alone. The first is impossible on account of theorem II,

and hence /MS expressed by the 3 double ratios.

EXAMPLES

1. What is the most general algebraic relation between z

and z
1 which gives a one-to-one correspondence between the

points of the z- and the s -planes ?

2. Determine the linear fractional transformation which

puts the points z = i, o, 2 respectively into the points z = o,

I, 00.

3. Determine as in Ex. 2 the relation which transforms i, /, 3

respectively into o, i, oo.

4. What relation between z and z will transform the cube

roots of unity i, oo, to
2

respectively into o, i, oo ?

5. Where is the point z corresponding to z = djc by the

transformation z = (az + b)j(cz -f- //) ?

6. Let c = (2 2+3)7(3 z 2). Show that the center of the

^-circle passing through the points corresponding, by this trans-
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formation, to the points z = o, z, i is at the point z
1 =

-f%

and its radius is if. Find also the center and radius of the

^ -circle corresponding to the points z = o, 2 /, 2*; also to

z = /, 2
,

2 z .

7. Determine the function z =f(z) which maps the recti

linear triangle whose vertices are z = o, z = i, 2 = i + i on the

half-plane, these three points going over respectively into the

points z = oo, z = o, z = i. To which half-plane does this tri

angle correspond ?

8. Determine the linear fractional transformation which

transforms the points z = i, z = i, z i respectively into the

points z = 2, z = o, z
1

oo.

9. A circle of radius r and center (h, k) in the 2-plane is

transformed into a circle in the s -plane by the substitution

show that the radius of the new circle is

r ad be

\ c 2

where A = (p cos + hj- + (p sin (9 + Kf r z and
/o,

6 are the

modulus and the amplitude respectively of djc. Find also the

coordinates of the center of this new circle.

The equation of a circle whose center is at (h, k) and radius

r can be put in the form (z h ki)(z h-\- ki]
= rz or zz + Az

+ A z + y = o where A = h + ki, A = h ki and y = A A
r1 and dashes indicate conjugate imaginaries. This equation,

conversely, represents a circle when A, A are conjugate imagi

naries and y is real. Its center is *
~, /&amp;gt;

- and

&amp;gt; . .

2 J
its radius is (AA y)-. Now subject this circle to the trans-

formation
*&amp;lt;

= (az + b)/ (cz + &amp;lt;t)
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or, = (- dz + ti)l(cz*
-

a) and z = (- afz + b)/(c- a)

and we get the relation

S + A + A ? + y = o.

Determine these coefficients 8
f

,
A A , and y and show that A

,
A 1

are conjugate imaginaries and that B
1

. y are real. It therefore

represents a circle whose center and radius can be determined.

10. Divide the 0-plane into eight regions by means of the

axes and the unit circle. Find the regions in the -plane which

correspond by the transformation z = (i 4- z)/(i z) to each of

these regions. Is this transformation involutoric ? Compare
the unit circle and the axis of imaginaries.

11. In VI, 15 it is shown that four points lie upon a circle

when and only when their double ratio is real. Another form

of this condition is that it is possible to choose real quantities

&amp;lt;z, b, c such that

i
,

i , i

a
, b , c = 0.

Observe that the transformation =i/(0 4) is equivalent

to an inversion with respect to the point 4 together with a cer

tain reflection. If 15 2 , 3 lie on a circle through 4 the cor

responding points Zi = i/(zl 4), s.2
=

i/(z.2 4), 3
= i/(03 4)

lie on a straight line. Hence, by Ex. 23, Chap. I, we can find

real quantities a
, V, c such that a 1 + b + c = o and

a b
1

c-H h- - = o,
0!
-

4 Z,
-

4 3
-

4

and it follows easily that this is the given condition.

12. The set of all linear fractional transformations forms a

group, since the compound of any two of them is again one of
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the same kind. What is the relation between this group and

the set of all the transformations represented by z = z + (3

where (3 has all positive and negative values? Discuss in the

same way z = az, and z
1 = az -\- ft.

13. Find the six double ratios of the points o, i, oo, z.

14. If the double ratio of z, %, z2 ,
z3
=

&amp;lt;o,
find z

(o&amp;gt;

is a

primitive cube root of unity).

15. Prove the theorem that in inversion in space lengths of

double ratios are preserved, that is, that the length (A, B, C,
&amp;gt;)

or

is equal to the length (A , B , C, D ) or

Invert the points with reference to a sphere. Since OA - OA
= OB OB

,
the triangles are similar and hence OA : OB : AB

= OB 1

: OA : A B . Therefore

OA OB
OA

Similarly for A ]D\ CB
,
and

CJ&amp;gt;\ then substitute these

values in the expression for the length (A
1

,
B

, C, D ), reducing

finally to the expression for the length (A, B, C, D}.
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16. Prove that any rotation of NEUMANN S sphere about any

diameter as an axis corresponds to a linear fractional trarfsfor-

mation in the plane tangent at the origin.

Consider four points projected stereographically before and

after the rotation ;
consider also the double ratio of these four

points, using the theorem of Ex. 15. Let the points a, b, c, z pro

ject into a\ V, e
,
z and A, B, C, Z into A\ B , C, Z ;

at the

conclusion solve for z as a linear fractional function of z.

17. In IX, 15, the double ratio of four points %, z
2&amp;gt;

z3 ,
z4 is

called
&quot; harmonic &quot; when it is equal to i. Show that in this

case 2/(zi z3)
= i/(zi z2) + i/(zi z4). Why is it called

&quot; harmonic &quot;

?

16. Significance of the Linear Transformation on the Sphere ;

Collineations of Space Corresponding to It

We will interpret the results of 14 further by stereographic

projection on the sphere. The circles of the plane which pass

through the points 1? 2 correspond to the circles through the

corresponding points on the sphere, or otherwise expressed :

they correspond to the curves of intersection made by the planes

of a sheaf of planes whose axis cuts the sphere in these two

points. But there are also circles on the sphere cut out by a

sheaf of planes that correspond to the system of circles repre

sented by equation (20), 14 (the difference being merely that

in this case the axis of the sheaf does not cut the sphere). This

is evident from the following :

Let us draw planes tangent to the sphere at all points of a

circle of the sphere ; they thus envelop a right circular cone
;

the vertex of this cone is called the pole of the plane of this

circle with respect to the sphere. Any element of the cone is

at right angles to the tangent to this circle at its point of contact

nd thus coincides with the tangent to those circles of the
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sphere which cut the first at right angles at this point. Thus

the plane of each such circle must contain this element of the

cone and thus, too, the vertex of the cone, the pole of the first

circle. The plane of every circle which cuts two given circles

of the sphere at right angles contains accordingly the poles

of the planes of both circles and thus, too, the line connecting

them. The proof thus follows in consideration of XIII, 14.

Hence we may say :

I. Every linear transformation whose fixed points are distinct

transforms into themselves two systems of circles on the sphere, each

of which resultsfrom the intersection of a sheaf of planes with the

We can now think of a definite transformation of space into

itself as corresponding to every such transformation of the

sphere into itself, by which every plane which intersects the

sphere (of course in a circle) is transformed into another plane

which intersects the sphere in the circle corresponding to the

first. Since all the circles through two points %, z2 correspond

to the circles through the corresponding points z
,

j&2 ,
it follows

that : to all the planes which intersect in a straight line cutting

the sphere, correspond the planes of a second such sheaf.

Further, since all the circles which intersect two given circles at

right angles correspond to circles which intersect the two corre

sponding circles at right angles (from V, 14), it follows also

as was just proved that : to all the planes of a sheaf whose axis

does not intersect the sphere, correspond the planes of a second

such sheaf. In this way, therefore, all the straight lines in

space are arranged in pairs. And since the theorem holds that,

when several straight lines not all in the same plane are arranged

in pairs, they all go through the same point, it follows that all

straight lines through a point correspond again to straight lines
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through a point. By this transformation the planes of space,

and thus the points of space as well, are set in a correspondence

reversibly unique. A transformation of this kind is called a

collineation
; accordingly, we can write :

II. To each linear transformation of the complex variable z on

the sphere there corresponds a collineation of space, which trans

forms the points of the sphere precisely in the same way.

According to theorem I, this collineation in the general case

belongs to that particular kind which transforms into themselves

two straight lines, two real points of one of these straight lines

(viz. its points of intersection with the sphere), and two real

planes through the other straight line (the planes through it tan

gent to the sphere). In the special case (XIV, XV, 14) a real

point of the sphere, each tangent at this point and each plane

through a definite one of these tangents, is transformed into itself.

On the basis of the formulas of 13 and 14 it would not be

difficult (even though cumbersome), to carry out this process

analytically and thus to find the equations of the corresponding

collineation for each linear transformation of z. We will do this

only for that transformation which corresponds to a translation

in the plane parallel to the jc-axis. For this

d = z -f- (
is real), that is, x = x + a, _/

=
y.

Accordingly we have the following results from the formulas (6),

13, and those which are obtained from (5) by accenting all the

letters :

(0

2 ax

y y
-f /-

2+ 2 ax + a2
2 a+(i H-a2

)(i

rz +2 ax + 2 2 + 2
i
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(There are of course an infinite number of transformations of

space which transform the points of the sphere as desired.

The process shows that we obtain the required collineation if

we do not make explicit use of the equations of the sphere,

but use the formulas of 13 exactly as found there.)

A particular case of collineation is found in the &quot; Motions in

Space,&quot; that is, in those transformations which transform each

figure into one congruent to it. If we take for granted at the

outset that any movement which puts a sphere into itself can be

replaced, so far as the result is concerned, by a rotation of the

sphere on a diameter as an axis, we can then easily determine

all such movements and the linear transformations correspond

ing to them. To this end we return to equation (15), 14. If

this is to represent a rotation of the sphere about a diameter as

an axis then first, & and 2 must be diametral points (XV, 13) ;

and second, if each of the circles p = const, from equation (20),

14, which in this case are parallel circles, are to be trans

formed into themselves, it follows that m must = i, that is, k

must be an expression of absolute value i. Hence if a and A

are quantities of absolute value i and r a positive real number,

we can put
j
= ra, 2

= r~^-&, and k = A2
.

The solution of equation (15), 14 for z thus takes the form :

^ = z(ra_+ r~W) + 2

(*
~

**} .

z( I - A2

)+ (r-^a + rA2
)

&quot;

or, by multiplying numerator and denominator by a~ l\~ l
:

z(rX~
l
-f r~ l

\) + a(X.~
l -

A)

za~\\.~
l -

A) -f- (r^A-
1 + rA)

Here the coefficients, apart from the sign of one of them, are

conjugate to each other in pairs (for A&quot;

1
is conjugate to A, or 1
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to a, and r is real) ;
if A, B, C, D are real numbers, we can

therefore write :

III. Therefore a linear transformation of z can always be put in

the general form (2) when it represents a rotation of the sphere

about its center*

* EULER S representation of rotation about a fixed point is obtained from equa
tion (2) of the text by introducing the space coordinates

, 7?, ,
and f, TJ , by

means of formulas (5) and (6) of 13. We thus obtain :

x +iy
(Or- Dy + A) + i(Dx + Cy-B)

AD)y +
(6-2 + Z&amp;gt;2)/* + a(AC- BD)x + z(-AD - BC)y + A* +&

( ^Z) - BC)y+ (.4* + 2̂
)

If we put

C^ 4-

it follows that

The numerator on the right-hand side is :

[(AC+ BD) 4- i(BC- ADftr* + [(A*
- B* -

CD) + /(^-
-

Now introduce the coordinates ^, ij, ^ and we obtain :

i(BC

+ [2(
- AB + CY&amp;gt;) + i(A*-B*+& Z&amp;gt;2)] r,,

and by dividing into real and imaginary parts :

(6) ^ = z(AB+ CD)S+(A*B*+C*I*)i+3(BC- j4D)({ 1/2).

And from (a) it then follows that

I - r 2 = (^2-|-^2 C2 ^(t ra)+ 4 (.^c BD)x



82 II. RATIONAL FUNCTIONS

17. The Function z1

In the preceding paragraphs we investigated in detail linear

functions of z. We now turn our attention to the function

(1) W= Z Z = Z2 .

We express w and z first in rectangular and then in polar coor

dinates
; accordingly :

(2) z = x -f- iy
= ^(cos cf&amp;gt;-\-

i sin
&amp;lt;),

(3) w = u + iv p(cos i/ + z shu//),

and therefore from (n), 3, we obtain :

(4) u = x* y
2

,
v=2 xy,

and from (i), 6,

(5) p = r\ A = 2&amp;lt;/&amp;gt;.

The formulas (4) determine one and only one pair of real

values (u, v) for each pair of real values (x, y) ;
we say :

I. The function w = zz is hence said to be single-valued over

the entire plane.

The construction of a point w corresponding to a definite

point z is most conveniently obtained by using formulas (5) ;

the radius vector of such a point w is to the radius vector of z

as that of z is to unity, while the amplitude of w is double the

amplitude of z.

To each circle (r const.) about the origin of the 2-plane

corresponds a circle (p
= const.) about the origin of the o/-plane.

and then

(e) N(^ -I/2)=-2(AC-SD^ + 2(AD+BC)r] -i-(A^ + B^-C^-D^^-I/2).

The formulas ()-() are precisely those due to EULER.

It is sufficient to say without proving that every linear transformation oi x -\- iy

determines a movement in space considered not from the standpoint of Euclidean

geometry but from that non-Euclidean geometry for which the sphere is the fun

damental surface.
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If the radius of the first circle increases continuously from o to

oo, then the radius of the ay-circle takes on all values continu

ously increasing from o to oo (as is known from the real func

tion r&quot;

1 of the real variable r, A. A. 46, 61). To each straight

line &amp;lt;

= const, through the origin of the 2-plane, there corre

sponds a straight line ty
= const, through the origin of the a/

plane. But the amplitude of the latter line (on account of the

second one of equations (5)) takes on all values from o to 2 TT

continuously, while the amplitude of the first takes on only the

values from o to TT. These two results are stated in the follow

ing theorem :

II. The positive half of the z-plane (that is, that part of the

plane which includes the points z x + iy where y is positive) is

mapped continuously and uniquely upon the w-plane by means of

the function w = zz .

And this mapping is reversely unique. For, p = rz and
\f/
=

2
&amp;lt;f&amp;gt;

take on each of the above pair of values, p between o and

+ cc, ^ between o and 2 TT, only once while r increases from o

to + oo and &amp;lt; from o to ?r. On the contrary, the continuity in

w-p/ane z-p/a/ie

\\\\\\\\\\\\\\\AAAAAAA

FIG. 10

this case is interrupted along the positive half of the real axis

of the w-plane, inasmuch as the two sides of this positive half-

axis correspond to the positive and negative parts of the real

axis in the positive half of the s-plane as indicated in Fig. 10.

If &amp;lt; increases further from TT to 2 TT, then
\j/

takes on the

values from 2 TT to 4 TT
;
that is, the ray ^ = const, sweeps over

the whole plane again so that the negative s-half-plane is also
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mapped continuously and uniquely upon the w-plane. From

this we therefore conclude that :

III. The function w = z* fakes on each complex value w differ

entfrom o and oo, in two and only two points of the z-plane.

Moreover, two such points are connected by the relation

2
= zv ;

this follows easily from the left side of the equation

z? z? = o, the factors of which are % % and z2 + %. We are

interested in this relation particularly because it is linear; we

define as follows :

IV. A function w=f(z) which remains unaltered when we

substitute in it a definite linear function of z in place of z is called

a function with a linear transformation into itself or an automor-

phic function*

Part of theorem III may thus be stated more precisely :

V. The function w z2
is an automorphic function. It remains

unchanged when subjected to the linear transformation of the

variable :

(6) ,_*

Further, let us now introduce the following definition :

VI. A region in which a single-valued function w of z takes on

all of its values once and only once is called a t fundamental region

for thisfunction.

It therefore follows from the definition of an automorphic

function and of a fundamental region that :

VII. If a fundamental region of an automorphic function is

known and if it is mapped on a second region by one of the trans

formations of the function into itself, then this second region can

* A special kind of automorphic functions are the periodic functions. Cf. 41 .

also Ex. 4 at the end of 18, and Ex. 31 at the end of Chap. IV. S. E. R.

f Not however &quot;

the.&quot;
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tiowhere overlap the first ; it is also a fundamental region of the

automorphicfunction.

Thus each of the two half-planes separated by the axis of

real numbers are fundamental regions for the function z*.

We shall continue somewhat in detail the mapping of the

2-plane on the -plane by the function w = z2 . For this pur

pose let us determine what curves of the w-plane correspond

to the lines parallel to the axes of the 0-plane. If we put y = c,

equations (4) express // and v in terms of the auxiliary variable

x, the elimination of which gives

(7)

For every definite value of c this is the equation of a parabola

which has the //-axis for major axis and the line u = c*- for the

tangent at the vertex. Putting the equation in the form

(8) u- + v- = (u -h 2 c-)\

we see that the origin is the focus and the line u 4- 2 c1 = o is

the directrix. Since c is essentially real and c
2 therefore posi

tive, the directrix crosses the negative half of the #-axis, and

the parabola stretches to infinity toward the right. The focus

and the major axis are independent of c. Parabolas with the

same focus and the same major axis are called confocal. We

put these results in the following form :

VIII. The straight lines of the z-plane parallel to the x-axis are

transformed by the function w = z- into a system of confocalparab

olas which Jiave the origin for focus and the u-axisfor major axis

ami which open in the direction ofpositive u.

Moreover, if we put x = c in equations (4) and eliminate y.

we obtain :

(9) -.)=^Y,
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or,

(10) *2 + ^ = (*-2^) 2
,

that is :

IX. The parallels to the y-axis are transformed into parabolas

which have the same focus and the same major axis as those in

VIII, but which open in the direction of negative u.

In general, it can be shown that any straight line of the z-

plane which does not go through the origin is transformed into

a parabola of the w-plane which has the origin for focus.

The converse question : What curves of the z-plane map into

straight lines of the w-plane ? will be answered as follows :

Let the equation of such a straight line be

(u) au -\-bv-\-c-Q\

replace u and v in this equation by their values from (4) ;
we

thus obtain :

(12) a(x* y
2

) 4- 2 bxy + &amp;lt;r

= o.

X. This is the equation of a conic section, and in fact an equi

lateral hyperbola (since the coefficients of x1 and jy
2 are equal

but opposite in sign) whose center is at the origin (since the

terms of first degree in x and y are absent).

Parallel straight lines (whose equations differ only in the value

of c) thus correspond to hyperbolas with the same asymptotes.

Parallels to the z^-axis (?/-axis) correspond to hyperbolas which

are asymptotic to the coordinate axes (to the bisectors of the

angle between the coordinate axes, resp.).

It is important also to notice that the map determined by the

function w = s? is conformal (VII, n). We shall prove this

most easily by using the equations (5). If

#-/(r)

is the equation of a curve in the s-plane in polar coordinates,
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then the tangent of the angle between the curve and the radius

vector is

r&
dr

For the corresponding curve of the 7 -plane we obtain

f x d\b o 2 f/&amp;lt;f&amp;gt; d&amp;lt;$&amp;gt;

(H) nL- = r-- = r -,P
4&amp;gt;

-rdr dr

from equations (5). Thus the two angles are equal to each

other*
;
we conclude from this, as in VI, n, that the angles

between any two corresponding curves are equal to each other.

We say :

XI. The function w = z1

, just as the linear functions investi

gated in 8-16-, determines a conformed representation without

inversion of the angle.

However, there is one exception to be made. Equation (13)

proves nothing for the corresponding origins of the two planes,

since the expressions lose their meaning at these points. As a

matter of fact, we have seen at the beginning of this paragraph

that the angle at the origin is doubled. Hence we must supple

ment theorem XI by the following corollary :

XII. The representation is not conformal at the origin, since to

each angle which has its vertex at the origin in the z-plane there

corresponds an angle twice as large at the origin in the w-plane.

18. The Function w = zn
, n a Positive Integer

After the detailed discussion of the function zz
,
the investiga

tion of powers with arbitrary integral exponents presents no

new difficulties. Let such a function be represented by

(i) a/ = 2&quot;.

*
Equation (13) shows only that tan

\f/

= tan
&amp;lt;p.

S. E. R.
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As in elementary algebra this is understood to be the product of

n factors each equal to z. Introduction of rectangular coordi

nates furnishes convenient formulas only for small values of n.

We may conclude at once from the method of formation with

out actual calculation that :

I. The Junction w = z
n

is by definition single-valued over the

entire plane.

Retaining the notation of 17, we obtain by repeated appli

cation of (i), 6, in polar coordinates:

(2) /&amp;gt;

=
&amp;gt;&quot;, $ = n$.

To each circle about the origin of the s-plane (r= const.)

there corresponds a circle about the origin of the w-plane

(p
= const.). If we allow the radius of the former circle to

increase continuously from o to oo, then the radius of the latter

takes on all values, continuously increasing from o to oo. To
each straight line &amp;lt;

= const, through the origin of the s-plane,

there corresponds a straight line
\j/
= const, through the origin

of the ft -plane ;
but the amplitude of the latter line runs con

tinuously through all values from o to 2 TT while that of the

former takes on only the values from o to 2 irjn. It therefore

follows that :

II. The sector of the z-plane limited by the rays
&amp;lt;f&amp;gt;

= o and

&amp;lt;f&amp;gt;

= is mapped continuously and uniquely upon the w-plane by

thefunction w = zn .

This mapping is also reversely unique ;
but in this case the

continuity is interrupted along the positive real axis of the a/

plane in that the two sides of this axis correspond to the two

lines which delimit the sector (Fig. n).

If we let
&amp;lt;j&amp;gt;

further increase from 2
TT/ to 4 IT///,

from 4 w/n



1 8. THE FUNCTION w = z* 89

to 6 TT/, , finally from f V to 2 TT, then the correspond

ing positive half of the straight line
\f/
= const, sweeps over the

zt/-plane the second, third, ,
nth time. The s-plane can then

\\\\\\\\\\\\\\\\\\\\\\\\

z-pfane w-p/ane
FIG. ii

be divided into sectors, each of which is mapped continuously

and uniquely on the whole ft -plane. It therefore follows that :

III. The function u = z* fakes on each complex value w at

exactly n points of the z-plane.

The values iu = o and u&amp;lt;
= oo form the only exceptions ;

each has an exception at just one point, viz. s = o and z = oo

respectively. All the sectors of the s-plane have these two

points in common.

There is a simple relation connecting the different points z

which give the same value of w. To exhibit this relation, let

us designate by e the (definite) complex number

(3) e = cos(2 v/n) + / sin(2 TT
;/).

which has the property (cf. I, 6) that

(4) !,

while the lower powers c, c
2

. c
3

,
,

e&quot;&quot;

1 are all different from

each other and from i. It then follows from the commutative

law of multiplication that :

(5) (*)=*,
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in which k= i, 2, ,
n i. This result, on the basis of defi

nition IV, 1 7 is stated as follows :

IV. Thefunction w = z
n

is an automorphicfunction ; it remains

unchanged when subjected to the linear transformations of the

variable :

(6) z = f.
k -z where k= i, 2, ,

n.

Since the following theorem, resulting directly from the defi

nition of an automorphic function, is entirely general, we can

find relations connecting these n transformations :

V. When an automorphic function f(z) remains unchanged

under two linear transformations of the variable, d = ^(z) and

z = &amp;lt;

2 (X), it also remains unchanged under the linear tra?isforma-

tions z =
&amp;lt;i [^C-2)] and z $2 [$1(2)] compoundedfrom them.

By means of the definition of a group of transformations

(VII, 14), this theorem is stated as follows:

VI. The linear transformations of the variable under which an

automorphicfunction remains unchanged alwaysform a group.

The application of this to our example is simple : If we put

z = e* z and z&quot;
= e z

1

,
it follows that z&quot;

= c
k+l

z, which like

wise comes under (6) on account of (4). Moreover, we can

make a still more precise statement about the structure of this

group ;
we see that all the linear transformations belonging to

the group can be obtained by repetition of the first transforma

tion. Hence the definition :

VII. A group, all of whose operations can be formed by repeti

tion of a definite one of them, is called cyclic ;
*

and we have thus the theorem :

VIII. The function w = z
n determines a cyclic group of linear

transforma tions.

* A cyclic group of transformations is a transformation with all of its powers,

positive and negative. S. E. R.
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Theorem II may also be stated as follows :

IX. The sector of the z-plane limited by the rays &amp;lt;

= and

^&amp;gt;

2 ir/n is a fundamental region for the w-plane.

We shall next take up the question passed by in the above

paragraphs as to how far such a fundamental region is really

arbitrary. Evidently we can take away an arbitrary section

from one of its borders, providing we add the corresponding

section to the other border. The origin must always remain

on the boundary since each transformation of the group trans

forms it into itself and thus the n fundamental regions have this

point in common in whatever way
the first fundamental region is

chosen. Moreover, the fundamen

tal region must always extend to

infinity. But we can bound it on

one side by an arbitrary curve run

ning from the origin to infinity pro

viding this curve is not intersected

by the curve obtained from the first one by turning it about the

origin through the angle 2-jr/n (cf. Fig. 12). Among all such

curves which ones shall we now choose as the best suited to

bound the fundamental region ?

There is in fact no general answer to this question for all

automorphic functions. But the function w = z
n
belongs to a

special class of such functions for which this question can be

definitely answered. It has the property that two conjugate

complex values of the function belong to every pair of conjugate

complex values of the argument ; in particular, real values of the

function belong to real values of the argument. Thus, when we

take a region in the s-plane which is mapped by the function

w = z
n on that a^half-plane with imaginary part positive, or &quot; the
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positive w-half-plane,&quot; then a region symmetrical to that one

with reference to the jr-axis is mapped on &quot; the negative w-half-

plane.&quot; Hence we can construct a fundamental region in the

following manner : locate first all those lines to which the parts

of the w-axis of reals correspond ;
for the present case they are

the 2.n rays &amp;lt;j&amp;gt;

= kir/n (where & = o, i, 2, , 2/21); these

lines divide the z-plane into a certain number of regions. In

each such region the sign of the

imaginary part of w is constant.

For, on account of the con

tinuity,* it can only change its

sign when it passes through

zero, and this according to hy

pothesis is the case only on the

boundary of the region. More

over, every such region for which,

for example, the imaginary part

of w is positive, is mapped on

the whole positive half-plane of w. For, if it were mapped on

only a part of this half-plane, its boundaries, on account of the

continuity, would have to be mapped on the boundaries of this

part, which is contrary to the hypothesis. The s-plane, then, is

divided into 2 n half-regions. In the case at hand these are

alternately congruent and symmetrical ;
in more general cases

direct and inverted circle transformation is used resp. in place

of congruent and symmetrical. Any two of these regions adja

cent to each other make up a fundamental region answering all

of the conditions. Accordingly :

X. An automorphic ftinction which takes on conjugate values of

the function at conjugate points is called a symmetric automorphic

function.

* The question of continuity is taken up again in detail in 31.
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XI. To a symmetric automorphic function corresponds a division

of the z-plane info alternate regions determined resp. by direct and

inverted circle transformations. These regions are such that any

two of them adjacent to each other form a fundamental region for

the function.

XII. /// the case of the function w = sn
,
these half-regions are

sectors bounded by straight lines making angles of ir/n with each

other.

EXAMPLES

1. The function f(z) = (z
1 z + i)

3

/0
2

zf is unaltered by

any of the transformations of its variable given by the six sub

stitutions of the group 0, i/z, \z, i/(i z), (z\}/z, z/(i z).

It is therefore an automorphic function. This group is also

finite discontinuous (cf. 22).

2. Show that i, A(z) = &amp;lt;o(s), (z)
= u\z) (where o&amp;gt; is a

primitive cube root of unity) form a cyclic group of order 3

(where the order of the group is defined as the number of trans

formations contained in the group).

3. Show that the following transformations form a group :

-, Ak
n
(z)
= z -f nk, etc.,

where ;/ = o, i, 2, ,
oo.

Is this group cyclic and what is its order ?

4. A transformation is called periodic with the period n if the

identical transformation is obtained after applying the transfor

mation n (but not less than ri) times.

5. If a linear transformation is of the form

1

2

where &, 2 are the fixed points of the substitution, it is periodic.
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If the fixed points of the linear substitution coincide, it is

called parabolic. If the fixed points are distinct, there are three

classes of substitution as follows : when the multiplier

14,

is a real positive quantity, the substitution is called hyperbolic.

When this multiplier has its modulus equal to unity and its

amplitude different from zero, it is called elliptic. If the multi

plier has its modulus different from unity and its amplitude not

zero, it is called loxodromic. For the substitutions with real

coefficients only the first three classes occur. These substi

tutions are often called real.

The quadratic equation (12), 14, which determines the com

mon points of a real substitution has real coefficients
; according

as the roots of this quadratic are real, equal, or imaginary the

real substitution is found to be hyperbolic, parabolic, or elliptic.

(These names are due to KLEIN, Math. Ann., Vol. XIV, p. 122.)

In discussing the different cases we put (a d^f + 4 be=M
from the solution of (12), 14. Thus

a ~ c a -\-d

and take adbc= i (without loss of generality).

For real elliptic substitutions, j and 2 are conjugate imagin-

aries
;
hence M= (a d)

2 + 4 be
&amp;lt;

o or

(a + dy &amp;lt; ^(ad-bc] &amp;lt; 4.

Therefore k, using ad be =.i, becomes

k = \[_(a + d)*-2- i(a + d)V4 - (a + O 2

].

The amplitude of k is thus cos&quot;
1^^ -M)

2

i] and k

denoting this angle by a we now obtain
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If then wp be the variable after / applications of this substi

tution, we have,

When 6 is commensurable with 2 TT so that

&quot;

-

2 TT r

we have, taking/ = r,

that is, WT
= z

;

that is, the substitution is periodic.

But if is not commensurable with 2 TT, then, by a proper

choice of /, the amplitude pB can be made to differ from an

integral multiple of 2 ?r by a very small quantity and leads to

an infinitesimal substitution.

6. It is now evident that for the elliptic substitution a z-

circle through t and 2 and its center therefore on the ^-axis

transforms into a w-circle through & and 2 cutting the s-circle

at an angle a.

7. As an illustration of the

periodic character of the elliptic

transformation let us take the

unit circle ACBDA having its

center at the origin. Draw the

diameter AB along the _y-axis.

Then the semi-circle ACB can

be regarded as a plane crescent

of angle IT/ 2 and the semi-circle

ABD as another of the same
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angle. Hence they can be transformed into each other accord

ing to a result due to KIRCHHOFF, Vorlesungen tiber mathematische

Physik, Vol. I, p. 286.

The transformation can be most simply performed by taking

A(=i) and (= i) as the fixed points of the substitution,

which then takes the form

w i_ 7 z i

z-\-i

The line AB for the w-curve is transformed from the ^-circular

arc ACB; these curves cut at an angle w/2, which is therefore

the amplitude of k. Considerations of symmetry show that the

z-point C on the .r-axis can be transformed into the ^/-origin

so that

- i + i

giving k = i and the substitution

w i_ .z i

w + i z + i

It is periodic of order 4 as expected : it takes the simple form

,= Z+I
.

z -\- 1

Four applications of the transformation must now give the

original region. The first application changes the interior of

ACBA into the interior of ABDA\ a second application

changes this latter region into the region on the positive side of

the jy-axis outside of the semi-circle ADB
;
a third application

transforms this latter region into the region on the negative

side of the ^v-axis outside of the semi-circle ACB
;

a fourth

transformation completes the period and changes the latter

region into the interior of the semi-circle ACB the initial

region.
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8. Show that, if the plane crescent of the preceding exam

ple has an angle of - instead of - and + / and / for its
n 2

angular points, then the substitution

z 4- tan
2 n

2 n

is periodic of order 2 n, and if it be applied through a period

to the region of the crescent, will divide the plane into 2 ;/

regions all but two of which must be crescent in form.

9. For real parabolic substitutions the quadratic (12), 14

has equal roots
;
the fixed points of the substitution, say, thus

necessarily coincide on the jc-axis. Thus M above is zero and

(&amp;lt;/-|-0)

2 = 4 and d+a = 2 without loss of generality. Now
move both origins to

,
and zero becomes a double root of the

quadratic so that b = o and a d= o. Hence a = d= i and

we obtain

CZ+l

1=1+,.w z

If the origins are not moved to the point ,
then the substitu

tion is

w s-

Show that the equations of transformation in real coordinates

are

10. Show that a z-circle passing through the origin is trans

formed by a real parabolic substitution with the origin for its
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fixed point into a w-circle passing through the origin and touch

ing the 2-circle
;
and a s-circle touching the ^-axis at the origin

is transformed into itself.

11. For real hyperbolic substitutions the quadratic has real

and unequal roots
;
the fixed points for the transformation are

thus two different points on the ^-axis
;
M is thus positive and

(a -f dj- &amp;gt; 4 and we may take (a + d) &amp;gt;
2. Thus k is real and

positive and the substitution is hyperbolic.

Take the origin as one of the fixed points and g the distance

of the other; o and g are then the roots of (12), 14 with the

conditions that (ad be]
= i and (a + d) &amp;gt;

2. Therefore b o,

a d=cg, ad= i, k = a/d, and k is greater or less than i ac

cording as eg is positive or negative. Take k
&amp;gt;

i and we

obtain

cz + d

where a
&amp;gt;

i
&amp;gt; d, (a + d) &amp;gt; 2, and ad i.

12. Show, therefore, that a z-curve, drawn through either of

the fixed points of a real hyperbolic substitution, touches the

w-curve into which it is transformed by the substitution.

13. Hence show from Ex. 12 that any s-circle through the

two fixed points of the hyperbolic substitution is transformed

into itself.

NOTE. The above results and many others are due to POINCARE, Ada

Math., Vol. i, p. i and following.

14. Discuss the transformation

w= g+i.

19. Rational Integral Functions

We have already defined at the beginning of this chapter

(II, 8) what is in general to be understood by a rational
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integral function of a complex variable. If, in the general ex

pression for such a function of a complex variable, we carry out

the indicated multiplication of sums or differences according to

the distributive law ((2), 3), and finally collect into one ex

pression all the terms which contain the same power of z multi

plied by a constant, the result may be stated as in analysis of

real numbers (A. A. 20) in the following theorem :

I. Every rational integral fufiction of z can be put in theform :

(
i
) /(*) = &amp;lt;7o5&quot; + a,z

n~ l + a2z
n~2 + + an_^z + an .

The integer n is called the degree of the function, provided aG
= o.

By using such rational integral functions the following

theorem (A. A. 24) in the field of real numbers may be proved

by means of elementary operations :

II. An equation of the nth degree has no more than n roots

unless it is an identity, that is, unless all of the coefficients are each

equal to zero. A v-fold root is counted as v simpk roots in this

theorem.

Since all of the theorems used in the proof of this theorem

are valid for complex numbers as well as for real, it follows that

Theorem 77 is also valid if u&amp;gt;e extend it to include complex as well

as real roots. But the explicit theorem that every equation of

the nth degree in the field of complex numbers has n roots is

not proved in such a simple manner. We shall obtain it later

(VII, 44, and VIII, 46) in other ways.

But it is possible to assign limits between wrhich the zeros *

oif(z) are included. Let J/be a number for which

(2) ^ J/for , = i, 2,

* Cf. the paragraph following II, 20. S. E. R.
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it then follows that

that is,
z i

For all values of z whose absolute value is
&amp;gt;
M+ i

,
this last

fraction is &amp;lt;

|

z
|

n
i

&amp;lt;
[

z n
;

it therefore follows that for all

such values of z

(3) |/00 -o*&quot; |
&amp;lt;

o*&quot;|.

In other words it is true that :

III. The absolute value of the term of highest degree in the

rational integralfunction f(z] is greater than the absolute value of

the sum of all the remaining terms, for all values of z whose abso

lute value is greater by at least i than the numberM determined

by the inequalities (2).

In particular, it therefore follows that :

IV. No root of the equation f(z] = o can lie outside of the circle

described about the origin with the radius M-\- 1.

If, on the other hand, an_vz
v is the term of lowest degree in

the rational integral function f(z) which has one coefficient dif

ferent from zero, we can put

in which

is a rational integral function of (1/2) of degree (n v). If we

wish to apply Theorem III to this, we must define a number m
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by the inequality :

-^- ^ m for / = o, i
, 2, v i .

When z and /are again introduced it follows that :

V. The absolute value of the term of lowest degree in the

rational integral function f(z) is greater than the absolute value of

the sum of all the remaining terms, for all values of z different
*

from zero whose absolute value is less than (/+ w)
1

.

Just as we obtained IV from III, we have here from V :

VI. No root, except possibly z = o, of the equation f(z) = o can

lie inside of the circle described about the origin with a radius equal

to (i + m)~\

EXAMPLES

1. Find the limits of the roots of

xt x3
? x~+ 15 A- = o,

by making use of Theorems III-VI.

Take J/= 15 ;
the greatest ratio preceding and up to this

one is 7/15. Therefore take m = 7/i$. Hence there is no

root outside of the circle of radius M+ i = 16, and no root

inside the circle of radius i/(i +7/15) = 15/22. This is

correct since the roots are 3, 2 + 1, 2 i, o.

2. Find the limits of the roots as in Ex. i for the equation

x4 -
3 x? - 14 x- + 48 x -32 = 0.

3. Show that 4 cos2

(7r/7) is a root of z* $ z 1 + 6 z i = o

and find the other roots. (Math. Trip. 1898.)

* This limitation is necessary since, in going from
&amp;lt;J&amp;gt;

to / (equation (4)), we

multiply by n
.
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20. Rational Fractional Functions

If all the terms of a rational fractional function (I, 8) are

reduced to a common denominator, we obtain the following

theorem :

I. Every rational fractional function of z can be represented as

the quotient of two rational integralfunctions :

d\ r (z
\ _ =

h(z) b,z ,z . m_^z m

II. The larger of the two numbers m, n, or their common value

when they are equal to each other, is called the degree of the

rational function r(z).

At a point % at which g(z) and h(z] are different from zero,

r(z) has a definite finite value different from zero. At a point ^
at which h(z) is different from zero but g(z)= o, r(z] is also zero

;

and in this case when zl is a v-fold zero * of g(z) we say also that

z1 is a v-fold zero of r(z). At a point at which g(z) is not zero

and h(z) o, r(z)
= oo in the sense of 12. We define further :

III. A point z which is a v-fold zero of h(z] and not at the

same time a zero of g(z] is called a v-fold infinity (a v-foldpole] f

It is sometimes convenient to use the following form of ex

pression instead of II and III :

IV. When r(z) can be put in theform

(2) r(2)
=

(z
-

Zl)&quot;-nW,

in which r^ denotes a function which is finite and different from
zerofor z z^ then v is called the order of r(z) at the point z^

* Or zero point of the function, that is, such a value of the variable which makes
the function vanish. S. E. R.

f There are other infinities besides poles. Poles are the simplest infinities.

Cf. also 43. S.E. R.
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Accordingly, at a pole the order is negative, at a zero it is

positive ;
if the function at a point is finite and different from

zero, then its order at that point is o.

We have finally to consider an additional case, viz. where

g(z) and h(z) have a common zero
;

it may occur after the re

ductions indicated in Theorem I. At such a point the value of

the rationalfunction itself is completely undetermined ( 12). But,

by rational operations which do not necessitate a knowledge of

the zeros of g and // (A. A. 23), we can find the greatest com

mon divisor k(z) of g(z) and h(z) and thus put r(z] in the form

in which gl and /^ designate rational integral functions which

have no common divisor and therefore (A. A. VI, 22) have no

common zero. If therefore we put

(4)
.

the equation

(5) K*) = i

is true for all points except the zeros of k(z). Moreover, it is

now permissible to add as a definition that :

V. The function r(z) takes on the values of r^(z) even at the zeros

of k(z) which values may be zero or oc.

With this understanding we state the following theorem :

VI. The order (IV) of a rationalfunction at any point is equal

to the difference of the orders of the numerator and denominator at

this point.

It follows further from II, 19 that :

VII. A rational fractional function takes on no value oftener

than its degree indicates.
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EXAMPLES
1. If we divide

F(z, w) = (az 4- bw)(cz + dw] + ew2 +fw +g
by G(z, w) = (az + &w\ (\a &amp;gt; o,

|

b
\

&amp;gt; o),

both considered as functions of z, we obtain of course as quo
tient and remainder

Q(z) = (cz 4- dw) , G,(z) = ew* +fw + g.

If ^(3, ?/) and G(zt w) are both considered as functions of w,

what are the quotient and remainder for this division ?

2. Perform the division as in Ex. i for the functions

F(z, ui)
= azw -f- bw3- + cw + d,

G(z, w) = zw 4- ^.

3. When the real axis is transformed into itself by a linear

transformation, it is sufficient that the coefficients of the trans

formation are all real. Is this condition always necessary ?

21. Behavior of Rational Functions at Infinity

There are two meanings to be attached to the equation

z =f(z). We have usually regarded it. as establishing a rela

tion between two different points of the same or different

planes. But another interpretation was made in (10), 10,

according to which such an equation is used to attach another

complex number to the same point.

We shall make particular use of this latter idea to investigate

the behavior of any proposedfunction at infinity. We put :

(i) z = - and thus z = -
f

,

% J3

so that the new complex number z = o corresponds to that

point of the sphere to which the complex number z oc intn&amp;gt;
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duced in 12 has been heretofore attached. Thus when a

definite value is attached to every point of the sphere by the

function /(z), we can interpret these values as a function of z

and as such designate them by &amp;lt;f&amp;gt;(z ).
If /(z) be rational, we

need only to replace z by its value as a function of z from (i).

We thus obtain a rational function of z :

(2) /(V) = *(* );

this can be represented according to I, 20 as the quotient of

two rational integral functions. The necessary multiplication

of numerator and denominator by a power of z presupposes of

course z =0. But since f(z) for z = oo appears in the undeter

mined form oo/oo, we may write as a definition (cf. V, 20) that :

I. The value of the rational function f(z) for z = oo shall be

understood to be the value of the function f(ijz*}
=

&amp;lt;f&amp;gt;(z ) for z
1 = o.

This leads to the following result :

If the numerator of a rational function

is of higher degree than the denominator, then will

and z = o is an (n ;;/)-fold pole of
&amp;lt;f&amp;gt;(z ) ;

and therefore, ac

cording to the definition I,/(oo) = ao and we say that z= oo is

an (n ;;z)-fold pole ot/(z).

If ;;; = ;/, then

(5) ^^ )
=
f7^4 rf

5

and/(oo) = &amp;lt;/&amp;gt;(o)

= a /^Q which is finite and different from zero.
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If, finally, m &amp;gt; #, then

and/(oo) = &amp;lt;(o)
= o

;
and since in this case z = o is an (m n)-

fold zero of
&amp;lt;f&amp;gt;(z ),

we say also that z = oo is an (/# )-fold

zero of /(z).

By extending the definition of order of a function (IV, 20)

to 2= oo, we find in all three cases that :

II. The rationalfunction (j) is of order m n at z = oo
;

and further (granting the existence of the fundamental theorem

of algebra, 44, 46):

III. The sum of all the orders of any rational function is equal

to zero.

21 a. The Function w =
| (z -f- z

1

)

As the first example of a rational fractional function we con

sider the function :

(!) .-

Since it is of the second degree, it takes on each value at two

and only two points of the plane. The relation between any

pair of points at which w takes on the same value can be easily

determined here just as for any function of the second de

gree : if

it follows readily that either z = z or z = z~ l
. The function w

therefore remains unchanged when subjected to the linear transfor

mation of the variable :

(3) -./
it is an automorphicfunction,
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This transformation is reducible to a normal form by the

methods of 14. For this purpose it is only necessary to put

Equation (12), 14 thus reduces to

(4) s -i=o;

its roots are i, the multiplier k takes the value i, and the

transformation (3) can be written in the normal form

i~:fi-
An auxiliary variable Z may therefore be introduced by the

following equations :

Therefore

w --;(Sf+S?)-H
and conversely :

(8) Z = *^i.W + I

Moreover if we put
/ \ TIT- w i i 4- W
(9) W=-

,
/ =-!,w + i i W

we obtain :

(10) W=Z*.

Relation (i) between w and z can therefore be replaced by the three

simpler ones (6), (10), (&amp;lt;?),
all of which are functions which we

have already investigated.

Since all of these representations are in general conformal, it

follows further that :

The z-plane is mapped conformally on the w-platie by the relation

(l), particular points excepted.
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We obtain most easily a conception of the conformal repre

sentation determined by the function w by starting with the

relation between the Z-plane and the F-plane denned by equa
tion (10). The mapping on the s-plane is then effected by
means of equation (6) and on the w-plane by means of equation

(9). We saw in 17 that the two half-planes of Z separated

by the real axis may be regarded as fundamental regions of the

function W= Z 2
. Each of these regions is mapped by this

function on the entire ^F-plane. If we divide the /^-plane into

two half-planes by its real axis, the positive half then corre

sponds to the first and third quadrants of the Z-plane and the

negative half to the second and fourth quadrants.

Moreover, equation (6) in connection with 15 shows that

real values of Z correspond to real values of z and that pure

imaginary values of Z correspond to those values of z whose

absolute value is equal to i
;
and from equation (9) it is evident

that the JF-axis of reals corresponds to the ze -axis of reals.

The corresponding relation of the four planes to each other is

therefore shown in the following figures ;
each plane is divided

by the given curves into a number of regions, and those regions

which correspond to each other are designated by the same

letters. Hence the regions of the W-plane and of the w-plane

must each contain two letters, since each of these regions corre

sponds to two different regions of the s-plane and the Z-plane.

To carry out the representation more in detail, we map other

lines of the 2-plane, according to previous theorems, in turn

upon the Z-plane, the /^-plane, and finally upon the z/-plane.

Thus, for example, to the axis of pure imaginaries in the z-plane

corresponds the unit circle of the Z-plane, to this corresponds

the unit circle of the W^-plane, and to this the axis of pure

imaginaries of the w-plane. Accordingly, each of the regions

already mentioned are again divided into two subregions which
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must correspond separately to each other. In order to deter

mine which regions correspond to each other, we need only to

consider that moving along a curve, in the z-plane, for example,

in a certain direction on that curve corresponds to moving

along the corresponding curve in the 7 -plane in a fixed direc

tion on that curve
;
and then, since the sense of the angle re

mains unchanged in this representation, a region which lies to

the left when moving along a curve in a certain direction must

Z-p
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Z-plane

FIG. 13 e-h

time, the circles about the origin perpendicular to them. The

relations appear simplest by using polar coordinates in the z-

plane and cartesian coordinates in the ?#-plane. Accordingly,

(n) z = r(cos &amp;lt;f&amp;gt;

-\-i sin

and

(12)

and therefore

(13) u = %(r+r~
1

)

/ sn

v = r

If, in these equations, &amp;lt; is regarded as a constant and r is

allowed to take on all values from o to oo, we obtain the para

metric representation of that curve of the w-plane which corre

sponds to the rays of amplitude &amp;lt; through the origin of the

z-plane. The equation of this curve is obtained by eliminating

the variable parameter r by squaring and subtracting ;
we find

in this way :

(14) J.-J-.,.
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This is the equation of an hyperbola which has the #-axis as

major axis and the #-axis as minor axis. Its foci are the two

points -f i and i.

But if we now regard r in equation (13) as constant and let

&amp;lt;f&amp;gt;

take on all values from o to 2 TT, we obtain the parametric

representation of that curve of the ov-plane which corresponds

to the circle of radius r about the origin of the s-plane. By

eliminating &amp;lt;,
we obtain the equation of this curve in the stand

ard form :

fid
2

This is the equation of an ellipse which has its center, foci, and

direction of axes in common with the hyperbola (14). Ellipses

and hyperbolas with the same foci are called confocal (cf. VIII.

17) ;
therefore :

The circles about the origin and the straight lines through the

origin of tJie z-plane correspond in ttie w-plane to confocal ellipses

and hyperbolas with foci at the points + / and i.

The length of the real semi-axis of the hyperbola (14) is

equal to

(16) |cos*|.

As &amp;lt; increases from o to TT,
\

cos &amp;lt;

&amp;gt; first decreases from i to o

and then increases from o to i . Each of the hyperbolas above

thus corresponds in the 2-plane to two different straight lines

symmetrical about the j -axis.

The length of the semi-major axis of the ellipse (15) is

equal to

(17) K +f-1
);

each of these ellipses corresponds, therefore, to two different

circles of the 2-plane whose radii are reciprocals of each other.
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For r = i, v= o. But it is not to be inferred from this that

the unit circle of the z-plane corresponds to the entire real axis

of the w-plane ; for, it follows from the first of equations (13)

that for r = i there can be only such values of u whose absolute

value is not greater than i. The portion of the axis between

the common foci of these ellipses and hyperbolas corresponds,

therefore, to the unit circle of the s-plane ;
it can be regarded as

a degenerate ellipse.

But v = o when &amp;lt;

= o
;

the corresponding values of u are

positive and at least equal to i, as is shown by an examination

of the real function u= i/2(r + r~l

)
of the real positive variable

r. The positive half of the real axis of the z-plane corresponds,

then, to that part of the positive half of the real axis of the a/

plane from the point w = i to oo. Likewise, the negative half

of the real s-axis
(&amp;lt;f&amp;gt;

=
TT) corresponds to that part of the nega

tive real w-axis which extends from the point w = i to oo.

These two parts of the real w-axis can together be regarded as

a degenerate hyperbola.

For
(f&amp;gt;

=
7T/2, u = o

;
v takes on all real values from oo

to + oo (+ oo to co resp.) when r takes on the real positive

values from o to +00: the w-axis of imaginaries corresponds

to the two ^-half-axes of positive and negative imaginaries ;
it

can also be regarded as a degenerate hyperbola.

Since the mapping is conformal, it follows that these ellipses

and hyperbolas always intersect in the same angle as the corre

sponding circles and straight lines of the z-plane ;
that is, in a

right angle. We have therefore proved the geometrical theorem

that an ellipse and an hyperbola with common foci intersect at

right angles.

However, the mapping is not conformal at the points z= i to

which the points w = i resp. correspond. An angle 2 TT of the

/-plane corresponds at these points to an angle TT of the z-plane.
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22. A Somewhat More Complicated Example of an Automorphic
Rational Function

We have already defined an automorphic function in IV,

17. If the function is to be rational also, then the group of

transformations under which the function remains unchanged

(VI, 1 8) can have only a finite number of transformations

(VII. 20).

Definition :

I. A group which is composed of only a finite number of trans

formations is called a finite discontinuous *
group.

Let z = \(z) be a transformation of such a group ;
then the

transformations :

(i) \\z)

compounded from it also belong to the group according to V,

1 8. If it is to be finite and discontinuous, then the transforma

tions (i) cannot all be different from each other; by putting,

therefore,
A&quot;*(s)

EE *(,),

or, what is the same thing,

we introduce a new variable Z by the equation

X\z) = Z.

If X(z) is a linear transformation, then A*(z) is also a linear

transformation according to VI, 14; hence for any value of Z
there is a corresponding value of s, and it follows that the re

sulting equation , ~ _ 7A
\^L, J

= 4Lr

* The term &quot; discontinuous
&quot;

is necessary here, since we speak of &quot;

finite con

tinuous
&quot;

groups in which the word &quot;

finite
&quot;

does not refer to the number of

transformations.
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is true for all values of Z
;
in other words, it follows that :

II. Every transformation of a finite discontinuous group of

linear transformations has the property that it gives the original

transformation after a finite number of repetitions.

If, for example (cf. (8), 15),

AM -(I-*),

it follows that X2
(
= i - X(z)

= i - (i
-

z)
=

z,

and therefore n 2 in this case. But if (cf. (9), 15)

it follows that

and V(,) = ^ =^i^ =
2)

and therefore n = 3.

Writing the resulting equation in one of the forms

shows further that :

Ha. For each transformation z = \(z) of a finite discontinuous

group of linear transformations there is another z&quot; =
/JL(Z) having

the property that

(2) ,*[X(*)]=*andXM*);i=*,

or, in other words, such that z =
/JL(Z )

is the solution of z = \(z)

for z. We call p.
the transformation inverse to X and designate it

by X- 1
.

Suppose now that

(3) AO(*)
= *, M*), A2(s),

- A^O)



22. AN AUTOMORPHIC RATIONAL FUNCTION 115

are the N different linear transformations of a finite discontin

uous group. If Xk(z) be any one of them, then the N values

(4) AO[X,W], A^C*)], - A^CA^S)]

are all, on account of the character of the group, contained

among the JV values (3). But otherwise they are all different

from each other. For if, for example, At[A*(s)] =A[Aik(s)], this

relation must remain true if we substitute the value /n*(z) in

place of z in it, understanding /^ to be the transformation in

verse to Afc. From the equation

thus formed, it would then follow that

Xi(*)
= A^s),

since A
fc[/*fc(s)]

= z according to the definition of the transforma

tion inverse to a given one. But that would be a contradiction

of the hypothesis that the N transformations (3) are all differ

ent from each other. The N values (4) are therefore all differ

ent from each other
;
and since they are all contained among

the N values (3), as already shown, we can distinguish them

from these N values only by their arrangement. Let us now

form any rational symmetric function of the N values (3), for

example, the sum 2t\i(z) or the product nz
A

z(z), and apply to it

a transformation of the group (3) ;
that is, replace z in it by

Xk(z). It is transformed in this way into the corresponding

function of the N values (4). But since these N values, as

proved above, are different from the N values (3) only in their

arrangement, and since the function is symmetric, it follows that

it is entirely unchanged by this transformation
;
and since this

is equally true for every transformation of the group, it follows

that it is an automorphic function belonging to the group. We
have therefore proved the theorem :
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III. Every symmetric function of the N values (j) is an auto-

morphic function belonging to the group (j&amp;gt;), except when it re

duces to a constant. This exception might arise for some

known symmetric functions, but not in general (since the values

(3) must then be constant). Thus actual automorphic rational

functions belong to every finite discontinuous group of linear trans

formations.

Such particularly simple functions are obtained as follows :

Let z be a fixed point of one or more (k say) of the transforma

tions (3) ;
that is, let

(5) 2o = MSO) =M 2o)
= A2 (&amp;gt;o)

= ViOo) ;

it then follows that

(6) Xr(z )
= A^Oo)] = ... = Xr [X4_ 1(* )].

Since Xr ,
\r\^ ,

XrXA _! themselves belong to the transforma

tions of the group, these equations tell us that the points into

which ZQ is transformed by the transformations of the group are

coincident for each k (from which it also follows that k must be

a divisor of IV). If now
&amp;lt;f&amp;gt;(z)

is a linear function of z for which

ZQ is a zero, then Xr

~
(2; )

is a zero of
&amp;lt;[Ar(s )] ;

and since by (II)

the set of all the transformations inverse to the transformations

of the group is identical with this group itself, it follows that

the zeros of
A._ 1

ri *[AX*)]
r=0

are coincident for each k, and that the numerator of this func

tion is the th power of an integral function of degree (N/k)*
If

&amp;lt;j&amp;gt;(z)

is further determined so that also its pole coincides with

a fixed point (different from ZQ and its transformed points) of

* We se&quot;t aside the case where one of the points Xr(sn) lies at infinity; in that

case the degree would be depressed. Cf. the example following.
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one of the substitutions (i), then the denominator of the prod

uct is a power of an integral function.

Let us now apply this to the special case of the group of six

transformations which transforms one value of the double ratio

of four points into the other five. The substitution z = i/z has

ZQ ~ i for a fixed point ;
the substitution z = z i has one at

infinity. A linear function for which the first is a zero and the

latter a pole is z -f i . It is transformed by the substitutions of

the group into

,
v Z+ I 2 Z I 2 Z I 2 Z

(7)
[

5
2 z; ;

-
;

--
z z z i i z

The product of the six values, viz.

is therefore a function of t/ie double ratio offour z points which

remains unchangedfor any permutation of the four points.

To construct a fundamental region for this function, we start

from the fact that it is a symmetric automorphic function. We
determine, as in XI, 18, those curves along which F(z) is real.

The z-axis of reals is of course one of these
;
but besides there

are those curves along which two and therefore every pair of

the six factors are complex conjugates. Now z + i is conjugate

to 2 z along the line x == 1/2 ;

to (z -h i)/z along the unit circle
;

to (2zi)/(zi) along the circle with its center at i and

radius i
;
on the contrary, it is conjugate to each of the two

remaining factors at only certain points. But these three

curves and the real axis divide the z-plane into twelve regions ;

it is sufficient to use any adjacent pair of these regions on

which to map the zt -plane, and since the function w can take
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FIG. 14

no value more than six times, further division lines are unnec

essary ;
and thus, as shown in Fig. 14, we have the complete

division of the

z-plane into funda

mental regions for

the automorphic

function w. It

takes on each com

plex value once and

only once in each

such region, as will

be shown in later

theorems
( 38 ;

46).

This figure appears particularly obvious if we transform it

stereographically upon the sphere so that the points of inter

section of the two circles fall on two points of the sphere dia

metrically opposite to each other. If we take these points as

poles of a system of spherical coordinates, the two circles and

their common chord transform into three meridians of the

sphere, and since the angle of intersection is unchanged in this

transformation (cf. 34), these three meridians intersect in

equal angles. Moreover, the transform of the axis of real num

bers must cut these three meridians at right angles ;
we can so

determine the constants at our disposal in the function deter

mining this transformation that this transform becomes the

equator of the sphere. The twelve subregions thus become

alternately congruent and symmetrical.

To perform analytically the process indicated above, we find

the substitution z
&amp;lt;()

which determines this transformation

on the sphere, then replace A by &amp;lt;()
and the new variable X

by &amp;lt;/&amp;gt;( )
in the equations (y)-(n) of 15, and finally solve the
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resulting equations for . Very simple formulas thus deter

mine the group ;
the invariant function (8) also takes on a

simple form.

The scope of this book does not permit of a more detailed

investigation of finite discontinuous groups of linear sub

stitutions.*

22 a. An Example of a Rational Integral Function which is not

Linear Automorphic

As an example of a simple rational integral function which

is not transformed into itself by any linear transformation, we

shall treat the following :

(i )
w = (2

-
3 z

)
= z

(
z - V3)(z 4- V-j).

By dividing the function and the independent variable into real

and imaginary parts :

z = x-\- iy, w = u 4- Wj
we obtain :

(2) u = x? 3 x\* 3 x = x(x
l

3 f 3),

v = 3 x
2
y / 3 _y

=
;&amp;lt;3

x* - / 3)-

Let us now give to z the values on the axis of real numbers
;

that is, put y = o and let x take on all values from oo to + Q.

For such values w is also real, since y=o gives v = o. The

variable w, however, takes on some of the values on the real a/

axis more than once, since for y = o, the following equation :

shows that w is an increasing function for z increasing only

* For a detailed account of this theory, see F. KLEIN, Vorl. iiber das Ikosaeder,

Lpz., 1884.
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while i
&amp;gt;

z
&amp;gt; i. For z = i, w = + 2, and for z = + i,

w = 2
;
therefore :

If z increases for real values from oo through 2 to i,

then the real values of w run, continuously increasing, from oo

through 2 to + 2. And if z increases again from i to -\- 1,

w remains real, but decreases to 2. Finally, if z increases from
+ / through + 2 to + oo, w increases from 2 through +2 to

+ 06.

Therefore, only one real value of z belongs to each real value

of w whose absolute value is greater than -(- 2
;
on the contrary,

for each real value of w between 2 and + 2, there are three

different real values of z which belong respectively to the three

intervals (-2, -
i), (-1, + i), (+ i, +2).

But there are real values of w for other values of z. For,

according to the second of equations (2), z; is equal to o if

(4) 3*2 ~/-3 = o;

and this means geometrically that z lies on the curve repre

sented by this equation. This curve is an hyperbola whose

vertices are the points x = i and x = + i
,
and whose asymp

totes cut the ;r-axis at angles of 60. To study the points

of this hyperbola, u may be expressed in terms of x alone
;
to

find this expression we merely take the value of y from equation

(4) and introduce it in the first of equations (2), avoiding in

this wr

ay the extraction of roots. We obtain :

(5) u = x(^ - 9 x&amp;lt;i + 9
-

3) = - 2 *(4 x
1 -

3)-

Two points of the hyperbola with the same abscissa furnish the

same real w. The equation also shows that when z takes on

the values on the left branch of the hyperbola from infinity to

its intersection with the #-axis, w or u decreases from -f oo to

-\- 2
;
but if z takes on the values on the right branch of the
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hyperbola from infinity to the vertex, w increases from oo to

2. Thus for any real value of w for which equation (i) has

only one real root, there are also two conjugate complex roots.

But this exhausts all the values of z which furnish real values

of w. Hence equation (i) has either three real or one real and

two complex roots for real values of w excepting 2 or -f 2.

The s-plane is divided into six regions, shown in Fig. 14^, by

the three curves whose points furnish real values of w. All the

points z belonging to one of these

regions have corresponding values

of w for which the imaginary part

iv has the same sign ;
or briefly :

the positive or the negative ze/-half-

plane corresponds to each of these

regions.* For, v as a continuous

function of x and y cannot pass

from positive to negative values

without going through zero. But,

as we have seen, it is zero only

when z crosses one of the curves

which bound adjacent regions. To FIG. 14 a

determine whether a certain region corresponds to the positive

or to the negative ^/-half-plane, we consider merely the corre

sponding directions in which we move along the curves that

bound this region and the corresponding half-plane. For ex

ample, if we move along the boundary of the region designated

by C from z = oo along the z real axis to z = i and then

return to infinity along the hyperbola, the region C thus re-

* From the preceding it has been proved only that one of the given regions of

the 2-plane corresponds to a region lying entirely in the positive or entirely in the

negative w-half-plane. That this region covers the corresponding w-half-plane com

pletely will be first taken up in a later theorem (VIII, 38).
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mains on our left; the region corresponding to it in the w-plane

must then also remain on our left when we move along the cor

responding curve. But this corresponding curve runs from

oo to + 2 and then from there to -f- oo. On the left of this

path lies that 7/-half-plane for which the imaginary part of w is

positive. This therefore corre-
w-p/ane

spends to the region C and is

accordingly designated by C inACE
Fig.

7? D J5*

We can treat in the same way
each of the six regions into which

the z-plane is divided
;
but this is not necessary, since v changes

sign in crossing either the real z-axis or the hyperbola ;
and thus

any two regions adjacent to each other in the s-plane correspond

to the two different ze/-half-planes. Therefore, whenever the

region corresponding to C is found, the w-half-planes corre

sponding to the remaining regions can be determined success

ively ;
we obtain a check on the result when at the conclusion

we shall have returned to C.

Further details are obtained by dividing each of the w-half-

planes into two quadrants by the w-axis of pure imaginaries.

We inquire as to what curves of the s-plane correspond to this

line of division
;
that is, for those values of z for which w is

pure imaginary, in other words, for which u = o. The first of

equations (2) shows that this is true for x = o, that is, for pure

imaginaries in the z-plane, and also for

(6) x* - 3 / - 3 = o,

that is, for the points of a second hyperbola whose vertices are

the points x V3 and whose asymptotes are inclined at angles

of 30 to the #-axis. These curves divide each of the six first-

mentioned regions of the z-plane into two subregions, each of
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which corresponds to a quadrant of the w-plane. To determine

the quadrant to which each subregion belongs we consider

merely the bounding curve and use results already obtained.

For example, if the region designated by A borders upon a

part of the positive real axis of the s-plane to which the positive

real axis of the a -plane corresponds, then the region A^ can

only correspond to the first quadrant of the & -plane. When

z-plane

FIG. 14 c

this one is determined we can find, as before, the quadrant to

which each of the remaining regions of the s-plane belongs ;
we

have here, too, several checks on the process, inasmuch as regions

with which we end border on some already considered.

To find the curves of the w-plane which correspond to other

curves of the s-plane, it is found best to express x and y in the

equation of the curve as functions of a parameter (eventually

one of the coordinates itself might be taken as a parameter).

If this expression is then introduced in equations (2), we ob

tain a parametric representation of the corresponding curve in

the av-plane.

Conversely, to find the curve of the s-plane corresponding to
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a given curve of the w-plane, we merely substitute the express

ions (2) for u and v in the equation of the first curve given in

cartesian coordinates
;
the equation of the desired curve in x

and y is thus obtained. But we
W~P must also investigate whether all

1 points on this curve have corre

sponding points on the given

curve in the w-plane.

A, C, E,. A1 Q E
t

But, very little information con-

*
cerning the map of one plane

A ^ Upon the other is obtained by
\ A

the study of such curves. For,

apart from the above examples

discussed in detail, we obtain in
FIG. 14 d

the simplest cases curves whose

properties are not known from elementary analytical geometry.

On the contrary, the map determined by the function can be

used to facilitate the study of the properties of such curves. It

gives direct information as to how a curve of one plane behaves

with respect to the regions indicated by letters in our figures

just as soon as we know the curve of the other plane corre

sponding to it.

At this point we discontinue the investigation of rational func

tions of a complex variable and take up the study of the tran

scendental functions. Just as in the first chapter the elementary

operations on real numbers were applied to complex quanti

ties, we now inquire whether there are not also functions of a

complex variable which share the fundamental properties of the

elementary transcendental functions of a real variable. The fol

lowing chapter will serve as a preparation for the answer to this

question.
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MISCELLANEOUS EXAMPLES

1. Determine the linear fractional transformation which

maps the points z = z^ z2 , %, respectively, into the points z = o,

I, 00.

2. By means of the

accompanying figure in

which A and A (

, etc., are

corresponding points, show

that angles are inverted in

the transformation by re

ciprocal radii.

3. What are the invari

ant circles for the transfor

mation z i/z? Discuss this example both analytically and

geometrically.

[Consider circles with their centers on the j-axis and through the points I ;

also circles with their centers on the .r-axis and orthogonal to the unit circle.]

4. Discuss the effect on the systems of straight lines x
= const, / = const., by the transformation

5. Show that the system of real numbers forms a group with

respect to addition.

6. If z~ + 7C
2 = i, show that z. w are ends of conjugate radii

of an ellipse whose foci are i.

7. Show that two fixed points on a circle subtend at any two

inverse points angles whose sum is constant.

8. Into what curves is the unit circle z ~z = i (where z and

z are conjugates) transformed by the successive application of

the substitution z = (z i)/z?
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9. Determine the general form of the transformation that

transforms z ~z = i into itself (where z and z are related as in

Ex. 8).

10. Describe two kinds of maps of the earth s surface which

are conformal.

11. Show that the function w = i/z has a simpler geometric

interpretation on the sphere than in the plane.

12. The equation
-r 2 r 2

which represents an ellipse with semi-axes a, b, is satisfied iden

tically by x = a cos
&amp;lt;, y = b sin &amp;lt; in which

&amp;lt;f&amp;gt;

is the eccentric

angle. Show that if r, r are focal radii of an ellipse having x,

y as rectangular coordinates, a and b semi-major and semi-minor

axes resp., and &amp;lt;?

= a ^ its eccentricity, this ellipse, de-
a

scribed in the positive sense, is represented by the equation

If we put

a i / . i\ b i / i\ ,

. .- =
-( p + -},

- =
-( p

--
) ,

cos
&amp;lt;{&amp;gt;

-f i sm
&amp;lt;$&amp;gt;

f,

e 2\ PJ e 2\ P J

p is
&amp;gt;

i and the last equation takes the form

&amp;gt; ^r-r f .

,

i\
h p/+-

4 V P*)

z=

13. Find the equations for the hyperbola corresponding to

those for the ellipse in Ex. 12.



CHAPTER III

DEFINITIONS AND THEOREMS ON THE THEORY OF REAL
VARIABLES AND THEIR FUNCTIONS

IF the elements of the theory of one real variable and its

functions are regarded as known, as in particular the concep

tion of irrational numbers and limits (A. A. chap. VI) and also

the idea of continuity (A. A. chap. IX), we can then apply this

theory in various ways and show the transition to functions of

two real variables.

23. Sets of Points on a Straight Line
;
their Upper and Lower

Bounds and their Limit Points

It frequently happens that a finite or an infinite number of

the real numbers (points)
* of a finite interval f are distin

guished by some property not belonging to the others. We
then say : A set of numbers {points) is defined on that interval.

Such a set of points is then, and only then, regarded as defined

when it can be determined whether or not any point on the

interval belongs to the points of the set
;

it is not necessary
that we should be in possession of methods to determine for

each point on the interval whether or not it belongs to the set.$

* The numbers being, of course, simply a notation for points. This notation is

complete in view of the scheme by which the system of real numbers is set into

one-to-one correspondence with the points of a straight line. Cf. VI, 3 and I,

$4- S.E.R.

t We call attention here to the usual distinction between interval and segment.
A segment (a, b}, for example, is understood to be the set of all numbers greater
than a and less than b ;

that is, exclusive of the end-points a and b
\ and an interval

(a, V) is the segment (a, ) together with a and b. S. E. R.

J The terms class, collection, aggregate, assemblage, etc., are synonyms of set.

S.E.R.

I27
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I. The number a is said to be the upper bound of a set of num

bers {points} if the number a has the property that every number

a e but no number a + e (e &amp;gt; 0) is exceeded by a number of the

set* For example, A/2 f is the upper bound of all positive

numbers whose square is
&amp;lt; 2, and i is the upper bound of

proper fractions. Similarly, for the lower bound of the set.

Then we have the theorem :

II. A set ofpoints belonging to an interval always has an upper

and a lower bound.

For, we can divide the rational numbers on the interval into

two classes such that every number a of the one class will be

exceeded by at least one number of the set and every number

A of the other class will be exceeded by no number of the set

If there is a smallest one in class A or a largest one in class a

it is the upper bound, the existence of which has been affirmed.

If neither of these is true, then the division % a
\

A defines an

irrational number a (A. A. 33), and this is then the upper

bound.

If, among the numbers of the set, there is a largest one (as

is always the case with a finite set), it is. then the upper bound.

Otherwise the upper bound does not belong to the set.

For the lower bound, corresponding statements hold.

We shall also make use of the following expression :

III. A point a is called a limitpoint of a set ofpoints ifpoints ||

of the set always lie between a e and a -f- tfor every positive e.

* Of course, as thus defined a is the least upper bound
;
that is, the least num

ber which is an upper bound. S. E. R.

t With the understanding that \/2 is a number. S. E. R.

I Known as the DEDEKIND Cut or the DEDEKIND Partition. Cf. PIERPONT,
The Theory ofFunctions of Real Variables, Vol. I, p. 82. S. E. R.

Synonyms of limit point are accumulation point, cluster point, limiting point,

condensation point. S. E. R.

||
The plural is essential here.
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For example, the limiting value of a convergent sequence of

numbers is a limit point for the numbers belonging to the

sequence. As this example shows, a limit point of a set of

points may or may not belong to the set.

A set of points is not necessarily arranged as a convergent

sequence of numbers (A. A. 37); but if it contains a limit

point ,
there are then contained in the set sequences which

converge to and whose numbers all belong to the set.

We now introduce the theorem of WEIERSTRASS :

IV. An infinite set of points on a finite internal has at least one

limitpoint on this internal.

The proof of this theorem depends simply upon the definition

of an irrational number by a partition in the system of rational

numbers. We can divide the rational numbers on the interval

into two classes such that every a of the one class is exceeded

by an infinite number of the set, every A of the other class by

only a finite number or by none. The lower end-point certainly

belongs to the class #, the upper end-point without doubt to the

class A, and thus both classes really exist. There is then a

number
,
rational or irrational, such that every number smaller

than it belongs to a, every number larger than it belongs to A.

For any positive number e, therefore, e is exceeded by an

infinitude of numbers of the set, -f e by only a finite number,

and hence infinitely many numbers of the set lie between a e

and a + e
;

in other words, a is a limit point of the set.

Of course, the limit point, the existence of which is proved

above, is not necessarily the only limit point of the set
;

it may
have more than one, in fact an infinite number of them

;
and

each point on the interval may be a limit point of the set. This

latter, for example, is the case for the set composed of all

rational numbers and also for the set made up of all the finite

decimal fractions on the interval.
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Moreover, as a consequence of the above proof no limit point

of the set can be larger than a designated above. We there

fore state the theorem :

V. Among all the limitpoints of the set there is always a largest

one (and likewise a smallest one] ; we call that largest one the

upper limit (superior limit or Z), the smallest one the lower limit

(inferior limit or Z) for the numbers of the set.

The theorem that a sequence of numbers, which increase

continually but not beyond every bound, must be convergent

(A. A. 40) is a special case of the one proved here. The

proof of the latter theorem as also Theorem II shares with

that special case the property that it presents no means to actu

ally specify the numbers whose existence is proved.

If the upper bound of an infinite set does not belong to the

set, it is a limit point of the set and is then of course the

superior limit Z. If however it belongs to the set, it is not

necessarily a limit point, and if it is not a limit point, then the

superior limit is different from the upper bound.

EXAMPLES

1. Recall carefully now the precise definitions of upper

(lower) bound, limit point, superior (inferior) limit Z (Z).

Illustrate each by using the following sets of numbers :

(0 i 2, 3.

(2) i, 1/2, 1/3, ..-, i/n.

(3) 1,0, 1/2, 1/4, 1/8, .&quot;, i/2&quot;-

2
.

(4) 2, 4, 6, ,
2 k.

(5) All rational numbers less than unity.

(6) All rational numbers whose square is less than 2.

2. Given the set -P=\ h -
&amp;gt;

m and n positive integers.

The limit points of this set form the infinite set o, i, 1/2, 1/3, ,
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i/m\ determine which of these limit points belong to the orig

inal set. This new set, that is, all the limit points of /&amp;gt; is called

the derived set of P and is denoted by P. (The notion of the

derived set was introduced by CANTOR, Math. Annalen, Vol. V

(1872), p. 128.)

3. Consider the set of all positive proper fractions, that is,

the set P= -
; , q &amp;lt; r. What are its limit points? Its upper

(lower) bound ? Determine the derived set P.

4. Write a set of points whose limit points do not belong to

the set.

5. Has every infinite set of points a limit point ? An upper

(lower) bound ?

24. Applications of the preceding Theorems : Continuity on an

Interval

A function of a variable is called continuous at a point .TO if to

every assigned number e &amp;gt; o, there exists another, 8, such that

(i) \/(x) f(x ) |
&amp;lt;

e whenever
|

x XG \ &amp;lt; 8,

(A. A. 62) ;
or otherwise expressed (A. A. 61), if

(2)

If this condition is satisfied for all points * n the interval, we

consider the question : Is it possible for an assigned e &amp;gt; o, to

determine a 8 so that the inequality

(3) |/(*0 -/(*.) &amp;lt;

* That is, as x approaches xn , and denoted here by the symbol x = x . Cf. also

VEBLEN and LENNES, Introduction to Infinitesimal Analysis (Wiley and Sons.

New York), (1907), p. 60. S.E. R.
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is true for all pairs of numbers XQ , x^ of the interval which

satisfy the inequality

(4) t*-.4ro|&amp;lt;8?

When attention was first called to the concept of uniform ap

proach to a limit of a function (A. A. 66), it was thought nec

essary to distinguish between &quot;

continuity at each point on the

interval
&quot; and &quot; uniform continuity on the entire interval.&quot; But

it soon became evident that a distinction of that kind is not

necessary here
; rather, the following theorem holds :

I. When an equation of the special kind (2) is valid for all

points on the interval, it necessarily holds uniformlyfor the entire

interval*

Assuming that it were not the case, we could then choose

any sequence of numbers converging to zero as

(5) 81,82,83, ;
KmSn

= o,

and, for each number of the sequence, find two points x^, xnl

on the interval such that

(6) !/(*) -/(*o) &amp;gt;e and
| *,*-*,, &amp;lt;8n .

Two possibilities would then arise :

Either there would be only a finite number of the points xno

which are different from each other. In this case then at least

one of these points call it X is such that the inequality (6)

is valid for infinitely many values of n. Since by hypothesis

* That is, Everyfunction continuous on an interval is uniformly continuous on

that interval. This is the so-called uniform continuity theorem and is due to E.

HEINE, Crelle, Vol. 74 (1872), p. 188. Notice also that this theorem does not

hold if&quot; segment&quot; is substituted for
&quot;

interval,&quot; as is shown by the function i/x on

the segment (o, i), which is continuous but not uniformly so. The function is de

fined and continuous for every value of x on this segment, but not for every value

of x on the interval (o, i). S. E. R.
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the 8,, converge to zero, we can, for the given value of e and for

each 8, so assign another point x
ni

that

(7) l/(-vni) f(X) \

&amp;gt;
e and

But this is contrary to the hypothesis that f(x) is continuous

for each value on the interval and hence for X.

Or there would be infinitely many of the points ,r,i0 which are

different from each other. They must then have at least one

limit point according to IV, 23. Let X be such a point and

then for the given e we can find a point .r,lo
of this kind and

with it another point x
ni
such that

(8) |/(*J-/(*JI&amp;gt;, *i-*J&amp;lt;V*. I *-*!&amp;lt; $/2,

and \x,n -X\&amp;lt;8.

But on that account the two inequalities :

(9) I/GO -/(*) 1 &amp;lt; c/2 and |/(*J -/(*) |

&amp;lt; c/2

cannot be true at the same time, and this means that f(x) for

# = X is not continuous, contrary to the hypothesis.

Since there is a contradiction in each case Theorem I is

proved.

A second application of the theorem on limit points is the

proof of the following theorem :

II. A function f(x) which is continuous on an interval actually

assumes the value of its upper (lower} bound* at least once on that

interval.

Let Y be this upper bound. Assuming that Y itself does not

belong to the numbers of the set considered here (that is, to the

values taken by the function), then, by the latter part of 23,

* As defined in I
, 23. S. E. R.
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it must be a limit point of the set. We can then assign an in

finite sequence of values of the function

(10)

such that

(n)

The corresponding values of the arguments x
, x^ x2 ,

need

not form a convergent sequence. But we can form from them

an infinite sequence , 1} 2 &amp;gt;

which converges to a limit point

X of. the set composed of these arguments. Then the functions

would also have at least one limit point ;
but since they are all

contained among the numbers (10) and these have only the one

limit point Y, it must follow that

(13) lim/(4)=K
tap

But on account of the assumed continuity of the function f(x),

it then follows that

(14) f(*)=Y. Q.E.D.

Finally, the theorems of the previous paragraphs can be used

as follows to free from the assumption of monotony the theorem
&quot; A continuous and monotonic function takes on each value

lying between its initial and final values &quot;

(A. A. II, 65). If

f(a) &amp;lt; o, f(&) &amp;gt; o, and if it is to be shown that the function

actually takes on the intermediate value o, we reason as follows :

ampng the values of the argument for which f(x) is negative,

there can be no largest one
; for, if f(c) &amp;lt; o, 8 can be chosen

so small that also/(V-}-S) &amp;lt;
o (cf. A. A. IV, 64). The upper

bound a of the values x, for which f(x) &amp;lt; o, must then be nec

essarily a limit point for them, since it does not itself belong to

these values
;
there are then, among the numbers between a e



25. SETS OF POINTS IN THE PLANE 135

and a where e is arbitrarily small, always numbers for which

f(x) &amp;lt; o, while for all larger numbers /(.r) &amp;gt; o. The first, in

view of the assumed continuity, makes it impossible (cf. A. A.

Ill, 39) that/() be &amp;gt; o
;
the second in view of the continu

ity makes it impossible that/() be &amp;lt; o. Therefore /(a) must

= o. Q.E.D.

We have accordingly the theorem .

III. A function f(x) continuous on an interval (a, b) fakes on

every value lying between /(a) andf(b) at least once for some value

ofx lying between a and b,

even without the limitation of monotony.

We may also mention here a theorem valid under the results

of 20 (cf. A. A. I, 64) :

IV. A rational function is everywhere continuous wiiere it is

finite.

EXAMPLES

1. Consider the function y=x2 on the segment (o, i). What

is the upper (lower) bound, the superior (inferior) limit of y on

this segment ? Are these points also limit points for the set of

values of y ?

2. Consider the function r = lim - where o &amp;lt; x
&amp;lt;

2.
,i=x A n + I

Here y = x for o &amp;lt; x &amp;lt; i
;

y=i/2 for x = i
;
and y o for i

&amp;lt;
x &amp;lt; 2. Answer, for this

function, the questions of Ex. i.

25. Sets of Points in the Plane

In considering two independent real variables (A. A. 19) the

most convenient geometrical interpretation is to regard them as

the rectangular cartesian coordinates of a variable point in the

plane. Restrictions on the variation of the two variables are
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suitably imposed geometrically ; thus, for example, we speak of

the point representing the variable as situated on a surface or on

a curve. And too, for example, instead of saying :

&quot; We consider

only values of x and y for which (x^ + j
2

) &amp;lt; i,&quot;
we say :

&quot; We
consider only those points within the circle of radius i about the

origin.&quot;

But then it is essential that we define exactly what we mean

by the words curve, surface, in order that there may be no un

certainty about the region of validity for the theorems
;
as we

already have the conception of a point as the representative of a

number-pair, we must necessarily proceed from that point of

view (and not, whatever else might also be possible, from solid

to surface and from this to the curve and to the point). We
therefore define at present regions

* and curves as sets of points.

The theorems can be stated more briefly by means of the fol

lowing terminology : f

I. All of the points whose distance from a given point A is less

than a given number S is called a neighborhood of this point.

Instead of saying :

&quot; We can so determine 8 that all points in

the neighborhood of A determined by 8 have a given property,&quot;

we say more briefly: &quot;All points in the neighborhood (or in a

sufficiently small neighborhood) of A have this property.&quot; Thus,

for example, the statement :

&quot; All points of the neighborhood

of the point (a, b] belong to a given set of points
&quot; means the

same as :

&quot; We can so determine 8 that all points (x, y) for which

(i) (*-tf)
2 + (7-^)

2
&amp;lt;8

belong to that set of points.&quot;

* In German &quot;

Flachenstiicke.&quot; S. E. R.

f For bibliography and an exposition in English, the reader is referred to the

treatise by W. H. Young and G. C. Young, The Theory of Sets of Points, Cambridge,

The University Press. S. E. R.
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We define also a &quot;

rectangular neighborhood of (a, by by the

two inequalities :

(2) \x-a\&amp;lt;&, \y-6\&amp;lt;&.

It is evident then geometrically as well as analytically that all

points which satisfy inequality (i) also satisfy inequalities (2);

and conversely, all points which satisfy (2) also satisfy the in

equality

(3) V(*-

which differs from (i) only in having 8 V2 in place of 8. Thus,

whenever certain properties apply to all the points of a circular

neighborhood of (a, b), they belong also to all the points of a

rectangular neighborhood; and conversely. On that account,

this difference is immaterial in many cases
;
we can use that one

of the two ideas which is the more convenient.

By means of this idea of neighborhood, we can now apply the

concept, limit point of a set of points, to sets of points in the

plane as follows :

II. A point is called a limit point of a set ofpoints if, in -any

neighborhood of it (arbitrarily small), there are always otJierpoints.*

III. A point is called an inner point of a set if a neighborhood of

the point belongs entirely to the set.

IV. A point is called a boundary point of a set if, in every

neighborhood of the point, there are points of the set and also at

least one point which does not belong to the set. (It is thus unde

termined whether or not the point itself belongs to the set.)

Every limit point of the set, which does not belong to it, is a

boundary point of the set.

V. A point of a set ofpoints, which is not a limitpoint of the set,

is called an isolatedpoint of the set.

* The plural is essential here as in III, 23.
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VI. A set of points which contains no isolated points (that is, a

set whose points are all limit points) is called dense in itself*

VII. A set of points may have the following property : Given

any two points A, B of the set and a number e (arbitrarily small) ;

if we can always select a finite number of other points OF THE SET
so that each of the distances.

AA^ AiA 2 ,

. An_An ,
AnB

is smaller than e, the set is then said to be connected.

Examples of such connected sets of points are the lines and

surfaces of elementary geometry. But the set is also connected

if particular points are excluded from all the points of the set,

for example, from all the points inclosed by a circle
;
and too

we obtain connected sets by considering only those points of

such a surface whose coordinates are rational numbers, or only

those whose coordinates are finite decimal fractions. To pass

therefore from the conception of sets of points to that of the

curve or the surface, we must exclude such possibilities. For

this purpose we define as follows :

VIII. A set ofpoints which includes all of its boundary points is

called closed.

For &quot; closed and dense,&quot; the one word perfect is sometimes

used.

The two last-named properties that of being connected and

closed belong to those sets of points which, in elementary

geometry, we call curves and also to those which we call sur

faces (for example, to the set of points on the circumference of

a circle, as also to the set of points inclosed by this, the cir

cumference being part of the last set; without the circumfer

ence the interior is not a closed set). The difference is, that

* In German &quot;

in sich dicht,&quot; S, E. R.
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the curve contains no inner points in the sense of definition III.

From this point of view, we therefore give the following most

general definitions of curves and surfaces :

IX. A connected and closed set of points is called a region if it

contains inner points, an arc of a curve if it contains no inner

points (composed only of boundary points).

And too, there are sets of points containing boundary points

whose separation from the set leaves it open (that is, not closed)

and others having boundary points which may be separated

from it and still leave it closed (as, for example, a set consisting

of a circular surface with one radius extended). In such cases

it is usual, when possible, to so change the definition of a set of

points that such points are excluded.

On the other hand, there are points which are naturally inner

points but which for special reasons we discuss not as such but

as boundary points ;
for example, a circular surface &quot; cut open

&quot;

along a radius. This must be considered separately.

But these previous definitions are much too broad for our

purpose : not all sets of points which come under the one or

the other of these definitions, have for every curve and surface

those properties which we have been accustomed all along to

attribute to the curves and surfaces of elementary geometry.

We must therefore add further suitable limitations.

For this purpose we start from an entirely different point of

view. The curves of elementary geometry can be determined

by a so-called parametric representation ; that is, if such a curve

or an arc of it is given, two continuous functions
&amp;lt;(/), ^(/) of a

third variable / can be chosen in many ways so that all the

points of this arc of the curve and only these are obtained when

we put

(4) *
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and allow the variable t to take on the values on a given in

terval. And too, this representation may always be so arranged

that each simple point of the curve is obtained only once.

X. We can therefore in general regard any set of points defined

by ftvo equations with these properties as a curve.

This definition of a curve is, in one sense narrower, in

another, broader than the one given in IX. P or, while a set

of points defined by equations of this form may have inner points

if no further limitations are applied to the functions
&amp;lt;/&amp;gt;

and
i//, yet

such a pair of functions is not always sufficient to represent a

connected and closed set of points without inner points.

But a formulation at least sufficient for our next purpose is

the following :

XI. In the following, only those sets of points which satisfy at

the same time both definitions IX and X are designated as curves.

XII. In particular, we designate as a simple curve that one

which has no double points, that is, one on which there are always

distinctpoints corresponding to different values of the parameter in

equation (4).

Analogous to this we stipulate further :

XIII. In what follows we designate as surfaces only those sets

ofpoints which satisfy definition IX, and whose boundarypointsform
one or a finite number of simple curves (XI] not intersecting in pairs.

Further limitations, while not essential, are at all events use

ful for most of the theorems deduced later. We therefore define

further :

XIV. If the functions &amp;lt;(/), ^(/) are continuous andpartitively
monotonic* the curve is called a path ; and a surface bounded by a

path is called a domain.

* In German &quot;

abteilungsweise monoton.
&quot;

In this connection cf. VEBLEN and

LENNES, I.e., p. 50. S. E. R.
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In the discussion of later theorems we- will be limited mostly

to paths and domains. To be sure, we thus exclude a number

of cases which are of interest in the theory of functions. In

many cases it is possible to discuss such curves and surfaces by

regarding them as the limiting cases of paths and domains, resp.

But the mere assumption of the limiting process is not usually

sufficient
;
on the contrary, it is necessary in drawing conclu

sions to pass uniformly to the limit (A. A. 66). Hence the

following definition :

XV. If the functions &amp;lt;(/), ^B (/) satisfy the conditions of XIV

for every value of n, andfurther, if

(5) lim $(/) = &amp;lt;(/),
lim

UNIFORMLYfor all values of t under consideration inclusive of the

end-values, then the curve represented by equations (4) is called an

improper path, and a surface bounded by a finite number of such

curves is called an improper domain.

XVI. The theorem on limit points {IV, 23) is valid alsofor

sets ofpoints in the plane. For, if we disregard the second coor

dinate of the points of the set, the results are as in 23 ;
that is,

a number a can always be found such that infinitely many points

of the set have a first coordinate lying between a e and a + e

for e arbitrarily small. Let us now keep in mind only these

points, and consider their second coordinate : there is then at

least one number (3 such that infinitely many of the points just

determined have a second coordinate lying between ft c and

,8 -h e. Together these two statements tell us that infinitely many

points lie in every neighborhood of the point (, /?). Q.E.D.

The conclusion in this form assumes that not only the number

of points themselves but also the number of different values of

their first or their second coordinate is infinite. But this is always
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the case excepting only when infinitely many of the points have

the same first or the same second coordinate
;
but in this excep

tional case they must lie on a straight line and then the existence

of a limit point follows at once from 23.

XVII. A domain is called simply connected when any closed curve

in it can be contracted to a point by continuous deformation without,

in so doing, going outside of the domain* For example, the sur

face of a circle or of a square is simply connected; but not the

surface between two concentric circles, since a circle on this sur

face concentric to the two bounding circles cannot be contracted

to a point without going outside of the surface.

EXAMPLES

1. Is the surface of a sphere, considered as the stereographic

projection of the points of the plane, simply connected? Do two

non-intersecting spheres, not bound or joined together in any

way, make up a connected surface ?

2. Let us consider the area in

closed between and completely

bounded by two concentric circles.

It is connected but not simply. We
can make it simply connected by

setting an impassable barrier. The

most effective way to do this is to

suppose the surface actually cut

along the line of the barrier as AB in the adjoining figure.

The surface is now a simply connected one.

3. Again, the surface of an anchor ring, not simply con

nected, can be made so by two barriers. As actual cuts they

*For a more complete treatment of connectivity see OSGOOD, Lehrbuch der

Funktionentheorie, Vol. I, p. 144, and FORSYTH, Theory of Functions, p. 313.

S. E. R.
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would appear as in the accompanying

figure.

[This method of resolving surfaces into

simply connected ones by the establishment

of barriers is that adopted by RIEMANN,

Gesammelte Werke, pp. 9-12 and 84-89.]

4. Consider the set of points

/ &amp;gt;

=[oi], that is, all the points on

the interval (o, i). What are its

limit points, upper (lower) bounds ? Is it dense, closed ? Is the

set of Ex. 3 at the end of 23 dense, closed ?

5. Are the following sets dense in itself, closed, perfect ?

(a) A segment not including its end-points.

(&) A segment with its end-points.

(f) The set of rational numbers.

26. Continuity of Functions of two Real Variables

I. (Definition.) An equation of tJieform

(i) lim lim/(.v, v) =c

signifies t)ie same as lim Jlim/(jt:, y) \
=

c,

in other words, the inner limit is to be evaluated first.

The order of evaluating two successive limits of a function

of t\vo real variables is not interchangeable even in simple
cases

;
for example, since

lim

but

(3)

x y x* + )* i x
the

x y x2-

-f-/

^_ _ T *

*It is interesting to note that (x+y)/(x-y) would be sufficient here, viz.

lim
y

- and lim - = i
; but lim lim

x x=0.r y y
i. S. E. R.
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II. (Definition.) The equation

(4) lim f(x&amp;gt;y)=c
x=a j/=6

means that for every assigned number e &amp;gt; o, there exists another,

8, such that

(5) \f(*,y)-c &amp;lt;*

for EVERYpair of numbers x, y which are different from a, b and

which satisfy the inequality

(6) VO-tf) 2 + (7-^)
2

&amp;lt;S.

According to the terminology of 25, this definition is stated

as follows : equation (4) signifies that f(x, y) is infinitesimally

different from c in the neighborhood of (a, 1)}
the point itself

excepted.

If equation (4) holds, equation (i) also holds, and too the

equation

(7)

for every A. But the converse is not true
;
for example, while

(8) lira lim
-

x^ y^
the following

f \ r
- i-X2

which is a function of X. This would not be the case if we had

here an equation like (4).

III. (Definition.) If the equation

(10) lim f(x,y}=f(a,b}
x=a y=b

holds for a function of two variables, then f(x, y] is a continuous

function ofx and y at the point (a, b).
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As the example above shows, a function of x and y may be a

continuous function of x and also a continuous function of y for

every value of x and y, and yet not necessarily be a continuous

function of x and y in the sense of definition III.

On the contrary, the following theorem holds as for functions

of a single variable ( 24) :

IV. If a function of tu&amp;lt;o variables is a continuous function of

tJiese two variables at every point of a finite domain, it is also

(uniformly} continuous in tJie entire domain; that is, for every

assigned e &amp;gt; o, there exists another, 8, such that,

(11) LA** *)-/(*., *)!&amp;lt;

for every pair of points (x^ }\), (x2 , y2) of the domain which

satisfies the inequality

(12) Vte-arO +O , -;!)*&amp;lt; 8.

From this it follows further that :

V. If x, y are continuous functions of //, v, and if z is a contin-

iwus function of x, y, then z is a continuous function of u, v.

If

(13) ?/ =
&amp;lt;(&amp;gt;, y), v = ^(x,y)

are defined as (single-valued) functions of x and y in a domain B
of the jvy-plane, we can interpret //, v as coordinates of points of

another plane. Each point (x, y] of B will then have a definite

point of the 7/#-plane corresponding to it by equation (13) ;
the

set of all the points which correspond in this manner to the

points of B, determine a set of points in the //r-plane. But

whether this set of points also determines a region is known only

when more details concerning the functions &amp;lt;,
\f/

are given. It

is sufficient here to investigate cases where &amp;lt;, ^ are not merely
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continuous functions of the two variables x and ^but have other

/imitations given in the course of the investigation.

We proceed indirectly from (#, y] to (u, v) by introducing an

auxiliary plane (, rf)
whose points have for coordinates one of

the old and one of the new variables
;
thus :

(14) =
*&quot;, rj=v = ^(x,y).

We now give to x a definite value a (found in J3) ; geometrically,

this amounts to considering a line parallel to the jy-axis. If this

parallel has only one closed and connected segment (y , y^

(VII, 25) in common with the domain B, then
rj

is defined on

the corresponding interval as a continuous function of y by

equation (14) ; for, if
i//

is a continuous function of both vari

ables, it is a continuous function of each separately. Moreover,

if
i//

as a function of y is monotonic on this interval, then to

the interval
(jv , yi) there corresponds an interval ($(a, jv )&amp;gt;

$(a &amp;gt; J^i))
sucn tnat on

it&amp;gt; conversely, y can be regarded as a con

tinuous and monotonic function of
77.

The interval we are con

sidering on the line parallel to the jv-axis then has a reversibly

unique correspondence with a definite interval on a line parallel

to the ?7-axis, that is, such that not merely one and only one

point (, rj) corresponds to each point (x, y) but, conversely,

one and only one point (x, y) corresponds to each point (, rf}.

But if the straight line has two different intervals (y , y^ and

(y2 , jv3)
in common with B, and if, for example, i/&amp;gt;

is monotonic

increasing on each of these intervals, it does not follow from this

alone that
\[/(a, yz) must be

&amp;gt; \J/(a, j^). For, each of these in

tervals has an interval on a line parallel to the 7^-axis correspond

ing to it in a reversibly unique manner
;
but these two latter

intervals may overlap so that a part of the interval thus deter

mined is
&quot;

doubly covered.
&quot; There are therefore two points of

the ^-plane corresponding to each point of this last part.
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But under the first supposition let us now consider a neighbor

ing straight line x = a + h. If this too has only one interval in

common with B, there is then an interval on the straight line

= a 4- h corresponding to it. The end-points j , \\ of this

interval take on values for x = a + h other than those of the

corresponding interval for x = a. But since B is by supposition

a domain, y (a + h) and }\(a + //)
differ infinitesimally from

y (a) and }\(a) respectively, for h sufficiently small
; and, on ac

count of the prescribed continuity, $\_(a + h), Jo(# + ^)] and

/&amp;gt;[(#
+ ^), }\(a H- A)] differ infinitesimally from

\f/[a, y (a)~\ and

\l/[a, } i(a)] respectively.

We suppose that these hypotheses hold for all values of x

under consideration. Then two continuous functions of
,
and

thus two curves in the ^-plane are defined, according to the last

proof, by the equations :

These curves have no point in common, when we suppose i/f,

as above, to be a monotonic function of its second argument,

since for every
&amp;lt;

The set of all the points (, rj)
for which

(1 6) %() g r, g (*)

forms in the ^-plane a region C which has a reversibly unique

correspondence with the domain B. Moreover, the function

(I 7 ) y=e&-n)
=

B(X,v)

obtained by reverting the second equation in (14) is, for all
rj

of

this region, a continuous function of its two variables and, for x

fixed, is a monotonic function of v. (The continuity with refer

ence to the two variables is deduced from the corresponding
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property of
\]s,

as for functions of one variable (A. A. Ill,

65))-

If we pass now from the ^-plane to the zw-plane by means

of the equations :

(18) u =
4&amp;gt;(x, y) = &amp;lt;[, 0(S, ,?)] =/( 77), v~i,

we can draw corresponding conclusions if the functions satisfy

corresponding hypotheses. In doing so it is only necessary to

notice the following conditions : When any parallel to the ^-axis

has only one connected interval in common with the domain

B, corresponding conclusions for the ^plane cannot be drawn,

since there may be in common with the region C several dis

tinct intervals on a line parallel to the -axis. Parts of the uv-

plane could then be multiply covered by the points denned by

(13). This possibility must be excluded, and we have then the

following formulation of the results :

VI. If the functions (ij) are continuous in the domain B and

such that to tivo different points (x, y] of tJiis domain there are

always two different pairs of values (u, v] ; if, further, if/, for a

given x, is a monotonicfunction ofy and* if thefunctionf defined by

(18) is, for a given 77,
a monotonic function of : then the points of

the uv-plane corresponding to the points of B by (ij) cover a region

C of this plane uniquely without gaps ; and, conversely, in this

region x, y are also continuous functions of u, v.

We thus say : The domain B is mapped continuously on the

region C by means of the functions (/j).

27. Derivatives

I. The derivative of a function f(x) at a given point x is defined

/v the equation :

dx ^ A
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provided, of course, that this limit exists. If it exists for every

value of -r, at least on a given interval, then its values on this

interval form a definite function of x,f (x), which is called the

derivedfunction or the derivative otf(x).

If /(x) is a rational function of x, then the function on the

right side of equation (i) is a rational function of both the

variables x and h. Then, according to IV, 24, for a given

value of x, only two cases can arise, viz. : either the function

increases beyond all bounds as h approaches zero, or the limit

exists
;
but the first case as shown in elementary differential

calculus occurs only when the given value of x makes the

denominator of f(x) zero. Hence the theorem :

II. A rationalfunction of a real variable always has a definite

derivative wherever the function is finite.

It is not always necessary to apply the definition I directly

to the function in order to find its derivative, since, as in the

differential calculus, the differentiation of more complicated

functions can be made to depend upon the differentiation of

simpler ones. Methods for this purpose and the derivatives of

the simplest functions are supposed to be known here.

We suppose it known too that a function of a real variable

represented by a power series has a definite derivative at each

inner point on its interval of convergence and that this deriva

tive can be found by differentiation of the given series term by
term (A. A. 81).

Finally, we also suppose it to be known that the deriva

tive, provided it exists at an inner point on the interval, can

not be negative (positive), if the function at that point is

increasing (decreasing) for x increasing, and that it must be

equal to zero if the function has at that point a maximum or a

minimum.



150 III. THE THEORY OF REAL VARIABLES

III. The partial derivative of a function f(x, y) with respect to

x, for y constant, is defined by the eqiiation :

dx

Two things are necessary for its complete determination, viz. ;

the determination of the variable with respect to which it is to

be differentiated and the variables which are for the process

regarded as constant.

Rules for transforming such partial derivatives when passing

to new variables are easily established arithmetically, provided

we grant the existence and the continuity of the partial deriva

tives which occur in the process. Under these conditions we

suppose such rules to be known.

The hypotheses of Theorem VI, 26, in which the occurrence

of the unknown functiony is somewhat troublesome, can be re

placed by simpler but less general ones. For, according to

those rules, we have,

3u\

Tj=const.

and IT-:. . . . . ,

$y)z=c nst -

and therefore

dv\ fdu\ _ du dv _ dv du

dyjx=const. \djr)=const dx dy dx dy

providing y is regarded as constant on differentiating with re

spect to x, and x constant on differentiating with respect to y on

the right-hand side of the equations. But since continuous

functions can change sign only in passing through zero, it fol

lows that, if the &quot; functional determinant &quot; on the right-hand
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side of (3) is different from zero in the entire domain B, then

\f/
for x constant is a monotonic function of y, and f for

77
con

stant is a monotonic function of . From VI, 26, it therefore

follows :

IV. If //, v in the domain B are continuous functions of x and

y with continuous first partial derivatives ajid if the functional

determinant (j) is different from zero everywhere in B, tlien this

domain is mapped continuously by u,v on a region C of the uv-plane ;

in fact, this region of the //z -plane is thus covered everywhere

uniquely, providing that different points of B always corre

spond to different pairs of values //, v.

Conversely, x, y inside of C are therefore continuous func

tions of //, v with continuous first partial derivatives which are

found by known rules.

28. Integration

We must go somewhat more into detail concerning the arith

metical definition of the definite integral of a function of a real

variable. Let (a, b) be an interval, and let a function f(x) be

given on it. Divide this interval into any number of subinter-

vals by the points xlt JC2 ,
xn,* let Mv represent the upper

bound of the values of the function belonging to each of these

subintervals, and form the sum :

(
i
)

M (x,
-

a} + M,(x,
-

A-0 +M2(xt
-

*,) +

(xn
- *m_0 +Mn(b

- x

This sum has different values according to the choice of the

points determining the partition. But when the values which

the function takes on on the given interval all lie between two

* That is, let x = a, x, x.
2&amp;lt;

xn+i
= b be a set of points lying in order from a

to b. Such a set of points is called a partition of the interval (a, t&amp;gt;).
The intervals

(jek ,
xk+l) (k = i, 2, ) are intervals of (a, 6). S. E. R.
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finite limits m and M, then all possible values of the sum (i)

lie on the finite interval \m(b a), M(b a}~\ and therefore

have a lower bound according to II, 23.

I. This lower bound of the values of the sum (/) is called the

upper integral* of thefunction f(x] between the limits a and b.

Under the same assumptions there is an upper bound to the

values of the sum

(2) mQ(x1 a) + m^Xz Xi) + M2(x3 x2) -f

+ Mn-i(xn
-

*n-i) + mn(b
- xn),

in which m
v designates the lower bound of the values of the

function on the interval (xv1
xv+i).

II. This upper bound is called the lower integral of f(x) be

tween the limits a and b.

No value of (2) is greater than any value of (i) even when

intermediate points are used for the formation of (2) other than

those used for (i) ;
we see this by further partitioning every

subinterval used for (i) by the points used for (2). Thus the

lower integral cannot be greater than the upper integral, but at

most equal to it.

III. When the upper integral is equal to the lower, we call their

common value simply the integral off(x] between a and b ; and the

function f(x) is then said to be integrable on the interval (a, b}.

But this is always the case if f(x) is continuous on the inter

val. For then according to I, 24, for every assigned number

e &amp;gt; o another, 8, can be so determined that, for any two points

* The terms upper integral (pberes integral} and lower integral (unteres inte

gral} were introduced by DARBOUX, Annales de Pecole normale, ser. 2, Vol. IV,
and also by THOMAE, Einleitung, etc., p. 12. JORDAN, Cours d Analyse, Vol. I,

p. 34, called them &quot;

1 integrale par exces
&quot;

and &quot;

1 integrale par defaut.&quot; S. E. R.
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xlt x* of the interval,

\/(xz) -/(A-0 |

&amp;lt;
-? whenever *,-*&amp;gt; |

&amp;lt; 8.

b a

But then

(3)

whenever
j

xv+1 A\, |

&amp;lt; 8. If the points of partition are there

fore chosen so that these inequalities hold for each subinterval,

we obtain two values of the sums (i) and (2) which are differ

ent from each other by e at most. But that would not be possi

ble if the upper bound of the smaller sum was different from

the lower bound of the larger sum by more than e. Since this

is true for any value of e, these two bounds must be equal to

each other (A. A. Cor. to II, 39). We have thus proved the

theorem :

IV. A function is integrable on every interval on which it is

continuous.

It may be mentioned here without proving, that the converse

of this theorem does not hold.

The following theorem also arises from the same proof :

V. If f(x] is integrable on the interval (a, b], then for each

assigned degree of approximation e we can determine another
, 8, so

that the difference between the value of the sum

and the value of the integral

(5)

is less than i(b a), however the subintervals (xvt
x

v+^) and on

them the intermediate values v may be chosen, provided only that

each of tJiese subintervals is smaller than 8.
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There arises thus the possibility of computing the integral

of a continuous function to an arbitrary approximation pre-

assigned.

The elementary theorems about the integral of a sum, etc.,

about partitions of the interval of integration, about the intro

duction of a new variable of integration all follow without fun

damental difficulties from the definition of an integral used

here.

If a, one of the two limits of integration of a continuous

function, is kept fixed, while the other, b, is considered as a

variable and as such denoted by jc, then the value of the in

tegral appears as a function of this variable
;

let this function

be denoted by F(x). If m and M are upper and lower bounds

of the values of the function f on the interval (x, x-{- ti),
then

F(x + h) F(x) =
j

/(X lies between mh and Mh
;
hence

(6) ,&amp;lt;^
+ /

)-^)&amp;lt;J/,
h

and from this it follows in any case that

(7) \imF(x + K) = F(x)
A==0

and also, on account of A. A. IV, 39 when/(^) is in addition

to this continuous, that

(8) ,u *(* + *)-*(*) =f(x) ,

that is,

VI. The value of the integral of a continuous function is a con

tinuous and, when the integrand is continuous, also a differentiable

function of its upper limit; and, in fact, its derivative is in the

latter case equal to the given function itself.
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Differentiation and integration are thus reciprocal operations.

Therefore methods for the integration of rational integral

functions or of functions represented by convergent power

series are deduced by reversing the corresponding formulas for

differentiation ;
these too are supposed to be known here.

The following theorem now enables us to obtain the integrals

of more complicated functions.

VII. If on the interval (a, H)

(a) lim/n (,v) =/(x) uniformly as to x,
n===oo

then is

(10) lira

For, hypothesis (9) about the uniformity of approaching the

limit means that, for every e we can find an JV such that for

every x on the interval

(
1 1 ) I/O) -/(*) i

&amp;lt;
e where ;;

&amp;gt;
N.

But by one of the elementary methods concerning integration

just mentioned, the integral of a difference is equal to the differ

ence of the integrals of minuend and subtrahend and the abso

lute value of an integral is at most equal to the integral of the

absolute value of the integrand; it follows therefore from (n)
that

(12)
I

Cf(x)dx \ fn(x]dx &amp;lt; i(b a) whenever ;/ &amp;gt; N.

Since e( a) becomes arbitrarily small as e = o, the proof of

equation (10) is complete.

VIII. In particular, an infinite series which is uniformly con

vergent can be integrated term by term.

There are no corresponding theorems for differentiation :

from the hypothesis alone that on a given interval the absolute
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value of a function remains less than a given number, nothing

can be concluded as to the value of its derivative on this inter

val. But by the application of VII and VIII to the functions

JJLW we can at least obtain the two following theorems :

dx

IX. If in the neighborhood of a given point x

Km/.(*) =/(*),

IF, FURTHER, THE FUNCTIONS ue ARE CONTINUOUS AND
dx

APPROACH UNIFORMLY TO A DEFINITE FUNCTION IN THE
LIMIT AS N INCREASES, thenf(x) has a definite derivative at that

point which is equal to this definitefunction.

X. A convergent series of functions with continuous derivatives

may be differentiated term by term, WHEN THE SERIES so FORMED
IS UNIFORMLY CONVERGENT.

The extension of Theorems VII X to the case where the

general limiting process is employed (A. A. 62) presents no

new difficulties.

29. Curvilinear Integrals

I. If in the plane a path C from a point whose abscissa is a to

a point whose abscissa is b is given by the monotonic and continuous

function

(i) y=f(*)&amp;gt;

and if there is also given afunction P(x, y), continuous at least along

this path, then we shall understand the CURVILINEAR INTEGRAL.

(2) f
/&amp;gt;(*,

*S(C)

along the path C to be the integral

(3)
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II. A cunilinear integral changes its sign if we change the

sense of tlie direction in which tfie path is taken.

Similarly (
*

Q(x, y)dy is defined
;

* instead of \Pdx + ( Qdy

we may write more briefly I (Pdx + Qdy)*

The curvilinear integral along any path (XIV, 25) can

therefore be defined as that integral which is equal to the sum

of its values along the separate parts into which the path is

divided, provided that for each of these parts y is a monotonic

function of x and x is a monotonic function of y.

If the functions x =
&amp;lt;(/), y = *f (f) defining the path are dif-

ferentiable, then

(4) (Pdx + Qdy) =

But if this is not the case, the curvilinear integral can be

computed to an arbitrary approximation by a summation of the

form :

(5)

The following theorem, as also Theorems VII, VIII, 28 are

valid for curvilinear integrals :

III. If the functions P, Q are continuous in a domain of the

plane and if, in this domain, there is given a set of paths Cn

which approach UNIFORML V to a definite path C of tJie domain as

n increases, then is

(6) lira f (Pdx + Q&amp;lt;fy)

= f (Pdx + Qdy).
nx&amp;gt;J(cn) *Ac)

The proof rests upon the fact that P\_x,f(x)~\dx is a contin

uous function of x when P(x, y) is a continuous function of x

* It is only necessary to assume / monotonic here in order that x may be a

single-valued function of y.
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and y, and f(x) is a continuous function of x, and upon VII,

28.

IV. And, if C= Urn Cn is not a proper but an improper path,

we conclude from the premises that the limit on the left side of (6)

exists and that it depends only upon C and not upon the set of

cuives Cn used to approximate to C. It can therefore be used to

DEFINE the curvilinear integralfor this case.

V. In particular, we can approximate uniformly and arbitra

rily to any path of integration by a so-called
&quot; RECTANGULAR

CONTOUR&quot; * that is, by a path composed of straight line segments

which are alternately parallel to each of the coordinate axes.

For, i : If y is a continuous and monotonic function of x

along the path and conversely, and if the degree of approxima

tion e is preassigned, we can then find a finite number of points

xv , yv on the path such that none of the differences
|

xv+l xv |,

\yv+i yv
is greater than c/V2. Then, on account of the pre

supposed monotony, the piece (v v + i) of the path lies en

tirely within the rectangle whose vertices are the four points

(
x* yv\ (

xv+* yv )&amp;gt; Owi&amp;gt; -&amp;gt;v+i)&amp;gt; (
x

*&amp;gt; -&amp;gt;wO ;
and none of the

points of the path are more than the distance e from any one

point of the sides of the rectangle. Hence the part of the

curve connecting (x v , yv)
and (#+!, yv+i) can be replaced,

with an approximation e, by a pair of intersecting sides of this

rectangle.

2. If the path is a proper one (XIV, 25), we can divide

it into a finite number of pieces, for each of which the hypothe

ses of the first case above are fulfilled.

3. If, finally, the path is improper, it can be replaced with an

approximation e/2, by a proper path which is then replaceable,

with an approximation e/2, by a &quot;

rectangular contour.&quot; There-

* In German &quot;

Treppenweg.&quot; S. E. R.
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fore this improper path is replaceable by a &quot;

rectangular con

tour
&quot; with an approximation e.

It is also possible to approximate to a given curve by a

&quot;

rectangular contour &quot; whose vertices have rational coordinates.

VI. If Pdx + Qdy is the total differential dF of a uniform and

continuousfunction F(x, } )
in the domain under consideration, then

(7) Pdx + C//v)
= F(x j-0

- F(xQ , jr ),

however the path of integration from (xc . JTO) to (x^ }\) is

chosen in this domain. This is evident at once if
&amp;lt;(/), ^(/)

are differentiate along the path ;
for then, by introducing / as

variable of integration, the integrand on the left side of (7)

becomes: dF dx dF d\ ,. dF ,.

at -\
--- --- at= at.

dx dt dv dt dt

The same result is obtained for other paths by means of

Theorems III and IV.

In the general case, on the contrary, the value of the curvi

linear integral, taken along a path connecting two given points

of the plane, depends not only upon those two points, but essen

tially upon the path, since two paths which connect the same

two points give, in general, different values of the integral. In

particular, the value of the integral taken along a closed path

is not necessarily zero. For our purpose it is not necessary to

investigate the most general conditions under which this oc

curs
;

it is sufficient to deduce the following theorems :

If we connect two points BD of a closed path of integration

ABCDA by a path BED which does not intersect the first

one, we obtain two closed paths of integration ABEDA and

BCDEB. Then, in general,

f =/ +/ . f =/ + fJABEDA J BED J DAB JBCDEB JBCD JDB*
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FIG. 15

Repetition of this result gives the following theorem :

VII. If a domain is divided by paths into an arbitrary number

cf subdomains, then a given integral, taken along the boundary of

the entire domain, is equal to the sum of the corresponding integrals

taken in the same direction along the boundaries of the separate

subdomains.

From this we conclude at once that if the integral is zero for

every closed path of integration sufficiently small within a

simply connected domain,* it is also zero for any closed path

of integration which lies entirely within this domain. How

ever, the following theorem is more important :

VIII. If an integral, taken along the boundary of any square

the length of whose side is 8 and which lies entirely within a do

main B, is smaller than 82
e for 8 sufficiently small, then it is zero

for every closed path of integration belonging entirely to this do

main (where e is understood to be a number independent of the selec

tion of this square, and which approaches zero as 8 approaches

zero).

* The hypothesis of simple connectivity cannot, as a matter of fact, be dis

pensed with here; the curves given as examples in XVII, $ 25 cannot be replaced

by paths of integration arbitrarily small if they traverse the entire ring between two

concentric circles.
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For, if we have given a domain bounded by a closed &quot; rec

tangular contour,&quot; which may be entirely filled in by such

squares, the value of the integral around it is smaller than

e^Sl But 282
is the surface F inclosed by the &quot;

rectangular

contour
&quot; and is therefore a definite number. The value of the

integral must then be smaller than the product of this number F
and a number e which can be taken arbitrarily small. That is

only possible when it is zero.

The same theorem is valid for any other arbitrary closed path

of integration, as we perceive by approximating to it by a &quot; rec

tangular contour &quot; whose vertices have rational coordinates.

But in the application of this theorem it is not convenient to

suppose e independent of the selection of the square.

IX. But the same result is obtained by supposing that to any

point of B there belongs an e such that the conditions of VIII are

satisfied for every square belonging to tlie tieighborhood of this

point. ,

For, suppose the integral around any such a domain were in

absolute value &amp;gt;
A

;
we then divide the path into two parts ;

for at least one of these the integral must therefore be &amp;gt; . We

divide this one again ;
for at least one of the new parts the

integral must then be
&amp;gt;

. Continuing thus we arrive after

4

n divisions at a domain of the surface F/2* for whose boundary

that integral would be &amp;gt; A/ 2
n

. But we can carry the division

so far that one of the subdomains thus obtained, and all the

following ones, would belong entirely to the neighborhood of

one of its points ; for, the set of its vertices must have at least

one limit point. For one such subdomain, the integral along

the boundary would therefore on the one hand be
&amp;lt; tF/2

n and

on the other hand
&amp;gt; A/2

n
. But this leads to a contradiction,
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since c can be chosen arbitrarily small
;
the contradiction dis

appears only for A o.*

MISCELLANEOUS EXAMPLES

1. Discuss the sets P= f, f, J, f ...
;
that is,

p =
i&amp;gt; f &amp;gt; i f &amp;gt;

i&amp;gt; I ;
that is

&amp;gt; p 5 &quot;*Lil n &amp;gt; I

\ji n J

and integral, as to upper (lower) bound, limit points, superior

(inferior) limit L (Z), derived sets, and whether dense, closed.

2. The positive rational numbers can be arranged in the form

of a simple sequence as follows :

l,i M, f&amp;gt;M&amp;gt; iii--

Show that //^ is the -
(/ -f ^ i)(/ + q 2) + ^ r term

of the series.

Discuss for continuity the functions :

3. y = \/x
i
at x = o.

\y y

I

4. y = - at x = o. 5. y = i/x at x = o.

* For this and many similar arguments the HEINE-BOREL theorem is of direct

use. For an exposition of this theorem see VEBLEN AND LENNES, /. c., p. 34.

S.E.R.
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6. v = sin - at x = o. In this case discuss also the oscilla-
x

tions of y and find its value as x = o from the left
;
from the

right.

7. y = x - sin - at x = o. Discuss as in Ex. 6.
x

8. y= + ~r-sin- at x = o. Here v oscillates about the
JC

2 X
curve } =i/x2

. Show that the amplitude of these oscillations

converges to zero as x=o.

9. v = - sin - at x = o. Here y oscillates between the two
x x

hyperbolas y = i /x. Show that as x = o the amplitude of

these oscillations increases indefinitely.

O

10. Let y = i for x = o and

= o for x = o. The analytic expression of y is then

nx
In what respect is the disconti

nuity in this case different from that in the other examples just

studied ?

The two following are examples of continuous functions for

which progressive or regressive derivatives at certain points do

not exist.
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11. Let y = x sin for x = o and
x

= o for x = o.

Here y oscillates infinitely often between the lines y = x as

x = o. Now for x = o, y is certainly continuous
;
but it is also

/ 7T\
continuous for x = o since lim

(

x sin -
)

= o. At the origin

there is no tangent at all to the curve since a secant at the

origin oscillates between the two lines and approaches no fixed

position.

Analytically, this is shown as follows :

As AJC = O, sin - oscillates infinitely often between i. Cf.

Ex. 6.

y

12. Let y = x2 sin for x = o and

= o for x o.

Here y is continuous everywhere, even at x = o, and oscillates

between the two parabolas y x* and increasingly often as

X = Q. As a point on the curve approaches zero, a secant

through this point and the origin oscillates between narrower
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and narrower limits. These limits converge on both sides

toward the .r-axis. The tangent therefore at the origin is the

TT I

A.v sm = o.

Analytically :

Al 7T IT-*- = A.v -sin - at x = o and hm
A.# Ajf

Ari&amp;lt;)_

13. The function defined by /(x) = x] i + - sin (log x~) \
and

3

/(o) = o is everywhere continuous and monotonic.

[PRINGSHEIM, Encyklopadie der Math. Wissen.. II A. i, p. 22.]

Investigate whether this function has at x = o a progressive

or a regressive derivative or both, and, if both exist, whether

they are the same.

14. Discuss Exs. 3-9 for progressive and regressive deriva

tives as in Ex. 13.

15. Given a rational function of A, r(x) = where g(x)

and h(x) are polynomials. Show that in no case can the de

nominator of /(A*) be a simple factor as (x a).

Hence show that no rational function (such as i/x) whose

denominator contains any simple factor can be the derivative

of another rational function.

16. The functions it, z&amp;gt;,
of x and their derivatives ?/, v are

continuous throughout a certain interval of values of x, and //?

u v never vanishes at any point of the interval. Show that

between any two roots of // = o occurs one of v = o, and con

versely.

[If v does not vanish between two roots of u = o, say a and /3, the func

tion u/v is continuous throughout the interval (a, /3) and vanishes at its ex

tremities. Hence (ujv)[ (u v uv ^/v
2 must vanish between a and ft

which contradicts the hypotheses.]
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17. The constituents of an nth order determinant A are

functions of x. Show that its derivative is the sum of n

determinants each of which is obtained from A by substituting

the derivatives of the elements of a row for the elements them

selves.

18. If /i,/2,/3,/4 are polynomials of degree not greater than

4, then

fin -f&amp;gt; -fin -f f&amp;gt; f

J\ /2 /3 /4

is also a polynomial of degree not greater than 4. [Differenti

ate five times, using the result of Ex. 17 and rejecting vanishing

determinants.]

19. If /(x), &amp;lt;j&amp;gt;(x), \l/(x) have derivatives for a &amp;lt; x ^ b, there

is a value of
, lying between a and b and such that

/(a)

= o.

[Consider the function formed by replacing the constituents

of the third row



CHAPTER IV

SINGLE-VALUED ANALYTIC FUNCTIONS OF A COMPLEX
VARIABLE

30. Introduction

WE have already introduced and investigated in part in

Chapter II a series of elementary
7 functions of a complex vari

able 2. But at that time we postponed the discussion of the

concept, &quot;Function of a Complex Variable
&quot;;

this will now be

considered.

We can, to be sure, call X+iY in the most general sense

a function of x + iy if the real expressions X, Y are func

tions of the real variables x and y. The theory of functions

of a complex variable would then be nothing else than the

theory of pairs of functions of two real variables. It is,

however, customary to use the word in a narrower sense,

so that the &quot;

Theory of Functions of a Complex Variable &quot;

represents only a particularly important and interesting

chapter in the theory of pairs of functions of two real varia

bles. The following considerations form a basis for this point

of view :

The particular phrase, rational function of a complex quantity

x + ty, has already been given a definite meaning in Chapter II

on the basis of the definition of the elementary operations with

complex quantities given in Chapter I. One might now be

tempted to take as the basis for the definition of a transcen

dental function of a complex argument that definition of a

167
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transcendental real function based on limits of rational func

tions for example,

But there are serious objections to this : it may happen that

such limits exist for all real but for no complex values of x
;

it

may further happen that two such limits, which represent the

same transcendental function when x is real, are different when

x is complex. But, as a matter of fact, we shall soon see ( 38)

that such difficulties do not appear in a certain class of such

functions, that is, for sums of infinite power series. Accord

ingly, WEIERSTRASS* took the theory of power series as the

basis of his theory of functions. CAUCHY and RIEMANN, on the

contrary, began in general, not with an analytical expression, but

with a definite property which belongs to every rational function

of a complex variable but not to every expression X+ iY whose

members are rational functions of the real variables x, y. We
shall follow the latter point of view here. It is essential there

fore that we become acquainted with this distinctive property

of rational functions of a complex variable
;
the following para

graphs are a preparation to that end.

30 a. Limits of Convergent Sequences of Complex Numbers

The application of the conception of a convergent sequence

of numbers to complex numbers raises no essential difficulties.

For, if

then (cf. also I, 25)

x &amp;lt; e and y &amp;lt; e.

* An authentic publication of the lectures of WEIERSTRASS has been promised

for years. The work by J. THOMAE, Elementare Theorle der analytischen Funkti-

onen einer complexen VerUnderliehen (Halle, 1880, 2d ed. 1898), and that of Ch.

MERAY, Lemons nouvelles sur I analyse infinitesimale (Paris, 1894- 1895), are written

from the same point of view.
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If therefore a sequence of complex numbers

ZQ=XQ + O j,
Z

1
= X

l + /&amp;gt;!,
Z, = A&quot;o + M 2 ,

Zn = Xn + *&amp;gt;,

is so arranged that for every given degree of approximation

we can so determine an integer that

(0 |
;,l+p -s,,!&amp;lt;c

for ever}&quot;/ &amp;gt; o, then

(2) | *n+.p
- *n !

&amp;lt;
C

&amp;gt; !.)Wp &quot;A I
&amp;lt; C

for the same value of the integer ;/ and for every/ &amp;gt;
o. There

fore the real and the pure imaginary parts of z form convergent

sequences of numbers and the limits

(3) lim &amp;gt;*n a
&amp;lt;&amp;gt;

lim } n ^
nix i=^

exist. Conversely, if inequalities (2) exist for a definite and

all values of / &amp;gt; o, then the following inequality

(4) \Zn+p -Zn \&amp;lt;^2

exists under the same conditions. By putting a -f- ib = c we

may combine the two limits (3) into one and define :

I. The limit lim zn = c
n=x

shall be taken to signify the system of equations (j).

We extend this at once and write the definition (cf. A. A.

53):

II. An infinite series of complex quantities

SQ + % + z, -f - -h zn + ...

is called convergent and the complex quantity S is called tJie sum of

the series, when the limit

exists and is equal to *.
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The following is another formulation of the same definition :

III. The necessary and sufficient condition for the convergence of
an infinite series of complex quantities is, that the series of real

parts and the series of imaginary parts respectively converge.

We define further :

IV. A series of complex quantities is called absolutely
* conver

gent when the seriesformed by its absolute values converges.

On the basis of III, 5 of this text and 40, A. A., we then

have the following theorem :

V. If a series of complex quantities converges absolutely, then the

series formed respectively from its real parts and from its imagin

ary parts converge absolutely ;

and from this, on the basis of I, 58, A. A., we state the more

general theorem that :

VI. The sum of an absolutely convergent series of complex quan
tities is independent of the arrangement of the terms.

31. Continuity of Rational Functions of a Complex Variable

For the sake of completeness we begin with the definition :

I. A complex function of one or more real variables is a complex

variable Z=X+ i Y whose components X, Y are functions of those

variables.

If there are two independent variables, say x, y, we can com

bine them as one complex variable z = x -f iy and write

(i) Z=f(z).

As a matter of fact we shall do this provisionally ;
later this

terminology will be used only in a more restricted sense.

* Also called unconditionally convergent. The terms absolutely convergent and

unconditionally convergent are co-extensive, S, E, R,
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The conception of continuity ( 24; A. A. 61) is applicable

directly to complex functions on the basis of the definitions of

3^-
II. A complex function is called continuous at a definite point

z = a if the equation

(2) lim/(sj =f(a)

existsfor EVERY sequence of numbersfor which

(3)
lim zn = a.
n=x

Comparison with 26 shows this definition to be synonymous

with the following :

A function of a complex variable z = x + iy is said to be a con

tinuous function of z only when it is, in tJie sense defined in 26,

III, a continuous function of the two real variables x and y (not,

however, when it is a continuous function of x and a continu

ous function of y).

We proceed accordingly to apply the general conception of

limits (A. A. 62) to complex functions
;
thus :

III. The equation

(4) lim/(S
)
= J

za
means tJie same as

(5) lim/fe) = b

for E VER Y sequence of numbers converging to a.

Therefore, a complex function is said to have at a certain

point a definite value in the limit, only when this value is

reached by the use of arbitrary values of approximation for the

argument, or geometrically, if we approach the same value of

the function by allowing the argument to approach its value

along any curve whatever. To be sure, we have frequently to
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consider approaching a limiting point not along arbitrary curves

but only along particular ones, for example, approaching the

origin along only such curves which do not encircle it an infi

nite number of times, or along only such as remain entirely in

the positive half of the plane. Such limitations must then be

expressly stated each time.

IV. The theorem that the sum, difference, product, and quotient,

providing the denominator is not zero, of two continuous functions

are themselves continuous functions is true for complex variables as

well asfor real.

For, the proof of this theorem rests only upon the two

theorems (A. A. 64) that the absolute value of a sum or differ

ence is not greater than the sum of the absolute values of the

separate parts, and that the absolute value of a product or of a

quotient is equal respectively to the product or the quotient of

their absolute values. But these two theorems hold for com

plex numbers as well as for real (III, 5 ; I, 6
; II, 7).

Since it follows directly from definition II that z itself is a

continuous function of z, we obtain the theorem (cf. IV, 26) :

V. A rational function of a complex variable is everywhere con

tinuous where it is finite.

We have therefore to consider only the results of 20 by
which a rational function can always be put in such a form that

the denominator is zero only where the function is infinite.

It follows further from the results of 20 that :

VI. At the poles, at which a rational function itself is not con

tinuous, its reciprocal at least is continuous.

Theorems V and VI are understood to hold for finite values

of the independent variables
;
but they are valid also for the

value oc according to 12 and 21
;
that is,
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VII. Either a rational function or its reciprocal (or both) are

continuous for z = oo.

Equations of the form

(6) /(*&amp;gt;)=*, /(*0 = o, /(*&amp;gt;)
= oo

were regarded in a purely conventional way in 20 and 21

according to the meaning given to the symbol
&quot;

oo
&quot;

in 12.

However, such equations can be interpreted in a different way

(A. A. 63) which is applicable to complex variables as fol

lows :

VIII. /(%) = oo means that for every given number M~&amp;gt; O

another number 8 can be determined such that

| &amp;lt; 8.

IX. /(oo) = WQ means that for every given number e &amp;gt; o

another number N can be determined such that

\f(z) WQ &amp;lt; c, whenever
\

z
\

&amp;gt; N.

X. /(oo) = oo means that for every given number M &amp;gt; o

another number N can be determined such that

I/O) I

&amp;gt; M, whenever
\

z
\

&amp;gt; N.

Theorems VI and VII then assert that :

XI. These two views of the symbol oc as applied to rational

functions are not contradictory ; and every such equation (6) which

is truefrom the one point of view is also truefrom the other.

Geometrically, the theorems of this paragraph assert that :

XII. The map of the z-sphere upon the w-sphe?-e determined by a

rational function w =f(z) is everywhere continuous, even in the

vicinity of the point oo of both spJieres.
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Further, we are always to understand that also the second and

third of equations (6) are valid when the point of the sphere

representing the independent variable approaches the point oo

of the sphere along any arbitrary curve. When specially con

sidering such curves it must be so stated each time, as, for ex

ample, when it is to be merely affirmed that a definite value is

reached in the limit as the independent variable increases

through positive real values beyond all bounds.

32. Derivative of a Rational Function of a Complex Argument

To pursue further the investigation spoken of at the close of

30, we study the quotient

(i)
^+_&amp;lt;I

as a function of and for a definite value z of z for which the

rational function f(z) is finite. It is a rational function of

which takes the indeterminate form - for = o. But it has
o

already been shown in 20 that such an indeterminate form of

a rational function of can always be evaluated by a suitable

reduction. In other words, we can always find another rational

function ^() which agrees with i//() for all those values of

for which i//() is determinate, but which for = o either has a

definite value or is definitely infinite in the sense defined there.

Now it is shown in the differential calculus (cf. also 27) that,

restricting ZQ and to real values, this function ^() under the

given assumptions does have a definite value for = o and that

this value is a rational function of z which is designated by

and which is customarily called the derivative of /(z). But in

this way/(z) is supposed real at the outset; however, the same
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process is applicable here by dividing \j/() into its real and

imaginary parts :

and treating each of these parts separately. It then follows

that the quotient ^(), under the assumption that /(ZQ)
= oc for

= o, has a definite value / (%) in the limit (and dependent

upon z
) when is restricted to real values. But we have seen

in the preceding paragraphs that a rational function of a com

plex variable is everywhere continuous where it is finite
;

if

therefore

whenever approaches zero through real values, it follows for

rational functions /, that this equation must hold /// whatever

manner converges to zero. These results are stated in the

following theorem :

I. A rational function f(z] of a complex variable has at ei ery

point z at which it is finite a definite derivative,

(3) =/ (*)

independent of the manner in which dz approaches zero and which

can be found by the methods of the differential calculus for real

variables and functions.

It is now easy to see that this property does not belong to

every expression // + /? whose members are rational functions

of x and y. For, the total variation of such an expression is,

according to elementary theorems of the differential calculus

for functions of two variables,

. . A fdu ,

. dv
,

\ .
,

/ dit
,

. dv . \ A
A// + /Az = + i + l A,v + + / TT + C2 Ay

\d* dx J \dy dy J
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where ely 2 designate quantities that approach zero with

and Ay. The quotient

A# -f /

can then be written

If we now allow AJC and Ajy to approach zero in such a way that

-2-
con-verges to a definite value* -^ in the limit, that is. gea

AJC d&

metrically, if we allow the point (x -f- AJC, jj + AJK) to approach
the point (jc, jv) along a curve which has a definite tangent at

C#i y)&amp;gt;
then the above quotient converges in the limit to

In general this expression depends essentially upon -*- in the

limit
;

it will be independent of -*- when and only when the

term free from -2- in the numerator (as in the denominator)
HOC

has the ratio i : / to the coefficient of -^, in other words, when
dx

,
^

du .dv_ ./du . dv\

dy dy \dx dx)

But this equation is true (I, 2) when and only when

(5)

,

T- = -T- and
d_y o^

dv _ du

dy dx

* Which may also be oo.
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We have thus the result :

II. An expression of the form it -\- iv, in which it, v, are ra

tionalfunctions of x and y, can only be pitt in theform of a rational

function of z = .r + iy when u and v satisfy the partial differential

equations (5).

On the other hand, it is to be noticed that the formal rules

for the differentiation of rational functions are simple conse

quences of fundamental theorems of elementary algebra. Since

we have shown in the first chapter that these fundamental

theorems hold for complex expressions as well as for real, it

follows that we may also apply these rules of differentiation

to rational functions of a complex variable. Thus, for example,

in such a function, considered as a function of x and y, we

can introduce z = x -f iy in place of x as independent variable

along with y ;
let us then distinguish the partial derivatives taken

with respect to these independent variables from those taken

with respect to x and y as independent variables by inclosing

them in parenthesis. Thus, according to these rules :

dx \dz dy \d

If now we have a complex expression // -f jv, whose members

are rational functions of x and y and which satisfies equation

(4) and if we replace/in (6) by it, it follows that

When, therefore, z = x -\- iy is introduced in place of x along

with y as a new independent variable in a complex expression

of the given form satisfying equation (4), y itself drops out ;
in

other words :
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III. IfH and v are rationalfunctions of x and y, then the exist

ence of equations (5) is not only a necessary but is also a sufficient

condition that u +- iv can be put in the form of a rational function

of z alone.

33. Definition of Regular Functions of a Complex Argument

The property of rational functions of a complex variable de

duced in the last paragraph will now be taken as the starting

point for the determination of a general definition of a function

of a complex argument :

I. w =f(z] shall be called a (^regular) function of a complex

argument z in a given domain, only when the limit

(i)
(

exists in the sense defined in III, ji for every\ point z of this

domain.

The symbol f(z) will be used exclusively hereafter for such

regular functions of z, and the limit (i) will be designated by

-*--t- or/ (z) just as for real variables and functions.*
dz

If the function w=-u-\-iv

be separated into its real and imaginary parts and if the func

tions u, v have continuous partial derivatives, then the results

of 32 show that the limit (i) is independent of the manner in

which z approaches zero only when these partial derivatives

satisfy equations (5), 32. Conversely, reviewing these results

starting with the last, it follows that these equations together

* To indicate that a function w =f(z} has the property that tends, in

Az

general, to a unique finite limit, that is, that it satisfies (5), 32, CAUCHY employed
the term monogenic, while RlEMANN dispensed with the adjective altogether. Cf.

RlEMANN, Ges. Werke, pp. 5, 81. S. E. R.



33. DEFINITION OF REGULAR FUNCTIONS 179

with the assumption of continuity of the partial derivatives ap

pearing in them are sufficient to infer the existence of limit (i)

in the established sense. On this account CAUCHY and

RIEMANN made use of these differential equations as the def

inition of functions of a complex argument.

Besides, we notice that, in passing from the differential equa
tions to the limit (i) and conversely, it was necessary to assume

the continuity of the partial derivatives which appeared ;
on the

contrary we shall see that in the further application of the limit

(i), we need only assume its existence for each point of the do

main, not its continuity as a function of z. This continuity fol

lows rather as a consequence of the above assumptions.

An example of a regular, but not rational function of a com

plex argument is obtained by putting

// = e* cos y, and v = f sin y ;

for, from these equations, we find

du dv du dv= = e* cosy, = - = -ex
smy.

dx dy By dx

Thus, *(cos_&amp;gt; + / smy) is a function of z = x + /) , regular over

the whole plane.

Definition I does not in general require the existence or con

tinuity of higher derivatives (but we shall see later that they can

be inferred from this definition). But if this result is assumed

repeated differentiation of the differential equations (5), 32,

leads to the following results :

xv Cfrt d^ =
*

a/ dxdy dydx

, v v v __ _
d*u B*u _~ ~~~

dydx~
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hence the following theorem :

II. Neither the real nor the pure imaginary part of an ana

lyticfunction of a complex argument can be assumed to be arbitrary

functions of x and y ; on the contrary, each must satisfy the corre

sponding
&quot; LAPLACE &quot;

differential eqiiation :

dht d 2
ft _ _

dzv . dzv _~ ~

EXAMPLES

1. An example exhibiting a function whose derivative at a

point is not independent of the manner of approaching this

point is the following :

Let w = ft -f iv = 2 x -f- 3 iy be the function, and let us ex

amine it at a point (x, y). At a neighboring point we obtain

w -\- &.w = ft + Aft + i(v + A

. . Aft = 2 Ax, Az/ = 3 Ay.

The derivative at a point (x, y) therefore becomes

lim|^^l lim
r - A - - - A &quot;~

The value of this derivative can be made to assume any arbi

trary value by suitably choosing -* This process does not
dx

therefore define a derivative independent of the manner of

approaching the given point.

Show directly that w = 2 x -f 3 iy is not a regular function.

2. If ft = (x i)
3

3 xy
z
-f 3 jy

2
,
determine 27 so that u + & is

a regular function of ^ + (y.

Ans. v = 3 /(jf i)
2

y, that is, a/ = (z i)
3

.
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3. If u = x3
,
is it possible to determine v so that the function

is regular ?

4. Given v= 2 y(x + i) ;
determine the corresponding u so

that u + iv shall be a regular function.

5. Given // = jc
3

3 x)
&

;
find the corresponding v as in Ex. 3.

6. Given // = e*~-y
~

cos 2 xy ;
find v and the resulting func

tion of z as in Ex. 3.

7. Prove by passing directly to the limit that in polar coor

dinates the CAUCHY-RIEMAXN differential equations take the

form :
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34. Conformal Representation

We have already investigated in 27 the mapping of a do

main of the jcy-plane continuously on a region of the zw-plane.

A particular class of such transformations are those for which

u -+- iv is a regular function of x -f- iy in the sense defined in the

previous paragraph ;
we wish to characterize this class of trans

formations geometrically.

For this purpose we rearrange the preceding results some

what. Let zlt z2 ,
z3 be three values of z = x -\-iy, w, w2j ws the

corresponding values of w = u -}- w, and form the quotients

and
Z2 Z{ 3 Zi

As zz and % approach zit these two quotients differ by an in

finitesimal *
; for, each of them differs by an infinitesimal from

the definite, unique value of the derivative :

dw
dz

at the point z = zv Accordingly,

where c becomes infinitesimal with z^ Zi and z3 %. Con

versely, when such an equation exists, in whatever way z2 and

z3 may approach the point zlt it follows that the derivative -

(t%

is independent of the direction of the differential dz.

Apart from an exception to be spoken of presently (VI), we

can draw the general conclusion from equation (i), that also in

* We shall understand that no constant, however small, if not zero, is an infini

tesimal
;
the essence of the infinitesimal is that it varies so as to approach zero as

a limit. Cf. GOURSAT-HEDRICK, Mathematical Analysis, Vol. i, p. 19. S. E. R.
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the equation

becomes infinitesimal with s z\ and z3 z. If e is

omitted in this equation, we obtain (except for the symbols)

equation (17) of 10, whose geometrical significance was dis

cussed there. We thus have an answer to the proposed ques

tion
;

it can be formulated as follows :

I. If w is a regular function of z, then every triangle of the

z-p!ane whose sides are infinitesimals of the same order, is similar to

the corresponding triangle of the w-plane up to infinitesimals of

higher order, that is, ratio of sides and angles of the one differ

only by infinitesimals from the corresponding parts of the other.

In particular, if we apply the results of 10 for the finite

triangles discussed there to the infinitesimal triangles just men

tioned, it follows that :

II. The absolute value of the derivative - - at a point of the
dz

z-plane gives the scale of similarity* at that poitit, that is, gives the

factor by which the length of an infinitesimal arc of the z-plane

must be multiplied in order to obtain the length of the corresponding

arc of the w-planc.

III. The amplitude at. of gives the angle through which each
dz

element of arc at the point z must be turned in order to be made

parallel to the corresponding element of arc of the w-plane.

Since this angle depends only upon the point s, and not upon
the direction of the element of arc, it follows that

IV. Any two curves of the z-plane form with each other at each

of their points of intersection^ the same angle as the corresponding

curves of the w-plane at the corresponding points of intersection ,

* Sometimes called the cartographic modulus, S. E. R.
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or (by using the terminology introduced in VII, n) :

V. A domain of the z-plane in which a regular function w with

a complex argument z is defined, is mapped conformally by means

of this function on a region of the w-plane.

We have already become acquainted with a large number of

such representations in Chapter II
;
in what follows we shall find

many others.

The inference from (i) to (2) is only permissible when the

limit of (
z&amp;lt;i

~
Zl \ is finite, and hence that of (

w*
~ W{\ is dif-

ferent from zero. Since we have to do here only with triangles

all of whose sides are infinitesimals of the same order, this

inference is true when and only when

is different from zero. Consequently, the following corollary

must be added to Theorem II :

VI. The conformality of the representation is not established at

those places at which ,

The relation which the angle at such a point in the one plane

bears to the corresponding angle in the other plane will be dis

cussed in 69.

In many cases it is of interest to notice what curves of the

w-plane correspond to the parallels to the coordinate axes of the

z-plane. The equations of these curves are obtained if we put

w=f(z)= &amp;lt;f&amp;gt;(x, y) + i(j/(x, y) and then eliminate x and y respec

tively from the equations :

(3) 4&amp;gt;(x,y)
= u, $(x,y) = v,
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Conversely, the equations

(4) &amp;lt;f&amp;gt;(x, })
= const.

and

(5 ) $(x, y) = const.

represent those systems of curves of the s-plane, to which the

parallels to the coordinate axes of the zt -plane correspond.

Since the representation is conformal, every curve of the system

(4) intersects every curve of system (5) at right angles. The two

systems of curves are orthogonal to each other.

Further, if we choose from the systems of parallels to the

coordinate axes in the w-plane such a distinct set, the lines of

which are at the same constant distance from each other in both

systems, they will divide the w-plane into squares ;
these cor

respond to divisions of the s-plane, which differ less and less

from squares, the smaller that constant distance is chosen. This

property of the systems (4) and (5) is usually expressed more

briefly by saying : They divide the z-plane into indefinitely small

squares. A system of curves, for which a second system can

be found such that the two together divide the plane (or in gen

eral any surface) into indefinitely small squares, is called an

isometric or an isothermal system.

This latter terminology is well suited to the physical interpre

tation of such a system of curves which we must at least mention.

Let us suppose a (ponderable or imponderable) fluid flowing in

the jrr-plane, and let ,
rj
be the x- and ^components of its

velocity at some point (x, y). Let us fix in mind a rectangle

whose sides are parallel to the coordinate axes and having the

distances x, x + dx, y, y + dy respectively from them. In the

time dt, the mass %dtdy will flow in over the side (x), and during

the same time there flows out over the opposite side the mass of

liquid (& + dx\dtdy. Likewise over the side (j-), the mass
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t]dtdx comes in
;
over the opposite side

( rj -f-
-^ dydtdx goes

V dy J
out. Therefore, in the time dt the mass of liquid contained in

the rectangle dxdy is increased by

If the liquid be regarded as incompressible, an increase or a

decrease in the mass of the liquid contained in the rectangle

cannot take place and hence it must follow that

(6) F+F&quot;
=

-

ox ay

And if
, -rj

are the derivatives of one and the same function

v(x, y) (the &quot;velocity potential&quot;)* with respect to the co

ordinates, that is, ^ _ dy

^~dx V-Ty*
it follows that

(7)
^_^ = o.

dy dx

The two equations (6) and (7) together tell us that =
rj + / is

a function of the complex argument z = (x + iy) ;
and that iv is

the imaginary part of the function I dz (defined in the next

section). If u be taken as the real part of this function, it

follows that

/ON t du du
(8) =

^- , rj
= :

dy dx

in other words, the direction of the velocity at any point coin

cides with the tangent to the curve u = const, going through
this point. These curves are then the lines of flow. We thus

find that :

* Cf. HARKNESS AND MORLEY, Introduction, etc. p. 315; OSGOOD, Lehrbuch
der Funktionentheotie, Vol. I, chap. 13. S. E. R.
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The &quot;

lines of level
1 1

(lines of equipotential} v = const, and the

&quot;

lines offlow
&quot; u = const, for a constant current of an incompressi

blefluid in the plane, which has a velocity potential, together divide

the plant into indefinitely small squares.

Conversely, if we have given a regularfunction w =u+ iv of the

complex variable z = x + n 1

, we can always look upon the curves

u = const.
,
v = const, as lines offlow&amp;gt;

and lines of Iwel for a con

stant non-rotating current of an incompressible fluid in this part of

the plane.

For transmission of heat, temperature takes the place of

velocity potential ;
for the transmission of electricity, the term

electrical potential is used.

EXAMPLES

1. The lines of flow and lines of level are sometimes called

path-curves and niveau lines respectively. We may define a

path-curve of a linear transformation to be any curve in the

plane which is transformed into itself by the transformation.

This does not imply that the points on the curve remain fixed.

A system of niveau lines is a set of lines each of which is

transformed into the next of the set. The niveau lines are usu

ally but not necessarily chosen so as to meet the path-curves at

right angles.

For the transformation z = z + a, the path-curves are the

lines parallel to ~oa (o is the origin), and a set of niveau lines is

the line through o perpendicular to 0a and the lines parallel to

it, at distances
|

oa
\

from each other.

For z = az, first let a be real. The path-curves are then the

lines through o and a system of niveau lines is the set of circles

with o as center and radii k, ka, ka^, ka*,-~ kan
,
where k has any

real value. Second, let ! a = i. The figure in the preceding case

is reversed, path-curves becoming niveau lines and vice versa.
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Third, let a = i and am a 3= o. In this case the path-curves

are logarithmic spirals with centers at o whose equations are

/, am a ,

&quot;
=
ioTM-

logr+ &quot;

where n has any real value. The corresponding niveau lines

are the log spirals

/! log: I
a

\ i= log r + n.
am a

Cf. HARKNESS AND MORLEY, Introduction, pp. 55, 56.

2. What curves of the w-plane correspond by the transforma-

r, I

j
tion z0/ = to the lines # = o, i, jy

= o, i, and to the

unit circle of the z-plane ?

35. The Integral of a Regular Function of a Complex

Argument

I. The integral of a complex functio?i u -\- iv with respect to a

real variable t between the real limits a, b

(i)

we understand to be (cf. 28) ;

f udt+i\ vdt.

But what is to be understood by an integral between complex

limits requires some explanation. A real variable of integra

tion can pass from its lower to its upper limit (through one se

quence of intermediate values) along only one path (providing

the path does not pass through infinity and that it is not re

traced anywhere along it). On the contrary, we can pass from
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one value of a complex variable to another through many differ

ent sequences of intermediate values
;
we can connect two

points of the plane, upon which they are represented geometri

cally, by many different curves. Therefore, in speaking of an

integral between complex limits, we must necessarily fix upon
a path of integration and regard the integral as a curvilinear

integral of the kind defined in 29. Accordingly,

II. If there is given a path T connecting the points ZQ = x -f /Y

and zl
= Xi + y i and if upon this path iv = u + iv is a continuous

complex function ofx and v, then we understand

(2)

to be the integral

f -f iv)(dx + idy)
= f(*& - vdy) + / C(vdx + udy).Jr JT /r

The question frequently arises whether there is an upper

limit to the absolute value of a complex integral. In this con

nection Theorem IV of 5 will aid us
;

it follows from it that

in which
j

dz
\

is the element of arc of the path of integration;

the right-hand side is therefore ^ ^
where M is the maximum of w on the path of integration and

L the length of this path.

For example, between the limits ZQ and z (cf. VI, 29),

J
dz = \ dx + i( dy = X X

Q + i(y _r ),

Czifz = C(xdx - ydy) -f / f(xdy + ydx)
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for any arbitrary path of integration. These two integrals are

thus independent of the path. As a direct consequence of VI,

29, the following general theorem holds:

III. If f(z) is the derivative of a function F(z] of z regular in

a simply connected domain B, then

however the pathfrom ZQ to zl inside this domain may be chosen.

Further, the following theorem holds :

IV. If a function f(z) of a complex argument is regular in a

simply connected domain B, then

(4)

for every closed curve which lies entirely inside ofB

For, according to hypothesis,

for every point z of the domain
;
a neighborhood about every

such point can then be so chosen that

&amp;lt;

for all points ZQ + of this neighborhood ;
hence if we put

t]
is a function of z and respectively, whose absolute value is

smaller than e for all points of the neighborhood of z. Inte-

* Many proofs have been given of this fundamental theorem in the theory of

functions. The reader will be interested in comparing the proof given here with

the one due to GOURSAT, Acta Math., Vol. IV, p. 197. S. E. R.



35- THE INTEGRAL OF A REGULAR FUNCTION IQI

grating now about a square whose length of side is 8 and which

belongs entirely to this neighborhood, introducing as variable

of integration, we obtain :

The first two integrals on the right-hand side are equal to zero

and the last is in absolute value less than 8 A/2 e 4 8, that is,

&amp;lt; 4 V2 82e.

But from this according to IX, 29, it follows that the integral

taken over any closed curve lying entirely inside of B is zero.

Q.E.D.

If, therefore, we have two paths ABC and ADC inside of this

domain B and between the same two points A and C(cf. Fig. 15),

it follows that

f /(z\/z + f f(zyz = a
JABC JCDA

or (by II, 29) : f f(z]dz = f f(z)dz,
. ABC JADC

that is, the following form of Theorem III is also true :

V. If we consider only suth paths of integration which lie entirely

within a simply connected domain B in which the function f(z) is

regular, then the value of the integral

(5)

is independent of the path, dependent only upon the initial- and end-

points Z
Q and ZK

If we keep the end-point fixed, we can regard the value of the

integral in the sense of definition I, 31, as a complex function

of the upper limit and as such designate it by F(sl).
To obtain

then the value of this function for a neighboring argument %+
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(which also belongs to this domain), we can take as the path of

integration from z to z1 + any suitable path from z through %
since the value of the integral is independent of the path ;

we

thus obtain :

4- f%V* =

Since f(z) is by hypothesis continuous, can be taken so small

that

!/(*)- /(%)!&amp;lt;

for all points of the path from z to zl + ; then, according to (3) :

(6) |^l + 0-^,)-f/(2i)[&amp;lt;

and, therefore, in whatever manner converges to zero,

(7)

that is, according to I, 33 :

VI. Under the hypotheses of Theorem V, the value of an integral

is a regular function of its upper limit : and its derivative is the

function to be integrated.

We add further the corollary :

VII. If two curves F, y inclose an annular domain B in which

thefunctionf(z) satisfies the conditions of Theorem III, then

(8)

provided we pass along the curves so that the area inclosed by each

of them always lies to the left.
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To prove this theo

rem let us think of the

domain B cut along a

line C which connects

a point a of y with a

point A of T. By this

means we obtain a

simply connected do

main B. To pass now

around these bounda

ries keeping the do

main B always to our

left, we proceed as follows along

1. The curve T in the direction of the arrow
;

2. The curve Cfrom A to a\

3. The curve y opposite to the direction of the arrow;

4. The curve C from a to A.

The sum of the integrals taken along these four curves is,

according to Theorem V, equal to zero. But since the second

of these four integrals is equal but opposite in sign to the fourth,

it follows that :

FIG. 16

when the integral is taken along the two curves as above indi

cated. But in Theorem VII the direction on y was opposite to

this, on account of which we must there use the opposite sign.

As an example of the methods of this paragraph, let us treat

the problem to determine the value of the integral :

taken along any curve T inclosing the point = + /iy,
when n is

a positive or negative integer. Let us draw about a circle C
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which it is regular; hence expand for a circle with center at o, that is, in

powers of z. Substitute these in f(z) and the expansion for the domain B
is obtained.

11. Suppose f(z] and
(j&amp;gt;(z)

have at the point z = a poles of

order m and n respectively. What can be said of the behavior

of the functions fi 7\

/(*) *(*), /(*) + *(*),
&quot;^

(*)

at this point ? Discuss all cases.

12. Suppose /(z) has an w-fold zero at z a. Show that the

integral

has an (w + i)-fold zero there.

State the analogous proposition for the integral

in the neighborhood of a pole a.

48. Behavior of a Regular Function in the Neighborhood of

a Critical Point

We may frequently prove that a function is in general regular in

a domain, but the proof may fail for particular points of this

domain, so that the question as to the behavior of the function

at these critical points remains undetermined. A certain

amount of information is furnished in such cases by the

LAURENT S series.

Let the origin be such a point, that is, let the function f(z) to

be investigated be regular at every point of a certain neighbor

hood of the origin with the exception of the origin itself, con

cerning which nothing is known. The circle y used in connec

tion with LAURENT S theorem can then be taken arbitrarily

small.
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And when
| f(z] \ always remains less than an assignable limit

however near z may approach the origin, it follows that the coeffi

cients a_ n (5, 47) must all be equal to zero. But then the

LAURENT S expansion of f(z) represents a function regular at

the origin ;
and if removable discontinuities be excluded as

agreed upon in 43, it follows that this function must coincide

with/(s) even at the origin. Hence the following theorem :

I. When a function of a complex argument is regular in the

neighborJwod of the origin, this point itself excepted, and when,

in arbitrarily approaching the origin, it remains in absolute

value always less tJian any assignable limit, then the function is

regular at the origin itself provided that removable discontinuities

are excluded.

This may be expressed more briefly but less exactly as follows :

&quot; A function of a complex argument is everywhere continuous

where it is finite.&quot;

But if in the LAURENT S expansion of the function in the

neighborhood of the point z = o terms with negative exponents

appear, we must determine whether there are an infinite or only

a finite number of such terms. In the first case the function

behaves at the point z = o just as a transcendental integral

function at infinity (X, 44) ;
that is, it approaches arbitrarily

near to every value in every neighborhood of this point. For,

the sum of the terms with positive exponents becomes arbitrarily

small in a sufficiently small neighborhood of the point z=o and

it is only a question of the terms with negative exponents. In

the second case the function is definitely infinite at z = o in the

following sense :

When a positive numberM however large is given, we can always

draw a circle about the point 2 = with a radius sufficiently small

(but &amp;gt; o) so that\f(z) \

&amp;gt;Mfor all points inside of it. But, if in
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and if in the second integral we put likewise :

(2) z == r(cos /+ / sin /),

dz = /r(cos t-\-i sin
t)dt&amp;gt;

dz ,,= utt,

we find ((3), 35) that its absolute value is

r 2jr

&amp;lt; e I dt, that is,
&amp;lt; 2 TTC,~

/o

that is, it can be made smaller than any arbitrary, previously

assigned quantity by taking r sufficiently small. But the value

of the left side of equation (i), as also 2 TT//(), is independent

of r\ if the difference of these two quantities were different

from zero, it could not be made smaller than any limit by

making r smaller. It follows accordingly that

(3)

I. By means of this formula stated by CAUCHY, the value

which a regularfunction of a complex argument z has at any point

of a domain B, is expressed by the value of the same function on

the bounding curve F of the domain.

The conclusion from this theorem is not that we can assign

arbitrarily the values of such a function f(z) on the boundary:
of course formula (3) would then always furnish a function/()

regular in the interior of the domain, but this function would

not in general converge to the value preassigned at a point on

the boundary as approaches this point.

If the curve F is a circle whose center is
,
and if we put

f(z)
= u + iv and /() = UQ+ iv^ introduce substitution (2) in
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equation (3) and eqliate real and imaginary parts, it follows

that: r, r ,

// =
j

udt and r = I vdt.
2 7T*/ 2 7T^

The first one of these equations expresses the fact that :

II. The value of the realpart of a regularfunction of a complex

argument at the center of a circle, is equal to the mean of its values

taken along the circumference.

Thus it can neither be greater than all these values nor less

than all of them. It therefore follows, provided the radius of

the circle is taken sufficiently small, that :

III. The realpart of a function of a complex argument regular

in a domain B, can never have a maximum nor a minimum at an

innerpoint of this domain.

The same theorems hold of course for v.

EXAMPLES

1. Evaluate the integral

f,r
extended around any closed curve in the z-plane which does

not pass through the point s = o.

2. Compute I zdz where P is a straight line from z = o to
Jp

z = a + &amp;gt;.

HINT. ( zdz = \ O + (j) (dx + idy) ; express jp and dy in terms of x and

dx and take the limits on the integration from o to a.

3. Find the value of I zdz where C is a circle whose center
Jc

is at the origin and whose radius = i.
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Conversely, let us suppose that for a function /() a develop
ment of the form (3) is found which converges inside of the

annular domain between two circles T, y; and in fact, to fix

this hypothesis more precisely, let each of the two series

be convergent inside of the annular domain. Then the first

series, according to III, 38, converges uniformly in every
domain which lies entirely inside of T, the second converges

uniformly in every domain which lies entirely outside of y.

Hence both series converge uniformly on a curve such as C in

Fig. 23, and hence they may be integrated term by term along
this curve. Let us do this after first multiplying by

-m~l
; then,

in connection with equations (10) and (n) of 35, we find:

(9)

and this coincides with (7) ;
that is, therefore,

II. When a function can be developed in a series of the form (j)

which converges in the given sense inside of the circular ring be

tween T and y, then the coefficients have the values given by (/) ;

this development is therefore unique.

The last statement requires some explanation in order that it

may have only the intended meaning. A function may be

regular inside of different circular rings, e.g., between yl and y2

between y2 and y3 ,
while upon y2 there are, for example, poles of

the function. Theorem I is then applicable to each of these two

rings and two LAURENT S expansions are thus obtained, one of

which converges between yl and y2 and the other between y2

and y3 ;
and we are, therefore, not to understand Theorem II to
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mean that these two expansions must have the same coefficients.

On the contrary. Theorem II is applicable only to the expansion

inside of one and the same ring.

Thus, for example, we obtain for the expansion of

Z* 32+2 Z 2 21

inside of the circle of unit radius about the point z = o :

between this circle and the circle of radius 2 :

outside of the latter : + -L + 1 + 1
-|-

. . .
.

z* 2s 2
4

The generalization of the theorems of this paragraph to the

case where the two concentric circles have not the point z = o

but any other arbitrary point as center is treated as in VI, 39,

and requires no further explanation.

EXAMPLES

1. Develop - - in a series of integral powers of z

2-3 *- J

valid for the domain in which this function is regular.

2. Expand - - inside a circle whose center is O
;
that is,

i z

expand in powers of z. How large may the circle of conver

gence be ?

3. Expand - inside a circle whose center is the point /
;
that

z

is, in powers of z i.
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will be satisfied by the same value of n (and all larger values)

for the same e and for every value of z whose absolute value is

&amp;lt;^

r
; for,

|

z
n ^ rn and

|

i z
\

&amp;gt; i r for all such values.

We can then state the following theorem on the basis of the

definition of uniform convergence (A. A. 66) :

II. The series (i) converges uniformly in every circle about the

origin with radius
&amp;lt;

i.

After proving this introductory the

orem, we return now to equation (3),

36. Let us suppose for the sake of

simplicity that the origin lies on the

inside of the domain defining the

function f(z] ;
we can then choose for

the curve F a circle about the origin

with a sufficiently small radius. Then

\t &amp;lt;\*

for all points within this circle and for all points z upon it
;

accordingly, by I and II, the series

i + i + e + ... + ii+...
yl iy& r^+ 1

xy .6 & /y

FIG. 18.

converges uniformly to

for all these values of and z. Moreover, the uniformity of the

convergence holds if we multiply all the terms by f(z)- There

fore, by VIII, 28, we may integrate the series thus formed,

term by term, along the circumference of the circle. We obtain

accordingly :

(4) 2
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and along with this the theorem :

III. If a function of a complex argument is regular in a circle

about the origin, it can then be developed, for all points WITHIN

this circle, in a convergent series of powers of with positive, inte

gral, increasing exponents.

The theorem, however, says nothing about the behavior of

the series upon the circumference of the circle.

In evaluating the integrals in (4), the circle T can be replaced,

according to VII, 35, by any other curve about the origin

provided that inside of this curve the function f(z) is regular.

38. Properties of Complex Power Series

In connection with the results of the previous paragraph the

converse question arises, whether a &quot; Power Series
&quot;

of the kind

considered there always represents a regular function of the

argument. Let such a series be represented by

cc

(i) 2Xs&quot;
= a

Q + a& + a.z
1 + - - + anz

n + ;

n=0

we inquire first about its convergence. It converges of course

for z = o
;

if it converges for no other value, it could not be

used as the definition of a function.

It is quite possible for a power series to converge &quot;perma

nently &quot;/
that is, to converge for all finite values of z (examples of

which will be found in 40). It then represents a function

regular over the whole plane ; conversely, every function regular

over the whole plane may be represented by such a permanently

converging power series.

According to WEIERSTRASS, such a function is called a

transcendental integralfunction.

If the series converges for any value z = c different from zero,



246 IV. SINGLE-VALUED ANALYTIC FUNCTIONS

taken along the boundary of a domain in the z/^-plane, represents,

as will be taken for granted here, the area of this domain
;
and

it has the positive or the negative sign according as the bound

ary is described in the positive or in the negative sense in the

process of integration. If we introduce x and y as variables of

integration in this integral, regarding u and v as functions of x

and y t
we obtain the integral :

taken along the corresponding curve of the jry-plane. If this

curve incloses a domain whose map upon the corresponding

domain of the w^-plane is reversibly unique, then the value of

the integral is positive when taken around the domain of the

^j-plane in the positive sense, and negative in the opposite case

if the sense of the angle remains unchanged throughout the

mapping. The first is always the case according to the last

theorems if u -f- iv is an analytic function of x + iy and the

domain is sufficiently small. But since an integral taken over

an arbitrary curve can always be replaced as in 29 by a sum

of integrals over sufficiently small curves, it follows that :

XIII. If u -+- iv is a regular function of x -f- iy over the whole

domain inclosed by a curve F, then the integral

taken in the positive sense along F, is always positive.

The only exception to this theorem occurs when the function

u + iv maps the domain under consideration in the #+*y-plane

not in general upon a domain, but upon a single point, that is,

when it is constant. (The conceivable case of mapping the

domain of the x -f /yplane upon a curve of the u + zV-plane is
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not possible on account of the Theorems V, 26
; VIII, 38 ;

X, 46.) To include this exception in the formulation of

Theorem XIII, we must say
&quot; never negative and only zero

when // + iv is constant &quot;

instead of &quot;

positive.&quot;

By means of this theorem we may obtain a second proof of

the fundamental Theorem IV, 44. Theorem XIII is also

valid for a part of the sphere which includes the point oo as an

inner point, provided that the function u + iv is regular in this

domain in the sense of definition I of 44. However, we must

in this case take for positive direction of integration that one

for which the domain under consideration, as also the point at

infinity, lies to the left.

If now we have a function which is regular over the whole

sphere, we can divide the sphere into two parts by any curve

which does not go through the point infinity, and we can then

apply Theorem XIII to each of these two parts. It then fol

lows first, that the integral cannot be negative when we take

the part lying on the finite part of the sphere always to the left
;

and second, that it cannot be negative when the part containing

infinity lies to the left. These two conditions are together pos

sible only when the integral is zero. But then the function

u + iv is constant, Q. E. D.

47. The LAURENT S Series

In 36 we studied CAUCHY S theorem for a domain 6&quot; which

had one bounding curve. We return now to this theorem, study

ing it for a domain S in which the function f(z) is known to be

regular and which has two bounding curves F, y (cf. Fig. 16).

Equation (3) of 36 also holds in this case
;
but the integration

is performed along each of the curves F, y in such direction

that the domain S lies to the left. To evaluate this integral in

the positive sense along each of the two curves, we must change
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This theorem is the converse of CAUCHY S Theorem III, 37.

Since we represented the derivative of the above function by
a power series, we can apply the same methods to it and in this

way prove the existence of a second derivative, etc. We there

fore state the following general theorem :

VI. Every power series has a?i unlimited number of successive

derivatives continuous inside of its circle of convergence.

This result, in connection with CAUCHY S theorem, enables

us to state the following fundamental theorem :

VII. Every function of a complex argument, which is regular in

a given domain, has an unlimited number of successive derivatives

continuous within this domain; and these derivatives are regular

functions.

If instead of the expression
&quot;

regular function of a complex

argument,&quot; we use only its meaning in terms of real functions,

this theorem is stated as follows :

Vila. If u and v are two real functions of x, y which are con

tinuous in a given domain and which have continuous first deriva

tives satisfying the differential equations

du _ dv dv _ du

dx dy dx By

itfollows at once from this that they have an unlimited number of

successive derivatives continuous within this domain.

With the aid of these results the theorems deduced in 34

may be supplemented at important places. If w = u -f iv is a

regular function of z = x -f- iy, then the functional determinant

du dv dv du _ fdit\? . (dv ,

!Tx dy

~
Ihc

&quot;dy

~
\dx) \dx

dw
~dz



38. PROPERTIES OF COMPLEX POWER SERIES 2O5

and hence is not negative. Since we have proved (VII) the

continuity of the derivatives which appear, we can apply

Theorem IV of 27 and conclude that:

VIII. If w =f(z) is a function which is regular and single-

valued in a domain B and which has a derivative different

from zero everywliere in this domain, then the values which

w takes on in B cover once without gaps a definite region C of the

w-plane.

Since the value of the limit is the reciprocal of the value
dw

of the limit ,
it follows further that:

dz

IX. z is also a function ofw regular within the region C.

Besides :

X. If the function w =/(z) satisfies the provisions of TJuorem

VIII and if IV=
&amp;lt;t&amp;gt;(w)

is a function of w regular in C, then

is also a function of z regular within B.

For, from the existence of the limits and - we infer
dz dw

T -ijr

the existence of the limit - as with functions of real variables.
dz

Finally, the following theorems are proved just as if the

variables were restricted to real values (A. A. I, II, 77) :

XI. If a given power series converges for other values in addi

tion to z = O, tJien a limit p can be so chosen for the absolute value

of z thatfor all \z\ &amp;lt; /&amp;gt;,

the first term of the series whose coefficient

is not zero is greater in absolute value than the sum of all tJie re

maining terms.

XII. For every function f(z] regular in the neighborhood of the

point z = o, a circle can be drawn about z = o with a radius so

small that no zero off(z) lies in it, exceptpossibly z = o itself.
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By applying Theorem III, 45, to we obtain the follow

ing theorem :

IV. The integral [-*
2 rriJ fu/(*)

taken in the positive sense along the boundary of a domain in which

the function f(z] is everywhere regular except at poles, is equal to

the number of zeros off (z] in this domain diminished by the num

ber of poles ; every zero and every pole is to be counted here as often

as its order of multiplicity indicates.

Further, we find from Theorem VI of 45 that :

V. Every rationalfunction becomes zero as often as infinite upon

the sphere (which is only another formulation of Theorem III,

21);

and if we apply it tof(z)c instead off(z), we find that :

VI. A rational function takes on any arbitrary value c just as

often as it becomes infinite.

In these theorems too, multiple zeros or poles are to be

counted according to their order of multiplicity ;
the expression

&quot;f(z)
takes on the valuef(z) = c n times at thepoint z = a&quot; means

that c is the first term in the development of f(z) in powers of

za, for which terms with i, 2, ., (n i)
st

powers of (z a)

do not appear, but the term (z d]
n

is present.

In particular, a rational integral function of the nth degree is

everywhere regular except at infinity and has an //-fold pole at

infinity ;
it therefore follows from Theorem V that :

VII. Every rational integral function of the nth degree has n

zeros ; or, expressed otherwise :

VIII. Every algebraic equation of the nth degree has n roots.

We thus have a second proof of the fundamental theorem of

algebra (cf. VII, 44).
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It follows further from this that a rational fractional function

has as many poles as its degree indicates (II, 20). For, if the

degree m of the numerator is not greater than the degree ;/ of

the denominator, its degree is n
;

it is then regular at infinity

and has ;/ poles in the finite part of the plane. But if m
&amp;gt; n,

its degree is equal to m and it has an (m )-fold pole at infin

ity in addition to the ;/ poles in the finite part of the plane.

From Theorem VI it thus follows that :

IX. Every rational function takes on any arbitrary complex

value as offen as its degree indicates.

We make further use of Theorem IV in order to deduce an

important extension of Theorem VIII of 38. Let w =/(z) be

a function regular in a circle about the origin and f(o) =j= o
;

without loss of generality, we may assume that w = o for z = o,

since this can always be obtained by a parallel translation of

the 7oplane. We can then take /- so small, according to VIII,

39, that no other zeros of /(z) lie inside or upon the circum

ference of a circle T of radius r, and thus, according to IV :

If therefore m be the smallest value which
|
f (z) \

assumes on T,

and Wi any value of w whose absolute value is smaller than m
1

then the number of roots which the equation

f(z) = u&amp;gt;,

has inside of F is :

(4) *= dz
2 TTlJr f(z) 1L\

If we put

(5) --*W-*
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Moreover, we obtain from 4, 37, on the basis of Theorem II,

the following

IV. Expressionsfor the value of the function and its derivatives

at the origin in the form of definite integrals :

(3)

f
2 7T

]dz
- + l

All these integrals are to be taken along a circle which belongs

entirely to the interior of the domain in which the function is

regular, and which surrounds the origin once
; according to VII,

35, they can be taken along any other curve of the domain

inclosing the origin instead of this circle.

From Theorem I and the representation by integrals in (3)

we may obtain inequalities for the coefficients of a power series

which we shall need later, and on this account we deduce them

at this point. If M is the upper limit of the absolute values

which a function takes on, on a circle of radius r and on which

the series is convergent, it then follows that :

dz Mr-
2 7T

But
dz

d$, if we put z r(cos &amp;lt;f&amp;gt;

+ i sin
&amp;lt;) (cf. 8, 9, 35);

and therefore:

(4)
an |

&amp;lt;
Mr~n

.
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We thus obtain the following theorem :

V. If r and M have the meaning given them above for a
pou&amp;gt;er

series, then the coefficients of this power series satisfy inequality (4) ;

in other words, their absolute values are smaller than the corre

sponding coefficients of the development of*

M
z

i

r
tn a series.

This may also be written

(5) // (arguments).

The results of the last paragraphs permit a simple generaliza

tion to the case for which another point of the plane is used in place

of the origin. If, therefore, f(z) is a function which is regular

in the neighborhood of s=a, it is transformed by the substitution

(6) z-a =
t&amp;gt;

into a function
&amp;lt;()

of
,
which is regular in the neighborhood

of the origin, and hence by IV can be developed in the MAC

LAURIN S series :

If we again introduce z and/ in place of and &amp;lt;, we obtain

VI. The TAYLOR series :

(7) /(*)=/(*)

* The number M is definitely defined by this equation just as it is when re

stricted to real numbers (A. A. I, 79) ;
we notice also that the M thus defined

need not be the smallest of the numbers M for which a system of inequalities of

the form (4) exists.
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It converges inside of a circle drawn about the point z = a as a

center, in which the function /(z) is regular.

In place of the formulas (3) we have in this case :

(8)

These integrals are to be taken along a curve which makes a

simple circuit about the point z = a and which belongs entirely

to the domain in which the function is regular. The first of

these formulas is identical with (3), 36 ;
the remaining ones

can be obtained by replacing the function f(z) in that formula

by its derivatives and then repeating partial integration.

By means of these results Theorem I may be generalized fur

ther as follows :

VII. When two functions, of z regular inside of a domain B
coincide along an arc of a curve however small belonging to this

domain, they coincide everywhere in the domain.

For, if a be a point on an arc of this curve, we can, for the

circle of convergence K, prove the coincidence of the develop

ments of both functions arranged according to powers of z a.

If there are points of B outside of K, we can then find a

point b in K which is farther distant from all points of the bound-
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ary of B than from the nearest point of K. Therefore, the

development of the two functions in powers of z b converges

also in points outside of K\ and we obtain accordingly their

coincidence for these points. In this way the coincidence of

the two developments can be proven for all inner points ; for

the boundary points, it follows from the continuity. Moreover,

corresponding conclusions can also be drawn when the coinci

dence of the two functions is known only for the points of a set

which has a limit point on t/ie inside of the domain in which the

functions are regular.

We return at this point to Theorem XII of the previous para

graph, which is at once applicable to series in powers of z a.

But in consideration of VI it can be expressed as follows :

VIII. If a point ZQ be given inside the domain in which a regular

function of z, f(z), is defined, then every zero of this function differ

entfrom z is distantfrom ZQ by more than an assignable quantity.

Therefore, the zeros of a regular function can have a limit

point nowhere within the domain in which it is defined (but at

most on its boundary). Accordingly, on account of XVI, 25,

it follows :

IX. In every domain which lies entirely within the domain in

which a regular function is defined, there are only a finite number

of zeros of this function.

EXAMPLES

1. The series i + az + (rz* + -
, (a &amp;gt; o), has a circle of

convergence whose radius is equal to - How does the series

behave inside of, upon, and outside of this circle of convergence ?

NOTE. Let z = r\ be any point on the positive real axis. If the power

series converges when z = r\, it converges absolutely for all points inside the

circle
|

z
\

= r\ and, in particular, for all real values of z less than r\.
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2. What is the radius of convergence for the series

+ ?! + *! + ...
i
2 2 2

3
2

and how does it behave at all points on its circle of convergence ?

22 2s

3. The series z ---
1

--- has its radius of convergence
2 3

equal to unity. It diverges for z = i
t
but is convergent

(though not absolutely) for all other points on the circle of

convergence, since its real and imaginary parts are cos 6

COS29 + ... and sin -^^ + -. Give the proof.
2 2

4. If
|

z
|

is less than the radius of convergence of either of

the series ^]anz
n

,
^V/&amp;gt;

ns
n

,
then the product of the two series is

&quot; when cn = a$n + a^n-i 4- #2^1 -2 + * * ^/A- Prove.

5. What is the condition for the convergence of the product

of two series ? (That they be absolutely convergent, since this

permits of a rearrangement of the terms in any order. How

ever, two series not absolutely convergent may be multiplied

provided only that the product is convergent. This result is

known as ABEL S theorem on the multiplication of series.)

6. If the radius of convergence of
*^\anz

n
is r and f(z) is

the sum of the series when
|

z
&amp;lt;

r and z
\

is less than either r

i z
or unity, then \ = JM

&quot; where Jn = tf + #1 + #2 -H + an .

7. Show by squaring the series for - - that

2

8. Prove in the same way that - ^ = i +3 z+ 6 +
(i
-

z)
3

the general term being \(n -+- 1)( + 2) z
n

.
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9. lt/(z) !+,+ -!?-+... show that/(s)/00 =/(s + } ).

[The series for/(z) is absolutely convergent for all values of

z : and if u n
= and vn

= ^, it follows that wn
= i^

.]
1 ! 1

10. Expand the function log (i -{- e*) to five terms by TAY

LOR S theorem, and determine the radius of convergence of the

series.

11. When and where did CAUCHY first publish his theorem

about the extension of TAYLOR S theorem to functions of a com

plex variable ?

12. Given j
-* --

: determine the domain such that
J (z a)(z I))

the value of this integral taken along its boundary shall be equal

to zero.

HINT.- I -,

&quot; &quot;~

.
= f ^; = /r*).2= T^-.2foracir-

cle center at b, and a similar expression for a circle center at a. Their sum

= a ~
2 IT i and this = O for certain solutions, a = b excluded, and there-

a b

fore the configuration may be obtained accordingly.

13. Find the value of
j

z
taken along a circle whose cen-

*/ z i

ter is z= i and radius &amp;lt; 2. Why not take the radius of the

circle &amp;gt;
2 ?

r*^z .
jr

14. Evaluate I
^- - - for a circle having its center at i and

J z i

radius
&amp;lt;

i : also for a circle having its center at i and radius

&amp;gt; i and &amp;lt; 2 : also its value for a circle having its center at i

and radius &amp;gt;2.
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x% 7

15. Evaluate I ^
os 7rZ z

taken along a circle whose center isJ (z- i)
5

- 7T
5

- i

12

(*-!)
the origin and radius

&amp;gt; i. Ans.

HINT. Apply the formula
/&quot;(a)

= ( f\*) dz
along any contour

2 7TZ J (z )
n+ 1

including the point a,

16. Give examples of power series which converge on some,

none, and all points of their circles of convergence.

17. Determine the circle of convergence for the series

-i)
.
ft (ft

I 2 n y (y -f i) (y -f- n i)

where a, /?, y are not negative integers and y = o. This series

is known as GAUSS S series and belongs to the class of hyper-

geometric series. See GAUSS, Ges. Werke, Vol. Ill, p. 125,

RIEMANN, Werke, 1876, p. 79, PIERPONT, Functions of a complex

Variable, p. 54.

HINT. By the ratio test, the series converges absolutely where |

z
\

&amp;lt;
i and

diverges for
|

z
\

&amp;gt;
i. If

|

z
\

= i, it converges for a + j3 y &amp;lt; o, diverges for

a + /3 7
&amp;gt;

o.

The series is one of very great generality and includes as

particular examples many well-known series, as

18. If the absolute values of the coefficients of the integral

power series

=0

are finite, the circle of convergence has at least the radius i
;

when is it exactly i ?
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19. If in the convergent power series

f(z)
= a + a^z +

the constant term aQ is not zero, a number k can be found such

that/(s) vanishes for no value of z whose absolute value is less

than k.

20. Develop the following functions of z in an integral power

series in z :

, , i z cos a /
2
x __sjnj*__

i-2scos + s
2

i - 2 -. cos + s2

The circle of convergence of these power series has the radius

unity since the denominator of both functions vanishes in the

points z = cos ai sin a.

21. The FRESNEL integrals are

Obtain power series in z for C(z) and S(z). Calculate

C(i) = .72i 7 , C(3 )
= . 5 6io, 5(.i)

7T

22. Show that
|

sin* (sXs == .9309+.
/o

23. ^=

\ 2 4 \2-4-

Obtain this result. The time of swing of a simple pendulum

of length / through an angle a is 4\/-
K where / = s

Compute this time when = 60,
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40. The Exponential Function and the Trigonometric

Functions, Sine and Cosine

In the first chapter we inquired about combinations of com-

plex numbers which follow the same fundamental laws as

the combinations of real numbers considered in elementary
arithmetic and to which we accordingly applied the same

names, designated them by the same symbols, and regarded
them as generalizations of elementary algebraic operations.

In the same way we inquire now about a generalization

of the transcendental functions of real argument treated

in elementary analysis ;
for the simplest of these functions,

the methods already deduced are sufficient to answer this

question.

What is, for example, e* (or sin z) for complex values of z?

In itself it has no logical meaning whatever. To give it such a

meaning, we inquire whether there exists a function of a com

plex argument z which has the same properties as the function

of a real variable x, designated by e* in the elementary theory,

and which reduces to this function when a real value x is given

to z. This cannot at once be answered in the affirmative
; for,

properties which are consistent with each other for real values

of z may be contradictory for complex values (cf. 30). We
see that a certain freedom is unavoidable here : we are com

pelled to retain some of the properties of a function of real

argument in order to use them as the basis for the definition of

its generalization for complex values
;
the object of the investi

gation then is to find out which of the remaining properties of the

given function of real argument are valid for such generalization.

Whatever specially concerns the functions **, sin z, cos 2, they

are represented in elementary analysis (A. A. n, 71 ; 6, 75)

by the power series :
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(3)

It is easily shown that these series converge for all real finite

values of z. According to I, 38, they then converge for all

finite complex values of z and represent ( 38) transcendental

integral functions of z. Accordingly :

I. There are three transcendental integralfunctions of a complex

argument z represented by the series
(-*&quot;)-(j), whose values for real

values of the argument coincide with the values of thefunctions e* or

exponential z, sin z, cos z, defined in elementary analysis ; we retain

here the names and the symbols of these functions of a real argument.

We find directly from the definition by means of the series

(i)-(3)that:

II. The following relations due to EULER hold between these

functions :

(4) e&quot; = cos z + i sin z,

(5) e~ iz = cos z i sin z

with their solutions :

(6) cos z =
^(tf&quot; + &amp;lt;?-&amp;lt;)

(7) sin *=-p (

&quot; - &quot;

*)

or what is the same thing :

(8) cos /s=a(&amp;lt;f + &amp;lt;?-),

(9)



2l8 IV. SINGLE-VALUED ANALYTIC FUNCTIONS

III. We shall make particular use of equation (^) in order to

represent a complex number in terms of its absolute value and

amplitude (II, 4) in thefollowing shorterform :

(10) *=*f*.

A fundamental property of the exponential function of real

argument is expressed in the

IV. Addition theorem :

(n) &+*=&.*;

we may verify its existence for complex arguments by multiply

ing together the series on the right (A. A. 60) with the aid of

elementary properties of the binomial coefficients. By repeated

application of this theorem and putting all arguments equal to

each other, it follows that the equation :

(12) *&quot;
=

(*)&quot;

is true for integers n, understanding the exponents on the right-

hand side to be positive integers as in 18. If z2
= z1 ,

it

follows from (u) that:

(13)

If, further, we express the sine and the cosine of a sum in

terms of the exponential functions by (6) and (7), apply the

addition theorem (n) to them, and then introduce the trigono

metric functions again by means of (4) and (5), we obtain :

V. The addition theorems for the trigonometric functions, sine

and cosine:

(14) sin (zl + z2)
= sin zl cos z2 -f cos zv sin z^

(15) cos (% -f- js2)
= cos Zi cos z2 sin % sin z.2 .

From the second of these equations it follows for z2
= z^ that:

(16) cos2
s-f sin2 = i.
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By differentiation of the series (i)-(3) term by term, which is

permissible according to IV, V, 38, we obtain :

VI. The differential equations :

(-7) -* -
-

We have thus established a generalization of the fundamental

properties of the real functions **, sin z, cos z to the functions of

a complex argument which are similarly designated.

EXAMPLES

1. Solve the equation cos z = a, where a is real.

Put z x +
/&amp;gt;

and equate real and imaginary parts. Thus

cos x cosh y = a
;
sin # sinh y = o (where cos (/v)

= cosh jy

and sin (ty)
= * sinh_y by definition, 40, II). Therefore either

y = o or x is a multiple of TT. If, first, y = o then cos a; = 0,

which is impossible unless i ^ a &amp;lt; i. This leads to the

solution: = * Ar COS -&amp;gt;&amp;lt;

wrhere cos&quot;
1

lies between zero and ?r.

If, second, x = m- then cosh _y
=

( i)
m
tf, so that either a &amp;gt;. i

and w is even, or a ^ i and m is odd. If a = i then y= o

and this is the first case. If
\

a
\

&amp;gt; i, then cos iy
=

\

a and we

obtain the solutions

z = 2 kir /Log \a + V^2
i \, (&amp;lt;z&amp;gt;i),

z = (2 k+ i)7r/Log {- a + V 2
-i|, (?&amp;lt;-!).

2. The solution of cos 2 = 5/3 is z = (2 k + I)TT /Log 3.

3. Solve sin z = a where a is real.

4. Solve the equation tan z = where # is real. (The roots

are all real.)
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5. Solve the equation cos z a + ib (b 3= o). Let us take b&amp;gt;o

since the results for b &amp;lt; o may be obtained by merely changing
the sign of b. For this case, therefore,

(i) cos x cosh 7 = a
;
sin x sinhy b,

and

(tf/coshjy)
2 + (/sinh_y)

2 = i (using the notation of Ex. i).

The solution of this last equation gives

A, A,
where A l

= ^(a + i)
2 + P, A 2

= V(0 - i)
2 + b\

Suppose now a &amp;gt; o. Then A l &amp;gt;A Z &amp;gt;o and coshy=A1 A Z.

Moreover cos x = a/cosh y = AI T A^

and since cosh y &amp;gt;
cos x we must take

cosh y = A l -f- A 2 and cos x A
l A2 .

The general solutions of these equations are

(2) x = 2 kir cos~ l M, y = Log \L +V^2
i

\

where L A + A z ,
M=A l A 2 and cos~ lM lies between

zero and -.
2

The values of x and 7 thus found include the solutions of the

equations

(3) cos x cosh y = a, sin x - sinh y b

as well as those of equations (i), since we have used only the

second of equations (3) after squaring it. To distinguish the

two sets of solutions we observe that the sign of sin x is the

same as the ambiguous sign in the first of equations (2), and

the sign of sinhjy is the same as the ambiguous sign in the

second. Since b &amp;gt; o these two signs must be different. Hence

the general solution required is

z = 2k [cos-
1M /Log \L +VZ2

ij].
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6. Study the cases of the last problem where a &amp;lt; o and a=o.

7. Show as in Ex. 5 that, if a and b are positive, the general

solution of sin z = a + ib is

s = k* + (- i^sin-
1J/+ /Log \L +VZ2 - 1 }],

where sin&quot;
1 J/ lies between o and -.

2

8. Show that the general solution of tan z = a + ib, b = o, is

/ (V + (j + W]2 = /C-7T 4- - + _ Log \ -YV7 ^ }

2 4 L&amp;lt;Z
+ (i

-
*)* ]

where is the numerically least angle such that

cos : sin : i : : i - a2- - P : 2 a : V(i - a2 -
*)

2 + 4 rt
2
.

9. Calculate cos /, sin (i + /
),

sin (n-
i i) to two places

of decimals by means of the power series for cos z and sin z.

10. Prove that cos z
\ ^ cosh z

\

and
|

sin z 5^ sinh
|

z
\

.

11. Show that
|

cos z
\

&amp;lt;
2 and

|

sin z
\

&amp;lt; 6/5 J

z
\

if
|

z
\

&amp;lt;
i.

12. Since sin 22 = 2 sin z cos 5 we have

-----_ ----- -
3! 5! I 3! S! A a!

T

Prove by multiplying the two series on the right-hand side and

equating coefficients that

for which the notation f
w&amp;gt;

)
means

;/ ;/
~ Im &quot; n ~ r + I

. Verify
\r) i. 2. r

the result by the binomial theorem.
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41. Periodicity of the Trigonometric and the Exponential

Functions

The sine and the cosine of a real argument are periodic*

functions with the period 2 TT
;
that is, the following equations :

(1) sin (z + 2
TT)
= sin 2, cos (z + 2

TT)
= cos z,

are identically true for all real values of z (A. A. 76). We
can at once conclude from this and from Theorem I, 39, that

these equations must also hold for all complex values of z.

(Periodic functions are a special kind of automorphic func

tions (IV, 17)).

It then follows from the relations due to EULER that

(2) ?+** = ?,

that is,

I. The exponential function is a periodic function with the

period 2 tri.

It is further shown in the theory of trigonometric functions

of real arguments (A. A. VI, 76) that 2 ?r is a primitive period

of the cosine and of the sine
;
that is, that no aliquot part of 2 IT

is a period of these functions. It thus follows indirectly from

equation 8, 40, that :

II. 2 iri is a primitive period of the exponentialfunction.

We shall now investigate whether the exponential function

has other primitive periods besides 2 nt and 2 tri. For this

purpose we deduce the following theorems from its definition

and from equations (13) and (17) of 40 (cf. also A. A. 52) :

III. The exponential function increases continuously from o to

-f- oo, while its argument continuously increasing takes on all real

values from oo to -f- oo.

* Cf. Ex. 4, following 18, and Ex. 31 at the end of chap. IV. S. E. R.
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IV. // takes on therefore each real positive valuefor one andfor

only one real value of its argument.

Assume now that a is a period of the exponential function

and that z and 22 are two values differing by a so that

(3) z,-2l
= a]

then

(4) *= *.

By means of (4) and (n) of 40 we can separate the real and

imaginary parts of the exponential function
;
thus

(5) &amp;lt;?

z+iy = e* cos y + / e
x sin y.

If we then put z
l
= A\ -f iy\, z* = x2 -h iy&

it follows from (4) that

(6) e*i cos }\ = e
1
* cos j,. ** sin )\ = ^ sin _y2 ,

and from both equations on account of (16), 40 :

But from this it follows according to IV, that

x
l
= x2 ,

and from the properties of trigonometric functions of real argu

ments (A. A. p. 167, line 7) :

J&amp;gt;
2
= J i + 2 kir.

We thus obtain the theorem :

V. Every period of the exponential function is an integral mul

tiple 0/2 Tri and every period of the sine or the cosine is an integral

multiple of 2 TT.
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We add also the following definition :

VI. A periodic function, all of whose periods are integral mul

tiples of a primitive period, is called a singly periodicfunction.

We can therefore state the theorem :

VII. The exponentialfunction, the sine, and the cosine are singly

periodicfunctions.

42. Conformal Representations Determined by Singly Periodic

Functions

The conformal representations determined by the functions

e*, sin z, cos z can now be investigated in detail by means of the

results of the preceding paragraph. For the first of these

functions it therefore follows from those results that:

I. The function w = e* takes on every finite value w, different

from zero, at an infinite number of points of the z-plane, all of

which follow from any one of them by addition and subtraction of

arbitrary integral multiples of 2 -n-i.

Let us draw then in the -plane two parallels to the ^-axis at

a distance 2 ?r from each other and regard one of these lines as

belonging to the strip bounded by them, the other not
;

in this

way each point of any such set of points occurs just once in the

strip. Hence every such strip is mapped exactly upon the whole

w-plane by the function w = e*\ by the general theorem of 34

the representation is conformal. Thus, in the terminology

introduced in VI, 17, we say:

II. Every strip bounded by two lines parallel to the x-axis and

drawn at a distance 2 TT from each other can be looked upon as a

fundamental region of the function e*. We shall call such a strip

a period strip of the function.

Besides, it follows from its definition in terms of a permanently

converging power series with real coefficients, that the function f
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has the property that it takes on real values for real values of s, and

conjugate imaginary values for conjugate imaginary values of z\

it is therefore a symmetric automorphic function in the sense of

the definition given in X, 18. Accordingly, we can regard two

pieces of the period strip symmetrical to each other with refer

ence to the .r-axis as its fundamental region. This is seen to

z-p/ane

^ w-pfane

^WVVVVVVVV

AAAAAAAAAAA^
FIG. 19

be true in this case if we bound the strip by the two straight

lines y ir and y = TT. If we map this strip upon the w-plane

by w = e*, it will have a cut along the negative real axis and the

two &quot; banks &quot;

of this cut will correspond to the two borders of the

strip. This is shown in Fig. 19 and in the former figures 10, n.

We determine also the curves of the w-plane which correspond

to the parallels to the axes of the s-plane :

III. From the conformal representation determined by w = e*

we obtain the following results : To the parallels to the y-axis

(x = consfy correspond the circles of the w-plane :

(1) //
2 +P*=^

whose radii increase in geometrical progression while the abscissas

of the straight lines increase in arithmetical progression ; to the

Parallels to the x-axis (y=-const?) correspond the raysof the w-plane:

(2) u sin y v cos y = o

whichform equal angles with each other providing the straight lines

parallel to the x-axisfollow each other at equal distances.
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For the functions sine and cosine, we also have period strips

of breadth 2 TT
; however, in this case, the strips are bounded

by parallels to the jy-axis as for eiz . But while eiz takes on every

value in such a strip once, sine and cosine take on every value in

it twice. This follows from the fact that these functions have

transformations into themselves other than their periodicity as

the following equations show :

(3) sin (TT z)
= sin z

(4) cos ( z)
= cos z.

But they cannot take on this same value oftener, since, for

example :

(5)

is a rational function of the second degree in eiz and hence

(VII, 20) cannot take on one and the same value for more

than two values of eiz .

z-p/ane

//

FIG. 20

The period strip is in this case, therefore, not a fundamental

region; but, since sine and cosine are symmetric automorphic

functions, we obtain such a fundamental region for the cosine

according to XI, 18, by bounding it by x = o and x = TT
;

cf.

Pig. 20. The w-plane in this representation has a cut from i
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to oo and from + i to + oo. The strip bounded by x =

and x = 4-
^ is a fundamental region for the sine.

If we put

(6) u + iv = cos
(.v + /,

we obtain

gv i g-y gv g 9

(7) // = cos x, v = sin x,

and hence

(
&quot; V

(
* V

\cos x) \^sin .xy

= i
;

that is,

IV. In the map determined by w = cos z, parallels to the axes

of the z-plane correspond in the w-plane to confocal ellipses and

hyperbolas whose foci are at the points i.

43. Poles or Non-essential Singular Points

Up to this time we have limited the investigation of functions

of a complex argument to such domains in which the function

to be investigated was regular ;
we proceed now to the investi

gation of the case for which there are, in the domain under

consideration, particular points to be excepted, at which there is

either no value of the function given originally, or the given

value of the function in its relation to the adjacent values no

longer satisfies all the hypotheses. Let us fix in mind then one

such exceptional point ;
without loss of generality we may sup

pose that it is the point z = o.

The simplest case would be where the function can be made
to satisfy all the conditions in the neighborhood of the origin,

itself included, by changing the value which the function takes on
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at the origin (or by selecting such a value when according to the

original definition the function has no definite value for the

value z = o of the argument). We then say : the given value of

thefunction exhibits a removable discontinuity at the origin.

An example
* of this is furnished by the rational function of

20, which was given in such form that numerator and denomi

nator had an additional factor dependent on z. We may ex

clude such removable discontinuities, and will do so in whatfollows,

by supposing the original definition, if it included such singularities,

to be already modified or supplemented accordingly.

Furthermore, we have already become acquainted with a

definite kind of singular points of rational integral functions to

which we gave the name pole. Hence the following general

definition :

I. IVhen a function f(z) of a complex variable is regular in the

neighborhood of a point z = o, the point itself excluded ; and when

further an integer n can befound such that the product :

(0 a&quot; /(*) =/i()

can be made a function regular at z = O BY ASSIGNING TO IT

AT Z = A DEFINITE FINITE VALUE DIFFERENT FROM ZERO,

then we say that z = o is a pole t off(z) of order n.

The reciprocal of such a function is in general not defined

at the point z = o
;
but it follows that :

II. If we assign the value zero to the reciprocalfunction at

f\z
)

the point z = o, there is defined in this way a function regular in a

certain neighborhood about the point z = o, this point itself included.

* For other illustrations of removable discontinuities see examples 8 and 9, at

the end of \ 47. S. E. R.

t According to WEIERSTRASS &quot; ausserwesentlich singularer Punkt,&quot; that is,

&quot;

non-essential singular point.&quot;
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According to XII, 38, we can assign a neighborhood about

the point z = d in which f^(z) is everywhere different from zero

and therefore ^ is regular. Accordingly,

is regular there.

Since f^z) can be developed, according to III, 37, in a

series of the form :

/iOO = &quot;o
+ *is + &quot; +VM-

it follows that :

III. A function f(z), which has a pole of order n at z = O, has

a development in this neighborhood of theform :

(2) f(z} = a.z
n + a,z~

n+l + -+an-^ + an + an+ iZ +

Further, from this and XII, 38, we have :

IV. About every pole of a function f(z), we can draw a circle

of so small a radius that neither another pole nor a zero of the

function lies in it.

44. Behavior of a Function of a Complex Argument at Infinity.

The Fundamental Theorem of Algebra

In order to investigate the behavior of a function f(z) of a

complex argument z at infinity, let us transfer the neighborhood

of the point oo of the s-sphere to the neighborhood of the zero-

point of the s -sphere by means of the substitution z = -, z = -
z z

as in the special case of rational functions ( 21). and consider

/(z) = /(V)
=

&amp;lt;t&amp;gt;(s )
as a function of z

1

. Thus :

I. The expression,
&quot; A function f(z) has such and such a prop

erty at infinity
&quot; means that

&amp;lt;j&amp;gt;(z ) =/(^\ considered as a function

of z\ has this property in the neighborhood of the point z = O.
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For z = o itself, this does not yet define the symbol &amp;lt;j&amp;gt;(z ),

but when it is possible to make
&amp;lt;f&amp;gt;(z ) regular in the neighbor

hood of the origin by a suitable selection of a value for
&amp;lt;(o) (cf.

the previous paragraphs), then we say, /(z) is regular at infinity.

From this definition and from III, 37, it follows directly that:

II. A function regular at infinity can be developed in a series :

(1) f(z) = a + a,z~
l + a2z~* + + anz~

n + -

ofpowers of z with negative, integral, decreasing exponents, which

converges absolutely outside of a certain circle with z = o as a

center. Conversely, such a series always represents a function

regular at infinity.

Likewise, we obtain the following theorem from III, 43 :

III. If a function has a pole at infinity, it can be developed in a

series of theform :

(2) /O) = a_nz
n + a_n+lz

n~ l + -. + a_^ + a_,z+

a -f az~ l + a2z~* -f + anz
~ n

4-

We now take up a theorem due to LIOUVILLE which is fun

damental for all further detailed investigations in function

theory :

IV. A function of a complex argument regular over the entire

sphere is necessarily a constant.

If f(z) is regular at infinity, there is then a quantity J/i hav

ing the property that \f(z) \

&amp;lt;
J/ 1} whenever

|

z is greater than

a definite number R. If f(z) is regular everywhere except at

infinity, then Theorem V of 39 is applicable. But the number

M appearing in that theorem is
&amp;lt; J/i, whenever r&amp;gt; -R ;

the

coefficients an of the development of /(z) in a MACLAURIN S

series must then be smaller than M^ . r
~n for any value of r how-
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ever large. But that is not possible for any positive value of //

while a n is not equal to o. Therefore f(z) must reduce to a .

Theorem IV is thus important in connection with functions

of which only the properties but no analytic expressions are

known, since we are frequently able to find such expressions

with the help of this theorem. The two following theorems are

the first examples of this :

V. A function, which is regular everywhere except at infinity

and has an n-fold pole at infinity, is a rational integral function of

the nth degree.

If it has an w-fold pole at infinity, a development of the form

(2) is possible there. Thus if we put

(3) VO) = a-n? + a_ H+lsr~
l+ + a_& + a,

and form the difference f(z) $(z)&amp;lt;
it is regular everywhere

except at infinity ; for, f(z) is regular according to hypothesis

and \l^z) according to 31. But it is regular also at infinity

according to II and is therefore a constant according to IV, and

in fact = o, since it is equal to zero for z = oo. Therefore f(z)

is equal to the rational integral function
\j/(z). Q.E.D.

VI. A function /(z) which is regular everywhere over the whole

sphere with the exception of a finite number of poles is a rational

function.

Let av (y
= i, 2,

...
n) be the poles of/(z) on the finite part of

the sphere, kv their order
;

let

be the terms with negative exponents in the development in a

series valid for the neighborhood of av (III, 43). If we form
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then the rational function :

the difference f(z) $(z) is regular everywhere except at infin

ity, even at the points ait a2 , ,
an ;

at infinity, it has a pole or

is regular according as f(z) has the one or the other. It is,

therefore, a rational integral function %(z) according to V or a

constant (a rational integral function of zero degree) according

to IV. Therefore, f(z) is equal to the rational function

If we apply this theorem to the reciprocal of a rational integral

function of the mth degree g(z\ x(z) * s m anY case a constant
;

and if we next reduce
\f/(z) + x( z) *o a common denominator, a

quotient of two polynomials -*J-r
is obtained whose denominator

/i.2(z)

hz(z) is of the degree k=kl -\-k%-\- -\-kn and whose numerator

HI(Z) is at most of this degree. From the equation :

(6) -i-^M*),
* AiW

or h2 (z)
= h l(z^g(z),

it follows then that must be ^ ;. Thus the number of poles

of -*
,
that is, the number of zeros of g(z) (each counted as

&amp;lt;*)

often as its order indicates), is at least equal to m
;
and since

it cannot also be greater than m according to II, 19, we have

proved the fundamental theorem of algebra :

VII. Every algebraic equation of the mth degree has exactly m
roots in thefield of complex numbers of theform a + bi, where mul

tiple roots are counted according to their order of multiplicity.*

*Cf. GORDAN S proof, Invarianten, Vol. I, p. 166
;
also OSGOOD, Lehrbuch der

Funktionentheorie,Vo\. I, p. 185; BOCHER, Am. Jour, of Math., Vol. 17 (1895),

p. 260, and Bull. Amer. Math. Soc., ad Series, Vol. I (1895), P- 2O5 I
GOURSAT-

HEDRICK, Mathematical Analysis, Vol. I, pp. 3, 131, 291. S. E. R.
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Let us inquire now how a transcendental integral function

behaves at infinity. We can at present answer this question in

part from the behavior of the singly periodic functions investi

gated in 40-42. If we draw about the origin a circle with a

radius however large, an infinite number of parallel strips will

always remain entirely outside of it; therefore a periodic

function takes on every value which it takes on at all, an infinite

number of times in any arbitrary neighborhood of the point oo .

For example, e* takes on every value an infinite number of

times in any arbitrary neighborhood of the point oo
, excepting

alone the two values o and oc . But it also approaches arbitra

rily near to these two values in any neighborhood of the point

oo , however small.

We show now that the behavior of every transcendental

integral function at infinity is similar to that of e*
;
and that every

such function takes at infinity values arbitrarily large in addition

to other values
;
or more precisely :

VIII. Given a transcendental integral function f(z] and a posi

tive numberM (however large), tJiere are then always values of z

outside of every circle (with a radius arbitrarily large), for which

\A*)\&amp;gt;*f-

If that were not the case outside of a circle of radius ./?, then,

by applying Theorem V, 39, for a circle of radius r
&amp;gt; tf, we

could prove that the coefficients in the MACLAURIN development
of f(z) are respectively smaller than Mr~*. But from that it

would follow as in the proof of IV, that they must all be zero.

The transcendental integral functions thus share this prop

erty with the rational integral functions
;
but they differ from

them as follows :

IX. Given a transcendental integral function f(z) and a positive

number c (however small), then there are always points outside of
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every circle (with a radius arbitrarily large), at which f(z) is

SMALLER than e.

This is self-evident if there are always zeros of f(z) outside

of every circle. But if all the zeros off(z) lie inside of a circle of

radius 7?, there can be only a finite number of them according

to IX, 39, and we designate them then by aiy a2 , ,
an . These

points are poles of the function
*

;
as in the proof of VI (equa

tion 4), let $v(z) be the sum of the terms with negative exponents

in the development of this function in a series valid for the neigh

borhood of av . It then follows here as there, that

n

(7) -yw*)
f(z] ;J ^ v =1

is everywhere regular except at infinity. This difference is then

a transcendental integral function which cannot be reduced to a

constant since otherwise f(z] would be a rational function, con

trary to the hypothesis.* According to VIII, therefore, this

difference takes on values arbitrarily large outside of every

circle
;

since every $
v

(z), and therefore their sum, becomes

indefinitely small at infinity, it follows that becomes arbi-

/(*)

trarily large there; that is, f(z) takes on values arbitrarily

small at infinity. Q.E.D.

If Theorem IX be applied to f(z] c, where c designates an

arbitrary constant, we have the following general theorem :

X. A transcendental integral function approaches arbitrarily

near to every value in the neighborhood of the point oo .

We must not understand this theorem to mean that such a func

tion actually takes on every value in the neighborhood of z = oo .

* That a rational fractional function cannot at the same time be a transcendental

integral function follows from Theorem VII.



44- THE FUNDAMENTAL THEOREM OF ALGEBRA 235

This is shown by the exponential function, which is neither o not

oo at any assignable point.*

The definition of a transcendental integral function fails for

f(s) = ao. On account of Theorem X there is no object in try

ing to complete this definition to conform with I, 21, by giving

it a definite value even at z = oo . On the contrary, it is possible

at times to obtain a definite value in the limit when the variable

z is allowed to approach the point oo along an assigned path.

Thus, for example, &amp;lt;?* converges to oo when z approaches oo

along the axis of positive real numbers and converges to zero

when z approaches oo along the axis of negative real numbers.

On the other hand, its real part as well as its imaginary part

fluctuates continually between i and -f i when z approaches

infinity through purely imaginary values, positive or negative.

EXAMPLES

1. Expand - for the domain at infinity; that is, in powers
z i

of - valid for the domain outside of the circle whose center is

2

at z = o and radius i. (Cf. Ill, 43, II, 44.)

2. Expand
(2+I

&amp;gt; (*+i)(*+ 2) for the domain
(,+ 2)(* + 3) (z + 3 ) (z + 4)

at infinity.

3. What are the poles of ? Expand this function in

a circle about the point 2 = 0. Also in a circle about z = i .

4. Expand
*(* + ) as in III, 44.
z+ 2

* PICARD has shown (Par. C. R. 90, 1879) that there is never more than one

finite value which will not really be assumed by a transcendental integral func

tion in the neighborhood of z = oo . A proof of this theorem by elementary means
is given by E. BOREL, Par. C. R. 122, 1896, and Lefons sur les fonctions entieres,

Paris, 1900, p. 103.
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5. Give the domain of convergence for the expansion of

sin z
Find this expansion.

z +

6. What is the domain of convergence for the expansion of

sm z
in powers of z + 2 ? Give the expansion.

45. Cauchy s Theorem on Residues

We became acquainted in IV, 35, with the theorem that the

value of the integral

&quot;f(t)A

is always equal to zero if it is taken along the boundary of a

domain in which the function f(z] is regular ;
we now inquire

as to the value of this integral when a finite number of poles

lie in the domain.

Let us consider first a domain in which there is only one pole,

and let it be at the point z = o. According to VII, 35, we

can then deform the path of integration into a circle about the

point z = o with a radius arbitrarily small without changing the

value of the integral. But, according to III, 43, in the neigh

borhood of the point z = o,

/CO = a- nz-* + a_ n+}z-
n+l + ... + _,*- + _1r-

1

4-/iO)&amp;gt;

where/ (z) designates a function regular in the neighborhood of

the point z = o
;
we thus obtain :

all of these integrals being taken along the given small circle.

The last one of these integrals is zero according to a previous

theorem (IV, 35), the others have already been evaluated in
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VIII, 35. Introducing here the values so found, we obtain :

Definition :

I. The coefficient of the
( i)* power of (z a} in the develop

ment of a function in the neighborhood of t/ie pole z = a is called the

residue of the function at this pole.

Accordingly, equation (i) can be stated as follows:

II. The integral \ f (z)dz, taken around a domain in which

the function is regular with the exception of a pole, is equal to 2 iri

times tJie residue of thefunction at this pole.

But if we have a domain in which several poles lie, we divide

it into a number of subdomains such that each of them contains

only one pole, apply The

orem II to each of these

subdomains, and add the

results. We thus inte

grate twice along each

dividing line between

subdomains but in op

posite directions (and

always so that the sub-

domain under considera

tion lies to the left). The

integrals taken along the inner boundaries accordingly cancel

out entirely (cf. VII, 29) and only the integral along the out

side boundary of the given domain remains. We have thus the

theorem :

III. The integral \ f(z]dz, taken along the boundary of a

domain in which the function is regular except at a finite number

FIG. 21
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of poles, is equal to 2 -rri times the sum ofthe residues of thefunction

at these poles.

Up to this time we have tacitly assumed that the domain

under consideration excluded entirely the point at infinity ;
in

considering also domains which contain the point oo as an

inner point, we must first determine what is to be understood

by the residue of a function at the point oo . We must therefore

observe that when z is replaced by z (cf. 21), dz is replaced

by z dz
;

the integral I f(z)dz is then replaced by

I z
&amp;lt;f&amp;gt;(z )dz ;

and this integral taken along a closed curve is

then zero if z
&amp;lt;/&amp;gt;(V),

that is, z1

/(z) is regular inside of this curve.

The fundamental theorem of 35 must, therefore, be modified

as follows for a domain which contains the point oo within it :

IV. The integral \f(z)dz, taken along a dosed curve which

incloses the point oo
,
is equal to zero if z* f(z) is regular inside of

the domain inclosed by this curve and containing the point oo .

But if s2 f(z) is not regular inside of this curve, it follows in

consideration of the integral \ f(z)dz i(f&amp;gt;(z )
z dz

that:

V. In the application of Theorems IIand III to a domain which

contains the point oo within it, we are to take as the residue at this

.point the coefficient of z~ l * with the opposite sign in the develop

ment (III, 44).

Every closed curve on a sphere divides it into two parts and

can be looked upon as the boundary of each of these parts. If

a function be regular in each of these parts except for particular

poles which is only the case for rational functions according

* Not
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to VI, 44 we can apply The

orem III to each of the parts.

The same integral appears both

times, but the direction of inte

gration is opposite (that is, taken

each time so that the domain con

sidered lies to the left). If we

now add the two results, the inte

grals disappear, and we have the

following theorem :

VI. The sum of all the residues

of a rational function is always equal to zero.

EXAMPLES

1. Consider the function
*

. What are its poles ? Find

its residues at the points i, &amp;lt;o,

or.
(
=

--, f w, -J
w2

, respec

tively.) Find the value of
J ^ - dz taken along a semicircle

and its diameter, having its center at the origin and including

the two points &amp;lt;u,

or
(to

is a primitive 3d root of unity).

Ans.
-f

7i7&quot;.

2. If in the CAUCHY formula /(a) = ^- C*^
,
z a is

2 TriJ^z a)

replaced by (z a^ (z a2) (z #), prove that

1 r_ / (
zXg v /(^A) .

j
^

2 7riJr(z
-

a^(z
- a2) (z

- a
v) ^/ (a^ (z a^

3. If f(z) has a simple zero z = a but no pole in the finite

domain S bounded by C, then

f(z)dz^
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4. Show that the residue of

(z-a)(x-z)

at the point z = a is .

Show also that the residue of the function

A

at this same point is

(x - a)

5. Determine the residue, also the logarithmic residue of the

function

(z-a](z-b^
at the point z = b.

46. The Theorem concerning the Number of Zeros and of Poles.

A Second Proof of the Fundamental Theorem of Algebra

If f(z) is a function of a complex argument z a.ndf (z) its first

f (,,\

derivative, we shall call J- -M the logarithmic derivative of f(z) ;

f(z
)

the reason for this nomenclature will appear later. Other

theorems concerning the function f(z) may be obtained if we

use the logarithmic derivative instead of f(z) itself in the appli

cation of the theorems of the above paragraph ;
for this purpose

a few theorems concerning the logarithmic derivative are

needed :

I. Iff(z) is regular in the neighborhood of the point Z
Q
and dif

ferent from zero at that point, then &amp;lt;--} is regular there.
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For, in that case,
-^

(according to X, 38) and also f\z)

(according to VII, 38) are regular in the neighborhood of z .

II. Iff(z) is regular in the neighborhood of a point ZQ and has

an m-fold zero at thatpoint, then
*

^ has a simple pole at ZQ and

its residue there is m.

For then we can put (A. A. 24)

(0 /(*) = (*-%)-/()

where f\(z) is understood to be a function regular in the neigh

borhood of ZQ and different from zero at z
;

it follows from this

that:

f(z) -,/i()

Since &quot;_LJ is regular in the neighborhood of ZG according to

f\(z}

I, the correctness of Theorem II is evident from this equation.

It is proven in the same way that :

III. If f(z] has an m-fold pole at z = %
*

^ has a simple
f(z]

pole with the residue m at thatpoint

The proof of Theorems I to III is understood to be valid for

a point situated in the finite part of the plane. For the point

at infinity Theorem I is unchanged, but in Theorems II and III

only the statements relating ti the values of the residues remain

true, not the statement that -& has a simple pole. On the

/(*)

contrary, the logarithmic derivative is regular at infinity even in

these cases. This is however irrelevant in the application which

we now wish to make since we are concerned only with the

residues.
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By applying Theorem III, 45, to ~~ we obtain the follow

ing theorem :

IV. The integral
2

taken in the positive sense along the boundary of a domain in which

the functionf(z) is everywhere regular except at poles, is equal to

the number of zeros off (z) in this domain diminished by the num
ber of poles ; every zero and every pole is to be counted here as often

as its order of multiplicity indicates.

Further, we find from Theorem VI of 45 that :

V. Every rationalfunction becomes zero as often as infinite upon
the sphere (which is only another formulation of Theorem III,

21);

and if we apply it to/(z) c instead of/(0), we find that :

VI. A rational function takes on any arbitrary vahie c just as

often as it becomes infinite.

In these theorems too, multiple zeros or poles are to be

counted according to their order of multiplicity ;
the expression

&quot;f(z)
takes on the valuef(z) = c n times at thepoint z =

a,&quot; means

that c is the first term in the development of f(z] in powers of

z a, for which terms with i, 2, , (n i)
st

powers of (z a)

do not appear, but the term (z d]
n

is present.

In particular, a rational integral function of the nth degree is

everywhere regular except at infinity and has an ^-fold pole at

infinity ;
it therefore follows from Theorem V that :

VII. Every rational integral function of the nth degree has n

zeros; or, expressed otherwise:

VIII. Every algebraic equation of the nth degree has n roots.

We thus have a second proof of the fundamental theorem of

algebra (cf. VII, 44).
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It follows further from this that a rational fractional function

has as many poles as its degree indicates (II, 20). For, if the

degree m of the numerator is not greater than the degree n of

the denominator, its degree is n
;

it is then regular at infinity

and has ;/ poles in the finite part of the plane. But if ;;/
&amp;gt; n,

its degree is equal to ;;/ and it has an
(;// ;j)-fold pole at infin

ity in addition to the ;/ poles in the finite part of the plane.

From Theorem VI it thus follows that :

IX. Every rational function takes on any arbitrary complex

value as offen as its degree indicates.

We make further use of Theorem IV in order to deduce an

important extension of Theorem VIII of 38. Let w =f(z] be

a function regular in a circle about the origin and / (o)
= o

;

without loss of generality, we giay assume that w = o for z = o,

since this can always be obtained by a parallel translation of

the w-plane. We can then take r so small, according to VIII,

39, that no other zeros of f(z) lie inside or upon the circum

ference of a circle F of radius r, and thus, according to IV :

(3)

If therefore ;;/ be the smallest value which
| f(z) \

assumes on F,

and Wi any value of w whose absolute value is smaller than m,

then the number of roots which the equation

/CO = i

has inside of F is :

(4) n=-^C &amp;gt;dz.

2 TriJr /(O - &amp;gt;i

If we put

(5) I --^) = A
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it follows that ^(z) =
w

i

[/(*)]

-

Equations (3) and (4) therefore give :

the last integral taken along that curve C of the /-plane which

corresponds by means of equation (5) to the circle T of the

s-plane. But since \f(z) \

^ m
&amp;gt;

\

wv on T according to the

hypothesis, C can never be so far from the point / i that it

could inclose the point t = o; thus integral is then zero, n = i,

and the equation f(z] = u\ has one and only one root inside of

T. But it follows from VIII, 39, that we can also describe in

the z-plane a circle about the origin of so small a radius p (&amp;lt; r)

that \f(z] in it takes on only values which are
&amp;lt; m. The

theorem is therefore as follows :

X. If w =f(z) is a function of z regular in the neighborhood of

the point z = o and f\o] 3= o, a circle of so small a radius can

then be drawn about this point that w takes on different values at

different points in it, and that
( VIII, 38) the values which w

takes on in this circle cover a region U of the w-plane inside of

which, conversely, z is a regularfunction of w.

For the actual construction of this function in individual cases,

we can make use of the method of undetermined coefficients

(A. A. 78, 79) ;
or we could use a theorem, also useful other

wise, obtained by applying Theorem III of 45 to
z * ^-
/W

This function is regular where /(s) is regular and different from
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zero; at an m-fold zero a oif(z) it has the residue ma, at an

w-fold pole b, the residue mb. (Both are true for a = o, b = o,

respectively but not for a= oo
,

or = oo .) Therefore, we

obtain :

XL The integral . f
2 7T/J

&&;; / the positive sense along the boundary of a domain lying in

the finite part of the plane in which /(z) is everywhere regular ex

cept at poles, is equal to the sum of the zeros off(z) in this domain

diminished by the sum of the poles, multiple zeros or poles being

counted as often as their orders of multiplicity indicate.

If, instead of using the function /(z) itself, we apply this

theorem to the function /(z) w and to the domain in which

this function has only one zero and no poles, we obtain the fol

lowing theorem :

XII. The integral ,
f 4y4^ dz

&amp;gt;

2 TTlJ f(Z) W

taken in the positive sense along the circle defined in Theorem X,

represents the solution of the equation

for/^\ and in fact that solution which belongs to the region U de

fined in Theorem X.

If we expand here under the integral sign in increasing

powers of w and then integrate term by term, we obtain for this

solution a development in powers of w which converges inside

of the largest circle that can be drawn about the zero point of

the ov-plane and which belongs entirely to the region U.

In connection with these conclusions we discuss another

theorem which appeared earlier in a different discussion of this

theory. The integral /

|
udv
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taken along the boundary of a domain in the z/zvplane, represents,

as will be taken for granted here, the area of this domain
;
and

it has the positive or the negative sign according as the bound

ary is described in the positive or in the negative sense in the

process of integration. If we introduce x and y as variables of

integration in this integral, regarding u and v as functions of x

and y, we obtain the integral :

taken along the corresponding curve of the jf_y-plane. If this

curve incloses a domain whose map upon the corresponding

domain of the z^-plane is reversibly unique, then the value of

the integral is positive when taken around the domain of the

jrj-plane in the positive sense, and negative in the opposite case

if the sense of the angle remains unchanged throughout the

mapping. The first is always the case according to the last

theorems if u + iv is an analytic function of x -f- iy and the

domain is sufficiently small. But since an integral taken over

an arbitrary curve can always be replaced as in 29 by a sum

of integrals over sufficiently small curves, it follows that :

XIII. If u + iv is a regular function of x + iy over the whole

domain inclosed by a curve F, then the integral

taken in the positive sense along F, is always positive.

The only exception to this theorem occurs when the function

u + iv maps the domain under consideration in the x -\- iy-p\ane

not in general upon a domain, but upon a single point, that is,

when it is constant. (The conceivable case of mapping the

domain of the x -f /yplane upon a curve of the u + iv-plane is
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not possible on account of the Theorems V, 26
; VIII, 38 ;

X, 46.) To include this exception in the formulation of

Theorem XIII, we must say
&quot; never negative and only zero

when // + iv is constant
&quot; instead of &quot;

positive.&quot;

By means of this theorem we may obtain a second proof of

the fundamental Theorem IV, 44. Theorem XIII is also

valid for a part of the sphere which includes the point oo as an

inner point, provided that the function // + iv is regular in this

domain in the sense of definition I of 44. However, we must

in this case take for positive direction of integration that one

for which the domain under consideration, as also the point at

infinity, lies to the left.

If now we have a function which is regular over the whole

sphere, we can divide the sphere into two parts by any curve

which does not go through the point infinity, and we can then

apply Theorem XIII to each of these two parts. It then fol

lows first, that the integral cannot be negative when we take

the part lying on the finite part of the sphere always to the left
;

and second, that it cannot be negative when the part containing

infinity lies to the left. These two conditions are together pos

sible only when the integral is zero. But then the function

u + iv is constant, Q. E. D.

47. The LAURENT S Series

In 36 we studied CAUCHY S theorem for a domain 5 which

had one bounding curve. We return now to this theorem, study

ing it for a domain S in which the function /(z) is known to be

regular and which has two bounding curves T, y (cf. Fig. 16).

Equation (3) of 36 also holds in this case
;
but the integration

is performed along each of the curves T, y in such direction

that the domain S lies to the left. To evaluate this integral in

the positive sense along each of the two curves, we must change
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the sign of the integral taken along y ;
the given equation then

takes the form :

Let us study in particular the case for which T, y are concen

tric circles about the origin, and S the annular domain bounded

by these two circles. Then, since is understood to be a

point within S,
|

|
&amp;lt;

|

z
|

for all elements of the first integral,

which can therefore be developed, just as in 37, in powers of

with increasing, positive, integral exponents. But for all ele

ments of the second integral and for all points within S

accordingly, the series

i z

*-{ 2 &quot;

converges uniformly for all such pairs of values (z, ). It may
therefore be integrated term by term, and a development is ob

tained for/() of the form :

(3) + tf-iS-
1 + a. 2

~2 + - - + &amp;lt;*_- +

the coefficients of which are expressed by integrals as follows :

/ \ i Cf(z)dz
(4) * =

. I
y
-~r&amp;gt;

=
&amp;gt; i, 2 ..-,

(5) *- = ^- 1

-A*)^, n = i, 2, 3 ,
2 7T/4/Y

The two formulas (4) and (5) can be combined into one by

making use of Theorem VII, 35. In consequence of this

theorem T and also y can be replaced by any curve C lying in
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this ring, which has the property that it divides the ring into

two parts, each of which is annular (one part bounded by T and

C, the other by C and y). We then state the resulting theorem

as follows, making use of a generally accepted notation for writ

ing series of the form (3) :

I. If a function f(z) is regular in a ring bounded by two circles

concentric about the origin, it can then be developed inside of this

annular domain in a convergent series of theform:

(6)

which contains an infinite number of terms in powers of with

positive as well as negative exponents. The coefficients of this

series are expressed by the integrals :

(7)
2 TTl

dz,

taken along any curve C which surrounds the origin once and lies

entirely inside the circular ring.

Such a series is called a

LAURENT S Series.

Particular attention should

be given the cases where the

radius of F is increased indefin

itely or that of y decreased

indefinitely, providing the func

tion always satisfies the con

ditions of the theorem in the

domain thus enlarged. Both

cases appear at the same time

if we consider a function which is regular over the whole sphere

with the single exceptions of the points z == o and s = oo.
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Conversely, let us suppose that for a function
/&quot;()

a develop

ment of the form (3) is found which converges inside of the

annular domain between two circles T, y; and in fact, to fix

this hypothesis more precisely, let each of the two series

(8)

be convergent inside of the annular domain. Then the first

series, according to III, 38, converges uniformly in every

domain which lies entirely inside of F, the second converges

uniformly in every domain which lies entirely outside of y.

Hence both series converge uniformly on a curve such as C in

Fig. 23, and hence they may be integrated term by term along

this curve. Let us do this after first multiplying by
~m~1

; then,

in connection with equations (10) and (n) of 35, we find:

(9)

and this coincides with (7) ;
that is, therefore,

II. When a function can be developed in a series of the form (j)

which converges in the given sense inside of the circular ring be

tween F and y, then the coefficients have the values given by (/) ;

this development is therefore unique.

The last statement requires some explanation in order that it

may have only the intended meaning. A function may be

regular inside of different circular rings, e.g., between yl and y2

between y2 and y3 ,
while upon y2 there are, for example, poles of

the function. Theorem I is then applicable to each of these two

rings and two LAURENT S expansions are thus obtained, one of

which converges between y l
and y2 and the other between y2

and y3 ; and we are, therefore, not to understand Theorem II to
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mean that these two expansions must have the same coefficients.

On the contrary, Theorem II is applicable only to the expansion

inside of one and the same ring.

Thus, for example, we obtain for the expansion of

Z2 3 -S + 2 Z 2 Z I

inside of the circle of unit radius about the point z= o :

between this circle and the circle of radius 2 :

outside of the latter : -f -1 + 3_ + 1
-f .

z1
zr z

The generalization of the theorems of this paragraph to the

case where the two concentric circles have not the point z = o

but any other arbitrary point as center is treated as in VI, 39,

and requires no further explanation.

EXAMPLES

1. Develop in a series of integral powers of z

2-3 z-i
valid for the domain in which this function is regular.

2. Expand - inside a circle whose center is O
;
that is,

i z

expand in powers of z. How large may the circle of conver

gence be ?

3. Expand - inside a circle whose center is the point /
;
that

is, in powers of z i.



252 IV. SINGLE-VALUED ANALYTIC FUNCTIONS

4. Expand 1 inside a circle whose center is the point i
;

z1

that is, in powers of z + 1.

5. Expand inside a circle whose center is the point /
;

that is, in powers of z + i-

6 Expand ---I-- in powers of z. Locate the circle of con-

O+i)3

vergence.

7 Expand --- in powers of (z i). Locate the circle

O + i)
3

of convergence.

8. Given the function f(z)
=T^ . It has singular points

at z _ j because e* is holomorphic* over the whole finite part

of the plane. Let us put -- = -&- + -&- + H(z) where
z2

i 2i 0+1

jy(0) denotes a function holomorphic over the whole finite part

of the plane ;
in other words, it is a function for which the dis

continuities of the original function are removed. It is required to

I. Determine Cv and C2 and H(z) ;

II. Expand H(z) for a circle whose center is the point z=o;

III. Expand H(z) for a circle whose center is the point z= i
;

IV. Expand H (z) for a circle whose center is the point

f SB I.

=
(2
_

i)-i
.

{a series in powers of (z i)}

2&quot;

* The term holomorphic is used in reference to such functions which are JMf^-

valued, regular (tnonogenic} ,
and continuous in the given domain. S. E. R.
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is a function having no singularity at z = + I.

Thus

In the same way eliminate also the singularity at z = I and find 3.

Hence ^ ^- must be H(z).
*- I - 1 2+1

9. A function having poles of order one at alt of order two at

#2 ,
and of order three at #3 , etc., in a domain A, is generally of

the type
r* f* r c1

C* f*
Ll - C 2

|

3
|

L *
[

U 5
j

U6
|

,

where -^T(s) is a function holomorphic in the domain A contain

ing 1? &amp;lt;72 i 3? !
an^ is thus a function for which the discontinu

ities of the original function are removed. The constants C\,

etc., may be found as in the previous example.

10.

(s + i)(*+ 4)

I. Inside a circle whose center is the point o
;

II. Inside a circle whose center is the point oo
;

III. Inside a circle whose center is the point 2

IV. In the circular ring which excludes the points i , 4.

HINT. To expand /(z) in

2+1 2+4
For -

,
B is in the domain

2+ I

at infinity since it is outside of

the domain in which is

2 +

regular ;
hence is ex

panded in powers of For
z

- ,B is in the domain in
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which it is regular; hence expand for a circle with center at o, that is, in

powers of z. Substitute these in f(z) and the expansion for the domain B
is obtained.

11. Suppose f(z) and
&amp;lt;j&amp;gt;(z)

have at the point z = a poles of

order m and n respectively. What can be said of the behavior

of the functions //^
/(*)

- $(z\ /(*) + *(*), -US
4&amp;gt;(z)

at this point ? Discuss all cases.

12. Suppose f(z) has an ;-fold zero at z = a. Show that the

integral

has an (m -f- i)-fold zero there.

State the analogous proposition for the integral

in the neighborhood of a pole a.

48. Behavior of a Regular Function in the Neighborhood of

a Critical Point

We may frequently prove that a function is in general regular in

a domain, but the proof may fail for particular points of this

domain, so that the question as to the behavior of the function

at these critical points remains undetermined. A certain

amount of information is furnished in such cases by the

LAURENT S series.

Let the origin be such a point, that is, let the function/(z) to

be investigated be regular at every point of a certain neighbor

hood of the origin with the exception of the origin itself, con

cerning which nothing is known. The circle y used in connec

tion with LAURENT S theorem can then be taken arbitrarily

small.
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And when
| f(z] \ always remains less than an assignable limit

however near z may approach the origin, it follows that the coeffi

cients a_ n (5, 47) must all be equal to zero. But then the

LAURENT S expansion of f(z) represents a function regular at

the origin ;
and if removable discontinuities be excluded as

agreed upon in 43, it follows that this function must coincide

with/(s) even at the origin. Hence the following theorem :

I. When a function of a complex argument is regular in the

neighborhood of the origin, this point itself excepted, and when,

in arbitrarily approaching the origin, it remains in absolute

value always less than any assignable limit, then the function is

regular at the origin itself provided that removable discontinuities

are excluded.

This may be expressed more briefly but less exactly as follows :

&quot; A function of a complex argument is everywhere continuous

where it is finite.&quot;

But if in the LAURENT S expansion of the function in the

neighborhood of the point z = o terms with negative exponents

appear, we must determine whether there are an infinite or only
a finite number of such terms. In the first case the function

behaves at the point z = o just as a transcendental integral

function at infinity (X, 44) ;
that is, it approaches arbitrarily

near to every value in every neighborhood of this point. For,

the sum of the terms with positive exponents becomes arbitrarily

small in a sufficiently small neighborhood of the point z=o and

it is only a question of the terms with negative exponents. In

the second case the function is definitely infinite at z = o in the

following sense :

When a positive numberM howmer large is given, we can always
draw a circle about the point z = o with a radius sufficiently small

{but &amp;gt; o) so that
\ f(z) \

&amp;gt;Mfor all points inside of it. But, if in
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this second case the pole is ;z-fold, the limit

(i) limi(s -)&quot;/()!za

exists and is finite and different from zero
;
on the contrary for

every positive c (however small)

lim{(*-*)&quot;+.X*)}=oza

and lim \(z a)
n~ e

-X2)! *s definitely infinite.
z=a

By means of the following general definition :

II. A function is said to &? definitely infinite and of the ^th

order at z = a when the limit

Hm i(*-f/ftiza

exists and is finite and different from zero we may state the

theorem :

III. When a function of a complex argument is regular and

single-valued in the neighborhood of a point a, the point itself

excepted, and becomes definitely infinite at a, it is always infinite

at a of an assignable integral order.

EXAMPLES

1. Expand v(f d](z b) in powers of z for the neighbor

hood of the point z = oo (cf. equations 8, 9, 62).

2. Write the power series which represents the function /(z)

in the neighborhood of the point z = oo,

i st. If the point z = oo is an ordinary point for the function ;

2d. If the point z = oo is a zero of order m
;

3d. If the point z = oo is a pole of order m for the function.
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3. Expand O-i)

each in the neighborhood of the point z = oc .

4. Expand the functions of the previous example in the

neighborhood of the point 2=3.

49. FOURIER S Series

From the LAURENT S expansion valid in a ring between two

concentric circles, we can derive an expansion valid in a strip

bounded by two parallel lines by making use of 40-42. Let

r and R be the radii of the two circles between which a function

f(z) satisfies the conditions of LAURENT S theorem. Without

loss of generality, we may suppose r&amp;lt; i and R
&amp;gt;

i
;
when this

is not originally the case it can be obtained by introducing cz in

place of z where c is understood to be a suitably chosen real

constant. We can then put :

(1) r=e~m
i, R = e

m
z

where mlt m2 denote positive real constants.

By means of the function

(2) , = *

FIG. 24

we can then map a rectangle of the /-plane upon the circular ring

of the 2-plane ;
we are to think of this ring as having a cut (or



258 IV. SINGLE-VALUED ANALYTIC FUNCTIONS

slit) along the negative real axis; and if we put t=-t^-\- ttf,

the equations of the sides of this rectangle become :

(3) *!
= *, /i

= + TT, /2 = ^2 ,
/2 = mv

Now exists and is finite and different from zero everywhere

inside of this rectangle, and therefore /()= &amp;lt;KO
is a regular

function of /; and the LAURENT S series :

/(&amp;gt;= &amp;lt;*,

becomes : +

or, by introducing the trigonometric instead of the exponential

functions :

(5) &amp;lt;KO * +(*. +O cos **f*fe - -J sin
w=l n=l

Conversely, if a function of / is regular inside of the rectangle,

it is transformed by substitution (2) into a function of z regular

inside of the circular ring opened along the cut. But in the

application of LAURENT S theorem it is necessary that f(z) be

regular inside of a circular ring not opened along the cut. This

is the case when, and only when, &amp;lt;(/)
is also regular at least in

narrow strips beyond the sides of the rectangle parallel to the

/2-axis and besides when
&amp;lt;(/)

takes on the same values at pairs of

points on these sides which have the same coordinates /2 . For

then the transference of the neighborhood of these two sides to

the 2-plane gives two functions of z regular in the neighborhood

of the cut, which coincide along the cut, and are therefore in

general identical according to I, 39. In particular* this is

* When a function satisfies the foregoing conditions, we can always look upon

it as a piece of a periodic function regular in the parallel strip.
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the case when the function
&amp;lt;(/)

is periodic with period 2 TT and

is regular in the entire parallel strip bounded by the straight lines

/2 = w2 and /2 = m\- We can therefore state the following

theorem :

I. A periodicfunction with the period 2 TT which is regular in a

strip having a finite breadth along both sides of the real axis, can

be developed in a series (a
&quot; FOURIER S Series

&quot;) of theform :

30 QC

&amp;lt;(/)

= aQ + ^ an cos ;// -f^ bn sin nt

=1 n=l

which is uniformly convergent and admits term by term derivatives

of all higher orders.

The coefficients of this series are determined by introducing /

as variable of integration by means of substitution (2) in the

representation of the coefficients of the LAURENT S series :

.
=

:(/&amp;gt;)*
*

2 TTlJ

given in 7, 47. It is thus found that

(6) &amp;lt;*n

=
fn + - = ~ f#M COS *****

(
H

&amp;gt;

irJ

t&amp;gt;n

=
i(*n

~
t-n)

= L f^W^ &quot;*
&amp;lt;&,nJ

where these integrals are to be taken along any curve which

connects a point of the side 4 = TT with the point lying oppo
site on the side ^ = TT, the simplest way of connecting them

oeing then to use the real values between / = TT and / = + TT.
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50. Sums of an Infinite Number of Regular Functions

Let

(i) /!,/, /.

be an infinite sequence of functions of z which are all regular

inside of a definite domain B of the 2-plane ;
let it be assumed

further that the series

converges at every point of this domain. Its sum is then a

complex function (I, 31) of the real coordinates x and y of

z x + iy. Nothing more can be asserted concerning this sum

unless we make additional assumptions concerning the func

tionsfn(z).

But if we assume further that series (2) converges uniformly

in the entire domain under consideration, we can show as fol

lows that its sum represents a function F(z) of a complex argu

ment z regular inside of this domain. If F is the bounding

curve of this domain, we may integrate series (2) term by term

along this curve, since according to hypothesis it converges

uniformly along F. Moreover, this remains true if we divide by
z before integrating, providing the denominator does not

become indefinitely small at any point on the path of integra

tion
;
this provision is satisfied when is an inner point of the

domain (not a point on the boundary). If therefore the sum of

series (2) be designated provisionally by S(z), we obtain :

2 ir z-

When the origin belongs to the domain and is nearer to it

than all of the boundary points, we can expand in increasing

powers of under the integral sign on the left-hand side of this
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equation and integrate term by term as in 37 ;
we thus see

that this left-hand side is in the neighborhood of the origin a reg

ular function, F(), of
,
from which, to be sure, we cannot con

clude merely on the basis of this representation by integrals that

it is identical with .S(). However, the right-hand side is

since the separate functions / are by hypothesis regular in B.

Hence S() = J?(). Since the origin can be put at an ar

bitrary point of the domain we state the theorem :

I. The sum of a series of regularfunctions uniformly convergent

in a connected domain is itself a regular function inside of this

domam.

This theorem follows also from XIII, 38 : if the integrals of

the separate terms are equal to zero for every closed path of

integration inside of B, the same is true for the integral of the

sum on account of the uniform convergence.

A sum of the form (2) may under certain conditions be uni

formly convergent in each of several domains not connected

among themselves. It will then represent a regular function in

each of these domains
;
but this does not warrant the conclu

sion that these functions are connected with each other in any
manner whatever. As a matter of fact, simple examples

* show

that such connection does not necessarily exist.

Moreover, we can draw further conclusions from equation (3).

If a be any point inside of the domain S, we obtain :

dz

*
Cf., for example, WEIERSTRASS, Ges. Werke, Vol. II, pp. 213, 231. Also

FORSYTHE, Theory ofFunctions, p. 138. S. E.R.
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and therefore, according to (8), 39 :

On account of the uniforrh convergence of the series we may
here interchange summation and integration, and thus obtain :

that is, the following theorem is true :

II. A series of regular functions, uniformly convergent in a

definite domain (not merely along a curve], admits term by term

derivatives of all higher orders inside of its domain of convergence.

From this theorem it then follows further that :

III. In order to obtain, according to TAYLOR S theorem, the ex

pansion of a regularfunction which is defined by a series of regular

ftmctions uniformly convergent in the neighborhood of z = a, we may

expand each term of the series in powers of z a and then collect all

terms having the same powers of z a.

51. MiTTAG-LEFFLER S Theorem

A function F(z) which is everywhere regular over the finite

part of the plane except for a finite number of poles a^a^ ,
an ,

can always be represented, according to VI, 44, in the form :

(0
%/&+&)&amp;gt;
v=i

in which g(z) represents a transcendental integral function of z

and fv (z) a rational function having no poles other than av .

Closely allied to this is the investigation of the question
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whether a function with an infinite number of poles can also be

represented in the form of an infinite series ofpartialfractions :

w
For this purpose it is necessary and, according to the results of

50, also sufficient that the series be uniformly convergent.

We can see from simple examples that such is not always the

case when the poles a v and the functions /v(z), which .determine

how F(z) becomes infinite, are arbitrarily prescribed. The

difficulty arising in this way was surmounted by MITTAG-

LEFFLER by demonstrating that rational integral functions gv(z)

can always be so determined that the series :

(3)

converges uniformly. We shall not give here a proof for the

most general case, but concern ourselves only w
rith a generaliza

tion *
sufficing for most applications.

It is to be noticed in the first place that when the function is

regular everywhere over the finite part of the plane except at

poles, then the set of points a v cannot have a limit point in

the finite part of the plane (IV, 43). Therefore an infinite

number of the points a v cannot lie in a finite domain (XVI,

25) ;
in other words, we must have

(4) lim \av = oo .

We shall now first, suppose that
|

a v increases so rapidly as v

increases that an integer n can be determined which has the prop

erty that the series :

(5)

* For the general case cf. WEIERSTRASS, Ges. Werke, Vol. II, p. 189.
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converges. Second, let us suppose that the above poles are all

of the same order A and that the decomposition into partial

fractions of each of the functions fn consists of only one term

with coinciding coefficients, all of which may then be taken

equal to i
;

let then

(6) /M *(*-**)-*&amp;gt;

First, let A = n : let any finite domain be given which con

tains none of the points av ;
let M be the largest value which

\z takes in this domain, yu, any positive number greater than i.

We then divide the points av into two classes according as

I ^ I = P^f or
I

a
v \ &amp;gt; P-M. According to hypothesis there are

only a finite number of the points of the first class, say k
;
for

every point a
v
of the second class and for every point z of the

given domain

(7)
z a.

-i

&amp;lt;

that is, smaller than a finite number independent of z and v. Let

us now subtract the finite sum :

(*-,)&quot;

from the series to be investigated and there will remain the

infinite series

i

Each term of this series arises from the corresponding term of

series (5) by multiplication by the th power of the factor (7),

from wrhich it appears that for all terms it is less than one and

the same finite limit. Since series (5) according to hypothesis

converges absolutely, series (9) also converges absolutely

(A. A. 56); and, in fact, converges uniformly since the above-
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mentioned limit is independent of z. Let us again add the first

terms (8) and thus obtain the theorem :

I. If the series (5) converges, then the series

converges absolutely and uniformly in every domain which lies

in the finite part of the plane and which contains none of the

points a v .

Second: if A. &amp;gt; n, then the terms of the series :

arise from the corresponding terms of series (10) by multipli

cation by the factors :

(12) (*-&amp;lt;O-
x+

*.

If small circles of radius p be described about the points a v and

if z be limited to a domain containing none of these circles,

then each of the factors (12) for all points z of this domain is in

absolute value less than the finite number

independent of z and v. But since series (10) converges abso

lutely, it follows that :

II. If series (5) converges, then for \
&amp;gt;

n series (n) also con

verges uniformly and absolutely in every domain which lies in the

finite part of the plane and which contains none of the points a v .

But third: if X &amp;lt; n, X + n is positive and we cannot draw

the conclusion as above
;
for then \z a

v \

~x+n is not smaller

but is larger than p~
A4n

. But in this case we may proceed as

follows : By integrating term by term between two arbitrary
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limits z
,

z along an arbitrary path inside the domain of

uniform convergence which is allowable according to VIII,

28 we obtain the following uniformly convergent series

from series (10) :

In this series each term becomes infinite for z = a
t,
as---

-
a,)

1- 1

does
;
the problem is thus solved for A = n i. We can apply

the same conclusion to this series when n
&amp;gt; 2, and so continue

until the exponents in the denominator are depressed to X. We
state this result explicitly only under the simple supposition

that the point z = o is not one of the points a
v ;

we may then

put zQ = o and thus obtain the following theorem :

III. If series (5) converges and if\&amp;lt;.n, then the series

converges uniformly and absolutely in every domain which lies in

the finite part of the plane and which contains none of the points

av
in its interior, provided that the whole expression under the

summation sign be considered as one term of the series and is not

separated.

Moreover, the law of formation for series (14) can be stated

thus : To (za^)~
K must be added a rational integral function of

z such that every term of the series is zero of order n \ at

the point 2 = 0.

It therefore follows from the general theorem of 50 that

each of the series (10), (n), (14) represents a function of z
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regular in the domain of. its uniform convergence. Its behavior

at one of the points a
v may be obtained by taking out of the

series that term which is relevant at this point ;
the remaining

part of the series also converges uniformly in the neighborhood

of a v ,
it is then regular there, and the function has therefore a

pole at z = a v
of the kind prescribed.

IV. The most generalfunction, which has poles of the prescribed

kind at all these points, is obtained by adding the most general

transcendental integralfunction to the sum of the series.

If it is a question of developing a preassigned function in a

series of partial fractions of the kind here considered, the

determination of this complementary integral function presents

a certain difficulty which can be disposed of in some cases by

the following procedure due to CAUCHY.

Let us suppose an infinite sequence of closed lines Cv

(v
= i, 2, 3, ) having the property that each time Cv_^ lies

entirely inside of Cv and the point a
v

lies inside of Cv but out

side of
&quot;_!. If, therefore, small circles are drawn about the

points !, a2 , ~*,ak ,
Theorem II, of 45 is applicable to the

domain between Ck and these circles; we obtain accordingly:

/) =
2 TT

The problem is then solved if by any suitable choice of the

curves Ck we succeed in determining the value of the limit to

which the integral standing on the right converges as k = oo.*

In the application to individual cases this method may be modi

fied in various ways ;
for example, inside each of the curves Cv

we may take two poles more than in the preceding instead of one.

* For further investigations cf. E. PlCARD, Traite d analyse, Vol. II (Paris,

1893), chap. VI, No. 5 et seq.
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62. Decomposition of Singly Periodic Functions into Partial

Fractions

We return now to the investigation of singly periodic func

tions discontinued at 42 having in the meantime obtained

additional methods. The theorem of the last paragraph enables

us to form a priori such functions.

By introducing cz instead of z as the argument, i can be made
the primitive period for the function. It is required to form a

function having this period and having a pole at z = o
;

it must

then necessarily have poles at all those points which arise from

the point z = o by the addition and subtraction of periods ;
that

is, in the points :

z = i, 2, 3, ,
co

,
z = i, 2, 3,

...
,
co.

Let us form now a function which has these points (and no

others) for poles ; and, in order to apply the theorems of the

previous paragraph, we inquire whether there is any value of

n for which the series

^A i

converges. The reader will readily recall that this series is not

convergent for n = i,but does converge for n 2 (A. A. 55).

There is then according to (10), 51, a function :

(O

which has all of the points named above for a twofold pole.

In forming from it, according to (14), 51, another function for

which these points are only simple poles, we observe that the

hypothesis made there does not apply here, viz. that the point

z = o is not to be among the points a
v

. Therefore, in applying
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that theorem here, we must do so not toyi(z) but to/^z)

the following function is thus obtained :

w

(The accent on the summation sign signifies here and in what

follows that the value v = o is omitted from the values over

which the summation is taken.)

We can now show that these two functions constructed in

this way really have i for a period. That the first function has

the period i follows directly from the representation (i). For,

if we replace z in this representation by z + i
,
we obtain in

full the following :

i - v)
2

(z + i)
2 A (s + i - v)

5

Replacing now the summation letter v in this expression by

fji + i
,
we obtain :

and this is the original series, except that the term s~2
is com

bined with the first sum and the term (z -f- i)~
2

is omitted from

the second sum. It therefore follows that :

(3) /.(+0 =/.()

But the same conclusion for the function/2 (
2
) cannot be drawn

since the parenthesis in (2) is not to be removed : however,

since

(4) /,()= -
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it follows from equation (3) by integration that

(5) /2(* + i)=/2+c;
In this equation C signifies a constant of integration which can

be determined whenever we evaluate both sides of the equa

tion for some particular value of z. We could also use a value

of z for which the two sides become infinite
;
for this purpose

we compare the first terms of the expansions valid for the

neighborhood of this value of z. Thus, for example, we obtain

for the neighborhood of z = o :

_!_ + !=_+(#),
z v v v

and therefore :

(6)

also:
z -f- i

Z + I I

2-f-I V V I V V (t v)
5

and accordingly

Comparison of the coefficients of z gives

00 00

r~_l_\-\ l
I ^

i / &quot;~7 \ / / \
*

z, v(!_ v) ^Ki-y)

If v be replaced by i
/x

in the second summation, we obtain :



52. PARTIAL FRACTIONS OF SINGLY PERIODIC FUNCTIONS 2/1

The two summations are therefore equal to each other, and in

fact each is equal to i
; for,

-i .m m

Accordingly C = o
;
that is :

I. Not only fi(z) but also f-z(z) is a periodic function of z with

tJte period I.

We inquire next about the relation of these functions to the

periodic functions investigated in 40-42 ;
to answer this

question, we make use of the method due to CAUCHY mentioned

at the end of the previous paragraph. We observe that in

equation (2) the terms may be arranged in pairs of values of v

that are equal but opposite in sign ; accordingly then

(where as before the parenthesis must not be removed). If the

cotangent function is now denned as for real variables by the

equation :

(9) cot, = &amp;lt;?*,

sin z

it follows from the results of 41 that the function TT cot (TTZ)

has the same (simple) poles and the same residues as f*(z). If

we then -take as the line Ck a rectangle whose sides have the

equations: k
x = ti^L! and

_&amp;gt;

=
77,

the poles: o, i, 2, ,
k

lie inside of it
;
we therefore obtain :

(,o) .cot K) =1 + _!_ + -JU-L,
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But:
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7T COt ( TTZ

since the cotangent is an odd * function and the line Ck is sym
metrical about the point 2=0; we can then replace the integral

appearing in (10) by

To evaluate this integral let us start from the equation :

(12) |&amp;gt;t()
,_ J&quot;^- &quot;^ ---

ny I ,,2ny 2 cos 2

it follows from this that, upon the two vertical sides of the rec

tangle :

(13) |

cot (**)!
=

and upon the two horizontal sides :

(14) |

COt (IT*) |
^ ;

that is, rg
i + e

Therefore, along all of the lines Ck ,
|

cot (irz) &amp;lt; Hf, where M
denotes a number independent of k. If we designate the short

est distances of the points o and from Ck by rk and pk ,
and the

length of Ck by &amp;lt;5^,
it then follows that :

f CQt (*

Jc, z(z -
dz &amp;lt;

M-S

* An odd function may be defined as one for which f(x) = f( x) and an even

function one for which f(x) +/( x) . Particular cases are those for which the

odd function contains only odd powers of the variable and an even one only even

powers, as sin x and cos x. S. E. R.
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As
rj increases, M decreases

;
we are thus at liberty to allow

rj
to increase to infinity with k. It follows, therefore, that

Sk
= 8 rk and ph (for a given )

increases to infinity with k.

Then the limit of the integral as k = oo is equal to o and it fol

lows from (10) that :

(l6) fo(?)
= TTCOt TTZ

(cf. A. A. (i i), 84) and from this it follows further that :

II. The functions represented by these partialfractions are then

rationalfunctions of cos irz and sin TTZ.

If in equations (16) and (2), a and a + z are substituted suc

cessively for z and the results subtracted, the following formula

is obtained :

(18) ,[cot ,(a + z)- *(,)] =

63. General Theorems concerning Singly Periodic Functions

We derive here another general theorem concerning singly

periodic functions for which Theorem II of the previous para

graph is a special case. Let us again suppose that i is the primi

tive period, since it may be obtained by multiplying the argument

by a constant, and that then a strip bounded by the lines x= ^
and x= -f % can be used as the period strip ;

and we study singly

periodic functions f(z), which have the following properties :

1. f(z] is everywhere regular in the finite part of the plane

except at poles.

2. When z = x-\-ty passes to infinity where y is positive

without going outside of the period strip, at least one of the two

limits \\rnf(z) or lim
(
-^

] exists.
-+ *+v/(*/
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3. When z = x -f- iy goes to infinity in the same manner

where y is negative, we have analogous results
; however, it is

not supposed that \im/(z) = \imf(z).
y=-co y= + o

By means of the substitution :

(1)
=

&amp;lt;**

we can map (cf. 42 and 49) the parallel strip of the s-plane

conformally on the ^-sphere cut along a meridian (apart from

the neighborhoods of the points = o and =
oo). In this way

the function /(z) is transformed into a function
&amp;lt;()

which has

the following properties :

1. Since f(z) is periodic, &amp;lt;()
is single-valued; its values (as

also those of its derivative) on one side of the cut pass continu

ously into the values on the other side of the cut.

2. Since f(z) is regular everywhere in the finite part of the

plane except at poles, &amp;lt;()
is regular, with the exception of

poles, over the whole sphere except at = o and = oo.

3. If is allowed to converge to zero along any path, then

the corresponding s-path runs to infinity where y is positive ;

and if the -path does not encircle the point = o infinitely

often, then the s-path first crosses a finite number of period

strips and finally remains within one of them. It follows there

fore from hypothesis (2) that at least one of the two limits

(2) li

exists (for every such kind of approach of to zero), and that

then (I, III, 48) &amp;lt;()
is either regular at = o or has a pole

there. But even when the -path does encircle the point = o

an infinite number of times, the s-path crosses an infinite num

ber of period strips and we obtain the same result
; for, since

f(z) is supposed to be periodic, we can transfer to the first strip

all parts of the 3-path which lie in strips other than the first one.
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4. In an analogous manner, it follows from hypothesis (3)

that
&amp;lt;()

is either regular at infinity or has a pole there.

Thus
&amp;lt;()

is regular over the whole sphere except at poles,

and is therefore, according to VI, 44, a rational function of
;

that is, we have the theorem :

I. Every periodicfunction which satisfies the hypottieses (/)-(j),

is a rationalfunction of the expotientialfunction e
2 &quot;*2

,

A series of further theorems follow from this one. Let f(z)

be such a function
;
with the aid of equation (n), 40, we can

then eliminate the exponential functions from the expressions

for f(zi), f(z*), f(zi + &&amp;gt;)

formed according to Theorem I, and

obtain an algebraic equation between /(^ + &), /(%), /(^2),

whose coefficients are independent of z^ and z2 . Such an equa

tion is called an algebraic addition theorem
;
hence the theorem:

II. Every function of the kind described has an algebraic addi

tion tlworem.

Further, if we had two such functions, we could eliminate the

exponential function and find that :

III. Between pairs of such functions there is an algebraic equa

tion with coefficients independent of z.

In particular this is true of such a function and its first

derivative; accordingly, we have:

IV. Every such function satisfies an algebraic differential equa

tion of the first order in which the independent variable does not

appear explicitly ;

or otherwise expressed :

IV a. Every such function is the inverse of the integral of an

algebraic function.
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The following equations, for real values of u and z, are

examples of this theorem :

(4)

Theorem III introduces us to a class of algebraic equations

between two variables z and j, which are satisfied identically by

putting single-valued singly periodic functions of an auxiliary

variable u (a
&quot;

uniformizing
* variable

&quot; one may say) equal to

s and z\ as, for example, in the equation :

where

(6) s sin u, z = cos u.

But we recall that these equations (on account of Theorem I)

are none other than those which are satisfied identically by put

ting rational functions of an auxiliary variable equal to z and j,

for example, in equation (5) :

(7) *=^
We will not introduce here the proof that this property does

not belong to every algebraic equation between two vari

ables. On the contrary, the investigation of single-valued

functions of a complex variable is discontinued at this point

and the discussion of many-valued functions is taken up in

the next chapter.

* Cf. WHITTAKER, Modern Analysis, p. 338. S.E.R.
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MISCELLANEOUS EXAMPLES

1. Determine all the roots of the equations :

(a) sin z = 2, (&) cos z = 5 / .

2. Show that the functions sin z, cos z, have no other zeros

or no other periods than those of the real functions sin x, cos x.

3. If C(.v) = i - + -... and S(x) =# + ...

2! 4! 3! 5!

show that C(x + y) = C(x) C(y)
-

S(x) S(y)

and S(x +v) = S(x) C(y) -f C(x)
-

S(y).

4. Prove that a function which has a derivative that vanishes

at every point of a finite region is constant in that region.

5. How is a definite integral defined for a complex variable ?

From the definition, show that

t)as I
&amp;lt; ML

where L is the length of the path of integration and M is the

maximum of \f(z) \

on this path.

6. State and prove CAUCHY S theorem on residues.

X+a,

.,2 y

f I
(.v

2

Cf. also Ex. 35 of this list and the reference given there.

7 a. An integral appearing in the theory of probability is the

following one : ^.
I &amp;lt;r*dx.

Jo
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The following method of evaluation (cf. PICARD, Traite (Tanalyse,

Vol. i, p. 104) is particularly simple and elegant. Let us begin

with the real double integral :

taken over the first quadrant. This integral converges since

the following limit exists :

lim rke-**- y
\ ;

2 = x* + /, k&amp;gt; 2.
X=ao

, y=x,

We now obtain the desired formula by putting the double inte

gral in the form :

and evaluate it by means of polar coordinates in the form

S.T-

Thus
2

8. By taking I e ^dz along the rectangle y = o, y = a,

x = /?, prove that

J e~
x
*

cos 2 ax dx VTT e~ &amp;lt;*

/+
given that I e

-J
. ax= VTT.

*s
&amp;lt;n

gae
9. What are the poles of the function- ?

10. Prove that any two simply connected plane regions can

be mapped conformally on each other, stating accurately the

theorems used in the proof.
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11. If the functions ft(z) can be developed about the point

z = o as follows : ...

and if the series :

is uniformly convergent throughout the neighborhood of the

point z = o, prove that the series :

= a
Q + A) + ^ +

1
= #i + ^i + A -h

^2 = #2 + ^2 + ^2 +
are convergent and that the development of P(z) is

/r(s)4+4f + 4*+ .

12. Establish the relation between the convergence of a series

of complex terms and the convergence of the series of their

absolute values.

13. If a polynomial in (x, y) with real coefficients satisfies

LAPLACE S equation, prove that it is the real part of a polyno

mial in z x + iy.

14. Prove that a necessary and sufficient condition that a

homogeneous polynomial of the nth degree in (x, y) satisfies

LAPLACE S equation is, that the equation formed by setting the

polynomial equal to zero represents n real straight lines making

angles with one another.
n

15. Define the exponential function for complex values of the

argument, pointing out the chief characteristics which must be

preserved in order that the new function may be regarded as a

generalization of the original one.

16. Prove that a rational function can be represented by
means of partial fractions.
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17, What functional properties characterize completely the

rational functions ? (Cf. also Ex. 6 at the end of 68.)

18. Discuss the theory of the system of partial differential

equations .

where P and Q are given functions of x and y, and show how

this system of equations is connected with the theory of the line

integral /

J (Pdx + Qdy).

What connection has this with functions of a complex variable ?

19. What is the condition that a function /(z), having the

2rn

period &amp;lt;o,

be expressible as a rational function e ?

20. Define the terms : Singular Point
;

Pole
;
Order of a

Pole; Critical Point; Order of a Critical Point.

State and prove the geometrical property of a critical point of

the nth order.

21. Define GREEN S theorem for two dimensions and explain

its physical meaning. (Cf. HARKNESS AND MORLEY, Introduc

tion, etc., p. 322.)

Show how GREEN S theorem may be applied to a simply con

nected region to effect the conformal mapping of the region on

the interior of a circle.

22. Give a direct proof that in the transformation by means

of w = ez

angles are preserved.

23. Suppose a function holomorphic in a region A with the

exception of poles at^, c*, 1
cp of order, respectively, nlt n2 , ,

np .

Discuss the general type of the function which is holomorphic

everywhere in the region A ;
that is, find the function for which
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the discontinuities of the original function are removed. (Cf.

Exs. 8, 9, at the end of 47.)

24. Prove that for sufficiently large values of
|
z

\ ,
the abso

lute value of the last term in

aTz
r + ar+l z

r+1+ &quot;- +a nz
n

where r is an integer which is less than n and greater than o, is

greater than the sum of the absolute values of the remaining terms.

25. Prove that the sum of two functions, both continuous

at a, is continuous at a. Prove the same for their product, and

also for their quotient if the denominator is not zero.

26. Calculate the residues of the function
*

+1&amp;gt;

and

then show that

dx _ i. 3. 5. (2 n i)

-oo
(i +_T2

)
n+1

~~

2.4.6. 2 n

and derive from the latter result the value of the integrals

*
and &amp;lt;**

Jx

C)

irou

region bounded by the curve along which the integral is taken. In this case

HINT. /nO) = f fl*} dz
, where /(s) is regular throughout the

2 7TZ J (2 a)
n+ 1

27. If /(z) is single-valued and regular in a region S, show

that i/f(z) is in general regular in this region. Discuss the

singularities of the latter function.

28. When is a function f(z) said

(a) to be &quot;

analytic about &quot; or &quot;regular at &quot;* the point z = 00,

(ft)
to have a root,

(c) to have a pole,
, 7N A , ,

. , at the point z = co ?

(d
7

)
to have an essential

singular point

* Cf. BOCHER, Bull. Am. Math. Soc., Vol. Ill, p. 89. S. E. R.
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29. If the functions /(z), &amp;lt;f&amp;gt;(z)

each have an essential singular

point at the point z = oo, what can be said about the function

Give the reasons for your answer.

30. If F(z) and G(z) are rational integral functions of z of

degree and/ respectively, show directly that there is one and

only one pair of rational integral functions of z :

Q(z) = q^-v + ft*-*-
1
-f ?_

G,(z} = r^-
1 + rlST* + ... r^

which satisfies the identity

F=QG + 6V

Develop the right side in powers of z and equate coefficients of

like powers on both sides of the equation. This gives ;* + i

linear equations for the determination of the + i coefficients :

^0&amp;gt;

* *
*} ^n-pl r

Q&amp;gt;

&quot;

*&amp;gt;

r
p-l-

31. A single-valued function w = f(z) of z is called periodic

when there is a constant/ = o such that/(s + /)=/(s) for every

value of z. Show directly from the fundamental theorem of

algebra that every periodic single-valued monogenic function of z is

transcendental.

Suppose w satisfies an irreducible algebraic equation F(z, w&quot;)

= o, that is,

an equation which cannot be decomposed into the product of several factors

of a similar kind but of lower degree in the variables. Let this equation be

of the mih degree in z and of the ;/th degree in w and let us consider the

equation f(z, w )
= o. This equation cannot hold for every value of z since

the function F(z, w) is not divisible by w WQ. Thus at most can m values

of 2 belong to the value WQ of
y&quot;(z).

But this contradicts the condition that

the equation w =f(z} has innumerable roots, namely, all of the form z ZQ

-j- kp where k is any arbitrary integer. Thus f(z} cannot be an algebraic

function of z.
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32. Interpret geometrically the following limit :

assuming for the function w = u 4- iv =f(z) that // and v are

continuous and have continuous first derivatives and that /x is

real and positive.

HINT. Take two points zi =z + // and z on a curve in the s-plane and

two points w\ and w in the w-plane corresponding to them by the function

w =/(=). Show that a geometrical interpretation of the above limit is, that

the angle between any two curves in the s-plane has the ratio i :
/j. to its cor

responding angle in the w-plane.

33. Compute C-y&amp;lt;** + **y and C^
Jc 3*+f Jc/

in the parameter form for the ellipse C about the origin, x = a

cos /, y = b sin /.

34. Show by the CAUCHY process that

o if ;/ is odd,

^ . c // iJ - 2 TT if n is even.
2. 4. 6 n

. i

HINT. Put cos / = ** + e = where w = e ft and evaluate the in-
2 2

tegral along the unit circle in the w-plane.

35. Show by evaluation along suitable contours that

I

I + X1
dx = TT e~m

,

I + XT 2

sin x

= - e
m

,
and

,dx = -
.

x 2

Cf. GOURSAT, Coitrs d analyse, Vol. II, p. 112.



CHAPTER V

MAJSTY-VALUED ANALYTIC FUNCTIONS OF A COMPLEX
VARIABLE

64. Preliminary Investigation of the Change of Amplitude of

a Continuously Changing Complex Quantity

Before studying many-valued functions of a complex variable,

some attention must be given, as suggested in 4, to an expres

sion which has several values corresponding to one value of the

argument but which is not a regular function of this argument.

We recall from 4 that every complex number

(1) z = x -\- iy = r(cos &amp;lt; + / sin
&amp;lt;)

has infinitely many values of the amplitude &amp;lt;,
all of which are

obtained from any one of them by the addition or subtraction of

arbitrary, integral multiples of 2 TT. From these infinitely many
values, the principal value of the amplitude is now defined as

follows :

I. The principal value* of the amplitude of a complex number

is that one of its values which satisfies the conditions

(2) -7T

It is essential here to make clear that this principal value of

the amplitude is in general, but not without exception, a con

tinuous function of the real variables x and y. Thus let (x^ y\}

be a point, fa the principal value of its amplitude, and let

* The principal value of the amplitude is indicated by a capital, as An?0.
- S. E. R.

284
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fa 4- , }\ + r;)
be a neighboring point. If we now put

( )

X, 4-

XL + O i n

and if is understood to be the principal value of the ampli

tude of the expression on the left, then as and
77
vanish also

vanishes. One value of the amplitude of x
l 4- 4- i(y\ 4- 17)

is

then 2
= 0! 4- 0- If 0i is not =

*&quot;&amp;gt;

then can be taken so

small that 2 also satisfies the inequality (2); 2 is therefore a

principal value, and the difference of the principal values 2 and

0! is only indefinitely small ;
in other words :

II. The principal value of tJie amplitude of a complex number

is a continuous function of its components in every domain of the

plane which is not intersected by the half-axis of negative real

numbers.

But if 0! = TT, then $i + satisfies the inequality (2) for

indefinitely small negative values of 0, and is therefore a princi

pal value
;
but for 9 positive and indefinitely small, 0! + 6 is

not a principal value, but 0! + $ 2ir= TT + is such a

value. Theorem II is therefore extended by the addition of the

following corollary :

III. The continuity of the principal value of the amplitude is

interrupted along the half-axis of negative real numbers in sofar as

its value at a point of this half-axis coincides with the limit of its

values at points adjacent to it in the
&quot;upper&quot; half-plane, but is

greater by 2 TT than the limit of the values which it has at points

adjacent to it in the &quot;

lower&quot; half-plane.

However, these latter values follow continuously from those

values of the amplitude of the negative real numbers which

=
TT, and consequently are less by 2 TT than the principal

value -f- TT.
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What was said about the principal value in Theorems II and

III is at once applicable to the other values of the amplitude.

Naming that value which is greater than the principal value by
2 k-n, the value of order k (the principal value being thus of

order zero), we have the following theorem :

IV. The value of order k of the amplitude of a complex number

is a continuous function of its components outside of the half-axis of

negative real numbers ; but its values along this axis in the lower

half-plane follow continuously the values of order (k i) at the

same place.

Further :

V. A continuous transition from the value of order k to that of

any other, say to the value of order /, is possible at no other place

than along this half-axis.

For, when the value of order k at z2 differs infinitesimally

from the value of order k at a point ^ indefinitely near, it cannot

at the same time differ infinitesimally from the value of order / at

zl5 which is different from it by the finite quantity (/ K] 2 TT.

(All values of the amplitude are completely undetermined at

z = o
;
the point z = o does not belong to the domain for which

the amplitude function is defined.)

The conclusion from all of this is, and it is the most im

portant result of this investigation :

VI. To make the amplitude a continuous function of position in

the plane, we give up the notion that it is single-valued and combine

its totality of values into an infinitely many-valuedfunction.

If two points zQ ZL of the plane are connected by a given curve,

we state the following problem :

Some one of the values of the amplitude belonging to ZQ is selected;

we wish to determine that value of the amplitude belonging to zl
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when a variable z is allowed to take on continuously all the values

on the given curve and its amplitude, starting with the given initial

value, changes continuously as a result of this.

The previous results give a solution of this problem, which is

most simply exhibited if we assign a definite direction from

o to oo, to the half-axis of negative real numbers, so that the

upper half-plane (in which the coefficient of / is positive) lies to

the right, the lower half-plane to the left, of this axis. Therefore :

VII. Provided the assigned path does not cross the half-axis of

negative real numbers, the value of the amplitude always has tJie

same order : but whenever the curve crosses this axis once, tJie value

of the amplitude, passes to the next higJier or to the ntxt lower order

according as the path crossesfrom right to left orfrom left to right.

The special case of this theorem in which z
l
coincides with ZQ

merits particular attention
;

it is stated in the following form :

VIII. If z changes its amplitude continuously in describing a

closedpath, then the amplitude isfinally greater by (p q) 2tr than

before, provided tJie path crossed the half-axis of negative real num

bersp timesfrom right to left and q timesfrom left to right.

But this formulation is not yet general, inasmuch as it em

bodies the consideration of the half-axis of negative real num

bers which in itself has nothing at all to do with the problem

and which has been introduced only by our arbitrary definition

of principal value. However, this limitation is removed by
the following geometrical considerations. Let two non-inter

secting lines Z 1? Z2 be drawn from zero to infinity ; together

they completely delimit a region which, as shown in the figure,

lies to the left of L^ and to the right of Z2 . Let a closed path F,

definitely described, cross Lv in pl points A from right to left,

in qi points B from left to right ;
and Z2 in /2 points D from



288 V. MANY-VALUED ANALYTIC FUNCTIONS

right to left, and in q^ points C from left to right. At the points

A and C, the curve goes into this bounded domain, at the points

FIG. 25

B and D it goes out of it. But it must go out of the domain as

often as it has gone into it
; hence,

/.N f A + to=A +
(4)

which leads to the theorem :

IX. The number (p g) appearing in Theorem VIII has the

same valuefor all lines runningfrom the origin to infinity.

(The limitation made in the proof of this theorem, that L
v

and Z2 shall not intersect, can also be removed. For, the

theorem can be proved as above for two curves Z : and Z2 ,
which

first coincide for a distance from the origin and then sepa

rate. For two such intersecting curves Zx and Z2 ,
a third

one can then be assigned which has with each of them at

least one point of intersection less than Zt and Z2 have with

each other.)

X. We call this number the number of circuits of the path F

about the origin.
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Theorem VIII is then formulated as follows :

XI. If z changes its amplitude continuously in describing a closed

path, then the amplitude is finally 2 ire greater than before where C

is the number of circuits of the path about the origin.

From this special case treated in the Theorems VIII-XI, it

is now easy to return to the general case of Theorem VII
; for,

we can replace any arbitrary path

zbozi? connecting a point ZQ to

another z{ by :

1. A definite path z /?2i, for ex

ample, such a one which does not

cut the half-axis of negative real

numbers
;

2. The closed path z^zQaz^

which is composed of this definite

path (i) running in the opposite

direction and the given path Z^OLZ^

These remarks are not limited to

the investigation of the amplitude but are true in general ; they

are formulated as follows :

XII. The change in value which a many-valued function of a

point undergoes while this point changes continuously in tracing an

ARBITRARY PATH FROM Z TO Z
1? can be determined whenever the

change in value of thefunction for a DEFINITE PA TH FROM Z
Q
TO Z

x

andfor an ARBITRARY CLOSED path is known.

55. The RiEMANN S Surface of the Amplitude

A clear geometrical representation of the relations treated in

the previous paragraph is obtained by using the values of the

amplitude at ever)
7

point of the (x -\- ty)-plane as ordinates per

pendicular to this plane ;
the end-points of these ordinates

FIG. 26
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determine a definite surface. We call the third coordinate
,
in

a system of space coordinates of which two axes coincide with

our x- and jy-axes ;
then the coordinates of the points of this sur

face are expressed by two parameters as follows :

(i) x = rcos(f), y=rsir\(f&amp;gt;,
=

&amp;lt;/&amp;gt;.

These are the equations of a surface well known in analytic

geometry ;
it is called the ordinary straight line helicoid ;

* but

these equations are understood at present in a sense somewhat

different from that in analytic geometry. There r and &amp;lt; are

regarded as unlimited, real variables
;

all of the straight lines

whose equations are obtained from equations (i) by giving a

certain value to &amp;lt; and allowing r only to vary lie entirely on this

helicoid. But in the present case r is essentially positive ; our

surface, therefore, contains only one of the two rays into which

each of these straight lines is divided by their point of inter

section with the -axis. However, we shall retain the name
&quot; helicoid

&quot;

for the surface in the present case.

The amplitude &amp;lt; is thus a single-valued function of position on

this surface since there is one and only one value of
&amp;lt;j&amp;gt;

for each

point of the surface. Moreover, there is a continuous change

of amplitude corresponding to a continuous progression upon

the surface. To determine what final value of the amplitude

is obtained at %, when we follow a definite curve starting

from ZQ with a certain initial value &amp;lt; and when the amplitude

thus changes continuously, it is only necessary to erect a cylin

der f on this curve and extend it to intersect the surface. If

the curve of the z-plane does not go through the origin, and if

it has no double point, then the curve of intersection of the

cylinder with this surface is divided into separate branches

* Sometimes called screw surface. S. E. R.

f Whose element is parallel to the -axis here a right cylinder. S. E. R.
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which have no point in common and are everywhere separated

from each other by vertical distances equal to 2 IT. If we then

follow on the surface the branch of the curve starting from

C*o&amp;gt; Jo o
=

&amp;lt;&&amp;gt;)&amp;gt;

we shall never trespass on another branch of the

curve if we always proceed (not by bounds but) continuously

along the curve. We arrive finally at a definite point of the

surface lying over zv ;
its ordinate represents then the desired

final value of the amplitude. If the given curve of the s-plane

intersects itself, then the parts of the curve made by the inter

section of the cylinder with the surface intersect
; moreover,

the correspondence of the branches is at once evident if we

notice how the separate branches of the curve starting from the

point of intersection on the surface correspond to the separate

branches in the plane.

This method of representation is now developed further.

Complex variables were first interpreted in the plane ; later, in

13, chapter two, the sphere was used
;
in the same way the sur

face known as the helicoid may be used. For this purpose we

merely attach to each point of the helicoid the same complex value

which belongs to its perpendicular projection on the .rj -plane ;

and therefore to each complex value z there belongs not one

definite point of the surface as in the earlier representations, but

an infinite number of points (lying in a straight line perpendicular

to the .vjr-plane). Every function of x and j, whether it is single-

or many-valued, is now considered as a function of position on

the helicoid in that the values of the function belonging to a

certain z are assigned to the points of the surface belonging to

the same z. These results are then expressed as follows :

I. If the amplitude of z is considered as a function of position on

the helicoid, this function becomes single-valued and continuous by

assigning to each point of tJie surface that value of the amplitude

which is equal to its ordinate.
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And finally: in formula (i) the pitch of the helicoid is taken

equal to 2 TT. But the size of the pitch is evidently arbitrary ;

it can be decreased by decreasing the ordinates of all the points

of the surface in the same ratio. It can finally be made indefi

nitely small
;
the entire surface is then composed of an infinite

number of flat, thin sheets placed one upon the other indefi

nitely close and connected at the origin in the same manner as

the sheets of the helicoid first considered.

II. Such a surface, composed of a number of smooth, flat sheets

connected in a definite manner, is called a plane RIEMANN S surface.

The one considered here has an infinite number of sheets extended

over the whole z-plane. Its sheets are all connected with each

other at the point z = o
;
this point z = o is therefore for this

surface a branch-point* of infinitely high order. Over every

other point of the s-plane (even over the points of the half-axis

of negative real numbers) the sheets remain separate and are

arranged simply one upon another.

The same surface is also obtained in another way as follows :

we cut the z-plane along the half-axis of negative real numbers

from o to oo. Let us consider an infinite number of such

s-planes cut in this way, and let us number them by an index k

which takes all integral values from oo to + oo. Let us now

arrange them one upon another, so that the (k-\- i)th sheet is

the next above the /th. Finally let us connect the right bank

of the cut in the k\h sheet with the left bank of the cut in the

(k+ i)th sheet.

III. Upon this surface, constructed in either manner, the

values of the amplitude are thus arranged as a single-valued and

* That is, if a point z makes a complete circuit of a point P in the z-plane and

returns to its original position, and in so doing the value of w (the function) is

always changed, then the point P is called a branch-point. As an illustration of

how the function-values pass into one another on describing closed paths around

a branch-point, cf. Exs. i, 3, 5, end of 59. S. E. R.
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continuous function of position; and this is the final result of the

discussion.

We shall frequently have occasion in what follows to use

such &quot; RiEMANN S surfaces
&quot;

to represent graphically the rela

tion between the different values of a many-valued function.

In this connection it seems most practical to think of the sur

face as extended over the sphere and not over the plane ;
such

a representation is obtained by projecting the plane, that is, the

surface spread out upon it, stereograph ically ( 13) upon the

sphere. This is of no particular use in the case just consid

ered
; however, in this transformation from the plane to the

sphere we observe that the half-axis of negative real numbers

corresponds to a half-meridian which connects the points O and

O f

. We notice too that the sheets are connected at the latter

point just as at the former, with this difference however, that

if we regard the sheets about O as &quot;wound right-handed,&quot;*

then those about O are &quot; wound left-handed.
1

For, a line upon

the sphere which encircles the point z = o in the positive sense,

that is, so that this point always lies to the left in passing along

the curve, has at the same time the point at infinity to the right

and encircles it therefore in the negative sense.

A further explanation is necessary in order to avoid misun

derstandings that might otherwise arise. In the above para

graphs we have frequently spoken of &quot; sheets
&quot;

of the surface
;

this was due chiefly to the way in which the surface was con

structed from planes cut along the half-axis of negative real

numbers
;
and therefore upon the arbitrary, fixed definition of

the principal value of the amplitude. The joining of the sheets

at the cut is not visible on the completed surface
;
but such

connection and the resulting individual sheets become evident

by supposing an arbitrary, vertical cut through all the sheets

* As is customary in technics but different in botany.
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running from o to oo. We notice too that two points which

are vertical to the same point in the plane and which lie in dif

ferent sheets for one such cut lie in different sheets for any such

cut. But, given two points of the surface which are situated

above different points of the plane, we can then choose the

position of the cut so that these points lie in the same sheet or

in different sheets of the surface. Hence the expression
&quot; two

points of the same sheet
1 1

always has a definite meaning only with

regard to a definite cut previously chosen (cf. end 59).

56. The Logarithm

The value of the integral

JTf&amp;lt;

according to VI, 35, is a regular function of its upper limit

inside of every simply connected domain which contains within

it the point z = i but neither the origin nor the point at infinity,

provided that the path of integration also lies entirely in the

domain. (The origin and the point at infinity must here be

excluded, since the function to be integrated has a pole in the

first case, and while the function remains regular in the second

case it is not zero of order higher than the first; cf. IV, 45.)

If z is real and positive, and if the axis of positive real num

bers is chosen as the path of integration, then the value of in

tegral (i) is, as is well known, equal to the natural logarithm

of z. We retain here this name and the corresponding symbol

for the function for the case where z is a complex number
;
we

define accordingly :

I. The natural logarithm of a complex number z, log z, is any

one of the values which integral (/) takes on when the path of inte

gration is arbitrary.
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The determination of the values of the logarithm of a com

plex number is made to depend upon functions of real variables

known in elementary analysis, by representing the complex num

bers in terms of their absolute values and amplitudes as in 4.

For this purpose we put

(2) z = ;-(cos &amp;lt;p
+ * sin

&amp;lt;)

(3) = p(cosi^ + /sin^r).

To discuss the simplest

case let us take as the

required path of inte

gration a piece of the

axis of real numbers

from i to \z\ and an

arc of a circle whose

center is at the origin

and which connects the

and z (Fig.
FK;. 27 a

points

27). Along the first part of this path 1^
= 0, =

p, d = dp and

p takes on all the values from i to
\

z
\

. For this part of the path

the following integral,

(4)

1*1

FIG.

taken along the real

path between the real

limits is, therefore, a

special case of the inte

gral (i); and Log |

z
\

is

here understood to be

* The capital here indicates, as in Ex. 3 at the end of 56, a definite
&quot; branch &quot;

of the logarithm called the principal value of the logarithm (cf. IV). In what fol

lows it will be so written. S. E. R.
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the real natural logarithm of the real positive number z
\

,
defined

in elementary mathematics. If p is constant and =
|

z
\ along

the second part of the path of integration, then,

(5) J =
|

z
\ (
- sin $ + / cos

$)&amp;lt;ty
=

iftty,

and
i/

takes on all the real values from o to &amp;lt;. For the second

part of the path we therefore have a special case of the integral

(i) equal to i times the integral

(6) f% =
Jo

taken along the real path. This integral defines
&amp;lt;f&amp;gt;

;
for &amp;lt; we

therefore take that value of the amplitude of z which, according
to 54, is obtained when z, starting from

|

z
\

,
traces the pre

scribed arc of a circle, and when the amplitude thus starting

from o changes continuously. Every value of the amplitude

can therefore be obtained by allowing the prescribed arc of a

circle to include more than a whole circumference.

The result thus found for this special kind of path of integra

tion is true generally. For, every arbitrary preassigned path

from i to z may be deformed, without passing through the origin

or through infinity, to a path of the kind just considered. It

therefore follows, according to V, 35, that the values thus

found represent the totality of the values of log z determined by
definition (i). The results of the investigation are expressed

completely as follows :

II. The totality of values of the logarithm of the complex number

z = r e^ is given by theformula

(7) logs

in which Log r is the real logarithm of the absolute value of z, and

&amp;lt;f&amp;gt;

is an arbitrary value of its amplitude,
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III. The logarithm of a complex variable, as it is defined by (/),

is thus an infinitely many-valued function, the totality of whose

values is obtainedfrom any one of them by the addition of arbitrary

integral multiples of 2 iri.

IV. By using the principal value of the amplitude a definite

&quot;branch
&quot;

of this infinitely many-valued futution is obtained ; it is

called tlie principal value of the logarithm*

A real positive number is a particular case of a complex

variable. As such it therefore has infinitely many logarithms

in the sense defined here
;
of these the principal value is identi

cal with the real logarithm defined in an elementary way, the

others have imaginary parts which are even multiples of vi.

The imaginary parts of logarithms of negative real numbers are

odd multiples of iri.

V. As the basis for representing the logarithm as a single-

valued function of position we use, therefore, the RIEMANN S sur

face studied in the previous paragraph.

It is essential that we study now the most important proper

ties of the logarithmic function as defined. The first of these

properties is that each of its branches is regular, according to

VI, 35, in every domain which lies entirely in the finite part

of the plane, which is simply connected, and which does not

contain the origin within it
;

it can then be developed in a TAY

LOR S series in the neighborhood of every point excepting only

o and oo . The coefficients of this development are determined

from the defining equation (i) by successive differentiation
;

it

thus follows that

(8)

* Thus, that value of log [z
=

r(coscj&amp;gt; + * sin
&amp;lt;/&amp;gt;)]

for which n&amp;lt;4&amp;gt;&amp;lt;
it is writ

ten Log z = Log(r = |

z
\ ) + / Am s. S. E. R.
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just as when z is real. We observe in particular :

VI. The development of the principal value in powers of

(z- i) is

The elementary logarithm of a positive real number has also

the fundamental property that

(IO) log (S^) = log Zi + log ZZ .

In order to investigate whether and in what sense this property
also holds for the infinitely many-valued function of complex

argument designated here by the name logarithm, we start from

the fact that each preassigned path from i to Z& can be so de

formed as to make it pass through the point % without in this

way changing the value of the integral :

nj& *1*2-

This integral, for all of its values, can now be written in the

form of the sum :

rf+.t
by suitably choosing the two paths of integration. The first

one of these integrals is a value of log % ;
let us introduce a new

variable of integration 77
in the second by the substitution :

(13) f = M-

We have investigated this substitution in 9 ;
it is reversibly

unique over the whole plane. To the path from ^ to % 2 pre

viously determined in the -plane, there corresponds then point

for point in the ^-plane a definite path from
77
= i to

77
= zz ;
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and therefore the second integral of (12) may be replaced by

a value of log z2 .p*.
Jl Tfli

Thus the validity of (10) for complex arguments is proven in

the sense that if any value is assigned to the left-hand side we

can always so choose the values of the logarithms on the right-

hand side that the equation is satisfied. We can even choose

arbitrarily the value of one of the two logarithms on the right-

hand side and then determine the other so that the equation

remains true. For, when a path from i to S& and one from

i to zl are agreed upon, another path from zv to z& can always

be so determined that all three paths together form a closed

curve which encircles the origin zero times (X, 54).

Conversely each value of the right-hand side of (10) is equal

to a value of the left-hand side. For, suppose arbitrary paths

from i to z
v and from i to z^ are given ; by means of the substi

tution (13) a definite path from % to Z& corresponds to the

path from i to &,, and this then combined with the path from i

to % gives a definite path from i to %s2 . On this account

therefore,

VII. Equation (10) zV truefor complex arguments z in the sense

that every value of the right-hand side is equal to a value of the left-

hand side and conversely, and that then the totality of values of the

two sides coincide.*

Having once determined the equality of any values whatever

of the two sides, we might have derived therefrom that both

sides of the equation have the same degree of many-valuedness,

since for both sides the transition from one value to any other

takes plfiCe by the addition of arbitrary integral multiples of

* That is, it is a complete equation, or one which is completely true. S.E. R.
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2 TTZ. The method pursued shows further how the third path is

to be chosen, when two paths of integration are given, in order

to satisfy the equation.

In other equations between many-valued functions the con

ditions may be entirely different. If, for example, we put

z
l
= z2

= z in equation (10), we conclude that the two paths on

the right-hand side should coincide (or at least encircle the

origin equally often), and it then follows from the first proof of

Theorem VII that in the resulting equation

(14) logO
2

)
= 2 logs

every value of the right-hand side is equal to a value of the left-

hand side. But if we prescribe the path from i to zz and one of

the paths from i to z we can not conclude that the path from z to

z2
, compounded from the return path from z to i and the path

from i to 22
,
is transformed by the inverse of substitution (13) into

a second path from i to z which coincides with the prescribed

one from i to z or which may be reduced to it without going

through the origin. From the second method we see that the

left-hand side of (14) is determined only for integral multiples

of 2 IT/, the right-hand side only for such multiples of 4 tri. We
find accordingly that :

VIII. In equation (14) every value of the right-hand side is equal

to a value of the left-hand side, but the left-hand side may have the

values of ^ log z + 2 -iri in addition to this.

It is important to notice also that equations (10) and (14)

are not always true if we use only the principal values of all

the logarithms in them, as simple values show (put ;
for exam-

3rt

pie, z = e* in (14)).
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EXAMPLES

1. Any value of log z is a continuous function of both x and

_&amp;gt;
, except when x = o, y = o. Prove.

2. Show that in the equation

logfe) = log % + log z2

every value of either side is one of the values of the other side.

HINT. Put 21 = ri(cos 6\ + i sin 0i) and z = r2 (cos 2 + * sin 2 ), and

apply the formula.

3. Show that Log(sI
22)
= Log zl + Log z2 ,

is not true in all

cases.

For example if zl
= z.2

= i/2( i + /\/3)= cos ^- + / sin ^,
3 3

then Log S!
= Log s2

=
&quot;&quot;^ an&amp;lt;^ Log Sj + Log % = | ?r/, which is

one of the values of log (s^o), but not the principal value.

What is the value of Log (%&) for the special value of %
and s2 ? Ans.

( 2/^)(iri).

4. Show that in the equation

log zm = m log z, m being an integer,

every value of the right-hand side is a value of the left-hand

side, but that the converse is not true. What values belong to

the left-hand side of this equation that are not values of the right-

hand side ?

5. Is the equation of Ex. 3 above true if the line from zl to

z2 cuts the negative half of the real axis ?

6. Show that the equation

= Log (z
~ ^ - Log (z

~ b
&quot;&amp;gt;

is true if z lies outside of the domain bounded by the line join

ing the points z = a and z = b and lines through these points
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parallel to the .*-axis and extending to infinity in the negative

direction.

7. The equation

)

= Log (i
-

a/z]
- Log (i

-
b/z)

is true if z lies outside the triangle formed by the three points

o, a, b. Prove.

8. If z = x + (y, then log log z Log R + (0 + 2 & ir)i where

JP = (Log ry + (0 + 2 /br)
2

and is the least positive angle determined by the equations,

cos : sin 6 : i : : Log r : + 2 k-n- : V(Log 7f + (0 + 2 k-nf.

Plot roughly the doubly infinite set of values of log log (i +t \/3),

indicating which of them are values of Log log(i H-iVs) and

which of log Log (i + /V3).

9. Is the equation a6 =
(#

2

)
3 a complete equation ? Show

by use of logarithms.

10. Are the equations

am ( i
= am ^ am zz and Am [ ]

= Am % Am z2W W
complete equations ?

11. Show that the exponential function expz or e? is a single-

valued function of z.

12. When x is negative, how does log x differ from log
|

x or

from (1/2) log.*
2

?

13. We know that lim
\

g( T + w)
j.

_
z when w is real.

o 1 w j

This result may be extended to complex values of a/. For,
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the path of integration being the straight line from i to i -f w.

This line is represented by the equations

x = i + /p cos
&amp;lt;, y = tp sin

&amp;lt;,
o &amp;lt; t

&amp;lt;^
i,

p being the modulus and &amp;lt; the amplitude of w. Thus

, , \ C l

P (cos &amp;lt;t&amp;gt; -\- i sin
&amp;lt;$&amp;gt;}dt

log ( I -|- ft )
= I -Z*

,

Jo i + /p(cos &amp;lt; + / sin
&amp;lt;)

and = I -
*/o i /p(cos &amp;lt; + / sin

&amp;lt;)

r 1

/(cos 4&amp;gt; + t sin= I

-&quot;Jo 7T /p(cos &amp;lt;/&amp;gt;

-|- / sin

The modulus of the last term is less than

tdt

which approaches zero with p. and hence lim \

^ T
^

! =i.
=M) I

If w = // + /V, and and v each approach zero, then w ap

proaches the origin along a path the nature of which depends

upon the way in which u and v approach zero, or on the rela

tions which hold between them in the process. Thus if // were

always equal to v, the path would be a straight line bisecting

the angle between the axes. Thus
tv

approaches i

w
as w approaches zero.

14. Show that the formula log &amp;lt;(/)

=
&amp;lt;

(/)/&amp;lt;(/)
holds

dt

generally when &amp;lt; is a complex function of the real variable /.

Put
&amp;lt;f&amp;gt;

= // + iv and log &amp;lt;

= (1/2) log(//
2 + #2

) -f * tan-1

^/^) and

differentiate according to the usual formulas.
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57. Conformal Representation Determined by the Logarithm

We investigate now the conformal mapping of the s-plane

upon the w-plane determined by the function :

(1) w = \ogz-,

in this connection we keep in mind the principal value of the

logarithm. In the theory of the real logarithm of a real positive

number z\ it is known that such a logarithm takes on real

values continually increasing from oo to + oo as z
\

increases

from o to oo . Further, &amp;lt; continually increasing passes from

TT to + TT as z describes a circle about the origin in the posi

tive sense, starting at its intersection with the negative ^-axis

and returning to that place. Since a circle about the origin and

a radius vector starting at the origin can intersect in only one

point, it follows that :

I . The principal value

(2) w = u -f- iv

of the logarithm takes on each finite complex value at one and only

one point of the plane providing the imaginary part v satisfies the

inequality :

(3)
_

7r&amp;lt;Z;^ +7r .

But, expressed geometrically, this means that:

II. The z-plane cut along the half-axis of negative real numbers

is mapped conformally by the principal value of the logarithm upon

the parallel strip of the w-plane bounded by the lines v = TT and

v -h TT.

Thus the parallels to the #-axis correspond to the rays of

the s-plane starting at the origin, the parallels to the z/-axis

correspond to the concentric circles about the origin in the

z-plane.
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Going now from the principal value to the other values of the

logarithm, we find that :

III. The z-plane cut along the half-axis of negative real numbers

is mapped by the kth value of the logarithm upon t)iat strip of tfie

w-plane bounded by the parallels :

V(2k I)TT, v = (2 k + I)TT.

The maps of the z-plane upon the w-plane determined by the

different branches of the logarithmic function are therefore

contiguous throughout the w-plane and finally cover the whole

of it once without gaps. From this it follows that :

IV. There is always one, and only one, value of z (finite and

different from zero], for which one of the values of log z is equal to

an arbitrary, preassignedfinite complex number w.

Let us, therefore, consider z as a function of w, that is, the

problem
&quot;

to revert the logarithm We find that this function

is single-valued over the whole plane. It is furthur continuous

over the whole plane, as is seen from the definition of the

logarithm by means of the definite integral ; moreover, the con

tinuity is not broken at the boundaries of the parallel strips, as

we see from the results of 54, 55 relative to the continuous

connection between the different branches of the logarithm (or

amplitude). Finally, this function has a definite first derivative

over the whole plane :

/ x dz i /dw
(4) ^ =

/lTz
=z

and thus z is finite and different from zero for all finite values

of iv. In consequence of Theorem IX, 38, and the definition

of a regular function, we therefore have :

V. The inverse of the logarithm is a function regular over the

whole plane and is therefore a transcendental integralfunction.
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Having obtained this result we may now use the method of

undetermined coefficients to determine the coefficients of the

corresponding series by substituting

in the differential equation (4). The following recursion

formula for An is thus obtained :

nAn
= An_i ;

and as AQ must be equal to i (since z = i, w= o is a pair of

corresponding values), we use this formula to determine the co

efficients An successively. We thus obtain :

(5) s=i+
j^,thatis:

VI. The inverse of the logarithm is the exponential function of

complex argument discussed in 40.

We might also have obtained this result in many other ways,

for example, by reverting the series (9), 56, in the sense of X,

46, or by showing that the conformal mapping determined by

the logarithm is exactly the inverse of the conformal mapping
determined by the exponential function. The method used

here is important, since it can be used in complicated cases to

determine whether a proposed problem of inversion can be

solved in terms of a single-valued function. To avoid misun

derstandings, we state further that it is not sufficient in the

proof of Theorem V to show that the inverse function is regular

in the neighborhood of every point of the domain for which it is

defined
;

it is much more essential that we obtain a clear con

ception of the form of this defining domain
;
this is most easily

done by investigating the conformal mapping.
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EXAMPLES

1. For the transformation w = log z find the curves in the

z-plane which correspond respectively to the lines u = const,

and v = const.

If z = x + iy = / (cos 6-\-i sin 6)

and w = u -f- iv = p (cos &amp;lt; + / sin
&amp;lt;/&amp;gt;),

then * = ^u cos v, u = log r,

y = e&quot; sin z1

,
v = 6 + 2

&amp;gt;,

where is any integer. Describe the motion of z while a/ de

scribes the whole of a line parallel to the z&amp;gt;-axis.

2. Show that to a straight line in the w-plane corresponds,

by the transformation w = \ogz, an equiangular spiral in the

2-plane.

2 a. If, in the stereographic projection defined in Ex. i
,
at

the end of 13, we introduce a new complex variable

w = u + iv i- \og(z/2)= i- log [(i/2)(^ -f- /]
n

so that u =
&amp;lt;j&amp;gt;,

v = log cot -
,
we obtain another map of the sur

face of the sphere usually called MERCATOR S Projection. On
this map parallels of latitude and longitude are represented by

straight lines parallel to the axes of u and v respectively.

NOTE. The problem of making maps of the earth s surface by applying

the principles of stereographic projection and conformal representation is of

great interest. The discovery of the compass brought with it the idea of

steering a course making with all meridians a constant angle. This course

was a spiral and was called a rhumb line or loxodroma. If the earth s sur

face (regarded as a sphere) be inverted from any point of the surface, say

the north pole, into a plane, for example into the plane tangent at the south

pole, the meridians become a pencil of rays through the origin in the plane

and the loxodromes are then, by isogonality, curves cutting this pencil at a

constant angle, that is, equiangular spirals. But the map so formed by stereo-



308 V. MANY-VALUED ANALYTIC FUNCTIONS

graphic projection was not sufficiently simple since the loxodromes were the

important lines. A map was wanted on which the loxodromes would appear

as straight lines. This was accomplished by mapping the inverse of the

sphere by means of w = log 2. And this, then, is the principle of MERCATOR S

Projection.

Of the memoirs which treat of the construction of maps of surfaces as a

special question, the most important are those of LAGRANGE, Collected Works,

Vol. IV, pp. 635-692, and GAUSS, Ges. Werke, Vol. IV, pp. 189-216. Also a

treatise by HERZ, Lehrbuch der Landkartenprojectlonen, Teubner, 1885.

2 b. Discuss the map determined by the equation

showing that the straight lines for which x and y are constant

correspond to two orthogonal systems of coaxial circles in the

ze/-plane.

3. Find all the values of / .

By definition i
{ = exp (Y log/).

But /= cos - + / sin
, log / =

[
2 kir + -

]
*

,22 V 2 /

where k is any integer. Thus,

i* - exp {
-

(2 k + 1/2)71-5
= ^(2*+1/2)7r

.

The values of /* are, therefore, all real and positive.

4. Find all the values of (i + /)* ,
z
(1+i)

, (i + (1+&amp;lt;)
-

5. Find the general value of a2
. Let

z = x+ ty, a = p(cosO + /sin0)

where TT &amp;lt; ^ ?r.

By definition a2 = exp (z log a).

But z log a = (x + iy) \ Log p+(6 + 2 mir]i\
= L + iAf,

where L = x log/o y(0 + 2 mir\ M=y logp + x(6 + 2 mir)

and a* exp (z log a)= e
L
(cos M+ i sin M).
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Therefore the general value of a* is

^logp- y
(0+2m,r)[-

cos |j,
I gp +X (0 + 2 Mlf) \ + I sin \y log p

This is in general an infinitely many-valued function corre

sponding to the different values of ;;/ unless y = o. But even

if y = o and z irrational, there are an infinite number of values

each of which have the same modulus.

6. Find the principal value of a*. (Put ;;/ = o in the general

formula.)

7. There are two particular cases in Ex. 5 that are of interest :

(I) if a is real and positive and z real, then p = a, = o, x = z,

y = o, and the principal value of a* is &amp;lt;?*

loga
;
but (II) if \a\ i

and z is real, then p = i
,
x = z, y = o and the principal value

of (cos + z sin 0)
z

is (cos zQ + /sin zO), a generalization of

DE MOIVRE S theorem.

8. Find the general value and also the principal value of e*.

(For the general value put e for a in the general formula so that

logp = i, = o. The principal value of e* is e*(cos y-{-t smy).

9. Show that log (e
2
)
=

(i -f 2 miri)z + 2 tnri, m and ;/ being

any integers, and that in general log (a
2

) has a double infinity

of values.

10. In what cases are any of the values of x1
,
where x is real,

themselves real t

If x
&amp;gt; o, then

xx= exp (x log x) = Jexp (x Log x) j (cos 2 m-n-x -f / sin 2 mirx) the

first factor of which is real. The principal value, for which

m = o, is always real.

p
If, however, x is a rational fraction of the form -

-^ ,
or is

irrational, there is no other real value. But if x is of the form
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p/2 q there is one other value, viz. : exp (x Log x] given by
m = q..

If x = h
( &amp;lt; o), then

xx = exp |
h log ( h) \

= [exp (
h Log &amp;gt;6)](cos + /sin 0)

where =
(2 #z + i)?r/i The only case in which any value

is real is that for which h =
,
whence m=&amp;gt;g gives the

2?+I
real value,

exp(-/Log ^){cos( /TT)+* sin( /TT)}==(- i)
p ^- fc

.

The cases of reality are illustrated by the following examples:

(-i/3)-* = -^3-

11. Show that the real part of /
L

g&amp;lt;
1+

&amp;gt; is

&amp;lt;p

-J(+ )
t

. cos {1(4 + I)TT log 2 J,

where k is any integer. How does this differ from the real

part of 1
10*1+&amp;lt;

&amp;gt;

?

12. The values #z when plotted on the ARGAND diagram are

the vertices of an equiangular polygon inscribed in an equi

angular spiral whose angle is independent of a. (Math.

Trip., 1899.)

If az = rcos0 + /sin0,

then r= ^ logP-^+^\ = y log p + x(A + 2 WTT),
- TT

&amp;lt;
^

&amp;lt;TT,

(a=
2+y2

)

and all the points lie on the spiral r= p
x e~y9/x .

13. Explain the fallacy in the following argument: since

^mni __ e
2nm _

J? where m and are any integers, therefore rais

ing each side to the power / we obtain e~2mn = e~2nn .
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14. How is the theory of logarithms, as laid down here, har

monized with the elementary notion of a logarithm such as

Iog10 ioo = 2, and such as I &amp;lt;//

7
/= log .# ?

We may define w = loga z in two different ways : (I) we may

put w = loga z if the pri)uipal value of a&quot; is equal to z
; (II) we

may say that w = loga z if any value of aw is equal to z.

Hence if a = e, then w = loge
z according to the first defini

tion if the principal value of ev is equal to z, or if expw = z;

and thus loge z is identical with log z. But, by the second

definition, w = loge
z if

e
v = exp (w log e)

=
z, w log e log z,

or w = K-
, any values of the logarithms being taken. Thus

loge

w = loge
z = L

gN+(Ams+2;/;7r)^
1+2 //7T/

so that w is a doubly infinitely many-valued function of z. And

generally, according to this definition, loga s = &
.

15. Show that log, (i)
= 2 ;TT//(I + 2

JT/), log, ( i)
=

(2 m-\- I)TT//(I + 2
;z?r/), ;;/ and # being any integers.

67 a. The Function t&n~lz

In 56 we defined the logarithmic function for a complex

argument by the integral

We now introduce a new variable of integration Z in this inte

gral by the following substitution already investigated in 15 ;

( 2 \ _i + tZ
z

.1 -
dt _ 2 idl

\ &amp;gt;

i * ** / ~\o
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The integral is thus transformed into

the new upper limit is connected with the old one by the same

equation as the new variable of integration is with the old vari

able
;
that is,

/ N i -\-iZ r, .1 2
(4) z = -

,
Zt--

i-tZ 1 + 2

But when an integral between complex limits is to be trans

formed by the introduction of a new variable of integration we

must be careful, in general and hence here, that the limits of

the two integrals correspond to each other and also that the

paths of integration correspond at least whenever we are

dealing with an integral which is not completely independent of

the path. The logarithm has infinitely many values according

to the choice of the path of integration ;
we have arbitrarily

chosen one of these values as principal value. We shall obtain

the best notions concerning the new integral by using the prin

cipal value. In defining the principal value of the amplitude

and subsequently the principal value of the logarithm, we

drew a cut in 54 along the half-axis of negative reals and pro

hibited the path of integration from crossing this cut. It is

essential, therefore, to determine first what lines of the Z-plane

correspond to this cut in the s-plane. From the results of 14

and 15 we know already that a straight line of the s-plane cor

responds to a circle or again to a straight line of the Z-plane ;

since a circle is completely determined by three of its points, it

will only be necessary to find the points of the Z-plane corre

sponding to three points of this cut. As in 15, following (3),

we have the following pairs of corresponding values :

z = o i oo

Z=i OQ -
1 ,
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The cut in the .s-plane thus corresponds in the Z-plane to that

part of the axis of pure imaginaries which runs from Z = i

through infinity to Z = i. We obtain accordingly the prin

cipal value of the logarithm when we so choose the path of

integration for the integral (3) that it does not cross this part of

the Z-axis. The remaining values then follow from this princi

pal value by the addition of arbitrary integral multiples of 2 ?r/.

Integral (3) without the factor 2 i receives a specific name

based upon the usual terminology in the theory of functions of

a real variable
;
we define :

I. The symbol tan~ !Z
also denotes for complex values of Z, any one of the values of the

integral

f
Jo

which is obtained when the path of integration is chosen arbitrarily

(excepting of course that this path cannot be taken through one

of the points + / or i, since this symbol of integration would

then have no meaning).

II. From this totality of values we then select as the principal

value that otie which is obtained when the path of integration is not

allou&amp;gt;ed to cross the cut described above.

We have then the theorems :

III. All the remaining values of the function tan~ lZ are obtained

from the principal value of this function by the addition of arbitrary

integral multiples of TT.

Also (on account of Theorem I, 57) :

IV. The principal value of the inverse tangent takes on each com

plex value w, whose realpart u satisfies the inequality

(6)
~-

2 &amp;lt;u^

at one and only one point of the plane ;



314 V. MANY-VALUED ANALYTIC FUNCTIONS

or geometrically :

V. The Z-plane cut in the manner specified above is mapped

conformally by the principal value of the function tan~ lZ upon the

parallel strip of the w-plane bounded by the straight lines

(7) U=7T/2, U=+7T/2.

In this transformation the parallels to the z&amp;gt;-axis correspond

to the circles through the two points Z = + i and Z = i, the

parallels to the ^-axis to the circles which cut those through /

and / at right angles ;
in particular the &r-axis corresponds to

the Jf-axis, the z/-axis to that part of the F-axis from Z = i to

Z = + i.

We get likewise from the corresponding theorem on the

logarithm :

VI. There is always one and only one value of Zfor which one

of the values of tan~ l Z is equal to an arbitrary preassigned com

plex number w.

It thus follows, as in 57, that the inverse of the function

w = tan&quot;
1 Z is a function of w which is single-valued in the

whole plane. But it is not regular in the whole plane. For, by
means of the principal value of the function tan&quot;

1 Z a point of

the Z-plane at infinity corresponds to a point of the w-plane at a

finite distance from the origin, viz. to the point w = 7r/2. Con

versely, for the inverse function not a finite but an infinitely

great value corresponds to the point w = IT/ 2 ;
and the same

is then true for all those values which are obtained from

w = 7T/2 by the addition of integral multiples of IT.

To investigate the behavior of the inverse function in the

neighborhood of such a point, we use the process of inverting

the series. Thus let us put

(8) ,=tan- Z=^
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For values of Z sufficiently large we can develop the function

under the sign of integration in a series of decreasing powers of

Z and then integrate ;
this gives :

*

dZ,

Z 3^ 3

s Z

On inverting this series we obtain i/Z represented by a series

of powers of w ir/2 with positive integral exponents, the first

term being

do)
_(_!).

By division of series (A. A. 77) we obtain then a development

for Z in powers of w with increasing integral exponents ;

the first term is

We thus have the theorem :

VII. The inverse of the function tan~^ Z has as simple poles

the point w = - and the points

2

where k is an arbitrary integer ; at each of these points its residue

is equal to i .

* We notice that this development does not give the principal value of tan-1 Z
for all values of Z for which it converges, but for only those values whose real part
is positive.
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All these properties of the function inverse to tan&quot;
1 Z belong

also to the function

(13) tan w = coif- w
j,

as is easily shown from the properties of the cotangent function

discussed in 52. As a matter of fact, we have already noticed

in 53 that the integral (5) represents the inverse of the function

tan w. But it is important, especially in considering compli

cated cases, to know directly that all solutions of the equation

tan w = Z can be represented by means of the integral (5) when

the corresponding path of integration is entirely arbitrary.

Moreover, the equation

(14) tan- 1 Z= log
i-^? or log z= 2 i tan&quot;

1 /^ ^\
21 I iZ \\ + Z J

is entirely in harmony with the EULERIAN relations II, 40 ;
in

fact, if we put

(15) Z=tana
we obtain :

/ s\ i i i -f- iZ i i cos w + i sin w i , 9,-,

(16) . log -!-= log
- ! ^ = .log^

w = ze/

21 I iZ 21 COS W I Sin W 21

as it should be.

58. The Square Root

By means of the logarithmic function we can now answer the

question mentioned at the end of the first chapter about the

meaning of the roots of complex numbers
;
that is, about the in

verse of the function zn investigated in 18. To be sure,

Theorems III and IX of 18 would suffice to answer this ques

tion
;
but we notice that these theorems were obtained only by

representing a complex number in terms of its absolute value and

amplitude, and this is equivalent with the determination of the

logarithm, in so far as we are concerned with the essential point
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of the question, viz. the many-valuedness. Of course we can

also derive those theorems purely algebraically if we assume the

fundamental theorem of algebra ;
but this is much less direct.*

In general an algebraic function is not necessarily simpler in

itself than a transcendental function. With the aid of the loga

rithmic and exponential functions, we now study in this para

graph the function &quot;square root&quot; as the simplest example of

how to obtain an insight into the nature of the algebraic depen

dence between two variables, by representing both of them as

single-valued, transcendental functions of an auxiliary variable.

Definition :

I. The square root of a complex number z,

(1)
s = Vz,

is a complex number s which satisfies the equation :

(2) S&quot;-
= Z.

If we introduce an auxiliary variable y by the relation :

(3) * =
&amp;lt;&quot;&amp;gt;

that is, if we put rj equal to one of the values of the function

logs, already discussed in 56, s is also expressible as a single-

valued function of
rj
as follows. Since equation (2) is to be pre

served, any value of the logarithm of one side must be equal to

a value of the logarithm of the other side
;
hence it follows that

(4) rj
= one of the values of log (s

2
).

But these values separate (VIII, 56) into two classes : the

values of one class are equal to 2 log s, the others differ from

these by uneven multiples of 2 TTZ. It then follows that every

*
Cf., for example, H. WEBER, Lehrbuch der Algebra (Braunschweig, 1895),

Vol. i, page 107.
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value of log s must be representable either in the form :

2
Vt&amp;gt;

~
} I? 2 &quot;

or in the form :

-H 27T/, k = 0, I, 2, .

Both of these are represented in the one form :

- + /TT/, k=0, I, 2,

We thus obtain the following result :

II. If the given value of z be put in the form (3), then every

value of s belonging to it is representable in theform

(5) * = &amp;gt;&quot;

in which k is any integer.

Conversely, it follows from the equations (u), (12) of 40:

III. However the integer k in (5) may be chosen, this formula

always gives a value of s which satisfies equation (2), and there

fore, according to the definition, is a value of V z.

This is also expressible in another manner. We understood

77
above to be a definite one of the values of log z

;
all the others

are then of the form
77 + 2 kiri where k is an integer. We there

fore obtain all the values (5) directly, if
77

in

TJ

is now understood to be any arbitrary, not a fixed value of log z.

Accordingly we may state theorems II and III as follows :
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IV. We obtain all the pairs of corresponding values s, z which

satisfy equation (2) if weput

(7) j = ^, * = ,i

and regard rj
as the independent variable.

V. If we take the principal value for log z in (6), we obtain a

definite value of s ; we call it the. principal value of tJie square root.

Its characteristic property is tJiat its amplitude \\i satisfies the condi

tions

(8)
-f&amp;lt;*^

in other words, tJiat its realpart is not negative*

Since the logarithm is an infinitely many-valued function, it

might appear from (6) that the square root could also have an

infinite number of values. But that is not the case. All the

values of the logarithm follow from the principal value by the

addition of 2 kiri where k is an arbitrary integer. If this integer

be even, we obtain from (6) the same value s = s as when the

principal value of the logarithm is used
;

if it be uneven, we

obtain s=s &amp;lt;?&quot;&quot;

= ^ . It follows accordingly that for the square

root there is only one value beside the principal value
;
or :

VI. To every value (different from o and oo) of the complex

number z, there belong two and only two values of s which satisfy

equation (2).

59. The RiEMANN S Surface for the Square Root

In order to make the square root a single-valued function of

position on a surface, we do not need, according to the last

theorem, the infinitely many-sheeted helicoid surface upon
which the logarithm is represented, but it is sufficient to use a

* If the real part of the square root is zero, then the positive imaginary value is

the principal value.
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two-sheeted surface arising from two circuits on the helicoid (Fig.

28). In this connection we notice that the &quot; second value &quot;

of the logarithm (in the sense of definition IV, 54) again fur

nishes the principal value of the square root. Thus at the

place on the surface of the logarithm where the second sheet

is joined to the third, the first sheet in the surface representing

the square root is joined to the second, provided that to every

continuous connection between the values of the function there

FIG. 28 FIG. 29

shall correspond a continuous connection between the parts of

the surface. But this cannot be represented otherwise in space

than to allow the generating border of the second sheet to pierce the

part of the surface lying under it, in order that it may return to

its initial position in the first sheet which lies under the second,

thus uniting the two sheets (Fig. 29).

The form of such a surface is most easily obtained by con

structing it step by step. Let us think of a radius in the plane

unlimited in length and beginning at the origin which, starting

from a definite initial position (say &amp;lt;

=
w), turns about the ori

gin in the positive sense and by such a movement describes

part of a surface. When this radius has returned to its initial

position after one revolution, the surface thus generated has
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two borders lying adjacent to each other. But these are not

yet to be united with each other
;
on the contrary, let the

moving boundary be pushed beyond the fixed one, and let the

turning movement continue over the first sheet in the same

sense as before and so that the part of the surface thus con

tinually generated trails behind this moving radius. When this

moving boundary completes a second revolution, it is allowed

to pierce the surface lying under it and to be combined with

the initial boundary lying still deeper.

Figure 30 represents a section of the surface made by a plane

perpendicular to the half-axis of negative real numbers. It

shows how the left part of
//

the first sheet is bridged ____
or connected along this

negative axis with the right

part of the second sheet, j /

and how the right part of

the first is bridged to the left part of the second.

The point z = o, about which the sheets are regarded as hang

ing together so that we must change from one sheet to the

other in making a circuit about this point, is called a branch

point of the surface (cf. II, 55) ;
it is in fact a simple branch

point, or one of the first order. In the same way the point oo is a

simple branch-point. The lines along which the two sheets pierce

each other are called bridges (or simply cuts or

X

* In Fig. 30 we referred to the sheets of the surface as having a bridge between
them. What is thus called (provisionally) the bridge between the sheets will serve

as a cut in the s-plane to determine two branches of the function
;
in this case the

branches are assigned to the upper and lower sheets respectively. And, con

versely, when a cut has been employed to locate branches, it is often convenient

to use that cut as a bridge on the RIEMANN S surface and to call it a branch-cut.

Thus in the case above when V0 and Vz are the two branches the axis of nega
tive real numbers is a branch-cut for the corresponding RIEMANN S surface.

S.E.R.
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Therefore upon this surface the square root is a single-valued

function of position ; not only a definite value of z but also a

definite value of s = ~\/z is assigned to each of its points.

Hence s is also a continuous function of position on this surface
;

if a point, progressing continuously, takes on all the values on

a closed curve on the surface itself (not merely on its projection

on the 2-plane), then the corresponding values of the square

root also change continuously. Conversely, only ONE point of

the surface corresponds to each pair of values (z, s), which satisfies

equation (2), ^58. In order that this may be true without excep

tion we stipulate further
;
the branch-point is counted as only one

point of the surface corresponding to the pair of values (o, o).

But every otherpoint of the bridge or branch-cut represents twopoints

of the surface, one of which belongs to one part, the other to the other

part, of the surface divided at this cut.

It is important that we have a clear notion of what is essen

tial and what is not essential in this geometrical representation

of the connection between the values of the function by means

of the RIEMANN S surface. The branch-points z = o and z= oo

are essential
;
to change them would mean to change the func

tion s = -Vz to some other function, not merely to give another

form to the geometrical picture. On the other hand, the form

of the branch-cut is entirely unessential
;

it must only connect

the points o and oo. That it coincides with the axis of negative

real numbers is only a consequence of the manner in which we

defined the principal value of the amplitude, and thereby of the

logarithm in I, 54. We might make some other arbitrary

assumption in order to define a first sheet of our surface. Such

an assumption is formulated geometrically as follows : Let us

draw a definite line from o to oo not intersecting itself; then

let us choose for a definite point z
,
not lying upon this line, one

of the two values belonging to j, say J
,
and take at any other
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point Si that value for s which is obtained when a z-path is

drawn from ZQ not intersecting the line and when in this way
s changes continuously from SQ . Let us then take two such

sheets and connect them crosswise along the cut. We thus

obtain a surface upon which V z is a single-valued and continu

ous function of position.

If we wish to take into account in this geometrical representa

tion the arbitrary manner of choosing the cut, we must regard

the sheets as mwable over each other in such a way that tfie cut

can be shifted without breaking the connectivity. To be sure this

supposes that the one sheet is partially shoved through the other

without tearing them (that is, if the old cut be Fand the new

one be V*
,
the part of the lower sheet between ^and V be

comes part of the upper sheet, and vice versa) ;

* but there is no

necessity whatever of ascribing the property of impenetrability

to the sheets, since they are only geometrical and not physical

creations. In general, this cut is only a necessary makeshift
;

a continuous transition from one value of the function to the

other belonging to the same value of the argument, does not

take place at the cut just as it does not at other places on the

surface (with the exception of the branch-points). In the appli

cation of this idea it is convenient to make the following stipu

lations and, in fact, once for all, since we shall frequently be

concerned with similar relations :

// is assumed that there is no connection along a lint between two

parts of a surface which is divided by such a li)ie. A point which

moves upon a surface of this kind must, when it comes to such a

line (or cut), never cross the cut to the otJierpart of the surface.

(In Fig. 30 the left half of the lower and the right half of the upper
&quot;

sheet&quot;

represents the one part, the right half of the lower and the left half of the

upper represent the other one of the two &quot;parts of the surface,
1 mention of

which has just been made in the above statement.)

* The sentence in parenthesis inserted by the translator.
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EXAMPLES

1. For the function s = Vz put z r(cos &amp;lt; + /sin
&amp;lt;/&amp;gt;);

that is,

s vV( cos + /sin*
)
(where r may be put equal to i) and

construct a table of corresponding values of
&amp;lt;j&amp;gt;, z, and s using for

this purpose &amp;lt;j&amp;gt;

= o, -, TT, etc.
;
show in this way that the values

2

of s will not repeat until
&amp;lt;/&amp;gt;

makes two circuits about the origin.

That z = o is here a branch-point is shown by describing

closed paths around it. (Cf. footnote following II, 55.) Let

the variable start from the point z=i and describe a circle

about the origin ;
let the function s = V z start from the point

z = i with the value s = + i and thus r= i
,

&amp;lt;/&amp;gt;

= o. As z now

describes a circle in the positive direction, r remains = i and

&amp;lt;j&amp;gt;

increases from o to 2 w. When the variable has returned to

* = +i,wehave z = COS2v + j s in2Vt

and hence s = V z = cos ir-\-i sin TT = i
;

the function has now not the original value + i, but the other

value i. The same thing takes place when the variable start

ing from z = i describes any other closed path around the origin,

since this path can be gradually deformed into the circle with

out thereby passing through the origin.

And, in general, if s start with the value s at any point z at

which
*b = r (cos &amp;lt;fo

+ sin
&amp;lt;fo)

SQ
= r (cos

i
&amp;lt; + / sin

and if z describe a closed path around the origin once in the

positive direction, then, on returning to ZQ, we have

and hence s = r 1/2
[cos Q &amp;lt; + T) 4- /sin (| &amp;lt; + TT)]
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If the variable describe the closed path twice, or any other

closed path around the origin twice, then the amplitude of z

increases by 4 IT, that of s by 2 TT, and hence the function again

takes on its original value.

2. Show by means of the transformation

&quot;&quot;

t

that z= x, t=o is a branch-point for s= V z.

3. A case very similar to that of Ex. i is the function

,=(-.)Vi
Here 2=0, but not 0=1

is a branch-point. For,

let us consider the point

z = i for which s = o,

and let z describe

around it a circle with

radius r, starting at

c i -f r on the real

axis (cf. Fig.). If we

put i = r (cos &amp;lt; -f- / sin

then s = r (cos &amp;lt; + / sin
&amp;lt;)
Vi 4- r cos &amp;lt; -f r/ sin &amp;lt;.

As ;- remains constant and
&amp;lt;f&amp;gt;

increases from o to 2 TT the factor

r(cos &amp;lt;f&amp;gt;
-|- / sin

&amp;lt;)

does not change its value. To study the

behavior of the second factor, let us put

i + r cos &amp;lt;

= p cos
\l/

r sin &amp;lt;

= p sin ^ ;

thus p is the straight line oz and
/r
the angle it makes with the

real axis, and we have

s = r(cos sn sn 4-
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Therefore, if the circle does not inclose the origin, \{/ passes

through a series of values beginning with o and ending with o,

and hence s does not change its value. But if the circle be so

large that the origin also lies within it, ij/
increases from o to 2 ?r,

and hence in this case the original value s = rp^ passes into rp
1

.

We thus confirm the statement that only the point z = o and not

the point z = i is a branch-point.

4. It is sometimes desirable to consider the function (z i)^/z

of the previous example as derived from

by making a = i. A line inclosing the point z=i can then

be regarded as having at first inclosed the two points z= i and

z = a which were subsequently made to coincide. Now z = i
,

z = a, and z = o are all branch-points of the function s . A
closed path which, starting from ZQ ,

makes a. circuit around both

points i and a, can be replaced by closed paths, each of which

incloses only one of these points. And if s start from z with

the value j
,
on encircling the point a it passes into s Q ,

and

then on encircling the point i
,

s Q passes into s again. The

function returns therefore to z with its original value. This is

true as a approaches the point i, and when these branch-points

coincide the common point obviously ceases to be a branch-point.

5. Discuss next the function

Vz
a , ,

, a,b complex.
z b

Here z a and z = b are both branch-points. For, if we first

let z describe a closed path around the point a starting from

any point z say, but not inclosing the point b, and if we accord

ingly put z -a = r (cos j&amp;gt;
+ i sin

&amp;lt;f&amp;gt;)
,

z a = r (cos &amp;lt; + i sin
&amp;lt;/&amp;gt; ),
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then the initial value of s, denoted here by j1? is

sn

4- TO(COS &amp;lt;&amp;lt;) + i sm

After the closed path is described once in the positive direc

tion, (fr
has increased by 2 TT and hence the resulting value of j,

denoted here by s2 ,
is

j _ r^ [cos (i &amp;lt;fr o+ 1 + i sm(i &amp;lt;fto + 1 w)]

\a b + r (cos (fr + i sin
&amp;lt;fr )]*

Here the denominator, and therefore the quantity $Jz b can

not have changed its value because for it z = b and not z = a is

a branch-point ;
z has thus described a closed path which does

not include the branch-point of this expression. Let

2

be a root of the equation a3 = i
; then, since

cos
(-g- (fr -f- | TT) -f- / sin

(-3- (fr -{- |- TT)
= (cos \ (fr + / sin

(cos -|
TT 4- sin J ?r),

we can write s2 = ft^.

Now let z describe a second closed path around the point a
;

then s starts at z with the value s2 = as^ and acquires after com

pleting the circuit the value

s3
= as2

= a2
^.

After a third circuit s acquires the value ofsl 1
that is, the

original value s
1 since 3 =i. If we had started from ZQ with

the value s2 instead of jj, we should have obtained s3 and ^ after

one and two circuits respectively; and if s3 had been the

original value, it would have changed into sl and s2 successively.

Show now that similar results are obtained when z is made

to describe a closed path including only the point b : and further
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that repeated circuits around a branch-point interchange the

function-values in cyclical order.

Discuss also what takes place when z describes a closed path

including both points a and b.

60. Connectivity of this Surface

One frequently encounters the problem to apply the general

theorems of Chapter IV concerning single-valued functions of z

to such functions which are single-valued functions of position

on any RIEMANN S surface other than the plane, or the sphere.

Now those theorems depend upon the fundamental theorem of

integration in 36 due to CAUCHY, and this again depends

upon the substitution of an integral taken along a closed curve

for a sum of integrals taken around sufficiently small regions of

the surface. If, therefore, these theorems are to be applied to

any other surface, we must first determine whether any closed

curve on this surface also completely bounds a region of the

surface
;
we shall see that this is by no means the case for all

surfaces.

The problem is, as we see, a qualitative one
;

it has nothing

to do with comparing the dimensions of the surfaces, but is

to be answered in the same manner for all surfaces which

can be transformed into each other by continuous deformation

(stretching and bending) without tearing. It thus belongs to a

chapter in geometry which is customarily called analysis situs

or topology, and which in general treats of those properties of

geometrical forms common to all forms which can be trans

formed into each other by stretching and bending without

tearing. Moreover, in the treatment of this question the geo

metrical forms may be supposed to be penetrable or to be

impenetrable. But according to previous assumptions it is

quite necessary for our purpose to regard them as impene-
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trable. We can then deform * our surface into a sphere in the

following manner :

Let us first draw out the inner sheet further through the

branch-cut (Fig. 31 a). This process is continued until the

FIG. 31

entire inner spherical sac is drawn out
;
a sharp edge (&} now

appears at the place at which the cut had been made. Let us

next smooth this off (c] and the sphere (&amp;lt;/)
is the final result.

We can also arrange this deformation process somewhat dif

ferently. We can think of the inner sphere as flattened out

more and more until it finally becomes a doubly covered circular

flat disc. It is then evident that, by pulling the two sheets of

this disc through each other, a sphere with a pocket sunk in it

results (Fig. 32 b). If this pocket be

gradually flattened out, we obtain finally

a sphere.

The question as to the possibility of

a continuous deformation of one surface

into another need not be emphasized

here. After all, two surfaces are equivalent for the present

investigation merely when they are so related that a continuous

path on one surface corresponds in the deformation to a contin

uous path on the other. For then every closed line on the one

surface which completely bounds a part of the surface, corre-

* A large number of figures explaining such processes of deformation are to be

found in the work by FR. HOFMANN, Methodik der stetigen Deformation zweiblatt-

riger RlEMANNSCHER Flache, Halle, 1888.

FIG. 32
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spends on the other to a closed line with the same property

(otherwise a continuous path on the one surface, which connects

two points on opposite sides of this closed line, could not corre

spond to a continuous path on the second surface, contrary to

the hypothesis). But such a correspondence between two sur

faces is obtained also as follows :

Let us divide the given surface into any number of parts, tak

ing care that we know in what manner they are connected at

the new borders. We then deform each of the parts so obtained

without tearing and without uniting the parts just divided.

Next lay the deformed parts side by side so that they will join

in pairs with such parts of their borders as originally belonged

together ;
and finally unite these borders.

In the case under discussion the deformation takes place as

follows : Mark the right bank (that is, the one lying on the side

of positive y) of the branch-cut in each sheet by hatching

y//////////////

A

(Fig. 33, A). Then make an incision along the branch-cut

through both sheets, each sheet thus appearing as a sphere, or

as a plane, respectively, with a cut the latter representation

being the more convenient here. By turning the two sides of

the cut apart around the origin in opposite directions, we contract

the surface
;
continue this way until the angle at the origin,

which is 2 TT, is reduced to TT. Proceed the same way with the
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other sheet. When both sheets are deformed in this way, place

them in the plane close together and in such a way that the

smooth bank of the cut in one sheet lies adjacent to the hatched

bank of the cut in the other sheet, just as they were originally.

(It can also be so arranged by suitably stretching the banks that

the points of the banks that were originally side by side are

exactly so placed after deformation.) Finally let us unite these

banks. We obtain in this way a smooth plane, or a sphere, re

spectively (Fig. 33 &amp;lt;).

In accordance with all these methods of deformation, we

therefore obtain the theorem :

The tiuo-sheeted RiEMANN S surface with tivo branch-points has

the same connectivity as tJie sphere.

60 a. Rational Functions of z and s = Vz

In the investigation of any algebraic function of z called s

for example it is appropriate to consider at the same time all

the functions which can be expressed rationally in terms of z

and s. Every such function has only one definite value at any

point of the RIEMANN S surface on which s is single-valued ;
this

value is obtained by giving to s in the corresponding expression

exactly that value which belongs to this point of the surface.

For the case s = ^/z then, z = ^becomes a single-valued func

tion of s; we can therefore transform at once every rational

function of s and z into a rational function of the one variable

s. But when a complicated algebraic relation exists between z

and s, it is not in general possible, the proof of which will not

be given here, to introduce an auxiliary variable, by which z

and s can both be represented as rational functions. We shall

therefore make no use of the possibility of such reduction in

the above simple case, but shall investigate the rational functions

of s and z directly as such.
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We can reduce every such function to a certain simple normal

form. We can represent it for the present as the quotient of two

rational integral functions of s and z, and then remove all higher

powers of s occurring in numerator and denominator by means of

the equations :

(l) S*= Z, S* = SZ, S*= Z\ =SZ\\

in this way, the fraction reduces to the form

in which the ^ s are rational integral functions of z alone. Mul

tiplying numerator and denominator by gs(z) sg4(z) gives the

form :

Sf-Xt
or

(4) r,(z) + sr,(z)

in which r and r2 are rational (fractional) functions of z alone.

Therefore every rationalfunction of z and s given above may be put

in this form.

Common zeros of numerator and denominator can eventually

be removed by this arrangement or new ones could be intro

duced
;
this is to be treated as in 20.

To express the variable a- as a rational function of z and s, we

write :

(5) * = *(*, *).

Then the value of the function jR(z, s) belongs to one of the two

points which lie on the RIEMANN S surface over a point z of the

plane, and the value of the function R(z, s) belongs to the

other one of the two points, provided that a definite one of the

two values of V^ corresponding to a given z is denoted by s.
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However, this symbolism is somewhat tedious, and on this account

we frequently write simply o-=/(z), and agree that the symbol z is

always to designate a definite point of the surface, no matter which

of the two points it is that corresponds to the same value of the

complex variable s. The other one could then be designated by
z say (different from the meaning of this symbol as used in n).

Conversely, if a function of a complex variable z be so de

fined that the two values of this function belong to each value

of z, and that these values are so arranged on the two sheets of

our two-sheeted RIEMANN S surface that only one of these values

belongs to each point of the surface, and that in this way values

of the function differing by an indefinitely small amount corre

spond to points of the surface indefinitely near each other, then

we call such a function single-valued on the RIEMANN S surface.

But not every function single-valued on our RIEMANN S surface

is a rational function of s and z
;
this is as improbable as that

every single-valued function of z alone is a rational function of

z. In 44 we became acquainted with functions of z alone by
means of which we could determine whether or not a given

function is a rational function of z : we could draw conclusions

about the nature of the function in general from its behavior in

the neighborhood of any individual point. This was possible

on account of the fundamental theorems on integration due to

CAUCHY
;
to obtain corresponding theorems for the functions

on a RIEMANN S surface, we must apply those theorems of

CAUCHY to functions which are first defined to be single-valued,

not in the s-plane but on such a surface.

61. Application of CAUCHY S Theorems to Functions which

are single-valued on the RIEMANN S Surface for v*

To properly attack this problem we must be clear at the

start as to the meaning of such terms as regular, pole, essential
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singularity when applied to this surface
;
this is necessary, since

the former definitions of these terms apply only to functions

which are single-valued on the s-plane itself.

No difficulty whatever presents itself in a domain of the sur

face which contains no branch-point. Every such Domain can

be constructed from parts of the surface each of which lies

entirely in one sheet of the surface
;
we can then apply the

former definitions and theorems directly to each such part of

the surface.

It is different in the neighborhood of a branch-point : the

former definitions do not apply to such a point. But we can

map the neighborhood of the branch-point reversely and uniquely

upon the neighborhood of the origin of an auxiliary plane by
the substitution *

(i) z=P,dz = 2tdt,

and then study in this plane all the functions to be investigated.

It is therefore essential to so determine all definitions that they

depend upon the former definitions for their meaning in the

auxiliary plane. Accordingly, we define :

I. A function f(z) of z is called
&quot;

regular on the RlEMANKTS

surface
&quot;

in the neighborhood of the branch-point o, when it is trans

formed by the substitution (/) into a function &amp;lt;j&amp;gt; (/) of the auxiliary

variable t, which is regular in the neighborhood of the origin of the

t-plane in the sense of theformer definition.

* Since the inverse of the function j=Vs, by which we have defined this

RlEMANN S surface, is a single-valued function of s, we could use this s itself as an

auxiliary variable here and thus obtain a single-valued representation on the /-plane

not only of the neighborhood of the branch-point but also of the entire surface.

But since it is not in general possible, as we have seen in 60 a, to find an auxiliary

variable having this property for complicated algebraic functions, we must be satis

fied with mapping the neighborhood of the branch-point and then use a particular

auxiliary variable for each branch-point.
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In this connection it is to be noticed that it is not true that a

function, regular only upon the surface and not at the same time

in the s-plane, has everywhere a definite, finite derivative with

respect to z. An example is the function s = V^ ;
its derivative :

W 7 = ^
dz 2 ^/z

is not finite for z = o.

If, in the further study with substitution (i), we obtain a

function of /which is regular at all points of a certain neighbor

hood of the origin, this point itself excepted, we define :

II. According as this function of t has a pole (non-essential

singularity) or an essential singularity at the point t = O, we say

that t/ie branch-point is a pole or an essential singularity for the

assignedfunction.

And further :

III. In tJie case of a pole at tJie branch-point, the order of the

infinity of the function is to be determined from t and not from z :

thus, for example, the function i/z considered as a function of

the surface has a pole of the second order at the origin.

Corresponding to this we say of a function which is regular

at a branch-point, that it has a zero of the ;;/th order at this

branch-point when the function into which it is transformed by

substitution (i) has a zero of the ;;/th order at the origin. This

is also expressed as follows :

IV. In the neighborhood of a branch-point we consider ~\fz, not

z, as an infinitesimal of the first order.

In accordance with the terminology thus defined, we state the

[lowing theorem :

V. The integral

(3) J/M*
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taken along any curve which completely boiinds a part of the sur*.

face, is equal to zero when the function f(z] is regular over this part.

For, if this part contains no branch-point within it, we can

divide it into a number of pieces each of which lies entirely in

one sheet of the surface. For each such piece the earlier proof

is then valid; and if we subsequently unite these pieces, the

integrals taken along the lines between the pieces drop out as

in 29 (Fig. 15), and only the integral taken along the given

curve remains.

But when the integral is to be taken along a curve which in

closes the branch-point at the origin, we map the neighborhood

of the branch-point on the neighborhood of the origin of the

/-plane by substitution (i) ; integral (3) is thus transformed into

2 \$(f)tdt. A curve which completely incloses this branch

point on the surface, is projected on the s-plane into a curve

which there encircles the branch-point twice
;

this curve is

mapped in the /-plane into a curve making just one circuit

about the origin ; according to hypothesis the function
&amp;lt;(/),

as

also the function
/&amp;lt;/&amp;gt;(/)

is regular inside of this curve; the

integral is therefore zero in the /-plane, and this result is appli

cable to the given integral on the surface.

We treat the neighborhood of the branch-point at infinity in

a similar manner with the aid of the substitution z = /~2
.

Finally, if we are considering a domain which contains one

or both branch-points in its interior, we separate it in the neigh

borhood of the branch-points into pieces each of which lies en

tirely in one sheet of the surface
;
then the theorem holds for

each of these separate pieces, and on combining the integrals

those taken along the paths between the pieces again disappear.

Moreover, in passing from CAUCHY S theorem on integration

to the expansion in series according to the CAUCHY-TAYLOR
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theorem, we encounter no difficulty whatever if we remain

away from the branch-points. In particular, when a is a value

different from o and oo, the binomial expansion

I

converges, providing z remains inside of a circle which goes

through the branch-point ; or, analytically, if (cf. Fig. 34)

(5) \z-a\&amp;lt;\a\

(cf. the corresponding theorem for

real variables, A. A. 70). In fact,

this expansion gives the one or the

other branch of the function accord

ing as the factor Va standing in

front of the brackets takes the one

or the other value (only single-valued

functions of z itself are inside of

the brackets).*

But to apply the former conclusions to the integral

(6) f2 TTlJ *-(

taken along a circle of radius r encircling the branch-point

twice, understanding that is here a quantity whose absolute

value is smaller than r, we must observe that inside of the do

main which is bounded by the curve of integration, the function

to be integrated now becomes infinite not in one point but in

two
; viz., in the two points and of the surface which lie one

* We are not to conclude that series (4) must always furnish the principal value

of z when we use the principal value of Va- That is the case only when the

straight line connecting a and z does not cross the half-axis of negative real

numbers.
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above the other and belong to the same value of the argument.

Accordingly, that integral and the series obtained by expand

ing it in powers of does not furnish either one of the two

values /() and /() which the function f(z) takes on at these

two points, but their sum /() -+-/(). To expand the one or

the other of these two values in the neighborhood of the branch

point, we introduce the substitution (i) ;
instead of integral (6)

we then investigate the integral

(7)

in which r is to be understood as that value of / which corre

sponds to z = . In this way we obtain the expansion of
&amp;lt;f&amp;gt;(r)

in powers of T with positive integral exponents ;
if we then

express T in terms of and again write z for
,
we obtain the

theorem :

VI. A function regular in the. neighborhood of the branch-point

z =. o on the RlEMANN S surfacefor s = ~\/z, may be expandedfor

values of z sufficiently small, in a convergent^ series ofpowers of ^/z

with positive integral exponents therefore in powers of z itself

with positive exponents which are integral multiples of 1/2.

Since this series is obtained by substituting ~Vz for / in the

series first obtained, it is evident that the same value of the root

is to be used in all of its terms
;
that is, we are to understand

m

z* to be the mth power of that value of -\/z which we have

selected. According as the one or the other of the two values

of V;s is taken, we obtain then the corresponding one of the

two values of the function at the points which are situated in

the two sheets of the surface, one vertically over the other, and

which belong to the same value of z.

The domain of convergence of this series is always bounded by
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a circle
; for, a circle about the origin in the /-plane is mapped

by substitution (i) into a circle about the origin in the s-plane.

In the same way, LAURENT S theorem
( 47) is applicable to

functions which are regular on this surface in the neighborhood

of a branch-point, this point itself excepted. We obtain series

arranged according to powers of ~\/z with positive and nega

tive integral exponents. According as the function has a pole

or an essential singularity at a branch-point, its expansion

contains a finite or an infinite number of terms with negative

exponents.

Conclusions entirely analogous to these are valid for the

neighborhood of the branch-point of this surface lying at infin

ity. We can map it upon the neighborhood of the origin of a

simple auxiliary plane by the substitution :

(8) .-i, *-=*S

and we then regard t as a suitable infinitesimal of the first order

by which the order of the zero or the infinity of other functions

is measured. In this way z itself is an infinity of the second

order at infinity.

And Theorem XIII of 46 is also valid for every curve

which completely bounds a domain of this two-sheeted surface,

inside of which the function u + iv is regular on the surface.

Accordingly the second proof of Theorem IV of 44, which

follows Theorem XIII, 46, is also valid for this surface, and

hence the theorem :

VII. A function everywhere regular on this two-sheeted sur

face is necessarily a constant.

To apply further the conclusions by which we obtained Theo

rems V and VI from IV in 44, we would first try to form func

tions which are regular everywhere on the surface, with the
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exception of a single pole, for which the terms with negative

exponents in the expansion in series valid for its neighborhood

would be preassigned. As a matter of fact, this is possible for

the surface we are considering but is not possible for the sur

faces determined by more complicated irrationalities
;

in the

application here we therefore introduce another method which

is suitable for arbitrary irrationalities.

For this purpose we consider the sum

(9) /&amp;lt;+/(*),

in wrhich we make use of a symbol already introduced
(

60 a)

and where /(s), the function to be investigated, is single-valued

on our surface. But while this sum is single-valued on our

RIEMANN S surface, we can prove that it must also be single-

valued in the plane. For, if we allow z to describe a closed

path in the plane, for which there is also a corresponding

closed path on the surface, then the point z on the surface

returns to z and the point z to ~z. But if we allow the point z to

describe a closed path only in the plane and not on the surface,

then z does not return to z but just to ~z. If we start on the

same path with z, we must return to z
; for, we must necessarily

arrive at one of the two points z or ~z : we cannot return to ~z as

is evident if we trace the path backwards
;

it cannot, therefore,

lead from ~z to z and to ~z at the same time.

In both cases the sum (9) returns to its initial value and is

therefore a single-valued function of z. As a matter of fact, in

the expansion valid for the neighborhood of a branch-point, the

terms with uneven powers of / disappear because these terms

in the expansion of f(z) have coefficients exactly opposite to

those in the expansion of /(i).

If we suppose further that/(z) is regular except at poles, the

same supposition holds for/(s), and then also for the sum (9);
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this sum is thus a rational function of z alone :

(10) /+/-*
If we apply to the product j /(*) the conclusions which were

here applied to the iunction /(z), we obtain a second equation

(n) s.f(z)-s*/(z)=r,(z\

in which r2(s) is also a rational function of z alone. From these

two equations it then follows that:

(12) /(,)} n(s)+!&.

We have thus proved the theorem :

VIII. A function which is regular on our surface except at

poles is a rationalfunction of z and s.

To apply also the theorem on residues to regions of this two-

sheeted surface, which contain branch-points in their interior,

we must observe that f(z) dz is transformed by the substitution

(i) not simply into $(t)dt but into 2 $(t}tdt\ and by means of

substitution (8) into 2
&amp;lt;(/)/~V/.

It therefore follows that :

IX. The theorem on the sum of the residues (///, 45) is also

validforfunctions on this two-sheeted surface, if, in the correspond

ing expansion in series, we consider tlie double coefficient of f~
2

, and

therefore of z~*, as the residue at the branch-point in the finite part

of the plane, and the double coefficient of f2 with the opposite sign,

and thus again of z~ l

,
as the residue at the branch-point at infinity.

X. But no such modifications appear if we apply Theorems IV,

V, and VI of 46 to this surface ; for the substitution (i) and

for the substitution (8) we have simply :

and we have already agreed that the order of the function at a

branch-point is to be determined from the auxiliary variable.
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62. The Functions v(* d)/(z b) and V(* d)(z b).

We study next the function :

We have just studied the function -\/z somewhat in detail in the

last paragraphs and the discussion of this apparently more

general function can be made to depend upon that of V# by
means of the reversibly unique substitution

z b z i

discussed in 14-16. The function

(3) * = V7

determines a certain surface upon the /-sphere ; by means of

the substitution (2) we now transform this /-sphere together

with the surface spread out over it into the z-sphere and the

corresponding two-sheeted surface covering it
;
this latter sur

face is now sufficient to represent geometrically function (i)

and its branches, since this function is a single-valued and con

tinuous function of position on this surface. The branch-points

z = o and z = oo of the first surface correspond to the branch

points z = a and z b of the latter surface
;

the half-axis of

negative real numbers according to IV, 14, corresponds to an

arc of a circle connecting these two points and passing also

through the point z = ^(a + b) (corresponding to z = i) ;
that

is, to the straight line ab.

The function :

is also single-valued on the surface thus constructed
;

this is
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evident when it is put in the form :

(5) *= (-*)*.
This form shows that o- is a rational function of z and s

;
and

conversely that :

is a rational function of 2 and o-. This is equivalent to saying

that :

I. V(z a]j(z b] and V(z #)(z b} are irrationalities of

the same class.

We can, of course, construct the RIEMANN S surface for a-

directly without making use of s. For this purpose we start

from the fact that the equation

(7)

is a complete equation between many-valued functions, in the sense

explained in VII, 56 that every value of the right-hand side

is equal to a value of the left-hand side and conversely ;
it fol

lows from this simply that, for given values of z1 and % each

side has two and only two values (not the possibility that the

right side has four values). Consequently the change of value

of V(2 a)(z I)}
as z varies continuously is made clearer by

observing the change in value of each of the two factors ^/z a

and ^/z b. But that is simply the question treated in 58-

6 1 only that the point a (and b) now appears in place of the

origin : V z a changes its sign if z makes a circuit about the

* The reader is already familiar with this idea in connection with integration, for

it is used to reduce i ^/(z a) (z d) dz to the integral of a rational function._ /*
r2

The transformation V(z a) (z b) = (z b}s leads to \ (at&amp;gt;)*
-- ds.

-S.E.R.
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point a, ~\/z b so changes if z encircles the point b. The prod

uct then changes its sign or remains unchanged according as

the path of z makes a total* of an odd or an even number of

circuits about the points a and b. If this number is uneven, we

could stop the corresponding paths by connecting a and b by a

line and not allowing z to cross this line ; for then it can describe

only such paths which encircle one of these two points as often

as the other. If therefore we make an incision in the plane

along this line, a branch of the function is denned to be single-

valued on the plane cut in this way ;
let us now take two planes

(or spheres), each of which has been cut in this manner, and

fasten them together crosswise along this cut. We thus obtain

a RIEMANN S surface, on which the function under consideration

is a single-valued and continuous function of position exactly

the same surface which was obtained above in other ways.

(It remains to be mentioned that the point z oc is not a

branch-point of the surface
;
to be sure, if we encircle it, each of

the factors changes its sign and hence the function itself does

not change its sign. The expansion of the function for the

neighborhood of the point z = oo is, in one sheet,

/fi
v a + b gL-iab + P

,

(8) ar=Z -

~^~
&quot;

5

in the other sheet,
, x

,

a + b
,

a2
2 ab + ^

(9) a = -Z + - - + -
.

62 a. Rational Functions of z and o- = V(* a)(z b).

By solving equation (i) of 62 for z we obtain

* Italics by the translator,
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Thus s isa. rational function of s. and accordingly even* rational

function of 2 and s may be expressed here, as in 60 a, as a

rational function of s alone. It follows from equation (5), 62,

that ever}* rational function of cr and 2 can be represented as a

rational function of a single variable s, or, as we are accustomed

to saying, can be 4&amp;lt; rationalized by introducing s.
&quot; But we will

investigate these rational functions directly without making use

of this method of reduction since it cannot be applied to com

plicated algebraic functions.

We can now put. as in 60 a, even* rational function of z and

a- in the form :

in which gv glf g., signify rational integral functions of z alone
;

we suppose also, that g , g^ g.2 have no common divisor.

We wish to investigate how such a function behaves in the

neighborhood of any point on the RIEMAXX S surface of &amp;lt;r.

First, let z = z be an ordinary point on the surface
; that is, one

lying at a finite distance from the origin and not a branch-point,

and &amp;lt;T

O the corresponding value of a-. We can then expand &amp;lt;r

by the binomial theorem in the following series of powers of

(3) *=-*
convergent in a sufficiently small neighborhood of z :

(4) &amp;lt;r
=

a z

If we expand g&amp;lt;z), g\(z), g(z) in the same way in powers of /,

replace them in the expression and rearrange, R is represented

as follows as the quotient of two power series :

/x p _.
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The following cases present themselves :

1 . If ft =f=. o, J? is a function of /, and therefore of z, regular
in the neighborhood of /=o.

2. If ft = o, but ^ o, let ft be the first coefficient different

from zero in the denominator. Then R(z,
&amp;lt;r)

is equal to t~k

times a function which is regular at /= o
;
we say therefore that

in this case the function R has a pole of the th order at z = ZQ ,

a- = O-Q.

3. If and ft are both equal to zero, R is indeterminate at

f=o. But we can remove this ambiguity as in 20 by dividing
numerator and denominator by a suitable power of /; in this

way this case reduces to one of the cases (i) or (2) already
discussed.

Second, let the point be a branch-point and we investigate the

behavior of R in the neighborhood of such a point, say z = a.

Put

(6) za=t 2
,

-Vz a = /;

in this way the neighborhood of the branch-point in both sheets

of the surface is mapped upon the simple neighborhood of the

origin of the /-plane. The representation is determined when

ever the sign of the root is fixed in (6) for one value of z in the

given neighborhood. For two values of / which are equal but

opposite in sign, there are points of the surface which lie exactly

vertical to each other in the two shepts.

Then

(7)

and R is thus represented for this case also as the quotient of

two power series in powers of this auxiliary variable / with in

tegral exponents. In this connection corresponding conclusions

can then be made
; and, too, it is suitable, as in 6 1, to deter-
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mine whether a function R(z, or)
is regular at a branch-point

when it is a regular function of / at such a point and, in other

cases, to determine the order of the infinity from the exponent

of / (not from the exponent of z a itself).

Third. In order to investigate the behavior of R (z, &amp;lt;r)

for in

definitely large values of z, let us put

(8)
z = r\

This gives the two expansions (8) and (9) of 62, corresponding

to the two points of the RIEMANN S surface at infinity ;
there is

an expansion of R in powers of / for each of these points, and the

order of the infinity is again determined from the lowest expo

nent of / appearing in the expansion. Thus, for example, z and

o- become infinite of the first order in both sheets of the surface.

The result of the investigation is therefore that :

I. A rational function of z and a- is regular over the entire

RIEMANN S surface of a- except at poles.

(That there can be only a finite number of poles, follows from

the fact that they can only, but not necessarily must, appear

where g$(z)
=

o.)

The converse of Theorem I is proved as in 61.

There is a certain interest in the question whether there are

rational functions of z and a- which become infinite at only one

point of the surface, and of the first order at this point; and fur

ther whether this point can be chosen arbitrarily. This question

is answered at once by
&quot;

rationalizing
&quot;

the function, but we

shall attack the problem directly. In order to simplify the pro

cess let us put a = i
,
b = i

;
we can at once reduce the more

general case to this one by means of a reversibly unique trans

formation of the 2-plane according to II, 15.

If we wish to find a rational function of z and o- = Vz2
i

which has an infinity at only one finite point z = a distinct
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from the branch-points, and in fact, only in one sheet and only
of the first order, it follows that the denominator^^) in (2) can

have no factors of the first degree other than z a. For, if the

denominator were divisible by z 13, then the function J? for

z (3 would become infinite at one or the other of these points of

the surface, provided that the numerator would not also become

zero for both values of a. But since cr does not by hypothesis

become zero for z = /?, the numerator is zero only when g^z)
and gi(z) are both zero for z=/3, that is, when both are divisible

by z ft.
But then gQ , gl , g.2 would all three have the same

common divisor z (3 contrary to hypothesis.

In the same way it can be shown that g^(z) is not divisible by

powers of (z a) higher than the first, when the function jR for

z = a does not become infinite of higher order than the first in

either one of the two sheets of the surface.

We can, therefore, take g(z) = z a, since a constant factor

can be divided out in the numerator.

For z = a there are two values of cr
;

if we call &amp;lt;ra a certain

one of them, o-a will be the other one. And if R becomes

infinite for (a, cra), but not for (a, o-a), then the numerator of

(2) must be zero for (a, &amp;lt;ra), and thus

(9) #&amp;gt;()

-
&amp;lt;ra i() = o.

This is a linear homogeneous equation between the coefficients

of go and glt If it is satisfied, JR will not become infinite at the

point (z = a, &amp;lt;r
=

&amp;lt;ra) as is shown by a procedure similar to

the one at the beginning of this section.

Finally, we must also be certain that our function remains

finite at infinity in both sheets. The denominator has an

infinity there of the first order
;
and hence we must be careful

that the numerator does not become infinite of higher order.

Accordingly, g -f- agl and g agl must not become infinite of
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higher order than the first, where o- represents one and a-

represents the other of the two expansions (8), (9), 62. Addi

tion and subtraction shows that gQ and o^ must not become

infinite of higher order than the first and therefore gl
in general

must not. That is, gQ must be a linear function of z, and g a

constant
; accordingly we put

(10) g = (Az + )&amp;lt;ra , g,= C.

Between these three constants the relation

(n) Aa + C = o

must exist on account of (9) ;
one of these constants is expres

sible in terms of the other two by (n). In this way we obtain

the result :

II. Every rational function of z and a which becomes infinite at

only the one point (z = , o- = &amp;lt;ra) of the surface, and only of the

first order at this point, has theform

(Az + ^)tra + (Aa + B)&amp;lt;r_

z a

Conversely, every function of this form has the required property,

omitting, of course, the trivial case Aa + B = o, in which it

reduces to a constant.

Further, if we wish to form a function which becomes infinite

only at the branch-point z = i, and only of the first order

there, we see as in the previous case that 0(2) must equal z-\-i.

But this function becomes zero of the second order at the

branch-point ;
we must therefore make provision that the

numerator becomes zero and of the first order there. This

requires that gQ(z) be divisible by z -f- i ; and if we consider as

before the behavior of the function at infinity, we find :
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III. Every rational function of z and a-, which becomes infinite

only at the branch-point z = I and there only of the first order,

has theform :

(13)
A

(z + T ) + C(T
.

z H- i

or, by using ^Jz -f- /, it takes theform

(14) A + C- V(* -i)/(* + i).

Finally, to form a function which becomes infinite only at

infinity but there only in one sheet and only of the first order,

corresponding conclusions as in the first two cases show that

gz(z) reduces to a constant, that gQ(z) is a linear function and

that gtf must also be a constant. If, therefore, R is to become

infinite when we use the expansion (8), 62 for
&amp;lt;r,

but not when

(9), 62 is so used, a linear equation between the constants

exists.

Hence the theorem :

IV. Every rational function of z and
&amp;lt;r,

which becomes infinite

only at infinity and there only in one sheet and only of the first

order, has theform :

(15) A(z + &amp;lt;r)+B.

Moreover, the constants at our disposal in (12), (14), (15) can

be so chosen that the function under consideration becomes

zero at a preassigned point. Particular interest attaches to the

function

(16) *=V(* -i)/(*+ i),

which becomes zero at one branch-point and infinite at the

other
;
to the function

(17) u = z + &amp;lt;r,
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which at infinity becomes zero in one sheet and infinite in the

other
;
and then also to the function

(.8) .
* = 1- L

&amp;gt;

which at z = o becomes zero in one sheet and infinite in the

other. The first is precisely the function designated by s in ^62.

According to Theorem VI, 46, which also holds here (cf. X,

61), each of the functions considered has the property that it

takes on in general each value on the surface once and only

once. It follows from this that each of them is a single-valued

analytic function of each of the others, which takes on each

value once and only once. And from this it follows further that

each of these functions is a linear fractional function of each of

the others. For example :

, v i + f it i , i is . i in
(19) u = - -, f= -

, A=- - = *.- -.
I S U -\- I I + M I -f III

And it follows further that any function of the surface is a single-

valued function of each of these auxiliary variables. We have

thus returned to that starting point which was intentionally

avoided at the outset.

62 b. Integrals of Rational Functions of z, and the Square Root

of a Rational Integral Function of z of the Second Degree

Since all rational functions of z and or used above may be

represented as rational functions of an auxiliary variable, it fol

lows that every integral of such a function can be transformed

into an integral of a rational function and therefore can be ex

pressed in terms of rational functions and the logarithms of such

functions. In this any of the functions, which were considered

in the latter part of the previous paragraph and which take on
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any value once and only once on the surface, can be used as

auxiliary variable. In the elements of the integral calculus we

prefer to use the three functions (16), (17), (18) of 62 a, since

they enable us to perform the processes most conveniently.

But we will also consider the application of these integrals of

rational functions of z and or directly to the surface. It follows

from IX, 61, that:

I. Such an integral is a single-valuedfunction of its upper limit,

provided that the path of integration lies entirely in a simply con

nected part of the surface which contains no point at which the

residue of the function is differentfrom zero.

But if the path of integration taken in the positive sense en

circles such a point, a new value of the integral is obtained

which is greater than the former value by 2 ?r/ times the corre

sponding residue. Hence :

II. If the path of integration for such an integral is entirely

arbitrary, we obtain an infinitely many-valued function ; all of its

values followfrom one of them by the addition of integral multiples

of a certain &quot; modulus of periodicity&quot; Each such modulus of

periodicity is equal to 2 iri times the residue of the function to be

integrated.

We now classify the integrals according to the kind and num

ber of their points of discontinuity. In this connection we

notice that : at each finite point at which the function to be

integrated is finite, the integral is also finite
;

at each finite

point which is not a branch-point and at which the function

becomes infinite, the integral also becomes infinite
;
but at a

branch-point the integral can remain finite even if the function

to be integrated becomes infinite. For, from the substitution (6),

62 a, we obtain

(i) dz = 2tdt.
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If we then use / as the variable of integration, an additional

factor / is obtained under the sign of integration, and the inte

gral remains finite provided that the infinity of the function

to be integrated is not of order higher than the first. Corre

sponding considerations show that at an infinitely distant point,

the integral remains finite when the function to be integrated

becomes zero of order higher than the first.

We ask next whether there are integrals of rational functions

of z and &amp;lt;r which are nowhere infinite. (Theorem IV, 44 would

not contradict this statement, since it only treats of single-valued

analytic functions of z.) If ( R(z, &amp;lt;r)dz
remains finite every

where, R(z, a-) must

i st. Be everywhere finite, except at the branch-points where

it might become infinite of the first order ;

2d. Become zero of higher order than the first at infinity in

both sheets.

The product

(2) * (*, &amp;lt;r)

must then be finite everywhere and zero at infinity. But from

62 a it follows that there is no rational function of z and &amp;lt;r

which is finite everywhere. It then follows that :

III. There is no integral which is finite everywhere on the

RIEMANN S surface of v = Vz2
I.

We discuss next integrals which have only logarithmic dis

continuities. Since the sum of the residues on the whole sur

face must be equal to zero (the proof of Theorem VI, 45, is

applicable here without change), such an integral must have at

least two points of discontinuity ;
we wish to form an integral

having such discontinuities at only two ordinary points (z^ o^)

and (zz, &amp;lt;r2) on the surface. If I R(z, o-)rfz is such an integral,

the function R must have the following properties :
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It must be finite everywhere, except at the two given points and

at the branch-points, where it may be infinite of the first order
;

It must be zero of an order higher than the first at infinity in

both sheets.

The product aR must therefore have the following properties :

It must be finite everywhere on the finite part of the surface

except at the two points (zlt o^) and (z2 ,
o-2)

where it may be in

finite of the first order
;

It must be zero at infinity.

We can represent such a function as the sum of two functions,

each of which becomes infinite at one of the given points and

both become zero at infinity in the same sheet
; therefore, ac

cording to (12), 62 a, the function takes the form :

(3) ^{i
I

Z z
\ } (

Z Z2 )

and the constants A, B can be so determined that the sum be

comes zero at infinity in the other sheet also. We thus obtain

Z % Z

as the desired form of an integral having only two logarithmic

discontinuities.

The constant A can also be so determined that the residue

at one point of discontinuity is equal to + i, at the other equal

to i
;
for this purpose we must take A = 1/2.

If we then introduce as the variable of integration the func

tion designated by u in (17), 62 a, and call u^ and u2 the

values which this function takes on at the two points (zlf ox) and

fe&amp;gt; &quot;2)&amp;gt;

we obtain :

u u u u2 u
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If \\e assume the two points (%, o^) and (s2 , 0*2)
to be coinci

dent and then divide by u^ u2 ,
we can obtain from (5) the fol

lowing integral which becomes infinite at only one place but

algebraically of the first order at this place :

du i ^,

s
Repetition of this process leads then to integrals which be

come infinite of the second, third, etc., order at a preassigned

place and which have coefficients preassigned.

In this process it is assumed that the singular points are dif

ferent from the branch-points and lie on the finite part of the

surface
;

in fact, we would encounter no fundamental difficulties

in a corresponding treatment of the cases thus excluded. But

it is unnecessary to enter into a discussion of this point since

the whole investigation can be arranged here (except for more

complicated irrationalities) to depend upon rational functions at

the beginning by introducing // as independent variable.

The most general integral of a rational function of z and &amp;lt;r

can then be represented as a sum of integrals of the special

form considered, with suitable numerical coefficients. This fol

lows from the fact that the difference of two integrals, which

become infinite in the same manner, is an integral which never

becomes infinite and is therefore a constant according to III.

62 c. The Function z = w + /V* - w*

According to the definition of the square root of a complex

number, the solution of a quadratic equation with complex coeffi

cients is found just as we obtained the solution of the quadratic

equation with real coefficients in elementary algebra. Thus,

for example, if we solve for z the equation discussed in 21 a,
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or

(2) Z2 2 ZW + I = O,

we obtain :

(3) z = w -{-Vw2
i.

This function is complex for real values of w whose absolute

value is less than i
;
this is more evident by writing

(4)
= w+ iVi w*-\

but we must keep in mind that the principal value of the square

root in (3) does not also furnish the principal value of the square

root in (4) for all values of w.

As a special case of the results of 62, it follows that the

RIEMANN S surface extended over the w-plane and determined

by this function, consists of two sheets which are united at the

two branch-points a/ = + i and / = i. We connect these

two branch-points by a cut
;
this is, perhaps, most conveniently

done by drawing the cut from both of these points along the

w-axis of real numbers to infinity. The origin is, therefore, not

on the cut
; consequently we distinguish between the two sheets

of the surface by determining what value w shall take on at the

origin in each of the two sheets. Thus we name arbitrarily the

first sheet that one for which z = i and w = o, the second sheet

that one for which z = i and w = o. The values of z at the

remaining points of both sheets are obtained by proceeding

continuously ;
that is to say, in the neighborhood of the origin

the principal value of the square root in (4) will be taken in

the first sheet, but the opposite value in the second sheet. But

we can by no means yet conclude that this is true throughout

the whole extent of both sheets.

The investigation of this function is very much simplified

from the fact that its inverse is a single-valued function of z

and that we have already investigated this inverse function in
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detail in 2 1 a. We need only to make the results thus known

still clearer by employing the RIEMANN S surface introduced in

the meantime.

We notice next that real values of z correspond to the points

of the branch-cut
; and, in fact, to each such value of w corre

spond two values of 2, one of which lies inside of the unit circle

and the other outside of it, since the product of the roots of

equation (2) is equal to i. Only one value of z corresponds to

each of the branch-points ;
to w = -j- i corresponds z = -f- i and

for w = i, 5 = i. Conversely, one point of the branch-cut

corresponds to each real value of z. Therefore, one sheet of

the surface corresponds to the positive, the other sheet to the

negative, s-half-plane. But which sheet corresponds to which

half-plane is not now an arbitrary arrangement, since we have

already disposed of this question by giving to z the value -f /

at the origin in the first sheet
;

in this wr

ay the first sheet must

correspond to the positive half-plane, and, therefore, the other

sheet to the negative half-plane. And thus, too, it is determined

how the two letters which are assigned to one region in Figure

J^
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The relations in the neighborhood of the point at infinity in

both sheets of the w-plane are of interest
; developing the radi

cal in decreasing powers of w, we obtain :

(5) vW2
i = wVi i/^

2 = w
\

i --: - + I
;

[ 2W1 8w4

J

the one value of z is therefore equal to

and the other value of z is equal to

(7) 2W- +^-3- + ----
.

2 W 8w3

The first one of these values becomes zero at infinity and the

other one is infinite there
;

as the figures show, the first de

velopment holds for that &quot;

part of the surface &quot;

(cf. end of 59)

which consists of the lower half-plane of the first sheet and the

upper half-plane of the second, while the other development

holds for the remaining part of the surface.

If we had made the branch-cut along the shortest line con

necting the branch-points instead of along the two segments of

the real w-axis external to these points, the regions A lt A%, Z&amp;gt;u

Z&amp;gt;2 ,
would have represented the one sheet of the surface, the

regions B^, _Z?2 &amp;gt;
6\ , C2 ,

the other sheet; and therefore the one

sheet would have corresponded to the inside of the unit circle

of the 2-plane, the other sheet to the outside of this circle.

To go further into details we would introduce in the figures

the circles and straight lines, the confocal ellipses and hyper

bolas which were used for a similar purpose in 21 a.

According to 62, z may be rationalized by the substitution
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we find :

i

This is a fractional function of the first degree ; conversely, s is

also expressible rationally in terms of z :

i z

(IO)
=
7TV

and s could be chosen instead of z as that function of the surface

by which all other functions of the surface are expressed ration

ally. We find, as a matter of fact, that

2 Z

It is now easy to answer the question heretofore postponed

concerning the region of this surface to which the principal value

of the square root belongs. This region must be bounded by

the line or lines along which the square root is purely imaginary.

This is true along the s-axis of reals and along no other lines
;

the branch-cut in the ay-plane corresponds to it. Therefore the

principal value is attached to the entire first sheet.

Since we have already discussed the exponential and the

trigonometric functions of complex argument, the relation be

tween z and w can now be made clear by the introduction of

other auxiliary variables than the Z and W which were used

in 2 1 a. Thus if we put

it follows from (4) and (16), 40, that

(13) z = e\

In fact, by means of these equations the concentric circles

about the origin and the rays through the origin in the z-plane



360 V. MANY-VALUED ANALYTIC FUNCTIONS

correspond respectively, according to III, 42, to the parallels

to the axes in the ^-plane, and, according to IV, 42, these

parallels correspond to the confocal ellipses and hyperbolas in

the ze/-plane.

62 d. The Function Sin- 1 w

We wish now to define the function sm^1 w just as for real

variables by the integral

(i) J = sin 1 w = I
;

Jo y j _ W2

to do this two additional specifications are necessary ;
we must

make provision concerning the path of integration to be chosen

and concerning the value to be given to the square root.

We specify the path of integration to be entirely arbitrary,

except that it must not go through one of the branch-points since

doing so would lead into difficulties. However, we need not ex

clude the case where the upper limit takes on one of these

values, since it can be shown just as for real variables that the

integral approaches in this case a definite finite limit. We must

not suppose however that the value of the integral is entirely in

dependent of the path of integration ;
the symbol sm~ lw is de

fined by equation (i) to be many-valued, but we will consider all

the values which it takes on according to the definition as

belonging to one and the same many-valued function of w.

The sign to be given the root can be fixed arbitrarily ;
and

we agree that the value 4- i shall be attached to it at the lower

limit of integration. But in so doing its value is fixed for the

whole of the remainder of the path of integration, provided the

values change continuously along the path. Any doubt con

cerning the value of the root could only arise when the path of

integration goes through one of the points (0 = 4-1 or w = i
;

but this possibility is already excluded. We determine most
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simply what value of the square root obtains at any point of the

path of integration, if we make use of the RIEMANN S surface

already introduced in the previous paragraphs upon which this

square root is a single-valued and in general continuous func

tion of position, and transfer the path of integration to this

surface
;
at any point of the path we are then to take that value

of the root which belongs to this point on the surface.

With the foregoing provisions we are prepared to answer the

question whether integral (i) is expressible in terms of functions

already introduced. As a matter of fact, it can be expressed in

this wr

ay if we introduce, by means of the equations of the

previous paragraph, the function z of w (and of
o&amp;gt;)

defined in

that paragraph, as the variable of integration ;
it transforms

accordingly into :

= i log (
iw -f Vi w1

).

(According to the stipulations just made we attached the

value + i to the square root at the lower limit. We therefore

take z = -\- i as the lower limit of the transformed integral, not

z = i, since only the first of these values, viz. z -f /
, belongs

to that one of the two points of the surface lying over the origin

of the ay-plane at wrhich the square root has the value + i.)

In order, therefore, to investigate what value of the logarithm

to take for a preassigned path of integration, or how, con

versely, to select the path of integration to obtain a definite

value of the logarithm, for example, the principal value, we

must only determine how the paths in the s-plane and on the

surface over the o/-plane correspond to each other. But this is

easily obtained from the figures of the previous paragraph.

If we limit the zopath of integration to the first sheet, that
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of z remains above the real s-axis, therefore that of
( iz] to

the right of the axis of pure imaginaries ( iz), and the loga

rithm of
( iz) takes on its principal value. We will designate

the corresponding value of the inverse sine as its principal

value in the first sheet of the RIEMANN S surface
;

its real part

lies between 77/2 and -f tr/2. In particular, it takes on con

tinuously increasing the real values from ?r/2 to + 77/2, while

w continuously increasing takes on the real values from i to

H-i.

Therefore crossing the part of the branch-cut lying to the

right in going from A l to Z&amp;gt;x ,
or from B to Clt corresponds in

the s-plane to crossing the half-axis of positive reals, and

therefore in the plane of (iz) to crossing the negative half-

axis of pure imaginaries (iz). If we then remain in the

second sheet, without again crossing a cross-cut, the imaginary

part of the logarithm remains between iri/2 and 377-2/2,

and therefore the real part of the inverse sine between 77/2 and

3 7T/2. We designate this value as the &quot;principal value of the

inverse sine in the second sheet of the RIEMANN S surface.&quot;

Two points of the surface which are situated in the two

sheets one vertically above the other, correspond to two values

of z whose product is equal to i, and therefore to two values of

( iz) whose product is equal to i. The sum of a logarithm

of the first and a logarithm of the second of these values is an

uneven multiple of iri
;
the sum of the two principal values of

the inverse sine is exactly equal to TT.

But if, coming from the first sheet, we cross the part of the

branch-cut lying to the left, considerations exactly parallel to

the foregoing show that corresponding to this in the plane of

( iz), we cross the positive half-axis of pure imaginaries ( iz),

and that therefore a value of the inverse sine is obtained in this

way whose real part lies between the limits 7r/2 and 3 v/2.
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Let us go from the first sheet over the part of the branch-cut

lying to the right into the second, and return to the first sheet

over the part of the branch-cut lying to the left
; corresponding

to this in the plane of (12), we shall then start in the half-

plane lying to the right, cross the negative half-axis of pure

imaginaries into the half-plane lying to the left, and from there

cross the positive half-axis of pure imaginaries again into the

half-plane lying to the right. But this is making a circuit about

the origin in this plane in the negative sense
;

it necessitates

an increase of the logarithm by 2 ?r/, and an increase of the

inverse sine by 2 TT.

Such a closed curve upon the surface can be transformed by
a continuous deformation into a curve which surrounds the

point at infinity in one
&quot;part

of the surface.&quot; In fact the resi

due at the point at infinity of the function of w to be integrated

is + i in one &quot;

part
&quot;

of the surface and is i in the other
&quot;

part
&quot;

;
the value of the integral taken along a curve which

encircles the one or the other of these points in the positive

sense is accordingly equal to 2 iri.

It is now possible to construct the most general path upon
the surface from the processes heretofore considered and their

converses. The following is therefore a re&quot;sum of the results :

The function sin~l w defined by equation (i) is an infinitely

many-valued function. Its values fall into fu&amp;gt;o classes corre

sponding to the two values of the square root. In each of these

classes all the values are obtained from the principal value by the

addition or subtraction of arbitrary integral multiples of 2 TT. The

relation between the principal value of the first class and the princi

pal value of tJie second class is that their sum is always equal to IT.

One value of this integral is found to be equal to
77 by

introducing 17
as the variable of integration by means of equa-
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tion (12), 62 c. In this way the connection with the EULER-

IAN relations of 40 is also set up here. Nevertheless this

way of considering the problem to its ultimate conclusion would

require a discussion of the different paths of integration. But

in any case it is evident that integral (i) represents the com

plete inverse of the sine function in the sense that it has for

values all the solutions of the equation sin/= w and only these.

EXAMPLES
1. The equation

S* 7 x a

/dx _ i

x2 -a2

~
2~#

holds when a is real and (x a}/(x + a) is positive. If we

could write ia instead of a in this equation, the following for

mula would be obtained :

tan-Y^ = ^. log (*^*?U const.*

The question arises whether, now that the logarithm of a com

plex number is defined, this equation is not actually true.

Since

log(&amp;gt; id]
= i

log (X* + a 1

} (0 + 2 k*)i

where k is an integer and 6 the numerically least angle such

that cos =
x/^/x&quot;

1
-f- a

2 and sin = a/V^2 + #2
,
we have at once

21

where / is an integer, and this does differ by a constant from

x
any value of tan&quot;

1

)

-
\a
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2. The standard formula connecting the logarithmic and inverse

circularfunctions is

tan- 1

(*) = log f1^| ,
x real.

21
*
\i-ix)

Verify this formula by putting jc = tanjy, showing that it is

&quot;

completely
&quot;

true, the right-hand side reducing to

= _
,

(
2 }

=
2 / Vcos _y * sin yj 2 i

where k is any integer.

3. Verify the formulas

cos&quot;
1 x = i log (x iV i x2

),
sin&quot;

1 x = i log (ix Vi x2

),

where i ^ x ^ i, each of which is also &quot;completely
&quot;

true.

63. The Function \/z

We shall find no particular difficulty in the study of the th

root of z after the investigation of the special case of the square

root given in detail in the last paragraphs. We define again :

I. The nth root of a complex number z

(1) ,= &
(n a positive integer] is a complex number s which satisfies the

equation

(2 ) r-
If we introduce

(3) rj
= \OgZ

as the independent variable as in 58, we find just as we did

before that :
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II. We obtain all the pairs of corresponding values of z and s

which satisfy the equation (2), if we put

(4) z = e1

!,
s = e^l

n

and consider
rj
as the independent variable.

III. If we take the principal value ^for log z in (j), we obtain

the &quot;principal value s of the nth root
&quot;&quot;from (4) ; it is characterized

by thefact that its amplitude \\i satisfies the conditions

(5) it,ln &amp;lt; ^ &amp;lt; T/n.

All the other values of the logarithm follow from its principal

value by the addition of 2 krci, where k is an integer. If a

is the smallest positive remainder of this integer according to

the modulus
,
we obtain

(6) s = e - J

by substituting 77
= ^ -f- 2 kwi in (4) ;

in this equation c signifies

(cf. (3), 1 8) the definite complex number:

/ \ 2 7T . . . 2 7T

(7) e = e = cos h z sin .

n n

The n powers of this number

(8) * X, ^ 4*,.- ,.&amp;lt;-

are all different from each other
;
for suppose

it would then follow that e
a~A =

i,

which is not true. It follows accordingly that in addition to the

principal value there are n i other values of the ;zth root
;

we say :

IV. There are n and only n different values of s which satisfy

equation (2] for each value of the complex number z different from
O and oo .
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Therefore to represent the ;/th root as a single-valued func

tion of position on a surface, we need only n sheets of the in

finitely many-sheeted surface of the logarithm. To make the

function also continuous on the surface, the ;/th sheet must be

attached to the first one : to do this the final border of the #th

sheet must penetrate all of the parts of the surface lying under

it, in order to reach and then be united with the initial border of

the first sheet lying lowest.

We can best obtain an idea of this surface by thinking of its

gradual formation. This is done as in 59 for the special case

where n = 2
;
we have now only to let the moving radius make

FIG. 36

n circuits instead of 2, and immediately after completing the rth

circuit pierce the parts of the surface lying under this radius

and then be combined with the initial border. For ;/ = 4,

Fig. 36 represents a section through the surface perpendicular

to the half-axis of negative real numbers, looking at the section

from the origin. The origin is a branch-point of the surface of

order (# i); transforming from the plane to the sphere

shows the point oo also to be a branch-point of order (;/ i).

V. The connectivity of this surface is the same as that of the

sphere even in the general case when n is arbitrary. This may be

shown by any of the methods spoken of in 60. If we wish to

make a continuous deformation of the surface, we must think of

the sheet farthest inside as drawn out of the one next to it, and

then think of the sphere thus generated from these two sheets as
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drawn out of the sheet third from the inside, etc. Let us make

a provisional dissection of the surface with the understanding

that it be subsequently combined
;

we now deform each individual

sheet according to the process

given at the end of 60 until the

angle at the origin is reduced to

2 TT/#, and then place the sheets

adjacent to each other. It is

scarcely necessary to mention that

the sphere arranged in this way
can be mapped conformally upon

the ^-sheeted surface by the equation sn = z.

The functions which are regular on this surface with the

exception of certain poles are rational functions of s = -\/z and

may be treated as in 60 a.

The discussion of the function

FIG. 37

V
n
z a

nr* 1

only apparently more general, may be referred to that of Vz, as

was done for n = 2 in 62. On the other hand the function

A/0 - a)(z
-

//), (n &amp;gt; 2)

belongs to another class of irrationalities
;

it has a branch-point

at infinity in addition to those at a and b.

64. The Equation s2 = i - z3

As an example of a somewhat less simple algebraic relation ex

hibiting the dependence between z and s, we call attention to

the equation :
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The equation shows that s is a double-valued function of z
;
the

factors :

27rt

(2) (i-s
3

)=(i-s)( -c)(e
2

-,), *,
show that j- changes its sign when z makes a circuit about one of

the points i, e, e
2

,
and that therefore these points are branch^

points in the s-plane. In addition to this the point z = oo is also

a branch-point as is shown by the development :

fr--jpt_jrwt.f. .

To separate out a single-valued branch of s, we connect these

four points by cuts in such a way that it is not possible to make

a circuit around any one of them without crossing a cut. This

can be done symmetrically by drawing three cuts from the three

points to infinity in such a way that when prolonged in the

opposite direction they pass through the origin. To obtain now

a surface on which s can be represented as a single-valued and

continuous function of position, we take two s-planes, each treated

in this way, and fasten them together crosswise along the cuts.

Conversely, z = \(i s)(i -f- s)

is a triple-valued function of s. If s encircles one of the points

-f i or i of its plane in the positive sense, e enters each time

as a factor of z
;
these two points are therefore branch-points in

the .r-plane. In addition j- = oo is a branch-point. We must

therefore connect one of these three branch-points by cuts with

the other two
;

this is obtained symmetrically when a cut is

made in the j--plane along the real .r-axis with the exception of

the part between -- i and -f i. We then take three j-planes

cut in this way and connect them along the cuts. Let us define

the sheets in such a way that, for s = o, z = i in the first sheet,

z = e in the second sheet and z = e
2 in the third sheet

;
a posi

tive circuit about each of the two branch-points lying on the
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finite part of the surface therefore leads from the first sheet into

the second, from this one into the third and from this one again
into the first sheet

; accordingly we must connect the positive

f i
)

half-plane of the \ 2
[

sheet with the negative half-plane of the

\ 3
j-

sheet along the cut from oo to i, but the positive half-

[i]
plane of the \

2
\ sheet connects with the negative one of the

1
}

sheet along the cut from i to oo. We thus have two
2

j

branch-cuts from the point at infinity along which the sheets

are connected differently ;
a check on these results is the fact

that one circuit about this point in the positive sense (that is,

so that the point lies to the left) transfers us from the first to

the second sheet as it should be. (The development

holds in the neighborhood of s = oo
;
and if we encircle s = oo

in the positive sense, e
2 enters as a factor of sl/s and conse

quently e as a factor of each term of the given development.)

The above two-sheeted surface over the s-plane and this

three-sheeted surface over the .f-plane are mapped by equation

(i) reversibly and uniquely and in general conformally upon

each other (that is, excepting the branch-points of the two sur

faces and their images). To carry out this representation in detail

we first determine what lines of each surface correspond to the

branch-cuts of the other surface. For this purpose let us put

z =x +
/&amp;gt; ,

s = u + tv,

and separate equation (i) into its real and imaginary parts; we

obtain :

(3) -*=!-.
(4) 2^ = - 3 .
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Hence the line u = o (in the three sheets of the surface over

the .r-plane) corresponds to the branch-cuts :

and the lines

.},

X &amp;lt; O,

x&amp;gt;o,

_&amp;gt;-

=-W3 J

in the two sheets of the surface over the s-plane, correspond

to the branch-cuts :

v = o, u &amp;lt;
i and v = o, u

&amp;gt;
i.

Construction of these lines divides each of the two surfaces

into six parts ;
these parts correspond to each other as shown

s-plane-1

=B A=
s-p/ane-ll s-p/ane-lll

z-p/ane-ll

FIG. 38

in Fig. 38. To further determine this correspondence, we

must distinguish also between the two sheets of the surface

over the s-plane (as was unnecessary above) ;
this is done by

arranging that s should = i at zero of the first sheet, and that
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s should = i at zero of the second sheet. Thus, for example,
the region A is defined from the fact that it contains the points

(z
= o, s=i) and (z=i, J = o); and B is likewise defined, con

taining (0
= 0, s = i) and (3= i, j = o), etc.

To investigate still further the mapping of the region A a upon
the region A t ,

we find from a study of the formulas (3) and (4)

that the following lines of the two regions correspond :

u2
zP=i, u

&amp;gt; o, v &amp;gt;
o x + } ^/3 = o, y &amp;lt;

o

&2 ^2
i, u

&amp;gt; o, z; &amp;lt;
o x 7A/3 = o, jy &amp;gt; o

z&amp;gt;

= o, o
&amp;lt;

// &amp;lt; i y = o, o
&amp;lt;

x &amp;lt; i.

We thus obtain just

four subregions which

correspond to each

other as shown in

Fig- 39-

A study of the

curves which corre

spond to the parallels

to the axes in each of

the planes would be

s-p/ane-l
FIG. 39

z-pfane-1

of no aid in obtaining further details here. On the contrary we

find from equations (3) and (4) that the hyperbolas of the ^-plane :

u&quot;

1 v1 = C\, 2 uv = C2 ,

correspond to curves of the s-plane whose properties are ob

tained from their equations in polar coordinates :

cos 3 &amp;lt;

= i Cl} p
s sin 3 &amp;lt;

= C2
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EXAMPLES

1. Show, for w = z~ i
,

that as w describes the circle

|

w
\

= k, the two corresponding positions of z each describe the

Cassinian oval Pl p2
= k

(Pl , p2 being the distances from the

points i). Trace the ovals for different values of k.

2. If 7t = 2 z + z~, show that the circle
\

z
\

= i corresponds

to a cardioid in the plane of w.

3. If
( +i)

2 =
4/s, the unit circle in the w-plane corre-

n

spends to a parabola r cos2 - = i in the s-plane, and the inside

of the circle to the outside of the parabola.

4. Show, for the transformation w =
\ (z ta)/(z + id) J

2
, that

the upper half of the w-plane may be made to correspond to

the interior of a certain semi-circle in the z-plane.

5. If K&amp;gt;
= azm + bzn

,
where ;;/, ;/ are positive integers and a, b

real, show that as z describes the unit circle, w describes a

hypocycloid or an epicycloid.

6. Discuss the mapping of parallels to the s-axes by means of

cot 0.

7. Show that a cut along a complete hyperbola separates

branches of sin&quot;
1 w.

8. If w = cosz, 2 w =
rj + - where

77
e&quot;. Hence when z

n

moves horizontally or vertically determine the map on the ^-plane

and then on the ay-plane.

65. Transition from MlTTAG-LEFFLER S Division into Partial

Fractions to WEIERSTRASS S Development in a Product

Suppose we have a given function of the kind considered in

51, all of whose poles are simple and all of whose residues
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= i, and which consequently may be represented by a series of

the form :

(i) +(i) ss l-J+ a + a
1,g+ -avk

we can then show (as the converse of Theorem II, 46) that this

function is the logarithmic derivative of a transcendental integral

function f(z) ;
that is, that

According to VI, 35, I
&amp;lt;/&amp;gt;(z)

dz is regular in every simply con-
c/O

nected domain which contains none of the points a
v

in its in

terior ;
if z encircles one of the points a vJ

this integral is increased

by 2 TT/. Consequently if b is not one of the points a
vt

exp

is a regular function over the whole plane apart from the points

av ;
in the neighborhood of av it is equal to the product of z av

by a regular function. It can therefore be made a regular

function in the whole plane, that is, a transcendental integral

function, by assigning to it the value zero at the points av .

Thus
&amp;lt;(z)

is the logarithmic derivative of this transcendental

integral function.

On account of its uniform convergence, the series (i) may be

integrated term by term along an arbitrary path which does not

contain any of the points a
v

. Without loss of generality
1* we

may suppose that zero is not one of the a
v ;

we can then use

zero as the lower limit of the integral and so obtain the follow

ing series which is absolutely and, in the same domain as (i),

* If zero belongs to the av we need only to investigate &amp;lt;}&amp;gt;(z) i/z instead of $(z).
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uniformly convergent :

(3)

Since the exponential function is a continuous function of its

argument (A. A. 7, 50) the lemma that

(4) exp ( lim sn)
= lim (exp sn)

n= oo n= oo

is true (provided lim sn exists) ;
from it and from the definition

n =

of the infinite series and of the infinite product, it follows that

GOO

v -X

5^1=11^1= 1 / V= l

that is :

^
oe

I. When the series Zj u
v converges, the product JJ e^ also con-

V = l
l =l

verges, and in fact to a value differentfrom zero in the limit.

Consequently we can deduce from equation (3) the following :

II. The transcendental integral function f(z) for which the

points av are simple zeros may be represented analytically in the

form of the infinite product (6), provided that the points a v satisfy

the conditions of 57 a?id that the coefficients a
v(t

are determined

according to the rules given there.

If now we have given any transcendental integral function

F(z) for which also the points av are simple zeros, the quotient

^(z)//(z) w^l be a function regular over the whole plane, and

consequently a transcendental integral function E(z) which in

addition is nowhere zero. The logarithm of such a function is
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also regular over the whole plane (cf. X, 38) ; consequently,
we have

(7) (*)** **
in which g(z) is also a transcendental integral function. Hence
the theorem :

III. The most general transcendental integralfunctio n for which

the points a
v
are simple zeros is represented in theform

(8) F(z) =/(*&amp;gt;&amp;lt;*&amp;gt;

in which f(z) is the product (6), and g(z) is any transcendental

integralfunction.

As an illustration of Theorem II we cite the following two

product forms of the sine which are obtained from the develop
ments of the cotangent in partial fractions, (2) and (18), 52 :

(9) sin TTZ = TTZ - IT ( (i
-

and

(10) sin7r(tf + )
=

sin(7

in particular for a = 1/2 :

-4-0

(11) COS7TS=I
2 V I

The accent on the product sign in (9) has a meaning analogous
to that given earlier to the accent on the summation sign.

If in the products (9) and (n) we take together in pairs those

factors which belong to oppositely equal values of v and 2 v i

respectively, we obtain the elementary product-forms for these

functions (A. A. 83)*.

*That is, sins- mf[l i V cosz = f[(i ^ V S.E.R.
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EXAMPLE

Write down an infinite product which defines a transcendental

integral function of z having simple roots in the points

z = n + //, n=i, 2, ,

but not vanishing elsewhere. Prove that the product has the

desired property.

MISCELLANEOUS EXAMPLES

1. Show that if is real and sin sin &amp;lt;

= i, then

&amp;lt;

= (k 4- l/2)ir + / log COt 4-0&7T + 0)

where k is any even or any odd integer, according as sin is

positive or negative. Cf. examples following 40 and 62 d.

2. If a cos -f b sin + c = o, where #
, ,

c are real and

f
2

&amp;gt;
a* + 2

,
then

. -i f
IH + V^-a2 -^)^ = ;;/TT -f tt I log {
L

V 2 + ^2

where m is any odd or any even integer, according as c is posi

tive or negative, and a is the least angle whose cosine and sine

are tfV

3. Show that if .# is real, then

exp {(a? + M)x\ =(a + /^)^
+ *&amp;gt;

, fexp {(* 4- ^)jej ^
MX^ /

_ exp (a + iti)x

(a + tt}

4. Prove that, for a
&amp;gt; o, | exp | (a + #).*j*/.r=

^ r.
/D ^7 + W

5. Determine the number and the approximate positions of

the roots of the equation tan z = az, where a is real,
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It is easily shown that this equation has infinitely many real

roots. Next let z =x -\-iy and equate real and imaginary parts.

(sin 2 ;r)/(cos 2 x -f cosh 2 y) = ax,

(sinh 2 y)/(cos 2 x + cosh 2 y)= ay,

and therefore, if x and jy are not zero, we have

(sin 2 x)/2 x = (sinh 2 _y)/2 _y.

But this is impossible, since the left-hand side is numerically

less, and the right-hand side numerically greater, than unity. It

follows that x o or y = o. But if y = o, we come back to the

real roots of the equation. If x = o, tanh y = ay. It may be

shown graphically that this equation has no real root other than

zero if a ^ o or a ^ i, and two such roots if o
&amp;lt; a &amp;lt; i. Thus

there are two purely imaginary roots if o
&amp;lt;

a
&amp;lt;

i
;
otherwise

all the roots are real.

6. The equation tan z = az + b, a and b real and b 3= o, has

no complex roots if a
&amp;lt;^

o. If a
&amp;gt;

o the real parts of all the

complex roots are numerically greater than
| b/2 a

\

. Prove.

7. The equation tan z = a/z, a real, has no complex roots but

has one purely imaginary root if a
&amp;lt; o. Prove.

8. Discuss the transformation z = &amp;lt;: cosh (irw/a), showing in

particular that the whole s-plane corresponds to any one of an

infinite number of strips in the w-plane each parallel to the

^-axis and of breadth 2 a. Show also that to the line u = UQ

corresponds the ellipse

, TTZ/n
rcosh -

V a
c sin

\ a

and that for different values of u these ellipses form a confocal

system ;
and that the lines v VQ correspond to the associated
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system of confocal hyperbolas. Trace the variation of z as w
describes the whole of a line it = // or v = z- . How does w
vary as z describes the degenerate ellipse and hyperbola formed

by the segment between the foci of the confocal system and the

remaining segments of the axis of x ?

9. Verify that the transformation z = c cosh (vw/a) can be

compounded from the transformations

z = cz^ % = ^ (z2 + i /%)? z., = c exp (TTW/O).

10. Discuss similarly the transformation z = c tanh (irw/a),

showing that to the lines u = // correspond the coaxial circles

\x-c coth (iruo/a) j

2 +/ = c1 cosech 2

(irt/ /a),

and to the lines v z correspond the orthogonal system of

coaxial circles.

11. Discuss the transformation

fw a +
z=iog

I

showing that the straight lines for which x and y are constant

correspond to sets of confocal ellipses and hyperbolas whose
foci are the points w = a and w = b.

Here ^/(w
-

a)+ V(w - b} = V( -
a) exp (x + /

of) exp ( A* /

and it is readily found that

\u&amp;gt; a\ + \w l&amp;gt;\

=
\l&amp;gt; a\- cosh 2 x,

\w a\ \wb\= b a
\

cos 2 y.

12. Prove that if neither a nor b is real then

* ~ L
a b
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each logarithm having its principal value. Verify the result if

a = ci, b = d where c is positive. Discuss the cases where a

or b or both are real and negative.

13. Show that if and ft are real, and (3 &amp;gt; o,

What is the value of the integral when (3 &amp;lt;
o ?

14. If an algebraic plane curve has a double point with dis

tinct tangents neither of which is vertical, what can be said of

the corresponding RIEMANN S surface ?

15. Of a certain function /(z) I know that it is single-valued

and regular in the region of the s-plane lying between the

ellipses ^ 2 ^ y
H---- *&amp;gt;

--
1

--T r
&amp;gt;49 2 5 36

and that along the arc of the circle of radius 4, with its center

at the point z = o, which lies in the first quadrant f(z) has the

value 3 5 8 3 /. What can you say about f(z] ?

16. Find all the values of tan&quot;
1 ^ -f /) to three figures.

17. The function of the real variable x defined by

(where 7(V) denotes the imaginary part of )
is equal to/ when

x is positive, and equal to q when x is negative.

18. The function of x defined by

is equal to / for x
&amp;gt;

i
,
to ^ for o &amp;lt; jc &amp;lt; i

,
to r for ^ &amp;lt; o.

19. Draw the graph of the function /(log a;)
of the real varia

ble x. (The graph consists of the positive halves of the lines

y= 2 kir and the negative halves of the lines y =(2 k + iV.)
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20. Show that exp (i + i)z
= V 22&quot;

. exp [

- mri
)

.

VI / !

21. Expand cos 2 cosh 2 in powers of z.

We have cos z cosh z / sin z sinh z = cos (i + i)z

Similarly cos z cosh z + i sin z sinh z = cos ( i i)z

_IV,i5 _[_ \n&amp;gt;
&amp;gt; f

I

2V \ 4
*

7 n\

Hence cos z cosh z = -V 22&quot;
J
i +( i)

n
f cos- TT

&quot;

4 !

22. Expand sin z sinh 2, sin z cosh 2, cos z sinh z each in

powers of z.



CHAPTER VI

GENERAL THEORY OF FUNCTIONS

66. The Principle of Analytic Continuation

WE have already investigated a series of many-valued func

tions of a complex variable in the previous chapter ;
the question

of prime importance in this connection is the following: When

several values of one complex variable are associated with each

value of another, under what conditions are these first values,

taken together, to be regarded as a many-valued function of the

latter (and not as different single-valued functions) ? In the in

vestigation of this question we begin with the following con

siderations :

Let a bounded domain S and a function of z, regular in this

domain, be given in the plane (or on the sphere). We consider

then a domain S of which S is a part, and inquire whether a

function exists which is regular and, by definition, single-valued

everywhere inside of S and which is identical with the first

named function inside of S. (That only one such function can

exist in any case, when one exists at all, follows from theorem

VII, 39-)

I. If such a function is found then we say, according to WEIER-

STRASS: we have continued the given function analytically beyond

the given domain for which it is defined.

The question concerning the existence of such a function may
be regarded as belonging to the subject of linear partial differ

ential equations. The real and the imaginary parts of a regular

382
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function of a complex argument satisfy, as we know, the CAUCHY-

RIEMANN differential equations ;
another formulation of the

problem is therefore the following : Given the values of two

functions //, v along a line L (a piece of the boundary of the

original domains) ;
we desire to find two functions u, v which sat

isfy the differential equations :

du _ dv dv _ du

Cx cy ex dy

in the neighborhood of this curve and which reduce to u, v

respectively along this curve. But this formulation of the prob

lem leads into difficulties when we attempt to state precisely

what continuity properties are presupposed for the curve L and

the assigned values along Z, and what properties of this kind we

may require of the functions to be determined. On this account

the problem is not discussed here from this standpoint, but we

use, as did WEIERSTRASS, the development of the regular func

tions in power series.

Let a regular function f(z) be defined in a domain S, and let

a be an inner point of this domain. The TAYLOR S series

then converges (III, 37) at any rate inside of the largest circle

F with center a which belongs entirely to the domain S, and in

fact converges to/(z). But it is altogether possible that it con

verges outside of T and imide of a circle T concentric with T.

The surface of this circle T has at least one continuous domain

5 in common with the given domain of which the surface of

T is a part ;
it is also possible (cf. Fig. 40) that it has in com

mon with S another or several other domains 3 which are not

connected with 2, ;
for these however the following theorems do

not hold. But inside of 2 the value of series (i) is, according
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FIG. 40

to V, 38, a single-valued, reg

ular function of z which may
be designated provisionally by

&amp;lt;

(z). The difference

*(*}-/(*)

is therefore regular everywhere

inside of 2J and is everywhere
= o in a part of 2, viz. inside of

P. Hence it is zero in the whole

domain 2 according to VII, 39 ;

that is, we have the theorem :

II. When series (7) converges also at points which do not belong

to the original domainfor which the function f(z) is defined, then the

two functions coincide in the whole continuous domain 25, which is

common to the domains defining the function and the series and

which contains the point a.

Definition :

III. Series (/) represents an &quot;

analytic continuation
&quot;

of the given
&quot; element of the function&quot;f (z) in allparts of its domain of conver

gence Si not belonging to 2 ; the domain for which this function

was defined, originally limited to S, is in this way enlarged.

IV. All the elements obtained from a given element of the func

tion by repeated analytic continuation together constitute an analytic

function*

The many-valued functions investigated in the previous

chapter satisfy this definition as is easily shown. We can go

* The analytic function is thus defined by a power series, whose radius of con

vergence is not zero, together with all possible continuations of that series. Cf.

HARKNESS AND MORLEY, Introduction, etc., pp. 154, 314; OSGOOD, Lehrbuch,

Vol. i, pp. 89, 189. S. E. R.
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from one branch of the function to any other branch by analytic

continuation
;

but such continuation cannot lead to values

other than those that are each time under consideration. This

latter statement follows from the following general theorem :

V. If a function f(z) is by definition regular in a domain S
and if it satisfies an equation :

G(z,f(z),f(z=o
at all points of this domain, where G is understood to be a rational

integral function, then the same equation holdsfor all analytic con

tinuations off(z).

To prove this theorem we develop G in powers of z a
;

since this development is by hypothesis zero everywhere inside

of 2, G must be zero everywhere inside of Sl according to

VII, 39-

The analytic continuation of the integral of a single-valued

function is particularly simple ;
such an integral is defined at

present as a single-valued function of its upper limit, in a simply

connected domain which contains the lower limit but no singular

point of the function to be integrated ;
that is, while the path of

integration remains entirely in this domain (VI, 35), If the

path of integration then reaches beyond this domain, we obtain

an analytic continuation of the element of the function first

defined : and different continuations of this kind lead to differ

ent values of the function when the path of integration con

sidered encloses a singular point at which the residue is not

zero. Examples of this are found in 56, 57 a, 62 d.

67. General Construction of the RiEMANN S Surface determined

by an Analytic Function

As in the previous paragraph, let an element of the function

f(z) be given in a domain Si ; suppose we have found a con-
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tinuation fi(z) of f(z) in a domain S2 which has a continuous

domain Si in common with Si ;
then suppose a second continua

tion /^(z) in a domain ^3 which has a continuous domain S2 in

common with (^ + S2 Si) ;
then a third continuation, etc.

;

finally an nth continuation in a domain Sn+i which has a con

tinuous domain S in common with

It is now possible that Sn+i has in common w ith Si a domain

SB+1 which is not connected with Si. (Fig. 40 shows this pos

sibility for 72= i, Fig. 41 shows

it for =
5.) In this domain,

therefore, two elements of the

function are defined, viz. f and

fn ;
but we have yet no basis

for the statement that these

elements must always be the

same. We have accordingly

two cases to dispose of.

I. When all the continua-

tMG-4 I
tions which are obtainable di

rectly or indirectly from a given element of the function, always

furnish the same values of the function for the same values of the

argument, we say :*the element of the function first given generates

a single-valued analyticfunction.

But when that is not the case, the existing relations are made

clear by the following geometrical representation. We think

of the defining domain of the function as increasing step by step

by adding in turn to the original domain Si, first S2 Si, then

*S3 S2 ,
etc. When finally Sn+l Sn has a part 2n+i extending

over a part of the original domain, as in Figs. 40 and 41, and

^ coincides with /in this part, then we add, not the whole
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of ^&quot;n+1 2
re

but only SnJ.i 2B 2n+i 5 removing the bound

ing curve between the newly added piece and 2n o-i, we have a

doubly connected domain (eventually multiply connected). This

domain is momentarily the defining domain of thefunction ; it is by

definition single-valued in

this domain. But when

fn does not coincide

with f in 2n+1 ,
then we

add on all of Sn+l 2 n

to the existing domain

which may be regarded

as a material, flat sheet.

This added piece will

then extend over S{
in

such a way that the part

of the plane designated

by 2n+i is doubly cov

ered by our domain, that

is, is covered by two &quot;sheets.&quot; We think of these sheets as

completely separated from each other perhaps by supposing

space between them. The domain momentarily defining the func

tion has tJierefore in the simplest case the form of a fiat strip

bounded by curved lines, the ends of the strips extending partly one

over the other (Fig. 42).

Of course one case then the other can appear according to

the direction in which we proceed with the continuation. But

by proceeding with each new continuation in the prescribed

manner for the case at hand, we obtain finally the entire RIE

MANN S surface which belongs to the function generated by the

given element of the function. We say :

II. The totality of analytic continuations of an element of a func

tion forms in general a many-valuedfunction of z, which however

FIG.
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can be regarded as a single-valuedfunction of position on a suitably

constructed RlEMANN S surface.

To be sure it is possible that after a series of continuations

which have led to different values of the function for the same

z for example after a series of circuits of the band shown in

Fig. 42 we may come again to values, or more exactly to

developments, which were already obtained there. In this case

we will have to fuse the newly generated sheet of the RIEMANN S

surface with one already formed. We encounter difficulties here

in the geometrical representation when the two sheets under

consideration do not lie directly over each other
;
we must then

imagine that one of these two sheets pierces the intermediate ones

at bridges (cuts) in order to be combined with the other. But

the bridges arising in this way are not essential for the surface
;

they may be shifted in the most varied way, and we are to

keep in mind in this connection that two parts of the surface

crossing in a cut are not to be looked upon as having a continu

ous connection with each other. We were acquainted with all

these details in treating the individual functions in the previous

chapter so that further study is unnecessary here. Only one

possibility, of which we have had as yet no example, remains to

be mentioned : Bridges (cuts) may also intersect in the most

varied manner. Of course we seek to avoid this possibility

when it occurs, but it is not always possible to do so.

We may also think of the RIEMANN S surface as spread out

over the sphere instead of over the plane. For this purpose we

map the neighborhood of the point at infinity upon the neighbor

hood of the origin of the s -plane by the substitution :

* =i/*

by which the given function /(z) tranforms into a function ^(z );

we then study this function
&amp;lt;j&amp;gt; (z

1

)
in the z -plane. If the origin
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of the z -plane can be reached by an analytic continuation of the

function &amp;lt; (2 )
in this plane, we regard the point oo of the

2-sphere as belonging to the domain denning the function f(z)

upon that sphere.

68. Singular Points and Natural Boundaries of Single-valued

Functions

When the analytic continuations of an element of a function

cover the whole sphere uniquely, this element of the function

generates a function which is single-valued over the whole

sphere. But such a function is necessarily a constant according

to IV, 44. Hence :

I. The domainfor which a single-valuedfunction not a constant is

defined, never covers the entire sphere.

A series of further possibilities thus arise for discussion.

The case is at once conceivable that there are one or more

points which lie upon the boundary of the domains of conver

gence of certain continuations, but which do not lie in the in

terior of any one of these domains. Let us consider the extreme

case where we have only one such point. This point itself can

therefore not be reached by the continuations of the function but

any other point of its neighborhood can be so reached. Thus

the definition :

II. A point such that it cannot be reached by any continuation

of thefunction, but that an\ otJier point of its neighborhood can be

so readied, is called an isolated singular point of the function.

The behavior of a function in the neighborhood of such a

point has already been investigated in 43, 47. 48 ;
the follow

ing is a recapitulation of that investigation :

III. An isolated singular point of a single-valued function is

either a pole or an essential singularity, a pole being a point at
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which the function has an infinity of an assignable integral order

andan essential singularity, a point in whose neighborhood thefunc
tion approaches arbitrarily near to any arbitrary value an infinite

number of times *

It is further conceivable that the function has an infinite num
ber of poles. The totality of these poles considered as an infi

nite set of points must necessarily have, therefore, at least one

limit point according to XVI, 25. In such a case the limit

point itself cannot belong to the domain for which the function

is regular ;
for then the function would have to be regular also

in a neighborhood of this point. Moreover, it cannot be a

pole ; for, according to IV, 43 a circle of so small a radius

can be drawn about a pole such that no other singular point of

the function lies in it. Consequently, we say :

IV. We designate as an isolated essential singular point of the

function such a point in whose neighborhood, arbitrarily small, infi

nitely manypoles, but no other singularity of thefunction lie, provided

that this point is isolated not from poles, butfrom other essential

singular points of the function ; and it is classed with the essential

singular points of Theorem III as the
&quot;

first kind&quot; of such points .

It may be mentioned without proving that for these singular

points also, the theorem holds that the function comes infinitely

often arbitrarily near to any arbitrary value in a neighborhood
as small as we please about one of these points.

V. Further, infinitely many essential singular points of the first

kind may
&quot; accumulate &quot; about such a point of the &quot; second kind,

1

infinitely many such points of the
&quot; second kind&quot; about such a point

of the &quot;third kind,&quot; etc.

These possibilities will not be discussed further.

* Cf. Exs. 1-6 at the end of 68. S. E. R.
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However, a few words must be given to another possibility,

viz. where all the points of a line are such that they never lie

in the inside of the domain of convergence of the continuation

of a given element of the function
;
and we are to understand

the word line here in the most general sense defined in IX,

25. Such a line is called, therefore, a line of singularities of

the function. Its points may lie in part (to be sure not inside,

but) upon the boundary of the domain of convergence of the

analytic continuation of the original, given element of the func

tion
;
but the case can also arise where such a point does not

lie upon the boundary of such a domain of convergence. By

many authors only the points of the first kind, not the points of

the second kind, are designated as singular points of the function.

The case where such a line of singularities is closed is of

particular interest. It delimits then a region of the surface

beyond which the function cannot be continued
; it is not possi

ble on the basis of our previous agreements, to enlarge the

domain for which the function is defined beyond this region of

the surface
;
and it appears, moreover, that such enlargement

of the domain cannot be obtained by changing or supplement

ing these stipulations. On the contrary, we define :

VI. A closed line of singularities of a function is a natural

boundaryfor thefunction,

Such functions with natural boundaries do not appear in the

elementary parts of the theory of functions, but examples of

such functions are found in the theory of elliptic functions.

Moreover, these natural boundaries of analytic functions are

always to be distinguished from the artificial cuts which we have

used at times to separate the totality of values of a many-valued

function into distinct branches for the purpose of better studying

them
; beyond such a cut the analytic continuation takes place

in another branch.



392 VI. GENERAL THEORY OF FUNCTIONS

EXAMPLES

1. The essential singularity may be contrasted as follows:

If the reciprocal of the function has a point for an ordinary

point, this point is a pole, that is, it is, to be sure, a zero for

the reciprocal of the function
;
but when the value of the recip

rocal of the function is not determinate at the point, then

the point is an essential singularity for the function as well as

the reciprocal.

2. Consider the function e^
/z

. Show that as z approaches

zero, this function, elsewhere one-valued, may be made to ap

proach any arbitrary value, that is, z= o is an &quot;essential singu

larity.&quot; 2

HINT: e* = I +z+ +
2 !

Therefore, z
1 = o or z = oo is an essential singular point, that is,

there is no number m such that z
m times a power series in z is

holomorphic, that is, z = o gives an infinite number of infinities.

Thus z = o, z = oo is an essential singularity.

3. Show by using Ex. 2 that in the vicinity of an essential

singular point an infinite number of poles exist.

4. Discuss e^a for its poles and essential singular point.

5. Discuss sin z, i/sin z, i/sin (1/2) as in Ex. 4.

6. Rational functions have a finite number of poles ;
tran

scendental functions are everywhere holomorphic except they

have at least one essential singular point. Rational integral

functions and transcendental integral functions are holomorphic

everywhere in the finite part of the plane, but one has poles at

infinity while the other has an essential singularity at infinity.

Give illustrations.
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7. If /j. (z) and/2 (X) are any two one-valued analytic functions

of z with a finite number of singular points, then the expression

,

defines, inside and out of the unit circle about the origin, parts

of two distinct analytic functions, /i (z), f.2 (z). Show that the

circle itself is not a natural boundary for either of these

functions.

69. Singular Points and Natural Boundaries of Many-valued
Functions

If we are studying a many-valued function, then considera

tions analogous to those carried out in the previous paragraph

for the plane are to be made for the RIEMANN S surface upon

which the many-valued functions to be investigated is a single-

valued function of position. We must then speak of singular

points and lines in a distinct sheet
;

it is not at all necessary

that such points and lines which appear in the different sheets

be situated vertically over each other. In particular it is not

necessary that all parts of the 2-plane be covered by the same

number of sheets of the surface.

But many-valued functions have other singular points of a

different kind, viz., the branch-points.- We have already had

a number of examples of such singularities in the previous chap

ter
; according to present considerations we obtain them in

general as follows : Let a point a be given and a circle about it

as center with a sufficiently small radius
;

let b be a point inside

of this circle and different from a. Let an element of the func

tion be given about b
;
we limit the discussion to such continu

ations of this element which can be obtained without going

outside of this circle. It is then possible that none of these con-
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tinuations reach the point a, that they reach every other point

inside of the circle, but that continuation along a smaller circle con

centric to the first only leads to the original element after n circuits

(n &amp;gt; i). In this case n sheets of our RIEMANN S surface are

connected at a exactly as is exhibited in 63 in the investigation

of the function

(1) w = vs a

(studied for a = o). If we map the parts of the n sheets lying

inside of the first named circle upon the #/-plane by means of

this function, then the images of these sheets are arranged

smoothly and contiguously in this plane and cover the neighbor

hood of the origin uniquely. The function f(z) to be investi

gated is thus transformed into a function of w, $(w), whose

particular branch under consideration is regular at each point

of the neighborhood of the origin, excepting the origin itself,

and which returns into itself after one circuit about the origin.

If we can now show that the value of f(z) remains less than

an assignable limit however near z may approach a in any

direction, then
&amp;lt;(w/)

also remains less than this limit when w
approaches the origin arbitrarily. But then the origin cannot

be a singular point of
&amp;lt;f&amp;gt;(w) according to I, 48 ;

on the con

trary &amp;lt;fr(w)
is regular at the origin, and can be developed in a

MACLAURIN S series. Expressing w in this series in terms of z

we obtain : Li
(2) /(*)= a, + ai(z

-
a)

n + a,(z
-

a)
n + - + am (z

-
a)

n + .

Here, as follows from the derivation, any one of the values of

this ;/-valued function can be chosen for (z a)
n

;
the values of

the remaining terms of the series are then no longer arbitrary,
H

since in general we are to take for (z a)
H the mih power of

the value chosen for (z a)
n

. For every value of z considered,
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the series (2) therefore represents ;/ values of the function in

accordance with the ;/ values of (z af\ together they consti

tute the n branches of the function f(z) which are connected

cyclically about a. Such a point is called a branch-point or

winding-point of order ( i); we assign it to the domain in

which we have defined the function, and ascribe to the function at

this point tlie value &amp;lt;7 .

But if we cannot show that f(z] and
&amp;lt;fxw

] remain less than

a finite limit in the neighborhood of z a and w = o respec

tively, we cannot apply MACLAURIN S theorem for the develop

ment of
&amp;lt;f(ni) ;

but we can use LAURENT S theorem for this pur

pose. In this way f(z) is developed in a series of powers of

z a whose exponents are positive and negative fractions with

n as denominator. Such a point is said to be a branch-print and

a singular point at the same time; it is, in fact, a pole or an

essential singular point according as the development just men

tioned contains a finite or an infinite number of terms with

negative exponents.

We may also have branch-points at which infinitely many
sheets are joined together ;

we have had an example of this in

studying the logarithm. But we shall not enter here into

further discussion of such points, as also points in whose neigh

borhood infinitely many branch-points are accumulated.

We now take up a question postponed in 34, viz., the ques

tion as to the conformality of the representation determined by

a regular function in the neighborhood of a point at which

dw/dz o. Without loss of generality we may suppose the

point we are considering to be the origin of the s-plane and

that the origin of the a -plane corresponds to it
;

let the develop

ment of w in powers of z have the form :

(3)
= a*z

n + 0+i3
n+1 +
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and let # be different from zero. If we then introduce an

auxiliary variable s by the equation :

(4) w = sn
,

we obtain

(5) j

The principal value of the ;/th root of the quantity in paren
thesis is regular in the neighborhood of the origin (cf. I, 61) ;

hence in the neigborhood of z o, s is a regular function of z

whose derivative for z = o is not zero but is equal to -\/an . The

relation between the .r-plane and the s-plane is therefore con-

formal at the origin ;
but on account of equation (4) and 18

the angle at the origin in the w-plane is n times as large as the

angle at the origin in the .r-plane. And therefore the angle at

the origin in the w-plane is n times as large as the correspond

ing angle at the origin in the s-plane ;
in other words we have

the theorem :

If a function is regular at a point in the z-plane and if the first

(n\]st derivatives of this function are equal to zero at this

point, but the nth derivative is differentfrom zero, then in the trans

formationfrom this plane to the w-plane, the angle at this point

increases n-fold.

According to X, 46, z is then a regular function of s = wl/n

in the neighborhood of s o in whose development the coeffi

cient of the first term is not equal to zero
;

thus w = o is a

branch-point of order n i for the inverse function z(w). Since

these considerations are reversible, it follows that :

If the development of a function z(w] in the neighborhood of an

(n \\fold branch-point a, begins with (w a)
l/n

following a con

stant term #
,
then the angle at this point is reduced to its nth part

in the transformationfrom the w-plane to the z plane.
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To a line of the a -plane which has a definite tangent at the

point w =
, corresponds then a line of the s-plane, which has

the point z ac as an #-fold point with ;/ separate tangents ;

these tangents form angles ir/n with each other.

EXAMPLES

1. State the theorem concerning isolated singular points of

analytic functions at which the function remains finite.

2. Assuming the theorem in Ex. i, establish other facts

about isolated singular points, and deduce the form of develop

ment of a function about a pole.

3. Given the function f(z}=^
n
\ show that the circle of

n=l

convergence, that is, the unit circle about the origin, is a natural

boundary.
lBd

HINT. If q and r are integers, the point e r on the circle of conver-

a^i

gence is an obstacle to the continuation. For, put z = p e r
(p &amp;lt; i) and

let p increase; then as p approaches I, the part of the series from the rth

term onwards, namely ^ p&quot;

!

approaches infinity. This would be impossible

2qTTi
n=r

if the point e
r were situated inside of any immediate continuation of the

power series. It is thus clear that there are infinitely many obstacles on the

circle of convergence and too that on any arc there are infinitely many

obstacles.

70. Analytic Functions of Analytic Functions

If z is an analytic function of z:

(i) * =
&amp;lt;K*)

and if w is an analytic function of z :

(2) w =/* ),

the question arises whether

(3) w = F(s)
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is an analytic function of z and in what sense it is such a

function.

We have already disposed of the simplest case in X, 38.

If
(f)

is single-valued and regular in a domain S of the z-plane,

and if all the values of &amp;lt; which belong to points of this domain

fall in a domain S of the z -plane in which domain/ is regular,

then w is also regular in S.

But if &amp;lt; or /or both are many-valued functions, the question

arises : When we give all their values to these two functions in

(3), will the totality of values of w so obtained belong to one

and the same analytic function of z, or to different functions of

this kind ? and in both cases : will this function (or these func

tions) be obtained completely in this way, or are there still other

values belonging to it (or to them) ? To answer this question

we must follow the analytic continuation somewhat in detail
;

and according to XII, 54, it will be sufficient to limit ourselves

to closed paths in doing so.

Let then ZQ be a value of z for which the function &amp;lt; takes on

a value z Q (along with other values). Let the function /(/)

be defined for z\ and let its value or one of its values be w .

Let the corresponding elements of the function be denoted by

(z o), (w ).
The function-symbol f(z ) includes then besides w

,

all the values which are obtained by allowing z to take on all the

values on arbitrary closed paths in its plane and continuing w,

beginning with WQ , analytically as a function of z
;
on the con

trary the function-symbol F(z) includes the values which are

obtained by allowing z to take on the values on closed paths in its

plane and in this way continuing w analytically as a function of

z. The question as to whether the two functions are identical

or different is thus reduced to the two following cases :

I. Can z be continued along all the s-paths upon which F(z)

can be continued? This is then and only then not the case
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when
&amp;lt;f&amp;gt; (z) has natural boundaries which are not such boundaries

for F(z).* The function-symbol F(z) has then a wider mean

ing than/[((s)].

II. Can any closed z -path be obtained by allowing z to

describe a suitable, closed path in its plane? This is then

not the case when z = *J/(z ),
the inverse of the function

z =
&amp;lt;(s),

is not single-valued. In this case the analytic func

tion F(z) can include perhaps f only a part of the values of

f\_4&amp;gt;(z)~\.
We have had an example of this in logs

2 in 56;
w
^/znp is a second example.

The remaining values of
/[&amp;lt;X

S)] are classified as other ana

lytic functions F^z), Fz(z), so that
/[&amp;gt;(&amp;gt;)]

is thus divided

into a (finite or an infinite) number of such functions.

(Cases I and II may both apply to the same function
;
then

only a part of the values of
/[&amp;lt;(z)]

are identical with a part of

the values F(z).)

The relations become more complicated if we assume f to

depend not upon one but upon two (or more) functions of z,

&amp;lt;(z), x(z)- But the discussion of functions of several complex

variables is excluded from this book
;

let it be said, however,

that in this case
&amp;lt;, x are to be continued simultaneously in order

to obtain values of F(z) and thus we are not always free to

associate two arbitrary values of
&amp;lt;f&amp;gt;

and x-

71. The Principle of Reflection

The general method of analytic continuation developed in

67 is not suited for actual application in investigating particu

lar functions. It is best in such cases to resort to special

* That this can happen is shown by the trivial example that / is the inverse of

4&amp;gt;
and thus F(z) = z.

f This is not necessarily the case ;
the values of F considered can perhaps be

obtained when z describes other paths ; ^/**t
where m, n are prime, is an example

of this.
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methods : an important method of this kind is discussed in this

and the following paragraphs.

Let us fix in mind a very special case. Let a function f(z) be

by definition regular in the interior of a domain A of the s-plane,

a part of whose boundary is a piece of the axis of real numbers.

If the function is also regular and real on this piece of the axis

and if Z
Q

is a point on this piece, its development in powers of

FIG. 43

z Z
Q
has real coefficients, and therefore it takes on conjugate

complex values at pairs of conjugate complex s-points. But we

will not assume from the start that the function is regular on this

piece of the axis nor even on only a part of this piece ;
we sup

pose only that as z approaches arbitrarily to a definite point x of

this piece of the axis,/(Y) converges to a definite real value f(x)
in the limit, and that these values of f(x) together with the

values of the function /(z) at interior points of A form a continu

ous function of the real variables x and y.
*

Let us now determine the points z conjugate to the points z

* We do not discuss here whether this second supposition is a consequence of

the first: concerning this see P. PAINLEVE, Ann.de lafac. de Toulouse, Vol. II

(1888), p. 19.
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of the domain A
;

all these ^-points thus form a domain A which

is the reflection of A in reference to the axis of real numbers.

Then by assigning to each point z that value which is conjugate

to the value oif(z) at z, we define a function which is regular in
A&amp;gt;

viz. :

(i) /.&amp;lt;=)=/.

Let be a point in the interior of A : it then follows according

to the theorem of CAUCHY * that :

(2) sbJui-*
*&quot;

/&amp;lt;0

but that :

We now add these two equations member by member. The

parts of the two integrals taken along the piece of the axis of

reals thus drop out since z = z,/(z) =fi(z) along this piece of

the axis, and the direction of integration is in the one case

opposite to that in the other
; /() remains

;
it is expressed by

an integral taken along the boundary of the domain (A -\- A),

where
^

- = z, f-2(f) =f(z
) along the part of the boundary belong

ing to A and ^
=

z,/z(f) =/i (z) along that part belonging to A. f

This integral has the exact form of the CAUCHY S integral ;
but

such an integral represents a function regular in the whole

domain and designated here temporarily by &amp;lt;() (cf. cor. to I,

* In order to apply CAUCHY S theorem here we must apply it to a curve which

lies entirely inside of A, and then pass from this to the boundary of the domain
with the aid of III, 29.

f The symbol for the variable of integration can be selected arbitrarily.
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36, also the first proof of I, 50). The process thus shows

that/() = &amp;lt;()
in the domain A.

But if is a point in A we have

(4)

and

(5)

Proceeding as in the case above we find that this same regular

function
&amp;lt;/&amp;gt;()

is identical with fi() in the domain (A). There

is therefore a function regular in the whole domain (A -f- A),

which is identical with/() inside of (A) and identical with/i()
inside of A

;
but this means precisely that f\(Q is the analytic

continuation of
/&quot;()

Hence the theorem :

I. The analytic continuation of f(z) across this piece of the real

axis is always possible under the given assumptions ; it is per

formed by assigning conjugate values of the function to conjugate

values of the argument*

The theorem may be easily generalized to the case where

any other straight line of the plane is used instead of the

axis
;
hence :

II. If an analytic function takes on real values (in the sense de

fined at the beginning of the paragraph) along a piece of a straight

line, it takes on conjugate complex values at such points which are

reflections of each other in reference to that line.

* This particular continuation, important in investigations concerning con-

formal representation, is contained in a proposition due to SCHWARZ, Crelle, Vol.

70 (1869), pp. ic6, 107, Ges. Math. Abh. Vol. II, pp. 66-68. Cf. also DARBOUX,
Theorie generate des surfaces, Vol. i, 130. S. E. R.
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72. Conformal Representation of a Triangle bounded by

Straight Lines on a Half-plane

The theorems of the previous paragraph may be applied to

the solution of the following problem : to map a triangle

bounded by straight lines in the o/-plane conformally on a z-

half-plane (or on a s-hemisphere). Let us suppose the possibil

ity of the solution aad designate by

(i) z =
&amp;lt;tfw)

the function desired for the mapping. Primarily the problem

implies that this function be regular inside of the triangle, that it

remains continuous in approaching the sides of the triangle, and

that it assumes real values on them. But these properties are

sufficient according to II,

71 to continue the func

tion analytically beyond the

sides of the triangle over

the three other triangles,

which are the reflections of

the given triangle in refer

ence to its sides. The

same conclusion can then

be applied to each side of

each of the new triangles,

etc., so that finally the whole

RIEMANN S surface of
&amp;lt;(#/)

is constructed entirely from

triangles which are alternately congruent and symmetrical to

the given one. In this way the triangles formed later over

lap those formed earlier, even the original triangle, and the

RIEMANN S surface so formed will in general be composed of

an infinite number of sheets. In order that the surface be one-

FlGl



404 VI. GENERAL THEORY OF FUNCTIONS

sheeted it is necessary that one vertex of the triangle shall not

be a branch-point, and that therefore we shall again obtain the

original triangle after an even number of reflections on the sides

of the triangle intersecting at such a vertex. For this purpose

it is necessary and sufficient that each angle of the triangle be an

aliquotpart of IT.

But when this condition is satisfied the plane is always cov

ered uniquely by the alternately congruent and symmetrical

repetitions of the original triangle. This is best illustrated by

examining the possible, individual cases of which there are only

a small number. For, if the angles of a triangle are TT//, TT/;;Z,

Tr/n, where /, m, n are integers &amp;gt; i, these integers must satisfy

the equation

(2) i//+i/i + i/=i.

This is at once the case when each = 3 and the triangle is

therefore equilateral. But if they are not all equal to 3, one

must be smaller and hence = 2. Let /= 2
; i/m + i/n is then

=
1/2, and thus (m 2) (n 2)

= 4,

and therefore either m = 4, n = 4, or

; = 3, n=6 (m= 6, 11=3 is the same

case). Therefore :

I. The surface of a triangle bounded

by straight lines can be mapped conform-

ally upon a haIfplane in only three

cases by means of a function which is

single-valued in the whole plane, viz. :

when the triangle is cither equilateral,

or right-angled isosceles, or half of an

equilateral triangle.

We notice now that a parallelogram

FIG. 45 is formed from eighteen of these alter-
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nately congruent and symmetrical triangles in the first case, from

eight of them in the second case, and from twelve in the third

case
;
this parallelogram is such that further continuation always

leads * to congruent f parallelo

grams. That the plane is cov

ered once without gaps by

congruent parallelograms is only

an elementary theorem.

The functions which determine

the representation can be ob

tained as follows in every case

(not merely for the three special

cases mentioned above) :

Let w =f(z) be the solution of
Fic&quot;

equation (i) : then the half-plane is

mapped on a triangle similar to the

given one by the function
C^IL&amp;lt; + C2

where C^ C2 are arbitrary constants

(cf. 10). The indefiniteness arising

in this way is eliminated by consider

ing the function

(3)
d_

dz

dw
~dz

FIG. 47

instead of the function w
;
this func

tion (3) remains unchanged when

C^w + C2 is substituted for w. With

out loss of generality we may further

* The number eighteen of the first case can be reduced to six by constructing

the parallelogram from parts of different triangles. This is designated in Fig. 45

by the dotted lines.

t Congruent also in reference to the position of the individual triangles in them

which are indicated in the figures by hatching.
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suppose that the three points o, i, oo of the sphere taken in

order correspond to the three vertices of the triangle ; for,

according to 15 this can always be done previously by a linear

transformation of the z variables. Then w must be a function

of z which is regular in the neighborhood of every point of the

^-sphere with the exception of the three points just named and

which has a derivative different from zero (VI, 34). The

angle TT of the z half-plane must be mapped upon the angle ?r

of the triangle of the w-plane at the point z = o; hence at this

point we must have

W W = Z-, z

W a -l / / \_= .,
&amp;gt;./,(),

(4)

where /(z), fi(z), fi(z) are understood to be functions regular in

the neighborhood of the origin. Similarly, in the neighbor

hood of the point i :

(15) log ^ ~ l + a regular function
;

dz dz z i

and in the neighborhood of the point oo :

(6)
-^

log
~ = ~HH-! + z-* a regular function.

dz dz z

Therefore the function (3) has poles of the first order at the

singular points o and i, it is otherwise regular over the whole

sphere, and is zero at infinity ;
it is consequently a rational

function according to VI, 44, and is, in fact,
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(The development of this function in the neighborhood of z=^c

takes the form (6) since a -f- (3 + y = i.) Integrating (7) twice

we obtain :

as the solution of the problem ;
further discussion of this solu

tion is beyond the bounds set for our purpose.

The limiting case =4-, /?
= i (and thus /= 2, m = 2, n = oo)

leads, if we put 2 s = H~ i, to the mapping of a half-strip on

the half-plane by the function w=- sin -1
investigated in 42

and 62 d.

73. Generalization of the Principle of Reflection ; Reflection on

a Circle

The theorem of 7 1 is capable of a very wide generalization

as worked out by H. A. SCHWARZ. Let the two equations

(1) * = *(/), } =+($,

in which
&amp;lt;, \f/ signify -at present real regular functions of the

real variable / (limited to a definite interval), determine a
&quot;

regular arc of a curve &quot;

;
we can then, according to I, 38,

give complex values to this variable / without affecting the con-

vergency of the series for &amp;lt; and
\f/.

Therefore by the equation

(2) s = ..r + /v=&amp;lt;K/)+/V&amp;lt;0

a domain of the /-plane which lies on both sides of a definite

piece of the real /-axis, is mapped on a domain of the z-plane

which lies on both sides of the given regular arc of a curve
;

and we can restrict the first domain in such a way that the

latter one does not overlap itself, (X, 46). If the s-points are

now arranged in pairs corresponding to conjugate values of / by
means of (2), we define in this way in the last named domain

a reversibly unique arrangement of the points z in pairs.
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I. This arrangement is only dependent tipon the given arc of a

curve itself, and independent of the way it is represented by equa
tions of theform (/).

In order to obtain another way of representing the same arc

of a curve, we replace / in equation (i) by a real, regular func

tion of another real variable T, and then give to T conaplex

values also
;

in this way conjugate complex values of / corre

spond to conjugate complex values of T according to 71.

Accordingly we define as follows :

II. Two points of the z-plane which correspond to conjugate

points of the t-plane are called reflected images of each other in

reference to the given regular arc of a curve.

Hence the following more general theorem is obtained from

the special one I, of 71 :

III. Let f(z] be a function regular by definition inside of a

domain of the z-plane, to whose boundary a regular arc of a curve

belongs ; let it befurther known thatf(z] converges to a definite real

value x(/) in the limit as z approaches arbitrarily to a definite point

t of this arc, and that these limits together with the given values of

the function forjn a continuous function of x and y. Then the

function f(z] may be continued analytically beyond that arc of the

curve, and in so doing it takes on conjugate complex values at points

which are reflected images of each other in reference to that arc.

If in particular the given arc is an arc of the unit circle, we

can put

and hence (cf. 3, 15) :
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If we now give to t in this equation two conjugate values // + ir

and u iv and designate the corresponding values of x -f- iy by

Xl _j_ iy^ and x2 + iy2 respectively, we obtain :

i -f ? l

i + v + //

J
I ,-, ,1/

I

and therefore : xz n 2
= - = r~r~

i z; + /// A
! + ty\

But that is exactly the relation between the two points (x^ y^)

and (xz , jo), which we designated earlier as reflection on the

unit circle (cf. equation (7), IT) ;
hence we say:

IV. The reflection on the unit circle investigated earlier is a

special case of the reflection on an arbitrary regular arc of a curve

defined by III.

74. Conformal Representation of a Triangle bounded by Arcs of

Circles upon the Half-plane

In 72 we made use of the special theorem of 71 to investi

gate the conformal mapping of a triangle bounded by straight

lines upon the half-plane ;
the more general theorem of 73 is

now used to discuss the same problem for a triangle bounded

by arcs of circles. However, the present problem is treated

less exhaustively than the other one
;
we limit the discussion to

emphasizing a few particular points and solving an easy example.

If the converse of the function used for the mapping is to be

single-valued, the angles of the triangle must be aliquot parts

of TT in this case also. But the relation (2), 72 is not neces

sarily satisfied here
;
we have, consequently, three cases to

discuss, viz. ;
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I. If i//+ i/m + i/n = i, we show geometrically (cf. Fig. 48)

that the three circles to which the arcs bounding the triangle

belong intersect in a point. If by means of a linear transforma

tion we pass from the w-plane

to a a&amp;gt; -plane in which the point

w = oo corresponds to this point

of intersection, a triangle bounded

by straight lines in the o/ -plane

will then correspond to the given

triangle of the w-plane ;
but this

is simply the previous case already

FIG. 48
discussed.

II. If i/t+i/m+ i/n&amp;gt;i, we

transfer the triangle to the sphere by stereographic projection ;

it can then be shown geometrically that the planes of the three

bounding circles intersect in a point inside of the sphere. We
can now find infinitely many collineations of space of the kind

spoken of in 16. determined by linear transformations of the

w-variables, which transfer the above point of intersection to the

center of the sphere ;
if we assume any one of these, the triangle

under consideration is transformed into a &quot;

spherical triangle
&quot;

(in the ordinary sense of that word) which is bounded by arcs

of three great circles of the sphere, and the reflections on the

sides of the triangle defined in the previous paragraph are

thus converted into reflections with reference to the planes

of these sides (cf. XI, 13) in the usual, optical sense of the

word reflection. Two successive reflections of this kind are

together equivalent to a rotation of the sphere about the line

of intersection of the two planes through twice the angle

which these planes make with each other. Therefore the figure

formed from the alternately symmetric and congruent repetitions

of the original triangle must have the property that it is trans.-
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formed into itself by a definite rotation of the sphere about its

center.

The inequality (II) is satisfied by integral values of /, ;;/, n in

only the following ways :

1. /=/;/ = 2, arbitrary,

2. /= 2, ;;/ = 3, # = 3, 4, or 5 ;

the case / 2, ;;/ = 3, ;/ = 3

will be discussed somewhat in detail.

The spherical excess of a triangle having the angles, 7r/2,7r/3,

7T/3 iS

(l) 7T/2 + 7T/3 + 7T/3
- 7T = 7T/6 J

its area is accordingly equal to one twenty-fourth of the total sur

face of the sphere. When it is therefore possible to cover the

whole surface of the sphere once without gaps by alternately

symmetric and congruent repetitions of the given triangle, we

shall need exactly twenty-four such triangles for this purpose.

In fact the sphere is so covered by dividing each face of a regu

lar tetrahedron into six triangles by drawing the medians in each

face, and then projecting the triangles so obtained from the center

of the tetrahedron upon the surface of the circumscribing sphere.

When such a triangle is mapped upon a half-plane in such a

way that its vertices correspond to the points z = o, i, oo respec

tively, the function z of w by which the mapping is accomplished

must have the following properties (its existence always pre

supposed) :

1. At all points w which are not vertices of the triangle, the

function must be regular and have a derivative different from

zero.

2. w WQ must be a regular function of ~\/z at the vertices

of the triangle WQ which correspond to the point 2 = 0, since an

angle 7r/2 on the ^-sphere here corresponds to an angle ?r of
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the 2-sphere ;
z is therefore a regular function of w which has a

zero of order two at W
Q

.

3. w wl must be a regular function of ~\Jz i at the ver

tices of the triangle w^ which correspond to the point z=i, and

therefore z i is a regular function of w which has a zero of

order three at wv

4. ww^ must be a regular function of z~^ at the vertices of

the triangle w^ which correspond to the point z =oc, and there

fore z is a function of w which has a pole of order three at w^.

Accordingly, z is a function of w which is regular over the

whole w-sphere with the exception of particular poles, that is,

according to VI, 44 it is a rational function of w. As such it is

already determined by the properties i, 3, 4, except as to a con

stant factor
;
the problem is then solved when we have so deter

mined this constant factor that the property 2 is also satisfied.

The middle points of the edges of a tetrahedron are the ver

tices of a regular octahedron
;
we can then think of them as so

arranged that the points w corresponding to them on the sphere

fall at . .

o, oo, -f- i, + i, i, /,

and are therefore (excepting w oo) the roots of the equation :

(2) f,(w) =w(w*- i)=o.

The vertices and the middle points of the sides of the tetrahedron

give then points on the sphere all three of whose space coordi

nates
, ry, 4 (cf. 13) have the absolute value -

;
we may

2V3
_

suppose that the former have an even number of negative coor

dinates and that the latter have an uneven number of such coor

dinates. Then the arguments W&amp;lt;L
of the first [(6), 13] become :

i + / i +/ i / i /

v^-i V3-i Va + i yi-M
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that is, the roots of the equation :

(3) /s(a )
= o&amp;gt;

4
2 / V3 w1 + i = o

;

the arguments wx of the last become :

i / i / i + i i -f*

that is, the roots of the equation :

(4) /3 (w)
= w* + 2 / V3 a/

2
4- i = o.

A rational function z i of w which satisfies the conditions i,

3, 4 is therefore :

w4 + 2 i V3 w* + i

in order to satisfy also the relation (2) we must have two coeffi

cients a, b satisfying the identity :

We find :

(6) /3
3 -/2

3 = 6 (X + i)
2
2 / V3 wz +2(21 V3 zc/

2

)
3

= 12 V3 ?w2

[(w
4 + !

)
2

4 z^
4

]
= 1 2 V 3 if?.

Hence, the desired function b\ which the given triangle bounded

by arcs of circles is mapped upon the half-plane is :

(7) =V3*-?= -^/3 /3

further, this function has a two-fold zero at infinity also (which

was not considered).*

* Concerning the case II cf. F. KLEIN, Vorlesungen iiber das Ikosaeder, Leip

zig, 1884.
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III. The third case i //+ i /m -f i /n &amp;lt; i leads to transcen

dental automorphic functions
;
we cannot enter into a further

discussion of this case since the object of this introduction has

been obtained, coming as we now have to the threshold of that

province in the theory of functions where some of the most

appreciated present-day problems are to be found.

MISCELLANEOUS EXAMPLES

1. Prove that every function w =f(z) determines a transfor

mation which leaves angles unchanged over any region through

out which f(z) is regular. What peculiarity occurs in the

neighborhood of a branch-point of f(z) ?

2. Construct the RIEMANN S surface for the inverse of the

function w = z4 + & and find the images of its sheets.

3. If f(z) is analytic throughout a certain simply connected

region, prove that

=
Ja

is also analytic there, a being a fixed point of the region.

4. Show that if f(z) is analytic in a certain region S and if

f(z) vanishes at every point of S, then/(z) is a constant.

/y***
5. By taking the integral I dz

*J z

along a suitable contour and applying CAUCHY S integral

theorem, obtain the formula

sin

x

and hence
rsin

x
x
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6. By means of the integral

taken along a suitable path, show that

Jo

and hence by means of the same integral taken along another

path, show that the value of these integrals is
-y--

7. Prove that, if /(z) is analytic at the point z = a and/ (V)

does not vanish, then the equation

w=f(z)

can be solved for z, and establish the essential properties of the

solution.

8. If
&amp;lt;(/)

is a function of t defined along a regular curve C
in the complex /-plane, and if

&amp;lt;(/)
is continuous along this

curve, discuss the function of z defined by the integral:

JGG tz
9. Deduce CAUCHY S integral formula. Name some of the

most important theorems that are proven by means of this

formula, and also some that follow indirectly from it.

10. Obtain an expression for
|

sin z
|

in terms of x and y,

where z = x + iy.

Hence, discuss the convergence of the series

sin z . sin 2 z . sin 3 z .--
1

-----
1

--
;
--h &quot;

5 5
2

5
3

For what values of z does this series represent an analytic

function ?
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11. Regarding the function f(z) it is known that its pure

imaginary part is never negative when z lies in the neighbor
hood of the point a

;
while the function

&amp;lt;j&amp;gt;(z)

is in absolute value

greater than 1/2 for such values of z. Both functions are single-

valued and analytic near a with the exception of the point a

itself, at which they are not defined. What can you say about

the character of the function

in this neighborhood?

12. If a function is analytic in the entire plane and becomes

infinite at infinity, will it necessarily vanish for some value of z?

13. Discuss the linear transformation of the ARGAND plane

into itself when the fixed points are distinct and finite.

14. Show that to every rotation of a sphere about a diameter,

corresponds a linear transformation of the plane of stereographic

projection.

15. What singularities may an algebraic function have?

Prove your answer to be correct.

.16. State carefully a sufficient condition that an analytic

function be algebraic.

17. Discuss the function defined by the integral

dzw -f;
On what region of the w-plane does this function map the upper

half of the 2-plane ?

18. How would you prove that every algebraic equation has

a root?

19. Give two definitions of the function e* for complex values

of the exponent.
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Restricting yourself to one of these definitions, show that the

function is analytic and satisfies the functional relation :

20. State and prove the theorem about the inverse of an

analytic function being an analytic function.

21. Prove that a function f(z) which is analytic in all finite

points of the z-plane, and which remains finite for the whole

plane is a constant.

22. The functions/! (2), f(z) are both analytic throughout a

region Z&quot; having an isolated boundary point z = a, and they have

poles at the point a. What can you say concerning the order of

the poles of the function

^ =/.+/*
at the point z = a?

23. Show that, if a function f(z) is analytic throughout a

region T, one of whose boundary points is the isolated point

z = a, and if f(z) remains finite in the neighborhood of a, then

f(z) approaches a limit when z approaches a.

24. A regular hexagon is reflected on its sides
;
show that

a + bv + rf represents the vertices of the resulting configuration ;

\ia + b + c= i (a, b, c integers), what particular hexagon is

it? Discuss the case for a + b + c a. Is the plane covered

simply or multiply?

25. What does

i i

a b = o mean if a, b, c
; x, y, z are sets

x y
of points in the plane ?

26. Prove that if a function is analytic throughout a region,

and its vanishing points there are not isolated from one another,

the function must vanish at every point of the region.
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What is the importance of this theorem when we come to the

question of extending the definition of functions from real to

complex values of the argument? Illustrate by means of the

functions e*, sin z.

27. State accurately the three definitions of analytic functions

which depend respectively on the process of differentiation,

integration, and development in series.

Adopting whichever of these definitions you choose, state ac

curately and prove the theorem which says that a uniformly con

vergent series represents an analytic function.

28. If f(z) has at each point of a simply connected region n

distinct values, each of which varies continuously with z, prove

that if the point z describes any closed contour in this region,

none of the values oif(z) will be interchanged.

What information does this theorem give us concerning the

RIEMANN S surface of the two-valued functions

29. Construct the RIEMANN S surface for the inverse of the

function
z = 3 w* -f 4 w3

.

30. Let a be a point within a certain two-dimensional region

B, and let /(z) be a function single-valued and continuous at

every point of B, which vanishes at a. Prove that if /(z) is

known to be analytic at every point of B except a, it must also

be analytic at a.

HINT. Use that definition of an analytic function which depends upon the

process of integration.

If
&amp;lt;f&amp;gt;(z)

is analytic at every point of B except a, at which

point it is not denned, and if
&amp;lt;j&amp;gt; (z) does not become infinite as
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we approach a, prove that it is possible to define
&amp;lt;f&amp;gt;

at the point

a in such a way that
&amp;lt;j&amp;gt;(z)

is analytic at a.

HINT. Consider the function (z a)0(z).

31. Is z = o a branch-point for the function w of z defined by

the equation ^ = ^ _ ^ ?

Is z =& a. branch point ? Construct the RIEMANN S surface for

the function.

32. The function f(z) has a branch-point of the (g i)st

order in z = a. When is f(z) said to have a pole in a ? Define

the order of the pole.

Will the integral C* f , \,
J f(z

)&quot;
2

necessarily have a pole in a ? State precisely the condition.

33. If the analytic function w =f(z) has a branch-point of

finite order in z a, what is the condition that the neighborhood

of a be mapped on a single-leaved neighborhood of the point

w =f(a) ? Discuss both the case that/(#) is finite and the case

/()=.
34. Prove that if z = x + /) ,

the function

/(z) = e
1

(cos y + i sin y)

is an analytic function of z. Has this function any singular

points? If so, what are they? Are there any points of

the s-plane where, in the transformation to the o/-plane, w =/(z)
fails to be conformal ? If so, what are they ?

What are the images in the ay-plane

(a) of the lines parallel to the axis of reals in the z-plane ;

(fr) of the lines parallel to the axis of imaginaries in the

2-plane ?
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What happens to the image of a strip in the s-plane, bounded

by two lines parallel to the axis of reals, as the breadth of this

strip increases indefinitely?

What can be inferred from the result you have just found con

cerning the inverse of the function /(z) ?

The following four are simple examples of conformal representa

tion due to SCHWARZ, Werke, Vol. II, p. 148.

35. A region bounded by two arcs of circles through the

points z1} s2 in the s-plane is mapped on half of the w-plane by
the function / _ v X1/A

w =

where A.TT is the angle at which the arcs intersect.

36. A region bounded by three arcs of circles which intersect

at angles w/2, 77/2, XTT is transformed by

a/ =[(*-*!)/(* -**)]
1 *

into a semi-circle, where z1} z2 are the points of intersection of

those two arcs which include the angle X?r(A^o).
A special case of the above region is the sector of a circle.

For this 22==? and the transformation is replaced by

w = (z- *!)
1/A

.

37. If in the preceding example X vanishes, the transforma

tions which convert the triangle bounded by arcs of circles into

a sector are of a different character. Let Zi be the point at

which the two arcs touch
;
the remaining arc produced will pass

through o. If ATT be the angle which the real axis makes with

the tangent at zl5 the transformation

w = ex^l(z zj

is equivalent to a turn of the tangent through an angle A.TT (thus

becoming parallel to the axis) followed by a quasi-inversion with
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regard to zl (that is, a combination of reflection and inversion

a term due to CAYLEY). The resulting region is bounded by two

lines parallel to the real axis in the ay-plane, and by part

of a line parallel to the axis of imaginaries. The further

transformation

changes the two parallel straight lines into two straight lines

through a point, and the remaining straight line into an arc of

a circle with this point as center. The resulting region is a cir

cular sector.

38. The transformation w= (z-i)/(z + i) determines a con-

formal representation of the positive half of the s-plane upon a

circle in the a/-plane whose center is at the origin and whose

radius is unity.
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170, 172.
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29, 178.
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386.
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167, 231, 392.
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Function, holomorphic, 252.

Function, infinite value of a, 173.
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Function, reciprocal of a rational, 172,

173.
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392.

Function, transcendental integral, 201,

392.

Function, transcendental integral, at

infinity, 233.

Function, trigonometric, 216-221.

Function, value of a periodic, 233.

Function, value of a rational at infinity,

105. 173-

Function, value of a regular in a domain,
196.

Function, when co is a pole of a rational,

105.

Function, when oo is a zero of a rational,

106.

Function, with removable discontinuity,
228.

Functions, zeros and poles of a rational,

242.

Function, \/z, the, 365 ;
s2 = i z3

, the,

368.

Function, w = z2
, the, 82.

Function, w = zn
, the, 87 ;

is automor

phic, 88; determines a cyclic group,

90; fundamental region for, 92.

Function, z = w + i Vi w2
, the, 355.

Functions, analytic, of analytic func

tions, 397.

Functions, coincidence of, 208, 384.

Functions, hyperbolic, 217, 219-221.

Functions, many-valued, 284.

Functions, of a real variable, 127.

Functions, of ~v (z a)/ (z b) and

V(z a) (z
-

b), 342, 368.

Functions, rational, of z and &amp;lt;r
=

V(z a) (z b), 344.

Fundamental laws, the, i, 5, 7, 10.

Fundamental operations, 22, 23.

Fundamental region, definition of, 84.

Fundamental region, for c
z

, 225.

Fundamental region for w = zn
, 91.

Fundamental theorem of algebra, 229,

232, 240.

GAUSS, 9, 12, 43, 308.

GAUSS S series, 214.

Generalization of transcendental func

tions, 216.

Generalization of DE MOIVRE S theorem,

309-

Geometrical representation of addition,

1 6
;
of complex numbers on the sphere,

51; of subtraction, 18; of multiplica

tion, 18-20.

GMEINER, A., and O. STOLZ, 22.

GORDAN, 232.

GOURSAT, 190.

GOURSAT-HEDRICK, 182, 232.
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GREEN S theorem, 280.

Group, cyclic, go; definition of, 57;

finite discontinuous, 93, 113; invariant

of a, 72.

HANKEL, H., 23.

HARKNESS and MORLEY, 186, 188, 280,

384-

Harmonic, division of a line segment, 61
;

points, 72.

HEINE, 132.

HEINE-BOREL theorem, 162.

Helicoidal surface, 200; complex num
bers on, a, 291 ; pitch of the, 292.

HERZ, 308.

Higher derivatives (cf. also successive

derivatives), 179.

HOFFMAN, FR., 329.

Holomorphic function, 252.

Hyperbolic functions, 217, 219-221.

Hyperbolic linear substitution, 94-98.

Hypergeometric series, 214.

Images, reflected, 408.

Imaginary axis, 13 ; imaginary numbers
as number-pairs, 3 ; imaginary part of

complex numbers, 10.

Improper domain, 141; path, 141.

Independent of the path, the derivative

is, 175, 176, 178; the integral is, 191.

Indeterminate value of a function, 45,

103, 174, 228.

Inferior limit, 130.

Infinite, definitely, 255, 256.

Infinite series, convergence of, 169, 170;
sum of, 169 ; of partial fractions, 263.

Infinite value, fundamental laws for, 46;
of a complex variable, 45, 47 ; of a

function, 173 ;
on the sphere, 51.

Infinitesimal, definition of, 182 ; triangle,

183-

Infinity, as an inner point, 238 ; behavior

of a function at, 229; circular points

at, 70; corresponds to zero, 45, 104;
v-fold of a rational function, 102

;

point at, 45, 48; regarded as i/o, 45;
two views of, 1 73 ; value of a function

at, 105, 173-

Inner point of a set, 137.

Integers of arithmetic, i, 2.

Integral, absolute value of, 155; along
a closed curve, 100, 195, 196; analytic

continuation of an, 385 ;
classified by

discontinuities, 352 ; curvilinear, 156,

158, 189; definition of a definite, 151 ;

derivative of an, 206; equal to zero,

190, 191, 193, 195.

Integral function, linear, 32-38.

Integral function, rational, 29, 98, 231,

233-

Integral function, transcendental, defini

tion, 201, 392.

Integral function, transcendental, as a

product, 375.

Integral function, transcendental, at

infinity, 233.

Integral, independent of the path, 191 ;

of a rational function, 351 ;
of a regu

lar function, 188; transformation,

linear, 32-38; upper limit of an, 189;

upper, lower, 152 ;
with logarithmic

discontinuities, 353.

Integrals, FRESNEL, 215.

Integrand, 154.

Integration, arithmetic definition of,

151; between complex limits, 1 88
;

CAUCHY S theorem on, 100, 199; in

verse of differentiation, 155, 192 ;
of

a series term by term, 155, 200; path

of, 189.

Interval, partition of an, 151; segment,

127.

Invariant, double ratio is, 65 ; of a group,

72 ; (fixed) points, 33, 57, 64.

Inverse circular and the logarithmic func

tions, 365.

Inverse of the logarithm, 305, 306.

Inverse sine, defn., 360.

Inverse tangent, defn., 313 ; poles of the,

315-

Inverse transformation, the, 57, 114.

Involutoric transformation, 38, 40, 75.

Irrational numbers, 2, 127, 128.

Isogonal representation, 43.

Isolated point of a set, 137 ;
isolated

singular point, 227, 247, 254, 389.

Isometric, isothermal system of curves,

185.

JORDAN, 152.
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KlRCHHOFF, 96.

KLEIN, 94, 119, 413.

LAGRANGE, 308.

LAPLACE, 180.

LAURENT S series, 247-251, 254.

LAURENT S theorem applied to the sur

face for Vz, 339.

Law, the associative, 5, 10; the commu
tative, 5, 7 ;

the distributive, 7.

Laws, the fundamental, i, 5, 7, 10.

Least upper bound, 128.

LENNES, VEBLEN and, 28, 131, 140, 162.

Level, lines of, 187.

LIE, S., 23.

Limit of a convergent sequence, 168; of

a complex function, 167, 171; of a

function of two real variables, 144;

superior, inferior, 130; upper, of an

integral, 189; uniform approach to,

132, 141, 155.

Limit points, 127, 128; in the plane, 137.

Line of singularities, 391 ;
is a natural

boundary, 391.

Linear fractional transformation, 54.

Linear integral function, transformation,

32-38.
Linear substitution, transformation, 54.

Linear transformation into itself, a, 84;

on the sphere, 77.

Lines, as sets of points, 138 ; niveau, 187 ;

of equipotential, 187; of flow, 187; of

level, 187.

Logarithm, amplitude of the, 296; a

many-valued function, 297 ;
a regular

function, 297 ;
conformal representa

tion by the, 304; definition of the,

294 ; expansion of the, in a TAYLOR S

series, 297, 298; inverse of the, 305,

306; natural, 294; of a real positive,

negative number, 297 ; principal value

of the, 295, 297, 304; real, 296, 304;
RIEMANN S surface of the, 297.

Logarithmic, derivative, 240, 374; dis

continuities of integrals, 353 ;
and in

verse circular functions, 365 ; residue,

354-

Lower bound = upper integral, 152;

lower integral, 152; lower limit, 130;

lower, upper bounds, 127, 128.

Loxodrome or rhumb line, 307.
Loxodromic linear substitution, 94.

Maclaurin s development in a power
series, 206, 207.

Many-fold root, 99.

Many-valued functions, 284.

Many-valuedness of the amplitude, 21.

Map, of a rational function, 1 73 ; of a

rectangle upon a circular ring, 257 ;

of surfaces, construction of, reference,

308 ;
of the 2-plane, 29 ;

of a triangle

on the half-plane, 403, 409.

Mapping, general continuous, 148, 151,

182
; with preservation of angles, 43 ;

with a regular function, 182
; with w

= z2
, 83, 85-87 ;

with w = zn
, 88.

MERAY, Ch., 168.

MERCATOR S projection, 307.

Meridians on the sphere, 51.

Method of undetermined coefficients, 207.

MITTAG-LEFFLER S partial fractions, 373 ;

theorem, 262.

MOBIUS, 54, 72.

Modulus, 14; cartographic, 183; of

periodicity, 352.

Monogenic function, 178.

Monotonic, 134 ; partitively, 140.

MORLEY, HARKNESS and, 186, 188, 280,

384-

Motions in space as a collineation, 80.

Multiplication, geometrical representa

tion of, 18-20; of complex numbers,

10; of number-pairs, 6; of series, 212.

Natural boundaries, a line of singularities,

391 ; and singular points, 389, 393.

Natural logarithm, 294.

Negative numbers, 2.

Neighborhood, circular, rectangular, 137 ;

of a point, 136.

NEUMANN S sphere, 47, 77.

Niveau lines, 187.

Non-collinear, three points, 24.

Non-essential singular point or pole, 227,

228, 247, 254, 389, 392.

Norm, 14, 19.

nth root of z, the, 365.

n-va.lu.ed function at a point, 242.

Number of zeros and poles, 240-242.
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Number-pairs, addition and subtraction

of, 3-6 ;
as complex numbers, 7 ; as

&quot;imaginary&quot; numbers, 3; division of,

6 ; equality of, 4 ;
in the form (a + bi)

9; multiplication of, 6, 7; opposite,

5 ;
units for, 7.

Numbers, a notation for points, 127.

Numbers, complex, geometrical represen

tation of, i, 12; multiplication of, 10;

units of, 8.

Numbers,
&quot;

imaginary,&quot; as number-pairs,

3, 7-

Numbers, irrational, 127, 128.

Numbers, negative, fractional, irrational,

2.

Numbers, opposite complex, 15.

Numbers, real, general arithmetic of, i,

2; combinations of, i.

Odd, even function, 272.

One-to-one correspondence, 12, 13, 29,

127.

Opposite complex numbers, 15.

Order of a rational function, 102, 103 ;

sum of all, 106, 242.

Order at a pole, at a zero, 103.

&quot;Origin&quot; of coordinates, the, 12.

Orthomorphic transformation, 43.

OSGOOD, 25, 142, 186, 232, 384.

PAINLEVE, P., 400.

Parabolic linear substitution, 94-97.

Parallel displacement, 30.

Parallel translation in the plane, 28, 30.

Parametric representation of a curve,

139-

Partial derivative, 150.

Partial differential equations, 280.

Partial fractions, decomposition into, 268.

Partial fractions, infinite series of, 263.

Partial fractions, MITTAG-LEFFLER S,

373-

Partition, DEDEKIND, 128.

Partition of an integral, 151.

Partitively monotonic, 140.

&quot;Parts of the RIEMANN S surface, 323.

Path, 140; improper, 141.

Path-curves, 187.

Path of integration, 189.

Perfect set of points, 138.

Period of trigonometric and exponential

functions, 222, 223.

Period, primitive, 222; strip, 224-226.

Periodic function, 84, 222, 282; singly,

224, 268, 273; values of, 233.

&quot;Periodicity, modulus of,&quot; 352; of the

trig, and exp. functions, 222.

Permanently convergent power series,

201.

PICARD, 235, 267, 278.

PlERPONT, 3, 128.

Pitch of the helicoid, 292.

Plane RIEMANX S surface, 292.

i POIXCARE, 98.

Point, at infinity, 45, 48 ; boundary, 137 ;

inner, of a set, 137; isolated, 137;

limit, 127, 128.

Points, aggregate, assemblage, class, col

lection of, 127; diametral, 53, 80;

equianharmonic, harmonic, 72 ; of the

plane, 12; sets of, on a straight line,

127 ;
sets of, in the plane, 135.

Polar coordinates, 13.

Pole, at a branch-point, 335 ;
at infinity,

105; continuity at a, 172 ; many-fold,

102
;

or nonessential singular point,

227, 247, 254, 389, 392 ;
residue at a,

237-

Poles and zeros, 242, 243 ;
number of,

240-242 ;
of the inverse of tan&quot;

1
z, 315.

Positive half-plane, 67.

Potential, electrical, 187; velocity, 186,

187.

Power series, 168; absolute convergence

of, 202 ; a continuous function, 203 ;

a regular function, 203 ;
coefficients of

a, 206-2 10
;

coincidence of, 207 ; con

vergence of, 201 ; circle of convergence

of, 202
; derivative of, 149, 203 ;

devel

opment in, 199, 207 ; permanently

convergent, 201
; properties of, 201

;

successive derivatives of, 204; TAY
LOR S, MACLAURIN S, 206; uniform

convergence of, 202, 203.

Primitive period, 222.

Principle of reflection, the, 399.

Principal value of the amplitude, 284;

of the logarithm, 295, 297, 304; of the

square root, 319.

PRINGSHEIM, 165.
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Product, absolute value of, ig; ampli
tude of, 19; form for the sine, 376;
form for a transcendental integral

function, 375 ;
of two complex num

bers, unique, 10; of two series, con

vergence of, 212; WEIERSTRASSIAN,
373; when zero, n.

Progressive, regressive derivatives, 163,

165.

Projection, MERCATOR S, 307 ; stere-

ographic, 47, 53, 307 ; angles pre

served in stereographic, 48.

Pure imaginary numbers, 10.

Quadruple numbers, 22.

Quantity, complex (a complex number), g.

Quotient, 20; of two conjugate complex

numbers, 21.

Radius vector, 13.

Rational function, behavior of a, at

infinity, 104; continuity of a, 133, 170,

172; definition of a, 28, 2g, 167, 231,

3g2 ; degree of, 102
;

derivative of a,

174; indeterminate, 45, 103; many-
fold pole of a, 102

; many-fold zero of

a, 102; map of a, 173; order of a,

102, 103 ; pole of a, 242 ; reciprocal of

a, 172, 173, 228; sum of all the orders

of a, 106, 242 ; value of a, at infinity,

105; when infinity is a pole, a zero

of a, 105, 106; zero of a, 242.

Rational functions of 2 and s = \/z,

331 ; of z and &amp;lt;r
= V (z a) (z 0),

344-

Rational integral function, 2g, g8, 231,

233, 2g2, 3g2 ;
has w-fold pole at oo,

242, 3g2 ;
has n zeros, 242.

Rationalizing,
&quot;

345.

Real axis, 13.

Real logarithm, 2g6.

Real numbers, combinations of, i
; gen

eral arithmetic of, i, 2.

Real part of complex numbers, 10.

Real variable, functions of a, 127.

Reciprocal of a complex number, 21.

Reciprocal of a rational function, 172,

173, 228.

Reciprocal radii, transformation by, 38,

41 ; on the sphere, 51.

Rectangular contour, 158.

Reflected images, 408.
Reflection on axis of reals, 3g ; on a

circle, 407 ;
on equatorial plane, 52 ;

on a straight line, 402 ;
on unit circle,

40; principle of, 3gg.

Regressive, progressive derivatives, 163,

165-

&quot;Regular at,&quot; &quot;analytic about,&quot; 282.

Regular function, definition, 178; ex

panded in a power series, igg; map
ping with a, 182

; near a singular point,

227, 247, 254; on the RIEMANN S sur

face, 334; successive derivatives of,

204; value in a domain, ig6.

Regular functions, sums of, 260.

Removable discontinuities, 103, 228,

252.

Representation, conformal, 28, 41, 43,

182, 184.

Representation, geometrical, of addition

and subtraction, 16; of complex num
bers, i, 12; of double algebra, 3; of

multiplication, 18-20.

Representation, isogonal, 43 ;
of z-plane,

2g; parametric, i3g; similar in infini

tesimal parts, 43.

Residue at a logarithmic discontinuity,

354; at a pole, 237, 241.

Residues, 237-23g; CAUCHY S theorem

on, 236.

Rhumb line or loxodrome, 307.

RIEMANN, 2g, 47, 168, 178, i7g, 214.

RIEMANN S surface, general construction

of the, 385; of the amplitude, 28g; of

the logarithm, 2g7 ;
of the square root,

3ig; plane, 2g2, 2g3 ;
&quot;sheets&quot; of

the, 2g3.

Root of a number-pair, square, g.

Roots, limits of the, 100, 101
; many-

fold, gg; o$ unity, 25, 72.

Rotating and stretching, 32, 33.

Rotating the plane into itself, 31.

Scale of similarity, 183.

SCHWARZ, H. A., 402, 407, 420.

Screw surface, 2go.

Segment, 127; closed, connected, 138.

Sequence, convergent, i2g; increasing,

130; limit of convergent, 168.
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Series, absolute convergence of, 170;

convergence of, 169, 170, 201
;

con

vergence of a product of two, 212;

FOURIER S, 257 ; GAUSS S, 214; hyper-

geometric, 214; of partial fractions,

infinite, 263; LAURENT S, 247-251,

254; power (cf. power series); sum
of an infinite, 169.

Set of points, closed, connected, perfect,

138; as lines, surfaces, 138.

Sets of points, dense, 138; derived, 131 ;

inner point of a, 137 ; on a straight

line, 127.

&quot;Sheets&quot; of a RIEMANN S surface, 293,

323-

Similar figures transformed into each

other, 36.

Similar triangles, condition for, 36.

Similarity, scale of, 183 ; transformation,

32, 35-

Simple curve, 140.

Simply connected domain, 142.

Sine, 216-221
;

is a symmetric automor-

phic function, 226; inverse, 360;

period of, 222
; product for the, 376.

Single-valued analytic functions, 167.

Single-valued function on the RIEMANN S

surface, 333.

Singly periodic function, 224; conformal

representation by, 224; general theo

rems on, 2 73 ; partial fractions of,

268.

Singularities, branch-points are, when,

393. 395 J
line of, 391 ;

line of, as a

natural boundary, 391 ; and natural

boundaries, 389, 393 ; removable, 103,

228, 252.

Singular point, essential, 389, 390, 392 ;

isolated, 227, 247, 254, 389; non-

essential or pole, 227, 228, 389, 392;

regular function near a, 227, 247, 254.

Sin&quot;
1
w, 360.

Situs, analysis, 328.

Sphere, 47; NEUMANN S, 47, 77.

Square root, 316-319; branch-points of,

322; definition, 317; connectivity of

its surface, 328; deformation of its

surface, 329; expansion in a power
series, 337; of a number-pair, 9;

principal value of, 319; RIEMANN S

surface of, 319; a single-valued func

tion of position, 322.

Squares, indefinitely small, 185, 187.

Stereographic projection, 47, 53, 307.

Stretching and rotating, 32, 33.

Stretching the plane into itself, 31.

STOLZ, O., and A. GMEINER, 22.

Strip, period, 224-226.

Subgroup, 57.

Substitution, linear (= bilinear), 54;

elliptic, hyperbolic, loxodromic, para

bolic, 94-98.

Subtraction, geometrical representation

of, 1 8.

Successive derivatives of a power series,

of a regular function, 204.

Sum, absolute value of a, 17.

Sum of an absolutely convergent series,

170; of an infinite series, 169; of

regular functions, 260.

Superior limit, 130.

Surface, 136 ; as a set of points, 138 ;

general definition of, 139, 140; helicoid,

screw, 200
; plane, RIEMANN S, 292, 293 ;

RIEMANN S (cf. RIEMANN S surface).

Tan&quot;
1

s, definition, 313; mapping with,

314; poles of the inverse of, 315;

principal value of, 313.

TAYLOR S series, 206, 209, 213, 383; for

the logarithm, 297, 298.

Term by term differentiation, 149, 156.

Term by term integration, 155, 200.

Theorem, addition, for trigonometric and

exponential functions, 218; binomial,
221

;
DE MOIVRE S, a generalization of,

309; fundamental, of algebra, 229, 232,

240; GREEN S, 280; LAURENT S, 247, 254;
LIOUVILLE S, 230; MITTAG-LEFFLER S,

262
;

on integration, CAUCHY S, 190,

195, 199, 247; on residues, CAUCHY S,

236.

Theorems, general, on singly periodic

functions, 273.

THOMAE, 152, 168.

THOMSON images, 40.

Topology, 328.

Total variation of a quantity, 175.

Transcendental functions, 124, 167, 282,

392; generalization of, 216.
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Transcendental integral function, defini

tion, 201
;

as a product, 375 ;
at

infinity, 233, 255.

Transformation, bilinear, 54.

Transformation, by rotating the sphere,

52.

Transformation, circle, 54, 56.

Transformation, degenerate, 55.

Transformation, determinant of the, 55.

Transformation, &quot;direct&quot; similarity, 35.

Transformation, identical, 57.

Transformation, into itself, linear, 84.

Transformation, inverse, 57, 114.

Transformation, involutoric, 38, 40, 75.

Transformation, linear (cf. substitution,

linear).

Transformation, linear fractional, 54.

Transformation, linear integral, 32-38.

Transformation of the sphere into itself,

Si-

Transformation of the plane, 29 ; by
reciprocal radii, 38; by rotation, 31;

by stretching, 31 ; by a translation, 30.

Transformation on the sphere, linear, 77.

Transformation, orthomorphic, 43.

Transformation, periodic, 93, 95.

Transformation, reciprocal radii, 38, 41 ;

on the sphere, 51.

Transformation, similarity, 32, 35.

Transformations, group of, 90, 113.

Translation, parallel, 28, 30, 33.

Transmission of electricity, 187; of

heat, 187.

Triangles, infinitesimal, 183 ; similar, 136.

Trigonometric functions, 216-221
;
addi

tion theorem for, 218; periodicity of,

222.

Triple numbers, 22.

Unconditional convergence, 170.

Undetermined coefficients, method of,

207.

Uniform approach to a limit, 132, 141,

155-

Uniform convergence, 155, 156, 200, 202,

203.

Uniform continuity, 132.
&quot;

Uniformizing
&quot;

variable, 276.

Unique development in a power series,

207.

Unit circle, 15, 40; mapped on 2-half-

plane, 67 ;
reflection on, 40.

Units for complex numbers, 8
;

for num
ber-pairs, 7.

Upper, lower bounds, 127, 128.

Upper bound = low integral, 152.

Upper bound, least, 128.

Upper integral, 152.

Upper limit of an integral, 189.

Value of a function, at o and = oo,

173; in a domain, 196 ; indeterminate,

45, 103, 174.

Values of a periodic function, 233.

Variable, definition of complex, 28; uni-

formizing, 276.

Variation of a quantity, total, 175.

VEBLEN and LENNES, 28, 131, 140, 162.

Velocity potential, 186, 187.

WEBER, 317.

WEIERSTRASS, 129, 168, 201, 228, 261,

263, 382, 383 ; expansion in a product,

373-

WHITTAKER, 276.

Winding-point, 395.

YOUNG, W. H. and G. C., 136.

Zero, 205, 211, 241; at oo
, 106; corre

sponds to oo
, 45, 104 ;

division by, 45 ;

many-fold, 102; point, 102.

Zeros and poles, 242 ;
at a branch-point,

335; number of, 240-242.
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