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PREFACE

Mathematicians have always been occupied with questions of

maxima and minima. With Euclid one of the simplest problems

of this character was : Find the shortest line which may be drawn

from a point to a line, and in the fifth book of the conies of

Apollonius of Perga occur such problems as the determination

of the shortest line which may be drawn from a point to a given

conic section.

It is thus seen that a sort of theory of maxima and minima

was known long before the discovery of the differential calculus,

and it may be shown that the attempts to develop this theory

exercised considerable influence upon the discovery of the cal

culus. Fermat, for example, after making numerous restorations

of two books of Apollonius, often cites this old geometer in. his

&quot; method for determining maximum a nd minimum&quot; 1638, a work

which in some instances is so closely related to the calculus

that Lagrange, Laplace, Fourier, and others wished to consider

Fermat as the discoverer of the calculus. This he probably would

have been had he started from a somewhat more general point

of view, as in fact was done by Newton (Opuscula Newtoni, /,

86-88).

Maclaurin (A Treatise of Fluxions, Vol. I, p. 214. 1742), wrote :

&quot; There are hardly any speculations in geometry more useful or

more entertaining than those which relate to maxima and minima.

Amongst the various improvements that began to appear in the

higher parts of geometry about a hundred years ago, Mr. de

Fermat proposed a method for rinding the maxima and minima.

How the methods that were then invented for the mensuration

of figures and drawing tangents to curves are comprehended
and improved by the method of Fluxions, may be understood

from what has already been demonstrated. A general way of

iii



iv THEOEY OF MAXIMA AND MINIMA

resolving questions concerning maxima and minima is also de

rived from it, that is so easy and expeditious in the most

common cases, and is so successful when the question is of a

higher degree, when the difficulty is greater and other methods

fail us, that this is justly esteemed one of the most admirable

applications of Fluxions.&quot;

The theory of maxima and minima was rapidly developed

along the lines of the calculus after the discovery of the latter.

Mathematicians were at first satisfied with finding the necessary

conditions for the solution of the problem. These conditions, how

ever, are seldom at the same time sufficient. In order to decide this

last point, the discovery of further algebraic means was necessary.

Descartes had already remarked, in a letter of March 1, 1638, that

Fermat s rule for finding maxima and minima was imperfect ;
and

we shall see that many imperfections still existed for a long time

after the invention of the calculus by Newton.

As introductory to a course of lectures on the calculus of

variations, I have for a number of years given a brief outline

of the theory of maxima and minima. This outline is founded

on the lectures that were presented by the late Professor

Weierstrass in the University of Berlin. It treats the ordinary

cases
;
that is, where the functions are everywhere regular and

where the forms are either definite or indefinite. It was published

as a bulletin of the University of Cincinnati in 1903. At that

time I expected to publish another bulletin which was to treat

the more special cases
;
for example, where only one-sided differ

entiation enters, the &quot;ambiguous case,&quot; where the form is semi-

definite, etc. A treatment of these cases, the extraordinary cases,

required more study than was anticipated. The bulletin has

consequently been delayed so long that I have concluded to give

an entirely new exposition of the whole theory.

In the preface to the German translation by Bohlmann and

Schepp of Peano s Calcolo differenziale e principii di calcolo

integrale, Professor A. Mayer writes that this book of Peano not

only is a model of precise presentation and rigorous deduction,

whose propitious influence has been unmistakably felt upon
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almost every calculus that has appeared (in Germany) since that

time (1884), but by calling attention to old and deeply rooted

errors it has given an impulse to new and fruitful development.

The important objection contained in this book (Xos. 133-136)
showed unquestionably that the entire former theory of maxima

and minima needed a thorough renovation
;
and in the main

Peano s book is the original source of the beautiful and to a

great degree fundamental works of Scheeffer, Stolz, Victor v.

Dantscher, and others, who have developed new and strenuous

theories for extreme values of functions. Speaking for the

Germans, Professor A. Mayer, in the introduction to the above-

mentioned book, declares that there has been a long-felt need

of a work which, for the first time, not only is free from mis

takes and inaccuracies that have been so long in vogue but

which, besides, so incisively penetrates an important field that

hitherto has been considered quite elementary.

To a considerable degree these inaccuracies are due to one of

the greatest of all mathematicians, Lagrange, and they have

been diffused in the French school by Bertrand, Serret, and

others. &quot;We further find that these mistakes are ever being

repeated by English and American authors in the numerous

new works which are constantly appearing on the calculus.

It seems, therefore, very desirable in the present state of

mathematical science in this country that more attention be

given to the theory of maxima and minima
;

for it has a high

interest as a topic of pure analysis and finds immediate appli

cation to almost every branch of mathematics.

I have therefore prepared the present book for students who
wish to take a more extended course in the calculus as intro

ductory to graduate work in mathematics. I do not believe in

making university students study abstruse theories in foreign

languages, and in this treatise it will be found that the peda

gogical side of the presentation is insisted upon; for example,

the Taylor development in series is given under at least half a

dozen different forms.

HARRIS HAXCOCK
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THEORY OF MAXIMA AND MINIMA

CHAPTER I

FUNCTIONS OF ONE VARIABLE

I. ORDINARY MAXIMA AND MINIMA

1 . A function f(x) which is uniquely defined for all values of

x in the interval (a, I) is said* to have a greatest value or a maxi-

mum for the value x = x
Qt

situated between a and b, if there is

a positive quantity 8 such that for all values of h between 8

and + 8 the difference

[i] /(*+*) -/(*&amp;gt;=&amp;lt;)

exists, which at the same time does not vanish for all these

values of h. This function has a smallest value or a minimum
if under the same conditions there exists the difference

[2] /(* +*)-/(*o)sO,
which does not vanish for all values of h between 8 and + B.

A function may have several such maxima and minima which

may be different from one another
;

it may have minima which are

greater than maxima. (See

the accompanying figure.)

When the existence of com

plete derivatives in the

entire interval under con

sideration is presupposed,

the maxima and minima

which may be derived are called ordinary, but when we have to do

with functions whose derivatives exist only on definite points or with

functions which have one-sided derivatives and the like, the maxima
and minima may be called extraordinary. The discussion will be

* See Genocchi-Peano, Calcolo differenziate e principii di calcolo integrate ( 131).

1



2 THEORY OF MAXIMA AND MINIMA

restricted at first to ordinary maxima and minima. A maximum of

f(x) is called proper by Stolz (G-rundzuge der Differential- und Inte-

gralrechnung, Vol. I, p. 199) if in the formula [1] only the sign &amp;lt;

stands
;
while we have a proper minimum if there stands only the

sign &amp;gt; in [2]. The maximum and minimum are improper if in formu

las [1] and [2] the sign= also appears, however small 8 may be taken.

/ 1\
2 1

For example, y = (
x sin - I has the value + when x = for

\ a?/ nir

consecutive integral values of n, however large, and that is for

intervals as small as we wish. Stolz and others * use the notation

extreme or extreme value of a function to denote indifferently

either the maximum or minimum of the function.

The maximum and minimum of a function defined as above

are often denoted as absolute ~\ maximum and minimum, since

they depend upon the collectivity of the values of f(x). Opposed

to them appear the relative maximum or minimum, which enter

if the independent variable x is subjected to a restriction so that

h in the formulas [1] and [2] can take only restricted (and not

arbitrary) positive and negative values.

2. If the function f(x) has for x = X
Q

a positive derivative

ff

(xQ), the function is becoming larger on this position with in

creasing a?, and its values are respectively smaller or greater than

those o/(a; ) according as x is smaller or greater than X
Q

. It is

assumed that x lies sufficiently near X
Q

.

In this case the function f(x) has for x = X
Q neither a maximum

nor a minimum. Similar (mutatis mutandis) conclusions are drawn

if / (XQ) is negative.

It follows that if the function f(x) has for x = x a finite de

rivative that is different from zero, then on this position thefunction

has neither a maximum nor a minimum.

If then we exclude from the values of x those to which a defi

nite derivative (different from zero) corresponds, there remain either

* Extremer Werth was used by R. Baltzer, Elem. d. Math., Bd. I, Aufl. 5, S. 217;
Extremum by P. du Bois-Reymond, Math. Ann., Vol. XV, p. 564.

t The authors just cited, as also Peano, understand by the absolute maximum and

minimum of a function in a given interval the upper and lower limits of the function in

this interval, if such limits are reached . See also A. Mayer, Leipz. Ber. (1899) , p. 122, and

Lipschitz, Analysis, Vol. II, p. 306, and in particular Voss, Encyklopddie der Math. Wiss.,
Bd. II, Theil I, Heft I, S. 80, who remarks upon the weak terminology of the subject.
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those positions on which the function has no derivative (finite or

infinite) or those places on which it has a vanishing derivative.

These positions must be further examined if we wish to make

ourselves sure of the existence or nonexistence of a maximum or

minimum. No rule can be given for the cases where derivatives

do not exist.

If we assume that the derivative is zero, the following criteria

may be used : If f(x) has the derivative / (/-)
in the interval

(x h X
Q H- h), we have, in virtue of the Taylor formula,*

where x
l
lies between # and x. If f (x) becomes zero on the posi

tion x = X
Q in such a way that it is positive for x &amp;lt; X

Q and negative

for x &amp;gt; x
Q ,
then (x x^f (x^ is always negative, however x(= X

Q)

be taken, and consequently it follows that /(a?) &amp;lt;/(# )
for all values

of x within the interval X
Q

li to X
Q -f h. The function will there

fore be in this case a proper maximum for x = X
Q

. If, however,

f
f

(x) is negative for X&amp;lt;X
Q and positive for x&amp;gt;x

Qt
the product

(x #())/ (#!) is always positive, and the function will therefore

be a proper minimum for x = X
Q within the interval in question.

Iff (x) is zero, say, for values of x within the interval X
Q

x
Q+h

or within the interval X
Q

h . x
, we have cases of improper ex

tremes (maxima or minima). But if f (x) retains a constant sign

in the neighborhood of x = X
Q ,

then (x x
Q)f (x1 ) changes its

sign according as X&amp;gt;X
Q
or X&amp;lt;X

Q ,
and the function has neither a

maximum nor a minimum.

It is thus seen that the function f(x) has on the position x = X
Q

a maximum or a minimum according to the manner in which

its derivative vanishes for x = X
Q ;

that is, according as we pass

from positive to negative values or from negative to positive values

with increasing x. It has neither a maximum nor a minimum

if the derivative does not change its sign.}

* See Pierpont, The Theory of Functions of Real Variables, Vol. I, p. 248.

t Leibniz, Vol. V, pp. 220-226, is the first who made a distinction between maximum
and minimum. See Maclaurin, A Treatise of Fluxions (1742), Vol. I, chap. Lx, and

Vol. II, p. 695; and also Cauchy, Calc. differ., p. 63. With Leibniz, when ^ 0, y is
ax

a maximum if the curve is concave towards the z-axis, a minimum if the curve is

concave away from the x-axis.
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3. Instead of considering the sign of the derivative in the

neighborhood of x
Qt

if we consider the sign of the second deriva

tive for x X
Q (when this second derivative is different from zero),

we have the rule :

The function f(x) has on the position X= X
Q for which f r

(xQ)
=

a maximum or a minimum according as
f&quot;(xQ)

is negative or

positive. Infinite values are always included unless it is stated

to the contrary.

In fact, if
f&quot;(x())&amp;lt;Q,

then f (x) is a decreasing function, and

since it is zero for x = X
Q ,

it goes from positive to negative values
;

the inverse is the case
if/&quot;(x )&amp;gt;0.

This rule leaves one in the lurch if
/&quot;(aj )= 0.

If in general it is assumed that

/ K)=o, /&quot;W=o, .... /(-() =o,

it follows from Taylor s formula that

where x
l

is situated between x and x.

As here f(n
\x) is assumed to be a continuous function, it retains

a constant sign in the neighborhood of X
Q

. If n is odd, the factor

(x x
Q)
n
changes sign according as x &amp;gt; XQ or x &amp;lt; X

Q
. Consequently

f(x)f(x )
also changes its sign and/(a; )

is neither a maximum
nor a minimum. If n is even, the factor (x X

O)
H

is positive and

f(x)f(x )
has always the sign of f(n

\x^. It follows that f(xQ)

is a maximum or minimum according as /(w)
(^j) is negative or

positive. We therefore have the theorem :
*

If for x = XQ the first and some of the following derivatives

vanish, then f(xQ)
is or is not an extreme according as the first

nonvanishing derivative is of even or odd order. If it is of even

order, there is a maximum or a minimum according as the

derivative in question is negative or positive.

* See Maclaurin, A Treatise of Fluxions, Vol. I, p. 226
;
Vol. II, p. 695

;
and also

Lagrange, (Euvres, Vol. I (1759), p. 4. It was Maclaurin who first gave a correct

method of distinguishing maxima from minima.
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4. The following may be regarded as a resume of what has

been given above : The function f(x) is supposed to be uniquely

denned for all values of x within an interval (a, b), and X
Q

is a

point of this interval. The function f(x) is a proper maximum
or a proper minimum for x = X

Q
if we are able to find a positive

number 8 sufficiently small that the difference f(zQ+ h)f(xQ)

retains a constant sign when h varies from 8 to + & If this dif

ference is positive, the function f(x) is smaller for x= X
Q than it is

for the values of x neighboring X
Q ;

it is then a proper minimum.

On the contrary, when the difference /(t +&)/(# ) is negative,

the function is a proper maximum for x= X
Q

. If, furthermore, the

sign = enters in the cases just mentioned, however small 8 be

taken, we have an improper minimum or maximum.

When the function f(x) admits a derivative for the value # of

the variable, this derivative must be zero. In fact, the two quotients

/(s +a)-/(s ) f(xQ-h)-f(x )

h -h
which have here by hypothesis the same limit / (#&amp;lt;&amp;gt;)

wnen ^ tends

towards zero, are of different sign ;
it is necessary then that their

common limit f f

(xQ) be zero.

Inversely, let X
Q
be a root of the equation f (x)=Q, situated

between a and b, and taking the general case suppose that the

first derivative which is not zero for x = X
Q is the derivative of

the nth order and that this derivative is continuous in the neigh

borhood of the value X
Q

. The general formula of Taylor gives

here, limiting it to the term of the ?ith degree,

/(*+ *)-/W = / &amp;lt;n)K+ Oh) (o &amp;lt; e &amp;lt; i)

where e is a quantity that is indefinitely small with h. Let 8 be a

positive number such that as x varies from x 8 to X
Q+ S the

absolute value of e is smaller than/(n)
(# ),

so that /(# -{-&) /(# )

hn
has the same sign as /^(zA If n is odd, we note that this dif-

n !

ference changes sign with h
;
there is then neither a maximum
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nor a minimum for x = # . If n is even,/(a3 + h) f(xQ)
has the

same sign as /(H)
(# )

whether & be positive or negative ;
the func

tion is a minimum if/(w)
(^ )

is positive, and a maximum if/
(?l)

(# )

is negative. It follows that for the function to be a maximum or

minimum for x = X
Q

it is necessary and sufficient that the first

derivative which vanishes for x = # be of even order.*

In geometric language the preceding conditions denote that the

tangent to the curve y=f(x) at the point J^ is parallel to OX
and is not an inflectional tangent (see Figs. 2-5).

o
-X

FIG. 2
FIG. 3

FIG. 4

X
FIG. 5

-X

II. EXTRAORDINARY MAXIMA AND MINIMA

A. FUNCTIONS WHICH HAVE DERIVATIVES ONLY ON

DEFINITE POSITIONS

5. Let the function y=f(x) be uniquely defined for all values

of x between X
Q

8 and # + 8 and suppose that it is continuous

for x =
XQ. If the expressions

h h
h&amp;gt;

* See Goursat, Cours D Analyse, Vol. I, pp. 108 et seq. I shall refer hereafter to

this work by the name of the author, and by Peano and Stolz I shall designate the

works, cited above, of these two mathematicians.
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have limiting values when lim h = + 0, each of these expressions

is called a one-sided differential quotient,* the first the right-hand,

and the second the left-hand, differential quotient of f(x) with

regard to x for the value x = x .

If the two one-sided differential quotients of /(#) are equal to

each other for x = x
Qt

their common value is called the complete

differential quotient of f(x) with respect to x for x = X
Q .

If next it is assumed that the one-valued function/&quot;^) is con

tinuous for all values of the interval (a, b) and has at least one

sided differential quotients, the differential calculus offers a method

for the determination of the maxima and minima. For if f(xQ)
is

such an extreme of f(x), the quotient

h

must necessarily either vanish or change sign with k.

It may therefore be concluded, as in 2, that the complete

differential quotient f
f

(x) must be zero, and that if the right-

hand and left-hand differential quotients of f(x) are different at

the point x = X
Q , they cannot have the same sign. These require

ments are under the existing conditions necessary that f(xQ)
be

an extreme of f(x) ; however, as it will be seen in the following,

they are not always sufficient.

6. Criteria as to whether a root x = X
Q of the equation f f

(x)=

offers an extreme of the function f(x}.\

THEOREM I. If / (#) vanishes for x = x
Qt

and if a positive

quantity 8 may be so chosen that f(x) has complete differential

quotients in the interval (XQ S - X
Q + 8), and if f (x) changes

sign neither in the interval (# 8 X
Q)

nor in the interval

(x
- -

XQ+ 8) and also does not remain invariably zero in either

of these intervals, then f(xQ)
is or is not a proper extreme of

f(x) according as the sign of f(x) hi the first interval is different

from or the same as it is in the second interval; and further

more, in the first case f(xQ)
is a maximum or a minimum, of

* See P. du Bois-Reymond, Math. Ann., Vol. XVI, p. 120
;
see also Pierpont, The

Theory of Functions of Real Variables, Vol. I, p. 223.

t See Cauchy, Calc. differ., Lesson 7, and see in particular Stolz, pp. 201-210.
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f(x) according as f (x) on its passage through zero, as x with

increasing values passes through x
Qt changes from the sign -f- to

the sign or from the sign to the sign +.

This theorem is stated at the end of 3 and there proved ;
and

as also indicated in that section, the inconvenience arising due

to the consideration of the sign f (x) may be obviated if the func

tion f(x) has a complete second differential quotient for x = X
Q

.

This leads to the following theorem :

THEOREM II. If under the conditions assumed in Theorem I

the function f(x) has for x X
Q

a complete second differential

coefficient
/&quot;(# )

which is not zero, then f(xQ)
is a proper ex

treme of /(#), being a maximum or minimum according as frt

(xQ)

is negative or positive.

Due to the definition of a complete second derivative it follows

that

where RQi) is a quantity that becomes indefinitely small with h.

If here the existence of a second derivative of f(x) is assumed

only for x x
Q9 then, since f (xQ)

= 0, there corresponds to every

positive quantity e another quantity 8 such that, if 8 &amp;lt; h &amp;lt; 8,

we have ,
-,,

If, say, f&quot;(xQ)
is positive, it follows at once that there must be

a positive quantity 8 such that for 8 &amp;lt; h &amp;lt; 8 we have

[3] /(+ *)&amp;gt;0.

Hence f (xQ+h) must be negative when h is negative and posi

tive when h is positive, so that on passing through zero
(i.e.,

when

x a;
), f

f

(xQ+ h) passes with increasing x from a negative value

to a positive value. Accordingly, in virtue of Theorem I, f(xQ)
is

a proper minimum.

The above theorem becomes the one given in 3 if it is

assumed that there is an interval including the value x = # such

that for all points within it a second differential quotient of f(x)
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exists, and if it is further assumed that
f&quot;(x)

is continuous at

least at the point x = X
Q

.

THEOREM III. If, furthermore, f&quot;(x )
= and / &quot;(#o)

^
&amp;gt;

then

f(xQ)
is not an extreme of /(#).

For since here

it is seen that as f
f

(x) passes through the value / (# )
= 0, it does

not change sign, and consequently /(# )
is not an extreme of f(x).

The two preceding theorems are special cases of the two

following :

THEOREM IV. If for the value x = x we have

then /(JJQ) is a proper extreme of f(x), being a minimum or maxi

mum according a,sfW(xQ)
is positive or negative.

For, owing to the supposed existence of the first 2 k differential

quotients, there is an interval X
Q

8 - X
Q+ 8 throughout which

the differential quotients / (#),/&quot;(), ,/(2A
~

1)
(^) not only exist

but are also continuous functions of x. Accordingly, in virtue of

Taylor s formula, we have
&amp;gt;2k-l

[4] /(**+ ft) -/(*
(2

_ l

which formula is true for all values of h such that 8 &amp;lt; h &amp;lt; 8.

Owing to the existence oifW(xQ),
as in the case of formula [3]

above, it is seen that for values of h such that 8 &amp;lt; h &amp;lt; 8 we have

l/&amp;lt;2t-D(a. + h)&amp;gt;0
or &amp;lt;0

/?/

according as/ (2t)
(# )

is positive or negative.

If, then, / (2Xr)
(# ) is, for example, positive, it is clear that

/(2 *)

(a? + /i)
is negative for values of h in the interval 8 ...

and positive for values of h in the interval &amp;lt;X

It follows from [4] that the difference /(# + ^)/(#o) f r all

values of A- within the interval 8 ... -h 8 (excepting A= 0) is in

variably -f or according as/ (2Ar)
(# )

is -h or
,
and correspond

ingly we have respectively a proper minimum or a proper maximum.
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If it is further supposed that f (2k)
(x) exists for all values of x

in the interval X
Q

$ X
Q + 8 and that fW(x) is a continuous

function at least at x = X
Q , then, as in 3, due to Taylor s

expansion we have

[5] /K + A)-/

from which the theorem is obvious.

In exactly the same way we may prove

THEOREM V. If for x = X
Q
the 2 k first differential quotients of

f(x), viz., / (a ), /&quot;(a ), ., /0*&amp;gt;(a&amp;gt; ), vanish, and if
/&amp;lt;**

+1
&amp;gt;(a )

*= 0,

then f(xQ)
is not an extreme of /(#).

REMARK. In the case that a; = x causes every differential quotient of

f(x) to vanish, we cannot determine by means of Theorems II, III, and

IV whether f(x) is an extreme or not. We must then apply Theorem I.

_ j^

For example, it is seen that x = is a minimum of f(x) = e x
*.

THEOREM Va
. If the given function f(x) can be developed in

the neighborhood of the point X
Q
in a series in integral positive

powers of x x = h so that

f(x) =f(xQ + x - aj
)
= cmh

m+ cm+1h
m +* + ., (cm * 0)

then f(xQ)
is not an extreme of f(x) or is an extreme of f(x)

according as m is odd or even
;
and f(xQ)

is a maximum or mini

mum according as cm is negative or positive.

For here f(x )
=

=f&quot;(x )
. . . .

=/&amp;lt;*-
D
(^ ),

while /(
w

&amp;gt;

(a? )
= m ! cw .

This theorem may be proved directly by means of the property

of series. For under the given assumptions corresponding to every

quantity e &amp;gt; 0, we may choose another quantity 8 &amp;gt; 0, such that

- e &amp;lt; cm + 1
h + cm+ Ji* H---- &amp;lt; e.

If m is a positive integer and cm &amp;lt; 0, say, and if
|

X
|

&amp;lt; 8,

then f(xQ + h)
-
f(x )

&amp;lt; k
(cm+ e) ;

and as e may be taken such that e &amp;lt; cm ,
the expression on the

right-hand side is always negative, so that there is a maximum of

f(x) at x = x
Q

. Similarly, we may prove the remaining part of Va
.
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B. FUNCTIONS WHICH HAVE ONLY ONE-SIDED DIFFERENTIAL

QUOTIENTS OF A CERTAIN ORDER FOR A VALUE x = x *

7. THEOREM VI. If the continuous function/^
1

)
has for x = x

one-sided differential quotients of the first order and of opposite

sign (including -f- co and oc), then f(x )
is a proper extreme,

being a maximum or minimum according as the right-hand

differential quotient of f(x) is negative or positive.

For if, say, the left-hand differential quotient is positive, the

right-hand one being negative, then there exists a positive quantity

B such that according as S &amp;lt; h &amp;lt; or &amp;lt; h &amp;lt; S, we have

h

It follows that /(a; + h) f(xQ)
&amp;lt; for all values of h that are

situated within the interval 8 ... + S. Hence f(xQ)
is a proper

maximum.

THEOREM VII. If for x = X
Q
the 2 k first differential quotients

of
/(&amp;lt;), viz., / (a;), /&quot;(a,-),

. .
, /&amp;lt;**&amp;gt;(,), vanish, and if

/&amp;lt;**&amp;gt;(,)
has for

X= X
Q
one-sided differential quotients of contrary sign (+00 and

oo included), then the value /(# )
forms a proper extreme of

f(x), being a maximum or a minimum according as the right-

hand differential quotient is negative or positive.

If, for example, the left-hand differential quotient is positive,

while the right-hand is negative, that is,

h

we note, since fW(xQ)= 0, that/^^-h h) &amp;lt; for all values of h

within the interval 8 + 8 (the value h = excepted). Hence

from formula [5], viz.,

it is seen at once that f(xQ)
is a proper maximum.

THEOREM VIII. If for x = X
Q

the 2k I first differential

quotients vanish, viz., f (xQ)=f&quot;(x ()}= . . . =/(2*-D = 0, and if

*
Stolz, p. 206; see also Pascal, Exercici, etc., pp. 215-222. 1895.
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-!)(#) has for x = x one-sided differential quotients of oppo

site sign (+ oo and co included), then /(# )
does not form an

extreme of /(#). If, however, these differential quotients are both

positive or both negative, then /(# )
is a proper minimum or

maximum of f(x). This theorem follows from [4] in the same

manner as the preceding one did from [5].

Example. If f(x) = xv- (x^ 0) and
/(&amp;gt;)

=
(x)v(x&amp;lt; 0), show by means

of Theorem VI that there is a proper minimum at x = if
/x

lies be

tween and + 1. Verify the same result when
/x lies between 2 A:

and 2 k + 1 by making use of Theorem VII
;
and by using Theorem IV

show that f(x) is a proper minimum when
/x

is situated between 2 k 1

and 2k.

C. UPPER AND LOWER LIMITS OF A ONE-VALUED FUNCTION

WHICH is CONTINUOUS FOR VALUES OF THE ARGUMENT WITHIN

A DEFINITE INTERVAL

8. If the function /(x) is continuous and uniquely defined in

the definite interval (a, b), there exist the greatest and the least

value* in the interval in question, which are known as the upper

and lower limits of the function in this interval
; and, further, the

function reaches these limits
;
that is, if these limits are denoted

by g and Jc, then there is at least one value c of x within the

interval a - b for which the function is equal to gt and at least

one value d within the same interval for which the same function

is equal to Jc.

But if the interval within which x varies is indefinitely large,

(a, co) or
( oo, b) or

( oo, + co), the function need not have a

maximum or a minimum, and also it need not have an upper or a

lower limit. This is illustrated in the following examples.! (See

also 96.)

* Proofs of this and the following statements are found, for example, in Harkness
and Morley, Intr. to Analytic Functions, 46, 50; E. B. Wilson, Advanced Cal

culus, 19-25. See Peano, Theorem IV, 21, and also Dini, Fundamenti per la

teorica delle funzioni di varidbili reali (German translation by Liiroth and Schepp,

36, 47). These proofs are founded upon Weierstrass s lectures, which, in turn,

are founded upon the work of Bolzano, Abh. d. Bohmischen Gesellsch. der Wiss.,

Vol. V, p. 17.

t Peano, 132.
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Example 1. Divide a number into two parts so that their product is a

maximum. (Cf. Ex. 6 at end of 10.)

Let a be the given number, x and a x the two summands, and

y (a x) x their product. If we consider x as variable, we have y = a2x,

which becomes zero for x =
^

We further have / = 2, so that the

function y has a maximum for x =
^ ; that is, when both parts are equal,

this value being y = -

Since, however, the derivative / is positive for x &amp;lt;
- and negative for

x &amp;gt; -&amp;gt; it follows that the function increases in the interval f x, -J
and

decreases in the interval (- , + x
j.

The function has neither an upper nor

a lower limit.

Example 2. y = a?r . (x &amp;gt; 0)

Through differentiation we have / = j^(l + loga:). The first factor

is never zero and is always positive. The second factor becomes zero

when log x = 1 or x = - The derivative passes therefore from negative

(for
x &amp;lt; -\ to positive values (for x &amp;gt; V The function has a minimum

for x = - = 0.36788 , which is y = 0.676411 . This is also the lower
e

limit which the function takes in the interval (0, x). The function does

not have either a maximum or an upper limit.

Example 3. y = art, y = x~ i

The derivative is zero for no finite value of x, but is infinite for x = 0.

For this value y becomes zero, and the function will have at this point both

a minimum and a lower limit with respect to the interval ( x, + oc); for

all the values of x cause the function to be greater than zero. The function

has neither a maximum nor an upper limit.

9. If we add to the postulates already made in the previous

article regarding f(x) that it must have a complete differential

quotient for all values of x between a and b, then / (#) vanishes

for every value of x between a and b to which one of the values g

or k of the function belongs. If, however,/(a) = g, say, then possibly

/(a) is only a one-sided maximum of /(), and consequently / (a)

is not necessarily zero. This must be borne in mind as we proceed

with the problem of determining the numbers g and X\ This is
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explained by the simple example (see Liouville s Journal, First

Series, Vol. VII, p. 163):

In the plane of a circle which is described about the point as

center with radius r, let there be given an arbitrary point A which

is different from 0. Determine the upper and lower limits of the

distances of the point A from a point M of the circumference.

Let the positive X-axis be taken passing through 0, and standing

perpendicular to it through is erected the Y-axis. The equation

of the circle is then *2 4- y* r2
;
while

AM2 =
(a
- x)*+y*=r*+ a2 - 2 ax. (a)

As M passes over all points of the circumference, x takes the values

in the interval r - + r. The linear function (a) decreases with

increasing values of
/:, its

differential quotient being a

negative constant equal to

2 a. Consequently those

values of x to which the

upper and lower limits of

AM2

belong, fall on the

end-points of the interval
x IG. O

r H- r. It is seen that

r corresponds to the upper limit and + r to the lower limit, giving

us as upper and lower limits respectively a + r
|

and
|

a r
\

.

10. Suppose next that the function f(x) is discontinuous at least

on an end-point of the arbitrary interval (a, 5); for example, sup

pose that the function is not denned at such a point. If this is

the case only for the lim x = a
t
then in the derivation of the

upper and the lower limit we must consider in particular the value

of f(x) for the lim x = a + 0. The following examples will make

clear the method of procedure (see Stolz, p. 210).

Example 1. Consider the function ?/
= for values of x such that

log*
&amp;lt; x &amp;lt; 1. It is seen that y is negative and decreases with increasing values

of*. For when
lim *= + (), then limy=-0;

and when lim * = 1 0, then lim y QC.

Thus the upper limit of y in this interval is zero, while the lower limit is

x&amp;gt;, although neither is reached.
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Example 2. y = (1
-

x) sin -. (0 &amp;lt; x ^ 1)

For these values of .r we have always |#j&amp;lt;l- o
If we consider onlv values of x such as x - - -

(where n is an
,

4 n + 1

integer), we have

Hence when n = + cc, the upper limit of y is + 1.

Bv writing x = -
, it is seen that the lower limit is 1. Neither

4n 1

the upper nor the lower limit of y is reached, although in either case

they are finite.

PROBLEMS

1. Determine the maxima and minima and the upper and lower limits of

(b) y = a cosx + b sin x. ex + 1

(c) y = a + x*. (Pierpont, p. 320.)
-1

(g) y = x2-
ex*.

(d) y = l x*. (Maclaurin, Vol. IT, l

p. 720.) (h) ? = &quot;*.

(e) a-
2 sin_- (The function has a -~i ,,_,

x (i) y = xe *. (There is no ex-

discontinuous derivative for treme on the position

x = 0.)
x = 0.)

2. Show that the function //&amp;lt;*&amp;gt;

= * Sin
f (

&quot; * }

l/(0)
-

has an infinite number of maxima and minima within the interval

_ _
3. When is mp + nq a minimum, where p = V&amp;lt;?

2 + if, q
= V 2 + (h y)

2 ?

(Leibniz, 1682.)

4. &quot;Invenire cvlindrum maximi ambitus in data sphaera.&quot; (Fermat,

(Eurres, Vol. I, p. 167. 1642.)

5. Find the area of the greatest parabola which may be cut from a

given cone.

6. x (x a) has its greatest value when x = -
(Euclid, Book VI,

Prop. 27.) Cantor (Geschichte der Math., Vol. I, p. 228) says that this is the

first example of a maximum in the history of mathematics.
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7. On a given line AB are two fixed points Pl
and P

2
. Determine a

AP PS
third point so that ^^ - is a minimum. (Pappus, Book VII, Prop. 61,

*y * ^
2

and Fermat, CEuvres, Vol. I, p. 140.)

8. Of all sections which pass through the vertex of a cone, determine

the one of greatest area. (Severus.)

9. The number a is to be divided into two parts, such that their product

multiplied into their difference shall be a maximum. (Tartaglia, General

Trattato, Part 5, fol. 88.)

10. A ten-foot pole hangs vertically so that its lower end is four feet

from the floor. Find the point on the floor from which the pole subtends

the greatest angle. (Regiomontanus. 1471.)

11. The curve y = x2 has no minimum. (Euler, Differential-

rechnung, Vol. Ill, p. 744.)
g X

12. Two points Pl
and P

2
not on the straight line AB are given. Find

a point P on AB such that PP + PP^ is a minimum. (Solved by Huygens

possibly about 1673. See Huygens, Opera Varia, pp. 490 et seq. Note the

letters of De Sluse.)

13. Derive the greatest rectangle that can be described in, and having
one of its sides, upon the base of a given triangle. (Simpson, Elements of
Plane Geometry (1747), pp. 106 et seq. In this work are also found numerous

problems that have to do with areas, volumes, etc.)



CHAPTER II

FUNCTIONS OF SEVERAL VARIABLES

I. ORDINARY MAXIMA AND MINIMA

PRELIMINARY EEMARKS

11. We say that the function u =f(xv #
2 , ,

xn)
becomes a

maximum or minimum on the position (av a
2 ,

.
., an )

if for a

sufficiently small region about (a lt 2 , -, an )
we have

f(av a
2 , ., a n)^f(xv x

2 ,
. .

-, xn )

or f(av a
a , -, an)

^ f(xv #
2 ,

-
., xn).

These extremes are proper or improper according as the sign =
does not, or does enter.

As in 1, it is assumed here that the function has definite

partial derivatives which are continuous within the region in ques

tion with regard to each of the variables
;
and the extremes which

may be derived we shall call ordinary. If the partial derivatives

do not have such derivatives, the extremes may be called extraor

dinary. Such extremes in their generality we shall not attempt to

consider. Another class of extraordinary extremes is mentioned

in 13, and is later treated in its generality for the case of func

tions of two variables
(

20 et seq.).

12. Consider the function of one variable x
lt viz., f(xv av

-, an ).
If the function u of the preceding article is a maximum

or minimum for x^= a
l9 ,

xn= an , then f(xlf
a

1? -, an ) will be

a maximum or minimum for x
1
= av Hence (see 2) the derivative

fx (xv a
2 ,

. .
., a n) must be zero. Similar conclusions may be made

for the other variables in u.

It follows that if u =f(xv ,
xn)

has an extreme on the position

(av a
2 , -, an), the first partial derivatives of u must be zero.

17
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(See Euler, Gale. diff. (1755), p. 645; and Lagrange, Theorie des

Fonctions, Vol. II, No. 51.)

Write* next x
l
=a

1 +h 1
t
f -, a&amp;gt;,t

=
a,t+ hn t, and put

If w =/(#!, ,
xn )

is an extreme on the position (av - .

.,
rc M ),

then F(t) is an extreme on the position t = 0.

Since by hypothesis the derivatives of u are continuous, it

follows also that the same is true of F(t}.

We consequently may write

It follows from 2 that

whatever be the values of hv h
2 , ., hn .

We 1

therefore have

AK, , )= 0, . . .,/(!, -, an)= 0,

as was just seen.

We further have

If ^ is to be an extreme for the position under consideration, then

F(t) must be an extreme for t = 0, so that for a maximum we must
have

( 3) j^ (O) =g 0, and for a minimum
^&quot;(0)

i= 0, whatever be
the values of hv h

z ,
-

., hn . If for the time being we omit the sign= from the two expressions just written, we have the theorem :

In order that the function u be an extreme at the position

(
a

i&amp;gt;
&amp;gt;

an) for ^hich the first derivatives vanish, it is necessary
that the following homogeneous function of the second degree in

hi,
- -,hn) viz.,

See also Peano, 134.
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assume only positive or only negative values, whatever be the

values of hv -
,
hn , except when these quantities are all simul

taneously zero.

13. We distinguish three kinds of integral functions of the

second degree, or as they are usually called, quadratic forms* viz.,

I. Definite forms, which with real values of the variables have

always the same sign, that is, only positive values or only negative

values, and are only zero when the variables are all zero.

II. Semi-definite forms,] which always have the same sign,

but which vanish also for other values of the variables that are

not all zero.

III. Indefinite forms, w^hich with real values of the variables

can become both positive and negative, and that too for values of

the variables whose absolute values do not exceed an arbitrary

small quantity.

The theorem of the preceding section may be written as follows :

If for x
1
= av -

., xn = an the first partial derivatives of the

function u=f(xv ., xn ) vanish, and if in the Taylor develop

ment t for f(xl -h h!,--, xn 4- hn ) the term which is a homogeneous
function of the second degree in h v ,

hn is an indefinite form,

then u on the position (#!,, )
has neither a maximum nor a

minimum value. If, on the other hand, that term is a positive defi

nite form, then u is a minimum, and if it is a negative definite

form, u is a maximum.

The case where the form is semi-definite is included under the

extraordinary extremes, and we shall consider it later
(

20 et seq.).

14. Next is given a criterion to determine whether a given quad
ratic form

&amp;lt;t&amp;gt;(h lt -, h n )
is a positive definite quadratic form.

If
(/&amp;gt; depends only upon one variable hv we shall have

&amp;lt;f&amp;gt;=Ahf,

and this is positive when and only when A is positive.

If
&amp;lt;f&amp;gt; depends upon two variables h

1
and 7*

2 ,
we shall have

&amp;lt;

=
AJil + 2 Bh^ + Chi

* See Gauss, Disq. Arithm., p. 271.

t So called, for example, by Scheeffer, Math. Ann., Vol. XXXV, p. 555. Gergonne,
Gerg. Ann., Vol. XX (1830), p. 331, called attention in particular to this case.

J This development is found in full in 50.
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If here
&amp;lt;/&amp;gt;

is a positive definite form, it follows that for h
2
= 0,

A!
=

0, then
(f)
= Ahf, and consequently A must be positive. We

may also write $ in the form

If in this expression we give to \ and h
2 such values that

Ah
l 4- Bh% = 0, it is seen that

&amp;lt;j&amp;gt;

takes the form
&amp;lt;/&amp;gt;

= (AC B2
) hj.

We must therefore have A C B2
&amp;gt; 0.

The conditions A &amp;gt; and AC B2
&amp;gt;0 are not only necessary,

but they are also sufficient that &amp;lt; be a definite quadratic form.

In fact, if &
2 =0, we have (AC-JBP)h$&amp;gt;Q and (^1+^2)

2 -
and consequently the sum of these two expressions, and also

&amp;lt;/&amp;gt;,

is

positive.

If, in general, (f&amp;gt; depends upon several variables hv A
2 ,

7i
3 , .,

we may write

where A is a constant, B a form of the first degree in h
2 ,
k
s , .,

and C a quadratic form in h
2 ,
A

3 ,
.

If ^
2 ,

7^
3 ,

are all zero, but /^ ^ 0, we will have B and C zero

and &amp;lt;

=
Akf. We must therefore have A &amp;gt; 0, if

(/&amp;gt;

is to be a

positive definite form.

The form may be written

where AC B2 is a quadratic form of h
2 ,

h
s ,

. The quantity

A
x may be determined so that AJi^+ B=Q with the result that

Hence the expression AC B2 must be positive and different

from zero.

Next write AC & ^(h^ h
s , ),

where c^ is a quadratic

form in 7&
2 ,

A
3 ,

- - which is always positive and different from

zero except when all the variables vanish.
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It follows that the necessary conditions that
(/&amp;gt;

be a definite

positive form are (1) that A be greater than and (2) that

AC IP be a positive definite form in the variables 7t
2 ,

h
s , ..

These conditions are also sufficient; for if we give to h
l
an

arbitrary value and to A
2 ,

h
3 , arbitrary values which are not

all zero, then of the two summands into which
&amp;lt;f&amp;gt;

is distributed,

the first is positive or zero, while the second is positive. It follows

that
&amp;lt;f&amp;gt;

is positive. On the other hand, if we give to &
2 ,

&
3 ,

simultaneously the value zero, then
Ji^

must be different from

zero, and from
(f&amp;gt;=Ahf

it is seen that A must be positive. In

this way the determination of the question whether a quadratic

form is definite and positive is reduced to the determination of

the same question in the case of another quadratic form of fewer

variables. If then the process is continued, we come to the forms

in one or two variables already considered. This subject is further

considered in 53 et seq.

To determine whether a quadratic form &amp;lt; is definite and nega

tive, we have to determine whether &amp;lt; is definite and positive.

(See Peano, 137.)

II. RELATIVE MAXIMA AND MINIMA

15. To introduce the theory, we shall consider here a simple

case involving only three variables. Let it be required to deter

mine the extremes of the function

u = F(x, y, z),

where the variables x
y y, z are restricted. Suppose, for example,

that they are connected by the equation

f(x, y, z)
= 0.

If from the latter equation z is expressed as a function of x

and y, and if this value is substituted in the first equation, we

shall have u expressed as a function of x and y. The values #, y
which make u a maximum or minimum cause the total derivative

du to vanish for all values dx and dy.
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dF dF dFWe have du = - dx + dy 4- - dz
t

dx dy dz

where dz denotes the differential of zs which is denned through
the equation $f y $f

dx dy dz

If this last equation is multiplied by the indeterminate quan

tity X and added to the equation du = 0, we have

If in this equation we choose X so that the coefficient of dz

vanishes, then corresponding to the maxima and minima values

of u the coefficients of dx and dy must also be zero, and we thus

have the equations

-x=o, g^!=o, g-x|=o.dx dx dy dy oz dz

It is evident that we have these expressions which are sym
metric with regard to the three variables if we form the three

partial derivatives of F X/, where X is an indeterminate quan

tity, and then put the resulting expressions equal to zero.

These three equations, together with the two equations /=
and u=F, determine the unknown quantities X, x, y, z, u, which

correspond to the values of u for which there exist maxima and

minima values.

We may proceed in the same manner with an arbitrary number

of variables and equations of condition. (See Lagrange, Theorie des

Fonctions, p. 268.)
PROBLEMS

1. Find the minimum value of u, where

M = a:
2 + y

2 + z2 + -..,

and where x, y, z, are connected by the equation

ax + by + cz + = k.

2. If x
l + 2 4- + xn = a, show that

x? + x.}+
-&amp;gt; +k

is a minimum when x^
=

x&amp;lt;,

= xn . (Maclaurin.)



CHAPTER III

FUNCTIONS OF TWO VARIABLES

I. ORDINARY EXTREMES

16. Let z=f(x, y) be a continuous function of the two vari

ables x and y when the point P with coordinates (x, y) remains

within the interior of an area H which is limited by a contour C.

We say that this function f(x, y) is a minimum for a point (XQ , yQ)
of the area fl when we can find a positive quantity B such that

we have A = /(,, + h, y,+ *)-/(* y )
& (i)

for all systems of values of the increments h and k that are

less than 8 in absolute value. The maximum is defined in a

similar manner.*

If we exclude the sign = in the expressions A ^ or A ^ 0,

the extremes are said to be proper (cf. 1); but if the equality

A= exists for certain values of h and k that are less than

8 in absolute value, however small 8 be taken, we have improper

extremes. For example, in the case of the surface represented

by the equation z =/(#, y}, the axis Oz being vertical, a proper

maximum corresponds to an isolated summit, but if these sum

mits form a line on the surface, this line will be a line of

improper maxima. Consider, for example, the lines generated by

revolving the extremes of a plane curve about the Ox-axis.

If in the expression (/) we regard y as constant and equal

to y ,
then z becomes a function of one variable x and

( 2)

the difference
/.,

.

7 x /., N

/(*+*&amp;gt; y) /Kyo)
can only retain a constant sign for small values of h if the

O f

derivative ~ is zero for x = x
Qt y = y .

ex
* See also Goursat, loc. cit.

23
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In the same way it may be shown that these values must

also cause to be zero. It follows that the systems of values
dy

which cause f(x, y) to become proper extremes are to be found

among the solutions of the two simultaneous equations

dx dy

conditions which are also necessary for improper extremes.

As only ordinary extremes are considered here, the partial deriva

tives of the second order of f(x, y) are supposed to be continuous

( 11) in the neighborhood of the values X
Q , yQ

and are not all zero

for x
, yQ , and, furthermore, the derivatives of the third order are

supposed to exist. If, then, x= x and y=yQ are a solution of the

two equations (a), the formula for Taylor s theorem gives us

For values of h and k in the neighborhood of zero, it is clear that

the trinomial

gives its sign to the right-hand side of
(ii), and it is evident

that the discussion of the sign of this trinomial is going to

enjoy a preponderant role.

To have an extreme for x = X
Q , y = y^ it is necessary and

sufficient that the difference A retain a constant sign when the

point (xQ+ h, yQ+ k) remains within the interior of a square

sufficiently small which has the point (XQ , yQ)
for center. In

this case the difference A will also retain a constant sign if

the point (x +h, yQ+ k) remains within a circle with radius

sufficiently small and center (XQ) yQ),
and inversely ;

for we may
replace the square by the inscribed circle and reciprocally.

Suppose, then, that C is a circle of radius r with the point
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(XQ , y )
as center. We have all the interior points of this circle

by writing h = p cos
&amp;lt;,

k = p sin
(f&amp;gt;

and causing (/&amp;gt;

to vary from

to 2 TT and by causing p to vary from r to 4- r.

Making this substitution in A, it becomes

A = f^cos2
4&amp;gt;
+ 2.Ssin&amp;lt;/&amp;gt;

cos
c/&amp;gt;
+ (7sin2

&amp;lt;/&amp;gt;)

+^A
21 &amp;lt;J :

where yl = -~ &amp;gt; ^ = TT
^ C = ^r &amp;gt; and where L is an expres-

cx* dx
Q2y dy

sion which retains a finite value in the neighborhood of the

point (a? , y ).

It is evident that several cases are to be distinguished according

to the sign of & AC.

17. First case. B*-AOQ.
The equation A cos2

&amp;lt;f&amp;gt;

+ 2 B sin
&amp;lt;f&amp;gt;

cos
&amp;lt;f&amp;gt;

-h (7 sin2 &amp;lt;

= admits

two real roots in tan $, and the left-hand side may be written as

the difference of two squares in the form

A = [a (a cos &amp;lt; + & sin
&amp;lt;/&amp;gt;)- /(acos &amp;lt;/&amp;gt;

+ sn

where &amp;gt;0, yS&amp;gt;0, and (ab -ba )^Q.

By takmg the circle sufficiently small we may neglect the

terms of the third and higher degrees in p. If next to the angle &amp;lt;/&amp;gt;

a value is given such that a cos
&amp;lt;f&amp;gt;
+ b sin

&amp;lt;f&amp;gt;

= 0, it is seen that A
will be negative ;

while if we give the angle &amp;lt;f&amp;gt;

a value such that

a
cos&amp;lt;^ + ft sin^ = 0, then A will be positive.

It is therefore impossible to find a number r such that the dif

ference A retains a constant sign when the absolute value of p is

inferior to r, while the angle &amp;lt;&amp;gt; is arbitrary. It follows that the

function f(x, y) has no extreme for x = x
Qt y = yQ

.

18. Second case. B2 -AC&amp;lt;0.

It is evident that A and C must have the same sign.

The trinomial

A cos2 &amp;lt; + 2 B cos
(f&amp;gt;

sin $ 4- C sin2 &amp;lt;

= - [(A cos&amp;lt;f&amp;gt;+B
sin

&amp;lt;#&amp;gt;)

2+ (AC - JS^sin
2
^]

y

does not vanish when
&amp;lt;$&amp;gt;

varies from to 2 TT.
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Let w be the lower limit of the absolute value of the trinomial

and let H be the upper limit of the absolute value of the function

L in a circle of radius R and center (xn , yn).\ 0&amp;gt; 9W Q

Let r be a positive number inferior to R and to -- WithinH
the circle of radius r the difference A will have the same sign as

the coefficient of
/a

2
, that is to say, of A or C. The function /(#, y)

has therefore an extreme for x = #
, y = y .

19. The above results may be summarized as follows: If at

the point #
, y we have

ay ay ay

there is wo extreme
;
but if

/ gy Y ay ay
^Vy / az ay*

there is a maximum or minimum according to the sign of the two
, . .. ay a2/
derivatives ^-

&amp;gt;

^-

There is a maximum if these derivatives are negative, a

if they are positive, and it is also seen that we have a

proper maximum or minimum.*

Example. In the theory of least squares it is required to determine x, y
so that the expression

(A} u (x, y)
=V (akx + bky + c*)

2

k= l

may be as small as possible. In other words, determine the values of x and

y for which u (x, y) is equal to its lower limit.

Following the methods indicated above we must solve the two equations

Ft is seen that the determinant of these equations is equal to the sum of the

i n (n 1) squares (a^ rt$fc)
a
(&, Z = 1, 2, ,

n
;
k &amp;lt;

I),
and this deter

minant does no^ vanish if among the binomials a#r + lky there are at least

* See Lagrange, Misc. Taur., Vol. I. 1759.
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two which do not differ from each other by a constant factor. Under this

assumption the two equations (Z?) have one and only one system of solu

tions x , yQ .

That does in fact reach its lower limit for this pair of values is seen

if we write in (A) x = X
Q + , y y +

r],
and expand. We then have

k=n

u (x + , y + 77)
u

(JTO , y )
-V (jt + &A-7/)

2
,

k = l

which difference is a positive quantity for every system of values except

= 0, 77
= 0.

PROBLEMS

1. Find a point P of a plane such that the sum PA + PB + PC of its

distances to three fixed points of the plane is a minimum. In particular

consider the case when BA C &amp;gt; 120, and show that here the point A gives

the minimum. (Cavalieri, Exercitationes Geometricae, pp. 504-510. 1647.)

2. In a plane triangle all of the angles have been measured with the

same precision and found to have values a, (3, y.
On account of the

unavoidable error in observation, the sum a + )8 + y does not equal 180.

Let the difference 180 (a + /3 + y) be equal to S, where 8 is expressed in

circular measure. What values u, v, w (in circular measure) must be

added to the three results of measurement if we wish

(1) that a + /3 + y + u + v + w = 180, and

(2) that u2 + r
2 + ic

2 be as small as possible ?

Answer, u = ^ 8 = v = tc.

INTRODUCTION TO THE AMBIGUOUS CASE B2 AC=Q

20. We shall first note the difficulties that attend this special

case, and with Goursat* we shall illustrate these difficulties by

means of geometric considerations
;
we shall then call attention to

erroneous deductions which have been made, and later a method

will be given, due to Scheeffer, of determining the extremes for

this case, when they exist.

Let S be the surface represented by the equation z=f(x,y).

If the function f(x, y) has an extreme at the point X
Q , T/O ,

and if

the function and its derivatives are continuous, we must have

* Goursat, p. 112.
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which shows that the tangential plane to the surface S at the

point PQ (with coordinates X
Q) y ,

Z
Q)

must be parallel to the

^y-plane. In. order that this point shall correspond to an ex

treme, it is necessary that in the neighborhood of the point P
the surface S be entirely on one side of the tangential plane. We
are thus led to the study of a surface with regard to a tangential

plane in the neighborhood of the point of contact.

Suppose that the origin has been transposed to the point of

contact. The tangential plane being taken as the a^-plane, the

equation of the surface is of the form

z = ax2
-f- 2 bxy -f- cy

2+ ay? -f- 3 fix^y -f- 3 yxy
2+ ?/

3
, (i)

where &, b, c are constants and #, /3, 7, 8 are functions of x
t y

which remain finite when x and y tend towards zero. To deter

mine whether the surface S is situated entirely on one side of

the a?2/-plane in the neighborhood of the origin, it is sufficient

to study the intersection of this surface by the ajy-plane. This

intersection is a curve C represented by the equation

f(x, y) ax2+ 2 Ixy -f c?/
2
-f- ax*+ . . . = 0, (ii)

and presents a double point at the origin.

21 . If. &2 ac is positive, the equation

ax*+ 2 Ixy + cy*=- [(ax + %)
2-

(5
2-

ac) 7/
2
]
=

Ch

represents two real and distinct straight lines which pass through

the origin. Suppose that we take these two lines for the axes

of coordinates, and note that this is brought about by a linear

change of the variables.

The equation (ii) then has the form

xy+R(x,y)=Q. (Hi)

If in this equation we write y = ux, we have

R (X, U3$) . . .

=-. ^- (&quot;)

where it is evident that R(x} ux) is divisible by x*.
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It follows from 140 (see also Goursat, 34) that equation

(iv) has one and only one root, say u = ?(#), which tends towards

zero with x. Hence through the origin there passes one branch

of the curve C represented by an equation y = #(#), which is

tangent at the origin to the axis Ox. If we interchange the

role of the two variables x and y t
it is seen that there also

passes through the origin a second branch of the curve C which

is tangent to the axis Oy. The point O is a double-point with

distinct tangents.

If, then, 62 e &amp;gt; 0, the intersection of the surface S by the

tangential plane presents two distinct branches of curve C
l
and

&amp;lt;72 which pass through the origin, and the tangents to these two

branches of curve at the origin are

represented through the equation

FIG. 7

If we give to each region of the

plane in the neighborhood of the

origin the sign of the first term in

(iii) }
as seen in the figure, it is clear

that if a point moves along either

of the curves C
l
or &amp;lt;72 ,

the left-hand

side of (iii) y
and consequently also

of (ii), changes sign as the point passes through the origin. It fol

lows that f(x, y) does not have an extreme (cf. 17) at the origin.

22. If b2 ae&amp;lt;0, the origin is a double isolated point ;
for

within the ulterior of a circle with sufficiently small radius

described about the origin as center, the right-hand side of (ii)

only vanishes at the origin itself. To show this write x = p cos
&amp;lt;f&amp;gt;,

y = r sin
&amp;lt;,

where x and y are the coordinates of a point in the

neighborhood of the origin.

Equation (ii) becomes

f(xt y}
= p

2
(a cos2 ( + 2 b sin

&amp;lt;f&amp;gt;

cos &amp;lt; + c sin2 &amp;lt; + pL)

where L is a function of p and &amp;lt; which remains finite when p

tends towards zero. Let H be the upper limit of \L\ when p is less

than a positive number r.
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When
&amp;lt;f)

varies from to 2 TT; the trinomial

a cos2
&amp;lt;/&amp;gt;

+ 2 b sin
(f&amp;gt;

cos
(/&amp;gt;
+ c sin2 &amp;lt;

retains a constant sign. Let m be the minimum of its absolute

value. It is clear that the coefficient of p
2 does not vanish for

any point on the interior of a circle C with radius less than r and
777

having the origin as center. Consequently the equation

/(a?, y)
= admits of no other solution than x = 0, y= (i.e., p = 0)

within the circle.

It follows that f(x, y) retains a constant sign when the point x, y
moves within the interior of this circle. Hence, also, all the points

excepting the origin of the surface S which may be projected upon
the circle C are situated upon the same side of the ^cy-plane. The
function /(a;, y) t therefore, presents an extreme at the origin (cf. 18).

23. When 62 ac = 0, the two tangents at the double point

coincide, and there are, in general, two branches of curve tangent
to the same straight line, which form a cusp.

The complete study of this theory will be found to require a

somewhat delicate discussion.

For example, y
2 =x? presents at the origin a cusp of the first

kind
;
that is, one which has the two branches of curve tangent to

the Oo&amp;gt;axis lying the one above and the other below this tangent.

The curve y* 2 x*y -f zt ofi= presents a cusp of the second

kind
;
the two branches of curve are tangent to the a?-axis and

situated on the same side of it. The equation gives us, in fact,

y = x2 x*. The two values of y have the same sign in the neigh

borhood of the origin and are only real when x is positive.

The curve ^+ x*y* 6 x*y -f y*= presents two branches of

curve which offer nothing peculiar, both being tangent at the origin

to the #-axis. We have from this equation

from which it is seen that the two branches obtained when we

take successively the two signs before the radical have no singu

larity at the origin.
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It may also happen that the curve is composed of two coincident

branches, as is the case of the curve represented by the equation

f(xt ?/)
= y

2- 2 o% + ^= ;
that is, (y

- 2
)

2= 0.

It is evident that here the left-hand side passes through zero

without changing sign.

It may also occur that the point #
, yQ is a double isolated point,

as is presented through the curve

at the origin.

From the above it is seen that if the origin is a double isolated

point, or if the intersection of the surface with the tangent plane

is composed of two coincident branches, the function f(x, y) will

be an extreme (hi the latter case just given an improper extreme);

but if the intersection is composed of two distinct branches which

pass through the origin, there will, in general, be no extreme, for

the surface again cuts its tangential plane.

24. Take, for example,* the surface

which cuts its tangential plane along two parabolas of which the

one is interior to the other. That the surface may not cross its

tangential plane, it is necessary that if we cut this surface by any

cylinder having its elements parallel to Oz and passing through Oz,

the curve of intersection shall lie on one side of the #?/-plane.

Let y = (f) (x) be the trace of such a cylinder upon the xy-

plane, the function
&amp;lt;j&amp;gt;(x) being zero for x = 0. If /(O, 0) is to be

a minimum, the function f(x, &amp;lt;f&amp;gt; (x))
= F(x), say, ought to be a

minimum for x 0, whatever the function
&amp;lt;j&amp;gt; (x).

To simplify the calculation, suppose that we have chosen the

axes of coordinates so that the equation of the surface is of the

form
.

where A is a positive quantity.

* This is a generalization due to Goursat (p. llo) of the classic example of Peano

(loc. cit., Nos. 133-136).
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With this system of axes we have for the origin

The derivatives of ^(a?) are

For x = = y these formulas become

If
&amp;lt;/&amp;gt; (0)

=
0, the function J^(aj) evidently has a minimum for

x =
;
but if (0)

= 0, it is seen that

and

Hence, in order that F(x) be a minimum, it is necessary that
3

be zero, while
dx*

must be positive, whatever the value of
&amp;lt;&quot;(()).

These conditions are not satisfied for the surface

considered above, while they are satisfied for the function

. z = ?/
2
4- #*

It is thus seen that in the ambiguous case, where B* A C= 0,

the derivation of the necessary and sufficient conditions for

the extremes of functions of only two variables is going to be

accompanied by difficulties. It is also evident that in the case

of three or more variables these difficulties will be correspond

ingly augmented.
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II. INCORRECTNESS OF DEDUCTIONS MADE BY EARLIER
AND MANY MODERN WRITERS

25. One of the greatest mathematicians of all times, Lagrange

(Theorie des Fonctions, p. 290), writes:

If all the terms of the first and second dimensions [see formula (7/)
of

16] vanish, it is necessary for the existence of a maximum or minimum

that all the terms of the third dimension in hv 7*
2 , shall disappear and

that the quantity composed of terms where hv h
z , (cf. 51) form four

dimensions shall be always positive for the minimum and always negative

for the maximum when fiv /?, have any values whatever.

Following Lagrange, all writers on this subject made the same

incorrect deductions until Peano, in the remarks to Nos. 133-136

found in the Appendix to his Calcolo, wrote :
&quot; The proofs for

the criteria by which the maxima and minima of functions of

several variables are to be recognized, and which are given in

most books, depend upon the theorem that in the Taylor develop

ment for functions of several variables the ratio of the remainder

after an arbitrary term to this term has a limit zero when the

increments of the variables approach zero. This theorem is in

general false when the term in question is not a definite form

with respect to the increments of the variables, and when it is a

definite form, the theorem needs
proof.&quot;

These fallacious conclusions are found, for example, in Bertrand

(Calciil Differentiel, p. 504), and also in Serret (Calc., p. 219),

who writes:

The maxima or minima exist if for the values hv A
2 , which cause d?f

and dPf to vanish the derivative d*f has invariably the minus or plus sign.

Here d2/, c?
3
/, denote the homogeneous integral forms of

the second, third, degrees in h
lt

A
2 , ,

when the function /
is expanded by Taylor s theorem (cf. 51).

Todhunter (pp. 227-229 of the 1864 and 1881 editions of

his Calculus), for the semi-definite case where B2 AC= 0, writes

the Taylor expansion for a function of two variables in the form

(see () of 16) , 2 ,
,

X2

where R is the remainder term.
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The condition which it appears that he considered as suffi

cient for an extreme is that A and R must have the same

sign, and if the terms of the second dimension are zero for

the position or positions in question, then also the terms of

the third dimension must be zero.

That this is not true is seen at once by observing Peano s

classic example ^ y)
= (y- P

2x2
) (y

-
q
2x2

),

where the conditions just mentioned exist, although there is no

extreme at the origin, as already seen in 24.

Professor Pierpont (Bull, of the Am. Math. Soc., Vol. IV, p. 536)

says,
&quot; Our English and American authors seem to be ignorant

of these facts.&quot;

Write Peano s example in the form

It is seen that the function /(#, y) is positive in the neighbor

hood of the origin upon every straight line through it; however,

upon the parabola y = mx2 the function in the neighborhood of

the origin is positive, zero,

or negative according as

am2 + 2 bm + c is positive,

zero, or negative.

We may further illustrate

this as follows : Let the

equations

denote two curves through

the origin. The function

Fir 8

will have positive values for values of x, y on the arc BA of a circle

with origin at the center and radius sufficiently small and negative

values on the arc AD. Hence the function f(x, y) has minimum

values on all straight lines through the origin that cut the arcBA and

maximum values on the lines through the origin that cut the arcAD.
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If, further, the two curves 4&amp;gt; (x, y]
= 0, NP (a;, y)

= have a com

mon tangent at the origin with their curvatures lying in the same

direction, it is seen that all possible straight lines through the

origin are such that the coordi- Y
nates of any points on them cause

f(x, y) to have positive values.

This is true, for example, of the

function already considered,

f&amp;gt;o

FIG. 9

In the spaces above and below

both curves we have/(#, y) &amp;gt; 0,

while this function is negative

for the spaces between the two

curves; so that there is a minimum upon every straight line

through the origin, although there is a maxiumm * of f(x, y) for

all points on the curve y =

III. DIFFERENT ATTEMPTS TO IMPROVE THE THEORY

26. The existence of an extreme of the function f(x, y) at the

origin, for example, a minimum, depends upon the condition that

there exists an upper limit g such that the function f(xt y) for all

values of x
y y which satisfy the condition

is positive ; or, geometrically speaking ( 16), this condition implies

that there exists a circle with center (0, 0) within which the func

tion is everywhere positive with the exception of the position

(0, 0) itself.

Instead of considering the values of such a function for the

coordinates of points on straight lines through the origin, which

lines may be written in the form

x = ak, y = flk,

* Note in this connection Scheeffer, Math. Ann.,Vo\. XXVI, p. 197
;
and Vol. XXXV,

p. 545.
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a, ft being arbitrary constants, it would be natural to raise the

question whether we could not determine the sufficient conditions

for such extremes by studying the more general curves expressed

through the algebraic equations

x (k)
= a^k + aj -\

----

and make the requirement that the function f(x(k), y(k}) shall

have an extreme for k = 0, whatever values there may be assigned

to the positive integers m and n and to the m + n quantities a
lt

a
2&amp;gt;

&amp;gt;

a
m&amp;gt; A @2&amp;gt; &amp;gt; Pn&amp;gt;

& being of course assumed that all

the quantities a and /3 are not simultaneously zero.

It may, however, be shown that such sufficient conditions cannot

be derived in the manner indicated. For if we write

4&amp;gt; (x, y)
= y sm2

x,

ip(x, y)
= y sin2# e x*

t

we have two curves denned through the equations &amp;lt;E&amp;gt; (x, y)
=

and M?
(x, y)

= which have at the origin the a?-axis as a common

tangent and a contact of an indefinitely high order.

There is consequently no curve of the form
(i)

which may be

laid between these two curves
;
for clearly any such curve must

have with either of these curves a contact of indefinitely high
order which is impossible for an algebraic curve.

On the other hand, the function f(x, y)
=

&amp;lt;S&amp;gt; (x, y) M* (x, y) is

positive in the whole plane excepting that part of the plane that

is situated between the two transcendental curves, in which it is

negative. Hence at the origin there is neither a maximum nor a

minimum for the function f(x, y) t although for this function upon

every curve
(i)

there enters a minimum.

We may therefore desist from further requirements in this

direction, and we shall next call attention to two methods, the

one due to Scheeffer and the other to Von Dantscher, which are

general in character when the discussion has to do with two

variables and which lead to criteria which are of use in practice.
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27. Scheeffer s method. We have seen that functions of one

variable which have ordinary extremes can be expressed through

the Taylor development in the form

/(,
;)
= /!!(M^ (0 &amp;lt;0&amp;lt;1), (a)

71 I

when f(x) and the derivatives f (x), -, f (n
~ l

\x) are zero for

x = while f(n
\x) = for x = 0. For such functions the change

in value in the neighborhood of the position x = on either

side is faster than that of a given quantity axn
;
that is, positive

quantities a, n, and S may be so chosen that for all values of x

within the interval S to + S the absolute value of f(x) is

greater than the absolute value of axn
, excepting the value x = 0.

For since / (n)
(0)

=

0, we may so determine 8 that for values of

x such that 8 ^ x ^ 8 the function /(n)
(#) is different from

zero. If, then, we choose the quantity ci smaller than the absolute

f(n)/x\

value of - *- in the interval 8 to + 8, then (see formula (a))n i

within this interval the condition
|/(&amp;lt;)|

&amp;gt; axn
\

is satisfied. Recip

rocally, if the last condition exists, the n first derivatives of

f(x) cannot all vanish for x = 0. For in the latter case we

would have (*+V

(n -hi)!
and from this it follows that

Em 8=

which contradicts the assumption that
|/(#)|

&amp;gt; \ax
n

\.

There are functions, however, for example e
x &quot;

(cf. Pierpont,

loc. cit., Vol. I, p. 205), for which such quantities n, a, 8, do not

_^
exist. In fact, the absolute value of e

**
is in the immediate

neighborhood of x = smaller than any arbitrary power axn.

We may note that the characteristic property of the above

requirement consists in the fact that the behavior of the function

in the neighborhood of the origin must be marked with a certain

degree of distinctness.
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The following consideration leads to the generalization of the

above condition for functions of two variables: It is clear that a

function f(x, y) which vanishes at the origin, if it is continuous,

has upon the circumference of every circle which is described

about the origin as center with an arbitrary radius r a greatest

and a least value, provided the function does not reduce to a

function of one variable r =Vy? -f- z/
2

. The signs of these greatest

and least values, which we denote by /x (r) and /2 (r) respectively,

offer for sufficiently small radii r a criterion regarding the appear

ance or nonappearance of an extreme at the origin.* For if the

two quantities /x (r) and /2 (r) are positive, there will be a mini

mum of f(x, y) at the origin, while if they are both negative, a

maximum exists at the origin. The degree of distinctness which

marks the behavior of the function at the origin is characterized

through the existence of a power arn with the property that for

every value of r within a certain limit g both f 1 (r) and /2 (r)

are in absolute value greater than ar11
.

If this requirement is not satisfied we cannot count upon

deriving sure characteristics of extremes through the expansion

in series. For in this case the value with which the function

f(x, y) in the neighborhood of the position (0, 0) either ap

proaches the value zero from the one side, or having passed

through zero differs from it on the other side, is so little that

this value cannot be expressed through a power ever so high

of r. The development in series cannot, therefore, serve to de

termine whether the value is a little on the one side or on the

other side of zero.

As examples of this kind are the function

which has a minimum value at the origin, and the function

* The behavior of the function f(x, y) at any point JBO , yQ other than the origin

may be made by the substitution x = x -f h, y yQ+ k, to depend upon the behavior

of the function /(KO + h, yQ + k) = F (h, k) for the values h 0, k = 0.
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which has neither a maximum nor minimum at the origin. The

first function approaches the value zero from the positive direction

_!
up to the value e ^(for y= 0) while the latter approaches the value

zero from the negative direction by the same amount.

To this class of functions belong also those functions whose

initial terms constitute a semi-definite form and which contain as

a factor an even power of a series P(x, y) the terms of which

vanish for real pairs of values x, y in every region arbitrarily

small where &amp;lt;

\x\
&amp;lt; 8, &amp;lt;

\y
&amp;lt;8 (see 36 and 41). Belonging

also to this category of functions are the functions which reach

the value zero but do not pass through it for every region arbi

trarily small where &amp;lt;

x\&amp;lt;8, Q&amp;lt;\y\&amp;lt;8.

If on the other hand there exists a power arn whose value, so

long as we remain within a certain limit g, is always smaller than

the absolute values of fi(r) and/2 (r), then the question whether

at the origin an extreme of the function exists may always
be answered by a development in series and by a finite num
ber of observations. How this is accomplished is found in the

next chapter.

28. The method of Von Dantscher. We have seen that by

considering the extremes on every line through (0, 0) we are not

able to form any conclusions regarding the extremes of the func

tion f(x, y) at this point. Von Dantscher s method consists in

establishing criteria not only for the extremes on such lines but

also for all points in the plane in the neighborhood of the points

on these lines and also in the neighborhood and on both sides of

the point (0, 0). Although Von Dantscher himself finds that there

is &quot;no need of an extension or improvement of the Scheeffer

method,&quot; I shall give later the method of Von Dantscher, as it is

of interest in itself and, besides, it is well to compare the two

theories (see 42, 44).

29. The Stolzian theorems.* Wr
e shall at first assume that the

function f(x, y) is continuous with respect to both variables in

every point (x, y} of a rectangle that includes the point (0, 0), the

*
Stolz, p. 213.
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sides of the rectangle being parallel to the coordinate axes. We
shall state and then prove the following theorems :

THEOREM I. A necessary condition that f(0, 0) be a proper

extreme of f(x} y} is offered through the existence of an interval

8 + 8, within which x(^=0) lies, and such that the upper

limit of f(x} y), when x takes a

constant value, the variable y being

confined to the interval -\- x x,

is had through the value y = &amp;lt;

2 (*)&amp;gt;

and the lower limit througli

y = ^ (x).
This necessary condition

in question for a proper maximum
is that f(x, 4&amp;gt;%(x))

be invariably

less than f(0, 0), and for a proper minimum we must have

invariably f(x} ^(x)) greater than f(0, 0).

In the first case the upper and lower limits of f(x, y) are both

less than /(O, 0) and in the second case they are both greater.

-5
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f(x, y} with constant x and with the assumption that y takes all

values of the interval x - -f x has for all these values a finite

upper limit and a finite lower limit, and further that f(x, y) reaches

these limits for values y = fa(x) and y = fa (x) (see 8).

Hence for values of y such that

[3] | y\
=

| x\
it is clear that f(x, y) ^f(x, fa(x)).

Furthermore, in virtue of the definition of a proper maximum of

f(x, y) there must be a positive quantity 8 such that if only \x\

and
\y\

are smaller than 8 we must have

[4] f(x,y)-f(0,0)&amp;lt;0.

It follows, if
|

x
j

&amp;lt; 8 and x = and if we substitute y = fa (x) in

[4]&amp;gt;that

which is in fact the inequality [1].

Reciprocally from [1] and [3] are obtained the inequalities

0&amp;lt;|*|&amp;lt;8
and f(x, y)

-
/&quot;(O, 0) &amp;lt; 0,

where
|
y

|

=
|

x
|

&amp;lt; 8.

If the relation [4] is to be true for all systems of values (x, y)

where
\x

and
\y\

are smaller than 8 (excepting x = and y = 0) ?

then in addition to [1] we must have the corresponding pair of

inequalities [2], which may be derived without trouble.

We have corresponding conditions for improper extremes :

THEOREM III. In order that f(0, 0) be an improper maximum

of f(x, y) it is necessary and sufficient that there exist a positive

quantity 8 such that for any x with absolute value less than 8

the value f(x, fa(x)) is not greater than f(0, 0) and for any y
with absolute value less than 8 the value /(^^(y), y) is not

greater than f(0, ) ;
while at the same time corresponding to

every positive quantity 8 f which is less than 8 there is at least

one value of x or y whose absolute value is less than 8* and for
which either f(x, fa(x)) or f(^(y), y} is equal to f(0, 0), The

conditions for an improper minimum follow at once.
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THEOREM IV. That/(0, 0) may not be a minimum (proper or

improper) of f(x, y) it is necessary and sufficient that to every

positive quantity 8 there either exists a quantity xr

,
with absolute

value less than S, such that

[5] /(* , &amp;lt;,(* )) &amp;lt;/(, 0),

or that there exist a quantity y ,
with absolute value less than S,

such that

[6] /(^i(y ).2/ )&amp;lt;/(0, 0);

and that /(O, 0) may not be a maximum (proper or improper)

f /(# 2/)
it is necessary and sufficient that corresponding to

every positive quantity & there may be found either a quantity x&quot;
,

with absolute value less than
,
such that

[7] /(*&quot;, $,(*&quot;)) &amp;gt;/(0,0),

or a quantity y&quot;,
with absolute value less than S, such that

[8]



CHAPTER IV

THE SCHEEFFER THEORY

I. GENERAL CRITERIA FOR A GREATEST AND A LEAST

VALUE OF A FUNCTION OF TWO VARIABLES; IN PARTIC

ULAR THE EXTRAORDINARY EXTREMES

30. The theorems of Stolz which were developed in the pre

ceding article are closely related to those of Scheeffer, which are

of more practical value since the computations required have to

do mostly with a few of the initial terms of the expansion of

f(x, y) /(O, 0) in ascending positive integral powers of x and y.

We shall assume that the function f(x, y) is such that it may
be expanded by the Taylor-Lagrange theorem in the form

=/to y) +Wx to + M&amp;gt;y + ^) + * to + fa&amp;gt;y + 0k)]

=/to y) + vito y)+ito y) + WfLx(x + Oh&amp;gt;y + M)

+ 2 hkfi,, (x + 0h, y + 9k) + &fyy (x + 0h,y + 0k)], etc.,

where 0&amp;lt;^&amp;lt;1.

If we write x= 0, y and then put h = x, h=y, it is seen that

[1] /to y)-/(0, 0)
= G

n to y)4--Rn+1 to y),

where Gn (xt y) denotes the collectivity of terms of the n first

dimensions and Rn+l (x, y) is the remainder term (Lagrange,

Theorie des Fonctions, Vol. I, p. 40).

The Scheeffer theorem. If an index n and positive quantities

a and 8 can be determined to satisfy the two postulates (1) that for

all values of x such that
&amp;lt;\x

&amp;lt;& the upper and lower limits

of \GH (x, y)\
= a

x\
n

,
with constant values of x and with y limited

to the interval -x ----
\- x, and (2} that for all values of y such

43
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that
0&amp;lt;|y|&amp;lt;8

the upper and lower limits of \Gn (x, y)\^a\y^,
where y has constant values and where x lies within the interval

y +
y&amp;gt;

then the two functions f(x, y) and Gn (x, y) have

simultaneously on the position (0, 0) either a proper maximum or

a proper minimum.

For, let the lower and upper limits of Gn (x, y}, with constant x

and with \y\= x\, be Gn (x, i(x)) and Gn (x, 2 (x)) (
see 29)5 an(i

with constant y and with x
\

^
|
y

\

let the upper and lower limits

of Gn (x, y} be n ( 2 (y), y) and ^(^(y), y). Since Rn+l (x, y}

is a homogeneous integral function of the (n + 1) th dimension in

x, y and consists of n + 2 terms, we note that corresponding to

any positive quantity e we may always find another positive

quantity 8 1 such that if

\y\^\x\ and
0&amp;lt;|

and also such that if

x^ and 0&amp;lt;

, then

, then \Rn+1 (x, y)\
&amp;lt; (n +

Hence writing (n -f 2) e x = e and (n + 2) e
|

y
|

=
e, and denoting

the corresponding value of & by 8, it is seen that there is always
an interval S - + 8 such that if

[2] 0&amp;lt;\x

and if

[3] 0&amp;lt;|^|&amp;lt;Sand

and
\y\

=i
\x\,

then &amp;lt;e

|y|,
then

, y)\
&amp;lt; e |y|-

It follows then from [1] and [2] that for values of x, y such

that
\x\

&amp;lt; 8 and
\y\
^

a;|
we have

[4] Gn (xt
3&amp;gt;

l (x))-e\x\&amp;lt;f(x,y)-f(Q, 0)

and from [1] and [3] that for values of x
y y such that &amp;lt;

\y\
&amp;lt; 8

and ^ I y I we have

[5] -/(0, 0)
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If next we assume that n (0, 0) is a proper extreme of

Gn (x,y) and that the two postulates of the theorem have been

satisfied, then if 6rn (0, 0) is a minimum it is evident for small

values of x and y that Gn (x, ^(x)) and Gn (^1 (y),y) are positive

quantities, and from the postulates it follows that for values

0&amp;lt;
x\&amp;lt;8

and |y|^ x we have Gn (xy
4&amp;gt;

1 (^))^ a\x\
n

and for values

&amp;lt;

\y |

&amp;lt; 8 and
\x\
^

\y \

we have Gn (Vl (y), y) ^ a y \

Accordingly it follows from [4] for values

[6] 0&amp;lt;|z|&amp;lt;Sand \y\^\x\ that (a
-

e)\x\&amp;lt;f(x, y) -/(O, 0);

and from [5] for values

[7] 0&amp;lt;|*/|&amp;lt;Sand \x
=i

\y\
that (a

-
e)\y\&amp;lt;f(x, y)-/(0, 0).

Since e may be made smaller than
,
it follows in both [6] and

[7] that/(#, y) /(O, 0) is positive and consequently that/(0, 0)

is a proper minimum of f(x, y) (see Stolz s second theorem, 29).

If 6rw (0, 0) is a proper maximum of Gn (xt y), then with small

values of x and y the expressions Gn (x, z (x)) and Gn (V%(y) t y}

must be negative.

Hence, due to the postulates for values

0&amp;lt;|^|&amp;lt;3and |y|^ x\,
we have Gn (x, 4&amp;gt;

2 (a;))^_ a
\x\*,

and for values

and in a similar manner as above it follows that /(O, 0) is a proper
maximum of f(x, y).

31. Stolz s* added theorem. If Gn (0, 0) is not an extreme of
Gn (x, y), the following conditions are sufficient to make it impossible
that f(0, 0) should le an extreme of f(x,y): if (1) for all positive

values of x and y such that &amp;lt;

\

x
\

&amp;lt; 8 and &amp;lt;

\
y

\

&amp;lt; 8, or for all

negative values within the same limits, at least one of the two upper
limits of Gn (x, y) defined above is positive and not less than a\x\

n or

*
Stolz, p. 218,
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a\y\
n

respectively, and (2) for all positive values of x and y such

that &amp;lt; x
|

&amp;lt; and &amp;lt;

|

y
\

&amp;lt; 3, or /or all negative values within

the same limits, at least one of the two lower limits of Gn (x, y)

defined above is negative and not greater than a x\
n or a\y\

n

respectively; that is, if, under the restrictions just made, Gn (x, &amp;lt;j&amp;gt;2 (
x
))

is positive and Gn (x, &i(x)) negative, or if Gn (SPg (y), y) is positive

and G^^y}, y) negative.

If we limit x, for example, to the interval ...
S, and if we

suppose that the following inequalities Gn (x, &amp;lt;l&amp;gt;

2 (x)) ^ a x n and

Gn (x, Q l (x)) ^ a x n
exist, it is seen that these two expressions

vanish only for x = 0.

From [1] and [2] it follows for y = Q^x) and y= &amp;lt;&

2 (x)

for values of x within the interval in question

f(x, ^(^
and f(x, &amp;lt;S&amp;gt;

a (a))-/(0, 0) &amp;gt; (a
-

e}\x\\

Since we may take e&amp;lt;a, it is seen that in the two expressions

just written, the difference on the left-hand side is in the first case

negative and in the second case positive, so that /(O, 0) is not an

extreme of f(xt y} (see Stolz s fourth theorem, 29).

32. The analytic proof given in 30 of the Scheeffer theorem

is essentially due to Stolz. Owing to its importance we shall give

Scheeffer s statement of this theorem with his geometric deductions

(Math. Ann., Vol. XXXV, p. 553).

The Scheeffer theorem otherwise stated. Let f(x, y) be any

function as already defined of x, y which vanishes at the origin*

and let its behavior in the neighborhood of this point be suffi

ciently explicit for the determination regarding the appearance

of extremes by means of power series to be possible ; in other words,

ive assume that there exists a power arn such that upon every

circle described about the origin as center, whose radius r is not

smaller than a definite quantity g, the greatest and the least values

of the function f(x, y}, viz., fi(r) and /2 (r) for all points of the

* If /(O, 0) ^ 0, we must write /(x, y) /(O, 0) in the place of f(x, y) in the present
discussion.
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circumference of the circle with radius r, are in absolute value

greater than arn
. Then in the Taylor-Lagrange development

given above ,. . . ,
x

f(xt y)
= Grn (x, y) + Mn + 1 (x, y),

where R + 1 (#, y) consists of all terms beyond those of the nth

dimension, the integral rational function Gn (x, y) behaves in the

neighborhood of the origin as does the function f(x, y). For, as

we shall show, in the first place the greatest and the least values

of both functions correspond with respect to sign for every small

radius r, and from this it follows that there appear simultan

eously at the origin extremes for both functions, if such extremes

exist ; and secondly, if a is any quantity situated between and a,

then upon the circumference of every circle with radius r (within

a certain limit g )
the greatest and the least values of the function

Gn (x, y) are in absolute value greater than a rrn
,
and from this

it follows also that the degree of distinctness that marks the

behavior of Gn (x, y) is the same as that of f(x, y}.

It is evident that we may replace x and y in the remainder

term Rn + i(%, y} by r, where r-is the radius of the small circle

about the origin within which the point (x, y) is situated
;
and

at the same time we may replace all coefficients by their absolute

values. In this way we have for the absolute value of Rn + l (x, y)

an upper limit Arn+ \ We shall take the radius r smaller than --

so that arn &amp;gt; Arn + \

Since f^r) and fz (r) are by hypotheses greater in absolute

value than arn
,

it follows from the equation

that those values of x, y on the periphery of the circle with

radius r which give f^r) and f2 (r), cause Gn (x, y) and fn (x, y}

to have the same sign. If/^r) and/2 (r) have the same sign, it

follows from the above expression that the greatest and least

values of Gn (x, y} have this same sign. If the two quantities

/! (r) and /2 (r) have contrary signs, the same is true of Gn (x, y)

for those values of x, y which produce /x (r) and /2 (r) ;
and
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consequently for a greater reason the greatest and least values

of Grn (x, y) have contrary signs.

The second part of the theorem follows in the same way if

we take the radius r not only smaller than but also so small
A

f

that arn Arn + l
&amp;gt;a rn

;
that is, if we put g

1

equal to and
A

take r less than g . It is then evident that the values of x, y
which produce fi(r) and /2 (r) when written in the expression

G*(x &amp;gt; y} =f(x &amp;gt; y}
-

fin+i (^ y}

cause the right-hand side to be in absolute value greater than a rn

when /! (r) and /2 (r) have the same sign ;
and when these two

quantities have contrary signs the corresponding values of

Gn (x, y) wiU m absolute value be greater than a rn
,
and the

same must a fortiori be true of the greatest and the least

values of Gn (x, y}.

33. If, however, we cannot find an integer n and a quantity a

which satisfy the conditions above, we can make no conclusions

regarding the behavior of the function f(x, y) by means of powers
series and by using the method indicated. For in this case we

shall show by means of simple examples which follow this chap
ter that in some cases the function Gn (x, y} is invariably positive,

while f(xt y) may be also negative ;
and in some cases Gn (x, y)

may be both positive and negative while f(xt y) retains a con

stant sign (see Ex. 3, p. 61, and Prob. 2, p. 62). But if the

conditions of Scheeffer s theorem exist it is seen that the in

vestigation of the function f(x, y) has been reduced to that of

the function Gn (xt y)\ in other words, the investigation has

resolved itself into the question : How can we recognize whether

a limit g and a quantity a exist such that ^lpon every circle

with radius
r&amp;lt;g

the greatest and the least values of a given

integral function of the nth degree Gn (x, y) are in absolute value

greater than a rn ? And how can we eventually fix the signs of

these greatest and least values and thereby determine the extremes

of the function Gn (x, y) ?

These questions we shall now answer.
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II. HOMOGENEOUS FUNCTIONS

34. In the expansion of f(x, y) /(O, 0) suppose that the first

terms that appear form a homogeneous function of the 7ith degree

in x and y which is the function Gn (x, y). With respect to such a

function there are three cases to consider, according as this func

tion is a definite form, an indefinite form, or a semi-definite form

(see 13). If we write

it is seen that Gn (x, y) changes upon every straight line through

the origin proportionally to the nth power of r. If then G
1
and

G2
are the greatest and the least values of Gn (x, y) upon the

periphery of the unit circle, then G^r
n and G2

rn are the greatest

and least values upon any arbitrary circle r.

The signs of G
1
and G

2 may be obtained directly through

decomposing Gn (x, y) into its linear factors, which may be found

by solving an equation of the ?^th degree. For we may write

G (\1 ,
^ \= xng (u) ,

where - = u
X/ X

and g(iC) is an integral function of the ?tth degree hi u. Owing to

the fundamental theorem of algebra, g(u} may be decomposed
into factors which are linear and quadratic with negative dis

criminants if we restrict all the coefficients to real quantities; or

these factors are all linear if we allow imaginary coefficients, the

quadratic factors breaking up into two imaginary linear com

ponents. If these factors are multiplied by the respective powers
of x, we have the corresponding decomposition of Gn (x, y) into

its linear and quadratic factors. At the outset it is clear that

if the degree of Gn (x, y) is odd, then G and G2 must be equal

but of opposite sign, since Gn (x, y) changes sign when x, y are

changed into x, y. Furthermore, note that Gn (a)x, (oy)
=

&amp;lt;o

nGn (x, y), where o&amp;gt; is a positive quantity. It follows that if

Gn (x, y} is positive, negative, or zero, then Gn (o&amp;gt;x, o&amp;gt;y)
is positive,

negative, or zero.



50 THEORY OF MAXIMA AND MINIMA

If Gn (x, y) is an indefinite form, there are values x, y which

give Gn (x, y) a positive value, and other values x, y which give

it a negative value. Let be a positive quantity however small.

It is seen that by a proper choice of co we may find values of x
t

y where \x
&amp;lt; 8 and

\y\
&amp;lt; 8 such that Gn (x, y} is positive, and other

systems of values x, y within the same interval for which Gn (x, y)

is negative. Accordingly the value Gn (Q, 0) is not an extreme of

0,(*|f):

*

If, however, n is even, and, first, if the linear factors of Gn (x, y)

are all imaginary, then Gn (x, y) cannot change sign nor vanish. It

is a definite form and the quantities G
l
and G

2
have the same

sign. If, secondly, there are real linear factors, and if at least one

enters to an odd degree, then Gn (x, y) takes both signs. Gn (x, y)

is then an indefinite form and the sign of G is different from

that of 6r2
. It thirdly, there enter real linear factors, but each

only to an even degree, the form Gn (x t y} may vanish but it

cannot change sign. It is a semi-definite form, and one of the

extremes G
l
and G2

is zero. In this case by a proper choice of

co above it is seen that Gn (x, y} vanishes for values of x, y other

than zero and situated within the interval
|

x
\

&amp;lt; B and
j

y
\

&amp;lt; 8.

In this case Gn (Q, 0) is an improper extreme of Gn (x, y)\ and

the behavior of f(xt y) at the origin cannot be recognized with

out further discussion.

In all cases t except the last a positive quantity a may be so

determined that upon every arbitrary circle r the greatest and

least values of the function Gn (xt y), viz., G-^r
11 and G%r

n
,
are in

absolute value greater than a r11

;
for we need only take a r smaller

than the absolute values of 6^ and 6r
2

. In these cases (again

excepting the last) there are found in a sufficiently distinct

manner (in the previous precise sense of the word, see 27) either

a maximum or a minimum of the function G(x, y), or there does

not exist such an extreme.

The decomposition of Gn (x, y) into its linear factors is not

necessary, since we may determine the sign of G^ and G% by

* Cf. Stolz, p. 222.

t The discussion is for the most part due to Scheeffer, loc. cit.
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means of elementary algebraic operations. For we may determine

the multiple factors of Gn (x, y) and write this function in the form

where, in general, ^rk is an irreducible factor of the &th degree in

x and y with integral coefficients and \k denotes the number of

times this factor occurs. Then by Sturm s theorem we may deter

mine for each such function tyk (z, y) the number of real factors

and by \k the number of times such factor is repeated.

The theory just outlined of the integral homogeneous functions

offers, owing to the Scheeffer theorem for the general theory of

maxima and minima of arbitrary functions, the following theorem :

If in the development of the function f(x, y) in powers of x, y
all terms of the first to the (n V)th dimensions are identically zero,

while the terms of the nth dimension constitute a form Gn (x, y)

homogeneous in x and y, and if, first, Gn (x, y) is an indefinite

form (which is always the case if n is odd), then on the position

(0, 0) there is neither a maximum nor a minimum of the function

f(x, y) ; if, secondly, Gn (x, y) is a definite form, there enters accord

ing to the sign of this form an extreme of f(x, y); if, finally,

Gn (x, y) is semi-definite, the behavior of the function f(xt y) cannot

be recognized from the behavior of Gn (x, y}.

From this theorem it follows that if /(O, 0) is an extreme of

f(x, y}, the terms of the first dimension of the expansion by

Taylor s formula of f(x, y} /(O, 0) must be wanting, and conse

quently we must have

fi (0, 0)=0 and .f,;(0, 0)= 0.

If, furthermore,

0)
= Ax*+ 2 Bxy + O/2+

then /(O, 0) is not or is (in fact a proper) extreme of f(x, y)

according as A C B2 is negative or positive. If this discriminant

is positive, then /(O, 0) is a maximum or a minimum according

as A and C (which necessarily have one and the same sign) are

negative or positive (see 14).
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But if AC B2= 0, a criterion regarding an extreme of f(x, y)

with the help only of the terms of the second dimension cannot be

had. We must then take in addition terms of the third, fourth,

degrees in the above expansion of f(x, y) in order, if possible, to

satisfy the postulates of Scheeffer regarding the function Gn (x, y),

In this case we may write, if A is different from zero,

where ^, JJ, denote the collectivity of the terms respectively

of the third, fourth, dimensions in x, y.

If in this expression we write x = Bt, y = At, it is seen that

f(Bt, -At)-

and if the constant A
3

is different from zero, it is seen that by

giving positive and negative values to t, the above expression

may take both positive and negative values, so that there is no

extreme of f(x, y) on the position (0, 0).

But even if the first term that appears on the right of the

expansion in t is of even degree, we cannot conclude that there

is an extreme, as is illustrated by the classic example of Peano

(see 24), viz., f(x, y}
= Ay

z+2 Bx*y + Cx*.

Further investigation is therefore necessary when the terms of

the second degree constitute a semi-definite form, and this case

is continued in the following sections.

III. EXTREMES OF THE FUNCTION Gn (x, ?/),
INTEGRAL

IN x AND y, WHICH IS NOT HOMOGENEOUS

35. We must next determine whether or not the value Gn (Q, 0)

is an extreme of Gn (x, y) when this function is not homogeneous
in x and y and when the terms of the lowest dimension in Gn (x, y)

constitute a semi-definite form. We must again raise the question

regarding the existence of an expression a rn which for all suffi

ciently small values of r is to be smaller than the absolute values

of the greatest value and of the smallest value of Gn (x, y) upon
the periphery of a circle of radius r, where r is sufficiently small.
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In order, then, to acquaint ourselves with the .different possi

bilities which may enter in the behavior of the function Gn (xt y)

at the point (0, 0), we take a small circle with radius r and seek

upon it the two positions at which the function Gn (x, y) takes

its greatest and its least value. Call these values the extreme

values of Gn (x, y). They are found (see 15) by solving the

three equations ^

By eliminating X from the first two of these equations we have

an equation of the ?ith degree

y^-*^ = 0, (*)dx dy

an equation which is satisfied by all values of x and y which

offer extreme values of Gn (x, y} upon any arbitrary circle r.

It is known in the theory of algebraic functions that every

branch of an algebraic curve of the ?zth order which contains the

origin may be expressed in the neighborhood of the origin through
an independent variable (, say) in the form

x = ak 4- ak2
-f

and this expression for the curve may be made in any number of

different ways such that in each of the series for x and y the first

coefficient which is different from zero (in case there is one) has an

exponent which is ^ n. It follows that both those branches which

include the origin of the curve
(*),

and whose points of intersection

with the circles of small radii offer the extreme values of Gn (xt y)

upon these circles, may be expressed in the form (ii) through an

independent parameter k
t
so long, at least, as we remain in the

immediate vicinity of the origin ;
that is, so long as very small

values are ascribed to k. We shall call these two branches the

two extreme curves of the function Gn (x, y).
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36. We must next distinguish between the cases (1) when

(excepting for isolated values of r) the extreme values of Gn (x, y)

are both different from zero and (2) when one of these extremes

is zero.

If both extremes are different from zero, then the expression

Gn (x, y), if we write for x and y the two series
(ii) which corre

spond to an extreme curve, will begin with a term Akm
,
which for

small values of k determines both the sign and the order of magni
tude of the entire expression. This order is the mth order if we

7?7

consider k a quantity of the first order, and it is of the th order if

P
we consider &M the first order, where If is the smallest exponent

that actually appears in (ii). The number
//.,

as we saw above, can

at most be equal to n. We have similar quantities A ,
m r

, /// for

the second extreme curve. If the two numbers m and m are not

both even, there can be no maximum nor minimum of GH (x, y) at

the origin, since this function in this case changes sign with k

upon an extreme curve. The same is true if m and m 1 are even

numbers while A and A have opposite signs, for then the function

Gn (x, y) shows different signs upon the two extreme curves.

If, finally, m and m are both even while A and A f have the same

sign, then we have a maximum or minimum of Gn (x, y) according

as this sign is negative or positive.

In all three cases it is clear that a quantity a and an upper

limit g of r may be so determined that for
r&amp;lt;g

the values of

Gn (x, y) upon both extreme curves are everywhere in absolute

value greater than a frp
,
where p is the greater of the two

, m , m
numbers and -

/* F
If, however, the value of Gn (x, y} is invariably zero upon one of

the extreme curves, there cannot be a maximum or minimum at

the origin, nor is there an expression a rp of the kind required

above. But this can only occur when Gn (x, y) contains a squared

factor which when put equal to defines a real double curve

that passes through the origin ;
for otherwise, with the vanish

ing of Gn (x, y) upon crossing the circumference of any circle with
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radius r, there must be a change of sign in Gn (x, y). The squared

factor enters as a factor to the first power in (ii), so that points

on this curve make Gn (xt y) identically zero.

In the sequel we shall assume that such factors have been di

vided out of Gn (x, y), so that the case in question does not enter.

Under this assumption, which must be tested in every indi

vidual case, there exists, in virtue of the considerations already

laid down, always a smallest number p associated with which a

constant a and an upper limit g of the radius r may be so de

termined that upon every circle of radius
r&amp;lt;g

f the two extreme

values of G n (x, y} are in absolute value greater than a rp
; and, in

fact, this number p (if
the order of r is taken as unity) expresses

the degree of the magnitude of the function Gn (x, y} upon that one

of the two extreme curves upon which this order is the highest.

If p is at most equal to ?i, then a rp for small values of r is not

smaller than a r 11

,
and the two extreme values of Gn (x, y) are there

fore certainly greater in absolute value than a rn
;
but ifp is greater

than n, then for small values of r at least one of the extreme

values of Gn (xt y) is in absolute value smaller than arn
, however

the constant a may be chosen.

It is thus seen that in virtue of the fundamental theorem the

function Gn (xy y} may be used as a criterion for determining the

existence of a maximum or minimum of the function f(x, y),

where Gn (x, y) consists of the terms of the first to the nth order

of f(x, y] only when the characteristic exponent p is at most

equal to n.

37. If in an example we wished to discuss the function Gn (x, y}

in the manner indicated above, we must calculate the coefficients

of (ii), which, in general, is a somewhat complicated operation.

The following method leads, however, indirectly to the same

result, viz., that of finding the extreme values of Gn (x, y}, and thus

offers an easy method for the criteria in question. The method

in question is first to make use of the Stolzian theorems of 29,

and then by applying the Scheefferian theorem we may reach the

desired conclusions. Accordingly we must determine the upper

and lower limits of Gn (x, y) with constant x and |y|^|*| as well
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as the upper and lower limits of this function with constant y
and

|

a;
|

=
\y\.

For brevity put G = Gn (x, y).

The values of y, viz., y = ^^(x) and y^&^x), which offer

the first-mentioned pair of limits, fall either within the interval

x + x or upon one of the end-values y = x or y = + x.

When they fall within the interval, since Gn (x, y) is a continuous

function which has a first derivative with respect to y, it is seen

that y = 3&amp;gt;

1 (x) and y = 4&amp;gt;2 (^) are solutions of the equation
- = 0.

dy
In the second case, when they fall upon the end-points of the inter

val, then y = x OT y x may offer the desired limit or limits.

It is permissible throughout the whole discussion to fix a posi

tive quantity a&amp;lt;\ as the upper limit for
\x\,

where a is taken so

small that y = &amp;lt;E&amp;gt;

2 (x) and y = 4&amp;gt;

x (x) are convergent series in x,

which when substituted in the equation = identically satisfy
dy

it. Furthermore (see 29), since lim
&amp;lt;J&amp;gt;j (x) and lim 4&amp;gt;

2 (x)
= 0, it is

x=0 x =

seen that no constant term can enter these expressions.

The method of determining the different values of y which
f)C*

satisfy the equation = is found in 139 et seq. Let these

values be

P^x), P
2 (x) t

P
3 (x) 3

.

(i)

38. We may next see which of these functions may be neglected

from the investigation. If P(x) denotes any of the functions

PI(X) (i
= 1, 2, .

)
and if P(x) has the form

(1) P(x) = xi&amp;gt;{a
+ x*R(x)}, where p &amp;gt; and

&amp;lt;r&amp;gt;0,

then to any arbitrarily chosen e &amp;gt; there corresponds a quantity

S &amp;gt; such that there are values x
\

&amp;lt; 8 for which
|

x*R (x)
|

&amp;lt; e
;

and for such values of x we have

(2) \P(x)\&amp;gt;\0\{\a-e}.

If p lies within the interval
0&amp;lt;/o&amp;lt;l

and if
\x\

is further so

diminished that \a e&amp;gt;|^|

1 ~ p
,
then from (2) it is seen that

|P(#)|&amp;gt; x\ and consequently y = P(x) would fall without the

fixed interval x - + a; We see, therefore, that any series which
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begins with a term ax* + - -
&amp;gt;,

where &amp;lt; p &amp;lt; 1, may be neglected

from the number of functions given in
(i).

If, next, p = 1 and a &amp;gt; 1, we may take e so small in (2) that

a|e&amp;gt;l,
and consequently |P()|&amp;gt;||,

so that such series may
also be neglected.

Furthermore, if one of the series (i) begins with +1 x or 1 .t,

and if the second term has the same sign as the first, then evi

dently |P(a?)|&amp;gt;||,
and such a series may accordingly be neglected

from the investigation.

39. The remaining series in
(i), together with the values which

correspond to the end-points, viz., y = + x and y = x, give,

when substituted in G (x, y}, the following functions :

G(x,
-

x) t G(x, + x), G(x, P,(x)) } G(x, P2 (x)),
- . -

; (ii)

and we have to determine which of these functions presents the

upper and the lower limits of the function G (x, y) for the interval

in question.

By taking a(&amp;lt;l) sufficiently small the first term in any of

the functions (ii) is as a rule sufficient in determining which

will give the required upper and lower limits. Of course, if two

of the functions (ii) have their initial terms the same, it may be

necessary to introduce their second and higher terms to determine

which furnish the required limits.

Of those functions whose first terms are negative the one with

smallest exponent gives the lowest limit; and if two series have

the same negative exponent, the one with greater coefficient

offers the lower limit. If there is no function in (ii) whose first

term is negative, then in determining G(x, &i(z)) we note that

of those functions whose first terms are positive that one with

highest exponent offers the lowest limit
;
while if two functions

have first terms with the same exponent, the one with smaller

coefficient offers the lower limit. These observations must be

made with both positive and negative values of x, where
|

x &amp;lt; a.

If one of the functions in the series (ii) is zero, while the others

all begin with a positive term, then G(x, l (z))=Q, etc. We
proceed in the same way in determining G(x t
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40. To determine G(^r1 (y) &amp;gt; y) and 6r (^2 (y), y), taking y con

stant, we limit x to the interval y + y. Denote by

those values of x which expressed in power series in terms of y

satisfy the equation =0.
ex

The two limits in question are to be found among the functions

the method of procedure being the same as above. .

When each of the four limits G (^ 1 (x), x), etc. has been deter

mined for values of x within the fixed intervals, the Stolzian

theorem is at once applicable. If the expansion, say, of G(xt &i(x))

is akx
k+ ak+1x

k + 1 + - - - and if k^n, we may at once find a

constant e such that

and if the same is true of the three other limits the Scheefferian

theorem is at once applicable.

41. Exceptional cases. If the function G (x, y) contains factors,

say x y, then G (x, -P x) identically vanishes. More generally
O/~f

the equations G(x,y)=Q and = may be satisfied by the
cy

same series y =P (x). In this case, considered as an integral func

tion in y and with arbitrary x, the function G (x, y) has a repeated

factor, say Q(xt y), which vanishes for y = P(x). Next suppose

that G(x t y) is decomposed into its irreducible factors H^x, y),

HI(X &amp;gt; y}&amp;gt; &amp;gt;

and give to x such a value x
l
that each of these

functions is also irreducible when considered as a function of y.

Furthermore, since by hypothesis G (xv y)
= contains a repeated

root y=P(xl) t
it is seen that two of the functions ffi(xv y),

H^(xv y),
-

-, say ^ and H^, vanish for y=P(x^. And since

by hypothesis these functions are both irreducible with regard

to y, they are identical except as to a multiplicative factor which

is independent of y. But as ff
l (x, y) and ff

2 (x, y) are identical

in y for an indefinitely large number of values such as x = xv it

follows that the coefficients of like powers of y in these two
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functions are identical, so that G(x, y) is divisible at least by the

square of an integral function H(x, y).

If at least one of the four functions, say G(x, ^^(x)) t vanishes

for values of x other than x = within the fixed intervals, while

for all other values this function retains the same sign, and if the

other three functions are invariably of this same sign, then G (0, 0)

is an improper extreme of G(x,y). It follows that as a necessary

condition for G (x, y) to have an improper extreme on the position

x = 0, y = 0, G (x, y) must contain as factor the even power of

an integral function H(x, y) which not only vanishes for x = 0,

y = but also for values x, y whose absolute values are arbitrarily

small. For if, in accordance with the above remarks, G=Hk
G,

where G (x, y) contains no root y = P (x) which is also contained

in H(x9 y), and if k is odd, then as y passes through the value

y =P (x) the function Hk
changes sign and therefore has values

with opposite sign.

Example 1. Let f(x, y}
= ay* + 2 bxzy + ex* + R 5 (x, y}, where &amp;gt; and

R
5 (x, y} denotes any series beginning with terms of the fifth order in x

and y.

Writing G (.r, y)
=

ay&quot;
+ 2 bx*y + ex4

,
it is seen that for x constant and

2\/~* 7i

j
y

|

=
|

x
|,

= 2 (a?/ + bx2
)
is zero only for y = x2

. We thus have

/ b A ac-b2
.

G [x, x2
}
= F

\ a I a

and G (x, x)
= ax2 2 bx* + cx\

The first expression offers the lower limit, while either G (x, + x) or

G (x, x) offers the upper limit.

We have three cases to consider :

(a) ac b2 &amp;lt; 0. Then of the two limits one is positive and the other

negative. It follows that G (0, 0) is not an extreme of G (x, a;),
and as both

limits begin with powers of x not exceeding the fourth, the Scheeffer

theorem is applicable, which shows that/(0, 0) is not an extreme off(x, y).

(/?) ac b2 &amp;gt; 0. It follows since a &amp;gt; that c must also be positive. The

two limits just derived are both positive. Continuing we must next deter

mine the other two limits. When y is constant and
|

x
\

=
|
y

\
,
we have by

solving the equation
= = 4 x (by + ex2

)
CX :

the two values x = and x = \! y-.
\ c
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If b ^ the latter value may be neglected ( 38), since the exponent of y
lies between and 1. If & = 7 this value coincides with the first.

We observe that each of the functions

G (0, y)
= ay* and G ( y, y}

= af + 2 %3 + cy*

is positive. It follows from Stolz s theorem that G (0, 0) is a proper mini

mum of G (x, y} ;
and since the power of x or y on the right-hand side of

any of the four limits is not greater than 4, the Scheeffer theorem shows

that/(0, 0) is a proper minimum of f(x, y).

(y) ac b2 = 0. From above G (x,
- \ = 0, while the other three

limits are all positive. In this case G (0, 0) is an improper minimum and

the Scheeffer theorem is not applicable, so long as we regard R^ (x, y~)
as an

arbitrary power series with initial term of the fifth or higher dimension.

(Stolz, p. 235.)

Example 2. f(x, y)
= y

2 + (ax
2 + 2 bxy + cy

2
) y + R (x, y}, (a * 0).

We have here G (x, y)
= y

2 + (ax
2 + 2 bxy + cy

2
) y.

Taking x constant and
\y\ = \x\,

we find as a solution of

?&amp;gt;.S~*1

= = 2 y + ax2 + 2 bxy + cy
2 + 2 y (bx + cy)

Forming the functions

G(x, $(x))=-^-x*
+ - and G(x, x)

= x2 + [2 b (a + c)];r
3

it is seen that the first furnishes the lower limit, while one of the last

functions offers the upper limit. It is evident that with x taken sufficientlv

small these two limits have contrary signs, so that G(0, 0) is not an extreme

of G (x, y). Furthermore, since the lower limit begins with a power of x

greater than 3, the added theorem of 31 is not applicable.

Proceeding further and taking y constant and
|a;|5fjyj,

we have as a

solution of
2&amp;gt;/~~i

= = 2 y (ax + by} (since y is taken constant)

x = -- ?/, which cannot be considered ( 38)

unless
1

6
1

&amp;lt;

|

a . Forming the functions

it is seen that both the upper and lower limits are positive. It follows that

the added theorem is not applicable. We cannot, therefore, make a negative

assertion regarding the extremes of f(x, y}- (Stolz.)
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Example 3. /(*, y)
= f + x*y + a;

4 + R 5 (x, y}.

In this example we have G (x, y)
= y

2 + x2
y + x4

.

With .r constant and
|
y

\

s
|

#
, we have as the solution of

We thus have the functions

With y constant and x
=\y\&amp;gt;

we have from

? = 2xy + * 3* = 0, ^

It follows at once that

==
fj

fl and

The value G*(0, 0) is consequently a proper minimum of G(x, y), and as

none of the above series has an initial term with exponent greater than 4, it

follows from Scheeffer s theorem thaty(0, 0) is a proper minimum off(x, y).

Although there is a proper minimum for f(x, y}
= y

2 + x^y + a;
4
,
it may be

shown that G(x, y}
= y

2 + x2
y has neither a maximum nor a minimum.

(Scheeffer, loc. cit., p. 573.)

Example 4. Peano s classic example :

/fcy)0(*j) + JW*y)i
where G = y

2
(p

2 + ^
2
) a:

2
?/ + p

2
q
2x4

.

With a; constant and |y|=i ar|,
we have

so that

Forming the functions

it is seen that the upper limit is positive, while the lower limit is negative.

It follows that (7(0, 0) is not an extreme of G(x, y} ;
and as the initial terms

on the right have exponents that are not greater than 4, it follows from

the Scheeffer theorem that/(0, 0) is not an extreme of f(x, y).
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Example 5. /(*, y)
= G(x, y} + ^ lg (ar, y),

where G(x, y)
= *2

2/

4 - 3 a;
4/ + (a?V

2 - 3 xy
7 + y

8
)
- 10 x10

/y + 5 x12
.

With x constant and
|y| = |#|,

we have from

fV* = 4 x*y*
- 9 xY + (2 x*y

- 21 xy* + 8 y
7 - 10 a:

10
)
- 0,

as a solution (see 145),

y = 2x2 + f x4 + =
&amp;lt;(*), say.

Forming the functions

G(x, &amp;lt;(*))
= - 4 x10 + and G(x, x)

= xf&amp;lt;

.,

which (see again 145) offer the upper and lower limits of G(x, y}, it fol

lows from Stolz s theorem and the Scheeffer theorem that neither G(x, y}
nor /(a:, y) has an extreme on the position x = 0, y = 0. (Scheeffer, loc. cit.

p. 575.)

PROBLEMS

1. Show that/(0, 0) is a minimum of

/(* 30
= / + *6 - 108 x^y -x* + R 9 (x, y}. (Stolz.)

2. Writing (*, y)
= f - 2 x*y + a:

4 + ?/
4
,

show that G (0, 0) is a minimum for the first function but that /(O, 0)
is not a minimum for the second function. Write in the latter expression

y = x2
. (Scheeffer.)

IV. THE METHOD OF VICTOR VON DANTSCHER

42. Instead of considering the extremes upon the straight lines

through the point P(xQ9 y )
we may derive the criteria for maxima

and minima in the neighborhood of the points on these lines on both

sides of the point (# , y )
in the ^y-plane. With Von Dantscher*

let the straight lines through (# , y ) be denoted by

(1)

so that or -= x-

where \ and /* are real variables such that X2+ i^= 1 and where
/o

is a real variable which may have both positive and negative values.

*See Math. Ann., Vol. XLII, p. 89.
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For extremes of f(x, y) at the point P we must have

/in case of a maximum\
f(xQ+ \p,

\proper or improper/

,. /in case of a minimum\
/(&amp;lt;&amp;gt; ^0) -

\proper or improper/

for all values of p of a certain interval

-p&amp;lt;p&amp;lt;q,

whilefor values p = p or p = q the above difference not only vanishes

but changes sign.

The thesis of Yon Dantscher may be stated as follows :

&quot;

If the

lower limit, r say, of p in the region X2+ /n
2=l is different from

zero, then f(xQ , y )
is a maximum or minimum for the surface-

neighborhood of the point (x , y ); but if the lower limit of p is

zero, then on the position X
Q , yQ

there is neither a maximum nor

a minimum of the function f(xy y)&quot;

The decision as to whether a maximum or minimum exists for

a given function f(x, y) on a point #
, yQ

in whose neighborhood

f(x, y) can be developed in integral positive powers of x # = h
,

y yQ
=

A-, and on which point the first partial derivatives with

respect to x and y both vanish, is consequently reduced to the

investigation as to whether the quantity p is different from zero

or not.

If in the supposed development the ?ith dimension is the first

whose terms do not all vanish, we write

(2) f(zQ +Ji,yQ+*)-f(xQ,y )

= g(h, Jc)
=

(h, k) n + (h, *)n+l+(h, &),I + 2+ , (n ^ 2)

where (h, k)n denotes the sum of the terms of the ?ith dimension

in h and &, etc.

If we write in this expression

(3) h = \p, k = np, \*+fjfi=l,

we have

(4) ^,*)=^(X,M)wH-p(X,/*)w+1-h---]= ^(p; X, /x).
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The factor p
n
may be omitted, since to the value p = there

corresponds the position h = 0, k = itself. The quantity r is

accordingly nothing other than the lower limit of the absolute

values of the real roots of the equation

(5) &amp;lt;/&amp;gt;(/&amp;gt;;
X, /*)

=
(\, /*)W+ (X, /*)w + 1/&amp;gt;+...= 0.

From this the following is at once evident :

CASE I. If (h, Jc)n is a definite form (13), that is, one which

takes the value zero for the one and only pair of values h = 0,

lc = 0, which case can only enter when n is even, then (X, p)n

is different from zero for all values X, /* which are different

from zero, and consequently |(X, fi) n
\

has a lower limit I

which is different from zero. We may, consequently, for the

region X2
-f y? = 1, determine a positive quantity r such that

for
|
p

|

&amp;lt; T we have

(X, p)n si&amp;gt;\(\, /*)+!/&amp;gt;
+ (x, ?)+?+

The equation (5) has therefore no root p whose absolute value is

not greater than r
;
the quantity r is therefore different from zero,

and there is consequently a maximum or minimum according as

(h, k)n is a negative or positive form.

CASE II. If (h, k)n is an indefinite form ( 13), that is, one

which for real pairs of values (h, k) takes both positive and nega
tive values, then also (X, ji)n is such a form. It is then easy to

show that in this case the equation

in any interval as small as we please e &amp;lt; p &amp;lt; e, has roots that

are different from zero, and consequently r = and also f(xQ , y )

is neither a maximum nor a minimum.

43. CASE III. We come finally to the semi-definite case

( 13) ;
that is, one where (h, Jc)n vanishes for pairs of values

h, k which are different from zero, but does not change sign.

It contains necessarily real linear factors, and, in fact, each

one to an even power. The number n is consequently even,
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and it follows tha,t (X, /z) ?l
is necessarily also a semi-definite

form, whose factors are, say,

(6) kfi
-
hj, kji

- h
zk, ...,kmh- hmk,

so that (h, k) n is of the form

(h, k} n = (kji
- ^

where l
lf

/
2 ,

. lm are positive integers and (h, *)-2( 1 + !,+

is a definite form or a constant.

To each such linear factor kji h ak(&amp;lt;r

= 1, 2, -
, m) of (h, k)n

there corresponds a linear factor
fjL
\ \ap of (X, /*), where

with arbitrary sign of V^ 4-
^&amp;gt;

si^ce this constant enters only
to squared terms in (A, k) n . If X, /* approach a pair of values

X
ff, /JL0.

for which (X, /j,) n vanishes, then of the roots of the equation

&amp;lt;(/&amp;gt;; \ /*)
=

(&amp;gt;., /*) + (^ A*) M +i/ H---- = o,

one or several become indefinitely small.

Of course we may exclude the case where all the quantities

(X, fi) n + v (v^1) simultaneously vanish; for then
&amp;lt;(/&amp;gt;; X, /i)

=
for every arbitrary small value of p, and consequently /(# , y )

is neither a maximum nor a minimum.

We have next to see whether among the roots of
cf&amp;gt;(p X, p) 0,

which become indefinitely small when (X, p} n becomes indefinitely

small, there are real roots or not. If no real roots appear, then

r &amp;gt; and f(%Q, y) is a maximum if the semi-definite form (h, k) nf

when it does not vanish, is negative, while it is a minimum if (h, k)n

is positive.

When there appear real roots the investigation may be carried

out as follows : In order to consider the function &amp;lt;&amp;gt; (p ; X, /*) in the

neighborhood of the point \
ff , fjLff ,

we write

(7) X = X
&amp;lt;7
+i/, fjL

= n ff +v,

where u and v are variable quantities.



66 THEORY OF MAXIMA AND MINIMA

Since X2+
//&amp;lt;

2= 1 and \* + p% = 1, we must have

^2+^2+ 2X^ + 2/4^ = 0,

where it is certain that one of the quantities \ or pv is different

from zero.

If /^^ we have at once from the equation just written

* -
(2 Xaw + w2

),

where the positive sign is taken with the root, since from (i)
u and

v vanish simultaneously. Further, noting the development

it is seen that

(8)
=_*-_ l^i-A^s----

;

Pa 2 /*
8 2 /1

6

and if X,
=

0,

(9)
=-?- ^i*&quot;-&quot;&quot;V 2 Ag.

Writing these values in
&amp;lt;/&amp;gt; (p ; X, /x),

we have

u ----
^

p+
+!

and v

n + 1

which for sufficiently small values of
\u\

and p or of v|
and

|/o|

are certainly convergent and may be arranged in powers of u

and p or of v and
/a.

Since (Xa , /* &amp;lt;r)w
= 0, it is seen that

&amp;lt;k(0, 0)= 0; the case that

^(0, p) vanishes identically may be excluded, as has already

been remarked.

If p
p is the lowest power of p in

&amp;lt;/&amp;gt; ff (0, p), the equation ^(O, p)
=

has exactly p roots p, which become indefinitely small with u or v.

We must next see whether there are real roots among these p roots.
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If the equation &amp;lt;f&amp;gt;ff (u, p)= has no real root p which becomes

indefinitely small with u or v, then for any arbitrarily small posi

tive quantity e a positive quantity 8 cannot be found so small

that in the interval e &amp;lt; p &amp;lt; e there is situated a root p of

&amp;lt;j&amp;gt; (ut p} or of
(f&amp;gt;&amp;lt;r(

v
&amp;gt; P) which is different from zero and which

belongs to a value u or v in the interval 8 &amp;lt; % &amp;lt; 8 or &&amp;lt;v &amp;lt;8.

Hence there exist positive quantities 8 and e so small that the

function fa which vanishes simultaneously with u and p or with

v and p in the region

8 &amp;lt; % &amp;lt; 8 or 8 &amp;lt; v &amp;lt; 8, e &amp;lt; p &amp;lt; e

takes values that are different from zero on every position u, p

or v, p which is different from 0, 0, and these values have neces

sarily the same sign. For if
4&amp;gt;a (u , p )&amp;gt;Q

and
&amp;lt;t&amp;gt;ff (u&quot;, p&quot;)

&amp;lt; 0,

then with a continuous passage from the position u r

, p to

the position u&quot;, p&quot; ,
which both lie within the interior of the

realm in question and which passage does not pass through the

position 0, 0, there must be a position u
, p at which fa(u, p)

vanishes
;
but there are no such positions. It follows that

&amp;lt;0.(0, 0) is itself a maximum or minimum provided the equa
tion $v (u, p)= has no real root which becomes simultaneously

indefinitely small with u or v. Inversely, it is also true that if

(^(0, 0) is a maximum or minimum of
&amp;lt;j&amp;gt;v (u t p), the equation

4&amp;gt;ff (u 9 p)=0 has no real root which becomes indefinitely small

with u or v.

If, on the other hand, the equation &amp;lt;f&amp;gt;ff (u f p)= has real roots

which become indefinitely small with u or v, then $ff (0, 0) is

neither a maximum nor a minimum
;
and vice versa, if $ff (0, 0)

is not a maximum or minimum, then in every region as small

as we wish 8&amp;lt;u&amp;lt;8 or 8&amp;lt;v&amp;lt; 8, e&amp;lt;p&amp;lt;e
there are posi

tions u, p or v, p which are different from zero and for which

&amp;lt;f&amp;gt; (ut p) or fa(v, p) are zero.

Through the above consideration the criterion whether the

equation &amp;lt;f&amp;gt;(T
= has or has not real roots which become indefi

nitely small with u or v is reduced to the investigation whether

^(0, 0) is a maximum or minimum of $ (ut p) or
&amp;lt;f&amp;gt;

ff (v, p) or not.
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We have, therefore, to apply the criteria of Cases I and II of

42 ; that is, to arrange &amp;lt; a in dimensions of u and p or of v and

p and to see whether the terms of lowest dimension form a definite

or indefinite form.

This same process must be applied to each of the m real linear

factors ^ff
\ \IA (a-

= 1, 2,.-., ra) that are different from one

another (p. 65), it being evidently sufficient, since u and v become

simultaneously indefinitely small, for those linear factors in which

A^ and /^ are both different from zero to consider only one of

the functions $(&, p) or
&amp;lt;f)ff (v, p).

44. We have, then, the following rule for Case III :

If the developments of the functions ^(w, p), &amp;lt;/&amp;gt;2 (w, p), ,

&amp;lt;t&amp;gt;m (u, p) all begin with definite forms, then f(xQ , y )
is a max

imum, when the semi-definite form (h, k)n ^ 0, while it is a min

imum if (h, k)n = 0.

If only one of the functions $a (u, p) begins with an indefinite

form, then f(xQ) yQ)
is neither a maximum nor a minimum.

The case remains undetermined if among all the functions

(j)^ (u, p) none of them begins with an indefinite form, while one or

several of them begin with a semi-definite form.

In this case, for every such function the above process must

be again applied. We do not affirm that by using this method

a determination may among all conditions be made; but Von

Dantscher says
&quot;

if the method, which has been developed to see

whether a series g(h, k) which begins with a semi-definite form

has or has not on the position h = 0, k = a maximum or mini

mum, fails, the function g(h, k) contains an even power of a

series P (h, k) which vanishes for real pairs of values h, k in every

region arbitrarily small 0&amp;lt; h &amp;lt; 8, 0&amp;lt;\k\&amp;lt;8&quot; (see 41),

Example 1. Peano s classic example :

g (h, k)
= k*- (p

2 +

We have here

The semi-definite form p? has the linear factor /x
so that either

X
x
= 1, f

ji
l
= 0, or Xj

= - 1, /*x
= 0.
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The corresponding values of X and /* are (see [7] and [9])

so that
&amp;lt;k (r, p) - r* - Q?

2 + ^) ly&amp;gt;

The terms of the second dimension in v and p form an indefinite quad
ratic form, so that #(0, 0) is neither a maximum nor a minimum.

Example 2. Let g (h, Jc}
= -W (h

- kf + 2 lik* - 5 WL* +
+ h*L* - 7W + 6 h*k - 10 h s +
+ 3 7^-4 8+ ....

\\ e then have

&amp;lt; (p; X, /A)
= - XV(X-/*)

2 + (2V6- 5 A2
/*
6 + 3 *V4 + A.V-7XV+ 6Xp

+ (- 10 A8 + XV + 3 XV4 - 4 /x
8
)^

2 + . ...

We have here to consider the three linear factors

/x x
X Xj/x

= X, fj^X Xo/x
=

fi, /x3X X3/A
= X

//..

It follows that

X^O, ^=1; X.^-1, ^=0; X3
=
4= ^ =

^=V2 V2
To these values correspond the expressions :

X=, fJL
= l-U2 ----

,

fji
=

v, X = - 1 + r2 + .,

1 1
X = + w, p.

= - u ---- .

We thus have

^3 (u p)
= - w2 + I WP- ip

2 +

It is seen that all three of the functions &amp;lt; begin with definite quad
ratic forms. The semi-definite initial form is negative when it is not

zero; and accordingly g (0, 0) is a maximum. (Von Dantscher, Math. Ann.,
Vol. XLII, p. 100.)

PROBLEMS

1 . Show that g (0, 0) is neither a maximum nor a minimum of the function

g (h, k)
= h*P - 3 A**8 + h*k* - 3 hk7 + k* - 10 hlok + 5 Au.

(See Ex. 5, p. 62.)

2. Apply this method to Ex. 3, p. 61.

3. If 22 = a2 x- y
z + (x cos a + y sin a)

2
, find maximum and mini

mum values of z and give the geometric interpretation.

4. If z2 = 2 a Va:2 + y
2 x2 + y

2
, find maximum and minimum values of z

;

show that there are improper extremes and give geometric signification.

5. Find minimum value of u, where u = (x
2 + y

2
)^.
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V. FUNCTIONS OF THREE VARIABLES

TREATMENT IN PARTICULAR OF THE SEMI-DEFINITE CASE

45. The theorems and proofs given by Stolz and Scheeffer for

functions of two variables may be extended at once to functions

of three or more variables. For example, f(xQt y ,
Z
Q)

is a proper

maximum of f(x, y, z) if a positive quantity can be so deter

mined that for all systems of values f, 77, f, whose absolute values

are smaller than S (excepting f = =
1;
=

f), we have

If the partial derivatives of f(x, y, z) have definite values at

every position of a fixed realm R, the coordinates X
Q , yQ ,

Z
Q

of

those positions (if any) in R which offer extremes of the function

f(x, y, z) must satisfy the equations

To apply the Stolzian theorem we observe, if we limit ourselves

to a position X
Q
= = yQ

= Z
Q ,

that the collectivity of positions

x, y, z for which
x\, \y\, \z

are less than 8 are distributed into

three kinds of realms :
*

(1) always with
|a?|&amp;lt;8,

x constant, and

\y\S\x\, \z\S\x\;

&quot;

-

(2) with y constant and
|y|&amp;lt;8,

where also

\x\S\y\, \zs\y\;

(3) with z constant and
|z|&amp;lt;8

and

|*|
S

|*|, \y\S\,\.

To apply the Scheeffer theorem we must consider the difference

f(x, y, z)-/(0, 0, 0)= Gn (x, y, z)+Rn+l (x, y, z),

as in 30.

The case where Gn (x, y, z) is a definite or indefinite form is

treated fully in Chapter V.

*
Stolz, loc.cit., p. 237.
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46. The case where Gn (xy y, z) is a nonhomogeneous fuuctiou

in which the terms of the lowest dimension constitute a semi-

dennite form may be treated in a manner analogous to that

given in 37~41, as follows:

&quot;We first determine the upper and lower limits of G(x, y, z)

with constant x and
|y|
= 4 || = |4 Geometrically interpreted,

this realm constitutes a square whose center is the origin and

whose sides are parallel to the y-axis and the z-axis, the length

being 2 14
The positions at which G(x, y, z) reaches one of its limits may

lie (1) on the vertices, or (2) on the sides, or (3) within the

interior of the square.

We have, consequently, to form the expressions corresponding

to the four vertices

G(x, x, x), G(xt x, x), G(x 9 x, x), G(x,
-

x,
-

x}. (i)

For points on the sides we have to solve for y the equations

cy dy

^
for z the equations

dz cz

Let the solutions of the equations (a} be

y = 3(*)&amp;gt; y = %(*)&amp;gt;

and let the solutions of
(/8) be

z=Ql (x], z = Q2 (x), ....

Those functions P (x) and Q (x) which cause y and z to fall without

the given square are to be neglected (cf. 38).

With the remaining functions we form the expressions

G (x, Pl (x), x),
. . .

;
G (x, x, Ql (x)). (ii)

For the points within the square we have to determine y and z

in terms of x from the equations

=
oy cz
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If we eliminate z from these two equations, we may express y as

power series in x without constant term, say y = fa (x) y y = &amp;lt;/&amp;gt;2 (#),

( 29). To each such power series for y, say y = &amp;lt;(#),
there

corresponds one for z in terms of x
t say z = \(x), which two series

written in the two equations (7) cause them to vanish identically.

With these values of y and z we form the expressions

G(x, ^(x), \(x)), G(xt 2 (ar),
X

2 (^)). (iii)

Among all the functions that are found in
(i), (ii), and (iii) we

are now able to determine those two which offer the upper and

lower limits of the function G(xt y, z) within the interval in

question. These limits may be denoted by G(x, &amp;lt;&%(x),
A

2(#))

and G(x, 4&amp;gt;

1 (^
1

), A^)).
If, next, we take y constant and

|$| s&jy |,
z

|

=
|

?/
1,
we may derive

in a similar manner the upper and lower limits G(W2(y), y, M 2 (y))

and G^V^y), y, M^y)). Finally, with z constant and |#|^||,

|
y

|

^
|

z
,
we derive the upper and lower limits

,
fi

a (2), z) and ^(N^), Q^z), z).

The Stolzian and Scheefferian theorems are at once applicable

to these six functions in three variables, the method of procedure

being an evident generalization of these theorems for the functions

in two variables.

PROBLEMS

1. Make the extension and generalization of Von Dantscher s method

to the treatment of functions in three variables.

2. In the line of intersection of two given planes find the nearest point
to the origin of coordinates.



CHAPTER V

MAXIMA AND MINIMA OF FUNCTIONS OF SEVERAL VARIABLES

THAT ARE SUBJECTED TO NO SUBSIDIARY CONDITIONS

I. ORDINARY EXTREMES

47. It will be presupposed in the following discussion, unless

it is expressly stated to the contrary, that not only the quantities

that appear as arguments of the functions but also the functions

themselves are real, and that the functions, as soon as the vari

ables are limited to a definite continuous region, have within this

region everywhere the character of one-valued regular functions.

Regular functions are defined in the following manner : A func
tion f(x) is regular within certain fixed limits of x if the func
tion is defined for all values of x within these limits and if for

every value a of x within these limits the development

f(a + h) =/() + / &amp;lt;)
+

^/&quot;
()+...

is possible ; the series must be convergent and must in reality (see

136), represent the values of the function within this neighborhood.

In other words : A function f(x) is regular in the neighbor

hood of the position x a if the function in this neighborhood

has everywhere a definite value which changes in a continuous

manner with x. (Cf. Weierstrass, Werke, Vol. II, p. 77.)

A one-valued analytic function f(xv x%, ,
xn) of several vari

ables behaves regularly on a definite position (x1
= av x

2
= a

2 ,
.

&amp;gt;,

xn= an) if in the neighborhood of this position we may express

the function through a series of the form

^A^ v- &amp;gt; *n (
xi- a

i)
Vl

(
x2- azY* (

xn~ )&quot;&quot;&amp;gt;

where v
l}

z&amp;gt;

2 , .,
vn are positive integers or zero, and where the

coefficients Av^ v&amp;gt;

, ., Vn are quantities that are independent of the

variables. (Cf. Weierstrass, Werke, Vol. II, p. 164.)

73
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The discussion is thus limited to such functions as are analytic

structures of the nature described more in detail in 130, 131.

Only for such functions can we derive general theorems, since

for other functions even the rules of the differential calculus

are not applicable ;
in other words we shall consider only the

ordinary extremes.

The problem of finding those values of the argument of a

function f(x) for which the function has a maximum or mini

mum value is not susceptible of a general solution, for, besides

the cases of the extraordinary extremes of 5-7, there are func

tions which, in spite of the fact that they may be defined through
a simple series or through other algebraic expressions and which

vary in a continuous manner, have an infinite number of maxima

and minima within an interval which may be taken as small

as we wish.* Such functions do not come under the present

investigation.

48. We say (see 1) that a function f(x) of one variable lias

a proper maximum or a proper minimum at a definite position

x = a if the value of the function for x = a is respectively greater

or less than it is for all other values of x which are situated in

a neighborhood x a &amp;lt; S as near as we wish to a.

The analytical condition that f(x) shall have for the position

x = a

a proper
a proper

maximum, is expressed by f(x)f(a) &amp;lt; \ , .,

minimum, is expressed by f(x) /(a) &amp;gt; J

In the same way we say a function f(xv x
2 , ,

xn )
of n

variables has at a definite position x
l
= av x

2
= a

2 ,
- -

., xn= an

a proper maximum or a proper minimum if the value of the

function for x
1
= av x

2
=

2 , ., xn = a n is respectively greater

* A function may have in an interval as small as we wish

(1) an infinite number of discontinuities,

(2) an infinite number of maxima and minima,

and still be expressed through a Fourier series.

See, for example, H. Hankel, Ueber die unendlich oft oscillirenden und unstetigen
Functionen (Tubingen, 1870); Lipschitz, Crelle, Vol. LXIII, p. 296: P. du Bois-

Reymond, Abh. der Bayer. Akad., Vol. XII, p. 8, and also same volume, Part II,

Math.-Phys. Classe (1876).
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or less than it is for all other systems of values situated in a

neighborhood ^..^ (X== lf 2 , ...,)

as ?iear as we i0is& to the first position] and the analytical

condition that the function f(xv x
2 , ,

xn )
shall have at the

position #!
= av x

2
= a

2 , ,
xn= an

a proper maximum, isf(xv x%, ,
&amp;lt; n)f(a

i&amp;gt;

a
i&amp;gt;

&amp;gt;

fl n) &amp;lt; 0,

a proper minimum, isf(xv x
2 , ,

xn ) f(av a
2 , ,

an )
&amp;gt; 0,

for
|a;A

aA |&amp;lt;8
x (X

= 1, 2,..-, ?i),
where the quantities SA are

arbitrarily small. Improper extremes take the place of the

proper extremes above when we allow the equality sign to

appear with the inequality sign, as in 1.

49. The problem which we have to consider in the theory

of maxima and minima is, then, to find those positions at

which a maximum or minimum really enters.

We shall give a brief resume of this problem for functions

of one variable and then make its generalization for functions

of several variables.

If xv x
2

are two values of x situated sufficiently near each

other within a given region, then the difference of the corre

sponding values of the function is expressible in the form :

where 6 denotes a quantity situated between and 1
; or, if

x
1

is written equal to x and x^x + h,

[1] f(x + h)-f(x) = hf (x + h).

From this theorem may be derived Taylor s theorem in the

form,*

[2] f(x + h) -f(x) = hf (x) + 1 A*/&quot; (*)+

--
(x) +

l

h*fW (x -h 0h).

(71 1)1 n.

* See Jordan, Cours D Analyse, Vol. I, 249-250.
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In the two formulae last written, instead of x + h write x

and write a in the place of x\ they then become

[ 1] /(*)
-/() = (*-

and

[2&quot;] f(x)-/(a)

Since f(x) is a regular, and consequently continuous, function,

the same is true of all its derivatives. If f (a) is different

from zero, then with small values of h = x a the value of

/ (a + Oh) is different from zero and has the same sign as / (a).

According to the choice of h
y
which is arbitrary, the differ

ence /(#) /() can be made to have one sign or the opposite

sign, if / (a) is either a positive quantity or a negative quantity.

Hence the function f(x) can have neither a maximum nor a mini

mum value at the position x = a if f (a) ^ 0.

We therefore have the theorem : Extremes of the function

f(x) can only enter for those values of x for which f (x)

vanishes (see 2).

It may happen that for the roots of the equation / (x)
=

some of the following derivatives also vanish. If the nih deriva

tive is the first one that does not vanish for the root x=a, then

from equation [2
a
]
we have the formula

f(x) -/(a)=0 (a
. + (a!

-
a)},

and with small values of h = x a, owing to the continuity of

/(&quot;)(),
the quantity /&amp;lt;&quot;&amp;gt;( +0h) will likewise be different from

zero and will have the same sign as /(n)
(a). If, therefore, n is

an odd integer, we may always bring it about, according as h is

taken positive or negative, that the difference f(x)f(a) with

every value of f^ (a) has either one sign or the opposite sign ;

consequently the function f(x) will have at the position x = a

neither a maximum nor a minimum value.
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If, however, n is an even integer, then hn is always positive,

whatever the choice of h may have been
; consequently the

difference f(x) f(a) is positive or negative according as /(n)
(a)

is positive or negative.

In the first case the function f(x) has a minimum value at

the position x = a
;
in the latter case, a maximum.

Taking this into consideration we have the following theorem

for functions of one variable
( 3) :

Extremes of the function f(x) can only enter for the roots of

the equationf (x)
= 0. If a is a root of this equation, then at the

position x = a there is neither a maximum nor a minimum if the

first of the derivatives that does not vanish for this value is of

an odd degree ; if, however, the degree is even, then the function

has a maximum value for the position x = a if the derivative

for x = a is negative, a minimum if it is positive.

50. To derive the analog for functions of several variables, we

start again with the Taylor-Lagrange theorem * for such functions.

This theorem may be derived by first writing in f(xlt
x
2 ,

&amp;gt;

,
xn)

A
=

A 4- u(xx
-

A), (X
= 1, 2, .

., n),

where u is a quantity that varies between and 1
;
we then apply

to the function

&amp;lt;l&amp;gt;(u)

=
f(a 1 +u(x1

-a
l ),

a
a+tA(a^-a2 ), ., a n +u(xn-an))

Maclaurin s theorem for functions of one variable, viz.:

[3] f()

and, finally, in this expression write u = l, as follows :

For brevity denote by fk (xv x
2 ,

-
., xn)

the first derivative of

f(xv x
z , -, xn )

with respect to xk and by fkl,^(xv x
2 ,

. .
., xn )

the derivative of f(xl ,
#2 , -, xn )

with respect to x
ki

and x
kt ,

thatis
f ,, ay^,^,...,^,.)
A.nft&amp;gt;4. .*)

gXk g
Xki

*See Lagrange, Theorie des Fonctions, p. 152.
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It follows, then, that

kv k2 ,^,k&amp;gt;n -i \

Hence, from [3] we have

(f&amp;gt;(u)-f(av a
a ,

. .

.,
an)= ^^{ffc (alf

a
a&amp;gt;

. .

., an)(xt-at)}
*

/

/Wl

^1^ ^
an+ 6u(xn- an}}(xki

- a
ki)

. . .

(xkm
- akm)}

From this it follows, if we write u = 1, that

f(xv a?
a ,

. .
., a;w) -/(!, 2 , -, )=]{/*(!, 2 ,

- -

., aM)(ajfc
-a

fc)}
/;

+
2! S ^A, *i(

a
i&amp;gt;V &quot; &quot;

*

/*p /.&quot;2

+

_
/

Ajj, A*2 , , km _ i

(%_!-%,_,)

2 {A 3
*2,...,;u(a 1 + &amp;lt;%1

-
!&amp;gt;, 2+ l9(^2

- a
2),

. .
.,

*t,*n -V*.



NO SUBSIDIARY CONDITIONS 79

51. We are not accustomed to Taylor s theorem* in the form

just given ;
to derive this theorem as it is usually given, observe

that upon performing the indicated summations each of the in

dices kv k
2 ,

- -
., independently the one from the other, takes all

values from 1 to ?i, so that the Xth term in the development is

a homogeneous function of the Xth degree in x
1

av x
2

a
2 ,

-,xn an . The general term of this homogeneous function may
be written in the form

i D - .V fa
- a^(x2

-
2)*. (xn

- an)^
where Xj + X

2 + + X,,
= X,

D is the definite differential quotient

_ /(A 1 +A.+ .-. + X)/ fl n \f (l 2 &quot;

and N is the number of permutations of X elements of which \v
X
2 , ,

\n respectively are alike
;
that is,

&quot;^l
X

2
! ...Xj

Furthermore, writing xk a k= hk ,
we have, finally,

[4] f(xv x
2 ,

.
., xn)-f(av a

2 ,
. .

., an)

*Stolz (Grundzuge der Differential und Integralrechnung, p. 247) ascribes this

mode of expression to A. Mayer (see paper by him in the Leipz. Ber. (1889), p. 128).

The form as presented here is found in Weierstrass s lectures delivered at least ten

years before the Mayer paper.
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This is the usual form of Taylor s theorem for functions of several

variables. In particular, when m = 1 the above development is

[5] f(xv x
2 ,

. .
., xn) -/(ap a

a ,
-

-, a n)

H

The function f(xv ., a?
TO)

is regular and continuous, as are

consequently all its derivatives. If, therefore, the first deriva

tives of f(xv x
2 , ., xn)

are all, or in part, ^0 for x
l
= a

lt
- -

,

%n= a
n&amp;gt;

tnen they will also be different from zero for x
1
= a

1 + 0h
ly

., xn= an+ 0hn , where the absolute values of h
lt
&
2 , ,

hn have

been taken sufficiently small
;
these derivatives will also be of the

same sign as they were for x
1
= av x

2
= a

2 ,
. . .,xn= an . If, now, we

choose all the h s zero with the exception of one, which may be

taken either positive or negative, it is seen that when the corre

sponding derivative has either sign, we may always bring it about

at pleasure that the difference

f(xv x
2 ,

. .
., xn)-f(av a

2)
. .

., an)

is either a positive or a negative quantity, and consequently at

the position av a
2 , ., an no extreme value of the function is

permissible.

We therefore have the following theorem :

Extremes of the function f(xv x
2 , ., xn)

can only enter for
those systems of values of (x1}

x
2 , ,

xn)
which at the same time

satisfy the n equations (p. 17)

[6] f =0, f =0, .-, f = 0.

0x^ dx
2

dxn

It may happen that for the common roots of the system of

equations [6] still higher derivatives also vanish. In this case

we can in general only say that if for a system of roots of the

equations [6] all the derivatives of several of the next higher

orders vanish, and if the first derivative which does not vanish

for these values is of an odd order, the function, as may be

shown by a method of reasoning similar to that above, has

certainly no maximum or minimum value.
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52. If, however, this derivative is of an even order, then in the

present state of the theory of forms of the nth order in several

variables there is no general criterion regarding the behavior of

the function at the position in question. We therefore limit our

selves to the case where the derivatives of the second order of the

function f(xv x.
2 , ,

xn)
do not all vanish for the system of real

roots a
lt

a
2 , ,

a
n of the equations [6].

In this case we have a criterion in the formula

[7] f(xlt
z,
2 ,

. .

., x
n) -f(av a.

2 ,
. .

., aj

by which we may determine whether f(xv x
2 , ,

xn) has an ex

treme value on the position a
lt 2 , ,

an ,
since we may determine

whether the integral homogeneous function of the second degree,

17

l\

in the n variables hv h
2 , ,

hn is for arbitrary values of those

variables invariably positive or invariably negative.

Denote this function by /AM (a1+ 0hv ,#+ 6h n ).

On account of their presupposed continuity the quantities

/cy(xv x
2,..., xn)\ and /Pf(xlt

x
2 ,

. .
., xn)\

dxjx^ / 1+i I,...,.+ ffc, GX^ /a,,..., an

with values of h
lf h^,---, hn taken sufficiently small differ from

each other as little as we wish and are of the same sign ;

* hence

with small values of the h s the functions

have always the same sign, and we may therefore confine our

selves to the investigation of the latter function.

* If any of the quantities (
-

,
1 *

) becomes zero, we may replace
\

it by exM(a i&amp;gt; &amp;gt;

a
n)&amp;gt;

which must of course be given the same sign as /A,H(I+ Ohi,
an + 0hn ), e\n denoting an infinitesimally small quantity.
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If it is found that through a suitable choice of hv h
2 , -, kn

the expression

can be made at pleasure either positive or negative, the same will

be the case with the difference/^, x
2 , ., xn ) f(a lt

a
2 , -, a.w ),

and consequentlyf(xv x
2 , ,

xn)
has on the position (av a

2 , ,
an)

no extreme value.

We therefore have as a second condition for the existence of

a maximum or a minimum of the function f(xlf
x
2 , ,

xn)
on

the position (av a
2 ,

&amp;gt;

,
an) that in case the second derivatives

of the function f(xlt
x
2 , ,

xn)
do not all vanish at this position,

the homogeneous quadratic form

\

must be always negative or always positive for arbitrary values

of hv A
2 , ., hn .

II. THEORY OF THE HOMOGENEOUS QUADRATIC FORMS

53. The three kinds of quadratic forms, viz., definite, semi-

definite, and indefinite, were denned in 13.

As we have already indicated in 13, it is seen that if the homo

geneous function is an indefinite form, the function f(xv x%,
&amp;gt;

,
xn )

has neither a maximum nor a minimum upon the position (av a
2 ,

., aw); for if the right-hand member of [7] is positive, say, for

a definite system of values of the h s, then in accordance with

the definition of the indefinite quadratic forms we can find in

the immediate neighborhood of the first system a second system

of values of the 7^ s for which the right-hand side of the equa

tion [7] is negative ; consequently, also, the difference

f(xlt
a?
2 , -, xn ) -/(!, a

2 ,
. .

., an)

is negative, so that therefore no maximum or minimum is permis

sible for the position (alf
a
2 , ., a.n ).
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If, then, the second derivatives of the function f(xv #
2 , ,

xn )

do not all vanish at the position (av 2 , ,
an), it follows, besides

the equations [6], as a further condition for the existence of an

extreme of the function f(xv x
2 , ., x

2)
that the terms of the

second dimension in [4] must be a definite quadratic form, if we

exclude what we have called the semi-definite case.

The question next arises : Under what conditions is in general

a homogeneous quadratic form

[8] +(0^...,.*

a definite quadratic form ?

54. Before we endeavor to answer this question we must yet

consider some known properties of the homogeneous functions of

the second degree.

Suppose that in the function (f)(xlf
x
2 ,

-
,
xn ), in the place of

(xv x
2 ,

-
,
xn ), homogeneous linear functions of these quantities

[9]

are substituted, which are subjected to the condition that

inversely the x s may be linearly expressed in terms of the / s,

and consequently the determinant

[10]

ll
C
12

* C\n

21
C
22

&quot; &quot; C2n

The function
&amp;lt;/&amp;gt;(^,

J

2 ,
.

., a;n )
is thereby transformed into

[11] &amp;lt;f&amp;gt;(xv a?
2 , -, *w)= -f (yi , y2 ,

. .
., yn ).

Owing to this substitution it may happen that

does not contain one of the variables y, so that
&amp;lt;f&amp;gt;(xv x%,

is expressible as a function of less than n variables.

,yn )



84 THEORY OF MAXIMA AND MINIMA

To find the condition for this write

If i/r
is independent of one of the y s, say yn ,

so that conse

quently = 0, then from the n equations

we may eliminate the n 1 unknown quantities &amp;gt; &amp;gt;

dojr
^ ^2

,
We thus have among the

&amp;lt;f&amp;gt;

s an equation of the form

[14]

where the & s are constants.

Owing to equations [12] this means that the determinant of

the given quadratic form vanishes, that is,

[15]

We note here the following formulas:

[16]

and consequently

[17]

There exists, further, the well-known Euler s theorem for homo

geneous functions :

[I 8 ]

It is also easy to show reciprocally that if, as above, the equa
tion [15] is true, the function

&amp;lt;f&amp;gt;

consists of less than n variables.
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For if we assume that equation [15], or, what amounts to the

same tiling, an identical relation of the form [14] exists, and if

we substitute in
4&amp;gt;(xly

#
2 , ,

xn )
the quantities #A -f- tk^ in the

place of #A (\ = 1, 2, , n) and develop with respect to powers
of t, we then have

&amp;lt;t&amp;gt; (xl + tkv x
2 + tk

2 , ,
xn + tkn)

= $(xl9
a?
2 , ,

xn ) + 2 t {k^(x1}
x
2,..., xn )}

It follows, when we take into consideration the equations [14]

and [18], since the equation [14] is true for every system of

values (xv x
2 , ,

xn ), that

&amp;lt;f&amp;gt;(xl + tkv -
., xn + *&) = &amp;lt;

(a^, ., ).

Hence, if the equation [15] exists, or if the k s satisfy the equa
tion [14] for every system of values (xv x

2 , ,
xn ),

then

^to, x
2 ,

-
., xn)

remains invariantive if x^+tkK is written for

#A ,
where t is an arbitraiy

r

quantity.

Consequently, it being presupposed that k
v ^ 0, if t is so

determined that the argument . -+ ^= 0, we have

[19] ^(jjj, jL-
2 , ., ^^^Ui-^v, x&amp;lt;t--^x

v ,
.

.,

/i/y_ -j ^.
ft

_i_xv-l T ^ &quot;&amp;gt;

Xv + l T ^

where $ is expressed as a function of less than n variables.

We therefore have, the theorem

The vanishing of the determinant^? AU A22 Ann is the

necessary and sufficient condition that a homogeneous quadratic

function &amp;lt;t&amp;gt;(xv x
2 , ,

xn)=^A^xx x^ be expressible as a func
tion of n 1 variables. A **

55. We return to the question proposed at the end of 53,

and to have a definite case before us assume that the problem is :

Determine the condition under which the function &amp;lt;(#j, x%, ,
xn )

is invariably positive. The second case where
&amp;lt;f&amp;gt;(xly

x
2 , ,

xn)

is to be invariably negative is had at once if
(f)

is written in

the place of $.

*^ii \
&amp;gt;

xn~ ~T Xv\&amp;gt;
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We shall first show, following a method due to Weierstrass,*

that every homogeneous function of the second degree &amp;lt;(&amp;lt;#!, 2 ,

. .
., xn) may be expressed as an aggregate of squares of linear

functions of the variables.

56. In the proof of the above theorem it is assumed that

(f&amp;gt;(xv x
2 , ,

xn)
cannot be expressed as a function of n1

variables
;

it follows, therefore, that the inequality

[20] ^A uA 22 ...A nn ^O

is true and that therefore it is not possible to determine con-
i = &quot;)i

stants k, so that the equation ^ki (f&amp;gt;i
= exists identically.

i = l

If, then, y is a linear function of the x s having the form

[21] y = C& + c
2
^
2 H
----

-f- cnxn ,

and if g is a certain constant, then the expression &amp;lt;$&amp;gt; gy* (=&amp;lt;$&amp;gt;,

say), after the theorem proved above, can be expressed as a

function of only n 1 variables if the constants kv k%, ,
kn

may be so determined that

or

[22&quot;

A=l

From the assumption made regarding [20] it follows, on the

one hand, that the inequality

[23] 2)^x^0
A

must exist. This is the only restriction placed upon the c s. On

the other hand, in virtue of the n linear equations

[24] 2&amp;gt;W=& (X=l, 2,.-.,)
ft

* See also Lagrange, Misc. Taur., Vol. I (1759), p. 18, and Mtcanique, Vol. I, p. 3;

Gauss, Disq. Arithm., p. 271
;
Theoria Comb. Observ.,p. 31, etc.
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the quantities xv #
a , ,

xn may be expressed as linear functions

of
&amp;lt;f&amp;gt;v &amp;lt;

2 ,
-

, &amp;lt;, and, consequently, by the substitution of these

values of xv x
2 ,

- -
-, xn in [21] y takes the form

V= It

[25] y

where the ev are constants, which are composed of the constants

A^ and CA .

But from equation [22] it follows that

Such a representation of the $A , however, since we have to do

with linear equations, can be effected only in one way.

l
2)*A *.

We therefore have y = --^- =$)e*^

&quot;SU
A=1

M=I

from which it follows that

fe-^S 1** (X=*l,2,...,).
^=1

Through the substitution of these values in [22] it is seen that

X = M A = it

5X*A-0y5Xx=o;
A=l A=l

consequently, owing to the relation [25], we have

[26]
= t

This value of g may be expressed in a different form
;
for from

[25] and [17] it follows that

V= H V *= 71

[26
a
] y =5)A(a;

i a, ,
xn)
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Comparing this result with [21], we have

[27] cv
=

&amp;lt;(! 2 , ,
en) (v

=
1, 2, ., TI),

and consequently

or, from [18],
!,,, &amp;gt;

Since the quantities cp c
2 , ,

cw are perfectly arbitrary except

the one restriction expressed by the inequality [23], the quantities

e
lt 2 &amp;gt;

&amp;gt;

en are in consequence of the equation [27], completely

arbitrary with the one limitation resulting from [28], viz., the

function
&amp;lt;p

cannot vanish for the system of values (ev e%, ,
en)-

otherwise g would become infinite.

57. Reciprocally, if the quantities ev e
2 , ,

en are arbitrarily

chosen, but with the restriction just mentioned, and if g is

determined through [28], it may be proved that the expression

(f)(= $&amp;gt; gy*\ where y has the form [25], may be expressed as

a function of only n I variables. For, form the derivatives of

this expression with respect to the different variables, and multiply

each of the resulting quantities by the constants ev e
z ,

-
-, en .

Adding these products and noting [26
a
]
and [28], we have

The expression on the right-hand side is zero from [25]. Hence

n constants may be chosen in such a way that the sum of the

products of these constants and the derivatives of the expression

(f&amp;gt; gy
2 is identically zero, and also ^(elt ,

en)
=

(cf. [18]).

58. Substitute xx +tex for a3A (\ = l, 2, ., n) in
&amp;lt;f) ;

if one of

these arguments is made equal to zero, we have, as in 54,

ek ek ek ek

or, if the new arguments are represented by x v x
2) ,

x n _v

&amp;lt;f&amp;gt;(xv x
2 ,

. .
., xn)

-
gy

2 = $(x v x
2&amp;gt;

-
-, a/n _j).
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Employing the same method of procedure with
&amp;lt;/&amp;gt; (x v x

2 , ,x n _ x )

as was done with
&amp;lt;f&amp;gt; (xv #

2 , ,
xn),

we come finally to the func

tion of only one variable, which, being a homogeneous function of

the second degree, is itself a square. Hence we have the given

homogeneous function
&amp;lt;$&amp;gt;(xv x

2 , ,
xn) expressed as the sum of

squares of linear homogeneous functions of the variables. If the

coefficients of
&amp;lt;f&amp;gt;

are real, as also -the quantities e, the coefficients g
are also real, and since the quantities e may with a single limi

tation be arbitrarily chosen, it follows that a transformation of

such a kind that the result shall be a real one may be performed

in an infinite number of ways.*

59. If, now, the expression

[29] &amp;lt;/&amp;gt; (xlt
ff
a , ,

xn) = gfl*+ g$l H + gnyl

is to be invariably positive for real values of the variables and

equal to zero only when the variables themselves all vanish, then

all the qualities glt g2 , -, gn must be positive; for if this were

not the case, but gv say, were negative, then, since the y s are,

independently of one another, linear homogeneous functions of the

# s, we could so choose the x s that all the ?/ s except yl
would

vanish, and consequently, contrary to our assumption, &amp;lt;t&amp;gt;(xv x
2 ,

,
xn)

would be negative. Furthermore, none of the gs can vanish
;

for if
(/j, say, were zero, we might so choose a system of values

xv x
2 ,

. .
., xn ,

in which at least not all the quantities xv #
2 , ., xn

were zero, that all the y s would vanish except yv and consequently

&amp;lt;f&amp;gt;

could then be zero without the vanishing of all the variables

^l&amp;gt; ^2
* * *

^n*

Eeciprocally, the condition of gv g2 , , gn being all positive is

also sufficient for
&amp;lt;/&amp;gt;

to be invariably positive for real values of

the variables, and for
&amp;lt;f&amp;gt;

to be equal to zero only when all the

variables vanish.

60. In order to have, in as definite form as possible, the ex

pression of $ as a sum of squares, we shall give to the expression

[26] for g still a third form.

*See Burnside and Panton, Theory of Equations (1892), p. 430. In this connec
tion it is of interest to note the Theorem of Inertia of Sylvester, Coll Math. Papers,
Vol. I, pp. 380, 511. See also Hermite, CEuvres, Vol. I, p. 429.
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In connection with [12] it follows from [27] that

v
= ^ A^M (v

= 1, 2, .
., n).

M=I

Denote by A the determinant of these equations, which from [20]
is not identically zero, that is,

[30] ^

We have as the solution of the preceding equation

It follows from this in connection with [26] that

[31] 9 = ^

an expression in which the c s are subject only to the one con
dition that

is not identically zero.

61. It is shown next that we may separate from
&amp;lt;f&amp;gt;(x^

x
2 ,

,
xn)

the square of a single variable in such a way that the

resulting function contains only n 1 variables.

For example, in order that the expression (f&amp;gt; gx% be expressed
as a function of n 1 variables, we may choose for g the value

[31], after we have written in this expression cx =0(X = l, 2,

,
n 1), while to c

tl
is given the value unity.

From this it is seen that

A _A_
3A ~A

where A
1

is the determinant of the quadratic form $(xv x
2 ,

. .
.,

#_!&amp;gt; 0). Of course this determinant must be different from zero.
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Hence we may write

&amp;lt;t&amp;gt;(xv xv - -

., &)= -r-a+$(3i, 4&amp;gt;

* ^ -i)&amp;gt;

&amp;lt;*!

where

- ~ -- ~^

We may then proceed with
&amp;lt;/&amp;gt; just as has been done with

&amp;lt;f&amp;gt; by

separating the square of x^_ lf
etc.

After the separation of
/-t squares from the original function

&amp;lt;f&amp;gt;,

we notice that the determinant of the resulting function in n /z

variables is the same as the determinant of the function which

results from the original function
(/&amp;gt;

when wre cause the
JJL last

variables in it to vanish. If this determinant is denoted by A^
we have the following expression for

&amp;lt;/&amp;gt;

:

2 ,
.

., xn)

- 1

62. If now
&amp;lt;t&amp;gt;

is to be invariably positive and equal to zero only

when all the variables vanish, the coefficients on the right-hand

side of the above expression must all be greater than zero. We
therefore have the theorem

In order that the quadratic form

be a definite form and remain invariably positive, it is necessary

and sufficient that the quantities Av A
Z) -&amp;gt;,An _v which are

defined through the equation A^ =^AUA^ -A,^^^,,^, be all

positive and different from zero. If, on the other hand, the quad
ratic form is to remain invariably negative, then of the quantities

A n _v An _ 2 , ,
A

lt A, the first must be negative, and the following

must be alternately positive and negative (see Stolz, Wiener Bericht,

Vol. LVIII (1868), p. 1069).



92 THEORY OF MAXIMA AND MINIMA

III. APPLICATION OF THE THEORY OF QUADRATIC
FORMS TO THE PROBLEM OF MAXIMA AND MINIMA

STATED IN 47-51

63. By establishing the criterion of the previous section the

original investigation regarding the maxima and minima of the

function f(xlt
x
2 ,

-
,
xn)

is finished. The result established in 57

may in accordance with the definitions given in 52 be expressed as

follows: In order that an extreme of the function f(xv x
2 , ,

xn)

may in reality enter on the position (av a
2 , ,

an) which is deter

mined through the equations [6], it is sufficient, if the second

derivatives of the function do not all vanish at this position, that

the aggregate of the terms of the second degree of the equation [4]

be a definite
*

quadratic form ; if, however, the form vanishes for

other values of the variables without changing sign (that is, is semi-

definite), then a determination as to whether an extreme in reality

exists is not effected in the manner indicated and requires further

investigation, as is seen below.

In virtue of the theorem stated in 53, an extreme will enter

for a system of real values of the equation [6] if the homogeneous
function of the second degree

that is, if

is a definite quadratic form
;
in other words

( 62), there will be a

minimum on the position (av a
2 ,

-
,
an) if the quotients

where M̂
=^ /1i/22 + A-,.,-M&amp;gt;

are al1 positive, a maxi

mum if they are all negative. In both cases the quotients must be

different from zero.

*Lagrange, Thtorie des Fonctions, pp. 283, 286; see also Cauchy, Gale, differ.,

p. 234.
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This last condition is only another form of what was said

above, viz., that 2J/A*W^ mus^ n t be a semi-definite form.

For if, say,
A *

then the summation ^f^hji^ being denoted by (f&amp;gt;(Jiv h
Z) ,&),

I.*

this equation would directly imply the existence of a relation of

the form

where the are constants which do not all simultaneously vanish.

If, therefore, knt say, is different from zero, we may write

and with the help of this relation we have from the equation

A=l X=l

the following relation

Now in this expression the arbitrary quantities li may be so

chosen that
^

ht =-hn (X=], 2,... ,TI),*

and consequently the function 0(7^, 7i
2 , ., A H )

would vanish

without all the tis becoming simultaneously zero. This case we

cannot treat in its generality.

Neglecting this case, it is seen that the problem of this chapter

is completely treated
; however, the conditions that a quadratic

form shall be a definite one appear in a less symmetric form

than we wish. It is due to the fact that we have given special

preponderance to certain variables over the others.

We shall consequently take up the same subject again in the

next chapter.
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64. The question is often regarding the greatest and the least

values (the upper and lower limits) which a function may take

when its variables vary in a given finite or infinite region. If

this value corresponds to a system of values within the given

region, then for this system the function will also be a maximum
or a minimum in the sense derived above.

For example, let it be required to distribute a positive number
a into n + l summands, so that the product of the ^th power
of the first, the

2
th power of the second, etc., and finally the

an + i P wer f the last summand will be a maximum.*
The quantities av a

2 ,
.

., an + l
are to be positive numbers.

Let xv x
2 , ., xn,

a x
l

x
2

. . . xn be the summands in

question and write

U= x^xf* - - - xn
a

(a
-

Xl
- x

2 O&quot;&quot;*

1
.

We must then determine when U or, what is the same thing,
its natural logarithm, has its greatest value.

If we put the partial derivatives of log U equal to zero, we* will

-o,

These equations may be written

the last term being had through addition of the preceding

proportions.

If we caH
x&amp;gt;, x^\ . .

., ^0) the values of the variables which

satisfy these equations, we have

a,

* Peano, 137.
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The. corresponding value of U is

To recognize whether U is the greatest of the values of U, we

may show that U is in fact a maximum for the system of values

xf\ . .
., x$ and that this position lies on the interior of the realm

of variability under consideration. For, let xv x
2 , -, xn be an

other system of positive values of the variables, for which also

a x
1

... xn is positive, and substitute for the variables in

log U the values

af&amp;gt;
+ u (xl

-
af&amp;gt;),

. .
,
x + w (*tt

-
zf), where &amp;lt; u &amp;lt; 1.

Since the partial derivatives of the first and second order of log U
are continuous for all these systems of values, we have through

the Taylor development, observing that the first derivatives vanish

on the position x^\ ,
x

,

1 \rr fr r (

-\ovV -- \

l( l
~

l

2[ (^))2

(-P ----- 41}

)
2

where icj
15

, , x$ are values of the variables of the form

^+0xl -xf...,x
( +6xn -x(

,
where 0&amp;lt;0&amp;lt;1.

The expression within the brackets is positive and different

from zero, since it is assumed that the system of values x
ly
#
2 ,

. . .
,
xn do not coincide with x&amp;gt;

, x^ , ,
x . It follows that

log U &amp;lt; log UQ
or U &amp;lt; UQ, so that Z7 is, in fact, the greatest

value which U can assume.

We note that U takes a smallest value, viz., zero, if one of the

summands into which a is distributed, vanishes. If we allow the

summands to take negative values, it no longer follows that UQ

is the greatest of the values U.



CHAPTER VI

THEORY OF MAXIMA AND MINIMA OF FUNCTIONS OF SEVERAL

VARIABLES THAT ARE SUBJECTED TO SUBSIDIARY CONDITIONS.

RELATIVE MAXIMA AND MINIMA

65. In the preceding investigations the variables xv x
2 ,

-
., xn

were completely independent of one another.

We now propose the problem : Among all systems of values

(xv x
2 , ., xn) find those which cause the function F(xl&amp;gt; %%,, xn)

to have maximum and minimum values and which at the same

time satisfy the equations of conditions :

[I] f^(x1}
x
2 , , O=0 (X = l, 2, . .

., m- m&amp;lt;n),

where f^(xv x
2 , ., xn)

and F(XI} ,
xn)

are functions of ike

same character as f(xlf
#
2 , ,

xn)
in 47.

66. The natural way to solve the problem is to express by means

of equations [1] m of the variables in terms of the remaining

n m variables and write their values in F(XI} x%, ,
xn).

This

function would then depend only upon the n m variables which

are independent of one another, and so the present problem
would be reduced to the one of the preceding chapter.

In general, this method of procedure cannot be readily per

formed, since it is not always possible by means of equations [1]

to represent in reality m variables as functions of the n m remain

ing variables. A more practicable method must therefore be sought.

67. If (av a
2 , -, an)

is any system of values of the quantities

x
i&amp;gt;

x
%&amp;gt;

&amp;gt;

xn which satisfy .the equations [1], then of the systems

of values
(Xl
= a

1 + fcj, &,= aa -f A,, ,
xn= an+ hn),

in the neighborhood of (av ,
an), only those which satisfy

the equations [1] may be considered; that is, we must have

[2] /A (a1 +^ 1,a2+^2 ,.&quot;,an+^w)=0 (X = 1, 2, . .
., m).
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Hence by Taylor s theorem the h s satisfy the equations

[3] {/AM (1 a
*&amp;gt;

&amp;gt;

a
n)U + [hlt

h
2 , ., hn] I

=

where [Aj, h2 , &amp;gt;,

hn ]j*
denotes the terms of the second and higher

dimensions in the respective variables.

68. It being assumed that at least one of the determinants

of the rath order which can be produced by neglecting n m
columns from the system of m n quantities

[4]
/Ml J 22

* *
*J /2n&amp;gt;

_/ml&amp;gt;//n2&amp;gt;

* Jmn*

is different from zero, then (see 135 and 136) m of the quan
tities h may be expressed through the remaining n m quantities

(which may be denoted by k
lf
k
z , ., kn _ m )

in the form of power
series as follows :

[5] h,= (kl ,
A-
2 ,

. .
., *_J

where the upper indices denote the dimensions of the terms with

which they are associated. These series converge in the manner

indicated in 136
; they satisfy identically the equations [2] and

furnish, if the quantities kv k
2 , ., kn _ m are taken sufficiently

small, all values of the m quantities h which satisfy these

equations.

69. The condition that one of the determinants in the preced

ing article be different from zero is in general satisfied; there

are, however, special cases where this is not the case. A geo
metrical interpretation will explain these exceptions.

Let F and an equation of condition f = contain only three

variables x
lt

x
2 ,

and #
3

.

The equation of condition f(xl}
#
2 &amp;gt;

x
z) represents then a

surface upon which the point (xl} #
2 ,

x
s)

is to lie and for which

F(xv x
2 ,
x
3)

is to have a maximum or minimum value.
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The determinants of the first order in the development

with respect to powers of 7^, h2 ,
and h

s
cannot all be equal to zero;

that is, all the terms of the first dimension cannot vanish, the

single terms being these determinants
;
and this means that the

surface / = cannot have a singularity at the point in question.

Take next two equations of condition /:
= and /2

= between

three variables xv x
2 ,
and X

B . Considered together they represent

a curve, and the condition that the corresponding determinants of

the second order cannot all be zero means here that the curve at

the point in question cannot have a singularity.

70. If the values of the m quantities k^ are substituted in the

difference ^/ x x \_p/a a a \

this expression then depends only upon the n m variables

&i&amp;gt; &2&amp;gt;
*&amp;gt; kn-m&amp;gt;

that are independent of one another and may

consequently for sufficiently small values of these variables be

developed in the form

[6] F(xv x
2 , -, xn) F(alt 2 , ,

an)

P=n-m -I

It was seen
( 51) that, in order to have a maximum or minimum

on the position (av a
2 ,

- -
., an),

it is necessary that the terms of

the first dimension vanish, and consequently

[7] &amp;lt;7

p
=0 (p=l, 2, ...,n-m).

71. This condition may be easily expressed in another manner.

We may obtain the quantities e if, in the development

F(xv aj
a , -, xn)-F(av a

2 ,...,an)

we substitute in the terms of the first dimension the values of the

m quantities from [5] and arrange the result according to the
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quantities kv k
2 , ., k n _ m . In other words, the equations [7] ex-

tL- n

press the condition that ^FJi^ must vanish identically for all

*-i

systems of values of the h s that satisfy the m equations [3] after

they have been reduced to their linear terms. These are the

m equations

&quot;=o *=i&amp;gt; 2, ....

Now multiplying these m equations
*

respectively by m arbitrary

quantities ev e
2 ,

- -

., em , and adding the results to the equation

we have the following equation :

[9] *2f{(^+ I/I, + 2/2M+ + *mfmj*&amp;gt;3=
0.

M = l

But the es may be so determined that those terms in this sum
mation drop out which contain the m quantities h, which are ex

pressed in [5] through the n m other h s
; by causing these

terms to vanish, a system of m linear equations is obtained, whose

determinant by hypothesis is different from zero.

Since the terms which remain of equation [9] are multiplied

by the completely arbitrary quantities kv k
2 , ., _,, it is not

possible for this equation to exist unless each of the single

coefficients is equal to zero.

Consequently we have as the first necessary condition for

the appearance of a maximum or minimum the existence of

the following system of n equations,

in the sense that if m of these equations exist independently of

one another, the remaining n m of them must be identically

satisfied through the substitution of the e s which are derived

*This method is due to Lagrange, Theorie des Fonctions, p. 268; see also Gauss
(Theoria Comb. Observ. Supp. 11).
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from the first m equation, it being of course presupposed that

the system of values (alt
a
2 , ., an)

has already been so chosen

that the equations [1] are satisfied.

Taking everything into consideration we may say : In order

that the function F (xv x
2 ,

-
&amp;gt;,

xn)
have a maximum or mini

mum on any position (av a%, ,
an),

it is necessary that the

n + m equations

(/i
= l, 2,-.. ,71),

be satisfied by a system of real values of the n + m quantities

72. These deductions were made under the one assumption

that at least one of the determinants of the rath order which

can be formed out of the m n quantities [4] through the omission

of n m columns does not vanish. This condition was necessary

both for the determination of the quantities h, which satisfy the

equations [2], and also for the determination of the m factors ev

It may happen* that a maximum or minimum of the function

F enters on the position (av 2 , ., an)
even when the above

condition is not satisfied. For if it is possible in any way to

determine all systems of values of the h s not exceeding certain

limits that satisfy the equations [2], the equations [7] together

with the equations [1] are sufficient in number to determine the

n quantities av a
2 ,

-
,
an .

When the above assumption is not satisfied, the equations [8]

exist identically, and consequently the equations [3], which serve

to determine the A s, begin with terms of the second dimension.

We may often in this case proceed advantageously by introducing

in the place of the original variables a system of n m new vari

ables so chosen that when they are substituted in the given

equations of condition they identically satisfy them.

* See Stolz, p. 257.
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73. To make clear what has been said, the following example
will be of service

;
its general solution is given in the sequel ( 91).

Find the shortest line which can be drawn from a given point to

a given surface. Upon the surface there are certain points of

such a nature that the lines joining these points with the given

point have the desired property and, besides, stand normal to the

surface at these points.

If by chance it happens that one of these points is a double

point (node) of the surface, so that at it we have fl
= 0, /2

= 0,

f3
= 0, then in reality for this point the terms of the first dimen

sion in the equations [2] drop out and we have the case just

mentioned.

If the surface is the right cone

we may write

The equation of the surface is identically satisfied, and it is easily

seen that we may express the quantities h
lf

h
2 ,

h
3 through two

quantities l\ and &
2 independent of each other even in the case

where the required point of the surface is the vertex of the cone,

that is, the point x= Q = y = z, OT u = = v- and in fact in such

a way that not only indefinitely small values of h
lt
h
2 ,

h
s

corre

spond to indefinitely small values of k
lf

A
2
but also that all

systems of values hv h%, h
3 are had which satisfy the equation

The variables, however, must be given at one time real, at another

time purely imaginary, values if the equations [11] are to repre

sent the entire surface of the cone
;
but in this manner the

unavoidable trouble has taken such a direction that the proposed

problem falls into two similar parts, which may be treated in full

after the methods of Chapter V. In other cases we may proceed

in a like manner. The special problem will each time of itself

offer the most propitious method of procedure.
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74. We must now establish the criteria from which one can

determine whether a maximum or minimum oiF(x^ x
2 ,-

-
,
xu)

really enters or not on a definite position (a1? 2 , ., a.n),
which

has been determined in 71 above.

One might consider this superfluous, since in virtue of the cri

teria given in the previous chapter a maximum or minimum will

certainly enter if the aggregate of terms of the second dimension

in [6] is a definite quadratic form of the nature indicated.

It is, however, desirable to determine the existence of a maxi

mum or minimum without having previously made the develop

ment of the function in the form [6]; for in order to obtain the

coefficients C
pa

. we must pay attention not only to the terms of

the first dimension but also to the terms of the second dimension,

when the values of [5] are substituted in the development of

F(xly
x
2 ,

-
., xn) F(av 2 ,

75. The above difficulty may be avoided if we multiply by
the quantities e

lt (fji
= 1, 2, m) respectively each of the expres

sions [2] which vanish identically, add them thus multiplied to

the above difference, and then develop the whole expression with

respect to the powers of h.

Owing to equation [9] terms of the first dimension can no

longer appear in this development, and we have, if we write

ft
= m

[12]

[13] F(xv *
2 ,

. . .
,
xn )

- F(alf
a ..., an )

= G (xv x
2 ,

. . .
,
xn)

1 v

We have, accordingly, the homogeneous function of the second

degree ^Ofjcje^
of the formula [6] if we substitute in ^Gr^kph,

p,cr (JL,V

the values [5] and consider only the terms of the first dimension
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in the process. If then the criteria of the preceding chapter are

applied we can determine whether the function F possesses or

not a maximum or minimum on the position (av a
2 ,

. .
., an).

76. The definite conditions that have been thus derived are

unsymmetric for a twofold reason : on the one hand because in

the determination of the quantities h some of them have been

given preference over the others, and on the other hand because

those expressions by means of which it is to be decided whether

the function of the second degree is continuously positive or con

tinuously negative have been formed in an unsymmetric manner

from the coefficients of the function.

It is therefore interesting to derive a criterion which is free

from these faults and which also indicates in many cases how

the results will turn out. With this in view let us return to the

problem already treated in the preceding chapter and propose

the following more general theorem in quadratic forms.

I. THEORY OF HOMOGENEOUS QUADRATIC FORMS

77. THEOREM. We have given a homogeneous function of the

second degree

[14] &amp;lt;t&amp;gt;(xv a
g, ., aw)=2)w4**2*a&amp;gt;

(
A^ =A^

A,M

in n variables, which are subjected to the linear homogeneous equa

tions of condition

[15] A
=

2&amp;gt;
AM .iM=0 (X= l, 2,...,m; m&amp;lt;n)-t

we are required to find the conditions under which
&amp;lt;f&amp;gt;

is invariably

positive or invariably negative for all those systems of values of the

variables which satisfy equations [15].

It is in every respect sufficient to solve this theorem with

the limitation that the quantities x are subjected to the further

condition

[16] ** + .**+... +** = !;

for if if +4 + ...+* = p
2

,
then

( ) +(-
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x, x

Furthermore, if xv -, xn satisfy [15], then, also, &amp;gt;...,

(x x \ 1
P P

satisfy these equations, while, since &amp;lt;/
-^

, ,

J

=
-^&amp;lt;t&amp;gt;(

xv *
&amp;gt;

x
n}&amp;gt;

the signs of the two quadratic forms are the same.

It is, therefore, in every respect admissible to add the equation

[16]. We have, however, thereby gained an essential advantage:

for owing to the condition [16] none of the variables can lie

without the interval 1 4- 1
; furthermore, since the function

varies in a continuous manner, it must necessarily have an upper

and a lower limit for these values of the variables xv x
2 , ., xn ;

that is, among all systems of values which satisfy the equations

[15] and [16] there must necessarily be one* which gives an

upper limit and one which gives a lower limit of &amp;lt; (see 8).

We limit ourselves to the determination of the latter, By trial

we can easily determine whether $ reaches its lower limit on the

boundaries, that is, when one of the x*s 1, while the others are

all zero. If this lower limit is not reached on the boundaries, then

(f&amp;gt;

has a minimum value within the boundaries
(cf. 64).

78. Through the addition of equation [16] the theorem of the

preceding article is reduced to a problem in the theory of maxima

and minima; for if the minimum value of
&amp;lt;/&amp;gt;(%!&amp;gt; x%, ,

xn)
is

positive, &amp;lt;j&amp;gt;

is certainly a definite positive form.

Consequently, if we write

[17] G = $-
*

then, in order to find the position at which there is a minimum

value of the function, we have to form the system of equations

|^=0 (X=l, 2,...,n).
teA
O J p=Wl O/J

This gives |E^2i*A+2V&amp;lt;,p~0 (X = 1, 2, . .
., n),

K rj
f exk

or,

[18] ^AA- ^A+
P

1)VV= (X = 1, 2, ., n).
M=l p=l

*Crelle s Journal, Vol. LXXII, p. 141
;
see also Serret, Calc. diff. et int., pp. 17 et seq.
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From the n + m + 1 equations

105

[19] =0
(/&amp;gt;

= 1, 2, ., m),

the ?i + ??i H- 1 quantities a^, #
2 , ,

xn,fv 2 , ,
em ,

e may be

determined. Since we know a priori that a minimum value of

the function &amp;lt; in reality exists on one position, we are certain

that this system of equations must determine at least one real

system of values.

Consequently the first n -+- m linear homogeneous equations of

[19] are consistent with one another and may be solved with

respect to the unknown quantities xv x
2,

-
,
xn ,

ev e
2 ,

-
,
em \

their determinant must therefore vanish, and we must have

[20]

^H ,
^12&amp;gt;

i AH
J J ,, A
xioi j &quot;^^22 &amp;gt; j &quot;^^2??^



106 THEORY OF MAXIMA AND MINIMA

found which calls for the minimum, and since the value of the

function which belongs to such a system of values is always a

root of equation [20], it follows also that the required minimal

value of
(f&amp;gt;

must be contained among the roots of this equation.

As already remarked, this minimal value must be positive if $
is to be continuously positive for the systems of values of the

x a under consideration, and from this it follows that Ae must

have only positive roots. For if one root of this equation was

negative, then for this root we could determine a system of

values xv %%,, xn,
ev e

2 , ,
em for which, as seen from [21],

&amp;lt;f)

is likewise negative.

Hence, in order that
&amp;lt;j&amp;gt;

be continuously positive for all systems

of values of the x s which satisfy the equations [15], it is neces

sary and sufficient that the equation A# = have only positive roots*

The question next arises, When does the equation Ae

have only positive roots ? It may be answered in a completely

rigorous manner by means of Sturm s theorem ;t but the inves

tigation is somewhat difficult; and the symmetry, which we

especially wish to preserve, would be lost when we applied

Sturm s theorem.

For develop the determinant according to powers of e as

follows :

[22] e
n - m B

1
e
n - m - 1+Bz

e
n - m - 2

(- (- l)
n ~ m Bn _ m= ;

then if all the roots of this equation are real and positive, the

coefficients B must be all positive, and, reciprocally, if the roots

of this equation are real and the B s are all greater than 0, the

roots of the equation Ae = are all positive. The form is then

a definite quadratic form. The necessary and sufficient condition

that the form be not a definite one is that e = be the smallest

root of the equation above.

* See Zajaczkowski, Annals of the Scientific Society of Cracow, Vol. XII (1867) ;
see

also Richelot, Astronom. Nachr., Vol. XLVIII, p. 273.

t Burnside and Panton, Theory of Equations, chap, ix; Hermite, Crelle, Vol. LII,

p. 43; Serret, Algebre Sup., Vol. I (1866), p. 581; Kroneeker, Berlin. Monatsbericht,

February, 1873.
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79. We shall first show that all the roots of the equation

Ae = are real for the case where no equations of conditions

are present. (See J. Petzval, Haidinger s Naturw. AHh. II (1848),

p. 115.)

Equation [20] reduces then to the form

[23]

- s
&amp;gt;

= 0, where A^u = ^

A^ ., A HH -e

an equation which is called the equation of secular variations

and plays an important role in many analytical investigations;

for example, in the determination of the secular variations of

the orbits of the planets, as well as in the determination of the

principal axes of lines and surfaces of the second degree.*

80. Weierstrass s proof t, which is very simple, that all the roots

of this equation are real, depends only upon the theorem that if

the determinant of a system of n homogeneous equations vanishes,

it is always possible to satisfy the equations through values of

the unknown quantities that are not all equal to zero.

Instead of the equation [16] we subject the variables to the

somewhat more general equation

where
i/r

denotes a homogeneous function of the second degree,

which is always positive t and is only equal to when the

variables themselves vanish.

* In this connection the reader is referred to Laplace, Mem. de Paris, Vol. II (1772),

pp. 293-363; Euler, Mem. de Berlin (1749-1750); Tfieoria molux corp. sol., chap, v

(1765): Lagrauge, Mem. de Berlin (1773), p. 108; Poison et Hachette. Journ. de

VEcole Polytechn., Cah. XI (1802), p. 170: Rummer, Crelle. Vol. XXVI, p. 268:

Jacob!, Crelle, Vol. XXX, p. 46: Christoffel, Crelle, Vol. LXIII, p. 257 : Bauer, Crelle.

Vol. LXXI, p. 40: Borchardt, Liouv. Journ., Vol. XII, p. 30; Sylvester, Phil. Mag..

Vol. II (1852), p. 138; Salmon, Modern Higher Algebra, Lesson VI; and see in par

ticular Edward Smith, Solution of the Equation of Secular Variation by a Method due

to Hermite. (Dissertation. University of Virginia. 1917.) Numerous other references

are given in the paper last mentioned.

t Weierstrass, Berlin. Monatsbericht, May 18, 1868. Cf. also Rrouecker, Berlin.

Monatsbericht (1874), p. 1.

t Note the lemma of 83. 84, and 85.
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81. If we form the system of equations (see [12] of preceding

chapter)

[24] &amp;lt;k-^A
=

(X = l, 2,..., W
),

then these equations may always be solved if their determinant

vanishes.

This determinant is exactly the same as that in [23] if we write

We assume that e = k + li, where i =V^T, and that we have found

^A = ?A +^ (X = l, 2, -,n)

as a system of values that satisfy the equations [24].

We must consequently have

-
(A; + to)^ (fj + V&amp;gt; fa+ v, *,&+ V) =

(X
=

l, 2,..., ra).

Since the real and the imaginary parts of these equations must of

themselves be zero, it follows, when we observe that &amp;lt; A and
i/rA

are linear functions of the variables, that

&amp;lt;Mfl&amp;gt; f2 fn)~ ^A(fl, f2 I fn)+ ^A(^I, ^72J I 7n)= 0,

*A(I?I, 1?2 &amp;gt; ^n)- ^A(^I, ^?2&amp;gt; ^)- ^A(?I, fa , , fn)= 0.

82. Next multiply these equations respectively by ??A and fA ,

take the summation over them from 1 to 71, and subtracting one

of the resulting equations from the other, then, since (see [17] of

the preceding chapter)

A

we have

or,

f1 , { -, ln)}= 0,

[25] Jflrfa, ,..., ,)+ ^r(f f . .
., ,)}

= 0.
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If it is possible to find systems of values of the quantities xv
x
2,..., xn which satisfy the equation [24] under the assumption

that e = k + li, then these values must satisfy at the same time

[25] ;
but since after our hypothesis the quantity within the

brackets cannot vanish, it follows that I must be equal to zero;

that is, every value of e for which the determinant vanishes,

is real.

Hence we have the theorem :

In order that a quadratic form $(xv x^,-.-, xn)
be invariably

positive, it is necessar.y and sufficient that the development of the

determinant [23] ivhich admits of only real roots, when expanded
in powers of e, viz.

[26] ev-B^-i+ Btf*-*---- + (-l)&quot;5n
= 0,

consist o/?i + l terms and that these terms be alternately positive

and negative.

If the function is to be invariably negative, then the equation

[26] must be complete and have continuation of sign.

Thus for the case, where the variables are subjected to no

conditions we have derived the criteria as to whether or not a

homogeneous quadratic form is a definite one directly from the

coefficients of the function and in a form that is perfectly

symmetric.

83. Lemma. If a homogeneous function of the second degree

^(ajp x
2 , -, xn)

can become zero for any system of real values

of the variables which are not all zero, then
T/T may be both

positive and negative, it being presupposed that the determinant

of ^r is different from zero.

Let the function ty vanish for the system of values (fv 2 , , f )

and instead of x
lf
x
2 , ,

xn write in
i/r

the arguments fl + CjA
1

,

f2+ cjc, ., fn+ cnk, where the c s are indeterminate constants.

Developing with respect to powers of k we have

(fp &,,)+ Aty (cv c
2 , ,

cn). (i)
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By hypothesis the f &quot;s are not all zero, and the determinant of
i/r

being different from zero, it follows that
ifra (a=l, 2, -, n) can

not all be zero.

Since, furthermore, ca (a= 1, 2, , n) are arbitrary constants, we
a= n

may so choose them that^c,^^, f2 ,
- -

-, fw)
is not equal to zero.

a =1

Now by taking k sufficiently small we may cause the sign of

the expression (i) to depend only upon the first term on the

right-hand side of that expression.

Hence, if we choose k positive or negative, we have systems
of values (xv x

2 , ,
xn)

which make ty positive or negative.

84. The determinant of the system of equations [24] is formed

from the partial derivatives of

&amp;lt;f)(xv x
2)

.
., xn)-e^(x1}

x
2 ,

. .
., xn),

that is, from
&amp;lt;t&amp;gt;

a (xv x
2 ,

. .
., xn) e^a (xv x

2,..., xn)= (ii)

(
=

1, 2, ...,7i),

where &amp;lt; a and tya denote - -^- and -
respectively. If this

2 cxa 2&amp;gt; cxa

determinant is equal to zero for a value of e, it follows that we

can give to the variables xv x
2 ,

- -
., xn values that are not all

zero and in such a way that the n equations (ii) exist. Let this

value of e be e = k + li] then if I
&amp;gt; 0, it may be shown that

the function ^r can have both positive and negative values.

Denote the system of values (xv x
2 ,

. .
., xn)

which satisfy the

equation (ii) by fc
,

. ., xv / * xa =!;a +^r)a (
= 1, 2, ...,);

then, as in 82, it may be proved that

1 tt (fv fj -i U + ^ (iv ^ i ^n)]
= 0- (in)

Since by hypothesis / is not zero, the equation (Hi) can only

exist either when ^(fj, |2,
. .

., fn)
and ^(^ ?72 ,

. .
., ?;w )

have

opposite values (and then it is proved, what we wish to show,

that
i/r

can have both positive and negative values), or when

the two values of the function are both zero (and then from

what was seen in the preceding section
T/T

can take both positive

and negative values).
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85. In this connection it is interesting to prove the following

theorem : If the determinant formed from the partial derivatives

of the homogeneous quadratic form ^(p ^
2 , ., xn)

is different

from zero, and if among the infinite number of quadratic forms

X
2 , ,

Xn)+ fJ*^(xv X
2 ,

.
., Xn)

there is one definite quadratic form, the determinant formed from
the partial derivatives of

&amp;lt;l&amp;gt;(xv x2 ,
. ., xn)-e^(xv x

2 ,
. .

., xn)

vanishes for only real values of e.

The theorem will also be true if the determinant of
&amp;lt;/&amp;gt; (and

not as assumed of
T/T)

is different from zero.

Let \^ -f ftji/r
be a definite quadratic form, and write

We shall further choose two constants X and /* in such a way
that when we put

&amp;lt;t&amp;gt;(

x
i&amp;gt;

x
v-&amp;gt;

x
n)&amp;gt;

c/&amp;gt;

is different from zero.

We know from the previous article that the determinant

formed from the equations

can only vanish for real values of k. The equations

*-^=0 (a
= l,2,...,n) (iv)

may be written in the form

^Ati)^= (
= 1, 2, ..-, w),

or * =t
^ * C =1.2. ,*). ()

A,Q A^A-j

If we eliminate xv x
2 , ,

# from these equations, we must

have the same determinant for their solution as from the equa

tions (iv}.
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Hence every k which causes this last determinant to vanish

must also cause the first determinant to vanish. But the & s are

all real. It follows that if we form from them the n expressions

these quantities must also be real.

Hence the determinant of the n equations

&amp;lt;l&amp;gt;

a-e^a=Q (a
= l, 2,.-. ,w)

has always n real roots e.

We may therefore say : If among all the quadratic forms

which are contained in the form

\(f)(Xv X
2, -, Xn)+ fl^jr(xlt Xy ,

Xn),

there is one which can have only positive or only negative values.

then the determinant of &amp;lt;/&amp;gt; ety will have only real roots, it being

assumed that the determinant of (j&amp;gt;

or of ty is not zero.

The theorem in 80 is accordingly proved in its greatest

generality.

86. The case where equations of -condition are present may
be easily reduced to the case already considered. The determi

nant [20] was the result of eliminating the quantities xv x
2 , ,

xn ,

i
ev &amp;gt;

em fr m tne n + m equations

[18] 2 XA-^ +2&amp;lt;VV*
=

(X 1, 2, -.,),

[15] O
p
= a

p^= (p
= 1, 2, .

ft=i

Since the result of the elimination is independent of the way
in which it has been effected, we may first consider m of the

quantities x, say : xv x
2 ,

xm , expressed by means of the equa

tions [15] in terms of the remaining n m of the a? s, which

may be denoted by %v 2 , -, fn _m . We thus have

[27] ^=&quot;~iV^ (M = l,2,...,m).
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Through the substitution of these values, let
&amp;lt;f&amp;gt;(xv x

2 ,.
.

., xn )

be transformed into
&amp;lt;l&amp;gt;(i&amp;gt; %%&amp;gt;

&amp;gt; Zn-m) and the equation

2
?

LA
2 = 1 into VT (f1? f2 ,

. .
, f _ m )

= 1.

The function T/T
is invariably positive and is only equal to zero

when the variables themselves all vanish.

The equations [18] may be written in the form:

L UJLK p=l CJC\

dx
Multiplying these equations respectively by

-
(X = 1, 2, .

, n),

and adding the results, then, since

we have the following equations :

The last term of this equation drops out if we substitute in it the

expressions [27], since the
p expressed in the f s vanish identi

cally, and we have the equations

[28] f|-^ =0 (,
= l,2,...,^-m).

V$v CSv

Now give v all values from 1 to n m, and we have a system of

n m linear homogeneous equations, from which we may eliminate

the yet remaining v 2 , -, f,,._ TO . The result of this elimination

is an equation in e and must give the same roots in e as [20]. The
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equations [28] are, however, created in exactly the same manner

as the equations [24]. If, then, Ae is the determinant of these

equations, it follows that the roots of the equation Ae = are

all real.

87. As the solution of the theorem proposed in 77 the final

result is :

In order that the homogeneous function of the second degree

be invariably positive for all systems of values of the quantities

xv x
2 , -, xn ,

which satisfy the m linear homogeneous equations

of condition n

it is necessary and sufficient that the form of the equation [20],

developed with respect to powers of e and which has only real

roots, consist of n m + 1 terms and that the signs associated

with these terms be alternately positive and negative. There must,

however, be only a continuation of sign if $ is to be invariably

negative.

The above method was first discovered by Lagrange, who did

not, however, sufficiently emphasize the reality of the roots of

equation [20].

II. APPLICATION OF THE CRITERIA JUST FOUND TO THE
PROBLEM OF THIS CHAPTER

88. We have determined the exact conditions necessary for a

homogeneous quadratic form to be definite for the case where the

variables are to satisfy equations of condition and in a manner

entirely symmetric in the coefficients of the given function

together with those of the given equations of condition.

At the same time with the solution of this problem, the

problem of maxima and minima which we have proposed in this

chapter is solved.



RELATIVE MAXIMA AND MINIMA 115

89. Having regard to the remarks made in 71 and 74 we

have as a final result of our investigations the following theorem :

THEOREM. If those positions are to be found on which a given

regular function F(xv x
2, ,

xn)
has a maximum or minimum

value under the condition that the n variables xv x
2 , ,

xn satisfy

the m equations

M /A fa, *
&amp;gt; *) = (X

= 1, 2, -
., m),

where /A are likewise regular functions, we write

/p/P
= G to, *

2 ,

p=i

seek the system of real values

which satisfy the n -f- m equations

cG

If(o&amp;gt;i,
#
2 &amp;gt; -, an) is such a system of values of x

l ,
x
2 , -, xn ,

develop the difference

ith respect to powers of h, and have (since no terms of the first

dimension can appear, oiuing to equations [c]) the following

development :

=
2^ G

n&quot;(

a
l&amp;gt;

CIV an)fyA+
M!

We must next see whether the function

is invariably positive or invariably negative for all systems of

values of the tis which satisfy the m equations

i \l n in 1 9. . . vn\



[
e

&amp;gt; &12&amp;gt; ^ln&amp;gt; /11&amp;gt; /21&amp;gt;

*
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If at a regular point P of a plane curve we draw a tangent

and from a neighboring point P on the curve we drop a perpen

dicular P Q upon this tangent, then the value that 2 ^- = *

pp 2 As

approaches, if we let P come indefinitely near P, is called the cur

vature of the curve at the point P. If the curve is a circle with

radius r, the above ratio approaches as a limiting value and is,
r

therefore, the same for all points of the circle. Now construct

the osculating circle which passes

through the two neighboring points P
and P of the given curve. The arc of

the circle PP may be put equal to the

arc PP of the curve, when P and P
are taken very near each other, and

consequently, if r is the radius of this

circle, the curvature of the curve is

determined through the formula

[1]

2 P Q

PP 2 FIG. 11

The quantity r is called the radius of curvature, and the cen

ter M of the circle which lies on the normal drawn to the curve

at the point P is known as the center of curvature at the point P.

The curvature is counted positive or negative according as the

line P Q, or, what amounts to the same thing, J/P has the same

or opposite direction as that direction of the normal which has

been chosen positive.

If we have a given surface and if the normal at any regular

point of this surface is drawn, then every plane drawn through
this normal will cut the surface hi a curve winch has at the

point P a definite tangent and a definite curvature in the sense

given above.

The curvature of this curve at the point P is called the curva

ture of the surface at the point P=(x, y, z) in the direction of the

tangent which is determined through the normal section in question.
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Following the definitions given above it is easy to fix the

analytic conception of the curvature of a surface and then to

formulate the problem in an analytic manner.

If P =
(x

r

, y ,
z

)
is a neighboring point of P on the surface,

the equation of the surface may be written in the form:

[2] Q=F
l (x

-

+ i Wi
X - x) (y

-
y) + 2 F^(y - y) (z

-
z)

dF
,

dF dF
where F

\
=

^&amp;gt;

F
^
==

~^~
) F

3=&amp;gt;dx dy cz

- F - F -
12

dxdy
9

23
dydz

31
dzdx

The equation of the tangential plane at the point P is

[3] JP
1(f-)+ ^(i-y) + Ji(r-*)=0,

where
, rj, are the running coordinates.

Therefore, if we write for brevity

and take as the positive direction of the normal of the surface

at the point P that direction for which H is positive, then the

direction-cosines of this normal are

H

Consequently the distance from P to the tangential plane is

[5]

The negative or positive sign is to be given to the expression

on the right-hand side according as the length P Q has the same
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or opposite direction as that direction of the normal which has

been chosen positive.

In the first case, paying attention to [2], which has to be

satisfied, since P 1

lies upon the surface, we have

rei

where S2=
(x

1 - xf+ (y
f - yf+ (*

-
z)

2
.

In the case where the direction P Q is contrary to the positive

direction of the normal, we must give the negative sign to the

right-hand side of [6].

Now let P 1

approach nearer and nearer P
;
then the quantities

x -x y -y z -z-
9
-

j
-

&amp;gt;

s s s

which represent the direction-cosines of the line PP
t
become the

direction-cosines of the tangent at the point P of the normal sec

tion that is determined through P . Representing these by a, ft, 7
P Q

and the limiting value of 2 =^- by K, then
PP

[7] K =~{Fna^F22^+F33j^2Fl2aft+ 2F2^j-{-2FB1ya} &amp;gt;

where the terms of higher degree in x x, etc. are neglected. In

this formula K represents the curvature of the surface in the direc

tion determined by a, /3, 7. This is to be taken positive or negativ.e

according as the direction of the length MP, where M is the center

of curvature, corresponds to the positive direction or not.

If the coordinates of the center of curvature are represented

by x
Q) y ,

Z
Q and the radius of curvature by p, then

x-x =p H

or, since /c = -
P
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Since H does not appear in these expressions, we see that the

position of the center of curvature is independent of the choice

of the direction of the normal.

Suppose that the normal plane which is determined through
the direction a, ft, 7 is turned about the normal until it returns

to its original position. Then, while a, ft, 7 vary in a definite

manner, the function K of a, ft, 7 assumes different values at

every instance, and since it is a regular function, it must have

a maximum value for a definite system of values (a, ft, 7) and

likewise also a minimum value for another definite system of

values (a, ft, 7).

The quantity has the same value for all normal sectionsH
that are laid through the same normal.* We have, therefore,

to seek the systems of values (a, ft, 7) for which the expression

Fua*+ F^P+ 7^72+ 2 Fl2aft+ 2 F
23fty + 2 F

31ya

assumes its greatest and its smallest value.

We have also to observe that the variables a, ft, 7 must satisfy

the equations of condition

the first of which says that the direction which is determined

through a, ft, 7 is to lie in the tangential plane of the surface

at the point P, while the second equation is the well-known

relation among the direction-cosines of a straight line in space.

* See Salmon, A Treatise on the Analytic Geometry of Three Dimensions (Fourth

Edition), p. 259.
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Following the methods indicated in 89, we write

[10] G = Flla*+

121

- 1)+ 2 e ^a +

and we then have (89, [c]) to form the equations

g=0, 5=0, g-o,da cp dy

from which we must eliminate a, , 7, and .

These equations are

[11]

where F^=F^ (X, ft
= 1, 2, 3).

Through elimination we have

= 0,

[12]

13

2

= 0.

This is an equation of the second degree in e
t
and consequently

gives us two values e
l
and e

2 ,
which are maximum and minimum

values, since both maximum and minimum values enter, as

shown above. Multiplying the first three equations [11] by a, &
7 respectively and adding the results, we have

[13]

Hence, from [7] we have

[14]
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Consequently the two principal curvatures at the point P have

the values

[15]
Pi H

I.A;

and the coordinates of the corresponding centers of curvature are

found from the formulae

[16]

In order to determine e, let us write

02

and form from these the corresponding quantities through the

cyclic interchange of the indices. Equation [12] may be written

in the form*

Z&amp;gt;ul? + D*F* + DSZFI+ 2D
12F^+ 2DuFt

F
t+ 2D^F^= 0.

Developing this expression with respect to powers of e, we have

[17] H*e*-Le + M=Q,
where L = ff2 (^n +F22+ FBa)

- (F^F* + F^F* + FS3Fj)

+ 2 ^i2 2̂+ 2V2Fg+ 2 F^FZF,

and M= (fuFM- Fj)F*+ (FmF11
-

F,*) F*

77T 7yT \ T7f 77T i / TTf TJT T7T ET \ T7T 77T~
^31^22) ^3^1 T (^31^32

-
^12^33) ^1^2

From [17] we have at once the values of the sum and the

product of the two principal curvatures, viz. (see equation [15]):

1 1 L

[18]

PiP* #
* See Salmon, loc. cit., p. 257.
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We have thus expressed the sum of the reciprocal radii of curva

ture and also the measure of curvature of the surface at the point P

directly through the coordinates of this point.

Although the formulae are somewhat complicated, they are

used extensively and with great advantage.

In the case of minimal surfaces* which are characterized

through the equation

we have L = 0.

This is therefore the general differential equation for minimal

surfaces.

91 . PROBLEM II. From a given point (a, b, c) to a given surface

F(x, y, z)
= draw a straight line whose length is a maximum

or a minimum.

Write G = (x-a)*+(y-b)*+ (z-cf+2\F(x,y ) z). (i)

Then the quantities x, y, z, \ are to be determined (see 89, [c])

from the following equations:

x-a + \Fl
=

0,&quot;

y-b + \F
2 =Q,

z - c +\F3 =Q,

F(x,y,z)=0. }

It follows, since Fv F
2 ,
F

3
are proportional to the direction-

cosines of the normal to the surface at the point (x, y, z), that the

points determined through these equations are such that lines

joining them to the point (a, b, c) stand normal to the surface.

If P=(x, y, z) is such a point, then to determine whether for

this point the quantity

is in reality a maximum or a minimum, we substitute x H- u,

y + v, z + w instead of x, y, z in the function G. The quantities

ic, v, w are, of course, taken very small.

*See papers by the author on this subject in the first numbers of the Mathematical
Review.
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We must develop the difference

G(x + u, y + v, z + w)-G(x, y, z)

in powers of u, v, and w.

The terms of the first dimension drop out, and the aggregate

of the terms of the second dimension is

+ 2 F12uv + 2 F23vw + 2 F
3lwu). (w)

Since the point (x+ u, y+v, z+w) must also lie upon the surface,

the quantities u, v, w must satisfy the condition

F^u, +F2
v + 3̂

w; = 0, (v)

where the terms of the higher dimensions are omitted (see [8] of

the present chapter).

If we wish to determine whether the function
-v/r

is invariably

positive or invariably negative for all systems of values (u, v, w)

which satisfy equation (v), we may seek the minimum or maximum
of this function

i/r
under the condition that the variables are limited,

besides the equation (v), to the further restriction (cf. [16] of 77)

that

For this purpose we form the function

T/T
-

e(y?+ v*+ w2- 1)+ 2 e ^u+Fjo +F3w),

and writing its partial derivatives with respect to u, v, and w equal

to zero, we derive the equations

* +
(FSS

-
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Eliminating u, v, w,. from equations (v) and (viii) t we have here
A,

exactly the same system of equations as in [12] of the preceding

problem, except that here- and e
r stand in the place of e and e .

A

Denote the two roots of the quadratic equation in e, which is

the result of the above elimination, by e
l
and e%, and the corre

sponding radii of curvature of the normal sections by p1
and p2 ;

then, since ^ - has the same meaning as e in the previous problem,

ft

where the positive direction of the normal to the surface is so

chosen that H&amp;gt;Q.

If for the position (x, y, z) a minimum of the distance is to

enter, then both values of the e must be positive ;
if a maximum,

then e
1
and e

2
must be negative.

It is easy to give a geometric interpretation of this result :

Let PN be the positive direction of the normal and A = (a, b, c).

Then from (ii) it follows that the length from A to P has the

same or opposite direction as PN, according as X is negative

or positive.

Hence, from (ii),

AP=-\H.

If the centers of curvature corresponding to p1
and p.2 be denoted

by ML and M2 ,
then

, ,

Hence e = and e
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If, then, Ml
and M

2
lie on the same side of P and if A lies be

tween M
l
and M2 ,

as in Figs. 12 and 13, then the es have different

signs and there is neither a maxi

mum nor a minimum. l *

If M
l
andM

2
lie on the same side

of P while A is without the inter- P Mi A M8

val M
1

- M
2 ,

then a minimum or FIG. 13

maximum will enter according as A

starting from one of the centers of
1 2

&amp;gt;

curvature lies upon the same side as

P or not (see Figs. 14 and 15). AM! M2 P
If the points J/j and Jf

2 lie on FIG. 15

different sides of P and if A is situ

ated within the interval M
l

M
2 ,

l ~

as in Fig. 16, then there is always

a minimum. If, however, A lies without the interval M
l

- M
2 ,

then there is neither a maximum nor a minimum.

In whatever manner M
l
and M

2 may lie, if A coincides with

one of these points, then one of the two values of e is equal to

zero, and the general remark stated at the end of 89 is applicable.

The above results are derived in a different manner by Goursat,

Cours D Analyse, Vol. I, p. 118.

The case may also happen here (see 72) that in the solution

of the equations (ii) and (Hi) a singular point of the surface is

found at the point P, at which f\= =F
2
=F

3
. We cannot pro

ceed as above, since, there being no definite normal of the surface

at such a point, the determination whether for this point a maxi

mum or minimum really exist cannot be decided in the manner

we have just given.

The general remark of 73 indicates how we are to proceed.

92. Brand s problems. The two following problems taken from

the theory of light were prepared by my colleague, Professor

Louis Brand.

PROBLEM I. Reflection at the surface F(x, y, z)
= 0. A ray passes

from a point J^ to a point P on a given surface and is reflected to

a point P^ When is P^P -f-PP2 & minimum ?
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Write PP
l
=

c?!
and PP^= d

2
so that

127

We seek to find the condition that makes f^ + c?
2 an extreme

when P is subjected to the condition of lying on the surface

Using the Lagrangian method
( 89) we

must find the extremes of the function

(x, y&amp;gt; *)

FIG. 1

&amp;lt; x, y, *=&amp;lt;

Writing , for etc., the

necessary conditions for an extreme, viz.,
&amp;lt;f&amp;gt;x
=

&amp;lt;f&amp;gt;y
=

&amp;lt;f&amp;gt;
3
= 0, give

[2]
d.

Let the direction-cosines of the lines PI[ and PJ^ be lv mv n^ and

/
2 ,
m

2 ,
7i2 respectively ;

and let /, m, n denote the direction-cosines

of the normal to the surface [1] at the point P. Furthermore,

since Fxi FIP
Fz are proportional to I, m, n, write

\FX= kl, \F
y
= km, \FZ

= kn.

Equations [2] then become

[3] m%= km,

nn= kn.

Designate the angle between PP^ and PP
2 by (1, 2); between PP

l

and the normal by (1, n); between PP% and the normal by (2, ri).

It is seen then that

cos(l, 2)= ^/g-f

cos(l, n)= IJ +
cos (2, n

)
= Z

2
/ -h
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Multiplying equations [3] by l^,
mv nv respectively, and adding,

it follows, since
If + m* + n* = 1, that

[4] 1 + cos (1, 2)
= k cos (1, ri).

Similarly, by multiplying equations [3] by /
2 ,

ra
2 ,

w
2 , respec

tively, and adding, we get

[5] cos(l, 2) + l = &cos(2, n).

From [4] and [5] we have

cos(l, ri)= cos (2, n), or

[6] (1,) = (2,).

Moreover, upon multiplying equations [3] by /, m, n, respectively,

and adding, we get

cos(l, n) -f cos (2, n)=k, or, from [6],

k=2 cos(l, n).

Substituting this value of ]c in [4], we have

l+cos(l, 2) =2 cos2 (1, n),

so that cos(l, 2)= 2 cos2 (l, n)-l= cos 2(1, n)= cos 2(2, n).

It follows that (1, 2)
= 2 (1, n)

= 2 (2, 71),

and that the lines P.ZJ, P^, and the normal must lie in the same

plane, and it is further seen that the normal bisects the angle

between PJJ and PP
2

.

We have thus arrived at the condition which is an optical law :

The incident and reflected rays must lie in a normal plane, and

the angle of incidence must be equal to the angle of reflection.

The above result is merely a necessary condition for an .extreme
;

to find whether an extreme really exists, and if it does, whether

it is a maximum or a minimum, let us choose the plane P^PP^ as

the #2/-plane.

If the curve cut from the surface by the plane I{PI^ has

the equation

[7] y =/(*),
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the problem now becomes to determine the nature of the point

P which makes
,

= 0, where
ax

the y being replaced by /(#).

|

dx d^ 2

while the equation of the normal to the curve [7] at P(x, y) is

and the distance of the point (xiy y4)
from this normal is

h = (
x-

Further, take the origin at the point P and the tangent

to the surface at P lying in the plane Pfl^ as the #-axis.

Then = shows that
dx

=

and as h
l
and h

2 have opposite signs, since JJ and J^ lie upon

opposite sides of the normal,

sin(l, TI)= sin (2, n),

or (l,7i)
=

(2, 7i),

as stated before in [6].

Note that

d
l
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It follows that for the origin and the direction y = 0,

Writing =
(l,n) = (2,n),

we note that ^1 = ^ = cos 0,
d d

^-7^

so that =
(-r + T- ]COS

20-2?/ cOS0. FIG. 18

From this it is seen that

^ according as
y&quot;
= -( ( jcos 6.

ft /y&amp;gt;&

&quot;^ * -^ O \ /7 /7 /

\&\ a/

Since y = 0, we note that
y&quot;

is the curvature of curve yf(x) at the

I

origin, that is, y&quot;

=
&amp;gt; where p is the radius of curvature. Hence,

when

&amp;gt; 0, and the path is a minimum
;
when

da?

[9]

Y &amp;lt; 0, and the path is a maximum.

To interpret this result geometrically it is seen that

- + icos
2 Wi

is the curvature of the ellipse whose foci are at J^ and P2 and which

passes throughP (see Pascal, Repertorium der Hoheren Mathematik,
Vol. II, 1, p. 245). The quantities d

1
and d

2
are its focal radii

at P, and is the angle between either focal radius and the normal

to the ellipse at P. Note that this ellipse is tangent to the curve

[7], since the normal to the curve bisects the angle between the

focal radii of the ellipse and hence is also the normal to the ellipse.
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When - = -( + )cos0, the ellipse and the curve [7] have
P 2 \di **/

the same curvature at P, and the test for extremes is inconclusive.

But here the conditions for a maximum or a minimum are obvious

from geometrical considerations. For, remembering that d
l 4- d2

is constant for points on the ellipse, say d
1 -\-d2

= k, then d
1 -\-d2 &amp;lt; k

for points within the ellipse and d
1 + d

2 &amp;gt; k for points without the

ellipse. Hence the path of the ray will be a maximum or a mini

mum according as the curve [7] lies within or without the ellipse

in the neighborhood of the point P ; and it is seen that [#] and [8]

are but special cases of this general condition.

PROBLEM II. Refraction at the surface F (x, y, z)
= 0. Using

the previous notation, it is required to find the conditions that make

the time of passage from P^to P^, that is, + &amp;gt;an extreme, where
v
l

v
2

v^ and v2 represent the velocity of light in the two media.

The Lagrangian function is (89)

, y,z) = \F(x, yt z).

Proceeding as in the case of reflection, we find in place of

equations [3] above Atf

[1]

ra, = km.

= kn.

From these equations we deduce that

008(1, 2)

FIG. 19

[2]

[3]

[4]

+
l

cos(l, 2)

7= k cos (1, n),

7

-f = k cos (2, n),

cos(l, n) cos (2, n) ,

(
A .
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Multiplying [2] by and [3] by &amp;gt; and subtracting, we have
V
l

V
2

S
(
1

&amp;gt;

n
)

cos (2,

substituting from [4] the value of k in this equation, it is seen that

_!_
1 _cos

2
(l, n) cos2 (2, n)

V^ V V? V 2

sin2 (l, n) _sin
2
(2, n)

It follows that

sin(l, n) ^sin(2, n)
/?1 /J1V
l

V
2

From [2] and [4] it is seen that

1 cos(l, 2) cos2 (l, n) cos(l, 7i)cos(2, n)
1

=
1

&amp;gt;

Vi V V V

sin2 (l, n) cos(l, 7i)cos(2, n) cos(l, 2)
or s = s

Dividing this equation by [5] and then multiplying the result by
sin (2, n), we find

sin(l, 7i)sin(2, n)= cos(l, n) cos (2, n) cos(l, 2),

or cos (1,2)= cos [(1, n) + (2, n)] t

and therefore

[6] (1,2) = (l,7i) + (2, 7i),

so that the incident and the refracted ray lie in a normal plane.

Equation [5] may be put in the form

sin (2, n)

=
v^

=

where c is the index of refraction of the second medium with

respect to the first medium. The above is a generalization of a

problem due to Fermat.



RELATIVE MAXIMA AND MINIMA 133

The geometrical criteria for a maximum or a minimum involves

a certain Cartesian Oval whose foci are at P
1
and P% and which

passes through P. Its equation in bipolar coordinates is

d
l
and d

2 being the variable radii vectores. For points on this oval

+ is a constant, say k
;
for points within this oval + &amp;lt; A-

v
\

V
2 d d v

1
v
2

and for points without this oval + -2
&amp;gt; k.

v
\

V
2

Hence the time occupied by the ray in passing from P
1
to P is a

maximum or a minimum according as the curve cut from the sur

face by the normal plane through Pl
and P

Z
lies within or without

this Cartesian Oval in the neighborhood of the point P.



CHAPTER VII

SPECIAL CASES

I. THE PRACTICAL APPLICATION OF THE CRITERIA THAT
HAVE BEEN HITHERTO GIVEN AND A METHOD FOUNDED
UPON THE THEORY OF FUNCTIONS, WHICH OFTEN

RENDERS UNNECESSARY THESE CRITERIA

93. The practical application of the established criteria is in

many cases connected with very great, if not insurmountable

difficulties, which, however, cannot be disregarded in the theory.

For often the solutions of the equations 89, [c], cannot be

effected without great labor, if at all, and therefore also the forma

tion of the function
&amp;lt;/&amp;gt;

is impossible. It also happens, even if the

function
&amp;lt;f&amp;gt;

can be formed, that the discussion regarding the coeffi

cients of Ae = is attended with much difficulty. Moreover, the

formation of the function
&amp;lt;/&amp;gt;

and the investigation relative to the

coefficients of Ae are very often unnecessary, since through direct

observation we may in many cases determine whether a maximum
or a minimum really exists. If it then happens that the equations

[c] admit of only one real solution
(i.e.

of a real system of values

x
i&amp;gt;

x
i&amp;gt;

&amp;gt;

x
n)&amp;gt;

we mav be sure that this is in reality the maximum
or the minimum of the function. In the same way, if we can con

vince ourselves a priori that both a maximum and a minimum

exist, and if it happens that the equations [c] offer only two real

systems of values, it is evident that the one system must corre

spond to the maximum value of the function, the other system
to the minimum value.

The determination as to which of the two systems of values

gives the one or the other is in most cases easily determined.

One cannot be too careful in the investigation whether on a

position which has been determined from the equations [a] and

134
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[c]
of 89 there really is a maximum or a minimum, since there

are cases in which one may convince himself of the existence of

a maximum or a minimum, when in reality there is no maximum
or minimum.

For example, to establish Euclid s theorem respecting parallel

lines, one tries to prove the theorem regarding the sum of the

angles of a triangle without the help of the theorem of the parallel

lines. Legendre was able, indeed, to show that this sum could not

be greater than two right angles ; however, he did not show that

they could not be less than two right angles. The method of

reasoning employed at that time was as follows : If in a triangle

the sum. of the three angles cannot be greater than 180, then

there must be a triangle for which the maximum of the sum of

these angles is really reached. Assuming this to be correct, it

may be shown that in this triangle the sum of the angles is equal

to 180, and from this it may be proved that the same is true of

all triangles.

We see at once that a fallacy has been made. For if we apply

the same conclusions to the spherical triangles, in the case of

which the sum of the angles cannot be smaller then 180, we

would find that in every spherical triangle the sum of the angles

is equal to 180, which is not true.

The fallacy consists in the assumption of the existence of a

maximum or a minimum
;

it is not always necessary that an

upper or a lower limit be reached, even if one can come just as

near to it as is wished (see 8).

On this account the assumption of the existence of a real maxi

mum is not allowed without further proof. We therefore endeavor

to give the existence-proof. For this purpose we must recall

several theorems in the theory of functions.*

94. We call the collectivity of all systems of values which n

variable quantities x
lf

x
2 ,

-
-,
xn can assume the realm (Gebiet)

of these quantities, and each single system of values a position

in this realm. If these quantities are variables without restric

tion, so that each of them can go from oc to + oc, we call the

* Note especially 137.
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realm considered as a whole (Gesamtgebiet) an n-ple multiplicity

(n-fache Mannigfaltigkeit). If xv x
z , ,

xn are independent of

one another, then we say a definite position (av a
2 , ., an)

lies

on the interior of the realm if these positions and also all their

neighboring positions belong to this region ;
it lies upon the

boundary of the realm if in each neighborhood as small as we

wish of this position there are present positions which belong

to the realm, and also those that do not belong to it; it lies

finally without the defined realm if in no neighborhood as small

as we wish of this position there are positions which belong to

the defined region.

If the quantities xv #
2 ,

xn are subjected to m equations

of condition, then we may express these in terms ot n m inde

pendent variables u
lt

u
2 , ,

un _ m ,
and the same definition may

be applied to these variables.

95. The following theorems are proved in the theory of func

tions: (1)* If a continuous variable quantity is defined in any

manner, this quantity has an upper and a lower limit; that is,

there is a definitely determined quantity g of such a kind that

no value of the variable can be greater than
g&amp;gt; although there

is a value of the variable which can come as near to g as we

wish. In the same way there is a quite determined quantity k of

such a nature that no value of the variable is less than Jc, although

there is a value of the variable that comes as near to Jc as we wish

(see also 8).

(2)t In the region of n variables xv x
2 , ,

xnt suppose we

have an infinite number of positions defined in any manner;

let these be denoted by (x[, x
2 , -, xn). Furthermore, suppose that

among the positions we have such positions that xn can come

as near to a fixed limit an as we wish. Then we have in the

region of the quantities xv x
2)

-
-, xn always at least one definite

position (a lt a%, ,
an)

of such a nature that among the definite

positions (x{, x
2 ,

-
,
xn)

there are always present positions that

*Dini, Theorie der Functionen, p. 68. See also a paper by Stolz, &quot;B. Bolzano s

Bedeutung in der Geschichte der Infinitesimal Rechnung,&quot; Math. Ann., Vol. XVIII.

t Biermann, Theorie der An. Funk., p. 81
; Serret, Calc. diff. et int., p. 26.
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The case ofa maximum

lie as near this position as we wish
;
so that, therefore, if 8 denotes

a quantity arbitrarily small,

x(-a,\&amp;lt;8 (X = l, 2,... ,TI).

This position lies either within or upon the boundary of the

denned region (x[, x
2 , ,

xn).
96. This presupposed, let us consider a continuous function

F(xlt
x
2 , ,

xn ),
and let the realm of the quantities x

lt
x
z , ,

xn

be a limited one, so that, therefore, we have systems of values

which do not belong to it. If for every possible system of values

(xl9 x
2 ,

-
,
xn )

we associate the corresponding value of the

function, which may be denoted by xn+1 ,
then we have denned

certain positions in the region of n + 1 quantities. For the

quantity xn+1 there is according to the first

theorem an upper limit an+1 ; consequently,

owing to the second theorem there must be

within the interior or upon the limits of the

defined region a position (av 2 , , ant a,l+ i)

of such a nature that in the neighborhood of

this position there certainly exist positions

which belong to the region in question.

Now if it can be shown that this position lies within the interior

of the region, then there is in reality a maximum of the function

on the position (av 2 , -, a n) ;
on the con

trary, if the position lies on the boundary,

we cannot come to a conclusion regarding

the existence of a maximum of the func

tion x1l+l .

It may in many cases happen that one

can show, if (xv x
2 , ,

xn )
is any position

on the boundary of the realm and if xn+1
denotes the corresponding value of the function, that there are

present within the realm positions for which the values of the

function are greater than for every position on the boundary. Then

the position which we are considering here cannot lie upon the

boundary, and it is clear that the limiting value of the function

FIG. 20

The case of a minimum

FIG. 21
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Case of asymptotic approach

x x z

FIG. 22

position Xi

can be assumed for a definite position within the interior, since

the function varies in a continuous manner. The analogue is, of

course, true for a minimum. If, however,

it does not admit of proof that there are

positions on the interior of the defined

realm for which the value of the function

is greater or smaller than it is for all

positions on the boundary, then nothing
can be concluded regarding the real exist

ence of a maximum or a minimum
;
the

position (av a
2 ,

- &amp;gt;

,
an)

would then lie

on the boundary of the region, and there might be an asymptotic

approach to the limiting value an + 1 without this value s being in

reality reached. Such cases need especial attention.

The figures give a plain picture of what Maximum on the limiting

has been said for the case y =f(x), where x

is limited to the interval (x1
x - x

2 ).

97. Analogous considerations of the

above are fundamental in the very defi

nition of an analytic function. For con

sider a power-series of x assumed or given

in any manner ; let x1

le a definite value

of x. Then there are three possibilities:

(1) x may lie in the region of convergence of the given series

or of a series that is derived
( 138) from the given series ; the value

for x = x of this series is a value of the analytic function which

is determined through the original series. In other words, if with

Weierstrass we call the original series as well as any other series

derived from this one with regard to the function which it repre

sents a function-element (Functionenelement), then the first possi

bility consists in that, if any function-element is given, the definite

value xf
lies in the region of convergence of a function-element

which is derived from the given one. We admit here also the

complex variable.

(2) It may happen that x does not lie in the region of con

vergence of any series that has been derived in this manner and

O xz

FIG. 23
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that we cannot derive from the original function-element another

function-element whose region of convergence can come as near to

the point x as we wish. In this case the function does not exist

for x = x .

(3) Although we cannot find a power-series within which x lies,

nevertheless, it sometimes happens that we may still derive elements

ivhose regions of convergence contain positions which can come as

near to the point x1 as we wish. Whether we can then define the

function for x = x by the consideration of boundary conditions

must in each case be considered for itself.

If we have case (1) before us, then the function is defined

not only for every value x 1 but also for all values in the neigh

borhood of x and has for these values the character of an integral

function.

The definition of an analytic function as thus given is prefer

able to other definitions from the fact that the existence of

general analytic functions is at once recognized ;
in short, that

we have under our control, in our possession, all possible analytic

functions. Every possible power-series within a region of con

vergence gives rise to the existence of a definite analytic function.

Moreover, one must assume the duty of proving in the case of

every example that it leads to just such functions.

For this reason investigations are necessary of which formerly

we find no trace. If we have a differential equation, we must

begin with the proof that the functions which satisfy the differ

ential equation arise from such function-elements as we have just

explained ;
that is, we must first show, if y is the unknown func

tion and x is the variable of the differential equation, that this

equation can be satisfied through y =P (x a). Reciprocally, if

any variable quantity y is so connected with another variable

quantity x that it satisfies the differential equation, we must

show that it may be derived from one single function-element in

the manner indicated. This last proof is of especial importance

in the application of analysis to geometrical mechanics.

When a problem is given in mechanics, we have to represent

the coordinates of the moving point as functions of the time.
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Only real values are permitted in this problem. We cannot

therefore a priori know whether the required functions are

analytic or not.

These functions are generally denned through differential equa
tions. We shall give the simplest case as an example. Suppose

we have a system of points that attract one another according

to an analytic law, and let x
l}
x
2 , ,

xn be the coordinates of

these points. If the motion is a free one, we have the differential

equation in the form

where F denotes a given function of xv #
2 , ,

xn. With such

a problem we have to prove before everything else that the

required functions of time are analytic functions. If for the

point t = t
Q
the initial position and the initial velocity are given,

then in the neighborhood of the initial position we can find

power-series, and we have to show that through these power-

series the required functions are completely determined.

II. EXAMPLES OF IMPROPER EXTREMES WHERE THE DIF

FERENCE F(a^ + hv a
z+hz ,

. .
., an+ Jin}

- F(av av . .
., aTO) IS NEITHER

POSITIVE NOR NEGATIVE BUT ZERO ON THE POSITION

(av a
a,...,an) WHICH IS TO BE INVESTIGATED

98. We shall now consider a case which is not included in the

previous investigations, but may be in a certain measure reduced

to them: The definition of the proper extremes of a function

consists in the fact that the difference

F(al+hl) 2+ &
2 ,

.
-, an+ hn)

- F(a lt
a
z ,

-
,
an) (i)

must be invariably negative or invariably positive. There are cases

where an extreme does not appear on the position (av a
2 , ,

an)

in the sense that the above difference must be positive or nega

tive, but in the sense that the difference must be zero.

Suppose, for example, we have the problem: Determine a

polygon of n sides with a given constant perimeter S whose area
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is a maximum, a problem which we shall later discuss more

fully (see 101).

If this maximum is attained for a definite polygon, then we

may at pleasure change the system of coordinates by sliding the

polygon in the plane without altering the area.

For example, let n = 3, and (xv y^, (x2 , y2), and (xs , y3)
be the

coordinates of the vertices of the triangle. Then the expression

which is to be a maximum is

where the variables are subjected to the condition

fl VW vkj
~

I tX^n tX^i

There will not only be one system of values which gives for

F a maximum value, but an infinite number of such positions ;

since, if we take the triangle in a definite position, we may move

it in its plane at pleasure. This is therefore a case where the

difference (i)
is not positive or negative but zero.

99. Such cases, however, may be reduced to maxima and

minima proper if we choose arbitrarily some of the variable

quantities. In the special example of the preceding section we

may assume a vertex of the triangle at pleasure; let it be the

origin of coordinates, and we further assume that one of the

sides coincides with the positive direction of the X-axis, so

that we may write x
l=yl=y2

= 0. If we agree that the triangle

is to lie above or below the A^-axis, the problem is completely

determinate.

In so far as the necessary conditions for the existence of an

extreme are concerned we may proceed in precisely the same

manner as we have hitherto done, since under the assumption

that there are no equations of condition we have

\-hv a
2+ h

2 , ,
an+h n)- F(alt

a
2 , -,

an )

5}W(* a
a ,- -, ) + (&!, hi, -, k n)&. (u)

a=l
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If a minimum is to be present, then this difference can never be

negative, but may be zero. For this to be possible the first deriv-
a = n

atives must all vanish. Since, if the sum ^haFa (alt
a
2 , &amp;gt;,

an)

had (say) a positive value for h
1
= cv h

2
= c

2 ,
.

,
hn= cn ,

then we

could place ha equal to cji and then choose h so small that the

sign of the right-hand side of
(ii)

would depend only upon the

sign of the first term. If we then make h positive or negative

the difference would also be positive or negative.

If equations of condition are present, it may be shown, as

above, that the derivatives of the first order must vanish, since,

if all these derivatives did not vanish, we might express some

of the tis through the remaining ones, and then proceed as we

have just done. The required systems of values (xv x
2 , ,

xn)

will therefore be determined from the same equations as before.

100. If we have found a system of values of the # s which

satisfy the equations of condition of the problem, then in the

neighborhood of this position there will be an infinite number

of other positions which satisfy the equations. These last are

characterized by the condition that the difference
(i)

vanishes

identically for them.

This is just the condition that made impossible the former

criteria, by means of which we could decide whether an extreme

really entered on a position (alf 2 , ., an) that was determined

through the equations in a^, #
2 , ., xn .

One must therefore seek in another manner to convince him

self which case is the one in question.

This is further discussed in the following problem :

101. PROBLEM. Among all polygons which have a given number

of sides and a given perimeter, find the one which contains the

greatest surface-area. (Zenodorus.)

We see at once that the problem proposed here is of a some

what different nature from the problems of 90 and 91, since

the existence of the maximum value of the function is no longer

the question, as was proposed in 49 and held as fixed through

out the general discussions. For if the definition of the maximum
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is such that the function on the position (alt
a
z , ,

a n )
must have

a greater value on this position than on all neighboring positions,

then in this sense our polygon could certainly not have a maximum

area
; since, if we had such a polygon on any position, we might

slide the polygon at pleasure without changing its shape and con

sequently its area. Therefore only a maximum of the area can

enter, in the sense that the periphery remaining the same an in

crease in the area of the surface cannot enter for an indefinitely

small sliding of the end-points. We consequently cannot apply

our general theory without further restriction.

102. Let the coordinates of the n end-points taken in a definite

order be . ,,..,.. T y1

1&amp;gt; y\ &amp;gt; ^2 y2 &amp;gt;
&amp;gt;

&quot;

The double area of a triangle which has the origin as one of its

vertices and the coordinates of the other two vertices xv y^ and

#
2 , ?/2 is, neglecting the sign, determined through the expression

To determine the sign of this expression we suppose that the

fundamental system of coordinates is brought through turning

about its origin into such a position that the positive X-axis coin

cides with the length 01. We call that side of the line 01 posi

tive on which lies the positive direction of the F-axis : The double

area of the triangle 012 is to be counted positive or negative

according as it lies on the positive or negative side of the line 01.

If the point has the coordinates #
, y ,

the double area of

the triangle is

2 A
012
-
(^
- X

Q) (2/2
-

y )
-

(yi
-

T/O) (,v2
- #

),

where the above criterion with reference to the sign is to be applied.

For the polygon we shall take a definite consecutive arrange

ment of the points (1, 2, , n) and, besides, we shall assume that

no two of the sides cross each other. The last hypothesis is

justifiable, since we may easily convince ourselves that if two

sides cut each other we may at once construct a polygon whose

sides do not cut one another and which, having the same perim
eter as the first polygon, incloses a greater area.
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Within the polygon take a point =
(x , y ) and draw from it

in any direction a straight line to infinity. This straight line

always cuts an odd number of sides of the polygon.

Now if we follow the periphery of the polygon in the fixed

direction (1, 2, , ?i)
and mark the intersection of a side by the

straight line with -f- 1 or 1, according as we pass from the nega
tive to the positive side of that line or vice versa, then the sum of

these marks is either + 1 or 1. In the first case we say that the

polygon has been described in the positive

direction, in the second case in the nega
tive direction.

It may be proved* that whatever point

be taken as the point within the poly

gon and in whatever direction the straight

line be drawn, we always have the same

characteristic number +1 or 1 if in each case the positive

side of the straight line has been correctly determined.

103. The double area of the polygon is

FIG. 24

2F= -

or

X
Q) (2/2

-
2/ )
-
fa
- X

Q) (yl
-
y )+ fa- x

) (y8
-
y )

+K-o) (2/1-2/0) -(^1-^0

(a)

where the positive or negative sign is to be taken according as the

polygon has been described in the positive or negative direction.

We may, however, eventually bring it about through reverting

the order of the sequence of the end-points that the expression

2 F is always positive.

104. Suppose that this has been done. The function 2F ia to

be made a maximum under the condition that the periphery

has a definite value S.

We may write

where SA _ lf A
=

(^A
- XK _tf+ (yA

-
yx _i)

2
. (7)

* The proof is found in Cremona, Elementi di geometria projetiva. Rome, 1873.
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Form the function

G= 2F+ e(* 1&amp;gt;2
+ s2 , 3 + + sntl -S), (5)

and placing its partial derivatives equal to 0, we have

A+1,A A-1,A

*A+1,A *A-1,

(X = 1, 2, -, 71
; however, for \ = n we must write X + 1 = 1).

Take in addition the equation (/3) and we have 2 n + 1 equations
for the determination of the 2 ?i -f 1 unknown quantities

105. To reach in the simplest manner the desired result

from these equations, we adopt the following mode of procedure.
If we write x^= (&amp;lt;*A- ^i)+*(jfA- 3h-i), (?)

then zx , geometrically interpreted, represents the length from the

point X 1 to the point X both in value and in direction.

If, further, we write

z(= (a?A
- XK ..j)

- i (yA
-

yA _j), (7;)

then *A-4=*A
2
-i,A- (^)

Multiply the first of equations (e) by t and subtract from the result

the second
;
then owing to (?) we have

A-1. *,+!
-

-^-)
= -

N SA-1, A 7

Now, multiplying the last two equations together, we have from (0)

and therefore s? ,. = ?.A 1) A A) A T 1
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106. Since sv _ lfl,
is an essentially positive quantity, it follows

that s _ = s (K]

and consequently the sides of the polygon are all equal to one
S(

another. Hence each side = -
&amp;gt; and we have from U]

n
zx + -i ein 4- S

* = = const.

If we write 2A= e^1

,

n

where &amp;lt; A denotes the angle which sA _ 1)A makes with the X-axis,

then
&amp;lt;*A + i-0A) = const,

or &amp;lt; A + j
c A
= const.

; (X)

that is, all the angles of the polygon are equal to one another,

and consequently the polygon is a regular one.

It is thus shown that the conditions which are had from the

vanishing of the first derivatives can be satisfied only by a regular

polygon ;
that is, if there is a polygon which, with a given perim

eter and a prescribed number of sides, has a greatest area, this

polygon is necessarily regular.

Our deductions, however, have in no manner revealed that a

maximum really exists.

107. To establish the existence of a maximum we must apply

the method given in 93-96. We note that an upper limit

exists for the area of the polygon, from the fact that the number

of sides and the perimeter are given ;
for if we consider a square

whose sides are greater than the given perimeter S, we can lay

each polygon with the perimeter S in this square, and in such

a way that the end-points of the polygon do not fall upon the

sides of the square. Hence the area of the polygon cannot be

greater than that of the square, and consequently there must be

an upper limit for this area, which may be denoted by F . The

question is, Can this limit in reality be reached for a definite

system of values? The variables x
lt y^ x

2 , y%\ ;
xn , yn being

limited to this square, there must be
( 96) among the positions

(xv y^ x
z , 2/2 ; ;

x
n&amp;gt; 2/%) which fill out the square a position
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(a lf ^ ;
a
2 &amp;gt;

&
2 ; ;

a n ,
b n )

of such a nature that in every

neighborhood of this position other positions exist for which the

corresponding surface area F of the polygon formed from them

comes as near as we wish to the upper limit. We may assume

that this position is within the square, since if it lies by chance

on the boundary, then from what has been said above, it is

admissible to slide the corresponding polygon without altering

its shape and area into the interior of the square.

We assert that the value of the function F for the position

(av &j ; 2 ,
&
2 ; ;

a n ,
bn )

must necessarily be equal to F . For

if this was not the case, the inequality must also remain if we

subject the points av \\ 2 ,
6
2 5 3

a
n&amp;gt;

bn to an indefinitely

small variation
;
and on account of the continuity of F it would

not be possible in the arbitrary neighborhood Qi(av \\ ;
a n ,

bn)

to give positions for which the corresponding area comes arbitrarily

near the upper limit F
Q

. This, however, contradicts the conclu

sions previously made. Hence all n corners with a given periph

ery not only approach a definite limit with respect to their

inclosed area but this limit is in reality reached. Since, furthermore,

the necessary conditions for the existence of a maximum have

given the regular polygon of n sides as the only solution, and

since we have seen a maximum really exists, we may with all

rigor make the conclusion : That polygon which, with a given

periphery and a given number of sides, contains the greatest area

is the regular polygon.

PROBLEM

Among the regular polygons with a constant periphery, the one with

the greatest number of angles has the greatest area. (Zenodorus.)

108. Hadamard s problem. If A
l
= (xv yv z^, A2

=
(x2 , yz ,

2
2),

A
3
=

(XB , 1/3,
2
3)

are the rectangular coordinates of any three points

from a fixed origin 0, the volume formed on the three lines OAV

&amp;gt; 2/3

and if x?+ y?+ z?= df (i
= 1, 2, 3),
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where dv d
2 ,

d
3 are positive constants, it may be easily shown

that A is a maximum when A = d
l

d
2

- d
3 ; or, of all parallelo-

pipedons constructed on the three sides OAV OA
2 ,
OA

3 ,
the one

having the greatest volume is the rectangular parallelopipedon. As

the parallelopipedon may occupy an infinite number of positions

without changing the origin, we have here a case of improper
maximum which is of interest.

The extension of this problem is due to Hadamard.*

^22&amp;gt;

where x% + ^| H h^ = a
i (i= 1, 2, . .

-, w), Ae d s 6em#

positive constants, show that the maximum of the absolute value

of A is \ __ fi J i

This may be done as follows :

Let the determinant be developed with respect to the elements

of the iih line, so that

A= AHXH+Ai2xi2+ +Ainxin. (i)

We then have to find the maximum or the minimum of the func

tion A of the n variables ajn ,
xi2 , ,

xin which are connected

by the relation ,2 i 2 i i ,2 _ ,72 / -\

The Lagrange method (89) leads at once to the conditions

If xkl ,
xk %,

-
,
xkn are the elements of another line of the

determinant, we have

Anxkl+ Ai2xk2 -\ +Ainxkn = ; (iv)

or, from
(ii),

xtlxkl + xi2xk2 -\ +{*= 0, (v)

where i = k.

* Hadamard (Bull, des Sciences Mathtmatiques, Second Series, Vol. XVII, 1893).

Proof by Wirtinger (ibid., 1908). An interesting application of this problem is found
in Bocher, Introduction to the Study of Integral Equations, pp. 31 et seq.
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From this we conclude that the determinant can only have an

extreme value when it is orthogonal.

When the conditions (v) exist, the square of the determinant

is another determinant, in which all the elements are zero except

those of the principal diagonal, which are df, d$,
-

, d%.

It follows that A =#.#,...,&amp;lt;*&amp;gt;.

Here again we have an improper extreme which it is interesting

to consider further.

III. CASES IN &quot;WHICH THE SUBSIDIARY CONDITIONS ARE
NOT TO BE REGARDED AS EQUATIONS BUT AS LIMITATIONS

109. Besides the problems already mentioned, those problems

are particularly deserving of notice in which the conditions for

the variables are not given in the form of equations but as

restrictions or limitations.

For example, let a point in space and a function which depends

upon the coordinates of this point be given. Furthermore, let the

point be so restricted that it always remains within the interior of

an ellipsoid ;
then the restriction made upon the point is expressed

through the inequality ^ 7 ,2 -2
= + 4- &amp;lt; 1~

2
+

52
+

C2

We have, accordingly, such limitations when a function of the

variables is given which cannot exceed a certain upper and a

certain lower limit.

We make such a restriction when we assume that a function

fl
shall always lie between fixed limits a and ~b.

110. This limitation, which consists of two inequalities

[a] *&amp;lt;A&amp;lt;&,

may be easily reduced to one.

For from [a] it follows necessarily that

W
and, reciprocally, if

[j3] exists and if a &amp;lt; b, then /i must be

situated between a and b and consequently [a] must be true.
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Every limitation of the kind given may be analytically repre

sented as one single inequality of the form
[/3].

111. We must next find the algorithm for the cases under

consideration. This may be done at once if we consider that

such cases may be reduced to those in which occur equations of

condition. For this purpose we need only establish the problem
of finding the maximal or minimal values of a function whose

variables are subjected to certain conditions as follows:

It is required among all systems of values which satisfy the

equations /A = (X 1, 2, ., m) to find those for which F is a

maximum or a minimum.

By proposing the problem in this manner, it is clear that all

the variables x which appear in the equations of condition need

not necessarily be contained in the function.

Suppose further we have the limitation that

[7] /t&amp;gt;0,

then, through the introduction of a new variable xn+l ,
we may

transform this limitation into an equation of condition. For, as

we have to do with only real values of the variables, the equation

[r] /* =

denotes exactly the same thing as [7].

If, therefore, a function F(xv x
2 ,

-
., xn)

is to be a maximum
or minimum under the limitations

where the / s are functions of xv x
2 ,

&amp;gt;

., xw then we may solve

this problem if instead of the r last restrictions we introduce the

following limitations :

Jm + 1
= xn + l&amp;gt; Jm + 2

== Xn + 2&amp;gt;

*
&amp;gt; Jm + r

== %n + r-

The problem is thus reduced to the one of finding among the

systems of variables xv x
2 , ,

xn + r those systems for which F
is a maximum or a minimum.

112. Examples of this character occur very frequently in

mechanics. As an example consider a pendulum which consists
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of a flexible thread that cannot be stretched. The condition under

which the motion takes place is not that the material point remains

at a constant distance from the origin, but that the distance can

not be greater than the length of the thread. Such problems are

more closely considered in the sequel. It will be seen that by
means of Gauss s principle all problems of mechanics may be reduced

to problems of maxima and minima.

IV. GAUSS S PRINCIPLE

113. For the sake of what follows we shall give a short ac

count of this principle : Consider the motion of a system of points

whose masses are mv m2 , ,
mn . Let the motions of the points

be. limited or restricted in any manner, and suppose that the system
moves under the influence of forces that act continuously. For a

definite time let the positions of the points and the components
of velocity both in direction and magnitude be determined. The

manner in which the motion takes place from this period on is

determined through Gauss s principle :

Let Av A.
2 , ., A n be the positions of the points at the moment

first considered; Bv B^---, Bn the positions which the points

can take after the lapse of an indefinitely small time T, if the

motions of these points are free; Cv &amp;lt;72 , , Cn the positions in

which these points really are after the lapse of the same time T
;

and, finally, let C[ t C& -, Cn be the positions which the points

may also possibly have assumed after the time T, when the

conditions are fulfilled.

If we form
v=n

g
v=n 2

and VmJtlCL ,

it follows from Gauss s principle that from r = up to a definite

value of T the condition

[1] SVAC^SXlW
v= l ,- = 1

v=n
2

is always satisfied
;
that is

?

m vBvCv must always be a minimum.
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114. To make rigorous deductions from Gauss s principle, which

was briefly sketched in the preceding section, we shall give a more

analytic formulation of it : For this purpose we denote the coordi

nates of Av by x
v, yvt zv) the components of the velocity of Av by

x
l&amp;gt; yl) z

l&amp;gt;

an(i the components of the force acting upon Av by
Xvt

Yv,
Zv . The coordinates of Bv are therefore

n *&amp;gt;O
*v + rxl+~Xy9+ ryl +

T-Yv) zv + rz
v + ~Zv]

and from Taylor s theorem the coordinates of Cv are

o 29
xv+ rxl + ^xl

+ . .
., y

T

consequently we have

[2]

Instead of
x&quot;, however (see preceding section), other values may

possibly enter, say x&quot;+ ,-, so that we have

rqn X^, n _W //^ _i_ t &quot;F\2

L^J ^mvA,% sJMMW T & &quot;-

-AT)
v= l v= l

It follows from Gauss s principle that the difference of the sums

[2] and [3] must always be positive.

Hence

[4] &amp;gt;jj?m. \
2

[fc,(av&quot;

-
X.) + rjv (yl

1 - Yv) + (*&quot;

- Zv)]

+ ?v
2 + ^2

-l-C
2

?j
+ ...;

that is, the quantities x&quot;
t yl ,

z
!

J must be such that the sum [2]

is a minimum.

Hence, among all the
x&quot;, y&quot; ,

z&quot; which are associated with

the conditions of motion, we must seek those which make [2]

a minimum.

115. We have reached our proposed object if we can show

that the ordinary equations of mechanics may be derived from

Gauss s principle.
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If there are no equations of condition present, then clearly [2]

is only a minimum when

r Y 11
&quot; V z&quot; Z

&amp;lt;LV -A-v) yv -*-!/)
2f ^v

If, however, we have equations of condition, for example, if any

of the variables are connected by a relation such as / (x, y, z)
= 0,

then these must hold true throughout the whole motion. They

may therefore be differentiated. We have in this way equations

in _^, _J^, anci
_?*. Differentiate again and we have equations

dt dt dt

in
a;,&quot;, yv t

and z&quot; ;

Hence, in conformity with the rules that have been hitherto

found for the theory of maxima and minima, the quantities

xl &amp;gt; Uv&amp;gt;
z
v

are t be so determined that the derived equations

of condition are satisfied, while at the same time [2] becomes a

minimum. But in this case also, as is easily shown, we are led

to the usual differential equations of mechanics.

116. The theory of maxima and minima may be applied

to realms which are seemingly distant from it. An example

in question is the proof of a very important theorem in the

theory of functions.

THE EEVERSION OF SERIES

If the following n equations exist among the variables x
lt

- a
1 nxn

= a21x1

y n =anlxl+an

where the coefficients on the right-hand side are given finite quan

tities and the
&quot;JT

s are power-series in the x s of such a nature

that each single term is higher than the first dimension, and

if the series on the right-hand side are convergent and the
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determinant of the nth order of the linear functions of the

x s which appear in [1], namely,

[2]

&amp;gt;

aln

n2&amp;gt;

is different from zero, then, reciprocally, the x s may also be

expressed through convergent series of the n quantities y which

identically satisfy the equations [1].

117. As an algorithm for the representation of the series for

the x s, we make use of the following methods (cf. 135, 136) :

If we solve the equations [1] linearly by bringing the terms of

the higher powers of the x s on the left-hand side, we have

where A^ denotes the corresponding first-minor of

It is seen that in general

&amp;gt;L

~ n
&amp;lt;

x = M A

[3] x. =

M in [2].

r 1(2)
A

where [xv x%, ,
xn]@) denotes terms of the second and higher

dimensions in xv x%, ,
xn .

We shall therefore have a first approximation to the result if

we consider only the terms on the right-hand side of [3] which

are of the first dimension. A second approximation is reached

if we substitute in the right-hand side of [3] the first approxima
tions already found and reduce everything to terms of the second

dimension inclusive. Continuing with the second approximations

that have been found, substitute them in [3] and, neglecting all

terms above the third dimensions, we have the third approxi

mation, etc.
;
we may thus derive the x s to any degree of

exactness required.
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Since A is found in all the denominators, the development

converges the more rapidly the greater A is.

118. In what follows we shall assume that the quantities on

the right-hand side of [1] are all real and that we may write

where H^ is a homogeneous function of the ith degree in xv
X

2&amp;gt;
&amp;gt;

x
n&amp;gt;

an(^ consequently by Euler s theorem for homogeneous

functions

-_-._. GJj[\n Cjtl\n I VJrL\f)^L rp
A & I *& I I

,y,
A ^

^x ~
9 1

~?7&quot; ^02 -oTT&quot;
^ O ^ ^r^ t/

X/j
Zi

c/t/^2
* l/i*/

.

+ o ^1
~^T&quot;

+ o ^2 -oT~
&quot;&quot; h o

O Vtb-t tj (siA/n &amp;lt;-)

+ ^4 i ^4 i i ,

T *l &quot;^ r T ^2 ~^ T&quot; T T*n
J.

J
^7- 4.

J
fir 4- ^ri CXt 4 &amp;lt;

^ 6/Xr

where the quantities X (X = 1, 2, ,
n

; /u
= 1, 2, , n) are

continuous functions of the sc s, which become indefinitely small

with the aj s.

The system of equations [1] may then be brought to the form

M =1

The theorem of 116 in this modified form may be expressed

as follows :

(1) It is always possible so to fix for the variable^ x
lt
&
2 , ,

xn

and yv y2 ,
-

, yn ,
limits gv g2 , -,gn and hv &

2 , ,
hn that for

every system of the y s for which
y\\&amp;lt;h^

there exists * one

system of the x s for which XK
\

&amp;lt; gK ,
and in such a way that

the equations [1#] are satisfied.

* See Biermann, Theo. der An., Funk., p. 234, and also Stolz, p. 172.
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(2) The solution of the equations [la] has a form similar to

the equations [la] themselves, viz.:

where the Y are continuous functions of the y s, which become

indefinitely small with these quantities.

To prove this theorem we make use of the theory of maxima

and minima.

119. If we give to the yK the value zero, the equations [la]

can only be satisfied if their determinant vanishes, that is, when

except for the case where the a? s vanish.

For sufficiently small values of the x s the determinant [4] is

not very different from the determinant [2]. We may therefore

determine limits g for the x s so that [4] cannot be zero unless

[2] is also zero. A is, however, by hypothesis excluded.

Accordingly the y s can only be zero in [la] when all the x s

vanish, provided the x s are confined within fixed limits. These

limits may be regarded as the boundaries of a definite realm.

120. Again, we write

=2Xax*+XJ *&amp;gt;

=

(X=l, 2,..

and consider the function

[6] 5
A=l

In $ we shall write for the x s all the systems of values where

at least one x lies on the boundary of the realm in question.

The realm of the x s is thus the totality of the x s for which

A
S Zer

(X = l, 2, - -,%; /*=!, 2,...,w);

it follows then that [4] is not zero, since aAJ is by hypothesis

different from zero.
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When one of the x s reaches its limit, there is no system of

values of the x s for which the function [6] vanishes, since the

function can (as follows from definition [5] of the F^ and the con

siderations of 119) only vanish if all the y s and consequently

all the x s vanish.

There is then a lower limit G which is different from zero

for the values of [6] which correspond to a definite system of

values (xv x%, ,
xn) of the boundaries.

121. We come next to the determination of the limiting values

of the y s. For this purpose we consider the expression

m
If we ascribe definite values to the y s, then there is for the values

[7] in the realm of the x s a system for which [7] is a minimum.

We wish to show that this system of values of the x s does

not lie upon the boundary of the realm. We prove this by show

ing that there is a point within the realm where the expression

[7] has a smaller value than it has on the boundary.

The expression [7] may be written

Since $ is at all events greater than Fk , and consequently

A&amp;lt;&amp;gt;.

it follows that vs

&amp;lt;^ix &amp;lt;^fix i

&amp;lt;^SI y.

where the h s are the limits of the ^ s. From this it results that

-n ju.
= n

and, consequently, for a greater reason

[8]
H = l
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The limits h^ must be so chosen that the right-hand side of

[8] is positive. This choice can be made so that the expression

on the right-hand side for a system of x s which belongs to the

boundary does not become arbitrarily small but always remains

greater than a certain lower limit (see the preceding section).

The expression, however, on the interior of the realm of the

x s may be arbitrarily small, viz., when x
1
=

x%
= = xu 0.

For this system of values the left-hand side of [8] is equal to

We have therefore found the following result: We can give

limits g to the variables x, and to the y s the limits h, in such

a way that the expression [7] for systems of values of the x s

which belong to the boundary of the realm is always greater than

it is for the zero position (xl
= x

2
- = xn = 0).

Hence the position for which the expression [7] is a minimum

must necessarily lie within the realm of the x s ; and we may be

certain that within the realm of the x s there is a position where

[7] has its smallest value.

122. In order to find the minimal position of [7] which was

shown to exist in the previous section we must differentiate the

function [7] and put the first partial derivatives equal to 0.

This gives

&amp;gt;

= !
X
*

These n equations can, in case the determinant

[10] (
= l,2,.-.,n; /t=l, 2, ...,)

is different from zero, exist only if the quantities within the

brackets vanish.

[10] is identical with the determinant [4]; and (see 119)

it may be always brought about through suitable choice of the

limits g of the x s that [4] is different from zero if only the de

terminant [2], as by hypothesis is the case, is different from zero.
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Hence the equation [9] can only be satisfied if

[la] or [5] yv
=Fv (xv x^ . .

., xn ).

We have therefore found that, since there is certainly a system
v=n

of values of tJie x s for which the function ^(yv Fv)
z is a mini-

v= l

mum, there must also be a system within the realm of the x s for

which the equations [1#] are satisfied if to the y s definite values

in their realm are arbitrarily given.

123. We must further see whether within the fixed realm

there is one or several systems of values of the x s that satisfy

the equations [1#] with prescribed values of the y s which lie

within definite limits.

To establish this, assume that (x[, x%, ,
xn )

is a second

system of values that satisfy the equations [!]; we must then

have the equations

[11] Fv (x[,xi, -, x n)-Fv (xv x
2 ,

. .
., ^) = (v

= l, 2, . .
., n).

Developing by Taylor s theorem, we have, when we consider only

terms of the first dimension,

The X are functions which depend upon the x&quot;s and x s and

vanish with these quantities.

We may determine the n unknown quantities x[ x
lt x^ x

2 ,

-
., xn xn from the n linear equations [11 a].

For small values of x and x r the determinant

will be little different from the determinant [10].

We may therefore make the limits g of the x s so small that [12]

is different from zero for all the x*a and x&quot;s which belong to the

realm
;
and when this has been done, the equations [11 a] are only

satisfied for r _ r
*

//, 1 9 vx
p Zp (p -L, A , n) ,

that is, there exists within the realm in question no second system

of the x s which satisfies the equations [!].
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We have therefore come to the following result :

It is possible so to determine the limits g and h that with every

arbitrary system of the y s in which each single variable does not

exceed its definite limiting value, the given equations [1] are

satisfied by one and only one system of the x s in ivhich these

quantities likewise do not exceed their limits*

The first part of the theorem given in 118 is thus proved.

REMARK. We have assumed that we have to do only with real quantities.

The discussion, however, is not restricted to such quantities, as it is easy

to prove that the same developments may also be made for complex
variables.

124. The values of the x s which were had from the equations

may be derived in the manner given in 118.

If we write

|^P+X,P |=
A

(&quot;= 1, 2, -, n ; p = 1, 2, . .
., n),

the linear solution of the equations [la] is

[36] V* ^f9, (p
= l,2,...,),

=! A

where A
vp

denotes the corresponding first minors. Now A is a

definite quantity which lies within certain finite limits
;
the same

is also true of A r

vp
is found in a similar manner. Hence

A
J

the quantities ^ are finite quantities which lie between definite

limits
; and, therefore, if the y s, become indefinitely small, the

x s will also become indefinitely small; that is, those systems of

values of the x s which satisfy the equations [1] under the named

conditions are, as has also been shown in 119, so formed that

they become indefinitely small with the y s.

* See also Hadamard,
&quot; Sur les transformations ponctuelles,&quot; Bull, de la SocitU

Math., Vol. XXXIV, 1906.
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We may now show that the x s are continuous functions of

the ?/ s.

Let
(ftp

6
2 , ,

&amp;gt;)

be a definite system of values of the y s,

and let the system (av 2 , ,
an) of the x s correspond to this

system of the i/ s.

If we then write

noi \y\= ^x + ^xl ~
.,

[13] I (X=l, 2,... ,71),

lA=A+fAj
the system of equations [la] or [1] goes into

(X = l, 2,... ,TI].

Developing this expression according to powers of the f s, we have

where the C1

^ are functions of the # s and f s. If the f s are

indefinitely small, we may limit the C1

^ to the first derivatives

of F^. In this case we denote the coefficients of [Ic] by (7AM ,
so that

rT?
&amp;lt;?AM

= T^ for (^1
= a

l ^2
= a

2&amp;gt;
&amp;gt; ^w = a

)

0gp

(X
= l, 2, ., ?i; /*

=
!, 2, -, ?i),

and the determinant of the equations [Ic] goes into

for (xl
= av x

2
= a

a ,
. .

., xn = a n)

(\ = 1, 2,..., 7^; ^=l,2,..-,n).

If the # s lie within definite limits, this determinant remains

always above a definite limit. We may therefore say that the

determinant has a value different from zero. Consequently the

condition that the equations [Ic] may be solved is satisfied, and

it is seen that indefinitely small values of the f s must correspond
to indefinitely small values of the TJ S.

This means nothing more than that the functions x are con

tinuous functions of the *s.
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125. The above investigations are true under the assumption

that the functions F^ are continuous, that their first derivatives

exist and likewise are continuous within certain limits. We need

know absolutely nothing about the second derivatives.

Of the # s, of which it is already known that they exist as

functions of the y s and vary in a continuous manner with them,

it may now likewise be proved that they, considered as functions

of the y s, have derivatives which are continuous functions of

the 7/ s.

The proof in question may be derived from the following con

siderations : If from [Ic] we express the fs in terms of the ?; s,

we have

The ^ are continuous functions of the f s, and the fs are

continuous functions of the ?; s. Hence ^ may be represented

as continuous functions of the rfs.

If the rj s become indefinitely small, then the f s become

indefinitely small, and we have definite limits for
^.

In general, if we have a function f(xv ,
xn)

of the n variables

#i&amp;gt; %%&amp;gt;
&amp;gt;

x
n&amp;gt;

and if we consider the difference

/(i + fi&amp;gt; 2 + fa a + f) -f(av a
v&quot; &amp;gt;

a
n)&amp;gt;

it is seen that it may be written in the form

where the ^TA depend upon the f s and become indefinitely small

with these quantities, and the &A are, in virtue of the definition

of the differential quotient, the partial differential quotients of /
with respect to #A for the system of values (av a

2 , ,
an).

From

the above it results not only that the x*s are continuous func

tions of the y s but also that the derivatives of the first order

of these functions exist.
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We have, indeed, the derivatives of the first order if in the

expressions
^ we write the f s equal to zero.

The quantities ^, however, become then, in accordance with

[Ic], the quantities which we should have in [Ic] if we had at

first written C^ instead of CAM .

But the quantities C^ are continuous functions of a
lt
a
2,

-
., a n .

We may therefore say that the differential quotients ^ are con-
A

tinuous functions of the variables x
t
and it is then proved that

the x s are such functions of the y s as the y s are of the x s.

126. For the complete solution of the second part of the

theorem in 116 we have yet to show that the expressions [36]

may be reduced to the form [3 a]. ,

For this purpose we must bring the quantities ^f in [36]

( 124) to the form ,

~

where 6
Aja

is the value of -**& when all the x s are equal to zero.

Y
A/X

is a function of the x s, but the x s are functions of the y s, so

thatYA
is a function of the y s which vanishes when they vanish.

We may therefore in reality write [36] in the form [3 a]

A 1

127. There may arise cases hi which we know nothing further

of the functions F^, as was assumed in 116, than that they are

real continuous functions.

We cannot then conclude, for example, that the x s may be

developed in powers of the y s
;
but we may reduce the equations

to the form [3 a] and show that the equations [la] are solvable.

The theorem which has been proved is of great importance
when applied to special cases, even for elementary investigations.

If, for example, the equation /(#, y)
= is given, then it is

taught in the differential calculus how we can find the derivative

of y considered as a function of x.
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If we assume that the variables x and y are limited to a special

realm where the two derivatives with respect to x and y do not

vanish and therefore the curve f(x, y)= has no singular points,

and if the equation is satisfied by the system (# , y ),
we may

write x = # 4- f, y = yQ 4- 17.
We have then f(xQ + f , y + 17)

= 0,

and we may prove with the aid of the theorem in 118 that 77 is

a continuous function of f and has a first derivative. Not before

this has been done have we a right to differentiate and proceed

according to the ordinary rules of the differential calculus.

MISCELLANEOUS PROBLEMS

1. Show that the problem of determining the extremes of the function

f(x, y) may be reduced to the determination of the upper and lower limits

of this function under the condition that a;
2 + y

2 = r2 . (Stolz, Wiener Ber.,

Vol. C, p. 1167.)

2. Find the shortest distance from the point P(xlt y^, z
x ) to the plane

Ax + By + Cz + D = 0. A ar, + By, + Cz. + D
Answer.

.

\A4 2 + B2 + C2

3. Find the points on a given sphere which are the farthest from and

nearest to a* given plane which does not intersect the sphere. (Pappus.)

4. Find the triangle of maximum area whose vertices F1? F2 ,
and Vs

describe respectively three given plane curves Clt C2 ,
and C

s
. When the

three curves reduce to the same ellipse, show that there are an infinity of

triangles of maximum area (a case of improper maximum).

5. Find the ellipse of least area that may be drawn through the three

vertices of a triangle.

6. Find the ellipsoid of least volume which may be drawn through the

four vertices of a tetrahedron.

7. In a triangle of greatest or least area circumscribed about a curve,

the points of contact are the mid-points of the sides.

8. Among the triangles whose vertices are situated respectively upon
three given straight lines in space, which is the one whose perimeter gives

a maximum or minimum? Also determine the triangle of maximum or

minimum area.

Answer. In the first case the bisectrices of the triangle are respectively

normal to the straight lines described by the vertices
;
in the second case

the altitudes of the triangle are perpendicular to these lines.
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9. Upon a fixed surface find a point P such that the sum of the squares

of its distances from n fixed points A lt
A

2 ,---, A n is a maximum or a

minimum.

Answer. If the tangent plane at P is taken as the a^-plane and the normal

to this plane at P as the z-axis, the center of mean distances M, say, of the

points A lie upon the z-axis. It follows that the points P are the feet of

the normals which may be drawn to the surface from M.

10. Show that the semi-axes of a central section of a quadric

A^x&quot;-
+ A

2y
2 + A s

z2 + 2 B^yz + 2 Bnzx + 2 B
sxy + 1 =

are the roots r2 of the equation

B
9 ,

B
2 ,

I,

B
2 ,

Bv

m,

= 0,

where the section is made by the plane

Ix + my + nz = 0.

11. Show that the axes of the quadric of the preceding example are

the roots of the following cubic in r2 :

=0.

12. z \ v y is to be a maximum, where ?/
3

nyx + x3 = and v x y.

(Hudde, 1658. See Descartes, Geom., Vol. I, pp. 507-516.)

13. The fundamental theorem of algebra. Let/(&amp;lt;)
be an integral function

of t with constant coefficients. Write t = x + iy, so that

(1) /(O = /&amp;gt;(*, y) + iQ (x, y)
= P + iQ,

with the identical relations

(2)
dx

dQ , dP dQand =
dy dy dx

Form the expression fj. (x, y) /a
= P2 + Q2

. Within the circle of radius

r = Vz2 + y
2 the function

/A
is everywhere continuous, so that ( 8) the

function /x must reach its lower limit for values of x and y within or

on the boundary of the circle. By taking r sufficiently large it is seen

that the lower limit of /x must be reached within the circle, so that there

must be a minimum value of
/x.

Show that this minimum value is zero,

and consequently that there must be some value of t which nxakes f(f)
= 0,

provided that f(f) is not a constant. In particular the semi-definite case

must be considered.



CHAPTER VIII

CERTAIN FUNDAMENTAL CONCEPTIONS IN THE THEORY
OF ANALYTIC FUNCTIONS

I. ANALYTIC DEPENDENCE; ALGEBRAIC DEPENDENCE

128. If in the development of the conception of the analytic

functions we start with the simplest functions which may be

expressed through arithmetical operations, we come first to the

rational* functions of one or more variables. The conception of

these rational functions may be easily extended by substituting in

their places one-valued functions, and first of all those which may
be expressed through arithmetical operations, viz., sums of an

infinite number of terms of which each is a rational function, or

products of an infinite number of such functions.

Such a transcendental function is, for example,

where u
t (x) \i

= 1, 2, -

] are rational functions of x. The

necessity at once arises of developing the conditions of con

vergence of infinite series and products, since such an arithmetical

expression represents a definite function only for values of the

variable for which it converges. Mere convergence, however, is

not sufficient if we wish to retain for the functions just mentioned

the properties which belong to the rational and the ordinary

transcendental functions. All such functions have derivatives,

and we shall restrict ourselves once for all to functions which

have derivatives.

Furthermore, the derived series of the above expressions of one

variable must converge uniformly (cjleiclimassig) in the neighbor
hood of each definite value, and every term of the derived series

* See Hancock, Elliptic Functions, Vol. I, pp. 6-9.

166
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must be continuous in the same neighborhood. (Osgood, Lehrbuch

der Functionentheorie, p. 83.)

129. When we say that a series whose terms are functions of

one variable converges uniformly, we mean the following :

* It is

assumed that the series in question has a definite value for x = X
Q

.

We consider all values of x for which x X
Q
does not exceed a

definite quantity d. This determines a fixed region for x, within

which we shall suppose that the series is convergent. This region

is known as the region of convergence (Convergenzbezirk). We
may, for brevity, put

Rk (x) for

in the series above. In order that this series converge uniformly,

it must be possible after we have assumed an arbitrarily small

positive quantity 8, and when a remainder Rk (x) has been sepa

rated from the series, to find a positive integer m so that

|

Rk (x) |

^ 8, where k &amp;gt; m

for all values of x within the region of convergence.!

130. Proceeding in this way we may form more complicated

expressions ;
for example, we may let w (x) be a sum of an infinite

number of terms where each term is a transcendental function

like v(x) above, so that

We may continue by forming similar expressions out of the

transcendental functions w(x) y etc. It is clear that if we proceed
in this manner, there is no end of such expressions, so that even

if we limit ourselves to one-valued functions, we do not obtain a

clear insight into the possible kinds and forms of such functions.

It is essential that all such transcendental functions have a

common property, and we note that if we take a value X
Q within

the region of convergence in which the series representing these

* Weierstrass, Collected Works, Vol. II, p. 202, and Zur Functionenlehre, 1.

+ See Dini, Theorie der Funktionen (page 137 of the German translation by Liiroth

and Schepp).
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functions converge uniformly, they may be represented for all

the values of x in the neighborhood of X
Q

as series which

proceed according to positive integral powers of x X
Q ;

for

example, in the form

F(x) = F(x - + x
)
= + a^(x

- x
Q) + a

2 (x
-

where
,
av a

2 , ., are definite functions of X
Q

. From this it

follows that they may be differentiated, and a number of other

properties are immediate consequences.

131. We may next extend the conception of uniform conver

gence to functions of several variables. With Weierstrass (loc. cit.)

consider the infinite series
v= oo

F(xli
x2 ,

. .
., xn)=^uv (x1 ,

x2 ,
. .

., xn)
v =

whose terms uv are functions of an arbitrary number of variable

quantities x\, x2 , -, xn . Such a function converges uniformly in

any part (R) of its region of convergence when with a prescribed

quantity 8 chosen arbitrarily small there exists a positive integer

m such that the absolute value of

for every value of k which is ^ m and for every system of

values of x
lt
x2) y

xn which belongs to (R).

Let !,
a2 , ., an be a definite system of values of the vari

ables xv x
2 , ., xn within the region of uniform convergence, and

consider only the values of xv x
2 , ,

xn for which x
1

a
1) x^a^

-
., xn an do not exceed certain limits d

ly
d2 , ,

dn ,
as in 129.

The function may then be represented through an ordinary

series which proceeds according to integral powers of x
1 a

lt

x2 a2 ,
x3 3 , ., xn an ,

and consequently may be differentiated;

in short, it behaves, as Weierstrass * was accustomed to express it,

like an integral rational function in the neighborhood of a definite

position within the interior of the region of uniform convergence.

*In this connection see Weierstrass, Werke, Vol. II, pp. 135 et seq., and also Bier-

mann, Theorie der Analy. Funktionen, pp. 429 et seq.
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132. We may next introduce the conception of analytic

dependence. If we represent a function which has been formed as

indicated above by F(x^ x^ t ., xn),
then F(xlt x2 &amp;gt; &amp;gt;

xn)=

expresses a certain dependence among the variables x
lf x^, ,

xn ;

that is, among the infinite number of systems of values for

which the function has a meaning, those only which satisfy this

equation are to be considered. There exists, therefore, among
x
l,.x2) -, xn a dependence of a similar character, as in the case

of algebraic equations. If we choose the quantities o^, x%,
-

., xn
such that the equations ^i=0, F2

= 0, -
,
Fm= exist where

m &amp;lt; n, we have a dependence among the quantities x
lf
x2 , ,

xn
defined in such a way that at all events we can choose arbitra

rily not more than n m of the variables, since the remaining
m variables are determined.

133. The conception of the many-valued functions is at once

suggested. Suppose, for example, a function of two variables x

and y is given ;
then we may consider all the systems of values

(x, y) in which x has a prescribed value. For such a value of x

there may exist several values of y. We are to regard y as a

function of x, and this function is a many-valued function. By
the introduction of one or more auxiliary variables it is often

possible to express the many-valued functions* through one-

valued functions, and indeed in algebraic form. The development
of analytic functions from an arithmetical or algebraic standpoint

seemed especially desirable to Weierstrass. He wrote (see Werke,

Vol. II (Oct. 3, 1875), p. 235): &quot;The more I consider the under

lying principles of the theory of functions and I do this con

tinually the stronger am I convinced that this theory must be

built upon the foundation of algebraic truths.&quot;

134. To illustrate the remarks of the preceding article, con

sider any analytic dependence existing between, say, two variables

x and y and limit one of the variables x to a definite region.

The other variable must be expressed through x and in a fofm

that remains invariably true for all values of x in question. Now,
if to the one variable there corresponds a transcendental function,

*We might cite, for example, the Abelian transcendents.



170 THEORY OF MAXIMA AND MINIMA

it does not seem possible to express one variable arithmetically

in terms of the other. We may, however, introduce a third aux

iliary variable and thereby express both of the original variables

as one-valued functions of the third variable and in such a way
that, if we give to this variable all possible values, we have all

systems of values of (x, y).

The simplest example is perhaps the one given by the equation

z = &, where z and y are two independent variables. It is not

possible to express the dependence between x and y in an arith

metical form
;
that is, one in which transcendentals do not appear.

But if we introduce a third variable t, and write x = e t

t
we have

z e^, so that y ^-

Thus x and y are expressed as one-valued functions of t
t
and

such that for one value of x there is invariably one value of t

and of y. Poincare* proved that if x and y are connected by an

algebraic equation, then all systems of values (xt y) may be

expressed in the form just indicated. He also showed that if

any analytic dependence exists between x and y, it is always

possible to represent x and y as one-valued functions of a third

variable. An example in point is the expression of the integrals

of linear differential equations through the Fuchsian functions.

However, he did not show in this latter case that all the points

of the region in question were thus expressed through t. On
the contrary it seems that there exists an infinite number of

isolated points which can be reached only when t tends toward

certain limits.

For example, in the differential equation of the hypergeometric

series, we should have to exclude in such a representation the real

values of x from + 1 to +00. (See the Paris Thesis of Goursat.)

In this manner the study of many-valued functions may be

reduced to the study of one-valued functions. However, it is not

*See Bulletin de la Socitte mathtmatique de France, Vol. XI (1883). See also

lectures II and III, delivered in the Cambridge Colloquium, by Professor Osgood
(Bulletin of the Amer. Math, Society, 1898) ;

and the Problemes mathfrnatiques of

Professor Hilbert in the Comptes rendus of the Congress of Mathematicians, Paris,
1900. In his treatment of Algebraic Functions of Two Variables, Professor Picard has
done valuable work in this connection.
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a simple task, for if we wish in reality to make this representation

even in the case of a linear differential equation, we encounter

many technical difficulties. Nevertheless, it is essential to prove

that there exist such representations.

Weierstrass asserted (May, 1884) that he believed the follow

ing theorem existed in the theory of functions: It is always

possible, where an analytic dependence exists, to express this

dependence in a one-valued form which remains invariably true.

135. We may next introduce the foliowhig theorem, which is

extensively used, particularly in the calculus of variations :

Suppose that between the variables xv x
2 , ,

xn we have .m

equations given which may be represented in the form of power-

series, and let these be

-
)+X =

where ^ 1
, X2

&amp;gt;

. .
., X,rt

are also power-series of x
l

av ,

xn a n ,
but of such a nature that each term in them is of a higher

dimension than the first.

TJie equations will be satisfied for n\= a
lt ., xn= an . We

propose the problem of determining all systems of values

(&i&amp;gt; fyy )
xn) which lie in the neighborhood of (alf

a2 ,
&amp;gt;

, )

and which satisfy the m equations above ; that is, among the

systems of values for which \xl a^ , \xn an
\

are smaller than

a fixed limit p, determine those which satisfy the m equations.

The quantity p is subject to the condition only of being suffi

ciently small. To solve this problem we consider the system of

linear equations to which the given equations reduce when we

Xl=o.x,=o...,X.=o.

Through these linear equations m of the differences x
l

av

x^a^-&quot;, xm am may be expressed in terms of the n m
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remaining, if the determinants of the mth order which may be

formed out of the m rows of the c s are not all zero.

If, say,

0,

we have (117)

x2- a2
=

By means of these equations we may represent x
l

av x
2 2 ,

-, xm am as power-series in the remaining n m differences,

the formal procedure being as follows :

We write Xi= 0, , X^= &amp;gt;

an(^ tnus obtain for x
1

av

,
xm am expressions which represent the first approximations.

These are substituted in
Xj&amp;gt;

* * XL an(^ ^n tne resulting ex

pressions only terms of the second dimension are considered.

These terms added to the terms of the first approximations respec

tively constitute the second approximations. Continuing this

process we may represent the required expressions to any degree

of exactness desired.

We obtain the same results if we express m of the quantities

x
l

av x
2

&
2 , ., xn an through power-series in terms of the

remaining n m quantities with indeterminate coefficients. These

coefficients may be determined without difficulty.

As just shown, these power-series are convergent as soon as

the differences x a which enter into them do not exceed cer

tain limits, and, furthermore, these power-series satisfy the given

equations.

136. The problem of the preceding article may be solved in

the following more symmetric manner, in which none of the vari

ables is given preference over the others (see Lagrange, Thorie

des Fonctions, Vol. II, 58).
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Besides the equations given above we introduce others which

are likewise expressed in power-series :

1,1,
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137. Suppose that between two variables there exists an ana

lytic relation which is expressed in the form

where P denotes simply a power-series and where XQ, ?/ is a

definite pair of values of the variables.

In the neighborhood of (XQ , yQ)
there is an infinite number of

systems of values which satisfy the equation. The collectivity of

these pairs of values (x, y) is called an analytic structure, or con

figuration (Gebild), in the realm (G-ebiet) of the quantities (x, y).

We may next make an application of the theorem of the pre

ceding article. It follows that, if between n quantities x
l}
x2 ,

-, xn there exist m equations in the form of power-series,

then the differences ^ a
l} ,

xm am may be expressed

through power-series of the n m remaining variables. Weier-

strass said :

&quot;

Through the m equations a structure of the (n m) th

kind in the realm of the n quantities x, x%,
- -

,
xn is defined.&quot;

As in the case of two variables, we may proceed in a similar

manner with several variables, among which an analytic depend

ence exists. Let this connection be of such a nature that m
(&amp;lt;n)

of the variables are in general determined through the remaining

n m. If, then, (alt
a2,

- - -
,
an) represents a definite system of

values of the variables, there exist m equations of the form

P(xl
- a

lt
x2 - aa , ., xn - an)

=

which are to be satisfied for x
1
= a

1}
x
2
= az ,

&amp;gt; -
}
xn= an . In the

neighborhood of the position (a^,
a2 , ,

an)
there are, then, an

infinite number of other systems of values (x^ x
2 ,

&amp;gt;

,
xn)

which

satisfy the same m equations. These define an analytic structure*

in the realm of the quantities x
lf
x
2 ,

- -
,
xn .

A fundamental theorem in the theory of functions of the

complex variable is that these structures may be continued over

their boundaries. The power-series above constitutes an element

of a complete structure (97).

* Weierstrass, Werke, Vol. II, p. 236. It may be remarked that Minkowski in his

Geometric der Zahlen advances similar ideas at considerable length. See in particu
lar 19 of his work just mentioned.
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138. Analytical structures, as above defined, may be represented

in a different manner. If the equation connecting x and y begins

with terms of the first dimension, we may, on the one hand, either

express y y through P(x-xQ)
or x-x through P(y-y );

or, on the other hand, if the coefficient of either x X
Q or

y ?/ is equal to zero, it is possible to express only y y^

or only x X
Q

as integral power-series of x X
Q

or y yQ
. In

order that this distinction may not be necessary, we introduce

a function t which begins with terms of the first dimension in

x
XQ, y yQ (see 136); we may then always express the two

quantities x, y as power-series of t. Through the introduction of

such a quantity t it is made possible to include within certain

limits all the systems of values (x x
Qt y yQ)

which satisfy

this equation. These values must firstly satisfy the given equa

tion, and secondly they must afford all the systems of values

which satisfy it within these limits.

These considerations may be extended at once to equations in

several variables. If we have a certain number of equations in

xl a
lf -x% a2 , ., xn a n ,

and if we limit these equations

to terms of the first dimension, we have linear homogeneous

equations of the first dimension, the number of which we assume

to be m
(&amp;lt; n).

If we can express m of the quantities xl
a

lt
x2 a2 , .,

xn a n through the remaining n m, it is always possible so to

derive n power-series of n m quantities t
lt

t2)
-

,
tn _ m that

they, substituted for x
l} -x^, ., xw firstly satisfy the given equa

tions, and secondly, if we give to tlf t2) ,
t n _ m all possible

values, they offer all the systems of values (xly x2 , ., xn )
which

satisfy those equations, when certain limits are fixed for the abso

lute values of % a
lt
x2 a% ,

xn an ; or, also secondly, that

with indefinitely small values of the t s they afford all the systems
of values of the quantities x

l}
x
2) ,

xn which lie indefinitely

near the position (al}
a2 , ,

an)(see again 136).

Take n power-series ^(t), ^(O* &amp;gt; ^n(0 and write x
l
= ^

1 (t),

x
z
=

3*2 W&amp;gt; &quot;i
xn = n(t) &amp;gt;

tnen through these equations a struc

ture of the first kind (Stufe) in the realm of the n quantities x
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is defined
;
in a similar manner a structure of the second kind is

defined through the equations

In general, if we take % power-series in tv t
2 , ,

tn _ m and

write these equal to x
lf
x

2&amp;gt;
,

a;w ,
the collectivity of the sys

tems of values (xv x
z , ,

a?w)
offered through these equations

constitute a structure of the (n m)
th kind in the realm of the

quantities xv x
2 , ,

xn .

We shall in the sequel limit the discussion of the general

analytic dependence to the cases where this dependence is

expressed through algebraic equations and to the structures

which result from such equations, viz., the algebraic structures.

II. ALGEBRAIC STRUCTURES IN TWO VARIABLES

139. Let F(xt y) be an integral algebraic function of x and y

which does not contain repeated factors, so that F(x, y) has no

common factor with either - or --- Further suppose that
dx dy

F(x, y) is not divisible by any integral function in which appears

only one of the variables x or y. The system of values x, y which

satisfy the equation F(xt y}= form the algebraic structure that

is defined through this equation.

If a;
, y is a pair of values such that F(xQt y )

= 0, we may

develop the equation F(xQt yQ)
in powers of x X

Q
and y y^ in

the form (cf. Stolz, loc. cit., p. 177)

[1] G(f, 1,)
= dF(xQ , 2/ ) + d*F(xQ9 y,}

where for brevity we put x X
Q
= %, y y^ rj, and where d

n
F(xQ,

is the homogeneous function of the nth degree in f , 77, viz.,

r=n /Aj\ QW TJT

[2] d*F(xQ , y,}
=V ( v } r

~
V-
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cF cF
If - and 7r do not both vanish, the position (or point) X

Q , y is
ex ex

said to be regular or simple. But if they both vanish for x = X
Q ,

y = yQ ,
and if for the same position all the partial derivatives of

the 2d, 3d, -, (k l)st order of F(x, y) with respect to x and y

vanish, while those of the &th order are not all zero, the position

X
Q , y is called a singular position, and, specifically, a &-ple

singularity. In such a case the left-hand side of equation [1]

begins with terms of the kih order with respect to and 77.

In the following treatment not only the integer k plays an im

portant role but also the smallest exponent of the terms that are

free from 77, as also the smallest exponent of the terms that are free

from
,
on the left-hand side of [1]. If we denote the first by p

and the second by q, the equation [1] may be written in the form

[3] F^+bys+ri)
= e { + f/(?)} + 1?* {b + r,g (T?)}+ frHfc T,)

= 0.

Here /(f) denotes an integral function of and g(rj) an integral

function of T) ;
a and I are constants different from zero, viz.,

1 cpF I c qF~~~~ ~~

140. Developments of the algebraic function y in the neighbor

hood of a regular position. It may be shown * that if on the position
7* 77* /

x = X
Q , y = y$ the expression does not vanish I so that, say, q =1

cF\ dy \

and b = -
)

, there is one and only one convergent series in integral
i/o /

positive powers of which vanishes with and which substituted

for rj in [1] identically satisfies [1],

We may suppose that this series begins with f^, so that

[4] , =B_ff*+
&amp;lt;i(+1f+i+ ....

We have also to consider in the sequel fractional positive
i

powers of x x
Q
=

j; ,
that is, powers, say, f **, where /*=!. A series

* See Pierpont, Vol. I, p. 288; or Goursat, Coitrs D Analyse, Vol. I, chap. iii.
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of this kind is convergent if there is a positive quantity R such

that the series for all values of \^ &amp;lt;R is convergent, and that

is for all values of
\%\&amp;lt;R*.

If the series is convergent for one of the /-t values of the /xth

root of
,
it is evidently convergent for all the other

/-i
1 values

of f . Accordingly, to each of the values of f whose absolute value

is smaller than R* there correspond p different values of the series.

If, for example, we denote a definite one of the values of f, for
i

example, the principal one, by f **, the others are expressed through

the product yf **, where j is any of the ftth roots of unity.

Hence a series

may, corresponding to the different values of jy appear in the p I

other forms =

The theorem stated at the beginning of this article may be
O

J7I

generalized : If on the position x = a?
, y = yQ the expression

9
does not vanish, there is one and only one convergent power-series

in positive integral or fractional powers of f which vanishes with

f and which written for 77 in the equation [1] identically satisfies

it, viz., the series [4]. For if besides the series [4] a series [5]

with
/-&&amp;gt;!

satisfied [1], then the equation
i

[6] F(xQ + p, 2/o + &amp;gt;?)

= 0, where t = fr,

would be satisfied by two series which have no constant term and

in which 77 is expressed in integral powers of t. This, by the previ

ous theorem, is impossible, because in [6] the term in TJ really
O

TJT

appears, and in fact multiplied by the coefficient -

dF dF y
141. Suppose next that = 0, but that =

0, so that p = 1

fyo 3x
o

and
q&amp;gt;l.

Then from what we have just seen it follows that the
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equation [3] may be solved through only convergent series in

which f is expressed in powers of 77 hi the form

[7]
= - -^ + dtf

+ &amp;lt; + - - = Q(n), say,

where
q&amp;gt;l

and df
=

;
in other words, there exists a positive

quantity S such that if ! rj
\

&amp;lt; S, we have the identity

[8]

Write f in the form

and note that

[Q-,(rj)]^ =( 1
!

rj
s
H- }

q = 1 ^ 77* -|- terms of higher order.

V b

If then we put

[9] * = -fL^lV /J

by reverting this series we have

[10] t
.,.+^i+....

and from this it is seen that a positive quantity K may be so

determined that for all values of t such that
1

1
\

&amp;lt; K the above

power-series in t converges. This power-series when written for rj

in the equation [9] identically satisfies it.

If, further, we raise the equation [9] to the qth power and

multiply it by ,
we have

t&amp;gt;

b b b
tq = r

n
q
Q-i(n}= ^ -f dg if]

q+*+...= Q(rf) above
;

a a a

and this equation will be an identical one if for ??
we write the

power-series P(t). The same is true of equation [8] ;
that is, we

have the identity , -,

for all values t for which the series P(t) is convergent.



180 THEORY OF MAXIMA AND MINIMA

If we denote the radius of convergence of the series P(t) by R

and put = ^, where t is any one of the ^-values of the qtha

root of -
f ,
we have the following theorem :

V
a

?
,
so that the series

tii]
&amp;gt;^-?~

+
ijj(jiFjS*

1

+

exist, j denoting any of the qth roots of unity, then this expression

written for rj causes the function G(, TJ)
to vanish identically.

Furthermore, there is only one such convergent series in inte

gral or fractional positive powers of f, without constant term,

which when substituted for rj in equation [1] causes that equation

to vanish identically.

For if there were another such series in integral positive powers
i

of **, say,

then in the manner given above we could express ^, and conse-
i

quently also f , through a power series in ^ which identically satisfied

[1] ;
but besides the series [7] there exists no such series, and conse

quently there is no such series as [12] which is different from [11].

III. METHOD OF FINDING ALL SERIES FOR y WHICH
BELONG TO A /C-PLY SINGULAR POSITION*

142. In equation [1] let dF(xQ) y ),
dz
F(xQ, y ),

be zero, so that this equation becomes

[13] G(f,,) = I

where N is the dimension of F(x, y) with respect to x and y.

* Besides Stolz, p. 182, see also Puiseux, Journ. de Math., 1st Series, Vol. XV,
p. 365; Picard, Traitt etc., Vol. I, p. 392; Hermite s preface to Appell et Goursat,
Fonctions Alg&briques etc.

; Konigsberger, Elliptische Functionen, Vol. I, p. 187

et seq. ;
etc.
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There is, consequently, a &-ple singularity at x
, y^ and we shall

next show that we may derive all those convergent series without

constant term which proceed in integral or fractional powers of f

and which when substituted for 77 in [13] identically satisfy it, if

we can derive corresponding series for any simple, double, up to

(k l)-ple position of any algebraic structure. In other words, the

problem of deriving these series for a k-ple singularity is made to

depend upon the derivation of such series for a position that is

less than &-ple.

If for T) in the homogeneous function* of the nth dimension

**(^jrj *.(& *)

(it being supposed not identically zero) we write the series [12]

and arrange in ascending powers of f,
then if X = /i, this expres

sion begins at least with f
M

,
and exactly with this term if

&amp;lt;&amp;gt;(!,
CA )

does not vanish. If X ^ /*, this expression begins with f
n
only

when this term in reality appears in
&amp;lt;(, 77) ;

otherwise with

a term of higher or lower order than f
w

according as X &amp;gt;
IJL

or X &amp;lt; fM.

If in [13] we next decompose the lowest differential

into its real or complex linear factors, we have

[14] &amp;lt;^.(^)=IIK^
r-l

where l\ + &
2 + 4- &/= k and where one of the two coefficients

ar, /3r may be zero.

Assuming first that X = /u, if in the above expression we write

we see at once that for at least one value of r we must have

* The method given by Weierstrass, Werke, Vol. IV, pp. 19 et seq., is essentially

the same as that found here : see also Stolz, loc. cit.
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For if this were not the case, then (f, CA + )
would begin

with f
* instead of vanishing identically.

If, next, X&amp;gt;^) one of the quantities j3v /32 , , ^l must be

zero; and if X&amp;lt;/i, then one of the quantities a
1?
a
2 , ,

a
L
must

A

vanish. For if they were all different from zero, then 6r(f ,
cAf**+ )

k\

begins with f
^

.

If a series of the form [12], where X =
JJL,

satisfies the equation

[13], we shall have, if in [12] we write ?;
=

(CA -f TJ^ ,
a relation

I 2

between ^ and f, viz., ??!= cA+1f
A + cA + 2f

A
H---- .

The expression G(%, (CA + ^I)!) contains the factor p, which

may be neglected, so that -^ satisfies the equation

If in the series [12] (when \&amp;gt;
/JL)

we write r?
=

77^, we find that

the equation -,

is satisfied by the series

If a series for ?; where X&amp;lt;/i
satisfies [13], we revert the process

and make the substitution f = rj^r

143. In giving the practical method of determining the series

for
r; which satisfies [13] we must make a distinction between

two cases : The function &amp;lt;&k (|, rj)
either may contain different

linear factors to their respective powers or it is the &th power of

one single such factor.

First case. Among the quantities a
lt
a
z , , cci there must be

at least one which is not zero. For each a
L
which does not vanish

/?

we put = c and make in [13] the substitution
*i

[15] *;

We may then write
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where G
l

is an integral function in and ^ which vanishes for

= and ?/
= 0. If, for example, i = 1, we have

From this it is evident that the position f = 0, 1^= in the

structure (f, i^) is at most a &rple singularity and conse

quently less than a &-ple, so that the problem may be regarded

as solved, since, by hypothesis, when A^&amp;lt;
k we have supposed that

we may derive all power-series which satisfy (f, 77^
= 0. For 77,

through the formula 17
= (e^ + i^) f ,

we have series arranged in

integral or fractional positive powers of f which substituted in

G(%,r}) cause this expression to vanish identically. Besides these

series there are no other such series for 77
which begin with the

term c^f.

If in [15] we let r take all the values where ar
=

0, we have

in this way all those series for 77,
where X ^ /*, which satisfy the

equation G(f, T?)= 0. Among the quantities a
1?

a
2 ,..-,ai there

may be one, for example av which is zero. If we consider rj and f

interchanged and then make in [13] the substitution f = T?^, we

may derive all series which proceed according to integral or frac

tional positive powers of 77 with constant term zero and which

when written for f in the equation ({?, 77)= identically satisfy

it, and whose initial term is ^77
x

,
where

By reverting each of these series we may express 77 as series

in terms of f which satisfy [13], where X&amp;lt;^.

Further, we have all such series. For if [13] was solved by

writing for 77 a series [12], then we also satisfy [13] by writing

for f a series in integral positive powers of 77* whose initial term

contains 77^, where is an improper fraction.
X
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Second case. Let
&amp;lt;&( , rj)

=
(ccrj /3f)* and suppose first that

a = 0. We make in [13] the substitution

and have, after division by f*, the new equation

[17] ^%)= ^
If for this equation the position f = 0, ^ = is less than

a &-ple singularity the problem is by hypothesis solved, or if it

remains a &-ple singularity and if the polynomial of the terms of

the &th order in f and TJ I may be decomposed into different linear

factors, we may proceed as in the first case. It may happen, how

ever, that the position f = 0, r} 1
= is a &-ple singularity whose

terms again form the Jcih power of a linear expression in f and

??!
which must necessarily be

j-(
ar

)\
~

if)
fc

-

K \

If, further, we write in [17] ??2
instead of rjv where rj2

is defined

by the equation

the expression will be divisible by f*, so that we may write

(f

where G,(fc %)= + f J5T,(f, ,,),

^2(?&amp;gt; ^2) being an integral function of f and ?;2
.

Noting (-i)
and (ii) it is seen that if there is for 77 a series

of the form

[18] ,= J| +4p+ c/+t+ ..
?)

then for f = the quantity ??2 introduced above must be zero,

and T7 2
must belong to those series that vanish with and which

are obtained from the equation 6r
2 (, rj2)

= 0.
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This equation may be solved as above for rj2
if the position

| = 0, 7; 2
= for the structure (r2 (f, 7/2)= is less than a &-ple

singularity or if it is a &-ple singularity in which the terms of

the kth order do not constitute the &th power of a linear func

tion of f and 7?
2

. We further have all series, proceeding according

to powers of f without constant term, which when substituted in

[13] satisfy it, if we solve the equation

with respect to ?72
in all possible ways through power-series in f

without constant term and substitute these series for 7?2 in the

expression (cf. (i) and (ii))

But if the position f = 0, ??2
= is a &-ple singularity in the

structure 2 (f, ??2)=0, and if the terms of the kih order form

the kth power of a linear expression in f, ?;2 ,
which must have

the form (arj 2 /3.
2f )

A
,
we must write rj3

instead of rj2 , where ?? 3
tv I

is denned by //32 \ .....
7
?2
= (-^-h773

jf,
(tit)

and proceed in a similar manner as above.

Continuing in this manner it is evident that if a = we may
derive all power-series in f without constant term which written

for 77 in the equation [13] identically satisfy it, if through a

series of transformations

we may from the given equation G (f , 77)
= derive an equation

Gh(&amp;gt;
7
7/&amp;lt;)=^

whose left-hand side does not begin with the kih

power of a linear expression in f and rj h .

We must finally come to such an equation if F(x, y) and -

cy
have no divisor in common. For, since the factor f

*
appears with

each of the substitutions [19], it is easily shown that the integer
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li in [19] cannot pass a fixed limit. For if F is of the n\h degree
in y, we may always find two integral functions U and V in x and y
where U is at most of the (n l)st degree in y and V at most of the

(n 2)d degree in y such that there exists the identical relation

C
Tfl

[20] rJ-(a,y)+
0J^=.D(*),

where D(x) is an integral function in x.

Furthermore, since

it is seen that

We also note from the formula

J^(aj, y + v}
= F(

if we make the substitution x = x + f , ?/
= y 4- 77, since

that

Expanding the left-hand side of. this expression, it is seen that

It follows that after the substitution of

X = X
Q + , y = y + 7j, where from [19]

[21] r,
= +
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the left-hand side of [20] is seen to be divisible by f^ -D. But

on the right-hand side D(xQ -f f) is of the same degree d, say, in f

as D(x) is in x. It follows that h (k 1) ^ d or h ^ - --

K JL

If, secondly, a = 0, or &amp;lt;1&amp;gt; A. (f, 77)
=

( /3f)*, it is seen that through

a corresponding change of the method given above, all series

which proceed according to powers of 77 without constant term

may be found which when written for f in the equation [13]

identically satisfy this equation. Through reversion of these series

we derive series in powers of f without constant term which satisfy

the equation [13] with respect to 77, and in fact all such series.

144. The following theorem is proved by Stolz (Math. Ann.,

Vol. VIII, p. 438) : If XQ, y^ is a position of the structure F(x, y)=Q
and if this equation is brought through the substitution x = X

Q -f f,

y = y -f- 77 to the form [3] above, viz.,

[3] F(.cQ + f, #) + *?)
= (p (

a

then the collectivity of the convergent series hi integral positive
i A

powers of or f
M

, viz., cxf
** -h -

,
which vanish with

, and

when written for
77 in the equation [13] satisfy it, are charac

terized through ^ _-^

2&amp;gt;

=
?&amp;gt; 2,

x=*-

In these expressions /u is the smallest of the roots of f which

are contained to an integral power in each term of a series in
i

question, and X is the least exponent of f*
4 in this series. This is

illustrated in the example of the next section.

145. The above theorem offers a check for the determination

of all the series which belong to a singular position of a function,

as is illustrated in the following example.

Example. For the algebraic structure denned through the equation

4 xz
y
3 - 9 x*y~ + 2 XG

I/

- 21 xf + 8 y
1 - 10 a:

10 =
(i)

the point x = 0, y = is a 5-ple singularity. The terms of the fifth

order in (/) are 4 xz
y
z and consequently may be decomposed into the

factors x and y.



188 THEORY OF MAXIMA AND MINIMA

Corresponding to the factor y, write in
(i) y xyr The result of the

substitution is, after division by x5
,

4 y}
- 9 xy* + 2 x\ - 10 a* - 21 x*y* + 8 x*y}

= 0. ()

The point x = 0, ^ = is a triple singularity for this structure, the terms
of the third order being

4 y
- 9 xyf + 2 afy = ^(4 ^ -

x) (^ - 2 x). (m)

Corresponding to the first factor, write in
(ii) yl

= xyz and divide the

resulting equation by xs
. We then have

2 y2
- 10 x2 - 9 #2 + 4 y

- 21 afy + 8 xyj = 0,

where x = 0, y2 = is a simple point. From this equation we have

We thus have as a solution of
(i)

y = xyl
= x2

y%
= 5 x4 + terms of a higher order.

(fy)

Corresponding to the second factor in (Hi) write in
(ii) yl

= x(% + y2)

and divide the result by x3
. We then have

-
|.va

- 10 x2 - 6 yl + 4
3/| + . . = 0,

and from this we have ?/2
=

4^- x
2 + -

.

It follows that (i) is satisfied by the series

Corresponding to the third factor of (m), write in
(zi) ?/x

= z(2 + y2),

and dividing the result by xs we have

From this it follows that yz
= f x2- + -

;
and the corresponding value

f y iS
y = 2^2 +f^+.... ( y/)

Returning to (i) write a; = yxl
so that ( ) becomes

4 ar + 8 y
- 21^ - 9 yar* + 2 y8a?

- 10
a:&quot;^

= 0. (mi)

For this structure y = 0, x
l
= is a double point, the terms of the second

order being , / . , /-.

4 x* 4- 8 y
2 = 4 (x^ + *^V2)(a?j iyv2).

Corresponding to the factors of this expression we make in (vii) the

substitutions

(viii)
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If then we divide through by f, we have the equations

(8*2
-

21^) *V2
-

2lyxi + 4 xl + = 0.

From each of these equations we derive series which begin with the same

term, viz., x = Qy + , so that we derive the two series

i V2 + z) -

By inverting these series we have the series which proceed in ascending

powers of x$, viz.,
-

:

y=^ T -H= +.... (it) and (a;)

We have thus derived five power-series which proceed in integral or frac

tional powers of x without constant term which satisfy (i), viz., (tV),

(r), (i-O, (), and (x).

It is further seen that 2/ot
= l + l + l + 2-f2 = 7, which is the smallest

exponent of the terms that are free from x, while 2A = 4 + 2 + 2 +1 + 1 = 10,

which is the smallest exponent of the terms that are free from y in (i)

(Stolz, p. 195).





INDEX

(The figures refer to the pages)

Abelian transcendents, 169

Algebra, fundamental theorem of, 165

Algebraic curve expressed through
power series, 36, 53

Algebraic function, its development
in series, 177; at a singular point.
180 et seq.

Algebraic structures, 176 et seq., 181, 187

Ambiguous case, the, iv, 27. See Semi-
definite form

Analytic dependence, 166 et seq., 169

Analytic function, 73
; defined, 138

Analytic structure, 74, 174

Appell, 180

Area, maximum area, 143

Asymptotic approach, 138

Auxiliary variable, 101, 173

Baltzer, 2

Bauer, 107

Bertrand, v, 33

Biermann, 136, 155, 168

Bocher, 148
Bohlmann and Schepp, iv

Bois-Reymond, Paul du, 2, 7, 74

Bolzano, 12, 136

Borchardt, 107

Boundary, 136 et seq., 156 et seq.

Brand, 126 et seq.

Burnside, 89, 106

Calculus of variations, iv, 171

Cantor, Geschichte etc., 15
Cartesian Oval, 133

Cauchy, 3, 7, 92

Cavalieri, 27
Center of curvature, 117, 125

Christoffel, 107

Complete differential quotient, 6

Contact of indefinitely high order. 36
Continuation of an analytic function.

174
Continuous function, 161, 162

Convergence, 166, 167, 168, 172, 178

Cremona, 144

Curvature, 117

Cusps, appearance of, 30

Cylinder, trace of. 31

Dantscher, Victor von. v, 36, 69 ;

method of, 39, 62 et seq., 72
Definite form, 19; necessary condition.

21, 49, 50, 51, 64, 68, 82, 83, 91,

92, 109, 111, 114; conditions for, 91.

103

Derivative, existence of a, 161, 162.

163, 166

Descartes, iv, 165

Determinant, the sisn of the, 25 et seq..

28, 29, 30, 32, 38, 51, 52, 59, 60, 83.

85 et seq., 90. 91. 92, 93, 97, 100.

107, 111; orthogonal, 149

Differentiation, one-sided, iv, 7. 11

et seq.

Dini, 12, 136, 167
Distinctness as characteristic of an

extreme, 37, 38, 47, 50
Double curve, 54
Double point, 101

;
with distinct tan

gents, 29
; isolated, 29, 30, 31

Element of a complete structure, 174

Equation of secular variations, 107

Euclid, iii, 15, 135

Euler, 16, 18, 107; theorem of, for

homogeneous functions, 84, 155

Exceptional cases involving a squared
factor, 54, 58, 68, 97

Existence of an extreme, proof of, 135.

146

Extraordinary cases of extremes, iv. 19

Extraordinary maxima or minima, 1,

6 et seq., 17, 19, 43 et seq., 74

Extreme, or extreme value, v, 2, 53.

54; criteria for, 4, 6, 26, 92. See
Maxima and minima

Extreme curves, 53. 54

Failure of general criterion, 55
Fallacious conclusions. See Incorrect

ness of earlier theories

Fermat, iii, iv. 15, 132; method of

determining maximum and mini

mum, iii

Form. See Definite form

Fourier, iii

Fourier series, 74

191



192 THEORY OF MAXIMA AND MINIMA

Fractional powers, 178, 182

Fuchsian functions, 171

Function, rational, 166; one-valued,

166; many-valued, 169

Function-element, 138, 174
Fundamental theorem of algebra, 49

Gauss, 19, 86, 99 ; principle of
,
151 et seq.

Genocchi-Peano, 1

Geometrical interpretations, 6, 24, 31,

46, 69, 71, 97, 125
Geometrical mechanics, 139

Geometry of numbers, 174

Gergonne, 19

Goursat, 6, 28, 27, 29, 31, 126, 170,

177, 180
Greatest value, 1, 48, 94. See Upper
and lower limits

Hachette, 107

Hadamard, 147, 148, 160

Hancock, 123, 166

Hankel, 74

Harkness, 12

Hermite, 89, 106, 180

Hilbert, 170

Homogeneous functions, 49, 155

Homogeneous quadratic forms, 82, 85,
103 et seq. ; expressed as a sum of

squares, 86, 89, 91
;
with subsidiary

conditions, 114

Hudde, 165

Huygens, 16

Hypergeometric series, 170

Improper maxima and minima. See
Maxima and minima

Incorrectness of earlier theories, 33
et seq., 52

Indefinite form, 19, 49, 50, 51, 64, 68,

82, 106, 116
Indeterminate coefficients, 172

Inflection, point of, 6

Integral rational function, 168
Isolated point, 29, 31

Jacobi, 107

Jordan, 75

Konigsberger, 180

Kronecker, 106

Rummer, 106, 107

Lagrange, iii, v, 4, 18, 22, 26, 33, 43,

77, 86, 92, 99, 107, 114, 127, 131,

148, 172

Laplace, iii, 107
Least squares, 26

Least value, 1, 50, 94. See Upper and
lower limits

Left-hand differential quotient, 7, 11

Legendre, 135

Leibnitz, 3, 15
Limitation expressed through an equa

tion, 150

Lipschitz, 2, 74
Lower limit, 63, 94, 104, 136. See Upper

limit

Liiroth. See Dim

Maclaurin, iii, 3, 4, 15, 22, 77

Maxima and minima (see also Extreme

value), one of the most admirable

applications of fluxions, iv
;
condi

tions for, iv, 4, 40, 99
;
inaccuracies

in, v
;
maximum defined, 1

;
mini

mum, 1; ordinary (see under Ordi

nary etc.); extraordinary (see under

Extraordinary etc.); proper, 2, 5, 11,

17, 23, 26, 44, 45, 60, 61, 63, 74, 75;

improper, 2, 5, 17, 23, 26, 31, 50, 59,

60, 63, 75, 140 et seq., 164; abso

lute, 2
; relative, 2, 21, 96 et seq. ;

criteria for, 4, 7-12, 40-42, 43 et seq.,

48, 51, 55, 64, 67, 68, 77, 80, 81, 82,

92, 100, 102, 115, 116; geometrical
interpretation of , 6,46, 71

;
erroneous

criteria, 33
;

condition for proper
extremes, 40, 42; condition for im

proper extremes, 41, 42, 140 et seq. ;

criteria for relative maxima and

minima, 115

Mayer, iv, v, 2, 79

Mechanics, problems in, 139, 150
;

derivation of the ordinary equa
tions of, 152

Minimal surfaces, 123

Minkowski, 174

Morley. See Harkness

Neighborhood of, in the, 65, 173

Newton, discoverer of the calculus, iii

One-sided differential quotient, 7, 11

et seq.
Orbits of planets, 107

Order of a curve, 54

Ordinary maxima and minima, 1 etseq.,
17 et seq. See Maxima and minima

Osculating circle, 117

Osgood, 167, 170

Panton. See Burnside

Pappus, 15, 164

Pascal, Exercici etc., 11
; Bepertorium

etc., 130



IXDEX 193

Peano, iv, v, 2, 6, 12, 18, 21, 31, 33, 34,

52, 61, 68, 94

Pendulum, 150

Petzval, 107

Picard, 170, 180

Pierpont, 3, 7, 15, 34, 37, 177

Poincare, 170. 180

Poison, 107

Polygon. See Regular polygon
Position, 135 et seq.

Power-series, 171 et seq., 175. 179

Proper maxima or minima. See Max
ima and minima

Puiseux, 180

Quadratic form, 19
; expressed as a

sum of squares, 86 et seq., 89
; ap

plication of, 92 et seq. See Homo
geneous quadratic forms

Radius of curvature, 117

Realm, 135, 174
Reflection of a ray of light, 126 et seq.
Refraction of a ray of light, 131 et seq.

Regiomontanus, 16

Region of convergence, 167, 168

Regular function, 73

Regular point, 177

Regular polygon, 140, 142 et seq., 147
Relative maxima and minima. See

Maxima and minima
Reversion of series, 153 et seq.

Richelot, 106

Right-hand differential quotient, 7, 11

Roots of unity, 180

Salmon, 107, 120. 122

Scheeffer, v, 19, 27, 35. 36, 39, 46. 48,

50, 62, 70
Scheeffer s method, 37
Scheeffer s theorem, 43, 46, 55, 59, 60,

61, 62, 70, 72

Scheeffer s theory. 43 et seq.

Schepp. See Bohlmann
;
see also Dim

Secular variations, equation of, 107
Semi-axes of a central section, 165
Semi-definite case, iv

Semi-definite form, 19, 49. 50, 51, 52,

64, 65, 68, 70 et seq., 82, 83, 92, 93,

106, 116

Serret, v, 33, 104, 106, 136

Severus, 16

Shortest distance to a given surface,

101, 123

Simple point, 177

Simpson, 16

Singular point, 164, 177, 180 et seq.,

183, 184

Sluse, Ren&amp;lt; F. W. de, 16
Smallest value, 1

Smith, Edward, 107

Spherical triangle, 135

Squared factor. See Exceptional cases

Stolz, v, 2, 6, 11, 14. 43, 45, 46. 50, 60.

70, 79, 91. 100, 136, 155, 164, 180,

181, 187, 189
Stolzian theorems, 39 et seq., 55, 58,

70, 72

Stolz s added theorem, 45, 60
Structure of the first kind etc., 175
Sturm s theorem, 51, 106
Surfaces of second degree, 107

Sylvester, 89, 107

System of m equations, solution of,
171 et seq.

Tangent, parallel to z-axis, 6 ; com
mon to two curves, 34, 35, 36

Tangential plane, 28, 31

Tartaglia, 16

Taylor s development in series, v, 4,

5, 9, 10, 19, 24, 33, 75, 79, 80, 97,

152, 159

Taylor-Lagrange theorem, 43, 47, 77

Todhunter, 33
Transcendental curves, 36
Transcendental functions, 167, 169

Uniform. See Convergence
Upper and lower limits, 2, 12 et seq.,

55, 57, 94, 104, 136, 137

Variations, calculus of, iv, 171
Von Dantscher. See Dantscher

Voss, 2

\Veierstrass, iv. 73, 79, 86, 107, 138,

167, 168, 169. 174, 181

Wilson, E. B., 12

Wirtinger, 148

Zajaczkowski, 106

Zenodorus, 142, 147







RETURN Astronomy Mathemotics/Statistks/Computer Science LibrJL} 3 5 O
TO ^ 1 00 Evans Hall 642-3381
LOAN PERIOD 1

7 DAYS



OA3OG
U.C. BERKELEY LIBRARIES

...

JTAT.
&quot;




