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PREFACE TO TIE FIRST EDITION.

WE have endeavoured in the present work to combine some of

the modern developments of Higher Algebra with the subjects

usually included in works on the Theory of Equations. The

first ten Chapters contain all the propositions ordinarily found

in elementary treatises on the subject. In these Chapters we

have not hesitated to employ the more modern notation wher-

ever it appeared that greater simplicity or comprehensiveness

could be thereby obtained.

Regarding the algebraical and the numerical solution of

equations as essentially distinct problems, we have purposely

omitted in Chap. VI. numerical examples in illustration of the

modes of solution there given of the cubic and biquadratic

equations. Such examples do not render clearer the conception

of an algebraical solution
; and, for practical purposes, the

algebraical formula may be regarded as almost useless in the

case of equations of a degree higher than the second.

In the treatment of Elimination and Linear Transformation,

as well as in the more advanced treatment of Symmetric Func-

tions, a knowledge of Determinants is indispensable. "We have
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found it necessary, therefore, to give a Chapter on this subject.

It has been our aim to make this Chapter as simple and intelli-

gible as possible to the beginner ;
and at the same time to omit

no proposition which might be found useful in the application

of this calculus. For many of the examples in this Chapter, as

well as in other parts of the work, we are indebted to the kind-

ness of Mr. Cathcart, Fellow of Trinity College.

We have approached the consideration of Covariants and

Invariants through the medium of the functions of the diffe-

rences of the roots of equations this appearing to us the sim-

plest mode of presenting the subject to beginners. We have

attempted at the same time to show how this mode of treatment

may be brought into harmony with the more general problem of

the linear transformation of algebraic forms. In the Chapters

on this subject we have confined our attention to the quadratic,

cubic, and quartic; regarding any complete discussion of the

covariants and invariants of higher binary forms as too diffi-

cult for a work like the present.

Of the works which have afforded us assistance in the more

elementary part of the subject, we wish to mention particularly

the Traitt d* Alyebre of M. Bertrand, and the writings of the

late Professor Young* of Belfast, which have contributed so

much to extend and simplify the analysis and solution of

numerical equations.

In the more advanced portions of the subject we are in-

debted mainly, among published works, to the Lessons Intro-

to the Minimi Hiyhcr Algebra of Dr. Salmon, and the

Tli<T>/ atiil X<, Int ion of Algebraical 7v//w^'o//.v, London, 1835; Analysis and
1. 1

'

Jiit/mHlratic Equations, London, 1842; and Theory and

r'.'jiHtt'HHi* of tin- II
iff

/HI- Orders, London, 1843.
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Theorie der bindren algebraischen Formen of Clebsch
; and

in some degree to the Theorie des Formes binaires of the

Chev. F. Faa De Bruno. We must record also our obligations

in this department of the subject to Mr. Michael Eoberts, from

whose Papers in the Quarterly Journal and other periodicals,

and from whose professorial lectures in the University of

Dublin, very great assistance has been derived. Many of the

examples also are taken from Papers set by him at the Uni-

versity Examinations.

In the Chapter on the Complex Variable we have followed

closely the treatment of imaginary quantities given by M.

Briot in his Lemons d'Algebre.

In connexion with various parts of the subject several

other works have been consulted, among which may be

mentioned the treatises on Algebra by Serret, Meyer Hirsch,

and Rubini, and papers in the mathematical journals by Boole,

Cayley, Sylvester, Hermite, and others.

We have, in the last place, to express our thanks to Mr.

Eobert Graham, of Trinity College, Dublin, who has read the

proof sheets, and verified most of the examples. His thorough

acquaintance with the subject has been invaluable to us, and

many improvements throughout the work are owing to sug-

gestions made by him.

TRINITY COLLEGE,

September, 1881.



PEEFACE TO THE SECOND EDITION.

THE chief alterations in the present edition will be found in

the Chapter on Determinants, which has been considerably en-

larged ;
and in Chap. XVI., on Transformations, to which two

new sections have been added. The former of these contains a

dkcussion of Hermite's theorem relating to the limits of the

roots of an equation ;
and in the latter we have given an

account of the method of transformation from a system of two

to a system of three variables, by means of which the Theory

of Covariants and Invariants of Binary Forms receives a

simple geometrical illustration.

TRINITY COLLEGE,

December, 1885.

NOTE. The first ten Chapters of this work may be regarded as forming an

elementary course. In reading these Chapters for the first time, Students are

recommended to omit Art. 53 of Chap. V., and to confine their attention in

Chap. VI. to Arts. 55, 50, 57, 61, 62, and 63.
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THEORY OF EQUATIONS.

INTRODUCTION.

1. Definitions. Any mathematical expression involving a

quantity is called & function of that quantity.

"We shall be employed mainly with such algebraical func-

tions as are rational and integral. By a rational function of a

quantity is meant one which contains that quantity in a rational

form only ;
that is, a form free from fractional indices or radical

signs. By an integral function of a quantity is meant one in

which the quantity enters in an integral form only ;
that is,

never in the denominator of a fraction. The following expres-

sion, for example, in which n is a positive integer, is a rational

and integral algebraicalfunction of x :

ax? + bzn~* + cxn~* + ...;.,+ kx + L

It is to be observed that this definition has reference to the

variable quantity x only, of which the expression is a function.

The several coefficients
, &, c, &c., may be irrational or fractional,

and the function still remain rational and integral in x.

A function of x is represented for brevity by F(x},f(x), $(#),

or some such symbol.

The name polynomial is given to the algebraical function

to express the fact that it is constituted of a number of terms

containing different powers of x connected by the signs plus or
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minus. For certain values of the variable quantity x one poly-

nomial may become equal to another differently constituted.

The algebraical expression of such a relation is called an equa-

tion ; and any value of x which satisfies this equation is called a

root of the equation. The determination of all possible roots

constitutes the complete solution of the equation.

It is obvious that, by bringing all the terms to one side, we

may arrange any equation according to descending powers of x

in the following manner :

a %n + i a?""
1 + a2x

n~z +....+ cin-ix + an = 0.

The highest power of x in this equation being n, it is said to

be an equation of the nth
degree in x. For such an equation we

shall, in general, employ the form here written. The suffix

attached to the letter a indicates the power of x which each coef-

ficient accompanies, the sum of the exponent of x and the suffix

of a being equal to n for each term. An equation is not altered

if all its terms be divided by any quantity. We may thus, if

we please, dividing by ,
make the coefficient of xn in the above

equation equal to unity. It will often be found convenient to

make this supposition ; and in such cases the equation will be

written in the form

Xn + p^X
n~^ +pzXtl~* + . . . . +pn-l%+Pn = 0.

J An equation is said to be complete when it contains terms

involving x in all its powers from n to 0, and incomplete when
some of the terms are absent

; or, in other words, when some of

the coefficients p l9 p2) &e., are equal to zero. The term pn ,

which does not contain ar, is called the absolute term. An equa-
tion is numerical, or algebraical, according as its coefficients are

numbers, or algebraical symbols.

2. Numerical and Algebraical Equations. In many
researches in both mathematical and physical science the final

mathematical problem presents itself in the form of an equation
on whose solution that of the problem depends. It is natural,

therefore, that the attention of mathematicians should have been
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at an early stage in the history of the science directed towards

inquiries of this nature. The science of the Theory of Equa-

tions, as it now stands, has grown out of the successive attempts

of mathematicians to discover general methods for the solution

of equations of any degree. When the coefficients of an equation

are given numbers, the problem is to determine a numerical

value, or perhaps several different numerical values, which will

satisfy the equation. In this branch of the science very great

progress has been made ; and the best methods hitherto advanced

for the discovery, either exactly or approximately, of the nume-

rical values of the roots will be explained in their proper places

in this work.

Equal progress has not been made in the general solution of

equations whose coefficients are algebraical symbols. The stu-

dent is aware that the root of an equation of the second degree,

whose coefficients are such symbols, may be expressed in terms

of these coefficients in a general formula
; and that the nume-

rical roots of anyjparticular numerical equation may be obtained

by substituting in this formula the particular numbers for the

symbols. It was natural to inquire whether it was possible to

discover any such formula for the solution of equations of higher

degrees. Such results have been attained in the case of equa-

tjons of the third and fourth degrees. It will be shown that

in certain cases these formulas fail to supply the solution of

a numerical equation by substitution of the numerical coef-

ficients for the general symbols, and are, therefore, in this

respect inferior to the corresponding algebraical solution of

the quadratic.

Many attempts have been made to arrive at similar general
formulas for equations of the fifth and higher degrees; but it

may now be regarded as established by the researches of modern

analysts that it is not possible by means of radical signs, and

other signs of operation employed in common algebra, to ex-

press the root of an equation of the fifth or any higher degree
in terms of the coefficients.

3. Polynomials. From the preceding observations it is

<T B2
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plain that one important object of the science of the Theory of

Equations is the discovery of those values of the variable quan-

tity x which give to the polynomial f(x) the particular value

zero. In attempting to discover such values of x we shall be led

into many inquiries concerning the values assumed by the poly-

nomial for other values of the variable. We shall, in fact, see

in the next Chapter that, corresponding to a continuous series

of values of x varying from an infinitely great negative quan-

tity (- oo
)
to an infinitely great positive quantity (+00), f(x]

will assume also values continuously varying. The study of

such variations is a very important part of the theory of poly-

nomials. The general solution of numerical equations is, in

fact, a tentative process ;
and by examining the values assumed

by the polynomial for certain arbitrarily assumed values of the

variable, we shall be led, if not to the root itself, at least to an

indication of the neighbourhood in which it exists, and within

which our further approximation must be carried on.

A polynomial is sometimes called a quantic. It is convenient

to have distinct names for the quantics of various successive

degrees. The terms quadratic (or quadric), cubic, biquadratic (or

quartic), quintic, sextic, &c., are used to represent quantics of the

2nd, 3rd, 4th, 5th, 6th, &c., degrees ;
and the equations obtained

by equating these quantics to zero are called quadratic, cubic,

biquadratic, &c., equations, respectively.
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GENERAL PROPERTIES OF POLYNOMIALS.

4. IN tracing the changes of value of a polynomial correspond-

ing to changes in the variable, we shall first inquire what terms

in the polynomial are most important when values very great

or very small are assigned to x. This inquiry will form the

subject of the present and succeeding Articles.

Writing the polynomial in the form

( a^ az l _! 1 an 1

it is plain that its value tends to become equal to a^x" as x tends

towards oo . The following theorem will determine a quantity

such that the substitution of this, or of any greater quantity,

for a? will have the effect of making the term aQx
n exceed the

sum of all the others. In what follows we suppose a to be

positive; and in general in the treatment of polynomials and

equations the highest term is supposed to be written with the

positive sign.

Theorem. If in the polynomial

anxn + a^' 1 + a2 af*~
z + . . . + an_iX + an

the value + 1, or any greater value, be substitutedfor x, where au
a

is that one of the coefficients a^ #2> # whose numerical value is

yreatest, irrespective of sign, the term containing the highest power

of x will exceed the sum of all the terms which follow.

The inequality

an
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is satisfied by any value of x which makes

a^x
n > ak (x

n~ l + %n
~2 + . . . + x + 1),

where ak is the greatest among the coefficients a 1?
az ,

. . . ffw-i,

without regard to sign. Summing the geometric series within

the brackets, we have

/yttl _ "I
sj.

a*xn >ak
---

--, or xn > - (x
n -

1),x-1 (#-1)

which is satisfied if aQ (x
-

1) be > or = a^

that is x > or = + 1.

Co

The theorem here proved is useful in supplying, when the

coefficients of the polynomial are given numbers, a number such

that when x receives values nearer to + oo the polynomial will

preserve constantly a positive sign. If we change the sign of xy

the first term will retain its sign if n be even, and will become

negative if n be odd
;
so that the theorem also supplies a nega-

tive value of a, such that for any value nearer to - oo the

polynomial will retain constantly a positive sign if n be even,

and a negative sign if n be odd. The [constitution of the poly-

nomial is, in general, such that limits much nearer to zero than

those here arrived at can be found beyond which the function

preserves the same sign ;
for in the above proof we have taken

the most unfavourable case, viz. that in which all the coefficients

except the first are negative, and each equal to ak ;
whereas in

general the coefficients may be positive, negative, or zero.

Several theorems, having for their object the discovery of such

closer limits, will be given in a subsequent Chapter.

5. We now proceed to inquire what is the most important
term in a polynomial when the value] of x is indefinitely dimi-

nished
; and to determine a quantityJsuch that the substitution

of this, or of any smaller quantity, for x will 'have the effect of

giving such term the preponderance.

Theorem. If in the polynom i<d
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the value
,
or any smaller value, be substituted for x, where ak

is the greatest coefficient exclusive of an ,
the term an will be nume-

rically greater than the sum of all the others.

To prove this, let x = -
; then by the theorem of Art. 4,

J
ak being now the greatest among the coefficients #, a

ly . . . an. ly

without regard to sign, the value + 1, or any greater value of
(in

y, will make

an y
n > an^y

n~ l + an.2 y
n^ + . . . + a,y + aQy11 1

that is, an > ffw_x
- + an_, + . . . a

;

y yr y
n

hence the value
,
or any less value of x, will make

This proposition is often stated in a different manner, as

follows : Values so small may be assigned to x as to make th<

polynomial

less than any assigned quantity.

This statement of the theorem follows at once from the above

proof, since an may be taken to be the assigned quantity.

There is also another useful statement of the theorem, as

follows : When the variable x receives a very small value
,
the

of the polynomial

is the same as the sign of its first term

This appears by writing the expression in the form

. . + a xtl~ 1

} ;

for when a value sufficiently small is given to x, the numerical

value of the term an_i exceeds the sum of the other terms of

expression within the brackets, and the sign of that expression

will consequently depend on the sign of #w_i.
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6. Change of Form of a Polynomial corresponding

to an increase or diminution of the Variable. Derived

Functions. We shall now examine the form assumed by the

polynomial when x + h is substituted for x. If, in what follows,

h be supposed essentially positive, the resulting form will corre-

spond to an increase of the variable
;
and the form corresponding

to a diminution of x will be obtained from this by changing the

sign of h in the result.

When x is changed to x + h,f(x) becomes /(# + A), or

(# + h)* + a * (
X + ^)"~

1 + a~ (
X + ^)"~

2 + + #?*-! (# + h) + Un-

Let each term of this expression be expanded by the binomial

theorem, and the result arranged according to ascending powers

of h. We then have

a xn + 1 #
w~ i + tf3#

w~2 + . . . + flw_ 2#
2

4- an-\x + an

+ h {na xn
~l + (n

-
1) 1 aJ

w-3 + (n
-
2) a2xn

~z + . . .

i . 2 .

I
n . n - 1 . . . 2 . 1

)
.

It will be observed that the part of this expression indepen-
dent of h isf(x) (a result obvious d priori) 9

and that the succes-

sive coefficients of the different powers of h are functions of x of

degrees diminishing by unity. It will be further observed that

the coefficient of h may be derived from/(#) in the following

manner: Let each term in/(#) be multiplied by the exponent
of x in that term, and let the exponent of x in the term be

diminished by unity, the sign being retained
;
the sum of all

the terms of f(x) treated in this way will constitute a polynomial
of dimensions one degree lower than those of f(x). This poly-
nomial is called the first derived function of /(a?). It is usual to

represent this function by the notation /'(#). The coefficient
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A2

of
^ may be derived from/'(.r) by a process the same as that

employed in deriving /'(#) from/(#), or by the operation twice

performed on/(#). This coefficient is represented by /"(#), and

is called the second derivedfunction of /(#). In like manner the

succeeding coefficients may all be derived by successive opera-

tions of this character; so that, employing the notation here

indicated, we may write the result as follows :

f(x + A) =/(*) +/'(*) h +'Y%
If + *+...+ flo h".

It may be observed that, since the interchange of x and h

does not alter /(a? + A), the expansion may also be written in the

form

'/(x + A) -/(A) +/'(/<)*

We shall in general employ the notation here explained;

but on certain occasions when it is necessary to deal with derived

functions beyond the first two or three, it will be found more

convenient to use suffixes instead of the accents here employed.

The expansion will then be written as follows :

h)

EXAMPLE.

Find the result of substituting x + h for x in the polynomial 4z3'+ Qx2- -7x + 4.

Here

/(*) =4^ + 6^-7^ + 4,

f'(x) =12o;2+ 12s- 7,

f"(x) =24^;+ 12,

f'"(,v}
= 2;

and the result is

i

The student may verify this result by direct substitution.

7. Continuity ofa Rational Integral Function of a\

If in a rational and integral function f(x) the value of x be
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made to vary, by indefinitely small increments, from one quan-

tity a to a greater quantity 6, we proceed to prove that f(x) at

the same time varies also by indefinitely small increments
;
in

other words, that/(#) varies continuously with x.

Let x be increased from a to a + h. The corresponding incre-

ment of f(x) is

/( + *)-/();

and this is equal, by Art. 6, to

in which expression all the coefficients f(a), f"(a), &c., are finite

quantities. Now, by the theorem of Art. 5, this latter expres-

sion may, by taking h small enough, be made to assume a value

less than any assigned quantity ; so that the difference between

f(a + h} and/(#) may be made as small as we please, and will

ultimately vanish with h. The same is true during all stages of

the variation of x from a to b
;
thus the continuity of the func-

tion/^) is established.

It is to be observed that it is not here proved that/ (x)

increases continuously from f(d) to f(b) . It may either increase

or diminish, or at one time increase, and at another diminish
;

but the above proof shows that it cannot pass per saltmn from

one value to another
;
and that, consequently, amongst the

values assumed by i/(^) while x increases continuously from a to

b must be included all values between /(a) and/(6). The sign

of f'(d) will determine whetherf(x) is increasing or diminishing;

for it appears by Art. 5 that when h is small enough the sign of

the total increment will depend on that of f'(a] h. We thus

observe that whenf (a) is positive f(x) is increasing with x ; and

whenf(a) is negative f(x) is diminishing as x increases.

8. Form of the Quotient and Remainder when a

Polynomial is divided by a Binomial. Let the quotient,

when
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is divided by x -
h, be

This we shall represent by Q, and the remainder by E. We
have then the following equation :

The meaning of this equation is, that when Q is multiplied

by x - h, andR added, the result must be identical, term for term,

with/(a?). In order to distinguish equations of the kind here

explained from equations which are not identities, it will often

be found convenient to use the symbol here employed in place

of .the usual symbol of equality. The right-hand side of the

identity is

- hbj -libn^\ - hbn.i.

Equating the coefficients of x on both sides, we get the fol-

lowing series of equations to determine b09
b

l9
b*

9
. . . bn.ly R :

b = a09

bi = b h + 0i

bn-i= bn_Ji + _

R = b&.\h + an .

These equations supply a ready method of calculating in

succession the coefficients b09 b l9 &G. of the quotient, and the

remainder R. For this purpose we write the series of operations

in the following manner :

bji,

bi 9 62, 63 , .... bn-i 9
R-

In the first line are written down the successive coefficients
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off(x). The first term in the second line is obtained by multi-

plying a (or b09 which is equal to it) by h. The product b h is

placed under i, and then added to it in order to obtain the

term bi in the third line. This term, when obtained, is multi-

plied in its turn by A, and placed under a2 . The product is

added to #2 to obtain the second figure bz in the third line. The

repetition of this process furnishes in succession all the coef-

ficients of the quotient, the last figure thus obtained being the

remainder. A. few examples will make this plain.

EXAMPLES.

1. Find the quotient and remainder when 3*4 - 5#3 + 10*2 + llx - 61 is divided

by x - 3.

The calculation is arranged as follows :

3-5 10 11 - 61.

9 12 66 231.

4 22 77 170.

Thus the quotient is 3*3 + 4*2 + 22* + 77, and the remainder 170.

2. Find the quotient and remainder when *3 + 5*2 + 3* + 2 is divided hy x - 1.

Ana. Q =

3. Find Q and R when x5 - 4** + 7*3 - llx - 13 is divided by x - 5.

N.B. When any term in a polynomial is absent, care must be taken to supply

the place of its coefficient by zero in writing down the coefficients of /(*). In this

example, therefore, the series in the first line will be

;i -4 7 o -11 -is.

Ana. Q = ** + x* + 12** + 60* + 289
; =1432.

4. Find Q and It when *9 + 3*7 - 15*2 + 2 is divided by x - 2.

Ana. C} = *8 + 2*7 + 7*6 +14*5 + 28*4 + 56*3 + 112*2 + 209* + 418; .# = 838.

5. Find Q and It when x5 + *2 - 10* + 113 is divided by * + 4.

Ans. Q = x*- 4*3 + 16*2 -63* + 242; = -855.

9. Tabulation of Functions. The operation explained

in the preceding Article affords a convenient practical method

of calculating the numerical value of a polynomial whose coef-

ficients are given numbers when any number is substituted for x.

For, the equation

f(x)^(x-h)Q + K,

since its two members are identically equal, must be satisfied

when any quantity whatever is substituted for x. Let x =
/?,
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then/(/*) = E
9
x - h being = 0, and Q remaining finite. Hence

the result of substituting h for x in/(#) is the remainder when

/'(#) is divided by x -
h, and can be calculated rapidly by the

process of the last Article.

For example, the result of substituting 3 for x in the poly-
nomial of Ex. 1, Art. 8, viz.,

is 170, this being the remainder after division by x - 3. The

student can verify this by actual substitution.

Again, the result of substituting
- 4 for x in

is - 855, as appears from Ex. 5, Art. 8. We saw in Art. 7 that

as x receives a continuous series of values increasing from - oo to

+ GO
, f(x) will pass through a corresponding continuous series.

If we substitute in succession for x, in a polynomial whose coef-

ficients are given numbers, a series of numbers such as

. ..-6,-4,-3,-2,-l, 0, 1, 2, 3, 4, 5,...,

and calculate the corresponding values of/(), the process may
be called the tabulation of the function.

EXAMPLES.

1. Tabulate the trinomial 2z2 + x -
6, for the following values of x :

-4, -3, -2, -1, 0, 1, 2, 3, 4.

Values of x,
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series of changes in the variable which it contains, it is plain

that great advantage will be derived from any mode of repre-

sentation which renders possible a rapid comparison with one

another of the different values which the function may assume.

In the case where the function in question is a polynomial with

numerical coefficients, to any assumed value of x will correspond

one definite value of f(x). We proceed to explain a mode of

graphic representation by which it is possible to exhibit to the

eye the several values of f(x) corresponding to the different

values of x.

Let two right lines OX, OT
(fig. 1) cut one another at right p.

O A BC

/

angles, and be produced indefinitely Q"

in both directions. These lines are

called the axis of x and axis of y, |

respectively. Lines, such as OA,
measured on the axis of x at the lp

r

right-hand side of 0, are regarded
as positive ;

and those, such as

OA, measured at the left-hand

side, as negative. Lines parallel

to OF which are above XX ', such as AP or &Q', are positive ;

and those below it, such as AT or AP, are negative. These

conventions are already familiar to the student acquainted with

Trigonometry.

Any arbitrary length may now be taken on OX as unity,

and any number positive or negative will be represented by a

line measured on XX f

: the series of numbers increasing from

to + oo in the direction OX, and diminishing from to - oo in the

direction OX'. Let any number m be represented by OA ; cal-

culate/(m) ;
from A draw AP parallel to OF to represent f(m)

in magnitude on the same scale as that on which OA represents

m, and to represent by its position above or below the line OX
the sign oif(m). Corresponding to the different values of m
represented by OA, OB, OC, &o., we shall have a series of points

P, Q, R, &c., which, when we suppose the series of values of
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in indefinitely increased so as to include all numbers between
- co and + oo

,
will trace out a continuous curved line. This

curve will, by the distances of its several points from the line

OX, exhibit to the eye the several values of the function f(x).
The process here explained is also called tracing the function

f(x). The student acquainted with analytic geometry will observe

that it is equivalent to tracing the plane curve whose equation

is y =/(*).

In the practical application of this method it is well to begin

by laying down the points on the curve corresponding to certain

small integral values of #, positive and negative. It will then

in general be possible to draw through these points a curve

which will exhibit the progress of the function, and give a general

idea of its character. The accuracy of the representation will

of course increase with the number of points determined between

any two given values of the variable. When any portion of the

curve between two proposed limits has to be examined with care,

it will often be necessary to substitute values of the variable

separated by smaller intervals than unity. The following ex-

amples will illustrate these principles.

EXAMPLES.

1 . Trace the trinomial 2#2 + x 6.

The unit of length taken is one-sixth of

the line OD in fig. 2.

In Ex. 1, Art. 9, the values off(x) are

given corresponding to the integral values

of x from 4 to + 4, inclusive.

By means of these values we obtain

the positions of nine points on the curve
;

seven of which, A, B, 0, D, E, F, G, are

here represented, the other two correspond-

ing to values of f(x) which lie out of the

limits of the figure.

The student will find it a useful exercise

to trace the curve more minutely between

the points C and JE in the figure, viz. by

calculating the values of/(#) corresponding
'' '^- -

to all values of x between 1 and 1 separated by small intervals, say of one-tenth,

as is done in the following examjil".
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2. Trace the polynomial

This is already tabulated in Art. 9 for values of x between 4 and 4.

It may be observed, as an exercise on Art. 4, that this function retains positive

values for all positive values of x greater than 2 '7, and negative values for all

values of x nearer to GO than 2'7. The

curve will, then, if it cuts the axis of x at all,

cut it at a point (or points) corresponding to

some value (or values) of x between 2-7 and

+ 2-7 ; so that if our object is to determine, or

approximate to, the positions of the roots of the

equation f(x) = 0, the tabulation may be con-

fined to the interval between - 2-7 and 2*7.

This is a case in which the substitution of

integral values only of x gives very little help

towards the tracing of the curve, and where,

consequently, smaller intervals have to be ex-

amined. We give the tabulation of the func-

tion for intervals of one-tenth between the

integers 1, 0; 0, 1
; 1, 2. From these values

the positions of the corresponding points on

the curve may be approximately ascertained,

and the curve traced as in fig. 3.

X

Y'

Fig. 3.

Values of x

/(*)

Values of x

, /(*)

-15-96

-1

6 5-94

-10-8

2

5-6

-7

-6-46

3

5-01

4

4-32

-5 -4

2-24

2-64

-2

5-04

1-04

-1

5-72

42

Values

/(*)

1-1

16

1-2 1-3

54

1-4

1-52

1-5

5-04

1-7

7-7

1-8

11-04

1-9

15-12 20

The curve traced in Ex. 1 cuts the axis of a? in two points

(a number equal to the degree of the polynomial) : in other

words, there are two values of x for which the value of the given

polynomial is zero
;
these are the roots of the equation 2xz + x -

6 = 0. viz.,
-

2, and 1/5. Similarly, the curve traced in Ex. 2

cuts the axis in three points, viz., the points corresponding to the

roots of the cubic equation 10#3 - 17#2 + x + 6 = 0. The curve
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representing a given polynomial may not cut the axis of a: at

all, or may cut it in a number of points less than the degree of

the polynomial. Such cases correspond to the imaginary roots

of equations, as will appear more fully in the next Chapter. For

example, the curve which represents the polynomial 2^2 + x + 2

will, when traced, lie entirely above the axis of x
;
in fact, since

this function differs from the function of Ex. 1 only by the ad-

dition of the constant quantity 8, each value of /(a?) is obtained

by adding 8 to the previously calculated value, and the entire

curve can be obtained by simply supposing the previously traced

curve to be moved up parallel to the axis of y through a distance

equal to 8 of the units. It is evident, by the solution of the

equation 2xz + x + 2 =
0, that the two values of x which render

the polynomial zero are in this case imaginary. Whenever the

number of points in which the curve cuts the axis of x falls short

of the degree of the polynomial, it is customary to speak of the

curve as cutting the line in imaginary points.

11. Haxima and Minima Values of Polynomials.
It is apparent from the considerations established in the pre-

ceding Articles, that as the variable x changes from - oo to + oo
,

the function f(x) may undergo many variations. It may go
on for a certain period increasing, and then, ceasing to increase,

may commence to diminish ; it may then cease to diminish and

commence again to increase
;

after which another period of

diminution may arrive, or the function may (as in the last

example of the preceding Art.) go on then continually in-

creasing. At a stage where the function ceases to increase

and commences to diminish, it is said to have attained a

maximum value
;
and when it ceases to diminish and com-

mences to increase, it is said to have attained a minimum

value. A polynomial may have several maxima, or several

minima values, or both : the number depending in general on

the degree of the function. Nothing exhibits so well as a

graphic representation the occurrence of such a maximum or

minimum value
;
as well as the various fluctuations of which

the values of a polynomial are susceptible.

c



18 General Properties of Polynomials.

A knowledge of the maxima and minima values of a func-

tion, giving the position of the points where the curve bends

with reference to the axis, is often of great assistance in tracing

the curve corresponding to a given polynomial. It will be

shown in a subsequent chapter that the determination of these

points depends on the solution of an equation one degree lower

than that of the given function.



CHAPTER II.

GENERAL PROPERTIES OF EQUATIONS.

12. THE process of tracing the function /(#) explained in Art. 10

may be employed for the purpose of ascertaining approximately

the real roots of a given numerical equation ;
for when the cor-

responding curve is accurately traced, the real roots of the equa-

tion f(x) = can be obtained approximately by measuring the

distances from the origin of its points of intersection with the

axis. With a view to the more accurate numerical solution of

this problem, as well as the general discussion of equations

both numerical and algebraical, we proceed to establish in the

present Chapter the most important general properties of equa-

tions having reference to the existence, and number of the roots,

and the distinction between real and imaginary roots.

By the aid of the following theorem the existence of a real

root in an equation may often be established :

Theorem. If two real quantities a and b be substituted for

the unknown quantity x in any polynomialf(x), and if theyfurnish

results having different signs, one plus and the other minus ; then the

equationf(x)
= must have at least one real root intermediate in

catno between a and b.

This theorem is an immediate consequence of the property

of the continuity of the function f(x) established in Art. 7
;
for

since f(x) changes continuously from/() to/(), and therefore

passes through all the intermediate values, while x changes from

a to b
;
and since one of these quantities, /(a) or f(b), is positive,

and the other negative, it follows that for some value of x inter-

mediate between a and &, f(x) must attain the value zero which

is intermediate between /(a) and/().
c2
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The student will assist his conception of this theorem by
reference to the graphic method of representation. What is

here proved, and what will appear obvious from the figure, is,

that if there exist two points of the curved line representing the

polynomial on opposite sides of the axis 02", then the curve

joining these points must cut that axis at least once. It will

also be evident from the figure that several values may exist

between a and b for which f(x) =
0, i. e. for which the curve cuts

the axis. For example, in fig. 3, Art. 10, x = - 2 gives a nega-
tive value (- 144), and x = 2 gives a positive value (20), and be-

tween these points of the curve there exist three points of section

of the axis of x.f

Corollary. If there exist no real quantity ichich, substituted

for x, makes f(x) =
0, thenf(x) must be positive for every real value

of x.

For it is evident (Art. 4) that x= oc makes f(x) positive ; and

no value of #, therefore, can make it negative ;
for if there were

any such value, the equation would by the theorem of this

Article have a real root, which is contrary to our present hypo-

thesis. With reference to the graphic mode of representation

this theorem may be expressed by saying that when the equa-

tion /(#)
= has no real root, the curve representing the poly-

nomial f(x) must lie entirely above the axis of x.

13. Theorem. Every equation of an odd degree has at least

one real root of a sign opposite to that of its last term.

This is an immediate consequence of the theorem in the last

Article. Substitute in 'succession - <x>
, 0, GO for x in the poly-

nomial/^). The results are, n being odd (see Art. 4),

for x = - oo
, f(x) is negative ; t

x =
0, sign of /(#) is the same as that of an ;

x = + oo ,/(#) is positive.

If an is positive, the equation must have a real root between - oo

and 0, i. e. a real negative root
;
and if an is negative, the equa-
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tion must have a real root between and oo
,

i. e. a real positive

root. The theorem is thus proved.

14. Theorem. Every equation of an even degree, whose last

term is negative, has at least two real roots, one positive and the

other negative.

The results of substituting
- oo

, 0, oo are in this case

-GO, +,

0, -,

+ 00, +;

hence there is a real root between - oo and 0, and another be-

tween and + oo
;

/. e. there exist at least one real negative, and

one real positive root.

We have contented ourselves in both this and the preceding

Articles with proving the existence of roots, and for this purpose

it is sufficient to substitute very large positive or negative values,

as we have done, for x. It is of course possible to narrow the

limits within which the roots lie by the aid of the theorem of

Art. (4), and still more by the aid of the theorems respecting

the limits of the roots to be given in a subsequent Chapter.

15. Existence of a Root in the General Equation.

Imaginary Roots. We have now proved the existence of a

real root in the case of every

equation except one of an even

degree whose last term is positive.

Such an equation may have no

real root at all. It is necessary

then to examine whether, in the

absence of real values, there may
not be values involving the ima-

ginary expression */- 1, which,

when substituted for x, reduce the

polynomial to zero
;
or whether

there may not be in certain cases

both real and imaginary values

of the variable which satisfy the equation.

Fig. 4.

We take a simple
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example to illustrate the occurrence of such imaginary roots.

As already remarked (Art. 10), the curve corresponding to the

polynomial
/(a?)

3 2a? + x + 2

lies entirely above the axis of #, as in fig. 4. The equation

f(x)
= has no real roots

;
but it has the two imaginary roots

as is evident by the solution of the quadratic. We observe,

therefore, that in the absence of any real values there are in

this case two imaginary expressions which reduce the polynomial
to zero.

The general proposition of which this furnishes an illustra-

tion is, that Every rational integral equation

a^x
n + a v x

n~ l + azx
n~l+ . . . + an.iX + an =

must have a root of theform

a and ($ being real finite quantities. This statement includes

both real and imaginary roots, the former corresponding to the

value /3
= 0.

As the proof of this proposition involves principles which

could not conveniently have been introduced hitherto, and

which will present themselves more naturally for discussion

in subsequent parts of the work, we defer the demonstration

until these principles have been established. For the present,

therefore, we assume the proposition, and proceed to derive

certain consequences from it.

16. Theorem. Every equation of n dimensions has n roots,

and no more.

We first observe that if any quantity h is a root of the equa-

tion/^) =
0, then/(#) is divisible by x-h without a remainder.

This is evident from Art. 9
;
for if /(/*)

=
0, i. e. if h is a root

=0, ,Rmustbe=0.
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Let, now, the given equation be

/(*) s xn +p l x
n~ l + p,x

n~z + ... +pn. l x +pn = 0.

This equation must have a root, real or imaginary (Art. 15),
which we shall denote by the symbol a,. Let the quotient, when

f(x) is divided by x -
eti, be ^ l (x) ;

we have then the identical

equation

/()-(-!> ft ()
;

Again, the equation fa (x)
=

0, which is of n - 1 dimensions, must
have a root, which we represent by a2 . Let the quotient ob-

tained by dividing fa (a) by x - a2 be fa \x) . Hence

*(*).*(*-*)#(*)

and /. f(x) ^(x- ai)(x- a2) fa (x) ,

where fa (x) is of n - 2 dimensions.

Proceeding in this manner, we prove that f(x) consists of the

product of n factors, each containing x in the first degree, and a

numerical factor
(f>n (x) . Comparing the coefficients of #n

, it is

plain that fat (x)
= 1. Thus we prove the identical equation

/(0)(0-Oi)(0-ab)(0-) ..... (x-an. l)(x-a n).

It is evident that the substitution of any one of the quanti-

ties cti, a2 ,
. . . an for x in the right-hand member of this equation

will reduce that member to zero, and will therefore reduce f(x)

to zero
;
that is to say, the equation f(x) = has for roots the n

quantities <n, a2 ,
a s . . . an_i, an . And it can have no other roots

;

for if any quantity other than one of the quantities a 1? a2 ,
. . . an

be substituted in the right-hand member of the above equation,

the factors will be all different from, zero, and therefore the pro-

duct cannot vanish.

Corollary. Two polynomials of the nth
degree cannot be equal

(to
one another for more than n values of the variable without bcimj

completely identical.

For if their difference be equated to zero, we obtain an equa-

tion of
t^^^^egree,

which can be satisfied by n values only of

the variable^SHikeach coefficient be separately equal to zero.
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The theorem of this Article, although of no assistance in the

solution of the equation f(x)
=

0, enables us to solve completely

the converse problem, i. e. to find the equation whose roots are

any n given quantities. The required equation is obtained by

multiplying together the n simple factors formed by subtract-

ing from x each of the given roots. By the aid of the present

theorem also, when any (one or more) of the roots of a given

equation are known, the equation containing the remaining
roots may be obtained. For this purpose it is only necessary

to divide the given equation by the product of the given bino-

mial factors. The quotient will be the required polynomial

composed of the remaining factors.

EXAMPLES.

1. Find the equation whose roots are

-3, -1, 4, 5.

Am. s* - 5s8 - 13s3 + 53#+ 60 = 0.

2. The equation
x* _ 6*3+ 8.*"- 17* + 10 =

has a root 5 ; find the equation containing the remaining roots.

Use the method of division of Art. 8.

Ans. x* - x 1 + 2>x - 2 = 0.

3. Solve the equation

a;
4 -16a;3 + 86*2 -l76* +105 = 0,

two roots being 1 and 7.

Ans. The other two roots are 3, 5.

4. Form the equation whose roots are

3 1

-2'
3

'

7-

Ans. Hz3 - 23z2 - 60z + 9 = 0.

5. Solve the cubic equation

Here it is evident that x = 1 satisfies the equation. Divide by x - 1, and solve the

resulting quadratic. The two roots are found to be

.i+iy-a, __'^.
6. Form an equation with rational coefficients which shall have for a root the

irrational expression
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This expression has four different values according to the'Iitferent combinatk -5

of the radical signs, viz.

\/P-V<l, -r

The required equation is, therefore,

(x
- </p -\/q) (x + */P + vA) (x

~VP + V'l} (* + VP ~ VI} = 0,

or, finally,
z4 - 2 (p -f ?) X* + (p

-
?)

2= 0.

17. Equal Roots. It must be observed that the n factors

of which a polynomial f(x] consists need not be all different

from one another. The factor x -
a, for example, may occur in

the second, or any higher power not superior to n. In this case

the equation f(x)
= is still said to have n roots, two or more

being now equal to one another ; and the root a is called a mul-

tiple root of the equation : double, triple, &c., according to the

number of times the factor is repeated.

A reference to the graphic construction in Art. 10 (fig. 3)

will help to explain the occurrence of multiple roots. We see

by an inspection of the figure that the two positive roots of the

equation 10^3 - 17x2 + x + 6 = are nearly equal, and we may
conceive that a slight addition to the absolute term of this poly-

nomial, which is, as already explained, equivalent to a small

parallel movement upwards of the whole curve, would have the

effect of rendering equal the roots of the equation thus altered.

In that case the line OX would no longer cut the curve in two

distinct points, but would touch it. Now, when a line touches a

curve it is properly said to meet the curve, not once, but in two

coincident points. The student acquainted with the theory of

plane curves will have no difficulty in illustrating in a similar

manner the occurrence of a triple or higher multiple root.

Equal roots form the connecting link between real and

imaginary roots. We have just seen that a small change in the

form of a polynomial may convert it from one having real roots

into another in which two of the real roots become equal. A fur-

ther small change may convert it into a form in which the two
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roots become in&ginary. Let us suppose that the above poly-

nomial is further altered by another small addition to the abso-

lute term. Me shall then have a graphic representation in which

the axis /X cuts the curve in only one real point, viz., that cor-

respor/ng to the negative root, the two points of section corre-

sponding
to the two positive roots having now disappeared.

Consider, for example, the polynomial 10#3 - 17#2 + x + 28,

which is obtained from that of Ex. 2, Art. 10, by the' addition

of 22. The student can easily construct the figure : the point

corresponding toA in fig. 3 will now lie much above the axis of x.

Divide by x + 1, and obtain the trinomial 10#- - 27'x + 28 which

contains the remaining two roots. They are easily found to be

27 v/391 /"
lj 20" -^0^~

We observe in this case, as- well as in the example of Art. 15,

that when a change of form of the polynomial causes one real

root to disappear, a second also disappears at the same time, and

the two are replaced by a pair of imaginary roots. The reason

of this will be apparent from tjie proposition of the following

Article.

18. Imaginary Roots enter Equations in Pairs.

The proposition to be now proved may be stated as follows :

If an equation f(x) =
0, ichose coefficients are all real quantities,

have for a root the imaginary expression a + j3 v/- 1, it must also

have for a root the conjugate imaginary expression a -
fly 1-

We have the following identity :

Let the polynomial f(x) be divided by the second member of

this identity,, and if possible let there be a remainder Rx + R'.

We have then the identical equation

where Q is the quotient, of n - 2 dimensions in x. Substitute in
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this identity a + j3 v/- 1 for x. This, by hypothesis, causes /(*)
to vanish. It also causes (x

-
a)

3 + /3
2
to vanish. Hence

From this we obtain the two equations

since the real and imaginary parts cannot destroy one another
;

hence

Thus the remainder Rx + R' vanishes
; and, therefore, /(.r) is

divisible without remainder by the product of the two factors

The equation has, consequently, the root a-j3'<v/- 1 as well

as the root a + ft v/- 1.

Thus the total number of imaginary roots in an equation
with real coefficients is always even ; and every polynomial may
be regarded as composed of real factors, each pair of imaginary
roots producing a real quadratic factor, and each real root pro-

ducing a real simple factor. The actual resolution of the poly-

nomial into these factors constitutes the complete solution of the

equation.

We observed in Art. 17 that equal roots may be considered

as the connecting link between real and imaginary roots. This

statement may now be regarded from another point of view.

Suppose a polynomial has the quadratic factor (#-a)
2 +

, and

let its form be altered by means of slight alterations in the value

of k. When k is negative, the quadratic factor gives a pair of real

roots
; when k = 0, this factor has two equal roots, a

;
when k is

positive, the factor has two imaginary roots.

A proof exactly similar to that above given shows that nun/

roots, of the form a y/y, enter equations whose coefficient* arc

rational in pair*.
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EXAMPLES.

1. Form a rational cubic equation which shall have for roots

1, 3

Ans. *3-7

2. Form a rational equation which shall have for two of its roots

Ans. z*-12x* + l2x*-3l2x + 676 = 0.

3. Solve the equation
*4 + 2^-5*2 + 6z + 2 = 0,

which has a root

Ans. The roots are -2 + \/ 3,

4. Solve the equation

one root being

2 + V^T.
-4s. The roots are 2,

19. Descartes' Rule of Signs Positive Roots. This

rule, which enables us, by the mere inspection of a given equa-

tion, to assign a superior limit to the number of its positive

roots, may be enunciated as follows : No equation can have wore

positive roots than it has changes of sign from + to -, andfrom - to

+, in the terms of its first member.

We shall content ourselves for the present with the proof

which is usually given, and which is rather a verification than

a general demonstration of this celebrated theorem of Descartes.

It will be subsequently shown that the rule just enunciated, and

other similar rules which were discovered by early investigators

relative to the number of the positive, negative, and imaginary
roots of equations, are immediate deductions from the more

general theorems of Budan and Fourier.

Let the signs of a polynomial taken at random succeed each

other in the following order :

+ + - + --- + + - + -.

In this there are in all seven changes of sign, including

changes from + to -, and from - to +. It is proposed to show
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that if this polynomial be multiplied by a binomial whose signs,

corresponding to a positive root, are + -, the resulting poly-
nomial will have at least one more change of sigh than the

original.

We write down only the signs which occur in the operation
as follows :

f + .+ --- + + - + -

+ - + + H-- - + - +

Here in the third line the ambiguous sign is placed wher-

ever there are two terms with different signs to be added. We
observe in this case, and it will readily appear also for every
other arrangement, that the effect of the process is to introduce

the ambiguous sign wherever the sign + follows -f, or - follows -,

in the original polynomial. The number of variations of sign

is never diminished. There is, moreover, always one variation

added at the end. This is obvious in the above instance, where the

original polynomial terminates with a variation
;

if it terminate

with a continuation of sign, it will equally appear that the cor-

responding ambiguity in the resulting polynomial must furnish

one additional variation either with the preceding or with the

superadded sign. Thus, in even the most unfavourable case :

that, namely, in which the continuations of sign in the original

remain continuations in the resulting polynomial, there is one

variation added ; and we may conclude in general that the

effect of the multiplication of a -polynomial by a binomial

factor x - a is to introduce at least one additional change of

sign.

Suppose now a polynomial formed of the product of the

factors corresponding to the negative and imaginary roots of an

equation ; the effect of multiplying this by each of the factors

x -
a, x -

/3, x -
y, &c., corresponding to the positive roots

a, |3, 7, &c., is to introduce at least one change of sign for

each; so that when the complete product is formed containing
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all the roots, we conclude that the resulting polynomial has at

least as many changes of sign as it has positive roots. This is

Descartes' proposition.

20. Descartes' Rule of Signs Negative Roots. In

order to give the most advantageous statement to Descartes' rule

in the case of negative roots, we first prove that if - x be substi-

tuted for x in the equation /(#) =
0, the resulting equation will

have the same roots as the original except that their signs will

be changed. This follows from the identical equation of Art. 16

f(x)
= (x- aO (x

- a2) (x
- a3)

. . . . (x
-
a),

from which we derive

From this it is evident that the roots of/(-#) = are

d

Hence the negative roots of/(#) are positive roots of/(-#), and

we may enunciate Descartes' rule for negative roots as fol-

lows : No equation can have a greater number of negative roots

than there are changes of sign in the terms of the polynomial f(-x).

21. Use of Descartes' Rule in proving the existence

of Imaginary Roots. It is often possible to detect the

existence of imaginary roots in equations by the application of

Descartes' rule
;
for ifjt should happen that tha ^nm jrgjfJTg

greatest possible number of positivejroots,added to the greatest

possible number^oFnegative roots^jsjess than the degree of the

equatiojnjjjge
are suTe^fjbhe^xistence^f imaginary roots. Take,

for example, the equation

This equation, having only one variation, cannot have more than

one positive root. Now, changing x into -
#, we get

and since this has only one variation, the original equation can-

not have more than one negative root. Hence, in the proposed
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equation there cannot exist more than two real roots. It lias,

therefore, at least six imaginary roots. This application of

Descartes' rule is available only in the case of incomplete

equations ;
for it is easily seen that the sum of the number of

variations in f(x) and/(-rr) is exactly equal to the degree of

the equation when it is complete.

22. Theorem. //' two numbers a and b, substitutedfor x in

the polynomialf(x), give results with contrary signs, an odd number

of real roots of the equation f(x]
= lies between them; and if they

give results with the same sign, either no real root or an even num-

ber of real roots lies between them.

This proposition, of which the theorem in Art. 12 is a par-

ticul contains in the most general form the conclusions

wh ' & Sa drawn as to the roots of an equation from the

gi
oots are ^ ^7 ^ ^rst member when two given numbers

ar* u. S 1 for x. We proceed to prove the first part of

the pi. ^ion : the second part is proved in a precisely similar

manner.

Let the following m roots ai, a2 ,
. . . . a^,, and no others, of

the equation f(x)
= lie between the quantities a and b, of

which, as usual, we take a to be the lesser.

Let (x) be the quotient when/(#) is divided by the product

of the m factors (x-a^) (#-a2)
. . . . (x-am). We have, then,

the identical equation

Putting in this successively x = a, x = b, we obtain

f(a)
= (a-a i)(a-a2)

.... (a
- am ) $ (a) ,

/(fl)-(ft-a,)(6-a 8)
.... (b-am)t(b).

Now
<j)(a)

and (b) have the same sign ;
for if they had dif-

ferent signs there would be, by Art. 12, one root at least of the

equation $ (x)
= between them. By hypothesis, /(a) and/(&)

have different signs ;
hence the signs of the products

(a-ai)(a-az)
.... (a-am),

(b- ai)(b-az)
.... (b-am),
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are different
;
but the sign of the second is positive, since all

its factors are positive ; hence the sign of the first is negative ;

but all the factors of the first are negative ;
therefore their

number must be odd ; which proves the proposition.

In this proposition it is to be understood that multiple roots

are counted a number of times equal to the degree of their

multiplicity.

It is instructive to apply the graphic method of treatment to

the theorem of the present Article. From this point of view it

appears almost intuitively true
;
for it is evident that when any

two points are connected by a curve, the portion of the curve

between these points must cut the axis an odd number of times

when the points are on opposite sides of the axis
;
and an even

number of times, or not at all, when the points are on tb ime

side of the axis.

EXAMPLES.

1. If the signs of the terms of an equation he all positive, it cannot have a

positive root.

2. If the signs of the terms of any complete equation he alternately positive

and negative, it cannot have a negative root.

3. If an equation consist of a number of terms connected hy + signs followed

hy a number of terms connected by signs, it has one positive root and no more.

Apply Art. 12, substituting and oo
;
and Art. 19.

4. If an equation involve only even powers of #, and if all the coefficients have

positive signs, it cannot have a real root.

Apply Arts. 19 and 20.

5. If an equation involve only odd powers of x, and if the coefficients have all

positive signs, it has the root zero and no other real root.

6. If an equation be complete, the number of continuations of sign in f(x) is

the same as the number of variations of sign in/( x).

7. "When an equation is complete ;
if all its roots are real, the number of positive

roots is equal to the number of variations, and the number of negative roots is equal

.to the number of continuations of sign.

8. An equation having an even number of variations of sign must have its last

sign positive, and one having an odd number of variations must have its last sign

negative.

Take the highest power of x with positive coefficient (see Art. 4).

9. Hence prove that if an equation has an even number of variations it must

have an equal or less even number of positive roots
;
and if it has an odd number of

variations it must have an equal or less odd number of positive roots
;

in other
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words, the number of positive roots when less than the number of variations nm-t

differ from it by an even number.

Substitute and oo
,
and apply Art. 22.

10. Find an inferior limit to the number of imaginary roots of the equation

Ans. At least two imaginary roots.

1 1 . Find the nature of the roots of the equation

z4 + 15s2 + 7.T- 11 = 0.

Apply Arts. 14, 19, 20.

Ans. One positive, one negative, two imaginary.

12. Show that the equation

x* + qx + r = 0,

where q and r are essentially positive, has one negative and two imaginary roots.

13. Show that the equation

x*-qx + r = 0,

where q and r are essentially positive, has one negative root
;
and that the other two

roots are either imaginary or both positive.

14. Show that the equation

Az & C2 It- -
. . . .
-xa xb xc xl =x-m

where a, b, c, .... I are numbers all different from one another, cannot have an

imaginary root.

Substitute a + ft \/ 1 and a ft \/ 1 in succession for #, and subtract. \Ve

get an expression which can vanish only on the supposition ft
= 0.

15. Show that the equation

x* - 1 =

has, when n is even, two real roots, 1 and 1
,
and no other real root

; and, when n

is odd, the real root 1, and no other real root.

This and the next example follow readily from Ails. 19 and 20.

16. Show that the equation
xn + 1 =

has, when n is even, no real root
; and, when n is odd, the real root - 1, and no

other real root.

17. Solve the equation

z4 + 2qx* + 3?
2 z? + 2q*x

- r4 = 0.

This is equivalent to

The different signs of the radicals give four combinations, and the ex;

here written involves the four roots.

D
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18. Form the equation which has for roots the different values of the expression

2+0X/7+V/11 + \/7,

where 2 =1.

If no restriction had been made by the introduction of 0, this expression would

have 8 values. The \/1 must now be taken with the same sign where it occurs

under the second radical and free from it. There are, therefore, only four values

in all. Ans. z4 - 8z3 -12z2+84z-63 = 0.

19. Form the equation which has for roots the four values of

-9 + v/ 137 + 3v34- 20 Vl37,

where 2 = 1. Ans. x* + 36z3 - 400#2 - 31 680; + 7744 = 0.

20. Form an equation with rational coefficients which shall have for roots all the

values of the expression

0i /p + hV <1 + h ^/r,

where 0i2 = l, 2
2 =

1, 3
3 =1.

There are eight different values of this expression, viz.,

-VP

Assume

* = 0iVP + faVq + fa */*

Squaring, we have

#2 =p + q + r + 2 (02 3 i/gr+ fa 0i */rp + 0i 2 Vpq] .

Transposing, and squaring again,

Transposing, substituting x for Oj. \/'p + 2 \/
'

q + 3 ^/rt
and squaring, we obtain

the final equation free from radicals

{z
4 - 2#2 (p + q + r) + p + ?

2 + rz - 2qr - 2rp - 2pq}
z = Qtyqrx*.

This is an equation of the eighth degree, whose roots are the values above writ-

ten. Since Q\, 02, 0s have disappeared, it is indifferent which of the eight roots

*\/P+\Sg\/r is assumed equal to # in the first instance. The final equation

is that which would have been obtained if each of the 8 roots had been subtracted

from x
y
and the continued product formed, as in Ex. 6, Art. 16.



CHAPTER III.

RELATIONS BETWEEN THE ROOTS AND COEFFICIENTS OF EQUA-

TIONS, WITH APPLICATIONS TO SYMMETRIC FUNCTIONS OF THE

ROOTS.

23. Relations between the Roots and Coefficients.

Taking for simplicity the coefficient of the highest power of x

as unity, and representing, as in Art. 16, the n roots of an equa-

tion by ai, ao, as, . . . . a,,, we have the following identity :

Xn +piX
n

= (x- ai) (x
- aa) (x

- a3)
. . . . (x

- an ). (1)

When the factors of the second member of this identity are

multiplied together, the highest power of x in the product is a?
;

the coefficient of xn
~l

is the sum of the n quantities
-

QI,
- a3 , &c.,

viz., the roots with their signs changed ;
the coefficient of x"-

z

is the sum of the products of these quantities taken two by

two; the coefficient of xn
~3

is the sum of their products taken

three by three ;
and so on, the last term being the product of

all the roots with their signs changed. Equating, therefore,

the coefficients of x on each side of the identity (1), we have the

following series of equations :

(eti
a2 + ai a3 -f a 2 a 3 +....+

... + a,i_2 a,,_i a,,), ^ (2)

pn
=
(- l)

n
ai a3 a 3 . . a-i , J

which enable us to state the relations between the roots and

coefficients as follows :

D2
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Theorem. In every algebraic equation, the coefficient of

whose highest term is unity, the coefficient p^ of the second term with

its sign changed is equal to the sum of the roots.

The coefficient pz of the third term is equal to the sum of the

products of the roots taken two by two.

The coefficient p3 of the fourth term with its sign changed is

equal to the sum of the products of the roots taken three by three ;

and so on, the signs of the coefficients being taken alternately negative

and positive, and the number ofroots multiplied together in each term

of the corresponding function of the roots increasing by unity, till

finally that function is reached which consists of the product of the

n roots.

When the coefficient a of xn is not unity (see Art. 1), we

must divide each term of the equation by it. The sum of the

roots is then equal to
*

;
the sum of their products in pairs is

#0

equal to - ;
and so on.

a "

Cor. 1. Every root of an equation is a divisor of the abso-/

lute term of the equation/ ^^f*^
Cor. 2. If the roots of an equation be all positive, the coef-

ficients (including that of the highest power of x) will be alter-

nately positive and negative ; and if the roots be all negative,

the coefficients will be all positive. This is obvious from the

equations (2) [cf. Arts. 19 and 20].

24. Applications of the Theorem. Since the equations

(2) of the preceding Article supply n distinct relations between

the n roots and the coefficients, it might perhaps be supposed

that some advantage is thereby gained in the general solution

of the equation. Such, however, is not the case ; for suppose it

were attempted to determine by means of these equations a root,

di, of the original equation, this could be effected only by the

elimination of the other roots by means of the given equations,

and the consequent determination of a final equation of which

ai is one of the roots. Now, in whatever way this final equa-

tion is obtained, it must have for solution not only a,, but each
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of the other roots a2 , a 3,
. . . an ; for, since all the roots enter in

the same manner in the equations (2), if it had been proposed
to determine a> (or any other root) by the elimination of the rest,

our final equation could differ from that obtained for a! only by
the substitution of a2 (or that other root) for ai. The final equa-
tion arrived at, therefore, by the process of elimination must

have the ti quantities ai, a 2 , ..... an for roots
;
and cannot,

consequently, be easier of solution than the given equation.

This final equation is, in fact, the original equation itself, with

the root we are seeking substituted for x. This we shall show

for the particular case of a cubic. The process here employed
is general, and may be applied to an equation of any degree.

Let a, /3, 7 be the roots of the equation

x3

+piar +p2x +p3
= 0.

We have, by Art. 23,

lh = -(a + /3 + y),

Pz = a/3 + ay + ]3y,

^3
= -a/3y.

Multiplying the first of these equations by [a
2

,
the second

by a, and adding the three, we find

or

which, is the given cubic with a in the place of x.

The student can take as an exercise to prove the same result

in the case of an equation of the fourth degree. In the corre-

sponding treatment of the general case the successive equations of

Art. 23 are to be multiplied by a"-
1

, a"'
3

,
a"'

3
, &c., and added.

Although the equations (2) afford, as we have just seen, no

assistance in the general solution of the equation, they are often

of use in facilitating the solution of numerical equations when

any particular relations among the roots are known to exist.

They may also be employed to establish the relations which

must obtain among the coefficients of algebraical equations cor-

responding to known relations among the roots.
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EXAMPLES.

1. Solve the equation

z3 - 5*2 -16# + 80 = 0,

the sum of two of its roots being equal to nothing.

Let the roots be a, 0, 7. We have then

5,-

a0 + *7 + 07 = -16,

Taking 3+7=0, we have, from the first of these, o= 5
;
and from either the

second or third we obtain 0y - 1 6 . We find for & and 7 the values 4 and - 4 . Thus

the threejroots are 5, 4, 4.

2. Solve the equation

two of its roots being equal.

Let the three roots be o, a, 0. We have

a2 + 2a0=0,

from which we find a = 2, and = - 1. The roots are 2, 2,
- 1.

3. The equation

has two pairs of equal roots
;
find them.

Let the roots be o, o, 0, ft ; we have, therefore,

from which we obtain for a and /8 the values 1 and 3.

4. Solve the equation

x3 -9^3 +H;e + 24 = 0,

two of whose roots are in the ratio of 3 to 2.

Let the roots be a, 0, 7, with the relation 2 a = 3)8. By elimination of a we

easily obtain

50 + 27 = 18,

from which we have the following quadratic for )8 :

1902 -900 +56 = 0.
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The roots of this are 4, and ; the former gives for a and 7 the values 6 and

1. The three roots are 6, 4,
- 1. The student will here ask what is the signi-

ficance of the value of & ; and the same difficulty may have presented itself in

the previous examples. It will he observed that in examples of this nature we
never require all the relations hetween the roots and coefficients in order to deter-

mine the required unknown, quantities. The reason of this is, that the given con-

dition establishes one or more relations amongst the roots. "Whenever the equations

employed appear to furnish more than one system of values for the roots, the actual

roots are easily determined by the condition that they must satisfy the equation (or

equations) between the roots and coefficients which we have not made use of in

determining them. Thus, in the present example, the value = 4 gives a system

satisfying the omitted equation

while the value = gives a system not satisfying this equation, and is therefore
iy

to be rejected.

5. Solve the equation

whose roots are in arithmetical progression.

Let the roots be a - 5, o, a + 5
;
we have at once

3o= 9,

3cr-82 = 23,

from which we obtain the three roots 1, 3, 5.

6. Solve the equation
= 0,

whose roots are in arithmetical progression.

Assume for the roots a 35, a 5, a + 5, o + 38.

Ans. -5, -2, 1, 4.

7. Solve the equation

27s3 + 42s2 - 28* - 8 = 0,

whose roots are in geometric progression.

Assume for the roots ap, a, -. From the third of the equations (2),
Art

P
Q 2

have o3 =
,
or a = -. Either of the remaining two equations gives a quadratic for p.

8. Solve the equation

3*4 - 40*3
-I- 130*2 - 120* + 27 = 0,
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whose roots are in geometric progression.

Assume for the roots
, -, ap, op

3
. Employ the second and fourth of the equa-

tions (2), Art. 23. Ans. i
.1, 3, 9.

o

9. Solve the equation

x* + 15s3 + 70s2 + 120s + 64 = 0,

whose roots are in geometric progression. Ans. 1, 2, -4, -8.

10. Solve the equation

6s3 -lls2 + 6s-l = 0,

whose roots are in harmonic progression.

Take the roots to be o, ft, y. We have here the relation

1 1_2

hence

&y + ya + aft = 3ya ;
&c.

Ans. 1, -, -.

11. Solve the equation

81s3 -18s2 -36s + 8 = 0,

whose roots are in harmonic progression.

12. If the roots of the equation

be in harmonic progression, show that the mean root is .

. g.

13. The equation
:-21 =

has two roots equal in magnitude and opposite in sign ; determine all the roots.

Take a + =
0, and employ the first and third of equations (2), Art. 23.

Ans. v/3, -v/3, l+-v/~6.
14. The equation

3z4 - 25s3 + 50s2 - 50s + 12 =

has two roots whose product is 2
;
find all the roots.

Ans. 6, -, 1\/-!-
3

15. One of the roots of the cubic

s3
px~ + qx r =

is double another
;
show that it may be found from a quadratic equation.
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16. Show that all the roots of the equation

can be obtained when they are in arithmetical progression.

Let the roots be o, o + 5, a + 25, . . . . a + (n
-

1) 5. The first of equations (2)

gives

w(n-l)_!__; 5 .

(1)

Again, since the sum of the squares of any number of quantities is equal to the

square -of their sum, minus twice the sum of their products in pairs, we have the

equation
pr -

2/?2
= 2 + (a + S)

2 + (a + 25)
2 + . . .

(2)

Subtracting the square of (1) from n times the equation (2), \ve find S2 in terms

of pi and p-z. We can then find a from equation (1). Thus all the roots can be

expressed in terms of the coefficients p\ and p%.

17. Find the condition which must be satisfied by the coefficients of the equa-
tion

x3 pxz

when two of its roots o, are connected by a relation a + ft
= 0.

Ans, pq r = Q.

18. Find the condition that the cubic

#3
-px"~ -f qx r=0

should have its roots in geometric progression. Ans. p 3 r q
3 = 0.

19. Find the condition that the same cubic should have its roots in harmonic

progression (see Ex. 12).
"

Ans. 2lrz - 9pqr + 2q
3 = 0.

20. Find the condition that the equation

should have two roots connected by the relation a -f =
;
and determine in that

case two quadratic equations which shall have for roots (1) o, ft ;
and (2) 7, 8.

Ans. pqr-p-s-r^^O, (l)px~ + r = 0, (2) x* +px+^ = 0.

21. Find the condition that the biquadratic of Ex. 20 should have its roots con-

nected by the relation + 7 = o + 5. Ans. p3
pq + 8r = 0.

22. Find th<; condition that the roots o, )8, 7, 5 of

x* +px3 + qx- + rx + s =

should be connected by the relation o)3 = yd. Ans. p2 s - r2 = 0.

23. Show that the condition obtained in Ex. 22 is satisfied when the roots of

the biquadratic are in geometric progression.
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25. Depression of an Equation when a relation

exists between two of its Roots. The examples given

in the preceding Article illustrate the use of the equations con-

necting the roots and coefficients in determining the roots in

particular cases when known relations exist among them. We
shall now show in general, that if a relation of theform /3

=
0(a)

exist between two of the roots of an equation f(x)
=

0, the equation

may be depressed two dimensions.

Let
<j> (x) be substituted for x in the identity

f(x) = aQx
n

then /(0 (x) )
s a (0 (x) )'*

+ a 1 (<j>(x))
n~l + ---- + an-i $ (x) + an .

We represent, for convenience, the second member of this

identity by F(x]. Substituting a for x, we have

^) =/(*()) =/(0)-<>;

hence a -satisfies the equation JF(a?)*=0, and it also satisfies the

equation/ (x)
=

;
hence the polynomials/^) and F(x] have a

common measure x - a
;
thus a can be determined, and from it

0(o) or ]3, and the given equation can be depressed two dimen-

sions.

EXAMPLES.

1. The equation

xz - 5^2 _ x + 20 =

has two roots whose difference = 3 : find them.

Here - a = 3, = 3 4- a ;
substitute x + 3 for x in the given polynomial f(x) ;

it becomes x^ + 4#2 1x 10
;
the common measure of this and/(#) is x - 2

;
from

which a= 2, = 5
;
the third root is - 2.

2. The equation
_ 1 3 _j_ 6 = o

has two roots connected by the relation 2/3 -f 3a = 7 : find all the roots.

^*. 1, 2, l\/^.

It may be observed here, that when two polynomials /(#)
and F(x) have common factors, these factors may be obtained

by the ordinary process of finding the common measure. Thus,
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if we know that two given equations have common roots, we
can obtain these roots by equating to zero the greatest common
measure of the given polynomials.

EXAMPLES.

1. The equations

2^ + 5^- 6x- 9 = 0,

S*3 +7z-- 11* -15 =

have two common roots : find them. Ans. -1, -3.

2. The equations

+r =0,

have two common roots : find the quadratic whose roots are these two, and find also

the third root of each.

Ans .

P~P
+ r^Lo, -r(p^P) -r(p-p')

- ' '

26. The Cube Roots of Unity. Equations of the

forms

consisting of the highest and absolute terms only, are called

binomial equations. The roots of the former are called the n nth

roots of unity. A general discussion of these forms will be given
in a subsequent Chapter. "We confine ourselves at present to

the simple case of the binomial cubic, for which certain useful

properties of the roots can be easily established. It has been

already shown (see Ex. 5, Art. 16), that the roots of the cubic

z* - 1 =

1 1 /-o 1 1
are 1, -o + ~v -3, -?j-rv~3.

If either of the imaginary roots be represented by w, the

other is easily seen to be w2
, by actually squaring ;

or we may
see the same thing as follows : If tu be a root of the cubic, <o

2

must also be a root
; for, since w3 =

1, we get, by squaring,
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a)
6 =

1, or
(o>

2

)

3 =
1, thus showing that w2

satisfies the cubic

x* - 1 = 0. We have then the identity

Changing x into -
#, we get the following identity also :

xz + 1 =
(x + 1) (x + w) (x + o>

2

),

which furnishes the roots of

^ + 1 = 0.

Whenever in any product of quantities involving the imagi-

nary cube roots of unity any power higher than the second

presents itself, it can be replaced by w, or w2

,
or by unity ;

for

example,

<o
4 = o>

5
. GJ = w, w5 = to

3
. o>

2 = w2
, <u

6 = o>
3

. o>
3 =

1, &C.

The first or second of equations (2), Art. 23, gives the fol-

lowing property of the imaginary cube roots :

1 + w + w2 = 0.

By the aid of this equation any expression involving real

quantities and the imaginary cube roots can be written in either

of the forms P + w Q, P + o>
2
Q.

EXAMPLES.

1. Show that the product

(cam + u-n) (o>
2w -f tan)

is rational. Ans. m~ mn-\-n~.

2. Prove the following identities :

m3 + n? = (m + n) ((am + o>
2
w) (

2w + (an),

mz _ W3 = rw _ n
) (<am (a

2
n) (uPm (an).

3. Show that the product

(a + (aft + or7) (a+
2 + (ay)

is rational.

Ans. a2 +/8 2 + 7
2 - Py-ya-afi.

4. Prove the identity

(a+ + 7) (a + (aft + or7) (a -f
2
j8 + vy) = a3 + )8

3 + 73 -
80)87.

5. Prove the identity

(o+ )3 + a,
2
7)

3 + (a + 2 + *>y)*= (2a
-

)8
-

7) (2j3
- 7 - a) (2y

- a - 0).

Apply Ex. 2.



The Cube Roots of Unify. 4:>

6. Prove the identity

Apply Ex. 2, and substitute for o> - ur its value -v/-3-

7. Prove the identity

a 3 +
' 3 + y

3 - 3a'V = (a
3 + 3+ 7

3 - 3 ajS-y)
2
,

where
a' = a2 + 207, j8' = 2 + 27a, 7' = 72 + 2a.

8. Form the equation whose roots are

m + n, urn + orw, w-m + tan.

Ans. x3 - Zmnx -
(
w5 + n3

)
= 0.

9. Form the equation whose roots are

l + m+n, J + wi + 2
w, Z + 2#i + wH.

-4ns. z3 - 3fo2 + 3 (P
-

ftin) a; - (i
3 + m3+ 3 -

Zlmn) = 0.

It is important to observe that corresponding to the n nth

roots of unity there are n nth roots of any quantity. The roots

of the equation
*? - a =

are the n ntn roots of a.

The three cube roots, for example, of a are

3 /~ 3 / o 3 /V a, w\/a, or /#,

wherev^^ represents the real cube root according to the ordinary

arithmetical interpretation. Each of these values satisfies the

cubic equation xz - a = 0. It is to be observed that the three

cube roots may be obtained by multiplying any one of the three

above written by 1, o>, or.

In addition, therefore, to the real cube root there are two

imaginary cube roots obtained by multiplying the real cube

root by the imaginary cube roots of unity. Thus, besides the

ordinary cube root 3, the number 27 has the two imaginary

cube roots

3 3 - 33 -

as the student can easily verify by actual cubing.

10. Form a rational equation which shall have

3

v/<3 + VQ2 + P* + 2 v/ Q-
for a root

;
where w3 = 1 .

CompareEx. 8. .
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11. Form an equation with rational coefficients which shall have

for a root, where 0i
3 = 1, and 2

3= 1.

Cubing both sides of the equation

and substituting x for its value on the right-hand side, we get

z*-P-Q=Z

Cubing again, we have

Since Q\ and 6% may each have any one of the values 1, co, o>
2
, the nine roots of

this equation are

"We see also that, since Q\ and 2 have disappeared from the final equation, it is

indifferent which of these nine roots is assumed equal to x in the first instance. The

resulting equation is that which would have been obtained by multiplying together

the nine factors of the form x ^/P^/Q, obtained from the nine roots above

written.

12. Form separately the three cubic equations whose roots are the groups in

three (written in vertical columns in Ex. 11) of the roots of the equation of the pre-

ceding example.

"We can write these down from Ex. 8, taking first m and n equal to %/P, %

then equal to w%/P~a>%/~Q ; and finally equal to (S~%/P,

Ans. a;
3- 3 Qx-P-Q = 0,

27. Symmetric Functions of the Roots. Symmetric
functions of the roots of an equation are those functions in

which all the roots are alike involved, so that the expression is

unaltered in value when any two of the roots are interchanged.

For example, the functions of the roots, (the sum, the sum of the

products in pairs, &c.) with which we were concerned in Art. 23

are of this nature
; for, as the student will readily perceive, if

in any of these expressions the root ai, let us say, be written in
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every place where a2 occurs, and a- in every place where
,

occurs, the value of the expression will be unchanged.
The functions discussed in Art. 23 are the simplest sym-

metric functions of the roots, each root entering in the first

degree only in any term of any one of them.

"We can, without knowing the values of the roots separately
in terms of the coefficients, obtain by means of the equations (2)

of Art. 23 the values in terms of the coefficients of an infinite

variety of symmetric functions of the roots. It will be shown

in a subsequent Chapter, when the discussion of this subject is

resumed, that any rational symmetric function whatever of

the roots can be so expressed. The examples appended to this

Article, most of which have reference to the simple cases of

the cubic and biquadratic, are sufficient for the present to illus-

trate the usual elementary methods of obtaining such expres-

sions in terms of the coefficients.

It is usual to represent a symmetric function by the Greek

letter 2 attached to one term of it, from which the entire ex-

pression may be written down. Thus, if a, /3, y be the roots of

a cubic, Sa2

|3
2

represents the symmetric function

2

/3
2 + y + 0Y

where all possible products in pairs are taken, and each term

separately squared. Again, in the same case, 2a2

j3 represents

a
2

/3 + a
2

7 + /3
2

7 + /3
2
a + y~a + y

2

/3,

where all possible permutations of the roots two by two are

taken, and the first root in each term then squared.

As an illustration in the case of a biquadratic we take 2a 2

/3
2

,

whose expanded form is as follows :

o
a

/3
s + a2

7
2 + a

2
S
2 + j3Y + j3

2
S
2 + 7

2 2
.

By the aid of the various symmetric functions which occur

among the following examples the student will acquire a facility

in writing out in all similar cases the entire expression when

the typical term is given.
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EXAMPLES.

1. Find the value of 2cr of the roots of the cubic equation

x3 + pzz + qx + r = 0.

Multiplying together the equations

7 + 70 + aft = q,

we obtain 2o2
-f 3 a&y pq ;

hence 2a2 = 3r pq.

2. Find for the same cubic the value of

a2 + 2 + 7
2

. Ans. 2 a2 = p*
-

1q.

3. Find for the same cubic the value of

a3 + & + 7
3

-

Multiplying the values of 2a and 2a2
, we obtain

a3 + )8
3 + T

3 + 2a2
)8
= - p* + Ipq ;

hence, by Ex. 1,

2o3 = - p* + Zpq - 3r.

4. Find for the same cubic the value of

0V+72 a2 + a2 2
.

"We easily obtain

ft + 7)
=

from which 2o2
/3
2 = q

2
2pr.

5. Find for the same cubic the value of

This is equal to

Ans. r - pq.

6. Find the value of the symmetric function

S2
a/3 +

of the roots of the biquadratic equation

Multiplying together

aj87 + aj85 + 078 + ^75 = -
r,

we obtain 2 a- fiy + 4 0^78 = pr ;

hence 2 a- fiy
= pr 4 s.
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7. Find for tlie same biquadratic the value of the symmetric function

Squaring 2o, we easily obtain

2a2
=.p

2
-2?.

8. Find for the same biquadratic the value of the symmetric function

Squaring the equation

we obtain

hence, by Ex. 6,

9. Find for the same biquadratic the value of 2o3
0.

To form this symmetric function, we take the two permutations ajS and /3a of

the letters a, )8 ;
these give two terms a3 and 3o of 2. We have similarly two

terms from every other pair of the letters a, 0, 7, 5
;
so that the symmetric func-

tion consists of 12 terms in all.

Multiply together the two equations

2<zj8 = 2', 2a2 =.p2-2;
and observe that

2a2
2aj8 = 2a3

j8 + 2a2
&y.

[It is convenient to remark here, that results of the kind expressed by this last

equation can be verified by the consideration that the number of terms in both

members of the equation must be the same. Thus, in the present instance, since

2a2 contains 4 terms, and 2aj8 6 terms, their product must contain 24 ; and these

are in fact the 12 terms which form 2o3
)8, together with the 12 which form 2a2

j8-y.]

Using the results of previous examples, we have, therefore,

10. Find for the same biquadratic the value of

Squaring 2a2
,
and employing results already obtained,

2a4
=j)

4 - 4p
2
? + 2<? + Ipr

- 4s.

11. Find the value, in terms of the coefficients, of the sum of the squares of the

roots of the equation

Squaring 2oi, we easily find

_Pl
2 = 2

hence

2ar=pi8
-2j?2 .

12. Find the value, in terms of the coefficient?, of the sum of the reciprocals of

the roots of the equation in the preceding example.

i;
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From the second last, and last of the equations of Art. 23, we have

02 03 .... o/i + 01 03 .... o +.... + 01 02 .... o,,-i = ( l)
n~ l

pn-l>

1 01203 .... 0= ( l)
npn J

dividing the former by the latter, we have

01 tt2 03 On Pn

s
1
= ~Pn-l

01 pn

In a similar manner the sum of the products in pairs, in threes, &c. of the

reciprocals of the roots can he found by dividing the 3rd last, or 4th last, &c. coef-

ficient by the last.

13. Find for the cubic equation

the value, in terms of the coefficients, of the following symmetric function of the

roots a, 0, 7 :

N. B. It will often be found convenient to write, as in the present example, an

equation with binomial coefficients, that is, numerical coefficients the same as those

which occur in the expansion by the binomial theorem, in addition to the literal

coefficients , i, &c. Here the equation being of the third degree, the successive

numerical coefficients are those which occur in the expansion to the third power,

viz. 1, 3, 3, 1.

"We easily obtain

14. Express in terms of the coefficients of the cubic in the preceding example the

successive coefficients of the quadratic

where a, 0, 7 are the roots of the cubic.

Here, in addition to the symmetric function of the preceding example, we have

to calculate also the two following :

Ans. (o ("2 i
2
)
#2.+ (

ao #3 a \ ^2) x + (a\ as a} = 0.

15. Find for the cubic of example 13 the value in terms of the coefficients of

Since 2o- -7= 3o- (o + + y) = 3o + ,
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the required value is easily obtained by substituting
- for x in the identity

<*o

a (x
- a) (* -0) (x-y).

Ans. a<?(2a-l3

16. Find, in terms of the coefficients of the biquadratic equation

003*4 401Z3 + 6a2 z2 4 4 3 o; + 4 = 0,

the value of the following symmetric function of the roots :

(IB
-

7)
2

(
~

5)
2 4 (7

-
)

2
(0
-

5)2 + (a
-

0)2 (7
-

5)2.

Here the equation is written with numerical coefficients corresponding to the

expansion of the binomial to the 4th power. The symmetric function in question
is easily seen to be identical with

Employing the results of examples 6 and 8, we find

17. Taking the six products in pairs of the four roots of the equation of Ex. 16,

-and adding each product, e.g. o0, to that which contains the remaining two roots,

75, we have the three sums in pairs

7 + a5, 70 4 05, aj8 + 75 ;

it is required to find the values in terms of the coefficients of
t
the two following

symmetric functions of the roots :

(70 4 05) (o0 + 75) + (o0 + 78) (07 + aS) 4 (07 + 08) (70 4 05),

(07 + 08) (70 4 05) (a0 4 75) .

The former of these is the sum of the products in pairs, and the latter the con-

tinued product, of the three expressions above given. As these three functions of

the roots are important in the theory of the biquadratic, we [shall represent them

uniformly by the letters A., /j.,
v. "We have, therefore, to find expressions in terms

of the coefficients for pv 4 v\ 4 AM> and */*"

The former is 2o2
07, and is easily expressed as follows (cf. Ex. 6) :

The latter is, when multiplied out, equal to

and we obtain after easy calculations the following :

2 - 2

E2
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18. Find, in terms of the coefficients of the biquadratic of Ex. 16, the value of

the following symmetric function of the roots :

This is also an important symmetric function in the theory of the biquadratic.

To prevent any ambiguity in -writing this, or corresponding functions in which the

differences of the roots of the biquadratic enter, we explain the notation which will

be uniformly employed in this work.

Taking in circular order the three roots a, ft, 7, we have the three differences

7, 7 a, a j8 ;
and subtracting 5 from each root in turn, we have the three

other differences 8, ft 8, 7 8. We combine these in pairs as follows:

(0-7) (a- 3), (7-o)OB-8), (a-0)(7-S).

The symmetric function in question is the product of the differences of these

three taken as usual in circular order.

Employing the values of A, /*, in the preceding example, we have

"We have, therefore, to find the value of

(3A
-

SctjS) (3/x
-

in terms of the coefficients of the biquadratic.

Multiplying this out, substituting the value of 2a, and attending to the results

of Ex. 17, we obtain the required expression as follows :

#o
3
(2A- n - v) (2,u

- v- A) (2/
-

A.
-

fi)
= - 432 {a aza^+2ai 2 3-os2 -

i
2 4-23

}

The function of the coefficients here arrived at, as well as those before obtained

in Examples 13, 15, and 16, will be found to be of great importance in the theory

of the cubic and biquadratic equations.

19. Find, in terms of the coefficients of the biquadratic of Ex. 16, the value of

the symmetric function

This may be represented briefly by 2 (a )

2
.

Ans. C 2
2(a-j8)

2

20. Prove the following relation between the roots and coefficients of the biqua-

dratic of Ex. 16 :
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28. Theorems relating to Symmetric Functions.

The following two theorems, with which we close for the present

the discussion of this subject, will be found useful in many in-

stances in verifying the results of the calculation of symmetric
functions.

(1) . The sum of the exponents of all the roots in any term of any

symmetric function of the roots is equal to the sum of the suffixes in

each term of the corresponding value in terms of the coefficients.

The sum here spoken of, which is of course the same for every
term of the symmetric function, and which may be called the

degree in all the roots of that function, will be subsequently

defined (see Ch. XII.) as the weight of the symmetric function.

The truth of the theorem will be observed in the particular cases

of the examples 13, 15, 16, 17, &c. of the last Article
;
and that

it must be true in general appears from the equations (2) of

Art. 23, for the suffix of each coefficient in those equations is

equal to the degree in the roots of the corresponding function of

the roots ; hence in any product of any powers of the coefficients

the sum of the suffixes must be equal to the degree in all the

roots of the corresponding function of the roots.

(2). When an equation is written ivith binomial coefficients, the

expression in terms of the coefficients for any symmetric function

of the roots, which is a function of their differences only, is such that

the algebraic sum of the numerical factors of all the terms in it is

equal to zero. The truth of this proposition appears by suppos-

ing all the coefficients
, i, ^2, &e. to become equal to unity in

the general equation written with binomial coefficients, viz.,

a*xn
-2 + + aH = 0.

1 . &

The equation then becomes (x + l)
n = 0, /. c. all the roots be-

come equal ; hence any function of the differences of the roots

must in that case vanish, and therefore also the function of the

coefficients which is equal to it
;
but this consists of the alge-

braic sum of the numerical factors when in it all the coefficients

o, ffi, #2, &o. are made equal to unity. InjExs. 13, 15, 16, 18,

20 of Art. 27 we have instances of this theorem.
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EXAMPLES.

1. Find in terms of p, g, r the value of the symmetric function

fly ya aft
'

where a, , 7 are the roots of the cubic equation

xs +px2 + qx + r = 0.

2. Find for the same equation the value of

<nq
Ans. -3.

r

Ans. 24 r-p*.

3. Calculate the value of 2a3
;8

3 of the roots of the same equation.

Here 2oj82a2 2 = 2a3 3 + afiy2a*& ; hence &c.

Ans. q*-

4. Find for the same equation the value of the symmetric function

* is easily obtained by squaring 2o3
(see Ex. 3, Art 27).

Ans. 2p* - I2p*q + I1pz r + 18^
2
^
2 - ISpqr-

5. Find for the same equation the value of

/3+7 7+ a-|-j8

r-pq
6. Find for the same equation the value of

+ y 7 +

7. Find for the same equation the value of

2 fry -a2
27a-j8

2 2 aj8-72

ft + y-a y + a-ft a + 0-y'

- 3 - 8r
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8. Find the value of the symmetric function 2
f
^^-

)
for the same cubic

\a+ /

equation

Ans
(r-pqf

9. Calculate in terms of p, q, r, a the value of 2 ^ for the equation

x* +px 3 + gx
z + rx + s = Q.

Here 2a2- = 2| + 2
a
^ ;

and
a2 7-

10. Find the value of 2 of the roots of the equation

Ans

11. Find for the biquadratic of Ex. 9 the value of

Compare Ex. 22, Art. 24. Ans. rz - p
z
s.

12. Find the value of 2(oa + i)
3
(&-y)~ in terms of the coefficients of the

cubic equation
= 0.

18
Ans. ^(ao2-ffi

2
)
2

.

o

13. Find the value of the symmetric function 2 - of the roots of the
0102

equation

The given function may be written in the form

=+=+- -7'- 1

Ol O2 O;i ,

(11 1
)

J
+ + + [-

( Ol O2 On ;

+ 02
( Ol O2

(11 1
) ,+ an

\
+ +.... + - -1,

(01 02 o,)

1 fl\Pn-\
or2ai2 M

;
hence &c. Ans.- .

ai Pn

14. Clear of radicals the equation
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and express the coefficients of the resulting equation in t in terms of the coefficients

of the cubic of Ex. 1.

Ans. 3e--2*-2

15. If a, /3, 7, 5 be the roots of the biquadratic of Ex. 9, prove

Substitute in turn each of the roots of the equation x2- + 1 = in the identity of

Art. 16, and multiply.

16. Prove the following relation between the roots and coefficients of the general

equation of the nth
degree :

(ai
2 + 1) (a2

2 + 1
)

. . . . (a*
2 + !)

=
(! -pz + p*.

-
. .

.)
2 + (P\

-

17. Find the numerical value of

where a, )8, 7, 5 are the roots of the equation

- 5^ + 10=0.

Substitute in turn for x each root of the equation z? + 2 = 0, and multiply.

Am. 166.

18. If a, 0, 7, 5 be the roots of the equation

prove

tfo
3
()8 + 7) (7 + a)(a+)8)(a+5) (0 + 5) (7 + 5)

= 16

The symmetric function in question is equal to
(/u. + v) (v + \) (A + ;u)> or 2A 2fu/

Ayuy, where A, /t, v have the values of Ex. 17, Art. 27.

19. Calculate the value of the symmetric function 2 (a
-

)8)
4 of the roots of the

biquadratic equation of Ex. 9.

Ans. 3p*-16pz
q + 2Qq

z +4pr-16s.

20. Show that when the biquadratic is written with binomial coefficients, as in

Ex. 18, the value of the symmetric function of the preceding example may be ex-

pressed in the following form :

4 2 (a
-

)

4 = 16 {48 (OQ a2
-

i
2
)

2 -
o
2 (o4 - 4 0i 3 + 3 3

2
)} .

21. The distances on a right line of two pairs of points from a fixed origin are

the roots (a, 0) and (a, ')
of the two quadratic equations

+ c' =
;

prove that when one pair of the points are the harmonic conjugates of the other pair,

the following relation exists :

ac +a'c- 2W = 0.

22. The distances of three points A, ,
C on a right line from a fixed origin

on the line are the roots of the equation
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find the condition that one of the points ,4, B, C should bisect the distance between

the other two.

Compare Ex. 15, Art. 27. Ana. d*d- 3abc+ 243 = 0.

23. Retaining the notation of the preceding question, find the condition that the

four points 0, A, B, C should form a harmonic division.

Ans. ad2 -3bcd + 2c3 = Q.

This can be derived from the result of Ex. 22 by changing the roots into their

reciprocals, or it can be easily calculated independently.

24. If the roots (o, ft, 7, 5) of the equation

are so related that o 5, 8, 7-8 are in harmonic progression, prove the relation

among the coefficients

ace + 2 bed - ad* - b- e - c3 = .

Compare Ex. 18, Art. 27.

25. Form the equation whose roots are

fly + wya + o>
2
aft 7 + (o

2
ya + waft

where a>
3 =

1, and a, ft, 7 are the roots of the cubic

ax? + 3 bx~ + 3 ex + d= 0.

Ans. (ac
- bz

)
z~ + (ad- be] x + (bd-c~)=0.

Compare Exs. 13 and 14, Art. 27.

26. Express

(2 7 - 70 - aft) (2ya -aft- fty) (2 aft-fiy- ya)

as the sum of two cubes.

Ans. (fty + wya+ rfaft)
3
-f (fty + &>

2

Compare Ex. 5, Art 26.

27. Express

(
x + y + 2)3+ (

x + uy -f ors)
3
4- (x + o>

2
y + wz)

3

in terms of x3 + y
z + z3 and xyz, where 3 = 1.

-4*

28. If

find i, Y, Zin terms of x, y, z; x', y', z'.

Apply Example 4, Art. 26.

Z=xz' + yx'

29. Resolve

(a + ft + 7)
3
0)87

-
(/3y + 7

into three factors, each of the second degree in a, ft, 7.

Ans. (a
2 -

fty) (3
2 -

ya) (7
2 -

Compare Ex. 18, Art. 24.
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30. Resolve into simple factors each, of the following expressions :

(1). (j8-

(2). (3_

An*. (1). (2a--7)(2-7-a)(27-a-0).

(2). -908- 7)(7 -)(-jB).

31. Find the condition that the cuhic equation

x3 -pxz + qx-r =

should have a pair of roots of the form a a ^/- 1
;
and show how to determine

the roots in that case.

If the real root is b, we easily find, by forming the sum of the squares of the

roots, pz 2q = b2 . The required condition is

32. Solve the equation

x3 -7*2
4- 20*-24 = 0,

whose roots are of the form indicated in Ex. 31.

Aiis. Boots 3, and 2 +

33. Find the conditions that the biquadratic equation

a;
4

px* + qx
z rx + s =

should have roots of the form a a \/- 1, * + b /- 1. Here there must be two

conditions among the coefficients, as there are only two independent quantities

involved in the roots.

Am. ^?
2 -2^ = 0; r*-2q$ = Q.

34. Solve the biquadratic

z4 + 4s3 +8z2 - 120* + 900 = 0,

whose roots are of the form in Ex. 33.

Ans. 3 + 3 /^T, -

35. Ifa+#V
/- 1 kea root of the equation

prove that 2a will be a root of the equation

#3 + qx r = 0.

36. Find the condition that the cubic equation

z3 +pxz + qx + r =

should have two roots o, )8 connected by the relation ojS + 1 = 0.

Ans. l
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37. Find the condition that the biquadratic

should have two roots connected hy the relation oj3 + 1 = 0.

The condition arranged according to powers of * is

+pr + r* + (p* +pr - 2q - 1) s + (q
-

1) s* + s*= 0.

38. Find the value of 2 (ai
- a2 )

2
0304 . . . . an of the roots of the equation

This is readily reducible to Ex. 13.

Ans. (-
39. If the roots of the equation

.

-
aoz* + na\ z"-1

-f
v

t

'
a^x"-* +.... + an =

be in arithmetical progression, show that they can be obtained from the expression

0~

by giving to r all the values 1, 3, 5, .... n - 1, when n is even ; and all the values

0, 2, 4, 6 .... n - 1, when n is odd.

40. Representing the differences of three quantities a, 0, 7 by 01, lt 71, as

follows :

01 = )8
-

7, 1 = 7 - a, 71
= a - j8 ;

prove the relations

ox5 + Pi5 + 7i
6 = I {ai

2 + )8i
2 + 7i

2
}aii7i.

These results can be derived by taking 01, 0i, 71 to be roots of the equation

- r =

(where the second term is absent since the sum of the roots = 0), and calculating the

symmetric functions 2ai3
, 5ai4

, 2ai 5 in terms of q and r. The process can be ex-

tended to form 2ai 6
, 2oi

7
,
&c. The sums of the successive powers are, therefore,

all capable of being expressed in terms of the product 01 #171 and the sum of squares

ai
2 + )8i

2 + 7i
2

; the former being equal to r, and the latter to - 2 (/Ji 71 + 71 01 -f ai 0i),

or - 2q. These sums can be calculated readily as follows : By means of x3 = r - gx,

and the equations derived from this by squaring, cubing, &c., and multipljing by

x or a;
2

, any power of x, say XP, can be brought by successive reductions to the form

A + Bx + Cx~, where A, B, C are functions of q and r. Substituting ai, /3i, 71, and

adding, we find 2ai? = 3^4 - 2?^. The student can take as an exercise to prove in

this wayW = 7?V, 2ain = llqr (?
3 -r2

).



CHAPTER IV.

TRANSFORMATION OF EQUATIONS.

29. Transformation of Equations. We can in many
instances, without knowing the values of the roots of an equa-

tion in terms of the coefficients, transform it hy elementary sub-

stitutions, or by the aid of"the symmetric functions of the roots,

into another equation whose roots shall have certain assigned

relations to the roots of the proposed. A transformation of this

nature often facilitates the discussion of the equation. We
proceed to explain the most important elementary transforma-

tions of equations.

30. Roots with Signs changed. To transform an equa-

tion into another whose roots shall be equal to the roots of the

given equation with contrary signs, let ai, a2 ,
a3 ,

. . . an be the

roots of the equation

Xn +p,X
n~ l + p2 X

n~Z + . . . . pn-iX +pn = 0.

We have then the identity

xn +p lx
n~ l +pz x

n~2 + . . . +pn_i% +pn = (x- ai) (x
- a 2)

. . . (x
- an) ;

changing x into - y, we have, whether n be even or odd,

y
n
-piy

n
^+P*y

n~z -
. . . pn-iy +pn = (y + i) (y + 2)

. . . (y + an).

The polynomial in y equated to zero is, therefore, an equation

whose roots are -
ai,

- a2 ,
. . .

- an ;
and to effect the required

transformation we have only to change the signs of every alternate

term of the given equation beginning with the second.

EXAMPLES.

1 . Find the equation whose roots are the roots of

#6 + 7^4 + 7^3 _ 8 2 + a; + 1 =

with their signs changed. Ans. #5 -7a?*+ 7^+ 8z2 + x I = 0.
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2. Change the signs of the roots of the equation

= 0.

[Supply the missing terms with zero coefficients.]

Am. xT + 3

31. To Multiply the Roots .by a Given Quantity.
To transform an equation whose roots are ai, a2 ,

. . . a into ano-

ther whose roots are ma^ ma*, . . . man ,
we change x into inm

the identity of the preceding Article. Multiplying by mn
,
we

have

y
n

-f Mpiy"-
1 + mz

p2y
n~z + . . . + rn^p^y + mn

pn
= (y- mai) (y

- ma z)
---- (y

- man).

Hence, to multiply the roots of an equation by a given quan-

tity m, we have only to multiply the successive coefficients, beginning

with the second, by m, mz
, m?, . . . mn

.

The present transformation is useful for the purpose of re-

moving the coefficient of the first term of an equation when it

is not unity ;
and generally for removing fractional coefficients

from an equation. .If there is a coefficient tfc of the first term,

we form the equation whose roots are aQ ai, a a2 ,
. . . oan ;

the

transformed equation will be divisible by a
,
and after such divi-

sion the coefficient of xn will be unity.

When there are fractional coefficients, we can get rid of them

by multiplying the roots by a quantity m which is the least

common multiple of all the denominators of the fractions. In

many cases multiplication by a quantity less than the least

common multiple will be sufficient for this purpose, as will

appear in the following examples :

EXAMPLES.
1 . Change the equation

3*4 - 4*3 + 4^2 _ 2* + 1 =

into another the coefficient of whose highest term will he unity.

We multiply the roots by 3. Am. x*> - 4^ + 12.i
2 - 18* + 27 = 0.

2. Remove the fractional coefficients from the equation

^_^ + ?,_l = 0.

Multiply the roots by 6. Ant. a? - 3z2 + 24* - 216 = 0.
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3. Remove the fractional coefficients from the equation

By noting the factors which occur in the denominators of these fractions, we
observe that a number much smaller than the least common multiple will suffice to

remove the fractions. If the required multiplier is m, we write the transformed

equation thus :

it is evident that if m he taken = 6, each coefficient will become integral ; hence we
have only to multiply the roots by 6.

An*, *3 - 15*2 -14* + 2 = 0.

4. Remove the fractional coefficients from the equation

The student must be careful in examples of this kind to supply the missing

terms with zero coefficients. The required multiplier is 10.

Ans. ** + 30*2 + 520* + 770 = 0.

5. Remove the fractional coefficients from the equation

Ans. *4 - 25*3 + 375*2 - 11700 = 0.

32. Reciprocal Roots and Reciprocal Equations.

To transform an equation into one whose roots are the reciprocals

of the roots of the proposed equation, we change x into - in the

identity of Art. 30. This substitution gives, after certain easy

reductions,

or

Pn a a2 a

hence, if in the given equation we replace x by -, and multiply

by y
n

,
the resulting polynomial in y equated to zero will have

for roots the reciprocals of ai, a*, . . . . a*.
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There is a certain class of equations which remain unaltered

when x is changed into its reciprocal. These are called reciprocal

equations. The conditions which must obtain among the coef-

ficients of an equation in order that it should he one of this class

are, by what has been just proved, plainly the following :

Pn-\ Pn-z P PI 1=
^.-* **.-*,-*.

The last of these conditions gives pn
* =

1, OT pn = l. Reci-

procal equations are divided into two classes, according as pn is

equal to + 1, or to - 1.

(1). In the first case we have the relations

Pn-i
=
Pl, Pn-z =PZ, . . Pi =Pn-i J

which give rise to the first class of reciprocal equations, in ichich

the coefficients of the corresponding terms taken from the beginning

and end are equal in magnitude and have the same signs.

(2). In the second case, when^?,t
= -

1, we have

Pn-l
= -Pi 9

giving rise to the second class of reciprocal equations, in which cor-

responding terms counting from the beginning and end are equal in

magnitude but different in sign. It is to be observed that in this

case when the degree of the equation is even, say n = 2m, one of

the conditions becomes pm = -pm9 or pm = ; so that in reciprocal

equations of the second class, whose degree is even, the middle

term is absent.

If a be a root of a reciprocal equation,
- must also be a root,
a

for it is a root of the transformed equation, and the transformed

equation is identical with the proposed ;
hence the roots of a

reciprocal equation occur in pairs, a,
-

; /3, 7* ;
&o- When the

degree is odd there must be a root which is its own reciprocal ;

and it is in fact obvious from the form of the equation that - 1
,

or + 1 is then a root, according as the equation is of the first or

second of the above classes. In either case we can divide off by
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the known factor (x + 1 or x - 1), and what is left is a reciprocal

equation of even degree and of the first class. In equations of

the second class of even degree x2 - 1 is a factor, since the equa-

tion may be written in the form

By dividing by x2 -
1, this also is reducible to a reciprocal

equation of the first class of even degree. Hence all reciprocal

equations may be reduced to those of the first class whose degree is

even, and this may consequently be regarded as the standardform

of reciprocal equations.

EXAMPLES.

1 . Find the equation whose roots are the reciprocals of the roots of

Ans. 2/-5y3

2. Reduce to a reciprocal equation of even degree and of first class

Ans. z* + -x*-- xz + -636
33. To Increase or Diminish the Roots by a Given

Quantity. To effect this transformation we change the vari-

able in the polynomial f(x) by the substitution x = y + h; the

resulting equation in y will have roots each less or greater by //

than the given equation in x, according as h is positive or nega-
tive. The resulting equation is (see Art. 6)

There is a mode of formation of this equation which for

practical purposes is much more convenient than the direct cal-

culation of the derived functions, and the substitution in them

of the given quantity h. This we proceed to explain. Let the

proposed equation be

+ flfc**"
3 + . . . + fl_i# + a =
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and suppose the transformed polynomial in y to be

AQy
n + A,y

n~ l + A zy
n^ + . . . + A^y + An ;

since y = x-h, this is equivalent to

A (x
-

h}
n + A l (v- A)-

1 + . . . + A^(x -h) + An ,

which must be identical with the given polynomial. We conclude

that if the given polynomial be divided fyy x -
h, the remainder

is A ny and the quotient

if this again be divided by x - h, the remainder is -4n_i, and the

quotient

Proceeding in this way, we are able by a repetition of arith-

metical operations, of the kind explained in Art. 8, to calculate

in succession the several coefficients An , An-\<> &c., of the trans-

formed equation ;
the last, A , being equal to aQ . It will appear

in a subsequent Chapter that the best practical method of solv-

ing numerical equations is only an extension of the process

employed in the following examples.

EXAMPLES.

1. Find the equation whose roots are the roots of

each diminished by 4.

The calculation is best exhibited as follows :

-5 7 -17 11

4 - 4 12 - 20

- 1 3 - 5

4 12 60

3 15 55

4 28

7

~~
48

4

11
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Here the first division of the given polynomial by x 4 gives the remainder

- 9 (= At), and the quotient x3 - xz + Zx - 5 (cf. Art. 8). Dividing this again hy
x 4, we get the remainder 55 (= -^3), and the quotient x* + 3x + 15. Dividing

again, we get the remainder 43 (= Az), and quotient x + 7 ;
and dividing this we get

Ai=ll, and AQ = 1
;
hence the required transformed equation is

2 Find the equation whose roots are the roots of

each diminished by 3.
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calculation may be exhibited in two stages, as follows, the broken lines marking the
conclusion of each stage :

13

100

87

100

187

100

12

1740

1728

3740

7

34560

34567

19122

287

15

302

15

~317

15

5468

906

6374

951

53689

7325

332

Am. by* + 332y
2 + 7325y+ 53689 = 0.

34. Removal of Terms. One of the chief uses of the

transformation of the preceding Article is to remove a certain

specified term from an equation. Such a step often facilitates

its solution. Writing the transformed equation in descending

powers of y, we have

/*, (M i \ ^

If h be such as to satisfy the equation na h + a =
0, the trans-

formed equation will want the second term. If h be either of

the values which satisfy the equation

Mrc-l)
1.2

+ (n
-

1)
=

0,

the transformed equation will want the third term ; the removal

of the fourth term will require the solution of a cubic for h
;
and

so on. To remove the last term we must solve the equation

0, which is the original equation itself.
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EXAMPLES.

1. Transform the equation

into one which shall want the second term.

naoh + ai = Q gives h = 2.

Diminish the roots by 2. Ans. y* 8y 15 = 0.

2. Transform the equation

into one which shall want the second term.

Increase the roots by 2. Ans. y*
- 24 y

2 + 65 y - 55 = 0.

3. Transform the equation

a4 _ 4^3 _ i s X*- - 3# + 2 =

into one which shall want the third term.

The quadratic for h is

6A2 -12A-18 =
0, giving h =3, h =-1.

Thus there are two ways of effecting the transformation.

Diminishing the roots by 3, we obtain

(1) y+8ys -

Increasing the roots by 1, we obtain

(2) y*

35. Binomial Coefficients. In many algebraical pro-

cesses it is found convenient to write the polynomial /(#) in the

following form :

.. .

in which each term is affected, in addition to the literal coef-

ficient, with the numerical coefficient of the corresponding term

in the expansion of (x + l)
n
by the binomial theorem. The

student will find examples of equations written in this way on

referring to Article 27, Examples 13 and 16. The form is one

to which any given polynomial can be at once reduced.

We now adopt the following notation :

Un = a xn + nciix*-
1 + -\- a^-z + . . . + nan-ix+ an ,

J. . <

thus using U with the suffix n to represent the polynomial of

the nth
degree written with binomial coefficients.
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"We have, therefore, changing n into n -
1, &c.,

1 + (n
-

1) a^-' + . . . + (n
-

1) a^

= aQx
3 +

a x

a .

One advantage of the binomial form is, that the derived

functions can be immediately written down. The first derived

function of Un is, plainly,

or nUn-i ;
so that the first derived function of a polynomial re-

presented in this way can be formed by applying to the suffix

of 7 the rule given in Art. 6 with respect to the exponent of the

variable. Thus, for example, the first derived of Z74 is formed

by multiplying the function by 4, and diminishing the suffix by

unity ;
it is, therefore, 4 Z7"3 ,

as the student can easily verify.

We proceed now to prove that the substitution of ij + h for

x transforms the polynomial Vn ,
or

into

where

AU) A\y Afy . . . An-\i An

are the functions"which result by substituting h for x in

J7
, ZTi, Kj CT-i, VH ;

i.e. A = a
,
A l

= aQ h + a l , Az = aoh
t
^-2aji + a2t

&c.

Kepresenting the derived functions of f(h) by suffixes, as
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explained in Art. 6, we may write the result of the transfor-

mation, viz./(y + ^), in the following form:

f(h) is the result of substituting li for x in Un ;
it is, therefore,

An ;
its first derived/! (A) is, by the above rule, nAn-i ;

the first

derived of this again is n(n-l) An_z ;
and so on. Making these

substitutions, we have the result above stated, which enables us

to write down without any calculation the transformed equation.

EXAMPLES.

nd the result of substituting y + h for x in the polynomial

Ant.

The student will find it a useful exercise to verify this result by the method of

calculation explained in Art. 33, which may often be employed with advantage in

the case of algebraical as well as numerical examples.

2. Remove the second term from the equation

We must diminish the roots by a quantity h obtained from the equation

Substituting this value of h in Az ,
and A3 ,

the resulting equation in y is

3 _
o
2

o
3

3. Find the condition that the second and third terms of the equation Vn =
should be capable of being removed by the same substitution.

Here A\ and At must vanish for the same value of h
;
and eliminating h be-

tween them we find the required condition.

Ans. aottz i
2 = 0.

4. Solve the equation

by removing its second term.

The third term is removed by the same substitution, which gives
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The required roots are obtained by subtracting 2 from each root of the latter

equation.

5. Find the condition that the second and fourth terms of the equation Un =
should be capable of being removed by the same transformation.

Here the coefficients A\ and AS must vanish for the same value of A
;
eliminat-

ing h between the equations

we obtain the required condition

N.B. "When this condition holds among the coefficients of a biquadratic equa-

tion its solution is reducible to that of a quadratic ;
for when the second term is

removed the resulting equation is a quadratic for y
2

;
and from the values of y those

of x can be obtained.

6. Solve the equation

*4 + 16 x3 + 72z2 + 64* - 129 =

by removing its second term.

The equation in y is

y4_ 247/2-1=0.

7 Solve in the same manner the equation

& + 20s3 + 143*2 + 430* + 462 = 0.

Ans. The roots are - 7, -3, -$*/Z.

8. Find the condition that the same transformation should remove the second

and fifth terms of the equation Un = 0.

Ans. ao
3^ 4<ro

2 i3+ 6aoi3
2 3ai

l = 0.

^ 36. The Cubic, On account of their peculiar interest, we

shall consider in this and the next following Articles the equa-

tions of the third and fourth degrees, in connexion with the

transformation of the preceding Article. When y + h is sub-

substituted for x in the equation

= Q, (1)

we obtain

A 3
=

0,

where AI, A z ,
A 3 have the values of Art. 35.

If in the transformed equation the second term is absent,

rtj

AI =
0, or h = .
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Substituting this value for h in A z and A z , we find, as in Ex. 2,

Art. 35,
- 3a a qz + 2a^ ;

hence the transformed cubic, wanting the second term, is

o
1

y
8 + (a az

-
a?} y +

.

; (a
*a3

- 3a ^ a* + 2aS)
= 0.

The functions of the coefficients here involved are of such

importance in the theory of algebraic equations, that it is custo-

mary to represent them by single letters. We accordingly adopt

the notation

a az
- a*

and write the transformed equation in the form

If the roots of this equation be multiplied by a it becomes

G=Q: (3)

a form which will be found convenient in the subsequent dis-

cussion of the cubic. The variable, s, herein contained is equal

to aQy or aQx + av . The original cubic multiplied by a z
is in fact

identical with

(o* + a,)
3 + 3ff (ax + a,) + G\= 0,

as the student can easily verify.

If the roots of the original equation be a, j3, 7, those of the

transformed equation (2) will be

_

-, P + -, 7 + -;
flo flo a

or, snce

they may be written as follows :

-/3- 7 ), $ (2/3-y-B), i
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"We can write down immediately by the aid of the trans-

formed equation the values of the symmetric functions

S(2a-0- 7)(20-y-a), (2a-/3-y)(2/3- 7 -a)(2y-a-/3)

of the roots of the original cubic. The latter will be found to

agree with the value already found in Ex. 15, Art. 27.

We may here make with regard to the general equation an

important observation : that any symmetric function of the roots

a, /3, y, 8, &c., which is a function of their differences only, can

be expressed by the functions of the coefficients which occur in

the transformed equation wanting the second term. This is

obvious, since the difference of any two roots a', |3' of the

transformed equation is equal to the difference of the two corre-

sponding roots a, )3 of the original equation ;
and any symmetric

function of the roots a', /3', 7', S', &c., can be expressed in terms

of the coefficients of the transformed equation. For example, in

the case of the cubic, all symmetric functions of the roots which

contain the differences only can be expressed as functions of

fl
, -ffj and G. Illustrations of this principle will be found

among the examples of Art. 27.
'

37. The Biquadratic, The transformed equation, want-

ing the second term, is in this case

where A2 and A 3 have the same values as in the preceding

Article ;
and where A is given by the equation

#<M4
= a 3

#4
- 40 2

a\ a* + 60 i

2
#2 - 3flA

The transformed equation is, therefore,

/? A 1

/+ 9 Htf+ Gy+ > 3
tf4-4a

2
0i a, + 6 a 1

t
flf,-3a l

4

)
=0.

#0 GQ &0

We might if we pleased represent the absolute term of this

equation by a symbol like H and G, and have thus three func-

tions of the coefficients, in terms of which all symmetric func-

tions of the differences of the roots of the biquadratic could be ex-

pressed. It is more convenient, however, to regard this term as
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composed of Iff and another function of the coefficients deter-

mined in the following manner : We have plainly the identity

3
4
- 40 2

0! 3+ 60 0i
2

2-3aS = a z

(a 4
- 40! 3 + 302

2

)

- 3 (0 2
-

i

2

)

2
.

This involves
, H, and another function of the coefficients,

viz.,

4 -40! 3 + 302
2

,

which is of great importance in the theory of the biquadratic.

This function is represented by the letter J, giving

3
04 40 2

1 3 -t- 60 0i
2

2
- 30!

4 s <2
2 1 3J? 2

.

The transformed equation may now be written

6H
,

4 2J-3J2r2

* +^ +
+**

+ -ir---
We can multiply the roots of this equation, as in the case of

the cubic of Art. 36, by ;
and obtain

s
4 + 6J?s2 + 4Gz + 21- 3HZ = 0. (2)

This form will be found convenient in the treatment of the

algebraical solution of the biquadratic. The variable is the

same as in the case of the cubic, viz., a x + 0i. The original bi-

quadratic is in fact identical with

(aQx + 0!)
4 + 6jff(0 # + 0!)

2 + 4(7 (a,x + a,) + a? I- 3H* =
0,

after the factor 3
is removed from this latter equation.

Any symmetric function of the roots of the original biqua-

dratic which contains their differences only can therefore be

expressed by , If, G, and /.

If the roots of the original equation be a, )3, 7, 8, those of

the transformed (1) will be, as is easily seen,

The sum of these =
;
the sum of their products in pairs

= r
;
the sum of their products in threes = - -

;
and for their

00 #0
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continued product we have the equation

There is another function of the coefficients to which we
wish now to call attention, as it will be found to he of great im-

portance in the subsequent discussion of the biquadratic. It is

the function arrived at in Ex. 18, Art. 27, viz.,

a az aA + 2a l az a3
- a^a^ - a*aA - a.z*.

This is denoted by the letter J. The example in question

shows that it is a function of the differences of the roots. It

must, therefore, be capable of being expressed in terms of a0t

jET, 6r, and /. We have, in fact, the identity

which the student can easily verify.

Or this relation can be derived as follows : Whenever a

function of the coefficients a
, a\, #2 >

&c. is the expression of a

function of the differences of the roots, it must be unaltered by
the transformation which removes the second term of the equa-

tion, hence its value is unaltered when we change a^ into zero,

2 into A 2 ,
#3 into A 3 ,

&c. Thus

#0^204 + 2a 1 az a3
- a^a* - a*a - a* = a^A^A^ - a A^ - A*

;

substituting for A 2 , A^ A their values in terms of H, G, I, we

easily obtain the above identity, which will usually be written

in the form
G* + 4H* - fl

2

(HI- a J).

38. Homographic Transformation. The transforma-

tion considered in Art. 33 is a particular case of the following,

in which x is connected with the new variable y by the equation

\X +
fj.

If X = 1
, fi

= -
h, X' = 0, p.'

=
1, we have y = x-h, as in Art. 33

Solving for x in terms of y, we have
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This value can be substituted for x in the given equation,

and the resulting equation of the nth
degree in y obtained.

Let a, /3, y, S, &c., be the roots of the original equation,

and a', /3', y', S', &o., .the corresponding roots of the transformed

equation. From the equations

Xa + M A + i -

we easily derive the relation

, (-

with corresponding relations for the differences of any other

pair of roots. If we take any four roots, and the four corre-

sponding roots, we obtain the equation

Thus, if the roots of the proposed equation represent the

distances of a number of points on a right line from a fixed origin

on the line, the roots of the transformed equation will represent

the distances of a corresponding system of points, so related to

the former that the anharmonic ratio of any four of one system
is the same as that of their four conjugates in the other system.

It is in consequence of this property that the transformation is

called homographic.

It is important to observe that the transformation here con-

sidered, in which the variables x and y are connected by a relation

of the form

Axy + Ea;+Cy + D = 0,

is the most general transformation in which to one value of either

variable corresponds one, and only one, value of the other.

39. Transformation by Symmetric Functions. Sup-

pose it is required to transform an equation into another whose

roots shall be givn rational functions of the roots of the pro-

posed. Let the given function be (a, /3, 7 . .
.),

where may
involve all the roots, or any number of them. We form all pos-
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sible combinations (aj3y), (a/3S), &c., of the roots of this type,

and write down the transformed equation as follows :

"WTien this product is expanded, the successive coefficientsjof

y will be symmetric functions of the roots a, ]3, y, &c., of the

given equation ;
and may therefore be expressed in^terms of the

coefficients of that equation.

EXAMPLES.

1. The roots of

are a, /3, 7 ;
find the equation whose roots are a2

, jS
2

, y
z

.

Suppose the transformed equation to he

then
-P=

and we have to form the symmetric functions 2a2
,. Sa

2^, o2 /3
2
7
2

,
of the given equa-

tion. "We easily obtain

the transformed equation is, therefore,

2. Find in the same case the equation whose roots are a3
, /3

3
, 7

3
.

Ans. y
3+ (p*

-
3pq + 3r) y

z + (q*
-
Zpqr+ 3r2

) y + r3
=,0.

3. If a, /3, 7, 5 be the roots of
f

xt+pxt + qyp + rz-l s=0;

find the equation whose roots are a2
, j8

2
, 7

2
, S2 .

Let the transformed equation be

y
4 + .fy

3 + Qy* + Ry + S= 0,

then
-P=2a3

, Q = 2a2
/3
2
,

- Z = 2a2
/3
3
7
2
,
5=a2

/3
2
72 52 .

Compare Exs. 8, 17, Art. 27.

^w*. y*
-

(p-
-

2q) y
3 + (q*

- 2pr + 2s} y
2 -

(r
-

2qs) y + 2 = 0.

4. If a, |3, 7, S be the roots of

OQX* + a\& + 6 2*2 + 4 3^+ a* =
;

find the equation whose roots are A, ju, v
', viz.,

/37 + a5, ya + (38, a/3 + 75.

See Ez. 17, Art. 27.

Ant. y
3 - y

2 + ; (4i ^3 -aQ ai)y
--

7 (2fl 3
2 - 3 2^4 -f 2a 1'a4)

= 0.

o <*o
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5. Show that the transformed equation, when the roots of the resulting cubic of

Ex. 4 are multiplied by ^o, and the second term of the equation then removed, is

Z3_

40. Formation of the Equation whose Roots are any
Powers of the Roots of the Proposed. The method of

effecting this transformation by symmetric functions, as ex-

plained in the preceding Article, is often laborious. A much

simpler process, involving multiplication only, can be employed.
It depends on a knowledge of the solution of the binomial equa-

tion xn - 1 = 0. This form of equation will be discussed in the

next Chapter. The general process will be^ sufficiently obvious

to the student from the application to the equations of the 2nd

and 3rd degrees which will be found among the following ex-

amples :

EXAMPLES.

1. Form the equation whose roots are the squares of the roots of

Xn+ piX"-
l +p2Xn-Z + .... + pn-l

To effect this transformation, we have the identity

x+pixn-l +pzx-z +. . .+p^ix+pn = (x-ai

changing x into x, we derive, as in Art. 30,

xn-pixn-i + p

multiplying, we have

it is evident that the first member of this identity contains, when expanded, only

even powers of x
;
we may then replace x2 by y, and obtain finally

-. .. = (y-ai
2
)(y-a2

2
)...(y-a

2
).

The first member of this equated to zero is the required transformed equation.

N.B. This transformation will often enable us to determine a limit to the num-

her of real roots of the proposed equation. For, the square of a real root must be

positive ;
and therefore the original equation cannot have more real roots than the

transformed has positive roots.

2. Find the equation whose roots are the squares of the roots of

Am.

The latter equation, by Descartes' rule of signs, cannot have more than one

positive root; hence the former must have a pair of imaginary roots.
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3. Find the equation whose roots axe the squares of the roots of the equation

Ans. y
5 + 2y

4 + 5y
3

-f 3,y
2 - 2y - 9 = 0.

It follows from Descartes' rule of signs that the original equation must have

four imaginary roots.

4. Verify by the method of Ex. 1 the Examples 1 and 3 of Art. 39.

6. Form the equation whose roots are the cubes of the roots of

It will be observed that in Ex. 1 the process consists in multiplying together

/(#), the given polynomial, and/(- x) : the variables involved in these being those

which are obtained by multiplying x by the two roots of the equation #
2 1 = 0. In

the present case we must multiply together /(x), /(&>#), /(a>
2

)
: the variables in-

volved being obtained by multiplying x by the roots of the equation x* 1 = 0. The

transformation may be conveniently represented as follows :

Write the polynomial/^) in the form

which we represent, for brevity, by

where P, Q, and R are all functions of x3 .

"We have then

(x-a^)(x-az) ---- (x-an). (1)

Changing, in this identity, x into (ax and at*x successively, we obtain

P+<axQ-+a>~x~=(<*>x-ai)(utX-a2) . . . (wx-ctn), (2)

P+ wzxQ + wx'tR s (<D
ZX - 01) (<*>*x

-
02) . . . (o

2# - an), (3)

since P, Q, and E, being functions of x3
,
are unaltered.

Multiplying together both members of (1), (2), (3), and attending to the results

of Art. 26, we obtain

The first member of this identity contains x in powers which are multiples of 3

only. We can, therefore, substitute y for x3 and obtain the required transformed

equation.

6. Find the equation whose roots are the cubes of the roots of

Ans. y*< + 14y
3 + 60y

2 + 6y+ 1 = 0.

7. Verify by the method of Ex. 6 the result of Ex. 2 of Art. 39.

8. Form the equation whose roots are the cubes of the roots of

Ant. a
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41. Transformation in General. In the general prob-
lem of transformation we have to form a new equation in y,

whose roots are connected by a given relation <

(x, y)
= with

the roots of the proposed equation f(x) = 0. The transformed

equation will then be obtained by substituting in the given

equation the value of x in terms of y derived from the given
relation (x, y)

=
; or, in other words, by eliminating x be-

tween the two equations /(#)
=

0, and (x, ij]
= 0. For example,

suppose it were required to form the equation whose roots are

the sums of every two of the roots (a, |3, 7) of the cubic

x3
-px* + qx

- r = 0.

We have here

The equation (#, y)
= is in this case y=p-x\ for when x

takes the value a, y takes one of the proposed values
;
and when

x takes the values j3 and y, y takes the other proposed values.

The transformed equation is therefore obtained by substituting

p - y for x in the given equation.

EXAMPLES.

1. If o, )8, 7 be the roots of the cubic

form the equation whose roots are

**+;
Here

and the given relation is xy = 1 + r
;
the transformed equation is then obtained by

substituting
-- for x inf(x) = 0.

y
Ans. ry-

2. Form, for the same cubic, the equation whose roots are

o + a-y, 0)8 + &y, Py + ay.

Substitute for x. Ans. y*
- 2qy

z+ (pr + j
2
) y+ r2 -pqr = 0.

9-y
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3. Form, for the same cubic, the equation whose roots are

5 7

Substitute- for*

Ans. Cp
3 -

t
,4. If a, /3, 7 be the roots of the cubic

_
8 + y-a 7 + a - ' + 0-7"

prove that the equation in y whose roots are

7- a2 7a-/32
afl-7

3

/3 + 7 - 2a' 7 + 0-2/3' a+/3-27

is obtained by the homographic transformation

axy + b(x + y) + c = Q.

42. Equation of Squared Differences of a Cubic.

"We shall now apply the transformation explained in the preced-

ing Article to an important problem, viz. the formation of the

equation whose roots are the squares of the differences of every

two of the roots of a given cubic. We shall do this in the first

instance for the cubic

y? + qx + r =
0, (1)

in which the second term is absent, and to which the general

equation is readily reducible. Let the roots be a, |3, 7. We
have to form the equation in y whose roots are]

(P-yY, (7 -)', (-P)'-

We may here observe that the method of Art. 39 can be

applied in general to the solution of this problem, viz. the for-

mation of the equation whose roots are the squares of the

differences of every two of the roots of a given equation ;
for

when the product

{y
-

(ai
- a 2)

2

j [y
-

(ai
-

03)'} {y
-

(a,
- a4)

2

)
. .'. .Jjf- (%- $\ - -

is formed, the coefficients of the successive powers of y will bo

symmetric functions of a l9 a 2 ,
a 3 , a<, &c., and may, therefore, be

expressed in terms of the coefficients of the given equation Tn
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the present instance, however, the method of Art. 41 leads more

readily to the required transformed equation. This equation

may be called for brevity the "
equation of squared differences

"

of the proposed equation. Assuming y equal to any one of the

roots of the transformed equation, e. g. (]3
-
y)

2
, we have

also

a2 + /3
2 + 7

2 = -2?, aj3y
= -n

The equation (x, y)
= of Art. 41, becomes, therefore,

or

subtracting from this the proposed equation, we get

Qr

(y + ?)z-3r =
0, QIX=^

hence the transformed equation in y is

4q* + 27rz = 0. (2)

If it be proposed to form the equation whose roots are the

squares of the differences of the roots (a, )3, 7) of the cubic

a3
=

0, (3)

we first remove the second term
;
the resulting equation is

G

and the required equation is the same as the equation of squared
differences of this latter, since the difference of any two roots

is unaltered by removing the second term. We can therefore

write down the required equation by putting

G
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in the above. The result is

which has for roots

(/3-r)
2
, (y-*)'. (-/3)'.

The equation (4) can be written in a form free from fractions

by multiplying the roots by a z
. It becomes then

x* + 1SH? + SlHzx + 27 (G
z + 4J?3

)
=

0, (5)

whose roots are

0o
2

Q3- 7 )

2

,

2

(r-a)
2

,
a 2

(-/3)
2
.

We can write down from this an important function of the

roots of the cubic (3), viz. the product of the squares of the diffe-

rences, in terms of the coefficients :

0o
6O -

y)
2

(y
-

a)
2

(a
-

]3)
2 = - 27 (<? + 4#3

). (6)

It is evident from the identity of Art. 37 that Gz + 47p
contains a<? as a factor. We have in fact

The expression in brackets is called the discriminant of the

cubic, and is represented by A
; giving the identities

2A HI - a J^ A.

EXAMPLES.

JL. Form the equation of squared differences of the cubic

AM. x* -42x?+ 441* -400 = 0.

L^l Form the equation of squared differences of

First remove the second term.
Ana. z3_30s2 + 225s -68 = 0.

3. Form the equation of squared differences of

=0.
AM. x*-

4. What conclusion with respect to the roots of the given cubic can be drawn

from the form of the resulting equation in the last Example ?

G2
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43. Criterion of the Nature of the Roots of a Cubic.

"We can from the form of the equation ^of differences obtained

in Art. 42 derive criteria, in terms of the coefficients, of the na-

ture of the roots of the algehraical cuhic. For
?<

if the equation

(5) of Art. 42 has a negative root, the cuhic ((3) Art. 42) must

have a pair of imaginary roots, in order that the square of their

difference should he negative ;
and if (5) has no negative root,

the cuhic (3) has all its roots real, since
\
a pair of imaginary roots

of (3) would give rise to a negative root of (5).

In what follows it is assumed that the coefficients of the

equation are real quantities. Four cases may he distinguished :

(1). When G2 + 4j5P is negative, the roots of the cubic are all

real. For, to make this negative H must he negative (and 4HS

> G z

) ;
the signs of the equation (5) are [then alternately positive

and negative, and, therefore (Art. 20), (5) has no negative root;

and consequently the given cuhic has all its roots real.

(2). When G z + 4jET
3

is positive, the cubic* has two imaginary

roots. For the equation (5) must then have^a negative root.

(3). When G* + 4J73 =
0, the cubic has two equal roots. For

the equation (5) has then one root equal to zero. In this case

A = 0, it being assumed that # does not vanish. We may say,

therefore, that the vanishing of the discriminant (see Art. 42) ex-

presses the condition for equal roots.

(4). When 6r = 0, andH -
0, the cubic\has its three roots equal.

For the roots of (5) are then all equal* to zero. These equa-

tions may also be expressed, as can be easily seen, in the form

a a\ a2

#3

which relations among the coefficients'are therefore the conditions

that the cubic should be a perfect cube.

44. Equation of Differences in General. The general

problem of the formation, by the aid of symmetric functions, of

the equation whose roots are the differences, or the squares of the

differences, of the roots of a given equation, may be treated as

follows : Let the proposed equation be



Equation of Differences in General 85

Substituting x + ar for x, and giving r the values 1, 2, 3,

/?, in succession, we have the equations

- a3) ....

- a3 ....

Also, employing the expansion of Art. 6, and observing that

f(ar)
=

0, we find the equation

/(* + ar) -/(,) + j/"(r) + r
-

r3/"K)
.....

Denoting the second side of this equation by $ (#, ar), and

multiplying both sides of the identities (1), we obtain

$ (x, ai) (a, a z)
---- OP, an)

= {^ - (Ql
- a 2)

2

j [a;

2 -
(d - a3)*} . . .

To form the equation of differences, therefore, we can mul-

tiply together the n factors 9 (ar,
a x), (x, a2), &c., and substitute

for the symmetric functions of the roots which occur in the pro-

duct their values in terms of the coefficients. Or we may, as

already explained in Art. 42, form directly the product of the

\n (n -I) factors on the right-hand side of the above identity,

and express the symmetric functions involved in terms of the

coefficients. The roots of the resulting equation of the n (n -l)
tk

degree in x are equal in pairs with opposite signs. Since the

variable in this equation occurs in even powers only, we may
substitute x for or, and thus obtain the equation of the

\n\n
-

l)
th

degree whose roots are the squared differences.

For equations beyond the third degree the formation of the

equation of differences becomes laborious. We shall give the

result in the case of the general algebraic equation of the fourth

degree in a subsequent Chapter.
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EXAMPLES.

. The roots of the equation

are o, ft, y ;
form the equation whose roots are

2 + 7
2
, 7

2 + 2
>

Ans. y
3 - 28y

2 + 245y - 650 = 0.

2. The roots of the cubic

y? + 2x* + 3x + 1 =

are o, /J, 7 ;
form the equation whose roots are

Ans. y* + 12y
2 - I72y - 2072 = 0.

3. The roots of the cubic

*3 + qx + r =

are a, )8, 7 ;
form the equation whose roots are

2
,

a2 + aj8 + 2
.

- 4. The roots of the cubic

z3 + px* + qx + r =

being a, ft, y ;
form the equation whose roots are

r2 = 0.

5. If a, /3, 7 be the roots of the cubic

s3 - 3 (1 + a + a2
)
x 4- 1 + 3a + 3a2 + 2a3 =

;

prove that
(
-
7) (7 o) (a )8)

is a rational function of a.

Ans.

6. Find the relation between O and H of the cubic

ac z* + 3ais2 + Zazx + a3 =

when its roots are so related that (0
- 7)

2
, (7

-
a)

2
, (a

-
13)

2 are in arithmetical

pr greSSi0n -

.**.* +MP-0.
7. f o, /3, 7, 5 be the roots of

c2 ** - 2<r^3 -f 2* - 1 = 0,

find the value of

(0
2 - T

2
)

2
(a*

- S2)
2 + (7*

- 2
)
2

(/3
1 - S2

)

2 + (cf
-

]8
2
)

2
(7

2 - 52)
2

.

Am.
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8. Prove that, if

&y + 7 + a/3 + 08 + 5 + 78 = 0,

= 18
{ GB

- 7
2
)

2
(' - 2

)

2 + (7
2 - a) OS

-
V)* + (a*

- 0')(7
3

9. Solve the equation
x* - ** -f 8*2 - 9* - 15 = 0,

which has one root of the form 1 + a \/~ *

Diminish the roots hy 1
; substitute o v/- 1 for *

; -we find that a must satisfy

o* - 3a2 - 4 = 0, and a4 - 6a2 -f 8 =
; hence o = 2. Hence the factor s2 - 2x + 5.

The other factors are (x + 1) and (x
1 -

3), as is evident.

10. The roots of the cuhic

are a, /3, 7 ;
form the equation whose roots are

This question has been already solved in Art. 41. We give here another solu-

tion which, although in this particular instance it is not the simplest, will be

found convenient in many examples. Let the roots of the given equation be dimi-

nished by h. The transformed equation is (Art. 35)

a y
3

-I- 3^fiy
2 + 3A zy + A* =

0,

whose roots are a - A, /3
-

h, y - A. We express the condition that this equation

should have two roots equal with opposite signs. This condition is (see Ex. 17,

Art. 24)
= 0.

This equation is a cubic in h whose roots are

for the above condition is

(3
-

A) + (7
-

A)
- 0,

2A = + 7,

where /5, 7 represent indifferently any two of the roots. From the equation in A

th required cubic can be formed by multiplying the roots by 2.

11. The roots of the biquadratic

ao*4 + 4fliz* + 6a2z2 + 4a3x + a* =

are o, (3, 7, 5
;
form the sextic whose roots are

+ 7, 7 + a, a -f (3, + 8, + 5, 7 + 5.

Employing the method of Ex. 10, the required equation can be obtained from

the condition of Ex. 20, Art. 24.

The condition is in this case

AiA*Az- A^At- aQ AJ= 0.

This is a sextic in A whose roots are (/3 + 7), &c., from which the required

equation can be obtained as in the last example.
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*12. Form, for the cubic of Ex. 10, the equation whose roots are

/By -a2
, ya- 2

a)3
-

y*

/8 + y - 2us 7 + a - 20* a + ft-2y' .

Diminish the roots by h, and express the condition that the resulting cubic

hould haye its roots in geometric progression (see Ex. 18, Art. 24). The con-

dition is

This will be found to reduce to a cubic in h
;
whose roots are the values aboye

written, since

-
A), or A = -^ .

/3 + 7 - 2a

13. Form for the same cubic the equation whose roots are

2)37
-

ajB
- ay 2ya -

(3y
-

(3a 2aj8 - ya - y&

/3 -f 7 - 2a~ '
y + a-2 J

a + /3
- 27

Diminish the roots by h, and express the condition that the transformed cubic

should have its roots in harmonic progression (see Ex. 19, Art. 24). We have

a- h 0-h y

The equation in A is

207 -a&-ay
/j+r-2..-

0,

which will be found to reduce to a cubic.

14. The roots of the biquadratic

are o, , 7, 5
;
find the cubic whose roots are

7 - aS 70 - 5 a - yS

Diminish the roots by h, and employ the condition of Ex. 22, Art. 24. The

condition is in this case

= 0,

which reduces to a cubic in h whose roots are the values above written.

15. Find the equation whose roots are the ratios of the roots of the cubic

x3 + qx + r = 0.

The general problem can be solved by elimination. Letf(x) = be the given
A

equation, and p = - = the ratio of two roots
;
then since /(/3)

= 0, we have

f(pa) = 0, also/(a) = ;
and the required equation in p is obtained by eliminating



Examples. 89

a between these two latter equations. For the cubic in the present example the

result is

r2 (p
2 + p + I)

3
-f 0V(p + 1)2

= 0.

16. If o, , 7 be the roots of

z3 -f pxz + qx + r = 0,

form the equation whose roots are

jin*. ^ - 2(p - 2q) x
z + (p*

- 4p
2
? + 5?

2 -
2^r) *

-
(p* q~ -2p3 r + 4pqr - 2?

3 - r2
)
= 0.

17. Form for the same cubic the equation whose roots are

.7 7, a afi
7V a

+
7

' '

Ans. r~ x* -(pqr- Sr2
)
x* + ( p*r

-
bpqr -f Sr2 + q*) x

-
(p

z
q* -2p*r + 4pqr - 2?

3 - r2
)
= 0.

18. If o, , 7 be the roots of the cubic

x3 + qx + r = 0,

form the equation whose roots are

la + m(3y, 1(3 + mya, ly + ma/3.

Ans. y
3 - mqyz + (Pq + Zlmr) y + Pr- Pm q*

- 2/m2
qr
-m3 r* = 0.

19. If a, (3, y be the roots of the cubic

aox3 + Zaix2 + 3azx + s = 0,

find the equation whose roots are

20. Form, for the cubic of Ex. 19, the equation whose roots are

08- 7)2(2-0- 7)2, (7 - )2(20_ 7 -a)
2
, (a-j8)~(27 --)8)

2
.

The required equation can be obtained by forming the equation of squared diffe-

rences of the cubic (4) of Art. 42, since

21. Form, for the cubic of Ex. 16, the equation whose roots are

(/3-7)
2

> 0(7-) 2
, 7(-0) 2

-

Let the transformed equation be x3 + Pz* + Qx + H = 0.

Ans. P=pq-9r, Q = q
3 - 9pqr +

= - r (4?
s

-f 27 r2 + 4/>
3r -p*q* - ISpqr).

22. Form, for the same cubic, the equation whose roots are

a2 + 2#y, /3
2 + 27a, 72 + 2j8.

Ant. P=-p*, Q = q(2p
z
-Zq), -& =4p*r- IBpqr



CHAPTER V.

SOLUTION OF RECIPROCAL AND BINOMIAL EQUATIONS.

45. Reciprocal Equations. It has been shown in Art. 32

that all reciprocal equations can be reduced to a standard form,

in which the degree is even, and the coefficients counting from

the beginning and end equal with the same sign. We now

proceed to prove that a reciprocal equation of the standard form

can always be depressed to another of half the dimensions. .

Consider the equation

l + . . . + amx
m + . . . + a^x + a = 0.

Dividing by xm
,
and uniting terms equally distant from the

extremes, we have

+ aXm~
l+

Assume x + - =
2, and let xp + be denoted for brevity by

Vp . We have plainly the relation

Fjm = Vpz - Vp .,.

Giving^? in succession the values 1, 2, 3, &c., we have

F5
= F4 3

- F3
= 25 - 5s3 + 5s

;

and so on. Substituting these values in the above equation, we

get an equation of the mth
degree in z

;
and from the values of

2 those of x can be obtained by solving a quadratic.
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EXAMPLES.

1. Find the roots of the equation

z6 + x* + sc
3 + x* + x+l = Q.

Dividing by x + 1 (see Art. 32), we have

x* + x* + 1 = 0.

This equation may be depressed to the form

s2 - 1 = 0, giving z = 1 ;

whence # + -=1, # + - = 1,
x x

and the roots of these equations are

1 ^/ri -1 j-y^-3

2. Find the roots of the equation

Dividing by a;
2

1, which may be done briefly as follows (see Art. 8),

1_3 5-5 3-1
1-2 3-2 1

-2 S -2 1 0,

we have the reciprocal equation

*8 - 2z6 + 3s* - 2*2 + 1 = 0, (1)

Substituting for F4 ,
z4 - 4z2 + 2 ; and for F2,

s2 - 2, we have the equation

z4 - 6z2 + 9 = 0, or (z
2 -

3)-
= 0,

whence s2 = 3, and z = + v 3,

giving + - = v/3, * + - = - \/S ;

a;

and the roots of these equations are

These roots are double roots of the equation (1).

3. Solve the equation
** - 1 = 0.

Dividing by x 1 we have

from which we obtain
2 + t - I = 0.
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Solving this equation, we have the quadratics

l =0,
from which we obtain

where 2 = 1.

This expression gives the four values of x.

4. Find the quadratic factors of

*6 + 1 =

Transforming this, we have

2s - 3* = 0,

whence z - 0, and z = \/3.

The quadratic factors of the given equation are, therefore,

z2 +1 = 0, x2
<v/3 x + 1 = 0.

\jb. Solve the equations

(1). (1 + *)* = a (1 + *4
), (2). (1 + *)

5 =
(!

/6. Reduce to an equation of the fourth degree in z

(1 + *)
5

,

(I-*)5

2fl+ -

^n*. (1
-

a)z* + (7 + 3a)
2 -

(4 + a)
= 0.

46. Binomial Equations. General Properties.

In this and the following Articles will be proved the leading

general properties of Binomial Equations.

PROP. I. // a be an imaginary root of xn - 1 =
0, then am

also will be a root, m being any integer.

Since a is a root,

an = 1, and therefore (a
n
}

m =
1, or (a

m
)

n = 1
;

that is, am is a root of xn - 1 = 0.

The same is true of the equation xn + 1 =
0, except that in

this case m must be an odd integer.

47. PROP. II. If m and n be prime to each other, the

equations xm - 1 =
0, xn - 1 = have no common root except

unity.
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To prove this we make use of the following property of

numbers : If m and n be integers prime to each other, integers a

and b can be found such that mb - na = 1. For, in fact, when

- is turned into a continued fraction, is the approximation pre-

ceding the final restoration of .

Now, if possible, let a be any common root of the given

equations; then

am =
1, and an = 1

;

also amb =
1, and ana = 1

;

whence a (
mb ~ n^ =

1, or a11 =
1, or a = 1 ;

that is, 1 is the only root common to the given equations.

48. PROP. III. If Jibe the greatest common pleasure of two

integers m and n, the roots common to the equations xm - 1 =
0,

and xn 1 =
0, are roots of the equation a? - 1 = 0.

To prove this, let

m = km', n = kn'.

Now, since m' and n' are prime to each other, integers b and

a may be found such that m'b - n'a = 1 ; hence

mb - na = k.

If, therefore, a be a common root of xm - 1 = 0, and^
1 -1 = 0,

a (m&~na) = ^ Or a* = I 5

which proves that a is a root of the equation a* - 1 = 0.

49. PROP. IV. When n is a prime number, and a any

imaginary root ofx
n - I =

0, all the roots are included in the series

1, a, a2

,
... a-1

.

For, by Prop. I., these quantities are all roots of the equa-

tion. And they are all different ; for, if possible, let any two

of them be equal, a? = aq,

whence a (p
"
9) = 1 >

but, by PROP. II., this equation is impossible, since n is neces-

sarily prime to (p
-

q), which is a number less than n.
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50. PROP. Y. Wlien n is a composite number formed of the

factors PJ q, r, &c., the roots of the equations xp - 1 =
0, xq - 1 =

0,

xr - 1 =
0, &c., all satisfy the equation xn - 1 = 0.

For, consider a root a of the equation xp - 1 =
;
then cf = 1

;

from which we derive

(
apyr

. . = i . or a71 - 1 =
;

which proves the proposition.

51. PROP. YI. When n is a composite number formed of the

prime factors p, q, r, &c., the roots of the equation xn 1 = are

the n terms of the product

(1 + a + 2 + . . . +aP-') (1 +]3+ . . . +/3*-
1

) (1 + 7 + . .. + 7
r
-')

where a is a root ofxp - 1 =
0, /3 ofx

q - 1 =
0, 7 of x

r - 1 =
0, &c.

We prove this for the case of three factors^, q, r. A. similar

proof applies in general. Any term, e. g. aa )3
6

7, of the product

is evidently a root of the equation xn - 1 =
0, since aan = 1, j3

6n =
1,

y
cn =

1, and, therefore, (a/3
6

7
c
)

w = 1. And no two terms of the

product can be equal ; for, if possible let aafl
b
y

c be equal to

another term aa
'

|3
6/

y
c'

;
then a a'-a =

$>-*' y-
c
'. The first mem-

ber of this equation is a root of xp - 1 =
0, and the second

member is a root of xqr - 1 = 0. Now these two equations cannot

have a common root since p and qr are prime to each other

(Prop. II.) ;
hence aaj3V cannot be equal to a0/

/3
6

V'.
52. PROP. YIL The roots of the equation xn - 1 =

0, where

n = p
a
q
brc

,
and p, q, r are the prime factors ofn, are the n products

of the form afiy, where a is a root ofx?" =
1, /3 a root of x^ = 1,

and yofx
rC = 1.

This is an extension of Prop. YI. to the case where the prime
factors occur more than once in n. The proof is exactly similar.

Any such product a]3y must be a root, since an = 1, j3
n =

1, y
n =

1,

n being a multiple of pa
, q

b
,
r

;
and a proof similar to that of

Art. 51. shows that no two such products can be equal, since

pa
, q

b
,
rc are prime to one another. We have, for convenience,

stated this proposition for three factors only of n. A similar

proof can be applied to the general case.

From this and the preceding propositions we are now able

to derive the following general conclusion :
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The determination of the nth roots of unity is reduced to the case

where n is a prime number, or a power of a prime number.

53. The Special Roots of the Equation x" - 1 = 0.

Every equation xn - 1 = has certain roots which do not belong
to any equation of similar form and lower degree. Such roots

we call special roots* of that equation, or special n
th roots ofunity.

If n be a prime number, all the imaginary roots are roots of this

kind. If n = p
a

,
where p is a prime number, any nth root of a

lower degree than n must belong to the equation xpa -1 =
0,

since every divisor of p
a

is a divisor of p
a~ l

(except n itself) ;

hence there are p
a

( 1
j
roots which belong to no lower degree.

If, again, n = p
a
q
b
,
where p and q are prime to each other, there

are p
a

f 1
J,
and q

b
f 1

j
special roots of xP

a - 1 =
0, and

vfl
1 - 1 =

0, respectively. Now, if a and /3 be any two special

roots of these equations, a/3 is a special root of xn - 1 =
; for if

not, suppose (a/3)
m =

1, where m is less than n
;
we have then

am = fi-m
. ku{; am Jg a TQQ^ Qf xp

a _ I = (^ an(J fi-m [s a roo^ Qf

xqb - 1 =
0, and these equations cannot have a common root

other than 1, as their degrees are prime to each other
;
conse-

quently m cannot be less than n, and a]3 is a special root of

x" - 1 = 0. Also, as there are

PJ \ 37 \ PJ

such products, there are the same number of special nth
roots.

This proof may be extended without difficulty to any form of n.

All the roots ofx
n -l = Q are given by the series 1, a, a2

,
. . a"' 1

;

where a is any special n
th

root. For it is plain that a, a
2

, &c., are

all roots. And no two are equal ; for, if a? = a?
, a^ = 1

;
and

therefore a is not a special nth
root, since p -

q is less than n.

When one special n
th root a is given, we may obtain all the other

special nth roots of unity.

* The term "
special root

"
is here used in preference to the usual term "

pri-

mitive root," since the latter has a different signification in the theory of numbers.
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Since a is a special root, all the roots 1, a, a
2

,
... a"'1 are

different n th
roots, as we have just proved; and if we select a

root a? of this series, where p is prime to n, the roots

a", a 2

*, . . . a(n^P, an? (= 1)

are all different, since the exponents of a when divided by n give

different remainders in every case ; that is, the series of numbers

0, 1, 2, 3, ... n - 1 in some order ; whence this series of roots is

the same as the former, except that the terms occur in a different

order. To each number p, prime to n and less than it (1 in-

cluded), corresponds a special nth root of unity ;
for amp cannot

be equal to 1 when m is less than n, for if it were we should

have two roots in the series equal to 1, and the series could not

give all the roots in that case
;
therefore ap is not a root of any

binomial equation of a degree inferior to n : that is, ap is a special

n th root of unity. What is here proved agrees with the result

above established, since the number of integers less than n and

prime to it is, by a known property of numbers, nil jfl )

when n = p
a
q
b
,
which is also, as above proved, the number of

special roots of xn - 1 = 0.

EXAMPLES.

1. To determine the special roots of #6 1 = 0.

Here, 6 = 2x3. Consequently the roots of the equations xz - 1 = 0, and

jc
3 1 = are roots of x6 1 =0. Now, dividing x6 1 by #3 1 we have x3 + 1;

a-
2 - 1

and dividing *3 + 1 by -, or x + 1, we have xz x + 1 = 0, which determines
C ..1

the special roots of a;
6 1 =0.

Solving this quadratic, the roots are

also since aai = 1 = a6
.

01 = a5
,

which may he easily verified.

The special roots are, therefore,

a, a6 ; or oi
5
, 01 ;

or a, -.
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'1. To discuss the special roots of a;
12 - 1 = 0.

Since 2 and 3 are the prime factors of 12, and =
6, = 4, the roots of

2 3

1 = 0, and x* - 1 = 0, are roots of a;
12 - 1 =

; now, dividing x l ~ - 1 by z* - 1,

and x6
1, and equating the quotients to zero, we have the two equations

4 + 1 = 0, ami .-
6 + 1=0, both of which must be satisfied by the special roots

of xl- - I =
; therefore, taking the greatest common measure of & + x* + 1, and

z6 + 1, and equating it to zero, the special roots are the roots of the equation
x* - 3? + 1 = 0.

The same result would plainly have been arrived at by dividing a:
12 - 1 by the

common multiple of z4 - 1 and x* - 1 . Now, solving the reciprocal equation

x* - x" + 1 = 0, we have x + - = + v^3 ; whence, if a and ai be two special roots,

re the four special roots of a;
12 1 = 0.

"We proceed now to express the four special roots in terms of any one of them a.

Since a 4-
- + ai + = 0, or (a + ai) ( 1 + ]

= 0,
a ai '\ aai)

we take aai = 1 (as consistent with the values we have assigned to a and ai) ;
and

a and ai are roots of 3? + I = 0, a6 = -
1, and a5 = -- = <n. The roots

a

a, ai, ,

- mav therefore be expressed by the series a, a5
, a", a11

, since a 12 = 1.

ai a

Further, replacing a by a5
, a7

,
a11

,
we have, including the series just determined,

the four following series, by omitting multiples of 12 in the exponents of a :

a, a 5
, a 7

,
a 11

,

a5, a, a 11
,

a 7
,

a", a 11
, a, a,

a 11
,

a7
,

a 5
, a;

where the same roots are reproduced in every row and column, their order only

being changed. "We have therefore proved that this property is not peculiar to any

one root of the four special roots ; and it will be noticed, in accordance with what

is above proved in general, that 1, 5, 7, and 11 are all the numbers prime to 12,

and less than it. We may obtain all the roots of x l ~ 1 = by the powers of any

one of the four special roots a, a5
,
a7

,
a11

,
as follows :
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3. Prove that the special roots of #15 1 = are roots of the equation

x8 - x~ + x5 - x* + xz - x + 1 = 0.

* 4. Show that the eight roots of the equation in the preceding example may he

obtained by multiplying the two roots of #2 + x + 1 by the four roots of

x* -i a;
3 + x* + x + 1 = 0.

54. Solution of Binomial Equations by Circular

Functions. We take the most general binomial equation

xn = a + b v/- 1,

where a and b are constants.

Let a = R cos a, b = R sin a ;

then xn = R (cos a + v/- 1 sin a) ;

now, if r (cos 9 + ^/- 1 sin 9)

be a root of this equation, we have, by De Moivre's Theorem,

rn (cos n9 + */- 1 sin n&)
= R (cos a +.\/- 1 sin a) ;

and, therefore,
rn cos n9 = R cos a,

rn sin n9 = R sin a.

Squaring these two equalities, and adding,

rzn = R\ giving rn = R
;

where we take R and r both positive, since in expressions of the

kind here considered the factor containing the angle may always
be taken to involve the sign.

We have then

cos n9 = cos a, sin n9 = sin a
;

and, consequently,
n9 = a + 2&7T,

k being any integer ;
whence the assumed nth root is of the

general type

n/r> r /i .V R cos - + v/- 1 em
a

n n

Giving to k in this expression any n consecutive values in the
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series of numbers between - oo and + GO
,
we get all the n th

roots
;

and no more than n, since the n values recur in periods.

"We may write the expression for the nth root under the

form

a / a 7r

cos- + v/- 1 sm - cos -- + </- 1 si
n n\ n

sin

If we now suppose JR = 1, and a = 0, the equation of
1 = a + b

becomes xn = 1 + */-\ ;
the general type, therefore, of an

root of 1 + v/- 1, or unity, is

2A-7T / r , 2A-7T
cos- + -V/

- 1 sin- .

n n

If we give k any definite value, for instance zero,

/TT/ a / : a
V E cos - + A/- 1 sm -

\ n n

is one nth root of a + b </- 1.

The preceding formula shows, therefore, that all the nth roofs

of any imaginary quantity may be obtained by multiplying any one

of them by the nth roots of unit//.

Taking in conjunction the binomial equations

xn = a + b v/- 1, and xn = a - b */- 1,

we see that the factors of the trinomial

x*n - 2R cos a . xn + R2

are

* /T> (
+ 2^7r / ?V R cos- v/ - 1 sm

where k has the values 0, 1, 2, 3 ... - 1.

n 2
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EXAMPLES.

1. Solve the equation x 1 1 =0.

Dividing by x 1, this is reduced to the standard form of reciprocal equation.

Assuming z x + -, we obtain the cubic

from whose solution that of the required equation is obtained.

2. Resolve (x + 1)7
- x 1 - 1 into factors.

Ans. 7z(z

3. Find the quintic on whose solution that of the binomial equation x11 - 1 =

depends.
Ans. z5 + z*- 4z3 - 3z2 + 3z + 1 = 0.

4. When a binomial equation is reduced to the standard form of reciprocal

equation (by division by x 1, z + 1, or #2
1), show that the reduced equation

has all its roots imaginary. (Cf. Examples 15, 16, p. 33.)

5. When this reduced reciprocal equation is transformed by the substitution

3 = z + -
;
show that the equation in z has all its roots real, and situated between

- 2 and 2.

For the roots of the equation in z are of the form cos a + \/- 1 sin a (see

Art. 54) ;
hence z + - is of the form 2 cos a, and the value of this is real and be-

z

tween 2 and 2.
t

6. Show that the following equation is reciprocal, and solve it :

4 (z*
- z + I)

3 -
27x*(z

-
I)

2 = 0.

Ans. Roots : 2, 2, ,.,- 1,
- 1.

7. Exhibit all the roots of the equation z9 1 = 0.

The solution of this is reduced to the solution of the three cubics

#3 - 1 = 0, #3
oa = 0, z3

&)
2 =

;

where w, o>
2 are the imaginary cube roots of unity. The nine roots may be repre-

sented as follows :

1, o>3, o>5, (a, w'i, coi!, o>
2

, a)?;,
u*.

Excluding 1, o>, o>
2

; the other six roots are special roots of the given equation ;

and are the roots of the sextic

.r
3 + 1 = 6.

8. Reducing the equation of the 8 th
degree in Ex. 3, Art. 53, by the substitution

2 = x + _
}
We obtain
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prove that the roots of this equation are

2ir 4ir Sir 14ir
2 cos-, 2 cos-, 2 cos-, 2 cos .

9. Reduce the equation

4*4 - 85^ + 357s2 - 340* + 64 =

to a reciprocal equation, and solve it.

x 2
Assume z = -+ - Ans. Roots:

-}, 1, 4, 16.

10. Solve the equation

x* + mpx3 + nPqx
1
* + nflpx -f w4 = 0.

Dividing the roots by m, this reduces to a reciprocal equation.

11. If o be an imaginary root of the equation xn - 1 = 0, where is a prime

number
; prove the relation

(1
-

o) (1
- o2

) (1
- o3) ... (1

- o'- 1

)
= M.

12. Show that a cubic equation can be reduced immediately to the reciprocal

form when the relation of Ex. 18, Art. 24, exists amongst its coefficients.

13. Show that a biquadratic can be reduced immediately to the reciprocal form

when the relation of Ex. 22, Art. 24, exists amongst its coefficients.

14. Form the cubic whose roots are

o + ofi

, o3 + o4
, o2 + o5

,

where o is an imaginary root of x 1 - 1 = 0.

Ans.

15. Form the cubic whose roots are

o + o8 + o12 + o5
,

a2 + o3 + a11 + o10
,

o4 -f a6 + a9 + a7 ,

where a is an imaginary root of #13 1 = 0.

Ans. x3 + x"- - x + 1 = 0.

16. If 01, o2 , 03 ... on be the roots of the equation

show how to form the equation whose roots are

1 1 1

01 + , 02 + ,
a +

01 02 a/t

"We have here the identity

x" +p\ x*-1 +pzx-2 +.. . +pn.i x +pn = (x- 01) (x
- o2)

. . . (x
-

on) ;

and changing x into -
(see Art. 32),
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Multiplying together these identities, and dividing hy #M
,
the factors on the

right-hand side take the form x 4-
--

I a + -
) ; and assuming x + - =

z, the left-
X \ O/ X

hand side can he expressed as a polynomial of the nth
degree in z by means of the

relations of Art 45.

17. Find the value of the symmetric function 2a2
j8
2
(7 8)

2 of the roots of the

equation

This can he derived from the result of Ex. 19, p. 52, hy changing the roots into

(1

1\
2

---
)

of the transformed equation, and multiplying
o &/

by o2 2
7
2 52 which is equal to ^T.

o

Ans. 22o2
)8
2
(y
-

5)
2 = 48

( 3
2 -

2 *) -

From the values of the symmetric functions given in Chapter III. several others

can be obtained by the process here indicated.

18. Find the value of the symmetric function 2(oi a2)
2
aa

2
a4

2
. . . anz of the

roots of the equation

n(w-l)
a xn + naix-1 + -^- - a%xn

-z + . . . + nan-\x + an = 0.

We easily obtain #o2 2(ai
- o2 )

2 = w2
(
-

1) (ai
2 -

2) ;
and changing the roots

into their reciprocals we have

flo
32 (ai

- o2)
2
as

2 a42 . . . a tt
2 = 2

(n
-

1) (an.r - fl-8 n) .

19. Show that the five roots of the equation

x5 + bpx* + 5p*x + q =

are %/a+%/b, ef/

where ^/ ab = p, a + b = q, and Q is an imaginary fifth root of unity.

N.B. A quintic reducible to this form can consequently be immediately solved.

20. Form the biquadratic equation whose roots are

o + 2o4
,

o2 + 2a3
,

o3 + 2a2
,

o4 + 2a,

where a is an imaginary root of x5
1 = 0.

Ans. *4 + 3*3 - x"- - 3* + 11 = 0.



CHAPTER VI.

ALGEBRAIC SOLUTION OF THE CUBIC AND BIQUADRATIC.

55. On the Algebraic Solution of Equations. Before

proceeding with the solution of cubic and biquadratic equations

we make some introductory remarks, with a view of putting

clearly before the student the general principles on which the

algebraic solution of these equations depends. With this object

we give in the present Article three methods of solution of the

quadratic, and state as we proceed how these methods may be

extended to cubic and biquadratic equations, leaving to subse-

quent Articles the complete development of the principles

involved.

(1). First method of solution : by resolving into factors.

Let it be required to resolve the quadratic xz + Px + Q into

its simple factors. For this purpose we put it under the form

x~ + Px + Q + 9 -
0,

and determine so that

x2 + Px + Q +

may be a perfect square, i. e. we make

p2 p2 _ 4Q

whence, putting for 9 its value, we have

v/P^
tf + PX + Q

Thus we have reduced the quadratic to the form u" - v
2

;
; nd

its simple factors are u + v, and u - v.
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Subsequently we shall reduce the cubic to the form

(ix + m)*
-

(I'x + m)*, or uz - vz
,

and obtain its solution from the simple equations

u - v = 0, u - CDV = 0, u - wz
v = 0.

It will be shown also that the biquadratic may be reduced to

either of the forms

(W + mx + n)
z -

(l'x
z + mx + n'}\

(x
z + px + q} (x

z + p'x + q'),

by solving a cubic equation ; and, consequently, the solution of

the biquadratic completed by solving two quadratics, viz., in the

first case, Ix* + mx + n = (I'x
2 + m'x + n

f

) ;
and in the second case,

x* +px + q = 0, and xz
+p'x + q'

= 0.

(2). Second method of solution : by assuming for a root a general

form invoking radicals.

Since the expression p + ^/q has two, and only two, values

when the square root involved is taken with the double sign, this

is a natural form to take for the root of a quadratic. Assuming,

therefore, x = p + */q, and rationalizing, we have

x* - 2px + p
z -

q
= 0.

Now, if this equation be identical with x2 + Px + Q =
0, we have

2p=-P, p*-q=Q,

giving

which is the solution of the quadratic equation.

In the case of the cubic equation we shall find that

Vp + rr=, and %/pVq (v/p + \/q)
Vp

are both proper forms to represent a root
;
these formulas having

each three, and only three, values when the cube roots involved

are taken in all generality.

In the case of the biquadratic equation we shall find that
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are forms which represent a root
; these formulas each giving

four, and only four, values of x when the square roots receive

their double signs.

(3). Third method of solution : by symmetric functions of the

roots.

Consider the quadratic equation xz + Px + Q =
0, of which the

roots are a, /3. We have the relations

a + j3
= - P,

a/3= Q.

If we attempt to determine a and j3 by these equations, we

fall back on the original equation (see Art. 24) ;
but if we

could obtain a second equation between the roots and coefficients,

of the form la + mfi =/(P, Q), we could easily find a and /3 by
means of this equation and the equation a + ]3

= - P.

Now in the case of the quadratic there is no difficulty in

finding the required equation; for, obviously,

(a
-

j8)
2 = P2 - 4Q ; and, therefore, a - 13

= v/P^4Q.

In the case of the cubic equation #3 + Px2 + Qx + R = 0, we

require two simple equations of the form

la + mp + ny=f(P, Q, jR),

in addition to the equation a + j3 + y = - P, to determine the

roots a, /3, y. It will subsequently be proved that the functions

(a + u)3 + a>
2

y)
3

, (a + w
2

/3 + wy)
3

may be expressed in terms of the coefficients by solving a quad-

ratic equation ;
and when their values are known the roots of

the cubic may be easily found.

In the case of the biquadratic equation

0* + P0 + gr' + Jto + -0

we require three simple equations of the form

la -f w/3 + ny + rS =/(P, Q, E, 8),

in addition to the equation
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to determine the roots a, j3, y, S. It will be proved in Art. 66,

that the three functions

may be expressed in terms of the coefficients by solving a cubic

equation ;
and when their values are known the roots of the

biquadratic equation may be immediately obtained.

In applying the principles here explained to the solution

of the cubic and biquadratic the order of the present Article is

not followed. The student will have no difficulty in perceiving

under which of the methods here described any such solution

should be included.

56. Tbe Algebraic Solution of the Cubic Equation.
Let the general cubic equation

be put under the form

s
3 + 3#2 + G =

0,

where z = ax + b, H^ac-b\ G^cfd-3abc + 2b* (Art 36).

To solve this equation, assume*

hence, cubing,

s
3 =p + q

therefore

z*

Now, comparing coefficients, we have

Vp \/q = -H, p + q
=

from which equations we obtain

p = i (- G

* This solution is usually called Cardan's solution of the cubic. See Note A at

the end of the volume.
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and, substituting for t/q its value
,
we have

-H
^

as the algehraic solution of the equation

It should he noticed that if p he replaced "by q this value of

3 is unchanged, as the terms are then simply interchanged ; also,

since \/p has the three values \/p, w\/p, wz

\/p, obtained by

multiplying any one of its values by the three cube roots of

unity, we obtain three, and only three, values for s, namely,

a /~
~~H :\ / , -" 3 / H

VP+ T7^,. "Vp + u? -_, o>V> + w :;

v p VP vp
the order of these values only changing according to the cube

root of p selected.

Now, if z be replaced by its value ax + b we have, finally,

Vp
(where p has the value previously determined in terms of the

coefficients) as the complete algebraic solution of the cubic equation

axz

the square root and cube root involved being taken in their entire

generality.

57. Application to Numerical Equations. The solu-

tion of the cubic which has been obtained, unlike the solution of

the quadratic, is of little practical value when the coefficients of

the equation are given numbers ; although as an algebraic solu-

tion it is complete.

For, when the roots of the cubic are all real, CP + 4ZP = - K\
an essentially negative number (see Art. 43) ; and, substituting

for p and q their values
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in the formula \/p + \/#, we have the following expression for

a root of the cubic :

Now there is no general arithmetical process for extracting

the cube root of such complex numbers, and consequently this

formula is useless for purposes of arithmetical calculation.

But when the cubic has a pair of imaginary roots, an ap-

proximate numerical value may be obtained from the formula

since G2 + 4ZP is positive in this case. As a practical method,

however, of obtaining the real root of a numerical cubic, this

process is of little value.

In the first case; namely, where the roots are all real, we

can make use of Trigonometry to obtain the numerical values of

the roots in the following manner :

Assuming 2R cos = - G, and 2R sin =K
y

we have p =

also tanf =-E and R = (G
2 + K2

)*
=

(-

ion. TT / . ?r + ir
-/n

and finally, since w = cos -
v/- 1 sin = e 3 ,

o o

the three roots of the cubic equation

s3 + 3Hz + G -
0,

viz. vp +^q, w\/p + w2

\/q,

become

from which formulas we obtain the numerical values of the roots
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of the cubic by aid of a table of sines and cosines. This process

is not convenient in practice ; and in general, for purposes of

arithmetical calculation of real roots, the methods of solution of

numerical equations to be hereafter explained (Chap. X.) should

be employed.
58. Expression of the Cubic as the Difference of two

Cubes. Let the given cubic

be put under the form

where s = ax -f b.

Now assume

v)
3

-v(s + M)

3

J, (1)

where p and v are quantities to be determined : the second side

of this identity becomes, when reduced,

z3 - 3pv z - fiv (fi
+ v).

Comparing coefficients,

JULV
= - H, fJLV (fJL

+ v)
= - G J

therefore

G

where 2A = GP + 4H\ as in Art 42 ;

ft

also (s + /u)(s + v)
= z

2 + -^z-J2
r
. (2)

JLL

Whence, putting for z its value, ax + b, we have from (1)

which is the required expression for 0(#) as the difference of

two cubes.

By the aid of the identity just proved the cubic can be re-
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solved into its simple factors, and the solution of the equation

completed. We proceed to obtain expressions for the roots of

the equation $(x)
= in terms of /u and v. Solving as a bino-

mial cubic the equation

(fj. -v) az

(f> (x)
=

ju (z + v)
3 - v (3 + fj)

3 =
0,

we find the three following values for z = ax + b :

3 /- 3/~ (3/ /~\V
fj.
V v \V

fjL
+ v y;>

V/u %/v (o>V
/

IUL
+ o>

2 v v)>

' jUVV (<t

2V /X + <i> V vJ'

If now A//A and \/v be replaced by any pair of cube roots

selected one from each of the two series

3 /~ 3 /
~

2 3 /~
V/tt, tt>v/Lt, ftrv/ttj

a/ s/ 2
3/~v v> ov v, '> V v,

it will be easily seen that we shall get the same three values of z,

the order only of these values changing according to the cube

roots selected. It follows that the expression

3 / 3/~ /3/~ 3/~N
V/XVy \V fJL+V V)

has three, and only three, values when the cube roots therein are

taken in all generality. This form therefore is, in addition to

that obtained in the last Article, a form proper to represent a

root of a cubic equation (see (2), Art. 55).

The function (2) given above when transformed and reduced

becomes, as may be easily seen,

{ (ac
-

b*) x? + (ad
-

be) x + (bd
- c

2

) j
.H

This quadratic, therefore, contains as factors the two binomials

ax + b + fa ax + b + Vy which occur in the above expression of ^ (x)

as the differences of two cubes.
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59. Solution of the Cubic by Symmetric Functions

of the Roots. Since the three values of the expression

| {a + j3 + 7 + (a + w)3 + ary) + 2

(a+ a>
2

/3 + (07)},

when 6 takes the values 1, to, or, are a, /3, 7, it is plain that if

the functions

(a + w)3 + w2

7 ),
2

(a + <o
2

/3 + 017)

were expressed in terms of the coefficients of the cubic, we could,

by substituting their values in the formula given above, arrive

at an algebraical solution of the cubic equation. Now this cannot

be done directly by solving a quadratic equation ; for, although
the product of the two functions above written is a rational

symmetric function of a, /3, 7, their sum is not so. It will be

found, however, that the sum of the cubes of the two functions

in question is a' symmetric function of the roots, and can, there-

fore, be expressed by the coefficients, as we proceed to show.

For convenience we adopt the notation

L = a + o>|3 + <i>

2

7, M = a + w 2

/3 + 0)7.

We have then

(OL\*
= A + Bu+ <7o>

2

, (0l3f)
where

^ = a 3

+/3
3 + 7

3

+6a/3y , =3(a
2

/3
+

j

from which we obtain

- 32a2

]3 + 12aj37 = - 27

(Cf. Ex. 5, p. 44; Ex. 15, p. 50.)

Again,

whence (a + w/3 + a>
2

7)
3

, (a + a>
2

)3 + 0)7)
3

are the roots of the quadratic equation

z
G e^A
a3 a6

Denoting the roots of this equation, viz.
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by t l and 4, the original formula expressed in terms of the coef-

ficients of the cubic gives for the three roots the expressions

--+-
a 3

y
= + -

a 3

It will be seen that the values of a, j3, 7 here arrived at are

of the same form as those already obtained in Art. 56.

It is important to observe that the functions

(a + wj3 +w
2

7)
3

, (a + a>
2

/3 + wy)
3

are remarkable as being the simplest functions of three variables

which have but two values when the variables are interchanged

in every way. It is owing to this property that the solution

of a cubic equation can be reduced to that of a quadratic equa-

tion. Several functions of a, |3, 7 of this nature exist, and it

will be proved in a subsequent Chapter that any two such func-

tions are connected by a rational linear relation in terms of the

coefficients.

Having now completed the discussion of the different modes

of algebraical solution of the cubic, we give some examples in-

volving the principles contained in the preceding Articles.

EXAMPLES.

^ 1. Resolve into simple factors the expression

(j8
- 7 )

2
(x
-

a)
2 + (7

-
a)

2
(x
-

)
2 + (a

-
0)

2
(x
- 7)

2
.

Ans.

2. Prove that the several equations of the system

()8 7)
3
(x a)

3 =
(7
-

a)
3
(x ft}

3
(a $)

3
(x

>

have two factors common.
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Making use of the notation in the last Example, we have

U* = F3 = 7F3 ;

whence
ur+ F2

) =i (u-
since Z7+ F-f 7F=

;

therefore (0
- 7)

2
(*
-

a)
2 + (7

-
a)

2
(z
-

)8)
2 + (a

-
/9)

2
(*
-

7)-

is the common quadratic factor required.

3. Resolve into factors the expressions

(1). OB
- 7)

3
(x
-

)
3 + (7

-
a)

3
(*
-

0)
3 + (a

-
jB)> (*

- 7)
3

,

(2). OB
- 7)

5
(*- )

5 + (7
-

)

5
(x
- #+ (a

-
/B) (*

- 7)
5
,

(3). (^
- 7 )

7
(*
-

)
7 + (7

-
)
7
(*
-

/8)
7 + (a

- W (x
- y)\

These factors can be written down at once from the results established in Ex. 40,

p. 59. Using the notation of Ex. 1, and replacing ai, /8i, 71, in the example referred

to, by Z7, F, 7F, we obtain the following :

Ans. (1) 3J7FJF; (2) |(Z7
2 + F-+ W*)WW\ (3)

4. Express

(-)(jp-/i)(- 7)

as the difference of two cubes.

Assume
(*-a)(*-/B)(z- 7)= ZTi

8 -
whence

JJi
_ Fi = *(*;- a),

Adding, we have
A + ^ + v - 0, Aa + n& + vy = ;

and, therefore,
\ = p(jB-7), M=f>(7-a), v=p(a

but A/tti
= 1

;
whence

Substituting these values of X, /*, v ; and using the notation of Ex. 1,

ri-Fi =
pZ7; wZ7i- 2 Fi = pF,

2
CTi -Fi = pJF;

whence
3^i = p(J7+

2F+w 7F),

F+

and Z7i and Fi are completely determined.

'). Prove that i and Jf are functions of the differences of the roots.

We have i = a + w/8 + w2
7 = a - A + (j3

-
A) + a 2

(7
-

A)

for all values of A, since 1 -f o> + 2 =
; and giving to A the values a, j8, 7, in suc-

cession, we obtain three forms for L in terms of the differences -
7, 7-0, a - 0.

Similarly for Jf.

I
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6. To express the product of the squares of the differences of the roots in terms

of the coefficients.

We have

Z + M=2a-fi-y, Z + w2
Jf=(2j8-7-a)o>, Z + a>M= (2y

- a - /3) a,
2

;

and, again,

Z-Jf=08-7)(- 3
), o>

2Z- uiM= (y-o)(w- <o2
), wZ - o>

2Jf= (o -)(- w2
),

from which we obtain, as in Art. 26,

Z3 + M* = (2
-

jB
-

7) (2)3
- 7 -

)(27 - a - 0),

Z3 - Jf3 = - 3v3 (0
-

7) (7
-

) (a
-

) ;

and since

(Z
3 - I/3

)

2 =
(Z

3
-f Jf3

)

2 - 4Z3 J/3
,

we have, substituting the values of Z3 + M 3 and ZJf obtained in Art. 59,

*e
(j8

-
7)

2
(7

-
a)

2
(a
-

)3)
2 = - 27 (

2 + 4ZT 3
).

(Of. Art. 42.)

7. Prove the following identities :

Z,
3 + Jf3 = |{(2a- jS

- 7)

3 + (23
- 7 -

)

3 + (27
- -

3)
3
},

Z3 - J/3 = ^^3 {(j8
- 7)

3 + (7
-

a)
3
-f (a

-
/3)

3
}.

These are easily obtained by cubing and adding the values of

Z + M, &c. ; Z - M, &c.,

in the preceding example.

8. To obtain expressions for Z2
,
M"2

, &c., in terms of a, ft, y.

The following forms for Z2 and M2 are obtained by subtracting

(a
2 + )8

2 + 7
2
) (1 + &) + w2

)
= from (a + + w2

7)
2

,
and (a + or + o>7)

2
:

- Z2 = (0
- 7)

2 + 8
(7
-

)

s + (
-

/8)
s

,

- Jf2 =
(3
- 7)

2 + w (7
-

)
2 + 2

(a
-

j8)
2

.

In a similar manner, we find from these expressions

Also, without difficulty, we have the following forms for ZJf, and L 2 M~:

- 9. There are six functions of the type of Z or M, viz.,

o -I- wj8 + 2
7, wo -I-

2 + 7, to
2 a + 3 -f uy,

a + - + 017, wa + 3 + <a'-y, <a
'

o + + 7,

to foim the equation whose roots are these six quantities.
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These functions may be expressed as follow.- :

Z, o*Z, orZ,

M, <oAT, o-M-

hence they are the roots of the equation

(<(>
-
Z) (<J>

-
u,Z) (<}>

-
orZ) ($ -M)(<t>- uM) (<(>

- tfM] = 0,

or 06
-

(Z
3 + jp) 4,3

Substituting for L and .If from the equations

we have this equation expressed in terms of the coefficients as follows :

10. To form, in terms of L and Jf, the equation whose roots are the squares of

the differences of the roots of the general cubic equation.

Let

4>
= (-0) 2

;

hence, by former results,

V/^30 = u)L

Rationalizing this, we obtain

which is the required equation.

In a similar manner, by the aid of the results of Ex. 8, the equation of

-quared differences of this equation, or the equation whose roots are

03-7)
2 (2-0-7) 2

, (7 - )- (2)8- 7 -a)
2
, (a-Wpy-a-0\

i> obtained by substituting
- Z2 and - M~ for M and Z, respectively, in the last

equation ;
and this process may be repeated any number of times. Finally, all

these equations may be easily expressed in terms of the coefficients of the cubic l.y

means of the relations

LM=-9~, and I? + J/ :'= - 27 ^.
a- tt

For instance, the first equation is

(++')*+
<Cf. Art. 42.)

i2
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11. If a, 0, y and a', #', 7' be the roots of the cubic equations

ax3 + 3bxz + 3cx + d =0,

ax3 + Sb'x* + Zc'x + d' =
;

to form the equation which has for roots the six values of the function

< = oa'-f
'

+ 77'.

The easiest mode of procedure is first to form the corresponding equation for the

cubics deprived of their second terms, viz.,

a
v~*) ( v? + *>*

j/q

and thence deduce the equation in the general case ; for in the case of the cubics so

transformed the corresponding function

4>o
= (aa + b) (ofa' + V) -f (j8 + b) (dff + V) + (ay + b) (a'y

1 + I
1

)

Substituting for the roots ofthe transformed equations their values expressed by

radicals, we have

which reduces to

Cubing this, we find

Now, substituting forp and q, p' and j', their values given by the equations

zz + Gx- H* = 0, x~ + G'x - H'* = 0,

we have the six values of ^>o given by the two cubic equations

0o
3 - 27 1IH' c/>o

- ^ (GG' aa

where
2A= G- + 4J/, and

'2A'=

Finally, sulstituting for ^ its value <w'< -
3ii', and multiplying these cubics

together, we have the required equation . It may be noticed that if one of the cubio

1 e xz - 1 = 0, 0>
= a + a?j8 -f w 2

7, &c., which case has been already considered in

Ex. 9. Mr. M. Roberts, Dublin Exam. Papers, 1855.
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12. Form the equation whose roots are the several values of p, where

o -ft
p = .

*-*
Since

a - (1 + p) + py = ;

substituting for a, ft, y, their values in terms of p, q, and putting

\= 1 - (1 + p)-f par, n= 1 - (1 + p)w
2 + pa>,

wo have

Cubing, and substituting for p, q their values,

Squaring,

and by previous results

substituting these values, we have the required equation

2A (1 + p + p
2
)

3 -
27J5P(p + p

2
)

2 = 0.

13. Find the relation between the coefficients of the cubics

ax* + 3bx- +3cx + d = 0,

when the roots are connected by the equation

a(fi'-y') -f (/- ') + y(a'
-

')
= 0.

Multiplying by a> - a>
2

,
this equation becomes

iJf ' = L'M.

Cubing, and introducing the coefficients, we find

the required relation.

14. Determine the condition in terms of the roots and coefficients that the

cubics of Ex. 13 should become identical by the linear transformation

x' = px + q.

In this case

a?=pa + q, & = p& + q, y' = py + <!

Eliminating p and q, we have

7'
-

'7 + ya -
y'a -f aft'

- a'ft = 0,

which is the function of the roots considered in the last example. This n-lation,

moreover, is unchanged if for o, ft, y ; a, ft', y', we substitute

la +m, Ift + m, ly
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whence we may consider the cubics in the last example under the simple forms

23 + ZHz + O = 0, z'
3 + 3.HV + G' = 0,

obtained by the linear transformations z = ax + #, z'= a'x' + b'
;
for if the condition

holds for the roots of the former equations, it must hold for the roots of the latter.

Now putting tf = kz, these equations become identical if

' = '=
whence, eliminating &,

is the required condition, the same as that obtained in Ex. 13. It may be observed

that the reducing quadratics of the cubics necessarily become identical by the same

transformation, viz.,

60. Romographic Relation between two Roots of a

Cubic. Before proceeding to the discussion of the biquadratic

we prove the following important proposition relative to the

cubic :

The roots of the cubic are connected in pairs by a homographic

relation in terms of the coefficients.

Eeferring to Exs. 13, 14, Art. 27, we have the relations

2

{a ()3
-

y)
2 + j3 (7

-
a)

2 + 7 (a
-

|3)
2

}

=
9(a 3

-

o
f

{a
2

(/3
- 7 )

2 + j3
2

(y
-

a)
2 + 7

2

(a
-

/3)
2

}
= 18(^

8

Using the notation

ffos -
a\ = H, doffs

-
a\ <h - 2-ETi, i a

- ^2
2 = H*

;

multiplying the above equations by a)3,
-

(a + )3) 5 1, respectively,

and adding ; since

o3

-a(a + /3) + a|3-0, )3
S - & (a + (5) + a]3

* 0,

we have

o
2

(j3
-

7) (7
-

a) (a
-

]3)
2 =

18{ZTaj3 + -Hi (a + j3) + JSij ;

but

o
4

(13
-
7 )

2

(7
-

a)
2

(a
-

/3)
8 = - 27A - 108 (fiSi

-
.BT,

2

)

(see Art. 42) ; whence

-
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and, therefore,

which is the required homographic relation. It is to be ob-

served that the coefficients in this equation involve one irrational

quantity, the second sign of which will give the relation be-

tween a different pair of the roots.

,61. First Solution by Radicals of the Biquadratic.
Euler's Assumption. Let the biquadratic equation

ax* + 4fo3 + 6cz* + 4dx + c =

be put under the form (Art. 37)

z* + 6Hzz + 4Gz + a*I - 3#2 = 0,

where & = ax + b,

H=ac-b\ I=ae-4bd+ 3c2

, G = a*d - 3abc + W.

To solve this equation (a biquadratic wanting the second

term) Euler assumes as the general expression for a root

z =

Squaring,

Squaring again, and reducing, we obtain the equation

Comparing this equation with the former, we have

, */p ^/q ^r = - -
;

and consequently >, ^, r are the roots of the equation

- ~t - =
; (1)

V 4/4
or, since

- G2 - 45' - (THI + a*J, (Art. 37),
where

J^ace + 2bccl - ad' - etf - c\
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this equation may be written in the form

4 (t + HY -
a*I(t + H)+a*J=Q',

and finally, putting t + H = az

O, we obtain the equation

4az O*-IaO + J=0. (2)

This is called the reducing cubic of the biquadratic equation ;
and

will in what follows be referred to by that name. When it is

necessary to make a distinction between the cubics (1) and (2),

we shall refer to the former as Euler's cubic.

Also, since t = b
z - ac + a

z
9

;
if 0i, 2 , 3 be the roots of the

reducing cubic, we have

p ~ b* - ac + az

0i, q = b* - ac + az
2 , f = b

z - ac + a2
3 ;

and, therefore,

-ac + a
2
Oi + /bz - ac + a* 62 + \62 - ac + a? 3 .

If this formula be taken to represent a root of the biquadra-

tic in z, it must be observed that the radicals involved have not

complete generality ;
for if they had, eight values of z in place

of four would be given by the formula. The proper limitation

is imposed by the relation

which (lost sight of in squaring to obtain the value of pqr)

requires such signs to be attached to each of the quantities

^/P> V^ A/r>
that their product may maintain the sign deter-

mined by the above equation ; thus,

are all the possible combinations of </p, */q, */r fulfilling

this condition, provided that v/p, </q, ^r retain the same signs

throughout, whatever those signs may be. We may, however,

remove all ambiguity as regards sign, and express in a single



First Solution by Radicals of the Biquadratic. 121

algebraic formula the four values of s, by eliminating one of the

quantities y/p, v/q, */r from the assumed value of z by means

of the relation given above, and leaving the other two quanti-

ties unrestricted in sign. The expression for z becomes therefore

G

a formula free from all ambiguity, since it gives four, and only

four, values of z when */p and ^/q receive their double signs :

the sign given to each of these in the two first terms deter-

mining that which must be attached to it in the denominator of

the third term. And finally, restoring to p, <?,
and z their values

given before, we have

ax + b = y/62 - ac + a2

Oi + <\b~ -ac + a2 Oz

G
or 0,

as the complete algebraic solution of the biquadratic equation;

0! and 2 being roots of the equation

4a*8*-IaO + <7=0.

To assist the student in justifying Euler's apparently arbi-

trary assumption as to the form of solution of the biquadratic,

we remark that, the second term of the equation in z being

absent, the sum of the four roots is zero, or Si + s2 + z3 + s4
=

;

and consequently the functions (si + s2)

2

, &c., of which there are

in general six (the combinations of four quantities two and two),

are in this case reduced to three
; so that we may assume

(s2 + 23)

2 =
(si + s*)

2 = 4p,

(z3 + s0
2 =

(sz + s4)

2 =
4?,

(*i + *)*-(*, + ii)
f
=4r;

from which we have Si, c3 ,
z3 ,

s 4 ,
included in the formula

+ < + -r.
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We now proceed to express the roots of Euler's cubic (1)>

and also those of the reducing cubic (2), in terms of the roots

a, j3, y, S of the given biquadratic in x. Attending to the re-

marks above made with reference to the signs of the radicals, we

may write the four values of z = ax + b as follows :

aa + b =

0/3 + b = -

ay + b = -

a$ + b =

from which may be immediately derived the following expres-

sions for p, qy
r the roots of Euler's cubic :

q- (7 + -0-8)
s
, (4)

Subtracting in pairs the equations (3), and making use of

the relations above written between p, q, r and t , 2 , 3 ,
we

easily establish the following useful relations connecting the

differences of the roots of the cubics (1) and (2) with the diffe-

rences of the roots of the biquadratic :-

4(q -r) = 4*(0Z
-

ft)
- - a'Q3

-
y) (a- S),

4(r
-
p)

= 4*(ft
-

ft)
- - 2

(y
-

a)
-

8), (5)

4(p- q)
= 4 3

(ft
-

ft)
= - 2

(a
-
0)(y -S).

Finally, from these equations, by aid of the relation

ft + ft + ft = 0, we derive the values of ft, ft, ft in terms of

. P) 7> S, viz.,

(6)
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EXAMPLES.

1. Show that the two biquadratic equations

have the same reducing cubic.

'2. Find the reducing cubic of the two biquadratic equations

x* - 6lx~ Sx v + w' + w3 - Wmn + 3 (4wn - P) = 0.

^s. 3 - 3m0 -
(m

3
-I- w3

)
= 0.

3. Prove that the eight roots of the equation

{x*
- 6lxz -f 3 (4;>m

- l
z
) }

2 = 64 (/
3 + w3

-f n3 - 3//) .''
2

are given by the formula

i/l -f m + n+*l -f (am + orn + <v' + orw + n.

(Compare Ex. 20, p. 34.)

4. If the expression

V^ I + m -f -f \/ / + wm + ai-n -t- \/ / -t- urm -f ww

be a root of the equation

3T2 = 0,

determine H, /, / in terms of /, m, n.

A ii*. 11= -I, 1=1 Imn, J = - 4 (w
3 + 3

)
.

5. Write down the formulas expressing the root of a biquadratic in the parti-

cular cases when / = 0, and / = 0.

6. If the biquadratic has two equal roots, prove that the reducing cubic has two

equal roots, and conversely.

7. If the biquadratic has three roots equal, prove that all the roots of the

reducing cubic vanish, and consequently /= 0, ,7=0.

8. If the biquadratic has two distinct pairs of equal roots, prove that two of the

roots of Euler's cubic vanish, and consequently G = 0, a1! I2H"2 = 0.

9. Prove the following relations between the biquadratic and Euler's cubic with

respect to the nature of the roots :

(1). When the roots of the biquadratic are all real, the roots of Euler's cubit-

are all real and positive.

(2). When the roots of the biquadratic are all imaginary, the roots of Euler's

cubic are all real, two being negative and one positive.

(3). When the biquadratic has two real and two imaginary roots, Euler's

cubic has two imaginary roots and one real positive root.

These results follow readily from equations (4) when the proper forms are sub-

stituted for o, /3, 7, 8 in the values of/?, q, r. Tt is to be observed that all possible
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cases are here comprised, the biquadratic being supposed not to have equal roots.

It follows that the converse of each of these propositions is true. Hence, if Euler's

cubic has all its roots real and positive, we may conclude that all the roots of the

biquadratic are real
;

if Euler's cubic has negative roots, we conclude that all the

roots of the biquadratic are imaginary ;
and if Euler's cubic has imaginary roots,

we conclude that the biquadratic has two real and two imaginary roots.

10. Prove that the roots of the biquadratic and the roots of the reducing cubic

are connected by the following relations :

(1). When the roots of the biquadratic are either all real, or all imaginary,

the roots of the reducing cubic are all real
; and, conversely, when the roots of

the reducing cubic are all real, the roots of the biquadratic are either all real or

all imaginary.

(2). When the biquadratic has two real, and two imaginary roots, the reduc-

ing cubic has two imaginary roots
; and, conversely, when the reducing cubic has

imaginary roots, the biquadratic has two real and two imaginary roots.

These results follow readily from the preceding example, since the roots of

the two cubics (1) and (2) are connected by a real linear relation.

11. If H is positive, the biquadratic must have imaginary roots.

For in that case the roots of Euler's cubic cannot be all positive.

12. If Jis negative, the biquadratic has two real and two imaginary roots.

For the reducing cubic has in that case two imaginary roots (Ex. 12, p. 33).

13. If H and / are both positive, all the roots of the biquadratic are imaginary.

For, since / is positive, the reducing cubic has a real negative root
;
there-

fore also Euler's cubic has a real negative root, since t = a2 - H, and H is posi-

tive
;
and this is case (2) of Ex. 9. It is implied in this proof that the leading

coefficient a is positive ;
if a/be substituted for ,7 in the statement of the proposition

no restriction as to the sign of a is necessary.

14. Express, by the aid of the reducing cubic, /and /in terms of the differences

of the roots a, 0, 7, 5. (See Exs. 16, 18, Art. 27.)

15. Express the product of the squares of the differences of the roots o, , 7, 8

in terms of / and 7.

By means of the equations (5) above given, and the equation (2), p. 82, we ob-

tain the result as follows :

16. What is the quantity under the/naJ square root (viz., that which occurs

under the cube root in the solution of the reducing cubic) in the formula expressing

a root ? Ans. 2772 - 7 3
.

17. Prove that the coefficients of the equation of squared differences of the

biquadratic equation o#4 + 4ia;3 + 62#2 + 403* + 04 = may be expressed in

terms
> H> I> and /.
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Removing the second term from the equation, we obtain

65" 4
= 0;

and changing the signs of the roots, we have

H 4 2/-3#2
_ A

These transformations leave the functions (o
-

0)
2

&c., unaltered; but G
becomes - G, the other coefficients of the latter equation remaining unchanged ;

therefore G can enter the coefficients of the equation of squared differences in even

powers only. And by aid of the identity of Art. 37, G~ may be eliminated, intro-

ducing a
, H, /, /. In a similar manner we may prove that every even function.

of the differences of the roots a, j8, 7, 5 may be expressed in terms of o> H, I, J,

the function G of odd degree not entering.

,.62. Second Solution by Radicals of the Biqua-
dratic. Let the biquadratic equation

ff#
4 + 4bz? + 6cx* + 4dx + e =

be put, as before, under the form

s
4 + 6J5Ts

2 + 4s + a2/ - 3ff2 =
0,

where 2 = ax + b.

We now assume as the general expression for a root of tLis

equation

a formula involving three independent radicals, y^p, v/</, </r.

Squaring twice, and reducing, we have

(s
2 -

qr
-

rp
- pqf = 4pqr(2z + p + q + r),

or

24 - 2 (qr + rp +pq) z
z -

Spqrz + (qr + rp +pq)
z

-4(p + q + r)pqr = 0.

Comparing this equation with the former equation iu s, we

easily find

G cfl

whence p, ^, r are the roots of the equation

+, (12H* - a*I) e
- QHGt + G* = 0.
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This equation may be readily transformed into Euler's cubic,

or making directly the substitution

and putting for G z
its value in terms of H, /, and J", we may

reduce it to the standard form of the reducing cubic, viz.,

<7=0.

It is important to observe that in the present method of so-

lution we meet with no ambiguity corresponding to that of

Art. 61 ; for the expression here assumed as the value of z has, in

virtue of the double signs of the radicals contained in it, only

four values, while the form assumed for z in the preceding Article

has eight values. This appears from the identical equation

^ (/P + </<! + ^rf - p - q- r,

which shows that the number of distinct values of the radical

expression of the present Article is the same as the number of

values of (\/p + \/q + \/r)
2

, namely four.

In order to express p, q, r in terms of the roots a, ]3, 7, S of

the biquadratic, we have, giving to x the four values a, /3, 7, 8,

The student may easily satisfy himself that no combination

of the signs of the radicals can lead to any value different from

these four.

From the values of s2 + s3
-

s,
- s4 ,

and s2 Ss
-

3iSi, we obtain
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From these and similar equations we have, employing the rela-

tion G = -
2pqr, the following modes of expressing p, q, r in

terms of the roots , /3, 7, S :

)3y-aS SO

ya-(l$ 8G
-q = a- = ^+b= __

-

-
- r = a ^ - - + b

63. Resolution of the Uuartic into its Uuadratio

Factors. Let the quartic

be supposed to be expressed as the difference of two squares* in

the form

Multiplying the given quartic by ,
and comparing it with

this expression, we have the following equations to determine

M, N, andfl:

JT- = b
z - ac + a2

0, MN =bc-ad + 2ab0, Nz

=(c + 2a8)
z - ac.

Eliminating M and N from these equations, we find

4a3 3 -
(ac

- 4bd + 3r) aO + ace + 2bcd - ad2 - eb
z - c

3 =
0,

which is the reducing cubic before obtained.

From this equation we have three values of B (0i, 2 , #a)>

with three corresponding values of Mz

, JfJV, JV 8

;
and thus all

the coefficients of the assumed form for the quartic are deter-

* The reduction of the quartic to the difference of two squares was the method

first employed for the solution of the equation of the fourth degree. This mode of

solution is due to Ferrari, although by some writers ascribed to Simpson (see Note A).

The method explained in the following Article, in which the quartic is equated

directly to the product of two quadratic factors, is due to Descartes.
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mined in three distinct ways; moreover, it should be noticed

that to each value of M corresponds a single value of N, since

MN = be - ad + 2abO.

The quartic

(ax- + 2bx + c + 2aO)*
- (2Mx + N)

z

may plainly be resolved into the two quadratic factors

When 6 receives the three values ft, ft, ft, we obtain the three

pairs of quadratic factors of the original quartic, and the problem
is completely solved.

In order to make clear the connexion between the present

solution and the solution by radicals, let us suppose that the

roots of the quadratic factors in the order above written are

]3, 7 and a, ;
and that the roots of the remaining pairs of qua-

dratic factors are similarly 7, a and )3, S ; a, /3 and 7, 8. We
have, therefore,

where

a a a

-(b +Nl), j3 + S = -?(6+Jf2), y + $=--
a a a

2 ,
Jf3 = ^/b

z - ac

Subtracting the last equations in pairs, we find

and since

a +
/3 + 7 + 8 = -4-,

we obtain

aa + b = - Mi + Mz +

ay + b = M\ +

aS + b = - Ml
-
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It appears, therefore, that the roots of the biquadratic are here

expressed separately by formulas analogous to those of Art. 61.

The values of JP, viz. M*, MS, J/"3
2
,
are in fact identical with

the roots of Euler's cuibo in the preceding Article. There

exists also with regard to the signs of the radicals involved in

MI, M, M3 a restriction similar to that of Art. 61 ; since, in

virtue of the assumptions above made with respect to the roots

of the quadratic factors, we have the equation

which implies the following relation (see Ex. 20, p. 52) :

and by means of this relation the signs of J/i, M^ M3 are re-

stricted in the manner explained in the previous Article.

By aid of the equation last written we can eliminate M*
from the expressions for the roots, and thus obtain, as in Art. 61,

all the roots of the biquadratic in a single formula, viz.,

in which the radicals MI = i/b*-ac + d*9i, andM2
= </b

z -

are taken in complete generality.

EXAMPLES.

1 . Form the equation whose roots are A, /t, v, viz.,

(3y + a5, 70 + 5, aj8 + y5.

Adding the last coefficients of the quadratic factors of the quartic, we have

70

4-78= 403 + 2 -,
a

where 61, 0-, 03 are the roots of the reducing cubic ;
hence the required equation.

Ans. (ax
-

2c)
3 - ll(ax

-
2c) + 16 /= 0.

(Compare Exs. 4, 5, Art. 39.)



130 Algebraic Solution of the Cubic and Biquadratic.

2. Express, by means of the equations of the preceding example, the roots of

the reducing cubic in terms of the roots of the biquadratic.
2c

Substituting for its value in terms of a, 0, 7, S, we find immediately

1201 = 2 A -
/x
- v = (y

-
a) (0

-
S)
-

(a
-

/3) (7
-

S),

1202 = 2/4
- * - A s (a

-
0) (7

-
)
-

OB
-

7) (a
-

8),

1203 = 2 v - A-/i = (/3- 7)(a -
8)
-

(7
-

o) (0
-

S).

(Cf. (6), Art. 61.)

3. Verify, by means of the expressions for 0i, 2 , 03 in Ex. 1, the conclusions of

Ex. 10, Art. 61, with respect to the manner in which the roots of the biquadratic

and reducing cubic are related.

4. Form the equation whose roots are the functions

(07-oS)G3 + 7-o-8), | (7 -
,35) {7 + a-0-8), J-(aj8

-
78) (a + )8 -7- 5).

From the quadratic factors of the quartic we find

4J*i 2^i- =0+7-0-5, -- = 07-08;

also

M\N\ - be - ad + 2ab6\ = - a2
<j>i,

tho roots of the required cubic being represented by <i, 02, <j>3-

"We obtain, therefore, the required equation by a linear transformation of the

reducing cubic.

Ans. (a~<f> +bc- ad)*.- b*I(a?<}) + be - ad)
- 2b*J = 0.

5. Form the equation whose roots are

7 - 08 70 - 8 o/3
- 78

+ 7-0-5' 7 + 0-0- S' + 0-7-8'
If

<f>
denote any one of these functions indifferently, and the corresponding root

of the reducing cubic, we have, employing former results,

_ Mir_bc-ad+ 2abB

*~~M*~ ~&-ac~+~a*i '

and thus we obtain the required equation by a homographic transformation of the

reducing cubic. This formula may be put under the more convenient form

by means of which we obtain the required cubic in the following form :

2 (0 + b)* + (a*I- 121T2
) (*0 + i)

2 -
6HG(a<t> + b)

- 2 =
0,

which, expanded and divided by o3
,
becomes

2 (abe + 2b*d- Zacd] Q + Pe- ad- = 0.

(Cf. Ex. 14, p. 88.)
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(>. Fonn the equation whose roots are

These are the three values of N* in the foregoing Article. Representing, as

before, one of these values by <, we find that the required equation may he obtained

from the reducing cubic by means of the homographic transformation

2 bed- adz -

c-aQ

7. Form the equation whose roots are

7 - aS _ya-jSS_ _ _ _
'

(7 + a)38-(3+8)7a' (a + 0) 75 - (7 + 5) a/3

The required equation is obtained from the reducing cubic by the homographic

transformation

cd - be

^ ~
z

This result may be derived from Ex. 5 by changing the roots into their recipro-

cals, and making the corresponding changes in the coefficients.

64. The Resolution of the Quartic into Quadratic

Factors. Second Method. Let the quartic

ax*

be supposed to be resolved into the quadratic factors

a (x
2 + 2px + q) (x~ + 2p'x +

q').

We have, by comparing these two forms, the equations

7\ yj y-7 />

p+p'=2-, q + q'+4pp'=6-, pq' + p'q = 2-, M' = -
(1)

I* U U II

If now we had any fifth equation of the form

we could eliminate p, p', q, q'; and thus find an equation giving
the several values of 0.

The fifth equation might be assumed to be pp
f =

0, or q + <f

= <
; and in each case would be determined by a cubic equa-

tion, since each of these functions, when expressed in terms of

K2
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the roots of the biquadratic, has three values only. It is more

convenient, however, to assume

2c

the two functions of p, p', q, q here involved being equal by the

second of equations (1). We easily find, by the aid of those

equations,

4abc - 2a?d 8bd>

and eliminating p, p', q, q', by means of the identical relation

(? +p'W + f] - (/>/ -p'vY + (PI + p'v'Y,

there results the equation

+ J =
0,

which is the reducing cubic obtained by the previous methods

of solution.

Having thus found pp', or q + q', we may complete the

resolution of the quartic by means of the equations (1).

The reason for the assumption above made with regard to

the form of the fifth equation is obvious. From a comparison

of the assumed values of with the equations of Ex. 1, Art. 63,

it appears that is the same as 9 in the preceding Article
;
and

therefore we foresee that the elimination of p, p', q, q', must lead

to an equation in identical with the reducing cubic before

obtained. In general, if represent any function of the differ-

ences of A, /u, v, and consequently an even function of the differ-

ences of a, |3, 7, 8 (see Ex. 18, Art. 27), the equation whose

roots are the different values of cannot involve any functions

of the coefficients except r/, H, J, and J.

If be assumed equal to any of the expressions in the^second

of the following examples, the equation in whose roots are the

different values of this expression is formed as in4the above in-

stance by the elimination of p, p', q, q'.
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EXAMPLES.

1. Resolve into quadratic factors

Comparing this form with the product

P + % + f

ure find the following equation for p :

-
j?2

- * =
;

and putting

a~<(>
= pz + H=

this equation, when divided by a3
,
becomes

4a3
<j>

3 - lap +J= 0.

2. If a quartic be resolved into the two quadratic factors

prove that
<f>

is determined by a cubic equation when it has all possible values corre-

sponding to each of the following types :

, q-q pq'-p'q pq' -p'q

and by an equation of the sixth degree when it has all values corresponding to

p> 9t P -
P'J Q

-
9', PQ' -p'q, r p2 - *?

Expressing these functions in terms of the roots, the number of possible values of

ach function becomes apparent.

65. Transformation of the Biquadratic into the

Reciprocal Form. To effect this transformation we make

the linear substitution x = ky + p in the equation

ax* + 4bx? + 6cx* + 4dx + e = 0,

which then assumes the form

+ V* =
0,

where

Ui = ap + b, U2
=
ap* + 2bp + c, U3

= ap
3 + 3bp

z + 3cp + d, &c.

(Cf. Art. 35.) If this equation be reciprocal, we have two equa-

tions to determine k and p, viz.,

ak*= tfZTA-ZTi
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eliminating &, we have the following equation for p :

aU^ - Cri
2 Cr

4
= 0;

and since

, 2 _ IT* _ ap
3 + 3bp

2 + 3cp + d
=

~U\

=
ap + b

~~'

there are two values of k, equal with opposite signs, correspond

ing to each value of p.

The equation

aV?- Z7i
a
Z7i = 0,

when reduced by the substitutions (Arts. 36, 37)

becomes

20C? + (a*I- 12H*) C? - SGHU, - G* =
0, (1)

which is a cubic equation determining Ui = ap'+b; and if we put

9 is determined by the standard reducing cubic

4a*0*-IaO + J = 0.

This transformation* may be employed to solve the biqua-

dratic
;
and it is important to observe that the cubic (1) which

here presents itself differs from the cubic of Art. 62 only in

having roots with contrary signs.

We proceed now to express k and p in terms of a, ]3, 7, S, the

roots of the biquadratic equation. Since the equation in yy

obtained by putting x = ky + p, is reciprocal, its roots are of the

form yl9 yz, , ; hence we may write
y 2 y\

* This method of solving the biquadratic by transforming it to the reciprocal

form was given by Mr. S. S. Greatheed in the Camb. Math. Journ., vol. i.



Transformation of Biquadratic into Reciprocal Form. 135

and, therefore,

(a
-
p)($ -p) =

(/3
-
p)(y

-
p)

= k\

from which we find

P =
|3 + 7

- a -~8'

and -
A:

2 = -4

An important geometrical interpretation may be given to

the quantities k and p which enter into this transformation.

Let the distances OA, OB, 00, OD, of four points A, B, C, D,
on a right line from a fixed origin on the line be determined

by the roots a, j3, 7, S, of the equation

ax^ + 4 bx* + 6 ex
2 + 4dx + e =

;

also let 1? 0o, 3 be the centres ;
and Fl9 F{\ FZy F2

'

;
F3 ,
F3',

the foci of the three systems of involution determined by the

three following pairs of quadratics :

\ n i \ f s\ f\

We have then the equations

O^B . 0,0 = 0,A . OtD = OiJF
7

!

8

, &c.,

which, transformed and compared with the equations

O -
p)(y

-
P)

=
(

-
p)(8

-
ri

= A;
8

, &c.,

prove that the three values of p are 00i, 002, 003 ,
the distances

of the three centres of involution from the fixed origin 0. Also

since OiF* =
k~, k has six values represented geometrically by

the distances

where 0i^i + 0\F{ =
0, &c., as the distances are measured in

opposite directions.
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We can from geometrical considerations alone find the posi-

tions of the centres and foci of involution in terms of a, /3, 7, S,

and thus confirm the results just established, as follows :

Since the systems {F^BFiC] and (FjAFfD} are harmonic,1111
+
F,C~ FtA

+
FtD'

and if x represent the distance of FI or FS from the fixed origin

0, we have

1 1 1 1
i ~r f*.X- /3 X -j x - a

Solving this equation, we find

or x =-- p k,

, + OF: OF, - OF;
whence p =-~- ,

k = --- =

EXAMPLE.
-.

Transform the cubic

to the reciprocal form.

The assumption x = ky + p leads to the equation

+ 3J3"2 Z7i
3 + H3 = 0, where Z7i = ap + b.

The values of p are easily seen to be

07 ~ 2 ya-P a/3-72

P + 7 - 2a' 7 + a - 20' a + /8
-

27'

The geometrical interpretation in this case is, that if three points A', B'
,
C' be

taken on the axis such that A' is the harmonic conjugate of A with respect to

B and C,
'
of B with respect to C and A, and C' of C with respect to -4 and B

;

then we have the following values of p and k :

OA + OA' OA-OA'
p=

*
-

'
* =

"2
-

'

For the values of OA', OB', OC', in terms of a, 0, 7, see Ex. 13, p. 88.
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66. Solution ofthe Biquadratic by Symmetric Fuuc- '"

tions of the Roots. The possibility of reducing the solution

of the biquadratic to that of a cubic by the present method de-

pends on the possibility of forming functions of the four roots

> /3, y, S, which admit of only three values when these roots are

interchanged in every way. It will be seen on referring to Ex. 2,

Art. 64, that several functions of this nature exist. These, like

the analogous functions of Art. 59, possess an important pro-

perty to be proved hereafter, viz., any two -such sets of three are

so related that any one function of either set is connected with

some one function of the other set by a rational homographic
relation in terms of the coefficients.

For the purposes of the present solution we employ the

functions already referred to in Art. 55, since they lead in the

most direct manner to the expressions for the roots of the bi-

quadratic in terms of the coefficients. We proceed accordingly

to form the equation whose roots are the three values of

a + 0/3 + 2

y + 3 SV

when the roots are interchanged in every way, and 9 = - 1.

These values are

and since

1

77"

S (a
-

|3)
2 - 3Sa2 - 2A -

2/x
- 2v = - 48

,

we find the following values of t^ t2 ,
tz :

2A- M -v H 2fjL-v-\ H 2v-\- n H

whence ^ + t2 + tz
= - 3 .

a
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Again, since

and

we have

also

Hence the equation whose roots are t^ 2, 4 becomes

2 - ~-<h

or, substituting for (r
2
its value from Art. 37,

4 (^ + J2")
3 - a2/(^ + JT) + 3J"= 0,

which is transformed into the standard reducing cubic by the

substitution aH + H= a?0.

To determine a, |3, 7, 8 we have the following equations :

along with a + /3 + y + S =

from which we find

, a + ]3 -7- S = 4 ^

/3
=
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We have also from the above values of yij \/^2, A/% the

equation

by means of which one radical can be expressed in terms of the

other two, and the general formula for a root shown to be the

same as those previously given.

It is convenient, in connexion with the subject of this Article,

to give some account of two functions of the roots of the biqua-

dratic which possess properties analogous to those established in

Art. 59 for corresponding functions of the roots of a cubic.

Adopting a notation similar to that of the Article referred to,

we may write these functions in terms of A, /u, v in the follow-

ing form :

aS) + a> (ya + /3S) + W2

(a/3 + 78),

By means of the equations of Ex. 1, Art. 63, these functions

can be expressed in terms of the roots of the reducing cubic in

the form

JZ = 01 + W02 + 0>
2

0,, IM= 0! -I- W2
2 + W08 .

They may also be expressed, by aid of the equation of the pre-

sent Article connecting t and 0, in terms of the values of t
it

t2 ,
t3,

as follows :

The functions L and M are as important in the theory of

the biquadratic as the functions of Art. 59 in the theory of the

cubic. The cubes of these expressions are the simplest functions

of four variables which have but two values when the variables

are interchanged in every way ; they are the roots of the re-

ducing quadratic of the reducing cubic above written, and

underlie every solution of the biquadratic which has been given.
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EXAMPLES.

1 . Show that L and M are functions of the differences of a, , 7, S.

Increasing o, 0, 7, 5 by h, L and JIf remain unaltered, since 1 -f + w2 = 0.

2. To find in terms of the coefficients the product of the squares of the difier-

ences of the roots a, , 7, S.

From the values of L and M in terms of 0i, 0o, #3, we find easily

120i= L+ M, L- M= 08
- y) (

-
8) (o>

2 -
),

1202 = a>
2Z + w., 2Z - wJf = (7

-
a) (0

-
8) (a>

2 -
),

12 03 = a>i + a>W, wZ - arJf= (a
-

/B) (7
-

8) (a>
2 -

).

Again, from these equations, multiplying the terms on both sides together, and

remembering that 0i, 02> #3 are the roots of

we find

also, adding the squares of the same terms, we have

1LM= 24 ~ = OB
-
7)

2
(a
-

S)
2 + (7

-
)
2

{ft
-

S)
2 + (

-
&)* (7

-
8)

8
;

and, since

(Z
3 - Jf3

)
2 = (Z

3 + Jf3
)

1 - 4Z3Jf3
,

substituting for these quantities their values derived from former equations, we have

finally

3. Show by a comparison of the equations of the present Article and Art. 59 that

the results of the previous Article may be extended to the biquadratic by changing

0-7, 7-0, a- into -OB -7) (a -5),
-

(7 -a)()3
-

S),
-

(a
-

) (7- S),

respectively; and, consequently, H into -
J, and G into 16/.

o

67. Equation of Squared Differences of a Biqua-
dratic. In a previous chapter (Art. 44) an account was given

of the general problem of the formation of the equation of dif-

ferences. It was proposed by Lagrange to employ this equa-

tion in practice for the purpose of separating the roots of a

given numerical equation ;
and with a view to such application
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he calculated the general forms of the equation of squared dif-

ferences in the cases of equations of the fourth and fifth degrees

wanting the second term (see Traite de la Resolution des Equa-

tions Ntimeriques, 3rd ed., Ch. v., and Note in.). Although for

practical purposes the methods of separation of the roots to be

hereafter explained are to be preferred ; yet, in connexion with

the subjects of the present Chapter, the equation of squared

differences of the biquadratic is of sufficient interest to be given

here. We proceed accordingly to calculate this equation for a

biquadratic written in the most general form. It will appear,

in accordance with what was proved in Ex. 17, Art. 61, that

the coefficients of the resulting equation can all be expressed in

terms of #, H, I, and J.

The problem is equivalent to expressing the] following product in terms of the

coefficients of the biquadratic

The most convenient mode of procedure is to group these six factors in pairs,

and to express the three products (which we denote by Hi, Eb, Ila) separately in terms

of the roots of the reducing cubic, and finally to express the product HI IIj Ila in

terms of a, H, 7, J.

and, by aid of the results of Art. 61 we easily derive the following expressions for

hence, without difficulty,

(~pf\
T

801 +
16-J <j> +4--

Introducing now for brevity the notation

lQH=a-P, 4/= 2
Q, 167= a?R,

Hi becomes + 80i$ - 4802 03-

Reducing the product Hi n2 n3 by the result of Example 18, page 89, we obtain

3 + SQ^2 -
(4Qcj>

2 + 18Jty)- (8Jty
3 + 12QV + 36Q2ty + 27.K2) = 0.

Finally, restoring the value of % we have the equation of squared differences ex-

pressed in terms of P, Q, J2, as follows :

4>
6 + 3J>5 + (3P2+ 2 Q) <j>4 + (ps + 8PQ _ 26K) ^
+ (6P

2Q - 7Q2 -
18P22) f + 9Q (PQ - 6JZ)^ + 4Q3 - 27-fl

2 = 0.
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"We give for convenience of reference the result also in terms of a, H, I, J* :

+ 16(3847/
2/- 7a2/2 -

2S8a#/)<J>
2 + 1152 (2HI- 3a/)/^ + 256 (J

3 - 27/2
)=0.

It should be observed that the value above obtained for ITi can be expressed as a

quadratic function of 0i by aid of the equation Oz 0$ = 9\~ ,
and the subsequent

calculation might have been conducted by eliminating Q\ between this quadratic and

the reducing cubic.

68. Criterion of the Nature of the Roots of the

Biquadratic. Before proceeding with this investigation it is

necessary to repeat what was before stated (Art. 43), that when

any condition with respect to the nature of the roots of an

algebraic equation is expressed by the sign of a function of the

coefficients, these coefficients are supposed to represent real

numerical quantities. It is assumed also, as in the Article re-

ferred to, that the leading coefficient does not vanish.

Using as before A to represent that function of the coef-

ficients (called the discriminant] which, when multiplied by a

positive numerical factor, is equal to the product of the squares

of the differences of the roots, we have, from the results estab-

lished in preceding Articles, the equation

6

03
-
7)

2

(7
-

)

2

(
-
0)'(

where A ^ P - 27Jz
.

It will be found convenient in what follows to arrange the

discussion of the nature of the roots under three heads,

according as (1) A vanishes, or (2) is negative, or (3) is positive.

(1) WhenA vanishes, the equation has equal roots. This is evident

from the value of A above written. Four distinct cases may be

noticed (a) when two roots only are equal, in which case /and J
do not vanish separately ; (j3)

when three roots are equal, in which

case /= 0, and J = 0, separately (see Ex. 7, Art. 61) ; (y) n-hcn

* The equation of squared differences was first given in this form by Mr. M.

Roberts in the Nourelles Annales de Mathematiques, vol. xvi.
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tiro distinct pairs of roots are equal, in which case we have the

conditions G =
0, a~ I-12H* = (Ex. 8, Art. 61). It can be

readily proved by means of the identity of Art. 37 that these

conditions imply the equation A =
;
hence these two equations,

along with the equation A =
0, are equivalent to two indepen-

dent conditions only. Finally, we may have (S) all the roots

equal; in which case may be derived from Art. 61 the three

independent conditions H =
0, I =

0, and J = 0. These may
be written in a form analogous to the corresponding conditions

in case (4) of Art. 43.

(2) When A is negative, the equation has two real and two ima-

ginary roots. This follows from the value of A in terms of the

roots
;
for when all the roots are real A is plainly positive ;

and

when the proper imaginary forms, viz. h k ^/ -
1, // k'^/-l,

are substituted for a, /3, y, S, it readily appears that A is positive

also when all the roots are imaginary.

(3) WJien A is positive, the roots of the equation are either all

real or all imaginary. This follows also from the value of A, for

we can show by substituting for a, |3 the forms h k */ - 1 that

A is negative when two roots are real and two imaginary.

In the case, therefore, when A is positive, this function of the

coefficients is not by itself sufficient to determine completely the

nature of the roots, for it remains still doubtful whether the

roots are all real or all imaginary. The further conditions

necessary to discriminate between these two cases may, however,

be obtained from Euler's cubic (Art. 61) as follows : In order

that the roots of this cubic should be all real and positive, it is

necessary that the signs should be alternately positive and

negative ;
and when the signs are of this nature the cubic can-

not have a real negative root. We can, therefore, derive, by the

aid of Ex. 9, Art. 61, the following general conclusion appli-

cable to this case : WTien A is positive the roots of the biquadratic

are all imaginary in every case except when the following conditions

are fulfilled, viz. H negative, and a*I - 12H* negative ; in which

case the roots are all real.
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EXAMPLES.

1. Show that if j? be positive, or if H= (and O not = 0), the cuhic will have-

a pair of imaginary roots.

2. Show that if J2"be negative, the cuhic will have its roots (1) all real and

unequal, (2) two equal, or (3) two imaginary, according as G z is (1) less than,,

(2) equal to, or (3) greater than - 4jB"3 .

3. If the cuhic equation

have two roots equal to o
; prove

Sz Hi- a =
Fi

=
^'

where a$a<i a\
z = If, o3 i2 = 2J?i, a\ as a%

z =

4. If ax* + 3bxz + 3cx + d + k (x
-

r)
3

he a perfect cuhe, prove

(ac
- bz

)
r* + (ad -bc)r + (bd

- cz
)
= 0.

5. Find the condition that the cuhic

ax3 + 3bxz + Zcx + d

may be capable of being written under the form

I (x
-

ai)
3 + m(x- i)

3 +n(x- 7i)
3
,

where ai, j8i, 71 are the roots of the cubic

Comparing the forms, we have

a = I + m + n,

- b = lai + m(3i

c =7oi2 + w/3i

-d= lai*

Also a\ oi
3 + 3#i ai

2 + 3d ai + di = 0, &c.

Whence, multiplying these equations by d\, 3ci, 3bi, ai, respectively, and adding,.

we find the required condition

(adi
-

aid)
- 3 (bc\

-
bic)

= 0.

6. If a, ft, y be the roots of the cubic equation

o#3 + 3ai #2 + Sazx + #3 = ;

rationalize the equation

\x - a + x - f3 + x --y = 0;

and express the result in terms of the coefficients o, i, 02, 3.

Ans. 125 Ui* + 3607/i+ 128^^ - 48.H"2 = 0.
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7. If 01, /5i, and 02, j32 be the roots of the quadratic equations

find the equation whose roots are the four values of oia2 .

Let J?i = 0i c\ b\ ,
-H"2 = c2 c2 fa~.

Ans. (ci\(i?,<$P 2$i32 <^> + i eg)
2

4.ZZi _H"2 (|>

2 = 0.

N.B. This and the two following Examples may be solved by expressing $ by
radicals involving the coefficients.

8. Employing the notation of Ex. 7, form the equation whose roots are the four

. 01 + 02
values of -

.

2

Let

Ans. (2i az tf>

2 + 2 (ai fa + a2 fo) <f> + -ffi2 )

2 - -Hi JT3 = 0.

In this Example the resulting biquadratic is such that G = 0.

9. In the same case, if
<J>
= ^ (ai a2)

2
,
form the equation whose roots are the

several values of
<f>.

Let

10. Show that when the biquadratic has a double root, the cubic whose roots

are the values of p (Art. 65) has the same double root ; and find what this cubic

becomes when the biquadratic has three roots equal.

11. If H and J are both positive, prove directly (without the aid of Euler's

cubic) that the roots of the biquadratic are all imaginary.

It appears from the expression for H in terms of the roots (Ex. 19, p. 52) that

irhen H is positive there must be at least one pair of imaginary roots h k V 1.

Noir diminishing all the roots by h, and dividing them by k (which transformations

will not alter the character of the other pair of roots 7, S, nor the signs of H and /),

the biquadratic may be put under the form

or #* + 4px3 + 6cz* + px + q, where 6c = q + I
;

whence H=c-pz
,

I = q
- 4p

2 + 3c2
,

/= qc + 2p*c-p*(q + 1)
- c* = c (q

-
lp>

- #

and therefore

c

proving that y and 5 are imaginary ifH and / are both positive (cf . Ex. 13, p. 124).

L
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12. If the biquadratic has two distinct pairs of equal roots, prove directly the

relations

= 12-ff2
,

In this case the biquadratic divided by a assumes the form

,

k a-/5
where z = aQx + ai, and = -

whence, comparing the forms

and z4 + 6S"z2 + Gz + 2
-Z"
- 3.H"2

,

we find 3H=- A;
2
,

=
0,

2/ - 3.H"2 = A*,

from which the above relations immediately follow. The student will easily estab-

lish the identity of these relations with those of Ex. 8, Art. 61. Also it should be

noticed that in this case only one square root is involved in the solution of the

biquadratic (coming from the solution of the quadratic (x a) (x ) ).

13. Find the condition that the biquadratic may be capable of being put under

the form

2px + q) + n.

In this case the second and fourth coefficients are removed by the same trans-

formation, and the general solution involves only two square roots.

Am. = 0.

14. Prove that 7 vanishes for the biquadratic

m(x -
w)

4
n(x )

4
.

15. If the roots of a biquadratic, a, /3, 7, 5 represent the distances of four

points from an origin on a right line
; prove that when these points form a harmonic

division on the line the roots of Euler's cubic are in arithmetic progression, and the

roots of the cubic of Art. 62 in harmonic progression.

16. Form the equation whose roots are the six anharmonic functions of four

points in a right line determined by the equation

= 0.

The six anharmonic ratios are

1 1 1

4>1> > 02, , 03, ,

01 02 03
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(7 -

) (13
-

)

~
A -
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(a
- 0) (7

-
8) _ A - /* _ 0i - 02

~

Q3
-

7) (a
-

S) _ M -y_ _ 02^03

(o
-

0) (7
-

5)

~
p - \

~
02 - 0i'

(7
-

g) (j3
-

S) = v- A. 03-01
_ 7) (

a _ 5)

~
v - p 03 - 02

'

also the equation whose roots are

03 -7) (a -5), (7 -a) (0 -5), (a
-

jB) (7
-

5)

is one of the cubics

16 v//3 - 27/2 = 0.

The equation whose roots are the ratios, with sign changed, of the roots of either

of these cubics is

4A (0
2 - + I)

3 - 2713 2
(0
-

I)
2 = (see Ex. 15, p. 88),

where A = J3 _ 27/2
.

The roots of the equation in < are the six anhannonic ratios. This equation can

be written in a more expressive form, as will appear from the following propo-

sitions :

(a). The six anharmonic ratios may be expressed in terms of any one of them,

as follows :

1 1-
'

f-1 f

</,' * '+ - *'

From the identical equation

(0
-

7) (a
-

S) + (7
-

a) 08
-

*) + (a
-

/B) (7
-

8)
s

we have the relations

0! + =
1, 02 + =

1, 03 + - =
1,

03 0! 02

which determine all the anharmonic ratios in terms of any one of them.

(b). If two of the anharmonic ratios become equal, the six values of are

u and 2
, each occurring three times

;
and in this case I = 0.

For suppose 0i = 02 ;
we have then from the second of the above relations

0i
2 -

0i + 1 = 0,

whence 0i =
a>, or w2

;

and substituting either of these values for in (a), we find all the anharmonic ratios.

Also, since

7^ + r-- = 0, or2fc-*)=0,
A. - v A- A*

we have
/ = a 4 4i 03 + 3aj

2 = 0.

L2
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(c). If one of the ratios is harmonic, the six values of are 1,2,-, each

occurring twice ;
and in this case 7=0; for if

4>i
= -

1,
~^ = - 1, or 2A -

fj.
- v = 0,

A. v

one of the factors of /(see Ex. 18, p. 52).

(d}. These results, as well as the converse propositions, may "he proved by

writing the sextic in under the following form :

_
2) (4,

-

17. Solve the equation

-1 ),
where 0* = 1.

18. Express 2(
-

)
4
(7

-
5)

2 as a rational function of 0i, 2, 63 ;
and ultimately

in terms of the coefficients of the quartic.

Am. - 128 2(02
-

3)
2

0i +~= -

19. Express

(0
2 - 7

2
)

2
(a

2 - S2
)

2 + (7
2 - 2

)

2
(/8

2 - S2
)

2 + (a
2 - ^(y* - 52

)

2

as a rational function of 0i, 02, 0s-

This symmetric function is equivalent to

(fj?
- ^)

2 + (^ - A2
)

2
H- (A

2 -
,u

2
)

2 = 256 2 (03
-

3 )

2

(0i

- -} !

20. Form the equation whose roots are the several products in pairs of the roots

of a biquadratic.

The required equation is the product of three factors of the type

Ans. (a<f- 2c<j> + *)
3 -

4/<^)
2

(fl(|>

2 - 2e(> +e+ 16J<>3 = 0.

21. Form the equation whose roots are the several values of -, where

a, j8, 7, 8 are the roots of a biquadratic.

The required equation is the product of three factors of the type

Ans. 4 (a<p + 1bq> + cf- I(a<^ + 23^ + c) + J= 0.
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22. Prove

1 9J

From the expressions for a, , 7, 8 in terms of Oi, 62) 63, we have

i i (a2 ei+2s: a* 62 + 23:

(a-p)*~~2tf ( (02 -03 )
2
+

(03 -0i)
2
+

which may be expressed in terms of a, IT, I, J, as above.

23

if J = 0, and m of the form 3p or 3p + l,p being a positive integer.

24. Prove that

can be resolved into the sum or difference of two squares if

J=aee + 2bcd - ad* - eb* - c3 = 0.

Here aU = (ax+ by+ czf + (ac
-

b~) y
2 + 2 (ad

-
be} yz+(ae- c2

)
z2

,

and (ac
-

&)y*+2 (ad
-

be) yz + (ae
- c2

)
z2

is a perfect square if

(ac-V}(ae-c*) = (ad-bcy,
or 7=0.

25. If a, /3, 7, 5 be the roots of the equation

=
0,

solve, in terms of the coefficients o, i, &c., the equation

\/a? - a +V^ -
)8 + V^^ - 7 + X/2 -8 = 0.

When v" + A/is"+ \/7 + \/s"=

is rationalized, and the coefficients substituted for a, /3, 7, 5, we have

(3o2-2i2) 2 = 3
4.

Now, substituting ZTo? iTi, Vz, Us, Ui for o, i, 2, 3, 4, and reducing, we find
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26. To express the solution of the biquadratic in terms of a single root of the

reducing cubic.

Substituting x
1 + p for x in the equation

ax* + 4bx* + 6cx* + 4dx + e = 0,

we have
= 0.

As there are here two independent variables at our disposal, it is allowable to-

make the assumptions

4 = 0, Vix'2 + Us = 0.

Eliminating x'z
,
and reducing as in Art. 65, we have

whence J7a = 0, where 6 is a root of the reducing cubic, and therefore

Ui = ap + b = *a*6- H.
Again,

whence, finally, since a; = a/ + p, or ## + J = Z7i + ax*, we have

J-^e-ZH-- ._
- 2 -

an expression which has only four values.

This expression might of course be obtained from the resulting formula of Art. 61
,.

or Art. 63. The method of arriving at it in the present Example is a distinct method

of solving the biquadratic.

27. Prove that every rational algebraic function of a root 6 of a given cubic

equation can in general be reduced to the form

Co + Ci6

Do + Did'

(h (ff\

Let the given function be
^-j-l > where $ (0} and fy(0) are rational integral func-

tions of 6 of any order. By successive substitutions from the given cubic each of

these may be reduced to a quadratic. Hence the given function is reducible to the

form

Equating this to the form written above, and reducing by the given cubic, we ob-

tain an identical equation, viz.,

where Z
, Zi, Iz are linear functions of Co, C\ t DO, D\. "We have, therefore, the

three equations LQ = 0, L\ = 0, L% = 0, to determine the ratios of Co, Ci, DO, -Oi.
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28. Prove that the solution of the biquadratic does not involve the extraction

of a cube root when any relation among the roots o, )8, 7 ,
5 exists which can be ex-

pressed by the vanishing of a rational function of a root 6 of the reducing cubic.

Any rational function of 9 can always be depressed to the second degree, as in

the preceding example. Hence the determination of 6 will not involve the extrac-

tion of a cube root ; and the formula of Ex. 26 shows that the expression for the

root of the biquadratic will not then involve any cube root.

29. Find the relation which connects the roots of the biquadratic when the

equation

4p
3 -7p + /=0

is satisfied by each of the following values of p :

Ans. (1) 0+ 7 - a _5 = 0, (2) + 7 = 0, (3) (7- a) (j8- 5)
- (a-) (7-8) = 0,

(4), (8) 7 -a5=0, (5) (7 -a) 03-5)-(a-0)(7-8)=0, (6), (7) /3-7 = 0.

30. Prove the identity

* 6
(J3- 2772

)
=

(a *I- 3J? 2
) K2J-

This may be proved as follows : Putting a\ in the values of 1 and /, and ex-

panding, it readily appears that the part of A independent of a\ may be thrown into

the form

Now, replacing o2 , s, 4 by Az, A3 , At, and substituting for the latter quanti-

ties the values of Art. 37, we obtain the result. Mr. M. EGBERTS.

31. When a biquadratic has two equal roots, prove that Euler's cubic has two

equal roots whose common value is

21 '

and hence show that the remaining two roots of the biquadratic in this case are real,

equal, or imaginary, according as 2J2T- 3a/is negative, zero, or positive.

32. Prove that when a biquadratic has (1) two distinct pairs of equal roots the

last two terms of the equation of squared differences (Art. 67) vanish, giving the

conditions A = 0, 2HI - 3aJ =
;
and when it has (2) three roots equal, the last

three terms of this equation vanish, giving the conditions I = 0, / = ; and show

the equivalence of the conditions in the former case with those already obtained in

Ex. 8, Art. 61, and Ex. 12, p. 146. Prove also that the equation of squared dif-

ferences reduces in the former case to
<j>

2
(0

2
(j> + 12.B")

4
,
and in the flatter case to



CHAPTER VII

PROPERTIES OF THE DERIVED FUNCTIONS.

69. Graphic Representation of tbe Derived
tion. Let APB be the

curve representing the po-

lynomial f(%)) and P the

point on it corresponding

to any value of the varia-

ble x = OM. We proceed to

determine the mode of re-

presenting the value of f(x]
at the point P. Take a se-

cond point Q on the curve,

corresponding to a value of Fig. 5.

x which exceeds ON. by a small quantity h. Thus

also PM =/(#), QN=f(x + h).

The expansion of Art. 6 gives

f(x + h) =f(x) +f(

or

But

Now, when A is indefinitely diminished, the point Q approaches,

and ultimately coincides with, P ;
the chord PQ becomes the
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tangent PT to the curve at P ; the angle PEN becomes PTM.
Also all terms of the right-hand member of equation (1) except

the first diminish indefinitely, and ultimately vanish when h = 0.

The equation (1) becomes therefore

tan Prif /(*);

from which we conclude that the value assumed by the derived

functionf(x) on the substitution of any value of x is represented by

the tangent of the angle made with the axis OX by the tangent at

the corresponding point to the curve representing the function f(x).

70. Maxima and Minima Values of a Polynomial.
Theorem. Any value of x which renders f(x) a maximum or

minimum is a root of the derived equationf'(x)
= 0.

Let a be a value of x which renders f(x] a minimum. We
proceed to prove that /"(a)

= 0. Let h represent a small incre-

ment or decrement of x. We have, since /(a) is a minimum,

/(a) </(a + h), also /(a) </(a -
h) ;

hence/(a + h) -/(a), and/(a -h} -/(a) are both positive, i. e.

the following two expressions are positive :

Now, when h is very small, we know (Art. 5) that the signs

of these expressions are the same as the signs of their first terms ;

hence, in order that both should be positive,/' (a) must vanish ;

and, moreover, /"(a) must be positive. An exactly similar proof

shows that when /(a) is a maximumf
f

(a)
=

0, andf'(a} is nega-

tive. Thus, in order to find the maximum and minimum values

of a polynomial/(#), we must solve the equation /'(#)
=

0, and sub-

stitute the roots in /(a:). Each root will furnish a maximum or

minimum value, the criterion to decide between these being the

sign of/"(a?) when the root is substituted in it whenf"(x) is

negative, the value is a maximum ; and whenf" (x) is positive, the

value is a minimum.
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The theorem of this Ar-

ticle follows at once from

the construction of Art. 69
;

for it is plain that when the

value of /(a?) is a maximum,
as at P, P' (Fig. 6), or a mi-

nimum, as at p, p', the tan-

gent to the curve will be

parallel to the axis OX,

and, consequently,

x

Fig. 6.

Fig. 6 represents a polynomial of the 5th degree. Correspond-

ing to the four roots of /'(#)
=

(supposed all real in this case),

viz. OM, Om, OMf

, Om', there are two maxima values, HP,
M'P', and two minima values, mp, m'p', of the function.

EXAMPLES.

1. Find the max. or min. value of

f(x) = 2*2 + x - 6.

/ = 4*+l, / = 4.

;; M I

1 .

'
- 49

x = - makes Jr\yj
=-

-, a minimum.

(See fig. 2, p. 15.)

2. Find the max. and min. values of

f(x) = 2#3 - 3 2 - 36# + 14.

/ = 6(*2-*-6), f'(x] = 6 (2*-l).

x = 2 makes f(x) = 68, a maximum.

x 3 makes f(x] = -
67, a minimum.

3. Find the max. and min. values of

Here /
7

(^)
= has only one real root, x = 4

;
and it gives a minimum value,

fix) = - 345.

4. Find the max. and min. values of

The roots of f'(x) are, approximately, -0302, 1-1031. The former gives a

maximum value, the latter a minimum. (See fig. 3, p. 16.)
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71. Rolle's Theorem. Between two consecutive real roots

a and b of the equation f(x)
= there lies at least one real root of

the equationf(x) = 0.

For as x increases from a to b, /(#)> varying continuously

from,f(a) to/(5), must begin by increasing and then diminish,

or must begin by diminishing and then increase. It must,

therefore, pass through at least one maximum or minimum
value during the passage from f(a) to f(b). This value (/(a),

suppose) corresponds to some value a of x between a and b,

which by the Theorem of Art. 70 is a root of the equation

The figure in the preceding Article illustrates this theorem.

We observe that between the two points of section A and B
there are three maximum or minimum values, and between the

two points B and C there is one such value. It appears also

from the figure that the number of such values between two

consecutive points of section of the axis is always odd.

Corollary. Two consecutive roots of the derived equation may
not comprise between them any root of the original equation, and

never can comprise more than one.

The first part of this proposition merely asserts that between

two adjacent zero values of a polynomial there may be several

maxima and minima values
;
and the second part follows at once

from the above theorem
;
for if two consecutive roots of f(x]

=

comprised between them more than one root of f(x)
=

0, we
should then have two consecutive roots of this latter equation

comprising between them no root of f(x] =
0, which is contra-

dictory to the theorem.

72. Constitution of the Derived Functions. Let the

roots of the equation f(x)
= be cii, a2, a3, . . . an . We have

f(x) = (x- <n) (x
- a z)(x

- a s)
. . . (x

- an).

In this identical equation substitute y + x for x
;
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where

q\
= x - cti + x - az + x - a3 + . . . + x - an,

q*
=

(x
-

ai) (x
- az)

+ (x
- o x) (x

- as) + . . . -f (x
-

a^i)(at
- aw),

i
= (#-) (# -a3)

. . .
(a?
-an)

+
(a:
-
a^(x -a3)

. . . (x
- a) +

+ (x
-

ai) (x
- az)

. . . (x
-
a_i),

=
(x
-
d) (a?

- a2) (a?
- as) (*- an).

We have, again,

fly + x)- f(x] +/() y + y
2 + . - - + y.

Equating the two expressions for/(y +
a?),

we obtain

/'(a?)
=

(a;
-

az) (a?
- a 3)

...
(a;
- a) + ...., as above written,

/"(#)
To- the similar value of <2_2 in terms of x and the roots,

The value of f(x) may be conveniently written as follows :

a2

73. multiple Roots. Theorem. A multiple root of the

order m of the equation f(x)
= is a multiple root of the order m-l

of the first derived equation f'(x]
= 0.

This follows immediately from the expression given for/' (x)

in the preceding Article
;
for if the factor (x -aO

w occurs in /(a?),

i. e. if ai = a2
= . . .

= am ;
we have

a; - ai x - am+i

Each term in this will still have (x
-

ai)
m as a factor, except

the first, which will have (x
-

ai)
m~ z as a factor ; hence (x

-
aj"

1"1

is a factor in '#.
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COR. 1. Any root which occurs m times in the equationf(x]
=

occu rs in degrees ofmultiplicity diminishing by unity in the firstm-\
derived equations.

Since /"(a
1

)
is derived from /"(a) in the same manner as f(x]

is from/(#), it is evident by the theorem just proved thatf (x)

will contain (x
-

ai)
m~2 as a factor. The next derived function,

/"'(#), will contain (x
- a^-

3
; and so on.

COR. 2. Iff(x) and its first m - 1 derivedfunctions all vanish

for a value a of x, then (x
-

a)
m

is afactor inf(x).

This, which is the converse of the preceding corollary, is

most readily established directly as follows : Eepresenting the

derived functions by /i(#),/2 (#) > fm~i(x) (see Art. 6), and

substituting a + x - a for x
9
we find that/(#) may be expanded

in the form

from which the proposition is manifest.

74. Determination of Multiple Roots. It is easily

inferred from the preceding Article that if f(x) and/'(#) have

a common factor (x
-
a}"

1

, (x
-

a)
m will be a factor in /(a?) ; for,

by Cor. 1, the m - 2 next succeeding derived functions vanish

as well as /(a?) and/'(#) when x = a; hence, by Cor. 2, a is a

root of /(a?) of multiplicity m. In the same way it appears that

if /(a?) and/'(#) have other common factors

(x
-

ft}
13
-1

, (x
-

y)
q
~\ (x

-
B)

r
~\ &C.,

the equation f(x]
= will have p roots equal to /3, q roots equal

to 7, r roots equal to 8, &c.

In order, therefore, to find whether any proposed equation
has equal roots, and to determine such roots when they exist,

we must find the greatest common measure of /(a?) and f(x).

Let this be 0(a?). The determination of the equal roots will

depend on the solution of the equation (a?)
=0.
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EXAMPLES.

1. Find the multiple roots of the equation

x^ + x2 - 16z + 20 = 0.

The G. C. M. of f(x) and/'(z) is easily found to be x - 2 ; hence (x
-

2)
2
is a

factor in f(x}. The other factor is x + 5.

"Whenever, after determining the multiple factors of/(#), we wish to obtain the

remaining factors, it will be found convenient to apply by repeated operations the

method of division of Art. 8. Here, for example, we divide twice by x 2, the

calculation being represented as follows :

1 1-16 20

2 6-20
1 3-10

2 10

1 5

Thus 1 and 5 being the two coefficients left, the third factor is x + 5. This

operation verifies the previous result, the remainders after each division vanishing

as they ought.

2. Find the multiple roots, and the remaining factor, of the equation

x5 - 10#2 + I5x -6 = 0.

The G. C. M. off(x) andf(x) is found to be xz - 2x + 1. Hence (x
-

I)
3 is a

factor in f(x). Dividing three times in succession by x 1, we obtain

f(x] = (x
-

I)
3
(** + 3x + 6).

3. Find the multiple roots of the equation

12x + 36 = 0.

The G. C. M. of f(x) and/'() is x* - x - 6. The factors of this are x + 2 and

x - 3. Hence

/(*) = (* + 2)
2
(*-3)

2
.

4. Find all the factors of the polynomial

f(x) = z6 - 5*5 + 5*4 + 9z3 - Uxz - x + 8.

Am. f(x) ^(x -l)(x+ 1)2 (
X - 2)3.

The ordinary process of finding the greatest common mea-

sure of a polynomial and its first derived function may become

very laborious as the degree of the function increases. It is

wrong, therefore, to speak, as is customary in works on the
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Theory of Equations, of the determination in this way of the

multiple roots of numerical equations as a simple process, and

one preliminary to further investigations relative to the roots.

It is chiefly in connexion with Sturm's theorem that the opera-

tion is of any practical value. The further consideration of

multiple roots is deferred to Chap. IX., where this theorem will

be discussed. It will be shown also in Chap. X., that the mul-

tiple roots of equations of degrees inferior to the sixth can, in

any particular instance, be determined from simple consider-

ations not involving the process of finding the greatest common
measure.

75. This and the succeeding Article will be occupied with

theorems which will be found of great importance in the sub-

sequent discussion of methods of separating the roots of equa-
tions.

Theorem. In passing continuouslyfrom a value a-hofx
a little less than a real root a of the equation f(x)

= to a value

a + h a little greater, the polynomials f(x) andf(x) have unlike

signs immediately before the passage through the root, and like signs

immediately after.

Substituting a - h in /(x) and /(#), and expanding, we
have

/(a
-

h) =f(a) -/(a) h ....,

/(a-A)= /(a) -/'(a) h + .....

Now, since /(a)
=

0, the signs of these expressions, depending
on those of their first terms, are unlike. When the sign of h is

changed, the signs of the expressions become the same. The
theorem is therefore proved.

Corollary. The theorem remains true when a is a multiple

root of any order of the equation f(x) = 0.

Let the root be repeated r times. The following functions

(using suffixes in place of the accents) all vanish :

/W, /i(), /.(a), . -/r-i(a).



160 Properties of the Derived Functions.

In the series for/(a
-

h) and/' (a
-

h] the first terms which

do not vanish are, respectively,

These have plainly unlike signs ;
but when the sign of h is

changed they will have like signs. Hence the proposition is

established.

76. Extending the reasoning of the last Article to every

consecutive pair of the series

we may state the proposition generally as follows :

Theorem. When any equation f(x) = has an r-multipk

root a, a value a little inferior to a gives to this series of r functions

signs alternately positive and negative, or negative and positive ;

and a value a little superior to it gives to all these functions the same

sign ; and this sign is, moreover, the same sign as the sign offr (a),

thefirst derivedfunction which does not vanish when a is substituted

for x.

In order to give a precise idea of the use of this theorem,

let us suppose that /6 (a) is the first function which does not

vanish when a is substituted, and let its sign be negative ;

the conclusion which may be drawn from the theorem is, that

for a value a - h of x the signs of the series of functions /,/i,/2>

are

and for a value a + h of x they are

for before the passage through the root the sign of/4 must be

different from that of/5 ;
the sign of/3 must be different from

that of/4, and so on
;
and after the passage the signs must be all

the same. It is of course assumed here that h is so small that

no root of f5 (x)
= is included within the interval through

which x travels.
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EXAMPLES.

1. Find the multiple roots of the equation

4 = 0.

-4ws. f(x] = (x* + 60; - 2)
2
.

2. Show that the hinomial equation

xn an =

cannot have equal roots.

3. Show that the equation

z- nqx + (n
-

1) r =

will have a pair of equal roots if q
n = rn~l

.

4. Prove that the equation

x5 + 5px
3 + 5p

zx + q =

has a pair of equal roots when q
2 + 4j?

5 =
; and that if it have one pair of equal

roots it must have a second pair.

5. Apply the method of Art. 74, to determine the condition that the cubic

z3 + 3Hz + G =

should have a pair of equal roots.

The last remainder in the process of finding the greatest common measure must

vanish. Ans. GZ + 4H* = Q.

6. Apply the same method to show that both G and .H" vanish when the cubic

has three equal roots.

7. If a, 0, 7, 5 be the roots of the biquadratic f(x) = 0, prove that

/+/'()8)+/'(7)+/'(5)

can be expressed as a product of three factors.

Ans. (o + - 7 - 5) (a + 7 - -
5) (a + S - -

7).

8. If o, 0, 7, 5, &c., be the roots of f(x) = 0, and of, &, y', &c., of /'(#) = ;

prove

and that each is. equal to the absolute term in the equation whose roots are th

squares of the differences.

9. If the equation

Xn +piX"-
l +p2X-Z + .... + n-\X+n =

have a double root a ; prove that o is a root of the equation

pi a;"-1 + 2pz z-2 + Bpzx"-
3 + .... + npn = 0.

M



162 Properties of the Derived Functions.

10. Show that the max. and min. values of the cubic

ax* + Sbx2 + Sex + d

are the roots of the equation

2
p
2 - 2Gp + A = 0,

where A is the discriminant.

If the curve representing the polynomial /(#) be moved parallel to the axis of y

(see Art. 10) through a distance equal to a max. or min. value p, the axis of x will

become a tangent to it, *. e. the equation/(#) p
= will have equal roots. Hence

the max. and min. values are obtained by forming the discriminant of f(x) p, or

by putting d - p for p in #2 + 4H* = 0.

11. Prove similarly that the max. and min. values of

are the roots of the equation

3
p
3 -

3(
2J- 9JET2

) p
2 + 3(a/

2 - 18HJ) p
- A = 0,

where A is the discriminant of the quartic.

12. Apply the theorem of Art. 76 to the function

f(x) = <c* - 7z3 + 15^2 - 130+4.
We have

/i (x)
= 4#3 - 2l 2 + 30^ - 13,

/> (x)
= 2 (6#

2 - 210 + 15),

/,(*)<= 2 (12* -21),

/*(*) = 24.

Here/s (x) is the first function which does not vanish when x = 1
;
and /a (1) is

negative. "What the theorem proves is, that for a value a little less than 1 the signs

f /> /i> /2> /s are ")
---

1 and f r a value a little greater than 1 they are all

negative. "We are able from this series of signs to trace the functions/, /i, &c., in

the neighbourhood of the point x = 1. Thus the curve representing f(x) is above

the axis before reaching the multiple points = 1, and is below the axis immediately

after reaching the point, and the axis must be regarded as cutting the curve in three

coincident points, since (x I)
3 is a factor in /(#). Again, the curve corresponding

to,/i (x) is below the axis both before and after the passage through the point x = 1 .

It touches the axis at that point. The curve representing/2 (x) is above the axis

before, and below the axis after the passage, and cuts the axis at the point.
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LIMITS OF THE ROOTS OF EQUATIONS.

77. Definition of Limits. In attempting to discover the

real roots of numerical equations, it is in the first place advan-

tageous to narrow the region within which they must be sought.

We here take up the inquiry referred to in the observation at

the end of Art. 4, and proceed to prove certain propositions

relative to the limits of the real roots of equations.

A superior limit of the positive roots is any greater positive

number than the greatest of them
;
an inferior limit of the posi-

tive roots is any smaller positive number than the smallest of

them. A superior limit of the negative roots is any greater ne-

gative number than the greatest of them ; an inferior limit of

the negative roots is any smaller negative number than the

smallest of them : the greatest negative number meaning here

that nearest to - oo .

When we have found limits within which all the real roots

of an equation lie, the next step towards the solution of the

equation is to discover the intervals in which the separate roots

are situated. The principal methods in use for this latter pur-

pose will form the subject of the next Chapter.

The following Propositions all relate to the superior limits

of the positive roots
;
to which, as will be subsequently proved,

the determination of inferior limits and limits of the negative

roots can be immediately reduced.

78. Proposition I. In any equation

if the first negative term be - pr xn
~r

,
and if the greatest negative

M2
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coefficient be -
pjc, thenvp* + 1 is a superior limit of the positive

roots.

Any value of x which makes

xn >pk (xn
-Jr + xn->*~1 + . . . + x + 1) >pk r-x - 1

will, a fortiori, make/(#) positive.

Now, taking x greater than unity, this inequality is satisfied

by the following :

or xn" - xn

or xr
~ l

(-.

which inequality again is satisfied by the following

(x-iy-
1

(0-l)=or>^,

since plainly xr
~ l > (x

-
I)**-

1
.

We have, therefore, finally

or # = or >

79. Proposition II. If in any equation each negative coef-

ficient be taken positively, and divided by the sum of all the positive

coefficients which precede it, the greatest quotient thus formed in-

creased by unity is a superior limit of the positive roots.

Let the equation be

+ ---- - arx
n~r + ---- + an = 0,

in which, in order to fix our ideas, we regard the fourth coef-

ficient as negative, and we consider also a negative coefficient in

general, viz. - ar .

Let each positive term in this equation be transformed by
means of the formula

amx
m = am (x

- 1 xm
~ l +xm~z + . . . + x +
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which is derived at once from

x"1 - 1
+ . . . + x

x- 1

the negative terms remaining unchanged.
The polynomial/Or) becomes then, the horizontal lines of the

following corresponding to the successive terms off(x) :

+ . . . +aQ(x- l}x
n~r+ . . . + a*

+ az (tf-l)^"
3 4 . . . + a,(x-l}x

n-r + . . . + az,

J

+

-Or*",

We now regard the vertical columns of this expression as

successive terms in the polynomial ;
the successive coefficients of

xn
~\ xn-\ &c., being

a (x-1), (a + a,} (x
-

1), (a + ai + a2) (x-l)- 3,
&c.

Any value of x greater than unity is sufficient to make positive

every term in which no negative coefficient #3 ,
ar , &c., occurs.

To make the latter terms positive, we must have

(a + a-i + 2 + +
ffr-i) (x

-
1) > ar ,

&c.

Hence

- + 1, &c.

And to ensure every term being made positive, we must take

the value of the greatest of the quantities found in this way.
Such a value of x, therefore, is a superior limit of the positive

roots.
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80. Practical Applications. The propositions in the

two preceding Articles furnish the most convenient general

methods of finding in practice tolerably close limits of the

roots. Sometimes one of the propositions will give the closer

limit : sometimes the other. It is well, therefore, to apply

both methods, and take the smaller limit. Prop. I. will usually

be found the more advantageous when the first negative coef-

ficient is preceded by several positive coefficients, so that r is

large ;
and Prop. II. when large positive coefficients occur before

the first large negative coefficient. In general, Prop. II. will

give the closer limit. We speak of the integer next above the

number given by either proposition as the limit.

EXAMPLES.

1. Find a superior limit of the positive roots of the equation

#4 - 5z3 + 40z2 - Sx + 23 = 0.

Prop. I. gives 8 + 1, or 9, as limit.

Prop. II. gives -- + !, or 6. Hence 6 is a superior limit.

2. Find a superior limit of the positive roots of the equation

x5 + S-r* + z3 - 8*2 - 51# +18 = 0.

Prop. I. gives y'ol + 1
; and 5 is, therefore, a limit.

Prop. II. gives
-

;

-- + 1, and 12 is a limit.
1 + o + 1

In this case Prop. I. gives the closer limit.

3. Find a superior limit of the positive roots of

Of the fractions

3 9 11_
F+V 1 + 4 + 5' 1 + 4+5' 1 + 4 + 5 + 6'

the third is the greatest, and Prop. II. gives the limit 3." Prop. I. gives 5.

4. Find a superior limit of the positive roots of

x8 + 20*7 + 4 6 - II*5 - 120^ + 13# - 25 = 0.

Ans. Both methods give the limit 6.

5. Find a superior limit of the positive roots of

9S*3 - 73* + 5 = 0.

Ans. Prop. I. gives 20. Prop. II. gives 3.
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It is usually possible to determine by inspection a limit

closer than that given by either of the preceding propositions.

This method consists in arranging the terms of an equation in

groups having a positive term first, and then observing what is

the lowest integral value of x which will have the effect of render-

ing each group positive. The form of the equation will suggest

the arrangement in any particular case.

6. The equation of Ex. 2 can be arranged as follows :

2^.3 _ g) + x (3^3
_ 51

) + X3 + 18 = 0.

x = 3, or any greater number, renders each group positive ;
hence 3 is a superior

limit.

7. The equation of Ex. 4 may be arranged thus :

x5 (x
3 -

11) + 20*4 (*3
-

6) + 4*6 + I3x - 25 = 0.

x = 3, or any greater number, renders each group positive ; hence 3 is a limit.

8. Find a superior limit of the roots of the equation

a4 _ 4a;3 + 33,^2 _ 23 + 18 = 0.

This can be arranged in the form

x2
(x*

- 4x + 5) + 2Sx(x - A-) + IS = 0.

Now the trinomial x2 4x + 5, having imaginary roots, is positive for all values

of x (Art. 12). Hence x = 1 is a superior limit."

The introduction in this way of a quadratic whose roots are imaginary, or of one

with equal roots, will often be found useful.

9. Find a superior limit of the roots of the equation

5^6 _ 7^4 _ Wx3 _ 23^2 _ 90* - 317 = 0.

In examples of this kind it is convenient to distribute the highest power of x

among the negative terms. Here the equation may be written

x* (x
-

7) + *3
(z

2 -
10) + s2

(z
3 -

23) + x(x*
-

90) + z5 - 317 = 0,

so that 7 is evidently a superior limit of the roots. In this case the general methods

give a very high limit.

10. Find a superior limit of the roots of the equation

& - x3 - 2x* - 4x - 24 = 0.

When there are several negative terms, and the coefficient of the highest term

unity, it is convenient to multiply the whole equation by such a number as will

enable us to distribute the highest term among the negative terms. Here, multiply-

ing by 4, we can write the equation as follows :

x3 (x
-

4) + x2
(z

z -
8) + x (x

3 -
16) + a:

4 - 96 = 0,

and 4 is a superior limit. The general methods give 25.
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81. Proposition III. Any number which renders positive

the polynomialf (x} and all its derivedfunctionsfi(x},f<i(x), .. .fn (%)

is a superior limit of the positive roots of the equation f(x]
= 0.

This method of finding limits is due to Newton. It is much

more laborious in its application than either of the preceding

methods
;
but it has the advantage of giving always very close

limits
;
and in the case of an equation all whose roots are real

the limit found in this way is, as will be subsequently proved,

the next integer above the greatest positive root.

To prove the proposition, let the roots of the equation

/ (x)
= be diminished by h

; then x-h =
y, and

If now h be such as to make all the coefficients

/m/LW./i (A),.. >/<*)

positive, the equation in y cannot have a positive root
;
that is to

say, the equation in x has no root greater than h
;
hence h is a

superior limit of the positive roots.

EXAMPLE.

f(x] = x*- 2*3 - Zx* - Ibx - 3.

In applying Newton's method of finding limits to any example the general mode

of procedure is as follows : Take the smallest integral number which renders

fn-\(x) positive ; and proceeding upwards in order to f\ (x), try the effect of substi-

tuting this number for x in the other functions of the series. When any function

is reached which becomes negative for the integer in question, increase the integer

successively by units, till it makes that function positive ; and then proceed with

the new integer as before, increasing it again if another function in the series

should become negative ;
and so on, till an integer is reached which renders all the

functions in the series positive. In the present example the series of functions is

/ (x)
= x* - 2z3 - 3o;2 - 15* - 3,
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Here x = 1 makes f$ (x) positive. We try then the effect of the substitution x= 1

in/o(jr). It makes f(x) negative. Increase by 1
;
and x 2 makes fi(x} positive.

Try the effect of x = 2 in f\ (x) ;
it gives a negative result. Increase by 1 ; and

x = 3 makes f\ (x] positive. Proceeding upwards, the substitution x = 3 makes

f(x) negative ;
and increasing again by unity, we find that x = 4 makes f(x) posi-

tive. Hence 4 is the superior limit required.

It is assumed in this mode of applying Newton's rule, that when any number

makes all the derived functions up to a certain stage positive, any higher number

will also make them positive ; so that there is no occasion to try the effect of the

higher number on the functions in the series below that one where our upward

progress is arrested. This is evident from the equation

A2

0(a + h]
=

<j>(a) + <t>'(a}h + $" (a) -j- . . .

(taking <j>(x) to represent any function in the series, and using the common notation

for derived functions), which shows that if <(), <?>'(
a
)> 0"(), are all positive,

and h also positive, <p (a + h) must be positive.

It may be observed that one advantage of Newton's method is that often, as in

the present instance, it gives us a knowledge of the two successive integers between

which the highest root lies. Thus in the present example, since f(x) is negative for

x 3, and positive for x = 4, we know that the greatest root of the equation lies

between 3 and 4.

82. Inferior Limits, and Limits of the Negative
Roots. To find an inferior limit of the positive roots, the

equation must be first transformed by the substitution x = -.

y
Find then a superior limit h of the positive roots of the equation

in y. The reciprocal of this, viz. -, will be the required inferior

limit
;
for since

1 1 1
t,<h, ->-, !.e.*>-.

To find limits of the negative roots, we have only to trans-

form the equation by the substitution x = -y. This transfor-

mation changes the negative into positive roots. Let the su-

perior and inferior limits of the positive roots of the equation in

y be h and h'. Then - h and - li are the limits of the negative
roots of the proposed equation.
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83. Limiting Equations. If all the real roots of the

equationf'(a?)
=0 could befound, it would be possible to determine

the number of real roots of the equation f(x)
= 0. .

To prove this, let the real roots of/'(#) = be, in ascending

order of magnitude, a', /3', y', ... A'
;
and let the following series

of values be substituted for x in /(a?) :

- GO
, a, ft, y', . . . A', + QO .

When any successive two of these quantities give results

with different signs there is a root of/(#) =0 between them
;

and by the Cor., Art. 71, there is only one
;
and when they

give results with the same sign there is, by the same Cor., no

root between them. Thus each change of sign in the results of

the successive substitutions proves the existence of one real root

of the proposed equation.

If all the roots off(x) = are real, it is evident, by the theorem

of Art. 71, that all the roots of /'(a?)
= are also real, and that

they lie one by one between each adjacent pair of the roots of

f(x) = 0. In the same case, and by the same theorem, it follows

that the roots of /"(a?)
=

0, and of all the successive derived

functions, are real also; and! the roots of any function lie

severally between each adjacent pair of the roots of the function

from which it is immediately derived.

Equations of this kind, which are one degree below the

degree of any proposed equation, and whose roots lie severally

between each adjacent pair of the roots of the proposed, are called

limiting equations.

It is evident that in the application of Newton's method

of finding limits of the roots, when the roots of /(a?)
= are

all real, in proceeding according to the method explained in

Art. 81, the function /(a?) is itself the last which will be rendered

positive, and therefore the superior limit arrived at is the integer

next above the greatest root.
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EXAMPLES.

1. Prove that any derived equation /, (x)
= cannot have more imaginary roots

but may have more real roots, than the equation f(x] = from which it is derive".

From this it follows that if any of the derived functions be found to havo

imaginary roots, the same number at least of imaginary roots must enter the primi-

tive equation.

2. Apply the method of Art. 83 to determine the conditions that the equation

x3 - qx + r =

should have all its roots real.

3. Determine by the same method the nature of the roots of the equation

xnqx + (n- l)r = 0.

Ans. "When n is even, the equation has two real roots or none, according as

q
n > or < r"- 1

.

When n is odd, the equation has three real roots or one, according as

q
n > or < r"- 1

.

4. The equation xn
(x 1)"

= has all its roots real
;
hence show, by forming

the nth derived function, that the following equation has all its roots real and un-

equal, and situated between and 1 :

_
2n 1.2 2n(2n- 1)

5. Show similarly by forming the nth derived of (x
2 -

l)
n that the following

equation has all its roots real and unequal, and situated between - 1 and 1 :

1.2

6. If any two of the quantities I, m, n in the following equation be put equal to

zero, show that the quadratic to which the equation then reduces is a limiting equa-

tion
; and hence prove that the roots of the proposed are all real :

(
X - a}(x- b) (x-c}~ I* (x-a)- m*(x -b)- n*(x -c)- limn = 0.



CHAPTER IX.

SEPARATION OF THE ROOTS OF EQUATIONS.

84. BY the methods of the preceding Chapter we are enabled to

find limits between which all the real roots of any numerical

equation lie. Before proceeding to the actual approximation
to any particular root, it is necessary to separate the interval in

which it is situated from the intervals which contain the remain-

ing roots. The present Chapter will be occupied with certain

theorems whose object is to determine the number of real roots

between any two arbitrarily assumed values of the variable. It

is plain that if this object can be effected, it will then be possible

to tell not only the total number of real roots, but also the limits

within which the roots separately lie.

The theorems given for this purpose by Fourier and Budan,

although different in statement, are identical in principle. For

purposes of exposition Fourier's statement is the more con-

venient, while with a view to practical application the statement

of Budan will be found superior. The theorem of Sturm, although

more laborious in practice, has the advantage over the preceding

that it is unfailing in its application, giving always the exact

number of real roots situated between any two proposed quan-
tities

; whereas the theorem of Fourier and Budan gives only a

certain limit which the number of real roots in the proposed
interval cannot exceed.

85. Theorem of Fourier and Budan. Let two numbers

a and b, of which a is the less, be substituted in the series formed by

f(x] and its successive derivedfunctions, viz.,
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the number of real roots which lie between a and b cannot be greater

than the excess of the number of changes of sign in the series when

a /.s- substituted for #, over the number of changes ichen b is sub-

stituted for x ; and when the number of real roots in the interval

falls short of that difference, it will be by an even number.

This is the form in which Fourier states the theorem.

It is to be understood here, as elsewhere, that, when we

speak of two numbers a and 6, of which a is the less, one or

both of them may be negative, and what is meant is that a is

nearer than b to - oo .

"We proceed to examine the changes which may occur among
the signs of the functions in the above series, the value of x

being supposed to increase continuously from a to b. The fol-

lowing different cases can arise :

(1). The value of x may pass through a single root of the

equation f(x) = 0.

(2). It may pass through a root occurring r times in f(x] = 0.

(3). It may pass through a root of one of the auxiliary

functionsfm (x)
= 0, this root not occurring in either fm.i(x)

-

or /,H+1 (x)
= 0.

(4) . It may pass through a root occurring r times in/m (#)
=

0,

and not occurring \nfm.^(x) = 0.

In what follows the symbol x is omitted after / for con-

venience.

(1). In the first case it is evident, from Art. 75, that in passing

through a root of the equation f(x) = one change of sign is

lost
;

for / and /i have unlike signs immediately before, and

like signs immediately after, the passage through the root.

(2). In the second case, in passing through an r-multiple

root of /(#)
=

0, it is evident that r changes of sign are lost
; for,

by Art. 76, immediately before the passage the series of func-

tions

/> /i> ./-> 'Jr-1) Jr

have signs alternately + and -, or - and +, and immediately
after the passage have all the same sign as/r .
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(3). In the third case, the root offm (x)
= must give to/m _!

and/^+i either like signs or unlike signs. Suppose it to give like

signs ;
then in passing through the root two changes of sign are

lost, for before the passage the sign offm is different from these

like signs, and after the passage it is the same (Art. 76). Sup-

pose it to give unlike signs ;
then no change of sign is lost, for

before the passage the signs of /m_i, /m , /m+1 must be either

+ + -
,

or - +
,
and after the passage these become

+ -, and + +. On the whole, therefore, we con-

clude that no variation of sign can be gained, but two variations

may be lost, on the passage through a root of fm (x]
= 0.

(4) . In the fourth case x passes through a value (let us say a)

which causes not only/m but also/m+1,/m+2,
. . . ,/WHr-i to vanish.

It is evident from the theorem of Art. 76 that during the passage
a number of changes of sign will always be lost. The definite

number may be collected by considering the series of functions

Jm-iy J my fm+lj . . . .
, Jm+r-l> J~m+r'

We easily obtain the following results :

(a). When/OT_i(a) and/m+r (a) have like signs:

If r be even, r changes are lost.

If r be odd, r + 1 changes are lost.

(b). When/w_i(a) and/mr (a) have unlike signs:

If r be even, r changes are lost.

If r be odd, r - 1 changes are lost.

We conclude, therefore, on the whole, that an even number of

changes is lost during the passage through an r-multiple root

ofAC*).
It will be observed that (1) is a particular case of (2), and

(3) of (4), i. e. when r = 1. Since, however, the cases (1) and (3)

are those of ordinary occurrence, it is well to give them a sepa-
rate classification.

Eeviewing the above proof, we conclude that as x increases

from a to b no change of sign can be gained ; that for each
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passage through a single root of f(x)
= one change is lost

; and

that under no circumstances except a passage through a root of

; = can an odd number of changes be lost. Hence the

number of changes lost during the whole variation of x from

a to b must be either equal to the number of real roots of/ (x)
=

in the interval, or must exceed it by an even number. The

theorem is therefore proved.

86. Application of the Theorem. The form in which

the theorem has been stated by Budan is, as has been already

observed, more convenient for practical purposes than that just

given. It is as follows : Let the roots of an equation f(x)
=

be diminished, first by a and then by b, where a and b are any two

bers of which a is the less ; then the number of real roots be-

n a and b cannot be greater than the excess of the number of

changes ofsign in the first transformed equation over the number in

the second.

This is evidently included in Fourier's statement, for the

two transformed equations are (see Art. 33)

' "

from which, assuming the results of the last Article, the above

proposition is manifest.

The reason why the theorem in this form is convenient in

practice is, that we can apply the expeditious method of dimi-

nishing the roots given in Art. 33.

EXAMPLES.

1 . Find the situations of the roots of the equation

*5 - 3x* - 24*3 + 95*2 - 46z - 101 = 0.

We shall examine this function for values of x between the intervals

-10, -1, 0, 1 10;

these numhers being assumed on account of the facility of calculation. Diminution
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of the roots by 1 gives the following series of coefficients of the transformed

equation:

1, 2, -26, 15, 65, -78.

In diminishing the roots by 10, it is apparent at the very outset of the calculation

that the signs of the coefficients of the transformed equation will be all positive ; so

that there is no occasion to complete the calculation in this case.

In diminishing the roots by 10 and 1, it is convenient to change the alter-

nate signs of the equation, and diminish the roots by -f 10 and + 1
;
and then in

the result change the' alternate signs again. The coefficients of the transformed

equation when the roots are diminished by 1 are

1
} _8, -

2, 139,
-

291, 60.

In diminishing by - 10 we observe in the course of the operation, as before, that

the signs will be all positive in the result, i.e. when the alternate signs are changed

they will be alternately positive and negative.

Hence we have the following scheme :

(-10) + - + +

(-1)
' + - - + +

(0) + - + - -
,
the equation itself.

(1) + + - + + -

(10) + + + + + +

These signs are the signs taken by/(#) and the several derived functions /i, /2,

/3> /4> /5 on the substitution of the proposed numbers ; but it is to be observed that

they are here written, not in the order of Art. 85, but in the reverse order, viz.,

/5, A, /3, /2, fit /
From these we draw the following conclusions : All the real roots must lie

between 10 and + 10
;
one real root lies between 10 and 1, since one change

of sign is lost ;
one real root lies between 1 and 0, since one change of sign is lost

;

no real root lies between and 1
;
and between 1 and 10, since three changes of sign

are lost, there is at least one real root ; but we are left in doubt as to the nature of

the other two roots : whether they are imaginary, or whether there are three real

roots between 1 and 10.

"We might proceed to examine, by further transformations, the interval between

1 and 10 more closely, in order to determine the nature of the two doubtful roots
;

but it is evident that the calculations for this purpose might, if the roots were nearly

equal, become very laborious. This is the weak side of the theorem of Fourier and

Budan. Both writers have attempted to supply this defect, and have given methods

of determining the nature of the roots in doubtful intervals
;
but as these methods

are complicated, we do not stop to explain them ; the more especially as the theorem

of Sturm effects fully the purposes for which the supplementary methods of Fourier

and Budan were invented.
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2. Analyse the equation of Ex. 1, p. 100, viz.,

x* + xz - 1x - 1 = 0.

The roots of this arc all real, and lie between - 2 and 2 (see Ex. 5, p. 100). When-
ever the roots of an equation are all real, the signs of Fourier's functions determine

the exact numher of real roots between any two proposed integers. We obtain the

following result : The roots lie in the intervals

(-2, -1); (-1,0); (1,2).

3. Analyse the equation of Ex. 3, p. 100, viz.,

Ans. Two roots in the interval (2, 1), and one root in each

of the intervals (- 1, 0) ; (0, 1) ; (1, 2).

4. Analyse the equation

1998*3 - 14937z + 5000 = 0.

The equation can have no negative roots. Diminish the roots by 10 several times

in succession till the signs of the coefficients become all positive. We obtain the

following result :

(0) i!
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values of x immediately before and immediately after tliat value

which causes the coefficient to vanish
;
the whole interval being

so small that it may be supposed not to include any root of the

equation f(x)
- 0.

EXAMPLES.

1. Analyse the equation

f(x) =y*- 4z3 - 3* + 23 = 0.

We shall examine this function "between the intervals 0, 1
, 10. The transformed

equations are

(0)
=

0,

the first of these being the proposed equation itself.

Making the calculations by the method of the preceding Article, we find that the

coefficient/3 (1)
=

0, and we have the following scheme :

(0) + - - +

(1) + -- - +

(10) + 4- + + +

"We may now replace each of the rows containing a zero coefficient by two, the

first corresponding to a value a little less, and the second to a value a little greater,

than that which gives the zero coefficients
;

the signs being determined by the

principle established in Art. 76. It must be remembered that in the above scheme

the signs representing the derived functions are written in the reverse order to that

of the Article referred to. The scheme will then stand as follows, using h to repre-

sent a very small positive quantity :

(0)

(10) + + + + +

In this scheme the signs corresponding to - h and + h are determined by the

condition that the sign of the coefficient which is zero when x = must, when

x = h
t
be different from that next to it on the left-hand side

;
and when x = + h

it must be the same. The signs corresponding to 1 - h and 1 + h are determined

in a similar manner.
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Now since a pair of changes is lost in the interval
( A, + A), and since the

equation has no real root hetvreen h and + A, we have proved the existence of a

pair of imaginary roots. Two changes of sign are lost between 1 + 7* and 10, so

that this interval cither includes a pair of real roots, or presents an indication of a

pair of imaginary roots. Which of these is the case remains still doubtful.

J. If several coefficients vanish, we may he ahle to establish the existence of

several pairs of imaginary roots. This will appear from the following example :

x* - 1 = 0.

The signs corresponding to h and + h are, by the theorem of Art. 76,

Hence, since no root exists between h and + /*, and since 4 changes of sign

are lost in passing from a value very little less than to one very little greater, we
are assured of the existence of two pairs of imaginary roots. The other two roots

are in this case plainly real (see Art. 14).

The number of imaginary roots in any binomial equation can be determined in

this way.
3. Find the character of the roots of the equation

xs + 10^3 + x - 4 = 0.

In passing from a small negative to a small positive value of x we obtain the

following series of signs :

(-/*) +- + -- + + - + -

(0) +0000+0 + -

(+ A) + + ++ + + + + -

Since six changes of sign are here lost, there are six imaginary roots. The

remaining two roots are, by Art. 14, real : one positive, and the other negative.

The negative root lies betwen - 2 and c, and the positive between and 1.

4. Analyse completely the equation

There are two imaginary roots. Whenever, as in the present instance, the roots

are comprised within small limits, it is convenient to diminish by successive units.

In this way we find here a root between and 1, and another between 1 and 2.

Proceeding to negative roots, we find on diminishing by - 1 that - 1 is itself a root,

and writing down the signs corresponding to a value a little greater than -
1, we

observe an indication of a second negative root between - 1 and 0.

Analyse the equation

x5 + y* + x2 - 25* - 36 = 0.

There are two imaginary roots
;
one real positive root between 2 and 3

; and two

real negative roots in the intervals (- 3,
-

2), (- 2, - 1).

N2
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88. Corollaries from the Theorem of Fourier and
Budaii. The method of detecting the existence of imaginary
roots explained in the preceding Article is called The Rule of

the Double Sign. A similar rule, due to De Gua, was in

use before the discovery of Fourier's theorem. This rule and

Descartes' Rule of Signs are immediate corollaries from the

theorem, as we proceed to show.

Cor. 1. De Gua's Rule for finding Imaginary Roots.

The rule maybe stated generally as follows : When 2m suc-

cessive terms ofan equation are absent, the equation has 2m imaginary

roots ; and when 2m + 1 successive terms are absent, the equation

has 2m + 2, or 2m imaginary roots, according as the two terms be-

tween which the deficiency occurs have like or unlike signs. This

follows, as in case (4), Art. 85, by examining the number of

changes of sign lost during the passage of x from a small nega-
tive value - h to a small positive value h.

Cor. 2. Descartes
9

Rule of Signs.

When is substituted for x in the series of functions

fn(x),fn-i(%), /2(#),/i (#),/(#), the signs are the same as the

signs of the coefficients aQ, a^ az, . . . 0_i, an ,
of the proposed

equation ; and when + GO is substituted the signs are all positive.

Fourier's theorem asserts that the number of roots between

these limits, viz., the number of positive roots, cannot exceed the

number of variations lost during the passage from to +00,
that is the number of changes of sign in the series a

, a^ a* . . . an .

This is Descartes' rule for positive roots
;
and the similar rule

for negative roots follows in the usual way by changing the

negative into positive roots.

Cor. 3. Newton's Method offinding Limits.

When a number h has been found which renders positive

each of the functions fn (x), fn-\(%), - /2(#)> /i(#)> /(#) ; since

+ oo also renders each of them positive, it follows from Fourier's

theorem that there can be no root between h and + oo
,
that is to

say, h is a superior limit of the positive roots; and this is

Newton's proposition (Art. 81).
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89. Sturm's Theorem. We have already shown (Art. 74)

that it is possible by performing the common algebraical operation

of finding the greatest common measure of a polynomial f (x)

and its first derived polynomial to find the equal roots of the

equationf (x)
= 0. Sturm has employed the same operation for

the formation of the auxiliary functions which enter into his

method of separating the roots of an equation.

Let the process of finding the greatest common measure of

f(.c) and its first derived be performed. The successive re-

mainders will go on diminishing in degree till we reach'^finally

either one which divides that immediately preceding without

remainder, or one which does not contain the variable at all,

/. e. which is numerical. The former is, as we have already

seen, the case of equal roots. The latter is the case where no

equal roots exist. It is convenient to divide the discussion of

Sturm's theorem into these two cases. We shall in the present

Article consider the case where no equal roots exist
;
and pro-

ceed in the next Article to the case of equal roots. The per-

formance of the operation itself will of course disclose the class

to which any particular example is to be referred.

The auxiliary functions employed by Sturm are not the

remainders as they present themselves in the calculation, but

the remainders with their signs changed. In finding the greatest

common measure of two expressions it is indifferent whether the

signs of the remainders are changed or not : in the formation

of Sturm's auxiliary functions the change is essential. It is

convenient in practice to change the sign of each remainder

before making it the next divisor.

Confining our attention for the present, therefore, to the case

where no equal roots exist, Sturm's theorem may be stated as

follows :

Theorem. Let any two real quantities a and b be substituted

in the scries of n + Ifunctions

'4'uKj of tic given polynomialf(x)\ its first derived f^x), and
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the successive remainders (with their signs changed) in the process

offinding the greatest common measure off(x) andf^x) ; then the

difference between the number of changes of sign in the series when

a is substituted for x, and the number when b is substitutedfor x

expresses exactly the number of real roots of the equationf (x)
=

between a and b.

The mode of formation of Sturm's functions supplies the

following series of equations, in which q\ 9 q^ . . . qn_i represent

the successive quotients in the operation :

f(x)
=

j,/,(*)'-/,(),

These equations involve the theory of the method of finding

the greatest common measure
;
for it follows from the first equa-

tion that if f(x) and/i(#) have a common factor, this must be

a factor in/2 (#) ; and from the second equation it follows, by
like reasoning, that the same factor must occur in/3 (#) ;

and so

on, till we come finally to the last remainder, which, when/(#)

and/! (x) have common factors, will be a polynomial consisting

of these factors. In the present Article, where we suppose the

given polynomial and its first derived to have no common

factor, the last remainder/,^) is numerical. It is essential for

the proof of the theorem to observe also, that in the case now

under consideration no two consecutive functions in the series

can have a common factor ; for if they had we could, by reason-

ing similar to the above, show from the equations that this fac-

tor must exist also in/(#) and/! (x) ;
and such, according to our

hypothesis, is not here the case; In examining, therefore, what

changes of sign can take place in the series during the passage

of x from a to b, we may exclude the case, of two consecutive

functions vanishing for the same value of the variable ;
and the
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different cases in which any change of sign can take place are

the following :

(1). When x passes through a root of the proposed equation

/(*)'= 0:

(2). When x passes through a value which causes one of the

auxiliary functions/i,/a, . . . /_! to vanish :

(3). When x passes through a value which causes two or

more of the series /,./i, . . .fn-\ to vanish together; ,no two of

the vanishing functions, however, being consecutive.

(1). When x passes through a root of f(x)
=

0, it follows from

Art. 75 that one change of sign is lost, since immediately before

the passage /() and/i(#) have unlike signs, and immediately
after the passage they have like signs.

(2). Suppose x to take a value a which satisfies the equation

fr(%)
= 0. From the equation

/r-l(tf)=?r/r(#)-/mM

we have /r-i(a) =-/r+i(o), *

which proves that this value of x gives to/r-i(#) and/r+i(a?) the

same numerical value with different signs. In passing from a

value a little less than a to one a little greater, we can suppose

the interval so small that it contains no root of/,._i(o?) or/r+1 (#) ;

hence, throughout the interval under consideration, these two

functions retain their signs. If the sign offr (x] does not change

(as will happen in the exceptional case when the root a is re-

peated an even number of times) there is no alteration in the

series of signs. In general the sign of fr (x) changes, but no

variation of sign is either lost or gained thereby in the group of

three
; because, on account of the difference of signs of the two

extremesfr-\(x) and/r+i(#), there will exist both before, and after

the passage one variation and one permanency of sign, whatever

be the sign of the middle function. If, for example, before the

passage the signs were +
;
after the passage they are + + -,

i. e. a variation and a permanency are changed into a perma-

nency and a variation
; but no variation of sign is lost or gained

on the whole.
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(3). Since the reasoning in the previous cases is founded on

the relations of the function to those adjacent to it only ;
and

since those relations remain unaltered in the present case, be-

cause no two adjacent functions vanish together, we conclude

that if/ (a?)
is one of the vanishing functions, one change of sign

is lost, and if not, no change is either lost or gained.

"We have proved, therefore, that when x passes through a

root of /(#) = one change of sign is lost, and under no other

circumstances is a change of sign either lost or gained. Hence

the number of changes of sign lost during the variation of x

from a to b is equal to the number of roots of the equation be-

tween a and b*

Before proceeding to the case of equal roots, we add a few

simple examples to illustrate the application of Sturm's theo-

rem. It is convenient in practice to substitute first - oo , 0,

+ oo in Sturm's functions, so as to obtain the whole number of

negative and of positive roots. To separate the negative roots,

the integers
-

1,
-

2,
-

3, &c., are to be substituted in succession

till we reach the same series of signs as results from the substitu-

tion of - oo
;
and to separate the positive roots we substitute

1, 2, 3, &c., till the signs furnished by + oo are reached.

EXAMPLES.

1. Find the number and situation of the real roots of the equation

/(*) = *3 - 2x - 5 = 0.

We find /! (x)
= Zx* - 2, /2 (z)

= 4^+15, fz (x]
= - 643.

Corresponding to the values - oo
, 0, + oo of x, we have

(-00) I
- + ,

(0)
; + -

(+ oo
) .+ + + -.;

Hence there is only one real root, and it is positive.

* The student often finds a difficulty in perceiving in what way a number of

changes of sign can be lost in Sturm's series, since the only loss of sign takes place

between the first two functions, f(x) and f\ (x). It may tend to remove this diffi-

culty to observe, that as x increases from one root a of f(x) = to a second ,

although no alteration takes place in the number of changes of sign, the distribution

of the signs among /i (x} and the following functions alters in such a way that the

signs of f(x) and f\ (x), which were the same immediately after the passage of x

through a, become again different immediately before the passage through j8.
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"We obtain, removing the factor 2 from the derived,

/i (x)
= 2*3 - 3*2 - 3s + 5,

/z (s)=9**-27*+ll,

/(*) = - 8s- 3,

/4 (*) =-1433.

[N.B. In forming Sturm's functions it is allowable, as is evident from the

equations (1), Art. 89, to introduce or suppress numerical factors just as in the

process of finding the G. c. M.
; taking care, however, that these are positive, so that

the signs of the remainders are not thereby altered.]

"We have the following series of signs :

(-00) +.+ + _,

(0) + + -

-,

(+00) + + +

Hence there are two real roots, one positive, and one negative and two imaginary

roots. To find the position of the real roots, it is sufficient to substitute positive

and negative integers successively in f(x) alone, since there is only one positive and

one negative root : we easily find in this way that the negative root lies between

2 and 3, and the positive root between and 1.

90. Sturm's Theorem. Equal Roots. Let the opera-

tion for finding the greatest common measure of/(#) and/'(#)

be performed, the signs of the successive remainders being

changed as before. The last of Sturm's functions will not now

be numerical, for since f(x) and/('#) are here supposed to con-

tain a common measure involving #, this will now be the last

function arrived at by the process. Let the series of functions

be:

During the passage of x through any value except a multiple root

of f(x) =
0, the conclusions of the last Article are still true with

respect to the present series, since no value except such a root

can cause any consecutive pair of the series to vanish. When x

passes through a multiple root of/(#) =
0, there is, by the Cor.,

Art. 75, one change of sign lost between/ and/x ; and we pro-

ceed to prove that no change of sign is lost or gained in the rest

of the series, viz./,/., . . . .fr . Suppose there exists an m-mul-

tiple root a of/(a?). It is evident from, the equations (1) of Art. 89,



Sturm's Theorem. 187

that (x
-

a)
m~ l

is a factor in each of the functions/!, /, . . . ./,..

Let the remaining factors in these functions be, respectively,

0!, 0e, . . . . r . By dividing each of the equations (1) by

(x
-

a)'"'
1

,
we get a series of equations which establish by the

reasoning of the last Article that, owing to a passage through a,

no change of signs is lost or gained in the series 0i, 2 ,
. . . .

0,..

Neither, therefore, is any change lost or gained in the series

. /;, /:, . . . /,. ;
for the effect of the factor (x

-
a)'"-

1 in the passage

of x from a value a - h to a value a + h is either to change the

signs of all (when m - 1 -is odd) or of none (when m - 1 is even)

of the functions 0i, 2 , $/ ;
and changing the signs of all

these functions cannot increase or diminish the number of

variations.

We have therefore proved that when x passes through a

multiple root off(x] = one change of sign is lost between/ and

/n and none either lost or gained in any other part of the series.

It remains true, of course, that when x passes through a single

root of/ (x)
= a change of sign is lost as before. "We may thus

state the theorem as follows for the case of equal roots :

The difference between the number ofchanges ofsign when a and b

are substituted in the series

the last of these being the greatest common measure off and/, is

equal to the number of real roots between a and b, each multiple

root counting only once.

EXAMPLES.

1 . Find the nature of the roots of the equation

a4 - bx* + 9z2 - 1x + 2 = 0.

"We easily obtain

/i(*) = 4*3 - 15z2 + 18* -7,

/(*) = **- 2* + 1
;

fz (x) divides f\ (x) without remainder ; hence in this case Sturm's series stops at

/>(#), thus establishing the existence of equal roots.
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To find the number of real roots of the equation, we substitute oo and + <

for x in the series of functions/, /i, f%. The result is

(-co) + - +,

(+ oo
) + + + .

Hence the equation has only two real distinct roots ; but one of these is a triple root,

as is evident from the form of fz (x), which is equal to (x I)
2
.

2. Find the nature of the roots of the equation

x* - 6*3 + 13*2 - 12* + 4 = 0.

Here

/i (x)
= 4*3 - 18*2 + 26* - 12,

/2(*)=*
2 -3* + 2;

fz(x) is the last Sturmian function ; so the equation has equal roots.

(-co) + - +,

(+ co
) + + + .

There are only two real distinct roots. In fact, since/2 (x)
= (x

-
l}(x

-
2), each of

the roots 1, 2 is a double root.

3. Find the nature of the roots of the equation

x5 + 2*4 + x* - xz - 2* - 1 = 0.

Here

/i = 5*4 + 8*3
-f 3*2 - 1x - 2,

/2 = 2*3 + 7*2 + 12* + 7,

/3 = - *2 - 60; - 5,

Since /g = 0, * + 1 is a common measure of/and /i, and/(#) has a double root 1.

"We have also

(_,) _ + __+,
(+00). + + +

Hence there are two real distinct roots. The equation has, therefore, beside the

double root, one other real root, and two imaginary roots.

4. Find the nature of the roots of the equation

*G - 7*5 + 15*4 - 40*2 + 48* -16 = 0.

Here

/i (x)
= 6*5 - 35*4 + 60*3 - 80* + 48,

fz(x) = 13*4 - 84*3 + 192*2 - 176* + 48,

/3 (x)
= *3 - 6*2 + 12* - 8 = (*

-
2)

3
.

Am. There are three real distinct roots, one of them being quadruple.
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91. Application of Sturm's Theorem. In the case of

equations of high degrees the calculation of Sturm's auxiliary

functions becomes often very laborious. It is important, there-

fore, to pay attention to certain observations which tend some-

what to dimmish this labour.

(1). In calculating the final remainder when it is numerical,

since its sign is all we are concerned with, the labour of the last

operation of division can be avoided by the consideration that

the value of x which causes/n_i to vanish must give opposite

signs tofn-z and /. It is in general possible to tell without any
calculation what would be the sign of the result if the root of

/n-i(*)
= were substituted mfn^(x). Thus in Ex. 3, Art. 89, if

o

the value -
~, which is the root of /3(a?)

=
0, be substituted

o

for x in 9ar - 27x + 11, the result is evidently positive; hence

the sign offn (x) is -, and there is no occasion to calculate the

value - 1433 given for/n (a?)
in the example in question.

(2). When it is possible in any way to recognize that all the

roots of any one of Sturm's functions are imaginary, we need

not proceed to the calculation of any. function beyond that one
;

for since such a function retains constantly the same sign for all

values of the variable (Cor. Art. 12), no alteration in the number

of changes of sign presented by it and the following functions

can ever take place, so that the difference in the number of

changes when two quantities a and b are substituted is indepen-

dent of whatever variations of sign may exist in that part of

the series which consists of the function in question and those

following it. With a view to the application of this observation

it is always well, when we arrive at the quadratic function

(ax
2 + bx + c, suppose), to examine, in case the term containing

x~ and the absolute term have the same sign (otherwise the roots

could not be imaginary), whether the condition 4ac > b~ is ful-

filled
;

if so, we know that the roots are imaginary, and the cal-

culation need not proceed farther.

Similar observations apply to the case where one of the

functions is a perfect square, since such a function cannot change
its sign for real values of x.



190 Separation of the Roots of Equations.

EXAMPLES.

1 . Analyse the equation

x* + 3*3 + 7*2 + 10* + 1 = 0.

We find

ft (x)
= -29*2-78* +14,

MX) =- 1086* - 481,

Here we see immediately that the value of x given by the equation /3 (x)
= 0,

which differs little from |, makes fz(x] positive ;
hence fi(x) is negative.

There are two real, and two imaginary roots. The real roots lie in the intervals

{-2,-!}, {-1,0}.
2. Analyse the equation

#4 _ 4^3 _ 3a; + 23 = 0.

We find

fz(x) = 12*2 + 9* - 89,

/3 (a;)
= -491*;+ 1371,

/*(*)= -

Here /3 (*)
= gives a; =

-^-
> > 2-74 > -, and x = - makes

fz(x) positive ;
hence the root of /a (a?)

makes it positive also.

There are two real and two imaginary roots.

The real roots lie in the intervals {2,3}, {3,4}.

3. Analyse the equation

2s4 - 13*2 + 10* - 19 = 0.

Here fi(x) = 4*3 - 13* + 5,

fz(x) = 13*2- loa; + 38.

Since 4 x 13 x 38 > 152
,

the roots of/2() are imaginary, and we proceed no

farther with the calculation of Sturm's remainders.

Substituting
- oo

, 0, +00, we obtain

(-QO) + +,

(0) + +,

(+00) + + +.

There are two real roots, one positive, the other negative.

4. Analyse the equation

/(*) = x5 + 2*4 + *3 - 4z2 - 3* - 5 = 0.

Here

MX) = 5s4 + 8*3 + 3*2 - 8* - 3,

/3 (*)
= 6*3 + 66*2 + 44^+119,

/3 (*)
= - 116*2 -57* -223.
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Since 4 x 116 x 223 > 57-, we may stop the calculation here. We find, on

ituting co
, 0, -f oo

,

(-00) +

(0) + -,

(+00) + + + -.

There are four imaginary roots, and one real positive root.

5. Find the number and situation of the real roots of the equation

j* _ 2j,-3 - 7.^2 + 10* +10 = 0.

Ans. The roots are all real, and are situated in the intervals

(-3, -2}, {- 1, 0}, and two between {2, 3}.

6. Analyse the equation

- 3*2 - 2* - 2 = 0.

It will be found that the calculation may cease with the quadratic remainder.

Ans. There is only one real root : in the interval {1, 2}.

7 . Analyse the equation

We find /2 (x)
= 854* - 27.51,

In some examples, of which the present is an instance, it is not easy to tell

immediately what sign the root of the penultimate function gives to the preceding

function. We have here calculated fz(x), and it turns out to be a much smaller

number than might have been expected from the magnitude of the coefficients in/2(a;) .

In fact when the root of/2 (#) is substituted in f\ (x) the positive part is nearly equal

to the negative part. This is always an indication that two roots of the proposed

equation are nearly equal. There are in the present instance two positive roots be-

tween 3 and 4. Subdividing the intervals, we find the two roots still to lie between

3*2 and 3'3
;
so that they are very close together. We see here another illustra-

tion of the continuity which exists between real and imaginary roots. If /3 (x)

turned out to be zero, the roots would be actually equal. If it turned 0'it to be a

small negative number, the two nearly equal roots would be imaginary.

8. Analyse the equation

The quadratic function is found to have imaginary roots.

Ans. One real root between (0, 1}; four imaginary roots.
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9. Analyse the equation

y* _ QX5 _ 30

We find

and as this has plainly all imaginary roots, the calculation may stop here.

Ans. Two real roots
;
in the intervals {2, 1), {6, 7).

10. Analyse the equation

ISx - 5 = 0.

We find

/2 (x)
= 5z4

and the calculation may stop.

Ans. Two real roots ; in the intervals {-1,0}, {5,6}.

11. Examine how the roots of the equation

2z3 + 15*2 - Ux - 190 =

are situated in the several intervals hetween the numhers oo
, 7, 6, + oo .

Here /i (a;)
= z? + 5x - 14,

/2 (*)
= 27# + 40,

AIM K

The substitution of the ahove quantities gives

(-GO) - + - +,

(-7) + - +,

(6) + + + +,

(+ oo
) + + + + .

Whenever, as in this example, any quantity makes one of the auxiliary functions

vanish (here 7 satisfies f\(x) =
0), the zero may he disregarded in counting the

number of changes of sign in the corresponding row ; for, since the signs on each

side of it are different, no alteration in the number of changes of sign in the row

could take place, whatever sign be supposed attached to the vanishing quantity.

The roots are all real. There is one root between oo and - 7
;
and two be-

tween 7 and 6.

12. Analyse the equation

3*4 - 6s2 - 8x - 3 = 0.

We find

/i(*) = 3*-3*-2,

/2 (*)=(*+ I)
8

.

'

As /a (x) is a perfect square the calculation may cease.

Ans. Two real roots
;
in the intervals {-1, 0}, {1, 2}.
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92. Conditions for the Reality of the Roots of an

Equation. The number of Sturm's functions, including

f(x)jf'(x) and the n - 1 remainders, will in general be n + 1.

In certain cases, owing to the absence of terms in the proposed

function, some of the remainders will be wanting. This can

occur only when the proposed equation has imaginary roots
;
for

it is plain that, in order to insure a loss of n changes of sign in

the series of functions during the passage of x from - oo to + oo

(namely, in order that the equation should have all its roots

real), all the functions must be present. And, moreover, they

must all take the same sign when x = + oo
;
and alternating

signs when x = - oo . Since the leading term of an equation is

always taken with a positive sign, we may state the condition

for the reality of all the roots of any equation (supposed not to

have equal roots) as follows : In order that all the roots of an

equation of the n th
degree should be real, the leading coefficients of

all Sturm's remainders, in number n -
1, must be positive.

EXAMPLES.

1. Find the condition that the roots of the equation

ax*- + 2bz + c =
should be real and unequal.

Am. b*-ac> 0.

2. Find the conditions that the roots of the cubic

z3 + 3Hz + G =

should be all real and unequal.

"When this cubic has its roots all real, it is evident that the 'general cubic from

which it is derived (Art. 36) has also its roots all real ;
so that, in investigating the

conditions for the reality of the roots of a cubic in general, it is sufficient to discuss

the form here written.

We find

fl (z)=z* + H,

fz (z)=-2Hz-G,

[In calculating these, before dividing f\ (z) by/2 (z), multiply the former by the

positive factor 2.H"2.]

Hence the required conditions are, .H" negative and G z + 4H3
negative.

These can be expressed as one condition, viz., G z + 4JET
3
negative, since this

implies the former (cf. Art. 43).

O
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3. Calculate Sturm's remainders for the biquadratic

z4 + 6J2z2 + 4Gz + a*I - ZH* = 0.

We find

/2 (*)
= - 3#s2 - 3z -

(a*I
- 3B" 2

),.

These are obtained without much difficulty by aid of the identity of Art. 37.

Before dividing fi by fa multiply by the positive factor 3JET 2 ; and when the re-

mainder is found, remove the positive factor a2 . Before dividing fz by/3, multiply

by the positive factor (2HI 3a/)
2

;
and when the remainder is found, remove the

positive factor a?H*.

93. Conditions for the Reality of the Roots of a

Riquadratic. In order to arrive at criteria of the nature of

the roots of the general algebraic equation of the fourth degree

by Sturm's method, it is sufficient to consider the equation of

Ex. 3 of the preceding Article. By aid of the forms of the

leading coefficients of Sturm's remainders there calculated, we

can write down the conditions that all the roots of a biquadratic

should be real and unequal in the form

H negative, 2HI- 3aJ negative, P - 27Jz

positive.

It will be observed that the second of these conditions is

different in form from the corresponding condition of Art. 68.

To show the equivalence of the two forms it is necessary to

prove that when If is negative and A positive, the further con-

dition 2HI - 3aJ negative implies the condition a~I - 12IF

negative, and conversely. From the identity of Art. 37,

written in the form - H(a?I- 12H 2

)
= a*(2HI-3aJ) - 3 2

,

it readily appears that when H and 2HI - 3aJ are negative

a*I - 12H* is necessarily negative. And to prove the converse

we observe that when aJ is positive 2HI - 3aJ is negative,

since / is positive on account of the condition A positive ; and

when aJ is negative 2HI - 3aJ is still negative, since the

negative part 2HI exceeds the positive part
- 3aJ

9
as may be

readily shown by the aid of the inequalities 12J?2 > azl and

P > 27J\

The student will have no difficulty in verifying, by means

of Sturm's functions, the remaining conclusions arrived at in

the different cases of Art. 68.
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EXAMPLES.

1 . Apply Budan's method to separate the roots of the equation

xt _ 16*3 + 69^2 _ 70^ -42 = 0.

Ans. Roots in intervals {- 1, 0}, {2, 3}, {4, 5}, (9, 10}.

2. Apply Sturm's theorem to the analysis of the equation

at - 3? + Itf - 6x - 4 = 0.

In analysing a biquadratic of this nature which has plainly two real roots, when

a Sturmian remainder is reached whose leading coefficient is negative, the calculation

may cease, since the other pair of roots must then be imaginary, and the positions

of the real roots can be readily found by substitution in the given equation.

Ans. Two roots imaginary ; real roots in intervals {- 1, 0}, (2, 3}.

3. Analyse in a similar manner the equation

x*-ox? + lOz2 - Qx - 21 = 0.

Ans. Two roots imaginary ;
real roots in intervals {-1, 0}, {3, 4}.

4. Apply Sturm's theorem to the analysis of the equation

a;4 + 3x3 - x- - 3x+ll = 0.

Ans. Roots all imaginary.

5. Find by] Sturm's method the number and position of the real roots of the

equation

Ans. Roots all real; one in the interval {-4, -
3[; two in the interval

{1, 0}; and positive roots in the intervals {0, 1}, {3, 4}.

6. If, in the following, the sequences of [signs are those of the leading coef-

ficients of Sturm's remainders for a biquadratic, prove

+ + + four real roots
; + > two real roots

;

no real root ; + cannot occur.

7. If .the signs of the leading coefficients of the first two of Sturm's remainders

for a quintic be + , prove that the number of real roots is determined.

Ans. One real root only.

8. If H and /are both positive, prove that all the roots of the biquadratic are

imaginary ;
and that under the same conditions the quintic written with binomial

coefficients has [only one real root. Mr. M. Roberts, Dublin Exam. Papers, 1862.
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t$. Prove that, if c has any value except unity, the equation

has a pair of imaginary roots.

10. Prove that the roots of the equation

are all real, and solve it when two of the quantities a, b, c become equal.
- -

11. Prove that when the biquadratic

f(x) = ax*

has a triple factor, it may be expressed in the form

a*f(x} = {ax + b + VTff} 3
{ax + b - 3 V^Tff} .

12. Verify by means of Sturm's remainders the conditions which must be ful-

filled when the biquadratic of the previous example is a perfect square, and prove

in that case

13. If an equation of any degree, arranged according to powers of x, have three

consecutive terms in geometric progression, prove that its roots cannot be all real.

These three terms must be of the form kxr + kaxr~l
\- kazxr-*. Let the equation

be multiplied by x a. The resulting- equation will have two consecutive terms

absent, and must therefore have at least two imaginary roots ; but all the roots of

this equation except a are roots of the given equation.

14. If an equation have four consecutive coefficients in arithmetic progression,

prove that its roots cannot be all real.

This can be reduced to the preceding example. Writing down four terms of the

proper form, and multiplying by x 1, it readily appears that the resulting equation

has three consecutive terms in geometric progression.



CHAPTER X.

SOLUTION OF NUMERICAL EQUATIONS.

94. Algebraical and Numerical Equations. There is

an essential distinction between the solutions of algebraical and

numerical equations. In the former the result is a general for-

mula of a purely symbolical character, which, being the general

expression for a root, must represent all the roots indifferently.

It must be such that, when for the functions of the coefficients

involved in it the corresponding symmetric functions of the

roots are substituted, the operations represented by the radical

signs ^/
? y/ become practicable ;

and when the square and

cube roots of these symmetric functions are extracted, the whole

expression in terms of the roots will reduce down to one root :

the different roots resulting from the different combinations

y/ of square roots, and y/, <o y/, w2

y/ of cube roots.

For a simple illustration of what is here stated we refer to the

case of the quadratic in Art. 55. In Articles 59 and 66 we have

similar illustrations for the cubic and biquadratic. It is to be

observed, also, that the formula which represents the root of an

algebraic equation holds good even when the coefficients are

imaginary quantities.

In the case of numerical equations the roots are determined

separately by the methods we are about to explain ; and, before

attempting the approximation to any individual root, it is in

general necessary that it should be situated in a known interval

which contains no other real root.

The real roots of numerical equations may be either com-

mensurable or incommensurable
;
the former class including

integers, fractions, and terminating or repeating decimals which
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are reducible to fractions ; the latter consisting of interminable

decimals. The roots of the former class can be found exactly,

and those of the latter approximated to with any degree of

accuracy, by the methods we are about to explain.

We shall commence by establishing a theorem which reduces

the determination of the former class of roots to that of integral

roots alone.
1

95. Theorem. An equation in which the coefficient of the

fast term is unity, and the coefficients of the other terms whole

numbers, cannot have a commensurable root ivhich is not a whole

number.

For, if possible, let -, a fraction in its lowest terms, be a

root of the equation

xn + p l x
n-1

we have then

from which, multiplying by b
n
~*, we obtain

Now an is not divisible by b, and each term on the right-hand

side of the equation is an integer. We have, therefore, a frac-

tion in its lowest terms equal to an integer, which is impossible.

Hence - cannot be a root of the equation. The real roots of

the equation, therefore, are either integers or incommensurable

quantities.

Every equation whose coefficients are finite numbers, frac-

tional or not, can be reduced to the form in which the coefficient

of .the first term is unity and those of the other terms whole

numbers (Art. 31) ;
so that in this way, by the aid of a simple

transformation, the determination of the commensurable roots

in general can be reduced to that of integral roots.
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We proceed to explain Newton's process, called the Method

of Divisors, of obtaining the integral roots of an equation whose

coefficients are all integers.

96. lewton's Method of Divisors. Suppose h to be an

integral root of the equation

+ i of
1'1 + .... + an.\ x + an = 0. (1)

Let the quotient, when the polynomial is divided by x -
h, be

bQ x
n~l + bi sf

1
'2

-f . . . . + bn_2 x + bn-i 9

in which b
, b^ &c., are plainly all integers.

Proceeding as in Art. 8, we obtain the following equations :

tfn-2
=

n_z
-

n_z , #_! = n_i
-

n^, an = - ^i.

The last of these equations proves that an is divisible by /*,

the quotient being
- b^i. The second last, which is the same as

an
an-\ + -r = -

hbn_^
n

proves that the sum of the quotient thus obtained and the se-

cond last coefficient is again divisible by h, the quotient being
_2 ;

and so on.

Continuing the process, the last quotient obtained in this

way will be &0> which is equal to a .

If we perform the process here indicated with all the divi-

sors of an which lie within the limits of the roots, those which

satisfy the above conditions, giving integral quotients at each

, and a final quotient equal to - a
, are roots of the proposed

equation. Those which at any stage of the process give a frac-

tional quotient are to be rejected.

When the coefficient a()
=

1, we know by the theorem of the

last Article that the integral roots determined in this way are

all the commensurable roots of the proposed equation. If aQ be
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not= 1, the process will still give the integral roots of the equa-
tion as it stands

; but to be sure of determining in this way all

the commensurable roots, the equation must be. first transformed

to one which shall have the coefficient of the highest term equal
to unity.

97. Application of the Method of Divisors. With a

view to the most convenient mode of applying the Method of

Divisors, we write the series of operations as follows, in a manner

analogous to Art. 8 :

-b2 -bi -b

The first figure in the second line (- &M_i) is obtained by

dividing fln|by h. This is to be added to a,^ to obtain the first

figure in the third line (- hb^). This is to be divided by h to

obtain the second figure in the second line (- bn_2) ;
this to be

added to an~z ;
and so on. If h be a root, the last figure in the

second line thus obtained will be - aQ .

When we succeed in proving in this manner that any integer

h is a root, the next operation with any divisormay be performed,

not on the original coefficients an) a^i, . . . .
,
but on those of the

second line with their signs changed, for these are the coefficients

of the quotient when the original polynomial is divided by x - h.

When any divisor gives at any stage a fractional result it is to

be rejected at once, and the operation so far as it is concerned

stopped.

The numbers 1 and -
1, which are always of course integral

divisors of an ,
need not be included in the number of trial divisors.

It is more convenient before applying the Method of Divisors to

determine by direct substitution whether either of these numbers

is a root.
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EXAMPLES.

1 . Find the integral roots of the equation

a* _ 2x? - 13z2 + 38.r - 24 = 0.

By grouping the terms (see Art. 79) we observe without difficulty that all the

roots lie between 5 and + 6. The following divisors are possible roots :

-4, -3, -2, 2, 3, 4.

"We commence with 4 :

-.24 38 -13 -2 1

-6 8

32 - 5

The operation stops here, for since 5 is not divisible by 4, 4 cannot be a root.

"We proceed then with the number 3 :

- 24 38 - 13 - 2 1

- 8 10 -1 - 1

30 - 3 . -3 0;

hence 3 is a root
;
and in proceeding with the next integer, 2, we make use, as

above explained, of the coefficients of the second line with signs changed :

8-10 1 1

4 -3 -1

- 6 -2 0;

hence 2 also is a root
;
and we proceed with - 2 :

-4 3 1

2

- 2 is not a root, for it does not divide 5. - 3 is plainly not a root, for it

does not divide 4.

[We might at once have struck out 3 as not being a divisor of the absolute

S of the reduced polynomial. This remark will often be of use in diminishing

the number of dh
'



202 Solution of Numerical Equations.

"We proceed now to the last divisor, 4 :

-4 3 1

1 - 1

4

Thus 4.is a root.

The equation has, therefore, the integral roots 3, 2, 4
;
and the last stage of

the operation shows that when the original polynomial is divided by the binomials

x 3, x 2, x + 4, the result is x 1 ; so that 1 is also a root. Hence the original

polynomial is equivalent to

(*-!)(*- 2) (*-3)(*+ 4).

2. Find the integral roots of

Zlx - 30 = 0.

The roots lie between 2 and 8 ; hence we have only to test the divisors

2, 3, 5, 6.

We find immediately that 6 is not a root.

For 5 we have

-30 31 35-23 3

- 6 5 8-3
25 40 - 15

;

hen ce 5 is a root. For 3 we have

6-5-8 3

2 - 1 -3

-3 -9 0;

hence 3 is a root
;
and we easily find that 2 is not a root.

The quotient, when the original polynomial is divided by (x
-

5) (x
-

3), is, from

the last operation,
3*2 + x - 2 :

of this 1 is not a root, and - 1 is a root. Hence all the integral roots of the pro-

posed equation are 1, 3, 5.

2
The other root of the equation is -. It is a commensurable root ; but, not being

o

integral, is not given in the above operation.

3. Find all the roots of the equation

#4 + x3 - 2x- + 4# - 24 = 0.

Limits of the roots are 4, 3.

Am. Roots - 3, 2, 2 \/~.
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4. Find all the roots of the equation

x* _ 2*3 - 19*2 + 68* - 60 = 0.

The roots He between - 6 and 6.

We find that 2, 3, 5 are roots, and that the factor left after the final division

- 2
;

hence 2 is a double root. The polynomial is therefore equivalent to

In Art. 99 the case of multiple roots will he further considered.

98. Method of Limiting the Xumber of Divisors.

It is possible of course to determine by direct substitution

whether any of the divisors of an are roots of the proposed equa-

tion
;
but Newton's method has the advantage, as the above

examples show, that some of the divisors are rejected after very-

little labour. It has a further advantage which will now be

explained. When the number of divisors of an within the limits

of the roots is large, it is important to be able, before proceeding

with the application of the method in detail, to diminish the

number of these divisors which need be tested. This can be

done as follows :

If h is an integral root of/(#) =0,/(^) is divisible by x -
h,

and the coefficients of the quotient are integers, as was above

explained. If therefore we assign to x any integral value, the

quotient of the corresponding value of/(#) by the correspond-

ing value of x - h must be an integer. "We take, for convenience,

the simplest integers 1 and - 1
; and, before testing any divisor /*,

we subject it to the condition that /(I) must be divisible by
1 - h (or, changing the sign, by h -

1) ;
and that/(- 1) must

be divisible by - 1 - h (or, changing the sign, by 1 + h}.

In applying this observation it will be found convenient to

calculate /(I) and/(- 1) in the first instance: if either of these

vanishes, the corresponding integer is a root, and we proceed
with the operation on the reduced polynomial whose coefficients

have been ascertained in the process of finding the result of

substituting the integer in question.
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EXAMPLES.

1. x5 - 23#4 + 160*3 - 281*2 - 257* - 440 = 0.

The roots lie between - 1 and 24.

We have the following divisors :

2, 4, 5, 8, 10, 11, 20, 22.

We easily find

/(I) = -
840, and /(- 1)

= - 648.

We therefore exclude all the above divisors, which, when diminished by 1, do

not divide 840
;
and which, when increased by 1, do not divide 648. The first

condition excludes 10 and 20, and the second 4 and 22. Applying the Method of

Divisors to the remaining integers 2, 5, 8, 11, we find that 5, 8, and 11 are roots,

and that the resulting quotient is #2 + x + 1. Hence the given polynomial is equi-

valent to

2. x5 - 29*4 - 31*3 + 31*2 - 32* + 60 = 0.

The roots lie between - 3 and 32.

Divisors : -
2, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30.

/(I) = ;
so 1 is a root.

/(- 1)
= 124 ; and the above condition excludes all the divisors except

-
2, 3, 30.

We easily find that - 2 and 30 are roots, and that the final quotient is xz + 1 .

The given polynomial is equivalent to (x-\}(x- 30) (x + 2) (x
z + 1).

99. Determination of Multiple Roots. The Method

of Divisors determines multiple roots when they are commen-

surable. In applying the method, when any divisor of an which

is found to be a root is a divisor of the absolute term of the re-

duced polynomial, we must proceed to try whether it is also a

root of the latter, in which case it will be a double root of the

proposed equation. If it be found to be a root of the next

reduced polynomial, it will be a triple root of the proposed ;
and

so on. Whenever in an equation of any degree there exists only

one multiple root, r times repeated, it can be found in this way ;

for the common measure of /(a?) and /'(#) will then be of the

form (x
-

a)''"
1

,
and the coefficients of this could not be com-

mensurable if a were incommensurable.
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Multiple roots of equations of the third, fourth, and fifth

degrees can be completely determined without the use of the

process of finding the greatest common measure, as will appear

from the following observations :

(1). The Cubic. In this case multiple roots must be com-

mensurable, since the degree is not high enough to allow of two

distinct roots being repeated.

(2). The Biquadratic. In this case either the multiple roots

are commensurable or the function is a perfect square. For the

only form of biquadratic which admits of two distinct roots

being repeated is

/. c. the square of a quadratic. The roots of the quadratic may
be incommensurable. If we find, therefore, that a biquadratic

has no commensurable roots, we must try whether it is a per-

fect square in order to determine further whether it has equal

incommensurable roots.

(3). The Qm'ntic. In this case, either the multiple roots are

commensurable, or the function consists of a linearcommensurable

factor multiplied by the square of a quadratic factor. For, in

order that two distinct roots may be repeated, the function must

take one or other of the forms

(*
-

a)
2

(x
-

/3)
2

(*
-

7), (x
-
a}\x

-
/3)

3
.

In the latter case the roots cannot be incommensurable ; but the

former may correspond to the case of a commensurable factor

multiplied by the square of a quadratic whose roots are incom-

mensurable. If then a quintic be found to have no commen-

surable roots it can have no multiple roots. If it be found to

have one commensurable root only, we must examine whether

the remaining factor is a perfect square. If it have more than

one commensurable root, the multiple roots will be found among
the commensurable roots.
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EXAMPLES.

1. Find all the commensurable roots of

2*3 -3L*;2 + 112* + 64 = 0.

The roots lie between the limits - 1, 16. The divisors are 2, 4, 8.

64 112 -31 2

8 15 -2

120 -16 0;

8 is therefore a root. Proceed now with the reduced equation :

-8 -15 2

- 1 -2

- 16 0;

8 is a root again, and the remaining factor is 2x + 1.

^,/(*)^ (2* +!)(*- 8)
2
.

2. Find the commensurable and multiple roots of

a;4 _ xs _ 3o#2 _ 76a, _56 = 0.

The roots lie between the limits -
6, 12. (Apply method of Ex. 10, Art. 80).

^m./(*)a(ar + 2)(*-7).

3. Find the commensurable and multiple roots of

9*4 - 12*3 - 71*2 - 40* + 16 = 0.

The roots lie between the limits 2, 5.

The equation as it stands is found to have no integral root
;
but it may still have

a commensurable root. To test this we multiply the roots by 3 in order to get rid

of the coefficient of #4 . "We find then

144 = 0.

Limits :
-

6, 15.

We find 4 to be a double root of this, and the function to be equivalent to

(x
z - 12# + 9) (x + 4)

2
. The original equation is therefore identical with the fol-

lowing :

(X*
- 4* + 1) (3* + 4)

2 = 0.

4. Find the commensurable and multiple roots of

z4 + 12*3 + 32s2 - 24s + 4 = 0.
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The roots lie between - 12 and 1. The only divisors to be tested are, therefore,
-

4, 2, 1 . We find that the equation has no commensurable root. "We pro-

ceed to try whether the given function is a perfect square. This can be done by

extracting the square root, or by applying the conditions of Ex. 8, p. 123. We find

that it is the square of x* + 6x - 2(cf. Ex. 1, p. 161). Hence the given equation

has two pairs of equal roots, both incommensurable.

5. Find the commensurable and multiple roots of

f(x) = x5 - x* - 12*3 + 8z2 + 28x + 12 = 0.

The limits of the roots are -
4, 4.

We find that - 3 is a root, and that the reduced equation is

x* - & + 8x + 4 = 0,

and that there is no other commensurable root.

The only case of possible occurrence of multiple roots is, therefore, when this

latter function is a perfect square. It is found to be a perfect square, and we have

6. Find the commensurable and multiple roots of

f(x) = x5 - 8z* + 22Z3 - 26x~ + 2lx -18=0.

Am. f(x) = (x* + 1) (x
-

2) (x
-

3)
2

.

7. The following equation has only two different roots : find them :

x5 - 13z4 + 67s3 - 17U2 + 2l6x - 108 = 0.

In general it is obvious that if an integral root' A occurs twice, the last coefficient

must contain A2 as a factor, and the second last h
;

if the root occurs three times,

A3 must be a factor of the last, A2 of the second last, and A of the third last coef-

ficient. The last coefficient here = 22
. 33

. Hence, if neither 1 nor 1 is a root,

the required roots must be 2 and 3. That these are the roots is easily verified.

8. The equation
800z4 - 102#2 - x + 3 =

has equal roots : find all the roots.

In this example it is convenient to change the roots into their reciprocals before

applying the Method of Divisors.

Ans. f(x) = (Wx -
3) (5*

- l)(x + I)
2

.

100. Utewton's Method of Approximation. Having
shown how the commensurable roots of equations may be ob-

tained, we proceed to give an account of certain methods of

obtaining approximate values of the incommensurable roots.

The method of approximation, commonly ascribed to Newton,*
which forms the subject of the present Article, is valuable as

* See Note B at the end of the volume.
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being applicable to numerical equations involving transcendental

as well as those involving algebraical functions only. Although
when applied to the latter class of functions Newton's method is,

for practical purposes, inferior in form to Homer's, which will

be explained in the following Articles, yet in principle both

methods are to a great extent identical.

In all methods of approximation the root we are seeking is

supposed to be separated from the other roots, and to be situated

in a known interval between close limits.

Let/(#) = be a given equation, and suppose a value a to

be known, differing by a small quantity h from a root of the

equation. We have then, since a + h is a root of the equation,

f\a + h)
=

;
or

/()+/>) A +
-^|/

4
' + .... = 0.

Neglecting now, since h is small, all powers of h higher than the

first, we have

/(*)+/>) A =
0,

giving, as a first approximation to the root, the value

-78-/w
Representing this value by &, and applying the same process a

second time, we find as a closer approximation

-

/w
By repeating this process the approximation can be carried

to any degree of accuracy required.

EXAMPLE.

Find an approximate value of the positive root of the equation

xz - 2z - 5 = 0.

The root lies between 2 and 3 (Ex. 1, Art. 89). Narrowing the limits, the root is

found to lie between 2 and 2-2. "We take 2-1 as the quantity represented by a. It

cannot differ from the true value a + h of the root by more than 0*1. "We find
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A first approximation is, therefore,

2-1 -0-00543 =2-0946.

Taking this as b, and calculating the fraction
"77777-,

we obtain

= 2-09455148

for a second approximation ;
and so on.

The approximation in Newton's method is, in general, rapid.

When, however, the root we are seeking is accompanied by an-
-/*/ \

other nearly equal to it, the fraction
'-7p-

is not necessarily small,

since the value of either of the nearly equal roots reduces/*^) to

a small quantity. A case of this kind requires special precau-

tions. We do not enter into any further discussion of the

method, since for practical purposes it may be regarded as

entirely superseded by Homer's method, which will now be

explained.

101. Homer's Method of Solving; Numerical Equa-
tions. By this method both the commensurable and incom-

mensurable roots can be obtained. The root is evolved figure

by figure : first the integral part (if any), and then the decimal

part, till the root terminates if it be commensurable, or to any
number of places required if it be incommensurable. The pro-

cess is similar to the known processes of extraction of the square

and cube root, which are, indeed, only particular cases of the

general solution by the present method of quadratic and cubic

equations.

The main principle involved in Homer's method is the suc-

cessive diminution of the roots of the given equation by known

quantities, in the manner explained in Art. 33. The great ad-

vantage of the method is, that the successive transformations

are exhibited in a compact arithmetical form, and the root

obtained by one continuous process correct to any number of

places of decimals required.
*

This principle of the diminution of the roots will be illus-

trated in the present Article by some simple examples. In the

p
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following Articles we shall proceed to certain considerations

which tend to facilitate the practical application of the method.

EXAMPLES.

1. Find the positive root of the equation .

2*3 - 85z2 - 85x - 87 = 0.

The first step, when any numerical equation is proposed for solution, is to find the

Jirstfigure of the root. This can usually he done by a few trials ; although in cer-

tain cases the methods of separation of the roots explained in Chap. IX. may have

to he employed. In the present example there can he only one positive root
;
and

it is found by trial to lie between 40 and 50. Thus the first figure of the root is 4.

"We now diminish the roots by 40. The transformed equation will have one root

between and 10. It is found by trial to lie between 3 and 4. We now diminish

the roots of the transformed equation by 3
;
so that the roots of the proposed equa-

tion will be diminished by 43. The second transformed equation will have one root

between and 1. On diminishing the roots of this latter equation by *5, we find

that its absolute term is reduced to zero, i. e. the diminution of the roots of the pro-

posed equation by 43*5 reduces its absolute term to zero. We conclude that 43-5 is

a root of the given equation. The series of arithmetical operations is represented as

follows :

(43-5-85
80
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is the equation whose roots are each less by 40 than the roots of the given equation,

and whose positive root is found to lie between 3 and 4. If the second transformed

equation had not an exact root -5 ; but one, we shall suppose, between '5 and -6, the

first three figures of the root of the proposed equation would be 43-5
;
and to find

the next figure we should proceed to a further transformation, diminishing the roots

by -6
;
and so on.

2. Find the positive root of the equation

4*3 - 13*3 - 3Lr - 275 = 0.

We first write down the arithmetical work, and proceed to make certain observations

on it :

4 - 13

24
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the process is continued as befpre. To illustrate this we repeat the above operation,

omitting the decimal points. In all subsequent examples this simplification will be

adopted :

(6-25
- 13

24
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102. Principle of the Trial-divisor. We have seen in

Art. 100 that when an equation is transformed by the substitution

of a -f // for X, a being a number differing from the true root by
a quantity h small in proportion to a, an approximate numeri-

cal value of h is obtained by dividing f(a) by /'(). Now the

successive transformed equations in Horner's process are the

results of transformations of this kind, the last coefficient being
. and the second last f(a) (see Art. 33). Hence, after two

or three steps have been completed, so that the part of the root

remaining bears a small ratio to the part already evolved, we

may expect to be furnished with two or three more figures of the

root correctly by mere division of the last by the second last

coefficient of the final transformed equation. -We might there-

fore, if we pleased, at any stage of Homer's operations, apply

Newton's method to get a further approximation to the root. In

Horner's method this principle is employed to suggest the next

following figure of the root after the figures already obtained.

The second last coefficient of each transformed equation is called

the trial-divisor. Thus, in the second example of the last Ar-

ticle, the number 5 is correctly suggested by the trial-divisor

2690800 In this example, indeed, the second figure of the

root is correctly suggested by the trial-divisor of the first trans-

formed equation, although, in general, this is not the case. In

practice the student will have to estimate the probable effect of

the leading coefficients of the transformed equation ;
he will find,

however, that the influence of these terms becomes less and less

as the evolution of the root proceeds.

EXAMPLES.

1 . Find the positive root of the equation

x- 100 =

t to foir- decimal places.

It is easily seen that the root lies between 4 and 5. We write down the work,

and proceei to make observations on it :
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i

20

- 100

84

(4-2644

5 21

4 36
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and this will show itself in the work by the change of sign in the absolute term. In

the above work it is evident, without performing the fifth transformation, that the

-ponding figure of the root is 4, so that the correct root to four decimal places

2. The equation x* + 4a? - 4*2 - 11* -I- 4 =

has one root between 1 and 2 -\find its value correct to four decimal places.

4 -/4 \
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We see without completing the fifth transformation that 9 is the next figure of

the root. The root is, therefore, 1-6369 correct to four decimal places.

The trial-divisor becomes effective after the second transformation, suggesting

correctly the number 3, and all subsequent numbers. The first transformed equation

has its last two terms negative. We may expect, therefore, that the influence of

the preceding coefficients is greater than that of the trial-divisor, as in fact is here

the case. The number 6, the second figure of the root, must be found by substitu-

tion. We hare to determine what is the situation between and 10 of the root of

the equation
x* + 80*3 + 1400*2 - 3000-r - 60000 = 0.

A few trials show that 6 gives a negative, and 7 a positive result. Hence the

root lies between 6 and 7 ;
and 6 is the number of which we are in search. In the

subsequent trials we take those greatest numbers 3, 6, 9, in succession, which allow

the absolute term to retain its negative sign. In the first transformation, diminishing

the roots by 1, there is a change of sign in the absolute term. The meaning of this

is, that we have passed over a root lying between and 1, for gives a positive

result, 4
;
and 1 gives a negative result, 6. In all subsequent transformations,

so long as we keep below the root, the sign of the absolute term must be the same

as the sign resulting from the Bubstitution of 1. This supposes of course that no

root lies between 1 and that of which we are in search. This supposition we have

already made in the statement of the question. In fact the proposed equation can

have only two positive roots
;
one of them lies between and 1, and therefore only

one between 1 and 2.

When two roots exist between the limits employed in Homer's method,

i.e. when the equation has a pair of roots nearly equal, certain precautions must be

observed which will form the subject of a subsequent Article.

3. Find the root of the preceding equation between and 1 to four decimal places.

Commence by multiplying by 10. The coefficients are then

1, 40,
-

400,
- 11000, 40000 ;

the trial-divisor becomes effective at once in consequence of the comparative small-

ness of the leading coefficients. The positive sign, of the absolute term must be pre-

served throughout. Am. -3373

4. Find to three places of decimals the root situated between 9 and 10 of the

equation

#4 _ 3^2 + 753; __

[Supply the zero coefficient of z3
.] Am. 9-886.

In the examples hitherto considered the root has been found

to a few decimal places only. We proceed now to explain a

method by which, after three or four places of decimals have

been evolved as above, several more may be correctly obtained

with great facility by a contracted process.
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103. Contraction of Homer's Process. In the ordi-

nary process of contracted Division, when the given figures are

iiisted, in place of appending ciphers to the successive divi-

1s, we cut off figures successively from the right of the

divisor, so that the divisor itself becomes exhausted after a num-

ber of steps depending on the number of figures it contains.

The resulting quotient will differ from the true quotient in the

ilgure only, or at most in the last two figures. In Horner's

contracted method the principle is the same. We retain those

figures only which are effective in contributing to the result to

the degree of approximation desired. When the contracted

process commences, in place of appending ciphers to the succes-

sive coefficients of the transformed equation in the way before

explained, we cut off one figure from the right of the last coef-

ficient but one, two from the right of the last coefficient but two,

three from the right of the last coefficient but three
;
and so on.

The effect of this is to retain in then- proper places the im-

portant figures in the work, and to banish altogether those which

are of little importance.

The student will do well to compare the first transformation

by the contracted process in the first of the following examples

with the corresponding step in the second example of the last

Article, where the transformation is exhibited in full. He will

then observe how the leading figures (those which are most

important in contributing to the result) coincide in both cases,

and retain their relative places ;
while the figures of little im-

portance are entirely dispensed with.

In addition to the contraction now explained, other abbrevia-

tions of Horner's process are sometimes recommended ; but as

the advantage to be derived from them is small, and as they

increase the chances of error, we do not think it necessary to

give any account of them. The contraction here explained is

of so much importance in the practical application of Horner's

method of approximation that no account of this method is

complete without it.
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EXAMPLES.

1. Find the root between 1 and 2 of the equation in Ex. 2 of the last Article

correct to seven or eight decimal places.

Assuming the result of the Example referred to, we shall commence the con-

tracted process after the third transformation has been completed. The subsequent

work stands as follows :

2516578H - 17549439 (1-636913575

18936 15213090

3156 2535515

6 18972

3162

- 2336349

2301597

2554487

285

255733

285

- 34752

25601

-9151

7680

256018, - 1471

1280

- 191

179

12

Here the effect of the first cutting off of figures, namely, 8 from the second last

coefficient, 14 from the third last, and 052 from the fourth last, is to banish alto-

gether the first coefficient of the biquadratic. "We proceed to diminish the roots by
6 as if the coefficients 1, 3150, 2516578, - 17549439 which are left were those of a

cubic equation. In multiplying by the corresponding figure of the root the figures

cut off should be multiplied mentally, and account taken of the number to be carried,

just as in contracted division.

After the diminution by 6 has been completed, we cut offagain in the transformed

cubic 7 from the last coefficient but one, 68 from the last but two, and the first

coefficient disappears altogether. The work then proceeds as if we were dealing

with the coefficients 31, 255448, -2336349 of a quadratic. The effect of the next

process of cutting off is to banish altogether the leading coefficient 31. The sub-

sequent work coincides with tbat of contracted division. "When the operation ter-

minates, the number of decimals in the quotient may be depended on up to the last

two or three figures. The extent to which the evolution of the root must be

carried before the contracted process is commenced depends on the number of decimal

places required ;
for after the contraction commences we shall be furnished, in addi-

tion to the figures already evolved, with as many more as there are figures in the

trial-divisor, less one.

2. Find to seven or eight decimal places the root of the equation

& - 12x + 7 =

which lies between 2 and 3.
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This equation can have only two positive roots : one lies between and 1, and

the other between 2 and 3. For the evolution of the latter we have the following :

2
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104. Application ofHomer's Method to Cases where
Roots are nearly Equal. We have seen in Art. 100 that the

method of approximation there explained fails when the pro-

posed equation has two roots nearly equal. Examples of this

nature are those which present most difficulties, both in their

analysis (see Ex. 7, Art. 91) and in their solution. By Homer's

method it is possible, with very little more labour than is neces-

sary in other cases, to effect the solution of such equations. So

long as the leading figures of the two roots are the same certain

precautions must be observed, which will be illustrated by the

following examples. After the two roots have been separated,

the subsequent calculation proceeds for each root separately, just

as in the examples of the previous Articles. It is evident, from

the explanation of the trial-divisor given in Art. 102, that for

the same reason as that which explains the failure of Newton's

method in the case under consideration (see Art. 100), it will

not become effective till the first or second stage after the roots

have been separated.

EXAMPLES.

1. The equation
tf - 1x + 7 =

has two roots between 1 and 2 (see Ex. 2, Art. 89) ;
find each of them to eight de-

cimal places.

Diminishing the roots by 1, we find that the transformed equation (after its

roots are multiplied by 10), viz.

#3 + 30^2 _ 4003; + 1000 = 0,

must have two roots between and 10. We find that these roots lie, one between

3 and 4, and the other between 6 and 7. The roots are now separated, and we pro-

ceed with each separately in the manner already explained. If the roots were not

separated at this stage, we should find the leading figure common to the two, and,

having diminished the roots by it, find in what intervals the roots of the resulting

equation were situated ; and so on.

Am. 1-35689584, 1-69202147.
2. Find the two roots of the equation

x* - 49z2 + 658# - 1379 =

which lie between 20 and 30.

"We shall exhibit the complete work of approximation to the smaller of the two

roots to seven places ; and then make certain observations which will be a guide to

the student in all cases of the kind.



-49
20
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us to find by mere substitution the interval within -which the two roots lie. If we

diminish the roots of *3 + 11#2 - 102* + 181 = by 4, the resulting equation is

xz
-f 23*2 + 34* + 13=0, which has no change of sign. Hence the two roots must

lie between and 4. If we diminish its roots by 3, the resulting equation (as in

the above work) has the same number of changes of sign as the equation itself.

Hence the two roots lie between 3 and 4. They are, therefore, not yet separated ;

and we proceed to diminish by 3. The next transformed equation

x* + 200*2 - 900* + 1000 =

is found in the same way to have both its roots between 2 and 3 : the diminution by

2 leaving two changes of sign in the coefficients of the transformed equation (as in

the above work) ,
and the diminution by 3 giving all positive signs. So far, then, the

two roots agree in their first three figures, viz. 23-2. We diminish again by 2. The

resulting equation *3 + 2060*2 - 8800* + 1261000= has one root only between 1

and 2 ;
1 giving a positive, and 2 a negative result : its other root lies between 2

and 3
;

3 giving a positive result. The roots are now separated. We proceed, as in

the above work, to approximate to the lesser root, by diminishing the roots of this

equation by 1
;
the trial divisor becoming effective at the next step. To approxi-

mate to the greater root, we must diminish by 2 the roots of the same equation,

taking care that in the subsequent operations the negative sign, to which the pre-

viously positive sign of the absolute term now changes, is preserved. The second

root will be found to be 23-2295212.

So long as the two roots remain together, a guide to the proper figure of the root

may be obtained by dividing twice the last coefficient by the second last, or the se-

cond last by twice the third last. The reason of this is, that the proposed equation

approximates now to the quadratic formed by the last three terms in each transformed

equation, just as in previous cases, and in Newton's method it approximated to the

simple equation formed by the last two terms, this quadratic having the two nearly

equal roots for its roots ; and when the two roots of the equation azz + bx + c =

are nearly equal, either of them is given approximately by or . Thus, in the

above example, the number 3 is suggested by ,
and the number 2 by .

102 900

In this way we can generally, at the first attempt, find the two integers between

which the pair of roots lies. We shall have, also, an indication of the separation of

the roots by observing when the numbers suggested in this way by the last three

coefficients become different, i.e. when suggests a different number from .

3. Calculate to three decimal places each of the roots lying between 4 and 6 of

the equation
** + 8*3 - 70*2 - 144* + 936 = 0.

Ans. 4-242; 4-246.

4. Find the two roots between 2 and 3 of the equation

64*3 - 592*2
-f 1649* - 1445 = 0.

Ans. The roots are both = 2-125.
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Here we find that the two roots are not separated at the third decimal place.

When we diminish by 5 the absolute term vanishes, showing that 2-125 is a root;

and proceeding with this diminution the second last coefficient also vanishes. Hence

2-12') is a double root.

When an equation contains more than two nearly equal

roots, they can all be found by Homer's process in a manner

similar to that now explained. Such cases are, however, of

rare occurrence in practice. The principles already laid down

will be a sufficient guide to the student in all cases of the kind.

105. Lagrange's Method ofApproximation. Lagrange
has given a method of expressing the root of a numerical equa-

tion in the form of a continued fraction. As this method is, for

practical purposes, much inferior to that of Horner, we shall

content ourselves with a brief account of it.

Let the equation f(x) = have one root, and only one root,

between the two consecutive integers a and a + 1. Substitute

a + - for x in the proposed equation. The transformed equation

in y has one positive root. Let this be determined by trial to

lie between the integers b and b + 1. Transform the equation

in if by the substitution y = b -f -. The positive root of the

equation in s is found by trial to lie between c and c+1. Con-

tinuing this process, an approximation to the root is obtained in

the form of a continued fraction, as follows :

1
a + *

c + 1

EXAMPLES.

1 . Find in the form of a continued fraction the positive root of the equation

X3 _ 2X _ 5 = o.

The root lies between 2 and 3.

To make the transformation x = 2 -f -, we first employ the process of Art. 33,

diminishing the roots by 2. "We then find the equation whose roots are the reci-

procals of the roots of the transformed.
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The equation in y is in this way found to be

This has a root between 10 and 11.

Make now the substitution y = 10 + -.

The equation in z is

61z3 - 94z2 - 20z - 1 = 0.

This has a root between 1 and 2. Take z = 1 + -.
u

The equation in u is

54w3 + 25w2 - 89?< - 61 = 0,

which has a root between 1 and 2
;
and so on.

We have, therefore, the following expression for the root

w+I

2. Find in the form of a continued fraction the positive root of

x* - fa - 13 = 0.

Ans, 3 +

106. Numerical Solution of the Biquadratic. It is

proper, before closing the subject of the solution of numerical

equations, to illustrate the practical uses which may be made of

the methods of solution of Chap. YI. Although, as before

observed, the numerical solution of equations is in general best

effected by the methods of the present Chapter, there are certain

cases in which it is convenient to employ the methods of

Chap. VI. for the resolution of the biquadratic. When a bi-

quadratic equation leads to a reducing cubic which has a com-

mensurable root, this root can be readily found, and the solution

of the biquadratic completed. "We proceed to solve a few

examples of this kind, using Descartes' method (Art. 64), which

will usually be found the most convenient in practice.
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EXAMPLES.

1. Resolve the quartic

2 + 22z - 6

into quadratic factors.

Making the assumption of Art. 64, we easily obtain

=
3, q + q' + 4pp = 3, pq' + p'q=H, qq'

= - 6.

Also <p = --pp
' = _

(q + q'-i) t

and, calculating / and /, the equation for
<f>

is

111 225V- *-8-
= 0.

Multiplying the roots by 4, we have, if
4<j>

=
t,

P- 111*- 450 = 0.

By the Method of Divisors this is easily found to have a root - 6
; hence

</>
= --, giving pp' = 2, q + q'=- 5.

From these, combined with the preceding equations, we get

p = -2, / = -!, q=l, q'=-6.

"When the values of q and q are found, the equation giving the value ofpq'+p'q

determines which value of q goes with p, and which with p', in the quadratic

factors. The quartic is resolved, therefore, into the factors

(y?
_ X + 1) (a;2

_ 2# - 6).

By means of the other two values of ^> we can resolve the quartic into quadratic

factors in two other ways ;
or we can do the same thing by solving the two qua-

dratics already obtained.

2. Resolve into factors the quartic

/(*) = x* - S*3 - 12z2 + 60* + 63.

The equation for q>
is

4<j>
3 -

195<J>
- 475 =

0,

which is found to have a root = 5.

Am. f(x) = (x
z - 2z -

3) (**
- 6* - 21).
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3. Eesolve into factors

f(x) = z* - 17s2 - 20s - 6.

The reducing cubic is found to be

_
12 216

or, multiplying the roots by 6,

4*3 - 651* + 3185 = 0.

This has a root = 7 ; hence < = -T.

6

Am. f(x) E= (a? + 4s + 2) (x*
- 4s - 3).

4. Eesolve into factors

f(x) = * - 6a;3 - 9*2 + 66* - 22.

The reducing cubic is

hence ^ = - -.

^#w. /().= (^
2 -

11) (

2 - fa + 2).

5. Eesolve into factors

f(x) = x*- 8x3 + 1\x> - '26x + 14.

Am. f(x) = (x>
- 2x + 2) (2?

- 6z + 7).

6. Eesolve into factors

x* + 12x + 3.

Am. (x*
- x^/6 + 3 + \/6) (x

2 + x \/Q + 3 - \/6).

7. Find the quadratic factors of

* - 8*3 - 12s2 + 84s -63 =
0,

and solve the equation completely (see Ex. 18, p. 34).

Ans. {x* -2x(2 + V7) + 3 Vf) {s
2 - 2s (2

-
\/7)

-
3V7}.
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EXAMPLES.

1. Find the positive root of

s3_ 6* -13 = 0.

Ant. 3-176814393.

2. Find the positive root of

x3 - 2* - 5 =

correct to eight or nine places. Ans. 2-094551483,

3. The equation

2s3 - 650-Sz2 + 5* - 1627 =

has a root between 300 and 400 : find it.

Ans. Commensurable root, 325-4.

4. Find the root between 20 and 30 of the equation

4s3 - 180 *3 + 1896* - 457 = 0.

Ans. 28-52127738

5. Find to six places the root between 2 and 3 of the equation

_ 1370 = 0.

Ans. 2-557351.

6. Find to six places the root between 2 and 3 of the equation

12* - 3 = 0.

Ans. 2-858083.

7. Find the positive root of the equation

s3 + 2*2 - 23* - 70 =

correct to about ten decimal places. Ans. 5-13457872528.

8. Find the cube root of 673373097125. Ans. 8765.

9. Find the fifth root of 537824. Ans. 14.

10. Find all the roots of the cubic equation

*3 - 3* + 1 = 0.

The equation & + *3 + 1 = 0, of Ex. 7, p. 100, reduces to this.

Ans. - 1-87938, -34729, 1-53209.

Note. Tho smaller positive root furnishes the solution of the problem To

divide a hemisphere whose radius is unity into two equal parts by a plane parallel

to the base.

1 1 . Find all the roots of the cubic

*3 + *2 ~ 2* - 1 = 0.

(See Ex. 1, p. 100.) Ans. - 1-80194, -
-44504, 1-24698.

Q2
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12. Find to five decimal^ the negative root between - 1 and (see Ex. 3,

p. 100) of the equation

Am. - -28463.

13. Solve the equation

x3 - 315z2 - 19684# + 2977260 = 0.

"We here find that a root exists between 70 and 80. By Homer's process it is

found to be 78. The depressed equation furnishes two roots, which, increased by

78, are the other roots of the cubic.

Am. 78, 347,
- 110.

14. Find the two real roots of the equation

z* -11727* + 40385 = 0.

Am. 3-45592, 21-43067.

This equation is given by Mr. G. H. Darwin in a Paper On the Precession of a

Viscous Spheroid, and on the Remote History of the Earth. Phil. Trans., Part ii.,

1879, p. 508. The roots are "the two values of the cube root of the earth's rota-

tion for which the earth and moon move round as a rigid body."

15. Find all the roots of the cubic equation

20z3 - 24s2 + 3 = 0.

Am. - 0-31469, 0*44603, 1-06865.

This equation occurs in the solution by Professor Ball of a problem of Professor

Townsend's in the Educational Times of Dec. 1878, to determine the deflection of a

beam uniformly loaded and supported at its two ends and points of trisection.

16. Find the positive root of the equation

*2 - 9z - 10 = 0.

Am. 0-85906.

The equations of this and the following example occur in the investigation of

questions relative to beams supported by props.

17. Find the positive root of the equation

lx^ + 20o;3 + 3*2 - 16* - 8 = 0.

Am. 0-91336.

18. Find to ten decimal places the positive root of the equation

x* + 12z4 + 59s3 + 150*2 + 201* - 207 = 0.

Ans. -6386058033.



CHAPTER XI.

DETERMINANTS.

107. Elementary Notions and Definitions. This Chapter
will be occupied with a discussion of an important class of func-

tions which constantly present themselves in analysis. These

functions possess remarkable properties, by a knowledge ofwhich

much simplification may be introduced into many mathematical

operations.

The function a^ + az blf of the four quantities

is obtained by assigning to a and b, written in alphabetical order,

the suffixes 1, 2, and 2, 1, corresponding to the two permutations
of the numbers 1, 2

;
and adding the two products so formed,

Similarly the function

fli&2 3 + dibaCz + chb^Ci + dzbiCs + a3 biCz + a3 b2 Ci, (1)

of the nine quantities

a3 3 c3

is obtained by adding all the products dbc which can be formed

by assigning to the letters (retained in their alphabetical order)

suffixes corresponding to all the permutations of the numbers

1, 2, 3. The whole expression might be represented by (abc),

or any other convenient notation, from which all the terms could

be written down.
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The notation (abed) might be employed to represent a similar

function of the 16 quantities a
i9
bh c^ d^ #2 ,

&c. ; consisting of 24

terms, which can all be written down by the aid of the 24 permu-
tations of the numbers 1, 2, 3, 4.

And, in general, taking n letters a, b, c, . . . Z, we can write

down a similar function consisting of n (n
-

1) (n
-
2) .... 3. 2. 1

terms, this being the number of permutations of the first n num-

bers 1, 2, 3 ... n.

Now the functions above referred to, which are of such

frequent occurrence in mathematical analysis, differ from those

just described in one respect only, namely : of the 1. 2. 3 ... n

(which is an even number) terms, half are affected with posi-

tive, and half with negative signs, instead of being all positive,

as in the examples just given.

We shall now give some instances of these latter functions.

They occur most frequently as the result of elimination of the

variables from linear equations. If, for example, x and y be

eliminated from the equations

a& + % =
0,

a2x + b^y
=

0,

the result is ajb*
- a^ = 0.

Again, the result of eliminating x
9 y, % from the equations

a^x + hy + C& =
0,

a-iX + bzy + c<& = 0,

is, as the student will readily perceive by solving from two of

the equations and substituting in the third,

ftibzCa
- aib3 c2 + azbrf! - az biC3 + az biC2

- a3 bCi =
; (2)

and this function differs from (1) above written only in having
three of its terms negative, instead of having the six terms posi-

tive.
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Similarly the elimination of four variables from four linear

equations gives rise to a function of the sixteen quantities

flit ^1J CU dl) f*Z> ^3, &G-9

which differs from the function above represented by (abed) only

in having twelve of its terms negative.

Expressions of the kind here described are called Determi-

nants* The notation by which they are usually represented was

first employed by Cauchy, and possesses many advantages in the

treatment of these expressions. The quantities of which the

function consists are arranged in a square between two vertical

lines. For example, the notation

represents the determinant

Similarly, the expression on the left-hand side of equation (2)

is represented by the notation

And, in general, the determinant of the n* quantities

i, bi, d . . . /i, #2, #2, &c., is represented by

(3)

By taking the n letters in alphabetical order, and assigning

to them suffixes corresponding to the n(n-
-

l)(w 2) . . . 3. 2. 1

permutations of the numbers 1, 2, 3, ... n, all the terms of the

tfl ftl
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determinant can be written down. Half of the terms must

receive positive and half negative signs. In the next Article

the rule will he explained by which the positive and negative

terms are distinguished.

The individual letters ai, bh GI, . . . a2 ,
. . . &c., of which a

determinant is composed, are called constituents, and by some

writers elements.

Any series of constituents such as a, b
ly Ci, . . . A, arranged

horizontally, form a row of the determinant
;
and any series such

as a\, 2> #3, . . . an , arranged vertically, form a column.

The term line will sometimes be used to express a row or

column indifferently.

108. Rule with regard to Signs. It is evident from

the preceding Article that each term of the determinant will,

since it contains all the letters, contain one constituent (and only

one) from every column
;
and will also, since the suffixes in each

term comprise all the numbers, contain one constituent (and only

one) from every row. We may thus regard the square array

(3) of Art. 107 as the symbolical representation of a function con-

sisting in general of n(n-l)(n -
2) ... 3. 2. 1 terms, comprising

all possible products which can be formed by taking one con-

stituent, and one only, from each row
;
and one constituent, and

one only, from each column, All that is required to give perfect

definiteness to the function is to fix the sign to be attached to any

particular term. For this purpose the following two rules are

to be observed :

(1). The term aib2 c3 . . . Informed by the constituents situated

in the diagonal drawn from the left-hand top corner to the right-

.hand bottom corner, is positive.

This is called the leading or principal term. In it the suffixes

and letters both occur in their natural order
;
and from it the

sign ofany other term is obtained by means of the following rule.

(2) Any interchange of two suffixes, the letters retaining their

order, alters the sign of the term.
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This rule may be otherwise expressed thus : Any interchange

of two tetter*, the suffixes retaining their order, alters the sign of a

term. For if two letters be interchanged, and the two corre-

sponding constituents interchanged, the process is equivalent to

an interchange of suffixes. If, for example, in a^c^d^ the

letters b and e be interchanged, we get a^e^c^dj)-^ which is equal

to aib5 cA de?, and this is derived from the given term by an in-

terchange of the suffixes 2 and 5.

In applying this rule it is evident that an even number of

interchanges will not alter the sign of a term, and that an odd

number will.

EXAMPLES.

1. What sign is to be attached to the term a^b^c^d^e^ in the determinant of the

5th order ?

The question is, How many interchanges will change the order 12345 into 34251 ?

Here, when 3 is interchanged with 2, and afterwards with 1, it comes into the lead-

ing place, the order becoming 31245. Again, the interchange in 31245 of 4 with

2, and afterwards with 1, presents the order 34125. The interchange of 2 with 1

gives the order 34215 ; and finally the interchange of 5 with 1 gives the required

order 34251. Thus there are in all six interchanges ;
and therefore the required

sign is positive.

The general mode of proceeding may plainly be stated as follows : Take the

figure which stands first in the required order, and move it from its place in the

natural order 1234 ... into the leading place, counting one displacement for each

figure passed over. Take then the figure which stands second in the required order,

and move it from its place in the natural order into the second place ; and so on. If

the number of displacements in this process be even, the sign is positive ; if it be

odd, the sign is negative.

2. What sign is to be attached to the term o.-^'b-l c^d-) e\f^gi in the determinant of

the 7th order ?

Here two displacements bring 3 to the leading place ; five displacements then

bring 7 to the second place ;
four then bring 6 to the third place ;

three then bring
5 to the fourth place ;

the figure 1 is in its place ;
and finally, one displacement

brings 4 into the sixth place. Thus there are in all fifteen displacements ;
and the

required sign is therefore negative.

3. Write down all the terms of the determinant

f>\
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The six permutations of suffixes in which the figure 1 occurs first are

1234, 1243, 1324, 1342, 1423, 1432.

The six corresponding terms are, as the student will easily see by applying the

Rule (2), as in the previous examples,

The other eighteen terms, corresponding to the permutations in which the figures

2, 3, 4, respectively, stand first, are as follows :

+ a^

It will be observed here that the number of positive terms is equal to the number

of negative terms. The same must be true in general ; for, corresponding to any

positive term there exists a negative term obtained by simply interchanging the last

two suffixes.

4. Show that if any two adjacent figures are moved together over any number

m of figures, the sign is unaltered.

For if they be moved separately, the whole process is equivalent to a movement

over 2m figures.

5. Determine the sign to be attached to the second diagonal term, viz.,

anbn-i cn-"i ... ^2 h, in the determinant of the nth order.

Here the number of displacements required to change the natural order to the

required order is plainly

(n
-

1) + (
n - 2) + (n

-
3) + . . . + 2 + 1 =

n^~ l

\

n (*-!)

Hence the required sign is
( 1)

2
.

109. In the Propositions of the present and following

Articles are contained the most important elementary properties

of determinants which, by the aid of Cauchy's notation above

described, render the employment of these functions of such

practical advantage.

PROP. I. If any two rows, or any tiuo columns, of a determi-

nant be interchanged, the sign of the determinant i$ changed.

This follows at once from the mode of formation (Eule (2),

Art. 108), for an interchange of two rows is the same as an

interchange of two suffixes, and an interchange of two columns

is the same as an interchange of two letters ; so that in either

case the sign of every term of the determinant is changed.
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By aid of this proposition the rule for obtaining the sign of

any term may be stated in a form which is often more conve-

nient for practical purposes than that already given. It will

readily be perceived that the general mode of procedure ex-

plained in Ex. 1, Art. 108, is equivalent to the following:

Briny, by movements of rows (or columns), the constituents of the

term whose sign is required into the position of the leading diagonal.

The sign of the term will be positive or negative according as the

number of displacement* is even or odd.

EXAMPLE.

What sign is to be attached to the term \ftnx in the determinant

a b c x
j

a 7 y

I in n z

A.
/j.

v

Here a movement of the fourth row over three rows (i.e. three displacements}

brings A. into the leading place. One displacement of the original second row up-

wards brings ft into the required place in the diagonal term. And one further

displacement of the original third row upwards effects the required arrangement,

bringing xftnx into the diagonal place. Thus the number of displacements being

odd, the required sign is negative.

110. PROP. II. When, in any determinant, two rotes or two

columns are identical, the determinant vanishes.

For, by Prop. I., the interchange of these two lines ought
to change the sign of the determinant A

;
but the interchange

of two identical rows or columns cannot alter the determinant

in any way ; hence A = - A, or A = 0.

111. PROP. III. The mine of a determinant is not altered if

th<- rotes be written as columns, and the columns as row's.

For all the terms, formed by taking one constituent from

each row and one from each column, are plainly the same in

value in both cases
;
the principal term is identically the same

;

and to determine the sign of any other term (by Prop. I.) the
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number of displacements of rows necessary to bring it into the

leading diagonal in the first case is the same as the number of

displacements of columns necessary in the second case.

EXAMPLE.

b\

#4 fa

dz

a\ az (iz

bi bz bz

C\ Cz Cz

di dz dz

Here the sign of any term, e.g. az bc\ ^3, is the same in both determinants. For

three displacements of rows are required to bring this term into the leading position

in the first determinant ; and the same number of displacements of .columns is re-

quired to bring the same constituents into the leading position in the second deter-

minant.

112. PROP. IY. Ifevery constituent many line be multiplied

by the same factor, the determinant is multiplied by that factor.

For every term of the determinant must contain one, and

only one, constituent from any row or any column.

Cor. 1. If the constituents in any line differ only by the

same factor from the constituents in any parallel line, the de-

terminant vanishes.

Cor. 2. If the signs of all the constituents in any line be

changed, the sign of the determinant is changed. For this is

equivalent to multiplying by the factor - 1.

EXAMPLES.

2.

Jcaz

ai Mai az

01 M0l 02

71 inyi 72

a\ b\ c\

dz bz Cz

(tz bz Cz

01 ai az

01 01 02

71 7' 72
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3. Show that the following determinant vanishes :

3152
2573
8914
6 15 21 9

When the constituents of the last TOW are divided by 3, they hecome identical

with those of the second row.

4. Prove the identity

be a az

ca b *2

ab c c2

1 a

Represent the first determinant by A, and multiply the rows by , b, c, respec-

tively. We have then

abc A

abc a"2 a3

abc b* &

abc c2 c3

and, dividing the first column by abc, the result follows.

5. Prove the identity
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It is evident that a similar process may be employed in general to reduce any
determinant to one in which all the constituents of any selected row or column shall

be units.

8. Reduce the following determinant to one in which the first row shall consist

of units :
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It is evident that a similar proof shows in general that the value of the determi-

nant of this form, constituted by the n quantities o, , 7 . . . A, is the product of the

-w
(/i
-

1) differences which can be formed with these n quantities.

113. Minor Determinants. Definitions. When in a

determinant any number of rows, and the same number of

columns, are suppressed, the determinant formed by the remain-

ing constituents (maintaining their relative positions) is called a

minor determinant.

If one row and one column only be suppressed, the corre-

sponding minor is called .a first minor. If two rows and two

columns be suppressed, the minor is called a second minor ; and

so on. The suppressed rows and columns have common con-

stituents forming a determinant
;
and the minor which remains

is said to be complementary to this determinant. The minor

complementary to the leading constituent a l is called the leading

first minor, and its leading first minor again is the leading second

minor of the original determinant.

It is usual to denote a determinant in general by A. We
shall denote by A a the first minor obtained by suppressing in A
the row and column which contain any constituent a

; by Aa
, ^

the second minor obtained by suppressing the two rows and two

columns which contain a and /3 ;
and so on. Thus A 0l repre-

sents the leading first minor, and Aai,j, or Aa>,6 1
the leading

second minor.

The determinant A, formed by the constituents a
ly bl9 cly &c.,

is often denoted for brevity by placing the leading term within

brackets, as follows : A =
(a l bz c-A . . . . 4). The notation

2 a
i
b> c3 . . . ln is also used to represent A ;

this expressing its

constitution as consisting of the sum of a number of terms (with

their proper signs attached) formed by taking all possible per-

mutations of the n suffixes.

114. Development of Determinants. Since every term

of any determinant contains one, and only one, constituent from

each row and from each column, it follows that A is a linear and

function of the constituent* of any one. row or any one
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column. Thus we may write

A = a\Ai + dzAz + a-AA$ + &c.

A = b.B, + bzBz + b& + &c. 5

or, again, A = a^Ai -f b lBl + c^Ci + &c.

A = a2A z + bzBz + CzCz + &c.

The student, on referring to Ex. 3, Art. 108, will observe

that the determinant of the fourth order there written at length
is constituted in the way here described, namely

A =0*1

c2 dl dl

We proceed to show that in the general case, writing A in

the form
A = aiAi + azAz + cizAz + . . . + anAn .

the coefficients Ai, A 2, A3, &c., are determinants of the order

n-l.
In effecting all the permutations of the suffixes 1, 2, 3. ...;?,

suppose first 1 to remain in the leading place, as in the example
referred to

;
we then obtain 1 . 2 . 3 . . . (n

-
1) terms which have

i as a factor, and

aiAi =
i S bzc-i . . . 4 ;

hence

bz GZ . . . lz

I
= 2

c3 . . . 4

and this determinant is the minor corresponding to the consti-

tuent !, or AI = A 0j
.

To find the value of A z ,
we bring 2 into the leading place

by one displacement of rows. This changes the sign of A, so

that we obtain A 2
= - A

rta ;
i. e. AZ = the minor corresponding to

3 with its sign changed. Again, bringing aA to the leading

place by two displacements, we have A* = A
ff ;

and so on.
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Thus we conclude that, in general,

A =
fli A rtl

- a2 A 9
+ 8 A fla

-
4A04

+ &c.

Similarly, we can expand A in terms of the constituents of

any other column, or any row. For example,

A =
i Affl

-
fli Ai x

+ Ci ACl
- &c.

If it be required to obtain the proper sign to be attached to

the minor which multiplies any constituent in the expanded

form, we have only to consider how many displacements would

bring that constituent to the leading place. For example, sup-

pose the determinant (a\b^d^e6)
is expanded in terms of its

fourth column, and that it is required to find what sign is to be

attached to d3 A^3
. Here two displacements upwards, and after-

wards three to the left, will bring d3 to the leading place ;
hence

t he sign is negative. This rule may be stated simply as follows :

Proceedfrom a\ to the constituent under consideration along the top

row, and down the column containing the constituent; the number

of letters passed over before reaching the constituent will decide the

ftiyn to be attached to the minor. In the example just given ;

beginning at a^ we count a^b^c^d^d^i.Q. five
;
and this number

being odd, the required sign is negative.

It will be found convenient to retain both notations here em-

ployed for the development of a determinant. The expansion in

terms of the minors, with signs alternately positive and' negative,

is useful in calculating the value of a determinant by successive

reductions to determinants of lower degree. For some purposes,

as will appear in the Articles which follow, it is more convenient

to employ the notation first given, in which the signs are all

positive (whatever the row or column under consideration),

and the coefficient of any constituent represented by the cor-

responding capital letter. By substituting for the capital letter

the corresponding minor with the proper sign, determined in

the manner above explained, the latter notation is changed into

the former.
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1. a\ b\ c\

Determinants.
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6. Expand c b d

c a e

b a /

d e f
Ans. (Pd* + b*e~ + c2/2 - 2 beef- Icafd

- labde.

1. Prove
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115. Laplace's Development of a Determinant.

The expansion explained in the preceding Article is included

in a more general mode of development given by Laplace.

In place of expanding the determinant as a linear function

of the constituents of any line, we expand it as a linear func-

tion of the minors comprised in any number of lines.

Consider, for example, the first two columns (a, b) of any
determinant

;
and let all possible determinants of the second

order (ap bq), obtained by taking any two rows of these two

columns, be formed. Let the minor formed by suppressing

the ap and bq lines be represented by Ap , ? ;
then the deter-

minant can be expanded in the form S (ap b
q)&p , q , where

each term is the product of two complementary determinants

(see Art. 113). To prove this, we observe that every term of

the determinant must contain one constituent from the column

a and one from the column b. Suppose a term to contain the

factor ap bq ,
there must then (interchanging p and q) be another

term containing the factor - a
q
bp ; hence, the determinant can

be expanded in the form 2 (ap b
q )
Ap , q ;

and Apt q is plainly

the sum of all the terms which can be obtained by permuting
in every possible way the n - 2 suffixes of the letters c, d, e,

&c., viz., Ap,j, the sign being determined in any particular

instance by the rule of Art. 108. This reasoning can easily

be extended to the case where any number p of columns are

taken, and all possible minors formed by taking p rows of these

columns. Each minor is then multiplied by the complementary

minor, and the determinant expressed as the sum of all such

products with their proper signs.

EXAMPLES.

1. Expand the determinant (aibzcsdt) in terms of the minors of the second order

formed from the first two columns.

Employing the bracket notation, we can write down the result as follows :

where the sign to be attached to any product is determined by moving the two rows

involved in the first factor into the positions of first and second row. Thus, for

example, since three displacements are required to move the second and fourth

rows into these positions, the sign of the product (a-zb)(c\di) is negative.
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2. Expand similarly the determina

Am. (aibz) (03^5)
-

(ifa) (c-tdies) + (ffifo) (2^3*5)
-

(<iifa) (^2^3*4)

3. Prove the identity

2 /2

/3

01 Bi 71

a2 3 72

00 03 03 73

b\ 01 0i 71

02 02 72

03 03 73

This appears by expanding the determinant in terms of the minors formed from

the first three columns, for it is evident that all these minors vanish (having one row

at least of ciphers) except one, viz. (flip's).

In general it appears in the same way that if a determinant of the 1mth order

contains in any position a square of m2
ciphers, it can be expressed as the product of

two determinants of the mth order.

4. Expand the determinant

a h g A Ax

h b f fji /

9 f c v v

A u. v

in powers of o, /8, 7, where

= i'\' v'\, 7 = Ap - A' jj..

Ans. aa? + bfp + c'f + 2/07 + 2*770 + 2Ao0.

5. Verify the development of the present Article by showing that it gives in the

general case the proper number of terms.

Consider the first r columns of a determinant of the nth order. The number of

minors formed from these is equal to the number of combinations of n things taken

r together. This number multiplied by 1 . 2 . 3 . . . r (the number of terms in each

minor), and 1 . 2 . 3 . . . n r (the number of terms in each complementary minor),

will be found to give 1 . 2 . 3 . . .
,
viz. the number of terms in the determinant.

116. Development of a Determinant in Products

of the leading Constituents. In the present and next fol-



246 Determinants.

lowing Articles will be explained two additional modes of deve-

lopment which will be found useful in the expansion of certain

determinants of special form. The application which follows to

the determinant of the fourth order will be sufficient to explain

how any determinant may be expanded in products of the lead-

ing constituents

It is required to expand the determinant

A bi c\ d\

03

D

according to the products of A, B, C, D. In order to give prominence to the lead-

ing constituents we have here replaced a\, bz, 03, d by A, B, C, D.
t
When the ex-

pansion is effected it is plain that the result must be of the form

Ao + + *2.\'AB -f ABCD,

where AO consists of all the terms in which no leading constituent occurs ; ~2,\A i&

the sum of all the terms in which one only of these constituents occurs
; 'SX'AB is

the sum of all in which the product of a pair of the leading constituents is found ;

and ABCD, the leading term, is the product of all these constituents. It will be

observed that the expansion here written contains no terms of the form \"AC, and

it is evident in general that the expanded determinant can contain no terms in which

products of all the leading constituents but one occur, since the coefficient of any

such product is the remaining diagonal constituent. It only remains to see what is

the form of AO, and of the undetermined coefficients A, /u, . . . A', fj.',
. . . &#

Putting A, By C, D all equal to zero in the identity above written, we have

Ao
dz

Again, to obtain A, let J5, C, D be made equal to zero. The coefficient of A is

plainly the determinant

cz dz

bz dz

the coefficient of B is similarly obtained by replacing A , C, D each by zero in the
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iniuor complementary to B ; and so on. To obtain A.', let C and D be made zero ;

the coefficient of AB in the resulting determinant is plainly the second minor

The coefficient of any other product is obtained in a similar manner. Finally,

tlie expansion of A may be written in the form

bi ci d\

as cz dz

d

+AC +BC

bi ci

(to c%

^3 ^3

+CV

A determinant whose leading constituents all vanish has been called zero-axial.

The result just obtained may be stated as follows : Any determinant may be ex-

panded in products of the leading constituents, the coefficient of every product in the

result being a zero-axial determinant.

117. Expansion of a Determinant by Products in

Pairs of the Constituents of a Row and Column. In

what follows we take the first row and first column as those in

terms of which the expansion is required. This is plainly suf-

ficient, since any other row and column may be brought by

displacements into these positions. It will be found convenient

to write the determinant under consideration in the form

a CL\ b\ c\
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Let this be denoted by A', and its leading first minor

(aibz c3 . . .) by the usual notation A. The determinant A' may
be said to be derived from A by bordering it, horizontally with

the constituents a
, a, j3, y, . . ., and vertically with the consti-

tuents 0> 'j /3', 7', ... When A' is expanded, all the terms

which contain a are included in aQ A . In addition to this, the ex-

pansion will consist of the product of every other constituent of

the first column by every other constituent of the first row,

every such product of two being multiplied by its proper factor.

What this factor is in the case of any product is easily seen.

Let the coefficients of a
lf

b
ly

cl5 ... 2 , ^2, ... &o., in the expan-
sion of A be Ai, BI, . . . A 2y .Z?2, , according to the notation

explained in Art. 114. It is plain that the factor which multi-

plies any product, for example aa', in the expansion of A', is the

same as the factor which multiplies a ai with sign changed, viz.,

AI ; similarly the factor which multiplies a )3 is the factor with

sign changed of a bi, viz.,
-
Bi\ and so on. To obtain the factor

of any such product the rule plainly is Find the fourth consti-

tuent completing the rectangle formed by the leading term a and

the tioo constituents which enter into the product: the required

factor is obtained by substituting for the constituent of A so found

the corresponding capital letter ivith the negative sign. It appears

therefore finally that the expansion of A' may be written in the

following form :

-
l ya

-

-&c.

Examples of the utility of this mode of expansion will be

found under a subsequent Article.

118. Addition of Determinants. PROP. V. // every

constituent in any line can be resolved into the sum of two others,

the determinant can be resolved into the sum of two others.
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Suppose the constituents of the first column to be #1 + QI,

a-, + a 2 ,
(iA + 3> &c. Substituting these in the expansion of

Art. 114, we have

A =
(#1 + aj Ai + (a-t + az) At + (3 + a3)

A3 + &c.

+ cizAz + (hA 3 + . . &c. + diAi + azAz + d3A 3 + &c. ;

or,

01 +

<72 +

Oi

az

which proves the proposition.

If a second column consists of the sum of two others, it is

easily seen, by first resolving with reference to one column, and

afterwards with reference to the other, that the determinant can

be resolved into the sum of four others. For example, the de-

terminant

az

is (using the notation of Art. 113) equal to the sum of the four

determinants

Similarly it follows that if each of the constituents of one

column consists of the algebraical sum of any number of terms,

the determinant can be resolved into a corresponding number of

determinants. For example

a 2 + az z Cz

3 + a'3 b3 C3

a,,

a3 b3

-
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And, in general, if one column consists of the algebraic sum of

m others, a second column of the sum of n others, a third of the

sum of p others, &c., the determinant can be resolved into the

sum of mnp . . .
, &c., others.

Similar results plainly hold with regard to the rows, which

may be substituted for columns in the proof just given.

119. PROP. VI. // the constituents of one line are equal to

the sums of the corresponding constituents of the other lines multi-

plied by constant factors, the determinant vanishes.

For it can then be resolved into the sum of a number of

determinants which separately vanish. For example,

nbz
= m + n

b L

and each of the latter determinants vanishes (Ait. 110).

120. PROP. VII. A determinant is unchanged when to each

constituent of any row or column are added those of several other

rows or columns, multiplied respectively by constant factors.

. For when the determinant is resolved into the sum of others,

as in Art. 118, the determinants in which the added lines occur

all vanish, since each of them must, when the constant factor is

removed, contain two identical lines. Thus, for example,

a?,

<?3

0-1 + mbi + c\

for when the- second determinant is expressed as the sum of

three others, the two arising from the added columns vanish

identically (Art. 119).

The proposition of the present Article supplies in practice

one of the most useful properties in the evaluation of deter-

minants.
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EXAMPLES.

1. Show that the following determinant vanishes :

7 + a

Adding the constituents of the second column to those of the first, we can take

out a + j8 + 7 as a factor, and two columns then hecome identical.

2. Find the value of the determinant
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in Ex. 7, Art. 112
;
but in general it can be effected more readily by direct addi-

tions or subtractions, as in the present instance.

5. 7-205
-2 6-2 2

0-253
5234
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8. Calculate the determinant formed by the first twenty-five natural numbers

arranged in a magic square :

10

4

23

17

11

18

12

24

1

25

19

13

14

8

2

21

20

22

16

15

9

3 Ans. -4680000.

9. Evaluate, by the method of the present Article, the determinant of Ex. 9,

Art. 114. 010
A =

11
~

y~

y- x"

y-

- 21 y
2 x2-y2

-y*

Here, to obtain the second determinant, we subtract the second column from each

of the following ones. In the reduced determinant, subtracting the first row from

each of the following, we find

1

A = -

22 y
2

-2z2 xz -zz -y2

x2-y2 -z~ -2y2

(y
2 + z2 -

= -
(x + y + z) (y + z - x) (z + x - y} (x + y - z}.

10. Prove the identity

(b + c)
2 a2 a2

|

= 2abc(a + b + cf.

Subtracting the last column from each of the others, (a + b + c)
2 may be taken out

as a factor. Calling the remaining determinant A', and subtracting in it the sum of

the first two rows from the last, we have

b + c -a a2
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Adding the last column to each of the others, we ohtain

a(b + c) a* a2

1
A =

lab
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14. Resolve into linear factors the determinant

abed
bade
c d a b

d c b a

The result is as follows :

A = -(a + b + c-\-d)(b + c-a-d)(c + a-b-d) (a + b-c-d),

since each of the factors here written is a factor of the determinant
;
for example,

a + bc dis shown to he a factor hy adding the second column to the first, and

subtracting the third and fourth. By comparing the sign of a4 it appears that the

negative sign must be attached to the product.

It may be observed that the determinant of Ex. 9 is a particular case of the de-

terminant here considered, viz., that obtained by putting a, = 0, as will appear by

comparing the equivalent forms of Ex. 9, Art. 114.

121. Multiplication of Determinants. PROP. VIII.

The product of two determinants ofany order is itself a determinant

of the same order.

We shall prove this for two determinants of the third order.

The student will observe, from the nature of the proof, that it

is equally applicable in general. We propose to show that the

product of the two determinants (0i&2 3), (aij3 2 7 3)
is

whose constituents are the sums of the products of the con-

stituents in any row of (0i#2 c3) by the corresponding constituents

in any row of (ai|327 3).

Since each column consists of the sum of three terms, this

determinant can be expanded into the sum of 27 others (Art.

118). Now it will be observed that when any one of these

is written down, a common factor can be taken off each column ;

and that several of the partial determinants will, when these

factors are removed, have two (or more) columns identical. The

determinants which do not vanish in this way can be easily

selected. Taking, for example, the first vertical line of the first
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column
;
this would give a vanishing determinant if we were to

take along with it the first line of the second column. "We take

then the second line of the second column, and along with

these two we must take the third line of the third column to

obtain a determinant which does not vanish. Retaining still

the first line of the first column, we may take the third line

of the second column along with the second line of the third

column. Taking out the common factors of the columns, we
write down these two determinants as follows :

cz

c\

Taking in turn each of the other lines of the first column,

we obtain four other determinants which do not vanish. Thus

there are in all six terms ; and it is plain that
(cti

b2 cs) is a fac-

tor in each of these. Taking out this factor, there remains the

sum of six terms

and this is the determinant (aif3zjz)- We have thus proved

that the determinant above written is the product of the two

given determinants.

In either of the given determinants the rows may be writ-

ten in place of columns; hence, the product may be written

in several different forms as a determinant
; but these will,

of course, give the same value when expanded.

122. Multiplication of Determinants continued.

Another mode of proof of the proposition of the last Article,

expressing as a determinant the product of two given determi-

nants of the same order, may be derived from Laplace's mode

of development already explained (Art. 115).

The nature of this proof will be sufficiently understood from

the application which follows to two determinants of the third

order :
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The product of the two determinants (ai 2 c3), (01)8273) is (see Ex. 3, Art. 115)

plainly equal to the determinant

01

flo

03

-1
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EXAMPLES.

1. Show that the product of the two determinants

a + ib c + id

c + id a ib

a' - ib'

c' id'

c' - id'

a' + ib'

where i = V 1, may he written in the form

V _ ic B-iA

-B-iA D + iC

where
A = bc'- b'c + ad' - a'd, B = ca' - c'a + bd' - b'd,

C = ab' - a'b + cd' - e'd, D = aa' + bV + cc' + dd';

and hence prove Euler's theorem

(a* + V- + c* + dz
) (a'

z + b'
2 + c'

z + d'z
)

s (aa' + W + cc' + dd')
2 + (be'

- b'c + ad' - a'd)*

+ (ca'
- c'a + bd'- b'd)

2 + (ab'
- a'b + cd' - c'd)

2
,

viz., the product of two sums each offour squares can be expressed as the sum offour

squares.

2. Prove the [following expression for the square of a determinant of the third

order :

2 (ac
-

b~) ac' + a'c - 2bb' ac" + a"c - 2bb"

ac' + a'c-lbV 2(a'c'-b'
z
)

a'c" + a"c' -2b'b" .

ac
" + a"c - 2bb" a'c" + a"c' - 2b'b" 2 (a"c"

- b"2
)

This appears hy multiplying the two determinants

b c

V c

b" c"

c -2b a

c' 2b' a'

c" -2b" a"

which differ only hy the factor 2.

3. Prove the identity

2bc - a* c b*

a2

2ab-c*

= (a
3 + #3 + c3 -
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This may be readily proved by multiplying together the two equivalent deter-

minants

a o c

b c a

cab

a

-b

c

4. Show that two determinants of different orders may be multiplied together.

For their orders may be made equal ; since the order of any determinant can be

increased by adding any number of columns and the same number of rows consisting

of units in the diagonal, and all the rest zero constituents. For example,

may be written

the only effect of the added constituents being to multiply the determinant by unity.

More generally, one set of added constitutents (t. e. those either to the right or the

left of the diagonal) might be taken to be any quantities whatever, the remaining

ing ciphers. Thus (fli 2) may be written in either of the forms

1
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and, performing on these a process similar to that employed in

multiplying two determinants, we obtain the determinant

z f3i + c2 ji + dz Si az a z + bz [3

The value of this is easily found to be

/32) + (al cz)(a l yz)

i. e. the sum of the products of all possible determinants which can

be formedfrom one array (by taking a number of columns equal to

the number of rows) multiplied by the corresponding determinants

formed from the other array.

The student will have no difficulty in extending this proof

to any two arrays of the kind here treated.

(2). When the number of rows exceeds the number of columns

the resulting determinant vanishes.

Take, for example, the two arrays,

ai bi \ ai )3i

02 b*

|
(1), a2 j3 2 (2).

az 3 / a3 j33 .

Performing the process of multiplication, we obtain the deter-

minant

It will be observed that this determinant is the same as would

arise if a column of ciphers were added to each of the given

arrays, and the determinants so formed then multiplied. It

follows that the determinant vanishes, since it is the product of

two factors each equal to zero.

It readily appears that a similar proof applies in general.

It is only necessary to add to each array columns of ciphers, so

as to make the number of columns equal to the number of rows,

and then multiply the two determinants.
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EXAMPLES.

1 . From the two arrays

1 1 1

007 (1),

1
[1 1

007 (2),

prove

a + + 7 a2 + jB + 7
2

2. From the two arrays

a b c c -2*
(1),

c' J c' - 2b' a'

(2),

prove

4 (ac
-

b-} (a'c
- *'

2
)
-

(ac' + a'c - 2bb')
z = 4 (be'

-
b'c) (aV

-
a'b)

-
(ac'

- a'c)
z
.

3. By squaring the array

a b c \

,' v <r
prove

4. Verify, by squaring the array

abed
of b' c' d'

the result of Ex. 1, Art. 122.

5. Prove the determinant identity

(03
-

This can be proved by multiplying the two arrays

01
2

01 1
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124. Solution of a System of Linear Equations.
We have seen in Art. 114 that a determinant may be expanded
as a linear homogeneous function of the constituents in any row

or column, the coefficient of any constituent being the corre-

sponding minor with its proper sign. We have, for example,

A = a\Ai + cizAz + a$Az + &c.

Now, the coefficients A
ly
Az , &c., are connected with the consti-

tuents of the other columns by n - 1 identical relations, viz.,

biAi + bz Az + b3A3 + &G. = 0,

c^Ai + CzAz + c$A z + &c. =
0, &c.;

for any one of these is what the determinant becomes when the

constituents of the corresponding column are substituted for

0i, 2 , 03, &c., and must therefore vanish.

By the aid of these relations we can write down the solution

of a system of linear equations. The following application to

the case of three variables is sufficient to explain the general

process. Let the equations be

0i# + biy + CiZ = m\ a

a-iX + b-^y + cz z = m^

Multiply the first equation by AI, the second by At9 and the

third by A* ;
and add. The coefficients of y and z vanish, in

virtue of the relations above proved ; and we obtain

-z
+ (isAS) x = niiAi + m zA 2 +

or

mz bz cz

where A represents the determinant formed from the nine con-

stituents, 0j, bi, Ci 9
&c.
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Similarly, multiplying by Bi9 B2 , B3, we obtain

263

where the determinant on the right-hand side is what A becomes

when m
l9 m^ m3 are substituted for the constituents of the second

column. Similarly, we obtain for z

As

3

These values may be written more compactly, as follows :

As =

In general, the values of #, y9
z

9 &c., may be written as fol-

lows:

(m^zCz...^)
y

*
' '

where, to obtain the value of any variable, the given quantities

mh mz, &c., on the right-hand side of the given equations are

to be substituted in A for the coefficients of the variable in

question, and the determinant so formed to be divided by A.

125. Linear Homogeneous Equations. When n - 1

linear homogeneous equations between n variables are given, the

ratios of the variables can be determined by bringing any one of

them to the right-hand side of the equations, and solving as in

the previous Article
;
or we may determine these ratios more con-

veniently, as follows. We take the particular case of three

equations between four variables, which will be sufficient to

illustrate the general process :

a\x + + + d^r =

<itx + bz y + cz z + d2 ic =

a .' +
//;// + c

:,z + </. >r =

(1)
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To these may be added a fourth equation whose coefficients

are undetermined, viz.,

ax + hy + c4 z + dw = X. . (2)

Calling (aibz c3 di) as usual A, and solving from these four

equations by the method of the last Article, we obtain, since

mi =
0, mz

= 0, m3
=

0, w4
=

X, the following values :

A# = X^44, Ay = X2?4,
As = X<74, Aw = XJ>4,

or,

JL = L. JL Ji = (Ti

A. B, Ci D, A'

The first three of these equations express the ratios of the

four variables in terms of the coefficients in the three given

equations. And, in general, the variables are proportional to the

coefficients in the expansion of & of the constituents of the nth row

supposed added to the n \. rows resultingfrom the given equations.

We can now express the condition that n linear homogeneous

equations should be consistent with one another ; for example,

that the equation (2) should, when X =
0, be consistent with the

equations (1). We have only to substitute in (2) the ratios de-

rived from (1), when we obtain

#4^4 + b^Bi + CiCt + c?4A =
0,

or

A = 0.

The same thing appears from the equations (3) ,
for if X =

0,

and if the variables do not all vanish, A must vanish.

What has been proved may be expressed as follows : The

result of eliminating the variables between n linear homogeneous

equations in n variables is the vanishing of the determinantformed

by the coefficients of the given equations.

126. Reciprocal Determinants* The quantities

Ai 9 JBi, Ci . . . A 2 , B-i, &c. (Art. 114), which occur in the ex-

pansion of a determinant
(i.

e. the first minors with their proper

signs), may be called inverse constituents; and the determinant

formed with them the inverse or reciprocal determinant. We
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proceed to prove certain useful relations connecting the two de-

terminants.

(1). To express the reciprocal in terms of the given determinant.

Let the reciprocal of A be denoted by A', and multiply the two

determinants

al bi ct
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whence

B, ft D,

B, ft D4

,A
3

,

or

thus expressing the first minor of A' complementary to AI.

Again, to express the second minors of A', we have, by an

exactly similar process,

#3 b3

whence

or
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proportional to those of any other row, and the constituents of any

coltunu proportional to those of any other column.

127. Symmetrical Determinants. Two constituents of

a determinant are said to be conjugate when one occupies with

reference to the leading constituent the same position in the

rows as the other does in the columns. For example, d2 and

li ;ire conjugates, one occupying the fourth place in the second

row, and the other the fourth place in the second column. Each

of the leading constituents is its own conjugate. Any two con-

jugate constituents are situated in a line perpendicular to the

principal diagonal, and at equal distances from it on opposite

sides.

A symmetrical determinant is one in which every two con-

jugate constituents are equal to each other. For examples of

such determinants the student may refer to Art. 1 14, Exs. 2, 9,

10, and Art. 115, Ex. 4.

In a symmetrical determinant the first minors complementary
to any two conjugate constituents are equal, since they differ

only by an interchange of rows and columns. The correspond-

ing inverse constituents are also equal, the signs to be attached

to the minors being the same in both cases. It follows that the

reciprocal of a symmetrical determinant is itself symmetrical.

The leading minors are plainly all symmetrical determi-

nants. *.

The mode of expansion of Art. 117 is especially useful in

the case of symmetrical determinants, as will appear from the

examples which follow.

EXAMPLES.

1. Form the reciprocal of the symmetrical determinant

i h g

A = b f

f c

Using the capital letters to denote the reciprocal constituents, as explained in

Art. 114, so that A may be expanded in any one of the forms aA + hH + ffG,
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hH + bB +/F, gG +/F + cC, we may write the reciprocal determinant A'

follows :

A'

A E
H B

G F

t>c-f
2 fg-ch hf-bg

fg ch

hf bg gh af

gh - af

ab - A2

2. Form similarly the reciprocal of

a h

h b

A =

Using a notation similar to that of the preceding example, so that A may be ex-

panded indifferently in any of the forms

aA + hH + gG + IL, hH + bB +/F + mM, &c.,

the reciprocal determinant A' is obtained by replacing in A the constituents by the

corresponding capital letters. The student will find no difficulty in writing out, if

necessary, the expanded form of any of the reciprocal constituents ;
for example, F

is the minor complementary to/ with its proper sign (the negative sign in this case),

and F is therefore obtained from the expansion of

3. Expand the determinant A of Ex. 10, Art. 114, by the method of Art. 117.

Bringing the last row and last column into the position of first row and first

column, and using the notation of Ex. 1 for the inverse constituents of the leading

minor, the result can be written down at once in the form

- A = A

Since a determinant is unaltered when both rows and columns are written in re-

verse order, if the expansion of a determinant be required in terms of the last row

and last column (as in the present example), it is not necessary to move them in the

first instance into the position of first row and first column. The expansion can be

written down from the determinant as it stands, replacing in the rule of Art. 117

the leading constituent and its minor by the last diagonal constituent and its com-

plementary minor.

4. Expand the determinant A of the above Ex. 2, in terms of the last row and

column, by the method of Art. 117.

Attending to the remark at the end of the preceding example, and using
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A, B, C, F, G, .ff, to represent the same quantities as in Exs. 1 and 3, the result

may be written down as follows :

-AP- Bm* - Cn* - 2Fmn - IGnl - IHlm.

"When a symmetrical determinant of any order is bordered symmetrically (i. e. by
the same constituents horizontally and vertically) the result is plainly a symmetri-

cal determinant of the next higher order. The result of Art. 117 shows in general

that the expansion of the bordered determinant consists of the original determinant

multiplied by the constituent common to the added row and column, together with

a homogeneous function of the second degree of the remaining added constituents.

5. Expand the determinant

A =

This is the determinant of Ex. 2 bordered symmetrically, the common consti-

tuent of the added lines being zero. The result is plainly a homogeneous function

of the second degree of a, , 7, 8
; and, by aid of the notation of Ex. 2, may be

written down at once in the form

- A = Aa? C-f

+ 2Za5 +

6. Prove by means of the Proposition of Art. 121, that the square of any deter-

minant is a symmetrical determinant.

128. Skew-Symmetric and Skew Determinants.

A skew-symmetric determinant is one in which every constituent

is equal to its conjugate with sign changed. Since each leading

constituent is its own conjugate, it follows that in a skew-sym-
metric determinant all the leading diagonal constituents are

zero.

A determinant in which all except the leading constituents

are equal to their conjugates with sign changed is called a skeiv

determinant. Thus, while a skew-symmetric determinant is
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zero-axial, a skew determinant is not. The calculation of a

skew determinant may plainly be reduced to that of skew-

symmetric determinants by the method of Art. 116.

The remainder of this Article will be occupied with the proof

of certain useful properties of skew-symmetric determinants.

(1). A. skew-symmetric determinant of odd order vanishes.

For any skew-symmetric determinant A is unaltered by

changing the columns into rows, and then changing the signs

of all the rows. But when the order of the determinant is odd,

this process ought to change the sign of A ; hence A must in

this case vanish. For example,

a b

- a

-b -c

0.

(2). The reciprocal of a skeio-symmetric 'determinant of the nth

order is a symmetric determinant when n is odd, and a skew-symmetric

determinant when n is even.

In any skew-symmetric determinant the minors correspond-

ing to a pair of conjugate constituents differ by an interchange
of rows and columns, and by the signs of all the constituents.

Hence the two minors are equal when their order is even,

namely when n is odd ;
and equal with opposite signs when n is

even. In the former case, therefore, the reciprocal determinant

is symmetric ;
and in the latter case it is skew-symmetric, its

leading diagonal constituents all being skew-symmetric deter-

minants of odd order.

(3). A skew-symmetric determinant of even order is a perfect

square.

This follows from the principles established in Art. 126.

Take, for example, the determinant of the fourth order,

a b c

-a d , e

-b -d /

-c -e -f
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and let the inverse constituents forming its reciprocal be de-

noted by A 19 Blf . . . A*,-&o. We have then, by (2), Art. 126,

/
= A

-/

Now AI, and #>, being skew-symmetric determinants of odd

order, vanish ;
and A* = -

Bi, since these are conjugate minors ;

hence y^A = -42
2

,
which proves that A is a perfect square.

Similarly, for the determinant of the sixth order, it is proved
that the product of A by a skew-symmetric determinant of the

fourth order is a perfect square ;
and since the latter determi-

nant has been just proved to be a perfect square, it follows that

A is also. By an exactly similar process, assuming the truth of

the Proposition for the determinant of the sixth order, it follows

for one of the eight ; and so on.

EXAMPLES.

1. Verify the following expression for the skew-symmetric determinant of the

fourth order :

a b c

(af-be

-a d e

-b -d /

-c -e -/

2. Expand in powers of x the skew determinant

x a b c

a x d e

-b -d X* f

-c -e -f x

When the expansion of Art. 116 is employed to calculate a skew determinant,

it is to be observed that the determinants of odd order in the expansion all vanish,

and those of even order may be expressed as squares. Here the coefficients of the

odd powers of x plainly vanish, and the result takes the form

A = x* + (a
2 + J2 + c2 + dz + e* +/*) x* + (af- be
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3. Expand the skew determinant

A a, b c d

-a B e f g

-b -e Oh i

-c -f -h D j

-d-g-i-j E

The result may be written in the form

ABODE + 2rA3C + *Z(ej -fi + ffh)
z
A,

where the first 2 includes ten terms similar to the one here written, and the second 2
includes five terms. The terms involving the products in pairs of the leading con-

stituents vanish, as also the term not involving these quantities.

4. The square of any determinant of even order can he expressed as a skew-

symmetric determinant.

The following method of proof is applicable in general.

The square of (aibzcsdt) is obtained by multiplying the two following determi-

nants :

01 h
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6. Form the reciprocal of the skew-symmetric determinant A of the fourth order

in Ex. 1.

Representing by the function afbe + cd whose square is equal to A, and by
A' the required reciprocal, we easily find

A' =

The value of this skew-symmetric determinant may be written down by aid of

the result of Ex. 1. It is thus immediately verified that A' = (of- be + cd)
z 4 = A3

.

7. Form the reciprocal of the skew-symmetric determinant A of the fifth order,

obtained by making the leading coefficients all vanish in the determinant of Ex. 3.

Since the reciprocal is a symmetric determinant (see (2), Art. 128), and since also

it must be such that the constituents of any line are proportional to those of any

parallel line (Art. 126), it appears that the required determinant must be of the

form

01
2

01 02 0103 0104 0105

0201 02 0203 0204 0205

0301 0302 0304 0305

0401 0402 0403 04
2

0405

0501 0502 0503 0504 05
2

in which 0i, 02, 0s, 04, 0s are five functions of the second degree in the original

constituents whose squares are the values of the five first minors complementary to

the leading constituents of A.

In general the reciprocal of a skew-symmetric determinant of any odd order

1m + 1 is of a form similar to that just written, the diagonal constituents being the

squares, and the remaining constituents the products in pairs, of 1m -f 1 functions,

each of the mth
degree in the original constituents.

129. Theorem. We conclude the subjects of the present

Chapter with the following theorem relating to a determinant

whose leading first minor vanishes. Adopting the notation of

Art. 117, we regard A as the vanishing determinant, and state

the theorem to be proved in the form : If a determinant A,

whose value is zero, be bordered in any manner
',

the product of the

determinant so formed by the leading first minor of A is equal to

the product of two linear homogeneous functions of the added con-

stituents.
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Eetaining the notation of Art. 117, we propose to prove that

the product of A' and Ai may be expressed in the following

form :

^A' = - (A ia + -Bi/3 + CVy + . . .)(^ia +A^ + A,y + . .
.).

This follows at once from (2) of Art. 126 by considering in

the determinant reciprocal to A' the values of the constituents

inverse to a
, , a', al ;

and expressing in terms of the original

constituents the determinant of the second order formed by
these four. Another proof of this result may be readily derived

from the expansion of Art. 117, by the aid of the property of

the reciprocal of a vanishing determinant (Art. 126), viz., that

in the determinant formed by A lf Si9 Ci, &c., the constituents

in any line are proportional to those in any parallel line.

If the original determinant A is symmetrical, and the bor-

dering also symmetrical, the two factors on the right-hand side

of the above equation become identical, and the theorem takes

the following form: If a symmetrical determinant, whose value

is zero, be bordered symmetrically, the product of the determinant

so formed by its leading second minor is equal to the square with

negative sign of a linear homogeneous function of the bordering con"

stituents.

Regarding A' as the original determinant, the following

useful statement may be given to the theorem just proved : If

in any symmetrical determinant the leading first minor vanish, the

determinant itself and its leading second minor have opposite signs.

EXAMPLES.

1. If a skew-symmetric determinant A of odd order 2m + 1 be bordered in any

manner, the resulting determinant A' is equal to the product of two rational func-

tions each containing the added constituents in the first degree, and the original

constituents in the mth
degree.

Writing, according to the result of Ex. 7, Art. 128, the reciprocal of the given

skew-symmetric determinant in the form

01
2

0102 0103

0201 02
2

0203

0301 0302 03
2
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and applying the theorem of the present Article, we find

0i
2 A'=- (0i

2 a + 01030 + 01037+ )( <
J
> i

2 a'+

or A' = -
(0io + 02)8 + 037+ . . .)(i'+ 02)8'+

03017

It may be observed that if in this result a', |8', 7', &c., be made equal to - o,
-

,

-
y, &c., respectively, we fall back on the theorem (3) of Art. 128.

2. If a skew-symmetric determinant of even order 2m be bordered in any man-

ner, the resulting determinant is equal to the product of two rational functions, one

of the mth
,
and the other of the (tn + 1)** degree in the constituents.

This may be derived immediately from the result of the last example by making

equal to zero all the added constituents a, ft', 7', &c., except the last, which is to

be made= 1. The determinant then reduces to one of the (2m + 1)'
; order of the

kind here considered, the bordering constituents forming the top row and the last

column. It appears also that the factor of the mth
degree in the result is the square

root of the given skew-symmetric determinant of order 2m.

3. Resolve into its factors

a 7

a' c -b

ff -c a

y b -a

Ans. -
(aa + b& + cy) (ad +

4. Eesolve into its factors

cy) .
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MISCELLANEOUS EXAMPLES.
1. Prove

J,l\ #2 #3

&2 3 #4

where /has the same signification as in Art. 37.

2. Prove

0+7 7+0 o+0 o 7

0' +7' 7' + o' a + 0' =2 a 0' 7'

0" + 7" 7" +
" "

+
" "

0" 7"

07 Py'+P'y &y'
I

00 00' + a'0 a'0'

where the factors on the right-hand side are determinants of the second order.

Dividing the rows by 0y, 7'o', a'0' ; and putting \ = -,/* = ,
v = ,

determinant (omitting a factor) reduces to the form

3. Prove

1
/j. + v pit

1 v + A. v\

1 A + /* A-/*

4. Prove

1 -A pv

1 -fi rA

1 -v Aw

/*), &c.

-
(b</} (ad'} (ca') (bd'} (aV) (cd')

abcda'b' c' d'

abed
a' b' c' d'

*.*'.
7 7 7 'd

7

a'z b"2 c'
z d'z

a, bed
Multiplying the columns by , , , ,

the determinant reduces to the form

treated in Ex. 10, Art. 112.

5. Prove

2
7
2 + 2 52 07 + a5 1

(0-7)(a-8H7-a)03-S)(a-0)(7-5).

2 2 + 7
2 S2 o0 + 78 1

Add the last column multiplied by 2 0075 to the first. The determinant be-

comes then of the form of Ex. 9, Art. 112.
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6. Prove

(7 + o - ft
-

5)
4

(7 + a - J8
-

5)
2 1

(a -I-
- 7 - 5)

4
(o + )8

- 7 -
5)

2 1

7. Prove

a b ax + b

b e bx + c

ax + b bx+c

Subtract from the third row the second row plus the first multiplied by x

8. Prove similarly

a
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calculation of a determinant may often be simplified by bordering it in this way.
The determinant last written is plainly equal to

a\

+ dz

czx + di

Subtracting from the second column the first multiplied by x
; subtracting then

from the third the new second column multiplied by x
; and, finally, from the fourth

the new third column multiplied by x, we have the result above stated.

10. Show that the determinant

\x~ + cy
z + bz*-

(\-c)xy

(A.
-

b) xz

(\- c) xy

Ay
2 + az* + cxz - 1

(x
-

a) yz

(\
-

b) xz

\zz + bxz + cy
z -l

contains A. (x
z + y* + z2

)
1 as a factor, and that the remaining factor is inde-

pendent of A.

Border the determinant, as in Ex. 9, with a first column whose constituents are

1, \#, \y, \z
;
and with a first row whose constituents are 1, 0, 0, 0. Subtract

then x times the first column from the second, y times the first column from the

third, and z times the first column from the fourth. In the determinant thus

altered subtract from the first row x times the second, plus y times the third, plus z

times the fourth
;
and the result follows.

1 1. Expand in powers of x the determinant

d\

z + x

3 + x

Am.-

12. Prove the identities

1 a a' aa'

I y y
r

yy'

155' 55'

-
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Expanding the first determinant in terms of the minora formed from the first

two columns (see Art. 115), we easily prove that it is equal to

A (ft'y + o'S') + S(y a'+ ft' 8') + C (a! ft' + 7' 5') ;

and employing the identical equation A + B + C = 0, along with the relations of

Ex. 18, Art. 27, the result follows.

13. Prove that the determinant of Ex. 12 is equal to

7 + o5

70 + 5

o)3 + 78

ft'y' + o'S'

7' a' + '5'

a'ft' + y'S'

This follows at once from the relations of Ex. 18, Art. 27. If a', ft', 7', 5' be

put equal to o", ft
m

, y, 5'" in the result, we obtain an identity which includes

Ex. o, p. 276, as a particular case.

14. Prove

ffi, 02, 3> *i s #2, c\ being any quantities.

This follows by subtracting a times the last column from the first, ft times the

last from the second, &c. The student will have no difficulty in writing down the

corresponding determinant of the (n -f })
th order which is equal to the polynomial

f(x) whose roots are 01, 02, 03, ... o,,.

15. Resolve into factors the determinant

Here A =

(0
-

a')
2
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Multiplying the two rectangular arrays

(1),

-3a' 3a'2

-3)8' 3'2 -'3

1 -
87' 37

'2

(2),

A becomes equal to the sum of four terms, from each of which we can take out as a

factor the product of the two determinants

The remaining factor is

3
{
3 a#7 2)37 2o'

which can be written also in the foim

17. Prove the expansion

1 + 1
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19. Each of the coefficients of any equation can be expressed in terms of the

roots as the quotient of two determinants.

The student can easily extend to any degree the following application to the

equation of the third degree.

From Ex. 10, Art. 112, we have

xs x* x I

a3 a2 a 1

7
3

7
2

7 1

Expanding the determinant, this identity can he written

a2 a 1
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21. Find the condition that the homogeneous quadratic function of three

variables

ax* + by
z + cz2 + 2fyz + Igzx + Ihxy

should he resolvable into two factors.

Equating the given function to the product of the factors

we readily find

(ax + 0y + 72) (ax + ffy + y'z],

a a'
1
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By the preceding example A must contain (x a)
n~l as a factor

;
and by adding

all the columns we see that, it must also contain x + (n 1) a as a factor. Hence A

can differ by a numerical factor only from the product of these
;
and by comparing

the product with the leading term we find

A = (x-a)-
l

{x + (n- I) a}.

This result can readily be proved directly without the aid of Ex. 23.

25. The determinant

/i (0) ft (ft)

/i (7) /(?)

inwhich/i,/2, /s are any rational integral functions, contains the difference-pro-

duct (
-

7) (7
-

o) (a
-

)
as a factor.

This appears readily by reasoning similar to that of Ex. 23. Determinants of

this nature, in which the constituents of any column (or row) are functions of the

same form, and the constituents of any row (or column) involve the same variable,

are called alternants. It is plain that the result is general, and that the alternant

of any order contains as a factor the difference-product of all the variables involved.

The determinants of Exs. 9, 10, Art. 112, and Exs. 11, 12, Art. 120, are alternants

of the simplest form.

26. Express in the form of a determinant the quotient of the alternant in the

preceding example by the difference-product.

Assuming, to fix the ideas, that the functions involved are each of the fifth

degree (which will include lower degrees by making some coefficients vanish), we

may write

i a =flio5

/2 (a)

/3 (a)
= 3 a5

-f *sa4 + <?3 a3 + dza? + e^a

Now taking a, , 7 to be the roots of the equation

x3 + pxz + qx + r = 0,

and forming the product of the following determinants :

a5
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27. Resolve the following determinant into linear factors :

01 03 03 04 05

05 0i 02 03 04

04 05 01 02 03

03 04 05 01 02

02 03 04 05 01

Here in all the rows the constituents are the same five quantities taken in cir-

cular order, a different one standing first in each row. A determinant of this kind

is called a circulant. It is convenient to write a circulant in the form here given,

viz., such that the same element occupies the diagonal place throughout. Taking
6 to be any root of the equation x5 1 = 0, and adding to the first column the

sum of the constituents of the remaining columns multiplied by 0,
2
,

3
,

4
,
re-

spectively, we observe that the following are factors of the determinant :

,- 0; + 2 +03 +04 + 05,

01 + 002 + 2
03 + 3

04 + 4
05,

01 + 2#2 +0*03+ 004 +03
05,

01 + 0302 + 0flr3 + 4 4+02
5 ,

01 + 4
02 + 3

03 + 2
04 + 005,

the five roots of x6 - 1 = being 1, 0,
2

,

3
,

4
;
and comparing the coefficient of

i
5 in both expressions it appears that the numerical factor is unity (cf. Ex. 13,

Art. 120).

The method here employed can easily be extended to express a circulant of the

nth order as a product of n factors by means of the roots of the binomial equation

xn - 1 = 0.

28. Calculate the determinant of the nth order
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By aid of this equation the calculation of any determinant is reduced to that of

the two next inferior to it in the series An , An-i, A,,_2, . . . A2, Ai ;
and the values

of Ai and As are plainly a\ and a->a\ + #2, respectively.

Dividing the equation just given by An-i we have

A,, bn= + -
;

An-l An-l

A,-2

replacing by a similar value the quotient of A,,_i by Aw_2, and continuing the pro-

cess, it appears that the quotient of any determinant by the one next below it in

the series can be expressed as a continued fraction in terms of the given consti-

tuents. On account of this property determinants of the form here treated are

called continuants. "WTien each of the constituents bn ,
bn-i, . . . 63, fa (in the line

above the diagonal) is equal to + 1 the resulting determinant is a simple continuant.

29. Calculate the determinant of the n th order

o 1

a 1

/3 a 1

a 1

whose only constituents which do not vanish are a, , 1, lying in the diagonal and

the lines adjacent and parallel to it as here represented.

The calculation is readily effected for any particular value of n, in a manner

similar to that of the last example, by aid of the equation

the values of Ai and A2 being a and a2 - 0, respectively.

By examining the formation of the successive values of A, the student will

readily observe that the terms contained in the result are

when n is even and of the form 2r
;
and

when n is odd and of the form 2r + 1.

For the purposes of a subsequent investigation, in which the results just stated

will be made use of, it is not necessary to know the general forms of the numerical

coefficients which enter into these expressions ; but such forms can be arrived at

without difficulty, and the following general expression obtained for AM :
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30. 'When a polynomial U is divided by another U' of lower dimensions, the

coefficients of the quotient, and of the remainder, can be expressed as determinants

in terms of the coefficients of U and V.
The method employed in the following particular case is equally applicable in

general. Let Z7 be of the 5th, and U' of the 3rd degree ;

'

the quotient and re-

mainder can then be represented as follows :

Q
Also, let

From the identity U = Q U' +

we have the following equations :

Ur
?,' x + as .

+ r
,

05

Solving by Art. 124
; q , q\, qz are expressed as determinants by means of the

first three of these equations ; and taking the first three with each of the others in

succession, we determine TO, r\, r%. For example, to find TQ we have from the first

four equations

a\

-
(to

tto' a\

a\ (to' #2

^2' ft #3 + ?"o

= 0, or

^3

31. Find the general forms of the coefficients of the quotient, and of the re-

mainder, when a polynomial of even degree 2m is divided by a quadratic.

Taking a;
2 + a# + as the given quadratic function, we have the identity

Writing down the first r + 1 equations, formed as in the preceding example, to

solve for go, qi, qi, . . . qr , it is easily seen that the value of qr thence derived is

a determinant of the rth order of the form treated in Ex. 29, bordered at the top

with the constituents 1, 0, ... 0, o, and at the right-hand side with OQ, i, . . . ar .

Expanding this determinant in terms of the last column, it is immediately seen that

any quotient is expressed by means of a series of the determinants of Ex. 29 in

the form

qr - ar a,-i A\ + ar-z Aa - &c. . . . + i Ar_i A,-,
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the upper or lower sign to be used according as r is even or odd. To obtain the

coefficients of the remainder, \ve have the equations

Expressing the values of #2m-3, 2w-2 by the formula just proved, and attending

to the results of Ex. 29, \ve derive the following general forms for TQ and r\ :

a + x
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Any equation in the series, being of the same form as A = 0, has all its roots

real. It is plain also that each of these equations is a limiting equation (see Art.

83) with reference to the equation next above it in the series
; since, in order that

a change of sign may be lost between An and AM-i at the passage through each of

two consecutive roots of the former, the value of An-i must, change sign between

these two values of x. The equation An = may have equal roots, and by what

has been just proved it appears that when this equation has r roots equal to a,

the equation A,,-i = has r -- 1 roots equal to o, the equation An-z = has r 2

roots equal to a, and so on.

The determinant here discussed occurs in several investigations in pure mathe-

matics and physics. The proof here given of the property above stated is taken from

Salmon's Higher Algebra (Art. 46), to which work the student is referred for other

proofs of the same theorem.

33. If the determinant of the preceding example have r roots equal to o
; prove

that every first minor has r 1 roots equal to a ; every second minor r 2 roots

equal to a, and so on.

Employing the notation A, H, G, . . . for the elements of the reciprocal deter-

minant, we have the equation

AB - H* = An-z Aw .

Now it is easily seen by proper transpositions of rows and columns that every

leading first minor contains the multiple root r 1 times. It follows from the

equation just written that the minor H must contain this root r 1 times
;
and H

may be taken to represent any first minor.

34. Find the conditions that the equation

a + x h g

h b + x f

9 f c + x

should have equal roots.

Since each first minor must contain the double root, we readily derive the

required conditions in the following form :

This and the preceding example are taken from Eouth's Dynamics of a System

of Rigid Bodies, Part n., Art. 61.



CHAPTER XII.

SYMMETRIC FUNCTIONS OF THE ROOTS.

130. Hfewton's Theorem on the Sums of the Powers
of the Roots. We now resume the discussion of symmetric
functions of the roots of an equation, of which a short account

has been previously given (see Art. 27) ;
and proceed to prove

certain general propositions relating to these functions :

PROP. I. The sums of the similar powers of the roots of an

equation can be expressed rationally in terms of the coefficients.

Let the equation be

f(x]
= X11 + piX*-

1 + pzX*-
2 + . . . + pn

= (x- cti) (x
- a2) (x

- a 3)
. . . (x

- a) = 0.

We proceed to calculate Sa2
, Sa 3

,
. . . Saw

; or, adopting
the usual notation, s2 , 3 ,

sm ,
in terms of the coefficients

p l9 p^ ... pn .

We have, by Art. 72,

x a\ x a?

= nxn
~ l + (n

-
l)pix

n~z + (n
-

and we find, dividing by the method of Art. 8,

= xn
~ l + a

x a
+ a* + . . . + a7

U
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If in this equation we replace a by each of the quantities

*!, o 2 ,
... an in succession, and put sp

= Sap = a-P + az
p + . . . + a/,

we have, by adding all these results, the following value for

f(x) = nx"- 1 + 5: ..+ sn_L

whence, comparing this value of /'(#) with the former, we

obtain the following relations:

i +Pi =
0,

s2 + piSi + 2p2
=

0,

=
0,

t
=

0,

= 0.

The first equation determines Si in terms of p l9 p^ . . . pn ;

the second s2 ;
the third s3 ;

and so on, until s_i is determined.

We find in this way

= -
Pi

5 - 5 (pz
2 - p^p l + 5 (pzp3

- p5) ; &c.

Having shown how Si, sz, s3, . . . sn_l can be calculated in

terms of the coefficients, we proceed now to extend our results



Neivtorfs Theorem on Sums of Powers of Roots. 291

to the sums of all positive powers of the roots, viz., sn ,
sn+1 ,

. .. sm .

For this purpose we have

a*/ (a?)
^ x + Piz

m~l + Ptx
m~z + . . . pnx

m
~*.

Eeplacing, in this identity, x by the roots a t ,
a 2, . . . an ,

in succes-

sion, and adding, we have

m +PlSm-i +PiS^ + . . . + pn S,n-n = 0.

Now, giving w the values n, n + 1, n + 2, &c., successively,

and observing that s =
, we obtain from the last equation

sn + /?i*-i +^2s^2 + . . + npn =
0,

+ . . + jn*i =
0,

+ + ^n*z =
0, &C.

Hence the sums of all positive powers of the roots may be

expressed by integral functions of the coefficients. And by

transforming the equation into one whose roots are the reci-

procals of ai, a2 , a3 , . . . o, and applying the above formulas,

we may express similarly all negative powers of the roots.

131. PROP. II. Every rational symmetric function of the

roots of an algebraic equation can be expressed rationally in terms

of the coefficients.

It is sufficient to prove this theorem for integral symmetric

functions, since fractional symmetric functions can be reduced to

a single fraction whose numerator and denominator are integral

symmetric functions. Every integral function of ai, a2,
. . . a

is the sum of a number of terms of the form Na^p az
9 a3

r
. . .

, where

JV is a numerical constant
;
and if this function is symmetrical

we can write it under the form N'S.a^ a z
q ai . . .

,
all the terms

being of the same type. Therefore, if we prove that this quan-

tity can be expressed rationally in terms of the coefficients, the

theorem will be demonstrated. We shall first establish the

following value of the symmetric function 2aip a2
?

:

(1)pq -
p+q.
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To prove this, we multiply together sp and s
q9
where

Sp
= af + a/ + a/ + . . . a/,

sq
= ai? + az

q + a3
? + . . . an? ;

whence

SpSq
= aj*9 + a/+q + ... + anp

+q + afa + ajaf + &C.,

or

SpSq
=

Sp+q + 2WW,

which expresses the double function Set/ az
q in terms of the

single functions sp9 s
q ,

sp+q in the form above written.

We proceed now to prove a similar expression for the triple

function, i.e.,

= Sp S
q
Sr

-
Sq+rSp

- Sr+p Sq
- Sp+q Sr + 2sp+q^. (2)

Multiplying together Saip a2
9 and sr9 where

Sr = a* + a z
r + a3

r + . . . + a/,

we obtain an expression consisting of three different parts, viz.,

terms of the form Sa^+W, Sa^a/, and

Hence

a formula connecting double and triple symmetric functions.

But, by (1),

p+r?
-

p+q+r ,

i
q+r a/ = S+t-S

Substituting these values, we find the triple function

/ expressed as above in terms of single functions in

the series Si, s2 , s3,
&c.

In the same manner the quadruple function Saip az
q a3

r
a/
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can be made to depend on the triple function 2a^ az
q a/, and

ultimately on slt s2 ,
s3, &o.

;
and so on. Whence, finally,

every rational symmetric function of the roots may be expressed
in terms of the coefficients, since, by Prop. L, i, s2 , $3, &c.,

can be so expressed.

The formulas (1) and (2) require to be modified when any of

the exponents become equal.

Thus, if p =
q, ai

p az
q = a/ar2

, and the terms in (1) become

equal two and two
;
therefore 2aip a2

9 = 2Sa/a/ ; whence

Similarly, if p =
q
= r in Sa/a2

? a3
r

,
the six terms obtained

by interchanging the roots in af az
q a 3

r become all equal ;
hence

2s3p).

And, in general, if t exponents become equal, each term is

repeated 1 . 2 . 3 . . . times.

EXAMPLES.

1. Prove

2oiPo25a3
ra4s = sp sq sr st

- 2sp s<2
s r+s

2. Prove

2
w

3
m 04 n = * - 6*m

132. PROP. III. The value of sr, expressed in terms of

Piipi, Pn> *s the coefficient of y
r

in the expansion by ascending

powers of y of
- r logfy

n
/f

-
).

v

Since

xn + p^x
n- 1 + p2x

n-~ + . . . +pn = (x
-
oj (x

- a 2)
. . . (x

- an),

putting
- for x in this identical equation, we find

1 + p\y +PZ!/~ +p*y
3 + + pny

n -
(1 -ai^)(l ~^y\ ... (1 y).
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Now, taking the Napierian logarithms of both sides,

y* +p*
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which becomes by expansion

1- --s
2

1

1.2.3

**-4.

Now, comparing the coefficients of the different powers of y,

we obtain values for JPI, p^ p^ . . . pn ,
in terms of s lf s2 ,

. sn ;

and we see that/V involves no sum of powers beyond sr .

If the identity (1) be differentiated with regard to y, the

equations of Art. 130 connecting the coefficients and sums of

powers may be derived immediately from the resulting identity.

It is important to observe that the problem to express any

symmetric function of the roots in terms of the coefficients or

any coefficient in terms of the sums of the powers of the roots is

perfectly definite, there being only one solution in each case.

"We add some examples depending on the principles estab-

lished in the preceding propositions.

EXAMPLES.

1. Determine the value of

where 01, o2 , 03, . . . an are the roots off(x) = 0, and <t>(x) is any rational and

integral function of x.

We have

/'(*) 1 1 1

X 01 X 0.2

and

f(x) X - 01 X - 02
[
^ |

X - an

*(*)

X - On
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Performing the division, and retaining only the remainders on both sides of this

equation, we have

(02) ft (an)

f(x) x-a\ a? .OB z-an
'

whence

x-1 + Hi xn
~z
+.... + -R-i = 2ft (ai) (a:

-
02) (s

-
03) . . . (x

- a) ;

and, .comparing the coefficients of xn~ l on both sides of this equation,

/2. Prove that sp is the coefficient of - in the quotient of the division of f(x)

by /(a?) arranged according to negative powers of x.

3. Prove that s.p is the coefficient (with sign changed) of %P~I in the same quo-

tient arranged according to positive powers of x. ^'" ^ ^ /

^
4. If the degree of ft(#) does not exceed n 2, prove ,/T",

where 2 denotes the sum obtained by giving r all values from 1 to n inclusive.

r=l

"We have, by partial fractions,

An
r T

f(x) x - 01 a; - az x - on

and, multiplying across by /(#), and putting x equal to 01, 02, ... in succession,

f(x) /'(ai) x - 01 /'(o2 )
* - a2 /' (a,,)

a; - a,,

'

whence

"When <(#) is of the degree n 2
; expressing the first side of the equation as a

ction of -, it readily appears that there
x

"We have therefore, comparing coefficients,

function of -, it readily appears that there is no term without - as a multiplier
x x

As
</> may be any rational and integral function of degree not higher than n 2,

we have the following particular cases which are worthy of special notice :

ow
"2 on~3 a 1

2- =0, 2 =0, ...2--=0, 2 -=0.
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Prove that the sum of all the homogeneous products Ur,
of the rth degree of

the quantities 01, 02, ... an ,
is equal to

"\Ve have, putting y = -,

am 1

(1-aiyMl-

Also _
/(*)/()*-'

and therefore

whence, comparing coefficients of y
r in these two expansions,

6. To express the coefficients of an equation in terms of the homogeneous pro

ducts of the roots, and vice versa .

From the equation of the preceding example

we have

which gives the following relations :

pi 4- Hi = 0,

=
0,

0, &C.

These equations (in which, for values of r not greater than n, p\, pz, . . . pr,

and Hi, IIs, . . . nr are interchangeable) determine pi, pz, Pn in terms of

Hi, ri2, . . . Iln, and vice versa.

By means of this and the preceding example the values of the following symme-
tric functions may he found in terms of the coefficients :

7. To express nr by the sums of the powers of the roots.

Representing by - the product (1
- ai y) (1

- a2 y) . . . (1
- ay), and differentiat-

ing, we find

\du a
- = 2
udy 1 - ay

also u = 1 + Iliy -f
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We have, therefore,

Now comparing the several coefficients of the different powers of y, we have a

number of equations by means of which the sums of the homogeneous products

HI, 112, IIs, . . . may be expressed in terms of s\, s2 , $3, &c.

8. To find a general expression for sm in terms of the coefficients p\, pz,
. . . pn ,

of an equation of the nth
degree.

We have

s*v
z + o S3*/

3 + ...+
6 m

Now, making use of the known form of the coefficient of y
m in the expansion of

(p\y + pzy
z + + Pnyn)

r by the multinomial theorem, and comparing coefficients

of ym in the above equation, we find

in which

ri+ r2 + r3 + . . . + rn = r

r\ + 2r-2 + 3r5 + . . . + nrn = m ;

and n, r2 , r%, . . . rn are to be given all positive integer values, zero included, which

satisfy the last of these two equations. Also, representing by n any of these in-

tegers,

r(rf +.l) = 1 .2.3 ...n,

with the assumption that r(l) = 1 when n = 0.

9. To find a general expression for any coefficient pm in terms of the sums of

the powers of the roots si, s%, . . . sm .

We have

When the factors on the right-hand side of this equation are developed, and the

coefficients of y on both sides compared, we find, employing the notation of the last

example,

*
r(n + 1) r(r2 + 1) . . . r(rm + 1) 2^ 3'-3 . . mW

in which n, r2 ,
... rw are to be given all positive values, zero included, which

satisfy the equation

3/-

3 + . . . + mrm = m.
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134. Definitions. Theorem. The weight of any sym-
metric function of the roots is the degree in all the roots of any
term in the function. For example, the weight of 2a/3

2

7
3

is

six.

The order of any symmetric function of the roots is the

highest degree in which each root enters the function. For

example, the order of 2aj3
2

y
3

is three.

It has been proved (see Art. 28), that the weight of any

symmetric function of the roots, when expressed by the co-

efficients ff
j rti> #2} tf> is the same as the sum of the suffixes

of each term in the expression. We now prove another im-

portant theorem, viz. :

If any symmetricJunction be expressed in terms of the coefficients

/>i, p:, Pn, the degree in the coefficients is the same as the order

of the symmetric function. For example, Sa 2

/3
2

=p*
2 -

%p\p* + 2/ 4 ,

no term being of higher degree than the second in the coefficients,

and the order of the symmetric function being two.

The student may easily satisfy himself of the truth of this

theorem by observing that in the equations (2) of Art. 23, the

value of each coefficient in terms of the roots contains each root

in the first power only ;
hence the highest degree in the co-

efficients will be the same as the highest degree of the cor-

responding symmetric function in any individual root. We
add the following formal proof, as it is in accordance with the

proofs of certain general propositions to be given subsequently.

Replace the coefficients p l9 pz ,
. . . pn by , --,

#0 #0 #0

Now, if (m, o 2 ,
. . . on)

denote any rational and integral

symmetric function of the roots, we have

flro
w
0(ai, a 2 , . . . an)

= F(a ,
a

l9
az ,

. . . ),

where OT is the degree in the coefficients of F(a , tfi, tf-, ...),
a homogeneous and integral function of the coefficients, not

divisible by a .

We require now to show that vr is the order of 0. For this
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purpose change the roots into their reciprocals, and, therefore,

#oj i,... an into ant an-i, . . . a . Whence

^n
w

f ,,...
J

= F(an , _!, #n_2 ,
. . . a

) ; (1)

also

J^ = \l/ (a t ,
a2 ,

q 3 . . . gn)

. . . an)
p '

where p is the order of 0, and ^ an integral function not divi-

sible by the product of all the roots
; (a!a2 a3 . . . an}

p
being the

lowest common denominator of all the terms. Substituting in

(1), we have

a2 ,
... an)=anP-F(an ,

an. ly . . . a ).

From this equation it follows that p is equal to w
;
for if p

were greater than w, $ (ai ,
a 2 ,

. . . an)
would be divisible by the

product ai a2 . . . an ,
and if it were less, the function of the coef-

ficients F(am an_!, . . .
)
would be divisible by an ,

both of which

suppositions are contrary to hypothesis.

135. Calculation of Symmetric Functions of the

Roots. Any rational symmetric function can be calculated by
the method of Art. 131. In practice, however, other methods

are usually more convenient, as will appear from the examples

given at the end of the present Article, and from the following

Articles, in which we shall give certain general propositions

which in many cases facilitate the calculation of symmetric
functions.

The number of terms in any symmetric function of the roots

is easily determined. For example, the number of terms in

2ai
3 a2

2
<*3 of the equation of the nth

degree is n(n
-

1) (n
-
2), this

being the number of permutations of n things taken three

together. If the exponents of the roots in any term be not all

different, the number of terms will be reduced. Thus, 2a2

j3y

for a biquadratic consists of twelve terms only (see Ex. 6, p. 48),

and not of twenty-four, since the two permutations a/3y, ay/3

give only one distinct term, viz., a
2

/3y, in Sa^y. The student
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acquainted with the theory of permutations will have no diffi-

culty in effecting these reductions in any particular case.

When two exponents of roots are equal, the number obtained

on the supposition that they are all unequal is to be divided by
1.2; when three become equal this number is to be divided

by 1.2.3; and so on. In general, the number of terms in

Sa 1 ^a2
9 a 3

r ... of the equation of the nth
degree, each term con-

taining m roots, and v of the indices being equal, is

1.2.3. . .v

When the highest power in which any one root enters into

the symmetric function is small, i. e., when the order of the

function (see Art. 134) is low, the methods already illustrated

in Art. 27 may be employed with advantage for the calculation

of the symmetric function of the roots in terms of the co-

efficients.

It is important to observe that when any symmetric function

whose degree in all the roots
(i. e., its weight) is ??, is calculated

in terms of the coefficients p l9 p2 . * . pn for the equation of the

nth
degree, its value for an equation of any higher degree (the

numerical coefficients being all equal to unity) is precisely the

same ;
for it is plain that no coefficient beyond pn can enter into

this value, and the equations of Art. 130, by means of which

the calculation can be supposed to be made, have precisely the

same form for an equation of the nth
degree as for equations of

all higher degrees. It is also evident that the value of the same

symmetric function for an equation of a degree m (lower than n)

is obtained by putting pm+i, pm+Z9 . pn all equal to zero in the

calculated value for an equation of the nth

degree, since the

equation of lower degree can be derived from that of the nth
by

putting the coefficients beyond pm equal to zero
;
and the corre-

sponding symmetric function reduces similarly by putting the

roots a OT.u, am+2 . . . . an each equal to zero.
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EXAMPLES.

1. Calculate 2oi2
0203 of the roots of the equation

+ piXn
~ l +pZ ^n

'Z + ....+ pn-lX -f pn = 0.

Multiply together the equations

In the product the term ai
2
03 03 occurs only once

;
the term 01 02 03 04 occurs four

times, arising from the product of ai by 020304, of 02 by 010304, of 03 by 010204,

and of 04 by 010303. Hence

2oi2
0203 + 4501020304 =

therefore

2oi2 0203 = pips 4j94. (Compare Ex. 6, Art. 27.)

If the calculation were conducted by the method of Art. 131, we should have

2012
2 03 = ^*2l

3 - *l3 - i*2
2 + *4,

which leads, on substituting the values of Art. 130, to the same result
;
but it is

evident that in this case the former process is much more simple, since the values of

s\, so, &c., introduce a number of terms which destroy one another.

2. Calculate 2oi2
02

2 for the general equation.

Squaring
20102 =$2,

we have
2oi2

02
2 + 22oi2 0203 + 6501020304 =J?2

2
-

In squaring it is evident that the term 01 02 03 04 will arise from the product of

0102 by 03 04, or of 01 03 by 02 04, or of ai 04 by 02 03 ;
hence the coefficient of ai 02 03 04

in the result is 6, since each of these occurs twice in the square. The result differs

from the similar equation of Ex. 8, Art. 27, only in having 2 before the term

01020304. Hence, finally,

3. Calculate 2 or
3
02 for the general equation.

We have, as in Ex. 9, Art. 27,

Hence, employing previous results,

4. Calculate 2oi2 02
2
03 for the general equation.

The result will be the same as if the calculation were made for the equation of

the fifth degree.
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To obtain the symmetric function we multiply together 20103 and 2010303 ;
and

consider what types of terms, involving the five roots 01, 02, 03, 04, 05, can result.

The term or 02'- 03 will occur only once in the product, since it can only arise by

multiplying 0102 by 010203. Terms of the type oi
2
02 03 04 will occur, each three

times ; since or 02 03 04 will arise from the product of 01 02 by 01 03 04, of 01 03 by

010:04, or of 0104 by 010203 ; and it cannot arise in any other way. The term

ai 02 03 04 05 will occur ten times in the product, since it will arise from the product of

any pair by the other three roots, and there are ten combinations in pairs of the five

roots. We have then, for the general equation,

2aiO22aiO2 03 = 2oi2
O2~O3 + 32ai2

a2O3O4 -f 1020102030405.

[We can verify this equation when =
5, just as in Ex. 9, Art. 27 ; for the

product of two factors, each consisting of 10 terms, will contain 100 terms. These

are made up of the 30 terms contained in 2oi 2
o2

2
03, along with the 20 terms con-

tained in 2oi'- 020304, each taken three times, and the term 0102030405 taken 10

times.]

Thus the calculation of the required symmetric function involves that of

04; for which we easily find

201 201020304 = 2012 020304 + 520102030105.

Hence, finally, we obtain

The process of Art. 131 would involve the calculation of $5; and many terms

would be introduced through the values of si, $2, &c., which disappear in the result.

5. Find the value of 2or as
2
03 04 for the general equation.

We multiply together 2 ai 02 and 201020304, and consider what types of terms

can arise involving the six roots 01, o2 , 03, 04, 05, oe- The term oi
2
02

2
03 04 can occur

only once. Terms of the type 0^0203 04 05 will each occur four times, this term

arising from the product of 0102 by 01030405, or of 0103 by 01030405, or of 0104 by
01020305, or of 0105 by 01030304. The term"oi0203a4050j will occur 15 times, this

being the number of combinations in pairs of the six roots. Hence

201 02 201 OJ 03 04 = 2oi2
02

2
03 04 + 4 2oi2

02 0^04 05 + 1 2fll 02 03 04 05 06-

We have again, for the calculation of 2oi2
{o2030405,

2oi 2oi 02 03 04 05 = 2oi2
03 03 04 05 + 62oi 02 03 04 05 O6.

Hence, finally,

2012
02

2
3 04 = Pip* - 4PIP5 + 9jJ6 -

6. Find the value of 2oi 2
02

2
aj

2 in terms of the coefficients of the general equa-

tion.

Here, squaring 2010303, we have

2oi 02 03 2oi oj 03 = 2oi2
02

2
as

2 + 2 2ar oz
2
03 04 + 6 2oi2

03 03 04 05 4 20 2oi 03 03 04 05 ae,

from which we obtain

2o; 2
2-03- = #J

2 -
2^jPi + I
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136. Brioschi's Differential Equation. M. Brioschi

has given the following differential equation connecting the

coefficients and sums of powers of the roots of an equation :

dr+k 1

To prove this we have, as in Art. 132,

. . . + Pnl/
n
)^-l/s l --^s2 --fss . ..--y

r
sr . . . ,

A O T

and differentiating,

(1 +P& +p2y
z+ . . . +pn y

n
)
s -

(1 +p,y +p,y*+. . . +pny
n
)

y-
;

uSf I

whence, comparing the coefficients of the different powers of y,

-4~ =
0, when q < r

;

asr

dpr 1 dpr+k 1

We can now express the result of differentiating with respect

to sr any function of the coefficients

Since

dpi dp*

all vanish,

d _. . dF dpr dF dpr+l dF dp
i

-*- V /^l) 1J&) A'oj Jn) 7 7
i 7 7 r . T .

o?sr c?jt?r ^s/- dpr+l dsr dpn dsr

and, applying the formula given above, this reduces to

IfdF dF dF dF'
, ... n-r ,

dpr dpr+l dpr+2 dpn

By means of this result symmetric functions can often be

calculated with great facility, as will appear from the following

examples :
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EXAMPLES.

1 . Calculate the value of the symmetric function 2oi2
e 2

2
as

2
en

2 of the roots of

the equation
SP + p\ a^-1 + pzxn

~~ + . . . + pn - 0.

Knowing the order and weight of any symmetric function, -we can write down

the literal part of its value in terms of the coefficients. Here 2 is of the second

order, and its weight is eight ;
hence

2 = tops -f tipipi + t2p6p2 + hpsps + tipi*,

where to, ti, 2, &c., are numerical coefficients to be determined.

Terms such as p6 pi*, pspipz, j0s.Pi
3
, &c., although of the right weight, are

of too high an order, and therefore cannot enter into the expression for 2. Again,

2 expressed in terms of the sums of the powers of the roots is of the form

-F(s2, 4, *e, SB) ; for, in general, 2ai*> o2 asr . . .
, expressed in terms of the sums of

the powers of the roots, is made up of terms such as sp ,
sp+q ,

sp^qr ,
. . . skp ,

. . .

all of which are sums of even powers when p, q,r, . . . are even ; therefore in this

case none hut even sums of powers enter into the expression for 2.

rf2 d"S, dF
Also, since =0, and = 0, we have, using the formula above given for ,

dss ds^ asr

tops +

topi + tipi = 0.

From these equations we infer

*o + *i = 0, tz + t3 = 0, tz + t = 0, *i -f 2

but 4=1, since for a quartic 2 = p ;
therefore

ti = -
2, ^o = 2, ^3 = -

2, tz = 2
;

and, substituting these values of to, t\, tz, h, t,

2. Calculate 2ai2 a22 o3
3 for the same equation.

Am. - 2pe + 2p\p5
- Zpzpi + J?s

2
. (Compare Ex. 6, Art. 135.)

3. Calculate for the same equation the symmetric function 2oi 3 o22 03.

Here the weight is six, and the order three ;
hence

2oi3 o22 a3 = topG + tip5pi + tzpipz + t3pipi
z + <4^3

2 + ts

Also 2, expressed in terms of *i, >z, *3, &c., is (see Art. 131),

Now, differentiating by means of Brioschi's equation these two values of 2 witli

regard to 6 ,
and comparing differential coefficients, we have
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Differentiating with regard to $5, we have

topi + t\p\ = 5st = -
5pi .-. 1 = 7.

Differentiating with regard to $4,

top* + tip? + tzp-t + tap? = 4s2 = 4 (p? - 2pz) ;

whence
t + tz = -

8, h+ t3 = 4;
and

*3 = -
3, tz = 4.

Again, t =
;
for 2 vanishes if n 2 roots vanish. And we find t and ^ by

taking the particular case when n 3 roots vanish ; for in this case

and therefore

U = -
3, fe = 1 ;

whence, finally,

137. Derivation of new Symmetric Functions from
a given one. From any relation such as

a w
S0 (cti, a2 ,

. . . an)
= F(a ,

ai9
az ,

. . . an),

where ^ is an integral function, of the order r, of some or all of

the roots of the equation

a a + na l x
n~ l +

n
y

^
f/2^~2 + . . . + an = 0,

J. .

we may derive a number of other symmetric functions and their

equivalents in terms of the coefficients.

For this purpose diminish each of the roots by any quantity

x, and consequently change any coefficient ar into Ur (see Art. 35).

When this is done the original relation becomes

-x, o 2 -ar, . . . an -x) = F(U^ Z7i, Z72 , . . . Un ) ;

and comparing the coefficients of the different powers of x on

both sides of this equation, we have a number of symmetric

functions of the roots expressed in terms of the coefficients as

required. It should be observed, however, that this method leads

to no new symmetric functions when the given function is a

function of the differences of the roots.
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138. Equation of Operation. We now proceed to

deduce an important equation of operation in the notation of

the differential calculus, which may be applied to furnish the

results of the last Article.

Let
tf.rtf) (ai, a 2 ,

. . . a) = F(aQ ,
a

lt a,, ... an),

as in the last Article. Adopting the notation

_, '7-* + ... +
<

aai aa.2 uan

d _ d rt d d# =
flo -T- + 20! + 302

-- + . . . + nan^ ,da i daz da3 da tl

we have the following equation of operation :

SafQ (ai ,
a2 ,

. . . a) = DF(a ,
al9 . . . an).

To prove this, we have, as in Art. 137,

[ff

ff

tf>(ai-#, a2 -#, . . . an -x) =

and, by Taylor's theorem,

where ^ = ^!(u "2?

Again, omitting all powers of a? higher than the first,

F(U y Ui, ... Un]
becomeslF

( , i + o

or, when expanded,

F + x(a<) +2a 1 + ... + na n^
\ ddi da? dan

where
F = F(a ,

ah . . . an ] ;

whence, comparing coefficients of x in both expansions, we find

the equation above written, viz.,

^^(a,, 2 ,
. . . On)

= DF(a^ ft, . . . tf
)

This equation shows that if a symmetric function be derived

from by the operation S, its value in terms of the coefficients

x2
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may be derived from the corresponding value of by the opera-
tion D.

Again, since <ty and DF may take the place of and F in

this equation, a^tffy becomes D*F, &c. It may be noticed,

moreover, that if S0 vanishes, S
2

, S3

, &c., all vanish; and

thus that x disappears in the expansion of

0(oi-#, o 2
-

a?, . . . o -
x}.

Now this can happen only when is a function of the

differences of 01, a 2 ,
.... an ; whence we conclude that if

af*F(a0t i, 2 ,
...

) is the value in terms of the coefficients

of a function of the differences of the roots, then

DF(a , 0i, 2 , . . . W )

vanishes identically.

This identical relation is often sufficient to determine the

numerical coefficients in a function of the differences expressed

by the coefficients, when the order and weight are known. It

is not sufficient for this purpose when there exist more than one

function of the differences of the required order and weight.
We add examples of functions of the differences determined in

this way.

EXAMPLES.

1. Determine a function of the differences whose order and weight are both

three.

Assume > = A

these being the only three terms which satisfy the required conditions. It is

evident from the form of D that the operation is performed by applying to the suffix

of any coefficient ar the same process as in ordinary differentiation is applied to the

index. Thus Dar = rar-i, and therefore

= 0.

Hence
ZA + E=0, and 2B + 3(7=0;

and putting A = 1
, we have

B = -3, and (7=2;

whence, finally,
G. (See Art. 36.)
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2. Determine a function of the differences whose degree in the coefficients is

four, and whose weight is six.

Assume

whence

D<j>
= (6-4 + i)rt

2
0203 + (6-B + 3JE+ 2J9)0oi2

2 + (3(7 + 4D) ai
3

<?2

3 = 0.

Now let -4=1, whence .E = - 6 ; also 3(7 + IE = 0, giving (7=4; and

3(7+ 4D = 0, giving D = - 3; and from 65 + 3^+ 2D = 0, we have finally # = 4.

Hence

Compare Art. 42, where the value of $ is given in terms of the roots.

139. Operation involving the .Sum* of the Powers of

the Roots. Theorem. If

(ttl, tto, 3 ,
... On)

=
F(8l, Sty S3y . .. Sr) (1)

be any equation connecting a function of the sums of the powers

with another symmetric function of the roots, we have then the

differential equation

d<t> d$ d$ d<j> dF dF dF dF~ + -f- + -j- + + -r- = s<> T~ + 2s i T" + 3s^ 3-+ + r*r,! .

ai aa2 a3 an aSi as> as3 ds,-

For, let the roots be increased by h
;
and comparing the

coefficients of h on both sides of the equation (1), when

are substituted for Si, s2 ,
. . . sr ,

we have the required relation.

Employing the results of the last Article, we have, therefore,

the following equation of operation connecting the coefficients

and the sums of the powers of the roots :

- D = tfo'f So -T- + 2! + 3s2
- + ...+ r r_i

where Dt represents the result of substituting s for a in the

operator D.
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From this it follows that if /(tf > i, #2, <*n)
is a function

of the differences, /(<,, i, 2 , )
is a function of the diffe-

rences also
;
for it is plain that when Df ( ,

#u #2, #n)
= 0,

A/(*o> *i> *2, - *n)
= 0, and therefore Z>/(s , i, *, *) = 0,

since Ds
= - a^D.

Ex. 1. 4 4ai3+ 322 = -f is a function of the differences, whence

4sisa + 322 is also a function of the differences.

Ex. 2.

2

= /, when similarly transformed, gives

which is therefore a function of the differences.

MISCELLANEOUS EXAMPLES.

1. Prove, by squaring the determinant of Example 10, Art. 112, the following

relation between the roots a, )8, 7, 8, of the biquadratic :

Si Sz 83

The student will have no difficulty in writing down for an equation of any de-

gree the corresponding determinant in terms of the sums of the powers of the roots

which is equal to the product of the squares of the differences.

2. Prove, for the general equation,

so i

Si S2

This appears by squaring the array

11111.
a )8 7 8 e .

(See Art. 123.)
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3. Prove similarly, for the general equation,

By the process of Art. 123, a series of relations of this kind can be established
;

and when the number of rows in the array becomes equal to the degree of the

equation, the value of the determinant is the product of the squares of the differences,

as in Ex. 1. "When the number of rows exceeds the degree of the equation the

value of the corresponding determinant vanishes. For example, the value of the

determinant of Ex. 1 is zero for equations of the second and third degrees.

4. Prove, by means of the equations of Art. 130, that the sums of the powers

can be expressed in terms of the coefficients, or vice versa, in the form of determi-

nants, as follows :

2pz pi

, 6j33
=-

Sz Si

Pi 1

3/>3 pz Pi

Si 1

,, .V! 2

S3 Sz *l

Pi
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6. Prove, for the general equation,

So Si S2 S3

Sz 83 $4 Ss

1 x x* a*

Multiplying the two arrays

1 1 1 . . \ x-a x-&

a P 7 . . -, a(x
-

a) (x
-

)8)

cr & 7
2

. . j a2 (*-) P(x-P)

we show that 2 is equal to

S.)X Si

SiX-Sz

SZX - 83

S2

szx-

which is easily transformed into the proposed determinant.

It appears in like manner in general that the determinant of similar form'of

order p -f 1 is equal to the corresponding symmetric function, each of whose terms

contains p factors of the original equation multiplied by the product of the squared

differences of the p roots involved therein.

7. Prove that the leading coefficients of Sturm's functions (i.e. /(#), /'(#)> and

the n 1 remainders) differ by positive factors only from the following series of

determinants :
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Assuming, therefore, for Rj and Aj the forms

Hj = r + r\x + rzx2 + . . . . +

Aj = Ao + Ai x + A2 z2 + +

and substituting in (1) any root a of the equation /(x) = 0, we have

Ao + Aio + A2 cr + . . . + Ay-ia-'-
1 = -

/ (
a

)

Multiplying by a, a2
,
... a->-

2
, a*-1

,
in succession

; making similar substitutions

of the other roots
;
and adding the equations thus derived, we obtain by aid of the

relations of Ex. 4, p. 296, the following system of equations :

AO*O ~t~ AI*I + . . . + A_/-2 Sj-t ~t~ A_/-i Sj-i
= 0,

Aol + Al*2 + - + Aj-2 Sj-l + \j-l Sj
=

0,

0,

From these equations we have, without difficulty,

o si .

Sj-l

sj

*y-2

, 4 = V

SJ-1 SJ

Sj-2 Sj-l

1 X

the value of 7,- being so far arbitrary. It appears therefore that the coefficient of

the highest power of x in Rj differs by this multiplier only from the determinant

(o*2*4 .... sy-z). We proceed to show that the sign of
7,- is positive. For this

purpose we make use of the following relation connecting the successive values of

the functions R and A :

AM k - M Ak ^f(x). (2)

To prove this
; substituting for Itk+i Jtk, Rk-\ their values in terms of A and

in the relation J2*+1 = QkRk -
k-i, we derive

Ak+i = QkAk - Ak-i, Bk+i

by aid of which we readily obtain the following relations connecting the successive

functions :

A Ri =f(x),

in which ^1= /'(a,-), =f(x).

Now, comparing the coefficients of the highest powers of a; in (2) ; observing that

*" occurs only in Ak+ i Rk, and making use of the determinant forms above obtained,

we have

7* (^0*2*4 *2* 2)
=

1,
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Also, calculating the value of R-> in the ordinary manner, we easily find

S Si

I x

whence it is seen that the value of 73 is .

It follows, from the relation just established between any two successive values

of 7, that 73, 74, ...
7,-, &c., are all positive squares ;

and therefore, finally, that

rn-j, the coefficient of the highest power of x in Jfy, has the same sign as the deter-

minant (o *2 54 Sy-z) .

It may be observed that by aid of the preceding example the value of the quotient

of AJ by T/ may be written as a symmetric function involving the roots and the

variable. For example, when./ = 4, we have

8. Determine <i, <f>z,
... </, . . . <pp from the equations

Ans.
<f>j

is given as a function of the
(p l}

th
degree in 0/ by the equation

i Oj e? . . e^ &

Q si s2 . Sp.i To

where sk = 6i
k + 62

* + 03* + - + Op*.

9. If a, )3, 7, 5 be the roots of the equation

#4 = 0,

calculate in terms of #o> -ff, /, /" the value of the symmetric function

ao
6 2(3a-)8-7-8)

2
(3j3-7-5-a)

2 (37-S-a-j8)
2

.

Here ao
62 = 46

5zi
2
zz

2 z3
2
,

where zi, 23, 23, 24 are the roots of the equation

a + GiTz2 + 40* + a 2^ - 3S"2 = 0. (See Art. 37.)

Hence, by Ex. 2, Art. 136,
Ans. ^-IKt + aJHI



Miscellaneous Examples. 315

10. Prove that

n = *o
6
()8
-

y)~ (7
-

a)
2
(a
-

0)
2
(a
-

8)
2

(j8
-

S)
2
(7
-

5)
2 = IP + ,nJ*,

where m = - 111.

The weight of this function of the roots is 12, and the order 6.

"We now make use of a proposition which will be proved subsequently, namely,
that any even, rational, and integral symmetric function of the roots, of the order 37,

and involving the differences only of the roots, is, when multiplied by tfo
37

,
a rational

and integral function of #0, H, I, / (Compare Ex. 17, p. 124.)

Hence, expressing the function whose order is 6, and weight 12, in terms of

o> -ff, /, /, it is easy to see from the table
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metric function by actually substituting tbe roots, and then comparing both sides

of the equation when H, I, J are replaced by their values calculated from the

numerical coefficients.

First we take the biquadratic equation 6z4 - Qxz = 0, whose roots are 0, 0, 1,
- 1

;

whence
2 = 8, JT=-6, 7=3, /=!.

Substituting in equation (1), we have

Proceeding in the same way with the biquadratic equation

r
4 - 6z2 + 5 = 0, whose roots are + -v/% + 1,

we find

2 = 768, JET=-1, J=8, /=-4;
whence

- 192 = 21 + m,
and

l = - 2x192, m = 3x192;
and, finally,

12. Calculate the determinant

SO 1 2

si a *s

*2 *3 *4

in terms of the coefficients of a quartic.

This determinant is a function of the differences of the roots (see Ex. 2, Art. 139) ;

we may therefore remove the second term of the quartic before calculating it ; and

if the equation so transformed be

2/
4 + P2y2 + Pay + P4 = 0,

4 - 2P2

- 2P2
- 3P3 = 4 { 8P2P4

- 2P2* - 9P3
2
} ;

- 2P2 - 3P3 2P22 - 4P4

Substituting for P2 , PS, P4 these values, we have

the same result as in the preceding example. (Compare Ex. 3, p. 311.)

13. If o, &, 7, 8 be the roots of the equation

-f 6a2 a;
2

-f -t- 4 = 0,
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express H It , Jt , G, of the equation

Jo*
4 + 4*i a:

3 + Gszx* + 4*8# + 84, = 2(* + o)
4 =

in terms of ff, I, /, G.

Ht _ H I, 485-2 - o
2/ Ot _ .

-4*. ^-= 3 T, r =-T- , ~~*~~"~~*
o
2

o
2

*o
2

o
4

o
3 <V

and by the aid of the relations

G* + 45-3 = ^(sx _
ffo /), &2 + 4tf,

3 s SQ
2
(a; 7t _

1 QO
/s = _T

o*

14. When^? is even, prove that

2(ai
-

at)P
= to8p -psiSp-i + $p(p- 1) *2*P-2

- &
Since

~ - &c. . . . -^*

changing a; into ai, 02, 03, ... a,, in succession, and adding the results on both

sides of the equations thus obtained, we find

p . p \

22(01
-

tt2)P= *0*p p*\*p-\ + - S2Sp-2
-

JP*1 *p-l + 0*i,

where all the terms on the right side of this equation are repeated except the middle

term. Thus

2 (ai
- a2)

4 = so *4
- 4i s3 + 3*2

2
, (Compare Ex. 1

,
Art. 139.)

2
,
&c.

15. Form the equation whose roots are </>'(<*), #'(0), ^>'(y), ^>'(5)> where

o, )8, 7, 8 are the roots of the equation

<p (x)
= ^o^4 + 4#i x3 + 602 %z + 403 + 4 = 0.

-27/ 2
)

a
- o.

16. If 2 (a
-

0)
2
(0
- 7)

2
(7
-

a)
2
(x
-

5)*,

when expanded, becomes

EQX* + 4Kix3 + 6 jfiT2 x* +

prove that

JToaj37 + JTi (07 + 7 + 0) + ^2 (a + + 7) + 3 _ + 16

08-7)(7-)(a-/3)
where

A = I3 - 27/ 2
.

17. Prove that

ao*2()8 + 7 - a - 5)
2

()8
-

?)
2

(
-

S)
2 = 192 (3 /- 2JT/).

18. Prove that

_ a _ 5)4 (3
-

7)2 (
-

8)8
= 512 (a<?l

* - 36 aQHJ +



CHAPTER XIII.

ELIMINATION.

140. Definitions. Being given a system of n equations,

homogeneous between n variables, or non-homogeneous between

n-I variables, if we combine these equations in such a manner

as to eliminate the variables, and obtain an equation It =
0,

containing only the coefficients of the equations ;
the quantity

R is, when expressed in a rational and integral form, called their

Resultant or Eliminant.

In what follows we shall be chiefly concerned with the dis-

cussion of two equations involving one unknown quantity only.

In this case the equation R = asserts that the two equations

are consistent ;
that is, they are both satisfied by a common

value of the variable. We now proceed to show how the

elimination may be performed so as to obtain the quantity R,

illustrating the different methods by simple examples.

Let it be required to eliminate x between the equations

ax* + 2bx + c =
0, a'x* + 2b'x + c' = 0.

Solving these equations, and equating the values of x so

obtained, the result of elimination appears in the irrational form

Multiplying by aa' we obtain

aV - a'b = a*/b'*-a'c'
-

Squaring both sides, and dividing by a a? (for R does not

vanish when aa' vanishes), and then squaring again, we find

R =
(ac

-
V) (a'c'~ b'*}

-
(ac + a'c - 2bb')\
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This method of forming the resultant is very limited in ap-

p.ication, as it is not, in general, possible to express by an

aljebraic formula a root of an equation higher than the fourth

decree. Other methods have consequently been devised for

de:ermining the resultant without first solving the equations.

We now proceed to explain the method of elimination by sym-
metric functions of the roots of the equations.

141. .Elimination by Symmetric Functions. Let two

algebraic equations of the mth and nth
degrees be

(x)
= aQx

m + aix
m~ l + a,xm

-z + . . . + am =
0,

^ (x)
= &o#

M + t>ix
n~l + Mn~2 + . + bn =

;

and let it be required to find the condition that these equations

should have a common root. For this purpose let the roots of

-the equation 0(a?)
= be ai, a 2 ,

. . . a. If the given equations

have a common root it is necessary and sufficient that one of the

quantities

^(QJ), i//(a 2), ..., \fr(am)

should be zero, or, in other words, that the product

^(a,) \f;(a 2) if (a s)
.. . i//(am)

should vanish. If, now, we transform this product into a rational

and integral function of the coefficients, which is always possible

as it is a symmetric function of the roots of the equation (x)
=

0,

we shall have the resultant required. Further, if j3i, /3 2, . . . |3n

be the roots of the equation ;// (x)
=

0, we have

. . . (a 2
-

|3n),

*(a) - b(am -
/3i) (am

-
/3 2)

. . . (am
-

(3n).

If we change the signs of the m n factors, and multiply these

equations, taking together the factors which are situated in the

same column, we find

<C * (,) * (o.) . . . * (a.)
=

(- 1)""' 4 ^ ((3.) * (ft) . . . f (ft,).
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We may therefore take

for both these values of R are integral functions of the coef-

ficients of (x) and t/ (#) ,
which vanish only when (x) a id

i// (#) have a common factor, and which become identical wh3n

they are expressed in terms of the coefficients.

142. Properties of the Resultant. (1). The order of

the resultant of two equations in the coefficients is equal to the sum

of the degrees of the equations, the coefficients of the first equation

entering R in the degree of the second, and the coefficients of the

second entering in the degree of the first.

This appears by reviewing the two forms of R in (1),

Art. 141
;

for in the first form a
, i, dm enter in the nth

degree, and in the second form bQ , fti, . . . bn enter in the mth

degree. Also it may be seen that two terms, one selected from

each form, are (- l)
mn

b m am
n and a n bn

m
.

(2). If the roots of both equations be multiplied by the same

quantity p, the resultant is multiplied by p
mn

.

This is evident, since any one of the mn factors of the form

op
-

j3g becomes p (ap
-

)3?), and therefore p
mn divides the result-

ant. From this we may conclude that the weight of the resultant

is mn, in which form this proposition is often stated.

(3). If the roots of both equations be increased by the same

quantity, the resultant of the equations so transformed is equal to

the resultant of the original equations.

For we have
R=a bn(ap -pq),

where n signifies the continued product of the mn terms of the

form ap
- pq ;

and this is unaltered when ap and f3q receive the

same increment.

(4). If the roots be changed into their reciprocals, the value of

R obtainedfrom the transformed equations remains unaltered, except

in sign when mn is an odd number.

Making this transformation in
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we have

but

!,...-(- l)"^', ftft . . . n = (- 1) [
n

;

00 Co

substituting, we obtain

R = fl J * (- !)' n (a,
-
ft)

=
(- !)"".

From this it follows that in the resultant of two equations

the coefficients with complementary suffixes of both equations,

e. g. ,
(im ;

tf i, 0m-i, &c., may be all interchanged without alter-

ing the value of the resultant.

(5). If loth equations be transformed by homographic transfor-

mation ; that is, by substituting for x

\X + jl

and each simple factor multiplied by X'x + p, to render the new

equations integral; then the neic resultant R' =
(Xp

-
A'/

To prove this, we have

$ (x) =aQ (x- ai) (x
- at)

. . . (x
- am),

also

i / \ \' \ ( P*1*
~ M

x - ar becomes (A
- A a,.)

x -
^ ^-fA A ar

Multiplying together all the factors of each equation,

a becomes a (X
- AX) (A

- A'a 2)
... (A

- A'am),

I, ^o (A
-

A'fr) (A
- \%) ... (A

-
A'j3n )

Also, since a r , /3r are transformed into ^
0r

A/ ^, ^ x/^,A A ar A A p,-

(Xft
-

ar
-
ft becomes
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whence

a n
b
m U (or

-
j3r) becomes a n

b
m
(A//

- AV)
wn

II (ar
-

]3r),

that is, the resultant calculated from the new forms of (x) and

iff(x) is

(\n'-\'n)
mnK.

This proposition includes the three foregoing ;
and they are

collectively equivalent to the present proposition.

143. Euler's Method of Elimination. When two

equations 0(#)
=

0, and \[/(x)
=

0, of the mth and nth

degrees

respectively, have any common root 0, we may assume

+(*) s
(a

-
0) M*) 9

where

0i (a) ^Pi%
m-1 + p2x

m~* + . . . +p

the coefficients heing undetermined constants depending on 0.

Whence we have

an identical equation of the (m + n- l)
th
degree. Now, equating

the coefficients of the different powers of x on both sides of the

equation, we have m+n homogeneous equations of the first

degree in the m + n constants p l9 p^ ... pm , q ly qz ,
... qn ;

and

eliminating these constants by the method of Art. 125, we

obtain the resultant of the two given equations in the form of

a determinant.

EXAMPLE.
\

Suppose the two equations

ax2 + bz + c = 0, aix~ + bix + c\ =

to have a common root. "We have identically

or

(q\a -p\ a

= 0.
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1 '2

'

>

= o.

Equating to zero all the coefficients of this equation, we have the four homo-

geneous equations

q\a -p\(ii = 0,

q\b + 02 -p\b\ -
p*(ii = 0,

q\c + q-ib -p\c\ -p*bi =
0,

q<>c
-
pzci =

;

and eliminating the constants p\, jt>2 , q\ t qz, we obtain the resultant as follows :

a 0i

b a b\ a\

c b c\ li

c a

The student can easily verify that this result is the same as that of Art. 140.

144. Sylvester's Dialytic Method of Elimination.

This method leads to the same determinants for resultants as

the method of Euler just explained ;
but it has an advantage

over Euler's method in point of generality, since it can often be

applied to form the resultant of equations involving several

variables.

Suppose we require the resultant of the two equations

(x)
= a xm + tfiz*"-

1 + aza^-
z + . . . + am =

0,

$(x) = b xn + hx*-1 + b2x
n~* +... + &= 0,

we multiply the first by the successive powers of x,

and the second by

thus obtaining m + n equations, the highest power of x being

m + n - 1. We have, consequently, equations enough from

which to eliminate

^
*

t
'

>

considered as distinct variables.

Y2
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EXAMPLE.

In the case of two quadratic equations

we have
ax* + bx + c = 0, a\ x* + b\ x + c\ 0,

=
0,

1 + bx + c = 0,

+ ax =0,

0;

from which, eliminating x3
,
xz, x, we get the same determinant as before, columns

now replacing rows :

i b c

145. Bezowt's Method of Elimination. The general

method will be most easily comprehended by applying it in the

first instance to particular cases. We proceed to this applica-

tion (1) when the equations are of the same degree, and (2)

when they are of different degrees.

(1). Let us take the two cubic equations

ax* + bx* + ex + d =
0, #i#

3 + ha? + c& + dL
= 0.

Multiplying these two equations successively by

ai and a,

a\x + bi ax + b,

aiX* + biX + d ax* + bx + c,

and subtracting each time the products so formed, we find the

three following equations :

(ah) a? +(acl}x + (ad^
=

0,

(acjx* + {(ad!) + (bd}}x + (bd,)
=

0,

0.
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By eliminating from these equations ar, x, as distinct

variables, the resultant is obtained in the form of a symmetrical

determinant as follows :

(ad) (ad,)

(aCl) (ad,) + (be,) (bd,)

(ad,) (bd,) (ed,)

To render the law of formation of the resultant more ap-

parent, the following mode of procedure is given :

Let the two equations be

ax* + bo? + ex* + dx + e =
0,

x* + <?i#
2 + d,x + 61

=
;

whence, following Cauchy's mode of presenting Bezout's method,

we have the system of equations

a bx3 + ex
2 + dx + e

+ c,x
2

ax + b ex- + dx + e

,x + bi CiX* + diX + e\

ax2 + bx + c dx + e

+ ix -t- Ci ,x + e\

ax* + bx* + ex + d e

which, when rendered integral, lead, on the elimination of

x3
, a?, x, to the following form for the resultant :

(ab,) (ac,) (ad,) (aefi

(ac,) (ad,) + (be,) (ae,) + (bd,) (be,)

(ad,) (ae,) + (bd,) (be,)
+ (cd,) (ce,)

(ac,) (be,) (ce,) (de,)
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If, now, we consider the two symmetrical determinants,

(obi) (ac,) (ad,) (ae,)

(ac,) (ad,) (ae,) (be,) (be,) .(bd,)

(ad,) (ae,) (be,) (ce,)

'

(bd,) (cd,)

(ae,) (be,) (ce,) (de,)

the formation of which is at once apparent, we observe that It

is obtained by adding the constituents of the second to the four

central constituents of the first.

Similarly in the case of the two equations of the fifth degree

ax5 + bx* + ex* + dx* + ex +/ = 0,

,= 0,

the resultant is obtained from the three following determi-

nants :

(ab,) (ac,) (ad,) (ae,) (a/,)

(ac,) (ad,) (ae,) (af,) (If,)

(ad,) (ae,) (af,) (bf,) (of,)

(ae,) (af,) (bf,) (of,) (df,)

(be,) (bd,) (be,)

(bd,) (be,) (ce,)

(be,) (ce,) (de,)

by adding the constituents of the second to the nine central

constituents of the first, and then adding the third to the central

constituent of the determinant so formed. The student will

have no difficulty in applying a similar process of superposition

to the formation of the determinant in general.

(2.) We take now the case of two equations of different

dimensions, for example,

ax* + bx* + ex
2 + dx +- c =

0, a,x~ + b,x + c,
= 0.

Multiplying these equations successively by

a, and ax2
3

a,x + b, (ax + b)x
z
,
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and subtracting each time the products so formed, we find the

two following equations :

0.

+ (aci)ar
- da^x - ea^ =

0,

(aci)x* + {(bd)
-
da^x-

-
{dbi + ca^x -

eb^

If, now, we join to these the two equations

a tx
3 + biX* + CiX =

0,

+ biX + d =
0,

we shall have four equations by means of which *3
,
#2

,
x can be

eliminated
;
whence we obtain the resultant in the form of a

determinant as follows :

(ffbtj
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so that we must be on our guard lest the factor am
m~n

(i.
e. the

result of substituting these roots in (x)) enter the form of the

resultant obtained. From these two equations we derive, as in

the above ease (1) the following n equations :

+ az x
m~2 + . . . + am

am

a xn
~l + a l xn

-'t + . . . + a^ _ anx
m-n + a^x-"1

-1 + . . . + am

l^x"-
1 + b 1x^~+ ... + bn_ l

~
bnx"

'

which, when rendered integral, are all of the (m
-

l)
ih

degree ;

whence, eliminating xm
~l

,
xm

~z
,

. . . x as independent quantities

between these n and the m - n equations,

b 'x
m~ l + b,x

m-2 + b2x
m~z + . . . =0,

b
Qx

n + bi%
n-1 + . . . + bn = 0,

we obtain the resultant in the form of a determinant of the mth

order, the coefficients of the first equation entering in the degree

n, and the coefficients of the second equation entering in the

degree m ;
whence it appears that no extraneous factor can enter

;

and that the resultant as obtained by this method has not been

affected by the introduction of the zero roots.

If R be the resultant of two equations, (x)
=

0, ^ (x)
=

0,

whose degrees are both equal to m, the resultant Rf

of the

system

X0 (x) + nt (*)
- 0, X> (x) +M (x)

=

for each of the minors (ar bs) ,
which in Bezout's method con-
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stitute the determinant form of J2, becomes in this case

Aar + inbr,
\'ar + f/br

\as + pbs ,
\'as + f/bs

whence R' =
(A//

-
A'ju)

m
-ft, since R is a determinant of

order m.

146. We conclude the subject of Elimination with an ac-

count of a method which is often employed, but which has the

disadvantage, when applied to equations of higher degree than

the second, of giving the resultant multiplied by extraneous

factors. The process about to be explained is virtually equiva-

lent to that usually described as the method of the greatest

common measure.

In forming by this method the resultant of the two quadratic

equations
ax~ + bx + c = 0, #i#

2 + biX + Ci = 0,

we multiply these equations successively by

! and tf, Ci and c,

and subtract the products so formed. We thus find the two

linear equations

(abi) x + (ad)
=

0,

(aci) x + (bci)
=

;

from which, eliminating x, we have

As the degree of this expression is four, and its weight four,

it can contain no extraneous factor, and is a correct form for the

resultant.

To form by the same process the resultant of the cubic

equations

a& + bx* + ex + d =
0, a^y? + b^ + CiX + d^ =

0,

we multiply these equations successively by a^ and a, di and d,

and subtract each time the products so formed. We have then

(ab,}x- + (ac,}x + (ad,)
=

0,
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Now, eliminating x between these two quadratics by means
of the formula above obtained, we find for their resultant

(ab,) (ad,)

(ad,) (cd,)

(ac,)

(ad.) (Id,)

(ad) (ad,)

(bd,) (cd,)

an expression whose degree is 8 and weight 12, in place of de-

gree 6 and weight 9
;
whence it appears that it ought to be di-

visible by a factor whose degree is 2 and weight 3. This factor

must therefore be of the form I (be,) +m(ad,). We proceed
now to show that it is (ad,) ; and to find the quotient when this

factor is removed.

For this purpose, retaining only the terms which do not

directly involve (ad,), we have

(ab,)(cd,){(ab,)(cd,) + (ca,)(bd,)},

which is divisible by (ad,), since

(be,) (ad,) + (ca,) (bd,) + (ab,) (cd,)
- 0.

Expanding the determinants, and dividing off by (ad,) ,
we

find ultimately the quotient

(ad,)*
- 2 (ab,) (cd,) (ad,) + (bd,) (ca,) (ad,)

+ K) 3K) + (ab,) (bd,)*
-

(ab,) (be,) (cd,),

which, being of the proper degree and weight, is the resultant.

If we proceed in a similar manner to form the resultant of

two biquadratic equations, by reducing the process to an elimi-

nation between two cubic equations, we shall have to remove an

extraneous factor of the fourth degree, which is the condition

that these cubics should have a common factor when the biquad-

ratics from which they are derived have not necessarily a com-

mon factor
;
and in general, if we seek by this method the

resultant of two equations of the nth
degree, eliminating between

two equations of the (n l)
th

degree, we shall have to remove

an extraneous factor of the order 2n 4. This method there-

fore is inferior to all the preceding methods
;
and it cannot be
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conveniently used except "when, from the nature of the investi-

gation, extraneous factors can be easily removed.

147. Discriminants. The discriminant of an equation in-

volving a single variable is the simplest function of the coeffi-

cients, in a rational and integral form, whose vanishing expresses

the condition for equal roots. We have had examples of such

functions in Arts. 43 and 68. We proceed to show that they
come under eliminants as particular cases. If an equation

f(r) = has a double root, this root must occur once in the

equation ./"(;/')
=

;
and subtracting xf(x] from nf(x), the same

root must occur in the equation nf(x]
-
xf(x)

= 0.

This is an equation of the (n
-

l)
th

degree in x
;
and by eli-

minating x between it and the equation/' (x]
=
0, which is also of

the (n
-

l)
th

degree, we obtain a function of the coefficients whose

vanishing expresses the condition for equal roots. The degree

of this eliminant in the coefficients of f(x) is 2 (n
-

1) ;
and its

weight is n(n
-

1), as may be seen by examining the specimen

terms given in section (1), Art. 142. Expressed as a symmetric
function of the roots of the given equation, the discriminant will

be the product of all the differences in the lowest power which

can be expressed in a rational form in terms of the coefficients.

Now the product of the squares of the differences n (ai
- a2)

2

can be so expressed; and since it is of the 2(n
-

l)
th

degree in

any one root, and of the n(n -
l)

tk
degree in all the roots, it

follows that the discriminant multiplied by a numerical factor

is equal to a z
(
n~ l

) n (a t
- a 2)

3

;
and is, moreover, identical with

the eliminant just obtained.

If the function /(#) be made homogeneous by the introduc-

tion of a second variable y, the two functions whose resultant is

the discriminant of f(x] are the differential coefficients of f(x)

with regard to x and y, respectively. In the same way, in ge-

neral, the discriminant of a function homogeneous in any num-
ber n of variables is the result of eliminating the variables from

the n equations obtained by differentiating with regard to each

variable in turn.
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EXAMPLES.

1 . Find the discriminant of

0o#3 + 30i a;
2 + 3#2# + 03 = 0.

"We have here to find the eliminant of the two equations

aox2 + 20i # -f 02 = 0,

01 #2
-f 202X + 03 = 0.

This is, by Art. 140,

or it may be written in the form of a determinant, as follows, by Art. 144 :

20i 3

'

= 0.

It can be easily yerified that this value of the discriminant is the same as that

already obtained in Art. 42.

2. Express as a determinant the discriminant of the biquadratic

o
4

4- 4i a;
3 + 6rt2#2 + 403# + 4 = 0.

"We have here to eliminate x from the equations

aQxz + 3aiz2 + 3 2 # + s = 0,

aix* + 3a2xz + Za^x + a* =0.

By the method of Art. 144 the result is

00
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4. Prove by elimination that J = is one condition for the equality of three

roots of the biquadratic of Ex. 2.

Since the triple root must be a double root of

and therefore a single root of a\x- + 2a2 x + as = ;
and since it must also be a

single root of

ZT-j = a^x* + 2ai x + a2 = 0,

it follows from the identity

that the triple root must be a root common to the three equations

aox2 + 2a\x + a2 = 0,

a^x* + 2a2x + 3 = 0,

a2 x* + 23* + 04 = 0.

Hence the condition

flO #1 #2

a i a? #3

That the other condition for a triple root is / = may be inferred from Ex. 10,

p. 315 ; for when three roots are equal the discriminant must vanish, and it is of the

form // 3 + w/2
.

5. Prove that the discriminant of the product of two functions is the product of

their discriminants multiplied by the square of their eliminant.

This appears by applying the results of Art. 141 and the present Article ; for the

product of the squares or the differences of all the roots is made up of the product

of the squares of the differences of the roots of each equation separately, and the

square of the product of the differences formed by taking each root of one equation

with all the roots of the other.

148. Determination of a Root common to two

Equations. If R be the resultant of two equations

U = amy^

and a any common root, then

dR dR dR
da i do, 2 dn^

da l
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To prove this we substitute in R, for and 6
,
a
Q
- U and

# -
F, and obtain an identical equation connecting U, V which

is satisfied by every value of x, and which is of the form

R =
Iffy

+ Fi/> ;

whence
dR Tr deb T_ (l\l>

ddp dap dcip

and when a is a common root of the equations U =
0, and F= 0,

we have, substituting this value for x in the preceding equations,

dR _ dR
a
dap dap+l

9

which proves the proposition.

A double root of an equation can be determined in a similar

manner by differentiating the discriminant A.

149. Symmetric Functions of the Roots of two

Equations. If it be required to calculate a symmetric func-

tion involving the roots a a ,
a2 ,

a3 ,
. . . aw , of the equation

(x)
= a

()
xm + a,x

m~ l + a2xm
-z + . . . + am =

0, (1)

along with the roots )3i, |32, j3 3, . . . j3, of the equation

^(y) - ^y
n + ^yn~l + ^yn~z + + * =

o, (2)

we proceed as follows :

Assume a new variable t connected with x and y by the

equation
t = \x + ny ;

and let ybe eliminated by means of this equation from (2). The

result is an equation of the nth
degree in x whose coefficients in-

volve X, ju, and t in the nth
power. Now let x be eliminated by

any of the preceding methods from this equation and (1). We
obtain an equation of the mnth

degree in t, whose roots are the

Jim values of the expression Xa + /u/3.
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If, now, it be required to calculate in terms of the coefficients

of (.*)
and

\f/ (y) any symmetric function such as 2a^ |3
?
, we

form the sum of the (p + q)
ih

powers of the roots of the equation

in t. We thus find the value of S (Aa + ju/3)^ expressed in

terms of the original coefficients and the several powers of \

and
fj..

The coefficient of \p^ in this expression will furnish

the required value of 2ap
/3'

7 in terms of the coefficients of

j(x) and^(y).

MISCELLANEOUS EXAMPLES.

1. Eliminate x from the equations

ax- + bx + c = 0,

x*=l.

Multiplying the first equation hy x, we have, since 3? = 1,

bx~ + ex + a =
;

and multiplying again by x, we have

ex2 + ax + b = 0.

Eliminating x~ and x linearly from these three equations, the result is expressed

as a determinant
'

% b c

If the method of symmetric functions (Art. 141) be employed, and the roots of

the second equation substituted in the first, the resultant is obtained in the form

(a + b + c) (aar + bw + c) (aw + ba? + c).

2. Eliminate similarly x from the equations

ax* + bx3 + cx~ + dx + e = 0,

x5 = 1.

The result is a circulant of the fifth order obtained by a process similar to that

of the last example. By aid of the method of symmetric functions the five factors

can be written down (cf. Ex. 27, p. 284). An analogous process may be applied in

general to two equations of this kind.

3. Apply the method of Art. 143 to find the conditions that the two cubics

<j> (x) = ax3 + bx2 + ex + d =
0,

iff (x) s a'x* + b'x* + c'x+d'=Q

should have two common roots.
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"When this is the case, identical results must be obtained by multiplying </> (x) by
the third factor of ty (x) ,

and
i// (x) by the third factor of $ (x). We have, therefore,

(\'x + p) $ (x}
= (xx + At) $(x),

where A, /i, A', /*' are indeterminate quantities. This identity leads to the equations

\'a - \a
r = 0,

\'b + fj.'a
- \b' - fj.a'

=
0,

\'c + pb Ac' /jib'
= 0,

\'d + (j.'c
- \d' - p.c'

= 0,

n'd
-

/j.d'
= 0.

Eliminating A.', /*', A, p from every four of these, we obtain five determinants,

whose vanishing expresses the required conditions. There is a convenient notation

in use to express the result of eliminating from a number of equations of this kind.

In the present instance the vanishing of the five determinants is expressed as

follows :

0,

the determinants being formed by omitting each column in turn.

4. Prove the identity

a2 2a)3 &
a oj8' -f a P

a'
2

2o'j8' j8'

This appears by eliminating x and y from the equations

ax + py = 0, ax + ffy = ;

for from these equations we derive

(ax + )8y)
2 = 0, (ax + 0y) (a'x + py) = 0, (a'x + j3V)

2 = 0.

The determinant above written is the result of eliminating #2
, xy, and y

2 from the

latter equations ;
and this result must be a power of the determinant derived by

.eliminating x, y from the linear equations.

5. Prove similarly

2oj8j8'

3a'2 j8' 3a')8'
2

s
(a)3'

- a'
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This appears by deriving from the linear equations the following equations of

the third degree :

(ax -f 0y)
3 = 0, (ox + ft/)

3
(ax -f /8'y)

=
0, &c.,

and eliminating x3
,
xz

y, xy*, y
3

.

6. Prove the result of Ex. 12, p. 278, by eliminating the constants A, p, A.', n',

from four equations

,
Act 4-

fJ. Aj8 -f fj.

connecting the variables in homographic transformation.

7. Given

U = Auz + 2Buv + Cv*,

+ 2bxy

determine the resultant of U and V considered as functions of x, y.

Since

~U= A(u - av)(u- fiv),

if U and V vanish for common values of x, y, some pair of factors, as u av and

u av, must vanish
;
whence forming the resultant of u av and u a'v, and re-

presenting the resultant of u and v by JS(w, v), we have

R(u av, u a'v) = (a a')
2
R(u, v) ',

and multiplying all these resultants together, we find

E(UZy r.) = A*A'*(a - a')
2

()8
-

0')
2
(a
-

jB')
8

(ft
-

a')
2
{*(, v)}

4
,

or

8. Prove that the equation whose roots are the differences of the roots of a given

equation f(x)
= may be obtained by eliminating x from the equations

/(*) = 0, /'(*) +/"(*) ^ +/'"(*)Y^ + &c. = ;

and determine the degree of the equation in y (cf. Art. 44).



CHAPTER XIV.

COVARIANTS AND INVARIANTS.

150. Definitions. In this and the following Chapters the

notation

(0o, 0i, 2 ,
.. . 0)(a?, yY

will be employed to represent the quantic

~l + an y
n

,

which is a homogeneous function of x and y, written with bino-

mial coefficients. If we put y =
1, this quantic becomes Z7"w of

Art. 35.

Let be a rational, integral, and homogeneous symmetric

function, of the order 37, of the roots a 1? a 2 ,
a 3 ,

. . . an of the

equation TJn =
(0 , 0i, 2 . . . 0) (#, l)

n =
0, this function involv-

ing only the differences of the roots ;
then if

1 1 1

^ - x a*- x*
' '

an - X

be substituted for a
1?
a2 ,

. . . aw , respectively, the result multi-

plied by Un
w

(to remove fractions) is a covariant of Vn if it in-

volves the variable x
9
and an invariant if it does not involve x.

From this definition of an invariant we may infer at once

that

<V $ (ai, a2 ,
a 3 ,

. . . an)

is an invariant of Un when is made up of a number of terms

of the same type, each of which involves all the roots, and each

root in the same degree OT.
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These definitions may be extended to the case where < (the

function of differences) involves symmetrically the roots of seve-

ral equations Up =
0, U

q
=

0, Ur
=

0, &c., the roots of these

equations entering in the orders w, w', w", &c. . .
, respectively.

We may substitute for each root a,
--- as before, and remove
a -x

fractions by the multiplier ~U/ IIfUr
*"

. . . . &c. If the result

involves the variable a?, we obtain a covariant of the system of

quantics UP9 Vq ,
Ur ,

&c.
; and if it does not, is an invariant

of the system.

151. Formation of Covariants and Invariants. We
proceed now to show how the foregoing transformations may
be conveniently effected, and covariants and invariants cal-

culated in terms of the coefficients. With this object, let the

symmetric function of the differences of the roots be expressed

in terms of the coefficients as follows :

00*0 (a i, Cto, . . . an)
= F(a09 0i, 2 , . . . 0).

Now, changing the roots into their reciprocals, and conse-

quently a into n , &c., ar into an_r) &c. (that is, giving the suf-

fixes their complementary values), we have

O/>(ai, ao, ... aw)
= F(an > 0/_i, . . . 0o),

where
i//

is an integral symmetric function of the roots, and F
the corresponding value in terms of the coefficients. This

function is called the source* of the covariant derived therefrom.

Again, substituting 01 -
x, a2

-
a?, . . . a n -x for cti, az ,

... a,,,

and consequently Ur , &o., for ari &c. (see Art. 35), we find

Thus, by two steps we derive a covariant from a function of

the differences, and find at the same time its equivalent calcu-

lated in terms of the coefficients.

To illustrate this mode of procedure we take the example in

the case of the cubic

tfo
2 S (a

-
|3)

2 = 18 (a?
- a a2) ;

* This term was introduced by Mr. Roberts.

z2
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whence, changing the roots into their reciprocals, and a
,
a

ly #2 ,
a

into #3 , #2, i, aoy we have

ff
2 2a3

(|3
- jY = 18

( 2

2 -

Again, changing a, j3, 7 into a - #, ]3
-

#, 7
-

#, and i, ff2 ,
#3

into Z7i, IÎ Z7"3 , respectively, we find

*o
2

S(/3
-
7 )

2

(*
-

)

2 = 18 (tT,
-

ZTiZTi).

The second memher of this equation becomes when expanded

Z7i Z7"3
- Uf =

(^0^2
-
a\] a? + (a as - a^ a2)

+ (i #3
-

/).

This covariant is called the Hessian of Z73 . We refer to it

as 5^, since -5" is its leading coefficient.

As a second example we take the following function of the

quartic :

2

S(/3- 7 )

2

(a-S)
3 = 24( ^-4^3 + 3^2

); (1)

whence, changing the roots into their reciprocals, and aw Oi9 2, <%, a

into a^ a3, #2, i, >
we have

'S(7
-

)3)
2

(8
-

a)
2 = 24 (atao-^a, + 3<).

These transformations, therefore, do not alter equation (1) :

again, since in this case ^ (a, |3, 7, S) is a function of the diffe-

rences of the roots, ty is unchanged when a - a?, j3
-

a?, &c. . . . ,

are substituted for a, j3, 7, S. We infer that a<>a
- 4aiaz + 3#2

2

is an invariant of the quartic Z74 .

We observe also, in accordance with what was stated in

Art. 150, since

that each of the three terms of which $ is made up involves all

the roots in the degree CT, which is here equal to 2.

In a similar manner it may be shown that

= - 432

is an invariant of the quartic.
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There is no difficulty in determining in any particular case

whether $ leads to an invariant or covariant, for if ^ leads to an

invariant, =
;//,

that is is unchanged (except in sign, when

its type term is the product of an odd number of differences of

the roots, i. e. when its weight is odd), when for the roots their

reciprocals are substituted, and fractions removed by the simplest

multiplier (en a2 a3 ... an)

a
. From another point of view an

invariant may be regarded as a covariant reduced to a single

term.

152. Properties of Covariants and Invariants.

Since is a homogeneous function of the roots, the covariant

derived from it may be written under the form

U'

ai-#
J

a2 -#' an -.r,

where w is the order, and K the weight of $.

Also, as $ is a function of the differences, we may add 1 to

each constituent such as -
,
thus obtaining

-
. Again,

Of X Q)- X

multiplying each constituent by x, the covariant becomes

Uw
( a& aiX anx \fL I

~~;T 9 I

~" ~
>
~ ~

> I /Ja^ \ai
- x a* x an - x)

which may be reduced to the form

/J_ _!_ i \
(- IYUC X-2^ /

^ _ i T^l
f<

'i__iV

where
1 1

a2/ \x an

whence it is proved that the covariant form

- x

is unaltered when for ab a-., ... a rt , a?, their reciprocals are sub-

stituted
;

fl
, i, 2, ... an changed into an , _i, . . . a

, respectively,

and the result multiplied by (- 1)"^*-
2
*.
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Now if any covariant whose degree is m be written in the

form

(S^S l,S,,...S.)(x,l)'; (1)

changing a
,

... an , %, into an ,
an.h ... a0j -, we have

x
another form for this covariant, namely,

, Cl, (72) ... CL) -,

and as this form is an integral function of x of the same type as

(1), we have, by comparing the two forms,

m = ms - 2K
,
BQ

=
(- 1)" ft, . . . Sr = (-!)" ft_. ;

thus determining the degree of the covariant in terms of the order

and weight of the function $, and showing that the conjugate

coefficients
(i.

e. those equally removed from the extremes) are

related in the following way :

If F(am #1, #2 ,
... an)

be any coefficient of the covariant,

(~l)
K
F(an , </_!, an_2 ,

. . . tf
)

is its conjugate.

From the expression for the degree of a covariant in terms

of TS and K, namely ms 2c, we may draw the following im-

portant inferences :

(1). Ifa^ is an invariant, n-sj = 2*.

For, in this case $ and
i/

are the same function, and conse-

quently their weights K and ms - K also the same.

(2). All the invariants of quantics of odd degrees are of even

order.

For if n be odd, it is plain from the equation nvr = 2/c that

zj must be even, and K a multiple of n.

(3). All covariants of quantics of even degrees are of even

degrees.

For in this case nzj - 2c is even.

(4). The resultant of two covariants is always of an even degree

in the coefficients of the original quantic.
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For, the degree of the resultant expressed in terms of the

orders and weights of the covariants is

/ ' O '\ i

'
/" O\ Of ' i '

\

We add some examples in illustration of the principles ex-

plained in the preceding Articles.

EXAMPLES.

1. Show that the resultant of two equations is an invariant of the system.

2. Show that the discriminant of any quantic is an invariant.

3. Prove directly that any function of the differences of the roots of the cova-

riant

ai x 03 a; 03

equated to zero is a function of the differences of ai, 02, as,

4. If a, ft, y ;
and a',

'

be the roots of the equations

d = 0,

V" s afx* + IVx + c = ;

express in terms of the coefficients the function

OB
-

7)
2
(a
~

') (

- P) + (7- )

2
(0
-

a') (3
-

ft) + (a
-

0) (7
-

a') (7
-

/3')-

Denoting this function by 0, we easily find

- c2
)
-

b'(ad
-

be) + c (ac
-

b*) }
.

Attending to the definition at the close of Art. 150 we observe that this function

is an invariant of the two equations ;
for it involves all the roots of the cubic in the

second degree, and all the roots of the quadratic in the first degree. If, in fact, we

make the substitutions of Art. 150, and render the function integral by multiply-

ing by IT2 U", the result will not contain x, and is therefore an invariant of the

system.

The geometrical interpretation of the equation <f>
= is that the quadratic V"

should form with the Hessian of the cubic U a harmonic system.

u. If a, , 7; a', ', 7' be the roots of the equations

d = 0,

express the following function (when multiplied by aa') in terms of the coefficients,

and prove that it is an invariant of the system :
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or, differently arranged,

(a-a')(ft-y')(y-ft') + (a-ft')(ft-a')(y-y')+(a-y')(ft-ft')(y-a)

Am. 3
{ (ad'

-
a'd)

- 3 (be'
-

b'c) } .

6. If o, 0, 7, S
; ', ft', y', 8' be the roots of the biquadratics

(a, b, c, d, e) (*, 1)*
= 0, (a', b', c', d', e') (x, 1)*

=
;

prove

aa'~2 (a
- a) (ft

-
ft') (y

-
y') (5

-
5')
= 24 {ae' + a'e - 4 (bd" + 6'd) + 6cS},

and show that this function is an invariant of the system.

7. Prove that the following function of the roots of a biquadratic and quadratic

gives an'invariant of the system, and determine its geometrical interpretation :

1 ft + y fty

1 a + 5 a5

1 a' + ft' aft'
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where F is the result of making x = in F( Un ,
Un^ . . . Z7

),

viz.,

FQ
= F(any fl_i, ... flrj,

rf A rf rf tf

and -D = # - + 2#i + 3a2 -+...

In forming a covariant by this process, the source F with

which we set out is altered by the successive operations D till

we arrive at the original function F(aQ , a^ . . . #), from which

the source was formed. Since this is a function of the differences,

the coefficient derived by the next operation D vanishes, and the

covariant is completely formed. The corresponding operations S

on the symmetric function
i//

have the effect of reducing the

degree in the roots by one each step, the final symmetric func-

tion containing the differences only. Thus the successive

operations supply between the roots and coefficients a number of

relations equal to the number of coefficients in the covariant.

The degree m of the covariant is plainly equal to the number

of times & operates in reducing i//
to 0, i. e. equal to the difference

of the weights of the extreme coefficients. And since

l 1 1
, -, ...

i a2 a

the weight of
i/i

is n-& - K, where K is the weight of (ai, a 2 ,
. . . a n) ;

hence the degree of the covariant whose leading coefficient is

a<?<t>
is n-& -

2c, the same value as before obtained. We add two

simple examples in illustration of this method.

EXAMPLES.

1 . Form the Hessian of the cuhic

a a? + 3ia;2 -f Zazx + az = 0.

Taking the function H = aQ a-> i
2

,
we find, as in Art. 151,

fl
22o2

08
-

7)
2 = 18 (aj

- ai a3).

Operating on the left-hand side by 5, and on the right-hand side by D, we obtain

- 2
22a(/3-7)

2 =
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and operating in the same way again,

o
2 22 (j8

-
y)

2 = 36 (i
2 -

o Z)

The next operation causes both sides of the equation to vanish. Hence the re-

quired covariant is, as in Art. 151,

"We find at the same time the corresponding expression in terms of x and the

roots.

2. Form the Hessian of the biquadratic

The covariant whose leading coefficient is H= aQ ao- 0i
2 is called the Hessian

of the biquadratic. Its degree is 4, since tz = 2, and K = 2
;
and .'. ntt 2/c = 4.

Changing the coefficients into their complementaries, the source of the covariant is

04 02 - 3
2

,
and we easily find

-
i
2
)
#4

-f 2 (
<?3
-

+ 2 (a\ ai a<2, s) x + (#2 4 s
2
)

154. Theorem.* In the discussion of covariants through
the medium of the roots, as in the previous Articles, the following

proposition, due to Mr. Michael Eoberts, is of importance :

Any function of the differences of the roots of two covariants is

a function of the differences of the roots of the original quantic.

Let

(Co, <? <72 ,
. . . Cq)(x> y) =CQ (x

be two covariants of the quantic

Operating with D or 8 on the identical equation

Quarterly Journal of Mathematics, vol. v., p. 48.
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and remembering that, in general, Df = affy, where

/(flo ffi> !>, #) = ^^(ai, a,, . . .
a,,),

we have

and, therefore,

similarly

whence

proving that |3 r -7* is a function of the differences of the roots

di, 02, 03, ... a,,.

155. Homographic Transformation applied to the

Theory of Covariants. Hitherto we have discussed the

theory of covariants and invariants through the medium of the

roots of equations. We proceed now to give some account of a

different and more general mode of treatment, by means of

which this theory may be extended to quantics homogeneous in

more than two variables, such as present themselves in the

numerous important geometrical applications of the theory.

Although this enlarged view of the subject does not come within

the scope of the present work, we think it desirable to show the

connection between the method of treatment we have adopted
and the more general method referred to. With this object we

give in the present Article two important propositions.

PROP. I. Let any quantic TJn be transformed by the homo-

graph ic transformation

_ \x +
IJL=

\~'~^~, ' '

A x + n

if I and I' be corresponding invariants of the tico forms, we have

r-<y-A'i*v
e

j.

To prove this, let

/ =
tfo* S (ai

- a2)

a
(a 2

-
a,)

6 ... (<n
-

a*)',

each root entering in the degree ST.
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Now, transforming the similar value of /', since x = ^ v~>A A x

we have

p
~ a

<i
=
(X-\'ap)(X-\'aqy

Again, transforming UK9 and rendering the result integral,

/ takes the form

where

flo'
= GO (A

-
A'ai) (A

- A'a2) ... (A
-

A'a*) ;

making these substitutions for all the differences, and for of,

the denominators of the fractions which enter by the transfor-

mation disappear ;
and we have, finally,

PROP. II. If $ (x) be a covariant of the quantic Un ,
the new

value of $(x], after homographic transformation, is (token rendered

integral)

The proof is similar to that of the preceding Proposition.

We have

this expression being obtained by substituting

#-ai, X QI, ... x an for ai, a2 ,
. . . an

in the source of the covariant $(x) expressed in terms of the

roots. Now, transforming, as in the previous Proposition, the

value of 0(a?) thus derived; since the factors A X'ai, A - A'a2 ,
. . .

all enter in the same degree w in the denominator (for each root

enters the source in the degree w), they will all be removed by
the multiplier </% and the transformed value of (x) is
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156. Reduction of Homographic Transformation to

a Double Linear Transformation. With a view to this

reduction let the quantic be written under the homogeneous
form

Un = axn + na^y + "^ a* xn-*y
z +...+an y

n
;

. , X + fJL

and, in place of putting as before x = ^,--- and removingA x + /i

fractions to make Un integral, let now - = w , ,'
where -

y Xx+py y

and - are the variables in the ordinary sense. The transfor-
y

mation may therefore be reduced to a linear transformation of

both the variables x and y, and can be effected by putting in

the original quantic

x = \x+ny, y = \'x'+ p'y',

the introduction of fractions being in this way avoided.

Thus we pass from a homographic transformation of

functions of a single variable to the linear transformation of

homogeneous functions of two variables.

The determinant \/LL
-

\'IJL, whose constituents are the coef-

ficients which enter into the transformation, is called the modulus

of transformation.

We are now enabled to restate Propositions I. and II. of

Art. 155, in the following way :

PROP. I. An invariant is a function of the coefficients of a

quanticy such that when the quantic is transformed by linear trans-

formation of the variables, the same function of the new coefficients is

equal to the original function multiplied by a power of the modulus

of transformation.

PROP. II. A co-variant is a function of the coefficients of a

quantic, and also of the variables, such that when the quantic is

transformed by linear transformation, the same function of the new

variables and coefficients is equal to the originalfunction multiplied

by a power of the modulus of transformation.
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The definitions contained in the preceding propositions are

plainly applicable to quantics homogeneous in any number of

variables, and form the basis of the more extended theory of

covariants and invariants referred to in the preceding Article.

We give among the following examples an application in the

case of a quantic involving three variables.

EXAMPLES.

1 . Performing the linear transformation

x = \X+/j.Y, y =
if

ax* + 2bxy + cy* = AX.* + 2BXY + CY*,
prove that

AC-B* =
(\fjLi

-
\ip)*(ac

-
b*}.

2. Performing the same transformation, if

(a, b, c, d, e)(xt yY=(A, B, C, D,
prove that

AE - BD + 3C2 =
(\/*i

-
Ai,u)

4
(ae

-

3. Performing the same transformation, if

ax* + Ibxy + cy* = AX* + 1BXY + CT 2
,

and
a^x* + 2bixy + ciy* = A\ X* + 2Si XY+ Ci Y*,

prove that

ACi -f AiC- IBBi =
(A^ui

-
\ifj.}*(aci + a\c - 2bbi).

This follows from Ex. 1, applied to the quadratic forms

by comparing the coefficients of K on both sides.

Whence we may infer that, if two quadratics determine a harmonic system, the

new quadratics obtained by linear transformation also form an harmonic system.

For their roots being a, and 01, /h, we have

aai { (a
-

ai)03
-

0i) + (a
-

0i) (j8
-

01)}
=

4. If the homogeneous quadratic function of thrqe variables

ax* + by* + cz* + 2/yz + Igzx + 2hxy

be transformed into

AX* + BY* + CZ* + 2FYZ+' 1GZX + 2HXY

by the linear substitution
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prove the relation

A H G

H B F

G F C



352 Covariants and Invariants.

fining our attention to the terms which multiply h
; observing

dA
also that -- = rar-\ when terms are omitted which would be

all

multiplied in the result by A2

,
A3

, &c., we have

which must hold whatever value h may have
;
hence

d<b
d<j) d$ dQ d$

y-^ = a ~-- + 2a l -:!-- + 3a2 -j- + ... + na^i -f- , (1)9 dx da^ daz da3 dan

and, substituting for $ the value

(B ,
S19 .B2 ,

...Bm)(v,y)
m

,

we have
-1

!/
+ m(m-

= DBQx
m + mD

whence, comparing coefficients, we have the following equations r

DB =
0, DB, = J5

, DB, = 2Blf . . . DBm = mBm^
which determine the law of derivation of the coefficients from

the source Bm \
the leading coefficient BQ being a function of

the differences, since DBo 0.

The calculation of the coefficients is facilitated by the follow-

ing theorem which has been proved already on different prin-

ciples :

Two coefficients of a comriant equally removedfrom the extremes

become equal (plus or minus] when in either of them a
, a^ . . . an

are replaced by any an_^ . . . a^ respectively.

To prove this, let the quantic be transformed by the linear

substitution

x = OX + Y, y = X + F, whose modulus = - 1.

Thus

(o, fli, 4 ., )(*, y}
n =

(am an_ a^2 ,
. . . aQ)(X, Y)

n
,

and, by definition, any covariant

, Z);
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whence it follows that the coefficients of the covariant equally

removed from the extremes are similar in form, and become

identical (except in sign when K is odd) when for the suffixes

their complementary values are substituted.

We may infer similarly that a covariant satisfies the diffe-

rential equation

dd>
d<j> ofy dd>

x T- -

dy dan.i dan.z a,^ aQ

as well as the equation (1) already given.

Again, if
(j>(a ,

a ly a^ . . . an ]
be an invariant of the quantic,

the former transformation of the present Article gives, employ-

ing the definition of Art. 156,

tf>K 0i> ^2, ... an)
= (A ,

A l9 Az, ... An) ;

and proceeding as before in the case of a covariant, we prove

that an invariant must satisfy both the differential equations

dd> dd> dd> dd>

a^-r- + 2 I -j- + 3^2 -f- + ... + nan-i -~ =
0,

ddi da-2. das dan

dd> dd> d<j> dd>
an -jZ- + 2a^i yZ. + 30n_2 -^ + . . . + nth ~ =

0,

either of which may be regarded as contained in the other, since

if we make the linear transformation x = Y, y = X (whose

modulus = -
1), we have from the definition of an invariant

proving that an invariant is a function of the coefficients of a

quantic which does not alter (except in sign if the weight be odd)

when the coefficients are written in direct or reverse order.

Having now explained the nature of Covariants and Inva-

riants of quantics, and the connexion between the two modes in

which these functions may be discussed, we proceed to prove

certain propositions which are of wide application in the forma-

tion of the Covariants and Invariants of quantics transformed

by a linear substitution. The student who is reading this sub-

2A
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ject for the first time may pass at once to the next chapter, where

the principles already explained are applied to the cases of the

quadratic, cubic, and quartic.

158. PROP. I. Let any homogeneous quantic of the nth
degree

f(x9 y) become F(X, Y) by the linear transformation

also let any function u of x, y become Uby the same transformation ;

then we have

(du _d\_ IdU dU\
* f

where M is the modulus of transformation.

To prove this proposition, solving the equations

we have

MX =
fix

- M, MY= - \'x

whence

^ , M nr vM =fjL, M =-n, M-=-\,dx dy dx dy

Again,

du_dUdX dUdY_lf,dU y
dx

~
dX~dx

+
~dY~dx

~ M 1
dX

du_dUdX dIJ^dY__^( dU
dy~ dXdy

+
dY dy~M\^

which equations may be put under the form

dU\ 1 d

_ dU
~dx~*(M

and since

f(\X + M F, X'JT + f[Y) . F(X, Y),



Linear Transformation. 355

1 dU 1 dU
changing X and Y into jf an<l ~rv- respectively,

the proposition is proved.

In an exactly similar manner, changing X and F into

it may be proved that

The results (1) and (2) may be applied to generate cova-

riants and invariants as we proceed to show.

Suppose /(a?, y) and u to be covariants of any third quantic t',

where -v may become identical with either as a particular case ;

also, denoting by FC (X, Y) and Uc the same 'covariants ex-

pressed in terms of the X, Y variables and the new coefficients

of v after linear transformation, we have, by Prop. II., Art. 156,

the identical equations

M*F(X, Y) - FC (X, F), and MU^UC ;

whence, substituting from these equations in (1),

du du\_ (dUc dUc\

-foJ-
c

(dY' ~~dl)'

^ du\ .

proving that /( ,
-

I is a covanant of v.
dx

And in a similar manner it is proved from (2) that

leads to an invariant or covariant of #, according as u is of the

nth or any higher order.

We add some applications of this method of forming inva-

riants and covariants.

2x2
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EXAMPLES.

1 . If
,

be substituted for x and y in the quartic (a, b, c, d, e) (x, y)
4 = If,

and the resulting operation performed on the quartic itself, show that the invariant

I is obtained.

We find

(, b, c, d, e)
-~ V = 48 (00

- 4M + 3*2).

2. Prove, by performing the same operation on Hx , the Hessian of the quartic

(see Ex. 2, Art. 153), that the invariant /is obtained.

Here we find

a, 6, c, d, e} (i, -
-^
VHx = 72 (at* + 2bcd - ad* - eb* - c).(

3. Prove that

(a, b, c, d) -, -\Gx= -

where Gx is the cubic covariant of the cubic (a, b, c, d} (x, y)
3

.

4. Find the value of

where w = (a, *, <j, rf) (, y)
3

.

^*w. - 9JT*.

159. PROP. II. If 0(^ > ^i, ^2> ...
flf) ^ an invariant of

the form ( , i, 2 ,
. . .

) (, y)
TO

,
^w^ w <?^y quantic of the ntjl or

any higher degree,

dnu dnu dnu dnu

invariant or covariant of u. To prove this, let

x

and, transforming as in the last Proposition,

, d , d _ d d
*' + y ~~* + b

'
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also, transforming ,
we have

whence

(x>*-+Y'^U-(,'t
+

'!)";

and writing this equation when expanded under the form

(A, A, A, ... D)(X'9 T')" = (</o, rfi, </, . . . dn)(af, y'}
n

,

we have, from the definition of an invariant,

> ,A,A, . .A) =

showing that (c? ,
dh d*, . . . dn] is an invariant or covariant.

When ar, y and #', y' are transformed similarly, as in the

present Proposition, they are said to be cogredicnt variables.

EXAMPLES.

1. Let the quadratic

oo*2 + 2ai*y + oay
2 become A X* + 2AiXY+ A 2 T2

.

We have then, as in Ex. 1, Art. 156,

Now since

it follows from the last result, considering X', Y and x', y as variables, that

d*Ud*U I d*U \ z
(d^ud^u / d*u \

2

j

[*r d^
"
\*5^/ )"

This covariant is called the Hessian of U.

2. When u has the values

(a,4,c,rf)(*>y) f
and (,*,, rf, )(*. sO

4
.

what covarianta are derived by the process of the last example ?

^*. (1). (ac
-

I-} x* + (ad
-

bc)xy + (bd
-

c*)y*.

(2). (ac
-
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160. PROP. III. If any invariant of the quantic in #, y:

be formed, the coefficients of the different powers of k, regarded as

homogeneous functions of the variables x', ?/', are covariants of U.

For, transforming U by linear transformation, let

(0 , 0i, 2 , . . . an) (x,y}
n = (A* A ly A Z) . . . An) (X, F)

n
;

also if x, y and #', y' be cogredient variables,

xy'-x'y = M(XY'-X'Y).
Whence

(tf , 0i, 02, . . . 0) (#, 2/)

w + *(a?y
r -

aty)
w

becomes when transformed

(A,, A 19 A,,... An) (X, Y)
n + kMn

(XT' - XT)-;

and forming any invariant of both these forms, we have

(0, *i, fr, . &>)(!,^ = JF (*, * x ,
>
2 , . . . *,) (1, Jf"*),

proving that

or that <pr is a covariant.

When (xy'
-
xy]

n
is replaced by (&o, Ji, ^>2 , bn) (x, y}

n
, we

have the following Proposition which is established in a similar

manner :

If <j> (a , i, 2, ... n)
fo 0w invariant of(a , 2 , . . . n) (a?, y)

M
,

0// ^Ae coefficients of k in

<j> (0 + ^^o, 0i + #&i, . . . an + kbn )

are invariants of the system of quantics

(0 , 0i, 2 ,
... 0n) (a?, ^)

n
, (fto, *i, ^2, ... fc) (a?, y)

n
;

or, which is the same thing,

d d d

are invariants of the system.

If, further, ^ be replaced by a covariant, we may in like

manner generate new covariants, a similar proof applying in

this case. These results hold for any number of variables.
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161. PROP. IY. // 0(a?, y} and
i// (xt y) are homogeneous

quanticSj the determinant

dx dy

dx dy

i* a covariant of these quantics.

For, transforming $ and \p by the linear substitution

x = \X
we have

gvng

dx

Whence

dX dY

dX dY
which reduces to

X^ + A'^, &+"?dx du dx du

A -r- + A -r-, u +
fj.

dx dy dx dy

fd d_<ty dj>\

\d* dy dy dx)
1

and the proposition is proved.

This covariant is called the Jacobian of and i/>,
and is often

written under the form e/(0, ^/). The Jacobian of n functions

in n variables is a determinant of similar form, and can be

shown to be a covariant by an exactly similar proof.

We now conclude this Chapter with some examples selected

to illustrate the foregoing theory. The student is referred for

further information on this subject to Salmon's Lessons Intro-

ductory to the Modern Higher Alyebra, and to Clebsch's Theorie

Der Bindren Algebraiachen Formen.
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MISCELLANEOUS EXAMPLES.

1. From the definitions, Art. 150, prove that all the invariants of the quantic

U(xy' x'y) are covariants of U, the variable being x' : y'.

Hence derive the covariants of a cubic from the invariants of a quartic expressed

in terms of the roots.

2. If 7i, Iz, /s, ... In be the same invariant for each of the quantics

'

, , , . . .
- of the order CT, where en, az. . . . On are the

x ai x az x 03 x an

roots of <(>(x)
-

0, prove that

is a covariant of $(x).

3. If cii, 02, 03, ... on be the roots of the equation

(a , ai, az ,
... an ) (x, 1)

=
;

and if

00w tf>l<J>2 </>m
= JF(0, 1, 2, On),

where 0i, ^2, . 0m are all the values of a rational and integral function of some

or all the roots obtained by substitution, find the equation whose roots are the

(h

m values
oi-^-, given 82

<J>
= 0.

Am. F(U ,Ult Z72,
... UH)

= 0.

4. Denoting by o, )8, y, and a', )8', 7' the roots of the cubic equations

, 1)3=0,

prove that the following covariant of the system

expressed in terms of the coefficients is

18 { (ac' + as - 2bb') x* + (ad' + a'd- be' - b'c] x + (bd' + b'd- Ice'} } .

5. Express the identical relation connecting three quadratics in terms of their

invariants.

Let U = aixz + 2bixy + ciy
z

,



we have
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9. Prove that the functions

o02 0i
2
, 0004 4ai3 + 302

2
, 0o

2
0s

which depend on the differences of the roots of the equation

(o, 01, 2 ,
... )(*, l)

n =0,

give rise to covariants of the degrees

In -4, 2n- 8, 3 - 6.

10. Prove that the coefficient of the penultimate term in the equation of the

squares of the differences of any quantic leads to a covariant of that quantic of the

fourth degree in the variahles.

11. Prove that the product of two covariants of the same quantic whose sources

are
<f>
and ty may he written under the form

.D2^) + &c----

Mr. M. Roberts.

12. Prove that the mth
power of the quantic

(0o, 01, 02, ... 0n) (a?, !)'

may be represented by

0n + *D (0n) + !*(*.) + j-y-^ J(*,)
+ &C.

Mr. M. Roberts.

13. Prove from both definitions of a covariant that any covariant of a covariant

is a covariant of the original quantic or quantics.

14. If 01, 02, 03, ... a, and j8i, jB2 , 3,
. . . ft, be the roots of the equa-

tions

U= (o, i, 3 ,
... )(*, !)= 0, and Fs (J , *i, ^2, ... *)(*, 1)"

=
;

from the simplest function of the differences of their roots, viz., 2(op
-

j88), it is-

required to derive a covariant of the system U and V.

This question will be solved if we express

-* (*-,)(*-*,)

in terms of the coefficients of U and V.

For this purpose we have

and if 17" and F" be written as homogeneous functions of x and y,

o tfUog U
x-ay

~
dx

'

x -iay
~

dy
'

Whence, substituting these values in the last equation, we have

_-
* (x

-
ay) (x

-
(3y) dx dy dy dx

'

which is the Jacobian of 17 and V. It should be noticed also that the leading coef-

ficient of J(V, V) is 00*1 - 0i*o-



Miscellaneous Examples. 363

15. To reduce the two cubica

U s (a, *, c, d} (*, y), V = (', V, c', d') (*,

to the forms
IdF IdF

>
~

by means of a linear transformation

the coefficients in which are to be determined in terms of the coefficients of the

given cubics.

then U= (a, *, c, d) (x, y)
= (A, B, C, D) (X, F)

3
,

r= (a', b', c', ff)(x, y)
3 =

(B, C, D, E) (X, F)
3
.

Now, substituting the differential symbolsDy ,
- Dx for x, y, and ,2)rt

- T^XM M.

for X and F in the Hessian of both forms of U, we find the operational equation

a b c

b c d

ABCBCD

Similarly,

whence, operating on both forms of F, we have

a' b' c

a b c

bed
a b c

a' b' <f

b' c' d'

where / is the ternary invariant of F.

Again, since

b' c' d'

a b c

b c d

bed
a b' c'

b' c d'

V,)=I)r, and -f(Dw -Dr

performing the operation

$> (Dy ,

- Dr ) $ (x, y), or
t// (Dv ,

-
D,}

on equivalent forms we have

Q

JY

JX

a b c
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"We are now in a position to determine the coefficients of F in terms of the coef-

ficients of U and F.

For we have from former equations

Qx

V c' d'
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The transformation plainly fails when Q = 0, for the values of X and Fbecome
then identical. If U+ icFhe a perfect cube the derived functions with regard to

x and y vanish simultaneously ; whence we have the equations

b + c + KC

b + Kb'
~

c + KC'

Equating these fractions separately to - K', we find the equations

a + ttct + K'b + KK'b' = 0,

b + Kb' + K'C + KKC' = 0,

C + KC + Kd + KK'd'=0;

and solving for *c, K, KK, we may eliminate them, and thus find the condition that

U + K V be a perfect cube in the form

a b c



CHAPTER XV.

COVARIANTS AND INVARIANTS OF THE QUADRATIC, CUBIC,

AND QUARTIC.

162. The Quadratic. The quadratic has only one inva-

riant, and no covariant other than the quadratic itself.

For, if a and ]3 be the roots of the quadratic equation

U 3 ax* + 2bx + c = 0,

the only functions of their difference which can lead to an inva-

riant or covariant are powers of a- j3 of the type (a
-

/3)
2p

;
the

odd powers of a -
/3 not being expressible by the coefficients in

a rational form. Whence, expressing

H -^
\a

- x p-Xj

by the coefficients, we conclude that the quadratic has only the

one distinct invariant ac - b
z

,
and no covariant distinct from U

itself.

163. The Cubic and its Covariants. In the present

Article the covariants of the cubic will be discussed as examples
of the principles already explained, and in the following Article

the definite number of covariants and invariants will be deter-

mined.

In the case of the cubic a covariant is obtained from a

function of the differences of the roots most simply by sub-

stituting

/3y + ax, ya + fix, a]3 + yx for -
a,

-
j3,

-
y,

and thus avoiding fractions ; for, transforming a -
|3, we have

1 1 (|3y 4- ax) + (ya +
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and when fractions are removed we arrive at the above trans-

formation (the order being equal to the weight in the case of

either function of the differences H or G) . This mode of trans-

forming functions of the differences will now be applied to the

covariants of the cubic.

(1). The Quadratic Covariant, or Hessian, Hx .

Transforming both sides of the equation

2

(a + o>|3 + w
2

y) (a + u>
2

/3 + wy) = 9 (a?
-

2),

we have

a<?{(a + w/3 + ct>
2

y)#-f |3y

thus showing that

Lx + ^ and MX + Ml (See Art. 59.)
are the factors of

Hx = (0 2
-
a?) x

z + (0 03 -

where

LI =
j3y + <*>ya + w

2

a]3, MI =
/3y + a>

2

70 + wa/3.

From the form of the Hessian in terms of the roots in Art. 151,

or from the relations of Art. 43, we conclude that when a cubic

is a perfect cube, each of the coefficients of the Hessian vanishes

identically.

(2). The Cubic Covariant, Gx .

We have, as in Art. 59,

fl
3

!(<*
+ w]3 + o>

2

7)
3 + (a + w

2

/3 + a>7)
3

)
= -27 (a<?a3 -H 2^3 -30 i 2J.

Transforming both sides of this equation as before, we find

where Gx denotes the covariant formed from the function of dif-

ferences G
;
and operating as in Art. 153 on the source derived

from G (the sign being changed in order that G may be the

leading coefficient), we easily obtain

GX = (0
2
#3
~ 3flf 102 + 20!

8

)
tf
3 + 3 (0 01 03 + 01

2
2
- 20 3

2

)
X9

~
(03

2
#0
- 303 2 0l + 203

3

)
- 3 (03030 + 2

2
01

- 20$ 0!
2

)
X.
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Resolving (Lx+ Ltf + (Mx +^fi)
3

,
we may obtain the factors

of Gx ; or, more simply, since the factors of G are /3 + 7 -
2a,

7 + a -
2)3, a + /3

-
27, the factors of Gx are1121121 12

. i i

i

7 -a? a -#'7 -a? a-# fi-x'a-x )3
- x y-x

9

when fractions are removed.

We have obviously the following geometrical interpretation

of the equation Gx = : If three points A,B,C determined by
the equation U = be taken on a right line

; and three points

A\ B', C', such that A' is the harmonic conjugate of A with

regard to B and C
;
1? of B with regard to C and A ; and C'

of C with regard to A and j5 ; then the points A', &, Cr

are

determined by the equation Gx = 0. (Compare Ex. 13, p. 88,

and Ex., Art. 65.)

(3). Expression of the Cubic as the difference of two cubes.

This can be effected, by means of the factors of the Hessian,

as follows :

(Lx + la)
3 - (Mx +M^ = 27 U

For, as in Ex. 6, p. 114, we have

D-M* = v- 27 ()3
-
y)(y -a) (a

-
|3).

Transforming this equation as before, the first side becomes

(Lx + L,)*- (Mx

and the second side

Substituting from previous equations, we have

(4). Relation between the Cubic and its Covariants.

The following relation exists :

A U\
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For, from Ex. 6, p. 114,

4J9r3)=-27a 'A,

and transforming this equation as before,

whence A U* = Gx
z +

(5). Solution of the Cubic.

The expression

(J7v/A + ft)* + (CVA -
ft)*

is a linear factor of 7".

For, from the relations in (2) and (3), we have

2a *(Lx + L>Y= 27(Z7\/I -
ft),

- 2tf
3

(Ifo + .a/i)
s = 27

(Vv/A + ft) ;

and since

+ zo -
(jfo +

is a factor of Ut
the proposition follows.

This form of solution of the cubic is due to Prof. Cayley.

164. Number of Invariants and Invariants of the

Cubic. The following method of determining the number

of covariants and invariants of the cubic is similar to that

employed by Professor Cayley for the same purpose :

The cubic has only two cavarianta, their leading terms being

H and G ; and only one invariant, viz., the discriminant A, where

2A = # 2 + 4J2"
3

,
or & = az d* + 4ac3 -6abcd+4:dP-3bz

c*.

To prove this, let 0(a, ]3, 7) be any integral symmetric

function of the differences of the roots (of order w), expressible

by the coefficients in a rational form.

We have then (Art. 36),

<ft(a 9 P,y)=F(a9 H,G) (1)

(where r remains to be determined) ; and, in the first place, if $

be an even function of the roots, G can enter this equation in

even powers only, since H is an even function of the roots.
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Eliminating the even powers of G by means of the relation

G* + 4F3 = a2
A,

we show therefore that in the case of an even function of the

roots equation (1) takes the form

(fl>(a,P, 7)=F(a,H9 A),

which may be written

a-0 (, ft 7) = F. (a, #, A) + S Ff(* A)
, (2)

where OT is the order of (a, j3, 7), and F an integral function.

It is now necessary to prove the following Lemma :

No function ofH and A exists which is divisible by a.

For, suppose Fp (H, A) to be divisible by a
;
then making a

vanish, we have

*,(&',*') -Op

where H' = - b\ A' = 4c?63 - 36V, the values of H and A when

a vanishes. This equation is plainly impossible ; for, eliminat-

ing b by means of the equation Hf = - b
z

,c and d remain in the

equation connecting H' and A'.

Wherefore equation (2) must assume the form

a*<j>(a 9 p, 7)
= F (a, H, A);

for the first side of the equation is expressible as an integral

function of the coefficients ; therefore so must the second side

also, and consequently the fractional part disappears.

Now, to extend this result to odd functions of the roots, we
have only to multiply the first side of the equation by

and the second side by 27G, for G must be a factor of every odd

function, since H is even.

We are now in a position to prove the original proposition

as to the number of invariants and covariants. For since a*

is of the form

according as $ is an odd or even function of the roots, it follows
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in the first place that there cannot be an invariant of an odd

degree in the roots, since OF (a, H, A) does not remain the

same function when a, b, c, d are changed into rf, c, b, a,

respectively ; and the only invariant of an even degree must be

a power of A, since if F(a, H, A) contained a or H besides A, it

could not remain the same function when the coefficients are

similarly interchanged.

Again, the cubic has only two distinct covariants
;
for it has

been proved that every function of the differences 0?$ is of one

of the forms

F(a, H, A), or GF(a, H, A).

Now, considering these forms as the leading terms of cova-

riants, every covariant must be expressible as

,,A), or

that is, every covariant is expressible in a rational and integral

form in terms of Hx and Gx , along with U and A ;
or in other

words, there are only two distinct covariants.

165. The duartic. Its Covariants and Invariants.

We have shown already that the quartic has two invariants, /

and J (see Art. 151). From the functionsH and G of the diffe-

rences of the roots we can derive two covariants Hx and Gx,

whose leading coefficients are H and G ; for from the relation

we derive, by the process of Art 151,

2 S (a
-

/3)
2

(x
-

y)
3

(x
-

S)
2 = 48 (UUZ

- W) ;

and, expanding UU2
- Vf 9

we have

Hx 3 (0 2
-
aflx* + 2 (0 3

-
fliOaX + (a 4 + 20! 3

-

+ 2 (!< - 0203)
X

In a similar manner, since

G = 2
03 + 2!3 -

2u2
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we obtain the covariant

which reduces to the sixth degree ;
and if it be written as

follows :

Gx = AQx
& + Aiz5 + A 2 x* + A3 x* + Ax* + A 5x + A6 ,

we find, by expanding the above, or more simply, by forming
the source A 6 ,

and performing the successive operations of

Art. 153, the following values of the coefficients :

2fl3
3 A 5

=- a*an

A = fluffs

Here it will be observed that, when A z is determined,

A 2, AI, and A may be obtained from A^ A 5, and A 6 by

changing the suffixes into their complementary values, and

altering the sign of the whole, in accordance with what was

proved in Art. 152.

We proceed in the following Articles to discuss the leading

properties of these two covariants of the quartio.

166. anadratic Factors of the Sextic Covariant,*
Gx . As the quadratic factors of Gx enter prominently into the

following discussion, we proceed in the first place to find expres-

sions for those factors in terms of the roots of the quartic, and to

deduce their principal properties.

Since the factors of G, expressed in terms of a, ]3, 7, 8, are

the factors of Gx are obtained from these by substituting

^' ;~-fl' ^ ~>v~l? for a
> & * ^ respectively, and mul-

ju ~~ u j/
jc/

*& 7 *' o

tiplying each factor by to remove fractions.
a

* See a Paper by Prof. Ball, Quarterly Journal of Mathematics, vol. Tii. p. 368.



Quadratic Factors of the Sextic Covariant. 373

Whence, denoting these factors by w, i\ wy we have

rrf l l l l
au = U( : +

V*-p X-y X-a X-

rrf - l 1 1
ac = U

aw
" '

which valuesjof u, r, ?r, arranged in powers of a?, are

W =
(|3

+ 7-a- )
-
2(f3y

-
a%)x + j3y(a + 8)

-
a8(j3 + 7),

r =
(7 + a -/3-SX- 2(7a -|3S)a?+ 7(i3 + S)-j38(7 +o)i (2)

w=a +3-

and, consequently, 32Gx = a*iivn\

From equations (1) we easily find

and from these and similar equations we have

v -

fj.
v v A \-fji a

where A, ju, v have the usual meaning (Ex. 17, Art. 27) ;
and

consequently,
r \2 f \"\ 2 f\ ^2 A.

whence

- U -
v] U? = (w^\ -

/u + r-vA -
v) (w <y\

-
/u
- r-vA - vj.

Since, as this equation shows, the factors on the second side

are both perfect squares, we may assume

-
if + c -vA - v = f,

-
yu

- v y\ - v = 2 / ;
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we have, therefore,

w <v/A - /u
= Ui + uz~,

v

u \/v- fi

from which values we conclude that u, v, w, the quadratic factors

of Gx,
are mutually harmonic.

167. Expression of the Hessian by the Quadratic
Factors of Gx . Since

combining the terms in pairs,'and noticing that

the quantities between brackets being u, v, w, we have

which is the required expression for Hx .

168. Expression of the Uuartic itself by the Una-
dratic Factors of Gx . From equations (3) a symmetrical

value may be obtained for U
; for, substituting in those equa-

tions in [place of A, /u, v their values in terms of the roots

Pi 9 Pz9 PS of the equation 4p
3 -

Ip + J= 0, we find

2

(v*
-

tf)
= 16 (p,

-
p3) U, a* (w*

-
u*)

= 16 (p,
-
pj U,

from which equations, by means of the value of Hx in the pre-

ceding Article, we obtain

(flti)
= 16

(Pl U- Hx), (avf
= 16 (p2U-Hf), (4)
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We now make the substitutions

uz - A!X\ v* ^ A2F2
,

w* - A3Z2
,

where A x ,
A 2 , A3 are the discriminants of w, v, w ;

thus replacing

w, t>,
?r by three quadratics X, F, Z whose discriminants are

each equal to unity. By means of this transformation the

for ms of the quadratics are further fixed, and the identical re-

lation connecting their squares (see (1), Ex. 5, p. 361) is ex-

pressed in its simplest form. Calculating the discriminants, we
find

A, =
(j3 + y

- a- S) {/3y (a + 8)
-
7a()3 + S) )

with similar values of A3 and A3 ;
whence we have

A 1
= -(A- ju)(X-v), A2

= -Ou-v)Ou-A), A3=-(v -X)(v- /u).

Making these substitutions, the preceding equations become

(Pi
~ P) (Pi

-
PS) X~ = EX -

Pi U,

(pz
-

/o3) (p2
-

pi) YZ=HX
-

PzUy (5)

(PS
-

PI) (pa
-

PS) ^ 2 = EX -

from which are easily deduced the following values of U and

Hx,
and the identical equation connecting X, F, Z:

- U =
PIX* + PZ Y* + P3Z\ (6)

where, as has been proved, X, F, Zare three mutually harmonic

quadratics whose discriminants are reduced to unity in each case.

The value of Gx may be expressed in terms of X, F, Z as fol-

lows. Since

we easily find

Gx =
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169. Resolution of the Qjiartic. From the equations

we find

17=
(Pl

-
p2) Y*

where X z

,
Yz

,
Zz have the values determined by equations (5) ;

and breaking up these values of U into their factors, we have

three ways of resolving U depending on the solution of the

equation

4p
8 -

Ip + J = 0.

The resolution of the quartic has been presented by Pro-

fessor Cayley in a symmetrical form which may be easily

derived from the expressions already given for U and Hx .

For, since in general

l(aix
2 + 2bixy + dy*} +m (a2 x* + 2b2xy + c2y

2

)
+ n(a*tf + 2b3xy + c3y

2

)

is a perfect square when

S/2

(aid
-
b?) + 2mw (az c3 + 3 c2

- 2bz b3)
=

0,

IX + mY+ nZ is a perfect square when I
2 + m* + n* = 0,

X, Y, Z being mutually harmonic, and the discriminants of each

reduced to unity.

The resolution of U is therefore reduced to finding values of

/, m9
n such that IX + mY + nZ, or

-
pi + m \PS -

pi

-
j03 Z7",

being a perfect square, may vanish when[U vanishes
;
or in fact

to satisfy the two equations

-V//03 -pi + n v//i - /t>a
=

0, /
2 + mz + n* - 0.

These equations are plainly satisfied if

/ m n

v /s
-

pi
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whence, finally,

is the square of a linear factor of the quartic U.

If it be required to resolve the quartic ic7" - \HZ ,
it appears

in a similar manner that

being a perfect square, must vanish when KU - \HX vanishes ;

or, values of 7, m, n must be determined so as to satisfy the

equations
/
2 + mz + n* = 0,

These equations are plainly satisfied if

whence

+&>.-

is the square of a linear factor of KU - \HX .

170. The Invariants and Covariants of KU - \HX .

Employing the equations (6) of Art. 168, and denoting

X 2 + Y2 + Z* by F, we may, by adding
- V to \HX

-
icV,

reduce it to the form R^X 2 + RZ Y'
Z + R3Z\ where R l +R2 + R* = .

When this is done, we have the following reduced values of

=
K(2pi

-
p2

~
p3)

+ X (2/02/03
-

=
ic(2/> 2

-
p 3

-
PI)

= K (2/o3
-

/QI
-

/o 2)
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On account of the similarity of the forms

and B lX 2

which are of a fixed type, we calculate the invariants and cova-

riants of *Z7- \HX by simply changing p l9 p 2 , pz into E^ RZy R3

in the expressions for the invariants and covariants of U.

Therefore, since

and
EZ -R3

=
(p z

-
pi) (

K - ApO, R3 -R,= (p,
-

we find the following values for the invariants of K U-\HX :

If we form the covariants H
(K ,

A),
and

Gf(K> A) ,
of

4Q - 4/c
3 - J/cX

2 + J\*

(the reducing cuhic rendered homogeneous in K, A), we find,

as M. Hermite has remarked,

Again, to calculate the Hessian of KU- \HX,
we reduce

by the substitutions

P^X* + ^r2 + pfz* - - i(iu+ jv) - -
\iu,

pSX* + p^Y* + pfZ* - (IH*+ JV),

the first of which follows from the equations

multiplying by piX
2

, pzY*, /o3
^ 2

, respectively ;
and the second

from the first by changing X\ F2
,
Z* into PI X2

, p*Y
z
, p,Z\
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In this way we find the following form for the Hessian of

KU-\Hr :

'

which may be expressed in the form

Again, since

p - 27j* = 16 fa - pj (P3
-

Pl? (Pl
-

and Gx = ^1* - 27J 2
. XTZ-,

transforming p lt /o 2 , p3 into JRly R^ RA ,
we find

/(*, A)
- 27J

(;, A)
= Q2

(P - 27J2

), (Kt x)r

We have therefore expressed the invariants and covariants

of k-Z7 \HX in terms of the invariants and covariants of U.

171. JVumber of Cot a riant* and Invariants of the

dual-tic. We proceed to prove the following proposition,

which determines the number of these functions:

The quartic has only the iwo distinct invariants I and /, and

two distinct covariants whose leading coefficients are H and G.

This proposition asserts that every invariant is a rational and

integral function of / and <7, and every covariant a rational and

integral function of U, HX1 Gx , /, J. The following discussion

is founded on principles similar to those already employed in

the case of the cubic.

Attending to the observations in Arts. 36, 37, it is plain

that if $ (a, /j, 7, ) be any integral function of the differences

of the roots expressible by the coefficients in a rational form, we

have, in general, considering the equation with the second term

removed,

tri(a,p,y9 $)-F(a,ff,I,0)9

where F is a rational and integral function, and r remains to be

determined.
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And if, in the first place, be an odd function of the roots
;

changing their signs, and subtracting the two values of 0, we
find

2^0 (a, ft 7> 8)
= F(a, ff, 7, 0) - F(ay H, /,-).

This value of plainly vanishes with G ; whence, eliminat-

ing the powers of G beyond the first by the identical equation
of Art. 37, we have

a'0(a,ft 7, $)
= GFl (ay H, J, J).

It follows that every odd function ^ of the differences of

the roots is divisible by

and removing this factor on the first side of the equation, and
C1

32 on the second side, we have

where fa is an even function of the roots, and FI a rational and

integral function.

We proceed to prove, in the second place, if $ (a, |3, 7, S)

be any even integral function of the differences of the roots, of

the order CT, expressible by the coefficients in a rational form,

that a?$ (a, ]3, 7, S) can be expressed as a rational and integral

function of a
y H, /, J.

To prove this, the following lemma is necessary :

There exists no function ofJT, /, J which is divisible by a. For,

suppose F(H, /, J) to be divisible by a. Making a vanish, we

have F(H
f

, /', </')
-

0, where H' = -
b\ T=- 4bd + 3c2

,

Jf = 2bcd - eb* - c* (the values of H, /, J, when a =
0) ;

and as

it is impossible to eliminate b, c, d, e, so as to obtain a relation

between J?', I
', J', we conclude that no relation such as

F(H', /', J'} s exists
;
and therefore there is no function of

the form F(Hy /, J} which is divisible by a.

We now proceed with the proof of the proposition ;
and

since, as has been already proved in the case of an even function

of the roots,
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we have, dividing by rt
r~s

%

ft y, 8)
= J.(, ff, J, J) + S

F>(ff' T
>Jl.

Again, since the first side of this equation is expressible as a

rational and integral function of the coefficients not divisible by

a, the second side must be a similar function of the coefficients
;

and this, by the lemma just established, is impossible unless such

^Ff (H,I, J) ,

terms as S -

p
-'

disappear.

"Wherefore

and, finally, we have proved that rt
s
0(a, )3, 7, S) may be ex-

pressed by the forms

GF(a,E,I,J), or F(a, H, I, J],

according as
<j>

is odd or even.

"We are now in a position to prove the original proposi-

tion as to the number of invariants and covariants. For, if

F(a, H, I, J) be an invariant, a and H must disappear, since

if they were present this function could not remain the same

when the coefficients are written in direct or reverse order. Simi-

larly, no odd function such as GF(a, H, I, J) can give an in-

variant. It follows that every invariant is a function of /and J.

Again, the quartic has only two distinct covariants
;
for we

have proved that every function of the differences a*$ is of one

of the forms

F(a,H,I,J) or 6F(a, H, I, J).

Now, considering these forms as the leading terms of cova-

riants, it has been proved that every covariant is expressible as

n I9 J) or

that is, every covariant is expressible in terms of Hx and Gr ,

along with V, /, and J"; and this is the proposition which

was required to be proved.
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MISCELLANEOUS EXAMPLES.

1. If U be any cubic, and Gx its cubic covariant, prove tbat the Hessian of

\ U+ nGx has the same roots as the Hessian of ?7, A. and p. being constants.

2. If 01, j8i, yi be the roots of Gx = 0, prove that

d d d tddd
where

<*>(> ft, i]
=

<t>i (ai, 0i, 71);

prove also that

801 = 8i = 871 = - 1.

3. Prove that any covariant of a quantic, whose roots are 01, aa, . . . a, satis-

fies the equation

~-
i -r,

da. dy

where 73 is the degree of
<f>

in the coefficients of the quantic, and *i = 2a.

4. Find the condition in terms of the coefficients that two cubics Uand Vshould

determine a system in involution, the roots of one cubic being the conjugates of the

roots of the other.

In this case the cubics may be written under the following form :

V=dxz + SKCX* + 3/c
2 bx + /c

3 a ;

also, writing the discriminant of pU + Fin general in the form

P*D + p*M + P
ZN+ pM' + D' = 0,

we find in this case

whence the required condition is DM'2 - D'M* = 0.

(For this condition expressed in terms of the roots see Ex. 10, p. 344).

5. Given

U =
(a, 6,c,d) (x, y)3, V =

(a', V, c', d') (x, y),

find the relation which connects the coefficients of these cubics when it is possible

to determine the ratio \ : /*, so that \U+ ^V should be a perfect cube.

In this case the Hessian of \ff+ ^V must vanish identically; and writing it

under the two forms

A2H + \fjiK* + tfH; E= Lx~ + Mxy + Ny\
where

Kx = (ad + a'e - 2bb') x* + (ad' + a'd - be - b'c) xy + (bd' + b'd - Ice') y
z
,

we have
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and elimination A2
, A/t, /t

3 from these equations, the condition is obtained in the

following form :

ac-b2 ad -be bd - <?

ae'+a'c-2bb' ad' + a'd-bc' - b'c bd'+b'd-2cc' = Q = 0.

a'c'-b' z a'd'-b'c' b'd' - if*

6. Given two cubics, f(x) and </>(ar), the roots of f(x) being o, ft, 7 (no two of

which are equal) ; prove that Q = when the roots are connected by the relation

+ (7- + (- 0.

Rationalizing, we have

also, since

comparing the coefficients of the different powers of A we can render the last equa-

tion an integral function of the roots, which again, expressed in terms of the coef-

ficients, takes the form

(3P}
3 -27(P3 -27Q) =0, or Q = 0.

7. If a quantic have a square factor, prove that the same square factor enters

its Hessian.

8. If a quartic have a square factor, the covariant Gx has that factor as a quin-

tuple factor.

9. If f(x) and <f>(x) be two quartics with unequal roots, the roots of /(z) being

a, ft, 7, 5; prove that the condition that a quartic of the system \f(x)

have two square factors may be expressed as follows :

I a a- \/<t>(d)

02
= 0.

I 5 82

10. Determine the condition in terms of the coefficients that the quartic

\f(x) + n<j> (x) may have two square factors.

In this case the Hessian of \f(x) + H>(*) is equal to K (\f(x) + n<f>(x)}, from

which identity we have five equations to eliminate A2
, A/t, /x

2
, A, KH ;

thus

obtaining an invariant In of the fourth degree in the coefficients of both equa-

tions.
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11. Prove that the resultant of two quartics becomes a perfect square when the

invariant I/& vanishes.

Rendering rational the determinant in Ex. 9, and dividing by the product of

the squares of the differences of the roots, we find, introducing the coefficients,

IM = IK? 64.R; whence, &c., &c.

12. Prove that the sextic covariant Gx of the quantic <(>(x) may be written

under the form

13. Applying the principles of Art. 171, determine the form of the sextic cova

riant of the quartic \U + p.Hx .

14. Calculate the values of H, J, G, J for the Hessian of a quartic.

15. A function
</>

of the differences of the roots of the equation

(0, 1, 2i n) (X, l)
n =

arranged in powers of an being

</>
= Ap + pAp-iOn + '. -dp.zan

z + . . . + AQ anP ;

J. . Z

prove that D^- = - nan_ijAj^, and hence show that if t//(o, i, s, r)

function of the differences so also is ^(^o 5 -^i> -^2, . . . -<4r).

16. If the discriminant of a biquadratic be written under the form

(A ,
Ah A*, .4 3) (4, I)

3
,

prove that the discriminant of this cubic is

where As is the discriminant of (o, i) 2, a) (iP, I)
3

.

17. Form the equation whose roots are

where 01, o2, 03, ... on are the roots of f(x) = 0, the resultant R of /(a;) and <(#)

being given.

Change the last coefficient bm of ^ (x) into Jw -
p, and substitute this value for

bm in the equation E = 0.



CHAPTER XVL

TRANSFORMATIONS.

SECTION I. TSCHIRNHAUSEN'S TRANSFORMATION.

172. Under the general beading of this Chapter we purpose

collecting several propositions which could not have been con-

veniently given elsewhere, and which are of importance in

connexion with the subjects discussed in the foregoing pages.

We commence with a general theorem relating to rational

transformations.

Theorem. The most general rational algebraic transforma-

tion of a root of an equation of the nth
degree can be reduced to an

integral transformation of the degree n - 1 at most.

For every rational function of a root ar of the equation

f(x) = is of the form

where \ and
i/>

are integral functions
;
also

and the denominator */>(
aO ^W ^(an)> being a symmetric

function of the roots of/(#)
=

0, can be expressed as a rational

function of the coefficients. Whence ^-~-( is reduced to an in-*W
tegral form.

Moreover, the numerator of the former fraction is a sym-
/M

metric function of the roots of the equation = 0, and may
x ar

consequently be expressed as a rational function of the coef-

ficients of that equation ;
that is, in terms of ar and the coef-

ficients of f(x).

2c
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Now, denoting by F(ar)
this integral form of ^-^, we have

4>(ar )

by division

where (OT) does not exceed the degree n - 1
;
which proves the

proposition.

In the particular cases of the quadratic and cubic it follows

that the most general rational function of a root can be reduced

to a linear function, and a quadratic function of that root,

respectively. In the case of the cubic this quadratic function

may be reduced to another form which is often useful, as fol-

lows : Denoting the quadratic function by $ (0), and dividing

the cubic/(0) by <//(0), we have

proving that

whence it appears that the most general transformation of a root

of a cubic may be reduced to a homographic transformation.

In connexion with the proposition here established it is easy

to justify the remarks made in Arts 59, 66, relative to the solu-

tions of the cubic and the biquadratic equations. With this

object in view, let and ^ be two rational functions of n quan-
tities 01, a2 ,

. . . an (which may be considered as the roots of an

equation), each having only p values when the roots are inter-

changed in every way. Denoting these values of both functions

in order by

01, 02, 03, .-. 0J>,

we have, for every integer/,

0!V + 02^'

a symmetric function of the roots, since it is the sum of all the

possible values which 0^ can take.
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In this way we obtain the system of equations

0! +fr + 03 + + fa =TM

01^1 + 02^2 + 03^3 +

where T ,
I7

,, ... T^ are all symmetric functions of a,, a2,a3 ,
. . . a*.

Solving these equations, we find at once 0i expressed as a

symmetric function of
t//2 , ^3 ,

. $p-i ;
and therefore by the

present proposition reducible to a rational and integral function

of
T//I

of the degree p -
1, since

i//
has only p values considered as

a function of ai, a 2 ,
. . . an . Now considering the special cases

referred to (1), when p =2, and n = 3, it is proved that a

linear relation connects and
<//

in terms of symmetric functions

of CM, a2 ,
a3 ;

and (2), when jt)
=

3, and n =
4, and

t//
are in a

similar manner shown to be connected by a homographie

relation.

173. Formation of the Transformed Equation. The

transformation explained in the preceding Article was first em-

ployed by Tschirnhausen for the reduction of the cubic and

biquadratic. We proceed to explain the method of forming

in general the equation whose roots are

(ai), (a), ^ (a 3),
.... ^ (a),

where ^ (x) is a rational and integral function of x of the degree

n-1.
Let

(a?
= a + atf

Eaising (x) to the different powers 2, 3, ... n in succession, and

reducing the exponents of a? in each case below n (by dividing

by /(a?) and retaining the remainder), we have

.... 4

/ + fa + Irf + +

2c2
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Substituting for x in these equations each of the roots of the

equation /(#)
=

0, and adding, we find, if Si, $2 ,
S3 , &c., denote

the sums of the powers of the roots of the required equation,

Si = na + ciiSi + az sz +.... + aw_iSn_i,

$2 = nb + bi8i + 2 S2 + .... + bn.i8n.iy

Now, expressing Si 9 a ,
. . . sn_i in terms of the coefficients of

/(#), we have Si9 S29 . . . Sn determined in terms of the coeffi-

cients of (x) and f(x] ;
we are also enabled by Art. 133 to

express the coefficients of the equation whose roots are 0(aJ,

0(az), . . . 0(a) in terms of Si9 Sz , . . . Sn ,
and therefore finally

in terms of the coefficients of (x) and /(a?) ;
thus theoretically

the transformation is completed.

174. Second Method of forming the Transformed

Equation. There is another way of finding the final equation

in by elimination, which we now give. Since

if this equation be multiplied by x, #2
,

. . . xn
~l

, and the expo-

nents of x reduced below n by means of the equation f(x) = 0, we
have in all n equations to eliminate dialytically the n - 1 quan-
tities x, x*, . . . xn

~ l
. We thus obtain the transformed equation

in the form of a determinant of the nth
order, entering into

the diagonal constituents only. For example, if f(x]
= xn - 1,

we obtain the transformed equation in the following form :

O/Q d) G/i d>2 &n-l

= 0.

#1 #2 a3 . , . a -<f>

Although these methods of performing Tschirnhausen's

transformation appear simple, yet if they be applied to par-
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ticular cases the result usually appears in a complicated form.

Professor Cayley, by choosing a form of the transformation

suggested by M. Hermite, was enabled to take advantage of

the theory of covariants, and thus to complete the transforma-

tion for the cubic, quartic, and quintic. "We shall content our-

selves with showing in an elementary way how Professor Cayley's
results for the cubic and quartic may be obtained.

175. Tschirnhauseii's Transformation applied to the

Cubic. Let the cubic equation

ax3 + 3fo 2 + 3cx + d =

be written under the form

z3 + 3Hz + G =
;

and let it be transformed by the substitution

y = A + KZ + z
2

.

If Zi, z2, z3 be the roots of the cubic, and yi, y2 , y* the correspond-

ing values of y, we have

2/2-2/8
= (*-*3)(ic-*i),

2/3 -2/i
= (s3-2i)(c-z2), (1)

and consequently,

23/1
- ya

- y3
=

(2*i
- z2

- z3)
K + (2z2 z3

-
3 i

-
i z2),

2^/2-2/3- ?/!
=

(2sz -S53-2JK+ (2z3 Zx
- Z,Z2

- Z,33), (2)

2^/3
-

2/1
-

2/2
=

(2s3
-

Si
-

2)
K + (22!Z2

- Z2 S3
-

ZaZj).

Wherefore, if the equation in y with the second term removed be

we have from equations (1) and (2)

H'-H., G'=GK ,
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where HK and GK are the Hessian and cubic covariant of

K3 + 3HK + G
;

and the transformation is therefore completed, since y\ + yt + y*

can be easily determined.

176. Tschirnbausen's Transformation applied to

the Uuartic. In this case we do not attempt to form directly

the transformed quartic, but prove the following theorem, which

shows how this transformation may be resolved into two others.

Theorem. Tschirnhauseri*s transformation changes a quartic

U into one having the same invariants as ITT + mHx ,
and therefore

in general reducible to the latterform by linear transformation.

To prove this, let the quartic

#4 + piX* + p2 x* + p3x +
jt?4

=

be transformed by the substitution

y = #o + aiX + azx* + a^x*.

If a?i, #2, #3 , #4 be the roots of the quartic, and y^ ya , y*> y\

the corresponding values of y, we have

x\ x

From these equations we proceed to show that

-!, .
= Po + Qo (#2#3 + #1#4),

where P and Q involve the roots of the quartic symmetrically.

In the first place, we find

where A has its usual value, viz., xzx3 + x^ ;
and secondly, since

we find again
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Finally, since the other terms in the product are obviously of

the same form as P + QoA, we have proved that

whence

(ys
-

2/3) (yi
-
yO =

(v
-

/i) (P +

Now, introducing /oi, p2 , p3 ,
in place of X, /u, v, this and the

similar equations preserve their forms
; whence, altering P and

Qo into similar quantities, we obtain the equations

(y
-

2/3) (yi
- yj = 4

f/o3
-

/oa) (P
-

(y>
-
yO (y

-
yO = 4 (PI

-
PS) (P

-

yO = 4 (^ 3
- ^0 (P

- Qp3),

which lead at once to the invariants of the transformed quartic ;

and comparing their values with the invariants of K 27 - \HX

given in Art. 170, the theorem follows at once.

177. Reduction of the Cubic to a Binomial form by
Tscbirnhausen's Transformation. Let the cubic

ax*

be reduced to the form y
3 - V by the transformation

y = % + PX + x<i -

If a?!, #2 , #3 be the roots of the given cubic, and y a root of

the transformed cubic, we have the following equations to deter-

mine p and q :

q = y ly

x? + px2 + q
=

x? +px3 + q=

from which we find

X*

Xl
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Adding XL + #2 + xz to this value of p, we have

p + Xi + x2 + #3
= -

;

it follows (see Ex. 25, p. 57) that there are only two ways of

completing this transformation, as the values of p, q ultimately

depend on the solution of the Hessian of the cubic.

17S. Reduction of the (tuartic to a Trinomial Form
by Tschirnhausen's Transformation. Let the quartic

ax* + 4bx* + 6cxz + 4dx + e

be reduced to the form y
4 + Py* + Q, in which the second and

fourth terms are absent, by the transformation

y =
q + px + xz

.

If a?!, #z, #3, XL be the roots of the quartic ;
also yif y2 two

distinct roots of the transformed quartic, we have the follow-

ing equations to determine p and q :

-f q

+ q = - yl9 x? +px* + q

from which we find

And, adding x^ + xz + x3 + a?4 to this value of p, we have

p + Xi + #2 + #3 + #4 =

hence, by Ex 5, p. 130, it follows that there are three ways of

reducing the quartic to the proposed form, the determination of

which ultimately depends on the solution of the reducing cubic

of the quartic.

179. Removal of the Second, Third, and Fourth

Terms from an Equation of the n'
h
Degree. We begin
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by proving the following proposition, which we shall subse-

quently apply:

A homogeneous function V of the second degree in n quantities

#1, #2, #3, . . . xn can be expressed in general as the sum of n squares.

To prove this, let F, arranged in powers of #1, take the fol-

lowing form :

F = Pi *1
2 + 2&*! + .#!,

where PI does not contain x^ x2y . . . . xn ;
also Qi and jRt are

linear and quadratic functions, respectively, of x2, #3, ...#.

We have then

also, assuming

Fi =1 - ~ = P*rf
\

where P2 is a constant, and Q2 and Rz do not contain xl and

we have, similarly ,

so that

Proceeding in this way, we arrive ultimately at Rn-\ -
n-\

which is equal to Pn#n
2

;
and the proposition is proved.

Now, returning to the original problem, let the equation be

of
1 +p lx

n~ l

+P&P-* + . . .+pn =
;

and, putting

y = ax* -f fix
3 + yX* + $X + f,

let the transformed equation be

y
n + Q>y

n- 1 + Q2y
n-2 + . . . + Q = 0,
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where, by Art. 173, ft, ft, . . . ft, . . . are homogeneous functions

of the first, second, . . . rth degrees in a, |3, 7, S, e.

Now, if a, /3, 7, S, e can be determined so that

ft =
0, ft =

0, ft =
0,

the problem will be solved. For this purpose, eliminating c from

ft and ft, by substituting its value derived from ft =
0, we

obtain two homogeneous equations,

of the second and third degrees in a, |3, 7, S
;
and by the pro-

position proved above we may write Rz under the form

u* - v* + w* -
f,

which is satisfied by putting u = v and w = t. From these

simple equations we find 7 = la + w/3, and S = Aa + wii/3 ;
and

substituting these values in Q3
=

0, we have a cubic equation to

determine the ratio )3 : a. Whence, giving any one of the

quantities a, )3, 7, S, c a definite value, the rest are determined,

and the equation is reduced to the form

y
n + Qty

n-' + Q&n-5 + . . . + ft,
= 0.

In a similar way we may remove the coefficients ft, Q2 , ft,

by solving an equation of the fourth degree.

Applying this method to the quintic, we may reduce it to

either of the trinomial forms*

x5 + Px + ft x5 + Px* + Q ;

or again, changing x into -, to either of the forms

x5 + Px3 + ft x5 + Px* + Q.

In this investigation we have followed M. Serret (see his

Cours d'Algebre Superieure, Yol. I., Art. 192).

* See Note A.
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180. Reduction of the Qjiintic to the Sum of Three
Fifth Powers. This reduction can be effected by the solu-

tion of an equation of the third degree, as we proceed to show.

Let

(0 , 0i, 2 , 03, 04,

where /3i, j3 2 , /3 3 are the roots of the equation

p&z + j92#* + ^^ + PQ = 0.

Now, comparing coefficients in the two forms of the quint ic,

00 =
#1 + #2 + &3 , 01 =

&l/3l + 2j32 + #3/33,

02 =
^1/3^ + bfi* + ^/3 3

2

, 03 = ^/Sx
3 + J2)32

3 + kfr
3
,

4 05

whence
=

0,

=
0,

= 0.

When these equations are taken in conjunction with the

equation

0,

we have the following equation to determine j3i, )32 ,

00 01 02 3

01 2 3 04

2 03 04 05

Also, bi, Z>2, 3 are determined by the equations

0.
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whence the question is completely solved when j3i, /3 2 , /33 are

known.

This important transformation of the quintic is a particular

case of the following general theorem due to Dr. Sylvester :

Any homogeneous function of x, y, of the degree 2n -
1, can be

reduced to theform

by the solution of an equation of the nth
degree.

The proof of the general theorem is exactly similar to that

above given for the case of the quintic.

181. <luartic*s Transformable into each other. We
proceed to determine under what conditions two quartics can be

transformed, the one into the other, by linear transformation.

Let the quartics be

U=(a, b, c, d, e)(x,yy = a(x-

F= (', b', cT, d', e') (*', y'Y ^
a'(x'- a'y') (x'~ 0V) (x'-y'y') (*'

-

and if they become identical by the transformation

x = \x +
fjty, y

f = X'x + //y,

we have, by Art. 38,

showing that the six anharmonic ratios determined by the roots

must be the same for both equations.

From these equations we have also the following relations

between the invariants of the two forms :

(1)

whence

i' 3 r
I
= -, (2)
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/3
The quantity , being absolutely unaltered by transforma-

J ~

tion when the quartic is linearly transformed, is called the

absolute invariant of the quartic. The condition expressed by
equation (2) is, therefore, that the absolute invariant should be

the same for both quartics. The condition here arrived at

agrees with the result of Ex. 6, p. 146, where it is proved that

the sextic which determines the anharmonic ratios of the roots

involves the absolute invariant, and no other function of the

coefficients, of the quartic.

The conditions expressed by the equations (1), (2), are

always necessary ; but not always sufficient, as we proceed to

illustrate by two exceptional cases.

Suppose, in the first place,

where u, v, r, ?/, t?',
are of the linear form Ix + my.

7 3 J'3

Although the condition =
-=,- is satisfied in this case, the

V U

common value of these fractions being 27, it is impossible to

transform U into F, since it is impossible to make vw a perfect

square by linear transformation.

Secondly, if U * u*v, F ^w'4
;

although the equations /' = r4
/, J' = i*J are satisfied, since

/' =
0, 7=0, J' =

0, J =
0, it is, nevertheless, impossible to

transform 7 into F.

In both these cases it would be impossible to identify the

six anharmonic ratios depending on the roots of the quartics.

In general, it may be stated that it is impossible to transform

one quantic into another by linear transformation when any
relation exists between the invariants of one of them which

does not exist between the invariants of the other (see Clebsch's

Theorie der Bindren Algebraischen Formen, Art. 92).
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MISCELLANEOUS EXAMPLES.

1 . Transform two given quadratics in x, y to the forms

auz + bvz
,

where u and v are linear functions of x and y.

2. If the coefficients of three quadratics

be connected by the relation

02 a cz = 0;

03 h <?

prove that they may be reduced by linear transformation to the forms

The determinant here written is the condition that the three quadratics should

determine a system of points or lines in involution.

3. Reduce (a, b, c, d) (x, y)
3 to the sum of two cubes by the method of

Art. 180.

4. Prove that two cubics can in general be transformed one into the other by
linear transformation.

5. Express three cubics, Z7, V, W, by means of three cubes.

Assuming

AZ7+/UF+ VW= (x-py)
3
, (1)

.and comparing coefficients, we have

-f vcs =

These equations, by eliminating A, /u, v, give three values of p, and corresponding

values of x, p, y : in this way we obtain three equations of the form (1) to deter-

mine U
y F, Win terms of
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It is easy to see that p is given by the equation

ap + 03

^zp + 3 =0.

czp + dz cap + d$

A similar method may be applied to express quantics of the n th order in terms

of n nth
powers.

6. Prove that the three roots of a cubic may be expressed as

where

From Art. 60, putting ^ /
- =

JT, where c = 1 or - 1, we derive
2 ii 3

and

K(y - a)
= ^ya + Hj. (y + a) + -ff2 , (1)

^(a - j8)
= Ha& + HI (a + )8) + #2.

These homographic relations between the roots may be written in the form

where the numerator and denominator in 6 are supposed to be divided by 2Z"; and

this being done it will be found that /, m, i', m' are connected by the relations

lm' I'm =1 = 1 + m', and the roots a, 7, may be represented as o, 6 (a),
2
(a) ;

3
(a) being equal to a. It is important to observe that the equations (1) are con-

sistent, the sum of the expressions on the right-hand side being zero ; that is to

say, ITmust have the same sign in all three, any other combination of signs being

inadmissible. (See Serret's Cours d'Algcbre Superieure, Vol. II., Art. 511.)

7. Given a binary cubic U and its Hessian Hx,
the cubic being satisfied by the

ratios x : y and xf : y'; prove that

i *T +<T1 dx dy

V xy'-x'y

is an absolute constant, A being the discriminant of U.

Reduce U to the sum of two cubes by a linear transformation whose modulus

= 1, and the constant may be easily shown to be . This is another form of

V-3
the homographic relation of Art. 60.

8. Prove that a rational homographic relation in terms of the coefficients con-

nects any two rational functions of the same root of a cubic equation ; but that

the relation is not rational when the roots are different.
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9. Transform the quartic

(a, *, ,*,)(*,!)*

into one whose invariant I shall vanish.

Assuming y = a;
2

-f 2^ + ,

and making the invariant / of the transformed equation vanish, we have

P3)
2
(4>-/>1)

2 =0, (1)

where
<J>

is a known quadratic function of y, not involving

Expanding (1), we have

which determines
</>,

and consequently 77, by means of a quadratic equation ;
and

may have any value.

By a similar transformation / can he made to vanish.

10. Prove that the most general rational transformation of a quartic f(x) may be

reduced to the transformation

=
P Q

y p-x q-x'

"When P = Rf(p) /'(?), and Q = - Rf(q] f'(p), show that the second term

of the transformed quartic is absent.

11. Prove that the transformation

axz + l&x + y

may he resolved into the three successive transformations (1) a homographic

transformation
; (2) a transformation of the roots into their squares ; (3) a homo-

graphic transformation.

12. If p he any integer, prove that

where 2o and Si are symmetric functions of x\ t #2, #3, #4.

13. If <f>(x, y) and ty(x, y} he two covariants of the binary form

of the degrees .p and y, respectively ;
and if

,(x-!r,V yrfy.

he expanded in the form

(Fo, Fi, F2 ,
.... F^KZ, T)

prove that F
, Fi, F2, . . . . Fp are covariants of U.
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SECTION II. HERMITE'S THEOREM.

182. Homogeneous Function of Second Degree
expressed as Sum of Squares. We have already shown,

in a general way (Art. 179), that a homogeneous function of

the second degree in the variables may be reduced to a sum of

squares, no hypothesis being made as to the nature of the coef-

ficients of the function considered. We now return to the con-

sideration of this problem when the coefficients of the function

are supposed to be all real ; and we proceed to determine, in

magnitude and sign, the coefficients of the squares in the

transformed function.

Let F(sri 9
#2 >

. . . #n) be a homogeneous function of the second

degree in n variables with real coefficients ; and let us suppose

that it is reduced by the method of Art. 179 to the form

Pi (a?i

where all the coefficients of this new form are real.

Making now the linear substitution

Xi = x l

we have

Since the modulus of this transformation is equal to 1, the

discriminants of both these forms of .Fmust be absolutely equal.
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Denoting, therefore, the discriminant of F by A tt,
we have

and similarly, when the variables ay+i, #/+2 ,
... xn are made to

vanish in both forms of F, we have

Now, givingj the values 1, 2, 3, &c., we find

A2 A 3 An
Pi = A!, ^3 =

, ^3 =,... ^n =
-r ;

Ai A2 A^_i

and the coefficients are determined in terms of the discriminant

of the original quadratic form in n variables and the discrimi-

nants of the forms in n -
1, n -

2, &c., variables derived from

the given form by causing one, two, &c., of the variables to

vanish in succession in the manner just explained.

Again, since the constants in the form F(x^ #2 , %n) are

in number \n(n -
1) less than in a form composed of a sum of

squares of n linear functions of n variables, we learn that F can

be reduced to a sum of squares in an infinity of ways. It is

most important, however, to observe that in whatever way the

transformation is made, provided it is real, the number of coefficients

(affecting these squares) which have a given sign is always the same.

This theorem, which is due to Sylvester, is easily proved ;
for

suppose the contrary possible, and let

where the number of positive coefficients on both sides of this

identity is not the same. Making all the terms positive, by

transferring those affected with negative signs to the opposite

sides of the identity, we shall have a sum of / squares identically

equal to a sum of m squares, where m is greater than /. Now,

substituting such values for xl9 #2 ,
. . . xn that each of the

/ squares may vanish (which may be done in an infinity of

ways), we find a sum of m squares identically equal to zero,

which is impossible.
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183. Hermite's Theorem. The principles explained in

the preceding Article have been applied by M. Hermite to the

determination of the number of real roots of an equation f(x) =

comprised within given limits. The special form of the function

F which he makes use of for this purpose is

r n

2^ a,-
2

<*r
-

in which Xi, a?2 ,
. . . xn are any variables in number equal to the

degree of the equation ;
and r takes all values from 1 to n in-

clusive, the roots of the equation being alt a2 ,
. . . a,t ; also p is

any arbitrary parameter.

This form is plainly a symmetric function of the roots of

the equation f(x) =
; and as the coefficients of this equation

are supposed to be real, F will be also real, when expressed in

terms of these coefficients and
/o, provided the parameter p be

given any real value. If the roots m, a3 ,
a3 ,

. . . an are not all

real, the assumed form of F will not be obtained by real trans-

formation
;
but it is easy to deduce from it, as follows, another

form which will be so obtained.

If ai and a z be a pair of conjugate imaginary roots, we may
write

ai = >' (cos a + i sin a), a2
= >* (cos a - i sin a).

Denoting for shortness xl + ar xz + a,.
2#3 + . . . + ar

n~ l xn by Yrt

and substituting these values in Y} and Y2 ,
we find

where U andjF are real
;

also putting

- = r (cos $ + i sin 0),
- = r (cos

1

^
- i sin

CL\ p Oz - p

the part of the function F depending on ai and a2 , viz.,

-
p CLl~ p

2D2
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becomes

which may be also written as the difference of the squares

|- Fsin |Y- 2;-f
CT Sin| + FoosgY;

\

proving that two imaginary conjugate roots introduce into F
two real squares, one of which has a positive and the other a

negative coefficient.

We now state Hermite's theorem as follows : Let the equa-

tion f(x) =
(x

-
di)(#

- a2)
. . .'(x

- an)
= have real coefficients

and unequal roots : if then by a REAL substitution ice reduce

Y?
ai

-
p ct 2 -p a^-p an - p

n'here Yr
= x\ + ar ocz + ar

z
%3 + . . . + ar

n~ lxn *

(1)

^o a sum ofsquares, the number of squares having positive coefficients

uill be equal to the number ofpairs ofimaginary roots of the equa-

tion f(x)
=

0, augmented by the number of real roots greater than p.

This theorem follows at once from what has preceded if we

consider separately the parts of the function (1) which refer to

real roots and to imaginary roots, for obviously there is a posi-

tive square for every root greater than p, and we have proved

that every pair of conjugate imaginary roots leads to a positive

and negative real square, without affecting the other squares

independent of these roots.

The number of real roots between any two numbers pi and

ps may be readily estimated. For, denoting in general by Pj

the number of positive squares in F when p =
pj, by Nj the

number of roots of the equation f(x)
=

greater than
/o/,

and by
21 the number of imaginary roots, we have

Pi = JVi + /, P, = N, + 7;
whence

Ni - N, = Px
- P2 ,
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proving that the number of real roots between p and
/o2

is equal

to the difference between the number of positive squares when

p has the values pi and
/o2 , respectively.

The number here determined may be shown to depend on a

very important series of functions connected with the given

equation. In order to derive these functions we consider F
under the form [Art. 182)

The number P expresses the number of coefficients in this

form which are positive, or, which is the same thing, the number

of the following quantities which are negative :

A 2

P (2)

We proceed now to calculate Ai, A2 ,
. . . A/, . . . An in terms

of p and the roots of the equation f(x] =
;
and as the method

is the same in every case it will be sufficient to calculate A3 ,

i. e. the discriminant of the original form of F when all the

variables except a?i, tf2 ,
xz vanish.

Writing for shortness vr
ar - p

,
we have in this case

F3
= 2vr (#i 4- ar#2 + a,-

The discriminant of this form is

which may be written as the product of the two arrays

1 1

a 2

a 2

CL\V\ 2 V-2

a2V
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and, consequently,

/ \2 I

\a<i 03) ^a 3

1 1 1

In an exactly similar manner we find

^ V (i> 02 a3 ,
. . . ay)

where the notation v (i, a 2 ,
a3 ,

. . . a/) is employed to represent

the product of the squares of the differences of a it a 2 ,
a3 ,

. . . a/.

Hence the quantities Ai, A2 , A/ . . . An are all determined.

Now, multiplying the numerator and denominator of each

of the fractions in the series (2) by / ( p) ,
each value of A is

rendered integral, and the series becomes

where

F,

V
F2

V =
(p

-
ai) (/o

- a 2)
----

(/o
- a),

Fi = 5 (p
- a 2) (p

- a3)
----

(/o
- an),

F2 = SV (ai, a2) (p
- a 3)

----
(/o

- an),

F3
= 2V (01, a 2 , a 3) (p

- a4)
---- (p

- an),

2, 0.3, a

Since negative terms in the series (3) correspond to varia-

tions of sign in the series F", Fi, F2, F3 ,
. . . . Fn ,

it is proved

that the number of variations lost in the series last written,

when p passes from the value
/oi

to the value p 2 ,
is exactly equal

to the number of real roots of the equation/ (p) =0 comprised

between ^i and pz .

184. Sylvester's Forms of Sturm's Functions. It

will be observed that the functions F, Fi, F2 , &c., arrived at

in the preceding Article have the same property as Sturm's
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functions
;
from which in fact they differ by positive multipliers

only, as was observed by Sylvester, who first published these

forms in the Philosophical Magazine, December, 1839. The

identity of the two series of functions may be established as

follows :

"We make use of the notation already employed in Ex. 7,

p. 312, and we propose to show that the Sturmian remainder

RJ differs only by the positive factor jj from the function P}.

From the example referred to, we have

Rj~Ajf(x)-Bjf(x), (1)

where

AJ = Ao + \\x + \ zz? + - +

BJ =
no + jUiiC

+
ju2
#2

-i- . . . +

and from the value of r_,- there given we have immediately

*W =
7J SV (eti,

a 2 ,
a 3 ,

---- ay),

showing that the leading coefficients in JRj and Vj differ only

by the factor jj. We now proceed to prove that the last co-

efficients in these functions differ only by the same factor.

For this purpose, dividing the identity (1) by /(a?), substituting

in it from the equation

^M-^a-^-u fL-i

/(*)

"
X X* X*

and comparing coefficients, we find

\%\ + .... -f A_i S_2 ,

Also, putting x = in (1), we have

and, substituting for /u in terms of Ai, A 2 ,
A 3 , &c.,

- = AO 'S'_i ~l~ Ai'^o
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whence, giving to A
, Xi, .... Xy_i the same values as in the

calculation of rrt_y,
we find

f-l

Now, referring to the calculation of Ay in Art. 183, and put-

ting p =
0, or vr = ,

in the value of Ay there found, we find
ar

for the determinant just written the value

^y(ai,
a2,

a3 ,
. . . ay) ^

^rf *

aia-jOs ... ay

hence, giving pn its value in terms of the roots, we have

r = (- l^yy 2V (cu, a2 ,
a3 ,

. . . ay) ay+1 ay+2 . . . an ,

which was required to be proved.

The first and last coefficients of Rj, when divided by yy,

having been thus shown to be the same as in the form Vj9

it follows that all the intermediate terms must be similarly

related
; for, in the first place, Rj is a function of the diffe-

rences of the quantities #, 01, a2 . . . an ,
as may be seen by

transforming f(x) before calculating Rj by the substitution

2 = a x + #!, as in Ex. 3, Art. 92. When this transformation

is completed, every coefficient in 7?y, as well as z
9

is a function

of the differences
; consequently, Rj satisfies the differential

equation

d d d\ n A dJRj- + -^ + . . . + -7- LB/ =
0, or-r^-

ai da2 danj dx
0,

showing, as in Articles 138 and 157, that all the coefficients

may be obtained from the last by a definite law. The same

conclusions plainly holding also for the function P}, it is there-

fore proved, finally, that
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EXAMPLES.

1. To reduce two quadrics in three variables to the sums of the same three

squares with proper coefficients.

Let

U=axz + by* + czz + 2fyz + 2yzx + 2hxy,

"We have then identically

1

MA")

\h+hi X

T

V + /i AC + CI ^

X T Z

where A(\) is the discriminant of \U + V; and *(A) is a function of the 2nd

degree in A, the symbols X, Y, Z being retained in it for the present, and not

replaced by the values involving A.

Resolving into partial fractions, we have

*(A2 ) *(A3 )

A'(Ai) A-Ai A'(A2 )
A-A2 A' (As) A - AS'

(1)

in which * (AI), * (\z), * (As) are all perfect squares, since they are obtained by

bordering the vanishing determinants A (AI), A(AZ), A (Aa). (See Art. 129.)

Now, replacing X, T, Z by their values, \U\ + FI, &c., * (Ay) is easily re-

ducible to the form

a\ + g\

-(A -A,)*

where j = 1, 2, or 3, and Uj is independent of A.

Substituting these values in (1), we find

--
A (Ai)

-
A (A2 )

-r
(A3 )
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Equating the coefficients of A, we have

A'(A2

~~ l A >/>. \
' 2 A'/-k \

' > A '/I \'A (Ai) A (A2) A (As)

which was required to be done.

It is to be observed that this problem has only one solution. The mode of

reduction here given is due to Darboux
;
and is plainly applicable whatever be

the number of variables.

2. Prove that a quadric in n variables may be reduced by a real orthogonal

transformation to a sum of n squares.

An orthogonal transformation is a linear transformation such that, when the

modulus written as a determinant is squared the terms in the principal diagonal

are each equal to 1, and all the other terms vanish.

In a transformation of this kind it follows that the sum of the squares of th&

new variables is equal to the sum of the squares of the old.

3. "Writing as before one of Sturm's remainders in the form

prove that

Sj-l

Sj-Z

where s xJ- + . . . + gj.\.

4. Denoting by UH

S (*
- ar) (*\ + axz + a2 3:3 + . . .

r=l

prove that the discriminant of Uj may be determined by the equation

where Aj and yj have the same signification as before
;
and show directly that if

Aj = for a certain value of x, Aj.\ and Aj+\ have opposite signs for the same

value of x.

NOTE. Hermite's theorem holds where ar
-

p is changed into (ar p)
m in the

enunciation on p. 404, m being any odd integer, positive or negative.
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SECTION III. GEOMETRICAL TRANSFORMATIONS.*

185. Transformation of Binary to Ternary Forms.
We think it desirable, before closing the present Chapter, to

give a brief account of a simple transformation from a binary to

a ternary system of variables, whereby a geometrical interpre-

tation may be given to several of the results contained in the

preceding Chapters. The applications which follow in connexion

with the quadratic and quartic will be sufficient to explain this

mode of transformation
;
and will enable the student acquainted

with the principles of analytic geometry to trace further the

analogy which exists between the two systems.

Denoting the original variables, i.e. the variables of the bi-

nary system, by ^
, ?/ ,

we propose to transform to a ternary

system by the substitutions

x = # 2
, y = 2# y ,

z = y*.

For example, taking the simple case of a quadratic whose

roots are a, )3, viz.,

# 2 - (a + J3);r y + a(3y*
=

0,

and transforming, we obtain

*-*( + j3)y + a/3s
= 0. (1)

We have also the identical equation

y
1 - 4zx = 0.

This is the equation of a conic, which we call V, and (1) is

plainly the equation of a chord of this conic joining the points

a and /3, the point determined by the equations

x y XQ-
2
=
<37=

s
>

where 0= -,
*<i> y<>

being referred to as the point $ on the conic V.

* See Quarterly Journal of Mathematics, vol. x., p. 211.
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When a = ]3 the quadratic becomes (XQ
- ay )

2

,
i.e. the square

of a factor of the first degree ;
also (1) reduces to x - ay + a?z = 0,

which is plainly the equation of the tangent at the point a to

the conic V\ whence the line corresponding to a quadratic witli

distinct roots is a chord of the conic F, this line becoming a

tangent when the roots are equal.

The only invariant that a quadratic has is its discriminant,

and this is also an invariant in the ternary system, its vanishing

being the condition that the line corresponding to the quadratic

should touch the conic V. We now consider the system of two

quadratics

which for shortness we call L and M.

When transformed these become two lines

Jj ~ ax + by + cz, M = dx + b'y + cz.

Now the condition that the line whose equation is A L +

should touch the conic V is

X2

(ac
-

ft
2

)
+ XM (ac + a'c - 2bb') + M

2

(aV -
ft'

2

)
= 0. (2)

All the coefficients of this equation are invariants in both

systems : we have already seen that this is true of the first and

last coefficients, and the intermediate coefficient which is the

harmonic invariant of the binary system is an invariant in the

ternary system also, its vanishing expressing the condition that

the lines Z), M should be conjugate with regard to the conic F.

This equation determines the tangents which can be drawn

through the point of intersection of L and M to the conic V.

When this point is on the conic the tangents coincide, and the

discriminant of the quadratic vanishes. Whence we obtain

geometrically the following form for the resultant of two qua-

dratics :

R - 4(ac
-

V) (a'c
-

ft'
2

)
-

(ac' + ac - 2bbJ ;

for if Z, My and Fhave a common point, the original quadra-



Transformation of Binary to Ternary Forms. 413

ties imist have a common root, and the condition is in each case

the same.

Again, the pairs of points or lines given by the equation

XL + nM= form a system in involution (cf . Ex. 2, p. 398), the

double points or lines being determined by the equation (2) ;

and in the ternary system the corresponding pencil of lines

passing through a fixed point determines on a conic a system of

points in involution, the double points being the points of con-

tact of tangents drawn to the conic from the fixed point.

If we consider next the three quadratics

it is seen that the determinant (i 2 c3) is an invariant in both

systems, its vanishing being the condition in the binary system
that the quadratics should form an involution (Ex. 2, p. 398),

and in the ternary system that the three corresponding lines

should meet in a point.

As a final illustration, we consider a system of three qua-

dratics connected in pairs by the harmonic relations

a\c<i + a2 Ci
- 2bib =

0, &c.

Transforming the quadratics, we obtain three lines X, Y, Z,

which form a self-conjugate triangle with regard to the conic V.

The theorem relating to three mutually harmonic quadratics,

viz., that their squares are connected by an identical linear

relation (see Ex. 5, p. 360, and Art. 166), is suggested by a

well-known property of conies ; for F expressed in terms of

X, Y, Z is of the form

whence, restoring the original variables rr
, y ,

F vanishes iden-

tically, and X, Y, Z become the original quadratics, each divided

by a factor which may be seen to be the square root of its dis-

criminant (see (1), Ex. 5, p. 360).
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186. The tttuartic and its Covariants treated geo-

metrically. It will appear from the remarks to be made in

the next Article that in applying the transformation now

under consideration to the quartic U =
(a, b, c d, e)(xQ , ^o)

4
> the

term 6cx 2^ will be replaced by 2cxz + cy
2

,
so that the quartic

will be replaced by the two following conies :

If ~ ax2 + cy
z + ez

z + 2dyz + 2czx + %bxy =
0,

V^y* -4zx = 0;

the form of U here selected being connected with V by an

invariant relation. The invariants of U and V are invariants

of the original binary form, for the discriminant of U -
p V is

4
/
o
3

-Ip + J,

and the invariants of the ternary system are

A' = -4, 0' =
0, 9 =

7, A =
<7;

where / and J are the invariants of the quartic, and the dis-

criminant of U -
p V is written as usual under the form

A - pQ + p'9'
-

/o

3
A'.

Let the conies U and V intersect in the points A, B, C, D ;

these points being determined by the equations

when has the four values a, /3, 7, <5, the roots of the binary

quartic ;
and let the points of intersection of the common chords

J9<7, AD-, CA, #Z); AS, CD be E, F, G, respectively, the

triangle EFG being self-conjugate with regard to both conies.

Now, denoting by (a)3)
= the equation of the line AS, and

using a similar notation for the remaining chords, we have by

the theory of conies

where p^ pz, /o3
are the roots of the equation 4/o

3 -
Ip + J= 0.
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On restoring the original variables #
, y in these equations,

Fo vanishes identically, and we have J7 resolved into a pair of

quadratic factors in three different ways, depending on the

solution of the reducing cubic of the quartic. "Whence it

appears that the resolution of a quartic into its pairs of quad-

ratic factors, and the determination of the pairs of lines which

pass through the intersections of two conies, are identical prob-

lems, each depending on the solution of the same cubic equa-

tion.

We now proceed to show that the sides of the common self-

conjugate triangle of V, V correspond to the quadratic factors

of the sextic covariant in the binary system. Since the side

FG is the polar of
",
the co-ordinates x, y of E are found by

solving the equations (fly)
=

0, (aS)
=

;
we have, therefore,

* y'

and, substituting for #', y', z the values thus determined in the

polar of E, viz.,

we express this equation in the form

On restoring the original variables #, y^ this is seen to be

one of the quadratic factors of the sextic covariant (see Art.

166). It is therefore proved that the points where FG meets

V are determined by the quadratic equation

and consequently the six points on V which correspond to the

roots of the sextic covariant are the points where this conic

meets the sides of the common self-conjugate triangle of U
and F.

To determine the points on F which correspond to the roots

of the Hessian, we calculate for the conies 7 and Fthe co-
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variant conic JP (Salmon's Conic Sections, Art. 378) ;
thus

finding

f (ae
- 2bd + c

2

)
sir + (ad

-
be) xy ;

and on restoring the original variables, we have

also, since the conic F intersects If and F in the points of con-

tact of their common tangents, we see that the points on V
corresponding to the roots of the Hessian are the points so

determined. The Hessian has, moreover, a double geometric

origin, for it may equally well be obtained by transforming the

conic $ (Salmon's Conies, Art. 377) which is the envelope of a

line cut harmonically by the conies V and V.

187. When the transformation of Art. 185, viz.,

x =

is applied to a quantic / (<rn , 2/0)
of even degree 2m, it is plain

that the roots of this quantic will be represented geometrically

by the points of intersection of a curve of the mth
degree with

the conic section F. If the degree of the quantic is odd, it

must be squared before the transformation is effected
;
and the

roots will then be represented geometrically by the points of

contact of the corresponding curve with the conic.

In transforming the quantic /(# > 2/o)>
we may obtain an

indefinite number of ternary forms by varying the mode of

transformation ; for if U denote any one of these forms,

U+ 0m-2 F,

in which the coefficients of m_2 are arbitrary, would equally

well be a transformation of /(a? > #<>),
since this form would

on restoring the original variables return to the quantic

/ (#o> yo) Moreover, every possible transformation is included

in the foregoing. Among these innumerable ternary forms

there is one, and only one, such that its invariants and co-

variants are invariants and covariants of the binary quantic
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also. To determine this form, take the tangential form of F, and

let II be the operator obtained by substituting Dx ,
Dv ,

Dz for

the variables therein
; operating then with n on U + ^m_2 F, we

obtain a result w,_2 of the degree m - 2 ; and equating to zero

its coefficients, we have equations sufficient to determine all the

coefficients of m_3 . The required transformation is therefore

unique, as these equations are of the first degree.

The following method may be employed to obtain the

proper form of U corresponding to a given binary quantic

of even degree. Let the quartic u =
(# , i, #2, 3, #*) (#o> ^o)

4

be written in the form

3A \ v o ' - ^ u y \j T .7 u j o 1 5

4
(

a^r
2

dxtdy, dy*}

transforming the second differential coefficients, and multiplying

the terms by a?, y, 2, respectively, we obtain the proper form for

U, such that D (U) = 0, viz.,

Again, in the case of the sextic u, writing it in the form

. . dzu d*u d zu
transforming the quartics -r =,

-
r

, 35 in the manner
ofco

2 dx dy dyf

just explained, and multiplying by a?, y, s, respectively, we

obtain a ternary cubic U of the proper form. In a similar

manner the transformation of the octavic is made to depend

on that of the sextic
;
and proceeding in this way step by step

we may transform any binary quantic u of even degree to a

ternary quantic U of half the degree, such that II
( U) =0.

The following examples are given to illustrate the trans-

formation explained in the present section.
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EXAMPLES.

1. If /(*o, yo) becomes U (x, y, 2) by the transformation

x = %<?, y = 2# yo, a = yo
2

;

prove in general that

*Z
2 U

where n is the degree of f(x, y), and n( ET)
= - -

.

"Whence, in particular, if II
( U) = 0, prove that

where *o, yo and *</, yo' are cogredient variables.

2. If

prove that n(^i + y<^z + s^s) s when n
(</>i)

= 0, n (4>2 )
=

0, n (4>3 )
= 0.

Since

dy<? dzodyo dxj'
we have, by Ex. 1,

fyi _ d<\n _ d^s
dz dy dx

'

but

and therefore vanishes by what precedes. We have thus a formal proof of the

statement at the end of Art. 187.

"When n(<i), n(4>2), n(<J>3 )
do not vanish, we have in general

3. If two quantics M and w be transformed
; prove that the Jacobian of w, w in

the binary system becomes the Jacobian of U, F, W in the ternary system.

Express /(M, w) in terms of XQ
Z
, zoyo, y<j* and the second differentials of u and

w, and then transform by Ex. 1.

4. Prove that the quartics

(01 *
2 + 2/8ixy + 7iy

2
) (03 a;

2 + 2)83^ + 73y
3
)
-

(a2
2 + Ifaxy + 72y

2
)
2
, (1)

(ai*
2 + 2o2 y+ a3y

3
) (7i

2 + 272*y + 73y2)
-

(jS^
2

-f 2faxy + )83 y
2
)
2

(2)

have the same invariants.
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Transforming (2) to the ternary system, we have the conic

(01* + o2y + 032) (71* + yzy + 732)
-

(fax + fay + ft,*)
2

,

which for shortness we write as LN'- M2
, where

L = aix + o2y + o3 z, If = fax + fay + fat, N = y\x + yzy +

Now, when the discriminant of

(3)

is formed, the invariants of (2) are the functions 3H and G of this cuhic in x (or

the last two coefficients when the second term is removed). This discriminant may
be obtained as the resultant of the three equations

NO.I - 2Mfa + Lyi - 4x* = 0,

Na* - 2Mfa + Zyz + 2Xy = 0, (4)

JVos - 2Mfa + Zy3
- 4\x = 0,

when x, y, z are eliminated ;
or by eliminating the six quantities x, y, z, L, M, N

by means of the three additional equations (3) the resultant is obtained in the

form

01
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5. Determine the condition that three quadratics should by linear transfor

mation be reducible to the forms

Am. /n/33 - 4/12/23 + /22
2 + 2/22/31 = 0.

6. Prove that the condition in Ex. 5 is the same for the following two sets of

quadratics :

and

7. Determine the condition that \u + vw should have two square factors,

where u and w are quartics.

Transforming, we have in this case

\V+ n~P + vW = (ax + fry + yz)
z

;

consequently, every term in the tangential form of \U+ nV+vTP must vanish,

giving six equations to eliminate A.
2

, ju
2
,

j/
2

, fja>, v\, \/j. ;
hence the required con-

dition is determined.

8. If a quartic have a square factor, prove geometrically that this factor is

a quintuple factor of the covariant G> ;
and construct the point on the conic V

which corresponds to the remaining root of the equation Gx = 0.

9. Resolve the quartic as in Art. 169 by finding the tangents to the conic V
where V meets it, J7and F having been expressed as sums of squares.

10. Express in terms of their invariants the resultant of the quartic and biquad-

ratic

11 . Determine the condition that two quadratic factors (x a)(x ), (x 7) (xS)
of a quartic Z7b should form with a given quadratic A*2 + 2fix + v a system in in-

volution.

Transforming, the three corresponding lines must meet in a point, which point

is one of the vertices of the common self-conjugate triangle of the conies Z7and V.

The tangential equation of these points is J(2, 2', *)
=

0, which is therefore the

required condition, the tangential form of nU + V being
22 + *c* -f 2'.

12. Apply the method of transformation of Art. 185 to prove the theorem of

Art. 176.

Let Tschirnhausen's transformation be put under the form
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Make the numerator and denominator of the last fraction homogeneous in x, y ;

replace z by -
\, and transform : (1) becomes then

L + \L'=0,

where L = ax + &>/ + y:, L' = ax + &y -f y'z.

If x, y, z be eliminated from the equations L + \L' = 0, U = 0, V = 0, we
shall have the transformed quartic in A. ; which, considered geometrically, deter-

mines the lines drawn from the point of intersection P of L and L' to the points of

intersection A, B, C, D of U and V. Again, if K be so determined that the conic

U + /eFpass through the point P, the anharmonic ratio of the lines PA, PB, PC,

PD, is equal to the anharmonic ratio of the lines TA, AB, AC, AD, where TA is

the tangent to U -f K V at A
; that is, of the lines

t + Kt', t + pit', t + pzf, t + pztf,

where t and t' are the tangents to Z7und V at A. Now, forming the invariants of

the quartic whose roots are a, pi, pz , pi, the theorem follows by Arts. 170 and 177.

13. Let three points a, b, c be taken on the conic V given by the equations

px = ai <
2

-i- b\ <J>
+ c\,

the values of <p at these points being a, , y, the roots of a cubic U; prove the fol-

lowing constructions for determining the points on the conic corresponding to the

roots of the cubic covariant Gx and the Hessian Hx :

1. Let tangents be drawn to the conic V at the points a, b, c, forming a tri-

angle ABC, the lines Aa, Bb, Cc meet the conic at points a', b', c corresponding to

the roots of Gx .

2. The four triangles abc, a'b'c', ABC, A'B'C' are homologous, and their axis

of homology meets the conic V at the points corresponding to the roots ofHx .

14. From the constructions in the last example prove that U, and Ox have the

same Hessian HM,
and that the roots of Hx are imaginary when the roots of U* are

real.

Dublin Exam. Papers, Bishop Law's Prize, 1879.



CHAPTER XVII.

THE COMPLEX VARIABLE.

188. Graphic Representation of Imaginary Quan-
tities. The imaginary expression a + b </- 1 may be written

in the form

where

fj. (cos a + sin a */- 1),

+ b
z

,
and tan a = -.

It may be regarded, therefore, as determined by the linear

magnitude ju, and the angle a
; ju being called the modulus, and

a the argument of the imaginary quantity.

Let rectangular axes OX, OY (fig. 7) be taken; and a

point A such that

We have then OM =

ju cos a =
a, and AM

=
fjL

sin a = b. The

expression a + b </- 1

may therefore be re-

presented graphically

by the right line

drawn from to a
Fig. 7.

point in a plane whose co-ordinates referred to the fixed axes

are a, b
;
the distance OA of this point from the origin being

equal to the modulus, and the angle XOA equal to the argu-

ment of the imaginary quantity.
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The magnitude of an imaginary quantity is estimated l>y

the magnitude of its modulus. When the imaginary quantity
vanishes (that is, when a and b separately vanish) its modulus

vanishes
; and, conversely, when the modulus vanishes, since

then 3 + b* =
0, a and b must separately vanish, and therefore

the imaginary quantity itself. Two imaginary quantities, a + ib

and a' + ib', are equal when a = a' and b =
b', i. e. when the

moduli are equal and when the arguments either are equal or

differ by a multiple of 2ir.

In what follows we shall for brevity represent the modulus

and argument of a + b ^/- 1 by the notation

mod. (a + ib), arg. (a + ib),

where i as usual represents ^/- 1.

189. Addition and Subtraction of Imaginaries.
Let a second imaginary quantity a' + ib' be represented by the

right line OA', so that

OA' = mod. (a + ib'), XOA' = arg. (a +
ib').

We proceed to determine the mode of representing the sum

a 4- ib + a' 4- ib'.

Writing this sum in the form a + a + i(b + b'), we observe,

in accordance with the convention of Art. 188, that it will be

represented by the line drawn from the origin to the point

whose co-ordinates are a + a, b + b'. To find this point, draw

AB parallel and equal to OA'; since AP, BP, are equal to

a', b', B is the required point, and we have

OB=mod. [a + a' + i(b+b')}, XOB = arg.{a + a + i(b + b')}.

To add two imaginary quantities, therefore, we draw OA to

represent one of them ; and, at its extremity, AB to represent

the second (that is, so that its length is equal to the modulus,

and the angle it makes with OX equal to the argument, of the

second) ;
then OB represents the sum of the two imaginary
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quantities. Since OB is less than OA + AB, it follows that

the modulus of the sum of two imaginary quantities is less than the

sum of their moduli.

This mode of representation may be extended to the addition

of any number of imaginary quantities. Thus, to add a third

a" + ib", represented by OA", we draw BC parallel and equal to

OA", and join 00. Then 00 represents the sum of the three

imaginary quantities OA, OA', OA". It is evident also that we

may conclude in general that the modulus of the sum of any
number of imaginary quantities is less than the sum of their

moduli.

Subtraction of imaginaries can be represented in a similar

way. Since OB represents the sum of OA and OA', OA will

represent the difference of OB and OA'. To subtract two

imaginary quantities, therefore, we draw at the extremity of

the line representing the first a line parallel and equal to the

second, but in an opposite direction (i. e. a direction which makes

with OX an angle greater by TT than the argument of the first).

We join to the extremity of this line to find the right line

which represents the difference of the two given imaginaries.

190. Multiplication anil Division of Imaginaries.
To multiply the two imaginary quantities a + ib, a' + ib', we

write them in the form

a + ib =
JJL (cos a + i sin a), a' + ib' = p' (cos a' + i sin a').

We have then, by De Moivre's theorem,

(a + ib) (a + ib')
= pp {cos (a + a') + i sin (a + a') ) ,

which proves that the product of two imaginary quantities is an

imaginary quantity of the same form, whose modulus is the product

of the two moduli, and whose argument is the sum of the two argu-

ments.

In the same way it appears that the product of any number

of imaginary factors is an imaginary quantity, whose modulus

is the product of all the moduli, and whose argument is the sum

of all the arguments.
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To divide a + ib by a + ib', we have similarly

(cos (a
-

a') + i sin (a
-

a')} ,

which proves that the quotient of two imaginary quantities is an

imaginary quantity of the same form, tvhose modulus is the quotient

of the two moduli, and whose argument is the difference of the two

arguments.

It is evident from the foregoing propositions that any power
of an imaginary quantity, e.g. (a + ib)

m
,
can be expressed in the

form A + iB, where A and B are real quantities. And, more

generally, if in any polynomial

whose coefficients are either real or imaginary quantities, an

imaginary quantity a + ib be substituted for the variable z, the

result can be expressed in the standard form of imaginary quan-

tities, viz. A + iB.

It was assumed in the proof of the theorem of Art. 16 that

when a product of any number of factors (real or imaginary)

vanishes, one of the factors must vanish. This is evident when
the factors are all real. From what is above proved the sa me
conclusion holds when the factors are imaginary ; for, in ord er

that the modulus of the product may vanish, one of its factors

must vanish, and therefore the imaginary quantity of which

that factor is the modulus.

191. The Complex Variable. In the earlier Chapters of

the present work the variation of a polynomial was studied cor-

responding to the passage of the variable through real values

from oo to + oo
;
and the mode of representing by a figure

the form of the polynomial was explained. Such a mode of

treatment is only a particular case of a more general inquiry.

Given a polynomial

f(z)
= aQ z

n + fliS"'
1 + &2 s

n~2 + . . . + an-\z + an ,

we may study its variations corresponding to the different values
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of 2, where z has the imaginary form x + iy, and where x and y
both take all possible real values. This form x + iy is called the

complex variable. All possible real values of the variable are of

course included in the values of x + iy, being those values which

arise by varying x and putting y = 0. In accordance with the

principles of Art. 188 we may represent the imaginary quantity

# + iy hy the line OP (fig. 8j drawn from a fixed origin to

the point whose co-ordinates are x, y. Or we may say, x + iy is

represented by the point P. Thus all possible values of x + iy

will be represented by all the points in a plane. Since for any

particular value of z,f(z) takes the form A + iB (Art. 190), the

values of f(z) may be represented in a similar manner by points

in a plane. We confine ourselves in the present Article to the

representation of the variable

x + iy itself. We conceive the

variation of x + iy to take place

in a continuous manner
;
for ex-

ample, by the motion of the

point x, y, along a curve. If OP
and OPf

represent two consecu-

tive values of the variable, we

write the corresponding values

x + iy, x' + iy, as follows : Fig. 8.

z=x + iy
= r (cos + i sin 0), z' = x + iy

= r (cos 0' + i sin 0').

Since OP' represents the sum of OP and PPf

(Art. 189), it

follows that PP' represents the imaginary increment of 2
;
and

if z' = z + h, h may be written in the form

h = p (cos + i sin 0),

where p = PP, and is the angle PP' makes with OX.

The variation of the modulus of z is OP" - OP or r- r ; the

variation of the argument of z is P'OP or 0' - 6 ; the variation

of z itself is h or p (cos + i sin 0), as just explained.

Let the point be supposed to describe a closed curve. When
it returns to P the modulus takes again its original value ; and
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the argument takes its original value if the point is ex-

terior to the curve, or is increased by 2?r if is interior to the

curve.

If the complex variable describes the same line in two oppo-
site directions, the variations of its argument are equal and of

opposite signs, i. e. the total variation is nothing. From this we
can derive a property of the variation of the argument of the

complex variable, which will be found of importance in our suc-

ceeding investigations.

Y

Let a plane area be divi-

ded into anynumber of parts

by lines UD, AF, EC, &c.

(fig. 9) ;
then the variation

of the argument relatively to

the perimeter of the ichole

area is equal to the sum of its

variations relatively to the pe-

rimeters of the partial areas :

x

Fig. 9.

all the areas being supposed to be described by the variable

moving in the same sense. This is evident ;
for when the

point is made to describe all the partial areas in the same sense,

each of the internal dividing lines will be described twice, the

two descriptions being in opposite directions
;
and the exter-

nal perimeter will be described once
;
hence the total variation

of the argument relatively to the dividing lines vanishes, and

the variation relatively to the external perimeter alone remains.

In the figure, for example, when the point describes the areas

ABF, AFD in the sense indicated by the arrows, the total

variation relatively to the line AF vanishes.

192. Continuity of a Function of the Complex
Variable. Suppose the complex variable z, starting from

a fixed value z
,

to receive a small imaginary increment

h = p (cos + * sin
r/,) ; we have then, if f(s) be the given

function,

h) &c.,
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and the increment of /(*), being equal to/(* + h) -/(so), is

1.2 1.2.3

In this expression the coefficients of the powers of h are all

imaginary expressions of the usual form ; and if their moduli be

#, b, c, &c., the moduli of the successive terms are ap, bp
z
, cp

3

,
&c. ;

and since, by Art. 189, the modulus of a sum is less than the

sum of the moduli, it follows that the modulus of the increment

of /(s) is less than

ap + bp
z + cp

3 + &c.

Now a value may be assigned to p (Art. 4), such that for it,

or any less value of
/o,

the value of this expression will be less

than any assigned quantity. It follows that to an infinitely

small variation of the complex variable corresponds an infinitely

small variation of the function
;
in other words, the function varies

continuously at the same time as the complex variable itself.

193. Variation ofthe Argument off(z) corresponding
to the Description ofa small Closed Curve by the Com-

plex. Variable. Corresponding to a continuous series of values

of z we have a continuous series of values of f(z) 9
which can be

represented, like the values of s itself, by points in a plane.

We represent these series of points by two figures (fig. 10) side

Fig. 10.

by side, which, to avoid confusion, may be supposed to be drawn

on different planes. To each point P, representing x + iy, cor-
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responds one determinate point P representing /(s). When P
describes a continuous curve, P describes also a continuous

curve; and when P returns to its original position after describ-

ing a closed curve, P returns also to its original position.

Our present object is to discuss the variation of the argument
of /i's) corresponding to the description of a small closed curve

by P. Let A be any determinate point whose co-ordinates are

#o, l/o 9
i- e. s = #0 + iyv We divide the discussion into two

cases :

(1). When y + iyQ is not a root of /(s)
=

0, i.e. when /(s())

is different from zero.

(2). When x*+ iyc is a root of/(s) -
0, or/(s )

= 0.

(1). In the first case, to the point A corresponds a point A
representing the value of f(z ),

and OfA! is different from zero.

Let s = s + />, where h = p (cos + i sin 0) ; and suppose P, which

represents s, to describe a small closed curve round A. Let P
represent /(s) ;

then A'P represents the increment of f(z) cor-

responding to the increment AP of z. By the previous Article

it appears that values so small may be assigned to
/o,

that the

modulus of the increment of /(s), namely A'P, may be always

less than the assigned quantity 0'A\ hence P may be supposed

to describe round A a closed curve so small that the correspond-

ing closed curve described by P will be exterior to 0'. It fol-

lows, by Art. 191, that corresponding to the description by P of a

small closed curve, which does not contain a point satisfying the

equation f(z) =
0, the total variation of the argument of f(z) is

nothing.

(2). In the second case, suppose XQ + iyQ is a root of the equa-

tion f(z)
=

repeated m times, and let

/()-(-,)**();
then

f(z)
= hm

\f,(z)
= p

m
(cos w0 + i sin m^) ;// (z).

In this case O'A' =
;
and when P describes a closed curve

round A, P returns to its original position, and the argument
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of f(z) will be increased by a multiple of 27r, which may be de-

termined as follows : From the above equation we have

and the increment of arg. f(z) will be obtained by adding the

increment of mfy to the increment of arg. $ (z) . Now the latter

increment is nothing by (1), since the curve described by P may
be supposed to contain no root of if (s)

=
;
and since the incre-

ment of $ is 2?r in one revolution of P, the increment of m$ is

2tmr. It follows that when P describes a small closed curve con-

taining a root of the equation f(z)
=

0, repeated m times, the argu-

ment off(z) is increased by 2mir.

194. Cauchy's Theorem. When z describes the same

line in a plane in two opposite directions, f(z) describes the cor-

responding line in its plane in two opposite directions, and the

arg. f(z) undergoes equal and opposite variations. It follows

that if any plane area be divided into parts, as in Art. 191, the

variation of the arg. f(z) corresponding to the description in the

same sense by z of all the partial areas, is equal to the varia-

tion of arg. f(z) corresponding to the description by z of the

external perimeter only. Now let any closed perimeter in the

plane XY be described
;
and suppose, in the first place, that it

contains no point which satisfies the equation /(s)
= 0. It can

be broken up into a number of small areas, with respect to each

of which the conclusions of (1) Art. 193 hold; and by what has

been just proved it follows that the

variation of arg. f(z) corresponding

to the description by z of the closed

perimeter is nothing. Suppose, inthe

second place, that the closed perime-

ter contains a point which is a root

of the equation /(z)
= repeated m

times. Let a small closed curve

PQRS be described round this Fig - 1L

point. The variation of arg.f(z), corresponding to the descrip-

tion by & of the whole perimeter, is equal to the sum of its
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variations corresponding to the description of the areas

ABCPSR, CDARQP, PQRS. The two former variations

vanish by what is above proved ;
and the latter is, by (2),

Art. 193, equal to 2tmr. The total variation, therefore, of /(z)

is 2/W7T. Similarly, if the area includes a second, third, &c.,

points which represent roots repeated mf

, m"> &c., times, the

total variation = 2 (m + mf

+ m" + &c.) TT. Hence we derive the

following theorem due to Cauchy :

The number of roots ofany polynomial, comprised within a given

plane area, is obtained by dividing by 2?r the total variation of the

argument of this polynomial corresponding to the complete descrip
-

tion by the com/itcx variable of the perimeter of the area.

195. Number of Roots of the General Equation.

"We are enabled by means of the principles established in the

preceding Articles to prove the theorem contained in Arts. 15

and 16
; namely, every rational and integral equation of the nth

degree has n roots real or imaginary.

Let

/(z)
= a z

n + aiZ
n~ l + a2 z

n~z + . . . + a^z + an

be a rational and integral function of z. Without making any

supposition as to the existence of roots of f(z)
= further than

that/(z) cannot vanish for any infinite values of the variable,

we can suppose z to describe in its plane a circle so large that

no root exists outside of it. If, then,

/(z)
= zn {a + #iz' + a2 z'* + . . . + an z'

n
}

=
z"0(s'), where z' = -,

z

z'
9
whose modulus is the reciprocal of the modulus of z, will

describe a small circle containing a portion of the plane cor-

responding to the part outside of the circle described by z
; and

no root of ^ (z')
= will be included within this small circle.

Hence, corresponding to the description of the whole circle by z,

the variation of arg. ^ (*')
=

0> an(*, therefore,

variation of arg. /(z)
= variation of arg. z

n
;
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and if z = r (cos 9 + i sin 0), or z
n = rn (cos nO + i sin nO) ,

is increased by 27r, and, therefore, arg. z
n

is increased by
2mr.

It follows from Cauchy's theorem, Art. 194, that the number

of roots comprised within the circle described by z, i. e. the total

number of roots of the equation f(z) = 0, is n
;
and the theorem

is proved.

The proposition whose proof was deferred in Art. 15 is thus

shown to be an immediate consequence of Cauchy's theorem,

which may therefore be regarded as the fundamental proposi-

tion of the Theory of Equations. It is proper to observe, how-

ever, that the theorem of Art. 15, viz., that every equation has

a root, can be proved directly, and independently of Cauchy's

theorem, by aid of the principles contained in Art. 193 and the

preceding Articles, as we proceed now to show.

If possible, let there be no value of z which makes /(s)

vanish; and let the value s
> represented by A, fig. 10, corre-

spond to the nearest possible position, A', ofP to the origin 0'.

Now, giving s a small increment /?, and considering the first

term/'(s )A of the corresponding increment of /(s ), it is seen

that the directions in which these two small increments take

place are inclined at a constant angle. It is possible therefore,

by properly selecting the direction of the increment h, to cause

the increment of f(z )
to take place in the direction A'Cf, and

thus to make A' approach nearer to the origin, which is con-

trary to hypothesis. It follows that the minimum value of the

modulus of f(z) cannot be different from zero, and therefore that

some value of z exists which makes/ (z) vanish.

In note D will be found some further observations on the

subject of this Article.
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NOTE A.

ALGEBRAIC SOLUTION OF EQUATIONS.

THE solution of the quadratic equation was known to the Arabians,

aii-1 is found in the works of ^Mohammed Ben Musa and other writers

published in the ninth century. In a treatise on Algebra by Omar

Alkhayyami, which belongs probably to the middle of the eleventh

century, is found a classification of cubic equations, with methods of

geometrical construction
;
but no attempt at a general solution. The

study of Algebra was introduced into Italy from the Arabian writers

by Leonardo of Pisa early in the thirteenth century ;
and for a long

period the Italians were the chief cultivators of the science. A work,

styled ISArte Maggiore, by Lucas Paciolus (^known as Lucas de Burgo)
was published in 1494. This writer adopts the Arabic classification

of cubic equations, and pronounces their solution to be as impossible in

the existing state of the science as the quadrature of the circle. At

the same time he signalizes this solution as the problem to which the

attention of mathematicians should be next directed in the develop-

ment of the science. The solution of the equation y? + mx = n was

effected by Scipio Ferreo
;
but nothing more is known of his discovery

than that he imparted it to his pupil Florido in the year 1505. The

attention of Tartaglia was directed to the problem in the year 1530, in

consequence of a question proposed to him by Colla, whose solution

depended on that of a cubic of the form 3? + par = q. Florido, learning

that Tartaglia had obtained a solution of this equation, proclaimed his

own knowledge of the solution of the form a? + mx = n. Tartaglia,

doubting the truth of his statement, challenged him to a disputation

2*
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in the year 1535
;
and in the mean time himself discovered the solu-

tion of Ferreo's form y? + mx = w. This solution depends on assuming
for x an expression l/t

- ^/u consisting of the difference of two radi-

cals
; and, in fact, constitutes the solution usually known as Cardan's.

Tartaglia continued his labours, and discovered rules for the solution

of the various forms of cubics included under the classification of the

Arabic writers. Cardan, anxious to obtain a knowledge of these rules,

applied to Tartaglia in the year 1539; but without success. After

many solicitations Tartaglia imparted to him a knowledge of these

rules
; receiving from him, however, the most solemn and sacred pro-

mises of secrecy. Regardless of his promises, Cardan published in

1545 Tartaglia' s rules in his great work styled Ars Magna. It had

been the intention of Tartaglia to publish his rules in a work of his

own. He commenced the publication of this work in 1556
;
but died

in 1559, before he had reached the consideration of cubic equations.

As his work, therefore, contained no mention of his own rules, these

rules came in process of time to be regarded as the discovery of Cardan,

and to be called by his name.

The solution of equations of the fourth degree was the next

problem to engage the attention of algebraists ;
and here, as well as in

the case of the cubic, the impulse was given by Colla, who proposed

to the learned the solution of the equation #4 + 6#2 + 36 = 60#. Cardan

appears to have made attempts to obtain a formula for equations of

this kind
;
but the discovery was reserved for his pupil Ferrari. The

method employed by Ferrari was the introduction of a new variable,

in such a way as to make both sides of the equation perfect squares ;

this variable itself being determined by an equation of the third de-

gree. It is, in fact, virtually the method of Art. 63. This solution

is sometimes ascribed to Bombelli, who published it in his treatise on

Algebra, in 1579. The solution known as Simpson's, which was pub-

lished much later (about 1740), is in no respect essentially different

from that of Ferrari. In the year 1637 appeared Descartes' treatise,

in which are found many improvements in algebraical science, the

chief of which are his recognition of the negative and imaginary roots

of equations, and his " Eule of Signs." His expression of the biqua-

dratic as the product of two quadratic factors, although deducible

immediately from Ferrari's form, was an important contribution to

the study of this quantic. Euler's algebra was published in 1770.

His solution of the biquadratic (see Art. 61) is important, inasmuch
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as it brings the treatment of this form into harmony with that of the

cubic by moans of the assumed irrational form of the root. The

methods of Descartes and Euler were the result of attempts made to

obtain a general algebraic solution of equations. Throughout the

eighteenth century many mathematicians occupied themselves with

this problem ;
but their labours were unsuccessful in the case of

equations of a degree higher than the fourth.

In the solutions of the cubic and biquadratic obtained by the older

analysts we observe two distinct methods in operation : the first, illus-

trated by the assumptions of Tartaglia and Euler, proceeding from an

assumed explicit irrational form of the root
;
the other, seeking by the

aid of a transformation of the given function, to change its factorial

character, so as to reduce it to a form readily resolvable. In Art. 55

these two methods are illustrated
; together with a third, the concep-

tion of which is to be traced to Yandermonde and Lagrange, who pub-

lished their researches about the same time, in the years 1770 and

1771. The former of these writers was the first to indicate clearly

the necessary character of an algebraical solution of any equation,

viz., that it must, by the combination of radical signs involved in it,

represent any root indifferently when the symmetric functions of the

roots are substituted for the functions of the coefficients involved in

the formula (see Art. 94). His attempts to construct formulas of this

character were successful in the cases of the cubic and biquadratic ;

but failed in the case of the quintic. Lagrange undertook a review of

the labours of his predecessors in the direction of the general solution

of equations, and traced all their results to one uniform principle. This

principle consists in reducing the solution of the given equation to

that of an equation of lower degree, whose roots are linear functions

of the roots of the given equation and of the roots of unity. He shows

also that the reduction of a quintic cannot be effected in this way, the

equation on which its solution depends being of the sixth degree.

All attempts at the solution of equations of the fifth degree

having failed, it was natural that mathematicians should inquire

whether any such solution was possible at all. Demonstrations have

been given by Abel and Wantzel (see Serret's Cours tfAlgebre Supe-

rs, Art. 516) of the impossibility of resolving algebraically equa-

tions unrestricted in form, of a degree higher than the fourth. A
transcendental solution, however, of the quintic has been given by

M. Hermitc, in a form involving elliptic integrals. Among other
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contributions to the discussion of the quintic since the researches of

Lagrange, one of leading importance is its expression in a trinomial

form by means of the Tschirnhausen transformation (see Art. 179).

Tschirnhausen himself had succeeded in the year 1683, by means of

the assumption y = P + Qx + xz
,
in the reduction of the cubic and

quartic, and had imagined that a similar process might be applied to

the general equation. The reduction of the quintic to the trinomial

form was published by Mr. Jerrard in his Mathematical Researches,

1832-1835
;
and has been pronounced by M. Hermite to be the most

important advance in the discussion of this quantic since Abel's

demonstration of the impossibility of its solution by radicals. In a

Paper published by the Rev. Robert Harley in the Quarterly Journal

of Mathematics, vol. vi. p. 38, it is shown that this reduction had been

previously effected, in 1786, by a Swedish mathematician named

Bring. Of equal importance with Bring's reduction is Dr. Sylvester's

transformation (Art. 180), by means of which the quintic is expressed

as the sum of three fifth powers, a form which gives great facility to

the treatment of this quantic. Other contributions which have been

made in recent years towards the discussion of quantics of the fifth

and higher degrees have reference chiefly to the invariants and cova-

riants of these forms. For an account of these researches the student

is referred to Clebsch's Theorie der binaren algelraischen Formen, and

to Salmon's Lessons Introductory to the Modern Higher Algebra.

There has also grown up in recent years a very wide field of in-

vestigation relative to the algebraic solution of equations, known as the
"
Theory of Substitutions." This theory arose out of the researches of

Lagrange before referred to, and has received large additions from the

labours of Cauchy, Abel, Galois, and other writers. Many important

results have been arrived at by these investigators ;
but the subject is

of too great extent and difficulty to find any place in the present

work. The reader desirous of information on this subject is referred

to Serret's Cours d"
1

Algebre Superieure, and to the Traite des Substitu-

tions et des Equations Algebriques, by M. Camille Jordan.
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NOTE B.

SOLUTION OF NUMERICAL EQUATIONS.

The first attempt at a general solution by approximation of nume-

rical equation* was published in the year 1600, by Yieta. Cardan

had previously applied the rule of "false position" (called by him

regula aurea") to the cubic; but the results obtained by this

method were of little value. It occurred to Yieta that a particular

numerical root of a given equation might be obtained by a process

analogous to the ordinary processes of extraction of square and cube

roots; and he inquired in what way these known processes should be

modified in order to afford a root of an equation whose coefficients are

i-iven numbers. Taking the equation / (#)
= Q, where Q is a given

number, and / (a:) a polynomial containing different powers of .r, with

numerical coefficients, Vieta showed that, by substituting in / (#) a

known approximate value of the root, another figure of the root

expressed as a decimal) might be obtained by division. When this

value was obtained, a repetition of the process furnished, the next

figure of the root
;
and so on. It will be observed that the principle

of this method is identical with the main principle involved in the

methods of approximation of Newton and Horner (Arts. 100, 101).

All that has been added since Vieta' s time to this mode of solution of

numerical equations is the arrangement of the calculation so as to

afford facility and security in the process of evolution of the root.

How great has been the improvement in this respect may be judged
of by an observation in Montucla's Histoire des Mathematiques, vol. i.

p. 603, where, speaking of Vieta's mode of approximation, the author

regards the calculation (performed by Wallis) of the root of a

biquadratic to eleven decimal places as a work of the most extra-

vagant labour. The same calculation can now be conducted with

great ease by anyone who has mastered Homer's process explained in

the text.

Newton's method of approximation was published in 1669; but

before this period the method of Vieta had been employed and sim-

plified by Harriot, Oughtred, Pell, and others. After the period of

Xewton, Simpson and the Bernoullis occupied themselves with the
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same problem. Daniel Bernoulli expressed a root of an equation in

the form of a recurring series, and a similar expression was given by

Euler; but both these methods of solution have been shown by

Lagrange to be in no respect essentially different from Newton's

solution (Traite de la Resolution des Equations Numeriques}. Up to

the period of Lagrange, therefore, there was in existence only one

distinct method of approximation to the root of a numerical equation ;

and this method, as finally perfected by Homer, in 1819, remains at

the present time the best practical method yet discovered for this pur-

pose.

Lagrange, in the work above referred to, pointed out the defects

in the methods of Yieta and Newton. With reference to the former

he observed that it required too many trials
;
and that it could not be

depended on, except when all the terms on the left-hand side of the

equation /(#) = Q were positive. As defects in Newton's method he

signalized first, its failure to give a commensurable root in finite

terms
; secondly, the insecurity of the process which leaves doubtful

the exactness of each fresh correction
;
and lastly, the failure of the

method in the case of an equation with roots nearly equal. The

problem Lagrange proposed to himself was the following: "Etant

donnee une equation numerique sans aucune notion prealable de la

grandeur ni de 1'espece de ses racines, trouver la valeur numeriquo

exacte, s'il est possible, ou aussi approchee qu'on voudra de chacune

de ses racines."

Before giving an account of his attempted solution of this problem,

it is necessary to review what had been already done in this direction,

in addition to the methods of approximation above described. Harriot

discovered in 1631 the composition of an equation as a product of

factors, and the relations between the roots and coefficients. Vieta

had already observed this relation in the case of a cubic
;
but he

failed to draw the conclusion in its generality, as Harriot did. This

discovery was important, for it led to the observation that any integral

root must be a factor of the absolute term of an equation, and New-

ton's Method of Divisors for the determination of such roots was

a natural result. Attention was next directed towards finding limits

of the roots, in order to diminish the labour necessary in applying the

method of divisors as well as the methods of approximation previously

in existence. Descartes, as already remarked, was the first to recog-

nise the negative and imaginary roots of equations ;
and the inquiry
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commenced by him as to the determination of the number of real and

of imaginary roots of any given equation was continued by Newton,

Stirling, De Gua, and others.

Lagrange observed that, in order to arrive at a solution of the

problem above stated, it was first necessary to determine the number
of the real roots of the given equation, and to separate them one from

another. For this purpose he proposed to employ the equation whose

roots are the squares of the differences of the roots of the given equa-
tion. "Waring had previously, in 1762, indicated this method of

separating the roots; but Lagrange observes (Equations Numeriques,
Note iii.), that he was not aware of Waring's researches when he

composed his own memoir on this subject. It is evident that when
the equation of differences is formed, it is possible, by rinding an

inferior limit to its positive roots, to obtain a number less than the

least difference of the real roots of the given equation. By substi-

tuting in succession numbers differing by this quantity, the real roots

of the given equation will be separated. When the roots are sepa-

rated in this way Lagrange proposed to determine each of them by
the method of continued fractions, explained in the text (Art. 105).

This mode of obtaining the roots escapes the objections above stated

to Newton's method, inasmuch as the amount of error in each suc-

cessive approximation is known
;
and when the root is commensurable

the process ceases of itself, and the root is given in a finite form.

Lagrange gave methods also of obtaining the imaginary roots of

equations, and observed that if the equation had equal roots they

could be obtained in the first instance by methods already in existence

(see Art. 74).

Theoretically, therefore, Lagrange's solution of the problem which

he proposed to himself is perfect. As a practical method, however, it

is almost useless. The formation of the equation of differences for

equations of even the fourth degree is very laborious, and for equa-

tions of higher degrees becomes well nigh impracticable. Even if

the more convenient modes of separating the roots discovered sim-i-

Lagrange's time be taken in conjunction with the rest of his pro<

still this process is open to the objection that it gives the root in

the form of a continued fraction, and that the labour of obtaining

it in this form is greater than the corresponding labour of obtaining it

by Homer's process in the form of a decimal. It will be observed

also that the latter process, in the perfected form to which llorntr



440 Notes.

has brought it, is free from all the objections to Newton's method

above stated.

Since the period of Lagrange, the most important contributions to

the analysis of numerical equations, in addition to Homer's improve-

ment of the method of approximation of Vieta and Newton, are those

of Fourier, Eudan, and Sturm. The researches of Budan were pub-
lished in 1807

;
and those of Fourier in 1831, after his death. There

is no doubt, however, that Fourier had discovered before the publica-

tion of Sudan's work the theorem which is ascribed^to them conjointly

in the text. The researches of Sturm were published in 1835. The

methods of separation of the roots proposed by these writers are fully

explained in Chapter IX. By a combination of these methods with

that of Horner, we have now a solution of Lagrange' s problem far

simpler than that proposed by Lagrange himself. And it appears

impossible to reach much greater simplicity in this direction. In

extracting a root of an equation, just as in extracting an ordinary

square or cube root, labour cannot be avoided
;
and Horner' s process

appears to reduce this labour to a minimum. The separation of the

roots also, especially when two or more are nearly equal, must remain

n work of more or less labour. This labour may admit of some reduc-

tion by the consideration of the functions of the coefficients which

play so important a part in the theory of the different quantics. If,

for example, the functions H, /, and
/", are calculated for a given

quartic, it will be possible at once to tell the character of the roots

(see Art. 68). Mathematicians may also invent in process of time

some mode of calculation applicable to"numerical equations analogous

to the logarithmic calculation of simple roots. But at the present

time the most perfect solution of Lagrange's problem is to be sought

in a combination of the methods of Sturm and Horner.
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NOTE C.

DETERMINANTS.

The expressions which form the subject-matter of Chapter XI.

were first called "determinants" by Cauchy, this name being adopted

by him from the wiitings of Gauss, who had applied it to certain

.-pecial clashes of these functions, viz. the discriminants of binary and

ternary quadratic forms. Although Leibnitz had observed in 1693

the peculiarity of the expressions which arise from the solution of

linear equations, no further advance in the subject took place until

Cramer, in 1750, was led to the study of such functions in connexion

with the analysis of curves. To Cramer is due the rule of signs

of Art. 108. During the latter part of the eighteenth century the

subject was further enlarged by the labours of Bezout, Laplace,

Vandermonde, and Lagrange. In the present century the earliest

cultivators of this branch of mathematics were Gauss and Cauchy;
the former of whom, in addition to his investigations relative to the

discriminants of quadratic forms, proved, for the particular cases of

the second and third order, that the product of two determinants

is itself a determinant. To Cauchy we are indebted for the first

formal treatise on the subject. In his memoir on Alternate Functions,

published in the Journal de VKcole Poll/technique, vol. x., he dis-

cusses determinants as a particular class of such functions, and

proves several important general theorems relating to them. A
ATeut impulse was given to the study of these expressions by the

writings of Jacobi in Crelle's Journal, and by his memoirs published

in 1841. Among more recent mathematicians who have advanced

this subject may be mentioned Hermite, Hesse, Joachimsthal,

Caylcy, Sylvester, and Salmon. There is now no department of

mathematics, pure or applied, in which the employment of this

calculus is not of great assistance, not only furnishing brevity and

elegance in the demonstration of known properties, but even leading

to new discoveries in mathematical science. Among recent works

which have rendered this subject accessible to students may be men-

tioned Spottiswoode's Elementary Theorems relating to Jhtermimmts,

L'-ndon, 1851
;
Brioschi's La teorica dei Jh'fi'rminanti, 1'avia, 1854

Baltzer's Theorie und Anwendung der Determinants, Leip/ig, 1864

1) Bator's Elements de la theoric des Determinants, Paris, 1877
;
Scott's
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Theory ofDeterminants, Cambridge, 1880; and the chapters in Salmon's

Lessons introductory to the Modern Higher Algebra, Dublin, 1876.

For further information on the history of this subject, as well as on

that of Eliminants, Invariants, Covariants, and Linear Transforma-

tions, the reader is referred to the notes at the end of the work

last mentioned.

NOTE D.

THE PROPOSITION THAT EVERY EQUATION HAS A ROOT.

It is important to have a clear conception of what is established,

and what it is possible to establish, in connexion with the proposition

discussed in Art. 195. If in the equation a&? + 1#
B-1 + . . . an =

the coefficients a
,
alt . . . an are used as mere algebraical symbols

without any restriction
;
that is to say, if they are not restricted to

denote numbers, either real, or complex numbers of the form treated

in Chapter XVII., then, with reference to such an equation it is not

proved, and there exists no proof, that every equation has a root.

The proposition which is capable of proof is that, in the case of any
rational integral equation of the nth

degree, whose coefficients are all

complex (including real) numbers, there exist n complex numbers

which satisfy this equation; so that, using the terms number and

numerical in the wide sense of Chapter XVII., the proposition under

consideration might be more accurately stated in the form Every
numerical equation of the nth

degree has n numerical roots.

"With reference to this proposition, there appears little doubt that

the most direct and scientific proof is one founded on the treatment of

imaginary expressions or complex numbers of the kind considered in

Chapter XVII. The first idea of the representation of complex num-

bers by points in a plane is due to Argand, who in 1806 published

anonymously in Paris a work entitled Essai sur une maniere de repri-

senter les quantites imaginaires dans les constructions geometriques. This

writer some years later gave an account of his researches in Gergonne's

Annales. Notwithstanding the publicity thus given by Argand to his

new methods, they attracted but little notice, and appear to have been

discovered independently several years later by Warren in England
and Mourey in France. These ideas were developed by Gauss in his
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works published in 1831
;
and by Cauchy, who applied them to the

proof of the important theorem of Art. 194. With reference to the

proposition now under discussion, the proof which we have given at

the close of Art. 195 is to be found in Argand's original memoir, and

is reproduced by Cauchy with some modifications in his Exercices

d1

Analyse. A proof in many respects similar was given by Mourey.
Before the discovery of the geometrical treatment of complex

numbers several mathematicians occupied themselves with the pro-

blem of the nature of the roots of equations. An account of their

researches is given by Lagrange in Note IX. of his Equations Numc-

riques. The inquiries of these investigators, among whom we may
mention D'Alembert, Descartes, Euler, Foncenex, and Laplace, re-

ferred only to equations with rational coefficients; and the object in

view was, assuming the existence of factors of the form x -
a, x -

(5,

&c., to show that the roots a, /?, &c., were all either real or imagi-

nary quantities of the type a + b<\/
-

1
;

in other words, that the

solution of an equation with real numerical coefficients cannot give rise

to an imaginary root of any form except the known form a + b */- 1
,

in which a and b are real quantities. For the proof of this proposition

the method employed in general was to show that, in case of an

equation whose degree contained 2 in any power &, the possibility of

its having a real quadratic factor might be made to depend on the

solution of an equation whose degree contained 2 in the power k - 1

only ;
and by this process to reduce the problem finally to depend on

the known principle that every equation of odd degree with real coef-

ficients has a real root. Lagrange's own investigations on this sub-

ject, given in Note X. of the work above referred to, related, like

those of his predecessors, to equations with rational coefficients, and

are founded ultimately on the same principle of the existence of a real

root in an equation of odd degree with real coefficients.

As resting on the same basis, viz., the existence of a real root in

an equation of odd degree, may be noticed two recently published

methods of considering this problem one by the late Professor Clif-

ford (see his Mathematical Papers, p. 20, and Cambridge Philosophical

Society's Proceedings, II.
, 1876), and the other by Professor Malet

(Transactions of the Royal Irish Academy, vol. xxvi., p. 453, 1878).

Starting with an equation of the 2mth
degree, botli writers employ

Sylvester's dialytic method of elimination to obtain an equation of the

degree m('2m
-

1) on whose solution the existence of a root of the
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proposed equation is shown to depend ;
and since the number m (2m -

1)

contains the factor 2 once less often than the number 2w, the problem

is reduced ultimately to depend, as in the methods above mentioned,

on the existence of a root in an equation of odd degree. The two

equations between which the elimination is supposed to be effected are

of the degrees m and m - I
;
and the only difference between the two

modes of proof consists in the manner of arriving at these equations.

In Professor Malet's method they are found by means of a simple

transformation of the proposed equation, while Professor Clifford ob-

tains them by equating to zero the coefficients of the remainder when

the given polynomial is divided by a real quadratic factor. The forms

of these coefficients are given in Ex. 31, p. 286
;
and it will be readily

observed that the elimination of fi from the equations obtained by

making rQ and r^ vanish will furnish an equation in a of the degree

m(2m -
1).
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