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PREFACE.

THE basis adopted in this book for the theory of accidental

errors is that laid down by Gauss in the Theoria Motus Cor-

porum Ccelestium (republished as vol. vii of the Werke], which

may be described for the most part in his own words, as fol-

lows :

" The hypothesis is in fact wont to be considered as an

axiom that, if any quantity has been determined by several

direct observations, made under similar circumstances and

with equal care, the arithmetical mean between all the observed

values presents the most probable value, if not with absolute

rigor, at least very nearly so, so that it is always safest to ad-

here to it." (Art. 177.)

Then introducing the notion of a law of facility of error to

give precise meaning to the phrase
" most probable value," we

cannot do better than to adopt that law of facility in accord-

ance with which the arithmetical mean is the most probable

value. After deriving this law and showing that it leads to

the principle of least squares, he says :

" This principle, which

in all applications of mathematics to natural philosophy ad-

mits of very frequent use, ought everywhere to hold good as

an axiom by the same right as that by which the arithmetical

mean between several observed values of the same quantity is

adopted as the most probable value." (Art. 179.)



IV PREFACE.

Accordingly no attempt has been made to demonstrate the

principle of the arithmetical mean, nor to establish the expo-

nential law of facility by any independent method. It has

been deemed important, however, to show the self-consistent

nature of the law, in the fact that its assumption for the errors

of direct observation involves as a consequence a law of the

same form for any linear function of observed quantities, and

particularly for the final determination which results from our

method. This persistence in the form of the law has too

frequently been assumed, in order to simplify the demonstra-

tions
;
but at the expense of soundness.

No place has been given to the so-called criteria for the

rejection of doubtful observations. Any doubt which attaches

to an observation on account of the circumstances under

which it is made, is recognized, in the practice of skilled ob-

servers, in its rejection, or in assigning it a small weight at the

time it is made ;
but these criteria profess to justify the sub-

sequent rejection of an observation on the ground that its

residual is found to exceed a certain limit. With respect to

this Professor Asaph Hall says: "When observations have

been honestly made I dislike to enter upon the process of cull-

ing them. By rejecting the large residuals the work is made

to appear more accurate than it really is, and thus we fail to

get the right estimate of its quality." (
The Orbit of lapetus,

p. 40, Washington Observations for 1882, Appendix I.)

The notion that we are entitled to reject an observation,

that is, to give it no weight, when its residual exceeds a certain

limit, would seem to imply that we ought to give less than the

usual weight to those observations whose residuals fall just

short of this limit, in tact that we ought to revise the obser-

vations, assigning weights which diminish as the residuals

increase. Such a process might appear at first sight plausible,
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but it would be equivalent to a complete departure from the

principle of the arithmetical mean and the adoption of a new

law of facility. For this we have no justification, either from

theory or from the examination of the errors of extended sets

of observations.

In the discussion of Gauss's method of solving the

normal equations, the notion of the
'

reduced observation

equations' (see Arts. 154, 155) which gives a new interpreta-

tion to the
' reduced normal equations

'

has been introduced

with advantage. This conception, although implied in

Gauss's elegant discussion of the sum of the squares of the

errors (see Art. 160), seems not to have appeared explicitly in

any treatise prior to the third edition of W. Jordan's Handbuch

derVermessungskunde (Stuttgart, 1888). To this very complete

work, and to Oppolzer's Lehrbuch zur Bahnbestimmung der

Kometen und Plancten, I am indebted for the forms recom-

mended for the computations connected with Gauss's method,

and for many of the examples.
W. W. J.

U. S. NAVAL ACADEMY, June, 1892.
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THE THEORY OF ERRORS AND METHOD
OF LEAST SQUARES.

I.

INTRODUCTORY.

Errors of Observation.

1. A quantity of which the magnitude is to be determined is

either directly measured, or, as in the more usual case, deduced

by calculation from quantities which are directly measured.

The result of a direct measurement is called an observation.

Observations of the kind here considered are thus of the nature

of readings upon some scale, generally attached to an instru-

ment of observation. The least count of the instrument is the

smallest difference recognized in the readings of the instrument,

so that every observation is recorded as an integral multiple of

the least count.

2. Repeated observations of the same quantity, even when
made with the same instrument and apparently under the same

circumstances, will nevertheless differ materially. An increase

in the nicety of the observations, and the precision of the instru-

ment, may decrease the discrepancies in actual magnitude ;
but

at the same time, by diminishing the least count, their numerical

measures will generally be increased
;
so that, with the most

refined instruments, the discrepancies may amount to many
times the least count. Thus every observation is subject to an

error
> the error being the difference between the observed value

and the true value
;
an observed value which exceeds the true

value is regarded as having a positive error, and one which falls

short of it as having a negative error.
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3. An error may be regarded as the algebraic sum of a num-
ber of elemental errors due to various causes. So far as these

causes can be ascertained, their results are not errors at all, in

the sense in which ihe term is here used, and are supposed to

have been removed by means of proper corrections. Systematic
errors are such as result from unknown causes affecting all the

observations alike. These again are not the subjects of the
"
theory of errors," which is concerned solely with the acci-

dental errors which produce the discrepancies between the

observations.

Objects of the Theory.

4. It is obvious that when a set of repeated observations of

the same quantity are made, the discrepancies between them
enable us to judge of the degree of accuracy we have attained.

Speaking in general terms, of two sets of observations, that is

the best which exhibits upon the whole the smaller discrepancies.

It is obvious also that from a set of observations we shall be

able to obtain a result in which we can have greater confidence

than in any single observation.

It is one of the objects of the theory of errors to deduce from

a number of discordant observations (supposed to be already

individually corrected, so far as possible) the best attainable

result, together with a measure of its accuracy ;
that is to say,

of the degree of confidence we are entitled to place in it.

5. When a number of unknown quantities are to be deter-

mined by means of equations involving observed quantities, the

quantities sought are said to be indirectly observed. It is neces-

sary to have as many such observation equations as there are

unknown quantities. The case considered is that in which it is

impossible to make repeated observations of the individual

observed elements of the equations. These may, for example,
be altitudes or other astronomical magnitudes which vary with

the time, so that the corresponding times are also among the

observed quantities. Nevertheless, there is the same advantage
in employing a large number of observation equations that there
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is in the repetition of direct observations upon a single required

quantity. If there are n unknown quantities, any group con-

taining n of the equations would determine a set of values for

the unknown quantities ;
but these values would differ from

those given by any other group of n of the equations.

( We may now state more generally the object of the theory of

errors to be, when given more than n observation equations

involving n unknown quantities, the equations being somewhat

inconsistent, to derive from them the best determination of the

values of the several unknown quantities, together with a

V measure of the degree of accuracy attained.

6. It will be noticed that, putting n = i, this general state-

ment includes the case of direct observations, in which all the

equations are of the form

X = x! ,
X= jr2 ,

. . .
,

where X is the quantity to be determined, and each equation

gives an independent statement of its value.

We commence with this case of direct observations of a single

quantity, and our first consideration will be that of the best

determination which can be obtained from a number of such

observations.
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INDEPENDENT OBSERVATIONS OF A SINGLE QUANTITY.

The Arithmetical Mean.

7. Whatever rule we adopt for deducing the value to be

accepted as the final result derived from several independent
observations, it must obviously be such that when the observa-

tions are equal the result shall be the same as their common
value. When the observations are discordant, such a rule pro-
duces an intermediate or mean value. Thus, if there be n

quantities, Xi ,
x2 ,

. . . xn ,
the expressions

IX n IS*?
^ , Y {XiX2 . . . xn) , A/ > etc.,

give different sorts of mean values. Of these, the one first

written, which is the arithmetical mean, is the simplest, and it

is also that which has universally been accepted as the final

value when x\ ,
x2 ,

. xn are independently observed values of

a single quantity x, the observations being all supposed equally

good.

Residuals.

8. The differences between the several observed values and

the value which we take as our final determination of the true

value are called the residuals of the observations. The residuals

are then what we take to be the errors of the observations ; but

they differ from them, of course, by the amount of error existing

in our final determination. If the observed values were laid

down upon a straight line, as measured from any origin, the

residuals would be the abscissas of the points thus representing

the observations when the point corresponding to the final value

adopted is taken as the origin.
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9. In the case of the arithmetical mean, the algebraic sum of
the residuals is zero. For, if a denote the arithmetical mean of

the n quantities x^ ,
x2 ,

. . . xn ,
we have

the residuals are

#1 a, Xt a, -*n #i

and their sum is

2* #0
,

which is zero by equation (i).

When the observations are represented by points, as in the

preceding article, the geometrical mean point or centre of

gravity of these points is the point whose abscissa is a, and,

when this point is taken as the origin, the sum of the positive

abscissas of observation points is equal to the sum of the nega-

tive abscissas.

Weights.

10. When the observations are not made under the same cir-

cumstances, and are therefore not regarded as equally good, a

greater relative importance can be given to a better observation

by treating it as equivalent to more than one occurrence of the

same observed value in a set of equally good observations.

For example, if there were two observations giving the observed

values xl and xz ,
and the first observation were regarded as the

best, we might proceed as if the observed value xl occurred

twice and xz once in a set of three observations equally good.
The arithmetical mean would then be

In this process we are said to give to the observations the rela-

tive weights of 2 and i. The weight may be regarded as the

numerical measure of the influence of the observation upon the

arithmetical mean.
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II. In general, plt pz ,
. . . pn being taken as the weights of

the observations xlt xz ,
. . . xn ,

the arithmetical mean with

these weights is

__
'

This expression is called the weighted arithmetical mean.

When the weights are integers, it is the same as the arithmetical

mean of 2p observations, of which pl give the observed value

Xi , / 2 the observed value xz ,
and so on. But, since only the

ratios of the weights affect the result, it is not necessary to

suppose them to be integers.

It is easily shown, as in Art. 9, that, if the residuals are mul-

tiplied by the weights, the algebraic sum of the results is zero.

Again, when as in that article the observations are represented

by points, the point whose abscissa is the weighted mean is the

centre of gravity of bodies placed at the observation points

having weights proportional topi,p, . . . pn >

12. The weight of a result obtained by the rule given above

is defined to be the sum of the weights of its constituents
;
so

that, because

alp^Zpx,
the product of a result by its weight is equal to the sum of the

like products for its constituents. It follows that, in obtaining
the final result, we may for any group of observations substitute

their mean with the proper weight.
In the case of observations supposed equally good, the weight

of each is taken equal to unity, and then the weight of the mean
is the number of observations.

The Probable Value.

13. The most probable value of the observed quantity, or

simply the probable value, in the ordinary sense of the expres-

sion signifies that which, in our actual state of knowledge, we
are justified in considering as more likely than any other to be

the true value, In this sense, the arithmetical mean is the most
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probable value which can be derived from observations con-

sidered equally good. This is, in fact, equivalent to saying
that we accept the arithmetical mean as the best rule for com-

bining the observations, having no reason either theoretical or

practical for preferring any other.*

But, if instead of a rule of combination we adopt a theory
with respect to the nature of accidental errors, the probable
value will depend upon the adopted theory. To become the

subject of mathematical treatment such a theory must take the

shape of a law of the probability of accidental errors, as will be

explained in a subsequent section. Since, in the nature of

things, this law can never be absolutely known, and since more-

over it probably differs with differing circumstances of observa-

tion, the most probable value in this technical sense is itself

unknown. But when the expression is used without specifying

the law of probability, it signifies the value which is the most

probable in accordance with the generally accepted law of proba-

bility. Before proceeding to this law, we shall consider, in the

following section, the principles of probability so far as we shall

need to apply them.

Examples.

1. Show that the formula nf(a) 2f(_x) determines a mean
value of n quantities for any form of the function/, and that the

geometric mean is included in this rule.

2. Except when/(V) = ex in Ex. i, the position of the point

whose abscissa is a is dependent upon the position of the origin

as well as upon the observation points.

*That the most probable value, when there are but two observations,

is their arithmetical mean follows rigorously from the hypothesis that

positive and negative errors are equally probable. T'-^ property of the

arithmetical mean pointed out in Art. 12 shows that the result for three

observations is expressible as a function of the result for two of them
and the third observation, and so on for four or more observations. It

was upon the assumption that the most probable value must possess this

property that Encke based his so-called proof that the arithmetical mean
is the most probable value for any number of observations {Berliner
Astronomisches Jahrbuch for 1834, pp. 260-262).
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3. If the values of x are nearly equal in Ex. i, the result of the

formula is nearly equivalent to a weighted arithmetical mean in

which the weights are proportional to/'(te + ifl), /'(te+ \d],

etc.

4. When a mean value is determined by an equation of the

form 2f(x a) = o, the position of the point whose abscissa is a

is independent of the origin. Give the cubic determining a when

2(x of = o, and show that one root only is real.

5. Prove that the weighted arithmetical mean of values of

x + y is the sum of the like means of the values of x and of the

values ofy respectively.
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PRINCIPLES OF PROBABILITY.

The Measure of Probability.

14. Improbability of a future event is the measure of our

reasonable expectation of the event in our present state of

knowledge of its causes. Thus, not knowing any reason to the

contrary, when a die is to be thrown we assign an equal proba-

bility to the several events of the turning up of its six different

faces. We say, therefore, that the probability or chance that

the ace will turn up is i to 5, or better, i out of 6, hence the

fraction \ is taken as the measure of the probability. Thus the

probability of an event which is one of a set of equally likely

events, one of which must happen, is the fraction whose num-
erator is unity and whose denominator is the number of these

events. Obviously, theprobability of an event which can happen
in several ways is the sum oftheprobabilities ofthe severalways.
Thus if the die had two blank faces, the probability that one of

them would turn up would be or \. The sum of the proba-
bilities of all the possible events is unity, which represents the

certainty that some one of the events will happen.

Compound Events.

15. An event which consists of the joint occurrence of two

independent events is called a compound event. By independent
events we mean events such that the occurrence or non-occur-

rence of the first has no influence upon the occurrence or non-

occurrence of the second. For example, the throwing of sixes

with a pair of dice is a compound event consisting of the turning

up of a special face of each die. The whole number of com-

pound events is evidently the product of the numbers of simple

events; and, since the several probabilities are the reciprocals



10 PRINCIPLES OF PROBABILITY. [Aft. 15

of these numbers, the probability of the compound event is the

product of the probabilities of the simple events. Thus, when a

pair of dice is thrown we have 6 X 6 = 36 compound events,

and the probability of a special one, such as the throwing of

sixes, is \ X | - V
In like manner, if more than two simple events are concerned,

it is easily seen that, in general, the probability of a compound
event is the product of the probabilities of the independent simple
events of whosejoint occurrence it consists.

16. A compound event may happen in different ways, and

then, of course, the probabilities of these independent ways must

be added. For example, six and five may be thrown in two

ways, that is to say, two of the 36 equally likely events consist

of the combination six and five, hence the chance is -^ or^
A throw whose sum amounts to 10 can occur in three ways,
therefore its chance is -^ or y

1
^.

Repeated Trials.

17. When repeated opportunities for the occurrence or non-

occurrence of the same set of events can be made to take place

under exactly the same circumstances, equally probable events

will tend to occur with the same frequency. Therefore, in a

large number of such opportunities or trials, the relative fre-

quency of the occurrence of an event which can happen in m
ways and fail in n ways (the m + n ways of both kinds corres-

ponding to m + n equally probable elementary events) will tend

to the value
,
which is the fraction expressing the prob-m + n

ability of the event. This is commonly expressed by saying

that the ratio of the number of occurrences of an event to the

whole number of trials will "in the long run" be the fraction

which expresses the probability. The correspondence of this

frequency in the long run with the estimated probability forms

the only mode, though an uncertain one, of submitting our

results to the test of experience.
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The Probability of Values belonging to a Continuous Series.

18. In the examples given in the preceding articles, the equally

probable elementary events, which are the basis of our estimate

of probability, form a limited number of distinct events, such as

the turning up of the different faces of a die. But, in many
applications, these events belong to a consecutive series, inca-

pable of numeration. For example, suppose we are concerned

with the value of a quantity x> of which it is known that any
value between certain limits a and b is possible ; or, what is the

same thing, the position of the point P, whose abscissa is x, when
P may have any position between certain extreme points A
and B. We cannot now assign any finite measure to the prob-

ability that x shall have a definite value, or that P shall fall at a

definite point, because the number of points upon the line AB
is unlimited. We have rather to consider the probability that

P shall fall upon a definite segment of the line, or that the value

ofx shall lie between certain limits.

Ip. It is customary, however, to compare the probabilities

that P shall fall at certain points. Suppose in the first place

C D

if*-
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probability that P shall fall in the segment Ax is proportional

to Ax. Since we suppose it certain that P shall fall somewhere

between A and B, this probability will be represented by

Ax Ax
~JR r

AAB o a

Let an ordinate y be taken such that yAx is the value of this

probability ; then

and, constructing as in Fig. I the line CD having this constant

ordinate, the probabilities for any segments of AB are the cor-

responding rectangles contained between the axis and the line

CD For different values of the limiting space AB in which P
may fall, j/ varies in inverse ratio. Thus, if AB is changed to

AB'
,
the new ordinate AC' or y is such that tf.AB'=y .AB,

each of the areas ACDB and AC'DB' being equal to unity.

The two values of y are said to determine the relative proba-
bilities that P shall fall at a given point in the two cases.

Curves of Probability.

20. Taking now the case in which the probability is not con-

stant for all points, let AB be divided into segments, and let

rectangles be erected upon them, the area of each rectangle

representing the probability that Pshall fall in the corresponding

segment. The heights of these rectangles will now differ for the

different segments. Denoting the height for a given segment
Ax byjj/, the relative values ofy for any two segments deter-

mine, as explained in the preceding article, the relative proba-

bility that P shall fall at a given point in one or the other of the

segments, on the hypothesis that the probability is constant

throughout the segment. They may thus be said to measure
the mean values of the probabilities for given points taken in the

various segments. The sum of the areas of the rectangles will,

of course be unity; that is, 2y.-lx= i.

21. If we now subdivide the segments, the figure composed
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of the sum ofthe rectangles will approach more and more nearly,

as we diminish the segments without limit, to a curvilinear area,

and the variable ordinate of the limiting curve will measure the

continuously varying probability that P shall fall at a given point

of the line AB.
The value ofy is now a continuous function of x the abscissa

of the corresponding point, and, puttingy =f(x), the function

/(X) is said to express the law of the probability of the value x.

A B
FIG. 2.

The curve y =f(x) is the probability curve corresponding
to the given law _/"(;?). The entire area ACDB, Fig. 2, whose

(bydx (which is the limit oiSyAx ;
see Int. Calc., Art. 99),

a

a and b being the limiting values between which ^certainly falls,

is equal to unity. In general, for any limits the value of the

integral ydx is the probability that x falls between the values
Ja

a and /?. The elementydx of this integral may be called the

element ofprobability for the value x. It is sometimes called

the probability that the value shall fall between x and x + dx,

it being in that case understood that dx is taken so small that

the probability may be regarded as constant in this interval.

22 As an illustration of what precedes, suppose it to be

known that the value of x must fall between zero and a, and that

the probabilities of values between these limits are proportional
to the values themselves. These conditions give

and
s

\ydx
- i ,
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whence, substituting and integrating,

cc? 2= i
,

or c = -
.

2 a?

Hence the law of probability in this case is

ry fa= ^T xdx =^ Jia

2X

We may now find the probability that x shall fall between any

given limits. For example, the probability that x shall exceed

\a is represented by

$_

4
"

Thus the odds are 3 to i that x exceeds \a when the law of

probability is that proposed.

Mean Values under a given Law of Probability.

23. When a quantity x has a given law of probability, we
have frequently occasion to consider what would be its mean or

average value "
in the long run," that is to say, the arithmetical

mean of its values, supposing them to occur in a large number
of trials with the frequency indicated by the given law of prob-

ability. See Art. 17.

Let us suppose, in the first place, that only a limited number
of distinct values, say

X\ ,
X2 , Xfn, j

are possible. Let /\ ,
P2 . . . Pm be the proper fractions which

represent the respective probabilities of these values. Then, in

a large number n of trials, the number of times in which the

distinct values x
, x^ . . . xm occur will be

nPl ,
nP2 ,

. . . nPm

respectively. The arithmetical mean mentioned above is, there-

fore,

. . . + nPmxm
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that is, PjXi + PzX2 + . . . +

or 2Px.

That is to say, the mean value is found by multiplying the m
distinct values by their probabilities and adding the results.*

24, Next, supposing a continuous series of values possible,

let yjx be taken, as in Art. 20, to represent the probability that

x falls between x and x + Jx. Evidently, in each term of

2Px, we must now substitute this expression for P, and for x
some intermediate value between x and x + JJF. When we

pass to the limit, in which_>> becomes a continuous function of x,

this sum becomes

1&
xydx,

a

which is thus the mean value of x
t
when y is the function

expressing its law of probability and a and b its extreme

possible values.

For example, with the law of probability considered in Art.

22, namely,

the mean value ofx is

25. In the same manner it may be shown that, if y =f(x)
expresses the law of probability of x, the mean value of any
function F(x) is

* The "value of an expectation" is an instance of a mean value.

Thus, if x
l
is the value to be received in case a certain event whose prob-

ability is P^ happens, x
2
the value to be received if an event whose

probability is P
z happens, and so on for m distinct events, one of which

must happen, then the mean value ^Px is called the value of the expec-

tation.
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<y

Thus, again taking the law of probability y = ^ , the mean

value of X* * is

Again, that of is

a*

26. If all values between a and b are equally probable, the

element of probability is , _ ;
thus the mean value of x, in

this case, is

f
6 xdx _ P-a* _ a + b

} a b a
~

2(b a)
~

2
'

which is the same as the arithmetical mean between the limiting

values. Again, the mean value of xz

y
in this case, is

-a)

The Probability of Unknown Hypotheses.

27. No distinction can be drawn between the probability of

an uncertain future event and that of an unknown contingency, in

a case where the decisive "event" has indeed happened, but we
remain in doubt with regard to it because only probable evidence

* It should be noticed that if z = F(x)t
the law of probability for z is not

found by simply express5ng/(.r) as a function of z. It is necessary to

transform the element of probability f(x}dx, which expresses the proba-

bility that x falls between x and x + dx, and therefore represents also

the probability that z falls between z and z + dz. Thus, in the present

case, putting z = x*,
2x dz

f(x}dx = -^f-
dx =

-^-.,

which indicates that all values of z between o and a? are equally prob-
able when, as supposed in Art. 22, the probability of a value of x is pro-

portional to the value itself.



111.] PROBABILITY OF UNKNOWN HYPOTHESES. I?

is known to us. In any case, the probability is a mental estimate

of credibility depending only upon the known data, and there-

fore subject to change whenever new evidence becomes known.

Let there be two hypotheses A and B, one of which must be

true, and which so far as we know are equally probable, and

suppose that a trial is to be made which on either hypothesis

may eventuate in one or the other of two ways ;
in other words,

that an event X may or may not happen. Suppose, further,

that on the hypothesis A the probability ofX is #
,
and on the

hypothesis B the probability of X is b. Now it is clear that

after the trial has been made and the event X has happened,
we are entitled to make a different estimate of the relative

credibilities of the hypotheses A and B.

28. To obtain the new measures of the probabilities of A and

B, we employ the notion of relative frequency in the long run.

Let us then consider a great number of cases of the four kinds

which before the event Xwe regard as possible, the frequencies

of the different kinds being proportional to their probabilities

as we estimate them before the event. The hypotheses A and B
respectively are true in an equal number of cases, say n, of each.

The event X will happen in na of the cases in which A is true,

and not happen in n(\ a) cases. Again, Xwill happen in nb

cases in which B is the true hypothesis, and not happen in

n(\ b) cases.

Now, since X has actually happened, from the whole number,

2.11, of cases we must exclude those in which ^fdoes not happen,
and consider only the na + nb cases in which X does happen.

Attending only to these cases, the relative frequency ofthose in

which A and B respectively are true is the measure ofour present

estimate of their relative probability. Hence these probabilities

are in the ratio a : 6, that is, the probability ofA is ^-> ,
and

j a + o

that of B is r .

a + b

2Q. As an illustration, suppose there are two bags, A and B,

containing white and black balls, A containing 3 white and 5

*
*
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black balls, B containing 5 white and i black ball. One of the

bags is chosen at random, and then a ball is drawn at random
from the bag chosen. The ball is found to be white ; what is

the probability that the bag A was chosen ? Here a =
J- ,

since

three out of eight balls in A are white, and b f ;
hence the

probabilities are in the ratio f :
-f

or 9 : 20. The probability that

the bag was A is therefore ^-.

Again, suppose A is known to contain only white balls, and

B an equal number of white and black. If a white ball is drawn

a i, b =.
|-,

the odds in favor of A are 2 : i or the probability

of A is f. But if a black ball had been drawn, we should have

had a o, b -J,
the probability ofA is zero, that is, it is certain

that the bag chosen was not A.

30. If there are other hypotheses besides A and B consistent

with the event X, the same reasoning as in Art. 28 establishes

the general theorem that the probabilities of the several hypoth-
eses

',
which before an eventX -were considered equally probable*

are after the eventproportional to the numbers which before the

event express the probabilities ofX on the several hypotheses.

The various hypotheses in question may consist in attributing

different values to an unknown quantity x, and these values may
constitute a continuous series. The probabilities of the various

values will then be proportional to the corresponding prob-
abilities of the event X. Hence, to find the law of the prob-

ability of x, it is only necessary to determine a constant in the

same manner that c is determined in Art. 22.

In particular it is to be noticed that, of all the values of an

unknown quantity which before the occurrence of a certain event

were equally probable, that one is after the event the 'most prob-
able which before the event assigned to it the greatestprobability.

* If this is not the case, the probabilities before the event are called the

antecedent or a priori probabilities, and the theorem is that the ratio of

the antecedent probabilities is to be multiplied by the probabilities of X
on the several hypotheses, in order to find the ratio of the probabilities

after the event.



111.] gt3XAMPL ES. 19

Examples.

i. From 2?t counters marked with consecutive numbers two

are drawn at random ; show that the odds against an even sum
are n to n i.

< 2. A and B play chess, A wins on an average 2 out of 3

games; what is the chance that A wins exactly 4 games out of

the first six ?
-/TS-

3. A domino is chosen from a set and a pair of dice is thrown
;

what is the chance that the numbers agree ?
-j^.

4. Show that the chance of throwing 9 with two dice is to the

chance of throwing 9 with three dice as 24 to 25.

5. A and B shoot alternately at a mark. A hits once in n

times, B once in n i times; show that their chances of first hit'

are equal, and find the odds in favor ofB after A has missed

the first shot. n to n 2.

6. A and B throw a pair of dice in turn. A wins if he throws

numbers whose sum is 6 before B throws numbers whose sum
is 7 ;

show that his chance is f-J.

7. A walks at a rate known to be between 3 and 4 miles an

hour. He starts to walk 20 miles, and B starts one hour later,

walking at the rate of 4 miles an hour. What is the chance of

overtaking him : i if all distances per hour between the limits

are equally probabMf; 2 if all times per mile between the limits

are equally probatie? ^. i, i to 2
; 2, 2 to 3.

8. If all values of x between o and a are possible and their

probabilities are proportional to their squares, show that the

probability that x exceeds \a is
-J ,

and find the mean value

of x. \a.

9. If, in the preceding example, we are informed that x
exceeds $a, how is the probability affected, and w(mt is now
the mean value of xt

'

~'a.

10. If two points be taken at random upon a straight line

AB, whose length is a, and X denote that which is nearest A,
show that the curve of probability for Xis a straight line passing

through B, and find the mean value of AX. \a.
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11. On a line AB, whose length is a, a point Z is taken at

random, and then a point X is taken at random upon AZ.
Determine the probability curve for AX, or x, and the mean
value of x. v=-log - ;-.

a * x '

$
12. Two points are taken at random on the circumference

of a circle whose radius is a. Show that the chord is as likely

as not to exceed a V 2, but that the average length of the chord

is 4.
7T

13. In a semicircle whose radius is a, find the mean ordinate :

i when all points of the semi-circumference are equally prob-
able

;
2 when all points on the diameter are equally probable.

o 2
.

r.a
1

i > *
i

Tc 4

14. A card is missing from a pack; 13 cards are drawn at.

random and found to be black. Show that it is 2 to i that the

missing card is red.

15. A card has been dropped from a pack ; 13 cards are then

drawn and found to be 2 spades, 3 clubs, 4 hearts, and 4
diamonds. What are the relative probabilities that the missing
card belongs to the suits in the order named ? 11:10:9:9.

16. A and B play at chess: when A has the first move the

odds are n to 6 in favor of A, but when B has the first move
the odds are only 9 to 5. A has won a game; what are the

odds that he had the first move ? 154 to 153.

17. The odds are 2 to i that a man will write
'

rigorous
'

rather than '

rigourous.' The word has been written, and a

letter taken at random from it is found to be ' u '; what are

now the odds ? 9 to 8.

1 8. A point Pwas taken at random upon aline A&,znd
then a point C was taken at random upon AP. If we are

informed that C is the middle point of AB, what is now the

probability curve ofAP ? _ i

x log 2



IV.

THE LAW OF PROBABILITY OF ACCIDENTAL ERRORS.

The Facility of Errors.

31. If observations made upon the same magnitude could

be repeated under the same circumstances indefinitely, only a

limited number of observed values, which are exact multiples
of the least count of the instrument, would occur, and the rela-

tive frequency with which they occurred would indicate the law

of the probability of the observed values, that is to say, the

law of facility with which the corresponding errors are com-
mitted. In the theory of errors, however, it is necessary to

regard all observed values between certain limits as possible,

so that when they are laid down upon a line as abscissas, the

law of facility may be represented by a continuous curve, as

explained in Art. 21. This is in fact equivalent to supposing
the least count diminished without limit.

The curve thus obtained is the probability curve for an

observed value
; and, if the point representing the true value

be taken as origin, the abscissas become errors, and the curve

becomes the probability curve for accidental errors committed

under the given circumstances.

32. The probability curves corresponding to different circum-

stances of observation would differ somewhat, but in any case

would present the following general features. In the first place,

since errors in defect and in excess* are equally likely to occur,

the curve must be symmetrical to the right and left of the point

which represents the true value of the observed quantity. In

the next place, since accidental errors are made up of elemental

errors (Art. 3) which, as they may have either direction, tend

* There is usually no distinction in kind between these : either direc-

tion may be taken as positive, and errors of a given magnitude in one

direction or the other are equally likely to occur.
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to cancel one another, small errors are more frequent than

large ones, so that the maximum ordinate occurs at the central

point. In the third place, since large errors (which can only
result when most of the elemental errors have the same direc-

tion and their greatest magnitudes) are rare, and errors beyond
some undefined limit do not occur, the curve must rapidly

approach the axis of x both to the right and left, so that the

ordinate (which can never become negative) practically van-

ishes at an indefinite distance from the central point.

33. If y = y(x) is the equation of the curve referred to the

central point as origin, the general features mentioned above are

equivalent to the statements : first, that <f(x] is an even func-

tion, that is, a function of x1

; secondly, that f(o) is its maxi-

mum value
; thirdly, that it is a decreasing function of x"

1

, and

practically vanishes when x is large. Since it is impracticable

to select the function y in such a manner that <?(x) shall 'be

constantly equal to zero when x exceeds a certain limit, the last

condition requires that the curve shall have the axis of x for an

asymptote ;
in other words, we must have ^( oo ) = o.

When regarded as the curve of probability of an observed

value, the equation is y = y(x a), where a is the true value

of the observed quantity, the origin now corresponding to the

zero point of the measurements.

The general form of the curve of probability of an observed

value will therefore be similar to that given in Fig. 3, in which

A is the point whose abscissa a is the true value.
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The Probability of an Error between given Limits.

34. If the law of probability of error for a given observation is

y = <F(X) ,

the probability that the error of an observation shall lie between

a and /3 will, in accordance with Art. 21, be expressed by

P =

provided that the value of this integral for the whole range of

possible errors is unity. Since we suppose the function <f(x} to

fulfil the conditions given in Art. 32, we may include all errors

in the range of the integral, because the probability of large

errors practically vanishes. We therefore write

>

<p(x}dx = i .

-co

That is to say, the whole area between the curve and the axis

in Fig. 3 is assumed to be unity.

35. If Ax represents the least count of the instrument, the

probability that an observation shall be recorded with the value

x will be represented by

E

+ iAz

<p(x)
~ \x

If Ax is so small that y(x) may be regarded as constant over

the interval, the value of this integral is

The product <p(x)dx t
which is the element of probability,

being the element of the area which represents the probability,

is therefore called the probability of an error between x and

x + dx
y
and is sometimes written in the form

!

+dx
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The Probability of a System, of Observed Values.

36. Let Xi, x2 ,
. . . xn be a series of observed values of a

quantity whose true value is a, the observations being all made
under the same circumstances. Then

x a, xz a, ... xn a

are the errors of observation ; and,

y = <p(x-a) . . . . . . . (i)

being the law of facility of the errors, the probability before the

first observation is made that x shall be the first observed

value is <F(XI a)Ax, where Ax is the least count of the

instrument. In like manner, the probability that x^ shall be the

second observed value is <p(x^ a~)Axy
and so on.

It follows, in accordance with the principle explained in Art.

15, that, if P denote the probability of the compound event con-

sisting in the occurrence of the n observed values, then, before

the observations were made we should have

P <P(*\ a) <?(x^ a) . . . <p(xn a) Axn
. . (2)

The Most Probable Value derivablefrom a given System,

of Observed Values.

37. Supposing the form of the function <p to be known, the

value ofP given above is a known function of the unknown true

value a. Regarding different values of a as hypotheses all

equally probable before the observations were made, the prin-

ciple enunciated in Art. 30 shows that that value of a is most

probable which assigns to P the greatest value.

The value of a thus found, or most probable value, depends
therefore in part upon the form of the function <p y

this being
the mathematical expression of a law which, as stated in Art. 13,

can never be absolutely known. We proceed to the method of

Gauss, which consists in determining the form of <p in accord-

ance with which, the arithmetical mean becomes the most prob-
able value.
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The Form of <f> corresponding to the Arithmetical Mean.

38. If we put

log <p(x a] = <j>(x a), . . . . (i)

we have from equation (2), Art. 36,

a) + nlogdx, (2)

and a is to be so taken that P, and therefore log P, shall be a

maximum. Hence, putting- <!>' for the derivative of <f>,
we have

by differentiation with respect to a,

4>'(x,
~

<0 + V(x* ~ ) + + $(* ~
*) = o . (3)

Denoting the quantities

Xi a, x2 a, ... xn a,

which are the residuals, by Vi ,
vz ,

. . . vn ,
this equation may be

written

PM + 0'() + + t'(i>n)= o. ... (4)

Supposing now the value of a which satisfies equation (3) to

be the arithmetical mean, we have by Art. 9,

Vi + V2 + . . . + Vn = O...... (5)

We wish therefore to find the form of the function $' such that

equation (4) is satisfied by every set of values of Vi ,
vz ,

. . . vn

which satisfy equation (5). For this purpose, suppose all the

values of v except vl and v2 to remain unchanged while equa-
tion (5) is still satisfied. The new values may then be denoted

by Vi + k and v^ k, in which k is arbitrary. Substituting the

new values in equation (4), the sum of the first two terms must

remain unchanged since all of the other terms are unchanged ;

therefore,

V(v, + )

whence

0>i + )

k
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When k is diminished without limit this becomes

<fo
Wj

d

hence, because z/j and z>2 are independent, we infer that

where <: is an unknown constant.

The integral of equation (7) is $'(?} = cv + c?: but, substi-

tuting in equation (4), we find c' = o
;
hence

V(v) = co........ (8)

Integrating again,

V-CzO = lev
1 + c",

or, by equation (i),

log ?(") = - *V + *", ..... (9)

in which we have written 1r for the constant \c, because we
know from Art. 33 that <f(v) is a decreasing function of vz

.

Finally, equation (9) gives

(10)

which is accordingly the law of facility of error which makes the

arithmetical mean the most probable value.

The Determination of the Value of C.

39. The constants C and h which arise in the above process
are not independent ; for, x denoting the error as in Art. 34, we
must have

<f(x)dx i .

oo

Substituting from equation (10) above, this gives

by which the value of C in terms of h may be found.
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A convenient mode of evaluating the definite integral involved

in this equation results from the consideration of the solid in-

cluded between the plane of xy and the surface generated by
the revolution of the curve

about the axis of z. Using polar coordinates in the plane of

xy ,
the equation of the surface is

The volume of the solid in question is therefore expressed by
either of the two formulae

V=\ \e
h^e }

^dxdy, .... (3)
JooJ oo

and

V=
\ ^e'^rdrdd (4)
Jo Jo

The second expression is readily evaluated and gives

In equation (3), the limits of integration are independent ;
hence

Comparing equations (5) and (6), we have

Substituting in equation (i), we have C= j , and the law of

facility becomes

* It is readily shown that e~~ l
*dt T( J), the value of which is V T

J 00

equation (7) may also be derived by putting t = hx in this result.
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a law which, it is readily seen, fulfils the conditions given in

Art. 32.

40. The law of facility expressed in the equation derived

above is that which is universally adopted ;
in other words, it is

assumed that under any circumstances of observation the law of

facility will be satisfactorily represented by equation (8) if the

value of h be properly determined. The mode of determining
the most probable value of h for a given set of observations will

be given in the following section.

We proceed to develop the consequences of this law. Among
them .will, of course, be found the rule of the Arithmetical Mean
in accordance with which the law has been derived (see Art. 42).

Certain confirmations of the law, both of a theoretic and a prac-

tical nature, will also be noticed as they present themselves.

The Principle of Least Squares.

41. Substituting the expression now obtained for the function

y> t
the expression for the probability of the occurrence of the

actual observed values (as estimated before the observations

were made, see Art. 36) becomes

This expression, regarded as a function of a, is obviously a

maximum when

(^ ay + (xz a)* + . . . + (xn a)* = a minimum. (2)

Hence the most probable value of the observed quantity a, in

\
the case of observations supposed equally good, is that 'which

\assigns the least possible value to the sum of the squares of the

'residual errors. This is the statement in its simplest form of

the principle of Least Squares.

42. The rule of the Arithmetical Mean follows directly from

the principle of Least Squares. Thus, by differentiation with

respect to a, we derive from equation (2)

.# a + xz a + . . . + xn a = o
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that is, the algebraic sum of the residuals is zero, or

Ix
a =

^T>

in other words, the arithmetical mean is to be taken as the most

probable value.

43. Conversely, we may show directly that the arithmetical

mean makes the sum of the squares of the residuals a minimum.

For, if a is the arithmetical mean, the residuals are

Vi = X-L a, z>2
= x2 a

,
... vn xn a

,

and Iv o. Now if 8 is the error of the arithmetical mean, the

true value of the observed quantity is a '?, and the true ex-

pressions for the errors of the observed values are

*! a + d = V1 +8, ... Xn a + d Vn + d.

The sum of the squares of the n errors is therefore

I(v + <S)
2 = 2V + 2dlv + nV .

= 2V + n*\

since Zv = o. The minimum value of this expression is obvi-

ously 2V, the value assumed when o := o
;
that is to say, the

sum of the squares of the residuals is least when the arithmetical

mean is taken as the value of the observed quantity.

The Probability Integral.

44. Taking now the probability curve to be

the probability of an error between a. and ft in magnitude is

h P _ fc z ,

P
v* J.

and, in particular, the probability of an error numerically less

than o is

-bit
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If we put hx = t, this may be written in the form

-tt
(3)

which shows that P depends solely upon the value of ho, that is,

upon the limiting value of/.

Table I gives the values of this integral for values of / from o

to 2 at intervals of .01. The halves of the tabular numbers are

the values of the probability of an error whose reduced value

falls between the limits o and /, and by combining these we can

readily find the values of the probability for any given limits.

The Measure of Precision.

45. The value of h in the probability curve depends upon the

circumstances of observation. Let h and /* 3 be the values of h

corresponding to two sets of observations for which the curves

FIG. 4.

are drawn in Fig. 4. The ordinates corresponding to x = o

in the two curves are proportional to the values of h. Hence,
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because small errors are relatively more frequent in the better

set of observations, the value of h for this set will be the larger.

46. Let <?! be any error, and put

then, because ^ in the first set of observations and 52 in the

second set correspond to the same value of t in the prob-

ability integral, equation (3), Art. 44, the probability that an

error shall be less than d
1 in the first set is the same as the prob-

ability that an error shall be less than 2 in the second set. In

Fig. 4, for example, we have taken hz
= 2^ ; it follows that

3
2
= ^ ; that is to say, the probability that an error shall not

exceed a given limit in the first case is the same as the prob-

ability that an error shall not exceed one half of the given limit

in the second case.* The ordinates corresponding to ^ and <5,

in the two curves are drawn in Fig. 4. The areas cut off in the

two cases are equal. It is, in fact, readily seen that the second

curve might have been derived from the first by reducing the

abscissa of each point of the curve to one half its value and at

the same time doubling the corresponding ordinate, a process
which evidently would not affect the total area, which, as we
have seen, must always be equal to unity.

47. The ratio of ^ and d2 which correspond to the same

probability may be said to measure the relative risk of error in

the two cases. Thus, in the example illustrated in Fig. 4, the

risk of error in the first case is double that in the second case.

It is natural to regard the precision of the observations in the

second case as double that of the observations in the first case.

So also, in general, the ratio ofprecision is inversely that of the

risk of error ; that is to say, it is the direct ratio of the values

of h, which are inversely proportional to the corresponding
values of o. Accordingly h is taken as the measure ofprecision.

*This is frequently inaccurately expressed by the statement that the

probability of a given error in the first case is the same as that of the

half error in the second case.
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If the errors in any system of observations are multiplied by
the proper values of h, the results are the corresponding values

of t. Errors belonging to different systems may thus be

reduced to the same scale, and the values of /, or reduced errors,

will then admit of direct comparison.

The Probable Error.

48. The error which is just as likely to be exceeded as not

is called the probable error* In other words, the probable
error is the value of 3 for which P= % in equation (2), Art. 44.

Denoting by p the corresponding value of t in equation (3)

of the same article, we have

JL _MP

-*dt
2
"

y^Jo*

The solution of this equation has been found to be

P = 0.476936,

which is the value of t corresponding to the interpolated value

P= 0.5 in Table I.

Denoting the probable error by r, we have then

_ p _ 0.4769
T h

The Mean Absolute Error.

49. The mean value of all possible errors, having regard to

their probability or frequency in the long run, is, in accordance

with Art. 24,

h
-7
v- j

_ 7i2x2 ,

xe dx .

*The "probable error" is thus not the most probable error, which is,

of course, the error zero, for which the ordinate of the probability curve

is a maximum.
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The value of this is of course zero, the parts of the integral

corresponding to positive and negative errors being equal and

having contrary signs. The value obtained by taking both

parts of the integral as positive is the mean of the errors taken

all positively, or the mean of the absolute values of the errors.

Denoting this mean by 77. we have

2h f= -7 j
V-Jo

whence

The Mean Error.

50. The mean of all values of the square of the error, having

regard to their probabilities, is, in like manner (see Art. 25),

h r 9
-, x*~

V" J-oo

The error whose square has this mean value is denoted by e.

On account of its importance in the theory, this error is called

the mean error. Thus

*-V Vr
V*J-1>

The value of the definite integral involved in this expression

may be deduced from the result found in Art. 39, equation (7),

namely,

Differentiating with respect to h, we have

r -w * *- 2h
\*:

e dx=

and, substituting in the value of e
2

,
we find

K ,
or e = -JT- .

2h l h V 2
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Measures of the Risk of Error.

51. We have seen in Art. 47 that the errors corresponding in

two different systems to the same value of the reduced error t

measure by their ratio the comparative risk of error in the

two systems. Thus the error corresponding to any fixed value

of / might be taken as the measure of this risk. Accordingly
either of the errors

r, i, ,

which correspond respectively to the reduced errors

i i

P ' ^' ^
may be taken as the measure of the risk of error* or inverse

measure ofprecision.

The probable error r is that which is most frequently em-

ployed in practice. Each of the others bears a fixed ratio to r,

their values being respectively

*The error rj was called by De Morgan the mean risk of error, because

it is the mean expectation of error, using the term expectation in the

same sense as in the expression "value of an expectation." (See foot-

note on page 15.) It corresponds to what is generally called in annuity
tables " the expectation of life

"
for persons of a given age, which should

rather be called "the mean duration of survival" for persons of the

given age. On the other hand, the probable error r is analogous to the

remaining term for which a person of the given age is as likely as not to

live. This might be called "the probable term of survival," and its

value may differ materially from the mean duration. Thus, according to

the Carlisle mortality table, one half of the whole number of persons

thirty years old survive for the term of 36.6 years, but the mean duration

of life for such persons, as computed from the same table, is only 34.3

years. This indicates that the law of mortality is such that the half

which exceed the term of probable survival do so by a total amount less

than that by which the other half fall short of it.

In the case of errors the difference falls in the opposite direction. In

the long run one half of the errors exceed r ; and the fact that ?? > r

shows that the half which exceed r do so by a total amount greater than

that by which the other half fall short of it.
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52. Fig. 5 shows the positions of the ordinates corresponding
to r, i]

and s in the curve of facility of errors

k 7t2x2

The diagram is constructed for the value h ~ 2.

FIG. 5.

From the definitions of the errors it is evident that the ordinate

of r bisects the area between the curve and the axes, that of ^

passes through its centre of gravity, and that of e passes through
its centre of gyration about the axis ofjj/.
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The advantage of employing in practice a measure of the

risk of error, instead of the direct measure of precision, results

from the fact that it is of the same nature and expressed in the

same units as the observations themselves. It therefore conveys
a better idea of the degree of accuracy than is given by the value

of the abstract quantity h. When the latter is given, it is

course necessary also to know the unit used in expressing the

errors.

Tables of the Probability Integral.

53. The integral e~^dt is known as the errorfunction and
Jo

is denoted by Erf t .* Table I, which has already been described,
<2

Art. 44, gives the values of -r^- Erf t, which is the probability

that an error shall be numerically less than the error x, of

which the reduced value is t. The argument of this table is

the reduced error t.

But it is convenient to have the values of the probability

given also for values of the ratio of the error x to the probable
error. Putting z for this ratio, we have, since hx = t and hr =. p,

= ..---
r
"

P
'

Table II gives, to the argument z, the same function of / which

is given in Table I
; that is to say, the function of z tabulated is

/>. = -; Erf/*,

*The integral e~ i
'*dt is denoted by Erfc /, being the complement of

the error function, so that

Erf / + Erfc/ = *

These functions occur in several branches of Applied Mathematics.

A table of values of Erfc / to eight places of decimals was computed by

Kramp ("Analyse des Refractions Astronomiques et Terrestres," Stras-

bourg, 1799), anc* from this the existing tables of the Probability Integral

have been derived.
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which is the probability that an error shall be numerically less

than the error x whose ratio to the probable error is z.

54. By means of the tables of the probability integral, com-

parisons have been made between the actual frequency with

which given errors occur in a system containing a large number
of observations and their probabilities in accordance with the

law of facility.

The following example is given by Bessel in the Fundamenta
Astronomiae. From 470 observations made by Bradley on the

right ascensions of Procyon and Altair, the probable error of

a single observation was found (by the formula given in the next

section) to be
r = 0^.2637.

With this value of r, the probability that an error shall be

numerically less than o".i is found by entering Table II with

the argument

and the probability that it shall be less than o".2, ".3 and so

on, by entering the table with the successive multiples of this

quantity. In the annexed table the first column contains the

successive values of the limiting error x, the second those of z,
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and the third the corresponding values of the probability of an

error less than x as given by Table II. The fourth column

contains the successive differences of these, so that each of the

numbers contained in it is the probability of an error falling

between the corresponding value of x and that which precedes
it. The fifth column contains the multiples of these by 470,

which are the theoretical numbers of errors to be expected
within the intervals, the last number in the column being the

number of errors which should exceed i".o. Finally, the last

column contains the actual numbers of errors which occurred in

the corresponding intervals, as given by Bessel. The agree-

ment between the theoretical and actual numbers is remarkably

close, and forms a practical confirmation of the adopted law of

facility.

The Distribution of Errors on a Plane Area.

55. The deviations of the bullet marks in target practice from

the point aimed at are of the nature of accidental errors. It is

usually assumed that the lateral deviations and the vertical

deviations are independent of one another, and that each follows

the law of facility for linear errors. We proceed to determine

the resulting law of the distribution of the shots upon the plane
area.

Let the point aimed at be taken as the origin of coordinates,

the horizontal deviation of a shot being denoted by x and the

vertical deviations by y, and let these deviations be assumed to

have the same measure of precision. Then the probability of

a horizontal deviation between x and x + dx is

and for each value of x the probability of a vertical deviation

betweeny andy + dy is
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Hence the probability of hitting the elementary rectangular

area dxdy, which involves the joint occurrence of these devia-

tions, is

and, since the probability of hitting an elementary area is pro-

portional to the area, if denote such an area situated at the

point (x , j), the probability of hitting it is

where r denotes the distance of a. from the origin.

Thus the hypothesis of independent vertical and horizontal

deviations, each following the usual law of facility and having
the same measure of precision, leads to the conclusion that the

facility of the resultant deflection depends solely upon its linear

amount, r
y
and not at all upon its direction.* This agrees with

*Sir John Herschel's proof of the law of facility of errors (Edinburgh
Review, July, 1850) rests upon the assumption that it must possess the

property which is above shown to belong to the exponential law. He

compares accidental errors to the deviations of a stone which is let fall with

the intention of hitting a certain mark, and assumes that the deviations in

the directions of any two rectangular axes are independent. But, since

there is no reason why the resultant deviations should depend upon their

direction, this implies that,/(.r
2
) being the law of facility, we must have

where xr
andjy' denote coordinates referred to a new set of rectangular

axes, so that

Now the solution of the functional equation

/(*
2
)/lr

2
)
= </(

is

where c and k are constants.

There is no a priori reason why the deviations in y should, as assumed
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the usual custom of judging of the accuracy of a shot solely by
its distance from the point aimed at.

The Surface of Probability.

56. If at every point ofthe plane ofxy we erect a perpendicular

, taking

we shall have a surface ofprobability analogous to the curve of

probability in the case of linear errors. Since the probability

of hitting the elementary area dxdy is zdxdy, the probability

of hitting any area is the value of the double integral

zdxdy

taken over the given area. That is to say, it is the volume of

the right cylinder having this area for its base, and having its

upper surface in the surface of probability.

The probability surface is a surface of revolution. The solid

included between it and the plane of xy is in fact similar to

Joe
e~ vt

**dx.
00

The Probability of Hitting a Rectangle.

57. The probability of hitting the rectangle included between

the horizontal linesy =jj>, ,y =yz and the vertical lines x xlt

x = Xi is the double integral

above, occur with the same relative frequency when x has one value as

when it has another; but it is noteworthy that, having made this assump-
tion, no other law of facility of linear deviation would produce a law of

distribution in area involving only the distance from the centre. On the

other hand, no other law of distribution in area depending only upon r

(such for example as f~ r
)
would make the law of facility for deviations

iny independent of the value of x.
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which, because the limits for each variable are independent oi

the other, is equivalent to

that is, it is the product of the probabilities that x andjj/ respec-

tively shall fall between their given limits. This result is, of

course, nothing more than the expression of the hypothesis
made in Art. 55.* If h be known, the values of the factors in

the expression (2) may be derived from Table I, as explained
in Art. 44.

In particular, putting x
l d, x =

<5, y^ = <5', yz
= df

,

we have for the probability of hitting a rectangle whose centre

is at the origin and whose sides are 20 and 2$ ,

where PS and /V are tabular results taken from Table I, if h be

given, or from Table II if the probable error of the deviations

be given.

For example, for the square whose centre is the origin and

whose half side is r
,
the probable error of the component

deviations, the probability of hitting is i.

Again, to find the side of the centrally situated square which

is as likely as not to be hit, and which therefore may be called

the probable square, we must determine the value of d for

which Ps V = 0.7071. This will be found to correspond to

t 0.7437, whence the side of the square is 2<?, where

*_ * _ Q-7437-
h

~
h

'

* The property of the probability surface corresponding to the assump-
tion that the relative frequency of the deviations in y is independent of

the value of x is that any section parallel to the plane of yz may be

derived from the central section in that plane by reducing all the values

of 2 in the same ratio. In accordance with the preceding foot-note, thi*

is the only surface of revolution possessing this property.
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The Probability of Hitting a Circle.

58. Putting = 2~rdr in the expression derived in Art. 55,

the probability of hitting the elementary annular area between

the circumferences whose radii are r and r + dr is found to be

dp = 2h*e~
1

*'*rdr (i)

Hence the probability that the distance of a shot from the point

aimed at shall fall between rv and r2 is

p = 2tf
^e-

**
rdr = e -^l _ ,-**!. . . (2)

Putting the lower limit r^ equal to zero, we have, for the prob-

ability of planting a shot within the circle whose radius is r,

a formula in which h is the measure of the accuracy of the

marksman.

The Radius of the Probable Circle.

59. If we denote by a the value of r corresponding top \

in equation (3) of the preceding article, we shall have

whence

Then a is the radius of the probable circle, that is, the circle

within which a shot is as likely as not to fall, or within which

in the long run the marksman can plant half his shots. Thus
a is analogous to the probable error in the case of linear devia-

tions, and, being inversely proportional to k, may be taken as

an inverse measure of the skill of the marksman.

Eliminating h from the formula for/ by means ofequation (i),

we obtain

p = i

(T

\ rS

Tf
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Denoting by n the whole number of shots, and by m the

number of those which miss a circular target of radius r, we

may, if n and m be sufficiently large, put

m
I -P = ^-

Supposing/ in equation (3) to be thus determined, we derive

the formula

/ lg 2
a r A / ;

s
.
-

,\ log n log m

in which the ordinary tabular logarithms may be employed.*

The Most Probable Distance.

60. Equation (i), Art. 58, shows that the probability of hitting
the elementary annulus of radius r is proportional to

-*.
The value of r which makes this function a maximum is found

to be identical with e, the mean error of the linear deviations,

namely,

which is therefore the most probable distancef at which a shot

can fall.

This distance might, like a, be taken as the inverse measure

of the skill of the marksman.

*This is Sir John Herschel's formula for the inverse measure of the

skill of the marksman. See " Familiar Lectures on Scientific Subjects,"

p. 498. London and New York, 1867.

fThe point at which the probability is a maximum (that is, where the

density of the shots in the long run is the greatest) is of course the

origin, at which the ordinate z in the probability surface is a maximum.
The value of r here determined is that for which the right cylindrical

surface included between the plane of xy and the probability surface is a

maximum, that is, the annulus which contains the greatest number of

shot in the long run.
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Measures of the Accuracy of Shooting.

6l. Any quantity inversely proportional to h might be taken

as the measure of the marksman's risk of error, or inverse

measure of precision. We may employ for this purpose either

a, the radius of the probable error, e, the most probable dis-

tance, d, the half side of the probable~square (Art. 57), or rlt the

probable error of a linear deviation.

The most probable value of h derivable from n given shots

will be shown in the next section, Art. 73, to be

Employing this value of h we have

Zr*

1 2r*

=0.4769^.

Examples.

i. Show that the abscissa of the point of inflexion in the

probability curve is the mean error.

^ 2. In 1000 observations of the same quantity how many may
be expected to differ from the mean value by less than the

probable error, by less than the mean absolute error, and by
less than the mean error respectively? 500, 575, 683.

> 3. An astronomer measures an angle 100 times
; if, when the

unit employed is i", the measure of precision is known to be
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h = \, how many errors may be expected to have a numerical

value between 2^. and 4" ? 31.

4. In 125 observations whose probable error is 2", how many
errors less than i" are to be expected ? 33.

5. If the probable error is ten times the least count of the

instrument, show that 'about 27 observations out of 1000 will be

recorded with the true value, and 21 will exceed it by an amount

equal to the probable error.

6. If h is changed to mh (m> i), errors less than a certain

error xl are more probable, and errors greater than x^ are less

probable. Find ^ the reduced value of x^ .

7. Show that the envelop of the probability curve, when k

varies, is the hyperbola

the abscissa of the point of contact being the mean error.

8. Show that

and thence derive the value of the integral.

9. Deduce the formula of reduction (m positive)

and thence show that (n being a positive integer) the mean
value of the 2nth power of the error is

(2tt)!

2
2 n\h n *

and that the mean absolute value of the (272 + i)th power of

the error is

n\
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10. Show that

3
+

2! 5

"
3! 7

+ "

ii. Deduce the formula of reduction (n positive)

IV"-*#= -^v - ?z^ r/-f +
>,-<Vtf;

J* 2/ H 2 *l

and thence show that

12. Find the probability that the deviation of a shot shall

exceed 2a. T̂ .

13. Find the probability that a shot shall fall within the circle

whose radius is e. i e~* 0.3935.

14. A marksman shoots 500 times at a target; if his skill is-

such that when errors are measured in feet, h = i, what is the

number of bullet marks between two circles described from the

centre with radii i and 2 feet? 175.

15. If errors are measured in inches in example 14, what are

the values of h and of a? -f^, 9.99.

1 6. An archer is observed to plant 9 per cent of his arrows

within a circle one foot in diameter ; what is the diameter of

a target which he might make an even bet to hit at the first

shot? 2 ft. 8 J in.

17. A hits a target 3 feet in diameter 51 times out of 79 shots
;

B hits one 2 feet in diameter 39 times out of 87 shots. Find the

diameters of the targets that each can make an even wager to

hit at the first shot. For A, 2.45 feet
;
for B, 2.16 feet.

1 8. In example 17, what are the odds that B will hit A's

probable circle at the first shot? About 59 to 41.

19. If the circular target which a marksman has an even

chance of hitting be divided by circumferences cutting the radius

into four equal parts, how many shots out of 1000 will fall in the

respective areas ? 42,117,164,177.
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20. A circular target 32 inches in diameter is divided into

rings by circumferences cutting the radius into four equal parts.

The number of shots out of 1000 which fell in the several areas

were 31, 89, 121, 141 ;
what are the respective values of a in

inches determined from the numbers of shots in the several

circles ? 18.764, 18.628, 19.025, 19.202.

21. Find the probability of hitting a square target circum-%

scribing the circle whose radius is a. 579O.

22. If several shots be fired at a wafer on a wall and the wafer
.

be subsequently removed, show that the centre of gravity of

the shot marks is the most probable position of the wafer.
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THE COMBINATION OF OBSERVATIONS AND PROBABLE
ACCURACY OF THE RESULTS.

The Probability of the Arithmetical Mean.

62. We have seen that, in accordance with the law of facility

which we have adopted, the best result of the combination of a

number of equally good observations is their arithmetical mean.

We have next to determine the probable accuracy of this result,

and then to consider the best method of combining observations

of unequal precision.

Let there be n observations, the law of facility of error for

each of which is

a being the true value of the observed quantity, and x-^ , x* . . . xn

the observed values. Then the value of P, equation (2), Art.

36, becomes

(2

and, as shown in Art. 30, the probabilities of the different

hypotheses which we can make as to the value of a are propor-
tional to the corresponding values of P.

63. Let us now take a to denote the arithmetical mean, and

put a d for the true value, so that d is the error of the arith-

metical mean
;
then denoting the residual by v, the true error

will be x a + d = v + d. It was shown in Art. 43 that

hence the general value ofP must now be written
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and the value expressed by equation (2) is now the maximum

value, corresponding to d o. Distinguishing this value by the

symbol P , equation (3) may be written

P=P,e- ....... (4)

Since the probability of d, which is the error of our final

determination, is proportional to P, and P is independent of d,

equation (4) shows that the arithmetical mean has a law of prob-

ability which is identical with that which we have adopted in

equation (i) for the single observations, except that nh? takes

the place of /i\ Thus, denoting byyQ the facility of error in the

arithmetical mean, we have

The fact that the assumption of the law (i) for a single

observation implies a law of the same form for the final value

determined from the combined observations is one of the con-

firmations of this law alluded to in Art. 40.*

64. Equation (5) of the preceding article shows that the

arithmetical mean of n observations may be regarded as an

observation made with a more precise instrument, the new
measure of precision being found by multiplying that of the

single observations by /y/
n. Since hr is constant when r repre-

sents any one of the measures of risk, we have for the. probable
error of the arithmetical mean,

*In general, an assumed law, y = ^(x} t
of facility of error for the

single observations would produce a law of a different form for the result

determined from n observations. Laplace has shown that whatever be

the form of $ for the single observations, the law of facility of error in

the arithmetical mean approaches indefinitely to

/=-*
as a limiting form, when n is increased without limit. See the memoir
" On the Law of Facility of Errors of Observation, and on the Method of

Least Squares," by J. W. L. Glaisher, Memoirs Royal Ast. Soc., vol. xxxix

pp. 104, 105.
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and the same relation holds in the case of either of the other

measures of risk.

Thus, for example, it is necessary to take four observations

in order to double the precision, or reduce the risk of error to

one half its original value.

The probable error of a final result is frequently written

after it with the sign . Thus, if the final determination of

an angle is given as 36 42'.3 i'.22, the meaning is that the

true value of the angle is exactly as likely to lie between the

limits thus assigned (that is, between 36 4i'.o8 and 36 43'.52)

as it is to lie outside of these limits.

The Combination of Observations of Unequal Precision.

65* When the observations are not equally good, let h^ hz ,

... hn be their respective measures of precision ; so that, a being
the true value, the facility of error ofx is

= A, -,<,,-,
S 1 ./ CT

that of x* is

and so on. The value of /", Art. 36, which expresses the prob-

ability of the given system of observed values on the hypothesis
of a given value of a, now becomes

*4*^ . . . Ax; . (i)

and, as before, the probabilities of different values of a are pro-

portional to the values they give to P.

It follows that that value of a is most probable which makes

Ih\x - aj or

%(Xia? + %(x* 3 + ... ^rhl(xnaj a minimum. (2)

In other words, if the error of each observation be multiplied by
the corresponding measure ofprecision, so as to reduce the errors



V.] OBSERVATIONS OF UNEQUAL PRECISION. 51

to the same relative value (see Art. 47), it is necessary that the

sum of the squares of the reduced errors should be a minimum.
This is, in fact, the more general statement of the principle of

Least Squares.

Differentiating with respect to a, we have

j; C*i -) + #(*-) + ...+(*-) = o; (3)

and the value of a determined from this equation is

_ i * . . . n _
hi + h\ + . . . + hi

'

2tf '

which is therefore the most probable value of a which can be

derived from the n observations.

Weights and Measures of Precision.

66. The value of a found above is in fact the weighted
arithmetical mean of the observed values (see Art. 1 1), when the

respective values of k2 are taken as the weights. But, since the

weights are numbers with whose ratios only we are concerned,

we may use any proportional numbers pi , /2 ,
. pn ,

in place
of the values of h. Thus putting

. . (5)

equation (4) may be written

_ i _ ,

A+A+ .. +pn Ip
'

Hence the most probable value which can be derived from the

n observations is the weighted arithmetical mean, the weights

of the observations being proportional to the squares of their

measures ofprecision.
The quantity h in equations (5) is the measure of precision of

an observation whose weight is unity. It is immaterial whether

such an observation actually exists among the n observations or

not.
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If each of the observations has the weight unity, 2p takes the

value n, and the value of a becomes the ordinary arithmetical

mean.

The Probability of the Weighted Mean.

v 67. Let us now, employing a to denote the value determined

above, put a 4- d in place of a in the value of P, so that d repre-

sents the error in our final determination of a. Then, writing

v for the residual, we have, as in Art. 63, to replace x a by
v + 8. The value of/5

, equation (i), Art. 65, thus becomes

1 , .

Now, by equation (3), Jf^V = o, therefore

I/i
9

(v + d)* = Ztftf + PSh*

substituting, we obtain

,-> h-Jl-i . . . hn _ 271202 _
'

Hence, putting Po for the value assumed by P when d = o, we
have

p= pQe - O Q O? +*!++ fc)

Since the probability of d is proportional to P, it follows, as

in Art. 63, that the law of facility of the mean is of the same
form as those of the separate observations, the square of the

new measure of precision being the sum of the squares of those

of the separate observations. Denoting the facility of error in

the weighted mean by j/ ,
and employing the notation of Art

66, we have therefore

in which h is the measure of precision of an observation whose
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weight is unity. When the weights are all equal, this formula

becomes identical with that of Art. 63.

68. The weight of the mean is defined in Art. 12 to be 2p,
the sum of the weights of the constituent observations. Hence
the value of _y found above shows that, in comparing the fatal
result with any single observation, as well as in comparing the

observations with one another, the measures of precision are

proportional to the square roots of the weights.

The probable error being inversely proportional to h, it fol-

lows that, r representing the probable error of an observation

whose weight is unity, and r that of the mean whose weight is

2p> we shall have
r

This result includes that of Art. 64, and, like it, is applicable
to either of the measures of risk.

The Most Probable Value of h derivablefrom a System of
Observations.

69. Substituting the values of h^ ,
h z ,

. . . hn in terms of the

weights, equations (5), Art. 66, the value of P
t equation (i),

Art. 65, becomes

P=

The same principle which we have employed to determine

the most probable value of the observed quantity serves to

determine the most probable value of h. Thus the most prob-
able value of h is that which gives the greatest value to P, or,

omitting factors independent of h, to the expression

Putting the derivative of this expression equal to zero, we
have

*-)'] = o;
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whence

in which a denotes the true value of the observed quantity.

70. Equation (2) may be written

h fJ ~v^c~._ ay
> (2 >

When the observations are all made under the same circum-

stances, so that we may put

P\ =P* = pn = I
>

the equation becomes

Z(*-ar = i

}n 2#"

in which h denotes the measure of precision of each of the

observations. The second member of this equation is the value

of e
2

,
the square of the " mean error," which was defined in

Art. 50 as the mean value of the square of the error, having

regard to its probability in a system of observations whose

measure of precision is h. In other words, it is the mean

squared error in an unlimited number of observations made
under the given circumstances of observation.

On the other hand, the first member of equation (2) is the

actual mean squared error for the n given observations. The

square root of this quantity may be called the observational

value of the mean error, in distinction from the theoretical value,

e, which is a fixed function of h.

Thus the equation asserts that the most probable value of h

is found by assuming the theoretical value of the mean error to

be the same as its observational value. In other words, it is a

consequence of the accepted law of facility that the measure of

precision of a set of observations equally good is proportional
to the reciprocal of the mean error as determined from the

observations themselves.
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Formulafor the Mean and Probable Errors.

71. The quantity Ip(x aj- in the value of h, equation (2),

Art. 69, is the sum of the weighted squares of the actual errors

of the observed values x^ ,xz , . . . xn . Now, when a denotes

the weighted arithmetical mean, x a must be replaced by z/ + <5,

as in Art. 67, and

Ip(v + 3) = Zpv* + Vlp..... (i)

The value of 8, which is the error of the arithmetical mean, is

of course unknown
;

it may be either positive or negative, but,

since <5
2

is essentially positive, the true value of 2p(x of
always exceeds 2pv

l
. The best correction we can apply to the

approximate value Zpv
2'
is found by giving to o

2
in equation (i)

its mean value
; for, by adopting this as a general rule we shall

commit the least error in the long run. Now we have seen in

Art. 67 that d follows a law of probability of the usual form in

which the measure of precision is h ^ Ip hence the mean value

of <5
2
is the same as the mean squared error found in Art. 50,

except that h is changed to h *J Ip. That is to say, the mean
value of <5

2
is

i

Putting this in place of <5
2
in equation (i) we have

IP(y + )
= ipv" + JL..... (2)

Equation (2), Art. 69, may be written in the form

I = 2l>o - a);

and, employing the value just determined, we have

whence we derive
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for the most probable value of h for an observation of weight

unity.

72. The resulting value of the mean error of an observation

whose weight is unity is

and by Art. 68, the mean error of the arithmetical mean whose

weight is 2p is

Again, the value of the probable error of an observation

whose weight is unity is

and that of the weighted arithmetical mean is

The constant 0.6745 is the reciprocal of that which occurs in

equation (2), Art. 51.

For a set of equally good observations we have, by putting

V 2

T ...... (5)

for the probable error of a single observation, and

^ =
0.6745^/^^5

..... (6)

for the probable error of the simple arithmetical mean.
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The Most Probable Value of h in Target Practice.

73. We have seen in Art. 55 that in target practice the prob-

ability of hitting an elementary area a, situated at the distance r

from the point aimed at, is

Suppose that n shots have been made, the first falling upon
the area i ,

the second upon 2 ,
and so on

; then, before the

shots were made, the probability that the shots should fall upon
these areas in the given succession is

Hence, the shots having been made, the probabilities of different

values of h are proportional to the values they give to the

expression

Making this function of h a maximum, we have

e-"*1*

[2nh**~*
- 2A

n+ 1

iy] =o,

whence we have, for the most probable value of ht

the value quoted in Art. 61.

74. The value of e
2 hence derived is

2H 2H

where is the mean error for the component deviations, which

are the values of x and y respectively. The values of e
2 as

determined from the lateral and vertical deviations respectively,

are
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Thus the value of e
2

,
which we have derived from the total

deviations, or values of r, is the mean of its most probable
values as separately derived from the two classes of component
deviations.

It will be noticed that neither of the quantities 2V, 2jy
2 or

2r* needs to be corrected as in Art. 7 1
,
because we are here

dealing with actual errors and not with residuals.*

The Computation of the Probable Error.

75. The annexed table gives an example of the application

of formulae (5) and (6), Art. 72. The seventeen values of x in

X
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the first column are independent measurements of the same

quantity made by Prof. Rowland for the purpose of determining
a certain wave length. At the foot of the column is the arith-

metical mean of the seventeen observations. The second column

contains the residuals found by subtracting this from the separate

observations. The values of z/
2
in the third column are taken

from a table of squares, and their sum is written at the foot of

the column. Dividing this by 16, the value of n I, we find-
0.00010864,n i

and taking the square root,

9
s 0.01042.

Multiplying by the constant 0.6745 we have

r = 0.00703

for the probable error of a single observation.

Again, dividing by \/ 17, we have

r = 0.00171

for the probable error of the final determination, which may
therefore be written

x 4.5055 0.0017.

It will be noticed that nine of the residuals are numerically
less and eight are numerically greater than the value we have

found for the probable error of a single observation.

76. The equation

derived in Art. 43, enables us to abridge somewhat the com-

putation of JlV, and to reduce the extent to which a table of

squares is needed. Thus, if we use the value of a to three

places of decimals, namely a 4.505, in forming the values of
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v, each of these quantities will be algebraically greater than it

should be by T
8
y of a unit in the third decimal place. Putting

hence 2v9

,
as found on this supposition, will be too great by

3!^ of a unit in the sixth decimal place. The columns headed

v and v* would then stand as follows :

v v*

+ .019 .000361
-

.005 25

+ .010 . 100

+ .003 9

+ .008 64
+ .006 36

.008 64
+ .002 4

.004 16
-

.003 9

.020 400
+ .014 196

+ .012 144
.OOI I

.012 144

.013 169

.000 O

2(v + $y = .001742

and making the correction found above, we have v

Iv1 = .001738^,

which is the exact value.

The smallness of the correction is due t6 the fact that Sv* is

a minimum value. The correction might have been neglected,

being, in this case, only about -^ of the correction made in the

formula on account of the mean value of the unknown error in

the arithmetical mean,
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77. As an example of the application of the formulae involving

weights, let us suppose that instead of the seventeen observations

in the preceding article we were given only the means of certain

groups into which the seventeen observations may be separated.

These means we have seen may be regarded as observations

having weights equal to the respective numbers of observations

from which they are derived. The annexed table presents the

P
2 4-512

1 4-5I5

4 4-507

3 4-503
2 4-502

2 4-5II

3 4-497

a = 4.5055 Ipv* = .00050425

data in such a form, the first value of x being the mean of the

first two values in the preceding table, the next being'the third

observation, the next the mean of the following four, and so on.

The weighted mean of the present seven values of x of course

agrees with the final value before found. The values of v and

of i? are formed as before, and the values oipv
1 are given in the

last column, at the foot of which is the value of Ipv
2

. Dividing
this by 6, the present value ofn i, we find

V
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78. The value of r found above corresponds to a single

observation of the set given in Art. 75. It differs considerably
from the value found in that article. The discrepancy is due to

the fact that in Art. 76 we did not use all the data given in Art.

75, and it is not to be expected that the most probable value of

h which can be deduced from the imperfect data should agree
with that deduced from the more complete data. In one case

we have seventeen discrepancies from the arithmetical mean,
due to accidental errors, upon which to base an estimate of the

precision of the observations
;
in the other case we have but

seven discrepancies. The result in the former case is of

course more trustworthy ;
and in general, the larger the value

of w, the more confidence can we place. in our estimate of the

measures of precision.

79. It should be noticed particularly that the weighted obser-

vations in Art. 76 are not equivalent to a set of seventeen

observations of which two are equal to the first value of x, one

to the second, four to the third, and so on, except in the sense of

giving the same mean value. Compare Art. 16. Such a set

would exhibit discrepancies very much smaller on th*e whole than

those of the seventeen observations in Art. 75. Accordingly,
the value of ^ in the supposed case would be very much smaller

than that found above for the weighted observations. The
value of JV would in fact be the same as that of ^pv~ in Art.

76, but it would be divided by 16 instead of by 6.

The approximate equality of the results in Art. 75 and Art. 76
is due to the fact that the zr's, of which seventeen exist in each

sum, are on the average very much diminished* when the mean
of a group is substituted for the separate observations, and this

* The amount of this diminution is, however, largely a matter of chance.

For example, if we had taken the seven groups in such a manner that

the successive values of/ were 2, 3, 2, 4, 2, i, 3, we should have found

r- 0.00833,

differing in excess from that of Art. 75 still more than that obtained

above does in defect.
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makes up for the change in the denominator by the decrease in

the value of n.

80. Different weights are frequently assigned to observations

made under different circumstances, according to the judgment
of the observer. Thus an astronomer may regard an observa-

tion made when the atmosphere is exceptionally clear as worth

two of those made under ordinary circumstances. Regarding
the latter as standard observations having the weight unity, he

will then assign the weight 2 to the former. As explained in

the preceding article this is not equivalent to recording two

standard observations, each giving the observed value* The
latter procedure would lead to an erroneous estimate of the

degree of accuracy attained.

The Values of h and r derivedfrom the Mean Absolute

Error.

81. The mean absolute error 7? is a fixed function of h
y
viz:

v = 7^> (0

hence, if we were able to determine it independently, we should

have a means of finding the value of h, and consequently that

of r.

In the case of n equally good observations, let [x a] denote

the numerical value of an error taken as positive, then

is the arithmetical mean of the absolute values of the n actual

errors. This may be called the observational value of the mean
absolute error in distinction from the theoretic value given in

equation (i), which is the value of this mean in accordance with

the law of probability, when the measure of precision is h.

If we assume these values to be equal, we obtain
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whence

* =
2[*- a]^" (3>

and

If in this formula we put for a the arithmetical mean, so

that 2[x d\ becomes ^[#], it gives the apparent probable

error, that is, the value r would have if the arithmetical mean

were known to be the true value of x. Denoting this by r*
',

we have then

. .-. (5)

82. It is obvious from Arts. 71 and 72 that the values of r'

and r as derived from the square of the residuals are

r' = 0.6745 y-~ r = 0-6745 y
-

so that

* This relation between the apparent and the real probable error is de-

rived directly by C. A. F. Peters {Berliner Astronomisches Nachrichten,

1856, vol. xliv. p. 29) as follows: If e\ , e-t , . . . en are the true errors,

that of the arithmetical mean is

then

i

en, etc.
n

Since r is the probable error of each e, and / that of each v, the formula

for the probable error of a linear function of independent quantities (see

Art. 89) gives

This result is used by Peters to establish the formula derived above, but

it may also be used in place of the method of Art. 71 for the correction of

the apparent value of r in terms of .2f2
.
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Combining this result with equation (5) we have

r = 0.

and hence, for the probable error of the arithmetical mean,

As an illustration, let us apply these formulae to the observa-

tions given in Art. 75, for which we find ^\v\ = 0.1405. Sub-

stituting this value, and putting n = 17, we find

r = 0.00720, r = 0.00175.

These values agree closely with those derived in Art. 75

from the formulae involving -2V, which indeed give the most

probable values of r and r
,
but involve much more numerical

work, especially when n is large.

83. In order to adapt the formulae of Art. 82 to the case of,

weighted observations, it is necessary to reduce the errors to

the same scale; in other words, to make them proportional to

the reduced errors or values of /, see Art. 47. Since the

measures of precision are proportional to the square roots of

the weights, this is effected by multiplying each error by the

square root of the corresponding weight. The products may
be regarded as errors belonging to the same system, namely,
that which corresponds to the weight unity.

Hence equation (7) gives for the probable error of an obser-

vation whose weight is unity

and for the probable error of the weighted arithmetical mean

we have
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Examples.

1. A line is measured five times and the probable error of

the mean is .016 of a foot. How many additional measure-

ments of the same precision are required in order to reduce the

probable error of the determination to .004 of a foot? 75.

2. It is required to determine an angle with a probable error

less than o".25. The mean of twenty measurements gives a

probable error of o".38 ; how many additional measurements

are necessary ? 27.

3. If the probable error of each of two like measurements of a

foot bar is .00477 of an inch, what is the probable error of their

mean ? .00337.

4. Ten measurements of the density of a body made with

equal precision gave the following results :

9.662, 9.664, 9.677, 9.663, 9.645,

9.673, 9.659, 9.662, 9.680, 9.654.

What is the probable value of the density of the body and the

probable error of that value? 9.6639 .0022.

5. Forty micrometric measurements of the error of position

of a division line upon a standard scale gave the following
results :

3.68
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7. An angle in the primary triangulation of the U. S. Coast

Survey was measured twenty-four times with the following
results :

1 16 43' 44".45 49.20 51.05 51.75 51.05 49.25

50 .55 48.85 47.85 49.00 51.70 46.75

50 .95 47.40 50.60 52.35 49.05 49.25

48 .90 47.75 48.45 51.30 50.55 53.40

Find the probable error of a single measurement, and the final

determination of the angle. i"-35 : 1 16 43' 49^.64 o".28.

8. In example 7, taking the means of the six groups of four

observations each, determine the probable error of the first of

these means : i, considered as a measurement of four times the

weight of those in example 7 ; 2, directly as one of six obser-

vations of equal weight ; 3, as a determination from its four

constituents. i, ".67 ; 2, 0^.72 ; 3, i".oo.

9. An interval of 600 units as determined by a micrometer

was forty times measured to determine the error in the pitch of

the screw, with the following results :

600.0
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THE FACILITY OF ERROR IN A FUNCTION OF ONE OR MORE
OBSERVED QUANTITIES.

The Linear Function of a Single Observed Quantity.

84, If the value of an observed quantity X be subject to an
error x, the value of a given function of X, sayZf (X), will

be subject to a corresponding error z. Assuming x to follow

the usual law of facility, h being the measure of precision and r

the probable error, we have now to determine the law of facility

of #, for any form of the function/.

Let us first consider the linear function

Z=mX + b,

where m and b are constants. The case is obviously the same
as that of the simple multiple mX, the relation between the

corresponding errors being

z = mx.

The probability that the error z falls between z and z + dz is

the same as the probability that x falls between x and x + dx,

namely,
h -w ,.

Expressing this in terms of z, it becomes

or, putting
- =Ht

H H*i* j
r- e dz.

Thus the law of facility for Z is of the same form as that for X,
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the measure ofprecision being found by dividing that ofXbym ;

and, denoting the probable error of Z by R, we have (since

probable errors are inversely as the measures of precision)

R = mr,

and the same relation holds between either of the other measures

of the risk of error.

The curves of facility for X and Z are related in the same

manner as those drawn in Fig. 4, page 30, and the process of

passing from one to the other is that described in Art. 46; that

is to say, the abscissas which represent the errors are multiplied

by m, and then the ordinates are divided by m, so that the areas

standing upon the corresponding bases dx and dz shall remain

equal.

Non-Linear Functions of a Single Observed Quantity.

85. A non-linear function of an observed quantity subject to

the usual law of facility does not strictly follow a law of facility

of the same form. If, however, as is usually the case, the error

x is very small, any function of the observed quantity will very

nearly follow a law of the usual form. Let a be the true value

of the observed quantity, then

X=a + x,
and

=/<*)=/(+*).
Expanding by Taylor's Theorem, and neglecting the higher

powers ofx* we may take

which is of the linear form. Hence we may regard Zas subject

to the usual law of facility, its probable error being

R = rf'(a\

or, putting the observed value in place of a,

*The ratio of the square of the error to the error itself is the value of

the error considered as a number, and it is this numerical value which

must be small.
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The Facility of Error in the Sum or Difference of Two
Observed Quantities.

H 86. Let X and Y be two observed quantities subject to the

usual law of facility of error, their measures of precision being h

and k respectively. If

the relation between the errors of Z, X and Y is obviously

In order to find the facility of z, that is, the probability that 2

shall fall between 2 and z + dz, let us first suppose that x has a

definite fixed value. With this hypothesis, the probability in

question is the same as the probability that jy shall fall between

y andy + dy> where

y = z x, and dy dz.

This probability is

or

Multiplying by the elementary probability of the hypothesis

made, which is

we have

for the probability that the required event (namely, the occur-
rence of the particular value of z) shall happen in this particular

way, that is, in connexion with the particular value of x. To
find the total probability of the event we therefore sum the

above expression for all possible values of x, thus obtaining

hJ? r= ,-
J QO

(2)
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The exponent of e in this expression may be written

(A2^r
whence, putting a = and

/&* /&
2
>

3

H2 = k*-tf-^
=

jjr-k*>
.... (3)

the expression (2) becomes

hkdz -H

Since a is independent ofx, the value of the integral contained

in this expression is, by Art. 39, ,

fj
,

, ^ , a
.

; hence the proba-
y (Jl + K )

bility that 2 shall fall between z and ^ + afe is

hk -HW* H _
T^ e dz, or -7- e

87. The result just obtained shows that the sum of two

quantities subject to the usual law of facility of error is subject

to a law of the same form, its measure of precision being deter-

mined by equation (3).

Writing equation (3) in the form

it is evident that, if ^ ,
rz and R be the probable errors of X, J

and X + Y, we shall have

the same relation holding in the case of either of the other

measures of risk of error.

For the difference

Z=X-Y,
we have the same result

;
for the errors of Y have obviousH

the same law of facility as those of Y.
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88. As an illustration, suppose the latitude <p and the polar
distance p of a circumpolar star to be determined from the

altitudes of the star at its upper and lower culminations. Since

hl
= <f>+p and hz

= <pp,
we have

Then, r^ and r2 denoting the probable errors of h l and h^ respec-

tively, that of /?! + hi and also that of h h^ is V C^i + ^2), hence

the probable error both of y and of/ when thus determined is

Linear Function of Several Observed Quantities.

89, It follows from Arts. 84 and 87 that the linear function

Z b + m,Xl + m2 Xz + . . . + mnXn . . . . (i)

of n observed quantities is subject to the usual law of facility,*

its probable error being

R= tJ(mtt + n&\ + ... + mffi t ... (2)

where r, ,
ra ,

. . . rn are the probable errors of the several

observed quantities.

In particular, if the n quantities have the same probable error

r, the probable error of their sum is r *j n. The probable error

of their arithmetical mean, which is of this sum, is therefore
' n

y
, . This result agrees with that found in Art. 64, where,

*The fact that the law of facility thus reproduces itself has often been

regarded as confirmatory of its truth. This property of the law^~ A2x*

results from its being a limiting form for the facility of error in the linear

function Z, when n is large, whatever be the forms of the facility functions

'Jor Xlt Xi, . . . X%, Compare the foot-note on page 49, and see the

memoir there referred to. It follows that *' we shall obtain the same

law *~ Jl*x*
(for a single observed quantity) if we regard each actual

error as formed by the linear combination of a large number of errors

iv to di^ergnt independent sources."
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however, the n quantities were all observed values of the same

quantity, and the arithmetical mean was under consideration by
virtue of its being the most probable value in accordance with

the law of facility.

90. It is to be noticed that in formula (2) it is essential that

the probable errors rt ,
r2 ,

. . . rn should be the results of inde-

pendent determinations. For example, in the illustration given
in Art. 88, we have h\ = (p + p, whence we should expect to find

(prob. err. ofh^ = (prob. err. of ^)
2 + (prob. err. ofpj- ;

but it will be found that this is not true when the probable
errors of

</>
and ofp are determined as in that article. In fact,

in the demonstration given in Art. 86, it is assumed that the law

of facility for Y holds true when X has a definite fixed value
;

but in the present illustration the law of facility found for (p does

not hold true for a definite fixed value of/.*

The Non-Linear Function of Several Observed Quantities.

91. Supposing, as in Art. 85, that the errors of the observed

quantities are small compared to the quantities themselves,

we may replace any function by an approximately equivalent
function of a linear form. Thus, denoting the true values of the

observed quantities X^ ,
X2 ,

... Xn by i ,
a 2 ,

. . . an ,
we have

Z=/(Xlt Xt ,...XJ =/(! + *!, at + *,, .... + O*
Expanding, and neglecting powers and products of the small

quantities xit x^, . . . xn ,
we obtain the approximate value

Z =/(*,, ..<)+
*.;!;

+ *.| + + *.
J[,

which is of the linear form. Hence, in accordance with equation

(2), Art. 89, the probable error of Z may be determined by the

equation

* If the value of / were known, each value of h l would imply a special

value of ^ a ,
and therefore the probability of

^>
would no longer be that

found in Art. 88.
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Examples*

1. If the probable error in measuring the radius a of a circle

is r, what are the probable errors of the circumference and of

the area? 2-r\ 2-ar.

2. What is the probable error of log10JT, r being the probable

error ofx ? Q-4343
x

3. Ifmeasurements of adjacent sides of a rectangle give ar\
and b r2 ,

what is the probable error of the area abl

4. If the rectangle is found to be a square and the sides are

measured with the same precision, show that the probable error

of the area is the same as if it were known to be a square ; but

if TI and rt are not equal, the area is obtained with less accuracy
than it would be if it were known to be a square.

5. An angle observation is the difference between two read-

ings of the limb of the instrument
;

if r is the probable error of

the angle, what is the probable error of each reading ? r

V2*
6. The zenith distance of a star observed in the meridian is

C = 21 17' 20". 3, with the mean error 2^.3,

and the declination of the star is given

= 19 30' I4".8, with the mean error o".8 :

what is the mean error of the latitude of the place of observation

found from the formula <p
= C + 8 ?

<f>
= 40 47' 35".!, with the mean error 2".44.

7. The latitude of a place has been found with the mean error

o".25, and the meridian zenith distance of stars observed at that

place with a certain instrument has been found to be subject to

the mean error o".62
;
what is the mean error of the declinations

of the stars deduced by the formula 8 =
<f> C? o".67.

8. The correction of a chronometer is found to be + i2
m

13*. 2,

with the mean error os

.3 ; ten days later the correction is found

to be + i2m 2i 3

.4, with the same mean error; what is the mean

daily rate and its mean error? + o*.82 ;
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9. If the error of a single measurement of an angle by a

repeating circle consists of parts due to sighting and reading

respectively, so that

show that the probable error when the angle is repeated n times

is

IO. If the measured sides of a rectangle have the same prob-
able error, show that the diagonal is determined with the same

precision as either side.

n. The compression of the earth's meridian was found to

be y!^, with a probable error of .000046 ;
what is the probable

error of the denominator 294 ? 3.98.

12. When a line whose length is / is measured by the repeated

application of a unit of measure, show that its probable error is

of the form
R = r*/l.

13. What is the probable error of the area of the rectangle
whose sides measured as in the preceding example are z and 29 ?

14. A line of levels is run in the following manner : the back

and fore sights are taken at distances of about 200 feet, so that

there are thirteen stations per mile, and at each sight the rod is

read three times. If the probable error of a single reading is

0.01 of a foot, what is the probable error of the difference of level

of two points which are ten miles apart? .093.

15. Show that the probable error of the weighted mean of

observed quantities has its least possible value when the weights
are inversely proportional to the squares of the probable errors

of the quantities, and that this value is the same as that given in

Art. 68 for the case of observed value of the same quantity.
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THE COMBINATION OF INDEPENDENT DETERMINATIONS OF
THE SAME QUANTITY.

The Distinction between Precision and Accuracy.

92. We have seen in Arts. 63 and 67 that the final determi-

nation of the observed quantity derived from a set ofobservations

follows the exponential law of the facility of accidental errors.

The discrepancies of the observations have given us the means

of determining a measure of the risk of error in the single

observations, and we have found that the like measure for the

final determination varies inversely as the square root of its

weight compared with that of the single observation. Since

this weight increases directly with the number of constituent

observations, it is thus possible to diminish the risk of error

indefinitely; in other words, to increase without limit the pre-
cision of our final result.

93. It is important to notice, however, that this is by no means

the same thing as to say that it is possible by multiplying the

number of observations to increase without limit the accuracy
of the result. The precision of a determination has to do only
with the accidental errors ; so that the diminution of the prob-
able error, while it indicates the reduction of the risk of such

errors, gives no indication of the systematic* errors (see Art. 3)

*The term systematic is sometimes applied to errors produced by a

cause operating in a systematic manner upon the several observations,

thus producing discrepancies obviously not following the law of accidental

errors. Usually a discussion of these errors leads to the discovery of

their cause, and ultimately to the corrections by means of which they may
be removed. All the remaining errors, whose causes are unknown, are

generally spoken of as accidental errors ; but in this book the term acci-

dental is applied only to those errors which are variable in the system of

observations under consideration, as distinguished from those which have

a common value for the entire system.



VIL] PRECISION AND ACCURACY. 77

which are produced by unknown causes affecting all the obser-

vations of the system to exactly the same extent.

The value to which we approach indefinitely as the precision
of the determination is increased has hitherto been spoken of

as the "true value," but it is more properly the precise value

corresponding to the instrument or method of observation

employed. Since the systematic error is common to the whole

system of observations, it is evident that it will enter into the

final result unchanged, no matter what may be the number of

observations ; whereas the object of increasing this number is

to allow the accidental errors to destroy one another. Thus the

systematic error is the difference between the precise value,

from which accidental errors are supposed to be entirely elimi-

nated, and the accurate or true value of the quantity sought.

94. Hence, when in Art. 64 the arithmetical mean of n obser-

vations was compared to an observation made with a more

precise instrument, it is important to notice that this new
instrument must be imagined to lead to the same ultimate

precise value, that is, it must have the same systematic error as

the actual instrument, whereas in practice a new instrument

might have a very different systematic error.

Again, in the illustration employed in Art. 64, where the final

determination of an angle is given as 36 42^.3 i'.22, the
" true value," which is just as likely as not to lie between the

limits thus assigned, is only the true value so far as the instru-

ment and method employed can give it
;
that is, the precise value

to which the determination would approach if its weight were

increased indefinitely.

95. A failure to appreciate the distinction drawn in the

preceding articles may lead to a false estimate of the value

of the method of Least Squares. M. Faye in his
" Cours

d'Astronomic "
gives the following example of the objections

which have been urged against the method: "From the

discussion of the transits of Venus observed in 1761 and 1769,

M. Encke deduced for the parallax of the sun the value

8".57ii6o".o37o.
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In accordance with this small probable error it would be a

wager of one to one that the true parallax is comprised between

8".53 and 8".6i. Now we know to-day that the true parallax
8".813 falls far outside of these limits. The error, 0^.24184, is

equal to 6.536 times the probable error o".O3y. We find for

the probability of such an error o.ooooi. Hence, adhering to

the probable error assigned by M. Encke to his result, one could

wager a hundred thousand to one that it is not in error by

0.24184, and nevertheless such is the correction which we are

obliged to make it undergo."
Of course, as M. Faye remarks, astronomers can now point

out many of the errors for which proper corrections were not

made
; but the important thing to notice is that, even in Encke's

time, the wagers cited above were not authorized by the theory.

The value of the parallax assigned by Encke was the most

probable with the evidence then known, and it was an even wager
that the complete elimination of errors of the kind that produced
the discrepancies or contradictions among the observations could

not carry the result beyond the limit assigned ;
but the existence

of other unknown causes of error and the probable amount of

inaccuracy resulting from them is quite a different question.

Relative Accidental and Systematic Errors.

96. Let us now suppose that two determinations of a quantity

have been made with the same instrument and by the same

rrfethod, so that they have the same systematic error, if any ;
in

other words, they correspond to the same precise value. The
difference between the two results is the algebraic difference

between the accidental errors remaining in the two determi-

nations; this may be called their relative accidental error.

Regarding the two determinations as independent measure-

ments of two quantities, if r^ and rz are their probable errors,

that of their difference is V (r{ + *1) ; and, since this difference

should be zero, the relative error is an error in a system for

which the probable error is
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For example, if the determination of an angle mentioned in Art.

94 is the mean of ten observations, it is an even wager that the

mean of ten more observations of the same kind shall differ

from 36 42^.3 by an amount not exceeding i'.22 X V 2 or i'-73

Again, r being the probable error of a single observation, the

probable error of the mean of n observations is --
,
but the

discrepancy from this mean of a new single observation is as

likely as not to exceed

thatis '

97. If, on the other hand, the two determinations have been

made with different instruments or by a different method,

they may involve different systematic errors
;
so that, if each

determination were made perfectly precise, they would still

differ by an amount equal to the algebraic difference of their

systematic errors. Let this difference, which may be called the

relative systematic error, be denoted by 8. Then, d denoting
the actual difference of the two determinations, while d is the

difference between the corresponding precise values, we may
put

d = d + x
,

in which x is the relative accidental error.

The Relative Weights of Independent Determinations.

98. In combining values to obtain a final mean value, we have

hitherto supposed their relative weights to be known or assumed

beforehand, as in Arts. 75 and 77. Since the squares of the

probable errors are inversely proportional to the weights, (Arts.

66 and 68,) the ratios of the probable errors both of the con-

stituents and of the mean are thus known in advance, and it

*This does not apply to the residuals of the original n observations,

because in taking a residual the mean is not independent of the single

observation with which it is compared.
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only remains to determine a single absolute value of a probable

error to fix them all. In this process it is assumed that the

values have all the same systematic error.

But, when the determinations are independently made, their

relative weights are not known, and their probable errors have

to be found independently. If now it can be assumed that the

systematic errors are the same, so that there is no relative

systematic error, the weights may be taken in the inverse ratio

of the squares of the probable errors.

99. To determine whether the above assumption can fairly be

made in the case of two independent determinations whose

probable errors are r and r^, it is necessary to compare the

difference d with the relative probable error ij (r\ + r$, Art. 96.

If d is small enough to be regarded as a relative accidental

error, it is safe to make the assumption and combine the deter-

minations in the manner mentioned above.

As an example, let us suppose that a certain angle has been

determined by a theodolite as

24 13' 36"3"-i>

and that a second determination made with a surveyors transit

24 I 3'24"i 3".8.

In this case rt
=

3. 1, rz
= 13.8 and ^=12. It is obvious that

a relative accidental error as great as d may reasonably be

expected. (In fact the relative probable error is 14.1 ; and, by
Table II, the chance that the accidental error should be at least

as great as 12 is about .57.) We may therefore assume tha';

there is no relative systematic error, and combine the determi-

nations with weights having the inverse ratio of the squares of

the probable errors. This ratio will be found, in the present

case, to be about 20 : i, and the corresponding weighted mean
found by adding ^ of the difference to the first value, is

24 13' 35"43-

100. It appears doubtful at first that the vatoe given by the
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theodolite can be improved by combining with it the value

given by the inferior instrument. The propriety of the above

process becomes more apparent, however, if we imagine the

first determination to be the mean of twenty observations made
with the theodolite ;

a single one of these observations will then

have the same weight and the same probable error as the second

determination. Now the discrepancy of this new determination

from the mean is such as we may expect to find in a new single

observation with the theodolite. We are therefore justified in

treating it as such an observation, and taking the mean of the

twenty-one supposed observations for our final result.

101. The probable error of the result found in Art. 99 of

course corresponds with its weight ; thus, denoting it by /?, we
have R* = f^-^i, whence R = 3".03, and the final result is

24 13' 35"-43 3".o3 .

In general, rt and r2 being the given probable errors, that of

the mean is given by

Determinations which, considering their probable errors, are

in sufficient agreement to be treated as in the foregoing articles

may be called concordant determinations. They correspond to

the same precise value of the observed quantity, and the result

of their combination is to be regarded as a better determination

of the same precise value.

The Combination of Discordant Determinations.

102. As a second illustration of determinations independently

made, let us suppose that a determination of the zenith distance

of a star made at one culmination is

14 53' i2".io".3 ,

and that at another culmination we find for the same quantity

14 53' I4".3 o".5 .

In this case we have d= 2.2. This is about 3.8 times the rela

tive probable error whose value is o".58.
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From Table II we find that the probability that the relative

accidental error should be as great as d is only about i in 100.

We are therefore justified in assuming that the difference d is

mainly due to errors peculiar to the culminations. In other

words, we assume that, could we have obtained the precise

values corresponding to the two culminations, (by indefinitely

increasing the number of observations at each,) they would still

be found to differ by about 2". 2. Supposing now that there is

no reason for preferring one of these precise values to the other,

we ought to take their simple arithmetical mean for the final

result
; and, since the two given values are comparatively close

to the precise values in question, we may take their arithmetical

mean, which is

14 53' if. 2,

for the final determination.

103. Determinations like those considered above, whose
difference is so great as to indicate an actual difference between

the precise values to which they tend, may be called discordant

determinations. The discordance of the two determinations

discloses the existence of systematic errors which were not

indicated by the discrepancies of the observations upon which

the given probable errors were based. In combining the deter-

minations, these systematic errors are treated as accidental

errors incident to the two determinations considered as two

observed values of the required quantity. In fact, it is generally
the object in making new and independent determinations to

eliminate as far as possible a new class of errors by bringing
them into the category of accidental errors which tend to

neutralize each other in the final result. The probable error

of the result cannot now be derived from the given probable

errors, but must be inferred from the determinations themselves

considered as observed values, because we now take cognizance
of errors which are not indicated by the given probable errors.

104. When there are but two observed values, formula (4),

Art. 72, becomes
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in which p^ , pz are the weights assigned to the two values.

Denoting the difference by d, the residuals have opposite signs,

and their absolute values are

Substituting these values, we have for the probable error of the

mean

WhenA =A, this becomes *

^=^ = 0.3372 d. ...... (2)

In the example given in Art. 102, the value ofR thus obtained

is 0^.742, which, owing to the discordance of the two given

determinations, considerably exceeds each of the given probable
errors.

Of course no great confidence can be placed in the results

given by the formulae above on account of the small value ofn*

105. Since the error of each determination is the sum of its

accidental and systematic error, if s t and st denote the probable

*The argument by which it is shown that the value of h deduced in

Art. 69 is the most probable value involves the assumption that before

the observations were made all values of h are to be regarded as equally

probable ; just as that by which it is shown that the arithmetical mean
is the most probable value of the observed quantity a involves the assump-
tion that before the observations all values of a were equally probable. In

the case of a, the assumption is admissible with respect to all values of a

which can possibly come in question. But, in the case of //, this is not true ;

because (supposing n = 2 as above) when d = o the value of h is infinite,

and when d is small the corresponding values of h are very large, so that

it is impossible to admit that all values of h which can arise are a priori

equally probable.

In the present application of the formula, however, these inadmissible

values do not arise, because we do not use it when d is small, employing
instead the method of Art. 99 and the formula of Art. 101.
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systematic errors, the probable errors of the two determinations

when both classes of errors are considered are

The proper ratio of weights with which the determinations

should be combined is R\ : R\. The method of procedure
followed in Art. 99 assumes that Si and ^2 vanish. On the other

hand, in the process employed in Art. 102 we are guided, in an

assumption of the ratio R\ : R*, by a consideration of the value

which the ratio si : si ought to have.

For example, in the illustration, Art. 102, the ratio Rl : Rl is

taken to be one of equality, whereas the hypothesis we desired

to make was that Si = st) so that we ought to have

On the hypothesis R^ R2 the value of each of these prob-
able errors is, in accordance with equation (2), Art. 104, pd. In

the example this is i".o5. If we take (1.05)* as the average
value of R\ and R\, and introduce the condition written above,

we shall find as a second approximation to the value of the ratio

R\\ R\ about 15:13. The final value corresponding to this

ratio of weights is 14 53' 13".!, and its probable error as deter-

mined by equation (i), Art. 104, is slightly less than that before

found, namely, R o".74O.

Indicated and Concealed Portions of the Risk of Error.

I06. It will be convenient in the following articles to speak
of the square of the probable error as the measure of the risk

of error.

The foregoing discussion shows that the total risk of error,

R*
y
of any determination consists of two parts, r2 and s*, of

which the first only is indicated by discrepancies among the

observations of which the given determination is the mean. It

is only this first part that can be diminished by increasing the

number of the constituent observations. The remaining part

remains concealed, and cannot be diminished until some varia-
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tion is made in the circumstances under which the observations

are made, giving rise to new determinations. When the indi-

cated portions of the risk of error in the several determinations

are sufficiently diminished, discordance between them must

always be expected, and this discordance brings into evidence

a new portion, but still it may be only a portion, of the hitherto

concealed part of the risk of error.

107. What we have called in Art. 103 discordant determina-

tions are those in which the indication of this new portion of

the risk of error, to which corresponds the relative systematic

error, is unmistakable, because of its magnitude in comparison
with what remains of the portion first indicated in the separate

determinations, that is, r\ and r\. On the other hand, the con-

cordant determinations of Art. 101 are those in which the new

portion is so small compared with r\ and r\ as to remain con-

cealed.

Thus, to return to the illustration discussed in Art. 99, if

twenty times as many observations had been involved in the

determination by the transit, its probable error would have

been reduced to equality with that of the determination by the

theodolite. But if this had been done we should almost cer-

tainly have found the determinations discordant ; that is to say,

the ratio in which the difference between the determinations is

reduced would be much less than that in which the probable
relative accidental error ^ (r\ + rl) is diminished. The ratio in

which the remaining difference between the determinations

should be divided in making the final determination now

depends upon our estimate of the comparative freedom of the

instruments from systematic error,* but the important thing to

be noted is that the probable error of the result would now be

found as in Art. 104, and would be greater than those of the

*It may be assumed that, when the instruments are carefully adjusted,
the one which is less liable to accidental errors is correspondingly less

liable to systematic errors. But this comparison is concerned with the

probable errors of a single observation in each case, and not with those of

the determinations themselves.
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separate determinations. Thus the apparent risk of error would

be increased by making a new determination, but this is only

because a greater part of the total risk of error has been made

apparent, and the result is so much the more trustworthy as a

greater variety has been introduced into the methods employed.

The Total Probable Error of a Determination.

I08. In the illustrations given in Arts. 99 and 102 it was sup-

posed that two determinations only were made, so that we had

but a single discrepancy upon which to base ourjudgment of the

probable amount ofthe relative systematic error. But, in general,

what are regarded as determinations at one stage of the process
are at the next stage treated as observations which may be

repeated indefinitely before being combined into a new deter-

mination. Let one of the determinations first made be the

mean of n observations equally good, and let r be the probable
error of a single observation. Then the probable accidental

error of the mean is r =
-^

. Now, if R is the probable error

of the final value as obtained directly from the discrepancies

of the several determinations, (their number being supposed

great enough to allow us to obtain a trustworthy value,) we shall

find that R exceeds r
,
and putting

(i)

r\ is the new portion of the risk of error brought out by the

comparison of the determinations.
^2

IOQ. The form of this equation shows that when is already

small compared with r\, the advantage gained by increasing the

value of n soon becomes inappreciable.
For example, the reticule of a meridian circle is provided

with a number of threads, in order that several observations of

time may be taken at a single transit. Ifseven equidistant threads

are used, the mean of the times is equivalent to a determination
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based upon seven observations of the time of transit. Chauvenet

found that, for moderately skilful observers, the probable acci-

dental error of the transit over a single thread of an equatorial

star is r = os

.o8, whence for the mean of the seven threads we
have r = os

.O3. The probable error of a single determination

of the right ascension of an equatorial star was found to be

R = os

.o6, so that, from R* = r% + r\ we have r^ = os

.o^2. The
conclusion is reached that

" an increase ofthe number of threads

would be attended by no important advantage," and it is stated

that Bessel thought five threads sufficient.*

110. Suppose the value of R2
in equation (i), Art. 108, to

have been derived from the discrepancies of n' determinations of

equal weight. A systematic error may exist for these nr

determinations, and sl being its probable value, we shall have

that is to say, the concealed portion of the risk of error in one

of the original determinations has been decomposed into two

parts, one of which has been disclosed at the second stage of the

process, while the other remains concealed.

The total risk of error in a single one of the n' determina-

tions is R* + sl, and that of the mean of the determinations is

In like manner, if at a further stage of the process we have the

means of finding the value of the probable error Rl of this new

determination by direct comparison with other coordinate deter-

minations, a portion of the value of s\ will be disclosed, and we
shall have

where again it must be supposed that a portion s\ of the risk of

error still remains concealed.

*Chauvenet's "Spherical and Practical Astronomy," vol. ii, p. 194

et seq.
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111. The comparative amounts of the risk of error which are

disclosed at the various stages of the process depend upon the

amount of variety introduced into the method of observing.

Thus, to resume the illustration given in Art. 109, if the star

be observed at n' culminations, r3 will correspond to errors

peculiar to a thread, and r\ will correspond to errors peculiar to a

culmination. Again, if different stars whose right ascensions are

known are observed, in order to obtain the local sidereal time

used in a determination of the longitude, r\ will correspond to

errors peculiar to a star, together with instrumental errors

peculiar to the meridian altitude.

The Ultimate Limit of Accuracy.

112. The considerations adduced in the preceding articles

seem to point to the conclusion that there must always be a

residuum of the risk of error that has not yet been reached, and

thus to explain the apparent existence
" of an ultimate limit of

accuracy beyond which no mass of accumulated observations

can ever penetrate."* But it does not appear to be necessary

to suppose, as done by Professor Peirce, that there is an absolute

fixed limit of accuracy, due to
" a failure of the law of error

embodied in the method of Least Squares, when it is extended

to minute errors." He says: "In approaching the ultimate

limit of accuracy, the probable error ceases to diminish propor-

tionally to the increase of the number of observations, so that

the accuracy of the mean of several determinations does not

surpass that of the single determinations as much as it should

do, in conformity with the law of least squares ;
thus it appears

that the probable error of the mean of the determinations of the

longitude of the Harvard Observatory, deduced from the moon-

culminating observations of 1845, 1846, and 1847, is i
s
.28 instead

of I
8

.oo, to which it should have been reduced conformably to

the accuracy of the separate determinations of those years."

* Prof. Benjamin Peirce, U. S. Coast Survey Report for 1854, Appendix,

p. 109.
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To account for the fact cited on the principles laid down

above, it is only necessary to suppose that there are causes of

error which have varied from year to year ; and, recognizing this

fact, we ought to obtain our final determination by comparing
the determinations of a number of years, and not by combining
into one result the whole mass of observations.

Examples.

1. In a system of observations equally good, r being the

probable error of a single observation, if two observations are

selected at random, what quantity is their difference as likely as

not to exceed ? r V 2.

2. In example i, what is the probability that the difference

shall be less than r ? 0.367.

3. When two determinations are made by the same method,
show that the odds are in favor of a difference less than the sum
of the two probable errors, and against a difference less than the

greater of the two, and find the extreme values of these odds.

66 : 34 and 63 : 37.

4. A and B observe the same angle repeatedly with the same

instrument, with the following results :

A B
47 23' 40" 47 23' 30"

47 23 45 47 23 40

47 23 30 47 23 50
47 23 35 47 24 oo

47 23 40 47 23 20

Show that there is no evidence of relative systematic (personal)
error. Find the relative weights of an observation by A and

by B, and the final determination of the angle.

100:13; 47 23' 38".23 i".62.

5. Show that the probable error in example 4 as computed
from the ten observations taken with their proper weights is

i"o3, but that derived from the formula of Art. 104 is 0^.43,
which is much too small. (See foot-note, p. 83.)
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6. Two determinations of the length of a line in feet give

respectively 683.4 0.3 and 684.9 0.3, there being no reason

for preferring one of the corresponding precise values to the

other ; show that the probable error ofeach of the precise values

(that is, the systematic error of each determination) is 0.65 ;
and

that the best final determination is 684.15 0.51.

7. Show generally that when the weights are inversely pro-

portional to the squares of the probable errors, the formula of

Art. 104 gives a value of R greater or less than that given by
the formula of Art. 101, according as d is greater or less than

the relative mean error.
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^ INDIRECT OBSERVATIONS.

Observation Equations.

113. We have considered the case in which a quantity
whose value is to be determined is directly observed, or is

expressed as a function of quantities directly observed. We
come now to that in which the quantity sought is one of a

number of unknown quantities of which those directly observed

are functions. The equation expressing that a known function

of several unknown quantities has a certain observed value is

called an observation equation. Let fj. denote the number of

unknown quantities concerned. Then, in order to determine

them, we must have at least & independent equations. Thus,
if two of the equations express observed values of the same
function of the unknown quantities, they will either be ident-

ical, so that we have in effect only /n i equations, or else they
will be inconsistent, so that the values of the unknown quan-
tities will be impossible. So also it must not be possible to

derive any one of the ^ equations, or one differing from it only
in the absolute term, from two or more of the other equations.

114. If we have no more than the necessary p. equations, we
shall have no indication of the precision with which the obser-

vations have been made, nor, consequently, any measure of the

precision with which the unknown quantities have been deter-

mined. With respect to them, we are in the same condition as

when a single observed value is given in the case of direct

observations.

Now let other observation equations be given, that is to say,

let the values of other functions* of the unknown quantities be

observed. The results of substituting the values of the unknown

* It is not necessary that these additional equations should be inde-

pendent of the original p. equations, for an equation expressing a new

observed value of a function already observed will be useful in deter-

mining the precision of the observations.
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quantities will, owing to the errors of observation, be found to

differ from the observed values, and the discrepancies will give
an indication of the precision of the observations, just as the dis-

crepancies between observed values of the same quantity do, in

the case of direct observations.

115. As an example, let us take the following four observa-

tion equations* involving x,y and 2 :

x y + 22 = 3,

3*+2j>-5* = 5,

^x H- y + 42= 21,

-x + 3jr+3g= 14.

ifwe solve the first three equations we shall find

Substituting these values in the fourth equation, the value of

the first member is 12^, whereas the observed value is 14; the

discrepancy is
i-f.

If the values above were the true values,

the errors of observation committed must have been o, o, o, i^;

but, since each of the observed quantities is liable to error, this

is not a likely system of errors to have been committed. In

fact, any system of values we may assign to x,y and 2 implies

a system of errors in the observed quantities, and the most

probable system of values is that to which corresponds the

most probable system of errors.

Il6. In general, let there be m observation equations,

involving //. unknown quantities, m>/j. ; then we have first to

consider the mode of deriving from them the most probable
values of the unknown quantities. The system of errors in the

observed quantities which this system of values implies will

then enable us to measure the precision of the observations.

Finally., regarding the /* unknown quantities as functions of the

m observed quantities, we shall obtain for each unknown quan-

tity a measure of the precision with which it has been deter

mined.

* Gauss,
" Theoria Motus Corporum Coelestium," Art. 184.
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Th? Reduction of Observation Equations to the Linear Form.

II7 The method of obtaining the values of the unknown

quantities, to which we proceed, requires that the observation

equations should be linear. When this is not the case, it is

necessary to employ approximately equivalent linear equations,
hich are obtained in the following manner.

Let X, Y, Z, . . be the unknown quantities, and Mv ,M2 ,
. . . Mm the observed quantities ;

the observation equations
are then of the form

where/ , /a, . . .fm are known functions. Let XQJ YQ , ZQ , . . .

be approximate values of X, Y, Z, . , .
, which, if not otherwise

known, may be found by solving p. of the equations ; and put

so that x, y, z
,

. . . are small corrections to be applied to the

approximate values. Then the first observation equation may
be written

or, expanding by Taylor's theorem,

where the coefficients of x
, y t

z
, . . . are the values which the

partial derivatives of fi(X, F, Z, . . . ) assume when X= X
,

y YQ) Z= Z
,

. .., and the powers and products of the

small quantities x,y, z, . . . are neglected as in Art. 91.

Denoting the coefficients of x, y, z, > . , by a lt b^ , clt . . .,

putting HI for Ml /! (X ,
YQ , Z ,.,,) a d treating the other

observation equations in the same way, we may write
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for the observation equations in their linear foraio

118. Even when the original observation equations are in tin

linear 'form, it is generally best to transform them as above, so

that the values of the unknown quantities shall be small.

Another transformation sometimes made consists in replacing
one of the unknown quantities by a fixed multiple of it. For

example, if the values of the coefficients ofy are inconveniently

large they may be reduced in value by substituting ky fory
and giving to k a suitably small value.

119. In the observation equations (i), the second members

may be regarded as the observed quantities, since they have the

same errors. If the true values of x>y> z
,

. are substituted in

these equations they will not be satisfied, because each n differs

from its proper value by the error of observation v
;
we may

therefore write the equations

in which, \lx,y, z, . . . are the true values, ^ ,
z/2 >

. . - Vm are the

true errors of observation, and if any set of values be given to

x, y, z, . . .
,
the second members are the corresponding resid-

uals. These corrected observation equations may be called the

residual equations.

Observation Equations of Equal Precision.

120. Let us first suppose that them observations are equally
good, and let h be their common measure of precision. Then,
since v is the error, not only of the absolute term n in the first

of equations (2), but of the first observed quantity M^ the prob-
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ability before the observations are made that the first observed

value shall be Afi is

where, as in Art. 35, Av is the least count of the instrument.

Hence we have, for the probability before the observations are

made that the m actual observed values shall occur,

exactly as in Art. 41. The values of v\ , v\ ,
. . . z/J, being given

by equations (2), this value of P is a function of the several

unknown quantities ;
hence it follows, as in Art. 41, that for any

one of them that value is, after the observations have been

made, most probable which assigns to P its maximum value ;

in other words, that value which makes

v\ + v\ + ... -f vz

m = a minimum.

Thus the principle of Least Squares applies to indirect as

well as to direct observations.

121. To determine the most probable value of ^r, we have, by
differentiation with respect to x,

dv^ dvz dvm
v>Tx +v*Tx + --- + v">te=>

or, since, from equations (2), Art. 119,

dvl dvi dvn

a&i -}-...+ amvm = o..... (i)

This is called the normal equationfor x. Whatever values

are assigned to y, z
y

. . . ,\t gives the rule for determining the

value of x which is most probable on the hypothesis that the

values assigned to the other unknown quantities are correct.

Since v^ ,
v.2 ,

. . . vm represent the first members of the obser-
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vation equations (i), Art. 117, when so written that the second

member is zero, we see that the normal equation for x may be

formed by multiplying each observation equation by the coeffi-

cient of x in it, and adding the results.

122. The rule just given for forming the normal equation

\ shows it to be a linear combination of the observation equations,
' and the reason why the multipliers should be as stated may be

further explained as follows: If we suppose fixed values given
to y> z, . . . ,

each observation equation may be written in the

form ax = N, where N only differs from the observed value

M by a fixed quantity, and therefore has the same probable
error. Now, writing the observation equations in the form

_N,_^

a,
'- x"

N**=-=*

we may regard them as expressing direct observations of x. If

r is the common probable error of N
, N^ , . . . Nm , that of

- or xl is
; that of x^ is

,
and so on. Thus the equations

a, al a
'

are not of equal precision for determining x, and their weights
when written as above (being inversely as the squares of the

probable errors) are as a\ : al : . . . : a*m . It follows that the

equation for finding x is, as in the case of the weighted arith-

metical mean (see Art. 66), the result of adding the above

equations multiplied respectively by a\ t al, . . . a^-* that is to

say, it is the result of adding the original observation equations
of the form ax JV= o multiplied respectively by a^ t

az ,
. . . am,.

*It must not be assumed that the weight of the value of x, determined

from the several normal equations, is 2#2
,
that of an observation being

unity. This is its weight only upon the supposition that the absolute

values of the other quantities are known.
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The Normal Equations.

123. In like manner, for each of the other unknown quantities

we can form a normal equation, and we thus have a system of

equations whose number is equal to that of the unknown quan-
tities. The solution of this system of normal equations gives
the most probable values of the unknown quantities. Let us

take for example the four observation equations given in Art.

115. Forming the normal equations by the rule given above,

we have

2*]x + 6y = 88,

6x + i$y + Z = 70,

y + 542- = 107.

The solution of this system of equations gives for the most

probable values,

-3.55,

..
6633

124. Writing the observation equations in their general form,

a^x + b,y + ... + IJ n

a*x + b* + . . . + 14

+ . . . + m nm

we obtain for the normal equations in their general form,

2V .x+ lab.y + . . . + !/.'/= Ian
+ . .. + Ibl . t = Ibn

2W .^+ 2^/ .j/ + . . . + IF .t= Iln

It will be noticed that the coefficient of the rih unknown

quantity in the .sth equation is the same as that of the sth

unknown quantity in the rih equation; in other words, the
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determinant of the coefficients of the unknown quantities in

equations (2) is a symmetrical one.

Observation Equations of Unequal Precision.

125. When the observations are not equally good, if

1, ,...

are the measures of precision of the observed values

M,,Mit ...Mmt

the expression to be made a minimum is

hlv\ + . . . + Jizi,

as in Art. 65. Thus, as in the case of direct observations, if the

error of each observation be multiplied by its measure of pre-

cision so as to reduce the errors to the same relative value, // is

necessary that the sum of the squares of the reduced errors

should be a minimum.
Since vl

= o,vz
= o

i
. . . vm = o are equivalent to the observa-

tion equations, it follows that, if we multiply each observation

equation by its measure of precision (so that it takes the form

hv = o), we may regard the results as equations of equal pre-

cision.

126. The result may be otherwise expressed by using num-
bers /i ,/2 , . . .pm proportional, as in Art. 66, to the squares of

the measures of precision ;
the quantity to be made a minimum

then is

and the normal equation for x is

. . . + pmamvm = o.

The numbers pi} p2 ,
. . . pm are called the weights of the

observation equations; thus, in the case of weighted equations,

the normal equation for x may be formed by multiplying each

observation equation by the coefficient of x in it, and also by its

weight, and adding the results,
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The general form of the normal equations is now

Ipa
1

. x + Ipab .y 4- . . . 4- Ipa! . t Ipan 1

Ipab . x + IpP ;>+-.,Y + 2pM - 1 = Zpbn I . . (3)

Ipal.x + Ipbl.y + . . . + Ipr .t=Ipln J

The result is evidently the same as if each observation equation

had been first multiplied by the square root of its weight, by
which means it would be reduced to the weight unity, and the

system would take the form (2), Art. 124.

Formation of the Normal Equations.

127. When the normal equations are calculated by means of

their general form, a table of squares is useful not only in cal-

culating the coefficients Ipa*, Ipb"
1

,
. . . Ipr, but also in the

case of those of the form Ipab, Ipac, . . . Ipan, . . . For,

since

ab= i[(a + )
2 -a2 -^2

],

we have

by means of which Ipab is expressed in terms of squares.* Or
for the same purpose we may use

Ipab = J[ipa* + Ipb*
- lp(a - )

2

].

In performing the work it is convenient to arrange the coeffi-

cients in a tabular form in the order in which they occur in the

observation equations, and, adding a column containing the sums
of the coefficients in each equation, thus,

Si = a \ + b\ + ... +/!+#!, etc.,

* If Zfiab alone were to be found, the formula

derived from that of quarter-squares, would be preferable ; but, since

2/<z
2
, 2/

2 have also to be calculated, the use of the formula above.

which was suggested by Bessel, involves less additional labor.
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to form the quantities ^pas, 3Zpbs, . . . 2pns in addition to thos

which occur in the normal equations. We ought then to fin<

Ipas Ipa
1 + Ipab + . . . + Ipan,

Ipbs Zpab+ Zpb* + . . . + Ipbn,

Ipns Ipan + Ipbn + . . . + Ipn\

and the fulfilment of these conditions is a verification of the

accuracy of the work.

In many cases, the use of logarithms is to be preferred,

especially when the logarithms of the coefficients in the ob-

servation equations are more readily obtained than the values

themselves.

The General Expressionsfor the Unknown Quantities.

128. In writing general expressions for the most probable
values of the unknown quantities, and in deriving their prob-
able errors, we shall, for simplicity in notation, suppose that the

observation equations have been reduced to the weight unity as

explained in Art. 126, so that they are represented by equations

(i), and the normal equations by equations (2) of Art. 124.

Let D be the symmetrical determinant of the coefficients of

the unknown quantities in the normal equations, thus

la* lab ... lal
lab IP Ibl

> =

lal Ibl 27'

let Dx denote the result of replacing the first column by a

column consisting of the second members, Ian, Ibn
:

. . . Iln\
and let Dy ,

Dz ,
. . . Dt be the like results for the remaining

columns. Then

Dx DV D t

'-->> *=-& '" '=ZT
are the general expressions for the unknown quantities.

(I)
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129. Let the value of x when expanded in terms of the

second members of the normal equations be

x = Q,2an + Q^Ibn + . . . + Q^Iln. (2)

Now, in the expansion of the determinant Dx in terms of the

elements of its first column, the coefficients of Ian, Ibn, . . . Iln
are the first minors corresponding to 2V, lab, . . . lal, in the

determinant D.

Denoting the first of these by D , so that

IP Ibc ... Ibl

Ibc I? Id

Ibl Id

it follows, on comparing the values of x in equations (i) and

(2), that

In like manner, the values of >
2 , Q3 ,

. . .

dividing the other first minors by D.
are the results of

The Weights of the Unknown Quantities.

130. Let the value of x, when fully expanded in terms of the

second members n1} n2) . . . tin of the observation equations, be

... (3)X = amnm

Then, if rx denotes the probable error of x, and r that of a

standard observation, that is, the common probable error of

each of the observed values n
, n^ ,

. . . nm ,
we shall have, by

Art. 89,

The precision with which x has been determined is usually

expressed by means of its weight, that of a standard observation
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being taken as unity. The weights being inversely propor-

tional to the squares of the probable errors, we have, therefore,

for that of.*,
i

131. Since the value ofx is obtained from the normal equa-

tions, we do not actually find the values of the a's ; we therefore

proceed to express 2a> in terms of the quantities which occur

in the normal equations.

Equating the coefficients of nt ,
n2 ,

. . . nm in equations (2)

and (3), we find

+ . . . + /2 M . . . . . (i)

Multiplying the first of these equations by a
t ,

the second by
a

z ,
and so on, and adding the results, we have

IV = laa . Q, + Iba . Q, + . . . + J/a . >. . (2)

The value of laa is found by multiplying the first of equa-
tions (i) by aly the second by a2) and so on, and adding. The
result is

laa = Id* .0^+ Iab.Q*+ ... + lal. Q. . (3)

Multiplying this equation by Z>, the second member becomes
the expansion of the determinant D in terms of the elements of

its first column. Hence

2aa=i..... .... (4)

In like manner we find

26a = Zab.Q, + 2b\Q,+ ... + Ibl. Q^ . (5)

and when this equation is multiplied by D, the second member
is the expansion of a determinant in which the first two columns
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are identical. Thus Iba == o, and in the same way we can show

that lea , . . . 27 vanish.*

Substituting in equation (2), we have now

2 9 =Bi; (6)

hence from Arts. 130 and 129 we have, for the general expres-
sion for the weight of x

y

* = & = % (7)

132. It follows from equation (2), Art. 129, that if in solving

the normal equations we retain the second members in alge-

braic form, putting for them A, B, C, . . .
,
then the weight ofx

will be the reciprocal of the coefficient ofA in the value of x.~\

In like manner, that ofy will be the reciprocal of the coefficient

ofB in the value ofy, and so on.

For example, if the normal equations given in Art. 1 23 are

written in the form

27* + 67 = A t

6x + i5jv + z = B
,

y + 54^ = C,
the solution is

19899* = 809/2 324^ 4- 6C,

737J> = -i2A+ 54# - C,

66332 = 2A- gB + i23C

"Comparing equation (3) with equation (2), Art. 129, we see that 2oa

is the value which x would assume if in each normal equation the

second member were equal to the coefficient of x. The system of equa-
tions so formed would evidently be satisfied by x = \,y = o, z o, . . .

/ = o ; hence 2aa =. i. In like manner, comparing equation (5) with the

same equation, we see that 'Lba is the value which x would assume if

the second member of each normal equation were equal to the coefficient

of y. This value would be zero ; thus 2l>a o.

t If the value of the weight of x alone is required, it may be found as

the reciprocal of what the value of x becomes when A = i, B = o,

C o, . . .
,
that is to say, when the second member of the first normal

equation is replaced by unity, and that of each of the others by zero.
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The weights of x,y and 2 are therefore

19800- =24 -6o>

= I3 .6s>

A = =53-93.

133. When the value of x is obtained by the method of sub-

stitution, the process may be so arranged that its weight shall be

found at the same time. Let the other unknown quantities be

eliminated successively by means of the other normal equations,

the value ofx being obtained from the first normal equation or

normal equation for x. Then, if this equation has not been

reduced by multiplication or division, the coefficient of A in

the second member will still be unity, and the equation will be

of the form

Rx = T + A,

where T depends upon the quantities B, C, . . . Now it is

shown in the preceding article that the weight ofx is the recip-

rocal of the coefficient of A in the value of x
;
hence in the

present form of the equation the weight is the coefficient of jr.*

As an illustration, let us find the values of x and its weight
in the example given above, the normal equation being

2^x + 6> = 88,

6x + 157 + z= 70,

y + 54^ = 107.

The last equation gives
i 1072 = --- y H---

,_ 54
*

54

*The effect of the substitution is always to diminish the coefficient of

X'j for, as mentioned in the foot-note to Art. 122, if the true values of

y, z, . . . t were known, the weight of x would be 2# 2
, which is the original

coefficient of x, and obviously the weight on this hypothesis would exceed

p9 , which is the weight when_j/, z, . . . t are also subject to error.
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and if this is substituted in the second, we obtain

_ 324_ ^4.y '

809 809
*

Finally, by the substitution of this value of y in the first normal

equation, we obtain, before any reduction is made,

19899 _ 49154 .

809
'

809
'

whence

- and x _ 49154-
~8o~cT' ~^)899

9

as before found.

The Determination of the Measure of Precision.

134. The most probable value ofh in the case of observations

of equal weight is that which gives the greatest possible value

to P, Art, 1 20, that is, to the function

in which the errors are denoted by u^ ,
uz ,

. . um ,
so that we

may retain V1 ,v2 ,...vm to denote the residuals which corres-

pond to the values of the unknown quantities derived from the

normal equations. By differentiation we derive, as in Art 69,

for the determination of ht

The value of 2V cannot, of course, be obtained, but it is

known to exceed 2V, which is its minimum value, and the best

value we can adopt is found by adding to 2V the mean value

of the excess, 2V '2V.

135. Let the true values of the unknown quantities be

x + dx,y 4- dy, . . . t -f <&/, while x, y ,
. . . / denote the values

derived from the normal equations. We have then the residual

equations
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+ . . . + lmtnm=vm

and, for the true errors, the expressions,

df) + , . . + /2(/ + ^) w2
= #2 I ^2j

+ . . + 4(/+ )
- nm= um J

Multiplying equations (i) by vit v2t a . . vm respectively, and

adding, the coefficient ofx in the result is

which vanishes by the first normal equation (i), Art. 121. In

like manner, the coefficient ofjy vanishes by the second normal

equation, and so on. Hence

-Iwo........ (3)

Treating equations (2) in the same way, we have

2uv = 2nv ;

hence
Iv* = luv. . uo . . . (4)

Again, multiplying equations (i) by itlt ut ,
. . u um ,

and

adding,

Iuv= Zau.x + Ibuy+ ...+ Zlu.i Inu\

and treating equations (2) in the same way,

lu* = lau (x + Sx) + Ibu (y + ty) + . .+ Ilu (t + df) Inu<

Subtracting the preceding equation, we have, by equation (4),

2V - IV = lau.dx + Ibu .*?+... + Ilu^t, . (5)

an expression for the correction whose mean value we are

seeking
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136. Expressions for dx, fry, . . . dt are readily obtained as

follows. Treating equations (2) exactly as the residual equa-

tions (i) are treated to form the normal equations, we find

2* ,(* + **)
+ Ial.(t + dt) = Ian + Jaw

JiVz . (x + dx) + Ift* . (^y + dy) + . . .

+ Ibl. (t + dt) = Ibn + Ibu

+ Il\(t+dt)=Iln + Ilu J

Subtraction of the corresponding normal equation from each

of these gives the system,

la* . dx + lab .dy + ... + lal. dt = lau
lab . dx+ Ib* . dy + . . . + Ibl. dt = Ibu

lal. dx + Ibl . dy + ... + II* . dt = Ilu

a comparison of which with the normal equations shows that

dx, dy, . . . dt are the same functions of uly uz , . . . um that

x,y, . . . t are of n, nz ,
. . . nm. Hence we have

dx = !#! + 2 2 + . . . + amum ,

where a1} 2 ' an have the same meaning as in Art. 130.

137. Consider now the first term, lau.dx, of the value of

lu* JV, equation (5), Art. 135. Multiplying the value of

dx just found by

lau = #!#! + azu2 + . . . + amUmy

the product consists of terms containing squares and products
of the errors. We are concerned only with the mean values of

these terms, in accordance with the law of facility, which is for

each error T e~ h*u
*. Since the mean value of each error is

VTT

zero, it is obvious that the mean value of each product vanishes;
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so that the mean value of lau . Sx is the mean value of

Now by Art. 50 the mean value of each of the squares

ul, u\, . . . u*m is -TS ; hence the mean value of lau . 8x is -^ ,

or, by equation (4), Art. 131, ^.
In the same manner it can be shown that the mean value of

each term in the second member of equation (5), Art. 135, is

-jp
; hence that of Su* 2v* is -^ ,

and the best value we can

adopt for Iu* is

**=> +

Substituting this in equation (i), Art. 134, we have

fj.

p ,

^ o m fj. Im p.2V = whence h = J
-y-~

.

The Probable Errors of the Observations and Unknown

Quantities.

138. The resulting values of the mean and probable error of

a single observation are

and the probable errors of the unknown quantities are

When the observation equations have not equal weights we
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may replace 2V, which represents the sum of the squares ol

the residuals in the reduced equations, by Ipv
1

,
in which the

residuals are derived from the original observation equations.
The formulae (i) and (2) will then give the mean and probable
errors of an observation whose weight is unity.

It will be noticed that when n = i the formulae reduce to

those given in Art. 72 for the case of one unknown quantity.

139. Instead ofcalculating the values of vlf v ,
. . . vm directly

from the residual equations, and squaring and adding the

results, we may employ the formula for 2V deduced below.

By equation (3), Art. 135,

2V = - Inv.

Now multiplying equations (i) of that article by n^ , n^ , . . . #

respectively, and adding the results, we have

Inv = lan.x + Zbn.y + . . . + Iln.t In\

Therefore

2V = Sri1 - lan.x- Ibn.y- ... - Iln.t. . (i)

The quantity In* which occurs in this formula may be calcu-

lated at the same time with the coefficients in the normal equa-
tions. It enters with them into the check equations of Art. 127.

We may also express 2V exclusively in terms of these quan-

tities, for if we write

2V lab . . . Sal San
lab IP . , Ibl Ibn

lal Ibl ... ir Iln

Ian Ibn . . Iln In*

and consider the development ofDn in terms of the elements

of its last row, we see that

Dn = Ian.Dx Ibn.D
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where D, DX) . Dt have the same meanings as in Aitc 128;

hence

140. For example, in the case of the four observation equa-
tions of Art. 115,

x y + 22= 3

3* + 2y
-

52 = 5

^x + y + 4^= 2i

* -f 3jj/ + 3* = 14

for which the normal equations are solved in Art. 123, the value

of 2n* is 671 ;
and formula (i) gives

19899 19899

- 107 X 3Sl21 = I6o

19899 19899'

in which 1600 is the value of Dn . Substituting this value of

2v* in the formulae of Art. 138, we find

= 0.2836, r = 0.1913

for the mean and probable errors of an observation
; and using

the weights found in Art. 132, we find for those of the unknown

quantities

ex = 0.057, y
= 0-077. z = -039>

rx 0.038, ry = 0.052, rz 0.026.

In this example we have found the exact value of Zv*\ if

approximate computations are employed, the formula used has

the disadvantage that a very small quantity is to be found by
means of large positive and negative terms, which considerably

increases the number of significant figures to which the work
must be carried. Thus, because In* = 671 in the above exam-

ple, the work would have to be carried out with seven-place

logarithms to obtain 2V to four decimal places. The direct
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computation of the ^2
's from the observation equations would

present the same difficulty in a less degree.

141. Of course, no great confidence can be placed in the

absolute values of the probable errors obtained from so small a

number of observation equations as in the example given above.

There being but one more observation than barely sufficient to

determine values of the unknown quantities, the case is com-

parable to that in which n = 2 when the observations are direct.

By increasing the number of observations we not only obtain

a more trustworthy determination of the probable error of a

single observation, but, what is more important, we increase the

weight, and hence the precision, of the unknown quantities.

The measure in which this takes place depends greatly upon
the character of the equations with respect to independence.
As already mentioned in Art. 113, if there were only /JL equa-
tions it would be necessary that they should be independent ;

in other words, the determinant of their coefficients must not

vanish, otherwise the values of the unknown quantities will be

indeterminate. When this state of things is approached the

values are ill-determined, and this is indicated by the small

value of the determinant in question. The same thing is true

of the normal equations. Accordingly, the weights are small

when the determinant D is small ;
thus the value ofD is in a

general way a measure of the efficiency of the system of obser-

vation equations in determining the unknown quantities.

142. If we write the coefficients in the m observation equa-
tions in a rectangular form, thus,

the determinant D is, by a theorem in determinants, the sum of

the squares of all the determinants which can be formed by
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selecting /JL columns of the rectangular array. The first of these

determinants is that of the coefficients of the first p- equations,

which, as we have seen, vanishes when they are not independent,
and the others are the like determinants for all the other com-

binations of /x equations which can be formed from the m obser-

vation equations. It follows that D cannot be negative, and

cannot vanish unless there is no set of p. independent equations

among the observation equations.

143. By a similar consideration of the values of >x ,
Dy ,

. . .

Dtj Art. 128, it has been shown* that, for each unknown quan-

tity, the value given by the normal equations is the weighted
mean of all the values which could be derived from p. selected

equations, the weights being the squares of the corresponding

determinants.f

Empirical or Interpolation Formulce.

144. A set of observation equations usually arises in the fol-

lowing manner : One of two varying quantities is a function of

another, of known form, the constants which occur having,

however, unknown values. Simultaneous values of the varying

quantities are observed. The values of the second quantity

(the independent variable in the functional expression) are

regarded as accurate, and from them are computed in each case

the values of the coefficients when the other variable is treated

as a linear function of the unknown quantities. This other

variable is then the observed quantity M of our observation

equations, and the errors are the differences between the ob-

served values and those which accurately correspond to the

assumed values of the independent variable.

*
J. W. L. Glaisher, Monthly Notices of the Royal Ast. Soc., vol. xl,

1880, p. 607 et seq.

t When there is but a single unknown quantity, say x, its coefficients

0i, 3 , . . . take the place of these determinants, and the weight of the

result is accordingly^
2
. Compare Art. 122. In general, as between

two unknown quantities, the weight of that which has the greater coeffi-

cients will be the greater.
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Taking the two variable quantities as coordinates, the obser-

vations may be represented by points, and the problem before

us is that of determining a curve of known variety in such a

manner as to pass as nearly as possible through these points.

145. But it may happen that, while we know that a functional

relation between the variable quantities exists, we have no theo-

retic knowledge of the form of the function. In such cases, our

only resource is to assume the form of the function, being

guided therein by an inspection of the points representing the

observations. An equation so assumed is sometimes called an

empirical formula. The constants involved in it are deter-

mined exactly as in the case of formulae having a theoretical

basis. The final result can only be judged of by the residuals.

If these are numerous enough, their failure to follow the law of

accidental errors may indicate the inadequacy of the assumed

form.

When the formula as determined is used to compute the

probable values of the observed quantity corresponding to other

values of the independent variable, it is called an interpolation

formula. The results can never be satisfactory except for

values within the range of the values corresponding to the

observations upon which the formula is based.

Conditioned Observations.

146. We have hitherto supposed the unknown quantities to

be independent of one another, so that any set of simultaneous

values is possible, and before the observations all sets are

regarded as equally probable. It frequently happens, however,
that the unknown quantities are required to satisfy rigorously

certain equations of condition, in addition to the observation

equations which must be approximately satisfied. The /*
un-

known quantities may thus be subject to v equations of condition,

where v < /*,
while the whole number of equations m + v exceeds

fj..
The case may be reduced to that already discussed by the

elimination of// unknown quantities from the observation equa-
tions by means of the equations of condition, leaving us with m
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observation equations containing // v independent unknown

quantities.

We shall consider only the case (which is of frequent occur-

rence) in which m = /*, and the observation equations express
direct determinations of the p unknown quantities.

147. Let Mi ,
Mz ,

. . . Mp be the observed values ofX
y
Y

y
. . . 7,

with weightsply pz ,
. . .p^, and put

X=M1 + x, Y=M,+y, ... T^M^ + t,

so that x, y, . . . / are the required corrections to the observed

values. The equations of condition may be reduced as in Aft.

117 to the linear forms

The values of x,y }
. . . t must satisfy these equations, which

are, however, insufficient in number to determine them, and, by
the principle of Least Squares, those values are most probable

which, while satisfying equations (i), make

1 + Piy* + . . . +ppt* = a minimum.

In other words, the values must br such that

p&dx +p*ydy + . . . + pyfdt = o, . . . (2)

for all possible simultaneous values of dx
y dy, . . . dt, that is, for

all values which satisfy the equations,

a^dx + a^dy + . . . -f a^dt = o

b,dx + b^dy + . . . + b^dt = O ... (3)

+ fjy + . . . + fv.dt = o

derived by differentiating equations (i). Hence, denoting the
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first member of equation (2) by P and those of equations (3)

by 6\ , ,5*2 ,
. . . Sv ,

the conditions are fulfilled by values which

satisfy equations (i) and make

P - ^S, - &2S2
- ... - kvSv = o, . . . (4)

where x , 2 ,
. . . kv are any constants.

This last equation will be satisfied if we can equate to zero

the coefficient of each of the differentials, thus putting

. . -**+
: -:.:'"

" (5>

and this it is possible to do because we have p. unknown quan-
tities and v auxiliary quantities 1} &, . . . kv which can be

determined so as to satisfy the v + /j. equations comprised in

the groups (i) and (5).

148. Substituting the values of x,y, . . . /from equations (5)

in equations (i), we have a set of linear equations to determine

the &s which are called the correlatives of the equations of con-

dition. These equations may be written in the form

^

,- , ... v v

in which the summation refers to the coefficients of the several

unknown quantities ; thus, for example, I ~ is the sum of the

squares of all the coefficients in the first equation of condition

each divided by the weight of the corresponding unknown

quantity. The correlatives being found from these equations,
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the values of the corrections x, y, . . . t are given at once by

equations (5).

149. When there is but one equation of condition

a^x + a^y + . . . + a^t = ,

the second members of equations (5) reduce to their first terms,

and the equations require that the corrections of the several

unknown quantities shall be proportional to their coefficients

in the equation of condition divided by their weights. Equa-
tions (6) then reduce to the single equation

and the corrections are

a\ #1

frx =

In the very common case in which the numerical value of

each coefficient in the single equation of condition is unity (for

example, when the successive angles at a point, or all the

angles of a polygon, are measured, or when the sum of two

measured angles is independently measured), we have the

simple rule that the corrections are inversely proportional to

the weights.

Examples.

i. Denoting the heights above mean sea level of five points

by X, Y, Z, Uy V, observations of difference of level gave, in

feet:

X= 573.08 Z - Y= 167.33 U- V= 425.00
Y-X= 2.60 C7-Z= 3.80 F= 319.91

y= 575-27 U- Y= 170.28 V= 319.75

Putting X= 573 + x, Y= 575 + y, Z= 742 + 2, U= 745 + u,
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V= 320 4- v, find the values and probable errors of the cor-

rections x,yy z, u, v, supposing the observations to have equal

weight.
x= 0.19 0.23, y = 0.14 0.21, 2 = 0.05 0.30,

u = 0.43 0.25, v = 0.03 0.19.

2. Given the observation equations :

with weights 10, 5 and 3 respectively, determine the values of

x and y. x 4.468 0.049, y 1-663 i 0.063.

-
3. Measurements of the ordinates of a straight line corres-

ponding to the abscissas 4, 6, 8 and 9, gave the values 5, 8, 10

and 12. What is the most probable equation of the line in the

iormy = mx + ? y 1.339.* 0.029.

*
4. Given the observation equations of equal weight :

*= 10, y x= 7, y= 18,

y 2=9, x 2=2,

determine the most probable values of the unknown quantities,

and the probable errors of an observation and of each unknown

quantity. JF=IO|, jj/^iyf, z = 8%,

r = rz = 0.29, rx = ry = 0.23.

5. In order to determine the length x at o C. of a meter

bar, and its expansion y for each degree of temperature, it was
measured at temperatures 20, 40, 50, 60, the corresponding
observed lengths being 1000.22, 1000.65, 1000.90 and 1001.05
mm. respectively. Find the probable values of x and y with

their probable errors. x 999
mm

.8o4 0.033,

y omm.O2i2 0.0007.

6. The length of the pendulum which beats seconds is known
to vary with the latitude in accordance with Clairant's equation,

where V is the length at the equator, q the ratio -^ of the cen-
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trifugal force at the equator to the weight, and
p,
the compres-

sion of the meridian regarded as unknown. Putting

q
_

observations in different latitudes gave in millimeters :

x + 0.9697 = 5.13, x + 0.0957 = 0.56, x + 0.3277= 1.70,

x + 0.7497 = 3.97, x = 0.19, x + 0.6857 = 3.62,

,
x + 0.4267 = 2.24, x + 0.1527 = 0.77, x + 0.7937 = 4.23.

Find the length at the equator with its probable error.

/' = 99 i
mm

.o69 .026.

7. Find the value of/* in the preceding example and its prob-
able error. y. = y^ 0.00046.

8. The measured height in feet ofA above O, B above A and

B above O are 12.3, 14.1 and 27.0 respectively. Find the

most probable value and the probable error of each of these

differences of level. 12.5 0.17; 14.3 0.17; 26.8 0.17.

9. A round of angles at a station in the U. S. Coast Survey
was observed with weights as follows :

65 n' 52".500 with weight 3, 87 2' 24^.703 with weight 3,

66 24 15 .553
" "

3, 141 21 21 .757
" "

i;

find the adjusted values whose sum must be 360.

65ii'53"-4i45, 87 2' 25".6i 75 ,

66 24 16 .4675, 141 21 24 .5005.

10. Four observations on the angle X of a triangle gave a

mean of 36 25' 47", two observations on Y gave a mean of

90 36' 28" and three on Z gave 52 57' 57". Find the adjusted

values of the angles and the probable error of a single obser-

vation. r = 7".1 ;
X= 36 25' 44".23,
Y 90 36 22 .46,

Z=$2 57 53 .31.

11. A round of four angles was observed as follows :

38 52' i4".28 weight 2, 44 35' 56"-54 weight 3,

145 23 16 .35
"

4, 131 10 21 .47 3,

find the adjusted values.

38 51' 35"-94 44 35' 3<>".98,

145 22 57 .18, 131 9 55 .91.
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12. Measurements of the angles between surrounding stations

were made with weights as follows :

Between stations i and 2, 55 57' 58".68, weight 3,
"

2
"

3, 48 49 13 -64, 19,
"

i
"

3. 104 47 12 .66,
"

17,

3
"

4, 54 38 15 -53,
"

13,

2
'

4, 103 27 28 .99, 6,

Find the corrections of the angles in the order given.

rf'.2S5, o".oo5, o".050, o".058,



IX.

GAUSS'S METHOD OF SUBSTITUTION.

The Reduced Normal Equations.

150. In solving the normal equations, it becomes essential,

except in the simplest cases, to reduce the labor as much as

possible by adopting a systematic process in the elimination.

We shall here give the method of substitution as developed by

Gauss, which has the advantage of preserving, in each of the

sets of simultaneous equations which arise in the elimination,

the symmetry which exists in the coefficients of the normal

equations, thereby materially diminishing the number of

coefficients to be calculated.

The m observation equations, involving the /* unknown

quantities xt yy z, . . . /, being, as in Art. 124,

+ . . .

/,'=!
]

// = I

. + lmt = nm

let the normal equations be written in the form

\aa\x + \ab\y + \ac~\z + . . . + \af\t
= [an]

\_ab\x + \bb~\y + \bc~\z +... + \bf\t
=

\bn\

\ac~\x + \_bc\y + \cc~\z + . . . + \cl\t
=

[en]

\al\x + \_bf\y + \_cl\z + ...+ [//]/
= [/] ,

. .
( 2 )

As mentioned at the end of Art. 126, we may suppose the

observation equations (i) to have been reduced to the weight

unity, so that [aa] t \ab\ . . . [ln\ stand for 2a
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151. The value of x in terms of the other unknown quanti-

ties derived from the first of equations (2), or normal equation
for x, is

\an\_
\_aa\

y ~

[aa]

Substituting this in the /* i other equations, they become

-
Mgj),+ (w

-Mg).+
. - . =w -

M|S|

-Mg>+ (M
-
[4gj).

+. - - =w -wg

in which it will be noticed that the coeffir'r-nts of the unknown

quantities have the same symmetry as in the normal equa-

tions (2). These equations for the f.i
i unknown quantities

y, z, . . . t are called the reduced normzi equations, and are

written in the form

,
- (3)

in which
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Equations (4) show that the rule for the formation of the

coefficients and the second members of the reduced normal

equations is the same throughout; namely, from the correspond-

ing coefficient in the normal equations we are to subtract the

result of multiplying together the two expressions in whose

symbols one of the letters in the given symbol is associated

with #, and dividing the product by [aa\.

The Elimination Equations.

152. Eliminating y by means of the first of the reduced

normal equations (3) from each of the others, just as x was

eliminated from the normal equations, and employing a similar

notation, we have the ^ 2 equations

...+ [>/, 2\t = [en, 2]

which may be called the second reduced normal equations.

The coefficients in these equations are derived from those in

equations (3) exactly as the latter were found from those in

equations (2). Thus

(6;

In like manner the third reduced normal equations are

formed from these last, the coefficients being distinguished

by the postfixed numeral 3, corresponding to the number of
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variables which have been eliminated. We finally arrive at

the single equation

[//, /*
-

i]/ - [/, p - i], (7)

which determines the unknown quantity standing last in the

order of elimination.

153. The quantity which immediately precedes / is next

derived from the first of the preceding set of equations (that

is, from the equation by means of which it was eliminated) by
the substitution of the numerical value found for /

;
and so

on, until finally x is found from the first of the original normal

equations. The equations from which the unknown quantities

are actually determined are therefore the following :

[aa]x + \ab~\y + \ac~\z + -..'+ \at\t
= [an]

\bb, i]y -f- \bc, i]z -f- . . . + [/, i]/
=

\bn, i]

\ccy 2> + . . . + \cl, 2\t
=

[en, 2] j.
. (8)

[#,/*- i]/=[/,/^- i].

These are called the finai or elimination equations.

The Reduced Observation Equations.

154. Let us suppose that there exists a relation between

the variables which must be exactly satisfied, while the m
observation equations are to be satisfied approximately. Let

this relation be

ax -f fty -f . . . -f- A/ = v (i)

Eliminating x from the observation equations (i), Art. 150

by the substitution of

x= -iy-iLt -. .._^+r,aj a a a'
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derived from this equation, we fyave

which may be called the reduced observation equations, and

written in the form

*>'y + =
,'

a comparison of which with the equations written above suffi-

ciently indicates the values of /, r/, . . . m', . . . nm'.

The /* i normal equations derived from these are

\b'c'}y
(3)

in which

a

[/V]=^/- - - = [/]
-

[^/]-
-[]-L J J

.(4)
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155. Let us now suppose that the equation of condition

(i) which is to be exactly satisfied is identical with the first

of the normal equations (2) of Art 150, so that

a = [aa], ft
=

\ab\, ... v= [an] ;

then equations (4) become

MM
EM] (S)

Comparison of these with equations (4), Art. 151, shows that

the normal equations (3) of the preceding article now become

identical with the first reduced normal equations of Art. 151.

Hence the first reduced normal equations are the same as the

normalequations corresponding to the reduced observation equations

which would result if x were eliminated from the observation

equations by means of the normal equation for x.

It is evident that, in like manner, the second reduced

normal equations are the same as the ^ 2 normal equation

which would result from the reduced observation equations, if

they were further reduced by the elimination of y by means

of the reduced normal equation for y ; or, what is the same

thing, the normal equations which would result if x and y were

eliminated from the original observation equations by means

of the normal equations for x andjy. Similar remarks apply to

the other sets of reduced normal equations.

156. An important consequence of what has just been

proved is that, among the coefficients in the reduced normal

equations, or auxiliary quantities, those of quadratic form,

\bb, ij, [a, i], ... |>, 2], ... [//, /*-i],
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being, like the corresponding quantities in the normal equa-

tions, sums of squares, are all positive. It is further to be

noticed that each of these quantities decreases as its postfix

increases, for the subtractive quantities in the formation of

the successive values are themselves positive. For example,

Weights of the Two Quantities First Determined.

157- The unknown quantity / has been determined in

equation (7), Art. 152, after the manner described in Art. 133;

that is to say, from its own normal equation no reduction

by multiplication or division having taken place in the course

of the elimination. Hence, as proved in that article, its weight
is the coefficient of the unknown quantity; that is to say, the

weight of an observation being unity, that of t is

/ =
[//, /i

-
i],

which, as shown in the preceding article, is necessarily a posi-

tive quantity.*

The weight of any one of the unknown quantities might be

determined, in like manner, by making it the last in the order

of elimination.

158. Let s be the unknown quantity preceding /, so that

* As shown in Art. 156, the substitutions diminish the successive coef-

ficients of /. Compare the foot-note to Art. 133, p. 104. In fact [//] is

the weight that t would have if the true values of all the other quantities

were known; [//, i] is the weight which it would have if all the others

except x were known that is, if x and / were the only quantities subject

to error
;
and so on.
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or

[//, yu
- ip, M - 2]

=
[//, //

- 2][^, /<
-

2]
-

\kl, >*
-

2\\

If now the order of s and t be reversed, no other change of

order being made, the auxiliaries with the postfix // 2 will

be unaltered, and we shall have

[kk, ft
-

l][//, /*
-

2]
=

[kk, H - 2][//, /*
-

2]
-

[/, /*
-

2]',

hence

|M /*
-

i][//, JK
-

2]
=

[//, /i
-

i][^, //
-

2].

But [kkt p i] is the weight of j, therefore we have

/.= [*,;,-.] = [

g'^

~
j [//, ^ - .].

The weights of the other unknown quantities cannot be

thus readily expressed in terms of the auxiliaries occurring
in the calculation of /. A general method of obtaining all the

weights will be given in Arts. 174-176.

The Reduced Expression for

159. We have found in Art. 139 for JSV or \vv\ the expres-

sion

[w] = - \an\x
-

\bn\y
- ... - [/]/ + [],

which is similar in form to the expressions equated to zero

in the normal equations. If in this we substitute the value

of x, as in Art. 151, it becomes

\yv~\
=

\bn, \\y [cn t i\z ... [/, i]/ + \nn, i],
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in which

\bn, i]
= p] - -

,

\nn, i] = [] -MM
[**]

after the analogy of the auxiliary quantities defined in equa-
tions (4), Art. 151. In like manner, by the elimination of

y, \vv\ is reduced to the form

[w] = [en, 2\z ... [/, 2\t + [>/, 2],

and finally, by the substitution of the value of /, to

\w] = [, /i],

the postfix // indicating that all the unknown quantities have

been eliminated.

Substituting in the expressions for the mean and probable
error of an observation, Art. 138, we have

e =
m

Ann, /*]
r = 0.6745y ^T-^.

The General Expression for the Sum of the Squares of the

Errors.

160. The following articles contain an investigation* of

the sum of the squares of the errors considered as a function

of the unknown quantities, showing directly that the minimum

*
Gauss,

" Theoria Motus Corporum Coelestium," Art. 182; Werke %

vol. vii. p. 238.
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value of this quantity corresponds to the values derived

from the normal equations, and is equal to [##, /*], and also

deriving from the general expression the law of facility of

error in /, and thence its weight.

Let

W=\vv\ (i)

be the sum of the squares of the errors in the observation

equations, that is to say, of the linear expressions of the form

(Art. 119),

ax + by -f- -{-// = v.

The absolute term in W is obviously [nn]. Put

Then

X = 2^ =M = M* + [% + + [a/]t
-

[an]. (3)

The equations X =
o, Y = o, . . . T = o are the normal

equations. Now, since

'X r

aa]X or - -- = X

-
i o ;

[*i]

hence, if we put

i
is a function independent of x. Now, 'in equation (4),

^
has for all values of the variables which make X o
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the same value as W
;
hence JV

1
is what W becomes when x

is eliminated from it by means of the first normal equation,

X= o.

l6l. It follows from what has just been proved, that

...... (5)

that is to say, W^ is the sum of the squares of expressions of

the form

b'y + c'z + . . . + I't - n'= v',

corresponding to the reduced observation equations, Arts. 154,

155. The absolute term in W. i- therefore \n'n'~\ or \nn, i].

If, now, we put

and Fj = o, . . . T^ = o, are the reduced normal equations.

The relation between the expressions K, ,
. . . Z", and

X, Y, . . . T is derived from equation (4) ; thus, differentiating

with respect to F,

* \ * r T ~T * r T-^> \/
\aa\ ay \aa\

which gives another proof of the identity of the coefficients

\b'b'\ . . . \b 'n'~\ with [M, i], . . . \bn> i], established in Art. 155.

We now prove, exactly as in the preceding article, that

is a function independent of y as well as of x, and is identical
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with \v"v"\ the sum of the squares of expressions of the

form

c"z + ...+/"/- n" = v"

corresponding to the second reduced observation equations,

from which x and y have been eliminated by means of the

equations X = o, Y^= o. The absolute term in W^ is obviously

[//V] or [, 2].

162. Proceeding in this way, we finally arrive at an expres-

sion Wp. which is independent of all the variables, and consists

simply of the absolute term [, //]. We have thus reduced

W to the form

w= + + +*
The denominators \aa~\, \bb, i], . . . [//, /* i], being sums of

squares, are all positive; hence the minimum value of W\s the

value [/z, /*] corresponding to the values of x, y, . . . t which

satisfy the equations X = o, Yl

=
o," . . . 7^ _ x

= o.

163. Since W\s the sum of the squares of the errors, the

probability that the actual observations should occur is

proportional to e- k<iw as in Art. 62. Therefore, by the

principle explained in Art. 30, the observations having
been made, the probabilities of different systems of values of

the unknown quantities are proportional to the corresponding
values of this function. Hence, C being a constant to be

determined, the elementary probability, Art. 21, of a given

system of values of x, y, . . . / is

Ce~ h*w
dxdy . ..<//, . . . . (n)

* This result is also derived by Gauss in a purely algebraic manner in

the "
Disquisitio de Elementis Ellipticis Paladis;

"
Werke, vol. vi. p. 22.

See also Encke, Berliner Astronomisches Jahrbuch for 1853, PP- 273~277-
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where h is the measure of precision of an observation, and

is such that the integral of the expression for all possible

values of the variables is unity.

The probability of a given system of values of y, z, . . . /,

while x may have any value, is found by summing this

expression for all values of x. It is then

Cdy. . . dt\ w
e-^wdx=Cdy. . . dt e-

since W
l
in equation (4) is independent of x. Since = \aa\

the value of the definite integral in this expression is, by

equation (7), Art. 39,

)_</ "^-[S]]-.' h

Thus the probability .
of a given system of values of y,

z, . . . / is

. . . dt e- (12)

164. In like manner, the probability of a given system of

values of z . . . /, x and y being indeterminate, is

which, by equations (9) and (7), reduces to

. . (13)
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Proceeding in this way, we have, finally, for the probability

of a given value of /,

"
(14)

Again, integrating this for all values of /, we have

h ^ \\aa\\bb, i] . . . [//, p - i](

Substituting the value of C thus determined, we obtain for

the probability of /,

4/7T

But

and

7;_r = [//,/*- i]/- [/,^- i];

therefore, putting

r =
[//,/,-i] [//,/<-i]'

and omitting <#, the expression (16) gives for the law of facility

of error in /,

-
[..,>. /

}

I/7T
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This is of the same form as the law of facility for an ob-

servation, except that the measure of precision is

h !/[//, V - i].

Thus the most probable value of / is that which makes

t = o, namely,

and the weight of this determination, when that of an observec

quantity is unity, is

pt
=

[//, /i
-

i].

The Auxiliaries Expressed in Determinant Form.

165. If, in the determinant of the coefficients of the normal

equations, denoted by D in Art. 128, we subtract from the

second row the product of the first row multiplied by | =r, it

becomes

o, \bb, i], [be, i], ... [>/, i].

Treating the other rows in like manner, the determinant D
is reduced to a form in which the first row is unchanged, and

the rest are replaced by a column of o's and the determinant

of the first reduced normal equations. Denoting this last de-

terminant by JD', we have D = \ad\D' .

By a similar reduction of D', D is further reduced to a form

in which the first two rows are as in that described above, and

the rest are replaced by two columns of o's and the determi-

nant, Z>", of the second reduced normal equations. Finally,

D is thus reduced to the determinant of the elimination equa-
tions (8), Art. 153.
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The successive forms of D give the equations

= . . .
=

[aa] \bb, i][^, 2] . . .\llji- 1].D=\aa\D'=-\aa\ [bb t

166. If, in the form of D involving Z>(r)
,
we take the first r

rows, and then any other row (which will therefore be a row

belonging to Z^r)
), the same reasoning shows that any deter-

minant formed by selecting r + i columns of this rectangular

block is equal to the minor occupying the same position in D.

We can now express any auxiliary, say [#/?, r\, as the quo-
tient of two minors, of the (r -f- i)th and rth degree respec-

tively, in D. This auxiliary occurs in the form of D just

mentioned. Taking the first r rows and columns together

with the row and column in which the given auxiliary occurs,

we have a determinant whose value is

\aa\bb, i] . . . [yy, r - i ][>/?, r\

because all the elements below the principal diagonal vanish.

But this determinant is equal to that similarly situated in D,
and the coefficient of [#/?, r] is equal to the determinant

formed from the first r rows and columns of D. For example,
for \de, 2] we have

and

therefore

[aa] [ab] [ae]

o \bb t i] [be, i]

o o [de, 2]
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167. The same principle holds if we include the auxiliaries

involving the letter #, and in particular the determinant Dn of

Art. 139 is

Dn = \aa\\bb, i] . . . [//, }*
-

i][nn, ^\ = D[nn, /*];

therefore

-i Dn
[>,//]:=,

which is the same value that was found for \yv\ on p, no.

Form of the Calculation of the Auxiliaries.

168. In calculating the coefficients which occur in the

elimination equations and the value of \vv\, it is important to

arrange the work in tabular form, and to apply frequent

checks to the computation to secure accuracy. In the an-

nexed table,* which is constructed for four unknown quanti-

ties, the first compartment contains the coefficients and second

members of the normal equations together with the value of

[], which are derived from the observation equations, as

explained in Art. 127. The coefficients are entered opposite

and below the letters in their symbols, those below the diag-

onal line, whose values are the same as those symmetrically
situated above, being omitted. Beneath those in the first line

are written their logarithms, which are used in computing the

subtractive quantities placed beneath each of the other co-

efficients.

* The tabular arrangement is taken from W. Jordan's
" Handbuch der

Vermessungskunde." See also Oppolzer's
" Lehrbuch zur Bahnbestim-

mung der Kometen und Planeten," vol. ii. p. 340 et seg., where the table,

with a somewhat different arrangement, is given for six unknown quantities,

and an example is fully worked out.
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log [aa]
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In expressing the subtractive quantities we have adopted
for abridgment the notation

A __\ab\ __ \ac\ ._M __M
"[aa]

9 Ac
~[aaY

d ~
[aa]>

~
[aa]'

The logarithms of these quantities are placed at the side,

and, adding them successively to the logarithms above, the

antilogarithms of the sums are entered in their places. After

this is done, the results of subtraction are the auxiliaries with

postfix i, which are to be placed in corresponding positions

in the compartment below.

In like manner the third compartment is formed from the

second, and in expressing the subtractive quantities we have

put

* - fo 'i
/? - [K '] K - [*. i]

-[,!]' ~\, I]' ~\, I]'

So also we have put

_ [>/, 2] _ [>, 2]
Cd
-[^7j'

Cn ~\^v
and finally,

_ [</, 3]

W3'
which is also the value of /. Thus the first four compartments

correspond to the several sets of normal equations, and their

first lines to the four elimination equations. Finally, in the

fifth compartment we have computed \nn, 4], which is the

value of \vv\.

Check Equations.

169. The column headed s is added for the sake of the

check equations

[aa] + \_ab\ + \_ac\ + [ad] -f [an] + [as]
= o .

[ab] + [bb] + [be] + [bd] + \bn] + [fo]
= o I

f
'

' ^

[] + [bn] + [.] + [^] +M + [] - o J
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the quantities [as], . . . [ns\ being formed as in Art. 127, ex-

cept that we have changed the sign of s, so that for each

observation equation

The checks are applied before the logarithms and sub-

tractive quantities are entered. They require that the algebraic

sum of the quantities in each line together with those standing
above the first term should vanish.

Similar checks can be applied in each of the lower compart-
ments. For example, if from the second of equations (i) we
subtract the product of the first equation multiplied by A b ,

we

have, since A b[aa\ = \ab\,

o + \bb, i] + [>, i] -f [K i] + \bn, i] + [fat i]
=

o,

where [&st i] has been formed in precisely the same way as the

other auxiliaries, namely,

In the same manner we obtain the other equations of the

group

\bb, i] + |>, i] + [K i] + [>, i] + [fa, i]
= o

}.................. k (*)

|>, i] + [en, i] + \dn, i] -f [, i] + [ns, i]
= o j

So also we have similar checks involving the auxiliaries

which have the postfix 2, and those which have the postfix 3,

and finally

\nn, 4] + [ns, 4] = o.
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a

b

c

d

n

b

c

d

n

c

d

n

d

n

n
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Numerical Example.

170. As an illustration, let us take the following normal

equations :

3.1217*4- .57567 .15652- .0067^= i-57 10 ]

.5756*+ 2.9375,74- .11032 .0015*= .9275 I

-.1565*4- .110374-4.127324- .2051*=
-

.0652
|

-.0067* .0015^4- -20512 4~ 4-1328^ = .0178 j

together with

[] = 1.3409,

which were derived from sixteen observation equations, while

at the same time the values of [as], . . [ns] were found as in

the first compartment of the table. The numbers in the final

column are the sums which should equal zero according to the

check equations, the small errors being due to the rejection of

decimals beyond the fourth place. The letters at the side and

top indicate the symbol for each auxiliary, while the compart-
ment gives the postfix. Since there are two computations for

[ftf], namely [, 4] and [ns, 4], which agree within the

limits of the uncertainty of logarithmic computation, we take

for its value a mean between them. Putting m = 16 and

/*
= 4 in the formulae for e and r, this value gives

= .04623, r=.03118,

for the mean and probable error of an observation.

Values of the Unknown Quantities from the Elimination

Equations.

171. Dividing the elimination equations, (8), Art. 153, by

\ad\, \bb, i], [cc, 2], \dd, 3], and using the notation introduced

in Art. 168, they become

- A cz + Ad t = An -\

~

**, +%Li~
B
c.\-

(I -
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The following table gives the form in which the computa-
tion is conveniently arranged, and its application to the ex-

ample for which the elimination equations are found in Art. 170.

D
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pose we multiply equations (i) of the preceding article by i,

a
i > ^2 >

^
3 > respectively, and add the results, assuming the <*'s

to be so determined that the coefficients of y, z, and / vanish.

We shall thus have

x = An + na l +O
and, for *he determination of the tf's,

^o+^c^ + ,
=0 [. ... ( 3 )

^d +^ + Qor, + ^
3
= o J

In like manner, to find y we multiply the second, third and

fourth of equations (i) by i, /?2 , /?3 , respectively, and add.

The result is

j = ^n +Cn/?2 + Z>n/?3 ,
..... (4)

where the fi's are determined by

Again, multiplying the last two of equations (i) by i, y 3 ,
and

adding

* = Cn + Z>nX3 , (6)

where ;'3
is determined by

Q 4 x, = o (7)

173. The form for the computation of a
lt
#

2 , o'g , y52 , /?s ,

^ 3 , according to equations (3), (5), and (7), and the numerical

work for the example of Art. 170, is as follows:
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~
Ab
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The Weights of the Unknown Quantities.

174. The principle by which we obtain expressions for the

weights is that proved in Art. 132, namely: When the value of

any one of the unknown quantities is expressed in terms of

the second members of the normal equations, its weight is the

reciprocal of the coefficient of the second member of its own

normal equation; or what is the same thing: The reciprocal of
the weight is what the value of the unknown quantity becomes when

the second member of its own normal equation is replaced by unity

and that of each of the others by zero.

Restoring the values of the quantities An , .#, C*n ,
Z>n ,

the

values of x, y, z, t, Art. 172, are

_ [an] \bn, i] [en, 2] [<tn, 3]-_-

_\bn, i] [en, 2]~
\bb^\

+ p^l
_ [en, 2] [dn, 3]~

,

>. (i)

Equations (3), (5), and (7), Art. 172, show that the values of

,,... y 3
are independent of the values of [an], [#], [^],

and [dn\ ;
hence the changes indicated above, in order to con-

vert the second members of equations (i) into the expressions

for the reciprocals of the weights, have only to be made in the

numerators [an], [bn, i], [en, 2], and [dn, 3], where, by the

definitions given in Arts. 151 and 152, we have, using the no-

tation of Art. 1 68,
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[bn, i]
= [bn] Ab[an] ~\

[en, 2]
=

[en]
- Ac [an\

- Bc[bn, i] I. (2)

[dn, 3]
=

[dn]
- Ad[an]

- Bd[bn, i]
- Cd[en, 2] J

175- To find the value of
,
we must now put in the value

Pm
of x

[an] = i, [bn]
=

o, [en]
=

o, [dn] = o.

Making these substitutions and using equations (3), Art

172, the value of [bn, i] becomes

[bn, i]
= - Ab = a

l ;

that of [en, 2] then becomes

[en, 2] A c Bca^ = 3 ;

and that of [dn, 3] becomes

[dn, 3]
= Ad Bda l

Cd^a
= a

3 .

Hence from the first of equations (i) we infer

*'

176. Again, to obtain the weight of y, we put in the second

of equations (i)

[an] = o, [bn] = i, [en] = o, [dn] = o.

These substitutions in equations (2) give, with the aid of

equations (5), Art. 172,
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\bn, i]
=

i,

\cn, 2]
= Bc fi^ ,

hence we have

i- _i_ ,_AL A*
JL r z./. n I r T I r _/_/ n

In like manner we complete the system of equations

I
,
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log <
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Examples.

1. Show that the values of pz when there are four unknown

quantities given in Arts. 158 and 176 are identical.

2. Show that the weight of the determination of \bn\ is \bb\\

that of \bn, i] is \bb, i], and so on.

3. Show that, if the normal equation for x were known to

be exactly true, the values of the unknown quantities and the

weights relatively to that of an observation of all except x

would be unchanged, and that the weight of an observation

would be increased in the ratio m J* -f- i : m p.

4. Solve the following normal equations which resulted from

twelve observation equations :

5.1143*
-

0.27927 + 3.34602 = 0.7365,

0.2792* + 14.61427 -f 0.19582 = 2.1609,

3.3460* + 0.1958? + 7.67542 = 0.8927,

[nn\ = 0.5379,

and find the probable errors of the unknown quantities.

x = .0803, y =.1475, z -0851;

rx = .034, rv = .017, rz = .028.

5. Solve the normal equations

5.2485* 1.74727
-

2.19542 = 0.5399,

1.74727 + 1.88597 + 0-80412 = i-4493

2.19547 + 0.804174* 4.04402 = i.8681,

\nn\ = 2.6322;

and given m = 10, find the probable errors.

[H =
0.5504, * = 0.422, y 0.945, 2 = 0.503;

r = 0.189, fg.
= 0.108, ru = o.i66, rz 0.107.
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6. Show that the observation equations

0.707.3: + 2.0527 2.3722 o.22i/ = 6.58,

0.471* + 1-347^
-

i-7i5*
~

o.o85/ = 1.63,

0.260* -f- 0.7707 0.3562: + 0.483^ = 4.40,

0.092* + 0,3437 + 0.2352 + 0.469/ 10.21,

0.414* + 1.2047 1.5062
-

0.205/ = 3.99,

0.040* + 0.1507 -\- 0.1042 + o.2o6/ = 434

give rise to the normal equations

0.971*4-2.8217 3.1752 o.i04/ = 4.815,

2.821* + 8.2087 9.1682 0.251^ = 12.961,

3- I 75x ~ 9-1687+ 11.0282 + 0.938/
=

25.697,

0.104* 0.2517+ 0.9382 + O.594/ = 10.218,

and to \nn\ = 204.313. Determine the unknown quantities

and the probable errors of an observation.

x = 86.41, 7 = 25.18, 2 = 3.12, / = 17.66, r = i. 80.

7. Account for the small values of the weights, especially of

x and 7, in Ex. 6. Show directly from the value of \bb> i] that

pv < .012 and/j < .0015,

8. Ten observation equations gave the normal equations

2.02530* -f 0.638097 3.992852 = 30.466,

0.63809*+ 0.2 1 6497 1.120892= 11.959,

3.99285* 1.120897 + 10.000002 = 6.000,

together with \nn\ = 24928.; find the values and weights of the

unknown quantities and the probable errors.
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x = 202.8, y = 286.3, * = 49-55

px = .0314, / = .0066, /z
=

.9119;

r 37.702, rx = 213, ry = 463, r2 = 39.

9. Given the following observation equations of equal weight:

.986^ -f- .056)'
= .000, -953* + .1827 = 1060,

973* + - I03y = -53 r
.943^+ . 2197 =: .380

.968* + .1237 = .680, . .919^ +.3077= .200,

.959.* + .1577 = .200, .916* +.3177= .530,

3317 = .000,

find the normal equations and the- value of [mi] by the method
of Art. 127. (Notice that when we put a-\-&-}-n-{-s = oa.s

in Art. 169 a considerable saving of labor results from the

fact that 2(a + J)
1 = 2(n + *Y, etc.)

8.0884^-)- 1.6798); 1.7160,

1.6798^+ 0.4383^ = 0.1725,

\nn\ 2.3722.

10. Solve the normal equations found in Ex. 9.

x = 0.642, y = 2.07, rx = 0.25, ry = 1.09.

11. Thirteen observation equations give the normal equa-
tions

17.50.*
-

6.50^
-

6.505?
=

2.14,

6.50^+17.50^ 6.502= 13.96,

6.50* 6.50^ + 20.502 = 5.40,

[] =
100.34;

find the values and probable errors of the unknown quantities,

x = 0.67 0.60, y =1.17 0.60, z = 0.32 0.55.
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12. Solve the normal equations

459*

308* + 464); +4082: 269^ = 695,

389* + 408^+6762 33i/- 653,

244* 269^ 3312 + 469^ = 283,

\nn\ = 1129.

x = o.2i2,^>
= 1.471, 2 0.195, ^~ 0.488;

^,,= 186, ^ = 250, /, = 28i.

p = 0.4769352, log p = 9.6784603 ;

PI/2 = 0.6744897, log p|/2 = 9.8289753 ;

PI/TT
=

0.84,53475^ log ptfn = 8.9270353;

r = p^2 . = p^TZ . Tf.

Note that p^/2 = a-\-p-\-y + 6-\-..., where a =
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Gore's Elements of Geodesy 8vo, 2 50

Hayford's Text-book of Geodetic Astronomy 8vo. 3 00

* Michie and Harlow's Practical Astronomy 8vo, 3 00

* White's Theoretical and Descriptive Astronomy 12ino, 2 00
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BOTANY.

GARDENING FOR LADIES, ETC.

Baldwin's Orchids of New England Small 8vo, $1 50

Thome's Structural Botany IGmo, 2 25

Westermaier's General Botany. (Schneider.) 8vo, 2 00

BRIDGES, ROOFS, Etc.

CANTILEVER DRAW HIGHWAY SUSPENSION.

(See also ENGINEERING, p. 7.)

Boiler's Highway Bridges Svo, 2 00

* ' ' The Thames River Bridge 4to, paper, 5 00

Burr's Stresses in Bridges Svo, 3 50

Crehore's Mechanics of the Girder Svo, 5 00

Dredge's Thames Bridges 7 parts, per part, 1 25

Du Bois's Stresses in Framed Structures Small 4to, 10 00

Foster's Wooden Trestle Bridges 4to, 5 00

Greene's Arches in Wood, etc Svo, 2 50

"
Bridge Trusses Svo, 250

Roof Trusses Svo, 125

Howe's Treatise on Arches Svo, 4 00

Johnson's Modern Framed Structures Small 4to, 10 00

Merriman & Jacoby's Text-book of Roofs and Bridges.

Part L, Stresses Svo, 250

Merriman & Jacoby's Text-book of Roofs and Bridges.

Part II., Graphic Statics Svo, 2 50

Merriman & Jacoby's Text-book of Roofs and Bridges.

Part III., Bridge Design Svo, 2 50

Merriman & Jacoby's Text-book of Roofs and Bridges.

Part IV., Continuous, Draw, Cantilever, Suspension, and

Arched Bridges Svo, 2 50

* Morison's The Memphis Bridge .' . ..Oblong 4to, 10 00

Waddell's Iron Highway Bridges Svb, 4 00
" De Pontibus (a Pocket-book for Bridge Engineers).

16mo, morocco, 3 00

"
Specifications for Steel Bridges (In press.)

Wood's Construction of Bridges and Roofs Svo, 2 00

Wright's Designing of Draw Spans. Parts I. and II.. Svo, each 2 50

' " " " "
Complete Svo, 350
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CHEMISTRY BIOLOGY-PHARMACY SANITARY SCIENCE.

QUALITATIVE QUANTITATIVE ORGANIC INORGANIC, ETC.

Adriance's Laboratory Calculations 12mo, $1 25

Allen's Tables for Iren Analysis Svo, 3 00

Austeu's Notes for Chemical Students 12mo, 1 50

Bol ton's Student's Guide in Quantitative Analysis Svo, 1 50

Boltwood's Elementary Electro Chemistry (In the press.)

Classen's Analysis by Electrolysis. (Herrick and Boltwood.).8vo, 3 00

Cohn's Indicators and Test-papers 12mo 2 00

Crafts's Qualitative Analysis. (Schaeffer.) 12rno, 1 50

Davenport's Statistical Methods with Special Reference to Bio-

logical Variations 12mo, morocco, 1 25

Drechsel's Chemical Reactions. (Merrill.) 12mo, 1 25

Erdmann's Introduction to Chemical Preparations. (Duulap.)

12mo, 1 25

Fresenius's Quantitative Chemical Analysis. (Allen.) Svo, 6 00

"
Qualitative

" "
(Johnson.) Svo, 300

(Wells.) Trans.

16th German Edition Svo, 5 00

Fuertes's Water and Public Health 12mo, 1 50

Gill's Gas and Fuel Analysis 12mo, 1 25

Hammarsten's Physiological Chemistry. (Maudel.) Svo, 4 00

Helm's Principles of Mathematical Chemistry. (Morgan). 12mo, 1 50

Hopkins' Oil-Chemist's Hand-book , Svo, 3 00

Ladd's Quantitative Chemical Analysis 12mo, 1 00

Landauer's Spectrum Analysis. (Tingle.) Svo, 3 00

Lob's Electrolysis and Electrosyuthesis of Organic Compounds.

(Loreuz.) 12mo, 1 00

Mifluid's Bio-chemical Laboratory 12mo, 1 50

Mason 's Water-supply Svo, 5 OC

" Examination of Water 12mo, 1 25

Meyer's Radicles in Carbon Compounds. (Tingle. ) 12mo, 1 00

Mixter's Elementary Text-book of Chemistry 12ino, 1 50

Morgan's The Theory of Solutions and its Results 12mo, 1 00
" Elements of Physical Chemistry 12mo, 200

Nichols's Water-supply (Chemical and Sanitary) Svo, 2 50

O'Brine's Laboratory Guide to Chemical Analysis Svo, 2 00

Pinner's Organic Chemistry. (Austen.) 12mo, 1 50



Poole's Calorific Power of Fuels 8vo, $3 00

Richards's Cost of Living as Modified by Sanitary Science.. 12mo. 1 00
" and Woodman's Air, Water, and Food (In press.)

Ricketts and Russell's Notes on Inorganic Chemistry (Non-

inetallic) Oblong 8vo, morocco, 75

Ruddiman's Incompatibilities in Prescriptions 8vo, 2 00

Schimpfs Volumetric Analysis 12mo, 2 50

Spencer's Sugar Manufacturer's Handbook 16mo, morocco, 2 00
" Handbook for Chemists of Beet Sugar Houses.

IGmo, morocco, 3 00

Stockbridge's Rocks and Soils 8vo, 2 50
* Tillman's Descriptive General Chemistry 8vo, 3 00

Van Deventer's Physical Chemistry for Beginners. (Boltwood.)

12mo, 1 50

Wells's Inorganic Qualitative Analysis 12mo, 1 50
"

Laboratory Guide in Qualitative Chemical Analysis.

8vo, 1 50

Whipple's Microscopy of Drinking-water 8vo, 3 50

Wiechmann's Chemical Lecture Notes 12mo, 3 00
"

Sugar Analysis Small 8vo, 2 50

Wulling's Inorganic Phar. and Med. Chemistry 12mo, 2 00

DRAWING.

ELEMENTARY GEOMETRICAL MECHANICAL TOPOGRAPHICAL.

Hill's Shades and Shadows and Perspective 8vo, 2 00

MacCord's Descriptive Geometry 8vo, 3 00

Kinematics 8vo, 500
" Mechanical Drawing 8vo, 400

Mahan's Industrial Drawing. (Thompson.) 2 vols., 8vo, 3 50

Reed's Topographical Drawing. (H. A.) 4to, 5 00

Reid's A Course in Mechanical Drawing 8vo. 2 00
" Mechanical Drawing and Elementary Machine Design.

8vo. (In the press.)

Smith's Topographical Drawing. (Macmillan.) 8vo, 2 50

Warren's Descriptive Geometry 2 vols., 8vo, 3 50
"

Drafting Instruments 12mo, 1 25
" Free-hand Drawing 12ino, 1 00
" Linear Perspective 12mo, 100
" Machine Construction 2 vols., 8vo, 7 50
" Plane Problems 12mo, 125
"

Primary Geometry 12mo, 75
" Problems and Theorems 8vo, 250
"

Projection Drawing 12mo, 150



Warren's Shades and Shadows . .8vo, $3 00
"

Stereotomy Stone-cuttiug .8vo, 2 50

Whelpley's Letter Engraving 12mo, 2 00

Wilson's Free-hand Perfective (In press.}

ELECTRICITY AND MAGNETISM.

ILLUMINATION BATTERIES PHYSICS RAILWAYS.

Anthony and Brackctt's Text-book of Physics. (Magk-.) Small

8vo, 3 00

Anthony's Theory of Electrical Measurements 12mo, 1 00

Barker's Deep-sea Soundings Svo, 2 00

Benjamin's Voltaic Cell 8vo, 3 00

History of Electricity 8vo, 300
Classen's Analysis by Electrolysis. (Hen ick and Boltwood ) Svo, 3 00

Crehore and Squier's Experiments with a New Polarizing Photo-

Chronograph 8vo, 3 00

Dawson's Electric Railways and Tramways. Small, 4to, half

rnoroccc, 12 50
*
"Engineering" and Electric Traction Pocket-book. 16mo,

morocco, $5 00
*
Dredge's Electric Illuminations. . . .2 vols., 4to, half morocco, 25 00

Yol. II 4to, 750
Gilbert's De magnete. (Mottelay.) . .8vo, 2 50

Holman's Precision of Measurements Svo, 2 00
"

Telescope-mirror-scale Method Large Svo, 75

Lob's Electrolysis and Electrosyuthesis of Organic Compounds.

(Lorenz. ) ... 12mo, 1 00

*Michie's Wave Motion Relating to Sound and Light Svo, 4 00

Morgan's The Theory of Solutions and its Results 12mo, 1 00

Niaudet's Electric Batteries (Fishback.) .12mo, 2 50

Pratt and Alden's Street-railway Road-beds Svo, 2 00

Reagan's Steam and Electric Locomotives 12mo, 2 00

Thurstou's Stationary Steam Engines for Electric Lighting Pur-

poses Svo, 2 50

*Tillman's Heat Svo, 1 50

ENGINEERING,

CIVIL MECHANICAL SANITARY, ETC.

(See also BRIDGES, p. 4
; HYDRAULICS, p. 9

; MATERIALS OP EN-

GINEERING, p. 10
; MECHANICS AND MACHINERY, p. 12

; STEAM

ENGINES AND BOILERS, p. 14.)

Baker's Masonry Construction ........... 8vo, $5 00
"

Surveying Instruments 12mo, 3 00
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Black's U. S. Public Works Oblong 4to, $ 500

Brooks's Street-railway Locatiou , 16mo, morocco, 1 50

Butts's Civil Engineers' Field Book 16mo, morocco, 2 50

Byrne's Highway Construction 8vo, 5 00
"

Inspection of Materials and Workmanship 16mo, 3 00

Carpenter's Experimental Engineering 8vo, 6 00

Church's Mechanics of Engineering Solids and Fluids 8vo, C 00
" Notes and Examples in Mechanics 8vo, 2 00

Crandall's Earthwork Tables 8vo, 1 50

The Transition Curve IGino, morocco, 1 50
*
Dredge's Penn. Railroad Construction, etc. Large 4to,

half morocco, 20 00
* Drinker's Tunnelling 4to, half morocco, 25 00

Eissler's Explosives Nitroglycerine and Dynamite 8vo, 4 00

Frizell's Water Power (In press.}

Folwell's Sewerage 8vo, 3 00
"

Water-supply Engineering , 8vo, 4 00

Fowler's Coffer-dam Process for Piers .8vo. 2 50

Gerhard's Sanitary House Inspection 12mo, 1 00

Godwin's Railroad Engineer's Field-book 16mo, morocco, 2 50

Gore's Elements of Geodesy - Svo, 2 50

Howard's Transition Curve Field-book 16mo, morocco, 1 50

Howe's Retaining Walls (New Edition.) .12mo, 1 25

Hudson's Excavation Tables. Vol. II Svo, 1 00

Button's Mechanical Engineering of Power Plants Svo, 5 00
" Heat and Heat Engines Svo, 5 00

Johnson's Materials of Construction Large Svo, 6 00
"

Theory and Practice of Surveying Small Svo, 4 00

Kent's Mechanical Engineer's Pocket-book IGmo, morocco, 5 00

Kiersted's Sewage Disposal 12mo, 1 25

Mahau's Civil Engineering. (Wood.) Svo, 5 00

Merriman and Brook's Handbook for Surveyors 16mo, mor., 2 00

Merrimau's Precise Surveying and Geodesy Svo, 2 50
"

Sanitary Engineering Svo, 2 00

Nagle's M inual for Railroad Engineers 16mo, morocco, 3 00

Ogdeu's Sewer Design 12mo, 2 00

Pattou's Civil Engineering Svo, half morocco, 7 50

Patton's Foundations Svo, 5 00

Philbrick's Field Manual for Engineers (In press.)

Pratt and Alden's Street-railway Road-beds Svo, 2 00

Rockwell's Roads and Pavements in France 12mo, 1 25

Searles's Field Engineering . . . . < 16mo, morocco, 3 00
" Railroad Spiral IGmo, morocco. 1 50

Siebert and Biggin's Modern Stone Cutting and Masonry. . .Svo, 1 50

Smart's Engineering Laboratory Practice 12mo, 2 50

Smith's Wire Manufacture and Uses Small 4to, 3 00
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Spalding's Roads and Pavements 12mo, $2 06

Hydraulic Cement 12mo, 200

Taylor's Prisnioidal Formulas and Earthwork 8vo, t 50

Thurstou's Materials of Construction, 8vo, 5 00
* Trautwine's Civil Engineer's Pocket-book. . . .16mo, morocco, 5 00

' '

Cross-section Sheet, 25
" Excavations and Embankments 8vo, 2 00

Laying Out Curves 12mo, morocco, 2 50

Waddell's De Pontibus (A Pocket-book for Bridge Engineers).

IGmo, morocco, 3 00

"Wait's Engineering and Architectural Jurisprudence 8vo, 6 00

Sheep, 6 50
" Law of Field Operation in Engineering, etc. . .(In press.)

Warren's Stereotomy Stone-cutting 8vo, 2 50

Webb's Engineering Instruments. New Edition. 16mo, morocco, 1 25
" Railroad Construction ,8vo, 400

Wegmann's Construction of Masonry Dams 4to, 5 00

Wellington's Location of Railways Small 8vo, 5 00

Wheeler's Civil Engineering 8vo, 4 00

Wilson's Topographical Surveying 8vo, 3 50

Wolff's Windmill as a Prime Mover 8vo, 3 00

HYDRAULICS.

WATER-WHEELSWINDMILLSSERVICE PIPE DRAINAGE, ETC.

(See also ENGINEERING, p. 7.)

Bazin's Experiments upon the Contraction of Ihe Liquid Vein.

(Trautwine.) 8vo, 2 00

Bovey 's Treatise on Hydraulics 8vo, 4 00

Coffin's Graphical Solution of Hydraulic Problems 12mo, 2 50

Ferrel's Treatise on the Winds, Cyclones, and Tornadoes. . .8vo, 4 00

Folwell's Water Supply Engineering 8vo, 4 00

Fuertes's Water and Public Health 12mo, 1 50

Ganguillet & Kutter's Flow of Water. (Hering & Trautwine.)

8vo, 4 00

Hazen's Filtration of Public Water Supply 8vo, 3 00

Herschel's 115 Experiments 8vo, 2 00

Kiersted's Sewage Disposal 1 2mo, 1 25

Mason's Water Supply 8vo, 5 00
" Examination of Water 12mo, 1 25

Merriman's Treatise on Hydraulics 8vo, 4 00

Nichols's Water Supply (Chemical and Sanitary) 8vo, 2 50

Turneaure and Russell's Water-supply (In press.)

Wegmann's Water Supply of the City of New York 4to, 10 00

Weisbach's Hydraulics. (Du Bois.) 8vo, 5 00

Whipple's Microscopy of Drinking Water 8vo, 3 50
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Wilson's Irrigation Engineering 8vo, $4 00

Hydraulic and Placer Mining 12mo, 200
Wolff's Windmill as a Prime Mover 8vo, 3 00

Wood's Theory of Turbines 8vo, 2 50

LAW.

ARCHITECTURE ENGIXKEKING MILITARY.

Davis's Elements of Law 8vo, 2 50

Treatise on Military Luw , 8vo, 7 00

Sheep, 7 50

Murray's A Manual for Courts-martial 16mo, morocco, 1 50

Wait's Engineering and Architectural Jurisprudence -8vo, 6 00

Sheep, 6 50
" Laws of Field Operation in Engineering (In press.)

Winthrop's Abridgment of Military Law 12mo, 2 50

MANUFACTURES.

BOILERS EXPLOSIVES IRON STEEL SUGAR WOOLLENS, ETC.

Allen's Tables for Iron Analysis 8vo, 3 00

Beaumont's Woollen and Worsted Manufacture 12rno, 1 50

Holland's Encyclopaedia of Founding Terms 12mo, 3 00

The Iron Founder 12mo, 250
" "

Supplement 12mo, 2 50

Bouvier's Handbook on Oil Painting 12mo, 2 00

Eissler's Explosives, Nitroglycerine and Dynamite 8vo, 4 00

Ford's Boiler Making for Boiler Makers 18mo, 1 00

Metcalfe's Cost of Manufactures 8vo, 5 00

Metcalf 's Steel A Manual for Steel Users 12rno, 2 00

*Reisig's Guide to Piece Dyeing Svo, 25 00

Spencer's Sugar Manufacturer's Handbook . . . .16mo, morocco, 2 00
" Handbook for Chemists of Beet Sugar Houses.

16mo, morocco, 3 00

Thurston's Manual of Steam Boilers 8vo, 5 00

Walke's Lectures on Explosives Svo, 4 00

West's American Foundry Practice 12mo, 2 50
" Moulder's Text-book 12mo, 2 50

Wiechmann's Sugar Analysis Small Svo, 2 50

Woodbury's Fire Protection of Mills Svo, 2 50

MATERIALS OF ENGINEERING

STRENGTH ELASTICITY RESISTANCE, ETC.

(See also ENGINEERING, p. 7.)

Baker's Masonry Construction Svo, 5 00

Beardslee and Kent's Strength of Wrought Iron. Svo, 1 50
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Bovey's Strength of Materials , Svo, 7 50

Burr's Elasticity and Resistance of Materials Svo, $5 00

Byrne's Highway Construction Svo, 5 00

Church's Mechanics of Engineering Solids and Fluids Svo, 6 00

Du Bois's Stresses in Framed Structures Small 4to, 10 00

Johnson's Materials of Construction Svo, G 00

Lanza's Applied Mechanics Svo, 7 50

Marteus's Testing Materials. (Heuning.) 2 vols. , Svo, 7 50

Merrill's Stones for Building and Decoration Svo, 5 00

Merriman's Mechanics of Materials Svo, 4 00
' '

Strength of Materials 12rno, 1 00

Pattou's Treatise on Foundations Svo, 5 00

Rockwell's Roads and Pavements in France 12mo, 1 25

Spaldiug's Roads and Pavements .12mo, 2 00

Thurston's Materials of Construction , . . . , , Svo, 5 00
" Materials of Engineering 3 vols.,-8vo, 8 00

Vol. I, Non-metallic Svo, 200
Vol. II., Iron and Steel Svo, 3 50

Vol. III., Alloys, Brasses, and Bronzes Svo, 2 50

Wood's Resistance of Materials Svo, 2 00

MATHEMATICS.

CALCULUS GEOMETKY TRIGONOMETRY, ETC.

Baker's Elliptic Functions Svo, 1 50

*Bass's Differential Calculus 12mo, 4 00

Briggs's Plane Analytical Geometry 12mo, 1 00

Chapman's Theory of Equations 12mo, 1 50

Compton's Logarithmic Computations 12mo, 1 50

Davis's Introduction to the Logic of Algebra Svo, 1 50

Halsted's Elements of Geometry Svo, 1 75

Synthetic Geometry Svo, 150
Johnson's Curve Tracing 12mo, 1 00

" Differential Equations Ordinary and Partial.

Small Svo, 3 50
"

Integral Calculus 12mo, 1 50
" " "

Unabridged. Small Svo. (In press.)
" Least Squares 12mo, 1 50

*Ludlow's Logarithmic and Other Tables. (Bass.) Svo, 2 00
* "

Trigonometry with Tables. (Bass.) Svo, 3 00

*Mahan's Descriptive Geometry (Stone Cutting) Svo, 1 50

Merriman and Woodward's Higher Mathematics Svo, 5 00

Merriman's Method of Least Squares Svo, 2 00

Rice and Johnson's Differential and Integral Calculus,

2 vols. in 1, small Svo, 2 50
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Rice and Johnson's Differential Calculus Small 8vo, $3 00
"

Abridgment of Differential Calculus.

Small Svo, 1 50

Totten's Metrology Svo, 2 50

Warren's Descriptive Geometry 2 vols., Svo, 3 50
"

Drafting Instruments 12mo, 125
Free-hand Drawing 12mo, 100
Linear Perspective 12mo, 100

"
Primary Geometry 12mo, 75

Plane Problems .12mo, 125
" Problems and Theorems Svo, 2 50
"

Projection Drawing 12mo, 150
Wood's Co-ordinate Geometry Svo, 2 00

Trigonometry 12mo, 100
Woolf's Descriptive Geometry Large Svo, 3 00

MECHANICS MACHINERY.
TEXT-BOOKS AND PRACTICAL WORKS.

(See also ENGINEERING, p. 7.)

Baldwin's Steam Heating for Buildings 12mo, 2 50

Barr's Kinematics of Machinery Svo, 2 50

Benjamin's Wrinkles and Recipes 12mo, 2 00

Chordal's Letters to Mechanics 12mo, 2 00

Church's Mechanics of Engineering Svo, 6 00
" Notes and Examples in Mechanics Svo, 2 00

Crehore's Mechanics of the Girder Svo, 5 00

Cromwell's Belts and Pulleys 12mo, 1 50

Toothed Gearing 12mo, 150

Comptou's First Lessons in Metal Working 12mo, 1 50

Compton and De Groodt's Speed Lathe 12mo, 1 50

Dana's Elementary Mechanics 12mo, 1 50

Dingey's Machinery Pattern Making 12mo, 2 00

Dredge's Trans. Exhibits Building, World Exposition.

Large 4to, half morocco, 10 00

Dti Bois's Mechanics. Vol. I., Kinematics Svo, 3 50

Vol. II., Statics Svo, 400
Vol. III., Kinetics Svo, 350

Fitzgerald's Boston Machinist ISmo, 1 00

Flather's Dynamometers 12mo, 2 00

Rope Driving 12mo, 200
Hall's Car Lubrication 12mo, 1 00

Holly's Saw Filing ISmo, 75

Johnson's Theoretical Mechanics. An Elementary Treatise.

(In the press.}

Jones's Machine Design. Part I., Kinematics Svo, 1 50
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Jones's Machine Design. Part II., Strength and Proportion of

Machine Parts 8vo, $3 00

Lanza's Applied Mechanics 8vo, 7 50

MacCord's Kinematics 8vo, 5 00

Merrimuii's Mechanics of Materials 8vo, 4 00

Metcalfe's Cost of Manufactures 8vo, 5 00

*Michie's Analytical Mechanics 8vo, 4 00

Richards's Compressed Air 12mo, 1 50

Robinson's Principles of Mechanism 8vo, 3 00

Smith's Press-working of Metals 8vo, JJ 00

Thurstou's Friction and Lost Work 8vo, 3 00
" The Animal as a Machine 12mo, 1 00

Warren's Machine Construction 2 vols., 8vo, 7 50

Weisbach's Hydraulics and Hydraulic Motors. (Du Bois.)..8vo, 500
" Mechanics of Engineering. Vol. III., Part I.,

Sec. I. (Klein.) 8vo, 500
Weisbach's Mechanics of Engineering. Vol. III., Part I.,

Sec.II. (Klein.) 8vo, 500
Weisbach's Steam Engines. (DuBois.)., 8vo, 500
Wood's Analytical Mechanics 8vo, 3 00

"
Elementary Mechanics 12mo, 1 25

" " "
Supplement and Key 12ino, 125

METALLURGY.
IKON GOLD SILVER ALLOYS, ETC.

Allen's Tables for Iron Analysis 8vo, 3 00

Egleston's Gold and Mercury Large 8vo, 7 50
"

Metallurgy of Silver Large 8vo, 7 50
* Kerl's Metallurgy Copper and Iron 8vo, 15 00
* "

Steel, Fuel, etc 8vo, 1500
Kunhardt's Ore Dressing in Europe 8vo, 1 50

Metcalf's Steel A Manual for Steel Users 12mo, 2 00

O'Driscoll's Treatment of Gold Ores 8vo, 2 00

Thurston's Iron and Steel 8vo, 3 50

Alloys 8vo, 250
Wilson's Cyanide Processes 12mo, 1 50

MINERALOGY AND MINING.

MINE ACCIDENTS VENTILATION ORE DRESSING, ETC.

Barringer's Minerals of Commercial Value Oblong morocco, 2 50

Beard's Ventilation of Mines 12mo, 2 50

Boyd's Resources of South Western Virginia 8vo, 3 00
"

Map of South Western Virginia Pocket-book form, 2 00

Brush and Penfield's Peterminative Mineralogy. New Ed. 8vo, 4 00
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Chester's Catalogue of Minerals 8vo, $1 25

Paper, 50

Dictionary of the Names of Minerals 8vo, 3 00
Dana's American Localities of Minerals Large 8vo, 1 00

Descriptive Mineralogy. (E.S.) Large 8vo. half morocco, 12 50

First Appendix to System of Mineralogy. . . .Large 8vo, 1 00

Mineralogy and Petrography. (J. D.) 12mo, 2 00
" Minerals and How to Study Them. (E. S.). 12mo, 1 50
" Text-book of Mineralogy. (E. S.).. .New Edition. 8vo, 400

* Drinker's Tunnelling, Explosives, Compounds, and Rock Drills.

4to, half morocco, 25 00

Eglestou's Catalogue of Minerals and Synonyms 8vo, 2 50

Eissler's Explosives Nitroglycerine and Dynamite 8vo, 4 00

Hussak's Rock forming Minerals. (Smith.) Small 8vo, 2 00

Ihlseng's Manual of Mining . . 8vo, 4 00

Kunhardt's Ore Dressing in Europe 8vo, 1 50

O'Driscoll's Treatment of Gold Ores 8vo, 2 00
* Penfield's Record of Mineral Tests Paper, 8vo, 50

Roseubusch's Microscopical Physiography of Minerals and

Rocks. (Iddings.) 8vo, 500
Sawyer's Accidents in Mines Large 8vo, 7 00

Stockbridge's Rocks and Soils 8vo, 2 50

Walke's Lectures on Explosives 8vo, 4 00

Williams's Lithology 8vo, 3 00

Wilson's Mine Ventilation 12mo, 1 25
"

Hydraulic and Placer Mining 12mo, 2 50

STEAM AND ELECTRICAL ENGINES, BOILERS, Etc,

STATIONARY MARINE LOCOMOTIVE GAS ENGINES, ETC.

(See also ENGINEERING, p. 7.)

Baldwin's Steam Heating for Buildings : . 12mo, 2 50

Clerk's Gas Engine Small 8vo, 400
Ford's Boiler Making for Boiler Makers 18mo, 1 00

Hemenway's Indicator Practice 12mo, 2 00

Kneass's Practice and Theory of the Injector 8vo, 1 50

MacCord's Slide Valve 8vo, 2 00

Meyer's Modern Locomotive Construction 4to, 10 00

Peabody and Miller's Steam-boilers 8vo, 4 00

Peabody's Tables of Saturated Steam 8vo, 1 00
"

Thermodynamics of the Steam Engine 8vo, 5 00

Valve Gears for the Steam Engine 8vo, 2 50
"

Steam-engine Indicator 12mo, 1 50

Pray's Twenty Years with the Indicator Large 8vo, 2 50

Pupin and Osterberg's Therrnorlynamics 12ino, 1 25
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Reagan's Steam and Electric Locomotives 12mo, $2 00

Ronlgen's Thermodynamics. (Dti Bois.) 8vo, 5 00

Sinclair's Locomotive Running 12mo, 2 00

Snow's Steam-boiler Practice 8vo. 3 00

Thurston's Boiler Explosions 12mo, 1 50

Engine and Boiler Trials. 8vo, 5 00
" Manual of the Steam Engine. Part I., Structure

and Theory 8vo, 6 00
" Manual of the Steam Engine. Part II., Design,

Construction, and Operation 8vo, 6 00

2 parts, 10 00

Thurston's Philosophy of the Steam Engine 12mo, 75
" Reflection on the Motive Power of Heat. (Carnot.)

12mo, 1 50
"

Stationary Steam Engines 8vo, 2 50
" Steam-boiler Construction and Operation 8vo, 5 00

Spaugler's Valve Gears 8vo, 2 50

Weisbach's Steam Engine. (Du Bois.) 8vo, 5 00

Whitham's Steam-engine Design 8vo, 5 00

Wilson's Steam Boilers. (Flather.) 12mo, 2 50

Wood's Thermodynamics, Heat Motors, etc 8vo, 4 00

TABLES, WEIGHTS, AND MEASURES.

FOR ACTUARIES, CHEMISTS, ENGINEERS, MECHANICS METRIC

TABLES, ETC.

Adrian ce's Laboratory Calculations 12mo, 1 25

Allen's Tables for Iron Analysis 8vo, 3 00

Bixby's Graphical Computing Tables Sheet, 25

Comptou's Logarithms 12mo, 1 50

Crandall's Railway and Earthwork Tables 8vo, 1 50

Eglestou's Weights and Measures 18mo, 75

Fisher's Table of Cubic Yards Cardboard, 25

Hudson's Excavation Tables. Vol. II 8vo, 1 00

Johnson's Stadia and Earthwork Tables 8vo, 1 25

Ludlow's Logarithmic and Other Tables. (Bass.) 12mo, 2 00

Totteu's Metrology 8vo, 2 50

VENTILATION.

STEAM HEATING HOUSE INSPECTION MINK VENTILATION.

Baldwin's Steam Heating 12mo, 2 50

Beard's Ventilation of Mines 12mo, 2 50

Carpenter's Heating and Ventilating of Buildings 8vo, 3 00

Gerhard's Sanitary House Inspection 12mo, 1 00

Wilson's Mine Ventilation 12mo, 1 25
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MISCELLANEOUS PUBLICATIONS.

Alcott's Gems, Sentiment, Language Gilt edges, $5 00

Davis's Elements of Law 8vo, 2 00

Enmion's Geological Guide-book of the Rocky Mountains. .8vo, 1 50

Ferrers Treatise ou the Winds , 8vo, 4 00

Haiues's Addresses Delivered before the Am. Ry. Assn. ..12mo, 2 50

Mott's The Fallacy of the Present Theory of Sound. .Sq. IGmo, 1 00

Richards's Cost of Living 12mo, 1 00.

Ricketts's History of Rensselaer Polytechnic Institute .8vo, 3 00

Rotherham's The New Testament Critically Emphasized.

12mo, 1 50
" The Emphasized New Test. A new translation.

Large 8vo, 2 00

Totten's An Important Question in Metrology 8vo, 2 50
*
Wiley's Yosemite, Alaska, and Yellowstone 4to, 3 00

HEBREW AND CHALDEE TEXT-BOOKS.

FOR SCHOOLS AND THEOLOGICAL SEMINARIES.

Gesenius's Hebrew and Chaldee Lexicon to Old Testament.

(Tregelles. ) Small 4to, half morocco, 5 00

Green's Elementary Hebrew Grammar 12mo, 1 25

Grammar of the Hebrew Language (New Edition ).8vo, 3 00
" Hebrew Chrestomathy 8vo, 2 00

Letteris's Hebrew Bible (Massoretic Notes in English).

8vo, arabesque, 2 25

MEDICAL.

Hammarsten's Physiological Chemistry. (Maudel.) 8vo, 4 00

Mott's Composition, Digestibility, and Nutritive Value of Food.

Large mounted chart, 1 25

Ruddinian's Incompatibilities in Prescriptions 8vo, 2 00

Steel's Treatise on the Diseases of the Ox 8vo, 6 00

Treatise 011 the Diseases of the Dog 8vo, 3 50

Woodhull's Military Hygiene 16mo, 1 50

Worcester's Small Hospitals Establishment and Maintenance,

including Atkinson's Suggestions for Hospital Archi-

tecture .0 ,.12nio, 1 25
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