GIPT OF

R. "Pracy Crawford

ASTRONOXT DEFP:

R.TGunfors
(gitt of Publishers apr, 20 oog)

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

WORKS OF
 PROF. W. WOOLSEY JOHNSON

PUBLISHED BY JOHN WILEY \& SONS.

An Elementary Treatise on the Integral Calculus. Founded on the Method of Rates. Small 8vo, ix +234 pages, 36 figures. Cloth, $\$ 1.50$.
The Theory of Errors and the Method of Least Squares.
12mo, $x+172$ pages. Cloth, \$1.50.
Curve Tracing in Cartesian Coordinates.
12 mo , vi +86 pages, 54 figures. Cloth, $\$ 1.00$.

Differential Equations.

A Treatise on Ordinary and Partial Differential Equations. Small 8vo, xii +368 pages. Cloth, \$3.50.
Theoretical Mechanics.
An Elementary Treatise. $12 \mathrm{mo}, \mathrm{xv}+434$ pages, 115 figures. Cloth, \$3.00, net.
An Elementary Treatise on the Differential Calculus.
Founded on the Method of Rates. Small 8vo, $x i v+404$ pages, 70 figures. Cloth, $\$ 3.00$.

THE

THEORY OF ERRORS

METHOD OF LEAST SOUARES

BY
\section*{WILLIAM WOOLSEY JOHNSON}

PROFESSOR OF MATHEMATICS AT THE UNITED.STATES NAVAL ACADEMY ANNAPOLIS MARYLAND

FIRSTEDITION
SECOND THOUSAND

NEW YORK:
JOHN WILEY \& SONS.
London : CHAPMAN \& HALL, Limited.
1905

Copyright, 1892,

By
W. WOOLSEY JOHNSON.

ASTRONOXI Duptr

PREFACE.

The basis adopted in this book for the theory of accidental errors is that laid down by Gauss in the Theoria Motes Corjorum Coelestium (republished as vol. vii of the Werke), which may be described for the most part in his own words, as follows :
"The hypothesis is in fact wont to be considered as an axiom that, if any quantity has been determined by several direct observations, made under similar circumstances and with equal care, the arithmetical mean between all the observed values presents the most probable value, if not with absolute rigor, at least very nearly so, so that it is always safest to adhere to it." (Art. 177.)

Then introducing the notion of a law of facility of error to give precise meaning to the phrase " most probable value," we cannot do better than to adopt that law of facility in accordance with which the arithmetical mean is the most probable value. After deriving this law and showing that it leads to the principle of least squares, he says: "This principle, which in all applications of mathematics to natural philosophy admits of very frequent use, ought everywhere to hold good as an axiom by the same right as that by which the arithmetical mean between several observed values of the same quantity is adopted as the most probable value." (Art. r 79.)

Accordingly no attempt has been made to demonstrate the principle of the arithmetical mean, nor to establish the exponential law of facility by any independent method. It has been deemed important, however, to show the self-consistent nature of the law, in the fact that its assumption for the errors of direct observation involves as a consequence a law of the same form for any linear function of observed quantities, and particularly for the final determination which results from our method. This persistence in the form of the law has too frequently been assumed, in order to simplify the demonstrations; but at the expense of soundness.

No place has been given to the so-called criteria for the rejection of doubtful observations. Any doubt which attaches to an observation on account of the circumstances under which it is made, is recognized, in the practice of skilled observers, in its rejection, or in assigning it a small weight at the time it is made ; but these criteria profess to justify the subsequent rejection of an observation on the ground that its residual is found to exceed a certain limit. With respect to this Professor Asaph Hall says: "When observations have been honestly made I dislike to enter upon the process of culling them. By rejecting the large residuals the work is made to appear more accurate than it really is, and thus we fail to get the right estimate of its quality." (The Orbit of Iapetus, p. 40, Washington Observations for 1882, Appendix I.)

The notion that we are entitled to reject an observation, that is, to give it no weight, when its residual exceeds a certain limit, would seem to imply that we ought to give less than the usual weight to those observations whose residuals fall just short of this limit, in tact that we ought to revise the observations, assigning weights which diminish as the residuals increase. Such a process might appear at first sight plausible,
but it would be equivalent to a complete departure from the principle of the arithmetical mean and the adoption of a new law of facility. For this we have no justification, either from theory or from the examination of the errors of extended sets of observations.

In the discussion of Gauss's method of solving the normal equations, the notion of the 'reduced observation equations' (see Arts. 154, 155) which gives a new interpretation to the 'reduced normal equations' has been introduced with advantage. This conception, although implied in Gauss's elegant discussion of the sum of the squares of the errors (see Art. 160), seems not to have appeared explicitly in any treatise prior to the third edition of W. Jordan's Handbuch der Vermessungskunde (Stuttgart, 1888). To this very complete work, and to Oppolzer's Lehrbuch zur Bahnbestimmung der Kometen und Planeten, I am indebted for the forms recommended for the computations connected with Gauss's method, and for many of the examples.

W. W. J.

U. S. Naval Academy, June, 1892.

CONTENTS.

I.
Introductory.
PAGE
Errors of Observation I
Objects of the Theory 2
II.
Independent Observations of a Single Quantity.
The Arithmetical Mean 4
Residuals 4
Weights 5
The Probable Value 6
Examples 7
III.
Principles of Probability.
The Measure of Probability 9
Compound Events 9
Repeated Trials 10
The Probability of Values belonging to a Continuous Series II
Curves of Probability 12
Mean Values under a given Law of Probability 14
The Probability of Unknown Hypotheses 16
Examples 19
IV.
The Law of Prcbability of Accidental Errors.
The Facility of Errors 2 I
The Probability of an Error between given Limits 23
The Probability of a System of Observed Values 24

page

The most Probable Value derivable from a given System of Observed Values 24
The Form of the Facility Function corresponding to the Arithmet- ical Mean 25
The Determination of the Value of C 26
The Principle of Least Squares 28
The Probability Integral 29
The Measure of Precision 30
The Probable Error 32
The Mean Absolute Error 32
The Mean Error 33
Measures of the Risk of Error 34
Tables of the Probability Integral and Error Function 36
Comparison of the Theoretical and Actual Frequency of Errors 37
The Distribution of Errors on a Plane Area 38
Sir John Herschel's Proof of the Law of Facility (foot-note) 39
The Surface of Probability 40
The Probability of Hitting a Rectangle 40
The Probability of Hitting a Circle 42
The Radius of the Probable Circle 42
The most Probable Distance 43
Measures of the Accuracy of Shooting 44
Examples. 44
V.
The Combination of Observations and Probable Accuracy of the Results.
The Probability of the Arithmetical Mean 48
The Combination of Observations of Unequal Precision 50
Weights and Measures of Precision 51
The Probability of the Weighted Mean 52
The most Probable Value of h derivable from a System of Observa- tions 53
Equality of the Theoretical and Observational Values of the Mean Error in the case of Observations of Equal Weight 54
Formulæ for the Mean and Probable Errors 55
The most Probable Value of k in Target Practice 57
The Computation of the Probable Error 58
The Values of h and r derived from the Mean Absolute Error 63
Examples. 66
VI.
The Facility of Error in a Function of one or more Observed Quantities.
PA ${ }^{-E}$
The Linear Function of a Single Observed Quantity 68
Non-linear Functions of a Single Observed Quantity 69
The Facility of Error in the Sum or Difference of two Observed Quantities 70
The Linear Function of Several Observed Quantities 72
The Non-linear Function of Several Observed Quantities 73
Examples 74
VII.
The Combination of lndependent Determinations of the same Quantity.
The Distinction betweea Precision and Accuracy 76
Relative Accidental and Systematic Errors 78
The Relative Weights of Independent Determinations 79
The Combination of Discordant Determinations 8I
Formulæ for Probable Error when $n=2$ (see foot-note) 83
Indicated and Concealed Portions of the Risk of Error 84
The Total Probable Error of a Determination 86
The Ultimate Limit of Accuracy 88
Examples. 89
VIII.
Indirect Observations.
Observation Equations 91
The Reduction of Observation Equations to the Linear Form 93
The Residual Equations $9+$
Observation Equations of Equal Precision 94
The Normal Equation for x 95
The System of Normal Equations 97
Observation Equations of Unequal Precision 9^{8}
Formation of the Normal Equations 99
The General Expressions for the Unknown Quantities 100
The Weights of the Unknown Quantities 101
The Determination of the Measure of Precision 105
PAGE
The Probable Errors of the Observations and Unknown Quantities 108Expressions for Σv^{2}109
Measure of the Independence of the Observation Equations III
Empirical or Interpolation Formulæ 112
Conditioned Observations 113
The Correlative Equations II5
Examples II6
IX.
Gauss's Method of Substitution.
The Reduced Normal Equations 120
The Elimination Equations 122
The Reduced Observation Equations 123
Weights of the Two Quantities First Determined 126
The Reduced Expression for Σv^{2} 127
The General Expression for the Sum of the Squares of the Errors 128
The Probability of a Given Value of t 133
The Auxiliaries Expressed in Determinant Form 134
Form of the Calculation of the Auxiliaries 136
Check Equations 138
Numerical Example 141
Values of the Unknown Quantities from the Elimination Equations 141
Independent Values of the Unknown Quantities 142
Computation of α_{1}, α_{2}, etc. 144
The Weights of the Unknown Quantities 145
Computation of the Weights 148
Examples 149
Values of Constants 152
Values of the Probability Integral.
Table I. - Values of P_{t} 153
Table II.-Values of P_{z} 154
Squares, Cubes, Square-roots, and Cube-roots 155

THE THEORY OF ERRORS AND METHOD OF LEAST SQUARES.

I.

Introductory.

Errors of Observation.

I. A quantity of which the magnitude is to be determined is either directly measured, or, as in the more usual case, deduced by calculation from quantities which are directly measured. The result of a direct measurement is called an observation. Observations of the kind here considered are thus of the nature of readings upon some scale, generally attached to an instrument of observation. The least count of the instrument is the smallest difference recognized in the readings of the instrument, so that every observation is recorded as an integral multiple of the least count.
2. Repeated observations of the same quantity, even when made with the same instrument and apparently under the same circumstances, will nevertheless differ materially. An increase in the nicety of the observations, and the precision of the instrument, may decrease the discrepancies in actual magnitude ; but at the same time, by diminishing the least count, their numerical measures will generally be increased; so that, with the most refined instruments, the discrepancies may amount to many times the least count. Thus every observation is subject to an error, the error being the difference between the observed value and the true value; an observed value which exceeds the true value is regarded as having a positive error, and one which falls short of it as having a negative error.
3. An error may be regarded as the algebraic sum of a number of elemental errors due to various causes. So far as these causes can be ascertained, their results are not errors at all, in the sense in which the term is here used, and are supposed to have been removed by means of proper corrections. Systematic errors are such as result from unknown causes affecting all the observations alike. These again are not the subjects of the "theory of errors," which is concerned solely with the accidental errors which produce the discrepancies between the observations.

Objects of the Theory.

4. It is obvious that when a set of repeated observations of the same quantity are made, the discrepancies between them enable us to judge of the degree of accuracy we have attained. Speaking in general terms, of two sets of observations, that is the best which exhibits upon the whole the smaller discrepancies. It is obvious also that from a set of observations we shall be able to obtain a result in which we can have greater confidence than in any single observation.

It is one of the objects of the theory of errors to deduce from a number of discordant observations (supposed to be already individually corrected, so far as possible) the best attainable result, together with a measure of its accuracy; that is to say, of the degree of confidence we are entitled to place in it.
5. When a number of unknown quantities are to be determined by means of equations involving observed quantities, the quantities sought are said to be indirectly observed. It is necessary to have as many such observation equations as there are unknown quantities. The case considered is that in which it is i npossible to make repeated observations of the individual observed elements of the equations. These may, for example, be altitudes or other astronomical magnitudes which vary with the time, so that the corresponding times are also among the observed quantities. Nevertheless, there is the same advantage in employing a large number of observation equations that there
is in the repetition of direct observations upon a single required quantity. If there are n unknown quantities, any group containing n of the equations would determine a set of values for the unknown quantities; but these values would differ from those given by any other group of n of the equations.

We may now state more generally the object of the theory of errors to be, when given more than n observation equations involving n unknown quantities, the equations being somewhat inconsistent, to derive from them the best determination of the values of the several unknown quantities, together with a measure of the degree of accuracy attained.
6. It will be noticed that, putting $n=1$, this general statement includes the case of direct observations, in which all the equations are of the form

$$
X=x_{1}, \quad X=x_{2}, \ldots,
$$

where X is the quantity to be determined, and each equation gives an independent statement of its value.

We commence with this case of direct observations of a single quantity, and our first consideration will be that of the best determination which can be obtained from a number of such observations.

II.

Independent Observations of a Single Quantity.

The Arithmetical Mean.

7. Whatever rule we adopt for deducing the value to be accepted as the final result derived from several independent observations, it must obviously be such that when the observations are equal the result shall be the same as their common value. When the observations are discordant, such a rule produces an intermediate or mean value. Thus, if there be n quantities, $x_{1}, x_{2}, \ldots x_{n}$, the expressions

$$
\frac{\Sigma x}{n}, \quad \sqrt[n]{ }\left(x_{1} x_{2} \ldots x_{n}\right), \quad \sqrt{\frac{\Sigma x^{2}}{n}}, \quad \text { etc. }
$$

give different sorts of mean values. Of these, the one first written, which is the arithmetical mean, is the simplest, and it is also that which has universally been accepted as the final value when $x_{1}, x_{2}, \ldots x_{n}$ are independently observed values of a single quantity x, the observations being all supposed equally good.

Residuals.

8. The differences between the several observed values and the value which we take as our final determination of the true value are called the residuals of the observations. The residuals are then what we take to be the errors of the observations; but they differ from them, of course, by the amount of error existing in our final determination. If the observed values were laid down upon a straight line, as measured from any origin, the residuals would be the abscissas of the points thus representing the observations when the point corresponding to the final value adopted is taken as the origin.
9. In the case of the arithmetical mean, the algebraic sum of the residuals is zero. For, if a denote the arithmetical mean of the n quantities $x_{1}, x_{2}, \ldots x_{n}$, we have

$$
a=\frac{\Sigma x}{n}, \quad . \quad . \quad . \quad . \quad \text { (I) }
$$

the residuals are

$$
x_{1}-a, \cdot x_{2}-a, \ldots x_{n}-a,
$$

and their sum is

$$
\Sigma x-n a
$$

which is zero by equation (I).
When the observations are represented by points, as in the preceding article, the geometrical mean point or centre of gravity of these points is the point whose abscissa is a, and, when this point is taken as the origin, the sum of the positive abscissas of observation points is equal to the sum of the negative abscissas.

Weights.

10. When the observations are not made under the same circumstances, and are therefore not regarded as equally good, a greater relative importance can be given to a better observation by treating it as equivalent to more than one occurrence of the same observed value in a set of equally good observations. For example, if there were two observations giving the observed values x_{1} and x_{2}, and the first observation were regarded as the best, we might proceed as if the observed value x_{1} occurred twice and x_{2} once in a set of three observations equally good. The arithmetical mean would then be

$$
\frac{2 x_{1}+x_{2}}{3}
$$

In this process we are said to give to the observations the relative weights of 2 and 1 . The weight may be regarded as the numerical measure of the influence of the observation upon the arithmetical mean.
II. In general, $p_{1}, p_{2}, \ldots p_{n}$ being taken as the weights of the observations $x_{1}, x_{2}, \ldots x_{n}$, the arithmetical mean with these weights is

$$
a=\frac{p_{1} x_{1}+p_{2} x_{2}+\ldots+p_{n} x_{n}}{p_{1}+p_{2}+\ldots+p_{n}}=\stackrel{\Sigma}{-\quad p x} \underset{\sim}{p} .
$$

This expression is called the weighted arithmetical mean. When the weights are integers, it is the same as the arithmetical mean of Σp observations, of which p_{1} give the observed value x_{1}, p_{2} the observed value x_{2}, and so on. But, since only the ratios of the weights affect the result, it is not necessary to suppose them to be integers.

It is easily shown, as in Art. 9, that, if the residuals are multiplied by the weights, the algebraic sum of the results is zero. Again, when as in that article the observations are represented by points, the point whose abscissa is the weighted mean is the centre of gravity of bodies placed at the observation points having weights proportional to $p_{1}, p_{2}, \ldots p_{n}$.
12. The weight of a result obtained by the rule given above is defined to be the sum of the weights of its constituents; so that, because

$$
a \Sigma p=\Sigma p x,
$$

the product of a result by its weight is equal to the sum of the like products for its constituents. It follows that, in obtaining the final result, we may for any group of observations substitute their mean with the proper weight.

In the case of observations supposed equally good, the weight of each is taken equal to unity, and then the weight of the mean is the number of observations.

The Probable Value.

13. The most probable value of the observed quantity, or simply the probable value, in the ordinary sense of the expression signifies that which, in our actual state of knowledge, we are justified in considering as more likely than any other to be the true value. In this sense, the arithmetical mean is the most
probable value which can be derived from observations considered equally good. This is, in fact, equivalent to saying that we accept the arithmetical mean as the best rule for combining the observations, having no reason either theoretical or practical for preferring any other.*

But, if instead of a rule of combination we adopt a theory with respect to the nature of accidental errors, the probable value will depend upon the adopted theory. To become the subject of mathematical treatment such a theory must take the shape of a law of the probability of accidental errors, as will be explained in a subsequent section. Since, in the nature of things, this law can never be absolutely known, and since moreover it probably differs with differing circumstances of observation, the most probable value in this technical sense is itself unknown. But when the expression is used without specifying the law of probability, it signifies the value which is the most probable in accordance with the generally accepted law of probability. Before proceeding to this law, we shall consider, in the following section, the principles of probability so far as we shall need to apply them.

Examples.

1. Show that the formula $n f(a)=\Sigma f(x)$ determines a mean value of n quantities for any form of the function f, and that the geometric mean is included in this rule.
2. Except when $f(x)=c x$ in Ex. I, the position of the point whose abscissa is a is dependent upon the position of the origin as well as upon the observation points.

[^0]3. If the values of x are nearly equal in Ex. 1 , the result of the formula is nearly equivalent to a weighted arithmetical mean in which the weights are proportional to $f^{\prime}\left(\frac{1}{2} x_{1}+\frac{1}{2} a\right), f^{\prime}\left(\frac{1}{2} x_{2}+\frac{1}{2} a\right)$, etc.
4. When a mean value is determined by an equation of the form $\Sigma f(x-a)=0$, the position of the point whose abscissa is a is independent of the origin. Give the cubic determining a when $\Sigma(x-a)^{3}=0$, and show that one root only is real.
5. Prove that the weighted arithmetical mean of values of $x+y$ is the sum of the like means of the values of x and of the values of y respectively.

III.

Principles of Probability.

The Measure of Probability.

14. The probability of a future event is the measure of our reasonable expectation of the event in our present state of knowledge of its causes. Thus, not knowing any reason to the contrary, when a die is to be thrown we assign an equal probability to the several events of the turning up of its six different faces. We say, therefore, that the probability or chance that the ace will turn up is I to 5 , or better, I out of 6 , hence the fraction $\frac{1}{6}$ is taken as the measure of the probability. Thus the probability of an event which is one of a set of equally likeiy events, one of which must happen, is the fraction whose numerator is unity and whose denominator is the number of these events. Obviously, the probability of an event which can happen in several ways is the sum of the probabilities of the several ways. Thus if the die had two blank faces, the probability that one of them would turn up would be $\frac{2}{6}$ or $\frac{1}{3}$. The sum of the probabilities of all the possible events is unity, which represents the certainty that some one of the events will happen.

Compound Events.

15. An event which consists of the joint occurrence of two independent events is called a compound event. By independent events we mean events such that the occurrence or non-occurrence of the first has no influence upon the occurrence or nonoccurrence of the second. For example, the throwing of sixes with a pair of dice is a compound event consisting of the turning up of a special face of each die. The whole number of compound events is evidently the product of the numbers of simple events; and, since the several probabilities are the reciprocals
of these numbers, the probability of the compound event is the product of the probabilities of the simple events. Thus, when a pair of dice is thrown we have $6 \times 6=36$ compound events, and the probability of a special one, such as the throwing of sixes, is $\frac{1}{6} \times \frac{1}{6}=\frac{1}{36}$.

In like manner, if more than two simple events are concerned, it is easily seen that, in general, the probability of a compound event is the product of the probabilities of the independent simple events of whose joint occurrence it consists.
16. A compound event may happen in different ways, and then, of course, the probabilities of these independent ways must be added. For example, six and five may be thrown in two ways, that is to say, two of the 36 equally likely events consist of the combination six and five, hence the chance is $\frac{2}{36}$ or $\frac{1}{18}$. A throw whose sum amounts to 10 can occur in three ways, therefore its chance is $\frac{3}{36}$ or $\frac{1}{12}$.

Repeated Trials.

17. When repeated opportunities for the occurrence or nonoccurrence of the same set of events can be made to take place under exactly the same circumstances, equally probable events will tend to occur with the same frequency. Therefore, in a large number of such opportunities or trials, the relative frequency of the occurrence of an event which can happen in m ways and fail in n ways (the $m+n$ ways of both kinds corresponding to $m+n$ equally probable elementary events) will tend to the value $\frac{m}{m+n}$, which is the fraction expressing the probability of the event. This is commonly expressed by saying that the ratio of the number of occurrences of an event to the whole number of trials will "in the long run" be the fraction which expresses the probability. The correspondence of this frequency in the long run with the estimated probability forms the only mode, though an uncertain one, of submitting our results to the test of experience.

The Probability of Values belonging to a Continuous Series.
18. In the examples given in the preceding articles, the equally probable elementary events, which are the basis of our estimate of probability, form a limited number of distinct events, such as the turning up of the different faces of a die. But, in many applications, these events belong to a consecutive series, incapable of numeration. For example, suppose we are concerned with the value of a quantity x, of which it is known that any value between certain limits a and b is possible; or, what is the same thing, the position of the point P, whose abscissa is x, when P may have any position between certain extreme points A and B. We cannot now assign any finite measure to the probability that x shall have a definite value, or that P shall fall at a definite point, because the number of points upon the line $A B$ is unlimited. We have rather to consider the probability that P shall fall upon a definite segment of the line, or that the value of x shall lie between certain limits.
19. It is customary, however, to compare the probabilities that P shall fall at certain points. Suppose in the first place

Fig. 1.
that, when any equal segments of the line $A B$ are taken, the probabilities that P shall fall in these segments are equal. In this case, the probability that P shall fall at a given point is said to be constant for all points of the line. Let Δx be a segment of the line $A B$; then, if the probability for all points of $A B$ is constant, it readily follows from the definition just given that the
probability that P shall fall in the segment Δx is proportional to Δx. Since we suppose it certain that P shall fall somewhere between A and B, this probability will be represented by

$$
\frac{\Delta x}{A B} \text { or } \frac{\Delta x}{b-a}
$$

Let an ordinate y be taken such that $y \Delta x$ is the value of this probability ; then

$$
y=\frac{1}{b-a}
$$

and, constructing as in Fig. I the line $C D$ having this constant ordinate, the probabilities for any segments of $A B$ are the corresponding rectangles contained between the axis and the line $C D \quad$ For different values of the limiting space $A B$ in which P may fall, y varies in inverse ratio. Thus, if $A B$ is changed to $A B^{\prime}$, the new ordinate $A C^{\prime}$ or y^{\prime} is such that $y^{\prime} \cdot A B^{\prime}=y . A B$, each of the areas $A C D B$ and $A C^{\prime} D^{\prime} B^{\prime}$ being equal to unity. The two values of y are said to determine the relative probabilities that P shall fall at a given point in the two cases.

Curves of Probability.

20. Taking now the case in which the probability is not constant for all points, let $A B$ be divided into segments, and let rectangles be erected upon them, the area of each rectangle representing the probability that P shall fall in the corresponding segment. The heights of these rectangles will now differ for the different segments. Denoting the height for a given segment Δx by y, the relative values of y for any two segments determine, as explained in the preceding article, the relative probability that P shall fall at a given point in one or the other of the segments, on the hypothesis that the probability is constant throughout the segment. They may thus be said to measure the mean values of the probabilities for given points taken in the various segments. The sum of the areas of the rectangles will, of course be unity; that is. $\Sigma y \Delta x=1$.

2I. If we now subdivide the segments, the figure composed
of the sum of the rectangles will approach more and more nearly, as we diminish the segments without limit, to a curvilinear area, and the variable ordinate of the limiting curve will measure the continuously varying probability that P shall fall at a given point of the line $A B$.

The value of y is now a continuous function of x the abscissa of the corresponding point, and, putting $y=f(x)$, the function $f(x)$ is said to express the law of the probability of the value x.

Fig. 2.
The curve $y=f(x)$ is the probability curve corresponding to the given law $f(x)$. The entire area $A C D B$, Fig. 2, whose value is $\int_{a}^{b} y d x$ (which is the limit of $\Sigma y \Delta x$; see Int. Calc., Art. 99), a and b being the limiting values between which x certainly falls, is equal to unity. In general, for any limits the value of the integral $\int_{\alpha}^{\beta} y d x$ is the probability that x falls between the values α and β. The element $y d x$ of this integral may be called the element of probability for the value x. It is sometimes called the probability that the value shall fall between x and $x+d x$, it being in that case understood that $d x$ is taken so small that the probability may be regarded as constant in this interval.
22. As an illustration of what precedes, suppose it to be known that the value of x must fall between zero and a, and that the probabilities of values between these limits are proportional to the values themselves. These conditions give
and

$$
\begin{gathered}
y=c x, \\
\int_{0}^{a} y d x=1,
\end{gathered}
$$

whence, substituting and integrating,

$$
\frac{c a^{2}}{2}=1, \text { or } c=\frac{2}{a^{2}}
$$

Hence the law of probability in this case is

$$
y=\frac{2 x}{a^{2}}
$$

We may now find the probability that x shall fall between any given limits. For example, the probability that x shall exceed $\frac{1}{2} a$ is represented by

$$
P=\int_{\frac{1}{2} a}^{a} y d x=\frac{2}{a^{2}} \int_{\frac{1}{2} a}^{a} x d x=\frac{3}{4} .
$$

Thus the odds are 3 to I that x exceeds $\frac{1}{2} a$ when the law of probability is that proposed.

Mean Values under a given Law of Probability.

23. When a quantity x has a given law of probability, we have frequently occasion to consider what would be its mean or average value " in the long run," that is to say, the arithmetical mean of its values, supposing them to occur in a large number of trials with the frequency indicated by the given law of probability. See Art. I7.

Let us suppose, in the first place, that only a limited number of distinct values, say

$$
x_{1}, x_{2}, \ldots x_{m}
$$

are possible. Let $P_{1}, P_{2} \ldots P_{m}$ be the proper fractions which represent the respective probabilities of these values. Then, in a large number n of trials, the number of times in which the distinct values $x_{1}, x_{2} \ldots x_{m}$ occur will be

$$
n P_{1}, n P_{2}, \ldots n P_{m}
$$

respectively. The arithmetical mean mentioned above is, therefore,

$$
\frac{n P_{1} x_{1}+n P_{2} x_{2}+\ldots+n P_{m} x_{m}}{n}
$$

that is,

$$
\begin{gathered}
P_{1} x_{1}+P_{2} x_{2}+\ldots+P_{m} x_{m}, \\
\Sigma P x .
\end{gathered}
$$

That is to say, the mean value is found by multiplying the m distinct values by their probabilities and adding the results.*
24. Next, supposing a continuous series of values possible, let $y \Delta x$ be taken, as in Art. 20, to represent the probability that x falls between x and $x+\Delta x$. Evidently, in each term of $\Sigma P x$, we must now substitute this expression for P, and for x some intermediate value between x and $x+\Delta x$. When we pass to the limit, in which y becomes a continuous function of x, this sum becomes

$$
\int_{a}^{b} x y d x,
$$

which is thus the mean value of x, when y is the function expressing its law of probability and a and b its extreme possible values.

For example, with the law of probability considered in Art. 22, namely,

$$
y=\frac{2 x}{a^{2}}
$$

the mean value of x is

$$
\frac{2}{a^{2}} \int_{0}^{a} x^{2} d x=\frac{2}{3} a
$$

25. In the same manner it may be shown that, if $y=f(x)$ expresses the law of probability of x, the mean value of any function $F(x)$ is

$$
\int_{a}^{b} F(x) f(x) d x
$$

[^1]Thus, again taking the law of probability $y=\frac{2 x}{a^{2}}$, the mean value of $x^{2} *$ is

$$
\frac{2}{a^{2}} \int_{0}^{a} x^{3} d x=\frac{a^{2}}{2}
$$

Again, that of $\frac{1}{x}$ is

$$
\frac{2}{a^{2}} \int_{0}^{a} d x=\frac{2}{a}
$$

26. If all values between a and b are equally probable, the element of probability is $\frac{d x}{b-a}$; thus the mean value of x, in this case, is

$$
\int_{a}^{b} \frac{x d x}{b-a}=\frac{b^{2}-a^{2}}{2(b-a)}=\frac{a+b}{2}
$$

which is the same as the arithmetical mean between the limiting values. Again, the mean value of x^{2}, in this case, is

$$
\int_{a}^{b} \frac{x^{2} d x}{b-a}=\frac{b^{3}-a^{3}}{3(b-a)}=\frac{1}{3}\left(b^{2}+a b+a^{2}\right)
$$

The Probability of Unknown Hypotheses.

27. No distinction can be drawn between the probability of an uncertain future event and that of an unknown contingency, in a case where the decisive "event" has indeed happened, but we remain in doubt with regard to it because only probable evidence

[^2]is known to us. In any case, the probability is a mental estimate of credibility depending only upon the known data, and therefore subject to change whenever new evidence becomes known. Let there be two hypotheses A and B, one of which must be true, and which so far as we know are equally probable, and suppose that a trial is to be made which on either hypothesis may eventuate in one or the other of two ways; in other words, that an event X may or may not happen. Suppose, further, that on the hypothesis A the probability of X is a, and on the hypothesis B the probability of X is b. Now it is clear that after the trial has been made and the event X has happened, we are entitled to make a different estimate of the relative credibilities of the hypotheses A and B.
28. To obtain the new measures of the probabilities of A and B, we employ the notion of relative frequency in the long run. Let us then consider a great number of cases of the four kinds which before the event X we regard as possible, the frequencies of the different kinds being proportional to their probabilities as we estimate them before the event. The hypotheses A and B respectively are true in an equal number of cases, say n, of each. The event X will happen in $n a$ of the cases in which A is true, and not happen in $n(\mathrm{I}-a)$ cases. Again, X will happen in $n b$ cases in which B is the true hypothesis, and not happen in $n(\mathrm{I}-b)$ cases.

Now, since X has actually happened, from the whole number, $2 n$, of cases we must exclude those in which X does not happen, and consider only the $n a+n b$ cases in which X does happen.

Attending only to these cases, the relative frequency of those in which A and B respectively are true is the measure of our present estimate of their relative probability. Hence these probabilities are in the ratio $a: b$, that is, the probability of A is $\frac{a}{a+b}$, and that of B is $\frac{b}{a+b}$.
29. As an illustration, suppose there are two bags, A and B, containing white and black balls, A containing 3 white and 5
black balls, B containing 5 white and i black ball. One of the bags is chosen at random, and then a ball is drawn at random from the bag chosen. The ball is found to be white; what is the probability that the bag A was chosen? Here $a=\frac{3}{8}$, since three out of eight balls in A are white, and $b=\frac{5}{6}$; hence the probabilities are in the ratio $\frac{3}{8}: \frac{5}{6}$ or $9: 20$. The probability that the bag was A is therefore $\frac{9}{29}$.

Again, suppose A is known to contain only white balls, and B an equal number of white and black. If a white ball is drawn $a=1, b=\frac{1}{2}$, the odds in favor of A are $2: 1$ or the probability of A is $\frac{2}{3}$. But if a black ball had been drawn, we should have had $a=\mathrm{o}, b=\frac{1}{2}$, the probability of A is zero, that is, it is certain that the bag chosen was not A.
30. If there are other hypotheses besides A and B consistent with the event X, the same reasoning as in Art. 28 establishes the general theorem that the probabilities of the several hypotheses, which before an event X were considered equally probable,* are after the event proportional to the numbers which before the event express the probabilities of X on the several hypotheses.

The various hypotheses in question may consist in attributing different values to an unknown quantity x, and these values may constitute a continuous series. The probabilities of the various values will then be proportional to the corresponding probabilities of the event X. Hence, to find the law of the probability of x, it is only necessary to determine a constant in the same manner that c is determined in Art. 22.

In particular it is to be noticed that, of all the values of an unknown quantity which before the occurrence of a certain event were equally probable, that one is after the event the most probable which before the event assigned to it the greatest probability.

[^3]
Exampies.

I. From $2 n$ counters marked with consecutive numbers two are drawn at random; show that the odds against an even sum are n to $n-1$.
2. A and B play chess, A wins on an average 2 out of 3 games; what is the chance that A wins exactly 4 games out of the first six?
3. A domino is chosen from a set and a pair of dice is thrown; what is the chance that the numbers agree?
4. Show that the chance of throwing 9 with two dice is to the chance of throwing 9 with three dice as 24 to 25 .
5. A and B shoot alternately at a mark. A hits once in n times, B once in n - r times; show that their chances of first hit are equal, and find the odds in favor of B after A has missed the first shot.

$$
n \text { to } n-2
$$

6. A and B throw a pair of dice in turn. A wins if he throws numbers whose sum is 6 before B throws numbers whose sum is 7 ; show that his chance is $\frac{30}{61}$.
7. A walks at a rate known to be between 3 and 4 miles an hour. He starts to walk 20 miles, and B starts one hour later, walking at the rate of 4 miles an hour. What is the chance of overtaking him: I° if all distances per hour between the limits are equally probable; 2° if all times per mile between the limits are equally probable? $\quad I^{\circ}, I$ to $2 ; 2^{\circ}, 2$ to 3 .
8. If all values of x between o and a are possible and their probabilities are proportional to their squares, show that the probability that x exceeds $\frac{1}{2} a$ is $\frac{7}{8}$, and find the mean value of x.
9. If, in the preceding example, we are informed that x exceeds $\frac{1}{2} a$, how is the probability affected, and what is now the mean value of x ?
10. If two points be taken at random upon a straight line $A B$, whose length is a, and X denote that which is nearest A, show that the curve of probability for X is a straight line passing through B, and find the mean value of $A X$.
II. On a line $A B$, whose length is a, a point Z is taken at random, and then a point X is taken at random upon $A Z$. Determine the probability curve for $A X$, or x, and the mean value of x.

$$
y=\frac{\mathrm{I}}{a} \log \frac{a}{x} ; \frac{a}{4} .
$$

12. Two points are taken at random on the circumference of a circle whose radius is a. Show that the chord is as likely as not to exceed $a \sqrt{ } 2$, but that the average length of the chord is $\frac{4 a}{\pi}$.
13. In a semicircle whose radius is a, find the mean ordinate: I° when all points of the semi-circumference are equally probable; 2° when all points on the diameter are equally probable.

$$
\mathrm{I}^{\circ}, \frac{2 a}{\pi} ; 2^{\circ}, \frac{\pi a}{4} .
$$

14. A card is missing from a pack; I3 cards are drawn at random and found to be black. Show that it is 2 to I that the missing card is red.
15. A card has been dropped from a pack; I3 cards are then drawn and found to be 2 spades, 3 clubs, 4 hearts, and 4 diamonds. What are the relative probabilities that the missing card belongs to the suits in the order named? II:10:9:9.
16. A and B play at chess: when A has the first move the odds are II to 6 in favor of A, but when B has the first move the odds are only 9 to 5 . A has won a game; what are the odds that he had the first move?

I 54 to I53.
17. The odds are 2 to 1 that a man will write 'rigorous' rather than 'rigourous.' The word has been written, and a letter taken at random from it is found to be ' u '; what are now the odds? 9 to 8.
18. A point P was taken at random upon a line $A B$, and then a point C was taken at random upon $A P$. If we are informed that C is the middle point of $A B$, what is now the probability curve of $A P$?

$$
y=\frac{1}{x \log 2}
$$

IV.

The Law of Probability of Accidental Errors.

The Facility of Errors.

3I. If observations made upon the same magnitude could be repeated under the same circumstances indefinitely, only a limited number of observed values, which are exact multiples of the least count of the instrument, would occur, and the relative frequency with which they occurred would indicate the law of the probability of the observed values, that is to say, the law of facility with which the corresponding errors are committed. In the theory of errors, however, it is necessary to regard all observed values between certain limits as possible, so that when they are laid down upon a line as abscissas, the law of facility may be represented by a continuous curve, as explained in Art. 2I. This is in fact equivalent to supposing the least count diminished without limit.

The curve thus obtained is the probability curve for an observed value; and, if the point representing the true value be taken as origin, the abscissas become errors, and the curve becomes the probability curve for accidental errors committed under the given circumstances.
32. The probability curves corresponding to different circumstances of observation would differ somewhat, but in any case would present the following general features. In the first place, since errors in defect and in excess* are equally likely to occur, the curve must be symmetrical to the right and left of the point which represents the true value of the observed quantity. In the next place, since accidental errors are made up of elemental errors (Art. 3) which, as they may have either direction, tend

[^4]to cancel one another, small errors are more frequent than large ones, so that the maximum ordinate occurs at the central point. In the third place, since large errors (which can only result when most of the elemental errors have the same direction and their greatest magnitudes) are rare, and errors beyond some undefined limit do not occur, the curve must rapidly approach the axis of x both to the right and left, so that the ordinate (which can never become negative) practically vanishes at an indefinite distance from the central point.
33. If $y=\varphi(x)$ is the equation of the curve referred to the central point as origin, the general features mentioned above are equivalent to the statements: first, that $\varphi(x)$ is an even function, that is, a function of x^{2}; secondly, that $\varphi(0)$ is its maximum value; thirdly, that it is a decreasing function of x^{2}, and practically vanishes when x is large. Since it is impracticable to select the function φ in such a manner that $\varphi(x)$ shall be constantly equal to zero when x exceeds a certain limit, the last condition requires that the curve shall have the axis of x for an asymptote ; in other words, we must have $\varphi(\pm \infty)=0$.

When regarded as the curve of probability of an observed value, the equation is $y=\varphi(x-a)$, where a is the true value of the observed quantity, the origin now corresponding to the zero point of the measurements.

Fig. 3.
The general form of the curve of probability of an observed value will therefore be similar to that given in Fig. 3, in which A is the point whose abscissa a is the true value.

The Probability of an Error between given Limits.
34. If the law of probability of error for a given observation is

$$
y=\varphi(x)
$$

the probability that the error of an observation shall lie between α and β will, in accordance with Art. 21, be expressed by

$$
P=\int_{a}^{\beta} \varphi(x) d x
$$

provided that the value of this integral for the whole range of possible errors is unity. Since we suppose the function $\varphi(x)$ to fulfil the conditions given in Art. 32, we may include all errors in the range of the integral, because the probability of large errors practically vanishes. We therefore write

$$
\int_{-\infty}^{\infty} \varphi(x) d x=1
$$

That is to say, the whole area between the curve and the axis in Fig. 3 is assumed to be unity.
35. If Δx represents the least count of the instrument, the probability that an observation shall be recorded with the value x will be represented by

$$
\int_{x-\frac{1}{t} \Delta x}^{x+\Delta x} \varphi(x) d x .
$$

If Δx is so small that $\varphi(x)$ may be regarded as constant over the interval, the value of this integral is

$$
\varphi(x) \Delta x .
$$

The product $\varphi(x) d x$, which is the element of probability, being the element of the area which represents the probability, is therefore called the probability of an error between x and $x+d x$, and is sometimes written in the form

$$
\int_{x}^{x+d x} \varphi(x) d x
$$

The Probability of a System of Observed Values.

36. Let $x_{1}, x_{2}, \ldots x_{n}$ be a series of observed values of a quantity whose true value is a, the observations being all made under the same circumstances. Then

$$
x_{1}-a, \quad x_{2}-a, \quad \ldots \quad x_{n}-a
$$

are the errors of observation; and,

$$
\begin{equation*}
y=\varphi(x-a) \tag{I}
\end{equation*}
$$

being the law of facility of the errors, the probability before the first observation is made that x_{1} shall be the first observed value is $\varphi\left(x_{1}-a\right) \Delta x$, where Δx is the least count of the instrument. In like manner, the probability that x_{2} shall be the second observed value is $\varphi\left(x_{2}-a\right) \Delta x$, and so on.

It follows, in accordance with the principle explained in Art. 15, that, if P denote the probability of the compound event consisting in the occurrence of the n observed values, then, before the observations were made we should have

$$
\begin{equation*}
P=\varphi\left(x_{1}-a\right) \varphi\left(x_{2}-a\right) \ldots \varphi\left(x_{n}-a\right) \Delta x^{n} \tag{2}
\end{equation*}
$$

The Most Probable Value derivable from a given System of Observed Values.

37. Supposing the form of the function φ to be known, the value of P given above is a known function of the unknown true value a. Regarding different values of a as hypotheses all equally probable before the observations were made, the principle enunciated in Art. 30 shows that that value of a is most probable which assigns to P the greatest value.

The value of a thus found, or most probable value, depends therefore in part upon the form of the function φ, this being the mathematical expression of a law which, as stated in Art. I3, can never be absolutely known. We proceed to the method of Gauss, which consists in determining the form of φ in accordance with which the arithmetical mean becomes the most probable value.

The Form of φ corresponding to the Arithmetical Mean.
38. If we put

$$
\begin{equation*}
\log \varphi(x-a)=\psi(x-a) \tag{I}
\end{equation*}
$$

we have from equation (2), Art. 36,

$$
\log P=\psi\left(x_{1}-a\right)+\psi\left(x_{2}-a\right)+\ldots+\psi\left(x_{n}-a\right)+n \log \Delta x,
$$

and a is to be so taken that P, and therefore $\log P$, shall be a maximum. Hence, putting ψ^{\prime} for the derivative of ψ, we have by differentiation with respect to a,

$$
\begin{equation*}
\psi^{\prime}\left(x_{1}-a\right)+\psi^{\prime}\left(x_{2}-a\right)+\ldots+\psi^{\prime}\left(x_{n}-a\right)=0 . \tag{3}
\end{equation*}
$$

Denoting the quantities

$$
x_{1}-a, \quad x_{2}-a, \quad \ldots \quad x_{n}-a,
$$

which are the residuals, by $v_{1}, v_{2}, \ldots v_{n}$, this equation may be written

$$
\begin{equation*}
\psi^{\prime}\left(v_{1}\right)+\psi^{\prime}\left(v_{2}\right)+\ldots+\psi^{\prime}\left(v_{n}\right)=0 . \tag{4}
\end{equation*}
$$

Supposing now the value of a which satisfies equation (3) to be the arithmetical mean, we have by Art. 9,

$$
\begin{equation*}
v_{1}+v_{2}+\ldots+v_{n}=0 \tag{5}
\end{equation*}
$$

We wish therefore to find the form of the function ψ^{\prime} such that equation (4) is satisfied by every set of values of $v_{1}, v_{2}, \ldots v_{n}$ which satisfy equation (5). For this purpose, suppose all the values of v except v_{1} and v_{2} to remain unchanged while equation (5) is still satisfied. The new values may then be denoted by $v_{1}+k$ and $v_{3}-k$, in which k is arbitrary. Substituting the new values in equation (4), the sum of the first two terms must remain unchanged since all of the other terms are unchanged; therefore,

$$
\psi^{\prime}\left(v_{1}+k\right)+\psi^{\prime}\left(v_{2}-k\right)=\psi^{\prime}\left(v_{1}\right)+\psi^{\prime}\left(v_{2}\right) ;
$$

whence

$$
\begin{equation*}
\frac{\psi^{\prime}\left(v_{1}+k\right)-\psi^{\prime}\left(v_{1}\right)}{k}=\frac{\psi^{\prime}\left(v_{2}\right)-\psi^{\prime}\left(v_{2}-k\right)}{k} \ldots . \tag{6}
\end{equation*}
$$

When k is diminished without limit this becomes

$$
\left.\left.\frac{d \psi^{\prime}(v)}{d v}\right]_{v_{1}}=\frac{d \psi^{\prime}(v)}{d v}\right]_{v_{2}}
$$

hence, because v_{1} and v_{2} are independent, we infer that

$$
\begin{equation*}
\frac{d \psi^{\prime}(v)}{d v}=c, \tag{7}
\end{equation*}
$$

where c is an unknown constant.
The integral of equation (7) is $\psi^{\prime}(v)=c v+c^{\prime}$: but, substituting in equation (4), we find $c^{\prime}=0$; hence

$$
\begin{equation*}
\psi^{\prime}(v)=c v . \tag{8}
\end{equation*}
$$

Integrating again,

$$
\psi(v)=\frac{1}{2} c v^{2}+c^{\prime \prime}
$$

or, by equation (I),

$$
\begin{equation*}
\log \varphi(v)=-h^{2} v^{2}+c^{\prime \prime} \tag{9}
\end{equation*}
$$

in which we have written $-h^{2}$ for the constant $\frac{1}{2} c$, because we know from Art. 33 that $\varphi(v)$ is a decreasing function of v^{2}.

Finally, equation (9) gives

$$
\varphi(v)=C e^{-h^{2} v^{2}}, \quad . \quad . \quad . \quad . \quad .(\mathrm{IO})
$$

which is accordingly the law of facility of error which makes the arithmetical mean the most probable value.

The Determination of the Value of C.

39. The constants C and h which arise in the above process are not independent; for, x denoting the error as in Art. 34, we must have

$$
\int_{-\infty}^{\infty} \varphi(x) d x=\mathrm{I}
$$

Substituting from equation (Io) above, this gives

$$
\begin{equation*}
C \int_{-\infty}^{\infty} e^{-h^{2} x^{2}} d x=\mathrm{I} \tag{I}
\end{equation*}
$$

by which the value of C in terms of h may be found.

A convenient mode of evaluating the definite integral involved in this equation results from the consideration of the solid included between the plane of $x y$ and the surface generated by the revolution of the curve

$$
z=e^{-h^{2} x^{2}}
$$

about the axis of z. Using polar coordinates in the plane of $x y$, the equation of the surface is

$$
\begin{equation*}
z=e^{-h^{2} r^{2}}=e^{-h^{2}\left(x^{2}+y^{2}\right)} \tag{2}
\end{equation*}
$$

The volume of the solid in question is therefore expressed by either of the two formulae

$$
V=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-h^{2} x^{2}} e^{-h^{2} y^{2}} d x d y, \quad . \quad . \quad . \quad \text { (3) }
$$

and

$$
\begin{equation*}
V=\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-h^{2} r^{2}} r d r d \theta \tag{4}
\end{equation*}
$$

The second expression is readily evaluated and gives

$$
\begin{equation*}
\left.V=\frac{\pi}{h^{2}} e^{-h^{2} r^{2}}\right]_{\infty}^{\circ}=\frac{\pi}{h^{2}} \tag{5}
\end{equation*}
$$

In equation (3), the limits of integration are independent ; hence

$$
\begin{equation*}
V=\int_{-\infty}^{\infty} e^{-h^{2} x^{2}} d x \cdot \int_{-\infty}^{\infty} e^{-h^{2} y^{2}} d y=\left[\int_{-\infty}^{\infty} e^{-h^{2} x^{2}} d x\right]^{2} \tag{6}
\end{equation*}
$$

Comparing equations (5) and (6), we have

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-h^{2} x^{2}} d x=\frac{\sqrt{ } \pi}{h} . * \tag{7}
\end{equation*}
$$

Substituting in equation (1), we have $C=\frac{\hbar}{\sqrt{\pi}}$, and the law of facility becomes

$$
\begin{equation*}
y=\frac{h}{\sqrt{ } \pi} e^{-h^{2} x^{2}}, \tag{8}
\end{equation*}
$$

* It is readily shown that $\int_{-\infty}^{\infty} e^{-t^{2}} d t=\Gamma\left(\frac{1}{2}\right)$, the value of which is $V \pi$: equation (7) may also be derived by putting $t=h x$ in this result.
a law which, it is readily seen, fulfils the conditions given in Art. 32.

40. The law of facility expressed in the equation derived above is that which is universally adopted ; in other words, it is assumed that under any circumstances of observation the law of facility will be satisfactorily represented by equation (8) if the value of h be properly determined. The mode of determining the most probable value of h for a given set of observations will be given in the following section.

We proceed to develop the consequences of this law. Among them will, of course, be found the rule of the Arithmetical Mean in accordance with which the law has been derived (see Art. 42). Certain confirmations of the law, both of a theoretic and a practical nature, will also be noticed as they present themselves.

The Principle of Least Squares.

4I. Substituting the expression now obtained for the function φ, the expression for the probability of the occurrence of the actual observed values (as estimated before the observations were made, see Art. 36) becomes

$$
\begin{equation*}
P=\frac{h^{n}}{\pi \pi^{\frac{1}{n}}} e^{-h^{2}\left[\left(x_{1}-a\right)^{2}+\left(x_{2}-a\right)^{2}+\cdots+\left(x_{n}-a\right)^{2}\right]} \Delta x^{n} \tag{I}
\end{equation*}
$$

This expression, regarded as a function of a, is obviously a maximum when

$$
\left(x_{1}-a\right)^{2}+\left(x_{2}-a\right)^{2}+\ldots+\left(x_{n}-a\right)^{2}=\text { a minimum }
$$

Hence the most probable value of the observed quantity a, in the case of observations supposed equally good, is that which assigns the least possible value to the sum of the squares of the residual errors. This is the statement in its simplest form of the principle of Least Squares.
42. The rule of the Arithmetical Mean follows directly from the principle of Least Squares. Thus, by differentiation with respect to a, we derive from equation (2)

$$
x_{1}-a+x_{2}-a+\ldots+x_{n}-a=0
$$

that is, the algebraic sum of the residuals is zero, or

$$
a=\frac{\sum x}{n}
$$

in other words, the arithmetical mean is to be taken as the most probable value.
43. Conversely, we may show directly that the arithmetical mean makes the sum of the squares of the residuals a minimum. For, if a is the arithmetical mean, the residuals are

$$
v_{1}=x_{1}-a, \quad v_{2}=x_{2}-a, \quad \ldots \quad v_{n}=x_{n}-a,
$$

and $\Sigma v=0$. Now if δ is the error of the arithmetical mean, the true value of the observed quantity is $a-\delta$, and the true expressions for the errors of the observed values are

$$
x_{1}-a+\delta=v_{1}+\delta, \quad \ldots \quad x_{n}-a+\delta=v_{n}+\delta
$$

The sum of the squares of the n errors is therefore

$$
\begin{aligned}
\Sigma(v+\delta)^{2} & =\Sigma v^{2}+2 \delta \Sigma v+n \delta^{2} \\
& =\Sigma v^{2}+n \delta^{2},
\end{aligned}
$$

since $\Sigma v=0$. The minimum value of this expression is obviously Σv^{2}, the value assumed when $\delta=0$; that is to say, the sum of the squares of the residuals is least when the arithmetical mean is taken as the value of the observed quantity.

The Probability Integral.

44. Taking now the probability curve to be

$$
\begin{equation*}
y=\frac{h}{\sqrt{ } \pi} e^{-h^{2} x^{2}} \tag{I}
\end{equation*}
$$

the probability of an error between α and β in magnitude is

$$
\frac{h}{\sqrt{ } \pi} \int_{\alpha}^{\beta} e^{-h^{2} x^{2}} d x,
$$

and, in particular, the probability of an error numerically less than δ is

$$
\begin{equation*}
P=\frac{h}{\sqrt{ } \pi} \int_{-\delta}^{\delta} e^{-l^{2} x^{2}} d x \tag{2}
\end{equation*}
$$

If we put $h x=t$, this may be written in the form

$$
\begin{equation*}
P=\frac{\mathrm{I}}{\sqrt{ } \pi} \int_{-h \delta}^{h \delta} e^{-t^{2}} d t=\frac{2}{\sqrt{ } \pi} \int_{0}^{h \delta} e^{-t^{2}} d t \tag{3}
\end{equation*}
$$

which shows that P depends solely upon the value of $h \delta$, that is, upon the limiting value of t.

Table I gives the values of this integral for values of t from o to 2 at intervals of .or. The halves of the tabular numbers are the values of the probability of an error whose reduced value falls between the limits o and t, and by combining these we can readily find the values of the probability for any given limits.

The Measure of Precision.
45. The value of h in the probability curve depends upon the circumstances of observation. Let h_{1} and h_{2} be the values of h corresponding to two sets of observations for which the curves

Fig. 4.
are drawn in Fig. 4. The ordinates corresponding to $x=0$ in the two curves are proportional to the values of h. Hence,
because small errors are relatively more frequent in the better set of observations, the value of h for this set will be the larger.
46. Let δ_{1} be any error, and put

$$
h_{1} \delta_{1}=t=h_{2} \delta_{2} ;
$$

then, because δ_{1} in the first set of observations and δ_{2} in the second set correspond to the same value of t in the probability integral, equation (3), Art. 44, the probability that an error shall be less than δ_{1} in the first set is the same as the probability that an error shall be less than δ_{2} in the second set. In Fig. 4, for example, we have taken $h_{2}=2 h_{1}$; it follows that $\delta_{2}=\frac{1}{2} \delta_{1}$; that is to say, the probability that an error shall not exceed a given limit in the first case is the same as the probability that an error shall not exceed one half of the given limit in the second case.* The ordinates corresponding to δ_{1} and δ_{2} in the two curves are drawn in Fig. 4. The areas cut off in the two cases are equal. It is, in fact, readily seen that the second curve might have been derived from the first by reducing the abscissa of each point of the curve to one half its value and at the same time doubling the corresponding ordinate, a process which evidently would not affect the total area, which, as we have seen, must always be equal to unity.
47. The ratio of δ_{1} and δ_{2} which correspond to the same probability may be said to measure the relative risk of error in the two cases. Thus, in the example illustrated in Fig. 4, the risk of error in the first case is double that in the second case. It is natural to regard the precision of the observations in the second case as double that of the observations in the first case. So also, in general, the ratio of precision is inversely that of the risk of error; that is to say, it is the direct ratio of the values of h, which are inversely proportional to the corresponding values of δ. Accordingly h is taken as the measure of precision.

[^5]If the errors in any system of obseryations are multiplied by the proper values of h, the results are the corresponding values of t. Errors belonging to different systems may thus be reduced to the same scale, and the values of t, or reduced errors, will then admit of direct comparison.

The Probable Error.

48. The error which is just as likely to be exceeded as not is called the probable error.* In other words, the probable error is the value of δ for which $P=\frac{1}{2}$ in equation (2), Art. 44. Denoting by ρ the corresponding value of t in equation (3) of the same article, we have

$$
\frac{1}{2}=\frac{2}{\sqrt{\pi}} \int_{0}^{p} e^{-t^{2}} d t
$$

The solution of this equation has been found to be

$$
\rho=0.476936,
$$

which is the value of t corresponding to the interpolated value $P=0.5$ in Table I.

Denoting the probable error by r, we have then

$$
\begin{aligned}
r h & =\rho, \\
r=\frac{\rho}{h} & =\frac{0.4769}{h}
\end{aligned}
$$

The Mean Absolute Error.

49. The mean value of all possible errors, having regard to their probability or frequency in the long run, is, in accordance with Art. 24,

$$
\frac{h}{\sqrt{ } \pi} \int_{-\infty}^{\infty} x e^{-h^{2} x^{2}} d x
$$

[^6]The value of this is of course zero, the parts of the integral corresponding to positive and negative errors being equal and having contrary signs. The value obtained by taking both parts of the integral as positive is the mean of the errors taken all positively, or the mean of the absolute values of the errors. Denoting this mean by η, we have

$$
\eta=\frac{2 h}{\sqrt{ } \pi} \int_{0}^{\infty} x e^{-h^{2} x^{2}} d x
$$

whence

$$
\eta=\frac{1}{h \sqrt{\pi}}
$$

The Mean Error.

50. The mean of all values of the square of the error, having regard to their probabilities, is, in like manner (see Art. 25),

$$
\frac{h}{\sqrt{ } \pi} \int_{-\infty}^{\infty} x^{2} e^{-h^{2} x^{2}} d x
$$

The error whose square has this mean value is denoted by ε. On account of its importance in the theory, this error is called the mean error. Thus

$$
\varepsilon^{2}=\frac{h}{\sqrt{ } \pi} \int_{-\infty}^{\infty} x^{2} e^{-h^{2} x^{2}} d x
$$

The value of the definite integral involved in this expression may be deduced from the result found in Art. 39, equation (7), namely,

$$
\int_{-\infty}^{\infty} e^{-h^{2} x^{2}} d x=\frac{\sqrt{ } \pi}{h}
$$

Differentiating with respect to h, we have

$$
-2 h \int_{-\infty}^{\infty} x^{2} e^{-h^{2} x^{2}} d x=-\frac{\sqrt{ } \pi}{h^{2}},
$$

and, substituting in the value of ε^{2}, we find

$$
\varepsilon^{2}=\frac{1}{2 h^{2}}, \quad \text { or } \quad \varepsilon=\frac{\mathbf{I}}{h \sqrt{2}} .
$$

Measures of the Risk of Error.

5I. We have seen in Art. 47 that the errors corresponding in two different systems to the same value of the reduced error t measure by their ratio the comparative risk of error in the two systems. Thus the error corresponding to any fixed value of t might be taken as the measure of this risk. Accordingly either of the errors

$$
r, \quad \eta, \quad \varepsilon,
$$

which correspond respectively to the reduced errors

$$
\rho, \frac{I}{\sqrt{\pi}}, \frac{I}{\sqrt{2}},
$$

may be taken as the measure of the risk of error* or inverse measure of precision.

The probable error r is that which is most frequently employed in practice. Each of the others bears a fixed ratio to r, their values being respectively

[^7]\[

$$
\begin{align*}
\eta & =\frac{r}{\rho \sqrt{ } \pi}=1.1829 r, \quad . \quad . \quad . \quad .(1) \tag{I}\\
\varepsilon & =\frac{r}{\rho \sqrt{2}}=1.4826 r, \quad . \quad . \quad . \quad .(2) \tag{2}
\end{align*}
$$
\]

52. Fig. 5 shows the positions of the ordinates corresponding to r, η and ε in the curve of facility of errors

$$
y=\frac{h}{\sqrt{ } \pi} e^{-h^{2} x^{2}}
$$

The diagram is constructed for the value $h=2$.

From the definitions of the errors it is evident that the ordinate of r bisects the area between the curve and the axes, that of η passes through its centre of gravity, and that of ε passes through its centre of gyration about the axis of y.

The advantage of employing in practice a measure of the risk of error, instead of the direct measure of precision, results from the fact that it is of the same nature and expressed in the same units as the observations themselves. It therefore conveys a better idea of the degree of accuracy than is given by the value of the abstract quantity h. When the latter is given, it is of course necessary also to know the unit used in expressing the errors.

Tables of the Probability Integral.

53. The integral $\int_{0}^{t} e^{-t^{2}} d t$ is known as the error function and is denoted by Erf t.* Table I, which has already been described, Art. 44, gives the values of $\frac{2}{\sqrt{ } \pi}$ Erf t, which is the probability that an error shall be numerically less than the error x, of which the reduced value is t. The argument of this table is the reduced error t.

But it is convenient to have the values of the probability given also for values of the ratio of the error x to the probable error. Putting z for this ratio, we have, since $h x=t$ and $h r=\rho$,

$$
z=\frac{x}{r}=\frac{t}{\rho}
$$

Table II gives, to the argument z, the same function of t which is given in Table I; that is to say, the function of z tabulated is

$$
P_{z}=\frac{2}{\sqrt{ } \pi} \operatorname{Erf} \rho z
$$

* The integral $\int_{t}^{\infty} e^{-t^{2}} d t$ is denoted by Erfc t, being the complement of the error function, so that

$$
\operatorname{Erf} t+\operatorname{Erfc} t=\int_{0}^{\infty} e^{-t^{2}} d t=\frac{1}{2} N \pi
$$

These functions occur in several branches of Applied Mathematics. A table of values of Erfc t to eight places of decimals was computed by Kramp ("Analyse des Réfractions Astronomiques et Terrestres," Strasbourg, 1799), and from this the existing tables of the Probability Integral have been derived.
which is the probability that an error shall be numerically less than the error x whose ratio to the probable error is z.
54. By means of the tables of the probability integral, comparisons have been made between the actual frequency with which given errors occur in a system containing a large number of observations and their probabilities in accordance with the law of facility.

The following example is given by Bessel in the Fundamenta Astronomiae. From 470 observations made by Bradley on the right ascensions of Procyon and Altair, the probable error of a single observation was found (by the formula given in the next section) to be

$$
r=o^{\prime \prime} .2637
$$

With this value of r, the probability that an error shall be numerically less than $\mathrm{o}^{\prime \prime} . \mathrm{I}$ is found by entering Table II with the argument

$$
z=\frac{0^{\prime \prime} .1}{0^{\prime \prime} .2637}=0.3792
$$

and the probability that it shall be less than $\mathrm{o}^{\prime \prime} \cdot 2, \mathrm{o}^{\prime \prime} \cdot 3$ and so on, by entering the table with the successive multiples of this quantity. In the annexed table the first column contains the successive values of the limiting error x, the second those of z_{8}

x	z	P	Differences.	Theoretical Nos. of Errors.	Actual Nos. of Errors
$0^{\prime \prime}$. 1	0.379	0.2018	0.2018	94.8	94
0.2	0.758	0.3907	0.1889	88.8	88
0. 3	I. 13^{8}	0.5573	0.1666	78.3	78
0. 4	1.517	0.6937	0. 1364	64.1	58
O. 5	1.896	0.7990	O. IO53	$49 \cdot 5$	51
0. 6	2.275	0.8751	0.0761	35.8	36
0.7	2.654	0.9265	0.0514	24.2	26
U . 8	3.034	0.9593	0.0328	I 5.4	14
0. 9	3.413	0.9787	0.0194	9.1	10
1.0	3.792	0.9894	0.0107	5.0	7
∞	∞	1.0000	0.0106	5.0	8

and the third the corresponding values of the probability of an error less than x as given by Table II. The fourth column contains the successive differences of these, so that each of the numbers contained in it is the probability of an error falling between the corresponding value of x and that which precedes it. The fifth column contains the multiples of these by 470 , which are the theoretical numbers of errors to be expected within the intervals, the last number in the column being the number of errors which should exceed $\mathrm{I}^{\prime \prime}$.o. Finally, the last column contains the actual numbers of errors which occurred in the corresponding intervals, as given by Bessel. The agreement between the theoretical and actual numbers is remarkably close, and forms a practical confirmation of the adopted law of facility.

The Distribution of Errors on a Plane Area.

55. The deviations of the bullet marks in target practice from the point aimed at are of the nature of accidental errors. It is usually assumed that the lateral deviations and the vertical deviations are independent of one another, and that each follows the law of facility for linear errors. We proceed to determine the resulting law of the distribution of the shots upon the plane area.

Let the point aimed at be taken as the origin of coordinates, the horizontal deviation of a shot being denoted by x and the vertical deviations by y, and let these deviations be assumed to have the same measure of precision. Then the probability of a horizontal deviation between x and $x+d x$ is

$$
\frac{h}{\sqrt{\pi}} e^{-h^{2} x^{2}} d x
$$

and for each value of x the probability of a vertical deviation between y and $y+d y$ is

$$
\frac{h}{\sqrt{ } \pi} e^{-h^{2} y^{2}} d y
$$

Hence the probability of hitting the elementary rectangular area $d x d y$, which involves the joint occurrence of these deviations, is

$$
\frac{h^{2}}{\pi} e^{-h^{2}\left(x^{2}+y^{2}\right)} d x d y
$$

and, since the probability of hitting an elementary area is proportional to the area, if α denote such an area situated at the point (x, y), the probability of hitting it is

$$
\frac{h^{2}}{\pi} e^{-h^{2} r^{2}} \alpha,
$$

where r denotes the distance of α from the origin.
Thus the hypothesis of independent vertical and horizontal deviations, each following the usual law of facility and having the same measure of precision, leads to the conclusion that the facility of the resultant deflection depends solely upon its linear amount, r, and not at all upon its direction.* This agrees with

[^8]Now the solution of the functional equation

$$
f\left(x^{2}\right) f\left(v^{2}\right)=c f\left(x^{2}+y^{2}\right)
$$

is

$$
f\left(x^{2}\right)=c c^{k} x^{2}
$$

where c and k are constants.
There is no d priori reason why the deviations in y should, as assumed
the usual custom of judging of the accuracy of a shot solely by its distance from the point aimed at.

The Surface of Probability.

56. If at every point of the plane of $x y$ we erect a perpendicular z, taking

$$
z=\frac{h^{2}}{\pi} e^{-h^{2}\left(x^{2}+y^{2}\right)}
$$

we shall have a surface of probability analogous to the curve of probability in the case of linear errors. Since the probability of hitting the elementary area $d x d y$ is $z d x d y$, the probability of hitting any area is the value of the double integral

$$
\iint z d x d y
$$

taken over the given area. That is to say, it is the volume of the right cylinder having this area for its base, and having its upper surface in the surface of probability.

The probability surface is a surface of revolution. The solid included between it and the plane of $x y$ is in fact similar to that employed in Art. 39, in evaluating the integral $\int_{-\infty}^{\infty} e^{-h^{2} x^{2}} d x$.

The Probability of Hitting a Rectangle.

57. The probability of hitting the rectangle included between the horizontal lines $y=y_{1}, y=y_{2}$ and the vertical lines $x=x_{1}$, $x=x_{2}$ is the double integral

$$
\frac{h^{2}}{\pi} \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} e^{-h^{2} x^{2}} e^{-h^{2} y^{2}} d y d x
$$

[^9]which, because the limits for each variable are independent of the other, is equivalent to
$$
\frac{h}{\sqrt{ } \pi} \int_{x_{1}}^{x_{2}} e^{-h^{2} x^{2}} d x \cdot \frac{h}{\sqrt{ } \pi} \int_{y_{1}}^{y_{2}} e^{-h^{2} y^{2}} d y
$$
that is, it is the product of the probabilities that \dot{x} and y respectively shall fall between their given limits. This result is, of course, nothing more than the expression of the hypothesis made in Art. 55.* If h be known, the values of the factors in the expression (2) may be derived from Table I, as explained in Art. 44.

In particular, putting $x_{1}=-\delta, x_{2}=\delta, y_{1}=-\delta^{\prime}, y_{2}=\delta^{\prime}$, we have for the probability of hitting a rectangle whose centre is at the origin and whose sides are 2δ and $2 \delta^{\circ}$,

$$
p=P_{\delta} P_{\delta^{\prime}},
$$

where P_{δ} and $P_{\delta^{\prime}}$ are tabular results taken from Table I, if h be given, or from Table II if the probable error of the deviations be given.

For example, for the square whose centre is the origin and whose half side is r_{1}, the probable error of the component deviations, the probability of hitting is $\frac{1}{4}$.

Again, to find the side of the centrally situated square which is as likely as not to be hit, and which therefore may be called the probable square, we must determine the value of δ for which $P_{\delta}=\sqrt{\frac{1}{2}}=0.707 \mathrm{I}$. This will be found to correspond to $t=0.7437$, whence the side of the square is 2δ, where

$$
\delta=\frac{t}{h}=\frac{0.7437}{h}
$$

[^10]
The Probability of Hitting a Circle.

58. Puttng $a=2 \pi r d r$ in the expression derived in Art. 55, the probability of hitting the elementary annular area between the circumferences whose radii are r and $r+d r$ is found to be

$$
\begin{equation*}
d p=2 h^{2} e^{-h^{2} r^{2}} r d r \tag{I}
\end{equation*}
$$

Hence the probability that the distance of a shot from the point aimed at shall fall between r_{1} and r_{2} is

$$
\begin{equation*}
p=2 h^{2} \int_{r_{1}}^{r_{2}} e^{-h^{2} r^{2}} r d r=e^{-h^{2} r_{1}^{2}}-e^{-h^{2} r_{2}^{2}} \tag{2}
\end{equation*}
$$

Putting the lower limit r_{1} equal to zero, we have, for the probability of planting a shot within the circle whose radius is r,

$$
\begin{equation*}
p=\mathrm{I}-e^{-h^{2} r^{2}} \tag{3}
\end{equation*}
$$

a formula in which h is the measure of the accuracy of the marksman.

The Radius of the Probable Circle.

59. If we denote by a the value of r corresponding to $p=\frac{1}{2}$ in equation (3) of the preceding article, we shall have

$$
\begin{equation*}
e^{-h^{2} a^{2}}=\frac{1}{2} \tag{I}
\end{equation*}
$$

whence

$$
\begin{equation*}
a=\frac{\sqrt{\log 2}}{h} \tag{2}
\end{equation*}
$$

Then a is the radius of the probable circle, that is, the circle within which a shot is as likely as not to fall, or within which in the long run the marksman can plant half his shots. Thus a is analogous to the probable error in the case of linear deviations, and, being inversely proportional to h, may be taken as an inverse measure of the skill of the marksman.

Eliminating h from the formula for p by means of equation (r), we obtain

$$
\begin{equation*}
p=\mathrm{I}-\left(\frac{1}{2}\right)^{\frac{r^{2}}{a^{2}}} \tag{3}
\end{equation*}
$$

Denoting by n the whole number of shots, and by m the number of those which miss a circular target of radius r, we may, if n and m be sufficiently large, put

$$
\mathrm{r}-p=\frac{m}{n}
$$

Supposing p in equation (3) to be thus determined, we derive the formula

$$
a=r \sqrt{\frac{\log 2}{\log n-\log m}}
$$

in which the ordinary tabular logarithms may be employed.*

The Most Probable Distance.

60. Equation (1), Art. 58, shows that the probability of hitting the elementary annulus of radius r is proportional to

$$
r e^{-h^{2} r^{2}}
$$

The value of r which makes this function a maximum is found to be identical with ε, the mean error of the linear deviations, namely,

$$
\varepsilon=\frac{1}{h \sqrt{2}},
$$

which is therefore the most probable distance \dagger at which a shot can fall.

This distance might, like a, be taken as the inverse measure of the skill of the marksman.

[^11]
Measures of the Accuracy of Shooting.

6I. Any quantity inversely proportional to h might be taken as the measure of the marksman's risk of error, or inverse measure of precision. We may employ for this purpose either a, the radius of the probable error, ε, the most probable distance, δ, the half side of the probable square (Art. 57), or r_{1}, the probable error of a linear deviation.

The most probable value of h derivable from n given shots will be shown in the next section, Art. 73, to be

$$
h=\sqrt{\frac{n}{2 r^{2}}} .
$$

Employing this value of h we have

$$
\begin{aligned}
& a=\frac{\sqrt{ } \log 2}{h}=0.8326 \sqrt{\frac{\Sigma r^{2}}{n}}, \\
& \varepsilon=\frac{1}{h \sqrt{2}}=0.707 \mathrm{I} \sqrt{\frac{\Sigma r^{2}}{n}=\sqrt{\frac{\Sigma r^{2}}{2 n}},} \\
& \delta=\frac{0.7437}{h}=0.7437 \sqrt{\frac{\Sigma r^{2}}{n},} \\
& \boldsymbol{r}_{1}=\frac{\rho}{h} \quad=0.4769 \sqrt{\frac{\Sigma r^{2}}{n}} .
\end{aligned}
$$

Examples.

1. Show that the abscissa of the point of inflexion in the probability curve is the mean error.
2. In 1000 observations of the same quantity how many may be expected to differ from the mean value by less than the probable error, by less than the mean absolute error, and by less than the mean error respectively? 500, 575, 683.
3. An astronomer measures an angle 100 times; if, when the unit employed is $\mathrm{I}^{\prime \prime}$, the measure of precision is known to be
$h=\frac{1}{5}$, how many errors may be expected to have a numerical value between $2^{\prime \prime}$ and $4^{\prime \prime}$?
4. In 125 observations whose probable error is $2^{\prime \prime}$, how many errors less than $\mathrm{I}^{\prime \prime}$ are to be expected?
5. If the probable error is ten times the least count of the instrument, show that about 27 observations out of 1000 will be recorded with the true value, and 2I will exceed it by an amount equal to the probable error.
6. If h is changed to $m h(m>1)$, errors less than a certain error x_{1} are more probable, and errors greater than x_{1} are less probable. Find t_{1} the reduced value of x_{1}.

$$
t_{1}=h x_{1}=\sqrt{\frac{\log m}{m^{2}-1}}
$$

7. Show that the envelop of the probability curve, when h varies, is the hyperbola

$$
x y=\frac{1}{\sqrt{(2 \pi e)}}
$$

the abscissa of the point of contact being the mean error.
8. Show that

$$
\int_{0}^{\infty} e^{-x^{2}} d x=x \int_{0}^{\infty} e^{-x^{2} u^{2}} d u ;
$$

and thence derive the value of the integral.
9. Deduce the formula of reduction (m positive)

$$
\int_{0}^{\infty} x^{m} e^{-h^{2} x^{2}} d x=\frac{m-1}{2 h^{2}} \int_{0}^{\infty} x^{m-2} e^{-h^{2} x^{2}} d x ;
$$

and thence show that (n being a positive integer) the mean value of the $2 n$th power of the error is

$$
\frac{(2 n)!}{2^{2} n!h^{n}}
$$

and that the mean absolute value of the $(2 n+1)$ th power of the error is

$$
\frac{n!}{h^{2 m+1} \sqrt{ } \pi} .
$$

10. Show that

$$
\operatorname{Erf} t=\int_{0}^{t} e^{-t^{2}} d t=t-\frac{t^{3}}{3}+\frac{1}{2!} \frac{t^{5}}{5}-\frac{1}{3!} \frac{t^{7}}{7}+\ldots
$$

11. Deduce the formula of reduction (n positive)

$$
\int_{t}^{\infty} t^{-n} e^{-t^{2}} d t=\frac{e^{-t^{2}}}{2 t^{n+1}}-\frac{n+1}{2} \int_{t}^{\infty} t^{-(n+2)} e^{-t^{2}} d t ;
$$

and thence show that

$$
\operatorname{Erfc} t=\int_{t}^{\infty} e^{-t^{2}} d t=\frac{e^{-t^{2}}}{2 t}\left(\mathrm{I}-\frac{\mathrm{I}}{2 t^{2}}+\frac{\mathrm{I} \cdot 3}{2^{2} t^{4}}-\frac{\mathrm{I} \cdot 3 \cdot 5}{2^{3} t^{6}}+\ldots\right) .
$$

12. Find the probability that the deviation of a shot shall exceed $2 a$.
13. Find the probability that a shot shall fall within the circle whose radius is ε.

$$
1-e^{-t}=0.3935 .
$$

14. A marksman shoots 500 times at a target ; if his skill is such that when errors are measured in feet, $h=\mathrm{I}$, what is the number of bullet marks between two circles described from the centre with radii I and 2 feet? 175.
15. If errors are measured in inches in example 14, what are the values of h and of a ? $\frac{1}{12}, 9.99$.
16. An archer is observed to plant 9 per cent of his arrows within a circle one foot in diameter; what is the diameter of a target which he might make an even bet to hit at the first shot? $2 \mathrm{ft} .8 \frac{1}{2} \mathrm{in}$.
17. A hits a target 3 feet in diameter 5 I times out of 79 shots ; B hits one 2 feet in diameter 39 times out of 87 shots. Find the diameters of the targets that each can make an even wager to hit at the first shot. For A, 2.45 feet; for B, 2.16 feet.
18. In example 17, what are the odds that B will hit A's probable circle at the first shot?

About 59 to 4 I .
19. If the circular target which a marksman has an even chance of hitting be divided by circumferences cutting the radius into four equal parts, how many shots out of 1000 will fall in the respective areas?

42, 117, 164, 177.
20. A circular target 32 inches in diameter is divided into rings by circumferences cutting the radius into four equal parts. The number of shots out of 1000 which fell in the several areas were 31,89 , 121, 14I ; what are the respective values of a in inches determined from the numbers of shots in the several circles?
18.764, 18.628, 19.025, 19.202.

2I. Find the probability of hitting a square target circumscribing the circle whose radius is a.
. 5790.
22. If several shots be fired at a wafer on a wall and the wafer be subsequently removed, show that the centre of gravity of the shot marks is the most probable position of the wafer.

V.

The Combination of Observations and Probable Accuracy of the Results.

The Probability of the Arithmetical Mean.

62. We have seen that, in accordance with the law of facility which we have adopted, the best result of the combination of a number of equally good observations is their arithmetical mean. We have next to determine the probable accuracy of this result, and then to consider the best method of combining observations of unequal precision.

Let there be n observations, the law of facility of error for each of which is

$$
\begin{equation*}
y=\frac{h}{\sqrt{ } \pi} e^{-h^{2}(x-a)^{2}} \tag{I}
\end{equation*}
$$

a being the true value of the observed quantity, and $x_{1}, x_{2} \ldots x_{n}$ the observed values. Then the value of P, equation (2), Art. 36 , becomes

$$
\begin{equation*}
P=\frac{h^{n}}{\pi^{n}} e^{-h^{2} \Sigma(x-a)^{2}} \Delta x^{n} ; \tag{2}
\end{equation*}
$$

and, as shown in Art. 30, the probabilities of the different hypotheses which we can make as to the value of a are proportional to the corresponding values of P.
63. Let us now take a to denote the arithmetical mean, and put $a-\delta$ for the true value, so that δ is the error of the arithmetical mean; then denoting the residual by v, the true error will be $x-a+\delta=v+\delta$. It was shown in Art. 43 that

$$
\Sigma(v+\delta)^{2}=\Sigma v^{2}+n \delta^{2} ;
$$

hence the general value of P must now be written

$$
\begin{equation*}
P=\frac{h^{n}}{\pi^{\frac{1}{n}}} e^{-h^{2}\left[\Sigma v^{2}+n \delta^{2}\right]} J x^{n} \tag{3}
\end{equation*}
$$

and the value expressed by equation (2) is now the maximum value, corresponding to $\delta=0$. Distinguishing this value by the symbol P_{0}, equation (3) may be written

$$
\begin{equation*}
P=P_{0} e^{-n k \delta^{2} \delta^{2}} \tag{4}
\end{equation*}
$$

Since the probability of δ, which is the error of our final determination, is proportional to P, and P_{0} is independent of δ, equation (4) shows that the arithmetical mean has a law of probability which is identical with that which we have adopted in equation (I) for the single observations, except that $n h^{2}$ takes the place of h^{2}. Thus, denoting by y_{0} the facility of error in the arithmetical mean, we have

$$
\begin{equation*}
y_{0}=\frac{h \sqrt{ } n}{\sqrt{ } \pi} e^{-n h^{2} \delta 2} \tag{5}
\end{equation*}
$$

The fact that the assumption of the law (i) for a single observation implies a law of the same form for the final value determined from the combined observations is one of the confirmations of this law alluded to in Art. 40.*
64. Equation (5) of the preceding article shows that the arithmetical mean of n observations may be regarded as an observation made with a more precise instrument, the new measure of precision being found by multiplying that of the single observations by $\sqrt{ } n$. Since $h r$ is constant when r represents any one of the measures of risk, we have for the probable error of the arithmetical mean,

$$
r_{0}=\frac{r}{\sqrt{n}}
$$

[^12]and the same relation holds in the case of either of the other measures of risk.

Thus, for example, it is necessary to take four observations in order to double the precision, or reduce the risk of error to one half its original value.

The probable error of a final result is frequently written after it with the sign \pm. Thus, if the final determination of an angle is given as $36^{\circ} 42^{\prime} \cdot 3 \pm \mathrm{I}^{\prime} .22$, the meaning is that the true value of the angle is exactly as likely to lie between the limits thus assigned (that is, between $36^{\circ} 41^{\prime} .08$ and $36^{\circ} 43^{\prime} .52$) as it is to lie outside of these limits.

The Combination of Observations of Unequal Precision.

65. When the observations are not equally good, let h_{1}, h_{2}, $\ldots h_{n}$ be their respective measures of precision; so that, a being the true value, the facility of error of x_{1} is

$$
y_{1}=\frac{h_{1}}{\sqrt{ } \pi} e^{-h_{1}^{2}\left(x_{2}-a\right)^{2}},
$$

that of x_{3} is

$$
y_{2}=\frac{h_{2}}{V \pi} e^{-h_{2}^{2}\left(x_{2}-a\right)^{2}},
$$

and so on. The value of P. Art. 36, which expresses the probability of the given system of observed values on the hypothesis of a given value of a, now becomes

$$
\begin{equation*}
P=\frac{h_{1} h_{2} \ldots h_{n}}{\pi^{\dagger n}} e^{-\sum h^{2}(x-a)^{2}} \Delta x_{1} \Delta x_{2} \ldots \Delta x_{n} ; \tag{1}
\end{equation*}
$$

and, as before, the probabilities of different values of a are proportional to the values they give to P.

It follows that that value of a is most probable which makes $\Sigma h^{2}(x-a)^{2}$ or

$$
h_{1}^{2}\left(x_{1}-a\right)^{2}+h_{2}^{2}\left(x_{2}-a\right)^{2}+\ldots+h_{n}^{2}\left(x_{n}-a\right)^{2}=\text { a minimum. (2) }
$$

In other words, if the error of each observation be multiplied by the corresponding measure of precision, so as to reduce the errors
to the same relative value (see Art. 47), it is necessary that the sum of the squares of the reduced errors should be a minimum. This is, in fact, the more general statement of the principle of Least Squares.

Differentiating with respect to a, we have

$$
\begin{equation*}
h_{1}^{2}\left(x_{1}-a\right)+h_{2}^{2}\left(x_{2}-a\right)+\ldots+h_{n}^{2}\left(x_{n}-a\right)=0 ; \tag{3}
\end{equation*}
$$

and the value of a determined from this equation is

$$
\begin{equation*}
a=\frac{h_{1}^{2} x_{1}+h_{2}^{2} x_{2}+\ldots+h_{n}^{2} x_{n}}{h_{1}^{2}+h_{2}^{2}+\ldots+h_{n}^{2}}=\frac{\Sigma h^{2} x}{\Sigma h^{2}}, \tag{4}
\end{equation*}
$$

which is therefore the most probable value of a which can be derived from the n observations.

Weights and Measures of Precision.

66. The value of a found above is in fact the weighted arithmetical mean of the observed values (see Art. II), when the respective values of h^{2} are taken as the weights. But, since the weights are numbers with whose ratios only we are concerned, we may use any proportional numbers $p_{1}, p_{2}, \ldots p_{n}$, in place of the values of h. Thus putting

$$
\begin{equation*}
h_{1}^{2}=p_{1} h^{2}, \quad h_{2}^{2}=p_{2} h^{2}, \quad \ldots \quad h_{n}^{2}=p_{n} h^{2}, \tag{5}
\end{equation*}
$$

equation (4) may be written

$$
\begin{equation*}
a=\frac{p_{1} x_{1}+p_{2} x_{2}+\ldots+p_{n} x_{n}}{p_{1}+p_{2}+\ldots+p_{n}}=\frac{\Sigma p x}{\Sigma p} . \tag{6}
\end{equation*}
$$

Hence the most probable value which can be derived from the n observations is the weighted arithmetical mean, the weights of the observations being proportional to the squares of their measures of precision.

The quantity h in equations (5) is the measure of precision of an observation whose weight is unity. It is immaterial whether such an obsérvation actually exists among the n observations or not.

If each of the observations has the weight unity, Σp takes the value n, and the value of a becomes the ordinary arithmetical mean.

The Probability of the Weighted Mean.

67. Let us now, employing a to denote the value determined above, put $a+\delta$ in place of a in the value of P, so that δ represents the error in our final determination of a. Then, writing v for the residual, we have, as in Art. 63, to replace $x-a$ by $v+\delta$. The value of P. equation (r), Art. 65 , thus becomes

$$
P=\frac{h_{1} h_{2} \ldots h_{n}}{\pi^{\frac{12}{n}}} e^{-\Sigma h^{2}(v+\delta)^{2}} \Delta x_{1} \Delta x_{2} \ldots \Delta x_{n}
$$

Now, by equation (3), $\Sigma h^{2} v=0$, therefore

$$
\Sigma h^{2}(v+\delta)^{2}=\Sigma h^{2} v^{2}+\delta^{2} \Sigma h^{2} .
$$

substituting, we obtain

$$
P=\frac{h_{1} h_{2} \ldots h_{n}}{\pi^{\pi^{n}}} e^{-\Sigma h^{2} v^{2}} e^{-\delta 2 \Sigma h^{2}} \Delta x_{1} \Delta x_{2} \ldots \Delta x_{n} .
$$

Hence, putting P_{0} for the value assumed by P when $\grave{\delta}=\mathrm{o}$, we have

$$
P=P_{0} e^{-\delta^{2}\left(h \hat{1}+h_{2}^{2}+\cdots+h_{n}^{2}\right)} .
$$

Since the probability of δ is proportional to P, it follows, as in Art. 63 , that the law of facility of the mean is of the same form as those of the separate observations, the square of the new measure of precision being the sum of the squares of those of the separate observations. Denoting the facility of error in the weighted mean by y_{0}, and employing the notation of Art. 66, we have therefore

$$
y_{0}=\frac{h \sqrt{ } \Sigma p}{\sqrt{\pi}} e^{-\delta^{2} h^{2} \Sigma p},
$$

in which h is the measure of precision of an observation whose
weight is unity. When the weights are all equal, this formula becomes identical with that of Art. 63.
68. The weight of the mean is defined in Art. 12 to be Σp, the sum of the weights of the constituent observations. Hence the value of y_{0} found above shows that, in comparing the final result with any single observation, as well as in comparing the observations with one another, the measures of precision are proportional to the square roots of the weights.

The probable error being inversely proportional to h, it follows that, r representing the probable error of an observation whose weight is unity, and r_{0} that of the mean whose weight is Σp, we shall have

$$
r_{0}=\frac{r}{\sqrt{\Sigma p}}
$$

This result includes that of Art. 64, and, like it, is applicable to either of the measures of risk.

The Most Probable Value of h derivable from a System of Observations.

69. Substituting the values of $h_{1}, h_{2}, \ldots h_{n}$ in terms of the weights, equations (5), Art. 66, the value of P, equation (1), Art. 65, becomes

$$
\begin{equation*}
P=\frac{\sqrt{ }\left(p_{1} p_{2} \ldots p_{n}\right)}{\pi^{\frac{1}{2} n}} h^{n} e^{-h^{2} \Sigma p(x-a)^{2}} \Delta x_{1} \Delta x_{2} \ldots \Delta x_{n} . \tag{I}
\end{equation*}
$$

The same principle which we have employed to determine the most probable value of the observed quantity serves to determine the most probable value of h. Thus the most probable value of h is that which gives the greatest value to P, or, omitting factors independent of h, to the expression

$$
h^{n} e^{-h^{2} \Sigma p(x-a)^{2}} .
$$

Putting the derivative of this expression equal to zero, we have

$$
e^{-h^{2} \Sigma p(x-a)^{2}}\left[n h^{n-1}-2 h^{n+1} \Sigma p(x-a)^{2}\right]=0 ;
$$

whence

$$
\begin{equation*}
h=\sqrt{\frac{n}{2 \sum p(x-a)^{2}}}, \tag{2}
\end{equation*}
$$

in which a denotes the true value of the observed quantity.
70. Equation (2) may be written

$$
\begin{equation*}
\frac{\Sigma p(x-a)^{2}}{n}=\frac{1}{2 h^{2}} \ldots \ldots . \tag{I}
\end{equation*}
$$

When the observations are all made under the same circumstances, so that we may put

$$
p_{1}=p_{2}=\ldots=p_{n}=1
$$

the equation becomes

$$
\begin{equation*}
\frac{\sum(x-a)^{2}}{n}=\frac{\mathrm{I}}{2 h^{2}} \tag{2}
\end{equation*}
$$

in which h denotes the measure of precision of each of the observations. The second member of this equation is the value of ε^{2}, the square of the " mean error," which was defined in Art. 50 as the mean value of the square of the error, having regard to its probability in a system of observations whose measure of precision is h. In other words, it is the mean squared error in an unlimited number of observations made under the given circumstances of observation.

On the other hand, the first member of equation (2) is the actual mean squared error for the n given observations. The square root of this quantity may be called the observational value of the mean error, in distinction from the theoretical value, ε, which is a fixed function of h.

Thus the equation asserts that the most probable value of h is found by assuming the theoretical value of the mean error to be the same as its observational value. In other words, it is a consequence of the accepted law of facility that the measure of precision of a set of observations equally good is proportional to the reciprocal of the mean error as determined from the observations themselves.

Formula for the Mean and Probable Errors.
71. The quantity $\Sigma p(x-a)^{2}$ in the value of h, equation (2), Art. 69 , is the sum of the weighted squares of the actual errors of the observed values $x_{1}, x_{2}, \ldots x_{n}$. Now, when a denotes the weighted arithmetical mean, $x-a$ must be replaced by $v+\delta$, as in Art. 67, and

$$
\begin{equation*}
\Sigma p(v+\delta)^{2}=\Sigma p v^{2}+\delta^{2} \Sigma p . \tag{I}
\end{equation*}
$$

The value of δ, which is the error of the arithmetical mean, is of course unknown; it may be either positive or negative, but, since δ^{2} is essentially positive, the true value of $\Sigma p(x-a)^{2}$ always exceeds $\Sigma p v^{2}$. The best correction we can apply to the approximate value $\Sigma p v^{2}$ is found by giving to δ^{2} in equation (I) its mean value ; for, by adopting this as a general rule we shall commit the least error in the long run. Now we have seen in Art. 67 that δ follows a law of probability of the usual form in which the measure of precision is $h \sqrt{ } \Sigma p$, hence the mean value of δ^{2} is the same as the mean squared error found in Art. 50, except that h is changed to $h \sqrt{ } \Sigma p$. That is to say, the mean value of δ^{2} is

$$
\frac{1}{2 h^{2} \Sigma p} .
$$

Putting this in place of δ^{2} in equation (I) we have

$$
\begin{equation*}
\Sigma p(v+\delta)^{2}=\Sigma p v^{2}+\frac{1}{2 h^{2}} . \tag{2}
\end{equation*}
$$

Equation (2), Art. 69, may be written in the form

$$
\frac{n}{h^{2}}=2 \Sigma p(x-a)^{2},
$$

and, employing the value just determined, we have

$$
\frac{n}{h^{2}}=2 \Sigma p v^{2}+\frac{1}{h^{2}} ;
$$

whence we derive

$$
\begin{equation*}
h=\sqrt{\frac{n-1}{2 \sum p v^{2}}} \tag{3}
\end{equation*}
$$

for the most probable value of h for an observation of weight unity.
72. The resulting value of the mean error of an observation whose weight is unity is

$$
\begin{equation*}
\varepsilon=\frac{1}{h \sqrt{ } 2}=\sqrt{\frac{\Sigma p v^{2}}{n-1}}, \tag{I}
\end{equation*}
$$

and by Art. 68, the mean error of the arithmetical mean whose weight is Σp is

$$
\begin{equation*}
\varepsilon_{0}=\sqrt{\frac{\Sigma p v^{2}}{(n-1) \Sigma p}} . \tag{2}
\end{equation*}
$$

Again, the value of the probable error of an observation whose weight is unity is

$$
\begin{equation*}
r=\frac{\rho}{h}=\rho \sqrt{ } 2 \sqrt{\frac{\Sigma p v^{2}}{n-1}}=0.6745 \sqrt{ } \frac{\Sigma p v^{2}}{n-\mathrm{I}}, \tag{3}
\end{equation*}
$$

and that of the weighted arithmetical mean is

$$
\begin{equation*}
r_{0}=0.6745 \sqrt{ } \frac{\Sigma p v^{2}}{(n-1) \Sigma p} . \tag{4}
\end{equation*}
$$

The constant 0.6745 is the reciprocal of that which occurs in equation (2), Art. 5 I.

For a set of equally good observations we have, by putting $p_{1}=p_{2}=\ldots=p_{n}=1$,

$$
\begin{equation*}
r=0.6745 \sqrt{ } \frac{\sum v^{2}}{n-1} . \tag{5}
\end{equation*}
$$

for the probable error of a single observation, and

$$
\begin{equation*}
r_{0}=0.6745 \sqrt{ } \frac{\Sigma v^{2}}{n(n-1)} \quad \cdots \quad . \tag{6}
\end{equation*}
$$

for the probable error of the simple arithmetical mean.

The Most Probable Value of h in Target Practice.
73. We have seen in Art. 55 that in target practice the probability of hitting an elementary area α, situated at the distance r from the point aimed at, is

$$
\frac{h^{2}}{\pi} e^{-h^{2} r^{2}} \alpha_{0}
$$

Suppose that n shots have been made, the first falling upon the area α_{1}, the second upon α_{2}, and so on; then, before the shots were made, the probability that the shots should fall upon these areas in the given succession is

$$
P=\frac{h^{2 n}}{\pi^{n}} e^{-h^{2 \Sigma r^{2}}} \alpha_{1} \alpha_{2} \ldots \alpha_{n}
$$

Hence, the shots having been made, the probabilities of different values of h are proportional to the values they give to the expression

$$
h^{2 n} e^{-h^{2} \Sigma r^{2}}
$$

Making this function of h a maximum, we have

$$
e^{-h 2 \Sigma r^{2}}\left[2 n h^{2 n-1}-2 h^{n+1} \Sigma r^{2}\right]=0
$$

whence we have, for the most probable value of h,

$$
h=\sqrt{\frac{n}{\sum r^{2}}}
$$

the value quoted in Art. 6r.
74. The value of ε^{2} hence derived is

$$
\varepsilon^{2}=\frac{\Sigma r^{2}}{2 n}=\frac{\Sigma x^{2}+\Sigma y^{2}}{2 n}
$$

where ε is the mean error for the component deviations, which are the values of x and y respectively. The values of ε^{2} as determined from the lateral and vertical deviations respectively, are

$$
\varepsilon^{2}=\frac{\Sigma x^{2}}{n}, \quad \varepsilon^{2}=\frac{\Sigma y^{2}}{n} .
$$

Thus the value of ε^{2}, which we have derived from the total deviations, or values of r, is the mean of its most probable values as separately derived from the two classes of component deviations.

It will be noticed that neither of the quantities $\Sigma x^{2}, \Sigma y^{2}$ or Σr^{2} needs to be corrected as in Art. 71, because we are here dealing with actual errors and not with residuals.*

The Computation of the Probable Error.

75. The annexed table gives an example of the application of formulæ (5) and (6), Art. 72. The seventeen values of x in

x	v	v^{2}
$4 \cdot 524$	$+.0185$.00034225
4.500	-. 0055	3025
$4 \cdot 515$	$+.0095$	9025
$4 \cdot 508$	$+.0025$	625
4.5I3	$+.0075$	5625
4.5II	$+.0055$	3025
4.497	$-.0085$	7225
4.507	+.0015	225
$4 \cdot 501$	-. 0045	2025
$4 \cdot 502$	-. 0035	1225
4.485	-. 0205	42025
$4 \cdot 519$	$+.0135$	18225
4.517	+.OII5	13225
4.504	-.OOI 5	225
$4 \cdot 493$	-. O125	I 5625
4.492	-. 0135	I 8225
4.505	-.0005	25
$a=4.505 \frac{8}{7}=4.5055$		OOI73825

[^13]the first column are independent measurements of the same quantity made by Prof. Rowland for the purpose of determining a certain wave length. At the foot of the column is the arithmetical mean of the seventeen observations. The second column contains the residuals found by subtracting this from the separate observations. The values of v^{2} in the third column are taken from a table of squares, and their sum is written at the foot of the column. Dividing this by 16 , the value of $n-1$, we find
$$
\frac{\Sigma v^{2}}{n-1}=0.00010864
$$
and taking the square root,
$$
\varepsilon=0.01042
$$

Multiplying by the constant 0.6745 we have

$$
r=0.00703
$$

for the probable error of a single observation.
Again, dividing by $\sqrt{17}$, we have

$$
r_{0}=0.00171
$$

for the probable error of the final determination, which may therefore be written

$$
x=4.5055 \pm 0.0017
$$

It will be noticed that nine of the residuals are numerically less and eight are numerically greater than the value we have found for the probable error of a single observation.
76. The equation

$$
\Sigma(v+\delta)^{2}=\Sigma v^{2}+n \delta^{2}
$$

derived in Art. 43, enables us to abridge somewhat the computation of $\Sigma^{\prime} v^{2}$, and to reduce the extent to which a table of squares is needed. Thus, if we use the value of a to three places of decimals, namely $a=4.505$, in forming the values of
v, each of these quantities will be algebraically greater than it should be by $\frac{8}{17}$ of a unit in the third decimal place. Putting

$$
\delta=\frac{8}{17}, \quad n \delta^{2}=\frac{64}{17}=3 \frac{13}{17}
$$

hence Σv^{2}, as found on this supposition, will be too great by $3 \frac{13}{17}$ of a unit in the sixth decimal place. The columns headed v and v^{2} would then stand as follows:

v	v^{2}
+.019	.000361
-.005	25
+.010	100
+.003	9
+.008	64
+.006	36
-.008	64
+.002	4
-.004	16
-.003	9
-.020	400
+.014	196
+.012	144
-.001	1
-.012	144
-.013	0
.000	0
$-(v+i)^{2}=.001742$	

and making the correction found above, we have

$$
\Sigma v^{2}=.001738 \frac{4}{17},
$$

which is the exact value.
The smallness of the correction is due to the fact that $\Sigma^{\prime} v^{2}$ is a minimum value. The correction might have been neglected, being, in this case, only about $\frac{1}{30}$ of the correction made in the formula on account of the mean value of the unknown error in the arithmetical mean.
77. As an example of the application of the formulæ involving weights, let us suppose that instead of the seventeen observations in the preceding article we were given only the means of certain groups into which the seventeen observations may be separated. These means we have seen may be regarded as observations having weights equal to the respective numbers of observations from which they are derived. The annexed table presents the

p	x	v	v^{2}	
2	4.512	+.0065	.00004225	.00008450
1	4.515	+.0095	9025	9025
4	4.507	+.0015	225	900
3	4.503	-.0025	625	1875
2	4.502	-.0035	1225	2450
2	4.511	+.0055	3025	6050
3	4.497	-.0085	7225	21675
	$a=4.5055$		$\Sigma p v^{2}=.00050425$	

data in such a form, the first value of x being the mean of the first two values in the preceding table, the next being the third observation, the next the mean of the following four, and so on. The weighted mean of the present seven values of x of course agrees with the final value before found. The values of v and of v^{2} are formed as before, and the values of $p v^{2}$ are given in the last column, at the foot of which is the value of $\Sigma p v^{2}$. Dividing this by 6 , the present value of $n-1$, we find

$$
\frac{\Sigma p v^{2}}{n-1}=0.00008304
$$

and, multiplying the square root of this by 0.6745 , the value of the probable error of an observation whose weight is unity is

$$
r=0.00615
$$

The probable error of the weighted mean found by dividing this by $\sqrt{ } 17$, the value of $\sqrt{ } \Sigma p$, is

$$
r_{0}=0.00149
$$

78. The value of r found above corresponds to a single observation of the set given in Art. 75. It differs considerably from the value found in that article. The discrepancy is due to the fact that in Art. 76 we did not use all the data given in Art. 75 , and it is not to be expected that the most probable value of h which can be deduced from the imperfect data should agree with that deduced from the more complete data. In one case we have seventeen discrepancies from the arithmetical mean, due to accidental errors, upon which to base an estimate of the precision of the observations; in the other case we have but seven discrepancies. The result in the former case is of course more trustworthy ; and in general, the larger the value of n, the more confidence can we place in our estimate of the xeasures of precision.
79. It should be noticed particularly that the weighted observations in Art. 76 are not equivalent to a set of seventeen observations of which two are equal to the first value of x, one to the second, four to the third, and so on, except in the sense of giving the same mean value. Compare Art. Io. Such a set would exhibit discrepancies very much smaller on the whole than those of the seventeen observations in Art. 75. Accordingly, the value of ε^{2} in the supposed case would be very much smaller than that found above for the weighted observations. The value of Σv^{2} would in fact be the same as that of $\Sigma p v^{2}$ in Art. 76 , but it would be divided by 16 instead of by 6 .

The approximate equality of the results in Art. 75 and Art. 76 is due to the fact that the v^{2} s, of which seventeen exist in each sum, are on the average very much diminished* when the mean of a group is substituted for the separate observations, and this

[^14]makes up for the change in the denominator by the decrease in the value of n.
80. Different weights are frequently assigned to observations made under different circumstances, according to the judgment of the observer. Thus an astronomer may regard an observation made when the atmosphere is exceptionally clear as worth two of those made under ordinary circumstances. Regarding the latter as standard observations having the weight unity, he will then assign the weight 2 to the former. As explained in the preceding article this is not equivalent to recording two standard observations, each giving the observed value. The latter procedure would lead to an erroneous estimate of the degree of accuracy attained.

The Values of h and r derived from the Mean Absolute Error.
81. The mean absolute error η is a fixed function of h, viz:

$$
\begin{equation*}
\eta=\frac{\mathrm{I}}{h \sqrt{ } \pi} ; \tag{I}
\end{equation*}
$$

hence, if we were able to determine it independently, we should have a means of finding the value of h, and consequently that of r.
In the case of n equally good observations, let $[x-a]$ denote the numerical value of an error taken as positive, then

$$
\begin{equation*}
\frac{\Sigma[x-a]}{n} \tag{2}
\end{equation*}
$$

is the arithmetical mean of the absolute values of the n actual errors. This may be called the observational value of the mean absolute error in distinction from the theoretic value given in equation (I), which is the value of this mean in accordance with the law of probability, when the measure of precision is h.

If we assume these values to be equal, we obtain

$$
\frac{\Sigma[x-a]}{n}=\frac{1}{h \sqrt{ } \pi},
$$

whence

$$
\begin{equation*}
h=\frac{n}{\Sigma[x-a] \sqrt{ } \pi} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
r=\frac{\rho}{h}=\rho \sqrt{ } \pi \frac{\sum[x-a]}{n} \tag{4}
\end{equation*}
$$

If in this formula we put for a the arithmetical mean, so that $\sum[x-a]$ becomes $\sum[v]$, it gives the apparent probable error, that is, the value r would have if the arithmetical mean were known to be the true value of x. Denoting this by r^{\prime}, we have then

$$
\begin{equation*}
r^{\prime}=\rho V \pi \frac{\sum[v]}{n}=0.8453 \frac{\sum[v]}{n} \tag{5}
\end{equation*}
$$

82. It is obvious from Arts. 71 and 72 that the values of r^{\prime} and r as derived from the square of the residuals are

$$
r^{\prime}=0.6745 \sqrt{\frac{\Sigma v^{2}}{n}}, \quad r=0.6745 \sqrt{ } \frac{\Sigma v^{2}}{n-1},
$$

so that

$$
\begin{equation*}
r: r^{\prime}=\sqrt{ } n: \sqrt{ }(n-1) .^{*} \tag{6}
\end{equation*}
$$

[^15]Combining this result with equation (5) we have

$$
\begin{equation*}
r=0.8453 \frac{\Sigma[v]}{\sqrt{[n(n-1)]}}, \tag{7}
\end{equation*}
$$

and hence, for the probable error of the arithmetical mean,

$$
\begin{equation*}
r_{0}=0.8453 \frac{\Sigma[v]}{n \sqrt{ }(n-r)} . \tag{8}
\end{equation*}
$$

As an illustration, let us apply these formulæ to the observations given in Art. 75 , for which we find $\Sigma[v]=0.1405$. Substituting this value, and putting $n=17$, we find

$$
r=0.00720, \quad r_{0}=0.00175
$$

These values agree closely with those derived in Art. 75 from the formulæ involving Σv^{2}, which indeed give the most probable values of r and r_{0}, but involve much more numerical work, especially when n is large.
83. In order to adapt the formulæ of Art. 82 to the case of weighted observations, it is necessary to reduce the errors to the same scale; in other words, to make them proportional to the reduced errors or values of t, see Art. 47. Since the measures of precision are proportional to the square roots of the weights, this is effected by multiplying each error by the square root of the corresponding weight. The products may be regarded as errors belonging to the same system, namely, that which corresponds to the weight unity.

Hence equation (7) gives for the probable error of an observation whose weight is unity

$$
r=0.8453 \frac{\Sigma[v \vee p]}{\sqrt{[n(n-1)]}},
$$

and for the probable error of the weighted arithmetical mean we have

$$
r_{0}=0.8453 \frac{\Sigma[v \vee p]}{\sqrt[V]{ }[n(n-1) \Sigma p]} .
$$

Examples.

I. A line is measured five times and the probable error of the mean is .or6 of a foot. How many additional measurements of the same precision are required in order to reduce the probable error of the determination to . 004 of a foot? 75.
2. It is required to determine an angle with a probable error less than $\mathrm{o}^{\prime \prime} .25$. The mean of twenty measurements gives a probable error of $\mathrm{o}^{\prime \prime} .38$; how many additional measurements are necessary ?
3. If the probable error of each of two like measurements of a foot bar is . 00477 of an inch, what is the probable error of their mean?
. 00337.
4. Ten measurements of the density of a body made with equal precision gave the following results:

9.662,	9.664,	9.677,	9.663,	9.645,
9.673,	9.659,	9.662,	9.680,	9.654.

What is the probable value of the density of the body and the probable error of that value? $9.6639 \pm .0022$.
5. Forty micrometric measurements of the error of position of a division line upon a standard scale gave the following results:

3.68	5.08	2.8 I	4.43	5.48	4.2 I	3.28	5.2 I
3.1 I	2.95	4.65	3.43	3.76	5.23	3.78	4.43
4.76	6.35	3.27	3.26	4.59	4.45	3.22	2.28
2.75	3.78	4.08	2.48	2.64	3.95	3.98	4.10
4.15	4.49	4.5 I	4.84	2.98	2.66	3.91	4.18

Find the probable value of the quantity measured and its probable error.

$$
3.930 \pm 0.097
$$

6. In the preceding example what is the probable error of a single observed quantity: I°, by the formula involving the squares of the errors; 2°, by that involving the absolute errors?

$$
\mathrm{I}^{\circ}, r=0.6 \mathrm{I} 6 ; 2^{\circ}, r=0.6 \mathrm{I} 8
$$

7. An angle in the primary triangulation of the U.S. Coast Survey was measured twenty-four times with the following results :

$116^{\circ} 43^{\prime} 44^{\prime \prime} \cdot 45$	49.20	51.05	5 I .75	51.05	49.25
50.55	48.85	47.85	49.00	51.70	46.75
50.95	47.40	50.60	52.35	49.05	49.25
48.90	47.75	48.45	5 I .30	50.55	53.4 O

Find the probable error of a single measurement, and the final determination of the angle. $I^{\prime \prime} \cdot 35: 116^{\circ} 43^{\prime} 49^{\prime \prime} .64 \pm 0^{\prime \prime} .28$.

8: In example 7 , taking the means of the six groups of four observations each, determine the probable error of the first of these means: I°, considered as a measurement of four times the weight of those in example $7 ; 2^{\circ}$, directly as one of six observations of equal weight; 3°, as a determination from its four constituents. $\mathrm{I}^{\circ}, \mathrm{o}^{\prime \prime} .67 ; 2^{\circ}, \mathrm{o}^{\prime \prime} .72 ; 3^{\circ}, \mathrm{I}^{\prime \prime} .00$.
9. An interval of 600 units as determined by a micrometer was forty times measured to determine the error in the pitch of the screw, with the following results:

600.0	604.8	600.7	601.4	602.0	602.6	600.0	602.4
599.7	606.1	602.4	603.4	602.7	602.7	600.7	602.4
599.5	604.7	601.6	603.1	603.7	600.9	601.4	602.1
604.6	602.1	601.7	601.8	602.1	601.4	602.9	603.6
603.9	602.2	601.4	600.6	602.3	600.8	602.9	603.6

Find the probable value of the interval and its probable error. 602.22 ± 0.157 •

VI.

The Facility of Error in a Function of One or More Observed Quantities.

The Linear Function of a Single Observed Quantity.

84. If the value of an observed quantity X be subject to an error x, the value of a given function of X, say $Z=f(X)$, will be subject to a corresponding error z. Assuming x to follow the usual law of facility, h being the measure of precision and r the probable error, we have now to determine the law of facility of z, for any form of the function f.

Let us first consider the linear function

$$
Z=m X+b
$$

where m and b are constants. The case is obviously the same as that of the simple multiple $m X$, the relation between the corresponding errors being

$$
z=m x .
$$

The probability that the error z falls between z and $z+d z$ is the erme as the probability that x falls between x and $x+d x$, namely,

$$
\frac{h}{\sqrt{\pi}} e^{-h^{2} x^{2}} d x
$$

Expressing this in terms of z, it becomes

$$
\frac{h}{\sqrt{\pi}} e^{-\frac{h^{2} z^{2}}{m^{2}}} \frac{d z}{m},
$$

or, putting $\frac{h}{m}=H$,

$$
\frac{H}{\sqrt{ } \pi} e^{-H z^{2} z^{2}} d z
$$

Thus the law of facility for Z is of the same form as that for X,
the measure of precision being found by dividing that of X by m; and, denoting the probable error of Z by R, we-have (since probable errors are inversely as the measures of precision)

$$
R=m r
$$

and the same relation holds between either of the other measures of the risk of error.

The curves of facility for X and Z are related in the same manner as those drawn in Fig. 4, page 30, and the process of passing from one to the other is that described in Art. 46 ; that is to say, the abscissas which represent the errors are multiplied by m, and then the ordinates are divided by m, so that the areas standing upon the corresponding bases $d x$ and $d z$ shall remain equal.

Non-Linear Functions of a Single Observed Quantity.
85. A non-linear function of an observed quantity subject to the usual law of facility does not strictly follow a law of facility of the same form. If, however, as is usually the case, the error x is very small, any function of the observed quantity will very nearly follow a law of the usual form. Let a be the true value of the observed quantity, then

$$
X=a+x
$$

and

$$
Z=f(X)=f(a+x)
$$

Expanding by Taylor's Theorem, and neglecting the higher powers of x,* we may take

$$
Z=f(a)+x f^{\prime}(a)
$$

which is of the linear form. Hence we may regard Z as subject to the usual law of facility, its probable error being

$$
R=r f^{\prime}(a),
$$

or, putting the observed value in place of a,

$$
R=r f^{\prime}(X)
$$

[^16]
The Facility of Error in the Sum or Difference of Two

 Observed Quantities.86. Let X and Y be two observed quantities subject to the usual law of facility of error, their measures of precision being h and k respectively. If

$$
Z=X+Y
$$

the relation between the errors of Z, X and Y is obviously

$$
z=x+y
$$

In order to find the facility of z, that is, the probability that z shall fall between z and $z+d z$, let us first suppose that x has a definite fixed value. With this hypothesis, the probability in question is the same as the probability that y shall fall between y and $y+d y$, where

$$
y=z-x, \quad \text { and } \quad d y=d z
$$

This probability is

$$
\frac{k}{\sqrt{ } \pi} e^{-k^{2} y^{2}} d y, \quad \text { or } \quad \frac{k}{\sqrt{ } \pi} e^{-k^{2}(z-x)^{2}} d z
$$

Multiplying by the elementary probability of the hypothesis made, which is

$$
\frac{h}{\sqrt{ } \pi} e^{-h^{2} x^{2}} d x
$$

we have

$$
\begin{equation*}
\frac{h k}{\pi} e^{-h^{2} x^{2}-k^{2}(z-x)^{2}} d z d x \tag{1}
\end{equation*}
$$

for the probability that the required event (namely, the occurrence of the particular value of z) shall happen in this particular way, that is, in connexion with the particular value of x. To find the total probability of the event we therefore sum the above expression for all possible values of x, thus obtaining

$$
\begin{equation*}
\frac{h k}{\pi} \int_{-\infty}^{\infty} e^{-\left(h^{2}+k^{2}\right) x^{2}+2 k^{2} z x-k^{2} z^{2}} d z d x \tag{2}
\end{equation*}
$$

The exponent of e in this expression may be written

$$
-\left(h^{2}+k^{2}\right)\left(x-\frac{k^{2} z}{h^{2}+k^{2}}\right)+\frac{k^{4} z^{2}}{h^{2}+k^{2}}-k^{2} z^{2} ;
$$

whence, putting $a=\frac{k^{2} z}{h^{2}+k^{2}}$ and

$$
\begin{equation*}
H^{2}=k^{2}-\frac{k^{4}}{h^{2}+k^{2}}=\frac{h^{2} k^{2}}{h^{2}+k^{2}}, \tag{3}
\end{equation*}
$$

the expression (2) becomes

$$
\frac{h k d z}{\pi} e^{-H^{2} z^{2}} \int_{-\infty}^{\infty} e^{-\left(h^{2}+k^{2}\right)(x-\alpha)^{2}} d x
$$

Since α is independent of x, the value of the integral contained in this expression is, by Art. $39, \frac{V \pi}{\sqrt{\left(h^{2}+k^{2}\right)}}$; hence the probability that z shall fall between z and $z+d z$ is

$$
\frac{h k}{\sqrt{ } \pi \sqrt{ }\left(h^{2}+k^{2}\right)} e^{-H^{2 z^{2}}} d z, \quad \text { or } \quad \frac{H}{\sqrt{ } \pi} e^{-H^{2} z^{2}} d z
$$

87. The result just obtained shows that the sum of two quantities subject to the usual law of facility of error is subject to a law of the same form, its measure of precision being determined by equation (3).

Writing equation (3) in the form

$$
\frac{\mathbf{I}}{H^{2}}=\frac{\mathbf{I}}{h^{2}}+\frac{\mathbf{1}}{k^{2}},
$$

it is evident that, if r_{1}, r_{2} and R be the probable errors of X, Y and $X+Y$, we shall have

$$
R^{2}=r_{1}^{2}+r_{2}^{2}
$$

the same relation holding in the case of either of the other measures of risk of error.

For the difference

$$
Z=X-Y
$$

we have the same result; for the errors of $-Y$ have obviously the same law of facility as those of Y.
88. As an illustration, suppose the latitude φ and the polar distance p of a circumpolar star to be determined from the altitudes of the star at its upper and lower culminations. Since

$$
h_{1}=\varphi+p \quad \text { and } \quad h_{2}=\varphi-p
$$

we have

$$
\varphi=\frac{1}{2}\left(h_{1}+h_{2}\right), \quad p=\frac{1}{2}\left(h_{1}-h_{2}\right) .
$$

Then, r_{1} and r_{2} denoting the probable errors of h_{1} and h_{2} respectively, that of $h_{1}+h_{2}$ and also that of $h_{1}-h_{2}$ is $V\left(r_{1}^{2}+r_{2}^{2}\right)$, hence the probable error both of φ and of p when thus determined is

$$
R=\frac{1}{2} \sqrt{ }\left(r_{1}^{2}+r_{2}^{2}\right)
$$

The Linear Function of Several Observed Quantities.

89. It follows from Arts. 84 and 87 that the linear function

$$
\begin{equation*}
Z=b+m_{1} X_{1}+m_{2} X_{2}+\ldots+m_{n} X_{n} \tag{I}
\end{equation*}
$$

of n observed quantities is subject to the usual law of facility,* its probable error being

$$
\begin{equation*}
R=\sqrt{ }\left(m_{1}^{2} r_{1}^{2}+m_{2}^{2} r_{2}^{2}+\ldots+m_{n}^{2} r_{n}^{2}\right) \tag{2}
\end{equation*}
$$

where $r_{1}, r_{2}, \ldots r_{n}$ are the probable errors of the several observed quantities.

In particular, if the n quantities have the same probable error r, the probable error of their sum is $r \sqrt{ } n$. The probable error of their arithmetical mean, which is $\frac{1}{n}$ of this sum, is therefore $\frac{r}{\sqrt{n}}$. This result agrees with that found in Art. 64, where,

[^17]however, the n quantities were all observed values of the same quantity, and the arithmetical mean was under consideration by virtue of its being the most probable value in accordance with the law of facility.
90. It is to be noticed that in formula (2) it is essential that the probable errors $r_{1}, r_{2}, \ldots r_{n}$ should be the results of independent determinations. For example, in the illustration given in Art. 88, we have $h_{1}=\varphi+p$, whence we should expect to find (prob. err. of $\left.h_{1}\right)^{2}=(\text { prob. err. of } \varphi)^{2}+(\text { prob. err. of } p)^{2} ;$
but it will be found that this is not true when the probable errors of φ and of p are determined as in that article. In fact, in the demonstration given in Art. 86, it is assumed that the law of facility for Y holds true when X has a definite fixed value; but in the present illustration the law of facility found for φ does not hold true for a definite fixed value of p.*

The Non-Linear Function of Several Observed Quantities.

91. Supposing, as in Art. 85, that the errors of the observed quantities are small compared to the quantities themselves, we may replace any function by an approximately equivalent function of a linear form. Thus, denoting the true values of the observed quantities $X_{1}, X_{2}, \ldots X_{n}$ by $a_{1}, a_{2}, \ldots a_{n}$, we have

$$
Z=f\left(X_{1}, X_{2}, \ldots X_{n}\right)=f\left(a_{1}+x_{1}, a_{2}+x_{2}, \ldots a_{n}+x_{n}\right)
$$

Expanding, and neglecting powers and products of the small quantities $x_{1}, x_{2}, \ldots x_{n}$, we obtain the approximate value

$$
Z=f\left(a_{1}, a_{2}, \ldots a_{n}\right)+x_{1} \frac{d f}{d a_{1}}+x_{2} \frac{d f}{d a_{2}}+\ldots+x_{n} \frac{d f}{d a_{n}},
$$

which is of the linear form. Hence, in accordance with equation (2), Art. 89 , the probable error of Z may be determined by the equation

$$
R^{2}=r_{1}^{2}\left(\frac{d f}{d X_{1}}\right)^{2}+r_{2}^{2}\left(\frac{d f}{d X_{2}}\right)^{2}+\ldots+r_{n}^{2}\left(\frac{d f}{d X_{n}}\right)^{2}
$$

[^18]
Examples.

I. If the probable error in measuring the radius a of a circle is r, what are the probable errors of the circumference and of the area?

$$
2 \pi r ; 2 \pi a r .
$$

2. What is the probable error of $\log _{10} x, r$ being the probable error of x ?

$$
0.4343 \frac{r}{x} .
$$

3. If measurements of adjacent sides of a rectangle give $a \pm r_{1}$ and $b \pm r_{2}$, what is the probable error of the area $a b$?

$$
\sqrt{ }\left(b^{2} r_{1}^{2}+a^{2} r_{2}^{2}\right)
$$

4. If the rectangle is found to be a square and the sides are measured with the same precision, show that the probable error of the area is the same as if it were known to be a square; but if r_{1} and r_{2} are not equal, the area is obtained with less accuracy than it would be if it were known to be a square.
5. An angle observation is the difference between two readings of the limb of the instrument; if r is the probable error of the angle, what is the probable error of each reading? $\frac{r}{\sqrt{2}}$.
6. The zenith distance of a star observed in the meridian is

$$
\zeta=2 \mathrm{I}^{\circ} 17^{\prime} 20^{\prime \prime} \cdot 3, \text { with the mean error } 2^{\prime \prime} \cdot 3
$$

and the declination of the star is given

$$
i=19^{\circ} 30^{\prime} 14^{\prime \prime} .8, \text { with the mean error } 0^{\prime \prime} .8:
$$

what is the mean error of the latitude of the place of observation found from the formula $\varphi=\zeta+\delta$?

$$
\varphi=40^{\circ} 47^{\prime} 35^{\prime \prime} . \mathrm{I}, \text { with the mean error } 2^{\prime \prime} .44
$$

7. The latitude of a place has been found with the mean error $\sigma^{\prime \prime} .25$, and the meridian zenith distance of stars observed at that place with a certain instrument has been found to be subject t" the mean error $\mathrm{o}^{\prime \prime} .62$; what is the mean error of the declinations of the stars deduced by the formula $\delta=\varphi-\zeta$? $\mathrm{o}^{\prime \prime} .67$.
8. The correction of a chronometer is found to be $+12^{m} 13^{8} \cdot 2$, with the mean error $0^{8} \cdot 3$; ten days later the correction is found to be $+12^{\mathrm{m}} 21^{3} .4$, with the same mean error; what is the mean daily rate and its mean error? $\quad+0^{\circ} .82 ; 0^{8 .} .042$
9. If the error of a single measurement of an angle by a repeating circle consists of parts due to sighting and reading respectively, so that

$$
r^{2}=r_{1}^{2}+r_{2}^{2},
$$

show that the probable error when the angle is repeated n times is

$$
\sqrt{ }\left(\frac{r_{1}^{2}}{n}+\frac{r_{2}^{2}}{n^{2}}\right) .
$$

10. If the measured sides of a rectangle have the same probable error, show that the diagonal is determined with the same precision as either side.
II. The compression of the earth's meridian was found to be $\frac{1}{294}$, with a probable error of .000046 ; what is the probable error of the denominator 294 ? 3.98.
11. When a line whose length is l is measured by the repeated application of a unit of measure, show that its probable error is of the form

$$
R=r \sqrt{ } l .
$$

13. What is the probable error of the area of the rectangle whose sides measured as in the preceding example are z_{1} and z_{2} ?

$$
r \sqrt{ }\left[z_{1} z_{2}\left(z_{1}+z_{2}\right)\right]
$$

14. A line of levels is run in the following manner: the back and fore sights are taken at distances of about 200 feet, so that there are thirteen stations per mile, and at each sight the rod is read three times. If the probable error of a single reading is O.OI of a foot, what is the probable error of the difference of level of two points which are ten miles apart?
.093.
15. Show that the probable error of the weighted mean of observed quantities has its least possible value when the weights are inversely proportional to the squares of the probable errors of the quantities, and that this value is the same as that given in Art. 68 for the case of observed value of the same quantity.

VII.

The Combination of Independent Determinations of the Same Quantity.

The Distinction between Precision and Accuracy.

92. We have seen in Arts. 63 and 67 that the final determination of the observed quantity derived from a set of observations follows the exponential law of the facility of accidental errors. The discrepancies of the observations have given us the means of determining a measure of the risk of error in the single observations, and we have found that the like measure for the final determination varies inversely as the square root of its weight compared with that of the single observation. Since this weight increases directly with the number of constituent observations, it is thus possible to diminish the risk of error indefinitely; in other words, to increase without limit the precision of our final result.
93. It is important to notice, however, that this is by no means the same thing as to say that it is possible by multiplying the number of observations to increase without limit the accuracy of the result. The precision of a determination has to do only with the accidental errors; so that the diminution of the probable error, while it indicates the reduction of the risk of such errors, gives no indication of the systematic* errors (see Art. 3)

[^19]which are produced by unknown causes affecting all the observations of the system to exactly the same extent.

The value to which we approach indefinitely as the precision of the determination is increased has hitherto been spoken of as the "true value," but it is more properly the precise value corresponding to the instrument or method of observation employed. Since the systematic error is common to the whole system of observations, it is evident that it will enter into the final result unchanged, no matter what may be the number of observations; whereas the object of increasing this number is to allow the accidental errors to destroy one another. Thus the systematic error is the difference between the precise value, from which accidental errors are supposed to be entirely eliminated, and the accurate or true value of the quantity sought.
94. Hence, when in Art. 64 the arithmetical mean of n observations was compared to an observation made with a more precise instrument, it is important to notice that this new instrument must be imagined to lead to the same ultimate precise value, that is, it must have the same systematic error as the actual instrument, whereas in practice a new instrument might have a very different systematic error.
Again, in the illustration employed in Art. 64, where the final determination of an angle is given as $36^{\circ} 42^{\prime} \cdot 3 \pm 1^{\prime} .22$, the "true value," which is just as likely as not to lie between the limits thus assigned, is only the true value so far as the instrument and method employed can give it; that is, the precise value to which the determination would approach if its weight were increased indefinitely.
95. A failure to appreciate the distinction drawn in the preceding articles may lead to a false estimate of the value of the method of Least Squares. M. Faye in his "Cours d'Astronomie" gives the following example of the objections which have been urged against the method: "From the discussion of the transits of Venus observed in 1761 and 1769, M. Encke deduced for the parallax of the sun the value

$$
8^{\prime \prime} .571 .16 \pm 0^{\prime \prime} .0370
$$

In accordance with this small probable error it would be a wager of one to one that the true parallax is comprised between $8^{\prime \prime} .53$ and $8^{\prime \prime} .6 \mathrm{I}$. Now we know to-day that the true parallax $8^{\prime \prime} .813$ falls far outside of these limits. The error, $\mathrm{o}^{\prime \prime} .24184$, is equal to 6.536 times the probable error $\mathrm{o}^{\prime \prime} .037$. We find $\mathfrak{f o r}$ the probability of such an error o.00001. Hence, adhering to the probable error assigned by M. Encke to his result, one could wager a hundred thousand to one that it is not in error by 0.24184 , and nevertheless such is the correction which we are obliged to make.it undergo."

Of course, as M. Faye remarks, astronomers can now point out many of the errors for which proper corrections were not made ; but the important thing to notice is that, even in Encke's time, the wagers cited above were not authorized by the theory. The value of the parallax assigned by Encke was the most probable with the evidence then known, and it was an even wager that the complete elimination of errors of the kind that produced the discrepancies or contradictions among the observations could not carry the result beyond the limit assigned; but the existence of other unknown causes of error and the probable amount of inaccuracy resulting from them is quite a different question.

Relative Accidental and Systematic Errors.

96. Let us now suppose that two determinations of a quantity have been made with the same instrument and by the same method, so that they have the same systematic error, if any ; in other words, they correspond to the same precise value. The difference between the two results is the algebraic difference between the accidental errors remaining in the two determinations; this may be called their relative accidental error. Regarding the two determinations as independent measurements of two quantities, if r_{1} and r_{2} are their probable errors, that of their difference is $V\left(r_{1}^{2}+r_{2}^{2}\right)$; and, since this difference should be zero, the relative error is an error in a system for which the probable error is

$$
r=\sqrt{ }\left(r_{1}^{2}+r_{2}^{2}\right) .
$$

For example, if the determination of an angle mentioned in Art. 94 is the mean of ten observations, it is an even wager that the mean of ten more observations of the same kind shall differ from $36^{\circ} 42^{\prime} \cdot 3$ by an amount not exceeding $\mathrm{I}^{\prime} .22 \times \sqrt{ } 2$ or $\mathrm{I}^{\prime} .73$. Again, r being the probable error of a single observation, the probable error of the mean of n observations is $\frac{r}{\sqrt{n}}$, but the discrepancy from this mean of a new single observation is as likely as not to exceed

$$
\sqrt{ }\left(\frac{r^{2}}{n}+r^{2}\right) ; \quad \text { that is, } \quad r \sqrt{ } \frac{n+1}{n} . *
$$

97. If, on the other hand, the two determinations have been made with different instruments or by a different method, they may involve different systematic errors; so that, if each determination were made perfectly precise, they would still differ by an amount equal to the algebraic difference of their systematic errors. Let this difference, which may be called the relative systematic error, be denoted by δ. Then, d denoting the actual difference of the two determinations, while δ is the difference between the corresponding precise values, we may put

$$
d=\grave{\delta}+x,
$$

in which x is the relative accidental error.

The Relative Weights of Independent Determinations.

98. In combining values to obtain a final mean value, we have hitherto supposed their relative weights to be known or assumed beforehand, as in Arts. 75 and 77. Since the squares of the probable errors are inversely proportional to the weights, (Arts. 66 and 68,) the ratios of the probable errors both of the constituents and of the mean are thus known in advance, and it

[^20]only remains to determine a single absolute value of a probable error to fix them all. In this process it is assumed that the values have all the same systematic error.

But, when the determinations are independently made, their relative weights are not known, and their probable errors have to be found independently. If now it can be assumed that the sistematic errors are the same, so that there is no relative systematic error, the weights may be taken in the inverse ratio of the squares of the probable errors.
99. To determine whether the above assumption can fairly be made in the case of two independent determinations whose probable errors are r_{1} and r_{2}, it is necessary to compare the difference d with the relative probable error $\sqrt{ }\left(r_{1}^{2}+r_{2}^{2}\right)$, Art. 96 . If d is small enough to be regarded as a relative accidental error, it is safe to make the assumption and combine the determinations in the manner mentioned above.

As an example, let us suppose that a certain angle has been determined by a theodolite as

$$
24^{\circ} 13^{\prime} 36^{\prime \prime} \pm 3^{\prime \prime} \cdot 1
$$

and that a second determination made with a surveyor's transit is

$$
24^{\circ} 13^{\prime} 24^{\prime \prime} \pm 13^{\prime \prime} .8
$$

In this case $r_{1}=3.1, r_{2}=13.8$ and $d=12$. It is obvious that a relative accidental error as great as d may reasonably be expected. (In fact the relative probable error is I4.I ; and, by Table II, the chance that the accidental error should be at least as great as 12 is about .57.) We may therefore assume tha: there is no relative systematic error, and combine the determinations with weights having the inverse ratio of the squares of the probable errors. This ratio will be found, in the present case, tc be about $20: 1$, and the corresponding weighted mean found by adding $\frac{1}{21}$ of the difference to the first value, is

$$
24^{\circ} \mathrm{I} 3^{\prime} 35^{\prime \prime} .43 .
$$

100. It appears doubtful at first that the value given by the
theodolite can be improved by combining with it the value given by the inferior instrument. The propriety of the above process becomes more apparent, however, if we imagine the first determination to be the mean of twenty observations made with the theodolite; a single one of these observations will then have the same weight and the same probable error as the second determination. Now the discrepancy of this new determination from the mean is such as we may expect to find in a new single observation with the theodolite. We are therefore justified in treating it as such an observation, and taking the mean of the twenty-one supposed observations for our final result.

IOI. The probable error of the result found in Art. 99 of course corresponds with its weight; thus, denoting it by R, we have $R^{2}=\frac{20}{21} r_{1}^{2}$, whence $R=3^{\prime \prime} .03$, and the final result is

$$
24^{\circ} 13^{\prime} 35^{\prime \prime} \cdot 43 \pm 3^{\prime \prime} .03 .
$$

In general, r_{1} and r_{2} being the given probable errors, that of the mean is given by

$$
R^{2}=\frac{r_{1}^{2} r_{2}^{2}}{r_{1}^{2}+r_{2}^{2}}
$$

Determinations which, considering their probable errors, are in sufficient agreement to be treated as in the foregoing articles may be called concordant determinations. They correspond to the same precise value of the observed quantity, and the result of their combination is to be regarded as a better determination of the same precise value.

The Combination of Discordant Determinations.

102. As a second illustration of determinations independently made, let us suppose that a determination of the zenith distance of a star made at one culmination is

$$
14^{\circ} 53^{\prime} 12^{\prime \prime} \cdot 1 \pm 0^{\prime \prime} \cdot 3
$$

and that at another culmination we find for the same quantity

$$
14^{\circ} 53^{\prime} 14^{\prime \prime} \cdot 3 \pm 0^{\prime \prime} \cdot 5
$$

In this case we have $d=2.2$. This is about 3.8 times the rela tive probable error whose value is $\mathrm{o}^{\prime \prime} .58$.

From Table II we find that the probability that the relative accidental error should be as great as d is only about I in 100. We are therefore justified in assuming that the difference d is mainly due to errors peculiar to the culminations. In other words, we assume that, could we have obtained the precise values corresponding to the two culminations, (by indefinitely increasing the number of observations at each,) they would still be found to differ by about $2^{\prime \prime}$.2. Supposing now that there is no reason for preferring one of these precise values to the other, we ought to take their simple arithmetical mean for the final result; and, since the two given values are comparatively close to the precise values in question, we may take their arithmetical mean, which is

$$
14^{\circ} 53^{\prime} 13^{\prime \prime} \cdot 2
$$

for the final determination.
103. Determinations like those considered above, whose difference is so great as to indicate an actual difference between the precise values to which they tend, may be called discordant determinations. The discordance of the two determinations discloses the existence of systematic errors which were not indicated by the discrepancies of the observations upon which the given probable errors were based. In combining the determinations, these systematic errors are treated as accidental errors incident to the two determinations considered as two observed values of the required quantity. In fact, it is generally the object in making new and independent determinations to eliminate as far as possible a new class of errors by bringing them into the category of accidental errors which tend to neutralize each other in the final result. The probable error of the result cannot now be derived from the given probable errors, but must be inferred from the determinations themselves considered as observed values, because we now take cognizance of errors which are not indicated by the given probable errors.
104. When there are but two observed values, formula (4), Art. 72, becomes

$$
R_{\circ}=\rho \sqrt{ } 2 \sqrt{\frac{p_{1} v_{1}^{2}+p_{2} v_{2}^{2}}{p_{1}+p_{z}}},
$$

in which p_{1}, p_{2} are the weights assigned to the two values. Denoting the difference by d, the residuals have opposite signs, and their absolute values are

$$
v_{1}=\frac{p_{2}}{p_{1}+p_{2}} d, \quad v_{2}=\frac{p_{1}}{p_{1}+p_{2}} d .
$$

Substituting these values, we have for the probable error of the mean

$$
R_{0}=\rho \frac{V\left(2 p_{1} p_{2}\right)}{p_{1}+p_{2}} d 0.6745 \frac{V\left(p_{1} p_{2}\right)}{p_{1}+p_{2}} d . . . \quad(\mathrm{I})
$$

When $p_{1}=p_{2}$, this becomes

$$
\begin{equation*}
R_{\circ}=\frac{\rho d}{\sqrt{2}}=0.3372 d \ldots \tag{2}
\end{equation*}
$$

In the example given in Art. 102, the value of R_{\circ} thus obtained is $\mathrm{o}^{\prime \prime} .742$, which, owing to the discordance of the two given determinations, considerably exceeds each of the given probable errors.

Of course no great confidence can be placed in the results given by the formulæ above on account of the small value of n.*
105. Since the error of each determination is the sum of its accidental and systematic error, if s_{1} and s_{2} denote the probable

[^21]systematic errors, the probable errors of the two determinations when both classes of errors are considered are
$$
R_{1}=\sqrt{ }\left(r_{1}^{2}+s_{1}^{2}\right), \quad R_{2}=\sqrt{ }\left(r_{2}^{2}+s_{2}^{2}\right)
$$

The proper ratio of weights with which the determinations should be combined is $R_{2}^{2}: R_{1}^{2}$. The method of procedure followed in Art. 99 assumes that s_{1} and s_{2} vanish. On the other hand, in the process employed in Art. 102 we are guided, in an assumption of the ratio $R_{2}^{2}: R_{1}^{2}$, by a consideration of the value which the ratio $s_{2}^{2}: s_{1}^{2}$ ought to have.

For example, in the illustration, Art. IO2, the ratio $R_{2}^{2}: R_{1}^{2}$ is taken to be one of equality, whereas the hypothesis we desired to make was that $s_{1}=s_{2}$, so that we ought to have

$$
R_{1}^{2}-R_{2}^{2}=r_{1}^{2}-r_{2}^{2} .
$$

On the hypothesis $R_{1}=R_{2}$ the value of each of these probable errors is, in accordance with equation (2), Art. 104, ρd. In the example this is $I^{\prime \prime} .05$. If we take (1.05) ${ }^{2}$ as the average value of R_{1}^{2} and R_{2}^{2}, and introduce the condition written above, we shall find as a second approximation to the value of the ratio $R_{2}^{2}: R_{1}^{2}$ about 15:13. The final value corresponding to this ratio of weights is $14^{\circ} 53^{\prime} 13^{\prime \prime} .1$, and its probable error as determined by equation (I), Art. IO4, is slightly less than that before found, namely, $R_{\mathrm{o}}=\mathrm{o}^{\prime \prime} .740$.

Indicated and Concealed Portions of the Risk of Error.

106. It will be convenient in the following articles to speak of the square of the probable error as the measure of the risk of error.

The foregoing discussion shows that the total risk of error, R^{2}, of any determination consists of two parts, r^{2} and s^{2}, of which the first only is indicated by discrepancies among the observations of which the given determination is the mean. It is only this first part that can be diminished by increasing the number of the constituent observations. The remaining part remains concealed, and cannot be diminished until some varia-
tion is made in the circumstances under which the observations are made, giving rise to new determinations. When the indicated portions of the risk of error in the several determinations are sufficiently diminished, discordance between them must always be expected, and this discordance brings into evidence a new portion, but still it may be only a portion, of the hitherto concealed part of the risk of error.
107. What we have called in Art. Io3 discordant determinations are those in which the indication of this new portion of the risk of error, to which corresponds the relative systematic error, is unmistakable, because of its magnitude in comparison with what remains of the portion first indicated in the separate determinations, that is, r_{1}^{2} and r_{2}^{2}. On the other hand, the concordant determinations of Art. IoI are those in which the new portion is so small compared with r_{1}^{2} and r_{2}^{2} as to remain concealed.

Thus, to return to the illustration discussed in Art. 99, if twenty times as many observations had been involved in the determination by the transit, its probable error would have been reduced to equality with that of the determination by the theodolite. But if this had been done we should almost certainly have found the determinations discordant ; that is to say, the ratio in which the difference between the determinations is reduced would be much less than that in which the probable relative accidental error $\sqrt{ }\left(r_{1}^{2}+r_{2}^{2}\right)$ is diminished. The ratio in which the remaining difference between the determinations should be divided in making the final determination now depends upon our estimate of the comparative freedom of the instruments from systematic error,* but the important thing to be noted is that the probable error of the result would now be found as in Art. 104, and would be greater than those of the

[^22]separate determinations. Thus the apparent risk of error would be increased by making a new determination, but this is only because a greater part of the total risk of error has been made apparent, and the result is so much the more trustworthy as a greater variety has been introduced into the methods employed.

The Total Probable Error of a Determination.

108. In the illustrations given in Arts. 99 and 102 it was supposed that two determinations only were made, so that we had but a single discrepancy upon which to base our judgment of the probable amount of the relative systematic error. But, in general, what are regarded as determinations at one stage of the process are at the next stage treated as observations which may be repeated indefinitely before being combined into a new determination. Let one of the determinations first made be the mean of n observations equally good, and let r be the probable error of a single observation. Then the probable accidental error of the mean is $r_{0}=\frac{r}{\sqrt{n}}$. Now, if R is the probable error of the final value as obtained directly from the discrepancies of the several determinations, (their number being supposed great enough to allow us to obtain a trustworthy value,) we shall find that R exceeds r_{0}, and putting

$$
R^{2}=\frac{r^{2}}{n}+r_{1}^{2}, \ldots(\mathrm{I})
$$

r_{1}^{2} is the new portion of the risk of error brought out by the comparison of the determinations.
109. The form of this equation shows that when $\frac{r^{2}}{n}$ is already small compared with r_{1}^{2}, the advantage gained by increasing the value of n soon becomes inappreciable.

For example, the reticule of a meridian circle is provided with a number of threads, in order that several observations of time may be taken at a single transit. If seven equidistant threads are used, the mean of the times is equivalent to a determination
based upon seven observations of the time of transit. Chauvenet found that, for moderately skilful observers, the probable accidental error of the transit over a single thread of an equatorial star is $r=0^{8} .08$, whence for the mean of the seven threads we have $r_{0}=0^{\circ} .03$. The probable error of a single determination of the right ascension of an equatorial star was found to be $R=0^{8} .06$, so that, from $R^{2}=r_{0}^{2}+r_{1}^{2}$ we have $r_{1}=0^{8} .052$. The conclusion is reached that "an increase of the number of threads would be attended by no important advantage," and it is stated that Bessel thought five threads sufficient.*
IIO. Suppose the value of R^{2} in equation (1), Art. ro8, to have been derived from the discrepancies of n^{\prime} determinations of equal weight. A systematic crror may exist for these n^{\prime} determinations, and s_{1} being its probable value, we shall have

$$
s^{2}=r_{1}^{2}+s_{1}^{2},
$$

that is to say, the concealed portion of the risk of error in one of the original determinations has been decomposed into two parts, one of which has been disclosed at the second stage of the process, while the other remains concealed.

The total risk of error in a single one of the n^{\prime} determinations is $R^{2}+s_{1}^{2}$, and that of the mean of the determinations is $\frac{R^{2}}{n^{\prime}}+s_{1}^{2}$.

In like manner, if at a further stage of the process we have the means of finding the value of the probable error R_{1} of this new determination by direct comparison with other coordinate determinations, a portion of the value of s_{1}^{2} will be disclosed, and we shall have

$$
R_{1}^{2}=\frac{R^{2}}{n^{\prime}}+r_{2}^{2}=\frac{r^{2}}{n n^{\prime}}+\frac{r_{1}^{2}}{n^{\prime}}+r_{2}^{2},
$$

wiere again it must be supposed that a portion s_{2}^{2} of the risk of error still remains concealed.

[^23]III. The comparative amounts of the risk of error which are disclosed at the various stages of the process depend upon the amount of variety introduced into the method of observing. Thus, to resume the illustration given in Art. 109, if the star be observed at n^{\prime} culminations, r^{2} will correspond to errors peculiar to a thread, and r_{1}^{2} will correspond to errors peculiar to a culmination. Again, if different stars whose right ascensions are known are observed, in order to obtain the local sidereal time used in a determination of the longitude, r_{2}^{2} will correspond to errors peculiar to a star, together with instrumental errors peculiar to the meridian altitude.

The Ultimate Limit of Accuracy.

112. The considerations adduced in the preceding articles seem to point to the conclusion that there must always be a residuum of the risk of error that has not yet been reached, and thus to explain the apparent existence " of an ultimate limit of accuracy beyond which no mass of accumulated observations can ever penetrate."* But it does not appear to be necessary to suppose, as done by Professor Peirce, that there is an absolute fixed limit of accuracy, due to "a failure of the law of error embodied in the method of Least Squares, when it is extended to minute errors." He says: "In approaching the ultimate limit of accuracy, the probable error ceases to diminish proportionally to the increase of the number of observations, so that the accuracy of the mean of several determinations does not surpass that of the single determinations as much as it should do, in conformity with the law of least squares; thus it appears that the probable error of the mean of the determinations of the longitude of the Harvard Observatory, deduced from the moonculminating observations of 1845,1846 , and 1847 , is $\mathrm{I}^{8} .28$ instead of $I^{8} .00$, to which it should have been reduced conformably to the accuracy of the separate determinations of those years."
[^24]To account for the fact cited on the principles laid down above, it is only necessary to suppose that there are causes of error which have varied from year to year; and, recognizing this fact, we ought to obtain our final determination by comparing the determinations of a number of years, and not by combining into one result the whole mass of observations.

Examples.

I. In a system of observations equally good, r being the probable error of a single observation, if two observations are selected at random, what quantity is their difference as likely as not to exceed ?
2. In example I, what is the probability that the difference shall be less than r ?
0.367.
3. When two determinations are made by the same method, show that the odds are in favor of a difference less than the sum of the two probable errors, and against a difference less than the greater of the two, and find the extreme values of these odds. 66:34 and 63:37.
4. A and B observe the same angle repeatedly with the same instrument, with the following results:

A			B		
47°	23^{\prime}	$40^{\prime \prime}$	47°		
47	23^{\prime}	$30^{\prime \prime}$			
47	23	45	47		
47	23	40			
47	23	35	47		
47	23	50			
47	23	40	47		

Show that there is no evidence of relative systematic (personal) error. Find the relative weights of an observation by A and by B , and the final determination of the angle.

$$
100: 13 ; 47^{\circ} 23^{\prime} 38^{\prime \prime} .23 \pm \mathrm{r}^{\prime \prime} .62
$$

5. Show that the probable error in example 4 as computed from the ten observations taken with their proper weights is $\mathrm{x}^{\prime \prime} .53$, but that derived from the formula of Art. 104 is $\mathrm{o}^{\prime \prime} .43$, which is much too small. (See foot-note, p. 83.)
6. Two determinations of the length of a line in feet give respectively 683.4 ± 0.3 and 684.9 ± 0.3, there being no reason for preferring one of the corresponding precise values to the other; show that the probable error of each of the precise values (that is, the systematic error of each determination) is 0.65 ; and that the best final determination is 684.15 ± 0.51.
7. Show generally that when the weights are inversely proportional to the squares of the probable errors, the formula of Art. 104 gives a value of R greater or less than that given by the formula of Art. Ior, according as d is greater or less than the relative mean error.

VIII.

Indirect Observations.

Observation Equations.

II3. We have considered the case in which a quantity whose value is to be determined is directly observed, or is expressed as a function of quantities directly observed. We come now to that in which the quantity sought is one of a number of unknown quantities of which those directly observed are functions. The equation expressing that a known function of several unknown quantities has a certain observed value is called an observation equation. Let μ denote the number of unknown quantities concerned. Then, in order to determine them, we must have at least μ independent equations. Thus, if two of the equations express observed values of the same function of the unknown quantities, they will either be identical, so that we have in effect only μ-I equations, or else they will be inconsistent, so that the values of the unknown quantities will be impossible. So also it must not be possible to derive any one of the μ equations, or one differing from it only in the absolute term, from two or more of the other equations.

II4. If we have no more than the necessary μ equations, we shall have no indication of the precision with which the observations have been made, nor, consequently, any measure of the precision with which the unknown quantities have been determined. With respect to them, we are in the same condition as when a single observed value is given in the case of direct observations.
Now let other observation equations be given, that is to say, let the values of other functions* of the unknown quantities be observed. The results of substituting the values of the unknown

[^25]quantities will, owing to the errors of observation, be found tc differ from the observed values, and the discrepancies will give an indication of the precision of the observations, just as the discrepancies between observed values of the same quantity do, in the case of direct observations.

II5. As an example, let us take the following four observation equations* involving x, y and z :

$$
\begin{aligned}
x-y+2 z & =3 \\
3 x+2 y-5 z & =5 \\
4 x+y+4 z & =21 \\
-x+3 y+3 z & =14
\end{aligned}
$$

If we solve the first three equations we shall find

$$
x=2 \frac{4}{7}, \quad y=3 \frac{2}{7}, \quad z=1 \frac{6}{7} .
$$

Substituting these values in the fourth equation, the value of the first member is $12 \frac{6}{7}$, whereas the observed value is 14 ; the discrepancy is $I \frac{1}{7}$. If the values above were the true values, the errors of observation committed must have been $\mathrm{O}, \mathrm{o}, \mathrm{o}, \mathrm{I} \frac{1}{7}$; but, since each of the observed quantities is liable to error, this is not a likely system of errors to have been committed. In fact, any system of values we may assign to x, y and z implies a system of errors in the observed quantities, and the most probable system of values is that to which corresponds the most probable system of errors.

II6. In general, let there be m observation equations, involving μ unknown quantities, $m>\mu$; then we have first to consider the mode of deriving from them the most probable values of the unknown quantities. The system of errors in the observed quantities which this system of values implies will then enable us to measure the precision of the observations. Finally, regarding the μ unknown quantities as functions of the m observed quantities, we shall obtain for each unknown quantity a measure of the precision with which it has been determined.

[^26]The Reduction of Observation Equations to the Linear Form.
II7. The method of obtaining the values of the unknown quantities, to which we proceed, requires that the observation equations should be linear. When this is not the case, it is necessary to employ approximately equivalent linear equations, which are obtained in the following manner.

Let X, Y, Z, \ldots be the unknown quantities, and M_{1}, ${ }^{\prime} H_{2}, \ldots M_{m}$ the observed quantities; the observation equations are then of the form

$$
\begin{aligned}
& f_{1}(X, Y, Z, \ldots)=M_{1} \\
& f_{2}(X, Y, Z, \ldots)=M_{2} \\
& f_{m}(X, Y, Z, \ldots)=M_{m}
\end{aligned}
$$

where $f_{1}, f_{2}, \ldots f_{m}$ are known functions. Let $X_{0}, Y_{0}, Z_{0}, \ldots$ be approximate values of X, Y, Z, \ldots, which, if not otherwise known, may be found by solving μ of the equations; and put

$$
X=X_{0}+x, \quad Y=Y_{0}+y, \quad \cdots
$$

so that x, y, z, \ldots are small corrections to be applied to the approximate values. Then the first observation equation may be written

$$
f_{1}\left(X_{\circ}+x, Y_{\circ}+y, Z_{\circ}+z, \ldots\right)=M_{1}
$$

or, expanding by Taylor's theorem,
$f,\left(X_{\circ}, Y_{0}, Z_{0}, \ldots\right)+\frac{d f_{1}}{d X_{0}} x+\frac{d f_{1}}{d Y_{0}} y+\frac{d f_{1}}{d Z_{0}} z+\ldots=M_{1}$,
where the coefficients of x, y, z, \ldots are the values which the partial derivatives of $f_{1}(X, Y, Z, \ldots)$ assume when $X=X_{0}$, $Y=Y_{0}, Z=Z_{0}, \ldots$, and the powers and products of the small quantities x, y, z, \ldots are neglected as in Art. 91.

Denoting the coefficients of x, y, z, \ldots by $a_{1}, b_{1}, c_{1}, \ldots$, putting n_{1} for $M_{1}-f_{1}\left(X_{\circ}, Y_{\circ}, Z_{\circ}, \ldots\right)$, and treating the other observation equations in the same way, we may write

$$
\left.\begin{array}{r}
a_{1} x+b_{1} y+c_{1} z+\ldots=n_{1} \tag{I}\\
a_{2} x+b_{2} y+c_{2} z+\ldots=n_{2} \\
\cdot . . \\
a_{m} x+b_{m} y+c_{m} z+\ldots=n_{m}
\end{array}\right\}
$$

for the observation equations in their linear form.
II8. Even when the original observation equations are in thr inear form: it is generally best to transform them as aboves su that the values of the unknown quantities shall be small.

Another transformation sometimes made consists in replacing one of the unknown quantities by a fixed multiple of it. For example, if the values of the coefficients of y are inconveniently large they may be reduced in value by substituting $k y^{\prime}$ for y and giving to k a suitably small value.
119. In the observation equations (1), the second members may be regarded as the observed quantities, since they have the same errors. If the true values of x, y, z, \ldots are substituted in these equations they will not be satisfied, because each n differs from its proper value by the error of observation v; we may therefore write the equations

$$
\left.\begin{array}{c}
a_{1} x+b_{1} y+c_{1} z+\ldots-n_{1}=v_{1} \tag{2}\\
a_{2} x+b_{2} y+c_{2} z+\ldots-n_{2}=v_{2} \\
\cdot \cdot \cdot \cdot \cdot \\
a_{m} x+b_{m} y+c_{m} z+\ldots-n_{m}=v_{m}
\end{array}\right\},
$$

in which, if x, y, z, \ldots are the true values, $v_{1}, v_{2}, \ldots v_{m}$ are the true errors of observation, and if any set of values be given to x, y, z, \ldots, the second members are the corresponding residuals. These corrected observation equations may be called the residual equations.

Observation Equations of Equai Precision.

I20. Let us first suppose that the m observations are equally good, and let h be their common measure of precision. Then, since v is the error, not only of the absolute term n_{1} in the first of equations (2), but of the first observed quantity M_{1}, the prob-
ability before the observations are made that the first observed value shall be M_{1} is

$$
\frac{h}{\sqrt{ } \pi} e^{-h^{2} v_{2}^{2}} \Delta v,
$$

where, as in Art. 35, Δv is the least count of the instrument. Hence we have, for the probability before the observations are made that the m actual observed values shall occur,

$$
P=\frac{h^{m}}{\pi^{\frac{1}{2} m}} e^{-h^{2}\left(v_{\mathrm{z}}^{2}+v_{\mathrm{a}}^{2}+\cdots v_{m}^{2}\right)} \Delta v^{m}
$$

exactly as in Art. 41. The values of $v_{1}^{2}, v_{2}^{2}, \ldots v_{m}^{2}$ being given by equations (2), this value of P is a function of the several unknown quantities; hence it follows, as in Art. 4I, that for any one of them that value is, after the observations have been made, most probable which assigns to P its maximum value; in other words, that value which makes

$$
v_{1}^{2}+v_{2}^{2}+\ldots+v_{m}^{2}=\text { a minimum } .
$$

Thus the principle of Least Squares applies to indirect as well as to direct observations.

12I. To determine the most probable value of x, we have, by differentiation with respect to x,

$$
v_{1} \frac{d v_{1}}{d x}+v_{2} \frac{d \dot{v}_{2}}{d x}+\ldots+v_{m} \frac{d v_{m}}{d x}=0
$$

or, since, from equations (2), Art. II9,

$$
\begin{gather*}
\frac{d v_{1}}{d x}=a_{1}, \quad \frac{d v_{2}}{d x}=a_{2}, \quad \ldots \quad \frac{d v_{n}}{d x}=a_{n} \\
a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{m} v_{m}=0 . \tag{I}
\end{gather*}
$$

This is called the normal equation for x. Whatever values are assigned to y, z, \ldots, it gives the rule for determining the value of x which is most probable on the hypothesis that the values assigned to the other unknown quantities are correct.

Since $v_{1}, v_{2}, \ldots v_{m}$ represent the first members of the obser-
vation equations (1), Art. 117, when so written that the second member is zero, we see that the normal equation for x may be formed by multiplying each observation equation by the coefficient of x in it, and adding the results.
122. The rule just given for forming the normal equation shows it to be a linear combination of the observation equations, and the reason why the multipliers should be as stated may be further explained as follows: If we suppose fixed values given to y, z, \ldots, each observation equation may be written in the form $a x=N$, where N only differs from the observed value M by a fixed quantity, and therefore has the same probable error. Now, writing the observation equations in the form

$$
\begin{aligned}
& x=\frac{N_{1}}{a_{1}}=x_{1} \\
& x=\frac{N_{2}}{a_{2}}=x_{2} \\
& x=\frac{N_{m}}{a_{m}}=x_{m}
\end{aligned}
$$

we may regard them as expressing direct observations of x. If r is the common probable error of $N_{1}, N_{2}, \ldots N_{m}$, that of $\frac{N_{1}}{a_{1}}$ or x_{1} is $\frac{r}{a_{1}}$; that of x_{2} is $\frac{r}{a_{2}}$, and so on. Thus the equations are not of equal precision for determining x, and their weights when written as above (being inversely as the squares of the probable errors) are as $a_{1}^{2}: a_{2}^{2}: \ldots: a_{m}^{2}$. It follows that the equation for finding x is, as in the case of the weighted arithmetical mean (see Art. 66), the result of adding the above equations multiplied respectively by $a_{1}^{2}, a_{2}^{2}, \ldots a_{m}^{2} ; *$ that is to say, it is the result of adding the original observation equations of the form $a x-N=0$ multiplied respectively by $a_{1}, a_{2}, \ldots a_{m}$.

[^27]
The Normal Equations.

I23. In like manner, for each of the other unknown quantities we can form a normal equation, and we thus have a system of equations whose number is equal to that of the unknown quantities. The solution of this system of normal equations gives the most probable values of the unknown quantities. Let us take for example the four observation equations given in Art. 115. Forming the normal equations by the rule given above, we have

$$
\begin{aligned}
27 x+6 y & =88 \\
6 x+15 y+z & =70 \\
y+54 z & =107
\end{aligned}
$$

The solution of this system of equations gives for the most probable values,

$$
\begin{aligned}
& x=\frac{49154}{19899}=2.47 \\
& y=\frac{2617}{737}=3.55 \\
& z=\frac{12707}{6633}=1.92
\end{aligned}
$$

124. Writing the observation equations in their general form,

$$
\left.\begin{array}{r}
a_{1} x+b_{1} y+\ldots+l_{1} t=n_{1} \tag{I}\\
a_{2} x+b_{2} y+\ldots+l_{2} t=n_{2} \\
\cdot \cdot \cdot \cdot \\
a_{m} x+b_{m} y+\ldots+l_{m} t=n_{m}
\end{array}\right\}
$$

we obtain for the normal equations in their general form,

It will be noticed that the coefficient of the r th unknown quantity in the sth equation is the same as that of the sth unknown quantity in the r th equation; in other words, the
determinant of the coefficients of the unknown quantities in equations (2) is a symmetrical one.

Observation Equations of Unequal Precision.

125. When the observations are not equally good, if

$$
h_{1}, h_{2}, \ldots . h_{m}
$$

are the measures of precision of the observed values

$$
M_{1}, M_{2}, \ldots M_{m}
$$

the expression to be made a minimum is

$$
h_{1}^{2} v_{1}^{2}+h_{2}^{2} v_{2}^{2}+\ldots+h_{m}^{2} v_{m}^{2}
$$

as in Art. 65. Thus, as in the case of direct observations, if the error of each observation be multiplied by its measure of precision so as to reduce the errors to the same relative value, it is necessary that the sum of the squares of the reduced errors should be a minimum.

Since $v_{1}=0, v_{2}=0, \ldots v_{m}=0$ are equivalent to the observation equations, it follows that, if we multiply each observation equation by its measure of precision (so that it takes the form $h v=0$), we may regard the results as equations of equal precision.
126. The result may be otherwise expressed by using numbers $p_{1}, p_{2}, \ldots p_{m}$ proportional, as in Art. 66, to the squares of the measures of precision; the quantity to be made a minimum then is

$$
p_{1} v_{1}^{2}+p_{2} v_{2}^{2}+\ldots+p_{m} v_{m}^{2}
$$

and the normal equation for x is

$$
p_{1} a_{1} v_{1}+p_{2} a_{2} v_{2}+\ldots+p_{m} a_{m} v_{m}=0
$$

The numbers $p_{1}, p_{2}, \ldots p_{m}$ are called the weights of the observation equations; thus, in the case of weighted equations, the normal equation for x may be formed by multiplying each observation equation by the coefficient of x in it, and also by its weight, and adding the results.

The general form of the normal equations is now

The result is evidently the same as if each observation equation had been first multiplied by the square root of its weight, by which means it would be reduced to the weight unity, and the system would take the form (2), Art. 124 .

Formation of the Normal Equations.

127. When the normal equations are calculated by means of their general form, a table of squares is useful not only in calculating the coefficients $\Sigma p a^{2}, \Sigma p b^{2}, \ldots \Sigma p l^{2}$, but also in the case of those of the form $\Sigma p a b, \Sigma p a c, \ldots$ シpan, ... For, since

$$
a b=\frac{1}{2}\left[(a+b)^{2}-a^{2}-b^{2}\right],
$$

we have

$$
\Sigma p a b=\frac{1}{2}\left[\Sigma p(a+b)^{2}-\Sigma p a^{2}-\Sigma p b^{2}\right],
$$

by means of which $\Sigma p a b$ is expressed in terms of squares.* Or for the same purpose we may use

$$
\Sigma p a b=\frac{1}{2}\left[\Sigma p a^{2}+\Sigma p b^{2}-\Sigma p(a-b)^{2}\right] .
$$

In performing the work it is convenient to arrange the coefficients in a tabular form in the order in which they occur in the observation equations, and, adding a column containing the sums of the coefficients in each equation, thus,

$$
s_{1}=a_{1}+b_{1}+\ldots+l_{1}+n_{1}, \text { etc. }
$$

* If $\Sigma p a b$ alone were to be found, the formula

$$
\Sigma p a b=\frac{1}{4}\left[\Sigma p(a+b)^{2}-\Sigma p(a-b)^{2}\right]
$$

derived from that of quarter-squares, would be preferable; but, since $\Sigma p a^{2}, \Sigma p b^{2}$ have also to be calculated, the use of the formula aboves which was suggested by Bessel, involves less additional labor.
to form the quantities $\Sigma p a s, \Sigma p b s, \ldots . \sum p n s$ in addition to those which occur in the normal equations. We ought then to find

$$
\begin{aligned}
& \Sigma p a s=\Sigma p a^{2}+\Sigma p a b+\ldots+\Sigma p a n, \\
& \Sigma p b s=\Sigma p a b+\Sigma p b^{2}+\ldots+\Sigma p b n, \\
& \dot{E} p n s=\Sigma p a n+\Sigma p b n+\ldots+\Sigma p n^{2},
\end{aligned}
$$

and the fulfilment of these conditions is a verification of the accuracy of the work.

In many cases, the use of logarithms is to be preferred, especially when the logarithms of the coefficients in the observation equations are more readily obtained than the values themselves.

The General Expressions for the Unknown Quantities.

128. In writing general expressions for the most probable values of the unknown quantities, and in deriving their probable errors, we shall, for simplicity in notation, suppose that the observation equations have been reduced to the weight unity as explained in Art. 126, so that they are represented by equations (1), and the normal equations by equations (2) of Art. 124.

Let D be the symmetrical determinant of the coefficients of the unknown quantities in the normal equations, thus

$$
D=\left|\begin{array}{cccc}
\Sigma a^{2} & \Sigma a b & \ldots & \Sigma a l \\
\Sigma a b & \Sigma b^{2} & \ldots & \Sigma b l \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot a l & \Sigma b l & \ldots & \Sigma l^{2}
\end{array}\right|
$$

let D_{x} denote the result of replacing the first column by a column consisting of the second members, $\Sigma a n, \Sigma b n_{2} \ldots \Sigma^{\prime} / n$; and let $D_{y}, D_{z}, \ldots D_{\iota}$ be the like results for the remaining columns. Then

$$
\begin{equation*}
x=\frac{D_{x}}{D}, \quad y=\frac{D_{y}}{D}, \quad \cdots \quad t=\frac{D_{t}}{D} \tag{I}
\end{equation*}
$$

are the general expressions for the unknown quantities.
129. Let the value of x when expanded in terms of the second members of the normal equations be

$$
\begin{equation*}
x=Q_{1} \Sigma a n+Q_{2} \Sigma b n+\ldots+Q_{\mu} \Sigma l n \tag{2}
\end{equation*}
$$

Now, in the expansion of the determinant D_{x} in terms of the elements of its first column, the coefficients of Σ 'an, $\Sigma \Sigma^{\prime} b n, \ldots$. Σ 'n are the first minors corresponding to $\Sigma^{\prime} a^{2}, \Sigma a b, \ldots \Sigma \prime a l$, in the determinant D.

Denoting the first of these by D_{1}, so that

$$
D_{1}=\left|\begin{array}{cccc}
\Sigma b^{2} & \Sigma b c & \ldots & \Sigma b l \\
\Sigma b c & \Sigma c^{2} & \ldots & \Sigma c l \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\dot{\Sigma} b l & \dot{\Sigma} c l & \ldots & \dot{\Sigma} l^{2}
\end{array}\right|
$$

it follows, on comparing the values of x in equations (1) and (2), that

$$
Q_{1}=\frac{D_{1}}{D} .
$$

In like manner, the values of $Q_{2}, Q_{3}, \ldots Q_{\mu}$ are the results of dividing the other first minors by D.

The Weights of the Unknown Quantities.

I30. Let the value of x, when fully expanded in terms of the second members $n_{1}, n_{2}, \ldots n_{m}$ of the observation equations, be

$$
\begin{equation*}
x=\alpha_{1} n_{1}+\alpha_{2} n_{2}+\ldots+\alpha_{m} n_{m} \tag{3}
\end{equation*}
$$

Then, if r_{x} denotes the probable error of x, and r that of a standard observation, that is, the common probable error of each of the observed values $n_{1}, n_{2}, \ldots n_{m}$, we shall have, by Art. 89,

$$
r_{x}^{2}=r^{2} \cdot \Sigma \alpha^{2} .
$$

The precision with which x has been determined is usually expressed by means of its weight, that of a standard observation
being taken as unity. The weights being inversely proportional to the squares of the probable errors, we have, therefore, for that of x,

$$
p_{x}=\frac{\mathrm{I}}{\Sigma^{\prime} \alpha^{2}}
$$

I3I. Since the value of x is obtained from the normal equations, we do not actually find the values of the α 's; we therefore proceed to express $\Sigma \alpha^{2}$ in terms of the quantities which occur in the normal equations.

Equating the coefficients of $n_{1}, n_{2}, \ldots n_{m}$ in equations (2) and (3), we find

$$
\left.\begin{array}{r}
a_{1}=a_{1} Q_{1}+b_{1} Q_{2}+\ldots+l_{1} Q_{\mu} \\
a_{2}=a_{2} Q_{1}+b_{2} Q_{2}+\ldots+l_{2} Q_{\mu} \\
\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot(\mathrm{c}) \\
a_{m}=a_{m} Q_{1}+b_{m} Q_{2}+\ldots+l_{m} Q_{\mu}
\end{array}\right\} \cdot \text {.... }
$$

Multiplying the first of these equations by a_{1}, the second by α_{2}, and so on, and adding the results, we have

$$
\begin{equation*}
\Sigma a^{2}=\Sigma a \alpha \cdot Q_{1}+\Sigma b a \cdot Q_{2}+\ldots+\Sigma l a \cdot Q_{\mu} \tag{2}
\end{equation*}
$$

The value of $\Sigma a \alpha$ is found by multiplying the first of equations (1) by a_{1}, the second by a_{2}, and so on, and adding. The result is

$$
\begin{equation*}
\Sigma a \alpha=\Sigma a^{2} \cdot Q_{1}+\Sigma a b \cdot Q_{2}+\ldots+\Sigma a l \cdot Q_{\mu} \tag{3}
\end{equation*}
$$

Multiplying this equation by D, the second member becomes the expansion of the determinant D in terms of the elements of its first column. Hence

$$
\begin{equation*}
\Sigma a \alpha=\mathbf{1} \tag{4}
\end{equation*}
$$

In like manner we find

$$
\begin{equation*}
\Sigma b a=\Sigma a b \cdot Q_{1}+\Sigma b^{2} \cdot Q_{2}+\ldots+\Sigma b l \cdot Q_{\mu} \tag{5}
\end{equation*}
$$

and when this equation is multiplied by D, the second member is the expansion of a determinant in which the first two columns
are identical. Thus $\Sigma b a=0$, and in the same way we can show that $\Sigma ' c \alpha, \ldots$. . $\Sigma^{\prime} l \alpha$ vanish.*

Substituting in equation (2), we have now

$$
\begin{equation*}
\Sigma \alpha^{2}=Q_{1} \tag{6}
\end{equation*}
$$

hence from Arts. 130 and 129 we have, for the general expression for the weight of x,

$$
\begin{equation*}
p_{x}=\frac{\mathbf{I}}{Q_{1}}=\frac{D}{D_{1}} \tag{7}
\end{equation*}
$$

132. It follows from equation (2), Art. 129, that if in solving the normal equations we retain the second members in algebraic form, putting for them A, B, C, \ldots, then the weight of x will be the reciprocal of the coefficient of A in the value of $x . \dagger$ In like manner, that of y will be the reciprocal of the coefficient of B in the value of y, and so on.

For example, if the normal equations given in Art. 123 are written in the form

$$
\begin{aligned}
27 x+6 y & =A \\
6 x+15 y+z & =B \\
y+54 z & =C
\end{aligned}
$$

the solution is

$$
\begin{aligned}
19899 x & =809 A-324 B+6 C \\
737 y & =-12 A+54 B- \\
6633 z & =2 A-9 B+123 C
\end{aligned}
$$

[^28]The weights of x, y and z are therefore

$$
\begin{aligned}
& p_{x}=\frac{19899}{809}=24.60 \\
& p_{y}=\frac{737}{54}=13.65 \\
& p_{z}=\frac{6633}{123}=53.93
\end{aligned}
$$

I33. When the value of x is obtained by the method of substitution, the process may be so arranged that its weight shall be found at the same time. Let the other unknown quantities be eliminated successively by means of the other normal equations, the value of x being obtained from the first normal equation or normal equation for x. Then, if this equation has not been reduced by multiplication or division, the coefficient of A in the second member will still be unity, and the equation will be of the form

$$
R x=T+A
$$

where T depends upon the quantities B, C, \ldots Now it is shown in the preceding article that the weight of x is the reciprocal of the coefficient of A in the value of x; hence in the present form of the equation the weight is the coefficient of x.*

As an illustration, let us find the values of x and its weight in the example given above, the normal equation being

$$
\begin{aligned}
27 x+6 y & =88 \\
6 x+15 y+z & =70 \\
y+54 z & =107
\end{aligned}
$$

The last equation gives

$$
z=-\frac{1}{54} y+\frac{107}{54}
$$

* The effect of the substitution is always to diminish the coefficient of x; for, as mentioned in the foot-note to Art. 122, if the true values of $y, z, \ldots t$ were known, the weight of x would be Σa^{2}, which is the original coefficient of x, and obviously the weight on this hypothesis would exceed p_{x}, which is the weight when $y, z, \ldots t$ are also subject to error.
and if this is substituted in the second, we obtain

$$
y=-\frac{324}{809} x+\frac{3673}{809}
$$

Finally, by the substitution of this value of y in the first normal equation, we obtain, before any reduction is made,

$$
\frac{19899}{809} x=\frac{49154}{809}
$$

whence

$$
p_{x}=\frac{19899}{809}, \quad \text { and } \quad x=\frac{49154}{19899},
$$

as before found.

The Determination of the Measure of Precision.

134. The most probable value of h in the case of observations of equal weight is that which gives the greatest possible value to P, Art. 120, that is, to the function

$$
h^{m} e^{-h^{2}\left(u_{1}^{2}+u_{2}^{2}+\cdots+u_{m}^{2}\right)},
$$

in which the errors are denoted by $u_{1}, u_{2}, \ldots u_{m}$, so that we may retain $v_{1}, v_{2}, \ldots v_{m}$ to denote the residuals which correspond to the values of the unknown quantities derived from the normal equations. By differentiation we derive, as in Art. 69, for the determination of h,

$$
\begin{equation*}
\Sigma u^{2}=\frac{m}{2 h^{2}} \tag{I}
\end{equation*}
$$

The value of Σu^{2} cannot, of course, be obtained, but it is known to exceed Σv^{2}, which is its minimum value, and the best value we can adopt is found by adding to Σv^{2} the mean value of the excess, $\Sigma u^{2}-\Sigma v^{2}$.
135. Let the true values of the unknown quantities be $x+\delta x, y+\delta y, \ldots t+\delta t$, while $x, y, \ldots t$ denote the values derived from the normal equations. We have then the residual equations

$$
\left.\begin{array}{l}
a_{1} x+b_{1} y+\ldots+l_{1} t-n_{1}=v_{1} \tag{I}\\
a_{2} x+b_{2} y+\ldots+l_{2} t-n_{2}=v_{2} \\
. . . .+l_{m} t-n_{m}=v_{m}
\end{array}\right\},
$$

and, for the true errors, the expressions,

Multiplying equations (I) by $v_{1}, v_{2}, \ldots v_{m}$ respectively, and adding, the coefficient of x in the result is

$$
a_{1} v_{1}+a_{2} v_{3}+\ldots+a_{m} v_{m}
$$

which vanishes by the first normal equation (1), Art. 121. In like manner, the coefficient of y vanishes by the second normal equation, and so on. Hence

$$
\begin{equation*}
\Sigma v^{2}=-\Sigma n v \tag{3}
\end{equation*}
$$

Treating equations (2) in the same way, we have
hence

$$
\Sigma u v=-\Sigma n v ;
$$

$$
\begin{equation*}
\Sigma v^{2}=\Sigma u v . \tag{4}
\end{equation*}
$$

Again, multiplying equations (1) by $u_{1}, u_{2}, \ldots u_{m}$, and adding,

$$
\Sigma u v=\Sigma a u \cdot x+\Sigma b u \cdot y+\ldots+\Sigma l u \cdot i-\Sigma n u ;
$$

and treating equations (2) in the same way,
$\Sigma u^{2}=\Sigma a u(x+\delta x)+\Sigma b u(y+\delta y)+\ldots+\Sigma l u(t+\delta t)-\Sigma n u$.
Subtracting the preceding equation, we have, by equation (4),

$$
\begin{equation*}
\Sigma u^{2}-\Sigma v^{2}=\Sigma a u_{0} \delta x+\Sigma b u \cdot \delta y+\ldots+\Sigma u, \delta t, . \tag{5}
\end{equation*}
$$

an expression for the correction whose mean value we are seeking.
136. Expressions for $\delta x, \delta y, \ldots \delta t$ are readily obtained as follows. Treating equations (2) exactly as the residual equations (1) are treated to form the normal equations, we find

$$
\left.\begin{array}{c}
\Sigma a^{2} \cdot(x+\delta x)+\Sigma a b \cdot(y+\delta y)+\ldots \\
\quad+\Sigma a l \cdot(t+\delta t)=\Sigma a n+\Sigma a u \\
\Sigma a b \cdot(x+\delta x)+\Sigma b^{2} \cdot(y+\delta y)+\ldots \\
+\Sigma b l \cdot(t+\delta t)=\Sigma b n+\Sigma b u \\
\dot{C} \cdot(\cdot) \cdot \\
\dot{\Sigma} a \cdot \cdot(x+\delta x)+\Sigma b l \cdot(y+\delta y)+\ldots \\
+\Sigma l^{2} \cdot(t+\delta t)=\Sigma l n+\Sigma l u
\end{array}\right\}
$$

Subtraction of the corresponding normal equation from each of these gives the system,

$$
\left.\begin{array}{l}
\sum a^{2} \cdot \delta x+\Sigma a b \cdot \delta y+\ldots+\Sigma a l . \delta t=\Sigma a u \\
\Sigma a b \cdot \delta x+\Sigma b^{2} \cdot \delta y+\ldots+\Sigma b l . \delta t=\Sigma b u \\
\Sigma a l \cdot \delta x+\Sigma b l \cdot \delta y+\ldots+\Sigma l^{2} \cdot \delta t=\Sigma l u
\end{array}\right\},
$$

a comparison of which with the normal equations shows that $\delta x, \delta y, \ldots \delta t$ are the same functions of $u_{1}, u_{2}, \ldots u_{m}$ that $x, y, \ldots t$ are of $n_{1}, n_{2}, \ldots n_{m}$. Hence we have

$$
\delta x=\alpha_{1} u_{1}+\alpha_{2} u_{2}+\ldots+\alpha_{m} u_{m}
$$

where $\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}$ have the same meaning as in Art. I30.
I37. Consider now the first term, $\Sigma a u . \delta x$, of the value of $\Sigma u^{2}-\Sigma v^{2}$, equation (5), Art. 135. Multiplying the value of δx just found by

$$
\Sigma a u=a_{1} u_{1}+a_{2} u_{2}+\ldots+a_{m} u_{m}
$$

the product consists of terms containing squares and products of the errors. We are concerned only with the mean values of these terms, in accordance with the law of facility, which is for each error $\frac{h}{\sqrt{\pi}} e^{-L^{2} u^{2}}$. Since the mean value of each error is zero, it is obvious that the mean value of each product vanishes;
so that the mean value of $\Sigma a u . \delta x$ is the mean value of

$$
a_{1} \alpha_{1} u_{1}^{2}+a_{2} \alpha_{2} u_{2}^{2}+\ldots+a_{m} \alpha_{m} u_{m}^{2}
$$

Now by Art. 50 the mean value of each of the squares $u_{1}^{2}, u_{2}^{2}, \ldots u_{m}^{2}$ is $\frac{1}{2 h^{2}}$; hence the mean value of $\Sigma a u . \delta x$ is $\frac{\frac{V}{2} a \alpha}{2 h^{2}}$, or, by equation (4), Art. I 3 I,$\frac{1}{2 h^{2}}$.

In the same manner it can be shown that the mean value of each term in the second member of equation (5), Art. 135, is $\frac{1}{2 h^{2}}$; hence that of $\Sigma u^{2}-\Sigma v^{2}$ is $\frac{\mu}{2 h^{2}}$, and the best value we can adopt for Σu^{2} is

$$
\Sigma u^{2}=\Sigma v^{2}+\frac{\mu}{2 h^{2}}
$$

Substituting this in equation (I), Art. I 34, we have

$$
\Sigma v^{2}=\frac{m-\mu}{2 h^{2}}, \quad \text { whence } \quad h=\sqrt{\frac{m-\mu}{2 \sum v^{2}}} .
$$

The Probable Errors of the Observations and Unknown Quantities.
138. The resulting values of the mean and probable error of a single observation are

$$
\begin{gather*}
\varepsilon=\frac{I}{h \sqrt{ } 2}=\sqrt{ } \frac{\Sigma v^{2}}{m-\mu}, . . . \tag{I}\\
r=\frac{\rho}{h}=\rho \sqrt{ } 2 \sqrt{ } \frac{\Sigma v^{2}}{m-\mu}=0.6745 \sqrt{ } \frac{\Sigma v^{2}}{m-\mu} \tag{2}
\end{gather*}
$$

and the probable errors of the unknown quantities are

$$
\begin{equation*}
r_{x}=\frac{r}{\sqrt{p_{x}}}, \quad r_{y}=\frac{r}{\sqrt{p_{y}}}, \quad \ldots \quad r_{t}=\frac{r}{\sqrt{p_{t}}} \tag{3}
\end{equation*}
$$

When the observation equations have not equal weights we
may replace Σv^{2}, which represents the sum of the squares ot the residuals in the reduced equations, by $\Sigma p v^{2}$, in which the residuals are derived from the original observation equations. The formulæ (1) and (2) will then give the mean and probable errors of an observation whose weight is unity.

It will be noticed that when $\mu=I$ the formulæ reduce to those given in Art. 72 for the case of one unknown quantity.
139. Instead of calculating the values of $v_{1}, v_{2}, \ldots v_{m}$ directly from the residual equations, and squaring and adding the results, we may employ the formula for Σv^{2} deduced below.

By equation (3), Art. 135,

$$
\Sigma v^{2}=-\Sigma n v
$$

Now multiplying equations (1) of that article by $n_{1}, n_{2}, \ldots n_{m}$ respectively, and adding the results, we have

$$
\Sigma n v=\Sigma a n . x+\Sigma b n \cdot y+\ldots+\Sigma l n . t-\Sigma n^{2} .
$$

Therefore

$$
\begin{equation*}
\Sigma v^{2}=\Sigma n^{2}-\Sigma a n . x-\Sigma b n . y-\ldots-\Sigma \ln . t . \tag{I}
\end{equation*}
$$

The quantity Σn^{2} which occurs in this formula may be calculated at the same time with the coefficients in the normal equations. It enters with them into the check equations of Art. 127.

We may also express Σv^{2} exclusively in terms of these quantities, for if we write

$$
\boldsymbol{D}_{n}=\left|\begin{array}{ccccc}
\Sigma a^{2} & \Sigma a b & \ldots & \Sigma a l & \Sigma a n \\
\Sigma a b & \Sigma b^{2} & \ldots & \Sigma b l & \Sigma b n \\
\cdot & \cdot & & \cdot & \cdot \\
\cdot & \cdot & & \cdot & \cdot \\
\dot{\cdot} \cdot & \Sigma b l & \ldots & \Sigma l^{2} & \Sigma l n \\
\Sigma a n & \Sigma b n & \ldots & \Sigma l n & \Sigma n^{2}
\end{array}\right|,
$$

and consider the development of D_{n} in terms of the elements of its last row, we see that

$$
D_{n}=-\Sigma a n \cdot D_{n}-\Sigma b n \cdot D_{y}-\ldots-\Sigma \ln \cdot D_{6}+\Sigma n^{2} \cdot D_{1}
$$

where $D, D_{x}, \ldots D_{t}$ have the same meanings as in Art。128. hence

$$
\begin{equation*}
\Sigma v^{2}=\frac{D_{n}}{D} \tag{2}
\end{equation*}
$$

140. For example, in the case of the four observation equations of Art. 115 ,

$$
\left.\begin{array}{r}
x-y+2 z=3 \\
3 x+2 y-5 z=5 \\
4 x+y+4 z=21 \\
-x+3 y+3 z=14
\end{array}\right\}
$$

for which the normal equations are solved in Art. 123, the value of Σn^{2} is 67 I ; and formula (I) gives

$$
\begin{aligned}
\Sigma v^{2}=671-88 \times \frac{49154}{19899}-70 \times & \frac{70659}{19899} \\
& -107 \times \frac{38121}{19899}=\frac{1600}{19899}
\end{aligned}
$$

in which 1600 is the value of D_{n}. Substituting this value of Σv^{2} in the formulæ of Art. I38, we find

$$
\varepsilon=0.2836, \quad r=0.1913
$$

for the mean and probable errors of an observation ; and using the weights found in Art. I32, we find for those of the unknown quantities

$$
\begin{array}{lll}
\varepsilon_{x}=0.057, & \varepsilon_{y}=0.077, & \varepsilon_{z}=0.039 \\
r_{x}=0.038, & r_{y}=0.052, & r_{z}=0.026
\end{array}
$$

In this example we have found the exact value of Σv^{2}; if approximate computations are employed, the formula used has the disadvantage that a very small quantity is to be found by means of large positive and negative terms, which considerably increases the number of significant figures to which the work must be carried. Thus, because $\Sigma n^{2}=67 \mathrm{I}$ in the above example, the work would have to be carried out with seven-place logarithms to obtain Σv^{2} to four decimal places. The direct
computation of the v^{2} 's from the observation equations would present the same difficulty in a less degree.

14I. Of course, no great confidence can be placed in the absolute values of the probable errors obtained from so small a number of observation equations as in the example given above. There being but one more observation than barely sufficient to determine values of the unknown quantities, the case is comparable to that in which $n=2$ when the observations are direct.

By increasing the number of observations we not only obtain a more trustworthy determination of the probable error of a single observation, but, what is more important, we increase the weight, and hence the precision, of the unknown quantities. The measure in which this takes place depends greatly upon the character of the equations with respect to independence. As already mentioned in Art. 113, if there were only μ equations it would be necessary that they should be independent; in other words, the determinant of their coefficients must not vanish, otherwise the values of the unknown quantities will be indeterminate. When this state of things is approached the values are ill-determined, and this is indicated by the small value of the determinant in question. The same thing is true of the normal equations. Accordingly, the weights are small when the determinant D is small; thus the value of D is in a general way a measure of the efficiency of the system of observation equations in determining the unknown quantities.
142. If we write the coefficients in the m observation equa• tions in a rectangular form, thus,

the determinant D is, by a theorem in determinants, the sum of the squares of all the determinants which can be formed by
selecting $\bar{\mu}$ columns of the rectangular array. The first of these determinants is that of the coefficients of the first μ equations, which, as we have seen, vanishes when they are not independent, and the others are the like determinants for all the other combinations of μ equatiorss which can be formed from the m observation equations. It follows that D cannot be negative, and cannot vanish unless there is no set of μ independent equations among the observation equations.
143. By a similar consideration of the values of D_{x}, D_{y}, \ldots D_{t}, Art. 128, it has been shown * that, for each unknown quantity, the value given by the normal equations is the weighted mean of all the values which could be derived from μ selected equations, the weights being the squares of the corresponding determinants. \dagger

Empirical or Interpolation Formula.

I44. A set of observation equations usually arises in the following manner: One of two varying quantities is a function of another, of known form, the constants which occur having, however, unknown values. Simultaneous values of the varying quantities are observed. The values of the second quantity (the independent variable in the functional expression) are regarded as accurate, and from them are computed in each case the values of the coefficients when the other variable is treated as a linear function of the unknown quantities. This other variable is then the observed quantity M of our observation equations, and the errors are the differences between the observed values and those which accurately correspond to the assumed values of the independent variable.

[^29]Taking the two variable quantities as coordinates, the observations may be represented by points, and the problem before us is that of determining a curve of known variety in such a manner as to pass as nearly as possible through these points.
145. But it may happen that, while we know that a functional relation between the variable quantities exists, we have no theoretic knowledge of the form of the function. In such cases, our only resource is to assume the form of the function, being guided therein by an inspection of the points representing the observations. An equation so assumed is sometimes called an empirical formula. The constants involved in it are determined exactly as in the case of formulæ having a theoretical basis. The final result can only be judged of by the residuals. If these are numerous enough, their failure to follow the law of accidental errors may indicate the inadequacy of the assumed form.

When the formula as determined is used to compute the probable values of the observed quantity corresponding to other values of the independent variable, it is called an interpolation formula. The results can never be satisfactory except for values within the range of the values corresponding to the observations upon which the formula is based.

Conditioned Observations.

146. We have hitherto supposed the unknown quantities to be independent of one another, so that any set of simultaneous values is possible, and before the observations all sets are regarded as equally probable. It frequently happens, however, that the unknown quantities are required to satisfy rigorously certain equations of condition, in addition to the observation equations which must be approximately satisfied. The μ unknown quantities may thus be subject to ν equations of condition, where $\nu<\mu$, while the whole number of equations $m+\nu$ exceeds μ. The case may be reduced to that already discussed by the elimination of μ^{\prime} unknown quantities from the observation equations by means of the equations of condition, leaving us with m
observation equations containing $\mu-\nu$ independent unknown quantities.

We shall consider only the case (which is of frequent occurrence) in which $m=\mu$, and the observation equations express direct determinations of the μ unknown quantities.
147. Let $M_{1}, M_{2}, \ldots M_{\mu}$ be the observed values of $X, Y, \ldots T$, with weights $p_{1}, p_{2}, \cdots p_{\mu}$, and put

$$
X=M_{1}+x, \quad Y=M_{2}+y, \quad \ldots \quad T=M_{\mu}+t
$$

so that $x, y, \ldots t$ are the required corrections to the observed values. The equations of condition may be reduced as in Art. 117 to the linear forms

$$
\left.\begin{array}{r}
a_{1} x+a_{2} y+\ldots+a_{\mu} t=E_{1} \tag{I}\\
b_{1} x+b_{2} y+\ldots+b_{\mu} t=E_{2} \\
\cdot \cdot \cdot \cdot \\
f_{1} x+f_{2} y+\ldots+f_{\mu} t=E_{\nu}
\end{array}\right\}
$$

The values of $x, y, \ldots t$ must satisfy these equations, which are, however, insufficient in number to determine them, and, by the principle of Least Squares, those values are most probable which, while satisfying equations (I), make

$$
p_{1} x^{2}+p_{2} y^{2}+\ldots+p_{\mu} t^{2}=\text { a minimum }
$$

In other words, the values must be such that

$$
\begin{equation*}
p_{1} x d x+p_{2} y d y+\ldots+p_{\mu} t d t=0 \tag{2}
\end{equation*}
$$

for all possible simultaneous values of $d x, d y, \ldots d t$, that is, for all values which satisfy the equations,

$$
\left.\begin{array}{r}
a_{1} d x+a_{2} d y+\ldots+a_{\mu} d t=0 \tag{3}\\
b_{1} d x+b_{2} d y+\ldots+b_{\mu} d t=0 \\
\cdot \cdot \cdot \cdot \\
f_{1} d x+f_{2} d y+\ldots+f_{\mu} d t=0
\end{array}\right\}
$$

derived by differentiating equations (1). Hence, denoting the
first member of equation (2) by P and those of equations (3) by $S_{1}, S_{2}, \ldots S_{\nu}$, the conditions are fulfilled by values which satisfy equations (I) and make

$$
\begin{equation*}
P-k_{1} S_{1}-k_{2} S_{2}-\ldots-k_{\nu} S_{\nu}=0, . . \tag{4}
\end{equation*}
$$

where $k_{1}, k_{2}, \ldots k_{\nu}$ are any constants.
This last equation will be satisfied if we can equate to zero the coefficient of each of the differentials, thus putting
and this it is possible to do because we have μ unknown quantities and ν auxiliary quantities $k_{1}, k_{2}, \ldots k_{\nu}$ which can be determined so as to satisfy the $\nu+\mu$ equations comprised in the groups (1) and (5).

I48. Substituting the values of $x, y, \ldots t$ from equations (5) in equations (1), we have a set of linear equations to determine the k 's which are called the correlatives of the equations of condition. These equations may be written in the form

$$
\left.\begin{array}{l}
k_{1} \Sigma \frac{a^{2}}{p}+k_{2} \Sigma \frac{a b}{p}+\ldots+k_{\nu} \Sigma \frac{a f}{p}=E_{1} \\
k_{1} \Sigma \frac{a b}{p}+k_{2} \Sigma \frac{b^{2}}{p}+\ldots+k_{\nu} \Sigma \frac{b f}{p}=E_{2} \tag{6}\\
\cdot \\
k_{1} \Sigma \frac{a f}{p}+k_{2} \Sigma \frac{b f}{p}+\ldots+k_{\nu} \Sigma \frac{f^{2}}{p}=E_{\nu}
\end{array}\right\}
$$

in which the summation refers to the coefficients of the several unknown quantities; thus, for example, $\Sigma \frac{a^{2}}{\not p}$ is the sum of the squares of all the coefficients in the first equation of condition each divided by the weight of the corresponding unknown quantity. The correlatives being found from these equations,
the values of the corrections $x, y, \ldots t$ are given at once by equations (5).
149. When there is but one equation of condition

$$
a_{1} x+a_{2} y+\ldots+a_{\mu} t=E
$$

the second members of equations (5) reduce to their first terms, and the equations require that the corrections of the several unknown quantities shall be proportional to their coefficients in the equation of condition divided by their weights. Equations (6) then reduce to the single equation

$$
k \Sigma \frac{a^{2}}{p}=E,
$$

and the corrections are

$$
x=\frac{\frac{a_{1}}{p_{1}}}{\sum \frac{a^{2}}{p}} E, \quad y=\frac{\frac{a_{2}}{p_{2}}}{\Sigma \frac{a^{2}}{p}} E
$$

In the very common case in which the numerical value of each coefficient in the single equation of condition is unity (for example, when the successive angles at a point, or all the angles of a polygon, are measured, or when the sum of two measured angles is independently measured), we have the simple rule that the corrections are inversely proportional to the weights.

Examples.

1. Denoting the heights above mean sea level of five points by X, Y, Z, U, V, observations of difference of level gave, in feet:

$$
\begin{array}{rlr}
X=573.08 & Z-Y=167.33 & U-V=425.00 \\
Y-X=2.60 & U-Z=3.80 & V=319.91 \\
Y=575.27 & U-Y=170.28 & V=319.75
\end{array}
$$

Putting $X=573+x, Y=575+y, Z=742+z, U=745+u$:
$V=320+v$, find the values and probable errors of the corrections x, y, z, u, v, supposing the observations to have equa. weight.

$$
x=-0.19 \pm 0.23, \quad \begin{array}{ll}
y=0.14 \pm 0.21, & z=0.05 \pm 0.30 \\
& u=0.43 \pm 0.25, \\
v=0.03 \pm 0.19 .
\end{array}
$$

2. Given the observation equations:

$$
x=4.5, \quad y=1.6, \quad x-y=2.7
$$

with weights 10, 5 and 3 respectively, determine the values of x and y.

$$
x=4.468 \pm 0.049, y=1.663 \pm 0.063
$$

3. Measurements of the ordinates of a straight line corresponding to the abscissas $4,6,8$ and 9 , gave the values 5,8 , 10 and 12. What is the most probable equation of the line in the form $y=m x+b$?

$$
y=1.339 x-0.029
$$

4. Given the observation equations of equal weight:

$$
\begin{gathered}
x=10, \quad y-x=7, \quad y=18, \\
y-z=9, \quad x-z=2,
\end{gathered}
$$

determine the most probable values of the unknown quantities, and the probable errors of an observation and of each unknown quantity.

$$
\begin{aligned}
& x=10 \frac{3}{8}, \quad y=17 \frac{5}{8}, \quad z=8 \frac{1}{2} \\
& r=r_{z}=0.29, \quad r_{x}=r_{y}=0.23 .
\end{aligned}
$$

5. In order to determine the length x at $o^{\circ} \mathrm{C}$. of a meter bar, and its expansion y for each degree of temperature, it was measured at temperatures $20^{\circ}, 40^{\circ}, 50^{\circ}, 60^{\circ}$, the corresponding observed lengths being 1000.22, 1000.65, 1000.90 and roor. 05 mm . respectively. Find the probable values of x and y with their probable errors.

$$
\begin{aligned}
& x=999^{\mathrm{mm}} .804 \pm 0.033 \\
& y=0^{\mathrm{mm}} .0212 \pm 0.0007
\end{aligned}
$$

6. The length of the pendulum which beats seconds is known to vary with the latitude in accordance with Clairant's equation,

$$
l=l^{\prime}+\left(\frac{5}{2} q-\mu\right) l^{\prime} \sin ^{2} L
$$

where l^{\prime} is the length at the equator, q the ratio $\frac{1}{289}$ of the cen-
trifugal force at the equator to the weight, and μ the compres sion of the meridian regarded as unknown. Putting

$$
l^{\prime}=99 \mathrm{I}^{\mathrm{mm}}+x, \quad\left(\frac{5}{2} q-\mu\right) l^{\prime}=y
$$

observations in different latitudes gave in millimeters:

$$
\begin{array}{lll}
x+0.969 y=5.13, & x+0.095 y=0.56, & x+0.327 y=1.70, \\
x+0.749 y=3.97, & x & =0.19, \\
x+0.685 y=3.62 \\
x+0.426 y=2.24, & x+0.152 y=0.77, & x+0.793 y=4.23 .
\end{array}
$$

Find the length at the equator with its probable error.

$$
l^{\prime}=99 \mathrm{I}^{\mathrm{mm}} .069 \pm .026
$$

7. Find the value of μ in the preceding example and its probable error.

$$
\mu=\frac{1}{294} \pm 0.00046
$$

8. The measured height in feet of A above O, B above A and B above O are $12.3,14.1$ and 27.0 respectively. Find the most probable value and the probable error of each of these differences of level. $12.5 \pm 0.17 ; 14.3 \pm 0.17 ; 26.8 \pm 0.17$.
9. A round of angles at a station in the U. S. Coast Survey was observed with weights as follows: 65° II $52^{\prime \prime} .500$ with weight $3, \quad 87^{\circ} 2^{\prime} 24^{\prime \prime} .703$ with weight 3 , 6624 15.553." " 3, 14I 2I 21.757 " " find the adjusted values whose sum must be 360°.

$$
\begin{array}{lllllll}
65^{\circ} & \text { п } & 53^{\prime \prime} & 4145, & 87^{\circ} & 2^{\prime} & 25^{\prime \prime} .6175 \\
66 & 24 & 16 & .4675, & \text { 141 } & 21 & 24
\end{array} \cdot 5005
$$

10. Four observations on the angle X of a triangle gave a mean of $36^{\circ} 25^{\prime} 47^{\prime \prime}$, two- observations on Y gave a mean of $90^{\circ} 36^{\prime} 28^{\prime \prime}$ and three on Z gave $52^{\circ} 57^{\prime} 57^{\prime \prime}$. Find the adjusted values of the angles and the probable error of a single observation.

$$
r=7^{\prime \prime} \cdot 7 ; \quad \begin{array}{llll}
& X=36^{\circ} & 25^{\prime} & 44^{\prime \prime} \cdot 23 \\
& Y=90 & 36 & 22
\end{array} \cdot 46,1
$$

ir. A round of four angles was observed as follows:
$\left.\begin{array}{rrrrrrrrr}38^{\circ} & 52^{\prime} & 14^{\prime \prime} .28 & \text { weight } 2, & 44^{\circ} & 35^{\prime} & 56^{\prime \prime} .54 & \text { weight } 3, \\ 145 & 23 & 16 & .35 & \text { " } & 4, & \text { I } 3 \text { I } & \text { IO } & 21\end{array}\right)$
find the adjusted values.

$$
\begin{array}{rrrrrr}
38^{\circ} & 51^{\prime} & 35^{\prime \prime} \cdot 94, & 44^{\circ} & 35^{\prime} & 30^{\prime \prime} \cdot 98, \\
145 & 22 & 57 \cdot .18, & 131 & 9 & 55 \cdot 91 .
\end{array}
$$

12. Measurements of the angles between surrounding stations were made with weights as follows:

Between stations I and 2, $55^{\circ} 57^{\prime} 58^{\prime \prime} .68$, weight 3,

Find the corrections of the angles in the order given.

$$
\sigma^{\prime \prime} .285,0^{\prime \prime} .005,-o^{\prime \prime} .050,-0^{\prime \prime} .058, o^{\prime \prime} .127
$$

IX.

Gauss's Method of Substitution.

The Reduced Normal Equations.

150. In solving the normal equations, it becomes essential, except in the simplest cases, to reduce the labor as much as possible by adopting a systematic process in the elimination. We shall here give the method of substitution as developed by Gauss, which has the advantage of preserving, in each of the sets of simultaneous equations which arise in the elimination, the symmetry which exists in the coefficients of the normal equations, thereby materially diminishing the number of coefficients to be calculated.

The m observation equations, involving the μ unknown quantities $x, y, z, \ldots t$, being, as in Art. 124,

$$
\left.\begin{array}{l}
a_{1} x+b_{1} y+\ldots+l_{1} t=n_{1} \tag{I}\\
a_{2} x+b_{2} y+\ldots+l_{2} t=n_{2} \\
\cdot \\
a_{m} x+b_{m} y+\ldots+\dot{l}_{m} t=n_{m}
\end{array}\right\}
$$

let the normal equations be written in the form

$$
\left.\begin{array}{l}
{[a a] x+[a b] y+[a c] z+\ldots+[a l] t=[a n]} \\
{[a b] x+[b b] y+[b c] z+\ldots+[b l] t=[b n]} \\
{[a c] x+[b c] y+[c c] z+\ldots+[c l] t=[c n]} \\
{[a l] x+[b l] y+[c l] z+\ldots+[l u] t=[\ln]}
\end{array}\right\}
$$

As mentioned at the end of Art. 126, we may suppose the observation equations (i) to have been reduced to the weight unity, so that $[a a],[a b], \ldots[\ln]$ stand for $\Sigma a^{2}, \Sigma a b, \ldots \Sigma \ln$.

15I. The value of x in terms of the other unknown quantities derived from the first of equations (2), or normal equation for x, is

$$
x=-\frac{[a b]}{[a a]} y-\frac{[a c]}{[a a]} z-\ldots+\frac{[a n]}{[a a]}
$$

Substituting this in the $\mu-1$ other equations, they become

$$
\left.\begin{array}{l}
\left([b b]-[a b] \frac{[a b]}{[a a]}\right) y+\left([b c]-[a b] \frac{[a c]}{[a a]}\right) z+\ldots=[b n]-[a b] \frac{[a n]}{[a a]} \\
\left([b c]-[a c] \frac{[a b]}{[a a]}\right) y+\left([c c]-[a c]\left[\frac{[a c]}{[a a]}\right) z+\ldots=[c n]-[a c] \frac{[a n]}{[a a]}\right. \\
\cdot \cdot \cdot \\
\cdot \\
\left([b l]-[a l] \frac{[a b]}{[a c]}\right) y+\ldots+\left([l l]-[a l] \frac{[a l]}{[a a]}\right) t=[l n]-[a l] \frac{[a n]}{[a a]}
\end{array}\right\},
$$

in which it will be noticed that the coefficients of the unknown quantities have the same symmetry as in the normal equations (2). These equations for the μ - 1 unknown quantities $y, z, \ldots t$ are called the reduced normal equations, and are written in the form

$$
\left.\begin{array}{l}
{[b b, \mathrm{I}] y+[b c, \mathrm{I}] z+\ldots+[b l, \mathrm{I}] t=[b n, \mathrm{I}]} \tag{3}\\
{[b c, \mathrm{I}] y+[c c, \mathrm{I}] z+\ldots+[c l, \mathrm{I}] t=[c n, \mathrm{I}]} \\
\dot{[b l, \mathrm{I}] y+[c l, \mathrm{I}] z+\ldots+[l l, \mathrm{I}] t}=[\ln , \dot{\mathrm{I}}]
\end{array}\right\}
$$

in which

$$
\left.\begin{array}{c}
{\left[b b,{ }_{1}^{\mathrm{x}}\right]=[b b]-\frac{[a b][a b]}{[a a]}} \\
{[b c, \mathrm{r}]=[b c]-\frac{[a b a][a c]}{[a a]}} \tag{4}\\
\vdots . \cdot \cdot \\
{[m, \mathrm{r}]=[m]-\frac{\lceil a l \mid[a n]}{\mid a a\rceil}}
\end{array}\right\}
$$

Equations (4) show that the rule for the formation of the coefficients and the second members of the reduced normal equations is the same throughout; namely, from the corresponding coefficient in the normal equations we are to subtract the result of multiplying together the two expressions in whose symbols one of the letters in the given symbol is associated with a, and dividing the product by [aa].

The Elimination Equations.

152. Eliminating y by means of the first of the reduced normal equations (3) from each of the others, just as x was eliminated from the normal equations, and employing a similar notation, we have the $\mu-2$ equations

$$
\left.\begin{array}{l}
{[c c, 2] z+\ldots+[c l, 2] t=[c n, 2]} \\
\cdot \cdot c \\
{[c l, 2] z+\ldots+[l l, 2] t=[l n, 2]}
\end{array}\right\}
$$

which may be called the second reduced normal equations. The coefficients in these equations are derived from those in equations (3) exactly as the latter were found from those in equations (2). Thus

$$
\left.\begin{array}{rl}
{[c c, 2]} & =[c c, \mathrm{I}]-\frac{[b c, \mathrm{I}][b c, \mathrm{I}]}{[b b, \mathrm{I}]} \\
\cdot & \cdot \\
{[l n, 2]} & =[\ln , \mathrm{I}]-\frac{[b l, \mathrm{I}][b n, \mathrm{I}]}{[b b, \mathrm{I}]}
\end{array}\right\} .
$$

In like manner the third reduced normal equations are formed from these last, the coefficients being distinguished by the postfixed numeral 3 , corresponding to the number of
variables which have been eliminated. We finally arrive at the single equation

$$
\begin{equation*}
[l l, \mu-\mathbf{I}] t=[\ln , \mu-\mathbf{I}] \tag{7}
\end{equation*}
$$

which determines the unknown quantity standing last in the order of elimination.
153. The quantity which immediately precedes t is next derived from the first of the preceding set of equations (that is, from the equation by means of which it was eliminated) by the substitution of the numerical value found for t; and so on, until finally x is found from the first of the original normal equations. The equations from which the unknown quantities are actually determined are therefore the following :

$$
\left.\begin{array}{r}
{[a a] x+[a b] y+[a c] z+\ldots+[a l] t=[a n]} \\
{[b b, \mathrm{I}] y+[b c, \mathrm{I}] z+\ldots+[b l, \mathrm{I}] t=[b n, \mathrm{I}]} \\
1 \quad[c c, 2] z+\ldots+[c l, 2] t=[c n, 2] \tag{8}\\
\cdot \\
\cdot l l, \mu-\mathrm{I}] t=[\ln , \mu-\mathrm{I}]
\end{array}\right\}
$$

These are called the finaı or elimination equations.

The Reduced Observation Equations.

154. Let us suppose that there exists a relation between the variables which must be exactly satisfied, while the m observation equations are to be satisfied approximately. Let this relation be

$$
\begin{equation*}
\alpha x+\beta y+\ldots:+\lambda t=\nu \tag{I}
\end{equation*}
$$

Eliminating x from the observation equations (I), Art. I_{50} by the substitution of

$$
x=-\frac{\beta}{\alpha} y-\frac{\gamma}{\alpha} z-\ldots-\frac{\lambda}{\alpha} t+\frac{\nu}{\alpha}
$$

derived from this equation, we have

$$
\left.\begin{array}{c}
\left(b_{1}-a_{1} \frac{\beta}{\alpha}\right) y+\left(c_{1}-a_{1} \frac{\gamma}{\alpha}\right) z+\ldots+\left(l_{1}-a_{1} \frac{\lambda}{\alpha}\right) t=n_{1}-a_{1} \frac{\nu}{\alpha} \\
\left(b_{2}-a_{2} \frac{\beta}{\alpha}\right) y+\left(c_{2}-a_{2} \frac{\gamma}{\alpha}\right) z+\ldots+\left(l_{2}-a_{2} \frac{\lambda}{\alpha}\right) t=n_{2}-a_{2} \frac{\nu}{\alpha} \\
\cdot \\
\left(b_{m}-a_{m} \frac{\beta}{\alpha}\right) y+\left(c_{m}-a_{m} \frac{\gamma}{\alpha}\right) z+\ldots+\left(l_{m}-a_{m} \frac{\lambda}{\alpha}\right) t=n_{m}-a_{m} \frac{\nu}{\alpha}
\end{array}\right\}
$$

which may be called the reduced observation equations, and written in the form

$$
\left.\begin{array}{c}
b_{1}^{\prime} y+c_{1}^{\prime} z+\ldots+l_{1}^{\prime} t=n_{1}^{\prime} \tag{2}\\
b_{2}^{\prime} y+c_{2}^{\prime} z+\ldots+l_{2}^{\prime} t=n_{2}^{\prime} \\
b_{m}^{\prime} y+c_{m}^{\prime} z+\ldots \cdot l_{m}^{\prime} t=n_{m}^{\prime}
\end{array}\right\}
$$

a comparison of which with the equations written above sufficiently indicates the values of $b_{1}{ }^{\prime}, c_{1}{ }^{\prime}, \ldots a_{m}{ }^{\prime}, \ldots n_{m}{ }^{\prime}$.

The μ - I normal equations derived from these are

$$
\left.\begin{array}{c}
{\left[b^{\prime} b^{\prime}\right] y+\left[b^{\prime} c^{\prime}\right] z+\ldots+\left[b^{\prime} l^{\prime}\right] t=\left[b^{\prime} n^{\prime}\right]} \\
{\left[b^{\prime} c^{\prime}\right] y+\left[c^{\prime} c^{\prime}\right] z+\ldots+\left[c^{\prime} l^{\prime}\right] t=\left[c^{\prime} n^{\prime}\right]} \tag{3}\\
\left.\cdot b^{\prime} l^{\prime}\right] y+\left[c^{\prime} l^{\prime}\right] z+\ldots+\left[l^{\prime} l^{\prime}\right] t=\left[l^{\prime} n^{\prime}\right]
\end{array}\right\}
$$

in which

$$
\left.\begin{array}{c}
{\left[b^{\prime} b^{\prime}\right]=\Sigma\left(b-a \frac{\beta}{\alpha}\right)^{2}=[b b]-{ }_{2}[a b] \frac{\beta}{\alpha}+[a a] \frac{\beta^{2}}{\alpha^{2}}} \\
{\left[b^{\prime} c^{\prime}\right]=\Sigma\left(b-a \frac{\beta}{\alpha}\right)\left(c-a \frac{\gamma}{\alpha}\right)=[b c]-[a b] \frac{\gamma}{\alpha}-[a c] \frac{\beta}{\alpha}+[a a] \frac{\beta \gamma}{\alpha^{2}}} \tag{4}\\
\cdot \cdot \cdot \cdot \cdot \cdot \cdot \\
{\left[l^{\prime} n^{\prime}\right]=\Sigma\left(l-a \frac{\lambda}{\alpha}\right)\left(n-a \frac{\nu}{\alpha}\right)=[l n]-[a l] \frac{\nu}{\alpha}-[a n] \frac{\lambda}{\alpha}+[a a] \frac{\lambda \nu}{\alpha^{2}}}
\end{array}\right\}
$$

155. Let us now suppose that the equation of condition (I) which is to be exactly satisfied is identical with the first of the normal equations (2) of Art 150, so that

$$
\alpha=[a a], \quad \beta=[a b], \quad \ldots \quad v=[a n] ;
$$

then equations (4) become

$$
\left.\begin{array}{c}
{\left[b^{\prime} b^{\prime}\right]=[b b]-\frac{[a b]^{2}}{[a a]}} \tag{5}\\
{\left[b^{\prime} c^{\prime}\right]=[b c]-\frac{[a b][a c]}{[a a]}} \\
\cdot \cdot \cdot \cdot \cdot \\
{\left[l^{\prime} n^{\prime}\right]=[l n]-\frac{[a l] \mid a n]}{[a a]}}
\end{array}\right\} .
$$

Comparison of these with equations (4), Art. I5 I, shows that the normal equations (3) of the preceding article now become identical with the first reduced normal equations of Art. 15 I . Hence the first reduced normal equations are the same as the normal equations corresponding to the reduced observation equations which would result if x were eliminated from the observation equations by means of the normal equation for x.

It is evident that, in like manner, the second reduced normal equations are the same as the $\mu-2$ normal equation which would result from the reduced observation equations, if they were further reduced by the elimination of y by means of the reduced normal equation for y; or, what is the same thing, the normal equations which would result if x and y were eliminated from the original observation equations by means of the normal equations for x and y. Similar remarks apply to the other sets of reduced normal equations.

I56. An important consequence of what has just been proved is that, among the coefficients in the reduced normal equations, or auxiliary quantities, those of quadratic form,

$$
[b b, \mathrm{I}], \quad[c c, \mathrm{I}], \cdots \quad[c c, 2], \cdots \quad[l l, \mu-\mathrm{I}]
$$

being，like the corresponding quantities in the normal equa－ tions，sums of squares，are all positive．It is further to be noticed that each of these quantities decreases as its postfix increases，for the subtractive quantities in the formation of the successive values are themselves positive．For example；

$$
[l l, \mathrm{⿺}]=[l l]-\frac{[a l]^{2}}{[a a]}, \quad[l l, 2]=[l l, \mathrm{⿺}]-\frac{[b l, \mathrm{⿺}]}{}{ }^{2} .
$$

Weights of the Two Quantities First Determined．

157．The unknown quantity t has been determined in equation（7），Art．152，after the manner described in Art．I 33； that is to say，from its own normal equation－no reduction by multiplication or division having taken place in the course of the elimination．Hence，as proved in that article，its weight is the coefficient of the unknown quantity；that is to say，the weight of an observation being unity，that of t is

$$
p_{t}=[l l, \mu-\mathrm{I}],
$$

which，as shown in the preceding article，is necessarily a posi－ tive quantity．＊

The weight of any one of the unknown quantities might be determined，in like manner，by making it the last in the order of elimination．

I58．Let s be the unknown quantity preceding t ，so that

$$
[l l, \mu-\mathrm{I}]=[l l, \mu-2]-\frac{[k l, \mu-2]^{2}}{[k k, \mu-2]},
$$

[^30]or
$[l l, \mu-1][k k, \mu-2]=[l l, \mu-2][k k, \mu-2]-[k l, \mu-2]^{2}$.

If now the order of s and t be reversed, no other change of order being made, the auxiliaries with the postfix $\mu-2$ wil! be unaltered, and we shall have
$[k k, \mu-1][l l, \mu-2]=[k k, \mu-2][l l, \mu-2]-[k l, \mu-2]^{2}$,
hence

$$
[k k, \mu-\mathrm{I}][l l, \mu-2]=[l l, \mu-\mathrm{I}][k k, \mu-2] .
$$

But $[k k, \mu-1]$ is the weight of s, therefore we have

$$
p_{s}=[k k, \mu-\mathbf{1}]=\frac{[k k, \mu-2]}{[l l, \mu-2]}[l l, \mu-\mathbf{1}] .
$$

The weights of the other unknown quantities cannot be thus readily expressed in terms of the auxiliaries occurring in the calculation of t. A general method of obtaining all the weights will be given in Arts. 174-1 76.

The Reduced Expression for Σv^{2}.

I59. We have found in Art. 139 for Σv^{2} or [vv] the expression

$$
[v v]=-[a n] x-[b n] y-\ldots-[m n] t+[n n]
$$

which is similar in form to the expressions equated to zero in the normal equations. If in this we substitute the value of x, as in Art. ${ }^{5}$ 1, it becomes

$$
[v v]=-[b n, \mathrm{I}] y-[c n, \mathrm{I}] z-\ldots-[\ln , \mathrm{x}] t+\lceil n n, \mathrm{I} \mid
$$

in which

$$
\begin{gathered}
{[b n, \mathrm{I}]=[b n]-\frac{[a b][a n]}{[a a]}} \\
{[n n, \mathrm{I}]=[n n]-\frac{[a n][a n]}{[a a]}}
\end{gathered}
$$

after the analogy of the auxiliary quantities defined in equations (4), Art. I5I. In like manner, by the elimination of $y,[v v]$ is reduced to the form

$$
[v v]=-[c n, 2] z-\ldots-[\ln , 2] t+[n n, 2]
$$

and finally, by the substitution of the value of t, to

$$
[v v]=[n n, \mu]
$$

the postfix μ indicating that all the unknown quantities have been eliminated.

Substituting in the expressions for the mean and probable error of an observation, Art. 138, we have

$$
\epsilon=\sqrt{ } \frac{[n n, \mu]}{m-\mu}, \quad r=0.6745 \sqrt{\frac{[n n, \mu]}{m-\mu}}
$$

The General Expression for the Sum of the Squares of the

 Errors.160. The following articles contain an investigation* of the sum of the squares of the errors considered as a function of the unknown quantities, showing directly that the minimum

[^31]value of this quantity corresponds to the values derived from the normal equations, and is equal to $[n n, \mu]$, and also deriving from the general expression the law of facility of error in t, and thence its weight.

Let

$$
\begin{equation*}
W=[v v] \tag{I}
\end{equation*}
$$

be the sum of the squares of the errors in the observation equations, that is to say, of the linear expressions of the form (Art. II9),

$$
a x+b y+\ldots+l t-n=v
$$

The absolute term in W is obviously [$n n$]. Put

$$
\begin{equation*}
\frac{\mathrm{I}}{2} \frac{d W}{d x}=X, \quad \frac{\mathrm{I}}{2} \frac{d W}{d y}=Y, \quad \therefore \quad \frac{\mathrm{I}}{2} \frac{d W}{d t}=T \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
X=\Sigma v \frac{d v}{d x}=[a v]=[a a] x+[a b] y+\ldots+[a l] t-[a n] \tag{3}
\end{equation*}
$$

The equations $X=0, Y=0, \ldots T=0$ are the normal equations. Now, since

$$
\begin{aligned}
& \frac{\mathrm{I}}{2} \frac{d\left(X^{2}\right)}{d x}=X \frac{d X}{d x}=[a a] X, \quad \text { or, } \quad \frac{\mathrm{I}}{2} \frac{d}{d x} \frac{X^{2}}{[a a]}=X, \\
& { }_{2} \frac{d}{d x}\left(W-\frac{X^{2}}{[a a]}\right)=0 \text {; }
\end{aligned}
$$

hence, if we put

$$
\begin{equation*}
W_{1}=W-\frac{X^{2}}{[a a]} \tag{4}
\end{equation*}
$$

W_{1} is a function independent of x. Now, in equation (4), W_{1} has for all values of the variables which make $X=0$
the same value as W; hence W_{1} is what W becomes when x is eliminated from it by means of the first normal equation, $X=0$.

I6I. It follows from what has just been proved, that

$$
\begin{equation*}
W_{1}=\left[v^{\prime} v^{\prime}\right] ; \tag{5}
\end{equation*}
$$

that is to say, W_{1} is the sum of the squares of expressions of the form

$$
b^{\prime} y+c^{\prime} z+\ldots+l^{\prime} t-n^{\prime}=v^{\prime}
$$

corresponding to the reduced observation equations, Arts. 154, 155. The absolute term in W_{1} is therefore [$n^{\prime} n^{\prime}$] or [$n n$, I]. If, now, we put

$$
\begin{equation*}
Y_{1}=\frac{\mathrm{I}}{2} \frac{d W_{1}}{d y}, \ldots \quad T_{1}=\frac{\mathrm{I}}{2} \frac{d W_{1}}{d t} \tag{6}
\end{equation*}
$$

$Y_{1}=\Sigma v^{\prime} \frac{d v^{\prime}}{d y}=\left[b^{\prime} v^{\prime}\right]=\left[b^{\prime} b^{\prime}\right] y+\left[b^{\prime} c^{\prime}\right] z+\ldots+\left[b^{\prime} l^{\prime}\right] t-\left[b^{\prime} n^{\prime}\right]$. (7)
and $Y_{1}=0, \ldots T_{1}=0$, are the reduced normal equations.
The relation between the expressions $Y_{1}, \ldots T_{1}$ and $X, Y, \ldots T$ is derived from equation (4); thus, differentiating with respect to Y,

$$
\begin{equation*}
Y_{1}=Y-\frac{X}{[a a]} \frac{d X}{d y}=Y-\frac{[a b]}{[a a]} X \tag{8}
\end{equation*}
$$

which gives another proof of the identity of the coefficients $\left[b^{\prime} b^{\prime}\right], \ldots\left[b^{\prime} n^{\prime}\right]$ with $[b b, \mathrm{I}], \ldots[b n$, I $]$, established in Art. I55. We now prove, exactly as in the preceding article, that

$$
\begin{equation*}
W_{2}=W_{1}-\frac{Y_{1}^{2}}{[b b, \mathrm{I}]} \tag{9}
\end{equation*}
$$

is a function independent of y as well as of x, and is identical
with $\left[v^{\prime \prime} v^{\prime \prime}\right]$, the sum of the squares of expressions of the form

$$
c^{\prime \prime} z+\ldots+l^{\prime \prime} t-n^{\prime \prime}=v^{\prime \prime}
$$

corresponding to the second reduced observation equations, from which x and y have been eliminated by means of the equations $X=0, Y_{1}=0$. The absolute term in W_{2} is obviously [$n^{\prime \prime} n^{\prime \prime}$] or [$n n, 2$].
162. Proceeding in this way, we finally arrive at an expression W_{μ} which is independent of all the variables, and consists simply of the absolute term $[n n, \mu]$. We have thus reduced W to the form
$W=\frac{X^{2}}{[a a]}+\frac{Y_{1}{ }^{2}}{[b b, \mathrm{r}]}+\frac{Z_{2}{ }^{2}}{[c c, 2]}+\ldots+\frac{T_{\mu-\mathrm{r}}{ }^{2}}{[l l, \mu-\mathrm{I}]}+[n n, \mu]^{*}$ (1о)
The denominators $[a a],[b b, 1], \ldots[l l, \mu-\mathbf{I}]$, being sums of squares, are all positive; hence the minimum value of W is the value $[n n, \mu]$ corresponding to the values of $x, y, \ldots t$ which satisfy the equations $X=0, Y_{1}=0, \ldots T_{\mu-\mathrm{x}}=0$.
163. Since W is the sum of the squares of the errors, the probability that the actual observations should occur is proportional to $e^{-k^{2} W}$ as in Art. 62. Therefore, by the principle explained in Art. 30, the observations having been made, the probabilities of different systems of values of the unknown quantities are proportional to the corresponding values of this function. Hence, C being a constant to be determined, the elementary probability, Art. 21 , of a given system of values of $x, y, \ldots t$ is

$$
\begin{equation*}
C e^{-h^{2} W} d x d y \ldots d t \tag{II}
\end{equation*}
$$

[^32]where h is the measure of precision of an observation, and C is such that the integral of the expression for all possible values of the variables is unity.

The probability of a given system of values of $y, z, \ldots t$, while x may have any value, is found by summing this expression for all values of x. It is then

$$
C d y \ldots d t \int_{-\infty}^{\infty} e^{-h^{2} W} d x=C d y \ldots d t e^{-h^{2} W_{2}} \int_{-\infty}^{\infty} e^{-h^{2}\left[a, x^{2}\right.} d x
$$

since W_{1} in equation (4) is independent of x. Since $\frac{d X}{d x}=[a a]$, the value of the definite integral in this expression is, by equation (7), Art. 39,

$$
\int_{-\infty}^{\infty} e^{-h^{2} \frac{X^{2}}{[a a]}} d x=\frac{1}{[a a]} \int_{-\infty}^{\infty} e^{-\frac{h^{2}}{[a a]} X^{2}} d X=\frac{\sqrt{ } \pi}{h \sqrt{ }[a a]}
$$

Thus the probability of a given system of values of y, $z, \ldots t$ is

$$
\begin{equation*}
\frac{C \sqrt{ } \pi}{h \sqrt{ }[a a]} d y d z \ldots d t e^{-h^{2} W_{1}} \tag{I2}
\end{equation*}
$$

164. In like manner, the probability of a given system of values of $z \ldots t, x$ and y being indeterminate, is

$$
\frac{C \sqrt{ } \pi}{h \sqrt{ }[a a]} d z \ldots d t \int_{-\infty}^{\infty} e^{-h^{2} W_{1}} d y
$$

which, by equations (9) and (7), reduces to

$$
\begin{equation*}
\frac{C \sqrt{ }\left(\pi^{2}\right)}{h^{2} \sqrt{ }\{[a a][b b, \mathrm{I}]\}} d z \ldots d t e^{-h^{2} W_{2}} . \tag{13}
\end{equation*}
$$

Proceeding in this way, we have, finally, for the probability of a given value of t,

$$
\frac{C \sqrt{ }\left(\pi^{\mu-1}\right) d t}{h^{\mu-1} \sqrt{ }\{[a a][b b, \mathrm{I}] \ldots[k k, \mu-2]\}} e^{-h^{2} W_{\mu}-1} \ldots \text { (14) }
$$

Again, integrating this for all values of t, we have

$$
\begin{equation*}
C \frac{\sqrt{ }\left(\pi^{\mu}\right) e^{-h^{2}[n n, \mu]}}{h^{\mu} \sqrt{ }\{[a a][b b, \mathrm{I}] \ldots[l l, \mu-\mathrm{I}]\}}=\mathbf{1} . \tag{15}
\end{equation*}
$$

Substituting the value of C thus determined, we obtain for the probability of t,

$$
\begin{equation*}
\frac{h \sqrt{ }[l l, \mu-\mathrm{I}]}{\sqrt{ } \pi} e^{-h^{2}\left(W_{\mu-\mathrm{I}}-[n n, \mu]\right) d t ~} \tag{16}
\end{equation*}
$$

But

$$
W_{\mu-\mathrm{r}}=\frac{T_{\mu-\mathrm{x}}^{2}}{[l l, \mu-\mathrm{I}]}+[n n, \mu]
$$

and

$$
T_{\mu-1}=[l l, \mu-\mathrm{I}] t-[\ln , \mu-\mathrm{I}]
$$

therefore, putting

$$
\tau=\frac{T_{\mu-1}}{[l l, \mu-\mathrm{I}]}=t-\frac{[\ln , \mu-\mathrm{I}]}{[l l, \mu-\mathrm{I}]}
$$

and omitting $d t$, the expression (16) gives for the law of facility of error in t,

$$
\begin{equation*}
\frac{h \sqrt{ }[l l, \mu-\mathrm{I}]}{\sqrt{ } \pi} e^{-h^{2}[l l, \mu-\mathrm{I}] \tau^{2}} \tag{17}
\end{equation*}
$$

This is of the same form as the law of facility for an observation, except that the measure of precision is

$$
h \sqrt{ }[l l, \mu-\mathrm{I}] .
$$

Thus the most probable value of t is that which makes $\tau=\mathrm{o}$, namely,

$$
t=\frac{[\ln , \mu-\mathrm{I}]}{[l l, \mu-\mathrm{I}]},
$$

and the weight of this determination, when that of an observed quantity is unity, is

$$
p_{t}=[l l, \mu-\mathrm{I}] .
$$

The Auxiliaries Expressed in Determinant Form.

165. If, in the determinant of the coefficients of the normal equations, denoted by D in Art. 128, we subtract from the second row the product of the first row multiplied by $\frac{[a b]}{[a a]}$, it becomes

$$
\circ, \quad[b b, \text { I }], \quad[b c, \text { I }], \quad \cdots \quad[b l, \text { I }] .
$$

Treating the other rows in like manner, the determinant D is reduced to a form in which the first row is unchanged, and the rest are replaced by a column of o's and the determinant of the first reduced normal equations. Denoting this last determinant by D^{\prime}, we have $D=[a a] D^{\prime}$.

By a similar reduction of D^{\prime}, D is further reduced to a form in which the first two rows are as in that described above, and the rest are replaced by two columns of o's and the determinant, $D^{\prime \prime}$, of the second reduced normal equations. Finally, D is thus reduced to the determinant of the elimination equations (8), Art. 153.

The successive forms of D give the equations
$D=[a a] D^{\prime}=[a a][b b, \mathrm{r}] D^{\prime \prime}=\ldots=[a a][b b, \mathrm{I}][c c, 2] \ldots[l l, \mu-\mathrm{I}]$.
166. If, in the form of D involving $D^{(r)}$, we take the first r rows, and then any other row (which will therefore be a row , ,elonging to $D^{(r)}$), the same reasoning shows that any determinant formed by selecting $r+1$ columns of this rectangular block is equal to the minor occupying the same position in D.

We can now express any auxiliary, say $[\alpha \beta, r]$, as the quotient of two minors, of the $(r+1)$ th and r th degree respectively, in D. This auxiliary occurs in the form of D just mentioned. Taking the first r rows and columns together with the row and column in which the given auxiliary occurs, we have a determinant whose value is

$$
[a a][b b, \mathbf{1}] \ldots[\gamma \gamma, r-\mathbf{1}][\alpha \beta, r]
$$

because all the elements below the principal diagonal vanish. But this determinant is equal to that similarly situated in D, and the coefficient of $[\alpha \beta, r]$ is equal to the determinant formed from the first r rows and columns of D. For example, for $[d e, 2]$ we have

$$
\left|\begin{array}{ccc}
{[a a]} & {[a b]} & {[a e]} \\
0 & {[b b, \text { 1] }} & {[b e, ~ 1]} \\
\circ & 0 & {[d e, 2]}
\end{array}\right|=\left|\begin{array}{ccc}
{[a a]} & {[a b]} & {[a e]} \\
{[a b]} & {[b b]} & {[b e]} \\
{[a d]} & {[b d]} & {[d e]}
\end{array}\right|,
$$

and

$$
\left|\begin{array}{cc}
{[a a]} & {[a b]} \\
\circ & {[b b, \mathrm{r}]}
\end{array}\right|=\left|\begin{array}{cc}
{[a a]} & {[a b]} \\
{[a b]} & {[b b]}
\end{array}\right| ;
$$

therefore

$$
\left.[d e, 2]\left|\begin{array}{cccc}
{[a a]} & {[a b]} \\
{[a b]} & {[b b]}
\end{array}\right|=\begin{array}{lll}
{[a a]} & {[a b]} & {[a e]} \\
{[a b]} & {[b b]} & {[b e]} \\
{[a d]} & {[b d]} & {[d e]}
\end{array} \right\rvert\, .
$$

167. The same principle holds if we include the auxiliaries involving the letter n, and in particular the determinant D_{n} of Art. I 39 is

$$
D_{n}=[a a][b b, \mathrm{r}] \ldots[l l, \mu-\mathrm{r}][n n, \mu]=D[n n, \mu]
$$

therefore

$$
[n n, \mu]=\frac{D_{n}}{D}
$$

which is the same value that was found for [vv] on p. ino.

Form of the Calculation of the Auxiliaries.

168. In calculating the coefficients which occur in the elimination equations and the value of [vv], it is important to arrange the work in tabular form, and to apply frequent checks to the computation to secure accuracy. In the annexed table,* which is constructed for four unknown quantities, the first compartment contains the coefficients and second members of the normal equations together with the value of [$n n$], which are derived from the observation equations, as explained in Art. 127. The coefficients are entered opposite and below the letters in their symbols, those below the diagonal line, whose values are the same as those symmetrically situated above, being omitted. Beneath those in the first line are written their logarithms, which are used in computing the subtractive quantities placed beneath each of the other coefficients.

[^33]

In expressing the subtractive quantities we have adopted for abridgment the notation

$$
A_{b}=\frac{[a b]}{[a a]}, \quad A_{c}=\frac{[a c]}{[a a]}, \quad A_{d}=\frac{[a d]}{[a a]}, \quad A_{n}=\frac{[a n]}{[a a]}
$$

The logarithms of these quantities are placed at the side, and, adding them successively to the logarithms above, the antilogarithms of the sums are entered in their places. After this is done, the results of subtraction are the auxiliaries with postfix 1 , which are to be placed in corresponding positions in the compartment below.

In like manner the third compartment is formed from the second, and in expressing the subtractive quantities we have put

$$
B_{c}=\frac{[b c, \mathrm{I}]}{[b b, \mathrm{I}]}, \quad B_{d}=\frac{[b d, \mathrm{I}]}{[b b, \mathrm{I}]}, \quad B_{n}=\frac{[b n, \mathrm{I}]}{[b b, \mathrm{I}]} .
$$

So also we have put

$$
C_{d}=\frac{[c d, 2]}{[c c, 2]}, \quad C_{n}=\frac{[c n, 2]}{[c c, 2]} ;
$$

and finally,

$$
D_{n}=\frac{[d n, 3]}{[d d, 3]}
$$

which is also the value of t. Thus the first four compartments correspond to the several sets of normal equations, and their first lines to the four elimination equations. Finally, in the fifth compartment we have computed [$n n, 4]$, which is the value of [vv].

Check Equations.

169. The column headed s is added for the sake of the check equations

$$
\left.\begin{array}{l}
{[a a]+[a b]+[a c]+[a d]+[a n]+[a s]=0} \\
{[a b]+[b b]+[b c]+[b d]+[b n]+[b s]=0} \tag{I}\\
{[a n]+[b n]+[c n]+[d n]+[n n]+[n s]=0}
\end{array}\right\}
$$

the quantities $[a s], \ldots[n s]$ being formed as in Art. 127, except that we have changed the sign of s, so that for each observation equation

$$
a+b+c+d+n+s=0
$$

The checks are applied before the logarithms and subtractive quantities are entered. They require that the algebraic sum of the quantities in each line together with those standing above the first term should vanish.

Similar cherks can be applied in each of the lower compartments. For example, if from the second of equations (i) we subtract the product of the first equation multiplied by A_{b}, we have, since $A_{b}[a a]=[a b]$,

$$
\circ+[b b, \mathrm{I}]+[b c, \mathrm{I}]+[b d, \mathrm{I}]+[b n, \mathrm{I}]+[b s, \mathrm{I}]=0,
$$

where [$b s$, I] has been formed in precisely the same way as the other auxiliaries, namely,

$$
[b s, \mathrm{I}]=[b s]-\frac{[a b][a s]}{[a a]}
$$

In the same manner we obtain the other equations of the group

$$
\left.\begin{array}{l}
{[b b, \mathrm{I}]+[b c, \mathrm{I}]+[b d, \mathrm{I}]+[b n, \mathrm{I}]+[b s, \mathrm{I}]=0} \tag{2}\\
{[b n, \mathrm{I}]+[c n, \mathrm{I}]+[d n, \mathrm{I}]+[n n, \mathrm{I}]+[n s, \mathrm{I}]=0}
\end{array}\right\}
$$

So also we have similar checks involving the auxiliaries which have the postfix 2 , and those which have the postfix 3 , and finally

$$
[n n, 4]+[n s, 4]=0 .
$$

	a	6	c	d	n	s	
a	$\begin{aligned} & 3.1217 \\ & 0.49+39 \end{aligned}$	$\begin{gathered} .5756 \\ 9.76012 \end{gathered}$	$\left\lvert\, \begin{array}{r} -.1565 \\ 9_{n}^{1} 9+51 \end{array}\right.$	$\|-. .0067\|$	$\begin{aligned} & 1.5710 \\ & 0.19618 \end{aligned}$	$\left\lvert\, \begin{aligned} & -5.1050 \\ & 0_{n} 70800 \end{aligned}\right.$	I
$A_{b}{ }^{\text {b }}$	9. 26573	2.9375 .1061	.1103 -.0289	-. 0015	$-\begin{array}{r} .9275 \\ .2897 \end{array}$	$\begin{aligned} & -2.6943 \\ & -\quad .9415 \end{aligned}$	1
$A_{c}{ }^{c}$	$8{ }^{7} 70012$		4.1273 .0078	.2051 .0003	$-.0652$	$\begin{array}{r} -4.2211 \\ .2559 \end{array}$	-1
$A_{d}{ }^{d}$	$7{ }_{n} 33168$			4.1328 .0000	-.0178	$\begin{array}{r} -4.3118 \\ \text {.0110 } \end{array}$	1
$A_{n}{ }^{n}$	9.70179				1.3409 .7906	$\begin{aligned} & -1.9016 \\ & -2.5692 \end{aligned}$	-2
b		$\begin{aligned} & 2.8314 \\ & 0.45200 \end{aligned}$	$\begin{array}{r} .1392 \\ 9.14364 \end{array}$	$-\underset{6_{n} 47712}{.0003}$	$\left.\begin{array}{\|c\|} -1.2172 \\ \mathrm{o}_{n} 08536 \end{array} \right\rvert\,$	$\left\lvert\, \begin{gathered} -1.7530 \\ 0_{n} 24378 \end{gathered}\right.$	1
$B_{0}{ }^{c}$	8.69164		$\begin{array}{r} 4.1195 \\ .0068 \end{array}$	$\begin{aligned} & .2048 \\ & .0000 \end{aligned}$	$\begin{array}{r} .0136 \\ -.0598 \end{array}$	$\begin{aligned} & \dot{-}+4770 \\ & -\quad .0862 \end{aligned}$	1
$B_{d}{ }^{d}$	$6_{n} 02512$			4.1328 .0000	-. 010144	$\begin{array}{r} -4.3228 \\ .0002 \end{array}$	1
$B_{n}{ }^{n}$	$9 x^{63336}$.5503 .5233	$\begin{aligned} & .6676 \\ & .7536 \end{aligned}$	- 1
c			$\begin{aligned} & 4.1127 \\ & 0.61413 \end{aligned}$	$\begin{gathered} .2048 \\ 9.31133 \end{gathered}$	$\begin{gathered} .0734 \\ 8.86570 \end{gathered}$	$\left\|\begin{array}{c} -4.3908 \\ 0_{n} 64254 \end{array}\right\|$	1
$C_{d}{ }^{d}$	8.69720			4.1328 .0102	$\begin{array}{r} -.0145 \\ .0037 \end{array}$	$\begin{aligned} & -4.3230 \\ & -\quad .2186 \end{aligned}$	1
$c_{n}{ }^{n}$	8.25157				$\begin{aligned} & .0270 \\ & .0013 \end{aligned}$	-. .0860	- I
d				$\begin{aligned} & 4.1226 \\ & 0.61517 \end{aligned}$	$-\underset{8_{n}^{26007}}{.0182}$	$\begin{gathered} -4 \cdot 1044 \\ \mathrm{O}_{n} 61325 \end{gathered}$	o
D_{n}	$7_{n}{ }^{6}+490=\log t$:0257	$\text { - . } 0.076$	-1
n	$t=-.004415 \quad[v v]=.02565$. 0256	-. 0257	-1

Numerical Example.

170. As an illustration, let us take the following normal equations:

$$
\left.\begin{array}{r}
3.1217 x+.5756 y-.1565 z-.0067 t=1.5710 \\
.5756 x+2.9375 y+.1103 z-.0015 t=-.9275 \\
-.1565 x+.1103 y+4.1273 z+.2051 t=-.0652 \\
-.0067 x-.0015 y+.2051 z+4.1328 t=-.0178
\end{array}\right\}
$$

together with

$$
[n n]=\mathrm{I} .3409
$$

which were derived from sixteen observation equations, while at the same time the values of $[a s], \ldots[n s]$ were found as in the first compartment of the table. The numbers in the final column are the sums which should equal zero according to the check equations, the small errors being due to the rejection of decimals beyond the fourth place. The letters at the side and top indicate the symbol for each auxiliary, while the compartment gives the postfix. Since there are two computations for $[v v]$, namely $[n n, 4]$ and $-[n s, 4]$, which agree within the limits of the uncertainty of logarithmic computation, we take for its value a mean between them. Putting $m=16$ and $\mu=4$ in the formulæ for ϵ and r, this value gives

$$
\epsilon=.04623, \quad r=.03118
$$

for the mean and probable error of an observation.

Values of the Unknown Quantities from the Elimination Equations.

171. Dividing the elimination equations, (8), Art. I53, by $[a a],[b b, \mathrm{I}],[c c, 2],[d d, 3]$, and using the notation introduced in Art. 168, they become

$$
\left.\begin{array}{rl}
x+A_{b} y+A_{c} z+A_{d} t & =A_{n} \\
y+B_{c} z+B_{a} t & =B_{n} \\
z+C_{d} t & =C_{n} \\
t= & D_{n}
\end{array}\right\}
$$

The following table gives the form in which the computation is conveniently arranged, and its application to the example for which the elimination equations are found in Art. 170.

D_{n}	$\begin{gathered} C_{n} \\ -C_{d} t \end{gathered}$	$\begin{gathered} B_{n} \\ -B_{d} t \\ - \\ -B_{c} z \end{gathered}$	$\begin{aligned} & A_{n} \\ - & A_{d} t \\ - & A_{o} z \\ - & A_{b} y \end{aligned}$
$\begin{gathered} t \\ \log t \end{gathered}$	$\begin{gathered} z \\ \log z \end{gathered}$	$\begin{gathered} y \\ \log y \end{gathered}$	x
-. 004415	.oI 7847 . 000220	-.42989 .00500 -.00089	$\begin{array}{r} .50325 \\ -.00001 \\ .00091 \\ .07943 \end{array}$
$\begin{gathered} -.004415 \\ 7_{n} 64490 \end{gathered}$	$\begin{gathered} .018067 \\ 8.25689 \end{gathered}$	$\begin{array}{r} -.43078 \\ 9 n 63426 \end{array}$. 58358

The weight of t is, by Art. ${ }^{157},[d d, 3]$, and that of z is, by Art. $158, \frac{[c c, 2]}{[d d, 2]}[d d, 3]$; employing the values computed in Art. 170, we have

$$
\begin{aligned}
\log p_{t} & =0.61517, & \log p_{x} & =0.61305, \\
p_{t} & =4.1226, & p_{z} & =4.1025 ;
\end{aligned}
$$

and dividing the values of ϵ and t found above by the square roots of the weights, we have for t,
and for z,

$$
\epsilon_{t}=.02277, \quad r_{t}=.01536
$$

$$
\epsilon_{z}=.02282, \quad r_{z}=.01539
$$

Values of the Unknown Quantities Found Independently.
I72. In order to obtain the general expressions for the weights, it is necessary first to express the values of the unknown quantities independently of each other. For this pur-
pose we multiply equations (I) of the preceding article by I , $\alpha_{1}, \alpha_{2}, \alpha_{3}$, respectively, and add the results, assuming the α 's to be so determined that the coefficients of y, z, and t vanish. We shall thus have

$$
x=A_{n}+B_{n} \alpha_{1}+C_{n} \alpha_{2}+D_{n} \alpha_{3},
$$

and, for the determination of the α 's,

$$
\left.\begin{array}{ll}
A_{b}+\alpha_{1} & =0 \tag{3}\\
A_{c}+B_{c} \alpha_{1}+\alpha_{2} & =0 \\
A_{d}+B_{d} \alpha_{1}+C_{d} \alpha_{2}+\alpha_{3} & =0
\end{array}\right\}
$$

In like manner, to find y we multiply the second, third and fourth of equations (1) by $1, \beta_{2}, \beta_{3}$, respectively, and add. The result is

$$
\begin{equation*}
y=B_{n}+C_{n} \beta_{2}+D_{n} \beta_{3}, \tag{4}
\end{equation*}
$$

where the β 's are determined by

$$
\left.\begin{array}{l}
B_{c}+\beta_{2}=0 \tag{5}\\
B_{d}+C_{d} \beta_{2}+\beta_{\mathrm{s}}=0
\end{array}\right\}
$$

Again, multiplying the last two of equaiions (1) by $1, \gamma_{3}$, and adding

$$
\begin{equation*}
z=C_{n}+D_{n} \gamma_{3}, \tag{6}
\end{equation*}
$$

where γ_{3} is determined by

$$
\begin{equation*}
C_{d}+\gamma_{\mathrm{s}}=0 \tag{7}
\end{equation*}
$$

I73. The form for the computation of $\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{2}, \beta_{3}$, γ_{3}, according to equations (3), (5), and (7), and the numerical work for the example of Art. 170, is as follows:

$-A_{b}$	$-A_{c}$ $-B_{0} \alpha_{1}$	$-A_{d}$ $-B_{d} \alpha_{1}$ $-C_{d} \alpha_{2}$
α_{1} $\log \alpha_{1}$	α_{2} $\log \alpha_{2}$	α_{3} $\log \alpha_{3}$
.050133	.002146 .009065	-.000020 -.002948
$9 n^{26573}$	8.7723 I	-.000822 $6_{n} 91487$

$-B_{0}$	$\begin{aligned} & -B_{d} \\ & -C_{d} \beta_{2} \end{aligned}$
$\begin{gathered} \beta_{2} \\ \log \beta_{2} \end{gathered}$	$\begin{gathered} \beta_{3} \\ \log \beta_{3} \end{gathered}$
.	$\begin{array}{r} .000106 \\ .002448 \end{array}$
	. 002554
$8{ }_{n} 69164$	$7 \cdot 40722$
$\begin{aligned} -C_{d} & =\gamma_{3} \\ \log \gamma_{3} & =8_{n} 69720 \end{aligned}$	

The values of α_{1}, β_{2} and γ_{3} are not found, as their logarithms only are needed.

We may now recompute the values of the unknown quantities by means of equations (2), (4), (6) by way of verifying the values of $\alpha_{1}, \ldots \gamma_{3}$ as well as those of $x, \ldots t$. The form of computation will be as below :

A_{n}	B_{n}	C_{n}	D_{n}
$B_{n} \alpha_{1}$	$C_{n} \beta_{2}$	$D_{n} \gamma_{3}$	
$C_{n} \alpha_{2}$	$D_{n} \beta_{3}$		
$D_{n} \alpha_{3}$			
x	y	z	t
.50325 .07927 .00106 .0000	-.42989	-.000001	.000220
.58358	-.43078	.018847	-.004415

The numerical values agree exactly with those found in Art. 171 .

The Weights of the Unknown Quantities.

174. The principle by which we obtain expressions for the weights is that proved in Art. 132, namely: When the value of any one of the unknown quantities is expressed in terms of the second members of the normal equations, its weight is the reciprocal of the coefficient of the second member of its own normal equation; or what is the same thing: The reciprocal of the weight is what the value of the unknown quantity becomes when the second member of its own normal equation is replaced by unity and that of each of the others by zero.

Restoring the values of the quantities $A_{n}, B_{n}, C_{n}, D_{n}$, the values of x, y, z, t, Art. 172, are

$$
\begin{align*}
& x=\frac{[a n]}{[a a]}+\frac{[b n, \mathrm{I}]}{[b b, 1]} \alpha_{1}+\frac{[c n, 2]}{[c c, 2]} \alpha_{2}+\frac{[d n, 3]}{[d d, 3]} \alpha_{3} \\
& y=\frac{[b n, \mathrm{I}]}{[b b, 1]}+\frac{[c n, 2]}{[c c, 2]} \beta_{2}+\frac{[d n, 3]}{[d d, 3]} \beta_{3} \tag{I}\\
& z=\frac{[c n, 2]}{[c c, 2]}+\frac{[d n, 3]}{[d d, 3]} \gamma_{3} \\
& t=\frac{[d n, 3]}{[d d, 3]}
\end{align*}
$$

Equations (3), (5), and (7), Art. 172, show that the values of $\alpha_{1}, \ldots \gamma_{3}$ are independent of the values of $[a n],[b n],[\mathrm{cn}]$, and $[d n]$; hence the changes indicated above, in order to convert the second members of equations (I) into the expressions for the reciprocals of the weights, have only to be made in the numerators $[a n],[b n, 1],[c n, 2]$, and $[d n, 3]$, where, by the definitions given in Arts. 151 and 152, we have, using the notation of Art. 168,

$$
\left.\begin{array}{l}
{[b n, \mathrm{I}]=[b n]-A_{b}[a n]} \\
{[c n, 2]=[c n]-A_{c}[a n]-B_{c}[b n, \mathrm{I}]} \tag{2}\\
{[d n, 3]=[d n]-A_{d}[a n]-B_{d}[b n, \mathrm{I}]-C_{d}[c n, 2]}
\end{array}\right\}
$$

I75. To find the value of $\frac{1}{p_{x}}$, we must now put in the value of x

$$
[a n]=1, \quad[b n]=0, \quad[c n]=0, \quad[d n]=0
$$

Making these substitutions and using equations (3), Art. $\mathbf{1} 7 \mathbf{2}$, the value of $[b n, \mathrm{I}]$ becomes

$$
[b n, \mathrm{I}]=-A_{b}=\alpha_{1}
$$

that of $[c n, 2]$ then becomes

$$
[c n, 2]=-A_{0}-B_{0} \alpha_{1}=\alpha_{2}
$$

and that of $[d n, 3]$ becomes

$$
[d n, 3]=-A_{d}-B_{d} \alpha_{1}-C_{d} \alpha_{2}=\alpha_{3}
$$

Hence from the first of equations (i) we infer

$$
\frac{\mathbf{I}}{p_{x}}=\frac{\mathbf{1}}{[a a]}+\frac{\alpha_{1}{ }^{2}}{[b b, \mathbf{1}]}+\frac{\alpha_{2}{ }^{2}}{[c c, 2]}+\frac{\alpha_{3}{ }^{2}}{[d d, 3]}
$$

176. Again, to obtain the weight of y, we put in the second of equations (1)

$$
[a n]=0, \quad[b n]=1, \quad[c n]=0, \quad[d n]=0
$$

These substitutions in equations (2) give, with the aid of equations (5), Art. 172,

$$
\begin{aligned}
& {[b n, \mathrm{I}]=\mathrm{I}} \\
& {[c n, 2]=-B_{c}=\beta_{2}} \\
& {[d n, 3]=-B_{d}-C_{d} \beta_{2}=\beta_{\mathrm{s}}}
\end{aligned}
$$

hence we have

$$
\frac{\mathbf{I}}{p_{v}}=\frac{\mathbf{I}}{[b b, \mathrm{I}]}+\frac{\beta_{2}{ }^{2}}{[c c, 2]}+\frac{\beta_{3}{ }^{2}}{[d d, 3]} .
$$

In like manner we complete the system of equations

$$
\left.\begin{array}{rl}
\frac{\mathrm{I}}{p_{x}} & =\frac{\mathrm{I}}{[a a]}+\frac{\alpha_{1}{ }^{2}}{[b b, 1]}+\frac{\alpha_{2}{ }^{2}}{[c c, 2]}+\frac{\alpha_{3}{ }^{2}}{[d d, 3]} \\
\frac{\mathbf{1}}{p_{y}} & = \\
\frac{1}{[b b, 1]}+\frac{\beta_{2}{ }^{2}}{[c c, 2]}+\frac{\beta_{3}{ }^{2}}{[d d, 3]} \tag{3}\\
\frac{\mathbf{1}}{p_{x}} & = \\
\frac{1}{[c c, 2]}+\frac{\gamma_{3}{ }^{2}}{[d d, 3]}
\end{array}\right\},
$$

which are readily extended to the case of any number of unknown quantities.
177. The form of computation and its application to our numerical example are given on page 148 , the values of the logarithms entered at the top and side being taken from the computations on pages 140 and 144 .

From the logarithms in the last line and $\log \epsilon^{2}=7.3^{2} 990$, $\left(\epsilon^{2}=\frac{1}{12}[v v]\right.$, p. 140) we find for the mean errors

$$
\epsilon_{x}=.02669, \quad \epsilon_{y}=.02750, \quad \epsilon_{z}=.02283, \quad \epsilon_{t}=.02277
$$

and hence for the probable errors

$$
r_{x}=.01800, \quad r_{y}=.01855, \quad r_{z}=.01539, \quad r_{t}=.01536
$$

$\begin{aligned} & \log \alpha_{1}{ }^{2} \\ & \log \alpha_{2}{ }^{2} \\ & \log \alpha_{3}{ }^{2} \end{aligned}$	$\begin{aligned} & \log \beta_{2}{ }^{2} \\ & \log \beta_{3}{ }^{2} \end{aligned}$	$\log \gamma_{s}{ }^{2}$	
$\frac{\mathbf{1}}{[a a]}$			$\log \frac{\mathbf{1}}{[a a]}$
$\frac{\alpha_{1}{ }^{2}}{[b b, ~ 1]}$	$\left.\frac{\mathbf{1}}{[b b, ~ \mathbf{I}}\right]$		$\log \frac{\mathrm{I}}{[b b, \mathrm{I}]}$
$\frac{\alpha_{2}{ }^{2}}{[c c, 2]}$	$\frac{\beta_{2}{ }^{2}}{[c c, 2]}$	$\frac{1}{[c c, 2]}$	$\log \frac{1}{[c c, 2]}$
$\frac{\alpha_{3}{ }^{2}}{[d d, 3]}$	$\frac{\beta_{3}{ }^{2}}{[d d, 3]}$	$\frac{\gamma_{3}{ }^{2}}{[d d, 3]}$	$\log \frac{1}{[d d, 3]}$
$\frac{1}{p_{x}}$ $\log \frac{1}{p_{x}}$	$\begin{gathered} \frac{1}{p_{y}} \\ \log \frac{1}{p_{y}} \end{gathered}$	$\begin{gathered} \frac{1}{p_{z}} \\ \log \frac{1}{p_{z}} \end{gathered}$	$\begin{gathered} \frac{1}{p_{t}} \\ \log \frac{1}{p_{t}} \end{gathered}$
8.53146			
7.54462	7.38328		
3.82974	4.81444	7.39440	
-32034			9.50561
. 01201	. 35318		9.54800
. 00085	. 00059	. 24315	9.38587
. 00000	. 00000	. 00060	$9 \cdot 38483$
. 33320	. 35377	. 24375	
9.52270	0. 54872	9.38694	9.38483

Examples.

1. Show that the values of p_{z} when there are four unknown quantities given in Arts. 158 and 176 are identical.
2. Show that the weight of the determination of $[b n]$ is $[b b]$; that of $[b n, \mathrm{r}]$ is $[b b, \mathrm{r}]$, and so on.
3. Show that, if the normal equation for x were known to be exactly true, the values of the unknown quantities and the weights relatively to that of an observation of all except x would be unchanged, and that the weight of an observation would be increased in the ratio $m-\mu+\mathbf{1}: m-\mu$.
4. Solve the following normal equations which resulted from twelve observation equations :

$$
\begin{aligned}
5.1143 x-0.2792 y+3.3460 z & =-0.7365 \\
-0.2792 x+14.6142 y+0.1958 z & =2.1609 \\
3.3460 x+0.1958 y+7.6754 z & =-0.8927 \\
{[n n] } & =0.5379
\end{aligned}
$$

and find the probable errors of the unknown quantities.

$$
\begin{array}{lll}
x=-.0803, & y=.1475, & z=.0851 \\
r_{x}=.034, & r_{y}=.017, & r_{z}=.028
\end{array}
$$

5. Solve the normal equations

$$
\begin{array}{rrr}
5.2485 x-1.7472 y-2.1954 z= & -0.5399 \\
-1.7472 y+1.8859 y+0.8041 z= & 1.4493, \\
-2.1954 y+0.8041 y+4.0440 z & = & 1.8681 \\
{[n n]} & = & 2.6322 ;
\end{array}
$$

and given $m=10$, find the probable errors.

$$
\begin{array}{rlll}
{[v v]} & =0.5504, & x=0.422, & y=0.945, \\
r=0.189, & & r_{x}=0.108, & r_{y}=0.166,
\end{array} r_{z}=0.107 .
$$

6. Show that the observation equations

$$
\begin{array}{lr}
0.707 x+2.052 y-2.372 z-0.221 t=- & 6.58, \\
0.471 x+1.347 y-1.715 z-0.085 t=- & 1.63, \\
0.260 x+0.770 y-0.356 z+0.483 t= & 4.40, \\
0.092 x+0.343 y+0.235 z+0.469 t= & 10.21, \\
0.414 x+1.204 y-1.506 z-0.205 t= & 3.99, \\
0.040 x+0.150 y+0.104 z+0.206 t= & 4.34,
\end{array}
$$

give rise to the normal equations

$$
\begin{array}{rrr}
0.971 x+2.821 y-3.175 z-0.104 t=- & 4.815, \\
2.821 x+8.208 y-9.168 z-0.251 t= & 12.961, \\
-3.175 x-0.168 y+11.028 z+0.938 t= & 25.697, \\
-0.104 x-0.251 y+0.938 z+0.594 t= & 10.218,
\end{array}
$$

and to $[n n]=204.313$. Determine the unknown quantities and the probable errors of an observation.

$$
x=-86.41, y=25.18, z=-3.12, t=17.66, r=1.80
$$

7. Account for the small values of the weights, especially of x and y, in Ex. 6. Show directly from the value of $[b b, \mathrm{I}]$ that $p_{y}<. O 12$ and $p_{x}<.0015$.
8. Ten cibservation equations gave the normal equations

$$
\begin{aligned}
2.02530 x+0.63809 y-3.99285 z & =-30.466 \\
0.63809 x+0.21649 y-1.12089 z & =-11.959 \\
-3.99285 x-1.12089 y+10.00000 z & =-6.000
\end{aligned}
$$

together with $[n n]=24928$.; find the values and weights of the unknown quantities and the probable errors.

$$
\begin{aligned}
x & =-202.8, \quad y=286.3, \quad z=-49.5 \\
p_{x} & =.0314, \quad p_{y}=.0066, \quad p_{z}=.9119 \\
r=37.702, \quad r_{x} & =213, \quad r_{y}=463, \quad r_{z}=39
\end{aligned}
$$

9. Given the following observation equations of equal weight:

$$
\begin{array}{rlrl}
.986 x+.056 y=.000, & & .953 x+.182 y= & 1.060, \\
.973 x+.103 y=.530 ; & & .943 x+.219 y=-.380 . \\
.968 x+.123 y=.680, & .919 x+.307 y= & .200, \\
.959 x+.157 y=.200, & .916 x+.317 y=- & .530, \\
& .912 x+331 y=.000,
\end{array}
$$

find the normal equations and the value of $[n n]$ by the method of Art. 127. (Notice that when we put $a+b+n+s=0$ as in Art. 169 a considerable saving of labor results from the fact that $\sum(a+b)^{2}=\Sigma(n+s)^{2}$, etc.)

$$
\begin{aligned}
8.0884 x+1.6798 y & =1.7160 \\
1.6798 x+0.4383 y & =0.1725 \\
{[n n] } & =2.3722
\end{aligned}
$$

10. Solve the normal equations found in Ex. 9.

$$
x=0.642, \quad y=-2.07, \quad r_{x}=0.25, \quad r_{y}=1.09 .
$$

ri. Thirteen observation equations give the normal equa. tions

$$
\begin{array}{rlr}
17.50 x-6.50 y-6.50 z & = & 2.14, \\
-6.50 x+17.50 y-6.50 z & =13.96 \\
-6.50 x-6.50 y+20.50 z & =-5.40 \\
{[n n]} & =100.34
\end{array}
$$

find the values and probable errors of the unknown quantities

$$
x=0.67 \pm 0.60, \quad y=1.17 \pm 0.60, \quad z=0.3^{2} \pm 0.55
$$

12. Solve the normal equations

$$
\begin{aligned}
& 459 x-308 y-389 z+244 t=507 . \\
& -308 x+464 y+408 z-269 t=-695 \text {, } \\
& -389 x+408 y+676 z-33{ }^{1} t=-653, \\
& .244 x-269 y-331 z+469 t=283, \\
& {[n n]=1129 .} \\
& x=-0.212, y=-1.471, z=-0.195, t=-0.488 \text {; } \\
& {[v v]=10 ; p_{x}^{\prime}=207, \quad p_{y}=186, \quad p_{z}=250, \quad p_{t}=28 \mathbf{1} .}
\end{aligned}
$$

Constants.

$$
\begin{aligned}
\rho=0.476935^{2}, \quad \log \rho=9.6784603 ; \\
\rho \sqrt{2}=0.6744897, \quad \log \rho \sqrt{ } 2=9.8289753 ; \\
\rho \sqrt{ } \pi=0.8453475, \quad \log \rho \sqrt{ } \pi=8.9270353 ; \\
r=\rho \sqrt{2} \cdot \epsilon=\rho \sqrt{\pi} \cdot \eta .
\end{aligned}
$$

Note that $\rho_{\sqrt{2}}=\alpha+\beta+\gamma+\delta+\ldots$, where $\alpha=\frac{2}{3}$ $\beta=\frac{1}{100} \alpha, \quad \gamma=\frac{1}{6} \beta, \quad \delta=\frac{4}{\frac{4}{10} \gamma}$.

VALUES OF THE PROBABILITY INTEGRAL,

OR PROBABILITY OF AN ERROR NUMERICALLY LESS THAN x.
Table I.-Values of P_{t}.

$$
t=h x ; P_{t}=\frac{2}{\sqrt{ } \pi} \int_{0}^{t} e^{-t^{2}} d t=\frac{2}{\sqrt{ } \pi} \operatorname{Erf} t
$$

t	0	1	2	3	4	5	6	7	8	9
0.0	0.0	0.01	0.0226	0.0338	0.0451	0.0564	0.0676	0.0789	0.0901	0.1013
0.1	1125	1236	1348	1459	1569	1680	1790	1900	2009	18
2	2227	2335	2443	2550	2657	2763	2869	2974	3079	3183
	0.32	0.338	0.3491	0.3593	0.3694	0.3794		0.3992	0.4090	0.4187
0.4	4284	4380	4475	4569	4662	4755	4847	4937	5027	5117
0.5	5205	5292	9	5465	55	5633	5716	5798	5879	5959
0.6	0.6039	0.6117	0.6194	0.6270	0.6346	0.6420	0.6494	0.6566	0.6638	0.6708
0.7	677	6847	6914	6981	7047	7112	7175	7238	7300	7361
c. 8	7421	7480	7538	7595	7651	7707	7761	7814	7867	7918
0.9	0.79	0.8019	0.8068	0.8		0.8209	0.8254	0.8299	0.8342	0.8385
1.	842	8468	8508	8548	8586	8624	8661	8698	8733	68
I. 1	8802	8835	8868	8900	8931	896I	8991	9020		76
	0.9103	0.913	0.9155	0.9181	0.9205	0.9229	0.9252	0.9275	0.9297	0.9319
I. 3	9340	9361	9381	9400	9419	9438	9456	9473	9490	507
1.4	95	953	9554			9597			9637	
1.	0.9661	0.9673	0.9684	0.9		0.9716	0.9726	0.9736	0.9745	0.9755
1.	9763		-9780			9804	9811	9818	9825	9832
1.7	9838					9867	8872	9877	9882	886
1.8	0.9891	0.9895	0.9899	0.9903	0.9907	0.9911	0.9915	0.9918	0.9922	0.9925
1.9	9928	9931	9934	9937	9939	9942	9944	9947	9949	9951
2.0	9953	9955	9957		9961			9966	997	906
2.	0.9970	0.9972	0.9973	0.9974	0.99	0.997			0.9980	
2.2	9981	9982	9983	9984	9985	9985	9986	9987	9987	9988
2.3		9989	9990	9990	9991	9991	9992	9992	9992	9993
2.4	0.999	0.9993	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995	0.9995	0.9996
2.5	9996	9596	9996	9997	9997	9997	9997	9997	9997	9998
2.6	9998	9998	9998	9998	9998	9998	9998	9998	9998	9999
7									...	\ldots

$$
z=\frac{x}{r}=\frac{t}{\rho} ; P_{z}=\frac{2}{\sqrt{\pi}} \operatorname{Erf} \rho z=\frac{2}{\sqrt{\pi}} \int_{0}^{\rho z} e^{-t^{2}} d t
$$

z	0	I	2	3	4	5	6	7	8	9
0.0	0.0000	0.0054	0.0108	0.0161	0.0215	0.0269	0.0323	0.0377	0.0430	0.0484
O.	0538	0591	0645	0699	0752	0806	0859	$\bigcirc 913$	0966	1020
0.2	1073	1126	1180	1233	1286	1339	1392	1445	1498	1551
0.3	0.1604	o. 1656	-. 1709	0.1761	-. 1814	0. 1866	0.1919	o. 1971	0.2023	0. 2075
0.	2127	2179	2230	2282	2334	2385	2436	2488	2539	2590
0.5	2641	2691	2742	2793	2843	2893	2944	2994	3044	3093
0.6	0.3143	0.3192	0. 3242	0.3291	0.3340	0.3389	0.3438	0.3487	0.3535	0.3584
0.7	3632	3680	3728	3775	3823	3871	3918	3965	4012	4059
0.8	4105	4152	4198	4244	4290	4336	4381	4427	4472	4517
0.9	0.4562	0.4606	0.4651	0.46	0.4739	0.4783	0. 4827	0.4871	0.4914	0.4957
1.0	5000	5043	5085	5128	5170	5212	5254	5295	5337	5378
1.	5419	5460	5500	5540	5581	5621	5660	5700	5739	5778
1.	0. 5	. 5856	0.5894	0. 5932	0. 5971	0.6008	0.6046	0.6083	0.6121	0.6157
1.3	6194	6231	6267	6303	6339	6375	6410	6445	6480	6515
1.4	6550		6618	66_{52}	6686	6719	6753	6786	6818	6851
1.5	0.6883	0.6915	0.6947	0.6979	0.7011	0.7042	0.7073	0.7104	0.7134	0.7165
1.6	7195	7225	7255	7284	7313	7343	7371	7400	7428	7457
1.7	7485	7512	7540	7567	7594	7621	7648	7675	7701	7727
I. 8	0.7753	0.7778	0.7804	0.7829	0.7854	0.7879	0.79	0.7928	0.7952	0.7976
1.9	8000	8023	8047	8070	8093	8116	8138	8161	8183	8205
2.0	8227	8248	8270	8291	8312	8332	8353	8373	8394	84.4
2.	0.8433	0.8453	0.8473	0.8492	0.8511	0.8530	0.8549	0.8567	0.8585	0.8604
2.2	8622	8639	8657	8674	8692	8709	8726	8743	8759	87;6
2.3	8792	8808	8824	8839	8855	8870	8886	8901	8916	893
2.	0.8945	0.8959	0.8974	-. 8988	0.9002	0.9016	0.9029	0.9043	0.9056	0.9069
2.5	9082	9095	9108	9121	9133	9146	9158	9170	9182	9194
2.6	9205	9217		9239	9250	9261	9272	9283	9293	9304
2.7	0.9314	0.9324	0.9334	0.9344	0.9354	0.9364	0.9373	0.9383	0.939^{2}	0.9401
2.8	9411	9419	9428	9437	9446	9454	9463	9471	9479	9487
2.9	9495	9503	9511	9519	9526	9534	954 I	9548	9556	9563
3.0	0.9570	0.9577	0.9583	0.9590	0.9597	0.9603	0.9610	0.9616	0.9622	0.9629
3.1	9635	964 I	9647	9652	9658	9664	9669	9675	9680	9686
3.2	9691	9696	9701	9706	971 I	971	9721	9726	9731	9735
$3 \cdot 3$	0.9740	0.9744	0.9749	0.9753	0.9757	0.9762	0.9766	0.9770	0.9774	0.9778
3.4	5782	9786	9789	9793	9797	9800	9804	9807	9811	9814
3.	9570	9635	9691	9740	9782	9818	9848	9874	9896	9915
4.	0.9930	0.9943	. 9954	0.9963	. 9970	0.9976	0.9981	0.9985	0.9988	0.999 I
5.	9993	9994	9995	9996	9997	9998	9998	9999	9999	9999
6.	9999	I. 00					

Number	Square.	Cube.	Square Root.	Cube Root.
1	1	1	1.0000	1.0000
2	4	8	1.4142	1.2599
3	9	27	1.7321	1.4422
4	16	64	2.0000	1.5874
5	25	125	2.2361	1.7100
6	36	216	2.4495	1.8171
7	49	343	2.6458	1.9129
8	64	512	2.8284	2.0000
9	81	729	3.0000	2.0801
10	100	1000	3.1623	2.1544
11	121	1331	$3 \cdot 3166$	2.2240
12	1 44	1728	$3 \cdot 4641$	2.2894
13	169	2197	3.6056	2.3513
14	1 96	2744	3.7417	2.4101
15	225	3375	3.8730	2.4662
16	256	4096	4.0000	2.5198
17	289	4913	4.1231	2.5713
18	324	5832	4.2426	2.6207
19	3 61	6859	4.3589	2.6684
20	400	8000	$4 \cdot 4721$	2.7144
21	441	9261	4.5826	2.7589
22	484	10648	4.6904	2.8020
23	529	12167	4.7958	2.8439
24	576	13824	4.8990	2.8845
25	625	15625	5.0000	2.9240
26	676	17576	5.0990	2.9625
27	729	19683	5. 1962	3.0000
28	784	21952	5.2915	3.0366
29	841	24389	$5 \cdot 3852$	3.0723
30	900	27000	5.4772	3.1072
31	961	29791	5.5678	3.1414
32	1024	32768	5.6569	3.1748
33	1089	35937	5.7446	3.2075
34	1156	39304	5.8310	3.2396
35	1225	42875	5.9161	3.2711
36	1296	46656	6.0000	3.3019
37	1369	50653	6.0828	$3 \cdot 3322$
38	1444	54872	6.1644	$3 \cdot 3620$
39	1521	59319	6.2450	$3 \cdot 3912$
40	1600	64000	6.3246	3.4200
41	1681	68921	6.4031	3.4482
42	1764	74088	6.4807	3.4760
43	1849	79507	6. 5574	3.5034
44	1936	85184	6.6332	3.5303
45	2025	91125	6.7082	3.5569
46	2116	97336	6.7823	3.5830
47	2209	103823	6.8557	3.6088
48	2304	110592	6.9282	3.6342
49	24 O1	117649	7.0000	3.6593
50	2500	125000	7.0711	3.6840

Number	Square.	Cube.	Square Root.	Cube Root.
51	26 OI	132651	7.1414	3.7084
52	2704	140608	7.2111	3.7325
53	$28 \quad 9$	148877	7.2801	3.7563
54	2916	157464	7.3485	37798
55	3025	166375	7.4162	3.8030
56	3136	175616	7.4833	3.8259
57	3249	185193	7.5498	3.8485
58	3364	195112	7.6158	3.8709
59	34 81	205379	7.68 I I	3.8930
60	3600	216000	7.7460	3.9149
61	3721	226 981	7.8102	3.9365
62	3844	238328	7.8740	3.9579
63	3969	250047	7.9373	3.9791
64	4096	262144	8.0000	4.0000
65	4225	274625	8.0623	4.0207
66	4356	287496	8.1240	4.0412
67	4489	300763	8.1854	4.0615
68	4624	314432	8.2462	4.0817
69	47 61	328509	8.3066	4.1016
70	4900	343000	8.3666	4.1213
71	5041	357 911	8.4261	4.1408
72	5184	373248	8.4853	4.1602
73	5329	389 O17	8.5440	4.1793
74	5476	405224	8.6023	4.1983
75	5625	421875	8.6603	4.2172
76	5776	438976	8.7178	4.235^{8}
77	5929	456533	8.7750	4.2543
78	6084	474552	8.8318	4.2727
79	6241	493 ○39	8.8882	4.2908
80	6400	512000	8.9443	4.3089
81	65 61	531441	9.0000	$4 \cdot 3267$
82	6724	551368	9.0554	$4 \cdot 3445$
83	6889	571787	9.1104	$4 \cdot 3621$
84	7056	592704	9.1652	$4 \cdot 3795$
85	7225	614125	9.2195	4.3968
86	7396	636056	9.2736	4.4140
87	7569	658503	9.3274	4.4310
88	7744	681472	9.3808	4.4480
89	7921	704969	9.4340	4.4647
90	8100	729000	9.4868	4.4814
91	8281	753571	9.5394	4.4979
92	8464	778688	9.5917	4.5144
93	8649	804357	9.6437	4.5307
94	8836	830584	9.6954	4.5468
95	9025	857375	9.7468	4.5629
96	9216	884736	9.7980	4.5789
97	9409	912673	9.8489	4.5947
98	9604	941192	9.8995	4.6104
99	98 о1	970299	9.9499	4.6261
100	10000	1000000	10.0000	4.6416

Number	Square.	Cube.	Square Root.	Cube Root.
101	0201	030301	10.0499	4.6570
102	10404	1061208	10.0995	4.6723
103	10609	1092727	10.1489	4.6875
104	10816	1124864	10.1980	4.7027
105	11025	1157625	10.2470	4.7177
106	11236	1 191 016	10. 2956	4.7326
107	11449	1225043	10.3441	4.7475
108	11664	1259712	10.3923	4.7622
109	1 I 88 I	I 295029	10.4403	4.7769
110	12100	1331000	10.4881	4.7914
111	12321	1 367631	10.5357	4.8059
112	12544	1 404928	19. 5830	4.8203
113	12769	I 442897	10.6301	4.8346
114	I. 2996	I 481544	10.6771	4.8488
115	13225	1520875	10.7238	4.8629
116	I 3456	I 560896	10.7703	4.8770
117	I 3689	1 601613	10.8167	4.8910
118	I 3924	1 643032	10.8628	4.9049
119	14161	1 685159	10.9087	4.9187
120	I 4400	1728000	10.9545	4.9324
121	I 464 I	1771561	11.0000	4.9461
122	I 4884	I 815848	11.0454	4.9597
123	15129	1 860867	11.0905	4.9732
124	15376	1 906624	11.1355	4.9866
125	15625	1953125	11.1803	5.0000
126	15876	2000376	11.225°	5.0133
127	16129	2048383	11.2694	5.0265
128	I 6384	2097152	11.3137	5.0397
129	I 6641	2146689	11.3578	5.0528
130	I 6900	2197000	11.4018	5.0658
131	17161	2248091	11.4455	5.0788
132	17424	2299968	11.4891	5.0916
133	1 7689	2352637	II. 5326	5.1045
134	I 7956	2406104	11.575^{8}	5.1172
135	18225	2460375	11.6190	5.1299
136	1 8496	2515456	11.6619	5.1426
137	1 8769	2571353	11.7047	5.1551
138	I 9044	2628072	11.7473	5.1676
139	19321	2685619	11.7898	5.1801
140	19600	2744000	11.8322	5.1925
141	1988 I	2803221	11.8743	5.2048
142	2 O1 64	2863288	11.9164	5.2171
143	20449	2924207	11.9583	5.2293
144	$\begin{array}{lllll}2 & 07 & 36\end{array}$	2985984	12.0000	5.2415
145	21025	3048625	12.0416	5.2536
146	21316	3112136	12.0830	5.2656
147	21609	3176523	12.1244	5.2776
148	21904	3241792	12.1655	5.2896
149	22201	3307949	12.2066	$5 \cdot 3015$
150	22500	3375000	12.2474	5.3133

Number	Square.	Cube.	Square Root.	Cube Root.
151	22801	3442951	12.2882	$5 \cdot 3251$
152	23104	3511808	12.3288	$5 \cdot 3368$
153	23409	3581577	12.3693	$5 \cdot 3485$
154	23716	3652264	12.4097	$5 \cdot 3601$
155	24025	3723875	12.4499	$5 \cdot 3717$
156	2433^{6}	3796416	12.4900	$5 \cdot 3832$
157	24649	3869893	12.5300	$5 \cdot 3947$
158	24964	3944312	12.5698	$5 \cdot 4061$
159	25281	4019679	12.6095	$5 \cdot 4175$
160	25600	4096000	12.6491	$5 \cdot 4288$
161	25921	4173281	12.6886	$5 \cdot 4401$
162	26244	4251528	12.7279	5.4514
163	26569	4330747	12.7671	5.4626
164	26896	4410944	12.8062	$5 \cdot 4737$
165	27225	4492125	12.845^{2}	$5 \cdot 4848$
166	27556	4574296	12.8841	5.4959
167	27889	4657463	12.9228	$5 \cdot 5069$
168	28224	4741632	12.9615	5.5178
169	28561	4826809	13.0000	$5 \cdot 5288$
170	28900	4913000	13.0384	5.5397
171	29241	5000211	13.0767	$5 \cdot 5505$
172	29584	5088448	13.1149	5.5613
173	29929	5177717	13.1529	$5 \cdot 5721$
174	30276	5268024	13. 1909	$5 \cdot 5828$
175	30625	5359375	13.2288	5.5934
176	30976	5451776	13.2665	5.6041
177	31329	5545233	13.3041	5.6147
178	31684	5639752	13.3417	5.6252
179	32041	5735339	13.3791	5.6357
180	32400	5832000	13.4164	5.6462
181	32761	5929741	13.4536	5.6567
182	33124	6028568	13.4907	5.6671
183	33489	6128487	13.5277	5.6774
184	$33^{8} 56$	6229504	13.5647	5.6877
185	34225	6331625	13.6015	5.6980
186	34596	6434856	13.6382	5.7083
187	34969	6539203	13.6748	5.7185
188	35344	6644672	13.7113	5.7287
J89	35721	6751269	13.7477	5.7388
190	36100	6859000	13.7840	5.7489.
191	36481	6967871	13.8203	5.7590
192	36864	7077888	13.8564	5.7690
193	37249	7189057	13.8924	5.7790
194	37636	7301384	13.9284	5.7890
195	38025	7414875	13.9642	5.7989
196	38416	7529536	14.0000	5.8088
197	38809	7645373	14.0357	5.8186
198	39204	7762392	14.0712	5.8285
199	396 or	7880599	14.1067	5.8383
200	400 00	8000000	14.1421	5.8480

Number	Square.	Cube.	Square Root.	Cube Root.
201	40401	8 I20 601	14.1774	5.8578
202	40804	8242408	14.2127	5.8675
203	41209	8365427	14.2478	5.8771
204	41616	8489664	14.2829	5.8868
205	42025	8615125	14.3178	5.8964
206	42436	8741816	14.3527	$5 \cdot 9059$
207	42849	8869743	14.3875	5.9155
208	43264	8998912	14.4222	5.9250
209	43681	9129329	14.4568	5.9345
210	44100	9261000	14.4914	5.9439
211	44521	9393 931	14.5258	5.9533
212	44944	9528128	14.5602	5.9627
213	45369	9663597	14.5945	5.9721
214	45796	9800344	14.6287	5.9814
215	46225	9938375	14.6629	5.9907
216	46656	10077696	14.6969	6.0000
217	47089	10218313	14.7309	6.0092
218	47524	10360232	14.7648	6.0185
219	479 61	10503459	14.7986	6.0277
220	48400	10648000	14.8324	6.0368
221	48841	10793861	14.8661	6.0459
222	49284	10 941048	14.8997	6.0550
223	49729	II 089567	14.9332	6.0641
224	50176	II 239424	14.9666	6.0732
225	50625	II 390625	15.0000	6.0822
226	51076	II 543176	15.0333	6.0912
227	51529	II 697083	15.0665	6.1002
228	$\begin{array}{llll}5 & 19 & 84\end{array}$	II 852352	15.0997	6.1091
229	52441	12008989	15.1327	6.1180
230	52900	12167000	15.1658	6.1269
231	53361	12326391	15.1987	6.1358
232	53824	12487168	15.2315	6.1446
233	54289	12649337	15.2643	6.1534
234	54756	12 812 904	15.2971	6.1622
235	55225	12977875	15.3297	6.1710
236	55696	13144256	15.3623	6.1797
237	56169	13312053	15.3948	6.1885
238	56644	13481272	15.4272	6.1972
239	57121	13651919	15.4596	6.2058
240	57600	13824000	15.4919	6.2145
241	58081	13997521	15.5242	6.2231
242	58564	14172488	15.5563	6.2317
243	59049	14348907	15.5885	6.2403
244	59536	14526784	15.6205	6.2488
245	60025	14706125	15.6525	6.2573
246	60516	14886936	15.6844	6.2658
247	61009	15069223	15.7162	6.2743
248	61504	15252992	15.7480	6.2828
249	620 Or	15438249	15.7797	6.2912
250	62500	15625000	15.8114	6.2996

Number	Square.	Cube.	Square Root.	Cube Root.
251	630 OI	$15{ }^{81} 3251$	15.8430	6.3080
252	63504	16003008	15.8745	6.3164
253	64009	16194277	15.9060	6.3247
254	64516	16387064	15.9374	6.3330
255	65025	16581375	15.9687	6.3413
256	65536	16777216	16.0000	6.3496
257	66049	16974593	16.0312	6.3579
258	66564	17173512	16.0624	6.3661
259	67081	17373979	16.0935	6.3743
260	67600	17576000	16.1245	6.3825
261	68121	17779581	16.1555	6.3907
262	68644	17984728	16.1864	6.3988
263	69169	18191447	16.2173	6.4070
264	69696	18399744	16.2481	6.4151
265	70225	18609625	16.2788	6.4232
266	70756	18821096	16.3095	6.4312
267	71289	19034163	16.3401	6.4393
268	71824	19248832	16.3707	6.4473
269	72361	19465109	16.4012	6.4553
270	72900	19683000	16.4317	6.4633
271	73441	19902511	16.4621	6.4713
272	73984	20123648	16.4924	6.4792
273	74529	20346417	16.5227	6.4872
274	75076	20570824	16.5529	6.4951
275	75625	20796875	16.5831	6.5030
276	76176	21024576	$16.61{ }^{12}$	6.5108
277	76729	21253933	16.6433	6.5187
278	77284	21 484952	16.6733	6.5265
279	77841	21717639	16.7033	6.5343
280	78400	21952000	16.7332	6.542 I
281	78961	22188041	16.7631	6.5499
282	79524	22425768	16.7929	6.5577
283	80089	22665187	16.8226	6.5654
284	80656	22906304	16.8523	6.5731
285	81225	23149125	16.8819	6.5808
286	81796	23393656	16.9115	6.5885
287	82369	23639903	16.9411	6.5962
288	82944	23887872	16.9706	6.6039
289	83521	24137569	17.0000	6.6115
29°	84100	24389000	17.0294	6.6191
291	84681	24642171	17.0587	6.6267
292	85264	24897088	17.0880	6.6343
293	85849	25153757	17.1172	6.6419
294	86436	25412184	17.1464	6.6494
295	87025	25672375	17.1756	6.6569
296	87616	25934336	17.2047	6.6644
297	88209	26198073	17.2337	6.6719
298	88804	26463592	17.2627	6.6794
299	894 O1	26730899	17.2916	6.6869
300	90000	27000000	17.3205	6.6943

Number	Square.	Cube.	Square Root.	Cube Root.
301	906 OI	27270901	17.3494	6.7018
302	91204	27543608	17.3781	6.7092
303	91809	27818127	17.4069	6.7166
304	92416	28094464	17.4356	6.7240
305	93025	28372625	17.4642	6.7313
306	93636	28652616	17.4929	6.7387
307	94249	28934443	17.5214	6.7460
308	94864	29218112	17.5499	6.7533
309	95481	29503629	17.5784	6.7606
310	96100	29791000	17.6068	6.7679
311	967 21	30080231	17.635^{2}	6.7752
312	97344	30371328	17.6635	6.7824
313	97969	30664297	17.6918	6.7897
314	98596	30959144	17.7200	6.7969
315	99225	31255875	17.7482	6.8041
316	$99^{8} 56$	31 554496	17.7764	6.8113
317	100489	31855013	17.8045	6.8185
318	10 II 24	32157432	17.8326	6.8256
319	101761	32461759	17.8606	6.8328
320	102400	32768000	17.8885	6.8399
321	103041	33076161	17.9165	6.8470
322	10 3684	$33 \quad 386248$	17.9444	6.8541
323	104329	33698267	17.9722	6.8612
324	104976	34012224	18.0000	6.8683
325	$10 \quad 5625$	34328125	18.0278	6.8753
326	106276	34645976	18.0555	6.8824
327	106929	34965783	18.0831	6.8894
328	10 7584	3528755^{2}	18.1108	6.8964
329	10 8241	35611289	18.1384	6.9034
330	108900	35937000	18.1659	6.9104
331	109561	36264691	18.1934	6.9174
332	II 0224	36594368	18.2209	6.9244
333	II 0889	36926037	18.2483	6.9313
334	II 1556	37259704	18.2757	6.9382
335	11 2225	37595375	18.3030	6.9451
336	II 2896	37933056	18.3303	6.9521
337	11 3569	38272753	18.3576	6.9589
338	II 4244	38614472	18.3848	6.9658
339	11 4921	$3^{8} 958 \mathbf{2 1 9}$	18.4120	6.9727
340	115600	39304000	$18.439{ }^{1}$	6.9795
341	II 6281	39651821	18.4662	6.9864
342	II 6964	40 001 688	18.4932	6.9932
343	117649	40353607	18.5203	7.0000
344	II 8336	40707584	18.5472	7.0068
345	119025	41063625	18.5742	7.0136
346	II 9716	41421736	18.6011	7.0203
347	120409	41781923	18.6279	7.0271
348	121104	42144192	18.6548	7.0338
349	1218 O1	42508549	18.6815	7.0406
350	122500	42875000	18.7083	7.0473

Number	Square.	Cube.	Square Root.	Cube Root.
351	1232 O1	43243551	18.7350	7.0540
352	123904	43614208	18.7617	7.0607
353	124609	43986977	18.7883	7.0674
354	125316	44 361864	18.8149	7.0740
355	126025	44738875	18.8414	7.0807
356	126736	45118016	18.8680	7.0873
357	127449	45499293	18.8944	7.0940
358	128184	45882712	18.9209	7.1006
359	128881	46268279	18.9473	7.1072
360	129600	46656000	18.9737	7.1138
361	130321	47045881	19.0000	7.1204
362	131044	47437928	19.0263	7.1269
363	131769	47832147	19.0526	7.1335
364	132496	$48 \quad 228544$	19.0788	7.1400
365	133225	48627125	19.1050	7.1466
366	133956	49027896	19.13II	7.1531
367	134689	49430863	19.1572	7.1596
368	135424	49836032	19.1833	7.1661
369	136161	50243409	19.2094	7.1726
370	136900	50653000	19.2354	7.1791
371	137641	51064811	19.2614	7.1855
372	138384	51478848	19.2873	7.1920
373	139129	51895117	19.3132	7. 1984
374	139876	52313624	19.3391	7.2048
375	140625	52734375	19.3649	7.2112
376	141376	53157376	19.3907	7.2177
377	142129	53582633	19.4165	7.2240
378	142884	54010152	19.4422	7.2304
379	143641	54439939	19.4679	7.2368
380	144400	54872000	19.4936	7.2432
381	$1451^{1} 1$	55306341	19.5192	7.2495
382	145924	55742968	19.5448	7.2558
383	146689	56181887	19.5704	7.2622
384	147456	56623104	19.5959	7.2685
385	148225	57066625	19.6214	7.2748
386	148996	57512456	19.6469	7.2811
387	149769	57960603	19.6723	7.2874
388	150544	58411072	19.6977	7.2936
389	151321	$\begin{array}{lllllllllll}58 & 863\end{array}$	19.7231	7.2999
390	152100	59319000	19.7484	7.3061
391	152881	59776471	19.7737	$7 \cdot 3124$
392	153664	60236288	19.7990	$7 \cdot 3186$
393	154449	60698457	19.8242	$7 \cdot 3248$
394	155236	61162984	19.8494	7.3310
395	156025	61 629875	19.8746	$7 \cdot 3372$
396	156816	62099136	19.8997	7.3434
397	157609	62570773	19.9249	$7 \cdot 3496$
398	158404	63044792	19.9499	$7 \cdot 3558$
399	159201	63521199	19.9750	7.3619
400	160000	64000000	20.0000	$7 \cdot 3681$

Number	Square.	Cube.	Square Root.	Cube Root.
401	160801	64481201	20.0250	$7 \cdot 3742$
402	161604	64964808	20.0499	$7 \cdot 3803$
403	162409	65450827	20.0749	$7 \cdot 3864$
404	163216	65939264	20.0998	$7 \cdot 3925$
405	164025	66430125	20.1246	$7 \cdot 3986$
406	164836	66923416	20.1494	$7 \cdot 4047$
407	165649	67419143	20.1742	7.4108
408	166464	67917312	20.1990	$7 \cdot 4169$
409	167281	68417929	20.2237	7.4229
410	168100	68921000	20.2485	7.4290
411	168921	69426531	20.2731	7.4350
412	169744	69934528	20.2978	7.4410
413	170569	70444997	20.3224	7.4470
414	171396	70957944	20.3470	7.4530
415	172225	71473375	20.3715	7.4590
416	173056	71991296	20.3961	7.4650
417	173889	72511713	20.4206	7.4710
418	174724	73034632	20.4450	7.4770
419	175561	73560059	20.4695	7.4829
420	176400	74088000	20.4939	7.4889
421	177241	74618461	20.5183	$7 \cdot 4948$
422	178084	75151448	20.5426	$7 \cdot 5007$
423	178929	75686967	20.5670	$7 \cdot 5067$
424	179776	76225024	20.5913	7.5126
425	180625	76765625	20.6155	7.5185
426	181476	77308776	20.6398	$7 \cdot 5244$
427	182329	77854483	20.6640	7.5302
428	183184	78402752	20.6882	$7 \cdot 5361$
429	184041	78953589	20.7123	7.5420
430	184900	79507000	20.7364	$7 \cdot 5478$
431	185761	80062991	20.7605	$7 \cdot 5537$
432	186624	80621568	20.7846	7.5595
433	187489	81 182737	20.8087	7.5654
434	188356	81746504	20.8327	7.5712
435	189225	82312875	20.8567	7.5770
436	190096	82881856	20.8806	7.5828
437	190969	83453453	20.9045	$7 \cdot 5886$
438	191844	84027672	20.9284	7.5944
439	192721	84604519	20.9523	7.6001
440	193600	85184000	20.9762	7.6059
441	1944 81	85706121	21.0000	7.6117
442	195364	86350888	21.0238	7.6174
443	196249	86938307	21.0476	7.6232
444	197136	87528384	21.0713	7.6289
445	198025	88121125	21.0950	7.6346
446	198916	88716536	21.1187	7.6403
447	199809	89314623	21.1424	7.6460
448	200704	89915392	21.1660	7.6517
449	2016 OI	90518849	21.1896	7.6574
450	202500	91125000	21.2132	7.6631

Number	Square.	Cube.	Square Root.	Cube Root.
451	2034 O1	91 733851	21.2368	7.6688
452	204304	92345408	21.2603	7.6744
453	$20 \quad 5209$	92959677	21.2838	7.6801
454	206116	93576664	21.3073	7.6857
455	207025	94196375	21.3307	7.6914
456	207936	94818816	21.3542	7.6970
457	208849	95443993	21.3776	7.7026
458	209764	96071912	21.4009	7.7082
459	210681	96702579	21.4243	7.7138
460	211600	97336000	21.4476	7.7194
461	212521	97972181	21.4709	7.7250
462	213444	98 6ı1 128	21.4942	7.7306
463	214369	99252847	21.5174	7.7362
464	215296	99897344	21. 5407	7.7418
465	216225	100544625	21.5639	7.7473
466	217156	IO1 194696	21.5870	7.7529
467	218089	Ior 847563	21.6102	7.7584
468	219024	102503232	21.6333	7.7639
469	219961	103161709	21.6564	7.7695
470	220900	103823000	21.6795	7.7750
471	221841	104487 III	21.7025	7.7805
472	222784	105154048	21.7256	7.7860
473	223729	105823817	21.7486	7.7915
474	224676	106496424	21.7715	7.7970
475	225625	107171875	21.7945	7.8025
476	226576	107850176	21.8174	7.8079
477	227529	108531333	21.8403	7.8134
478	228484	109215352	21.8632	7.8188
479	229441	109902239	21.8861	7.8243
480	230400	110592000	21.9089	7.8297
48 r	231361	III 284641	21.9317	7.8352
482	232324	111980168	21.9545	7.8406
483	233289	112678587	21.9773	7.8460
484	234256	113379904	22.0000	7.8514
485	235225	114084125	22.0227	7.8568
486	23 6196	114791256	22.0454	7.8622
487	237169	115501303	22.0681	7.8676
488	238144	116214272	22.0907	7.8730
489	23 91 21	116930169	22.1133	7.8784
490	24 O1 00	117649000	22.1359	7.8837
491	241081	118370771	22.1585	7.8891
492	242064	119095488	22.1811	7.8944
493	243049	119823157	22.2036	7.8998
494	244036	120553784	22.2261	7.9051
495	245025	121287375	22.2486	7.9105
496	246016	122023936	22.2711	7.915^{8}
497	247009	122763473	22.2935	7.9211
498	248004	123505992	22.3159	7.9264
499	2490 Or	124 251 499	22.3383	7.9317
500	250000	125000000	22.3607	7.9370

Number	Square.	Cube.	Square Root.	Cube Root.
501	2510 OI	125751501	22.3830	7.9423
502	252004	126506008	22.4054	7.9476
503	253009	127263527	22.4277	$7 \cdot 9528$
504	254016	128024064	22.4499	7.9581
505	255025	$128 \quad 787625$	22.4722	7.9634
506	256036	129554216	22.4944	7.9686
507	257049	130323843	22.5167	7.9739
508	258063	131096512	22.5389	7.9791
509	259081	131872229	22.5610	7.9843
510	26 O1 00	132651000	22.5832	7.9896
5II	26 II 21	133432831	22.6053	7.9948
512	262144	134217728	22.6274	8.0000
513	263169	135005697	22.6495	8.0052
514	264196	135796744	22.6716	8.0104
515	265225	136590875	22.6936	8.0156
516	266256	$1373^{88} 096$	22.7156	8.0208
517	267289	138188413	22.7376	8.0260
518	268324	138991832	22.7596	8.0311
519	2693 61	139 798359	22.7816	8.0363
520	270400	140608000	22.8035	8.0415
521	2714 41	141420761	22.8254	8.0466
522	272484	142236648	22.8473	8.0517
523	273529	143055667	22.8692	8.0569
524	274576	143877824	22.8910	8.0620
525	$27 \quad 5625$	144703125	22.9129	8.0671
526	276676	145531576	22.9347	8.0723
527	277729	146363183	22.9565	8.0774
528	278784	147197952	22.9783	8.0825
529	279841	148035889	23.0000	8.0876
530	280900	148877000	23.0217	8.0927
531	281961	149721291	23.0434	8.0978
532	283024	150568768	23.0651	8.1028
533	284089	151419437	23.0868	8.1079
534	285156	152273304	23.1084	8.1130
535	286225	153130375	23.1301	8.1180
536	287296	153990656	23.1517	8.1231
537	288369	154854153	23.1733	8.1281
538	289444	${ }^{1} 55720872$	23.1948	8. 1332
539	290521	156590819	23.2164	8. 13^{882}
540	291600	157464000	23.2379	8. 1433
541	292681	158340421	23.2594	8.1483
542	293764	159220088	23.2809	8.1533
543	294849	160103007	23.3024	8.1583
544	295936	160989184	23.3238	8.1633
545	297025	161878625	23.3452	8. 1683
546	298116	162771336	23.3666	8.1733
547	299209	163667323	$23 \cdot 3880$	8. 1783
548	300304	164566592	23.4094	8.1833
549	3014 O1	165469149	23.4307	8.1882
550	302500	166375000	23.4521	8.1932

Number	Square.	Cube.	Square Root.	Cube Root.
55^{1}	3036 or	167284151	23.4734	8.1982
552	304704	168196608	23.4947	8.2031
553	$30 \quad 5809$	169112377	23.5160	8.2081
554	306916	170031464	23.5372	8.2130
555	308025	170953875	23.5584	8.2180
556	309136	171879616	23.5797	8.2229
557	310249	172808693	23.6008	8.2278
558	311364	173741112	23.6220	8.2327
559	312481	174676879	23.6432	8.2377
560	313600	175616000	23.6643	8.2426
561	314721	176558481	23.6854	8.2475
562	315844	177504328	23.7065	8.2524
563	316969	178453547	23.7276	8.2573
56.4	318096	179406144	23.7487	8.2621
565	319225	180362125	23.7697	8.2670
566	- 320356	181321496	23.7908	8.2719
567	321489	182284263	23.8118	8.2768
568	322624	183250432	23.8328	8.2816
569	323761	184220009	23.8537	8.2865
570	324900	185193000	23.8747	8.2913
571	326041	186169411	23.8956	8.2962
572	327184	187149248	23.9165	8.3010
573	328329	188132517	23.9374	8.3059
574	329476	189 I19 224	23.9583	8.3107
575	330625	190109375	23.9792	8.3155
576	331776	191 102976	24.0000	8.3203
577	332929	192100033	24.0208	8.3251
578	334084	193100552	24.0416	8.3300
579	335241	194104539	24.0624	8.3348
580	336400	195112000	24.0832	8.3396
581	3375 61	196122941	24.1039	8.3443
582	338724	197137368	24.1247	8.3491
583	339889	198155287	24.1454	8.3539
584	34 10 56	199176704	24.1661	8.3587
585	342225	200201625	24.1868	8.3634
586	343396	201230056	24.2074	8.3682
587	344569	202262003	24.2281	8.3730
588	345744	203297472	24.2487	8.3777
589	346921	204336469	24.2693	8.3825
590	348100	205379000	24.2899	8.3872
591	349281	206425071	24.3105	8.3919
592	350464	207474688	24.3311	8.3967
593	351649	208527857	24.3516	8.4014
594	352836	209584584	24.3721	8.4061
595	354025	210644875	24.3926	8.4108
596	355216	211708736	24.4131	8.4155
597	356409	212776173	24.4336	8.4202
598	357604	213847192	24.4540	8.4249
599	3588 о1	214921799	24.4745	8.4296
600	360000	216000000	24.4949	8.4343

Number	Square.	Cube.	Square Root.	Cube Root.
601	3612 Or	217081801	$24.5^{1} 53$	8.4390
602	362404	218167208	24.5357	8.4437
603	363609	219256227	24.5561	8.4484
604	364816	220348864	24.5764	8.4530
605	366025	221445125	24.5967	8.4577
606	367236	222545016	24.6171	8.4623
607	368449	223648543	24.6374	8.4670
608	369664	224755712	24.6577	8.4716
609	370881	225866529	24.6779	8.4763
610	372100	226 981 000	24.6982	8.4809
611	373321	228099 I31	24.7184	8.4856
612	374544	229220928	24.7386	8.4902
613	375769	230346397	24.7588	8.4948
614	376996	231475544	24.7790	8.4994
615	378225	232608375	24.7992	8.5040
616	379456	233744896	24.8 I93	8.5086
6:7	380689	234885113	24.8395	8.5132
618	381924	236029032	24.8596	8.5178
619	383161	237176659	24.8797	8.5224
620	384400	238328000	24.8998	8.5270
62 I	385641	239483061	24.9199	8.5310
622	386884	24064 I 848	24.9399	8.5362
623	388129	241804367	24.9600	8. 5408
624	389376	242970624	24.9800	8.5453
625	390625	244140625	25.0000	8.5499
626	391876	245314376	25.0200	8.5544
627	393131 18	246491883	25.0400	8.5590
628	394384	247673152	25.0599	8.5635
629	395641	248858189	25.0799	8.5681
630	396900	250047000	25.0998	8.5726
631	39 81 6I	251239591	25.1197	8.5772
632	399424	252435968	25.1396	8.5817
633	400689	253636137	25.1595	8.5862
634	401956	254840104	25.1794	8.5907
635	403225	256047875	25.1992	8. 5952
636	404496	257259456	25.2190	8.5997
637	405769	258474853	25.2389	8.6043
638	407044	259694072	25.2587	8.6088
639	408321	260917119	25.2784	$8.61{ }^{2} 2$
640	409600	262144000	25.2982	8.6177
641	410881	263374721	25.3180	8.6222
642	412164	264609288	25.3377	8.6267
643	413449	265847707	25.3574	8.6312
644	414736	267089984	25.3772	8.6357
645	416025	268336125	25.3969	8.6401
646	417316	269586 136	25.4165	8.6446
647	418609	270840023	25.4362	8.6490
648	419904	272097792	25.4558	8.6535
649	42 I 2 OI	273359549	25.4755	8.6579
650	422500	274625000	25.4951	8.6624

Number!	Square.	Cube.	Square Root.	Cube Root.
651	$4^{2} 38$ OI	275894451	25.5147	8.6668
652	425104	277167808	25.5343	8.6713
653	426409	278445077	25.5539	8.6757
654	427716	279726264	25.5734	8.6801
655	429025	281 OII 375	25.5930	8.6845
656	430336	282300416	25.6125	8.6890
657	431649	283593393	25.6320	8.6934
658	432964	284890312	25.6515	8.6978
659	434281	286191179	25.6710	8.7022
660	4356	287496000	25.6905	8.7066
661	436921	288804781	25.7099	8.7110
662	438244	290117528	25.7294	8.7154
663	439569	291434247	25.7488	8.7198
664	440896	292754944	25.7682	8.7241
665	442225	294079625	25.7876	8.7285
666	443556	295408296	25.8070	8.7329
667	444889	296740963	25.8263	8.7373
668	446224	298077632	25.8457	8.7416
669	4475 61	299418309	25.8650	8.7460
670	448900	300763000	25.8844	8.7503
671	450241	302 III 711	25.9037	8.7547
672	451584	303464448	25.9230	8.7590
673	$45 \quad 2929$	304821217	25.9422	8.7634
674	454276	$\begin{array}{llll}306 & 182 & 024\end{array}$	25.9615	8.7677
675	$45 \quad 5625$	307546875	25.9808	8.7721
676	456976	308915776	26.0000	8.7764
677	458329	310288733	26.0192	8.7807
678	459684	311665752	26.0384	8.7850
679	46 10 41	313046839	26.0576	8.7893
680	462400	314432000	26.0768	8.7937
681	4637 6I	315821241	26.0960	8.7980
682	465124	317214568	26.11 51	8.8023
683	466489	318611987	26.1 343	8.8066
684	467856	320 O13 504	26.1534	8.8109
685	469225	321419125	26.1725	$8.815{ }^{2}$
686	470596	322828856	26.1916	8.8194
687	471969	324242703	26.2107	8.8237
688	473344	325660672	26.2298	8.8280
689	474721	$327 \cdot 082769$	26.2488	8.8323
690	47 61 00	$328 \quad 509000$	26.2679	8.8366
691	4774 81	329939371	26.2869	8.8408
692	478864	33 I 373888	26.3059	8.8451
693	480249	332 812 557	26.3249	8.8493
694	481636	334255384	26.3439	8.8536
695	483025	335702375	26.3629	8.8578
696	484416		26.3818	8.8621
697	$485^{8} 09$	338608873	26.4008	8.8663
698	487204	340068392	26.4197	8.8706
699	4886 о1	341532099	26.4386	8.8748
700	490000	343000000	26.4575	8.8790

Number	Square.	Cube.	Square Root.	Cube Roor.
701	49 I4 OI	344472 IOI	26.4764	8.8833
702	492804	345. 948408	26.4953	8.8875
703	494209	347428927	26.5141	8.8917
704	495616	348913664	26.5330	8.8959
705	497025	350402625	26.5518	8.9001
706	498436	351895816	26.5707	8.9043
707	499849	353393243	26.5895	8.9085
708	501264	354894912	26.6083	8.9127
709	502681	356400829	26.6271	8.9169
710	504100	357 911 000	26.6458	8.9211
711	505521	359425431	26.6646	8.9253
712	506944	360944 I28	26.6833	8.9295
713	508369	362467097	26.7021	8.9337
714	509796	363994344	26.7208	8.9378
715	511225	365525875	26.7395	8.9420
716	512656	367 061 696	26.7582	8.9462
717	514089	368 601 813	26.7769	8.9503
718	515524	370146232	26.7955	8.9545
719	516961	371694959	26.8142	8.9587
720	518400	373248000	26.8328	8.9628
721	$5^{1} 9841$	374805 361	26.8514	8.9670
722	521284	376367048	26.8701	8.9711
723	522729	377933067	26.8887	8.9752
724	524176	379503424	26.9072	8.9794
725	525625	381078125	26.9258	8.9835
726	527076	382657176	26.9444	8.9876
727	528529	$384 \quad 240 \quad 583$	26.9629	8.9918
728	529984	385828352	26.9815	8.9959
729	531441	387420489	27.0000	9.0000
730	$532900{ }^{\circ}$	389 017 7000	27.0185	9.0041
731	5343 61	390617891	27.0370	9.0082
732	535824	$39^{2} 223168$	27.0555	9.0123
733	537289	393832837	27.0740	9.0164
734	538756	395446904	27.0924	9.0205
735	540225	397065375	27.1109	9.0246
736	541696	$398688 \quad 256$	27.1293	9.0287
737	543169	400315553	27.1477	9.0328
738	544644	401947272	27.1662	9.0369
739	54 61 21	403583419	27.1846	9.0410
740	547600	405224000	27.2029	9.0450
741	549081	406869021	27.2213	9.049 r
742	550564	408 518 488	27.2397	9.0532
743	552049	410172407	27.2580	9.0572
744	553536	411830784	27.2764	9.0613
745	555025	413493625	27.2947	9.0654
746	556516	415160936	27.3130	9.0694
747	558009	416832723	27.3313	9.0735
748	559504	418508992	27.3496	9.0775
749	56 10 or	420189749	27.3679	9.0816
750	562500	421875000	27.3861	9.0856

Number	Square.	Cube.	Square Root.	Cube Root.
751	5640 OI	423564751	27.4044	9.0896
752	565504	425259008	27.4226	9.0937
753	567009	426957777	27.4408	9.0977
754	568516	428661064	27.4591	9.1017
755	570025	430368875	27.4773	9.1057
756	571530	432081216	27.4955	9.1098
757	573049	433798093	27.5136	9.1138
758	574564	435 519 512	27.5318	9.1178
759	576081	437245479	27.5500	9.1218
760	577600	438976000	27.5681	9.1258
761	579121	440711081	27.5862	9. 1298
762	58 06 44	442450728	27.6043	9.1338
763	582169	444194947	27.6225	9.1378
764	583696	445943744	27.6405	9.1418
765	585225	447697125	27.6586	9.1458
766	586756	449455096	27.6767	9.1498
767	588289	451217663	27.6948	9.1537
768	589824	452984832	27.7128	9.1577
769	5913 61	454756609	27.7308	9.1617
770	592900	456533000	27.7489	9. 1657
771	5944 41	458314 OII	27.7669	9.1696
772	595984	460099648	27.7849	9.1736
773	597529	461889917	27.8029	9.1775
774	599076	463684824	27.8209	9.1815
775	600625	465484375	27.8388	9.1855
776	602176	467 288. 576	27.8568	9.1894
777	603729	469097433	27.8747	9.1933
778	605284	470910952	27.8927	9.1973
779	606841	472729139	27.9106	9.2012
780	608400	474552000	27.9285	9.2052
781	6099 61	476379541	27.9464	9.2091
782	61 1524	478 211 768	27.9643	9.2130
783	613089	480048687	27.9821	9.2170
784	614656	481890304	28.0000	0.2209
785	616225	483736625	28.0179	9.2248
786	61 7796	485587656	28.0357	9.2287
787	619369	487443403	28.0535	9.2326
788	620944	489303872	28.0713	9.2365
789	622521	491169069	28.0891	9.2404
790	624100	$493 \bigcirc 39000$	28.1069	9.2443
791	625681	494913671	28.1247	9.2482
792	627264	496793088	28.1425	9.2521
793	628849	498677257	28.1603	9.2560
794	630436	$\begin{array}{lllll}500 & 566184\end{array}$	28.1780	9.2599
795	632025	502459875	28.1957	9.2638
796	633616	504358336	28.2135	9.2677
797	635209	506261573	28.2312	9.2716
798	636804	508169592	28.2489	9.2754
799	6384 OI	510082399	28.2666	9.2793
800	6400 00	512000000	28.2843	9.2832

Number	Square.	Cube.	Square Koot.	Cube Root
801	6416 OI	513922401	28.3019	9.2870
802	643204	515849608	28.3196	9.2909
803	644809	517781627	28.3373	9.2948
804	646416	519718464	28.3549	9.2986
805	648025	521660125	28.3725	9.3025
806	649636	523606616	28.3901	$9 \cdot 3063$
807	651249	525557943	28.4077	9.3102
808	652864	527514112	28.4253	9.3140
809	654481	529475129	28.4429	9.3179
810	656100	531441000	28.4605	9.3217
811	657721	533411731	28.4781	$9 \cdot 3255$
812	659344	535387328	28.4956	9.3294
813	660969	537367797	28.5132	9.3332
814 815	$\begin{array}{llll}66 & 25 & 96\end{array}$	539353144	28.5307	9.3370
815	664225	541343375	28.5482	9.3408
816	665856	543338496	28.5657	9.3447
817	667489	5453385^{13}	28.5832	9.3485
818	669124	547343432	28.6007	9.3523
819	670761	549353259	28.6182	9.3561
820	672400	551368000	28.6356	9.3599
821	674041	553387661	28.6531	9.3637
822	675684	555412248	28.6705	9.3675
823	677329	557441767	28.6880	9.3713
824	6789 68 8	559476224	28.7054	9.3751
825	68 06 25	561515625	28.7228	9.3789
826	682276	563559976	28.7402	9.3827
827	683929	565609283	28.7576	$9 \cdot 3865$
828	685584	56756355^{2}	28.7750	9.3902
829	687241	569722789	28.7924	9.3940
830	688900	571787000	28.8097	9.3978
831	690561	573856 191	28.8271	9.4016
832	692224	575930368	28.8444	9.4053
833	693889	578009537	28.8617	9.4091
834	695556	580093704	28.8791	9.4129
835	697225	582182875	28.8964	9.4166
836	698896	584277056	28.9137	9.4204
837	$70 \quad 0569$	586376253	28.9310	9.4241
838	702244	588480472	28.9482	9.4279
839	$\begin{array}{llll}70 & 39 & 21\end{array}$	590589719	28.9655	9.4316
840	705600	592704000	28.9828	9.4354
841	707281	594823321	29.0000	9.4391
842	708964	596947688	29.0172	9.4429
843	710649	599077107	29.0345	9.4466
844	712336	601211584	29.0517	9.4503
845	714025	603351125	29.0689	9.4541
846	$\begin{array}{llll}71 & 57 & 16\end{array}$	605495736	29.0861	9.4578
847	717409	607645423	29.1033	9.4615
848	719104	609800192	29.1204	9.4652
849	720801	611960049	29.1376	9.4690
850	722500	614125000	29.1548	9.4727

Number	Square.	Cube.	Square Root.	Cube Root.
851	7242 O1	616295051	29.1719	9.4764
852	725904	618470208	29.1890	9.4801
853	727609	620650477	29.2062	9.4838
854	729316	622835864	29.2233	9.4875
855	731025	625026375	29.2404	9.4912
856	732736	627222016	29.2575	9.4949
857	734449	629422793	29.2746	9.4986
858	$\begin{array}{ll}73 & 6164\end{array}$	631628712	29.2916	9.5023
859	$\begin{array}{ll}73 & 78 \\ 78 \\ 7\end{array}$	633839779	29.3087	9.5060
860	739600	636056000	29.3258	9.5097
861	741321	638277381	29.3428	9.5134
862	743044	640503928	29.3598	9.5171
863	744769	642735647	29.3769	9.5207
864	746496	644972544	29.3939	9.5244
865	748225	647214625	29.4109	9.5281
866	749956	649 461 896	29.4279	9.5317
867	751689	651714363	29.4449	9.5354
868	753424	653,972032	29.4618	9.5391
869	75 51 6x	656 '234 909	29.4788	9.5427
870	756900	658503000	29.4958	9.5464
871	758641	660776311	29.5127	$9 \cdot 5501$
872	760384	663054848	29.5296	9.5537
873	762129	665338617	29.5466	9.5574
874	763876	667627624	29.5635	9.5610
875	765625	669921875	29.5804	9.5647
876	767376	672221376	29. 5973	9.5683
877	769129	674526133	29.6142	9.5719
878	770884	676836152	29.6311	9.5756
879	772641	679151439	29.6479	9.5792
880	774400	681472000	29.6648	9.5828
88 I	77 61 61	683797841	29.6816	9.5865
882	777924	686128968	29.6985	9.5901
883	779689	688465387	29.7153	9.5937
884	781456	690807104	29.732 I	9.5973
885	$78 \quad 3255$	693154125	29.7489	9.6010
886	784996	695506456	29.7658	9.6046
887	786769	697864103	29.7825	9.6082
888	788544	700227072	29.7993	9.6118
889	790321	702595369	29.8161	9.6154
890	792100	704969000	29.8329	9.6190
891	7938 81		29.8496	9.6226
892	795664	709732288	29.8664	9.6262
893	797449	712121957	29.8831	9.6298
894	799236	714516984	29.8998	9.6334
895	801025	716917375	29.9166	9.6370
896	802816	719323136	29.9333	9.6406
897	804609	721734273	29.9500	9.6442
898	806404	724150792	29.9666	9.6477
899	8082 or	726572699	29.9833	9.6513
900	81 0000	729000000	30.0000	9.6549

Number	Square.	Cube.	Square Root.	Cube Root.
901	81 18 or	731432701	30.0167	9.6585
902	81 3604	733870808	30.0333	9.6620
903	81 5409	736314327	30.0500	$9.6656{ }^{\text {. }}$
904	817216	738763264	30.0666	9.6692
905	81 9025	741217625	30.0832	9.6727
906	820836	743677416	30.0998	9.6763
907	822649	746142643	30.116_{4}	9.6799
908	824464	748613312	30.1330	9.6834
909	826281	751089429	30.1496	9.6870
910	828100	753571000	30.1662	9.6905
911	829921	756058 o31	30.1828	9.6941
912	831744	758550825	30.1993	9.6976
913	833569	761048497	30.2159	9.7012
914	835396	763551944	30.2324	9.7047
915	837225	766060875	30.2490	9.7082
916	839056	768575296	30.2655	9.7118
917	840889	771095213	30.2820	9.7153
918	842724	773620632	30.2985	9.7188
919	8445 6I	776151559	30.3150	9.7224
920	8464 oo	778688000	30.3315	9.7259
92 I	848241	781229961	30.3480	9.7294
922	850084	783777448	30.3645	9.7329
923	851929	786330467	30.3809	9.7364
924	853776	788889024	30.3974	9.7400
925	855625	791453125	30.4138	9.7435
926	857476	794022776	30.4302	9.7470
927	859329	796597983	30.4467	9.7505
928	86 II 84	799178752	30.4631	9.7540
929	863041	801765089	30.4795	9.7575
930	864900	804357000	30.4959	9.7610
931	8667 61	806954491	30.5123	9.7645
932	868624	809557568	30.5287	9.7680
933	870489	812166237	30.5450	9.7715
934	872356	814780504	30.5614	9.7750
935	874225	817400375	3C. 5778	9.7785
936	876096	820025856	30.5941	9.7819
937	877969	822656953	30.6105	9.7854
938	879844	825293672	30.6268	9.7889
939	$8817{ }^{21}$	827936019	30.6431	9.7924
940	883600	830584000	30.6594	9.7959
941	8854 81	833237621	30.6757	9.7993
942	887364	835896888	30.6920	9.8028
943	889249	838561807	30.7083	9.8063
944	89 II 36	841232384	30.7246	9.8097
945	893025	843908625	30.7409	9.8132
946	894916	846590536	30.7571	9.8167
947	896809	849278123	30.7734	9.8201
948	898704	851971392	30.7896	9.8236
949	9006 O1	854670349	30.8058	9.8270
950	902500	857375000	30.822 I	9.8 .305

Number	Squarc.	Cube.	Square Root.	Cube Root.
951	9044 OI	860085351	30.8383	c. 8339
952	906304	862 801 408	30.8545	9.8374
953	908209	865523177	30.8707	9.8408
954	91 O1 16	868250664	30.8869	9.8443
955	912025	870983875	30.9031	9.8477
956	913936	873722816	30.9192	9.8511
957	915849	876467493	30.9354	9.8546
958	917764	879217912	30.9516	9.8580
959	919681	881 974079	30.9677	9.8614
960	921600	884736000	30.9839	9.8648
961	923.21	887503681	31.0000	9.8683
962	925444	890277128	31.0161	9.8717
963	927369	893056347	31.0322	9.8751
964	929296	895841344	31.0483	9.8785
965	931225	898632125	31.0644	9.8819
966	93 31 56	901428696	31.0805	9.8854
967	935089	$904 \quad 231063$	31.0966	9.8888
968	937024	907039232	31.1127	9.8922
969	938961	909853209	31.1288	9.8956
970	940900	912673000	31.1448	9.8990
971	942841	915498611	31.1609	9.9024
972	944784	$918 \quad 330048$	31.1769	9.9058
973	946729	921167317	31.1929	9.9092
974	948676	924 O10 424	31.2090	9.9126
975	950625	926859375	31.2250	9.9160
976	952576	929714176	31.2410	9.9194
977	954529	932574833	31.2570	9.9227
978	956484	935441352	31.2730	9.9261
979	958441	938313739	31.2890	9.9295
980	960400	$9411{ }^{9} 1000$	31.3050	9.9329
98 I	9623 6i	944076141	31.3209	
982	964324	946966168	31.3369	9.9396
983	966289	949862087	31.3528	9.9430
984	968256	952763904	31.3688	9.9464
985	970225	9×5671625	31.3847	9.9497
986	972196	958585256	31.4006	
987	974169	961504803	31.4166	9.956
988	97 61 44	964430272	31.4325	9.9598
989	978121	967 361 669	31.4484	9.9632
99°	98 or oo	970299000	31.4643	9.9666
991	982081	973242271	31.4802	9.9699
992	984064	976 191 488	31.4960	9.9733
993	986049	979146657	31.5119	9.9766
994	988036	982107784	31.5278	9.9800
995	990025	985074875	31.5436	9.9833
996	992016	988047936	31. 5595	9.9866
997	994009	991026973	31.5753	9.9900
998	996004	994 OII 992	31.5911	9.9933
999	9980 or	997002999	31.6070	9.9967
1000	1000000	1000000000	31.6228	10.0000

SHORT-TITLE CATALOGUE

OF THES

PUBLICATIONS

or
 JOHN WILEY \& SONS,
 New York.
 London: CHAPMAN \& HALL, Limited.

ARRANGED UNDER SUBJECTS.

Descriptive circulars sent on application. Books marked with an asterisk (*) are sold at net prices only, a double asterisk (**) books sold under the rules of the American Publishers' Association at net prices subject to an extra charge for postage. All books are bound in cloth unless otherwise stated.

AGRICULTURE.

Armsby's Manual of Cattle-feeding. 12mo, \$1 75
Principles of Animal Nutrition. 8vo, 400
Budd and Hansen's American Horticultural Manual:
Part I. Propagation, Culture, and Improvement. 2 mo I 50
Part II. Systematic Pomology. 12mio, 50
Downing's Fruits and Fruit-trees of America 8vo, 500
Elliott's Engineering for Land Drainage. 12mo, 150
Practical Farm Drainage. 12mo, 100
Green's Principles of American Forestry. 12mo, 50
Grotenfelt's Principles of Modern Dairy Practice. (Woll.). 12mo, 200
Kemp's Landscape Gardening. 12 mo , 50
Maynard's Landscape Gardening as Applied to Home Decoration. $12 \mathrm{mo}, 150$
Sanderson's Insects Injurious to Staple Crops. 150
Insects Injurious to Garden Crops. (In preparation.)Insects Injuring Fruits. (In preparation.)Stockbridge's Rocks and Soils.8vo, 250
Woll's Handbook for Farmers and Dairymen. $16 \mathrm{mo}, 150$
ARCHITECTURE.
Baldwin's Steam Heating for Buildings. $12 \mathrm{mo}, 250$
Bashore's Sanitation of a Country House $12 \mathrm{mo}, 100$
Berg's Buildings and Structures of American Railroads. 4to, 500
Birkmire's Planning and Construction of American Theatres. $8 \mathrm{vo}, 300$
Architectural Iron and Steel. $8 \mathrm{vo}, 350$
Compound Riveted Girders as Applied in Buildings. $8 \mathrm{vo}, 200$
Planning and Construction of High Office Buildings. 8vo 350
Skeleton Construction in Buildings. $8 \mathrm{vo}, 300$
Brigg's Modern American School Buildings. 8vo, 400
Carpenter's Heating and Ventilating of Buildings. 8vo. 400
Freitag's Architectural Engineering. 350
Fireproofing of Steel Buildings. 8vo, 250
French and Ives's Stereotomy. 8vo, 250
Gerhard's Guide to Sanitary House-inspection. 16 mo , 100
Theatre Fires and Panics. 12 mo , 50
Holly's Carpenters' and Joiners' Handbook 75
Johrson's Statics by Algebraic and Graphic Methods. 8vo, 200
Kidder's Architects' and Builders' Pocket-book. Rewritten Edition. 16mo, mor. 500
Merrill's Stones for Building and Decoration. 8vo, 500
Non-metallic Minerals: Their Occurrence and Uses 8vo, 400
Monckton's Stair-building 4to, 400
Patton's Practical Treatise on Foundations. 8vo, 500
Peabody's Naval Architecture 8vo, 750
Richey's Handbook for Superintendents of Construction 400
Sabin's Industrial and Artistic Technology of Paints and Varnish. 8vo, 300
Siebert and Biggin's Modern Stone-cutting and Masonry. 8vo, I 50
Snow's Principal Species of Wood 8vo, 350
Sondericker's Graphic Statics with Applications to Trusses, Bearcs, and Arches.
8vo, 3
Towne's Locks and Builders' Hardware 18mo, morocco, 300
Wait's Engineering and Architectural Jurisprudence 8vo, 600
Sheep, 650Law of Operations Preliminary to Construction in Engineering and Archi-tecture.8vo, 500
Sheep, 550
Law of Contracts. 8vo, 300
Wood's Rustless Coatings: Corrosion and Electrolysis of Iron and Steel. .8vo, 400
Woodbury's Fire Protection of Mills. 8vo, 250
Worcester and Atkinson's Small Hospitals, Establishment and Maintenance, Suggestions for Hospital Architecture, with Plans for a Small Hospital. . 12 mo , 125
The World's Columbian Exposition of 1893. Large 4 to 00
ARMY AND NAVY.
Bernadou's Smokeless Powder, Nitro-cellulose, and the Theory of the Cellulose Molecule $12 \mathrm{mo}, 250$

* Bruff's Text-book Ordnance and Gunnery 8vo, 600
Chase's Screw Propellers and Marine Propulsion. 8vo, 300
Cloke's Gunner's Examiner $8 \mathrm{vo}, \quad 150$
Craig's Azimuth 4to 350
Crehore and Squier's Polarizing Photo-chronograph 8vo, 300
Cronkhite's Gunnery for Non-commissioned Officers. 24 ma , morocco, 200
* Davis's Elements of Law. 8vo, 250
* Treatise on the Military Law of United States. 8vo, 700
Sheep, 750
De Brack's Cavalry Outposts Duties. (Carr.). 24 mo , morocco, 200
Dietz's Soldier's First Aid Handbook 16mo, morocco, 125
* Dredge's Modern French Artillery 4to, half morocco, 15 500
Durand's Resistance and Propulsion of Ships $8 \mathrm{vo}, 500$
* Dyer's Handbook of Light Artillery. $12 \mathrm{mo}, 300$
Eissler's Modern High Explosives. $8 \mathrm{vo}, 400$
* Fiebeger's Text-book on Field Fortification. Small 8vo,
Hamilton's The Gunner's Catechism $18 \mathrm{mo}, \quad 100$
* Hoff's Elementary Naval Tactics. 8vo
Ingalls's Handbook of Problems in Direct Fire 8vo
* Ballistic Tables. $8 \mathrm{vo}, 150$
* Lyons's Treatise on Electromagnetic Phenomena. Vols. I. and II. .8vo, each, 600
* Mahan's Permanent Fortifications. (Mercur.) 8vo, half morocco, 750
Manual for Courts-martial. 16 mo , morocco, I 50
* Mercur's Attack of Fortified Places 12 mo 200
* Elements of the Art of War. 400
Metcalf's Cost of Manufactures-And the Administration of Workshops. .8vo 500
* Ordnance and Gunnery. 2 vols 500
Murray's Infantry Drill Regulations 18mo, paper, 10
Nixon's Adjutants' Manual. 100
Peabody's Naval Architecture. 8vo, 750
* rhelps's Practical Marine Surveying. 8vo, 250
Powell's Army Officer's Examiner 400
Sharpe's Art of Subsisting Armies in War. 18mo morocco, 150
* Walke's Lectures on Explosives. 8vo, 400
* Wheeler's Siege Operations and Military Mining 8vo, 200
Winthrop's Abridgment of Military Law. 250
Woodhull's Notes on Military Hygiene. 16 mo , 150
Young's Simple Elements of Navigation 16mo, morocco, 100
Second Edition, Enlarged and Revised. r6mo, morocco, 200
ASSAYING.
Fletcher's Practical Instructions is. Quantitative Assaying with the Blowpipe.12 mo , morocco,150
Furman's Manual of Practical Assaying. 8vo, 300
Lodge's Notes on Assaying and Metallurgical Laboratory Experiments8vo, 300
Miller's Manual of Assaying. 100
O'Driscoli's Notes on the Treatment of Gold Ores. 8vo, 200
Ricketts and Miller's Notes on Assaying. 8vo, 300
Ulke's Modern Electrolytic Copper Refining. 300
Wilson's Cyanide Processes. 12 mo , I 50
Chlorination Process. 12 mo , I 50
ASTRONOMY.
Comstock's Field Astronomy for Engineers. 8vo,Craig's Azimuth4to, 350
Doolittle's Treatise on Practical Astronomy. 8vo, 400
Gore's Elements of Geodesy 8vo, 250
Hayford's Text-book of Geodetic Astronomy 8vo, 300
Merriman's Elements of Precise Surveying and Geodesy. 250
* Michie and Harlow's Practical Astronomy. 8vo, 300
* White's Elements of Theoretical and Descriptive Astronomy 12 mo , 200
BOTANY.
Davenport's Statistical Methods, with Special Reierence to Biological Variation.
16mo, morocco, 125
Thomé and Bennett's Structural and Physiological Botany 16 mo , 225
Westermaier's Compendium of General Botany. (Schneider.). 8vo, 200
CHEMISTRY.
Adriance's Laboratory Calculations and Specific Gravity Tables 12 mo , 125
Allen's Tables for Iron Analysis. 300
Arnold's Compendium of Chemistry. (Mandel.). Small 8vo, 350
Austen's Notes for Chemical Students I 50
Bernadou's Smokeless Powder.-Nitro-cellulose, and Theory of the Cellulose Molecule 12 mo , 250
Bolton's Quantitative Analysis. 50
* Browning's Introduction to the Rarer Elements 8vo, 150
Brush and Penfield's Manual of Determinative Mineralogy. 8vo, 400
Classen's Quantitative Chemical Analysis by Electrolysis. (Boliwood.). .8vo, 300
Cohn's Indicators and Test-papers. 200
Tests and Reagents. 8vo, 300
Crafts's Short Course in Qualitative Chemical Analysis. (Schaeffer.)...12mo, 50
Dolezalek's Theory of the Lead Accumulator (Storage Battery). (VonEnde.). 12 mo ,50
Drechsel's Chemical Reactions. (Merrill.). 25
Duhem's Thermodynamics and Chemistry. (Eurgess.) 400
Eissler's Modern High Explosives. 400
Effront's Enzymes and their Applications. (Prescott.) 300
Erdmann's Introduction to Chemical Preparations. (Dunlap.) 125

Fletcher's Fractical Instructions in Quantitative Assayirg with the Blenpipe.
Fowler's Sewage Works Analyses 12 mo 200
Fresenius's Manual of Qualitative Chemical Analysis. (Wells.).. 8vo, 500
Manual of Qualitative Chemical Analysis. Part I. Descriptive. (Wells.) 8vo, 300
System of Instruction in Quantitative Chemical Aralysis. (Cctn.) 2 vols. $8 \mathrm{vo}, 1250$
Fuertes's Water and Public Health. 150
Furman's Manual of Practical Assaying. 300

* Getman's Exercises in Physical Chemistry 200
Gill's Gas and Fuel Analysis for Engineers. 125
Grotenfelt's Principles of Modern Dairy Practice. (Woll.). 200
Hammarsten's Text-book of Physiological Chemistry. (Mandel.)....... 8vo, 400
Helm's Principles of Mathematical Chemistry. (Morgan.). 150
Hering's Ready Reference Tables (Conversion Factors).ictio morccco, 250
Hind's Inorganic Chemistry. 300
* 'Laboratory Manual for Students 100
Holleman's Text-book of Inorganic Chemistry. (Cooper.). 250
Text-book of Organic Chemistry. (Walker and Mott.). 250
* Laboratory Manual of Organic Chemistry. (Walker.) 1 co
Hopkins's Oil-chemists' Handbook. 300
Jackson's Directions for Laboratory Work in Physiological Chemistry. . 8vo, 125
Keep's Cast Iron. 250
Ladd's Manual of Quantitative Chemical Analysis. 100
Landauer's Spectrum Analysis. (Tingle.) 300
* Langworthy and Austen. The Occurrence of Aluminium in Vege able Products, Animal Products, and Natural Waters. 200
Lassar-Cohn's Practical Urinary Analysis. (Lorenz.). 100
Application of Some General Reactions to Investigations in Crganic Chemistry. (Tingle.) 100
Leach's The Inspection and Analysis of Food with Special Refererce to State Control. 8 vo , 750
Löb's Electrolysis and Electrosynthesis of Organic Compounds. (Lorenz.).12mo, 1 co
Lodge's Notes on Assaying and Metallurgical Laboratory Experiments. .. .8vo, 3 co
Lunge's Techno-chemical Analysis. (Cohn.) 12 mo , co
Mandel's Handbook for Bio-chemical Laboratory 1 ᄃo
* Martin's Laboratory Guide to Qualitative Analysis with the Blowpipe . .12mo, co
Mason's Water-supply. (Considered Principally from a S̉anitary Standpoint.) 3d Edition, Rewritten. 00
Examination of Water. (Chemical and Bacteriological.) 125
Matthew's The Textile Fibres. 350
Meyer's Determination of Radicles in Carbon Compounds. (Tingle.). .12mo, 00Miller's Manual of Assaying.
Mixter's Elementary Text-book of Chemistry. 50100
Morgan's Outline of Theory of Solution and its Results
Elements of Physical Chemistry. 20
Morse's Calculations used in Cane-sugar Factories. 150
Mulliken's General Method for the Identification of Fure Organic Cerrpourds. Vol. I. Large 8vo, 5 ou
O'Brine's Laboratory Guide in Chemical Analysis. 200
O'Driscoll's Notes on the Treatment of Gold Ores. 200
Ostwald's Conversations on Chemistry. Part Oné (Ramsey.).rımo, 150
Ostwald's Conversations on Chemistry. Part Two. (Turnbull). (In Fress.)* Penfield's Notes on Determinative Mineralogy and Record of Mireral Tests.8vo, paper,50
Pictet's The Alkaloids and their Chemical Constitution. (Biddie.) 8ro, 500
Pinner's Introduction to Organic Chemistry. (Austen.).12mo, 150
Poole's Calorific Power of Fuels. 300
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer- ence to Sanitary Water Analysis. 125
* Reisig's Guide to Piece-dyeıng. 8vo, 2500
Richards and Woodman's Air, Water, and Food from a Sanitary Standpoint 8vo, 200
Richards's Cost of Living as Modified by Sanitary Science 12 mo,Cost of Food, a Study in Dietaries$12 \mathrm{mo}, 100$
* Richards and Williams's The Dietary Computer. 8 vo , 150
Ricketts and Russell's Skeleton Notes upon Inorganic Chemistry. (Part I. Non-metallic Elements.). 8vo, morocco, 75
Ricketts and Miller's Notes on Assaying. 8 vo , 300
Rideal's Sewage and the Bacterial Purification of Sewage. 8vo, 350
Disinfection and the Preservation of Food. 8vo, 4 oo
Rigg's Elementary Manual for the Chemical Laboratory. 8vo, 125
Rostoski's Serum Diagnosis. (Bolduan.). 100
Ruddiman's Incompatibilities in Prescriptions. 8vo, 200
Sabin's Industrial and Artistic Technology of Paints and Varnish. 8vo, 300
Salkowski's Physiological and Pathological Chemistry. (Orndorff.). 8vo, 250
Schimpf's Text-book of Volumetric Analysis. 12 mo , 250
Essentials of Volumetric Analysis. 125
Spencer's Handbook for Chemists of Beet-sugar Houses. r6mo, morocco, 300
Handbook for Sugar Manufacturers and their Chemists. . 16 mo , morocco, 00
Stockbridge's Rocks and Soils. 250
* Tillman's Elementary Lessons in Heat 150
* Descriptive General Chemistry. 300
Treadwell's Qualitative Analysis. (Hall.) 300
Quantitative Analysis. (Hall.). 4 oo
Turneaure and Russell's Public Water-supplies 500
Van Deventer's Physical Chemistry for Beginners. (Boltwood.) 150
* Walke's Lectures on Explosives. 8"o, 400
Washington's Manual of the Chemical Analysis of Rocks. 200
Wassermann's Immune Sera: Hæmolysins, Cytotoxins, and Precipitins. (Bol- duan.) . 12 mo , 100
Well's Laboratory Guide in Qualitative Chemical Analysis. 8vo, 150
Short Course in Inorganic Qualitative Chemical Analysis for Engineering Students. 12 mo , 150
Text-book of Chemical Arithmetic 125
Whipple's Microscopy of Drinking-water. 350
Wilson's Cyanide Processes 150
Chlorination Process. 150
Wulling's Elementary Course in Inorganic, Pharmaceutical, and Medical Chemistry. 12 mo , 200CIVIL ENGINEERING.
BRIDGES AND ROOFS. HYDRAULICS. MATERIALS OF ENGINEERING. RAILWAY ENGINEERING.
Baker's Engineers' Surveying Instruments. Pane.............12mo, 300
Bixby's Graphical Computing Table. Paper $19 \frac{1}{2} \times 24 \frac{1}{4}$ inches. 25
** Burr's Ancient and Modern Engineering and the Isthmian Canal. (Postage, 27 cents additional.) 350
Comstock's Field Astronomy for Engineers. 50
Davis's Elevation and Stadia Tables. 8vo, 100
Elliott's Engineering for Land Drainage. 50
Practical Farm Drainage. 100
*Fiebeger's Treatise on Civil Engineering 500
Folwell's Sewerage. (Designing and Maintenance.). $8 \mathrm{vo}, 3$ oo
Freitag's Architectural Engineering. 2d Edition, Rewritten 50
French and Ives's Stereotomy 50
Goodhue's Municipal Improvements. 75
Goodrich's Economic Disposal of Towns' Refuse. 30
Gore's Elements of Geodesy. 8vo, 50
Hayford's Text-book of Geodetic Astronomy. 8vo, 300
Hering's Ready Reference Tables (Conversion Factors).16mo, morocco, 50
Howe's Retaining Walls for Earth. 125
Johnson's (J. B.) Theory and Practice of Surveying. Small 8vo, 400
Johnson's (L. J.) Statics by Algebraic and Graphic Methods. 200
Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.). 12mo, 200
Mahan's Treatise on Civil Engineering. (1873.) (Wood.). 500
* Descriptive Geometry. 150
Merriman's Elements of Precise Surveying and Geodesy. 250
Elements of Sanitary Engineering. 200
Merriman and Brooks's Handbook for Surveyors. 200
Nugent's Plane Surveying 350
Ogden's Sewer Design 200
Patton's Treatise on Civil Engineering. 8vo half leather, 750
Reed's Topographical Drawing and Sketching 500
Rideal's Sewage and the Bacterial Purification of Sewate. 350
Siebert and Biggin's Modern Stone-cutting and Masonry 50
Smith's Manual of Topographical Drawing. (McMillann). 50
Sondericker's Graphic Statics, with Applications to Trusses, beams, and Arches. 8vo, 200
Taylor and Thompson's Treatise on Concrete, Plain and Reinforced..... 8vo, 500
* Trautwine's Civil Engineer's Pocket-book 500
Wait's Engineering and Archi'ectural Jurisprudence. 8vo, 600Law of Operations Preliminary to Construction in Engineering and Archi-tecture.8vo,
500
Law of Contracts. 8vo, 550
Warren's Stereotomy-Problems in Stone-cutting. 8vo,300
Webb's Problems in the Use and Adjustment of Engineering Instruments. 16 mo , morocco, 125
* Wheeler s Elementary Course of Civil Engineering 8vo, 400
Wilson's Topographic Surveying. 8vo, 350
BRIDGES AND ROOFS.
Boller's Practical Treatise on the Construction of Iron Highway Bridges. . 850, 200
* Thames River Bridge. 500
Burr's Course on the Stresses in Bridges and Roof Trusses, Arched Ribs, and Suspension Bridges. 350
Burr and Falk's Influence Lines for Bridge and Roof Computations.... 8vo, 300
Du Bois's Mechanics of Engineering. Vol. II. Small 4to, 1000
Foster's Treatise on Wooden Trestle Bridges. 4to, 500
Fowler's Ordinary Foundations. 8vo, 350
Greene's Roof Trusses. 8vo, 125
Bridge Trusses 8vo, 50
Arches in Wood, Iron, and Stone. 8vo, 50
Howe's Treatise on Arches 8vo, 4 oo
Design of Simple Roof-trusses in Wood and Steel. $8 \mathrm{vo}, 2$ oo
Johnson, Bryan, and Turneaure's Theory and Practice in the Designing of Modern Framed Structures. Small 4to, 1000
Merriman and Jacoby's Text-book on Roofs and Bridges:
Part I. Stresses in Simple Trusses. 8vo, 50
Part II. Graphic Statics. 8vo, 50
Part III. Bridge Design 8vo, 250
Part IV. Higher Structures. $8 \mathrm{vo}, 250$
Morison's Memphis Bridge. 4to, 1000
Waddell's De Pontibus, a Pocket-book for Bridge Engineers. . 16 mo , morocco, 00
Specifications for Steel Bridges. 25
Wood's Treatise on the Theory of the Construction of Bridges and Roofs. . 8vo, co
Wright's Designing of Draw-spans:
Part I. Plate-girder Draws. 8vo, 50
Part II. Riveted-truss and Pin-connected Long-span Draws. 8vo, 50
Two parts in one volume 8vo, 50

HYDRAULICS.

Bazin's Experiments upon the Contraction of the Liquid Vein Issuing from an Orifice. (Trautwine.). 8vo, 00
Bovey's Treatise on Hydraulics. 8vo, 500
Church's Mechanics of Engineering. .8vo, 600
Diagrams of Mean Velocity of Water in Open Channels . paper, 1 50
Coffin's Graphical Solution of Hydraulic Problems. 16mo, morocco, 250
Flather's Dynamometers, and the Measurement of Power. 12 mo , 300
Folwell's Water-supply Engineering. 8vo,
Frizell's Water-power. 8vo,
Fuertes's Water and Public Health. 12 mo , I 50
Water-filtration Works. 12 mo , 250
Ganguillet and Kutter's General Formula for the Uniform Flow of Water in Rivers and Other Channels. (Hering and Trautwine.).8vo, 400
Hazen's Filtration of Public Water-supply. 8vo, 00
Hazlehurst's Towers and Tanks for Water-works. 8vo, 50
Herschel's II5 Experiments on the Carrying Capacity of Large, Riveted, Metal Conduits. 8vo, 200
Mason's Water-supply. (Considered Principally from a Sanitary Standpoint.)
8vo, 400
Merriman's Treatise on Hydraulics. 8vo, 500

* Michie's Elements of Analytical Mechanics. 8vo, 400
Schuyler's Reservoirs for Irrigation, Water-power, and Domestic Water- supply. Large 8vo, 500
** Thomas and Watt's Improvement of Rivers. (Post., 44c. additional.).4to, 600
Turneaure and Russell's Public Water-supplies. 8vo, 500
Wegmann's Design and Construction of Dams. 4to, 500
Water-supply of the City of New York from 1658 to 1895. 4to, 1000
Williams and Hazen's Hydraulic Tables. 8vo, I 50
Wilson's Irrigation Engineering.. Small 8vo, 400
Wolff's Windmill as a Prime Mover. 8vo, 300
Wood's Turbines. 8vo, 250
Elements of Analytical Mechanics. 8vo, 300
MATERIALS OF ENGINEERING.
Baker's Treatise on Masonry Construction. 8vo, 500
Roads and Pavements. .8vo, 500
Black's United States Public Works Oblong 4 to, 500
Bovey's Strength of Materials and Theory of Structures. 8vo, 750
Burr's Elasticity and Resistance of the Materials of Engineering. 8vo, 750
Byrne's Highway Construction. 8vo, 500Inspection of the Materials and Workmanship Employed in Construction.
16 mo , 300
Church's Mechanics of Engineering. 8 vo , 600
Du Bois's Mechanics of Engineering. Vol. I. Small 4to, 750
*Eckel's Cements, Limes, and Plasters 8vo,
Johnson's Materials of Construction. Large 8vo, 600
Fowler's Ordinary Foundations. 8vo, 350
Keep's Cast Iron. 8vo, 50
Lanza's Applied Mechanics. 8vo, 750
Marten's Handbook on Testing Materials. (Henning.) 2 vols. 8vo, 750
Merrill's Stones for Building and Decoration. 8vo, 500
Merriman's Mechanics of Materials. 8vo, 500
Strength of Materials 12 mo 00
Metcalf's Steel. A Manual for Steel-users. 12 mo , 200
Patton's Practical Treatise on Foundations. 8vo, 500
Richardson's Modern Asphalt Pavements. 8vo, 300
Richey's Handbook for Superintendents of Construction. rmo, mor., 400
Rockwell's Roads and Pavements in France. 25
Sabin's Industrial and Artistic Technoiogy of Paints and Varnish 8vo, 300
Smith's Materials of Machines. 100
Snow's Principal Species of Wood. 350
Spalding's Hydraulic Cement. 200
Text-book on Roads and Pavements. 200
Taylor and Thompson's Treatise on Concrete, Plain and Reinforced..8vo, 500
Thurston's Materials of Engineering. 3 Parts. 8vo, 800
Part I. Non-metallic Materials of Engineering and Metallurgy 8vo, 200
Part II. Iron and Steel. 350
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their Constituents. 8vo, 250
Thurston's Text-book of the Materials of Construction. 5 ooTillson's Street Pavements and Paving Materials.
Waddell's De Pontibus. (${ }^{\text {a }}$ Pocket-book for Bridge Engineers.). .r6mo, mor., 300
Specifications for Ste i Bridges125
Wood's (De V.) Treatise on the Resistance of Materials, and an Appendix on the Preservation of Timber. 8vo, 200
Wood's (De V.) Elements of Analytical Mechanics. 8vo, 300
Wood'ت (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron and Steel. .8จo, 400
RAILWAY ENGINEERING.
Andrew's Handbook for Street Railway Engineers..... 3×5 inches, morocco, 125
Berg's Buildings and Structures of American Railroads 4to, 500
Brook's Handbook of Street Railroad Location. 16mo, morocco, I 50
Eutt's Civil Engineer's Field-book. 16 mo , morocco, 250
Crandall's Transition Curve 16 mo , morocco, 150
Railway and Other Earthwork Tables. 8vo, 150
Dawson's "Engineering" and Electric Traction Pocket-book. . r6mo, morocco, 500
Dredge's History of the Pennsylvania Railroad: (1879) Paper, 500
* Drinker's Tunnelling, Explosive Compounds, and Rock Drills. 4to, half mor., 00
Fisher's Table of Cubic Yards. Cardboard, 25
Godwin's Railroad Engineers' Field-book and Explorers' Guide . . . 16 mo , mor., 250
Howard's Transition Curve Field-book. 16 mo , morocco, I 50
Hudson's Tables for Calculating the Cubic Contents of Excavations and Em- bankments: .8vo, 100
Molitor and Beard's Manual for Resident Engineers. 16mo, 100
Nagle's Field Manual for Railroad Engineers. 16mo, morocco, 300
Philbrick's Field Manual for Engineers. 16 mo , morocco, 300
Searles's Field Engineering. 16 mo , morocco, 300
Railroad Spiral. 16mo, morocco, 150
Taylor's Prismoidal Formulæ and Earthwork. 8vo, 150
* Trautwine's Method of Calculating the Cube Contents of Excavations and Embankments by the Aid of Diagrams. 200
The Field Practice of Laying Out Circular Curves for Railroads.
12 mo , morocco, 250
Cross-section Sheet. Paper, 25
Webb's Railroad Construction. 16mo, morocco, 5 oo
Wellington's Economic Theory of the Location of Railways.
Small 8vo
Small 8vo 500 500
DRAWING.
Barr's Kinematics of Machinery. 8vo, 250
* Bartlett's Mechanical Drawing. 8vo, 300
Abridged Ed. 8vo, 150
Coolidge's Manual of Drawing. 8vo, paper 100
Coolidge and Freeman's Elements of General Drafting for Mechanical Engi- neers. Oblong 4to, 250
Durley's Kinematics of Machines. 8vo, 4 oo
Emch's Introduction to Projective Geometry and its Applications. 8vo. 250
Hill's Text-book on Shades and Shadows, and Perspective 8vo, ooJamison's Elements of Mechanical Drawing.
8vo,
Advanced Mechanical Drawing 8vo, 250 oo
Jones's Machine Design:
Part I. Kinematics of Machinery. 8vo,Part II. Form, Strength, and Proportions of Parts.8vo,
8 vo ,
MacCord's Elements of Descriptive Geometry 300
8vo,
Kinematics; or, Practical Mechanism. 5
4to,
Mechanical Drawing. 400
8vo,
Velocity Diagrams. 150
8vo,
* Mahan's Descriptive Geometry and Stone-cutting. 150
8vo,
Industrial Drawing. (Thompson.). 350
8vo,
Moyer's Descriptive Geometry. 004to,Reed's Topographical Drawing and Sketching.
8vo,
Reid's Course in Mechanical Drawing. oo00
Text-book of Mechanical Drawing and Elementary Machine Design.
Robinson's Principles of Mechanism. $8 \mathrm{vo}, 3$ oo
Schwamb and Merrill's Elements of Mechanism 8vo, 300
Smith's Manual of Topographical Drawing. (McMillan.) 8vo, 50
Warren's Elements of Plane and Solid Free-hand Geometrical Drawing. 12mo, 100
Drafting Instruments and Operations. 12 mo 25
Manual of Elementary Projection Drawing.
Manual of Elementary Problems in the Linear Perspective of Form and Shadow 00
Plane Problems in Elementary Geometry 25
Primary Geometry 75
Elements of Descriptive Geometry, Shadows, and Perspective. 50
General Problems of Shades and Shadows. oo
Elements of Machine Construction and Drawing 50
Problems, Theorems, and Examples in Descriptive Geometry. 50
Weisbach's Kinematics and Power of Transmission. (Hermann and Klein)8vo, 00
Whelpley's Practical Instruction in the Art of Letter Engraving. oo
Wilson's (H. M.) Topographic Surveying 50
Wilson's (V. T.) Free-hand Perspective 50
Wilson's (V. T.) Free-hand Lettering. oo
Woolf's Elementary Course in Descriptive Geometry Large 8vo, oo
ELECTRICITY AND PHYSICS.
Anthony and Brackett's Text-book of Physics. (Magie.).......... Small 8vo, 300
Anthony's Lecture-notes on the Theory of Electrical Measurements..... 12 mo , 100
Benjamin's History of Electricity. 300
Voltaic Cell. 300
Classen's Quantitative Chemical Analysis by Electrolysis. (Boltwood.).8vo, 300
Crehore and Squier's Polarizing Photo-chronograph. 8vo, 300Dawson's "Engineering" and Electric Traction Pocket-book. I6mo, morocco,Dolezalek's Theory of the Lead Accumulator (Storage Battery). (Von
Ende.). 12 mo ,
Duhem's Thermodynamics and Chemistry. (Burgess.). 8vo, 400
Flather's Dynamometers, and the Measurement of Power. 300
Gilbert's De Magnete. (Mottelay.). 8vo, 250
Hanchett's Alternating Currents Explained.
Hering's Ready Reference Tables (Conversion Factors).16mo, morocco,100Holman's Precision of Measurements.$8 \mathrm{vo}, 200$
Telescopic Mirror-scale Method, Adjustments, and Tests.... Large 8vo, 75
Kinzbrunner's Testing of Continuous-Current Machines. 200
Landauer's Spectrum Analysis. (Tingle.). 300
Le Chatelien's High-temperature Measurements. (Boudouard-Burgess.) 12 mo 300
Löb's Electrolysis and Electrosynthesis of Organic Compounds. (Lorenz.) I2mo, oo
* Lyons's Treatise on Electromagnetic Phenomena. Vols. I. and II. 8vo, each, 600
* Michie's Eiements of Wave Motion Relating to Sound and Light. 8vo, 400
Niaudet's Elementary Treatise on Electric Batteries. (Fishback.).12mo, 250
* Rosenberg's Electrical Engineering. (Haldane Gee-Kinzbrunner.). . .8vo, 50
Ryan, Norris, and Hoxie's Electrical Machinery. Vol. I. 8vo, 50
Thurston's Stationary Steam-engines. 8vo, 250
* Tillman's Elementary Lessons in Heat. 8 vo , 50
Tory and Pitcher's Manual of Laboratory Physics. .Small 8vo, 200
Ulke's Modern Electrolytic Copper Refining. $8 \mathrm{vo}, 300$
LAW.
* Davis's Elements of Law. 8vo, 250
* Treatise on the Military Law of United States. 8vo, 7 оэ
* Sheep, 750
Manual for Courts-martial. 16mo, morocco, 150
Wait's Engineering and Architectural Jurisprudence. 6 oo
Law of Operations Preliminary to Construction in Engineering and Archi- tecture. 8vo, 500
Sheep, 550
Law of Contracts. $12 \mathrm{mo}, 250$
Winthrop's Abridgment of Military Law.
MANUFACTURES.
Bernadou's Smokeless Powder-Nitro-cellulose and Theory of the Cellulose Molecule . 12 mo , 250
Bolland's Iron Founder. 12 mo , 250
"The Iron Founder," Supplement. 12 mo , 250
Encyclopedia of Founding and Dictionary of Foundry Terms Used in the Practice of Moulding. 300
Eissler's Modern High Explosives. 4 oo
Effront's Enzymes and their Applications. (Prescott.). 300
Fitzgerald's Boston Machinist. 100
Ford's Boiler Making for Boiler Makers. 100
Hopkin's Oil-chemists' Handbook. 300
Keep's Cast Iron. 250
Leach's The Inspection and Analysis of Food with Special Reference to State Control. Large 8vo, 750
Matthews's The Textile Fibres. 350
Metcalf's Steel. A Manual for Steel-users. 200
Metcalfe's Cost of Manufactures-And the Administration of Workshops 8vo, 500
Meyer's Modern Locomotive Construction. 4to, 1 00
Morse's Calculations used in Cane-sugar Factories. . 6 mo , morocco 150
* Reisig's Guide to Piece-dyeing. 8vo, 25
Sabin's Industrial and Artistic Technology of Paints and Varnish. 8vo, 3 oo
Smith's Press-working of Metals. $8 \mathrm{vo}, 3$ oo
Spalding's Hydraulic Cement. 200
Spencer's Handbook for Chemists of Beet-sugar Houses. ... r6mo, morocco, 300
Handbook for Sugar Manufacturers and their Chemists. . 16 mo , morocco, 200
Taylor and Thompson's Treatise on Concrete, Plain and Reinforced. 8vo, 500
Thurston's Manual of Steam-boilẹrs, their Designs, Construction and Opera- tion. 8vo, 5 oo
* Walke's Lectures on Explosives. 8vo, 400
Ware's Manufacture of Sugar. (In press.)
West's American Foundry Practice. 12 mo 250
Moulder's Text-book. 12 mo , 250
Wolff's Windmill as a Prime Mover 300
Wood's Rustless Coatings: Corrosion and Electrolysis of Iron and Steel. .8vo, 400
MATHEMATICS.
Baker's Elliptic Functions. 8vo, 150
* Bass's Elements of Differential Calculus. 4 Ј0Briggs's Elements of Plane Analytic Geometry
I 00
Compton's Manual of Logarithmic Computations. I 50
Davis's Introduction to the Logic of Algebra 8vo, 150
* Dickson's College Algebra
I 50
Large $\mathbf{1 2 m o}$,* Introduction to the Theory of Algebraic Equations.
Large 12 mo , I 25Emch's Introduction to Projective Geometry and its Applications.
250Halsted's Elements of Geometry8vo,
I 75Elementary Synthetic Geometry.8vo,
Rational Geometry. 12 mo
* Johnson's (J. B.) Three-place Logarithmic Tables: Vest-pocket size.paper, I 75150
100 copies for15
Mounted on heavy cardboard, 8×10 inches, 25
10 copies for 200
Johnson's (W. W.) Elementary Treatise on Differential Calculus. .Smalı 8vo, 300
Johnson's (W. W.) Elementary Treatise on the Integral Calculus.Small 8vo, 50
Johnson's (W. W.) Curve Tracing in Cartesian Co-ordinates. 100
Johnson's (W. W.) Treatise on Ordinary and Partial Differential Equations. Small 8vo, 350
Johnson's (W. W.) Theory of Errors and the Method of Least Squares. 12m0, 50
* Johnson's (W. W.) Theoretical Mechanics. 00
Laplace's Philosophical Essay on Probabilities. (Truscott and Emory.). 12mo, 00
* Ludlow and Bass. Elements of Trigonometry and Logarithmic and Other Tables. 8vo, 300
Trigonometry and Tables published separately Each,* Ludlow's-Logarithmic and Trigonometric Tables.8vo,
Maurer's Technical Mechanics.$8 \mathrm{vo}, 400$
Merriman and Woodward's Higher Mathematics. 8vo, 500
Merriman's Method of Least Squares. 8vo, 00
Rice and Johnson's Elementary Treatise on the Differential Calculus.. Sm. 8vo, 300Differential and Integral Calculus. 2 vols. in one..Small 8vo,
50Wood's Elements of Co-ordinate Geometry.
.8vo, 200
Trigonometry: Analytical, Plane, and Spherical 12 mo , 00
MECHANICAL ENGINEERING.
MATERIALS OF ENGINEERING, STEAM-ENGINES AND BOILERS.
Bacon's Forge Practice 12 mo , 50
Baldwin's Steam Heating for Buildings. 12 mo ,
Barr's Kinematics of Machinery. 508vo,* Bartlett's Mechanical Drawing$8 \mathrm{vo}, 300$
* " " Abridged Ed. 8 vo , I 50
Benjamin's Wrinkles and Recipes. $12 \mathrm{mo}, 200$
Carpenter's Experimental Engineering: 8vo, 6 oo
Heating and Ventilating Buildings. 400
Cary's Smoke Suppression in Plants using Bituminous Coal. (In Prepara- tion.)
Clerk's Gas and Oil Engine Small 8vo, 400
Coolidge's Manual of Drawing. 8vo, paper, 100
Coolidge and Freeman's Elements of General Drafting for Mechanical En- gineers .Oblong 4to, 250
Cromwell's Treatise on Toothed Gearing 12 mo , 150
Treatise on Belts and Pulleys. 150
Durley's Kinematics of Machines. 400
Flather's Dynamometers and the Measurement of Power 300
Rope Driving 200
Gill's Gas and Fuel Analysis for Engineers. 125
Hall's Car Lubrication 100
Hering's Ready Reference Tables (Conversion Factors).16mo, morocco, 250
Hutton's The Gas Engine. 500
Jamison's Mechanical Drawing. 8vo, 250
Jones's Machine Desıgn:
Part I. Kinematics of Machinery. 8vo, I 50
Part Il. Form, Strength, and Proportions of Parts. 8vo, 300
Kent's Mechanical Engineers' Pocket-book. 500
Kerr's Power and Power Transmission. 200
Leonard's Machine Shop, Tools, and Methods $8 \mathrm{vo}, 4$ oo
*Lorenz's Modern Refrigerating Machinery. (Pope, Haven, and Dean.) . .8vo, 400
MacCord's Kinematics; or, Practical Mechanism. 8vo, 500
Mechanical Drawing. 4to, 400
Velocity Diagrams. 8vo, 150
Mahan's Industrial Drawing. (Thompson.). $8 \mathrm{vo}, 350$
Poole s Calorific Power of Fuels. 8vo, 3 oo
Reid's Course in Mechanical Drawing. 8vo,
Text-book of Mechanical Drawing and Elementary Machine Design. 8vo, 300
Richard's Compressed Air 150
Robinson's Principles of Mechanism 8vo, 300
Schwamb and Merrili's Elements of Mechanism. 8vo, 3 on
Smith's Press-working of Metals. 3 ou
Thurston's Treatise on Friction and Lost Work in Machinery and Mill Work. 8vo, 300
Animal as a Machine and Prime Motor, and the Laws of Energetics. 12 mo , 100
Warren's Elements of Machine Construction and Drawing. 750
Weisbach's Kinematics and the Power of Transmission. (Herrmann- Klein.). 8vo, 500
Machinery of Transmission and Governors. (Herrmann-Klein.). .8vo, 500
Wolff's Windmill as a Prime Mover. $8 \mathrm{vo}, 3$ oo
Wood's Turbines. $8 \mathrm{v}, \mathrm{o}, 250$
MATERIALS OF ENGINEERING.
Bovey's Strength of Materials and Theory of Structures. 8vo, 750
Burr's Elasticity and Resistance of the Materials of Engineering. 6th Edition. Reset. 750
Church's Mechanics of Engineering. 8vo, 600
Johnson's Materials of Construction. 8vo, 6 oo
Keep's Cast Iron. 250
Lanza's Applied Mechanics. 750
Martens's Handbook on Testing Materials. (Henning.) 8vo, 750
Merriman's Mechanics of Materials. .8vo, 500
Strength of Materials 100
Metcalf's Steel. A manual for Steel-users. 200
Sabin's Industrial and Artistic Technology of Paints and Varnish. 300
Smith's Materials of Machines. 100
Thurston's Materials of Engineering. 8 oo
Part II. Iron and Steel. 350
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their Constituents. 8vo, 250
Text-book of the Materials of Construction. 5 ou
Wood's (De V.) Treatise on the Resistance of Materials and an Appendix on the Preservation of Timber. 200
Wood's (De V.) Elements of Analytical Mechanics.8vo, 300
Wood's (M. P.) Rustless Coatings: Corrosion and Electrolysis of Iron andSteel. .8vo,400
STEAM-ENGINES AND BOILERS.
Berry's Temperature-entropy Diagram. 25
Carnot's Reflections on the Motive Power of Heat. (Thurston.). 12 mo , 50
Dawson's "Engineering" and Electric Traction Pocket-book.16mo, mor., 00
Ford's Boiler Making for Boiler Nakers. 00
Goss's Locomotive Sparks. 00
Hemenway's Indicator Practice and Steam-engine Economy 00
Hutton's Mechanical Engineering of Power Plants. 500
Heat and Heat-engines. 00
Kent's Steam boiler Economy 00
Kneass's Practice and Theory of the Injector. 50
MacCord's Slide-valves. 00
Meyer's Modern Locomotive Construction. 00
Peabody's Manual of the Steam-engine Indicator. 50
Tables of the Properties of Saturated Steam and Other Vapors. 00
Thermodynamics of the Steam-engine and Other Heat-engines. 00
Valve-gears for Steam-engines. 50
Peabody and Miller's Steam-boilers. 00
Pray's Twenty Years with the Indicator. 50
Pupin's Thermodynamics of Reversible Cycles in Gases and Saturated Vapors. (Osterberg.). 12 mo , 25
Reagan's Locomotives: Simple Compound, and Electric. 12 mo , 50
Rontgen's Princip!es of Thermodynamics. (Du Bois.). 8vo, 500
Sinclair's Locomotive Engine Running and Management 12 mo ,
Smart's Handbook of Engineering Laboratory Practice. 12 mo ,Snow's Steam-boiler Practice.8vo,
Spangler's Valve-gears. 8vo, 50
00
5000
Notes on Thermodynamics 00
Spangler, Greene, and Marshall's Elements of Steam-engineericg 8vo,Thurston's Handy Tables.8vo, I 50
Manual of the Steam-engine. 2 vols., 8vo, 10 oo8vo.
Part I. History, Structure, and Theory. 8vo, 600
Part II. Design, Construction, and Operation. 8vo, 6 оо
Handbook of Engine and Boiler Trials, and the Use of the Indicator and the Prony Brake. 8vo, 500
Stationary Steam-engines. 8vo, 250
Steam-boiler Explosions in Theory and in Fractice 50
Manual of Steam-boilers, their Designs, Corstruction, and Cperation 8vo, 500
Weisbach's Heat, Steam, and Steam-engines. (Du Bois.)
Weisbach's Heat, Steam, and Steam-engines. (Du Bois.). 8vo, 500
Whitham's Steam-engine Design. 8vo, 500
Wilson's Treatise on Steam-boilers. (Flather.) 16 mo , 250
Wood's Thermodynamics, Heat Motors, and Refrigerating Machines. . .8vo, 400
MECHANICS AND MACHINERY.
Barr's Kinematics of Machinery. 8vo, 50
Bovey's Strength of Materials and Theory of Structures8vo, 50
Chase's The Art of Pattern-making. 50
Church's Mechanics of Engineering. .8vo, 00
Church's Notes and Examples in Mechanics. 8vo, 200
Compton's First Lessons in Metal-working. I 56
Compton and De Groodt's The Speed Lathe I 50
Cromwell's Treatise on Toothed Gearing : 50
Treatise on Belts and Pulleys. 150
Dana's Text-book of Elementary Mechanics for Colleges and Schools. . 12 mo , I 50
Dingey's Machinery Pattern Making 12 mo , 200
Dredge's Record of the Transportation Exhibits Building of the World's Columbian Exposition of 1893. 4 to half morocco, 500
Du Bois's Elementary Principles of Mechanics:
Vol. I. Kinematics. 8vo, 350
Vol. II. Statics. 8vo, 400
Vol. III. Kinetics. $8 \mathrm{vo}, 350$
Mechanics of Engineering. Vol. 1. Small 4to, 750
Vol. II. Small 4to, 1000
Durley's Kinematics of Machines. 8vo, 400
Fitzgerald's Boston Machinist. I 00
Flather's Dynamometers, and the Measurement of Power. 300
Rope Driving. 200
Goss's Locomotive Sparks. 200
Hall's Car Lubrication. I 00
Holly's Art of Saw Filing 75
James's Kinematics of a Point and the Rational Mechanics of a Particle. Sm.8vo,2 00
* Johnson's (W. W.) Theoretical Mechanics. $12 \mathrm{mo}, 300$
Johnson's (L. J.) Statics by Graphic and Algebraic Methods. 8vo, 200
Jones's Machine Design:
Part I. Kinematics of Machinery. 8vo, I 50
Part II. Form, Strength, and Proportions of Parts. 8vo, 3 oo
Kerr's Power and Power Transmission. 8vo, 2 oo
Lanza's Applied Mechanics. 8vo, 750
Leonard's Machine Shop, Tools, and Methods 8vo, 4 oo
*Lorenz's Modern Refrigerating Machinery. (Pope, Haven, and Dean.). 8vo, 400
MacCord's Kinematics; or, Practical Mechanism. $8 \mathrm{vo}, 500$
Velocity Diagrams. 8vo, 150
Maurer's Technical Mechanics. 8vo,
Merriman's Mechanics of Materials. $8 \mathrm{vo}, 500$
* Elements of Mechanics. 12 mo , 100
* Michie's Elements of Analytical Mechanics. .8vo, 400
Reagan's Locomotives: Simple, Compound, and Electric. 12mo, 250
Reid's Course in Mechanical Drawing. 8vo 200
Text-book of Mechanical Drawing and Elementary Machine Design.8vo, 300
Richards's Compressed Air. 150
Robinson's Principles of Mechanism. 8vo, 3 oo
Ryan, Norris, and Hoxie's Electrical Machinery. Vol. I. $8 \mathrm{vo}, 250$
Schwamb and Merrill's Elements of Mechanism. 8vo, 300
Sinclair's Locomotive-engine Running and Management. 12mo, 200
Smith's (O.) Press-working of Metals 300
Smith's (A. W.) Materials of Machines. I 00
Spangler, Greene, and Marshall's Elements of Steam-engineering. 300
Thurston's Treatise on Friction and Lost Work in Machinery and Mill Work. 300
Animal as a Machine and Prime Motor, and the Laws of Energetics. 12 mo , 100
Warren's Elements of Machine Construction and Drawing. 8 vo ,
Weisbach's Kinematics and Power of Transmission. (Herrmann-Klein.).8vo, 5 oo
Machinery of Transmission and Governors. (Herrmann-Klein.).8vo, 500
Wood's Elements of Analytical Mechanics. 8vo, 300
Principles of Elementary Mechanics. 12mo, 125
Turbines. 8vo, 50
The Wurld's Columbian Exposition of 1893 4to, 100

METALLURGY.

Egleston's Metallurgy of Silver, Gold, and Mercury:

Vol. I. Silver. 8vo, 750
Vol. II. Gold and Mercury. 750
** Iles's Lead-smelting. (Postage 9 cents additional.) 250
Keep's Cast Iron. 8vo, 250
Kunhardt's Practice of Ore Dressing in Europe. 8vo,
Le Chatelier's High-temperature Measuremedts. (Boudouard-Burgess.) 12 mo ,
Metcalf's Steel. A Manual for Steel-users 12 mo ,
Smith's Materials of Machines. 12 mo ,
Thurston's Materials of Engineering. In Three Parts. 8vo.
Part II. Iron and Steel. 8vo, 350
Part III. A Treatise on Brasses, Bronzes, and Other Alloys and their
I 80
300
200100
Constituents. 8vo, 250
Ulke's Modern Electrolytic Copper Refining. .8vo, 300
MINERALOGY.
Barringer's Description of Minerals of Commercial Value. Oblong, morocco, 250
Boyd's Resources of Southwest Virginia. .8vo, 300
Map of Southwest Virignia. Pocket-book form. 00
Brush's Manual of Determinative Mineralogy. (Penfield.). 8vo,
Brush's Manual of Determinative Mineralogy. (Penfield.). 8vo,
Chester's Catalogue of Minerals. 400 400Cloth, I 25
Dictionary of the Names of Minerals.Dana's System of Mineralogy. Large 8vo, half leather, 1250
First Appendix to Dana's New "System of Mineralogy."Large 8vo, i oo
Text-book of Mineralogy. .8vo, 400
Minerals and How to Study Them 50
12 mo ,
Catalogue of American Localities of Minerals. Large 8 vo , 100
Manual of Mineralogy and Petrography.
Douglas's Untechnical Addresses on Technical Subjects. $12 \mathrm{mo}, 100$
Eakle's Mineral Tables. 8 vo , 12 E
Egleston's Catalogue of Minerals and Synonyms. 8vo, 250
Hussak's The Determination of Rock-forming Minerals. (Smith.).Small 8vo, 200
Merrill's Non-metallic Minerals: Their Occurrence and Uses.
Merrill's Non-metallic Minerals: Their Occurrence and Uses. 8vo, 8vo, 400 400

* Penfield's Notes on Determinative Mineralogy and Record of Mineral Tests. - 50
Rosenbusch's Microscopical Physiography of the Rock-making Minera:s.
(Iddings.). .8vo. 500
* Tillman's Text-book of Important Minerals and Rocks. 8vo. 200
Williams's Manual of Lithology. 8vo, 300
MINING.
Beard's Ventilation of Mines. I2mo. 250
Boyd's Resources of Southwest Virginia 8vo, 300
Map of Southwest Virginia. Pocket book form, 2 oo
Douglas's Untechnical Addresses on Technical Subjects 12 mo . 100
* Drinker's Tunneling, Explosive Compounds, and Rock Drills. . 4to. hf. mor., 25 00
Eissler's Modern High Explosives 8vo, 4 oo
Fowler's Sewage Works Analyses. $12 \mathrm{mo}, 200$
Goodyear's Coal-mines of the Western Coast of the United States. 12 mo .Ihlseng's Manual of Mining.8va 500
** Iles's Lead-smelting. (Postage 9 c . additional.). 12mo. 250
Kunhardt's Practice of Ore Dressing in Europe 8 vo , i 50
O'Driscoll's Notes on the Treatment of Gold Ores. 8vo, 200
* Walke's Lectures on Explosives. 8vo, 400
Wilson's Cyanide Processes. 12 mo , 150
Chlorination Process. .12mo, r 50Wilson's Hydraulic and Placer Mining.
..... 12 mo ,
Treatise on Practical and Theoretical Mine Ventilation 200
SANITARY SCIENCE.
Bashore's Sanitation of a Country House 12 mo ,
Folwell's Sewerage. (Designing, Construction, and Maintenance.).8vo, I 00
Water-supply Engineering. 300
Fuertes's Water and Public Health. 00
12 mo ,
12 mo , I 50
Water-filtration Works 50
Gerhard's Guide to Sanitary House-inspection 100
16 mo ,
Gend's
Gend's Goodrich's Economic Disposal of Town's Refuse.
Hazen's Filtration of Public Water-supplies. 300
Leach's The Inspection and Analysis of Food with Special Reference to State Control 8vo, 750
Masou's Water-supply. (Considered principally from a Sanitary Standpoint) 8vo, 400
Examination of Water. (Chemical and Bacteriological.). I 25
Merriman's Elements of Sanitary Eng:reering 200
Ogden's Sewer Design 200
Prescott and Winslow's Elements of Water Bacteriology, with Special Refer- ence to Sanitary Water Analysis. 125
* Price's Handbook on Sanitation. 150
Richards's Cost of Food. A Study in Dietaries $x 00$
Cost of Living as Modified by Sanitar y Science. 101
Richards and Woodman's Air, Water, and Food from a Sanitary Stand- point. 8vo,
* Richards and Williams's The Dietary Computer 8vo, 150
Rideal's Sewage and Bacterial Purification of Sewage. 8vo, 350
Turneaure and Russell's Public Water-supplies. 500
Von Behring's Suppression of Tuberculosis. (Bolduan.) 100
Whipple's Microscopy of Drinking-water. 350
Woodhull's Notes on Military Hygiene 50
MISCELLANEOUS.
De Fursac's Manual of Psychiatry. (Rosanoff and Collins.).... Large imo, 250
Emmons's Geological Guide-book of the Rocky Mountain Excursion of the Interrational Congress of Geologists. Large 8 vo , 150
Ferrel's Popular Treatise on the Winds. 400
Haines's American Railway Management. 250
Mott's Composition, Digestibility, and Nutritive Value of Food. Mounted chart, I 25
Fallacy of the Present Theory of Sound. 100
Ricketts's History of Rensselaer Polytechnic Institute, 1824-1894. .Small 8vo, 300
Rostoski's Serum Diagnosis. (Bolduan.). 00
Rotherham's Emphasized New Testament. Large 8vo, 200
Steel's Treatise on the Diseases of the Dog. 8vo, 350
Totten's Important Question in Metrology. 250
The World's Columbian Exposition of 1893 100
Von Behring's Suppression of Tuberculosis. (Bolduan.). I 00
Winslow's Elements of Applied Microscopy I 50
Worcester and Atkinson. Small Hospitals, Establishment and Maintenance; Suggestions for Hospital Architecture : Plans for Small Hospital. 12mo, 125
HEBREW AND CHALDEE TEXT-BOOKS.
Green's Elementary Hebrew Grammar. 125
Hebrew Chrestomathy. 8vo, 200
Gesenius's Hebrew and Chaldee Lexicon ts the Old Testament Scriptures. (Tregelles.). Small" 4 to, half morocco, 500
Letteris's Hebrew Bible. 8vo, 225

14 DAY USE

RETURN TO DESK FROM WHICH BORROWED

ASTRONOMY - MATHEMATICS

This b@TAJdSa brghelast dat ftamped below, or on the date to which renewed.
Renewed books are subject to immediate recall.

$$
\mid Y B 72979
$$

м2987440

$$
\begin{aligned}
& \text { QA275 } \\
& 16 \\
& 189.2 \\
& \text { cop } 2 \\
& \text { astron } \\
& \text { Dept. }
\end{aligned}
$$

[^0]: * That the most probable value, when there are but two observations, is their arithmetical mean follows rigorously from the hypothesis that positive and negative errors are equally probable. Tho property of the arithmetical mean pointed out in Art. 12 shows that the result for three observations is expressible as a function of the result for two of them and the third observation, and so on for four or more observations. It was upon the assumption that the most probable value must possess this property that Encke based his so-called proof that the arithmetical mean is the most probable value for any number of observations (Berliner Astronomisches Fahrbuch for 1834, pp. 260-262).

[^1]: * The "value of an expectation" is an instance of a mean value. Thus, if x_{1} is the value to be received in case a certain event whose probability is P_{1} happens, x_{2} the value to be received if an event whose probability is P_{2} happens, and so on for m distinct events, one of which must happen, then the mean value $\Sigma P x$ is called the value of the expectation.

[^2]: * It should be noticed that if $z=F(x)$, the law of probability for z is not found by simply expressing $f(x)$ as a function of z. It is necessary to transform the element of probability $f(x) d x$, which expresses the probability that x falls between x and $x+d x$, and therefore represents also the probability that z falls between z and $z+d z$. Thus, in the present case, putting $z=x^{2}$,

 $$
 f(x) d x=\frac{2 x}{a^{2}} d x=\frac{d z}{a^{2}}
 $$

 which indicates that all values of z between \circ and a^{2} are equally probable when, as supposed in Art. 22, the probability of a value of x is pro portional to the value itself.

[^3]: * If this is not the case, the probabilities before the event are called the antecedent or a priori probabilities, and the theorem is that the ratio of the antecedent probabilities is to be multiplied by the probabilities of X on the several hypotheses, in order to find the ratio of the probabilities after the event.

[^4]: * There is usually no distinction in kind between these : either direction may be taken as positive, and errors of a given magnitude in one direction or the other are equally likely to occur.

[^5]: * This is frequently inaccurately expressed by the statement that the probability of a given error in the first case is the same as that of the half error in the second case.

[^6]: * The "probable error" is thus not the most probable error, which is, of course, the error zero, for which the ordinate of the probability curve is a maximum.

[^7]: *The error η was called by De Morgan the mean risk of error, because it is the mean expectation of error, using the term expectation in the same sense as in the expression "value of an expectation." (See footnote on page 15.) It corresponds to what is generally called in annuity tables "the expectation of life" for persons of a given age, which should rather be called "the mean duration of survival" for persons of the given age. On the other hand, the probable error r is analogous to the remaining term for which a person of the given age is as likely as not to live. This might be called "the probable term of survival," and its value may differ materially from the mean duration. Thus, according to the Carlisle mortality table, one half of the whole number of persons thirty years old survive for the term of 36.6 years, but the mean duration of life for such persons, as computed from the same table, is only 34.3 years. This indicates that the law of mortality is such that the half which exceed the term of probable survival do so by a total amount less than that by which the other half fall short of it.
 In the case of errors the difference falls in the opposite direction. In the long run one half of the errors exceed r; and the fact that $\eta>r$ shows that the half which exceed r do so by a total amount greater than that by which the othe: half fall short of i i.

[^8]: * Sir John Herschel's proof of the law of facility of errors (Edinburgh Review, July, 1850) rests upon the assumption that it must possess the property which is above shown to belong to the exponential law. He compares accidental errors to the deviations of a stone which is let fall with the intention of hitting a certain mark, and assumes that the deviations in the directions of any two rectangular axes are independent. But, since there is no reason why the resultant deviations should depend upon their direction, this implies that, $f\left(x^{2}\right)$ being the law of facility, we must have

 $$
 f\left(x^{2}\right) f\left(y^{2}\right)=f\left(x^{\prime 2}\right) f\left(y^{\prime 2}\right)=f\left(x^{2}+y^{2}\right) f(0)
 $$

 where x^{\prime} and y^{\prime} denote coordinates referred to a new set of rectangular axes, so that

 $$
 x^{2}+y^{2}=x^{\prime 2}+y^{\prime 8}
 $$

[^9]: above, occur with the same relative frequency when x has one value as when it has another; but it is noteworthy that, having made this assumption, no other law of facility of linear deviation would produce a law of distribution in area involving only the distance from the centre. On the other hand, no other law of distribution in area depending only upon r (such for example as $e-r$) would make the law of facility for deviations in y independent of the value of x.

[^10]: * The property of the probability surface corresponding to the assumption that the relative frequency of the deviations in y is independent of the value of x is that any section parallel to the plane of $y^{\prime z}$ may be derived from the central section in that plane by reducing all the values of z in the same ratio. In accordance with the preceding foot-note, this is the only surface of revolution possessing this property.

[^11]: * This is Sir John Herschel's formula for the inverse measure of the skill of the marksman. See "Familiar Lectures on Scientific Subjects," p. 498. London and New York, 1867.
 \dagger The point at which the probability is a maximum (that is, where the density of the shots in the long run is the greatest) is of course the origin, at which the ordinate z in the probability surface is a maximum. The value of r here determined is that for which the right cylindrical surface included between the plane of $x y$ and the probability surface is a maximum, that is, the annulus which contains the greatest number of shot in the long run.

[^12]: * In general, an assumed law, $y=\phi(x)$, of facility of error for the single observations would produce a law of a different form for the result determined from n observations. Laplace has shown that whatever be the form of ϕ for the single observations, the law of facility of error in the arithmetical mean approaches indefinitely to

 $$
 y=c e^{-h^{2} x^{2}}
 $$

 as a limiting form, when n is increased without limit. See the memoir "On the Law of Facility of Errors of Observation, and on the Method of Least Squares," by J. W. L. Glaisher, Memoirs Royal Ast. Soc., vol. xxxix pp. 104, 105.

[^13]: * If the position of the point aimed at had been inferred from the shot marks, as in example 22 of the preceding section, it would have been necessary to change n into $n-1$, as in the case of errors of observation. So also this change should be made when the errors employed are measured from the mean point of impact, as in testing pieces of ordnance.

[^14]: * The amount of this diminution is, however, largely a matter of chance. For example, if we had taken the seven groups in such a manner that the successive values of p were $2,3,2,4,2,1,3$, we should have found

 $$
 r=0.00833
 $$

 differing in excess from that of Art. 75 still more than that obtained above does in defect.

[^15]: * This relation between the apparent and the real probable error is derived directly by C. A. F. Peters (Berliner Astronomisches Nachrichten, 1856, vol. xliv. p. 29) as follows: If $e_{1}, e_{2}, \ldots e_{n}$ are the true errors, that of the arithmetical mean is

 $$
 \delta=\frac{1}{n}\left(e_{1}+e_{2}+\ldots+e_{n}\right),
 $$

 then

 $$
 v_{1}=e_{1}-\delta=\frac{n-\mathrm{I}}{n} e_{1}-\frac{1}{n} e_{2}-\ldots-\frac{\mathrm{I}}{n} e_{n}, \quad \text { etc. }
 $$

 Since r is the probable error of each e, and r^{\prime} that of each v, the formula for the probable error of a linear function of independent quantities (see Art. 89) gives

 $$
 r^{2}=\left[\left(\frac{n-1}{n}\right)^{2}+(n-1) \frac{1}{n^{2}}\right] r^{2}=\frac{n-1}{n} r^{2} .
 $$

 This result is used by Peters to establish the formula derived above, but it may also be used in place of the method of Art. 7 I for the correction of the apparent value of r in terms of Σv^{2}.

[^16]: * The ratio of the square of the error to the error itself is the value of the error considered as a number, and it is this numerical value which must be small.

[^17]: * The fact that the law of facility thus reproduces itself has often been regarded as confirmatory of its truth. This property of the law $c e^{-h^{3} x^{2}}$ results from its being a limiting form for the facility of error in the linear function Z, when n is large, whatever be the forms of the facility functions for $X_{1}, X_{2}, \ldots X_{n}$. Compare the foot-note on page 49 , and see the memoir there referred to. It follows that "we shall obtain the same law $e^{-h^{2} x^{2}}$ (for a single observed quantity) if we regard each actual eiror as formed by the linear combination of a large number of errors aue to different independent sources."

[^18]: * If the value of p were known, each value of h_{1} would imply a special value of h_{2}, and therefore the probability of ϕ would no longer be that found in Art. 88.

[^19]: * The term systematic is sometimes applied to errors produced by a cause operating in a systematic manner upon the several observations, thus producing discrepancies obviously not following the law of accidental errors. Usually a discussion of these errors leads to the discovery of their cause, and ultimately to the corrections by means of which they may be removed. All the remaining errors, whose causes are unknown, are generally spoken of as accidental errors; but in this book the term accidental is applied only to those errors which are variable in the system of observations under consideration, as distinguished from those which have a common value for the entire system.

[^20]: * This does not apply to the residuals of the original n observations, because in taking a residual the mean is not independent of the single observation with which it is compared.

[^21]: * The argument by which it is shown that the value of h deduced in Art. 69 is the most probable value involves the assumption that before the observations were made all values of h are to be regarded as equally probable; just as that by which it is shown that the arithmetical mean is the most probable value of the observed quantity a involves the assumption that before the observations all values of a were equally probable. In the case of a, the assumption is admissible with respect to all values of a which can possibly come in question. But, in the case of h, this is not true ; because (supposing $n=2$ as above) when $d=0$ the value of h is infinite, and when d is small the corresponding values of h are very large, so that it is impossible to admit that all values of h which can arise are d priori equally probable.

 In the present application of the formula, however, these inadmissible values do not arise, because we do not use it when d is small, employing instead the method of Art. 99 and the formula of Art. 101.

[^22]: *It may be assumed that, when the instruments are carefully adjusted, the one which is less liable to accidental errors is correspondingly less liable to systematic errors. But this comparison is concerned with the probable errors of a single observation in each case, and not with those of the determinations themselves.

[^23]: * Chauvenet's "Spherical and Practical Astronomy," vol. ii, p. 194 et seq.

[^24]: * Prof. Benjamin Peirce, U. S. Coast Survey Report for 1854, Appendix, P. 109.

[^25]: * It is not necessary that these additional equations should be independent of the original μ equations, for an equation expressing a new observed value of a function already observed will be useful in determining the precision of the observations.

[^26]: * Gauss, "Theoria Motus Corporum Coelestium," Art. 184.

[^27]: *It must not be assumed that the weight of the value of x, determined from the several normal equations, is Σa^{2}, that of an observation being unity. This is its weight only upon the supposition that the absolute values of the other quantities are known.

[^28]: *Comparing equation (3) with equation (2), Art. 129, we see that $\Sigma a a$ is the value which x would assume if in each normal equation the second member were equal to the coefficient of x. The system of equations so formed would evidently be satisfied by $x=\mathrm{i}, y=0, z=0, \ldots$ $t=0$; hence $\Sigma a a=1$. In like manner, comparing equation (5) with the same equation, we see that $\Sigma b a$ is the value which x would assume if the second member of each normal equation were equal to the coefficient of y. This value would be zero; thus $\Sigma b a=0$.
 \dagger If the value of the weight of x alone is required, it may be found as the reciprocal of what the value of x becomes when $A=\mathrm{I}, B=0$, $C=0, \ldots$, that is to say, when the second member of the first normal equation is replaced by unity, and that of each of the others by zero.

[^29]: * J. W. L. Glaisher, Monthly Notices of the Royal Ast. Soc., vol. xl, 188c, p. 607 et seq.

 F When there is but a single unknown quantity, say x, its coefficients a_{1}, a_{2}, \ldots take the place of these determinants, and the weight of the result is accordingly Σa^{2}. Compare Art. 122. In general, as between two unknown quantities, the weight of that which has the greater coeff. cients will be the greater.

[^30]: ＊As shown in Art．156，the substitutions diminish the successive coef－ ficients of t ．Compare the foot－note to Art．133，p．104．In fact［ $l l]$ is the weight that t would have if the true values of all the other quantities were known；［ $l l, \mathrm{I}]$ is the weight which it would have if all the others except x were known－that is，if x and t were the only quantities subject to error ；and so on．

[^31]: * Gauss, "Theoria Motus Corporum Cœlestium," Art. 182; Werke, vol. vii. p. 238.

[^32]: * This result is also derived by Gauss in a purely algebraic manner in the "Disquisitio de Elementis Ellipticis Paladis;" Werke, vol. vi. p. 22. Sea also Encke, Berliner Astronomisches Jahrbuch for 1853, pp. 273-277.

[^33]: * The tabular arrangement is taken from W. Jordan's " Handbuch der Vermessungskunde." See also Oppolzer's "Lehrbuch zur Bahnbestimmung der Kometen und Planeten," vol. ii. p. 340 et seq., where the table, with a somewhat different arrangement, is given for six unknown quantities, and an example is fully worked out.

