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PREFACE

In reviewing the history of every type of structural work, we find

the designing engineer influenced in his first attempts at any new

type of structure by his knowledge of the practical forms of con-

struction with which he is already familiar. In fact until very
recent times precedent was the engineer's sole guide. It was to be

expected therefore that the pioneers in concrete-steel construction

should follow and closely imitate timber and structural steel con-

struction. In following this type, the idea has been to build up the

structure as a whole by assembling and joining together a number
of independent elements or units: whereas concrete, with or without

reinforcement, is a kind of material that is best suited by its nature

to construction in monolithic form. But when the attempt has been

made to treat such structures theoretically, preconceived ideas

have led to the effort to treat them by analysing them into separate

members and computing the strength of these arbitrarily selected

units, assumed to act independently as they do in steel structures.

Such treatment has led to errors of as much as two or three hundred

percent in the computation of slabs with two way reinforcement

supported on four sides, and to errors of four hundred percent in

case of continuous flat slab construction such as occurs in the mush-

room system.

When we consider the fact that fire losses in Canada and the

United States amount each year to half a billion dollars, and that

the question of commercial economy determines whether buildings

shall be built of fireproof and incombustible materials such as rein-

forced concrete, or of inflammable materials such as are used in timber

construction, it is at once evident how important it is to the general

public to be able to determine on theoretically correct principles

whether safe fireproof buildings can be built at approximately the

same or less cost than combustible ones. In case of any uncertainty

on this question, the designer is compelled for safety to employ
materials in such lavish amounts as to render cost prohibitive.

The failure of engineers and mathematicians generally to apply
the mathematical theory of elasticity to the new material concrete-

steel, has led to considerable controversy between practical con-

structors of experience, and theoretical engineers without such

experience.



IV PREFACE

Marsh in his treatise on Reinforced Concrete, edition of 1905,

Part V, p. 209, makes the following remarks upon this subject:

"When properly combined with metal, concrete appears to gain

properties which do not exist in the material when by itself, and

although much has been done by various experimenters in recent

years to increase our knowledge on the subject of the elastic be-

haviour of reinforced concrete, we are still very far from having
a true perception of the characteristics of the composite material.

It may be that we are wrong from the commencement in

attempting to treat it after the manner of structural ironwork, and
that although the proper allowances for the elastic properties of the

dual material is an advancement on the empirical formulae at first

employed, and used by many constructors at the present time, yet
we may be entirely wrong in our method of treatment.

The molecular theory, i. e. the prevention of molecular defor-

mation by supplying resistances of the reverse kind to the stresses

on small particles, may prove to be the true method of treatment for

a composite material such as concrete and metal. This theory is

the basis of the Cottacin construction which certainly produces good
results and very light structures, and M. Considere's latest researches

on the subject of hooped concrete are somewhat on these lines.

In this statement, Marsh undoubtedly has in mind the great

discrepancy between the results of tests and of computations of

multiple way reinforcement.

The empirical formulas of Hennebique, a pioneer in this field

and one of its most extensive investigators, give numerical results

at variance with the usual published theories for two way reinforce-

ment, while the empirical formulas published by Turner in 1908

exhibit an equally radical divergence.

It has remained apparently for Dr. Eddy to discover the reason

for this great discrepancy by a rigid application of the mathematical

theory of elasticity to the problem presented by multiple way rein-

forcement.

The clearing up of the mathematical difficulties with which the

theoretical engineer has heretofore struggled in dealing with

reinforced concrete, will lead to its more general adoption by the

elimination of uncertainty hi design; and will lead to the adoption
of those types which are safest to erect, and those which possess a

degree of toughness, due to their monolithic construction, which is

lacking in types that merely imitate older forms of timber and steel

construction.

The record of the Mushroom system in the successful construc-

tion of between one and two thousand buildings, without accident

to the workmen, and without failure to make good the guarantee
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of test capacity, can be accounted for only on the ground that

scientifically designed multiple way reinforcement is inherently safer

to erect, and more reliable at all stages of construction than other

types. The theory given in detail which accounts for its economy
and safety, should, we believe be of interest to the profession at

large, and should prove of value to the practicing engineer in check-

ing designs for his clients.

The endorsement of this theory by the undersigned does not

constitute a license to use the patented type, though the extension

of the theory to older types which are not patented will undoubtedly
lead to the closest competition with it along legitimate lines. Any
loss to the patentee arising from such competition, will, in the writer's

judgment, be more than counterbalanced from a commercial stand-

point, by the increased safety and corresponding popularity of

reinforced concrete as a material of construction.

The invention covered by the claims of the broad patent

just mentioned includes much more than merely the standard mush-

room system. This is, however, the one form of all others

of the patent, which the writer prefers by reason of certain practi-

cal advantages which it possesses. Its arrangement of parts whereby
a continous multiple way reinforced flat slab is supported by a

large cantilever column head integral with the column and em-

bedded in the slab so as to resist tensile stresses both radial

and circumferential in zones near the top of the slab over

and around the columns, and in the zones near the bottom of the

slab toward the center of the panels, will be fully discussed in succeed-

ing pages. This discussion, which deals with the mushroom sys-

tem primarily, is intended as an advance chapter or two of a more

comprehensive treatise on Concrete-Steel Construction, in which

it is intended to treat somewhat fully concrete columns, beam and

slab construction, wall panels, etc., as well as flat slabs, and to

introduce the results of experimental work now under way to

determine the value of Poisson's ratio for different combinations

of steel and concrete.

This treatise will then represent the joint efforts of a pro-

fessional mathematician accustomed to treating these problems,
and a professional builder and designer of reinforced concrete with

many years of practical experience behind him.

The price charged for this booklet will be credited in return

for it, on the larger treatise which the authors intend to complete
as soon as the magnitude of the task will permit.

C. A. P. TURNER.
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FLAT SLAB FLOORS

1 . The superiority of flat slab floors supported directly on columns,

over other forms of construction when looked at from the stand-

point of lower cost, better lighting, greater neatness of appearance,

and increased safety and rapidity of construction, is so generally, or

rather so universally conceded as to render any reliable information

relative to the scientific computation of stresses in this type of con-

struction of great interest. Heidenreich, in his Engineer's Pocket

Book on Reinforced Concrete, page 89, classifies this type as floors

without beams and girders
" Mushroom System."

Since "mushroom," as applied to concrete, is an arbitrary or

fanciful term, and indeed, almost a contradictory one, a word of

explanation as to its origin may be of interest. The term was

originated by C. A. P. Turner, of Minneapolis, and applied to his

flat plate construction, more particularly because of the fancied

resemblance to the mushroom, of the column and column head

reinforcement of that particular form of his flat plate construction

which he seemed to prefer by reason of certain practical advantages.

Another fancied resemblance is the rapidity of erection, comparable
to the over-night growth of the mushroom. Here the resemblance

ceases, since the construction, once erected, is enduring and per-

manent.

The Mushroom System is a continuous flat plate of concrete

supported directly on columns, and reinforced in such a maner that

circular and radial tensile stresses concentric with the column are

provided for by metal reinforcement in the tension zone above the

columns, and similar provision is made for tensile stresses in the

lower portion of the slab concentric with the center of the panel,

diagonally between the columns. Since all forces in a plane may be

resolved into equivalent components along any pair of axes at right

angles to each other, it is possible to provide reinforcement to resist

any horizontal tensile stresses in the slab by various arrangements
of intersecting belts of rods at zones where these stresses occur.

All arrangements of this kind are by no means equally effective.

A system of wide reinforcing belts from column to column com-

bined with a system of radial and ring rods to constitute a large,

substantial cantilever mushroom head at the top of each column
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Fig. 1. Vertical Section of Standard Mushroom Head showing posi-

tion of Radial and Ring Rods, and Slab Rods, Vertical and Hori-

zontal Sections of Spirally Hooped Column, with Plain Bar Hoop
Collar Band, Vertical Reinforcing Rods and Elbow Rods.

Fig. 2. Plan of Reinforcement in Standard Mushroom System.
Radial and Ring Rods, Collar Band and Slab Rods. Diameter of
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provides a very effective and economical arrangement for controlling

the distribution of the stresses in the slab, and furnishes the resis-

tance necessary to support these stresses by placing the steel where it

is most needed. It not only has the same kind of advantage that the

continuous cantilever beam -has over the simple girder for long

spans, but combines with it the kind of superiority that the dome has

over the simple arch by reason of circumferential stresses called into

play, which adds greatly to the carrying capacity of the slab.

In the standard mushroom type, which is quite fully discussed

in this paper, the heavy frame work, concentric with the column,

supports the slab reinforcement'at a fixed elevation, furnishes a high

degree of resistance to shear, and secures a high degree of safety

during construction. It extends as a cantilever approximately one

fourth of the way to the next column as shown in Figs. 1 and 2 on

page 2. Arranged upon the radial rods of this frame rest two or

more large hoops and upon these rest the wide spreading belts of rods

which extend both directly and diagonally from column to column.

Over the columns these belts lie near the upper surface of the slab, but

they run near the lower surface as they approach points midway
between columns.

The cantilever slab thus formed, not only has the same advant-

ages for this form of construction that the cantilever construction

has for long span bridges, but it causes the slab to have greater

stiffness and gives it greater resistance to shear in the neighborhood
of the columns; it removes the locus of zero bending moment to a

much greater distance from the column than would otherwise be the

case, thus dimininishing the area of that part of the slab which tends

to become concave on its upper face and enlarging the convex area.

The cantilever frame-work further, not only moves the locus of

zero bending outward from the column, but it also fixes the locus of

zero bending rnoment at a known position so that it does not vary
with increase and decrease of the load or change of the load from one

span to an adjacent span as would be the case were the mass of

metal in the frame and its stiffness largely reduced. This is ac-

complished as follows:

The locus of zero bending moments is fixed by the dip of the

reinforceing rods as they leave the upper surface of the slab near

the edge of mushroom and pass below the neutral surface to a level

near the bottom of the slab. Such change of tensile resistance in

the slab necessarily localizes at these points the zero bending mo-
ments.
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In addition to the advantages just mentioned, which are

of so self-evident a character as to be readily appreciated even

by the layman, there is another of such an obscure and apparently

inexplicable a nature that it was for years denied as incredible and

regarded as non-existent by practical builders, and engineers as

well, unless they had opportunity to be convinced of its reality

by experiment. I refer here to the additional strength and stiff-

ness which is imparted to a belt of rods in a given direction in a

slab by another belt at right angles to the first belt, or at various

angles with it. This should be designated as slab action proper

in distinction from cantilever action. It depends for its amount

upon the value of Poisson's ratio of lateral contraction to direct

elongation in the slab, and is the basis of the so called circum-

ferential stresses, which make the strength and stiffness of such

reinforced flat slabs much greater than they are estimated to be

when these are neglected, as they usually have been. This mis-

taken view has in the past constituted the most serious obstacle

to the adoption of this form of structure, and has been the ground
of conscientious opposition to its introduction on the part of con-

sulting engineers. It is the object of this investigation to remove

if possible all reasonable uncertainty as to the rational theory of

this form of structure.

The following partial bibliography of this subject may be useful

to those unfamiliar with what has been done in this field.

Concrete Steel Construction, (305pp)

By C. A. P. Turner, M. Am, Soc. C. E.
816 Phoenix Bldg., Minneapolis, 1909.

Reinforced Concrete Construction, (259pp)

By Turneaure and Maurer, University of Wisconsin

Wiley, N. Y., 1907.

Concrete, Plain and Reinforced, (483pp)

By Taylor and Thompson,
Wiley, N. Y., 1911.

Trans. Am. Soc. C. E.

Vol. LVI. June 1906.

Engineering News:

Oct. 4, 1906, p. 361.
Feb. 18, 1909, p 176.

Dec. 23, 1909, p. 694.

Engineering Record:

March 28, 1908, p 374.

May 2, 1908, p 575.
Oct. 10, 1909, p 411.

April 3, 1909, p 408.

April 10 .1909, p 492.



NOTATION

2. All lengths and areas are measured in inches, and all weights

in pounds.

A = area of cross section of steel reinforcement per unit width of

slab, in case it be assumed to be replaced by a uniform sheet

of equal weight.

AI = area of cross section of all the rods in one side belt.

A2
= area of cross section of all the rods in one diagonal belt.

a = one half the longer side of a panel from center to center of

columns.

b = one half the shorter side of a panel.

B = the shortest distance along one side of a panel from the edge
of a column cap to the edge of the next cap.

Ci and C2 are constants depending on the relative lengths of the sides

of any panel, which reduce to unity for any square panel.

DI = the deflection of the middle of the longer side of the panel

below the edge of the cap.

D2
= the deflection of the center of the panel below the edge of the

cap.

d = the effective thickness of the slab at any point, being the

vertical distance from the center of action of the reinforce-

ment to the compressed surface of the concrete.

di = the vertical distance from the center of the rods in the side

belt at mid span to the top surface of the concrete.

d2 = the distance at the center of the panel from the center of the

rods in the second or upper diagonal belt to the top of the

concrete.

d3
= the distance at the edge of the cap from the center of the third

belt of rods from the top, to the compressed surface of the

concrete.

E or Ea
= Young's modulus for steel = 3 x 10

7
.

Ec
= Young's modulus for concrete.

ei
= elongation in steel parallel to long side belt.

e2 = elongation in steel parallel to short side belt.

61
= elongation in steel parallel to diagonal belt.



NOTATION

F = modulus of elastic resistance to shearing.

js
= Ee = intensity of actual stress in steel.

/c
= intensity of stress in concrete.

g = 7/16 (a+6) = the diameter of the mushroom head and width

of belts.

h = the total actual thickness of concrete slab.

id = vertical distance from center of tension of steel to neutral

surface of slab.

jd = vertical distance from center of tension in steel to center of

compression in concrete.

Jed = vertical distance from neutral surface to compressed surface

of concrete, hence i + k = 1.

K = Poisson's ratio of lateral contraction to longitudinal stretch-

ing for reinforced concrete slabs.

LI = 2a = long side of panel between column centers.

L2
= 26 = short side of panel between column centers.

I = distance from collar band at top of column to edge of .cap.

mi = true moment of resistance of the tensile stresses in steel parallel

to the long side per unit of width of slab.

m<2 = true moment of resistance of steel parallel to short side per

unit of width.

nil and m2
= apparent moments per unit of width of forces applied

parallel to the long and short sides respectively,

n = the apparent moments per unit of width of the equal

twisting couples parallel to either side.

Pi = intensity of the forces applied parallel to the long side.

p2
= ditto for short side.

p =
intensity of stress in extreme fiber of radial rods.

q
= load on slab in pounds per square inch.

RI and R2
= the radii of curvature of vertical sections of the slab

parallel to the long and short sides respectively.

Si and s2 = the vertical shearing stresses per unit of width of slab

respectively perpendicular to the long and short sides

of the slab.

<s = the intensity of vertical shearing stress in radial

rods,

t = either of the equal horizontal tangential or shearing
stresses parallel to the sides of the panel.



NOTATION. SQUARE PANEL

t

u and v

V
x y z

Az

zi and z2

8

5z

5x

= the thickness of a radial rod.

= deformations parallel to the long and short sides re-

spectively.

= total vertical shearing stress in radial rod.

= horizontal and vertical coordinates parallel to sides

of panel.

= difference of two vertical coordinates.

= deflections of radial rods.

= sign of partial differential.

=
partial differential coefficient of z with respect to x.
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8 TRUE AND APPARENT STRESSES

3. As preliminary to a general investigation of the rational

analysis of the flat slab, it seems desirable in the first place to

make a brief exposition of the relationship between the true bend-

ing moments and the apparent bending moments in the flat slab as

follows:

The fundamental equations of extensional stress and strain in

thin flat plates and slabs, established a generation ago and accepted

by Grashof*and by all authorities on the subject since then, maybe
written in the forms :

Eei =
Pi

Ee2
= p2 Kpi )

(l-K2
)Pl =E(e 1 +Ke2)\

(1-K2
)P2

= E(e2 + Ke l } ^

in which pi and p2 are the external applied or apparent stresses per

unit of area of cross section of the plate, or of the reinforced slab,

which act parallel to the axes of x and y respectively if these latter

lie in the neutral plane of the slab; and BI and e2 are extensometer

elongations of plate or slab reinforcement per unit of length parallel

to x and y respectively. E is Young's modulus of elasticity, and K
is Poisson's ratio of lateral contraction to linear elongation. Any
piece of material which is subjected to stress, and is of such shape
that more than one of its dimensions is considerable, as compared
with its remaining dimension, must have its stresses and strains

considered with reference to lateral contraction. This is the case

in plates and slabs, as it is not in case of rods and beams.

In the above equations Eei and Ee2 are the true stresses per square
inch of section of reinforcement acting along lines parallel to x and y

respectively, whatever pi and p2 may be. These latter are the cause

of true stresses, but are not themselves the values of the true stresses,

as they are in case of rods, etc., where one dimension only is large.

These equations show that the elongation e^ in the direction of

x is not dependent alone upon the tension pi applied in that direc-

tion, for it is diminished by any tension acting along y, but is in-

creased by any compression acting along y. It thus appears that

any tension p2 along y assists the piece in resisting elongation along
x and makes it able to endure safely a larger applied stress pi with

the same degree of safety, i. e., with the same percentages of elonga-
tion or true stress. But it is also equally true that any compression
of amount p2 reduces the safe value of pi which may be applied to

*Theorie der Elasticitat und Festgkeit, F. Grashof Berlin 1878.
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it. These principles are not in accordance with those which hold

in ordinary computations for rods and bars, whose lateral dimensions

are small' compared with their lengths, and whose lateral stresses

are negligible. This divergence between the true stresses as shown

by actual deformations, and the apparent or applied stresses, is a

fruitful source of error in the attempted computation of slabs.

Equations (1) in their present form apply to simple extensional

or compressive stresses and strains but may be extended to apply
to bending of slabs in the following manner:

Take A as the cross section of the reinforcement per unit of

width of slab when the actual reinforcement is regarded as distrib-

uted into a thin sheet of uniform thickness, and let jd be the vertical

distance from the center of the reinforcement to the center of com-

pressional resistance of the concrete regarded as a fraction j of d,

d being the distance from the center of the steel to the top of the

slab. Then

mi = Api jd, and m2
= Ap2 jd, ................... (2)

are the apparent bending moments per unit of width of slab, of the

applied apparent stresses pi and p2 , tending when positive, to cause

lines which before bending are straight and parallel to x and y re-

spectively, to become concave upwards.

Again mi = Ee\ Ajd, and m2
= Ee2 Aid, ................. (3)

are the true bending moments of the actual resistance stresses in

the reinforcement per unit of width of slab, as shown by extenso-

meter strains in the steel parallel to the axes of x and y respectively.

Multiply equations (1) thru by Ajd and substitute the values

given in equations (2) and (3), from which we obtain the following

relations between the true and apparent bending moments in the slab.

mi = mi Km2\
^ ^m2

= m2 Km l ^

(1 K2
)mi = mi + Km2 \ (^(lK2
)m2

= m2

These equations bring out in a striking manner the essential diver-

gence of the correct theory of slab action from that of beam action

in which latter case we have the well known equations

m i
=

m>ij and m2
= m2

i. e., in beams the moment of the applied forces is equal to the

moment of the internal resistance, which is not true in slabs.
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All attempts to base computations of the deflection of slabs

upon beam action are therefore necessarily erroneous. Such com-

putations are inapplicable and misleading, hence deflections and

stresses in slabs cannot be correctly computed by any form of

simple or compound beam theory.

Equations (4) show:

1st That at points where n^ and m2 are of the same sign, (as

for example in the convex part of the mushroom near the columns

and also near the center of the panel) the true bending moments

mi and m2,
which determine the actual stresses in the reinforcement

are less than the apparent bending moments, which latter have been

ordinarily assumed, according to the beam theory, to determine

those stresses.

2nd That the compressive stresses in the concrete around the

column cap are determined on the same principles as the tensile

stresses and are consequently reduced in accordance with the value

of K by a considerable percentage below values corresponding to

ni! and m2 of the beam theory.

3rd That at points where n^ and m2 have different signs, as

they have for example in the middle part of the span at the side of

the panel directly between mushroom heads, the values of the true

bending moments are larger than the apparent moments as found

by the beam theory.

4th One deduction from this (which is also confirmed by
extensometer tests) is, that in slabs having equal side and diagonal

belts of reinforcing rods the greatest actual extensions and true

stresses in the steel occur at the mid points of those reinforcing rods

which run directly between the mushroom heads parallel to the

sides of the panel, and do not occur at the center of the panel where

nix and m2 have their greatest values. Further, the true stresses in

the reinforcement are not so large at the edge of the column caps as

at the points just indicated. Neither of these conclusions is in

accordance with the beam theory as implied in ordinary formulas

such as have been frequently adopted in practice in computing slabs.

5th In making any statement or specification respecting the

bending moments at any point of a slab, it is essential to state which

bending moments are contemplated, the true bending moments or

the apparent moments, with the understanding that the true bend-

ing moments only are to be used in determining cross sections and

stresses of steel. Any statement omitting this distinction is ambig-

uous, and any requirement seeking to proportion cross sections of

steel to apparent stresses and apparent moments is incorrect.
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4. Poisson's ratio K plays an important role in the theory of

flat slabs and plates, as is evident from equations (1) and (4). Few
attempts have been made to determine K by directly measuring the

amount of the lateral contraction accompanying the elongation of

test specimens, and, were such measurements made, the relative

dimensions of the cross section of the specimen would need to be

considered as affecting in a very complicated way the true value of

K to be derived from observation. Reliable determinations of K
usually depend upon observations of Young's modulus of elasticity

E and the shearing modulus of elasticity F.

It is proven in the general theory of the deformation of isotropic

elastic solids that all the elastic properties of any such solid are

determined without excess or defect by its values of E and F
t
and

that Poisson's ratio is a function of E and F expressed by the equation

K + l = \E/F (5)

There is evidence to show that for concrete K is approximately
0.1*. For steel it is known that K = 0.3 nearly.

Now it is evident that a horizontal slab of reinforced concrete,

in which the reinforcement consists of rods, differs from one in which

its reinforcement is considered to be a simple uniform sheet of metal

in this, that the former has much less shearing rigidity in resisting

horizontal forces than the latter, for in it all stresses transmitted

from one band or belt of rods to any other belt crossing it are trans-

mitted thru concrete only, as is not the case if the reinforcement

consists of a continuous sheet. It is evident therefore that the value

of K which must be employed in applying the foregoing equations to

reinforced concrete slabs must exceed 0.3, the value required in case

the reinforcement is a sheet of steel.

This analysis of the conditions affecting the value of K for a

reinforced flat slab differs radically from assuming at ramdon that

because K = 0.3 for steel alone and K = 0.1 possibly, for concrete

alone, that therefore some intermediate value of K may be correct

for these two materials combined in a slab. Such an assumption
is merely a blind guess and has no rational basis.

As already partly stated, the view here put forth is this : Since

in any homogeneous, isotropic, elastic material the experimental

values of E and F perfectly define all its elastic properties, and since

we are evidently at liberty to assume our flat slab as sufficiently fine

grained in its structure to act nearly like a slab constructed of some

sort of homogeneous materials, it will be possible to determine

* Turneaure and Maurer's Reinforced Concrete Construction 2nd Ed. 1907, p. 210.
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certain mean values of E and F which will define its elastic proper-

ties. It is moreover evident that in a slab, where two kinds of elastic

solids are combined as they are here, the mean value of F for the

combination is much more affected by the concrete than is E, which

latter may be taken as that applying to the steel alone, and, conse-

quently as unchanged by the combination. It is otherwise, however,

with F, because the arrangement of the combination is such as to

require the assumption of a value of F lying somewhere between

that for steel and that for concrete. Since the latter value is much
less than the former, the mean value of F is smaller than for steel

alone.

This reasoning and other independent theoretical and kinemat-

ical considerations have led to the same conclusion, viz: that the

correct value of K for the slab is larger than 0.3.

Assuming E = 30,000,000, we may compute corresponding

values of K and F from (5) as follows:

If K = 0.1
,

F = 13,600,000

If # = 0.3
,

F = 11,600,000

If K = 0.5
,

F = 10,000,000

Were a perfectly complete and accurate mathematical theory

of the flat slab at our disposal, we might consider every experimental

test of the deflection of such a slab, and every extensometer measure-

ment of its reinforcing rods as an experiment for determining the

numerical value of K, since deflections and extensions would then

all be known functions of K. Having brought such a rational

theory to a somewhat satisfactory degree of perfection, the writer

finds that, in the light of all known tests of slabs, the value that best

satisfies all conditions is K = 0.5 (6)

It is possible that this value of the constant K for slabs may need

some slight modifications hereafter, but for the present this may be

regarded as substantially correct for mushroom slabs. It may be

found necessary to assume a somewhat different value for other forms

of structure, as for example, beam and girder construction. That,

however, must be determined later. Moreover it must be said that

this value of K applies to tests made upon slabs from 2 to 4 months

old, and under loads which have been applied to such relatively soft

concrete as this for a period of usually not longer than one or two

days, and of an intensity such as to cause a maximum stress in the

steel of from 10,000 to 16,000 Ibs. per square inch. Less loads on

better cured concrete, or longer time under load, may show con-

siderable deviation from this value of K.
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How important a factor K is in slab theory is evident on con-

sidering equations (4) which show that in a square panel uniformly
loaded the true moments as shown by the elongations of the rein-

forcing rods at the center of the panel and over the centers of the

columns are only one half the corresponding apparent moments
derived from considering the moments required to hold the applied
forces in equilibrium, this being on the assumption of course that

K = 0.5.

5. In order to derive the general differential equation of shears

and moments in any rectangular panel in an extended horizontal

plate or slab, take the axes of x and y in the neutral plane of the

plate and parallel respectively to the longer and shorter sides of the

panel with the origin at its center before flexure occurs, and assume

that they remain fixed with reference to the points of support of the

panel. Then during flexure the center of the panel and all other

points of the slab or plate not in contact with the fixed points of

support will attain some deflection 2, of amount to be determined

later. Take z positive downwards.

Then dxdy is the horizontal area of an element of the slab

bounded by vertical planes, and if d be the effective thickness of the

slab or plate, the areas of the sides of this element which are respec-

tively perpendicular to x and y are ddy and ddx, while d8xdy is the

volume of the element.

We proceed to obtain the equations of equilibrium of this ele-

ment of the slab as follows :

Let Si and s2 be the total vertical shearing stresses per unit of

width of slab for sections perpendicular to x and y respectively. In

case these shears are variable, as they are in a continuously loaded

slab, they respectively contribute elementary forces tending to move
the element vertically, of the following amounts :

d & d s2

dydx, and -
dxdy

d x 8 y

Assume that the slab carries a uniformly distributed load of q pounds

per square unit of area. Then the load upon the elementary area

dxdy is qdxdy }
and the equation of equilibrium of the vertical forces

acting on the element reduces to this:

d Si d s2

+ +<? = (7)

8 x ft y
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in which Si and s2 are taken as positive when they are such as would

be produced in the slab by the loading q in case it were supported at

the origin only.

Let nii and m2 be the apparent moments per unit of width of

slab of the applied forces which tend to bend those lines in the slab

which before bending are parallel to x and y respectively. Take

them as positive when they tend to make those lines respectively

concave upwards. These are the moments obtained by multiplying

the total applied tension per unit of width of slab by the vertical

distance jd from the center of the reinforcement of the slab to the

center of compression in the concrete as given in (2) . These moments

are not identical in a slab with the true resisting moments mi and w2

in the same directions, which latter are the moments obtained by

multiplying jd by the actual tension in the steel per unit of width of

slab, which last is to be correctly computed by taking the product

of the area of steel per unit of width and its elongation multiplied

by E its modulus of elasticity as shown in (3).

Again, let n be the twisting moment per unit of width of ver-

tical section of slab cut by planes perpendicular to either x or y, and

acting about either x or y, which moment n is regarded as due to the

variation of the vertical shearing stress Si when y varies, and to the

variation of S2 when x varies. The moment n is held in equilibrium

by horizontal shearing stresses in these same sections, which are

opposite in sign above and below the neutral surface. Let t be the

total horizontal shearing stress per unit of width of slab in the rein-

forcement on one side of the neutral plane, then:

n = t A j d (8)

At any point xy this horizontal shearing stress t must be the same

fpr the section perpendicular to x, as for the section perpendicular

to y, because in every state of stress the tangential components are

equal and of opposite sign on any two planes mutually at right

angles. Consequently the moment n is the same about x as about

y, as has been assumed in (8).

It is implicitly assumed in (2) and (3) that the concrete on the

same side of the neutral plane as the reinforcement is ineffective

and that its resistance is negligible, so that on that side the resistance

of the reinforcement alone counts. This condition actually occurs

only after a state of quite considerable stress obtains, and of itself

affords a sufficient reason why the formulas based on it fail of accu-

rately representing deflections and elongations at small loads and
low stress.
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The elementary couples acting on the vertical faces of the

element which are in equilibrium with those arising from the shear-

ing stresses are:

(5
m 1 5 n \

-
-J-

- -
I dxdy about y, and

d x by/

(b
m2 d n \

-j-
- I dxdy about x;

d y d x /

while those arising from the shears themselves are:

Si dx by and s2 bx by.

Consequently the equations of equilibrium of the couples acting on

the element reduce to the following:

(9)

Differentiate equations (9) with respect to x and y respectively

and substitute in (7), and we obtain

<5

2
mi 5

2
n 6

2 m2

+ - = q (10)

d
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neutral surface. In equations (la) replace pi and p2 by values

given in (2), and ei and e2 by values taken from (11) and we have:

(1 irtai = E A ijd
2

I

(12)

(1 #2
)m2

= E A

But from the theory of curvature

1 5
2

z 1 d
2

z
= Z -

-, and - - = Z
#1 5 Z2 #2 5 /

Also write for brevity I = A i j d
2

(14)

Then we have from (12), (13) and (14):

= _EI(^-
Z~ +K-

5 x
2

d

.... (15)

d y
r

By the fundamental equations of elasticity we also have

(du

5v\
+ 1 (16)

In which F is the shearing modulus, e3 is the horizontal shearing

deformation of the reinforcement for two vertical planes one unit

apart horizontally, and

i 5z i dz
u = ZLid ,

v = id (17)
dx by

are the deformations along x and y respectively, due to the vertical

distance i d of the reinforcement from the neutral surface.

From (16) by help of (17) we have

d
2

z

t = 2Fid- -
(18)

5x8y
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In (18) replace F by its value obtained from (5), and then sub-

stitute the resulting value of t in (8) :

we then have

E I 5
2

z

n = - -- -
(19)

1 + K dxdy

From (15) and (19) obtain values of the second differential

coefficients of the moments appearing in (10), which on being intro-

duced into (10), transform that equation into the required general

differential equation of deflections as follows:

5
4

z d
4

z 5
4

z (1 K2
)

T^ +W +7^ =^^ (20)

which is a partial differential equation of the fourth order that must
be satisfied by the coordinates x y z of the neutral surface of any
uniform plate or slab initially flat, when deflected by the applica-

tion of a uniformly distributed load of intensity g, and supported in

any manner whatever.

It may be shown that any deviations from strict accuracy by
reason of local stretching of the neutral surface (here neglected) are

small compared with corresponding deviations in beam theory.

7. The solution of the general differential equation of deflec-

tions (20) for the case of a horizontal slab carrying a uniformly
distributed load and supported on rows of columns placed in rec-

tangular array and having the points of support all on the same

level, will now be considered.

The integration or solution of (20) would, since it is a partial

differential equation, introduce arbitrary functions of the independent
variables x and y whose forms would need to be so determined as to

cause the solution to satisfy the conditions imposed by the position

and character of the supports at certain points, or along certain

lines. It would be possible to expand these functions in terms of

ascending whole powers and products of x and y, and, in case the

supports are symmetrically situated with respect to the axes, the

expansions will contain no odd powers of x or y, because the value

of z must remain unchanged by changes of sign of either x or y, or

both x and y. Any form of polynomial expansion which satisfies

(20), and also all the conditions of any given case, must be the correct

solution for that case, for, the solution of any given case must be

unique.
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Instead therefore of carrying thru the tedious analytical devel-

opment involved in solving (20) mathematically and then applying

it to the case we are treating, we shall at once write down the form

of solution that applies to the case in hand and verify the fact that

it satisfies (2) and all the required geometrical conditions. It will

therefore be the solution sought for, which might also have been

obtained by the somewhat intricate analytical processes involved

in the intregation of such differential equations as (20).

Assuming at first that the slab is unlimited in extent and uni-

form thruout in the distribution of its reinforcement and loading,

and that the parallel rows of supporting columns divide the slab

into equal rectangular panels, we shall find a solution in which every

panel is deformed precisely in the same manner as every other.

Modifications made later will render it possible to take account of

variations and irregularities in the distribution and arrangement of

the reinforcement, and to estimate to some extent at least the effect

of loading only one or more panels.

Let 2a be the length and 2b be the breadth of a panel; then the

equation of its neutral surface, referred to axes parallel to its sides

and to an origin fixed in space at the center of the neutral surface of

the panel before deflection, is:

48 EIz = 9(1
- K2

) [(a
2 - x

2
)

2 + (b
2 -y2

)

2
]
..... (21)

This is the correct solution of (20) not only because it satisfies

(20), as it will be found to do by trial, (and just as many other func-

tions of x and y do also) but it also satisfies all the other conditions

required by the case proposed, viz. :

1st z = when both x = +. a and y = +
6;

because there must be no deflection at these points of support which

are on the same level as the origin.

2nd dz/ dx = 0, when x =
0, and also when x = i a; as well as

dz/dy = Q, when y =
0, and also when y = +_ b; because straight

lines drawn in space to touch the slab across its edges, and across

its mid sections parallel to those edges, must all be horizontal by
reason of the symmetry of the slab on each side of its edges and mid

sections. That these conditions hold is evident from the following

equations derived from (20) :

12 E I

(
2 2,

q x (x
-- a)

- - qy
12 El

(22)
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It is of interest to note that the sections of this surface made

by all vertical planes parallel to the axes of y, i. e., by x = constant,

are precisely the same except in position, since their equations differ

by a constant only. The same is true of sections parallel to x. It

thus appears, that, in a square panel where a =
b, the surface may

be regarded as a ruled surface described by using the two of these

curves on a pair of parallel sides of the panel as directrices and a

third one of these curves as a ruler sliding on the first two in such a

manner as to remain parallel to the other pair of parallel sides.

The deflections at the center of the panel and middles of the

sides are:

At x = =
y, 48 E I z =

q (l-K
2
) (a

4 + 6
4
)

At x =
a, y =

0, 48 E I z =
q (l-K

2
) 6

4

At x =
0, y =

b, 48 E I z = q (l-K
2
) a

4

so that in a square panel the center deflection is twice the mid edge
deflection.

Differentiating equations (22) we have by help of (11), (13),

(14) and (3):

id 5
2

z

e l
= ~- = + id-

Ri 5x2

5
2

zid

2
= = id

5x2

12 E A j d

(l-K
2
)

12 E A j d

....(23)

q (3y
2 - b

2
)

12

12

q (3x
2

a
2
)

q (3y
2

b
2
)

(23a)

in which the ambiguous signs are to be so taken that mi and m2 in

(15) will be positive at x = =
y, and negative at x = +. a and

y = b.

From (23) it appears that extensions vanish and contra-flexure

occurs at lines lying in vertical planes whose equations are

(24)

It thus appears that the slab is subdivided by these lines (24)

drawn parallel to the edges into a pattern which consists of a rect-

angle occupying the middle part of each panel, of a size f aVs by
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f bV%, i. e., of the same relative dimensions as the panel itself, and
bounded by lines (24), which rectangle is concave upward thruout.

On all four sides of this central rectangle are rectangles of saddle

shaped curvature directly between the central rectangles of adjoin-

ing panels, while each point of support is situated in a rectangle

which is convex upward over its entire area, of dimensions

2a(l J ^3) by 26(1 J

From (22) we obtain the equation

3
2

z / dxdy = ............................... (25),

hence by (18) and (19) it follows that

t = =
n, .................................... (26),

from which it appears that there is no horizontal shear in the steel,

and no twisting moment in vertical planes perpendicular to x or y.

This would be otherwise evident from considerations of symmetry.
It will be shown that this is not true of all other vertical planes.

Again from (15) and (23) we have

m, = h 1 [3*
2 - a

2 + K(3y
2 - 6

2
) ]

m2 =i3[*(3*
2 -a2)+3V2 -&2

r
in which we have omitted the sign +. as superfluous.

From (9) by help of (26) and (27), we have

5m! 5m2

-si = -- = \ q x, and s2
= - = i q y ...... (28)

ox oy

from which it appears that any strip of the panel parallel to x or y,

and one unit wide exerts a shear at its ends such as it would if it were

an isolated beam loaded uniformly with an intensity of %q per unit

of length. According to this, a total shear of q a b, which is one

fourth of the total load carried by the panel, appears at each edge of

the panel, this total shear on each edge being uniformly distributed

along it.

It is seen therefore that the form of solution which we are

investigating implicitly assumes that at each edge of the panel there

is some auxiliary form of structure that will bear the shears coming
to it from each side and at the same time assume the curvatures and

deflections contemplated in (21). This will immediately engage
our further attention.
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8. In order to investigate more fully the deflections, stresses

and strains in the side belts of any panel directly between the mush-
room heads, let us consider the results just reached somewhat more

fully.

The conclusion drawn from (28) was, that a panel with rein-

forcement distributed with perfect uniformity thruout would require

to be supported by a narrow auxiliary girder extending from column

to column along each side, and of such resisting moment as to take

on, under its load, the precise curvature required by the neutral

surface in (21), which curvature must be produced by a uniformly
distributed load of 2 q a 6, one half of it coming from each of the two-

panels beside it.

It seems then, that up to this point, we have in reality been

treating the theory of the continuous uniform slab with specially

designed continuous beams supporting its edges, without as yet

investigating those beams in detail. But since no such beams in

fact exist under the flat slab, it is clear that the side belts of the slab

lying directly between the extended heads of the columns must

discharge the functions which would be discharged by the auxiliary

beams just spoken of. Such functions must necessarily be added

to those already discharged by those belts in supporting the loading
which rests directly upon them. In order that this may occur in a
manner readily amenable to analysis, the extended stiffened head-

ings of the columns which constitute the mushrooms should in

general be approximately of the diameter required to support the

ends of a belt of reinforcing rods forming a flat beam which fills the

width along the edge of two adjacent panels between the two lines

of contra-flexure on each side of that edge, as given in (24).

This requires that the mushroom head should have a width of

at least (1 J V^3 )
= .423 of the width of the slab between col-

umns. For reasons that will appear later, it is current practice to

make these heads not less than & = .437 of this width.

The lines of contra-flexure in (24) have a fixity of position, (in a

flat slab constructed with mushroom heads of this size and stiffness,)

under single panel loads, that does not exist in a uniform slab, or

where the headings are not so stiff. It may be readily shown by
Mohr's theorem respecting deflection curves as second moment

polygons, that where there are large sudden changes in the magni-
tude of the moment of inertia 7, such as exist in this case at the lines

of contra-flexure at the edges of the mushroom, the lines of contra-

flexure remain fixed. But in systems where the diameter of the head

is smaller than given above, or its stiffness is much reduced, these
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lines may be removed to greater distances from the center in loaded

panels surrounded by tlibse not loaded than when all are loaded,

thereby increasing the deflections and stresses in a single loaded

panel over that of a uniformly loaded slab of many panels.

The lines of contra-flexure in (24) separate the slab into areas

which are largely independent of each other, since no bending

moments are propogated from one to another. The only forces

crossing these lines of section are the total vertical and horizontal

shearing stresses. The horizontal shears (which are unimportant so

far as deflections go) will be considered later so far as may be necessary,

but the vertical shears found by (28) are of prime importance. Let

us then consider one of these side belts.

In any extended slab with its panels all loaded uniformly

thruout, the vertical shear must vanish at all points along sections

made by vertical planes thru the centers of columns at each side of

any panel, as appears by reason of symmetry of loads. Let the

edges of the side belts be situated at some given distances, say Xi and

yi on each side of the centers of all the panels, where x\ and y v are

not necessarily the values of x and y given in (24), altho those

values are also included in this supposition. Then by (28) there is

a uniformly distributed vertical shear of intensity \ q_ y\ along the

edge of the belt at y =
yi, even tho the reinforcement in the side

belt may be greater than that in the central rectangle, for the devia-

tions caused by the irregularity of .its distribution may be regarded

as unimportant and practicably negligible.

It may then be assumed that any side belt parallel to x must

carry, in addition to that already provided for in (21), a total loading

of q yi per unit of length, uniformly distributed along the two edges

that are parallel to x. Now since the width of this belt is 2(6 2/1),

the load already provided for in (21) is \q per unit of area, or q(b-yi)

per unit of length parallel to x, which added to that arising from the

shears just mentioned makes a sum total of q 6 per unit of length of

belt, which it will be noticed is independent of the width of the belt.

In other words, any such belt must support a load of one fourth of

the total load on the two panels of which it forms a part, or one half

of all that lies between the panel center lines which are parallel to

it on either side. This in effect transfers the entire loading of the

slab to the side belts by the agency of the shearing stresses. It does

this in such a way that one half of the total loading of the entire slab

is carried by one set of side belts, and the other half by a second set

which crosses the first at right angles.
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In those parts of the slab area where these sets of belts cross,

forming the heading of the columns, the loading is superposed also.

The preceeding investigation of the shears at the edges of side

belts and their loading is independent of their width and of the posi-

tion of the lines of contra-flexure, but their width will be assumed in

what follows to be determined by the position of those lines as shown
in (24) on account of the independence of action of belts of their

width, as previously explained, where it was shown that no bending
moments are propogated across those lines.

The question now arises, how the vertical shears at the edges
of the side belts are distributed across their width and carried by
them. Since by symmetry of loading, etc., there is no vertical

shear at the edge of the panel where y =
6, the shear must diminish

from each edge of a belt to zero at that line. If it be assumed to

diminish uniformly, that is equivalent in its action to a uniformly
distributed load on the belt, which may be assumed in computation
to replace the shears at the edges. Whether it will be so distributed

or not depends upon the stiffness of the mushroom head and the

smallness of its flexure. Extensometer measurements on the rods

of the side belt of the floor slab of the St. Paul Bread Company
Building by Prof. Wm. H. Kavanaugh show beyond question that

in the mushroom system the load is so distributed. Other exten-

someter measurements to which the writer has access also show that

in systems in which the heading of the column is not so stiff as this

the distribution of loading cannot be taken as uniform over the side

belts.

Now the belt parallel to x was shown to carry a load per unit of

length of q b and to have a width 2(b yi), in general, or a width

26(1 1^3) for the belt between the lines of contraflexure; hence

the intensity of the loading on this belt is q 6/2(6 yi), instead of

q, as it would be in a uniformly loaded panel duly supported at its

edges by beams from column to column. Let 2A, designate the

area of the effective right cross section of the steel in the entire width

of a side belt regarded as forming a single sheet of metal of the width

of the belt; then '2A/2(b y\) is the effective right cross section

per unit of width of belt, and we may write (14) in the form

I = ij d
2 2A / 2(6 yi ) (29)

We shall consider admissible values of 2A later.

Since the deflection of the side belts may be taken independently

of the rest of the slab, let those values for the intensity of loading

.and the moment of inertia (29) be introduced into (21).
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We then obtain an expression for the law governing the deflec-

tion of that part of the side belts parallel to x which lies between the

mushroom heads, and is bounded by lines of contra-flexure, viz :

Z =
48 E i j d

2

with a corresponding equation for the side belts parallel to y, which

may be obtained by replacing q b in (30) by q a. Call this second

equation (31). Now (30) and (31) would hold thruout the entire

length of these belts from column to column were they entirely

separate from each other and from the diagonal belts where they

cross each other. It will be necessary later to obtain the equation

which holds true where these belts cross and combine with each other.

9. Practical formulas for the stresses in the steel and concrete

of side belts between the lines of contra-flexure will now be obtained

from (30) and (31).

In order to do this, consider the summation in (30) expressing

the effective cross section of the steel in the mid area of the side belt

regarded as forming a single uniform sheet, that mid area being

bounded on all sides by lines of contra-flexure.

It is to be noticed that the factor (1 K2
) of (30) takes into

account the fact that the lattice of rods forming the reinforcement is

less effective than the same amount of metal in the form of a sheet,

the only question left being this: Will the great irregularity of

distribution of the reinforcement in this area cause it to act differ-

ently to any noticeable extent from the manner in which the same

amount of metal would act were it possible to distribute it uniformly

over the entire area? There are strong reasons which go to sustain

the view that this irregularity of distribution is negligible in the

standard mushroom slab, at least for loads less than those that

stress the steel below the yield point, or do not stress the concrete

for too long a time while it is imperfectly cured. On examining a

diagram of the reinforcing rods of a slab made with square panels

of such proportions that the width of the belts is one half the distance

between columns, then the pattern previously mentioned into which

it would be divided by these belts will be seen to consist of equal

squares whose edges are equal to the width of the belts, with one

central square in each panel concave upwards, and one half of each

of the saddle shaped squares which border it, also lying within the

same panel, and one quarter of each of the four convex squares at the
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head of each of the columns at the corners of the panel, also lying
within the same panel, see Fig. 3, page 7.

Each side square will be found in this case to have double (or

two belt) reinforcement over one half or its area, single belt rein-

forcement over a diamond occupying one fourth of its mid area, and

triple reinforcement over four triangular areas along its sides which

together cover one fourth of the square. This gives a mean value

of 2A = 2 Ai'm which AI is the total right cross section of the rods

in the side belt.

The belts in the standard mushroom are, however, not so wide

as this, since that system simply requires that the edges of the side

and diagonal belts intersect in a single point, Fig. 2, instead of forming
four areas of triple reinforcement on the sides. This makes the

width of the singly reinforced diamond sufficient to just reach across

the side belt. In this practical case we find that very approximately

2A = 1.5 A l (32)

in which, as before, A! is the total right cross section of the side belt

in square inches. It is evidently impossible for this single side belt

of rods which crosses the diamond, to elongate without a correspond-

ing equal elongation of the double reinforcement on all its sides, or

at least it is impossible for readjustments to take place in any short

time such as will make these direct deformations within the diamond

larger than those in the areas along side of it, or before somewhat

more permanent deformations have taken place in the concrete.

In cases where the column heads are smaller than the standard,

and the side belts still narrower, not only may SA become much
less than 1.5 A i but the belt become so weakened near the central

diamond as to render it very questionable whether the irregularity

of distribution of steel in the area considered may be safely disre-

garded. Diminution of the size of the heading thus not only dim-

inishes cantilever action, but reduces the effective resistance of the

reinforcing steel. Not much diminution of the size of head would

be required to reduce the value of SA to an amount as small as AI.

Introducing the estimate given in (32) for the standard mush-

room into (30) we derive by (23), (23o) and (3), for that part of the

side belt parallel to x between x = + | aV^3 and x = ^ aVs,

^d
2

z
,
(l-K2

)gb
(3z a

2
)

5 x

MI = 1.5 A v j dfs
= -

q b (3x
2

a
2
)

12

(33)
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in which MI is the total true moment of resistance of the side belt,

4 is the true stress per square unit of the reinforcement in the side

belt, and 1.5 A i is the effective right cross section of the reinforce-

ment. This is independent of y as before noted, showing that the

values of /s and ei are the same for one rod as for another, but they

attain their greatest values at the mid length where x = 0. If units

be pounds and inches, and we assume j = 0.91 for the very small

percentage of reinforcement of the standard mushroom system, then

by (33) and (6) the practical formulas for design are:

3 q a
2
b W L

Js
=

4 x 18 x 0.91 di A 1 175 di A l

Mi = 1.5AiM/s =

(34)
W L
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in which /s is the true stress in the steel, and MI is the true bending

moment of the effective cross section 1.5 A\ of the steel in the entire

belt as shown by the elongation (at mid span) of the rods in a side

belt of length L, where L is either 2a or 26, and W = 4 q a b is the

total load on the panel in pounds, where d\ is the vertical distance

from the center of the rods in the single belt at mid span to the top

surface of the slab.

While the values obtained from (34) are conservative forj = 0.91,

corresponding to a percentage of reinforcement for one belt of less

than 0.25%, (34) should be regarded merely in the light of a speci-

men equation for that percentage, and any slab where the percent-

age differs materially from that assumed value should be submitted

to separate computation in the same manner.

Values of j are given for beams by Turnearue and Maurer in

their
" Reinforced Concrete Construction," page 57, for different

percentages of reinforcement on the straight line theory, which

latter is now accepted usage. As already stated, standard mush-

room design makes the percentage of reinforcement for warehouse

floors where the panels are, say 20' x 20', as low as 0.25% or less, at

the middle of the side belts, reckoned on the beam theory. But in

heavier and larger construction it may reach 0.33%.

We have taken the mean available steel in the belt as 1.5 A b
hence the mean slab reinforcement will not be less than 1.5 x 0.23 =

0.4% in the side belt areas between lines of contra-flexure.

In case we assume the ratio of Es for steel to E for concrete to

be 15, as is often prescribed, we find the above stated value of j as a
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good mean value, which will be less in cases where the percentage
of steel is greater. The small percentage of steel and great relative

thickness of concrete is one of the distinguishing features of the

standard mushroom design.

We may write (34) in the form :

W L W L
fs
=~ -

}
SindM l =A l jdfs

= -.... (34a)
175 d 1 A! 192

in which M( is the true bending moment of the actual cross section

AI at mid belt. We have written this modification of (34), not for

use in design, but merely for the purpose of instituting a comparison
with empirical formulas obtained by Mr. Turner to express the

results of numerous tests made by him. On pages 26 and 28 of his
" Concrete Steel Construction" he has given equations expressing
the values of stresses and moments in mushroom slabs which in our

notation may be written as follows:

WL W L W L
M! = A l j dfa

= - -
, and/s

= - -
. (35)

200 200 x 0.85 d A l 170 d A,

in which he has assumed 0.85 as a mean value of j.

It is seen that equations (34a), obtained from rational theory

alone, are in practical agreement with (35), which were deduced

from experimental tests of mushroom slabs, where the numerical

coefficient introduced is entirely empirical.

As will be seen later, (34) is the equation which ultimately con-

trols the design of the slab reinforcement; so that the agreement of

these two entirely independent methods of establishing this funda-

mental equation cannot but be regarded with great satisfaction as

affording a secure basis for designs that may be safely guaranteed

by the constructor, as has been the custom in constructing standard

mushroom slabs.

The slab theory here put forth diverges so radically from the

results of beam theory that we introduce here the following compar-
ative computation of the smallest values of true bending moment
and stress in steel, which can be obtained by beam theory for the

side belt parallel to x, as follows:

That part of the side belt between the lines of contra-flexure is

simply supported at its ends by shearing stresses, and so may be

taken to be a simple beam resting on supports at these end lines.
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Hence the true stress /s and the true bending moment M
'

at the

middle of this simple uniformly loaded beam may be computed from

the equation,

M' = A,jdfs
=

i W' L' (36)

in which M '

is the total moment of resistance.

AI is the total right cross section of the reinforcement, W' is the

total uniformly distributed load, and L' is the length of the beam.

The length of the simple beam in that case is evidently the distance

along x between lines of contra-flexure, viz, L' = f a^3 = J L V^3,

where L is the edge of the panel, and the total load at most will be

that already proven to be carried by the side belt viz, qb per unit of

length, or a total for a span L'of W' = qb L' =
f qab ^3 = TF V^3

where W = 4 qab is the total load on the panel, hence

W L
M = A 1 jdfs

= -
(36a)

48

It thus appears that according to simple beam theory the true

stress, or the cross section of steel required in the belt, is four times

that obtained by slab theory as shown by (34a). Since (34a) is in

good accord with experimental tests, this comparison justifies the

statements made near the beginning of this paper respecting the

inapplicability of beam theory to the computation of slab design.

The floor of the St. Paul Bread Co. Building, previously men-

tioned,is a rough slab 6" thick, and has panels 16' x 15', with ten

3/8" round rod reinforcement in each belt, built for a design load of 100

pounds per square foot; constructed in winter and frozen, the final

test was not made until the end of its first summer after unusually

complete curing, such as might make the value of K given in (6)

not entirely applicable. In one long side belt, extensometer measure-

ments were made at the mid span on three rods, (1) a middle rod,

(2) an intermediate rod and (3) an outside rod of the belt, with the

following results for the given live load in pounds per square foot:

Live Loads 108 . 4 # 316 . 8 # 416 . 8 #

/. - E ei (1)

(2)

(3)
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The observed results are seen to be in excellent agreement with

those computed from (34) for the heavier loads, while any disagree-

ment is on the safe side. Agreement is not expected for light loads.

The accuracy and applicability of (34) and preceeding formulas

is dependent on the fixity of the lines of contra-flexure (24) which

were previously stated to be practically immovable because of the

sudden large change of the moment of resistance of the slab at those

lines. That fact may be put in a more definite and convincing
form than has been done so far. Consider for a moment that form

of continuous cantilever bridge where there are joints between the

cantilevers over the successive piers (which are in the form of a letter

T) and the intermediate short spans which connect the extremities

of the cantilevers. At such joints the resisting moments vanish, and

they form in a sense artificially fixed points of contra-flexure. The
same thing approximately occurs at the edge of the mushroom,
because there the reinforcing steel rapidly dips down from a level

above the neutral plane to one below it, and the sign of the moment
of resistance changes thru zero at that edge.

Furthermore, it may be proper to state in this connection that

the foregoing theory has been developed in consonance with the

general principles of elasticity, and that somewhat different condi-

tions and relations are thought to exist when the steel at the middle

of the side belts reaches its yield point, as it does in advance of the

rest of the reinforcement. As the yield point is reached equations

(34) no longer hold; for, as will be seen more clearly later, the single

belt of reinforcing steel, which crosses the circumference of an ap-

proximately circular area of radius L/ 2 about the center of each

column, will everywhere reach the yield point at practically the same

instant, and if loaded much beyond this will develop a continuous

line of weakness there. The equations that hold in this case will be

approximately those due to the actual cross section A! of the belt, in

place of (34), which contain the effective cross section, viz:

3 q a
2
b W L

fs
=
4x 12 x 0.91 d l AI 117 di A

- (37)W L
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which may be regarded as expressing the relations that exist at the

limit of the elastic strength of the slab and the beginning of perma-
nent deformation, tho not necessarily of collapse.
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The percentage of reinforcement in standard mushroom slabs

is small enough to make their elastic properties depend upon
the resistance of the steel. The stresses in the concrete may then be

be computed from those in the steel, but many uncertainties attend

any such computation. It is usage, fixed by the ordinances of the

building codes of most cities to require the application of the so

called
"
straight line theory" in such computations, not because that

will give results which will be verified by extensometer tests of com-

pressions in the concrete, for it will not, but because it is definite

and on the side of safety. Furthermore it is usually prescribed
that the ratio of the modulus of elasticity of steel divided by that

of concrete shall be assumed to be 15, where the moduli are unknown

by actual test of the materials. This is usually far from a correct

value. The consequence is that the results of computation of the

stresses in concrete are highly artificial in character, and should not

be expected to be in agreement with extensometer tests. With this

understanding the computed stress in the concrete at the middle of

the side belt will be found as follows:

Let id be the distance from the center of the steel to the neutral

plane. (It happens to be more convenient in this investigation to

use this distance id here and in our previous formulas than to intro-

duce the distance from the neutral axis of the slab to the compressed
surface of the concrete, as is done by many writers, under the desig-

nation k d. These quantities are so related that i + k = 1 ).

Then, as is well known from the geometry of the flexure of

reinforced concrete beams, in case tension of concrete is disregarded,

k Ec

/c
- ~-'-fs (38)

i Es

where the subscripts c and s refer to concrete and to steel

respectively.

Applying (38) to the greatest computed stress fa
= 19000 in

the St. Paul Bread Go's Building, gives a computed stress /c
= 492;

but taking the greatest observed stress fa
= 17940gives/c

= 465 Ibs.

per sq. inch, as the greatest computed compressive stress in the

concrete at the middle of the side belt, if i = 0,72.

The tensile stress across the middle of the side belt at the

extreme fiber of its upper surface is fixed by the curvature of the

vertical sections of the slab in planes that cut the side belt at right

angles. As stated previously all such planes make cross sections of

the side belt that are identical in shape. That is a consequence of
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the conclusion reached previously, that all the rods in the side belt

are subjected to equal tensions. The curvature of these sections

is controlled by the stiffness of the mushroom heads, which is so

great as to make the curvature very small. No considerable tensile

cross stresses are consequently to be apprehended; but in case the

stiffness of the head were to be decreased, stresses might arise such

as to develop longitudinal cracks over the middle rod of the side belts.

10. In order to obtain practical formulas for the deflections and
stresses in the steel thruout the areas at and near the tops of the

columns where all the belts cross each other, and lying between lines

of contra-flexure, we shall have recourse to (30) and (31) which are

here superimposed on each other, and combined together. Were
there no steel here in addition to the side belts, that superposition

could be correctly effected by writing a value of z whose numerator

would be the sum of the numerators of (30) and (31), for that would

superpose the loads of the two side belts, and thus place the total

required loading upon this area as previously explained; and then by
writing for a denominator the sum of the denominators of (30) and

(31), for that would superpose and combine the resistance of all the

steel in both belts. But such a result would leave out of account the

reinforcement arising from the diagonal rods, and the radial and

ring rods, which should also be reckoned in as furnishing part of the

resistance.

Supposing this additional steel to be distributed in this area in

the same manner as is that of the side belts, a supposition which is

very close to the fact, we may write

..(-*>.<>+)
48 Eijd

2 2 A

in which 1<A is the cross section of the total reinforcement in this

area regarded as forming a uniform sheet, i and j stand for mean
values that have to be determined by the percentage of reinforce-

ment and its position, while d is the mean distance of the center of

action of the steel above the lower compressed surface of the con-

crete at the point xy.

We may conservatively assume in the standard mushroom
that the center of action of the steel is at the center of the third layer

of rods from the top, as will appear more clearly later. This defines

d, which we shall consequently designate by d3 .

It remains therefore to estimate the amount of the total rein-

forcement SA, and then find mean values of i and j.
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In case of reinforcing rods which are all of them continuous

over a head without laps, the percentage of reinforcement falls only

slightly below 4 times that at the middle of a side belt; but on the

other hand were none of them continuous for more than one panel

and each lap reached beyond the center of the column to the edge
of the mushroom, the percentage of reinforcement would not be less

than 7 times that at the middle of a side belt, and to this must be

added that due to the steel in the radial and ring rods. Thus the

percentage of reinforcement here may be varied not only by reason

of the larger or smaller number of laps over each mushroom, but by
reason of the length of the laps, from perhaps 3.75 to 7 times that

at the middle of a side belt. For standard mushroom construction

using long rods, it may be taken conservatively as a 4.25 times that

at the middle of a side belt.

It is impossible to make an estimate that will be accurate for

all cases, but commonly the 8 radial rods of a 20' x 20' panel are

equivalent in amount to a single 1-1/8" round rod, or a 1" square

bar circumscribing the area under consideration, that is to 4 square

inches of additional reinforcement to be distributed in the width of

a single side belt.

The two rings rod, of which the larger is commonly 7/8" round,

and the smaller 5/8" round, may be taken to increase the reinforce-

ment of this area by at least one square inch of cross section, giving

all told some five square inches of cross section additional, equiva-

lent forty-five 3/8" round rods, or twenty-one 1/2" rods. It thus

appears that the increased reinforcement from this source reaches

from 2 to 4 times A^ and we may safely assume a mean total rein-

forcement over this area of

24 = 7.5 AI (40)

of which the center of action may be pretty accurately stated to be

at the middle of the third layer of reinforcement rods from the top.

In the standard design of mushroom floors for warehouses with

panels about 20' x 20', the mean percentage of reinforcement for a

single belt AI being about 0.23%, may be taken by (40) for a rein-

forcement 7.5 AI as

7.5 x 0.23 + = 1.75% The corresponding value of j is 0.83,

and we shall have

j S A = 0.83 x 7.5 A l
= QA l (41)

As previously stated, these equations (containing estimated mean

numerical values) are given as a specimen computation for the purpose
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of making comparisons. In actual design, computations like these

should be made which introduce the exact values appearing in the

design under consideration.

We now derive from (39) and (40) by the help of (23) the follow-

ing equations for this area where the belts all cross:

/s
= Ed = Eid3

-
(3z

2
a
2
)

ox 90 j

'

d3 A i

d-K2
)

M42)

Mi = 7.5 Ai j d3 fs
=

q (a + b) (3x
2

a
2
)

12

in which j and d3 are less than in (33) and (34), as has been stated

previously.

Apply (42) to find the stresses at the edge of the column cap
on the long side LI.

Let B = 2x be the shortest distance along the middle of the

side belt parallel to x between the edges of the caps of two adjacent

columns, and introduce the values j = 0.83, K =
0.5, and W =

then;

W Li (Li + L2) (3B
2
/Ll 1)

800 d3 Ai L2

WL l (Li + L2) (3B
2/L2

:

( '

in which 7.5 AI is the effective cross section of the steel in this area,

and MI is the true resisting moment of the steel derived from the

elongation, and d3 is as stated after (39).

Take the case of a square panel, and assume the diameter of

the column cap to be 0.2Li, then B = O.SLi and (43) reduce to:

(44)W

It will be readily seen that if d3 in (44) is more than 0.4 of the vertical

distance designated by d v in (34), (as it must be) then the stress /s

in (34) at the middle of the side belt exceeds /s in (43) at the edge
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of the cap. But this does not prove that the stress in the concrete

at the edge of the cap i's less than that at the middle of the side belt,

for, the value of i in (37) at the middle of the side belt is about 2/3
and at the edge of the cap about 1/2, as will be seen by consulting

Turneaure and Maurer, page 57, for values of i corresponding to the

values of j at these points. Hence, using these values of i, if primes

be used to designate the stress at the edge of the cap, we have by

(38), f'c /fc
= 2/; //s (45)

from which it is seen that the stress /s

'

at the edge of the cap must

be only half that in the side belt in order that the corresponding

stresses in the concrete may be equal. But ordinarily 2/s

'

>/s ,
and

so /c

'

>/c . The stress in the concrete at the edge of the cap will be

computed from that of the steel found in (44) by using (38), in which

if we put i = K =
\, we have /c

' = /s

'

/15, as the computed value

of the stress at the edge of the cap.

Tests have seemed to show that much higher compressive

stresses may be safely permitted in the concrete around column caps

where there is compression in two directions, than in the extreme

fiber of a beam where compression takes place in one direction only.

A like principle applied to the extreme fiber at the middle of the

side belt where tension exists at right angles to the compression

would show that there only a low value should be permitted in

compression.

In order to compare the greatest stresses in the steel across the

mushroom with that at the middle of the side belts in a square panel

let B = LI = L2 in (43), then the stress in a section thru the column

center along the edges of the panel over the mushroom area is found

from the following equations:

/s
=

200 d3 AI

32

(46)

which are to be compared with (34), from which it appears that if

d3 in (46) is more than 7/8 of di in (34), the stress in the steel across

the mushroom is less than at the center of the side belts. In any
case these stresses are so nearly equal that the inadvisability of

decreasing the steel in the mushroom head below standards indicated

above is evident. However, some of the steel at the edge of the

mushroom especially the outer hoop is at such level in this right
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section of the head as possibly to assist the concrete in bearing com-

pressive stresses. Such a large portion of this section, moreover,
falls within the cap, that no question of its stability and safety need

arise, in case the collar band of the column is sufficient to resist the

comparatively small tensions of the radial rods.

It will be noticed that in order to make fa and /c as small as

possible in this area d3 must be made as large as possible, i. e., the

steel at the edge of the cap must be raised as near the top of the slab

as possible. Neglect of this is to invite failure and weakness such

as has overtaken certain imitators of the mushroom system.

A final remark is here in place respecting the values of j and d%

in this area. The stresses / and /c diminish very rapidly towards

the lines of contra-flexure, where they vanish, and the fact that the

steel also rapidly increases its distance from the top of the slab at

the same time might be regarded at first thought as requiring some
modification of the assumptions we have made as to the values of

j and d3 ,
which are approximately correct at the edge of the cap

where the steel is placed as near the top surface as due covering will

permit. But the fact is this: the only consideration of importance
is the one respecting the position of the steel in that part of this

area where the moments and stresses are large. The effect of the

position of the steel near the lines of contra-flexure is negligible, and

the fact that the amount of reinforcement may be somewhat smaller

near these lines than elsewhere may also be neglected, so that the

mean effective reinforcement previously estimated is likely to be an

underestimate rather than the reverse. Further, the fact that the

slab is practically clamped horizontally either at the edge of the cap
or the edge of the superposed column, instead of at its center as

assumed in our formulas, renders the results given thus far slightly

too large.

Good average values of the size of steel used in the standard

mushroom system of medium span would make the radial rods

9/8" round, the outer ring rod 7/8" round, the inner ring rod

5/8" and the belt rods 3/8" round. The importance of having
the belt rods small is that for a given thickness of slab the smaller

these rods are the larger is d in both (34) and (43) and consequently

the smaller is/s and A\.

11. In attempting to consider the stresses in the diagonal rods

of the central rectangle between the side belts of a panel, it will be

noticed, as stated before, that no true bending moments are propo-

gated across the vertical planes or lines of contra-flexure (24) which
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bound it, and since the. vertical shearing stresses at these lines are

uniformly distributed along them, as already shown, (28), there are

no true twisting moments in these planes. The curvatures of this

rectangle will consequently depend upon its own loading and the

resistance of its own moment of inertia, regarded as uniformly dis-

tributed, independently of that of other parts of the slab.

Hence (21) may be correctly applied to this area, regardless of

the values which 7 (and q) may assume elsewhere, provided only

that the values of / in other areas may be assumed to have constant

values thruout those areas, and, further, that those areas are sym-

metrically disposed, so that all central rectangles have one and the

same given value of / thruout, all side belts also have one given

value of /, and the mushroom heads have a given value also, each of

these three sorts of areas being independent. The truth of this

proposition has been heretofore tacitly assumed in applying (21)

to these latter areas as has been done.

It will be seen however, that the values of z obtained from such

diverse equations express deflections of any point xy on the supposi-

tion that all the areas considered have the same value of /; but these

separate equations, each with its own peculiar value of 7, can be

used separately to find the difference of level Zi z2 between any
two points Xi yi and x^ y% which lie in an area where / may be regarded

as constant. We shall return to this point when we come to the

derivation of practical deflection formulas.

For convenience in computing stresses in the rods of the diago-

nal belt, let the direction of the coordinates be changed so that in

square panels they will lie along the diagonals which make angles

of 45 with those used thus far. In (21) let

x = %V2(x' + y\ y = %V2(x'--y'), then

22 2

24 E i j d
2 A

~ a
2
(x + y'

2
) + x'

2
y

2 + 1(* )] .... (47)

in which the panel is square and the axes of x' and y' lie along its

diagonals, while the value of ZA / g is the effective cross section per

unit of width of all the reinforcement in this area regarded as a

single uniform sheet of metal, and g
= 7/8 a, is the width of a

diagonal belt, and is equal to the diameter of the mushroom head.

In rectangular panels g
= 7/16 (a + 6).
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From (34) we have

,

=^~m

K
^2 A

[X' (x
2 + Zy'

2
)
- 2a

2
x '] (48)

6
2
z d

2
z (1 K2

)qg
ei
=

62
= - id = - id =

[2a
2
-3(*'

2
+2/

2
](49)

Oar dy* 24Ejd2A
d
2
z (lK2

)qgx'y'
and

, ,

= - -
, (50)

dx dy 4 E i j d 2A

These expressions satisfy (20) as they should, for (20) is inde-

pendent of the directions of the rectangular axes x and y.

From (49) it appears that e v
= = /s ,

on the circumference of

the circle x'2jry'
2 = fa

2
,
which passes thru the points where the

lines of contra-flexure intersect.

By (19), which holds for any rectangular axes, and by (50),

we find

n' = 1(1 K) qx' y'. (26)'

From (26)
'

it appears that in sections by all vertical planes

parallel to the diagonals, the twisting increases uniformly with the

distance from the diagonal.

Hence by (9) we have

5n'

S X

j V*-
7 / vy j-j-dj '

/6m;
n "

\ 8x
'

- (^2 W
. . (28)

It thus appears that the same law holds for vertical shearing
stresses on planes parallel to the diagonals, as holds in (28) for planes

parallel to the edges of the panel.

In standard mushroom designs the edges of the diagonal belts

intersect on or very near to the edges of the side belts. That makes
the middle half of the central square to be covered by double belting,

and the remainder of it by single belting, so that 2A =
1.5^4.2 or

perhaps 1.6 A 2 ,
and the mean value of A, the reinforcement per

unit of width of slab here, is to be found by dividing this by the

width of a belt, which is 7/8 a. We should then find A = 1.5 A 2/
7/8 a = 1.7 A 2/ a. But this mean value ofA is not its mean effect-

ive value for this area, because the reinforcement is so disposed as
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to furnish the larger values of / in the central diamond just where

the largest true applied moments and stresses occur. The mean
value of A in the central diamond is 2A 2 /7/Sa = 2.3A 2 /a. The

mean effective value lies between these two extremes, probably

nearer the latter than the former. A similar question was discussed

in connection with (40) and (41). We shall assume as the mean
effective reinforcement in this central rectangle,

A = 2A 2 /a, and / = 2A 2 ij d\/a

or in case of rectangular panels

I = 4A 2 ijd
2
2 /(a + 6) (51)

In case of rectangular panels the term 2a
2
in (49) should be replaced

by a
2 + b

2
as a mean value to make it depend the dimensions of the

panel symmetrically, as it must. Making these substitutions in

(49) we have at x = = y the center of the panel.

W (Li + L2 ) (Lf + Ll) C,W
/s

= Ee =
1024 L! L2 A 2 j d2 256 A 2 j d2

W(L, + La) (L\ + Ll) Ci W L,
(52)

MI = 2A 2 j d2 /s
=

512 L! L2 128

where Cl
= l(L l /L2 + !)(!+ L2

2

/Li
2
). Take j=0.89.

If 1 > L2 /L! > 0.75 then 1 < cx < 1.042, hence Ci varies less than 5%
while L2 /Li varies by 25% between its extreme permissible values.

Ci may ordinarily be taken as unity, or may be found with sufficient

precision by interpolation between the values just given.

The steps by which these equations (52) were deduced may not

seem conclusive, since they are not rigorous. They need be only

good, working approximations for the purpose for which they will be

here used, viz, to show that the stresses at the center of the panel

are less than those at the mid span of the side belts in case AI = A2 .

The value of d2 in (52) is less than d 1 in (34), but always more

than 90% of it. We may define d2 as the vertical distance from the

center of the second and upper of the two diagonal belts to the top sur-

face of the concrete. We may assume d2
= 0.9^ and j

= 0.89 in

(52), and then we may compare these stresses for a square panel as

follows :

175
- (53)

where /s

'

refers to the center of the panel. Even were the smaller
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value for the mean reinforcement, 1.7 A 2 /a, used in deriving (52)

and (53), the stress given by these equations would not exceed that

given by (34). The compressive stress /c in the concrete at the

center of the panel may readily reach a dangerous value in case the

forms are removed too soon. It should therefore be carefully con-

sidered in each case. Here, we have an approximate value of i = 2/3
and (38) then becomes /c

= /s /30 with no possible assistance from

steel reinforcement since that is all on the bottom of the slab. An
estimate that the elastic stress in the steel at the center of the panel

does not much exceed 80% of that at the middle of the side belt

cannot be far from the truth.

While this is undoubtedly the fact, it will appear on further

consideration that local stresses and strains which exist at incipient

failure are of such magnitude as to make the weakest points of the

diagonal belts to lie ultimately not at the center, but, instead, just

outside the diamond where they cross each other.

Take the standard case where the central diamond reaches just

across to the side belts. For square panels imagine a circle to be

drawn concentric with each column of radius L/2. Any circle at a

column will be tangent to the edges of four diagonal belts across the

tops of the four columns adjacent to it, and then the octagon cir-

cumscribing it, whose sides cut at right angles all the belts that cross

this column head, intersects but a single belt of rods as every point

of its perimeter. It is evident that, so far as reinforcement is con-

cerned, such a line or section cuts less steel per unit of perimeter

than any other regular figure concentric with the column and that

the reinforcement is entirely symmetrically disposed about the

column center, so that in case of equal diagonal and side belts, it

would be impossible from their geometry to distinguish the one from

the other by anything inside the octagon. That fact would make it

inherently probably that the stresses and strains of the rods where

they cross any one side of this octagon should be approximately the

same ultimately as in those that cross any other side, whether they

be rods in a diagonal belt or in a side belt. And what will be at-

tempted to be shown immediately is that ultimately the stresses

and strains in these several belts approach equality. If that should

be established, it will follow from the conclusion already reached as

to the excess of the stresses and strains of the side belt over those at

the center of the panel, that ultimately those at the edges of the

ocatgon exceed those in the same rods at the center of the panel.

The qualification implied above in affirming that this is what

will occur ultimately, is for the purpose of conveying the idea that
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this is the approximate distribution of stresses and strains which

will take place when the slab is sufficiently loaded to bring the steel

at the middle of the side belt to the yield point. At less stress than

this there is so much lag in the distribution of the effect of loading

that it penetrates to the various parts of the slab unequally.

Taking up now the deferred proof that the diagonal rods where

they cross the edge of the octagon are subject ultimately to the same

local stresses and strains as the direct rods of the side belts; note

that these diagonal rods lie in a triangular area between two side

belts, which latter experience equal elongations e\ in directions at

right angles to each other. The edges of the triangle in which the

single layer of diagonal rods lie are continuous with the side belts

and necessarily experience the same elongations, which are propo-

gated from the side belts into the triangle by the agency of horizontal

shears on its edges. Such equal elongations at right angles imply
the same elongation in every direction in the triangle, as appears
from the fundamental properties of equal principal stresses and

strains. Hence we have the same elongations along the diagonal

rods as along the rods of the side belts at the edges. The existence

of an ultimate stress and strain in the diagonal belt equal to that in

the side belt would require that the cross sections A 2 and AI of the

two belts should be equal, altho so far as the elastic value of fs at

the center of the panel is concerned A 2 might be less than AI, as has

been already shown in (52) and (53). The relationships of stress,

load, etc., for this ultimate condition, have been already given in (37).

Besides the stresses and strains in the diagonal belts, just in-

vestigated, those due to the local stretching (arising from the deflec-

tions themselves) exert their greatest effect on the rods of the diagonal

and side belts just in the region of the line of weakest section, and

partly because of that fact. While these local stresses may not exceed

10% in addition to those already present, their existence should

prevent any thought of taking 2A larger than AI in (37) when deriv-

ing the ultimate stresses at the yield point. Similar results may be

formulated to cover cases where g is greater or less than 7/16 L.

It is perhaps desirable at this point to consider a little more at

length the matter of local stretching in a slab. It is impossible for a

continuous flat floor slab to undergo the deflections which we are

treating, consisting of convexities, concavities, etc., without local

stretching to allow this to occur. A floor slab of many panels does

not undergo any change of its total linear dimensions which would

account for these corrugations. A continuous beam under flexure

would have its extremities drawn toward each other. But not so
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to any such extent with a slab. Such contractions are resisted by
local circumferential strains which result in true stresses. An
investigation of such stresses leads to the conclusion just stated that

in general they cannot exceed 10% of the ordinary stresses due to

slab bending when they are left out of the consideration. For this

reason a single panel alone will not function precisely in the same

way as a panel in a floor of many panels.

12. Actual deflections are distances which any given points

of a slab sink down by reason of the application of a given load, and

their theoretical values are to be computed by help of the formulas

which have been developed for z in the various areas into which the

panel has been divided.

We shall now make a slight modification in our definition of the

level of the origin of coordinates, and shall take it at the upper or

lower plane surface of the flat slab before flexure, in which surface

the axes of x and y are assumed to lie. It is of no consequence
whether it be the upper or the lower surface which is assumed, the

equations will be the same in either case. The reason for this new
definition of the position of the origin is this: Each kind of partial

area into which the slab has been supposed to be subdivided has its

neutral surface at a different depth in the slab, and so it does not

furnish a single suitable level from which to reckon deflections, as

does the upper or lower surface of the slab. None of the equations

which have been derived in this paper will undergo any modification

by reason of this change of definition. It has been assumed that

each kind of area has a separate value of / which remains constant

thruout, so that the neutral surfaces of different areas do not join

at their edges. As previously explained this is of no consequence

mechanically by reason of the zero true moments that exist at these

edges. The modification just introduced avoids the geometrical

perplexities arising from this discontinuity of neutral surfaces.

Deflections in the side belt area between the lines of contra-

flexure (24) are to be found from (30), or (31), and (32). To find

the deflection or difference of level in the mid side belt between

x =
0, y =

6, and x =
% a V^3, y =

b, substitute these values in (30),

take i = 0.71, j
=

0.91, k = 0.5 and subtract the value z at the

second point from that at the first point, which gives the following

value of the deflection of the one point below the other:

WL\
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in which hi is the vertical distance from the center of the single belt

of rods at the mid span of the side belt to the effective top of the

slab, considering the strip fill or other concrete finish at its effective

value.

In the same manner take the difference of level in the central

rectangle bounded by the lines of contraflexure between the center

point at x = 0, y = and the corner x = f a Vs, y = J b V^3 by using (21)

and (51) and introducing the values i = 2/3, j =
0.89, etc., and

C2
= l/4(Li/L2 +!)(!+ L\/L\}, then:

C2 W L\
A z2

= - --- ......................... (55)
6.56 x 10

10
d\ A 2

in which A 2 is the cross section of one diagonal belt and h2 is the

vertical distance from the center of the upper or second diagonal

belt to the effective upper surface of the panel at its center.

On evaluating C2 above, we find

when l>L2 /Li > 0.75

then 1> C2 >0.77

hence we may with sufficient accuracy for practical purposes assume

C2
= L2 /L, ................................... (56)

Deflections in the mushroom area between lines of contraflexure

(24) are to be derived from (39) (40) and (41) by introducing i = J,

j =
0.83, k = 0.5 and SA = 7.5 A\. Assuming the diameter of

the cap to be 0.2Li we have, at its edge where x =
0.8a, y =

b, from

(39)

W Ll (Li/La +1) /36y
19.1 xl010

dl A l VlOO/

The value of z at the edge of the mushroom area, where x = J a V%,

y =
6, is to be obtained from (57) by replacing the last factor by

4/9; and the deflection between the edge of the cap and the edge of

the mushroom obtained by taking the difference of these quantities

is as follows:

WL3
l (L l /L2 + l)

A z3
= - ~

in which A3 is the vertical distance of the center of the third layer of

reinforcing rods over the edge of the cap above the bottom surface

of the slab.
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Similar expressions may be obtained for the values of z and Az
on the side parallel to y, where x = a at y =

0.86, and y = \ bV 3,

by exchanging LI and L2 in (57) and (58).

Take half the sum of (57) and the corresponding values so ob-

tained at x =
a, y =

0.86, as the value of z at the edge of the cap
where it is intersected by the diagonal of the panel, viz.

W (Li + L2 ) (L\ + LJ) / 36
y

38.2 x 10
10
LI L2 d\ A l \100/

and subtract this from the value of z on the diagonal at the corner

of the mushroom area where x = J aV% y = J 6V^3 and we have

C2 W L\
A z4 = - -

(60)
12.5 x 10 d% AI

as the deflection along the diagonal between the edge of the cap and

the intersection of the lines of contraflexure, in which C2 and h3 are

as previously defined.

Let DI = Azi + Az3\
and D2

= Az2 + Az4J

in which L>i is the deflection of the mid point of the side belt below

the edge of the cap, and D2 is the deflection of center of the panel
below the edge of the cap.

The proportionate deflections of these points are obtained by

dividing by the spans, viz: D l /L i and D2 / VL\ + Lf.

13. Estimated proportionate deflections may be obtained from

(61) under such circumstances as to convey reliable information

respecting what may be reasonably expected. Let h = the total

thickness of the slab. The limiting values of the thickness of

standard mushroom construction are expressed as follows:

Li/20>A>Li/35, (62)

and assuming that the reinforcing rods are 1/2" rounds with 1/2"
covering of concrete we shall have from the definitions of diy d2 and

d3 , already given

h = di + 0.75 = d2 + 1.25 = d3 + 1.75 (63)

Substituting these in (62) etc. we have

Li/20 0.75 > ^ > Li/35 0.75 ]

Li/20 1.25 > d2 > Li/35 1.25
} (64)

Li/20 1.75 > d3 > Li/35 1.75
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If it be assumed that we are dealing with medium sized panels

about 20' x20' (64), may be written in the form:

(1 0.062) Li/20 > di > (1 0.02) Li/35

(1 0.1) Lj/20 >d2 > (1 0.036) Lj/35

(1 0.15) L!/20 > d3 > (I 0.05) L x /35

or,

0.94 0.98

20 L! 35

0.90 d2 0.964
> >

20 Li 35

0.85

20

0.95--
35

(65)

In (54), (55), (58) and (60) replace W L v by its value given in (34),

viz, 175 di A i fs) and we have
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Introduce into (66) the numerical values given in (65) which

will then express limiting values of deflection for medium spans.

For simplicity let LI = L2 then:

287 >

162 >

10
5
Azi

> 170

> 106
10

5Az2

660 >
1

> 451

275 >
10

5Az4

> 188

(67)

By (61) we have the proportionate deflection of the side and diagonal

belts as follows:

f i 1 1 fs A r i in
i

- + - ^r<- < - + -

1.287 660J 10
5

LI Ll70 45lJ 10
5

- + -A-^A^LL +" ^
Ll62 275J 10

5
V2 L x V2 Ll06 188J 10

5
V2

/s

200 x 10
5
<

< - <

123. 4 x 10
5

/s

141.4xl05
L! V2 95.9x10

1 D2 I

If fa
= 16000, < : <

884 L! V2 600

If fs
= 24000,

590

D2 1

<
/i V2 400

1 >2 1

If /s
= 32000, < - <

442 L! V2 300

Larger spans then 20
',
or smaller steel than 1/2" round, or L2 <Li

will reduce the above values somewhat, while smaller spans or

(68)

(69)
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larger steel will increase these values, all of which can in each case

be submitted to calculation by the methods here developed.

To recur at this point to the expression for the deflection D2 in

terms of the panel load W by help of (55), (60) and (61)

C2 W L]^r JL
i

j

.1 |_6.56d| 12.5 d\\

By (65) we find

90 d* 96.4

85 d3 95

and using this inequality to eliminate d3 from (70) we find after

reduction

C2 W L\ C2 W L\
D

4.46 x 10
10

dl A l 4.33 x 10
10

d\ A l

from which we may write as a mean value

C2 W L\

"4.4x10
(71)

The empirical deflection formula given on page 29 of Turner's Con-

crete Steel Construction, when written in these units, is

WL\
D2 =

4.84xl0 10 dUr
This is identical with (71) when C2

=
0.909, and diverges from it

slightly for other admissible values of C2 . The practical agreement
of (71) and (72) affords a second confirmation of the theoretical

deductions made thus far, and this taken in conjunction with the

practical identity of formulas (34) and (35), the theoretical and

empirical expressions for the maximum tensile stresses in the rein-

forcement, furnishes what on the theory of probabilities may be

regarded as so strong a probability of the general trustworthiness

of the, entire theory as to exclude any rational suppositition to the

contrary.

The various formulas for stresses and for deflections which have

been developed in this paper have been obtained under the express

proviso that the panel under consideration was assumed to be one

of a practically unlimited number of equal panels constituting a

continuous slab, all of which are loaded uniformly and equally. The
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question at once arises as to the amount and kind of deviations from

these formulas which will occur by reason either of discontinuity of

slab or loading, such as occurs at the outside panels of a slab or at

panels surrounded partly or entirely by others not loaded. The
answer to this question depends very largely upon the construction

of the flat slab itself.

In the standard mushroom construction it has been found that

the stresses and deflections of any panel are almost entirely inde-

pendent of those in surrounding panels. This is due to the fact

that the mushroom head is an integral part of the supporting column

in such a manner that it is impossible for it to tilt appreciably over

the column under the action of any eccentric or unequal loading of

panels near it. When single panels have been loaded with test

loads, no appreciable deflections have been discoverable in sur-

rounding panels, and no greater stresses and deflections have been

discovered than were to be expected in case surrounding panels were

loaded also. Future careful investigation of this may reveal

measureable effects of this kind, but they must be small.

A like statement cannot be made of other systems of flat slab

construction where the reinforcement over the top of the column is

not an integral part of the column reinforcement itself. Tests on

these systems have shown clearly the effects of the tipping of the

part of the slab on the top of the column, and lack of stiffness of

head, in the increase of the deflection of the single loaded panel over

the deflection to be expected in case of multiple loaded panels, and

especially in the disturbance of the equality of the stress in the other-

wise equal stresses in the rods of the side belts. Such distrubance,

by increasing the stress in part of these rods, would necessitate larger

reinforcement in the side belts of such systems than would be re-

quired in mushroom slabs. The great stiffness of the mushroom
head is also of prime importance in taking care of accidental and

unusual strains liable to occur in the removal of forms from under

insufficiently cured slabs.

14. In considering the design of the ring rods and radial

cantilever rods of the mushroom head, it should be borne in mind

that they occupy a position in such close proximity to the level

of the neutral surface as to prevent them from being subjected

to severe tensile or compressive stresses by reason of the bending
of the slab as a whole. Their principal function as slab mem-
bers is to resist shearing stresses and the bending stresses due to
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local bending. Their total longitudinal stresses are too small in

comparison to require consideration.

Let a cylindrical surface be imagined to be drawn concentric

with a column to intersect the slab, then the total vertical shearing
stress which is distributed on the surface of intersection is equal to

the total panel load W diminished by the amount of that part of the

panel load lying inside the cylinder. If the cylinder be not large,

the total shear may be taken as approximately equal to W itself.

It is evident that the smaller the diameter may be that is

assumed for this cylinder, the greater will be the intensity of the

vertical shear on its surface and that for two reasons : First, because

the totsl load thus carried to the column will be greater the smaller

the diameter, and second because the surface over which the total

shear will be distributed decreases with its diameter.

The result of this is that the dangerous section for shear is the

cylindrical surface at the edge of the cap. For cylinders smaller

than this the increased vertical thickness of the cap diminishes the

intensity of the shear. We proceed therefore to consider the manner
in which the total vertical shearing stress of approximately W in

amount is distributed in the material of the cylindrical surface at the

edge of the cap.

In a beam or slab the horizontal shearing stresses due to bending
reach a maximum at the neutral surface. It is a fundamental con-

dition of equilibrium that shearing stresses on planes at right angles

shall be equal, and it is this condition that determines the distribu-

tion of the vertical shears, which are at right angles to the horizontal

shears resulting from bending the slab as a whole. From this we
have the well known fact that the vertical shear varies from zero

at the upper and lower surfaces to a maximum at the neutral surface,

and this is necessarily the manner in which the total shear is dis-

tributed at the edge of the cap. The top belt of rods will be sub-

jected to comparatively small shearing stresses, and successive

layers of rods will be under larger and larger shearing stresses by
reason of their greater nearness to the neutral surface, while the

total shear borne by the radial rods near the neutral surface will be

much larger than that upon the others. The shearing stress in

the concrete will need to be considered also.

It is to be noticed that all the steel of the belts and mushroom
head act together without the necessity of supposing large com-

pressive stresses in the concrete to transmit vertical forces, because

the belts of reinforcement rest directly upon each other, and these

in turn upon the ring rods and radial rods, all in metallic contact
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with each other, in the mushroom head, and so they transmit and

adjust the distribution of stresses within the system to a very large

extent independently of the concrete.

We can then safely assign moderate values of the shearing
stress to each of the elements that constitute the slab at the edge
of the cap, with the assurance that they will each play a part in

general accordance with the distribution which has been already

explained.

The mushroom is constructed of great strength and stiffness

not merely to effect the results which have appeared previously in

the course of the investigation but also to ensure the stability of the

slab in case of unexpected or accidental stresses due to the too early

removal of the forms, before the slab is well cured, at a time when
the only load to which it is subjected is due to the weight of the

structure itself.

The working load to be assumed in designing the mushroom

may be taken as the dead load of a single slab plus the design load,

provided sufficiently low values of the shearing stresses be assumed

in the cross sections of steel and concrete at the edge of the cap
for the support of this working load, as follows :

For slabs having a thickness of h = L/35 a mean working

shearing stress of 2000 Ibs. per square inch at the right cross section

of each reinforcing rod which crosses the edge of the cap, a mean

shearing stress of 40 Ibs. per square inch in the vertical cylindrical

section of the concrete at the edge of the cap, and 8000 Ibs. per

square inch of right cross section of each radial rod.

For slabs having a thickness of h = L/20 the intensities just

given may be safely increased by 50 per cent for reasons that will

be explained later. For slabs of intermediate thickness increase

the intensities proportionately.

These values are sufficiently low to enable the structure to sup-

port itself before the concrete is very thoroughly cured, and the

head so designed will be found after it is well cured to be so pro-

portioned as to carry safely a test load of double the live and dead

loads for which it was designed.

In this connection it seems desirable to investigate what takes

place in case of overloading and incipient failure of an insufficiently

cured slab, or one unduly weakened by thawing of partially frozen

concrete. Suppose that under such circumstances a shearing crack

were formed extending completely thru the head at the edge of the

cap, and we wish to investigate the stresses and behavior of the rods



50 STRESSES IN RADIAL RODS

that cross the crack at which shearing deformation has begun to take

place. Designate the position of the crack by X.

The total vertical shearing stress on a radial rod at X is the

sum of two parts found as follows: First, the vertical reaction at

the top of a column is made up of the vertical reaction of the con-

crete core of the column and the reactions of its vertical reinforcing

rods. Call the vertical reaction of one of these rods V\. The rod

is bent over radially and Vi expresses also the amount of the vertical

shear in that rod where it starts out radially from the column.

Between this point and X for a distance which measures usually

from 9 to 12 inches, the rod experiences the supporting pressure of

the concrete in the cap under it to a total amount which we will

designate by V2 . The total shear in the radial rod at X will then

amount to

V = V,+ V2 (73)

provided we neglect the weight of that small part of the actual load

of the slab which lies directly over this piece of the rod and may
be regarded as resting upon it. This portion of the radial rod of

length I is a cantilever fixed at one end in the top of the column, and

carrying a load V at the other end with a supporting pressure under-

neath of total amount V2 whose intensity is greatest at X and gradu-

ually decreases along / from X to the fixed end. The rod has a

point of contraflexure and zero moment at X. The portion of the

rod outside the crack has a fixed point in the slab at the place where

it supports the inner ring rod, at a distance from X which should

not exceed I as just defined. Similar conditions hold for this length;

i. e. there will be a totol shear in the radial rod at a point just inside

the inner ring, rod due to its total shear outside this ring rod and to

the vertical loading imparted to it by the ring rod itself. To this

must be added the downward pressure of the concrete between the

inner ring rod and X. All these, together, constitute the total

shear V at X, in equilibrium with the reaction -f V already ob-

tained at that point.

We shall discuss separately the action of V\ and V2 upon a radial

rod. A load V\ at the end of a cantilever of length I causes a

deflection of amount z l
= \Vi f /El (74)

in which 1= TT
4

/64 where Z = the thickness of the rod.

Also V 1
= s 1 A ,

A= 7r*
2

/4
in which Si

= the mean shearing stress per square unit of cross sec-

tion and A is the cross section of the rod. Hence

(75)



STRESSES IN RADIAL RODS 51

which shows that so far as V\ is concerned, for any given displace-

ment z\ the shearing stress carried per square unit of rod will be pro-

portional to the square of its diameter, and up to its permissible

limiting shearing resistance, each unit of section of such a rod will

be effective in proportion to the square of its diameter. For econ-

omical construction, this will require the radial rods to be few and

large, rather than numerous and small. The bending moment is

greatest at the distance I from X and amounts to V\ I. The stress

in the extreme fiber due to the bending moment V\ I in the rod is

Pl = Vilt/2I = Ssil/t (76)

This equation shows that the stress in the extreme fiber is so very

large at the fixed end of the rod compared with the shear at X that

so far as Vi is concerned the rod will suffer permanent deformation

by bending long before there is any danger of its shearing. V\ is so

large compared with V2 that this conclusion will not be altered when
we come to consider the combined action of V%.

Incipient failure of this kind will therefore cause distortion and

sag without collapse. In case such sag as occurs in this case is

detected underneath the head around the cap, the slab should be

blocked up at once and the concrete picked out at all parts showing
facture. This should then be refilled with a stronger concrete

which will set rapidly. Such repair should not weaken the slab.

Whenever the intensity with which a radial rod presses upon
the concrete at the edge of a crack at X passes the compressive

strength / of the concrete, it must begin to yield. Afc this instant

we shall have a pressure of the concrete against the rod which gradu-

ally diminishes as we pass along the rod from X to the distance I,

where it becomes zero. We shall assume that the pressure dimin-

ishes uniformly with this distance. This may not be precisely cor-

rect, but cannot be much in error. If the shear 2 at X is the sole

cause of this pressure, then F2
= | tlfcj and f 2 I = $tffe

is the bending moment in the rod at the distance I, due to V2 at X
and the pressure distributed along I.

It will be found that these produce a deflection

z2
= 3 /c P/2QEI = 0.3 f V2 /EI (77)

a unit shear of

S2
= V2 /A = z2 E *

2

/4.8 /
3

(78)

and a stress on the extreme fiber at a distance I amounting to

p2
= V2 1 1/31 = 16s2 l/t (79)
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It thus appears that the equations expressing the action of V2

are precisely similar to those for Vi, differing only in their numerical

coefficients, and consequently all the statements as to the resistance

of the radial rods under the action of Vi hold for the action of

F! and V2 together in the case of given initial deformations,

Zi
= z2 at X.

While the preceding investigation has, in order to make ideas

explicit, ostensibly assumed a crack at X and an initial small shear-

ing deformation at X, the investigation applies equally well to the

elastic shearing deformation of the concrete at the dangerous
section in which case the total shearing stress will consist of an addi-

tional componenent due to the resistance of the concrete, which

however may for additional safety be neglected. If the assumed

deformation be confined within limits so small that the concrete

is able to endure it without cracking then the preceding investiga-

tion may properly be applied to it. It is right here that the thick-

ness of the radial rods is able to render its most effective service,

for it appears from (75) and (78) that any permissible intensity of

shear may be developed in the radial rods by making them of suit-

able thickness, even tho the deflection be kept within the elastic

limits of the concrete.

As already stated we must not overlook the fact that the major
stresses here are those under the head of V\, which are due to the

direct metallic contacts of the steel rods resting one upon

another, where large stresses are transmitted and pass independ-

ently of the concrete except for the distortions of the steel which

meet resistance, and the secondary reactions such as have been

treated in a single aspect while investigating the action of F2 .

It is due to this fact that large shearing stresses may be safely

borne by the slab at and near the edge of the cap, which the concrete

mostly escapes, it merely furnishing some lateral stiffening to the

steel. On this principle the outer ring rod should have a cross

section not much less than one half that of the radial rods on which

it rests. For, this arrangement provides for the transferal to the

radial rods of all the shear the ring rod is able to carry, it being in

double shear compared with the radial rod it rests on.

It is impossible to determine the cross section of the inner ring

rod, with the same defmiteness as that of the radial rods, but

that is unimportant. Its position has already been fixed as not

more than I from the edge of the cap, where I is the distance from

the top hoop or collar band of the column to the edge of the cap.



STRESSES IN CONCRETE OF HEAD 53

The vertical shearing stresses may be regarded as sufficiently

resisted outside the mushroom by the concrete alone. The critical

cylindrical surface separating those areas where the shear may be

assumed to be safely carried by concrete alone, from those areas

where the steel may be relied on to carry as much of the shear as

may be required, should evidently be taken somewhat inside the

outer ring rod, but just where is of no particular consequence.

The supposition of the existence of a crack at X, either actual

or potential, on which our computation of the stresses in the radial

rods has been based, is sufficiently satisfactory so far as the rods

themselves are concerned
;
but it seems desirable to consider in more

detail the phenomena attending the development of the stresses in

the concrete at and near the edge of the cap, especially in soft con-

crete when the limit of its compressive resistance is reached in this

region. .

The horizontal compressive resistance of the concrete at the

lower surface of the slab is that already treated in (38), and it is our

present object to consider how that is to be combined with the

vertical supporting pressures under the radial rods, and with the

horizontal and vertical shears in the slab due to bending. These

latter are greatest in the neutral surface, as has been previously

stated, and according the general theory of stresses are equivalent

to, and may be replaced by, a compression and a tension in the mate-

rial respectively at 45 with the vertical (and mutually at right

angles) of the same intensity as the shear. It is evident that the

combination and resultant of these three compressive stresses

would form the dangerous element in the stress, since the single

tensile element would be relatively unimportant, and it would find

assistance in its resistance from the steel running in a direction thru

the concrete such as to afford it substantial support. This direction

is that of the straight lines on the surface of a right cone whose

vertex is above the center of the column and whose slope is 1 to 1 .

Consider now two of the elements of the compression in the

concrete around the cap, viz, the horizontal compression which is a

maximum at the lower surface and zero at the neutral surface, and

that due to shear which is parallel to the sides of a right cone with

vertex downward, whose sides have an upward and outward slope

of 1 to 1, while its intensity is so distributed that it is zero at the

bottom of the slab and greatest at the neutral surface. It appears

consequently that the lines of greatest compression in the concrete

due to the combination of these two elements of compression would
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lie in vertical planes on a bowl or saucer-shaped surface that is hori-

zontal at the edge of the cap and inclined at a slope of 45 at the

neutral surface
;
and if the concrete were to crush under these stresses

alone, the surface of fracture would have the shape indicated in-

stead of that of the cylindrical surface previously assumed. This

change would not, however, materially affect the computations we
have made of stresses in steel; it merely serves to fix more definitely

the position of the points of contra-flexure of the radial rods.

But there is still one further element or component of the total

compression in the concrete to be considered and combined with

those just treated in order to arrive at the resultant or total com-

pression. This componenent is that due to the concentrated press-

ures underneath each of the radial rods. These rods are at some

distance apart circumferentially and so do not exert a pressure that

is uniformly distributed circumferentially. Any concentrated stress,

such as that in the concrete supporting a rod, diffuses itself in the

material in such a manner that its intensity rapidly diminishes with

the distance from the surface of the rod, in accordance the same law

as exists in case of centers of attraction. Since the supporting com-

pression under the rods is vertical, we can imagine the lines of great-

est compression in the concrete, when this component is combined

with those already mentioned, to lie in vertical planes on a bowl or

saucer-shaped surface which has as many indentations or scollops

around its edge as there are radial rods, at which indentations the

slope of the sides is such more nearly vertical than a slope of 45.

At such parts of the surface the intensity is also more severe, and

especially is this the case if the slab is thin so that the concentrated

pressure has small opportunity to distribute itself by radiating into

a considerable body of material before it reaches the bottom of the

slab. It thus comes about that thick slabs are enabled to carry

safely larger intensities of shearing stress around the cap than can

thin slabs, which is in accordance with and in justification of the

statements already made as to permissible shears around the cap.

The resulting surface of fracture due to shear and compression
around the cap would be of irregular conical shape starting from

the edge of the cap and extending thru the entire thickness of the

slab, were this not interfered with in the upper part of the slab by
the mat of reinforcing rods, which are so tenacious as to tear to

pieces and fracture the upper surface to a considerable distance in

all directions whenever any such fracture occurs around the column.

Nevertheless such fracture as here described does not under
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any ordinary circumstances result in a dangerous collapse of the

slab, or one that cannot be repaired without much difficulty, for, the

radial rods and the reinforcing rods will at most have suffered some

individual deformation by bending and are still far from being

broken. This will become evident later where an experimental

attempt to load a full-sized slab to failure is described in detail, and

full account of the results reached is explained and illustrated.

It is stated on good authority that in experience with many
hundreds of buildings constructed on this system, no case of shear

failure or even of incipient shear failure or fracture has occurred in a

well cured slab near the column and while a few cases of incipient

failure have occurred in floors where forms were prematurely re-

moved, no injury or fatality has resulted therefrom to any person.

It appears that the line of weakest section in the cured slab of

the standard mushroom type is that discussed previously in obtain-

ing (37) and shown in Fig. 3 page 7. This is brought out later by a test

to destruction of a fairly well cured slab. The line of weakest sec-

tion in a partly cured slab is on the other hand not definitely fixed,

but may be and sometimes is, shearing weakness near the column as

has been discussed and pointed out. Provision against such weak-

ness or carelessness is a safeguard which, while costing a small

amount in the matter of steel, is an insurance, against serious acci-

dent well worth the investment involved. It is secured by making
the radial and ring rods sufficiently stiff and strong.

15. This section will be devoted to a consideration of the

mushroom system, and to several more or less similar flat slab

systems, in order to comment on the modifications in mechanical

action that are produced by the particular modifications of the

arrangement of the reinforcement in these systems.

Fig. 1, page 2 represents the section of a standard mushroom

head by a vertical plane thru the axis of the column. In this the

elbow rods are shown, the vertical portions of which are embedded for

such distances as may be necessary in the columns or are them-

selves column rods. One of these is represented separately at the

right side of the Fig. They are confined just under the elbow at

the top of the column by a steel neck band, and are bent over at

the elbow to extend radially into the slab. This bent over portion

is formed to scale as to length and slopes in accordance with the

size and thickness of the slab in which it is to be used, in such a

way that when the ring rods and four layers of slab rods rest

upon it and are tied in place, the top of the upper layer will be
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0.75 inch below the top- of the slab at a distance of the thickness

of the slab outside the edge of the cap, and at the same time the

extremities of the radial rods will be 0.5 inch above the bottom of

the slab. In order to accomplish this, the radial portions of these

rods must be nearly horizontal over the cap, and have a suitable

slope outside the cap as shown in Fig. 1.

Fig. 3, page 7, shows the ground plan of the reinforcement of the

mushroom slab when the panel is square so that L\ =
1/2

= 2a
= 26. In this Fig. the diameter of the mushroom head is assumed

to be of the extreme size g = L/2, a size which would increase the

cantilever beyond that in usual practice to an extent not adopted

except in the case of very unusual intensity of loading. It will

be observed that the areas where the reinforcement consists of a

single belt or layer are thereby rendered small, and the slab action

due to the mutual lateral action of belts which cross each other

exists over nearly the whole slab.

In Fig. 2, the dimensions of the rectangular sides are so taken

that Z/i/Z/2
=

0.75, which is assumed to be the limiting or smallest

value of that ratio for constructional purposes. Further, the

diameter of the mushroom is made as small as will permit the rein-

forcing belts to cover the entire panel, viz. g = 7 (a + 6)/1 6. For

example if LI =
20, and L2

=
15, we have g

= 7.65+. This may
be considered to represent standard practice, where the edges of

the diagonal belts intersect on the edges of the side belts. This

was the case assumed for treatment in deriving the formulas of the

preceeding investigations. Those formulas could be modified to

apply to larger values of g, by taking lines of contra-flexure at the

edges of the head nearer the panel center than given by (24), and

by taking larger values of the effective cross section of steel than

those employed in (32), (40) and (51).

Now it is evident that systems similar to this may differ from

it in several ways:

1st. The design of the frame-work at the top of the column

may be different from this without any change in the belts of re-

inforcing rods. It is hardly possible for any other form of frame-

work to be substituted for this which will exhibit the same rigidity

of connection between it and the column as do the elbow rods

embedded in the column and bent over radially in the slab so as

to make the column and slab integral with each other by means
of this common reinforcement. Any reduction of the stiffness of

connection between column and frame-work of head results in in-

creased tipping of the head under eccentric loading of the slab.



OTHER SYSTEMS 57

Fig. 4.

Eccentric loading is any loading of one panel differently from

another. Tipping of the head increases some deflections at the

expense of others, and increased stresses in some of the reinforcing

rods at the expense of others, and so requires some additional

reinforcement. Such a frame-work is illustrated in Fig. 4, which

merely rests upon the top of the column without the support of

metallic connection with the vertical column rods. It consequently
affords less resistance to tipping under eccentric loads than when
stiffened by such metallic connection.

2nd. The ground plan of the reinforcing belts may remain un-

changed but part only of the belt rods may be carried at the top
of the slab over the column head, while the rest of them are carried

thru under the head at the bottom of the slab. This modification

of design, when a sufficient number of rods go over the head to

resist the negative bending moments there, is very uneconomical

of steel, because in the case where they all go over the head, it is

the fact that altho the mean tension of the steel is not so great as

at mid span, nevertheless, by reason of the overlapping of the belts

in crossing, the stresses in the rods at the top reach a value not

much less than at mid span, and cannot be safely diminished in

number. It thus appears that the rods carried thru on the bottom

are largely superfluous. Of these two mats of rods at top and

bottom, one of them is necessarily in tension and the other in com-

pression. But it is a mistake to use steel to resist compression

when concrete can be better used for this purpose. The lower mat

is superfluous for this reason.
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3rd. Another modification of design without change of ground

plan is that where the rods that are carried over the head at the

top of the slab are given a sudden steep dip at the line of contra-

flexure to carry them to the bottom of the slab at that line. This

is also illustrated in Fig. 5. Such sudden bends or kinks any-
where in the rods may give rise to very serious fractures because

of straightening out under tension, especially when the forms are

removed. Such bends give rise to great differences of stress in the

extreme fibers of the rods, thus diminishing their resistance also.

All sudden bends in rods embedded in concrete should be sedulously

avoided as tending very effectively to crack the concrete, whether

the rods are part of the belts or in the frame-work of the head, as

shown in Fig. 3, in which are many such angles and elbows unsup-

ported except by concrete, and therefore objectionable.

It seems fair to conclude that the cracks shown in the plan

of the floor of the Deere & Webber Company Building, Minnea-

polis, tested by Mr. Arthur R. Lord, and occuring along the edges

of some of the loaded panels at the upper surface, where none usually

appear, were due to the elbows in the frame work of the head, like

that in Fig. 4, in conjunction with the comparatively small resis-

tance to bending in a vertical plane offered by the rods forming this

projecting elbow.

In the mushroom head the only bend permitted is that at the

elbow of the radial rods where a strong steel neck band prevents

any such bad effect as has just been pointed out.

Fig. 6
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4th. We may notice a form of design in which the diagonal
belts are omitted and the entire panel is covered by rods parallel

to the sides of the panel. This, while apparently very different in

ground plan from those just considered does not differ from it

materially in principle. It is clear that the lattice pattern of the

web in this case is in many parts of the panel not woven so close

as where diagonals exist, while in other parts of the mesh the num-
ber of layers in contact with each other has been decreased. Experi-

mental results do not as yet enable us to determine with certainty

whether Poisson's ratio for this combination is as great as for the

mushroom. Upon that depends in part the relative efficiency

of the two arrangements. A form of this design is seen in Fig. 6.

The maximum deflections at the center of a loaded panel of

the system of Fig. 6, would occur when the panels touching its

four sides were also loaded. In this particular it differs from a

loaded panel in a mushroom slab which would theoretically have

its deflection slightly decreased by loading surrounding panels,

tho this is too insignificant to have been observed as yet.

Deflections shown by tests of this system of two way reinforce-

ment are wholly inconsistent with simple beam theory, and can

only be explained on the basis of slab theory. Nevertheless, some
of its advocates attempt to design its reinforcement and com-

pute its strength on the basis of beam theory, which actual de-

flections show to be untenable. Such attempts should be entirely

abandoned as erroneous and misleading.

All considerations which have been discussed under the three

previous counts are to be taken as applying equally to this plan
of arranging the reinforcing rods, especially as to carrying of

part of the belts thru on the bottom surface at columns.

5th. Another element of design is the relative number of

rods in the side and diagonal belts. We have previously adduced

reasons to show that in a square panel the same number of rods is

required ultimately in the diagonal belts as in the side belts, tho

for stresses less than the yield point of the steel, it would be pos-
sible to diminish the number of rods in the diagonal belts some-

what. Equation (34) shows that for equal stresses in the steel

of the side belts the number of rods should have the same ratio

as the lengths of the sides.

A different rule from this has been erroneously proposed,

viz., that the ratio of the number of rods in the side belts should

be equal to the ratio of the cubes of their lengths. The only foun-

dation for this rule is that according to the beam strip theory as
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developed in Marsh's Reinforced Concrete, p. 283, a rectangular

plate carried by a level rigid support around its perimeter, would

divide the load per unit of area which is carried by two unit-wide

rectangular strips that cross each other, as the fourth power of their

lengths, and hence would carry to the edges of the rectangle loads

proportional to the cubes of the lengths of those edges. Were this

so, the case of a horizontal rigid support around the entire peri-

meter of the panel is wholly different from support on columns

at the corners, and such a rule would be wholly inapplicable there-

fore to a floor slab so supported. This rule was, however, evidently

adopted in the design of the Larkin Building, Chicago, as shown

by a photograph of its reinforcement in place before the concrete

was poured, to which the writer has access and published in Cement

Era for February, 1913. The very exhaustive tests of this build-

ing made by the Concrete Steel Products Company of Chicago,

and published in the Cement Era, for January 1913, show that this

ratio of rods caused the stresses for the larger loads to be more

than twice as great at the middle of the short side belts as at the

middle of the long side belts. This was assuredly an uneconomical

distribution of steel, since correct design would require these stresses

to be equal, when in fact one exceeded the other by 120 to 140 per

cent. This discrepancy would be largely rectified by making the

number of rods directly proportional to the lengths of the sides,

as required by (34).

It also appears that the diameter of the mushroom head and

the width of belts of slab rods in the Larkin Building is less than the

limiting size in the standard mushroom system, viz. g
= 7(a+6)/16.

This makes the intersection of the diagonal belts fall nearer the

center of the panel than the edges of the side belts. The very

considerable effect of a very inconsiderable change of this width

has been mentioned on p. 25. The result would be that the steel

would for this reason be far less effective, and its resistance

would be more nearly in accordance with (37) than with (34) ,
a loss

of perhaps 25 to 30% in its effectiveness.
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16. This section will be devoted to a specimen computation

applying several of the preceeding formulas to a floor slab of practi-

cally the same dimensions and reinforcement as one or two recently

designed and now under construction (1913).

Long Side LI = 28' X 12 = 336".

Short side L2
= 25' 10" = 310".

Thickness of rough slab, h = 10" = L/33.6.

By (56) C2
= IV/LI = 0.9 nearly.

Diameter of head g
= 7 (L x + L2)/32 = 141".

Diameter of cap LI B = 0.2^ = 67". B = O.SLj = 268.8".

Each belt has 25 7/16" round rods.

Cross section of each belt, A = 25 x 0.15+ = 3.76 sq. inches.

Depth of center of mid side belt with \ inch concrete cover-

ing, di = 10 0.5 0.2 = 9.3".

Depth of center of second layer slab rods at panel center,

dz = 10 0.5 0.64 = 8.86"

Depth of bottom surface below third layer of slab rods at edge
of cap with %" covering, d3 = 10 0.75 1.1 = 8.15".

Design load per square foot = 150 Ibs.

Dead load per square foot = 130 Ibs.

Panel load, W = 280 x 28 x 25 5/6 = 202,550 Ibs.

A maximum tension is found in the slab rods at the middle of

the long side belt, and is to be computed from (34) as follows:

202550 x 336

/s
= - - = 11,120 Ibs. per sq. inch (80)

175 x 9.3 x 3.76

Any other loading within elastic limits of the steel would

produce proportionate stresses.

The tension in the steel at the center of the panel is com-

puted by (52), as follows:

1.02 x 202550 x 336
fs= - - = 9,145 Ibs. per sq. in.. (81)

256 x 3.76 x 0.89 x 8.86

The radial tension at the edge of the cap is by (43),

202550 x 336 x 646 (3 x 0.64 1)

fs
= - -= 5320 Ibs. per sq.in . (82)

800 x 8.15 x 3.76 x 310
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The circumferential tension at the vertical section thru the

center of the column at the end of the long side may be computed

by placing B = LI in (43), and we obtain,

202550 x 336 x 646 x 2

/= - - = 11,570 Ibs. per sq. in. . (83)
800 x 8.15 x 3.76 x 310

as the mean computed intensity of stress in each of these rods,

regardless of its distance from the center of the column. This

stress may be reduced by increasing the number of laps over the

head. The result in (83) is, however, an over-estimate of the

tension across the top of the head because the head is integral

with the cap of the column where compressions in the concrete are

no longer confined merely to the thickness of the slab but take

in a much greater depth of concrete in the cap. This in effect

puts the neutral surface at a lower level throughout the cap and

by thus increasing the lever arm of the reinforcement reduces its

tension and deformation. This will react upon the rest of the

reinforcement in such a manner as practically to make the stresses

smaller than given by (83) because the mean lever arm will have

increased. In fact the greatest stress in these rods will be that

given by (80), instead of (83).

The compression in the concrete lengthwise of the longer

side belt at its middle is to be computed from (38) and (80) as

follows: By taking the percentage of belt reinforcement at 0.3%,
the corresponding value of i =

0.72, and ES/EC
= 15:

0.28x11120
/c
= - - = 288 Ibs. per sq. in (84)

0.72 x 15

The compression at the center of the panel where the per-

centage of slab reinforcement may be conservatively assumed at

0.6% and i = 0.66 may be computed thus:

9145

/c
= - - = 305 Ibs. per sq. in (85)

2 x 75

The compression at the edge of the cap lengthwise of the

side belt is uncertain in the absence of exact information as to the

laps in the slab rods over the head. Assume that one-half the rods

are lapped over each head, and that we take six belts as the reinforce-

ment of the slab, the percentage then is 1.8% and i =
J, then,

5,320
/c
= - = 355 Ibs. per sq. in (86)

15
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For reasons already given in discussing the circumferential

tensions in the head, it appears that any computation of the cir-

cumferential compressions in the concrete on the basis of (38) would

be incorrect and subject to large errors of as much possibly as

50%. That this is the fact appears evident when we consider the

large mass of concrete in the cap which must be actually diminished

in lateral dimensions before the slab which is integral with it can

be subjected to true stresses of equal intensity, and consider also

that near the edges of the head the radial rods and the outer ring

rods approach the lower surface sufficiently to afford reinforcement

to resist compression. It is consequently unnecessary to look

further than (86) in computing the greatest compression in the

concrete.

As previously stated, computations based on (38) are highly

artificial and arbitrary in their character, since they assume the

straight line theory as well as an arbitrary value of the ratio of

Young's moduli for steel and concrete. Furthermore, concrete

in compression in both circumferential and radial directions at the

same time, as it is at the edge of the cap, is known to resist with

safety compressive stresses of greater intensity than when in simple

compression in one direction.

If a test load of twice the design load, viz., in this case of 300

Ibs. per square foot, be placed upon the slab, the deflections which

will be produced by the addition of this total load of 217,000 Ibs.

may be computed as follows:

217000 x 336
3

By (54), A zi
= - - - 0.237 (87)

10.7 xl0 10
x9.3

2
x 3.76

0.89 x 217000 x 336
3

By (55), Az2
=- = 0.378 .... (88)

6.56 xl0 10
x8.86

2
x 3.76

217000 x 336
3 x 2.084

By (58), Az3
=- = 0.115. ... (89)

60 x 10
10
x 8.15

2
x 3.76

0.89 x 217000 x 336
3

By (60), A 24 = -
-7- - 0.235 .... (90)

12.5 x!0 10
x8.15

2
x 3.76
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By (61), D l
= 0.352, and D2

= 0.613 (91)

D l 1 D2 1

-, and -
(92)

LI 960 V
Ll

2 + L * 745

Any loading differing from this would produce deflections

proportionate to its intensity.

In this specimen floor slab, which is near the limit of least

thickness permissible in the standard mushroom system, viz.,

d = LI/35, it is clear that the design load brings stresses to bear

upon its reinforcement which are very moderate in their intensity

indeed. It is also evident that were the slab to be loaded with a

test load of such amount that the total load sustained would be

twice the dead load of the slab itself plus twice the design or live

load, viz. 560 Ibs. per square foot, none of tjie steel would be stressed

up to the yield point, and the first failure would take place by
cracking the concrete, tho the steel would still prevent sudden

failure and collapse. Altho the slab is relatively so thin the de-

flections are also very small for so large a span.

It has not yet been so generally recognized as it should be

that a thin construction, such as a flat slab is, should not be ex-

pected to show so small proportionate deflections as is required

in girders.

The observed results of quite a number of tests of mushroom
slab floors are to be found on pp. 32 and 44 of Turner's Concrete

Steel Construction. These are there compared with results com-

puted according to Turner's empirical formula, which translated

into our present notation has been reproduced in equation (72).

The observed and computed results show a very close agreement.
The results given by (72) are in close agreement, as has been seen,

with those derived from (61).

Some of these test slabs present peculiarities of reinforce-

ment such as need to be individually considered in order to make
exact computations of their deflections. It is thought that the

specimen computation already given will afford sufficiently guidance
in the methods to be employed.

Having considered the stresses and deflections of a slab which

is near the minimum thickness for the standard mushroom system,

viz. 1/1/35, it will be instructive to consider a specimen or two

near the maximum thickness Z^/20.
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Tischers Creek Bridge, Duluth

Test of Tischers Creek Bridge with 30 ton construction cars, each loaded with 20 tons of rails

Deflection less than one twenty thousandth part of the span
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Take for example the bridge over Tischer's Creek, Duluth,
shown in the cuts on page vn and page 66. It is supported on three

rows of columns crossing the gorge, at a distance apart of 27 feet

center to center of columns, the two street car tracks being over

the side belt that lies along the center line of the bridge lengthwise.

Each of these rows consist of six columns lengthwise of the bridge,

at a distance apart of 26 feet from center to center, so that

L! = 27 x 12 = 324"

L2
= 26 x 12 = 312"

The size of the mushroom heads and width of the belts is 12 feet,

which is in excess of 7 (Li + L2)/32 = 139 1/8" =
11.6', thus giv-

ing great stiffness. The object to be obtained by maximum thick-

ness and large head is to secure great stiffness and so reduce vib-

rations as well as decrease deflections. There are twenty 9/16
inch round slab rods in each belt, or a total cross section in each

belt of A! = 5 square inches of metal. The slab is 15" deep at

its thinnest part at the gutter on each side of the roadway, and

the steel is kept down to that level throughout the slab, altho at

the crown of the roadway under the tracks and over the center

row of columns the slab is 5" thicker, or 20", with the same thick-

ness over the side rows of columns where the sidewalks are. The

mean thickness is somewhat in excess of L2/20. This makes

di = 19" for the short side belts, di = 17" for the long side belts

and d3
= 14" approximately for the heads. The design load per

square foot = 150 pounds. The dead load of the slab per square

foot = 300 pounds. Hence W = 450 x 26 x 27 = 315,900 pounds.
The effective cross section of slab steel is so great by reason of large

heads that instead of (34) we may take

W L
(34)

200 di Ai

For the long side belt this gives /s
= 6,033 pounds per square inch.

The total load imposed on the slab might be made six times as great

without causing the steel to reach its yield point, and the live

load might become 900 pounds per square foot without causing /s

to exceed 16,000 pounds.
This slab was tested as shown in the cut, page 66, by running

two construction cars loaded with 20 tons of rails each over the

bridge at the same time along one track of the short side belt 26

feet long. Weight of each car = 60,000 pounds. Weight of rails

40,000 pounds. Total weight of train = 200,000 pounds extend-

ing over several spans. The deflections was too small to be dis-

covered by observations with level and rod. It is useless to attempt
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to compute the deflection of this slab under the test load because

the four steel rails of the railway tracks across the bridge were so

fastened to the steel cross ties which were embedded in the con-

crete as to make the rails a part of the reinforcement of the slab.

They furnish a cross section of reinforcement equal perhaps to

7 A i, which would effectually bar the application of our deflection

formulas and reduce deflections to very small quantities.

In so thick a slab as this the action of any contemplated load

is widely distributed by the slab itself, and such loads, as well as

all shocks and vibrations are largely dissipated or absorbed by the

body of slab itself without causing observable local stresses as they
do in steel structures.

VIEW OF REINFORCING STEEL
Flat Slab Bridge, Denver, Colo. Spans 43 ft. 6 in. Carries Heavy Interurban Cars
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The Curtis Street bridge, Denver, Colorado, is one of four

bridges across Cherry Creek, shown by the cut on page 68, con-

structed on the mushroom system It has three rows of three

columns each crossing the stream, the middle column of each row

in mid stream with spans of 42 feet between columns centers length-

wise of the bridge, thus obstructing the waterway as little as pos-

sible. It has a width of 28 feet between column centers. The

slab is 17 inches thick at the gutters, 26.5 inches at the sidewalks

outside the gutters, and 21
"

over the center row of columns. The

sidewalk is stiffened with fourteen 3/8" round rods lengthwise

just below its top surface as supplementary reinforcement, and

there is an outside parapet giving added stiffness. There are

also three stiffening rods 24" apart across the bridge midway
between columns. There are three ring rods, and the width of the

belts is 16'. This is in excess of 7 (L x + L2)/32 = 183.75" = 15 5/16'.

The heads are exceptionally stiff each having twelve 1 3-8" round

radial rods. Each belt has twenty-six 5/8" round rods, hence

A i
= 26x0.3 = 8 square inches nearly.

L! = 42 x 12 = 504"
,
L2

= 28 x 12 = 336".

The dead load per square foot = 300 pounds.

The design load per square foot = 150 pounds.

W = 450 x 42 x 28 = 529,200 pounds.

di = 20" for long side belt.

Compute the stress in the steel by (34) modified to (34)
'

by
reason of exceptional stiffness, and we obtain /s

= 13,320 pounds.

Compute the central deflection due to a test load of 100 pounds

per square foot. Let d3
= 16". Then in (71) L2/L 1

= 2/3: hence

C2
=

3/4, and we have D2
= 0.125". This is probably considerably

in excess of the correct deflection, since the slab is stiffer than the

one considered in equation (71), which was derived for 20 foot spans.

More correct values are to be computed from (54), (58) and (61).

Moreover for such comparatively light stresses in the concrete,

the deflections, as we have seen previously fall short of those com-

puted by the formula, which agrees with experiment for stresses

nearer the yield point of the steel. D2
= 0.125" is less than

one four-thousandth of the span, and the deflection under the

working load would undoubtedly be less than one sixth-thousandth

of the span.
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A word is here in* place respecting working stresses and the

factor of safety in the reinforcement of slabs, to the effect that

the same values of these quantities in slabs affords a greater degree

of security than in ordinary structural steel construction, and that

occurs for several reasons:

1st. Steel rods such as are used in slabs have a higher yield point

by perhaps 25% than the steel of other structural members. Fur-

thermore, it is quite possible and desirable to use a higher carbon

steel for these rods than the mild steel necessarily used in structural

work, where it must be manipulated in such ways that high carbon

steel cannot be used. But in these rods which suffer no usage

tending to impair their condition, there is good reason to use a steel

of higher yield point and greater ultimate strength. This yield

point may readily be 70% greater than that of ordinary mild steel

for structural purposes.

2nd. Rods embedded in concrete do not yield as do bare

single rods in a testing machine or elsewhere by the formation of

a neck and drawing out at that point. The concrete embedment

prevents that.

3rd. In a reinforcement consisting of multiple parallel rods

acting together, no single rod can become overstrained and yield to

any appreciable extent before bringing into play adjacent rods.

This makes the construction tough, and not liable to sudden col-

lapse, as well as obviates concentration of stresses thus ensuring

a high degree of security.
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17. This section will be devoted to a detailed consideration

of a test to destruction of two slabs, 12' x 12' between column

centers, constructed for experimental purposes. The tests were

made by Professor Wm. H. Kavanaugh, in November and December,

1912, and the results he obtained, together with a mathematical

discussion based upon them, will be here given. One slab was

constructed in accordance with the plans and specifications of the

U. S. Patent No. 698,542 issued to O. W. Norcross for a slab for

flooring of buildings, and the other was a Turner Mushroom slab

under U. S. Patent No. 1,003,384. The test serves to bring out in

a striking manner not only how two slabs, which present a super-

ficial resemblance in the plan of arrangement of reinforcement,

differ from an experimental and practical standpoint, but it also

makes evident their radical divergence of action mechanically and

mathematically.

That two slabs of the same span, thickness and amount of

reinforcement should on test show that one of them was more than

twenty times as stiff, and more than five times as strong as the

other, and that the failure of the weaker one was a sudden and

complete collapse, with little or no warning to the inexperienced

eye, while the other gave way by slowly pulling apart little by

little, thus gradually getting out of shape without any final break

down, are phenomena that deserve the close attention of the de-

signer, and are of the highest interest scientifically as well as practi-

cally. The enormous differences in the deflections and in the

stresses in the reinforcement as shown by extensomoter measure-

ments, and in the character of the failure in respect of safety and

its relation to the line or zone of weakest section, as well as in the

difference of design loads and breaking loads amounting to 500%,
all illustrate what scientific design will accomplish and what results

are possible by an ingenious arrangement of the reinforcement.

These slabs were each of the same thickness, viz 6", andwere sup-

ported by columns placed at the corners of a square 12' x 12' from

center to center of columns. The slabs projected 2' to 3' beyond
the centers of the columns on each side, and had precisely the same

number and size of reinforcing rods in each belt, viz eleven 3/8
inch round rods. The concrete was of a 1 : 2 : 4 mix, and while

only about four weeks old at the time of the test, it had been poured

warm and kept warm by steam heat under such unusually favorable

conditions as to have become well cured at the time of the test.

The steel used showed by test a stress at yield point of 51,000 to

55,000 pounds per square inch, and an ultimate strength of 76,000
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to 80,000 pounds, with-an elongation of twenty to twenty-five per
cent.

The first slab was made in accordance with the specifications

of the Norcross patent already referred to except that belts of rods

were substituted for the netting mentioned by the patentee. This

design was selected as one of the two for this comparative test,

not because it is a good design, or one that any engineer would

to-day care to employ, but because it exhibits, according to the

express intention of the patentee, simple tension on its lower surface,

everywhere between columns, and simple compression everywhere
on its upper surface between columns; this being in direct contrast

to the other design, which is arranged not only to resist direct ten-

sions over the supports, which the first does not, but also to resist

circumferential stresses both around the supports and around the

panel centers, as any truly continuous flat slab must.

This test may then be viewed in the light of an experimental

demonstration of the difference between a reinforced flat slab con-

structed in accordance with the beam theory and one constructed

in accordance with correct slab theory, where true and apparent
moments differ radically as shown at the beginning of this investi-

gation, but are wholly contradictory to any form of simple or con-

tinous beam theory. This test may be regarded as settling once for

all the question of applying simple beam theory to a cantilever flat

slab, reinforced throughout practically its entire area with a lattice of

rods crossing each other and in contact. It shows that it is impos-
sible to compute the deflections of such a slab by beam theory.

Furthermore this impossibility makes it certain that the stresses

in such a slab cannot be computed by beam theory, for to do this is

to commit an inconsistency such as has heretofore too often been

committed, but one which should hereafter be carefully avoided.
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Norcross in his patent already referred to describes his con-

struction as consisting "essentially, of a panel of concrete having
metallic network encased therein, so as to radiate from the posts
on which the floor rests The posts are first erected, and a

temporary staging built up level with the tops of posts. Strips of

wire netting are then laid loosely in place on top of the staging ....

The concrete is then spread upon or moulded in place on the staging
to enclose the metallic network. In practice I have sometimes

laid the concrete in layers of different quality, the lower layer of

the floor which encloses the wire being laid with the best concrete

available If the forces acting upon a section of flooring

supported between two posts be analyzed it will be found that the

tendency of the floor section to sag between its supports will cause

the lower layers of the flooring to be under tension while the upper

layers of the flooring will be under compression, these stresses being,

of course, the greatest at the top and bottom layers, respectively."

Fig. 7. Reinforcement of Norcross Slab
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Fig. 8. Norcross Slab Carrying Load 3

'- o

Col. Cop Phts 20*20*
Be/fo //~i ^eoch

Fig. 9. Norcross Slab
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The number and arrangement of the reinforcing rods in the

Norcross experimental slab, (eleven 3/8" round rods in each side

and diagonal belt) is clearlyshown in the view of Oct. 3 1st, Fig. 7, which

shows the forms ready for pouring the concrete. Steel plates

20" x 20" x 0.5" carry the rods and rest on the tops of the columns,

which last in this case consisted of steel pipes about 5J" in dia-

meter filled with concrete and embedded at their lower ends in large

concrete blocks. A vertical central bolt in the concrete at the

upper end of each pipe permitted the plates to be firmly secured to

the tops of the columns. The view of Nov. 30th, Fig. 8, clearly

shows the manner of placing the pig iron on the slab for load 3.

This slab is 16' x 16'. The loading at first covered an area having

the form of a Greek cross whose central square was five feet on a

side with arms 5' 6" long, as represented in accompanying diagram

of loaded areas A, B, C, D, E, Fig. 9, and of amounts shown in

Table 1.

Fig. 10. Collapse of Norcross Slab

When 10,000 pounds had been piled on the central part of the

slab in addition to load No. 4, of 66,812 pounds, the slab suddenly

failed. In anticipation of such failure timber blocking had been

placed under the slab to prevent its falling more than possibly ten

or twelve inches.
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Fig. 11. Collapse of Norcross Slab

The two views of Dec. 2d, Fig. 10 and Fig. 11, show the con-

dition of the slab after removing part of the final loading in order

to render the nature of the failure visible. Careful extensometer

measurements of the elongations of the steel rods at the middle

of the side and diagonal belts were made under the action of loads

1, 2, 3 and 4, and also similar extensometer measurements in the

concrete both on the top and the bottom of the slab along the center

line of the side and diagonal belts near those edges of two of the

steel plates which were nearest the center of the belts. Besides

these, certain other measurements of the concrete were made at

right angles to the diagonals. Deflections were also measured

under these loads at the middle of the diagonal belt and of two of

the side belts at V, W, X, Y, Z.

These measurements all show beyond question that the side

and diagonal belts act like simple beams in this form of construction,

since the stresses in the steel and concrete on the under side of

the slab in the direction of the rods is invariably tensile, while the

stresses in the same directions on top of the slab are always com-

pressive. It was the avowed intention of Norcross to reinforce

the slab in this manner since he regarded the upper part of the slab

as being subjected everywhere to compression and the lower part

to tension only, as stated in his specifications as already quoted.
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The following computation, Table 2, shows a good approxi-
mate agreement of the results of this test with the beam theory of

flexure, assuming for simplicity that the stiff steel supporting plate

and interlacing of the ends of the belts diminishes the effective

span of the side belts by 12", and the diagonals in the same pro-

portion, and further assuming that the loading was all applied at

the middle of the side and diagonal belts.

The extensometer measurements made were for a length of

8", consequently the stress in the steel per square inch would be

computed thus:

/s
= l/8 (elongation in 8") x 30,000,000; (l)j

and, this being known from observation, it will be possible to com-

pute the load W carried by the beam in which the given elongation

occurs, as follows:

The bending moment due to a concentrated load W at the mid-

dle of a beam of length L is M= J W L, (2) x

and the equal moment of resistance of the reinforcement by which

it is held in equilibrium is M=A j d fs (3)i

in which A is the total cross section of the steel in the belt =
11 x 0.11 = 1.215 sq. in., and the distance from the center of

the steel to the center of compressive resistance of the concrete

is assumed to be, j d = 0.9 x 5.75

when d = 5.75 is taken as the distance from the center of action

of the steel to the top of the slab,

Hence W = 4 A j d fs/L . .(4)i

is the load required to cause the stress fs in the steel. In the side

belts we assume the span L to be 132", and in the diagonals 132 V2.

In Table 2, which follows, it will be noticed that loading No. 1

is too small to develop sufficient elongations or deflections to

overcome the initial compressions in the concrete in which the

reinforcement is embedded, so that the load carried by the steel is

only about one half of the actual load, the other half being evidently
carried by the concrete in which it is embedded. This is in com-

plete accord with other similar experiments. But in case of loads

No. 2 and No. 3, where the steel is stressed close to the yield

point, the sum of the loads as shown by the stresses in the steel

is very close to the total actual load. It is assumed that these

total actual loads are carried by the various belts in the same pro-

portion as the computed loads, since there is no other way of

dividing the total load between the belts. This may be stated

mathematically, as follows:
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Let Wi = the computed load on a side belt,

and W2
= the computed load on a diagonal belt.

Let Wi = the actual load on a side belt,

and W2
= the actual load on a diagonal belt.

Then 4TFi + 2TF2 = total computed load on slab,

and 4TFi + 2TF2
= total actual load on slab.

4 Wi + 2 W2 Wi W2

Then - - = - -=--, (5) 2
4 W l + 2 W2 Wl W2

from which TFi and T72 can be computed, W\ ,
W2 and 4W[ + 4TF2

being already known.

The stresses in the steel under load No. 4, are so far beyond
the yield point as to make computation useless. Having found

the actual distribution of loading W[ and W2 the center deflections

of the belts have been computed by simple beam theory from the

formula.

W' L3

D2
= -

(6)!
48 E A ijd

2

in which i d = the distance from the steel to the neutral axis and

the value of j has been assumed to be 0.69; W' is the actual load on

the belt and L is its span as previously stated.

It appears from Table 2, that the effect of the reinforcement

is accounted for to a reasonably close approximation by consider-

ing the belts to act as a combination of simple beams, at least with-

in the range of loading near the yield point of the steel.

It appears that the steel reached its yield point under a total

load on the slab of from 15 to 18 tons and final collapse occured under

a total load of a little over twice the latter amount not distributed

uniformly but piled more in the general form of a pyramid.
It was observed that the application of the relatively small

loading on the corner areas F, G, H, I, had a very injurious effect

upon the slab, tending to break it across the tops of the columns.

The results of the test may be summarized in the Norcross

system as follows:

1st. This slab is of the simple beam type, and the test shows

no cantilever action and no circumferential slab action.

2nd. The narrow belts running diagonally leave large areas

without reinforcement, and there is consequently no provision for

resisting circumferential tensions as required in slab action.

3rd. The concrete showed compressive stresses on the upper
surface of the slab in the direction of all the reinforcing rods.
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4th. The concrete showed tension at the bottom surface in

the direction of all the reinforcing rods, in agreement with Norcross'

own analysis.

5th. This slab deflected 1.6" under 33 tons and then broke

down completely under 38 tons.

6th. The first crack appeared under a load of 15 tons and

deflection of 0.7".

7th. The slab, not being reinforced on the top surface over

the columns, inevitably cracks at a column when the slab is loaded

around the column.

8th. At failure the steel had passed its yield point. The

percentage of reinforcement in the diagonal belt if we regard the

belt as about 18" wide is very nearly 1%, but since a width of

concrete somewhat greater than that may be assumed to act with

this steel, the percentage of reinforcement is somewhat less than

1%. Similarity, the side belts of width 36" have a reinforcement

less than 0.5%. The full strength of the steel in both belts was

developed by the concrete, which fact demonstrates that the con-

crete was of high grade and well cured. The steel was also of

good standard quality, and the test was therefore in every way
fair to the Norcross slab, since it was so loaded as to cause the

stresses in the side and diagonal belts to be practically equal, thus

using the steel most economically. The slab failed because the

steel yielded near the middle of the spans, thus causing the concrete

above the steel to crack and break.

The second slab was made according to the Turner Mush-
room System, under the patent already referred to.

Since all forces in a plane may be resolved into components

along any pair of axes at right angles to each other it is possible

to provide reinforcement to resist any horizontal tensile stresses

in the slab by various arrangements of intersecting belts of rods at

zones where these stresses occur. The combination of such belts with

radial and ring rods to constitute a large and substantial canti-

lever mushroom head at the top of each column affords a very
effective and economical arrangement for controlling the distribution

of the stresses in the slab, and it places the reinforcement where

it is most needed. It not only has the same kind of advantage
that the continuous cantilever beam has over the simple girder

for long spans, but combines with it the kind of superiority that the

dome has over the simple arch by reason of circumferential stresses

called into play, which greatly adds to the carrying capacity of the

slab.



82 REINFORCEMENT OF MUSHROOM TEST SLAB

Fig. 12. Reinforcement of Mushroom Slab

Column Rods 8~/8* Diom.

Fig. 13. Mushroom Slab
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The mushroom test slab was six inches thick, and was sup-

ported on four 18" by 18" square reinforced concrete columns

distance 12' from center to center. These had square capitals,

42" x 42". The slab was appromimately 18' x 18', and the dia-

meter of the outer ring rod of the Mushroom was 66", while the

inner ring was 42". These were supported on eight 1-1/8" round

radial column rods.

Fig. 14. Mushroom Slab, Load 4.

This will be clearly understood from the view dated October

31st, Fig. 12, which shows the reinforcement and forms ready for

pouring the concrete. The remaining views are explained by their

accompanying legends.

The diagram of loaded areas for the mushroom slab Fig. 13, is

like that already given for the Norcross slab in every particular

except that the size of the mushroom slab being 18' x 18', while the

Norcross slab was 16' x 16', the arms of the Greek cross in the

mushroom slab are each 5' 6" long and 5' wide.
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Fig. 15. Mushroom Slab, Load 7 .

Fig. 16. Mushroom Slab, Load 9.
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The accompanying Table 3, exhibits the loads per square foot

of each of the subsidiary areas shown in the diagram as also the

total loads on each of those areas. The view of Dec. 3, Fig. 14,

shows load 4, and that of Dec. 13, Fig. 15, load 7, while that of

Dec. 16, Fig. 16, shows load 9.

Elongations of steel were measured by Berry extensometers

in two of the side belts and in one of the diagonal belts until the

yield point of the steel was reached at load No. 8. Deflections

were also measured. In Table 4, these will be considered so far as

they relate to the middle points of the belts. Loads 8, 9, 10, are

of great interest as exhibiting the behavior of the slab under ex-

cessive loads, showing, as they do, yielding and large permanent
deformation without dangerous collapse.

By (52) the uniformly distributed load per square foot of

panel area when the stress in the diagonal belt is / is found for a

square panel from the expression

256 j d2 A
-

fs (52a)
144 L

which applied to this slab gives us

256 X 0.89 X 5.125 X 1.215
w = -

-/. =/s/14.6 (52b)
144 X 144

The values of this uniformily distributed load w is tabulated

in table 4, for each of the observed values of the / in the diagonal

belts. The values of w so computed tend to become identical,

in case of the heavier loads, with the loads per square foot on the

central area C, as might reasonably be expected, w being the uniformly

distributed load which is equivalent so far as the stress on the dia-

gonal belt is concerned to the action of the actual loads which are

not uniformly distributed.

How compute by (54), (55), (58), (60) and (61), the deflections

at the mid side belt and at center of the panel, due to a uniform load.

These results are given in Table 4, and accord closely with those

actually observed, as they should, because the irregularity of dis-

tribution does not produce deflections that differ much from the

equivalent uniform load as computed above.

In these computations it is assumed that di = 5.5", d2 =

5.125", d3
= 4"
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The double set of values under loads 4 and 5 is due to the

fact that readings were had under load 4, immediately after the

load was applied, and again 7 days later before applying load 5.

The second set of readings were the larger as shown. The second

set of readings under load 5, were taken four days subsequently

to the first set.

It appears from Table 4, that the observed results are account-

ed for by the slab theory to a good degree of approximation

up to the yield point of the steel.

Fig. 17. Comparative Deflections of Norcross and Mushroom Slabs.

A graphical representation of the experimental observations

in the deflections at the points V, W, X, Y, Z, of the two slabs is

found in Fig. 17, which shows in a striking manner how small the

loads and how great the deflections were in the Norcross slab on the

one hand, and how large the loads and how small the deflections

were in the mushroom slab on the other hand.
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It will be seen from Tables 1 and 3, that the first three loads

were practically the same for both slabs. In the Norcross slab

load 3, of 18 tons, stressed the steel up to the yield point, but in

the mushroom slab the stress was so small, (being in fact less than

ten per cent of the former) as probably not to remove all the com-

pression from the concrete in which it was embedded. Indeed the

load on the latter slab became five times as much, 90 tons, before

its steel approached the yield point, at which time it was carrying

about twice the load which caused the complete failure of the

Norcross slab.

Moreover the deflection of the Norcross slab under load

3, was twenty-two times that of the mushroom slab under the

same load. This result is in full accord with slab theory which shows

that the central deflection of a continuous diagonal beam with fixed

ends uniformly loaded with one sixth of the total load on the slab

and having the same thickness and reinforcement as the diagonal

belt, would have more than six times the central deflection of the

slab, while the stress in its steel would be three or four times as

much. This gives a measure of the effect of slab action.

By the phrase "slab action" we designate the increased strength

and stiffness of the slab by reason of its resistance to circumferential

stresses around the columns and around the center of the panel.

Furthermore, if this continuous beam be compared with a simple

beam uniformly loaded and having the same reinforcement, the

latter would have five times the deflection of the continuous beam,
or thirty times that of the slab, while the stress in the steel would

be one and one-half times that in the continuous beam, and six or

seven times that in the slab. This last exhibits the effect of canti-

lever action combined with slab action.

The apparent discrepancy between the observed ratio of de-

flections in these two slabs of 22 and the just computed deflections

of 30, is to be accounted for by the fact that the computation
assumed equal spans, whereas the Norcross span was assumed

to be diminished from 144" to 132" by the column plate. A re-

duction of the span of this amount will change the computed de-

flections in the ratio of 144
3

: 132
3

: : 30 : 23 which is in practical

agreement with the observed result of 22.
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By the phrase "cantilever action" we designate the increased

strength and stiffness which is due to the continuity of the beam
or slab at its supports so that it is convex upwards at such points.

While the concentration of the loading toward the middle of

the panel, such as was the case in this test, may prevent any pre-

cise agreement of these numerical estimates based on uniform

loading with the results of the tests, they cause the general agree-

ment shown in the tables and tend strongly to sustain our confi-

dence in the validity of the analysis from which these concordant

approximate estimates are obtained.

The amazing difference in the strength and stiffness of these

two slabs, which contain practically the same amount of concrete

and steel, is due to the difference of principle of their construction,

which may be summarized for the mushroom system by consider-

ing its slab action and its cantilever action under the following

counts, viz:

1st. Circumferential slab stresses are most economically and

effectively provided for by the ring rods around the column heads.

2nd. The size of the mushroom heads is such as to make the

belts so wide as to provide reinforcement over the entire area of

the slab, thus securing slab action in the central part of the panel
where the belts lie near the lower surface.

3rd. The reinforcing belts cover a wide zone at the top of

the slab over the columns and mushroom head, which thus provides

resistance to tension, and ensures effective cantilever and slab action.

4th. Concrete is thus stressed in compression at the bottom

of the slab for a wide zone around the columns.

5th. Under a load equal to the breaking load of the Norcross

slab, amounting to thirty-eight tons, the mushroom slab deflected

at first only 1/8", but after exposure to rain and great changes of

temperature for seven days had somewhat softened the concrete

the deflection increased to 1/4".

6th. The first crack appeared underneath the edge of the

slab across the side belt under load No. 5, of fifty-six tons, with a

center deflection of 0.4" and an average deflection at the middle

of side belts of 0.25".

7th. No cracks appeared on the upper side of slab at the

edge, nor were any seen elsewhere, until load No. 7, of 90 tons was

applied, when the yield point of the steel was evidently nearly or

quite reached, giving a center deflection of 1/2".
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Fig. 18. Failure of Mushroom Slab.

Fig. 19. Failure of Mushroom Slab. Load Removed.
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8th. The slab carried its final load of over 120 tons for twenty-
four hours without giving way. It demonstrated the impossibility

of its sudden failure by gradually yielding until it reached a final

deflection of some nine inches, as seen in the views of Dec. 17th

and 24th, Figs. 18 and 19.

9th. While the slab steel in each belt was the same as in the

Norcross slab, the crossing of the belts increased the percentage
of slab reinforcement so much above that of the simple belt rein-

forcement that stress in the steel did not pass the yield point and

the failure was largely due to the giving way of the concrete around

the cap, but partly to some yielding at the line of weakest ultimate

resistance, both of which statements are confirmed by the view of

Dec. 24th, Fig. 19, where the removal of the loading permits the

irregular circular line previously mentioned to be made out at a

distance from the center of each column of somewhat less than L/2.
Less steel is required in this system than in the Nor-

cross slab for the same limiting stresses. Since the steel in this

slab did not pass the yield point any greater percentage of reinforce-

ment would be useless and would not increase the strength of the

slab. It has been found that good practice requires a percentage
of steel dependent in the following manner upon the thickness

of the slab:

If d = L/35 the belt reinforcement = 0.2%

lid = L/24 the belt reinforcement = 0.3%

lid = L/20 the belt reinforcement = 0.4%

Comparision of the steel in the test slabs: Norcross. Mushroom.

Size of slab 16' x 16' 18.4' x 17.8'

Area of slab 256 sq. ft. 328 sq. ft.

Length of 3/8" rods in the slab 1188 ft. 1450 ft.

Weight of 3/8" rods in the slab 446 Ibs. 544 Ibs.

Weight of Plates or Heads in the slab. . . 268 Ibs. 435 Ibs.

Total weight of steel in the slab 714 Ibs. 979 Ibs.

Weight of steel per square foot of slab.. 2. 8 Ibs. 3 Ibs.

Area of Panel 12 x 12 ft. 144 sq. ft. 144 sq. ft.

Length of slab rods per panel 638 ft. 638 ft.

Weight of slab rods per panel 239 Ibs. 239 Ibs.

Weight in plates or heads per panel 67 Ibs. 109 Ibs.

Total weight of steel per panel 306 Ibs. 348 Ibs.

Weight of steel per square foot of panel. 2 1/8 Ibs. 2 5/12 Ibs.



SUGGESTIONS REGARDING THE CONSTRUCTION
AND FINISH OF FLOOR SLABS

By C. A. P. TURNER

18. THE EXECUTION OF WORK: Construction work of any kind

involves a great responsibility, not only on the part of the designer,

but also on the part of those in charge of the work, and that re-

sponsibility is for the safety of those erecting the work.

Perhaps the construction of no type of building is so free from

hazard and risk to the lives of those erecting it as reinforced con-

crete construction when scientifically designed and intelligently

executed.

During the last ten or twelve years, the manufacturers of Port-

land Cement, have through improvements in methods of manu-

facture and great reduction in cost, placed this material on the

market at such reasonable rates that it has given a remarkable

impetus to the construction of concrete work in all lines. Since, as a

material of construction, it has but recently come into general use,

it is not surprising that a large part of the engineering and archi-

tectural profession have not yet become so familiar with its char-

acteristics, but that designs lacking in conservatism from a scientific

standpoint have been frequently made, and this combined with

the execution of the work by unskilled contractors, has resulted in a

number of instances in needless sacrifice of life and large property

losses, such as a more thorough knowledge and study of the char-

acteristics of the material should entirely prevent.

It would be neglect of duty to fail even in this short discussion

to call attention pointedly to those properties and characteristics

of concrete which must be known and appreciated by the engineer

and constructor in order that he may avoid the serious disasters into

which those ignorant or forgetful of them have been too frequently

led.

THE HARDENING OF CONCRETE: Concrete may be defined as

an artificial conglomerate stone in which the coarse aggregate or

space-filler is held together by the cement matrix. The cement

should conform to the Standard Specifications for Cement, recom-

mended by the American Society for Testing Materials.
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The contractor and architect should, at least, see to it that the

cement is finely ground, and that it meets the requirements of the

boiling test. This last may be readily made by forming pats

of the cement of 3J to 4 inches in diameter on a piece of glass, knead-

ing them thoroughly with just enough moisture to make them plastic,

so that they will hold their shape without flowing, and taper to a

thin edge. Store the pats under a moist cloth at a temperature of

sixty-five to seventy-five degrees Fahr. for a period of 24 hours.

Then place the pats in a kettle or pan of cold water, and after raising

the temperature of the water to the boiling point, continue boiling

for a period of four hours. If the pats do not then show cracks,

and if they harden without cracking or disintegrating, the con-

structor may be satisfied that the cement is suitable for use in the

work. Coarse grinding reduces the sand-carrying capacity of the

cement, and its consequent efficiency.

The function assigned to the concrete element in the combina-

tion of reinforced concrete is to resist compressive stresses in bend-

ing; but when first mixed the concrete is nothing more than mud,
and in order for it to become the hard, rigid material necessary to

fulfill its function in the finished work it must evidently pass in the

process of hardening thru all stages and varying degrees of hardness

from mud and partly cured cement to the final stage of hard, rigid

material. This curing or hardening being a chemical process, does

not occur in any fixed period of time, save and except the temper-
ature conditions are absolutely constant. Hence the time at which

forms may be safely removed is not to be reckoned by a given number

of days, but rather it must be determined by the degree of hardness

attained by the cement. In other words, during warm summer

weather, concrete may become reasonably well cured in twelve or

fifteen days. If the weather, however, is rainy and chilly, it may
not become cured in a month. In the cold, frosty weather of the

spring and autumn, unless warm water is used in the mix, the con-

crete may require two or three months to become thoroughly cured,

while by heating the mixing water, whenever the temperature is

below 50 degrees Fahr., the concrete will harden approximately as

it does during the more favorable season.

Concrete which has been chilled by the use of ice cold water,

or that has become chilled within the first day or two of the time it

is cast, has this peculiarity, that it is very difficult indeed for the

most expert to determine when it is in such condition that it will

retain its shape after the removal of the forms. Once having been

chilled in the early stages, it goes through consecutive stages of



96 POURING CONCRETE

sweating with temperature changes, and during these periods it

sometimes happens that the concrete diminishes in compressive

strength, and if the props are removed it sags and gets out of shape.

Such deformation will generally result in checks and fine cracks,

though there may not be any serious diminition of the ultimate

strength. These checks may be prevented as explained above by
the simple method of heating the mixing water whenever the tem-

perature has dropped below 50 degrees Fahr. In colder weather,

that is below the freezing point, not only must the water be heated,

but as a rule the sand and stone too, also a little salt may be ad-

vantageously used. The work must then be properly housed and

kept warm for at least three weeks subsequent to pouring.

USE OF SALT IN COLD WEATHER : We have mentioned the use of

salt in cold weather. The action of salt is two-fold: It retards the

setting and thus enables us to use water heated to a higher temper-
ature than we could use without salt. It also lowers the freezing

point. Should the concrete then be frozen at the subsequent sweat-

ing period which occurs with a rise in temperature, the salt retains

the necessary moisture for crystallization because of its affinity for

moisture, thus preventing the softened concrete from drying out

and disintegrating through lack of moisture to enable it to crystalize

and harden properly. The amount of salt to be used is about a

cup to the sack of cement with the temperature from 18 to 20 de-

grees Fahr. If the temperature is below this, increase the amount

of salt, and when working below zero Fahr., use not less than two

cups of salt to the bag of cement.

POURING CONCRETE: Bad work frequently results from im-

proper pouring, or casting of the work. In filling the forms, the

lowest portion of the forms should be filled first. A column should

be filled from the center and not from the side of the cap. Filling

from the center will insure a clean smooth face when the forms are

removed. Filling from the side will frequently give a bad surface

because the mortar will flow into the center of the column through

the hooping, leaving the coarse aggregate with voids unfilled at the

outside. As more concrete is then poured in, the voids between the

core and the out side portion will become filled, and the soft mor-

tar will not be able to flow back to completely fill the voids between

the hooping and the casing. Where the spacing of the hooping is

wide, this is not so important, but it becomes very important where

the spiral used has close spacing. It is better to cast the column and

mushroom frame complete, continuing to pour the concrete over

the center of the column so that it always flows from the column
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into the Mushroom slab rather than the reverse. All splices must
be made in a vertical plane, in a beam preferably at the middle of

the span, and in a slab at a center line of a panel.

TEST FOR HARDNESS IN WARM WEATHER: We have pointed

out that the criterion governing the safe removal of forms is the

hardness or rigidity of the concrete. A test of hardness in concrete

not frozen may be made by driving a common eight-penny nail

into it; the nail should double up before penetrating more than

half an inch. The concrete should further be hard enough to

break like stone in knocking off a piece with the hammer.

Noting the indentation under a blow with the hammer, gives a

fair idea of its condition to those having experience.

Subcentering, as provided in the appended specification, is a

desirable method of preventing deformation, where the use of the

forms is desired for upper stories before the concrete is fully cured.

TEST FOR HARDNESS IN COLD WEATHER: Concrete freshly

mixed and frozen hard will not only sustain itself but carry a large

load in addition, until it thaws out and softens, when collapse in

whole or in part is inevitable. Partly cured concrete if frozen,

sweats and softens with a rise in temperature, hence in cold weather

there is danger of mistaking partly cured concrete made rigid by
frost for thoroughly cured material. In fact the only test that can

be depended upon with certainty in cold, frosty weather, is to dig out

a piece of concrete, place a sample on a stove or hot radiator, and

note whether, as the frost is thawed out of it, it sweats and softens.

This gives the builder and engineer a perfectly conclusive test of the

condition of the concrete as to whether it is cured or merely stiffened

up by frost.

LAP OF REINFORCEMENT OVER SUPPORTS: Thoroughly tying
the work together by ample lap in the reinforcement is a prime

requisite for safety in any form or type of construction. This

general precaution insures toughness, and prevents instantaneous

collapse, should the workman exercise bad judgment in premature
removal of forms.

RESPONSIBILITY OF THE ENGINEER: The steps which it is

possible for the engineer to take in securing safe construction are

limited in the first place to the production of a conservative design,

and one which will present toughness, so that its failure under over-

load or under premature removal of the forms will be slow and

gradual. This he can do, and this we believe he is morally bound

to do. On the other hand, he cannot design reinforced concrete
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work which will hold its shape without permanent deformation, un-

less it is properly supported until the concrete has had time under

proper conditions to become thoroughly cured.

Concrete in setting shrinks, and sometimes cracks by reason of

this shrinkage, particularly when it hardens rapidly, as it does in

hot weather. This shrinkage sets up certain stresses in the concrete,

which, combined with temperature changes, occasionally manifest

themselves by subsequent cracks in the work. Such checks or

cracks do not of necessity indicate weakness, providing the concrete

is hard and rigid, since the steel is intended to take the tensile

stresses and the concrete the compressive. Such checks sometimes

cause an unwarranted lack of confidence in the safety and stability

of the work arising from the common lack of familiarity with the

characteristics of the material. For example, the owner of a frame

building would never imagine it to be unsafe because he found a few

season checks in the timber. He is sufficiently familiar with the

seasoning of timber to understand how these checks occur, and that

in most instances they do not mean a loss of strength, since, as the

timber hardens by thoroughly drying out, it becomes stronger, as a

rule, to an amount in excess of any slight weakness which might be

developed by ordinary season cracks or checks. So in concrete,

when the general public becomes more familiar with its character-

istics they will regard as far less important than they now do, checks

which are produced by temperature and shrinkage stresses, or

possibly by slight unequal settlement of supports.

PROPER AND IMPROPER METHODS OF FLOOR FINISH: In con-

crete work there are a number of small defects which occur through

failure to properly manipulate the material, for which the designer

of the engineering part of the work is frequently censured improperly.

For example, cases have occurred where a good splice was not

secured owing to the fact that in very hot weather the stone aggre-

gate became heated in the sun and was not properly cooled down

before mixing the concrete, and so the water dried out too quickly,

while the heat in the stone caused the cement to set so rapidly that

a good splice to the previous work could not be made.

The worst trouble, however, which has been observed, is that

resulting from poor surface finish of floors. Improper methods in

common practice are of two different kinds. One is the attempt

to finish the work approximately at the time it is cast, making the

surface finish integral with the slab. The difficulty with this method

of finishing lies in the fact that as soon as the columns are cast in

the story above, unequal moisture conditions are produced around
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the foot of the column owing to the excess of moisture in the column
;

thus the concrete in the surface of the slab around and near the foot

of the column is expanded by the excess moisture, and it ultimately

shrinks, and leaves a series of spider web cracks as it dries out.

This will occur to a greater or less extent depending on the humidity
of the surrounding atmosphere during the curing or drying out of the

floor. If the weather is dry these checks will be very pronounced

indeed, though they will not be very deep. If it is rainy and damp,
and the floor is kept soaked all the time, they may be nearly or quite

lacking.

Another objection to this method of finish is that unusual pre-

cautions must be taken to protect the floor before the centering can

be placed for a story above, and regardless of the method used to

protect it the floor usually becames scarred and deeply scratched before

the work is complete, leaving a surface difficult to satisfactorily repair.

Another method which leads to bad results is the following:

The rough slab is cast, and the centering removed in due time, the

slab cleaned and the finish coat applied in a sloppy or plastic form,

flowed in place, screeded to approximate surface, and then allowed

to partly set, so that the finishers can get on the floor and trowel it

down. A floor finished in this manner looks well when the work is

new. It does not wear well but dusts badly, pits and rapidly grows

rough and ragged under trucking.

The correct method of applying floor finish is as follows:

The finish coat should be not less than 1 and 1/4 inches to 1 and 1/2
inches in thickness. It should be applied after the rough slab has been

fairly well cured. The surface of the rough slab should be thoroughly

cleaned of dirt and laitance and thoroughly soaked with water.

Then the floor finish, a mixture preferably of one part of cement to

one and one-half sand (the sand a silicious sand with grains from

1/8 inch down, if such can be secured), should be thoroughly mixed

with just enough water to make an extremely stiff paste, one which

will hold its form if squeezed in the hand, but one which will not run

or flow, and will need a fair amount of tamping to bring the moisture

to the surface. This concrete, so mixed, should be applied to the

rough slab in blocks of from four to five feet square, first grouting

the rough slab with a neat cement grout, then tamp until the moist-

ure is brought to the surface, level up and trowel immediately.

The cement finish should not be mixed more rapidly than it can be

applied, so that the cement will not be killed by taking a partial set

before troweling, which is what occurs where the finish is applied

sloppy, and the workmen wait for it to partly harden before they can
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get on it to trowel. A finish applied as just stated will stand severe

usage and last for several years without showing appreciable evi-

dence of pitting, dusting, or undue wear.

The addition of ground iron ore, to the amount of twenty

pounds to the barrel of cement, appears to improve the finish and

give it a more pleasing color.

Checks in cement finish have no relation whatever, as a rule,

to the strength of the work. They will invariably occur in the

cement finish where the finish coat is too thin. When it is less than

1 inch or 3/4 inch at one part of the floor with 1 1/4 inches or 1 1/2
inches at another, the surface will invariably check and crack badly if

applied at a sloppy consistency and allowed to partly cure before it

is polished down. We know of no type of construction where there

has not been much trouble with finished surfaces in such buildings

as have come under our observation. But experience has shown us

that these troubles are needless, and can be avoided by the proper

handling and application of the finishing coat.

It is difficult indeed to re-educate those who profess to be

cement finishers, whose experience has been largely in sidewalk

finish, or work of that character, to appreciate the necessity for a

different method of executing work in a building; but when this has

been accomplished the owner will have the use of a floor finish free

from the unpleasant defects above pointed out.

STRIPS AND STRIP FILL FOR WOOD FLOORS: The proper time

for the application of the strips and fill is immediately after the

rough slab has become sufficiently hardened to work upon it, for the

reason that at this time the strips may be spiked to the partially

hardened concrete and wedged up or lined up to the desired level

without difficulty. Then the strip fill can be put in with the same

rig that is used to cast the floor slab.

The writer prefers the strip fill of the same mixture as the slab

except where the loads are so light that increased strength and

stiffness are of no importance. Then a one to three and one-half,

four, or even five, mix will answer the purpose. No natural cement or

lime should be used in the mixture, since when it is used, trouble

almost invariably follows, caused by its extremely slow hardening

and its retention of moisture until hardening takes place. This

moisture frequently swells and expands the flooring to such an

extent that it springs away from the fastenings, thereby necessi-

tating the entire relaying of the floors. Conservative practice ac-

cordingly is to use Portland Cement alone, which will dry out far

quicker than any natural cement or brown lime.
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STANDARD SPECIFICATION FOR REINFORCED
CONCRETE FLOORS

By C. A. P. TURNER, Consulting Engineer

Minneapolis, Minn.

Reinforcement. Reinforcement shall be of sizes of bars shown on the accom-

panying plans and details which form a part of this specification.

All reinforcing metal shall be of medium open hearth or Bessemer steel,

meeting the requirements of the Manufacturers' Standard Specifications, in

composition, ultimate strength, ductility and elastic limit, and the required

bending basis. Hard grade may be used for slab rods only.

Bending. Bending shall preferably be done cold. If the column rods are

heated and blacksmith work is done, care must be exercised that the steel is not

burned in the operation, otherwise it will be condemned by the engineer.

Cement. Cement shall be of good quality of Portland Cement, of a brand

which has been upon the market and successfully used for at least four years,

meeting the requirements of the specification adopted by the American Society
for Testing Materials.

The contractor shall give the owner the opportunity to test all cement de-

livered, and shall furnish the use of testing machine for this purpose.
The cement shall be delivered in good condition and properly protected

under suitable cover after delivery on the premises so that it may not be damaged
by moisture.

Sand. Sand used in the concrete work shall be clean and coarse, meeting
the requirements and approval of the engineer and architect.

Stone. Stone used shall be sound, hard stone, free from lumps of clay and
other soft unsatisfactory material, or hard smelter slag may be used. In size it

shall be crushed to pass a 1-inch ring, for slabs and columns, and shall be screened

free from dirt and dust.

Concrete. All concrete shall be mixed in a standard batch machine to the

consistency of brick mortar, so that it will flow slowly and require only puddling
around the reinforcement.

Concrete shall be thoroughly mixed in the following proportions: one part

cement, meeting the requirements of the standard specifications; two parts

clean, coarse sand free from clay, loam or other impurities; and four parts crushed

stone or clean gravel.

The concrete shall be poured in the low portions of the forms first. That is,

it shall be poured directly into the column boxes, beam boxes, etc., before it is
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poured on the slab. It shall be so placed that it will be forced to flow as little

as possible to get to the required position, since by flowing, the cement is readily

separated from the mixture.

Splices. Splices in beams or slabs are to be made in a vertical plane, prefer-

ably in the center of the panel or beam.

Proportions. Each sack of cement shall be considered equivalent to one

cubic foot in volume, and the mixture of the cement, sand and stone used in the

concrete shall be proportioned by volume on this basis and as hereinafter specified.

Concrete for footings, columns, beams and rough slabs throughout shall

consist of a mixture of one cement, two sand and four of crushed stone.

For the retaining walls, the concrete mixture shall be one cement, three sand

and five parts of stone.

Concrete in which the cement has attained its initial set shall not be used on

the work. Concrete, however, which has slopped out of the mixer, if cleaned

up within a short time, not over every half hour, may be put back in the mixer,

and after being thoroughly mixed again with water may be used on the work.

Forms. All forms for the reinforced concrete shall be substantially made
and true to line. Any irregularities due to defective workmanship in this re-

spect, shall be made good as directed by the architect, by dressing down the

finished work, or removal and properly replacing it in case that it cannot be

satisfactorily done.

A fair quality of lumber, preferably 1x6 square edge fencing shall be used

for the slab forms. This lumber shall be dressed on the side next to the concrete

except where plaster is specified by the architect for office finish, in which case

the rough side of the boarding shall be placed upwards, next to the concrete.

Column Forms. Column forms shall be made up with plank not less than

1 inches thick and stayed at intervals not more than 18 inches vertically be-

tween bands or straps and shall fit closely at the corner joints, or the forms may
be made of sheet metal.

Removal of the Forms. Forms shall not be removed under the most

favorable conditions, prior to two weeks' time, and under less favorable con-

ditions where the temperature is lower than 50 until the concrete is hard and

rigid.

The superintendent will keep in mind the fact that it is not the number of

days time which has elapsed since placing the concrete which shall determine the

earliest removal of the forms, but rather how rapidly the concrete has thoroughly

cured and hardened and that the concrete may be readily stiffened up by cold

and frost which, when it thaws, will sweat and fail to maintain the desired form.

Sub=Centering. Where a series of floors are cast one above the other, sub-

centering of substantial posts about 10 feet centers shall be kept in place until

there are at least two supporting slabs that are well cured and hard so that the

concrete may not be overstained in the early stages of hardening.

Placing and Inspection of Reinforcement. BEFORE COMMENCING THE

CONCRETE WORK, the reinforcement shall be properly placed and inspected by
the architect or the engineer representing the owner, and not until after this

inspection and approval may the work of casting the floor proceed.

The floor slab rods shall be wired together to hold them in the position as

shown on the plans. Special attention being given to placing the rods in belts

of the width of the mushroom frame and fairly uniform spacing, although this is
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of less importance than keeping to the general distribution through the full width

of the belts of reinforcement.

In placing the floor slab rods, all those running from column to column

directly on one side of a panel shall be placed first, then those running at right

angles, next all those in one diagonal belt, and then those in the other diagonal.

Where a belt of slab rods runs parallel to a wall place one rod at bottom on

forms. Then see that belts normal and diagonally are placed, following

up with slab rods parallel to the wall on the top of normal and diagonal belts.

In wiring the rods together it is desirable to use No. 16 soft annealed wire,

taking a piece, say a yard long, fastening an intersection, then carry the wire

diagonally to the next intersection, taking a half hitch and proceed until this

piece is used up and making the end fast. Then star^ with a new piece and

proceed as before.

Two lines of ties, crossing and normal to the intersecting belts at the center

will hold these rods in position very nicely.

A similar tie across the parallel belts, and a suitable number of fastenings

around the mushroom head are required to hold the bars in position.

Floor Finish. The finish coat on the rough slab shall not be less than 1 inch

thick, and the rough slab shall be prepared for its reception as follows :

The slab shall be thoroughly scrubbed with a steel brush and water,and then

after it has been thoroughly cleaned from dirt and laitance it shall be kept wet

for at least six hours. The surface shall then be coated with neat cement grout
and the finish coat applied.

The finish coat shall consist of a mixture of one cement to one and one-half

clean, coarse sand. The finish coat shall be mixed with just enough water to

make a very stiff paste and not enough to make it soft and sloppy. It shall be

tamped in place and troweled to a smooth finish.

Mixing the material wet and sloppy renders it necessary to wait until the

material hardens somewhat before it is possible to polish it down. In allowing
it to partly harden the finisher is then obliged to break up the surface of partly
hardened cement which results in a finished surface that will dust badly, pit

readily and wear rough under subsequent use, so that this method should not

be employed.
This finish coat is to be blocked off in squares along the center line of

columns, and joints shall be made in this coat between panel joints at five to

six foot intervals.

Conduits. Before casting the concrete, the concrete contractor shall see

that the electric contractor has placed the necessary conduits for the wires. These

shall be kept above the reinforcement wherever they come in the center of a

panel, the idea being to have these conduit pipes above the steel and dip down
into the socket at the junction, or to use a special deep socket which would be

prefered by the engineer.

These conduit pipes should be carried below the level of the reinforce-

ment around the mushroom heads where the reinforcement is of necessity near

the top of the slab.

Depositing Concrete in Warm Weather. When the concrete is deposited
in temperatures above 70 Fahr., the slab shall be thoroughly wet down twice

a day for two days after it has been cast. Any preliminary shrinkage cracks

which occur on the surface of the slab due to too rapid drying shall be

immediately filled with liquid cement grout.
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Any concrete work indicating that it has not been thoroughly mixed in the

required proportions shall be dug out and replaced as directed by the engineer

and architect.

Placing Concrete in Cold Weather. Where the temperature is below 45

Fahr., the water shall be heated to a temperature of at least 110 . Where the

temperature is below 30 Fahr., artifical heat shall be used to assist in curing

the concrete, and this must be continued until such a time as the slab is thorough-

ly cured and dry throughout.

Pouring Concrete. In the mushroom system concrete shall be poured
over the center of the column until the column is filled. Then the pouring

shall be continued until the mushroom and mushroom frame is filled up so that

the concrete will flow from the column toward the center of the slab and not

from the center of the slab toward the column. In this way solid concrete

without joints and planes of imperfect bond will be secured around and in the

vicinity of column heads, where it is most needed.

Test. No test shall be made until the concrete is thoroughly cured, is dry,

hard and rigid throughout. Ninety days of good drying weather at a tempera-

ture above 60 Fahr., either natural or artificial, shall be the criterion as to when

the test of double the working capacity can be reasonably made.

General. It is the general intent of this specification to require first class

work in all particulars, and work unsatisfactory to the engineer and architect

representing the owners shall be made good by the contractor as they direct.
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LIST OF ONE HUNDRED BUILDINGS SELECTED FROM
MORE THAN A THOUSAND DESIGNED ON THE

MUSHROOM SYSTEM

1906 Johnson-Bovey Go's. Bldg Minneapolis, Minn.

1906 Hoffman Building Milwaukee, Wis.

1907 Bostwick Braun Bldg Toledo, Ohio

1907 Lindeke Warner Bldg St. Paul, Minn.

1907 Hamm Brewery Bldg
" " -

1907 Smythe Building Wichita, Kans.

1907 Forman Ford Bldg Minneapolis, Minn.

1907 Grellet Collins Bldg Philadelphia, Pa.

1907 Parsons Scoville Bldg Evansville, Ind.

1907 Born Building Chicago, 111.

1908 South Dakota State Capitol Pierre, S. D.

1908 Merchants Ice & Cold Storage Bldg Cincinnati, Ohio

1908 St. Mary's Hospital Kansas City, Mo.
1908 John Deere Plow Co Omaha, Nebr.

1908 Minn. State Prison Bldgs ... (6) Stillwater, Minn.

1908 Ripley Apartments Tacoma, Wash.

1908 Velie Motor Bldg Moline, 111.

1908 Park Grant Morris Bldg Fargo, N. D.

1909 Con P. Curran Bldg St. Louis, Mo.
1909 Manchester Biscuit Go's. Bldg Fargo, N. D.

1909 Blue Line Transfer & Storage Bldg Des Moines, la.

1909 Cutler Hardware Bldg Waterloo, la.

1909 Mass. Cotton Mills Boston, Mass.

1909 McMillan Packing Co St. Paul, Minn.

1909 Vancouver Ice and Cold Storage Co Vancouver, Bldg.

1909 Omaha Fireproof Storage Bldg Omaha, Nebr.

1909 J. I. Case Bldg Oklahoma City, Okla.

1909 Tibbs Hutchings & Co Minneapolis, Minn.

1909 Snead Mfg. Bldg Louisville, Ky.
1909 New England Sanitary Bakery Bldg Decatur, 111.

1909 International Harvester Bldg Milwaukee, Wis.

1909 Congress Candy Co Grand Forks, N. D.

1910 Y. M. C. A. Bldg Winnipeg, Man.
1910 West Publishing Go's. Bldg St. Paul, Minn.

1910 Beatrice Creamery Bldg Lincoln, Nebr.

1910 Iten Biscuit Co Omaha, Nebr.

1910 Turner Moving & Storage Bldg Denver, Colo.

1910 Congress Realty Go's. Bldg Portland, Me.
1910 Sniders & Abrahams Bldg Melbourne, Australia

1910 Strong & Warner Bldg St. Paul, Minn.

1910 Lexington High School Bldg St. Paul, Minn.

1910 Weicker Transfer & Storage Bldg Denver, Colo.

1910 Chehallis County Court House Montesano, Wash.

1910 Missouri Glass Go's. Bldg St. Louis, Mo.
1910 Industrial Bldg Newark, N. J.

1910 Revel & Wagner Bldg Little Rock, Ark.

1910 Jobst Bethard Bldg Peoria, 111.

1910 International Harvester (Keystone Works).. .Sterling, 111.



1910 Patterson Hotel Bismarck, N. D.

1910 O'Neil Bldg Akron, Ohio

1911 Lindsay Bldg Winnipeg, Man.
1911 King George Hotel. Saskatoon, Sask.

1911 Northern Cold Storage Bldg Duluth, Minn.

1911 Leighton Supply Co Fort Dodge, la.

1911 Kinsey Bldg Toledo, Ohio

1911 Lozier Motor Bldg Detroit, Mich.

1911 Mullin Warehouse Bldg Cedar Rapids, la.

1911 Griggs Cooper & Co St. Paul, Minn.

1911 Swift Canadian Go's. Bldgs Vancouver, B. C.

1911 McKenzie Bldg Brandon, Man.
1911 Swift Canadian Go's. Bldg Fort William, Ont.

1911 Commerce Bldg St. Paul, Minn.

1911 Experimental Eng. Bldg. Univ. of Minn Minneapolis, Minn.
1911 St. Paul Bread Go's. Bldg St. Paul, Minn.

1911 Rust Parker Martin Bldg Duluth, Minn.

1912 Woodward Wight Co. Ltd. Bldg New Orleans, La.

1912 Internationa] Harvester Go's. Bldg Fort William, Ont.

1912 H. W. Johns-Manville Bldgs. ... (3) Finderne, N. J.

1912 Cooledge Bldg Atlanta, Ga.

1912 Lawrence Leather Go's. Bldg . . .Lawrence, Mass.

1912 Sears, Roebuck & Co Dallas, Texas

1912 Vineburg Bldg Montreal, Quebec
1912 Imperial Tobacco Co Montreal, Quebec
1912 Richards Pinhorn Bldg Denver, Col.

1912 Kinney & Levan Co. Bldg Cleveland, Ohio

1912 Standard Oil Co. Bldgs ... (2) Cleveland, Ohio

1912 Silver Sunshine Bldgs ... (2) Cleveland, Ohio

1912 Commercial Improvement Go's. Bldg Columbus, O.

1912 Moore Department Store Bldg Memphis, Tenn.

1912 Main Eng. Bldg. Univ. of Minn Minneapolis, Minn.

1912 Honeyman Hardware Bldg Portland, Ore.

1912 Revillon Wholesale Hardware Bldg Edmonton, Alta.

1912 Calgary Furniture Go's. Bldg Calgary, Alta.

1912 Willoughby Sumner Bldg Saskatoon, Sask.

1912 U. S. Post Office Minneapolis, Minn.

1912 Motor Mart Bldg Sioux City, la.

1912 Finch Van Slyke & McConville Bldg St. Paul, Minn.

1912 Hudson Bay Go's. Warehouse Winnipeg, Man.
1912 Snell Bldg Moose Jaw, Sask.

1913 Y. M. C. A. Bldg Vancouver, B. C.

1913 Reynolds Tobacco Factory Bldg Winston Salem, N. C.

1913 Ford Motor Bldg Memphis, Tenn.

1913 Ford Motor Bldg Los Angeles, Cal.

1913 G. Sommers & Co. Bldg St. Paul, Minn.

1913 Knickerbocker Bldg Los Angeles, Cal.

1913 Trinity Auditorium Bldg Los Angeles, Gal.

1913 U. S. Alumium Go's. Bldg Pittsburg, Pa.

1913 Gordon Fergusen Go's. Bldg St. Paul, Minn.

1913 S. H. Kress & Go's. Bldg Houston, Tex.

1913 "Los Muchachos" Bldg San Juan, Porto Rico
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