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PREFACE.

THE function of laboratory instruction in physics is twofold.

Elementary courses are intended to develop the power of discrimi-

nating observation and to put the student in personal contact with

the phenomena and general principles discussed in textbooks and

lecture demonstrations. The apparatus provided should be of the

simplest possible nature, the experiments assigned should be for

the most part qualitative or only roughly quantitative, and emphasis

should be placed on the principles illustrated rather than on the

accuracy of the necessary measurements. On the other hand,

laboratory courses designed for more mature students, who are

supposed to have a working knowledge of fundamental principles,

are intended to give instruction in the theory and practice of the

methods of precise measurement that underlie all effective research

and supply the data on which practical engineering enterprises are

based. They should also develop the power of logical argument
and expression, and lead the student to draw rational conclusions

from his observations. The instruments provided should be of

standard design and efficiency in order that the student may gain

practice in making adjustments and observations under as nearly

as may be the same conditions that prevail in original investigation.

Measurements are of little value in either research or engineering

applications unless the precision with which they represent the

measured magnitude is definitely known. Consequently, the stu-

dent should be taught to plan and execute proposed measurements

within definitely prescribed limits and to determine the accuracy

of the results actually attained. Since the treatment of these

matters in available laboratory manuals is fragmentary and often

very inadequate if not misleading, the author some years ago under-

took to impart the necessary instruction, in the form of lectures,

to a class of junior engineering students. Subsequently, textbooks

on the Theory of Errors and the Method of Least Squares were

adopted but most of the applications to actual practice were still

given by lecture. The present treatise is the result of the experi-
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VI PREFACE

ence gained with a number of succeeding classes. It has been

prepared primarily to meet the needs of students in engineering
and advanced physics who have a working knowledge of the differ-

ential and integral calculus. It is not intended to supersede but

to supplement the manuals and instruction sheets usually employed
in physical laboratories, Consequently, particular instruments and

methods of measurement have been described only in so far as they
serve to illustrate the principles under discussion.

The usefulness of such a treatise was suggested by the marked

tendency of laboratory students to carry out prescribed work in a

purely automatic manner with slight regard for the significance or

the precision of their measurements. Consequently, an endeavor

has been made to develop the general theory of measurements and

the errors to which they are subject in a form so clear and concise

that it can be comprehended and applied by the average student

with the prescribed previous training. To this end, numerical ex-

amples have been introduced and completely worked out whenever

this course seemed likely to aid the student in obtaining a thorough

grasp of the principles they illustrate. On the other hand, inherent

difficulties have not been evaded and it is not expected, or even

desired, that the student will be able to master the subject without

vigorous mental effort.

The first seven chapters deal with the general principles that

underlie all measurements, with the nature and distribution of the

errors to which they are subject, and with the methods by which

the most probable result is derived from a series of discordant

measurements. The various types of measurement met with in

practice are classified, and general methods of dealing with each

of them are briefly discussed. Constant errors and mistakes are

treated at some length, and then the unavoidable accidental errors

of observation are explicitly defined. The residuals corresponding
to actual measurements are shown to approach the true accidental

errors as limits when the number of observations is indefinitely

increased and their normal distribution in regard to sign and mag-
nitude is explained and illustrated. After a preliminary notion of

its significance has been thus imparted, the law of accidental errors

is stated empirically in a form that gives explicit representation to

all of the factors involved. It is then proved to be in conformity
with the axioms of accidental errors, the principle of the arithmetical

ij and the results of experience. The various characteristic
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errors that are commonly used as a measure of the accidental errors

of given series of measurements are clearly denned and their signifi-

cance is very carefully explained in order that they may be used

intelligently. Practical methods for computing them are developed

and illustrated by numerical examples.

Chapters eight to twelve inclusive are devoted to a general dis-

cussion of the precision of measurements based on the principles

established in the preceding chapters. The criteria of accidental

errors and suitable methods for dealing with constant and systematic

errors are developed in detail. The precision measure, of the result

computed from given observations, is defined and its significance is

explained with the aid of numerical illustrations. The proper basis

for the criticism of reported measurements and the selection of

suitable numerical values from tables of physical constants or other

published data is outlined
;
and the importance of a careful estimate

of the precision of the data adopted in engineering and scientific

practice is emphasized. The applications of the theory of errors to

the determination of suitable methods for the execution of proposed
measurements are discussed at some length and illustrated.

In chapter thirteen, the relation between measurement and re-

search is pointed out and the general methods of physical research

are outlined. Graphical methods of reduction and representation
are explained and some applications of the method of least squares
are developed. The importance of timely and adequate publication,

or other report, of completed investigations is emphasized and some

suggestions relative to the form of such reports are given

Throughout the book, particular attention is paid to methods of

computation and to the proper use of significant figures. For the

convenience of the student, a number of useful tables are brought

together at the end of the volume.

A. DE FOREST PALMER.
BROWN UNIVERSITY,

July, 1912.
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THE

THEOEY OF MEASUREMENTS

CHAPTER I.

GENERAL PRINCIPLES.

i. Introduction. Direct observation of the relative position

and motion of surrounding objects and of their similarities and

differences is the first step in the acquisition of knowledge.
Such observations are possible only through the sensations pro-

duced by our environment, and the value of the knowledge thus

acquired is dependent on the exactness with which we corre-

late these sensations. Such correlation involves a quantitative

estimate of the relative intensity of different sensations and of

their time and space relations. As our estimates become more

and more exact through experience, our ideas regarding the

objective world are , gradually modified until they represent

the actual condition of things with a considerable degree of

precision.

The growth of science is analogous to the growth of ideas.

Its function is to arrange a mass of apparently isolated and un-

related phenomena in systematic order and to determine the in-

terrelations between them. For this purpose, each quantity that

enters into the several phenomena must be quantitatively deter-

mined, while all other quantities are kept constant or allowed

to vary by a measured amount. The exactness of the relations

thus determined increases with' the precision of the measure-

ments and with the success attained in isolating the particular

phenomena investigated.

A general statement, or a mathematical formula, that ex-

presses the observed quantitative relation between the different

magnitudes involved in any phenomenon is called the law of

that phenomenon. As here used, the word law does not mean
1



2 THE THEORY OF MEASUREMENTS [ART. 2

that the phenomenon must follow the prescribed course, but

that, under the given conditions and within the limits of error

and the range of our measurements, it has never been found to

deviate from that course. In other words, the laws of science

are concise statements of our present knowledge regarding

phenomena and their relations. As we increase the range and

accuracy of our measurements and learn to control the condi-

tions of experiment more definitely, the laws that express our

results become more exact and cover a wider range of phenomena.

Ultimately we arrive at broad generalizations from which the

laws of individual phenomena are deducible as special cases.

The two greatest factors in the progress of science are the

trained imagination of the investigator and the genius of

measurement. To the former we owe the rational hypotheses

that have pointed the way of advance and to the latter the

methods of observation and measurement by which the laws of

science have been developed.

2. Measurement and Units. To measure a quantity is to

determine the ratio of its magnitude to that of another quan-

tity, of the same kind, taken as a unit. The number that

expresses this ratio may be either integral or fractional and is

called the numeric of the given quantity in terms of the chosen

unit. In general, if Q represents the magnitude of a quantity,

U the magnitude of the chosen unit, and N the corresponding

numeric we have

Q = NU, (I)

which is the fundamental equation of measurement. The two

factors N and U are both essential for the exact specification of

the magnitude Q. For example: the length of a certain line

is five inches, i.e., the line is five times as long as one inch. It

is not sufficient to say that the length of the line is five; for in

that case we are uncertain whether its length is five inches, five

feet, or five times some other unit.

Obviously, the absolute magnitude of a quantity is independent

of the units with which we choose to measure it. Hence, if we

adopt a different unit U', we shall find a different numeric N'

such that

Q = N'U', (II)

and consequently
NU = N'U',
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or $-^- (HI)

Equation (III) expresses the general principle involved in the

transformation of units and shows that the numeric varies in-

versely as the magnitude of the unit; i.e., if U is twice as large

as U', N will be only one-half as large as N'. To take a con-

crete example: a length equal to ten inches is also equal to

25.4 centimeters approximately. In this case N equals ten,

N' equals 25.4, U equals one inch, and Ur

equals one centi-

Nf

meter. The ratio of the numerics
-^

is 2.54 and hence the

inverse ratio of the units
-,
is also 2.54, i.e., one inch is equal to

2.54 centimeters.

Equation (III) may also be written in the form

(IV)

which shows that the numeric of a given quantity relative to the

unit U is equal to its numeric relative to the unit U' multiplied

w
by the ratio of the unit Uf

to the unit U. The ratio
-jj

is called

the conversion factor for the unit U f

in terms of the unit U.

It is equal to the number of units U in one unit U', and when

multiplied by the numeric of a quantity in terms of U' gives

the numeric of the same quantity in terms of U. The con-

version factor for transformation in the opposite direction, i.e.,

from U to U', is obviously the inverse of the above, or -== In

general, the numerator of the conversion factor is the unit in

which the magnitude is already expressed and the denominator

is the unit to which it is to be transformed. For example:
one inch is approximately equal to 2.54 centimeters, hence the

numeric of a length in centimeters is about 2.54 times its numeric

in inches. Conversely, the numeric in inches is equal to the

numeric in centimeters divided by 2.54 or multiplied by the

reciprocal of this number.

In so far as the theory of mensuration and the attainable

accuracy of the result are concerned, measurements may be made
in terms of any arbitrary unite and, in fact, the adoption oisuch
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units is frequently convenient when we are concerned only with

relative determinations. In general, however, measurements are

of little value unless they are expressed in terms of generally

accepted units whose magnitude is accurately known. Some

such units have come into use through common consent but most

of them have been fixed by government enactment and their per-

manence is assured by legal standards whose relative magnitudes

have been accurately determined. Such primary standards, pre-

served by various governments, have, in many cases, been very

carefully intercompared and their conversion factors are accu-

rately known. Copies of the more important primary standards

may be found in all well-equipped laboratories where they are

preserved as the secondary standards to which all exact measure-

ments are referred. Carefully made copies are, usually, sufficiently

accurate for ordinary purposes, but, when the greatest precision

is sought, their exact magnitude must be determined by direct

comparison with the primary standards. The National Bureau

of Standards at Washington makes such comparisons and issues

certificates showing the errors of the standards submitted for

test.

3. Fundamental and Derived Units. Since the unit is, neces-

sarily, a quantity of the same kind as the quantity measured, we
must have as many different units as there are different kinds of

quantities to be measured. Each of these units might be fixed

by an independent arbitrary standard, but, since most measur-

able quantities are connected by definite physical relations, it is

more convenient to define our units in accordance with these

relations. Thus, measured in terms of any arbitrary unit, a

uniform velocity is proportional to the distance described in

unit time; but, if we adopt as our unit such a velocity that the

unit of length is traversed in the unit of time, the factor of pro-

portionality is unity and the velocity is equal to the ratio of the

space traveled to the elapsed time.

Three independently defined units are sufficient, in connection

with known physical relations, to fix the value of most of the

other units used in physical measurements. We are thus led to

distinguish two classes of units; the three fundamental units,

defined by independent arbitrary standards, and the derived

units, fixed by definite relations between the fundamental units.

The.magnitude, and to some extent the choice, of the fundamental
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units is arbitrary, but when definite standards for each of these

units have been adopted the magnitude of all of the derived units

is fixed.

For convenience in practice, legal standards have been adopted

to represent some of the derived units. The precision of these

standards is determined by indirect comparison with the standards

representing the three fundamental units. Such comparisons are

based on the known relations between the fundamental and de-

rived units and are called absolute measurements. The practical

advantage gained by the use of derived standards lies in the fact

that absolute measurements are generally very difficult and require

great skill and experience in order to secure a reasonable degree

of accuracy. On the other hand, direct comparison of derived

quantities of the same kind is often a comparatively simple

matter and can be carried out with great precision.

4. Dimensions of Units. The dimensions of a unit is a

mathematical formula that shows how its magnitude is related

to that of the three fundamental units. In writing such formulae,

the variables are usually represented by capital letters inclosed

in square brackets. Thus, [M], [L] and [T]- represent the dimen-

sions of the units of mass, length and time respectively.

Dimensional formulae and ordinary algebraic equations are

essentially different in significance. The former shows the rela-

tive variation of units, while the latter expresses a definite mathe-

matical relation between the numerics of measurable quantities.

Thus if a point in uniform motion describes the distance L in the

time T its velocity V is defined by the relation

V = Y (V)

Since L and T are concrete quantities of different kind, the right-

hand member of this equation is not a ratio in the strict arithmet-

ical sense; i.e., it cannot be represented by a simple abstract num-
ber. Hence, in virtue of the definite physical relation expressed

by equation (V), we are led to extend our idea of ratio to include

the case of concrete quantities. From this point of view, the ratio

of two quantities expresses the rate of change of the first quantity
with respect to the second. It is a concrete quantity of the same
kind as the quantity it serves, to define. As an illustration, con-

sider the meaning of equation (V). Expressed in words, it is
"
the
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velocity of a point, in uniform motion, is equal to the time rate at

which it moves through space."

If we represent the units of velocity, length, and time by [7],

[L], and [T\, respectively, and the corresponding numerics by v,

I, and t, we have by equation (I), article two,

F =
v(V], L =

l(L], T =
t[T],

and equation (V) becomes

w-m-i'
or

[V][T] t

Since, by definition, [V] and
|~l

are quantities of the same kind,

their ratio can be expressed by an abstract number k and equation

(VI) may be written in the form

v = kl, (VII)

which is an exact numerical equation containing no concrete

quantities.

The numerical value of the constant k obviously depends on

the units with which L, T, and V are measured. If we define the

unit of velocity by the relation

ryi-M
[TV

or, as it is more often written,

[F] = [L!T-'] f (VIII)

k becomes equal to unity and the relation (VII) between the

numerics of velocity, length, and time reduces to the simple form

The foregoing argument illustrates the advantage to be gained

by defining derived units in accordance with the physical rela-

tions on which they depend. By this means we eliminate the

often incommensurable constants of proportionality such as k

would be if the unit of velocity were defined in any other way
than by equation (VIII).
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The expression on the right-hand side of equation (VIII) is the

dimensions of the unit of velocity when the units of length, mass,

and time are chosen as fundamental. The dimensions of any
other units may be obtained by the method outlined above when

we know the physical relations on which they depend. The form

of the dimensional formula depends on the units we choose as

fundamental, but the general method of derivation is the same in

all cases. As an exercise to fix these ideas the student should

verify the following dimensional formulae: choosing [M], [L], and

[T] as fundamental units, the dimensions of the units of area,

acceleration, and force are [L
2
], [LT~

2
], and [MLT~2

] respectively.

As an illustration of the effect of a different choice of fundamental

units, it may be shown that the dimensions of the unit of mass is

[FL^T2
] when the units of length [L], force [F], and time [T] are

chosen as fundamental. The dimensions of some important
derived units are given in Table I at the end of this volume.

5. Systems of Units in General Use. Consistent systems
of units may differ from one another by a difference in the choice

of fundamental units or by a difference in the magnitude of the

particular fundamental units adopted. The systems in common
use illustrate both types of difference.

Among scientific men, the so-called c.g.s. system is almost

universally adopted, and the results of scientific investigations

are seldom expressed in any other units. The advantage of such

uniformity of choice is obvious. It greatly facilitates the com-

parison of the results of different observers and leads to general

advance in our knowledge of the phenomena studied. The units

of length, mass, and time are chosen as fundamental in this

system and the particular values assigned to them are the centi-

meter for the unit of length, the gram for the unit of mass, and
the mean solar second for the unit of time.

The units used commercially in England and the United States

of America are far from systematic, as most of the derived units

are arbitrarily defined. So far as they follow any order, they
form a length-mass-time system in which the unit of length is the

foot, the unit of mass is the mass of a pound, and the unit of time

is the second. This system was formerly used quite extensively

by English scientists and the results of some classic investigations
are expressed in such units.

English and American engineers find it more convenient to use
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a system in which the fundamental units are those of length,

force, and time. The particular units chosen are the foot as the

unit of length, the pound's weight at London as the unit of force,

and the mean solar second as the unit of time. We shall see that

this is equivalent to a length-mass-time system in which the units

of length and time are the same as above and the unit of mass is

the mass of 32.191 pounds.
6. Transformation of Units. When the relative magnitude

of corresponding fundamental units in two systems is known, a

result expressed in one system can be reduced to the other with

the aid of the dimensions of the derived units involved. Thus:

let A c represent the magnitude of a square centimeter, A t the

magnitude of a square inch, Nc the numeric of a given area when

measured in square centimeters, and Ni the numeric of the same

area when measured in square inches; then, from equation (IV),

article two, we have

But if Lc is the magnitude of a centimeter and LI that of an inch,

Ai is equal to Lf, and therefore

Hence, the conversion factor -p for reducing square centimeters
A-i

to square inches is equal to the square of the conversion factor

for reducing from centimeters to inches. Now the dimensions
Li

of the unit of area is [L
2
], and we see that the conversion factor

for area may be obtained by substituting the corresponding con-

version factor for lengths in this dimensional formula. This is a

simple illustration of the general method of transformation of

units. When the fundamental units in the two systems differ in

magnitude, but not in kind, the conversion factor for correspond-

ing derived units in the two systems is obtained by replacing the

fundamental units by their respective conversion factors in the

dimensions of the derived units considered.

It should be noticed that the fundamental units in the c.g.s.

system are those of length, mass, and time, while on the engineer's

system they are length, force, and time. In the latter system,
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force is supposed to be directly measured and expressed by the

dimensions [F]. Consequently the dimensions of the unit of

mass are [FL~
1T2

], and the unit of mass is a mass that will acquire

. a velocity of one foot per second in one second when acted upon

by a force of one pound's weight. For the sake of definiteness,

the unit of force is taken as the pound's weight at London, where

the acceleration due to gravity (g) is equal to 32.191 feet per

second per second. Otherwise the unit of force would be variable,

depending on the place at which the pound is weighed.

From Newton's second law of motion we know that the relation

between acceleration, mass, and force is given by the expression

/ = ma.

For a constant force the acceleration produced is inversely pro-

portional to the mass moved. Now the mass of a pound at London
is acted upon by gravity with a force of one pound's weight, and, if

free, it moves with an acceleration of 32.191 feet per second per

second. Hence a mass equal to that of 32.191 pounds acted

upon by a force of one pound's weight would move with an acceler-

ation of one foot per second per second, i.e., it would acquire a

velocity of one foot per second in one second. Hence the unit of

mass in the engineer's system is 32.191 pounds mass. This unit

is sometimes called a slugg, but the name is seldom met with since

engineers deal primarily with forces rather than masses, and are

W
content to write for mass without giving the unit a definite

7

name. This is equivalent to saying that the mass of a body,

expressed in sluggs, is equal to its weight, at London, expressed in

pounds, divided by 32.191.

After careful consideration of the foregoing discussion, it will

be evident that the engineer's length-force-time system is exactly

equivalent to a length-mass-time system in which the unit of

length is the foot, the unit of mass is the slugg or 32.191 pounds'

mass, and the unit of time is the mean solar second. In the latter

system the fundamental units are of the same kind as those of

the c.g.s. system. Hence, if the conversion factor for the unit

of mass is taken as the ratio of the magnitude of the slugg to that

of the gram, quantities expressed in the units of the engineer's

system may be reduced to the equivalent values in the c.g.s.

system by the method described at the beginning of this article.
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When, as is frequently the case, the engineer's results are expressed

in terms of the local weight of a pound as a unit of force in place

of the pound's weight at London, the result of a transformation

of units, carried out as above, will be in error by a factor equal to

the ratio of the acceleration due to gravity at London and at the

location of the measurements. Unless the local gravitational

acceleration is definitely stated by the observer and unless he

has used his length-force-time units in a consistent manner, it is

impossible to derive the exact equivalent of his results on the

c.g.s. system.



CHAPTER II.

MEASUREMENTS.

IN article two of the last chapter we defined the term " measure-

ment " and showed that any magnitude may be represented by
the product of two factors, the numeric and the unit. The object

of all measurements is the determination of the numeric that ex-

presses the magnitude of the observed quantity in terms of the

chosen unit. For convenience of treatment, they may be classified

according to the nature of the measured quantity and the methods

of observation and reduction.

7. Direct Measurements. The determination of a desired

numeric by direct observation of the measured quantity, with the

aid of a divided scale or other indicating device graduated in

terms of the chosen unit, is called a direct measurement.

Such measurements are possible when the chosen unit, together

with its multiples and submultiples, can be represented by a

material standard, so constructed that it can be directly applied

to the measured quantity for the purpose of comparison, or when
the unit and the measured magnitudes produce proportional

effects on a suitable indicating device.

Lengths may be directly measured with a graduated scale,

masses by comparison with a set of standard masses on an equal

arm balance, time intervals by the use of a clock regulated to

give mean solar time, and forces with the aid of a spring balance.

Hence magnitudes expressible in terms of the fundamental units

of either the c.g.s. or the engineer's system may be directly

measured.

Many quantities expressible in terms of derived units, that can

be represented by material standards, are commonly determined

by direct measurement. As illustrations, we may cite the deter-

mination of the volume of a liquid with a graduated flask and the

measurement of the electrical resistance of a wire by comparison
with a set of standard resistances.

8. Indirect Measurements. The determination of a desired

numeric by computation from the numerics of one or more
11
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directly measured magnitudes, that bear a known relation to the

desired quantity, is called an indirect measurement.

The relation between the observed and computed magnitudes

may be expressed in the general form

y = Ffa, Xz, x3 ,
. . . a, b, c . . . ),

where y, x t ,
x2 , etc., represent measured or computed magnitudes,

or the numerics corresponding to them, a, b, c, etc., represent

constants, and F indicates that there is a functional relation

between the other quantities. This expression is read, y equals

some function of xi, x*, etc., and a, b, c, etc. In any particular

case, the form of the function F and the number and nature of the

related quantities must be known before the computation of the

unknown quantities is undertaken.

Most of the indirect measurements made by physicists and

engineers fall into one or another of three general classes, char-

acterized by the nature of the unknown and measured magnitudes
and the form of the function F.

9. Classification of Indirect Measurements.

I.

In the first class, y represents the desired numeric of a magni-
tude that is not directly measured, either because it is impossible
or inconvenient to do so, or because greater precision can be at-

tained by indirect methods. The form of the function F and the

numerical values of all of the constants a, 6, c, etc., appearing in

it, are given by theory. The quantities xi, Xz, etc., represent
the numerics of directly measured magnitudes. In the following

pages indirect measurements belonging to this class will sometimes
be referred to as derived measurements.

As an illustration we may cite the determination of the density
s of a solid sphere from direct measurements of its mass M and
its diameter D with the aid of the relation

M=
F^'

Comparing this expression with the general formula given above,
we note that s corresponds to y, M to xi, D to xa , J to a, TT to 6,

and that F represents the function y^^. The form of the func-
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tion is given by the definition of density as the ratio of the mass

to the volume of a body and the numerical constants and w are

given by the known relation between the volume and diameter of

a sphere.

II.

In the second class of indirect measurements, the numerical

constants a, b, c, etc., are the unknown quantities to be computed,

the form of the function F is known, and all of the quantities y,

Xi, xz , etc., are obtained by direct measurements or given by

theory. The functions met with in this class of measurements

usually represent a continuous variation of the quantity y with

respect to the quantities x\, x2 , etc., as independent variables.

Hence the result of a direct measurement of y will depend on the

particular values of Xi, x2 , etc., that obtain at the time of the

measurement. Consequently, in computing the constants a, b, c,

etc., we must be careful to use only corresponding values of the

measured quantities, i.e., values that are, or would be, obtained

by coincident observations on the several magnitudes.

Every set of corresponding values of the variables y, Xi, x2 , etc.,

when used in connection with the given function, gives an algebraic

relation between the unknown quantities a, b, c, etc., involving

only numerical coefficients and absolute terms. When we have

obtained as many independent equations as there are unknown

quantities, the latter may be determined by the usual algebraic

methods. We shall see, however, that more precise results can

be obtained when the number of independent measurements far

exceeds the minimum limit thus set and the computation is made

by special methods to be described hereafter.

The determination of the initial length L and the coefficient of

linear expansion a of a metallic bar from a series of measurements

of the lengths L t corresponding to different temperatures t with the

aid of the functional relation

L t
= Lo (1 + at)

is an example of the class of measurements here considered. Such

measurements are sometimes called determinations of empirical

constants.
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III.

The third class of indirect measurements includes all cases in

which each of a number of directly measured quantities yi, y*, ys ,

etc., is a given function of the unknown quantities Xi, x2 ,
XB , etc.,

and certain known numerical constants a, 6, c, etc. In such cases

we have as many equations of the form

y 1
= FI (xi, x2 , 3 ,

. . . a, 6, c, . . . ),

2/2
= F2 (xi, z2 , $t, . . . a,M, . . . )>

as there are measured quantities yi, y2 ,
etc. This number must

be at least as great as the number of unknowns Xi, x 2 , etc., and

may be much greater.

The functions F lt F 2 ,

etc., are frequently dif-

ferent in form and some

of them may not con-

tain all of the un-

knowns. The numeri-

cal constants, appearing

in different functions,

are generally different.

But the form of each

of the functions and

the values of all of the

constants must be

known before a solu-

tion of the problem is

possible.

Problems of this type

are frequently met with

in astronomy and geod-

esy. One of the simplest is known as the adjustment of the

angles about a point. Thus, let it be required to find the most

probable values of the angles Xi, x2 ,
and x 3 , Fig. 1, from direct

measurements of yi, y2 , y3) . . . y& . In this case the general

equations take the form

FIG.
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2/i
=

xi,

2/2
= xi + x2 ,

2/4
= X2 ,

2/5
=

2

2/6
=

,

and all of the numerical constants are either unity or zero. The

solution of such problems will be discussed in the chapter on the

method of least squares.

10. Determination of Functional Relations. When the form

of the functional relation between the observed and unknown

magnitudes is not known, the solution of the problem requires

something more than measurement and computation. In some

cases a study of the theory of the observed phenomena, in con-

nection with that of allied phenomena, will suggest the form of the

required function. Otherwise, a tentative form must be assumed

after a careful study of the observations themselves, generally by

graphical methods. In either case the constants of the assumed

function must be determined by indirect measurements and the

results tested by a comparison of the observed and the computed
values of the related quantities. If these values agree within the

accidental errors of observation, the assumed function may be

adopted as an empirical representation of the phenomena. If

the agreement is not sufficiently close, the form of the function

is modified, in a manner suggested by the observations, and the

process of computation and comparison is repeated until a satis-

factory agreement is obtained. A more detailed treatment of

such processes will be found in Chapter XIII.

11. Adjustment, Setting, and Observation of Instruments.

Most of the magnitudes dealt with in physics and engineering

are determined by indirect measurements. But we have seen

that all such quantities are dependent upon and computed from

directly measured quantities. Consequently, a study of the

methods and precision of direct measurement is of fundamental

importance.

In general, every direct measurement involves three distinct

operations. First: the instrument adopted is so placed that its
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scale is in the proper position relative to the magnitude to be

measured and all of its parts operate smoothly in the manner and

direction prescribed by theory. Operations of this nature are

called adjustments. Second: the reference line of the instru-

ment is moved, or allowed to move, in the manner demanded by

theory, until it coincides with a mark chosen as a point of reference

on the measured magnitude. We shall refer to this operation as a

setting of the instrument. Third: the position of the index of

the instrument, with respect to its graduated scale, is read. This

is an observation.

As an illustration, consider the measurement of the normal

distance between two parallel lines with a micrometer microscope.

The instrument must be so mounted that it can be rigidly clamped

in any desired position or moved freely in the direction of its

optical axis without disturbing the direction of the micrometer

screw. The following adjustments are necessary: the axis of the

micrometer screw must be made parallel to the plane of the two

lines and perpendicular to a normal plane through one of them;
the eyepiece must be so placed that the cross-hairs are sharply

defined; the microscope must be moved, in the direction of its

optical axis, until the image of the two lines, or one of them if the

normal distance between them is greater than the field of view

of the microscope, is in the same plane with the cross-hairs. The

latter adjustment is correct when there is no parallax between the

image of the lines and the cross-hairs. The setting is made by

turning the micrometer head until the intersection of the cross-

hairs bisects the image of one of the lines. Finally the reading
of the micrometer scale is observed. A similar setting and ob-

servation are made on the other line and the difference between

the two observations gives the normal distance between the two

lines in terms of the scale of the micrometer.

12. Record of Observations. In the preceding article, the

word "observation" is used in a very much restricted sense to

indicate merely the scale reading of a measuring instrument.
This restriction is convenient in dealing with the technique of

measurement, but many other circumstances, affecting the accu-

racy of the result, must be observed and taken into account in a

complete study of the phenomena considered. There is, however^
little danger of confusion in using the word in the two different

senses since the more restricted meaning is in reality only a
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special case of the general. The particular significance intended

in any special case is generally clear from the context.

The first essential for accurate measurements is a clear and

orderly record of all of the observations. The record should begin

with a concise description of the magnitude to be measured, and

the instruments and methods adopted for the purpose. Instru-

ments may frequently be described, with sufficient precision, by

stating their name and number or other distinguishing mark.

Methods are generally specified by reference to theoretical treatises

or notes. The adjustment and graduation of the instruments

should be clearly stated. The date on which the work is carried

out and the location of the apparatus should be noted.

Observations, in the restricted sense, should be neatly arranged

in tabular form. The columns of the table should be so headed,

and referred to by subsidiary notes, that the exact significance of

all of the recorded figures will be clearly understood at any future

time. All circumstances likely to affect the accuracy of the

measurements should be carefully observed and recorded in the

table or in suitably placed explanatory notes.

Observations should be recorded exactly as taken from the

instruments with which they are made, without mental computa-
tion or reduction of any kind even the simplest. For example:
when a micrometer head is divided into any number of parts

other than ten or one hundred, it is better to use two columns in

the table and record the reading of the main scale in one and

that of the micrometer head in the other than to reduce the head

reading to a decimal mentally and enter it in the same column

with the main scale reading. This is because mistakes are likely

to be made in such mental calculations, even by the most expe-

rienced observers, and, when the final reduction of the observations

is undertaken at a future time, it is frequently difficult or impos-
sible to decide whether a large deviation of a single observation

from the mean of the others is due to an accidental error of obser-

vation or to a mistake in such a mental calculation.

13. Independent, Dependent, and Conditioned Measure-
ments. Measurements on the same or different magnitudes are

said to be independent when both of the following specifications
are fulfilled: first, the measured magnitudes are not required to

satisfy a rigorous mathematical relation among themselves;

second, the same observation is not used in the computation of
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any two of the measurements and the different observations are

entirely unbiased by one another.

When the first of these specifications is fulfilled and the second

is not, the measurements are said to be dependent. Thus, when

several measurements of the length of a line are all computed

from the same zero reading of the scale used, they are all dependent

on that observation and any error in the position of the zero mark

affects all of them by exactly the same amount. When the position

of the index relative to the scale of the measuring instrument is

visible while the settings are being made, there is a marked tendency

to set the instrument so that successive observations will be exactly

alike rather than to make an independent judgment of the bisection

of the chosen mark in each case. The observations, corresponding

to settings made in this manner, are biased by a preconceived

notion regarding the correct position of the index and the measure-

ments computed from them are not independent. The impor-

tance of avoiding faulty observations of this type cannot be too

strongly emphasized. They not only vitiate the results of our

measurements, but also render a determination of their precision

impossible.

Measurements that do not satisfy the first of the above speci-

fications are called conditioned measurements. The different

determinations of each of the related quantities may or may not

be independent, according as they do or do not satisfy the second

specification, but the adjusted results of all of the measurements

must satisfy the given mathematical relation. Thus, we may
make a number of independent measurements of each of the

angles of a plane triangle, but the mean results must be so adjusted
that the sum of the accepted values is equal to one hundred and

eighty degrees.

14. Errors and the Precision of Measurements. Owing to

unavoidable imperfections and lack of constant sensitiveness in

our instruments, and to the natural limit to the keenness of our

senses, the results of our observations and measurements differ

somewhat from the true numeric of the observed magnitude.
Such differences are called errors of observation or measurement.

Some of them are due to known causes and can be eliminated,

with sufficient accuracy, by suitable computations. Others are

apparently accidental in nature and arbitrary in magnitude.
Their probable distribution, in regard to magnitude and frequency
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of occurrence, can be determined by statistical methods when a

sufficient number of independent measurements is available.

The precision of a measurement is the degree of approximation

with which it represents the true numeric of the observed magni-
tude. Usually our measurements serve only to determine the

probable limits within which the desired numeric lies. Looked

at from this point of view, the precision of a measurement may be

considered to be inversely proportional to the difference between

the limits thus determined. It increases with the accuracy,

adaptability, and sensitiveness of the instruments used, and with

the skill and care of the observer. But, after a very moderate

precision has been attained, the labor and expense necessary for

further increase is very great in proportion to the result obtained.

A measurement is of little practical value unless we know the

precision with which it represents the observed magnitude.
Hence the importance of a thorough study of the nature and dis-

tribution of errors in general and of the particular errors that

characterize an adopted method of measurement. At first sight

it might seem incredible that such errors should follow a definite

mathematical law. But, when the number of observations is

sufficiently great, we shall see that the theory of probability leads

to a definite and easily calculated measure of the precision of a

single observation and of the result computed from a number

of observations.

15. Use of Significant Figures. When recording the nu-

merical results of observations or measurements, and during all

of the necessary computations, the number of significant figures

employed should be sufficient to express the attained precision

and no more. By significant figures we mean the nine digits and

zeros when not used merely to locate the decimal point.

In the case of the direct observation of the indications of instru-

ments, the above specification is usually sufficiently fulfilled by

allowing the last recorded significant figure to represent the

estimated tenth of the smallest division of the graduated scale.

For example: in measuring the length of a line, with a scale

divided in millimeters, the position of the ends of the line would

be recorded to the nearest estimated tenth of a millimeter.

Generally, computed results should be so recorded that the

limiting values, used to express the attained precision, differ by
only a few units in the last one or two significant figures. Thus:
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if the length of a line is found to lie between 15.65 millimeters and

15.72 millimeters, we should write 15.68 millimeters as the result

of our measurement. The use of a larger number of significant

figures would be not only a waste of space and labor, but also a

false representation of the precision of the result. Most of the

magnitudes we are called upon to measure are incommensurable

with the chosen unit, and hence there is no limit to the number

of significant figures that might be used if we chose to do so; but

experienced observers are always careful to express all observa-

tions and results and carry out all computations with a number

just sufficient to represent the attained precision. The use of

too many or too few significant figures is strong evidence of inex-

perience or carelessness in making observations and computations.
More specific rules for determining the number of significant

figures to be used in special cases will be developed in connection

with the methods for determining the precision of measurements.

The number of significant figure^ in any numerical expression
is entirely independent of the position of the decimal point.

Thus: each of the numbers 5,769,600, 5769, 57.69, and 0.0005769

is expressed by four significant figures and represents the corre-

sponding magnitude within one-tenth of one per cent, notwith-

standing the fact that the different numbers correspond to differ-

ent magnitudes. In general, the location of the decimal point
shows the order of magnitude of the quantity represented and
the number of significant figures indicates the precision with which
the actual numeric of the quantity is known.

In writing very large or very small numbers, it is convenient
to indicate the position of the decimal point by means of a positive
or negative power of ten. Thus: the number 56,400,000 may
be written 564 X 105

or, better, 5.64 X 107
,
and 0.000075 may

be written 75 X W~ or 7.5 X 10~5
. When a large number of

numerical observations or results are to be tabulated or used in

computation, a considerable amount of time and space is saved

by adopting this method of representation. The second of the
two forms, illustrated above, is very convenient in making com-
putations by means of logarithms, as in this case the power of
ten always represents the characteristic of the logarithm of the

corresponding number.
In rounding numbers to the required number of significant

figures, the digit in the last place held should be increased by one
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unit when the digit in the next lower place is greater than five,

and left unchanged when the neglected part is less than five-

tenths of a unit. When the neglected part is exactly five-tenths

of a unit the last digit held is increased by one if odd, and left

unchanged if even. Thus: 5687.5 would be rounded to 5688 and

5686.5 to 5686.

1 6. Adjustment of Measurements. The results of inde-

pendent measurements of the same magnitude by the same or

different methods seldom agree with one another. This is due to

the fact that the probability for the occurrence of errors of exactly

the same character and magnitude in the different cases is very

small indeed. Hence we are led to the problem of determining

the best or most probable value of the numeric of the observed

magnitude from a series of discordant measurements. The given

data may be all of the same precision or it may be necessary to

assign a different degree of accuracy to the different measure-

ments. In either case the solution of the problem is called the

adjustment of the measurements.

The principle of least squares, developed in the theory of errors

that leads to the measure of precision cited above, is the basis

of all such adjustments. But the particular method of solution

adopted in any given case depends on the nature of the measure-

ments considered. In the case of a series of direct, equally pre-

cise, measurements of a single quantity, the principle of least

squares leads to the arithmetical mean as the most probable, and

therefore the best, value to assign to the measured quantity.

This is also the value that has been universally adopted on a priori

grounds. In fact many authors assume the maximum probability

of the arithmetical mean as the axiomatic basis for the develop-
ment of the law of errors.

The determination of empirical relations between measured

quantities and the constants that enter into them is also based

on the principle of least squares. For this reason, such deter-

minations are treated in connection with the discussion of the

methods for the adjustment of measurements.

17. Discussion of Instruments and Methods. The theory
of errors finds another very important application in the discussion

of the relative availableness and accuracy of different instruments

and methods of measurement. Used in connection with a few

preliminary measurements and a thorough knowledge of the
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theory of the proposed instruments and methods, it is sufficient

for the determination of the probable precision of an extended

series of careful observations. By such means we are able to

select the instruments and methods best adapted to the particular

purpose in view. We also become acquainted with the parts of

the investigation that require the greatest skill and care in order

to give a result with the desired precision.

The cost of instruments and the time and skill required in

carrying out the measurements increase much more rapidly than

the corresponding precision of the results. Hence these factors

must be taken into account in determining the availableness of a

proposed method. It is by no means always necessary to strive

for the greatest attainable precision. In fact, it would be a

waste of time and money to carry out a given measurement with

greater precision than is required for the use to which it is to be

put. For many practical purposes, a result correct within one-

tenth of one per cent, or even one per cent, is amply sufficient.

In such cases it is essential to adopt apparatus and methods that
will give results definitely within these limits without incurring
the greater cost and labor necessary for more precise deter-
minations.



CHAPTER III.

CLASSIFICATION OF ERRORS.

ALL measurements, of whatever nature, are subject to three

distinct classes of errors, namely, constant errors, mistakes, and

accidental errors.

18. Constant Errors. Errors that can be determined in

sign and magnitude by computations based on a theoretical

consideration of the method of measurement used or on a pre-

liminary study and calibration of the instruments adopted are

called constant errors. They are sometimes due to inadequacy of

an adopted method of measurement, but more frequently to

inaccurate graduation and imperfect adjustment of instruments.

As a simple illustration, consider the measurement of the

length of a straight line with a graduated scale. If the scale is

not held exactly parallel to the line, the result will be too great

or too small according as the line of sight in reading the scale is

normal to the line or to the scale. The magnitude of the error

thus introduced depends on the angle between the line and the

scale and can be exactly computed when we know this angle and

the circumstances of the observations. If the scale is not straight,

if its divisions are irregular, or if they are not of standard length,

the result of the measurement will be in error by an amount

depending on the magnitude and distribution of these inaccuracies

of construction. The sign and magnitude of such errors can

gener
o1
ly be determined by a careful study and calibration of the

scai

If M represents the actual numeric of the measured magnitude,
MQ the observed numeric, and Ci, C2 ,

C3 , etc., the constant errors

inherent in the method of measurement and the instruments used,

M = Mo + Ci + C2 + C3 + -
. (1)

The necessary number of correction terms Ci, G'2 ,
Cz , etc., is

determined by a careful study of the theory and practical appli-

cation of the apparatus and method used in finding MQ . The

magnitude and sign of each term are determined by subsidiary
23
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measurements or calculated, on theoretical grounds, from known

data. Thus, in the above illustration, suppose that the scale is

straight and uniformly graduated, that each of its divisions is

1.01 times as long as the unit in which it is supposed to be gradu-

ated, and that the line of the graduations makes an angle a with

the line to be measured. Under these conditions, the number of

correction terms reduces to two: the first, Ci, due to the false

length of the scale divisions, and the second, C2 ,
due to the lack

of parallelism between the scale and the line.

Since the actual length of each division is 1.01, the .length of

Mo divisions, i.e., the length that would have been observed on

an accurate scale, is

M l
= Mo X 1.01 = Mo + 0.01 Mo = Mo + Ci,

... Ci = + 0.01 Mo.

If the line of sight is normal to the line in making the observa-

tions, the length M2 that would have been obtained if the scale

had been properly placed is

M2
= MO cos a = MO + Czj

/. C2 =-M (l-cosa)=-2M sin2^
and (1) takes the form

M= Mo + 0.01 Mo - 2M sin2

|>

= M
(l+0.01-2sin

2

^Y

The precision with which it is necessary to determine the cor-

rection terms Ci, C2 , etc., and frequently the number of these

terms that should be employed depends on the precision with

which the observed numeric M is determined. If M is measured

within one-tenth of one per cent of its magnitude, the several

correction terms should be determined within one one-hundredth

of one per cent of M
,
in order that the neglected part of the sum

of the corrections may be less than one-tenth of one per cent of

M . If any correction term is found to be less than the. above

limit, it may be neglected entirely since it is obviously useless

to apply a correction that is less than one-tenth of the uncer-

tainty of M .

In our illustration, suppose that the precision is such that we
are sure that M is less than 1.57 millimeters and greater than
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1.55 millimeters, but is not sufficient to give the fourth significant

figure within several units. Obviously, it would be useless to

determine Ci and C% closer than 0.001 millimeter, and if the mag-
nitude of either of these quantities is less than 0.001 millimeter

our knowledge of the true value of M is not increased by making
the corresponding correction. In fact, it is usually impossible

to determine the C's with greater accuracy than the above limit,

since, as in our illustration, MQ is usually a factor in the correction

terms. Hence the writing down of more than the required num-

ber of significant figures is mere waste of labor.

When considering the availableness of proposed methods and

apparatus, it is important to investigate the nature and magni-
tude of the constant errors inherent in their use. It sometimes

happens that the sources of such errors can be sufficiently elimi-

nated by suitable adjustment of the instruments or modification

of the method of observation. When this is not possible the

conditions should be so chosen that the correction terms can be

computed with the required precision. Even when all possible

precautions have been taken, it very seldom happens that the

sum of the constant errors reduces to zero or that the magni-
tude of the necessary corrections can be exactly determined.

Moreover, such errors are never rigorously constant, but present

small fortuitous variations, which, to some extent, are indistinguish-

able from the accidental errors to be described later.

A more detailed discussion of constant errors and the limits

within which they should be determined will be given after we
have developed the methods for estimating the precision of the

observed numeric M.

19. Personal Errors. When setting cross-hairs, or any other

indicating device, to bisect a chosen mark, some observers will

invariably set too far to one side of the center, while others will

as consistently set on the other side. Again, in timing a transit,

some persons will signal too soon and others too late. With

experienced and careful observers, the errors introduced in this

manner are small and nearly constant in magnitude and sign,

but they are seldom entirely negligible when the highest possible

precision is sought.

Errors of this nature will be called personal errors, since their

magnitude and sign depend on personal peculiarities of the

observer. Their elimination may sometimes be effected by a
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careful study of the nature of such peculiarities and the magnitude

of the effects produced by them under the conditions imposed

by the particular problem considered. Suitable methods for this

purpose are available in connection with most of the investiga-

tions in which an exact knowledge of the personal error is essential.

Such a study is .frequently referred to as a determination of the

"Personal Equation" of the observer.

20. Mistakes. Mistakes are errors due to reading the indi-

cations of an instrument carelessly or to a faulty record of the

observations. The most frequent of these are the following :

the wrong integer is placed before an accurate fractional reading,

e.g., 9.68 for 19.68; the reading is made in the wrong direction of

the scale, e.g., 6.3 for 5.7; the significant figures of a number are

transposed, e.g., 56 is written for 65. Care and strict attention

to the work in hand are the only safeguards against such mistakes.

When a large number of observations have been systematically

taken and recorded, it is sometimes possible to rectify an obvious

mistake, but unless this can be done with certainty the offending

observation should be dropped from the series. This statement

does not apply to an observation showing a large deviation from

the mean but only to obvious mistakes.

21. Accidental Errors. When a series of independent meas-

urements of the same magnitude have been made, by the same

method and apparatus and with equal care, the results generally

differ among themselves by several units in the last one or two

significant figures. If in any case they are found to be identical,

it is probable that the observations were not independent, the

instruments adopted were not sufficiently sensitive, the maximum
precision attainable was not utilized, or the observations were

carelessly made. Exactly concordant measurements are quite as

strong evidence of inaccurate observation as widely divergent
ones.

As the accuracy of method and the sensitiveness of instruments

is increased, the number of concordant figures in the result in-

creases but differences always occur in the last attainable figures.

Since there is, generally, no reason to suppose that any one of the

measurements is more accurate than any other, we are led to

believe that they are all affected by small unavoidable errors.

After all constant errors and mistakes have been corrected, the re-

maining differences between the individual measurements and the true
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numeric of the measured magnitude are called accidental errors.

They are due to the combined action of a large number of inde-

pendent causes each of which is equally likely to produce a posi-

tive or a negative effect. Probably most of them have their

origin in small fortuitous variations in the sensitiveness and

adjustment of our instruments and in the keenness of our senses

of sight, hearing, and touch. It is also possible that the correla-

tion of our sense perceptions and the judgments that we draw

from them are not always rigorously the same under the same

set of stimuli.

Suppose that N measurements of the same quantity have been

made by the same method and with equal care. Let ai, a^, 3,

. . . aN represent the several results of the independent meas-

urements, after all constant errors and mistakes have been elim-

inated, and let X represent the true numeric of the measured

magnitude. Then the accidental errors of the individual measure-

ments are given by the differences,

Ai - ai
- X, A 2

= a2
- X, A 3

= a3
- X

}
. . . A^ = aN-X. (2)

The accidental errors AI, A 2 ,
. . . A# thus denned are sometimes

called the true errors of the observations ai, a2 ,
. . . aN .

22. Residuals. Since the individual measurements a\ t a?,

. . . aN differ among themselves, and since there is no reason to

suppose that any one of them is more accurate than any other, it

is never possible to determine the exact magnitude of the numeric

X. Hence the magnitude of the accidental errors A i, A 2 ,
. . . A#

can never be exactly determined. But, if x is the most probable
value that we can assign to the numeric X on the basis of our

measurements, we can determine the differences

ri = di x, rz
= a2 x, . . . rN = aN x. (3)

These differences are called the residuals of the individual measure-

ments dij 02, . . . aN . They represent the most probable values

that we can assign to the accidental errors AI, A 2 ,
. . . A# on the

basis of the given measurements.

It should be continually borne in mind that the residuals thus

determined are never identical with the accidental errors. How-
ever precise our measurements may be, the probability that x is

exactly equal to X is always less than unity. As the number
and precision of measurements increase, the difference between
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the magnitudes x and X decreases, and the residuals continually

approach the accidental errors, but exact equality is never attain-

able with a finite number of observations.

23. Principles of Probability. The theory of errors is an

application of the principles of probability to the discussion of

series of discordant measurements for the purpose of determining

the most probable numeric that can be assigned to the measured

quantity and making an estimate of the precision of the result

thus obtained. A discussion of the fundamental principles of

the theory of probability, sufficient for this purpose, is given in

most textbooks on advanced algebra, and the student should

master them before undertaking the study of the1 theory of errors.

For the sake of convenience in reference, the three most useful

propositions are stated below without proof.

PROPOSITION 1. If an event can happen in n independent

ways and either happen or fail in N independent ways, the prob-

ability p that it will occur in a single trial at random is given by
the relation

n , A .

p - r w
Also if p' is the probability that it will fail in a single trial at

random,

p = l_p = !_.. (5 )

PROPOSITION 2. If the probabilities for the separate occurrence

of n independent events are respectively pi, p%, . . . pn ,
the prob-

ability PS that some one of these events will occur in a single trial

at random is given by the relation

PS = Pi + Pz + Pz + ' ' ' + P^ (6)

PROPOSITION 3. If the probabilities for the separate occurrence

of n independent events are respectively pi, p2 ,
. . . pn ,

the

probability P that all of the events will occur at the same time is

given by the relation

P = Pi X P2 X X Pn. (7)



CHAPTER IV.

THE LAW OF ACCIDENTAL ERRORS.

24. Fundamental Propositions. The theory of accidental

errors is based on the principle of the arithmetical mean and the

three axioms of accidental errors. When the word "
error

"
is used

without qualification, in the statement of these propositions and

in the following pages, accidental errors are to be understood.

Principle of the Arithmetical Mean. The most probable value

that can be assigned to the numeric of a measured magnitude, on

the basis of a number of equally trustworthy direct measurements,
is the arithmetical mean of the given 'measurements.

This proposition is self-evident in the case of two independent

measurements, made by the same method with equal care, since

one of them is as likely to be exact as the other, and hence it is

more probable that the true numeric lies halfway between them
than in any other location. Its extension to more than two
measurements is the only rational assumption that we can make
and is sanctioned by universal usage.

First Axiom. In any large number of measurements, positive

and negative errors of the same magnitude are equally likely to

occur. The number of negative errors is equal to the number
of positive errors.

Second Axiom. Small errors are much more likely to occur

than large ones.

Third Axiom. All of the errors of the measurements in a

given series lie between equal positive and negative limits. Very
large errors do not occur.

The foundation of these propositions is the same as that of the

axioms of geometry. Namely: they are general statements that

are admitted as self-evident or accepted as a basis of argument by
all competent persons. Their justification lies in the fact that
the results derived from them are found to be in agreement with

experience.

25. Distribution of Residuals. It was pointed out in article

twenty-two that the true accidental errors, represented by A's,
29
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cannot be determined in practice, but the residuals, represented

by r's, can be computed from the given observations by equation

(3). The A's may be considered as the limiting values toward

which the r's approach as the number of observations is indefinitely

increased. If the residuals corresponding to a very large num-

ber of observations are arranged in groups according to sign and

magnitude, the groups containing very small positive or negative

residuals will be found to be the largest, and, in general, the magni-

tude of the groups will decrease nearly uniformly as the magnitude

of the contained residuals increases either positively or negatively.

Let n represent the number of residuals in any group, and r their

common magnitude, then the distribution of the residuals, in

regard to sign and magnitude, may be represented graphically

by laying off ordinates proportional to the numbers n against

abscissae proportional to the corresponding magnitudes r. The

points, thus located, will be approximately uniformly distributed

about a curve of the general form illustrated in Fig. 2.

The number of residuals in each group will increase with the

total number of measurements from which the r's are computed.

Consequently the ordinates of the curve in Fig. 2 will depend on

the number of observations considered as well as on their accuracy.

Hence, if we wish to compare different series of measurements with

regard to accuracy, we must in some way eliminate the effect of

differences in the number of observations. Moreover, we are not

so much concerned with the total number of residuals of any given

magnitude as with the relative number of residuals of different

magnitudes. For, as we shall see, the acuracy of a series of

observations depends on the ratio of the number of small errors

to the number of large ones.

26. Probability of Residuals. Suppose that a very large

number N of independent measurements have been made and that
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the corresponding residuals have been computed by equation (3).

By arranging the results in groups according to sign and magni-

tude, suppose we find HI residuals of magnitude n, n 2 of magni-

tude r2 , etc., and n\ of magnitude n, n/ of magnitude r2 ,
etc.

If we choose one of the measurements at random, the probability

that the corresponding residual is equal to r\ is
-^ ,

since there

are N residuals and n\ of them are equal to r\. In general, if y\, y2
,

Hi, 2/2', represent the probabilities for the occurrence

of residuals equal to n, r2 ,
. . . n, r2 ,

. . . respectively,

When N is increased by increasing the number of measurements,
each of the n's is increased in nearly the same ratio since the

residuals of the new measurements are distributed in essentially

the same manner as the old ones, provided all of the measure-

ments considered are made by the same method and with equal

care. Consequently, the y's corresponding to a definite method

of observation are nearly independent of the number of measure-

ments. As N increases they oscillate, with continually decreas-

ing amplitude, about the limiting values that would be obtained

with an infinite number of observations. Hence the form of a

curve, having y's for ordinates and corresponding r's for abscissae,

depends on the accuracy of the measurements considered and is

sensibly independent of N, provided it is a large number.

27. The Unit Error. The relative accuracy of different

series of measurements might be studied with the aid of the corre-

sponding y : r curves, but since the y's are abstract numbers, and

the r's are concrete, being of the same kind as the measurements,
it is better to adopt a slightly different mode of representation.

For this purpose, each of the r's is divided by an arbitrary con-

stant k, of the same kind as the measurements, and the abstract

numbers y^> -^> etc., are used as abscissae in place of the r's. In
A/ K

the following pages, k will be called the unit error. Its magnitude

may be arbitrarily chosen in particular cases, but, when not

definitely specified to the contrary, it will be taken equal to the

least magnitude that can be directly observed with the instru-

ments and methods used in making the measurements. To
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illustrate: suppose we are measuring a given length with a scale

divided in millimeters. By estimation, the separate observations

can be made to one-tenth of a millimeter. Hence, in this case

we should take k equal to one-tenth of a millimeter.

If the residuals are arranged in the order of increasing magni-

tude, it is obvious that the successive differences TI r
, r? TI

etc., are all equal to k. Hence, if the most probable value of the

measured quantity, x in equation (3), is taken to the same num-
ber of significant figures as the individual measurements, all of

the residuals are integral multiples of k and we have

k

k

28. The Probability Curve. The result of a study of the

distribution of the residuals may be arranged as illustrated in the

following table, where n is the number of residuals of magnitude

r; y is the probability that a single residual, chosen at random, is

of magnitude r; N is the total number of measurements, and k is

the unit error.

r
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some of the points will be shifted upward while others will be

shifted downward, but the distribution will remain approxi-

mately symmetrical with respect to the same curve. In general,

successive equal increments to N cause shifts of continually de-

creasing magnitude; and in the limit, when TV becomes equal to

infinity, and the residuals are equal to the accidental errors, the

points would be on a uniform curve symmetrical to the yQ ordi-

nate. The curve thus determined represents the relation between

the magnitude of an error and the probability of its occurrence

in a given series of measurements. For this reason it is called

the probability curve.

29. Systems of Errors. The coordinates of the probability

curve are y and-r-, since it represents the distribution of the true

accidental errors AI, A 2 , etc., in regard to relative frequency and

magnitude. Since the curve is uniform, it represents not only
the errors of the actual observations, but also the distribution of

all of the accidental errors that would be found if the sensitive-

ness of our instruments were infinitely increased and an infinite

number of observations were made, provided only that all of the

observations were made with the same degree of precision and

entirely independently.

All of the errors represented by a curve of this type belong to a

definite system, characterized by the magnitude of the maximum
ordinate yo and the slope of the curve. Hence, every probability

curve represents a definite system of errors. It also represents
the accidental errors of a series of measurements of definite pre-

cision. Hence, the accidental errors of series of measurements of

different precision belong to different systems, and each series

is characterized by a definite system of errors.

The probability curves A and B in Fig. 4 represent the systems
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of errors that characterize two series of measurements of different

precision. As the precision of measurement is increased it is

obvious that the number of small errors will increase relatively

to the number of large ones. Consequently the probability of

small errors will be greater and that of large ones will be less in

the more precise series A than in the less precise series B. Hence,

the curve A has a greater maximum ordinate and slopes more

rapidly toward the horizontal axis than the curve B.

30. The Probability Function. The maximum ordinate and

the slope of the probability curve depend on the constants that

appear in the equation of the curve. When we know the form

of the equation and have a method of determining the numerical

value of the constants, we are able to determine the relative pre-

cision of different series of measurements. Since the curve repre-

sents the distribution of the true accidental errors, we are also able

to compare the distribution of these errors with that of the resid-

uals and thus develop workable methods for finding the most

probable numeric of the measured magnitude.
It is obvious, from an inspection of Figs. 3 and 4, that y is a

continuous function of A, decreasing very rapidly as the magni-
tude of A increases either positively or negatively and symmetrical
with respect to the y axis. Hence, the probability curve sug-

gests an equation in the form

(9)
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where e is the base of the Napierian system of logarithms, o> is a

constant depending on the precision of the series of measurements

considered, and the other variables have been defined above.

This equation can be derived analytically from the three axioms

of accidental errors, with the aid of several plausible assumptions

regarding the constitution of such errors, or from the principle

of the arithmetical mean. However, the strongest evidence of

its exactness lies in the fact that it gives results in substantial

agreement with experience. Consequently, we will adopt it as an

empirical relation, and proceed to show that it is in conformity

with the three axioms and leads to the arithmetical mean as the

most probable numeric derivable from a series of equally good

independent measurements of the same magnitude.

Equation (9) is the mathematical expression of the law of

accidental errors and is often referred to simply as the law of

errors. Its right-hand member is called the probability function

and, for the sake of convenience, is represented by (A), giving

the relations

2/
= 0(A); ^(A)^'

2

^. (10)

31. The Precision Constant. The curves in Fig. 4 were

plotted, to the same scale, from data computed by equation (9).

The constant w was taken twice as great for the curve A as for

the curve B, and in both cases values of y were computed for suc-

cessive integral values of the ratio r-- The maximum ordinate of

each of these curves corresponds to the zero value of A and is

equal to the value of co used in computing the y's. The curve

A, corresponding to the larger value of o>, approaches the hori-

zontal axis much more rapidly than the curve B.

Obviously, the constant co determines both the maximum
ordinate and the slope of the probability curve. But we have

seen that these characteristics are proportional to the precision

of the measurements that determine the system of errors repre-

sented. Hence co characterizes the system of errors consid-

ered and is proportional to the precision of the corresponding
measurements. Some writers have called it the precision measure,

but, as it depends only on the accidental errors and takes no

account of the accuracy with which constant errors are avoided

or corrected, it does not give a complete statement of the pre-
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cision. Consequently the term "
precision measure

"
will be re-

served for a function to be discussed later, and a; will be called the

precision constant in the following pages.

When A is taken equal to zero in equation (9), y is equal to co.

Hence the precision of measurements, so far as it depends upon

accidental errors, is proportional to the probability for the occur-

rence of zero error in the corresponding system of errors. In

this connection, it should be borne in mind that the system of

errors includes all of the errors that would have been found

with an infinite number of observations, and that it cannot be

restricted to the errors of the actual measurements for the pur-

pose of computing o> directly. Indirect methods for computing

a> from given observations will be discussed later.

32. Discussion of the Probability Function. Inspection of

the curves in Fig. 4, in connection with equation (9), is sufficient to

show that the probability function is in agreement with the first

two axioms. Since y is an even function of A, positive and nega-

tive errors of the same magnitude are equally probable, and conse-

quently equally numerous in an extended series of measurements.

Hence the first axiom is fulfilled. Since A enters the function

only in the negative exponent, the probability for the occurrence

of an error decreases very rapidly as its magnitude increases

either positively or negatively. Hence small errors are much more

likely to occur than large ones and the second axiom is fulfilled.

Since the function </> (A) is continuous for values of A ranging
from minus infinity to plus infinity, it is apparently at variance

with the third axiom. For, if all of the errors lie between definite

finite limits L and + L, (A) should be continuous while A
lies between these limits and equal to zero for all values of A
outside of them. But we have no means of fixing the limits

-f- L and L, in any given case; and we note that 0(A) becomes

very small for moderately large values of A. Hence, whatever the

true value of L may be, the error involved in extending the limits

to oo and +00 is infinitesimal. Consequently, </>(A) is in sub-

stantial agreement with the third axiom provided it leads to the

conclusion that all possible errors lie between the limits oo and

+ oo . This will be the case if it gives unity for the probability
that a single error, chosen at random, lies between oo and -f oo .

For, if all of the errors lie between these limits, the probability
considered is a certainty and hence is represented by unity.
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33. The Probability Integral. The accidental errors, corre-

sponding to actual measurements, may be arranged in groups ac-

cording to their magnitude in the same manner that the residuals

were arranged in article twenty-eight. When this is done the

errors in succeeding groups differ in magnitude by an amount

equal to the unit error k
t
since k is the least difference that can

be determined with the instruments used in making the obser-

vations. Hence, if Ap is the common magnitude of the errors

in the pth group,

-A = A (P+2) -A (p+i)

or, expressing the same relation in different form,

where a- is an indeterminate quantity that enters each of the

equations because we do not know the actual magnitude of the

A's.

FIG. 5.

Let the probability curve in Fig. 5 represent the system of

errors to which the errors of the actual measurements belong.

Then the ordinates yp , 2/(p +i), 2/(P +2), 2/(p+a) represent the

probabilities of the errors Ap , A(p +i>, . . . A(p +e) respectively.

Since the errors of the actual measurements satisfy the relation

(i), none of them correspond to points of the curve lying between

the ordinates yp , 2/(P + i), . . . 2/(P +). Hence, in virtue of equa-
tion (6), article twenty-three, if we choose one of the measure-

ments at random the probability that the magnitude of its error

lies between Ap and A(P+ Q)
is

2/CP+8)-
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Multiplying and dividing the second member by q,

where ypq is written for the mean of the ordinates between yp

and 2/(p+fl).
From equation (i)

&

Hence,

In the limit, when we consider the errors of an infinite number

of measurements made with infinitely sensitive instruments, every

point of the curve represents the probability of one of the errors

of the system. Consequently, for any finite value of q, Ihe inter-

val between the ordinates yp and y(P +q> is infinitesimal, and all

of the ordinates between these limits may be considered equal.

Hence, in the limit,

p
=

, ypq = 2/A
=

and (iii) reduces to

=* (A) , (11)

where y%
+d*

represents the probability that the magnitude of a

single error, chosen at random, is between A and A + dA.

By applying the usual reasoning of the integral calculus, it is

evident that the expression

rf
=

I /% (A) JA, (12)
/t i/ a

represents the probability that the magnitude of an error, chosen

at random, lies between the limits a and b. The integral in this

expression also represents the area under the probability curve

between the ordinates at T and T. Consequently the probability

in question is represented graphically by the shaded area in Fig. 6.

The probability that an error, chosen at random, is numerically
less than a given error A is equal to the probability that it lies
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between the limits A and -J-A. Hence, if we designate this

probability by PA,

A A

since (A) is an even function of A. Introducing the complete

expression for (A) from equation (10) we obtain

A2

k jo

For the sake of simplification, put

2
A2

then

/Y'ett,Jo
(13)

which is an entirely general expression for the probability PA,

applicable to any system of errors when we know the correspond-

ing values of the constants o> and k. A series of numerical values

of the right-hand member of (13), corresponding to successive

values of the argument t, is given in Table XI, at the end of

this volume. Obviously, this table may be used in computing
the probability PA corresponding to any system of errors, since

the characteristic constants o> and k appear only in the limit of the

integral.

Whatever the values of the constants w and k, the limit vVwT



40 THE THEORY OF MEASUREMENTS [ART. 34

becomes infinite when A is equal to infinity. Hence, in every

system of errors,

* dt = l
) (13a)

where the numerical value is that given in Table XI, for the limit

t equals infinity. Consequently the probability function (A)

leads to the conclusion that all of the errors in any system lie

between the limits <x> and +00, and, therefore, it fulfills the

condition imposed by the third axiom as explained in the last

paragraph of article thirty-two.

34. Comparison of Theory and Experience. Equation (13)

may be used to compare the distribution of the residuals actually

found in any series of measurements with the theoretical distri-

bution of the accidental errors. If N equally trustworthy meas-

urements of the same magnitude have been made, all of the N
corresponding accidental errors belong to the same system, and
the probability that the error of a single measurement is numer-

ically less than A is given by PA in equation (13). Consequently,
if N is sufficiently large, we should expect to find

#A = NP* (iv)

errors less than A. For, if we consider only the errors of the

actual measurements, the probability that one of them is less

than A is equal to the ratio of the number less than A to the total

number. In the same manner, the number less than A 7

should

be

Hence, the number lying between the limits A and A' should be

N* = N* - N*. (v)

These numbers may be computed by equation (13) with the aid

of Table XI, when we know N and the value of the expression

V^co
corresponding to the given measurements. The number,

Nr

r ,
of residuals lying between the limits r equals A and r' equals

A' may be found by inspecting the series of residuals computed
from the given measurements by equation (3), article twenty-two.
If N is large and the errors of the given measurements satisfy
the theory we have developed, the numbers N% and Nr

r

'

should
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be very nearly equal, since in an extended series of measurements

the residuals are very nearly equal to the accidental errors.

The following illustration, taken from Chauvenet's "Manual

of Spherical and Practical Astronomy," is based on 470 obser-

vations of the right ascension of Sirius and Altair, by Bradley.

The errors of these measurements belong to a system character-

ized by a particular value of the ratio T that has been computed,

by a method to be described later (articles thirty-eight and forty-

two), and gives the relation

VTTCO

k
= 1.8086.

Consequently, to find the theoretical value of PA, corresponding

to any limit A, we take t equal to 1.8086 A in equation (13) and

find the corresponding value of the integral by interpolation from

Table XL
The third column of the following table gives the values of

PA corresponding to the chosen values of A in the first column

and the computed values of t in the second column. The fourth

column gives the corresponding values of N&. computed by equa-

tion (iv), taking N equal to 470. The sixth column, computed

by equation (v), gives the number, Nj[, of errors that should

lie between the limits A and A' given in the fifth. The seventh

column gives the number of residuals actually found between the

same limits.

A
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rience, represented by Nr

r

f

,
when we remember that the theory

assumes an infinite number of observations and that the series

considered is finite. Numerous comparisons of this nature have

been made, and substantial agreement has been found in all

cases in which a sufficient number of independent observations

have been considered. In general, the differences between N%
and N^' decrease in relative magnitude as the number of obser-

vations is increased.

35. The Arithmetical Mean. In article twenty-four it was

pointed out, as one of the fundamental principles of the theory

of errors, that the arithmetical mean of a number of equally trust-

wor^hy direct measurements on the same magnitude is the most

probable value that we can assign to the numeric of the measured

magnitude. In order to show that the probability function (A)

leads to the same conclusion, let eft, a2 ,
. AT represent the

given measurements, and let x represent the unknown numeric

of the measured magnitude. If the actual value of this numeric

is X, the true accidental errors of the given measurements are

Ai = ai X, A2
= 02 X, . . . AAT = ax X, (2)

and all of them belong to the same system, characterized by a

particular value .of the precision constant co. The probability

that one of the errors of this system, chosen at random, is equal

to an arbitrary magnitude Ap is given by the relation

Since we cannot determine the true value X, the most probable

value that we can assign to x is that which gives a maximum

probability that N errors of the system are equal to the N resid-

uals

TI = ai x, rz
= a2 x, . . . rN = aN x. (3)

This is equivalent to determining x, so that the residuals are as

nearly as possible equal to the accidental errors.

If 2/1, 2/2, ... VN represent the probabilities that a single error

of the system, chosen at random, is equal to r\, r2 ,
. . . rN respec-

tively,

2/i
=

(n), 2/2
=

(r2), . . . yN =

Hence, if P is the probability that N of the errors chosen together
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are equal to n, r2 ,
. . . rN respectively, we have, by equation (7),

article twenty-three,

P =
2/1 X 2/2 X ... X yN

Since the exponent in this expression is negative and -^ is con-
K

stant, the maximum value of P will correspond to the minimum

value of (ri
2 + r2

2 + . . . -f ?W
2
). Hence the most probable

value of x is that which renders the sum of the squares of the

residuals a minimum.

In the present case, the r's are functions of a single independent

variable x. Consequently the sum of the squares of the r's will

be a minimum when x satisfies the condition

-f-(ri
2 + r2

2 + . ... +/VO =0.
(JJU

Substituting the expression for the r's in terms of x from equation

(3) this becomes

(a,
- xY + (a2

- xY + . . . + (a*
-

z)
2 = 0.

dx( )

Hence, (i - x) + (a2
-

x) + . . . + (aN - x) =
0, (14)

ai -f 2 + + AT
and x =

jy-

Consequently, if we take x equal to the arithmetical mean of the

a's in (3), the sum of the squares of the computed r's is less than

for any other value of x. Hence the probability P that N errors

of the system are equal to the N residuals is a maximum, and the

arithmetical mean is the most probable value that we can assign

to the numeric X on the basis of the given measurements.

Equation (14) shows that the sum of the residuals, obtained

by subtracting the arithmetical mean from each of the given

measurements, is equal to zero. This is a characteristic property

of the arithmetical mean and serves as a useful check on the

computation of the residuals.

The argument of the present article should be regarded as a

justification of the probability function 0(A) rather than as a

proof of the principle of the arithmetical mean. As pointed out

above, this principle is sufficiently established on a priori grounds
and by common consent.



CHAPTER V.

CHARACTERISTIC ERRORS.

SEVERAL different derived errors have been used as a measure

of the relative accuracy of different series of measurements. Such

errors are called characteristic errors of the system, and they de-

crease in magnitude as the accuracy of the measurements, on which

they depend, increases. Those most commonly employed are the

average error A
,
the mean error M, and the probable error E, any

one of which may be used as a measure on the relative accuracy

of a single observation.

36. The Average Error. The average error A of a single

observation is the arithmetical mean of all of the individual errors

of the system taken without regard to sign. That is, all of the

errors are taken as positive in forming the average. Hence, if

N is the total number of errors,

! _
~N~ "W

where the square bracket [ ] is used as a sign of summation, and

the
~~

over the A indicates that, in taking the sum, all of the A's

are to be considered positive.

In accordance with the usual practice of writers on the theory
of errors, the square bracket [ ] will be used as a sign of summa-

tion, in the following pages, in place of the customary sign S.

This notation is adopted because it saves space and renders com-

plicated expressions more explicit.

In equation (15) all of the errors of the system are supposed
to be included in the summation. Hence, both [A] and N are

infinite and the equation cannot be applied to find A directly

from the errors of a limited number of measurements. Conse-

quently we will proceed to show how the average error can be

derived from the probability function, and to find its relation

to the precision constant co. A little later we shall see how A
can be computed directly from the residuals corresponding to a

limited number of measurements.
44
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If yd is the probability that the magnitude of a single error,

chosen at random, lies between A and A + dA, and rid is the num-
ber of errors between these limits,

and consequently
nd = Nyd

= N4> (A)^ (16)

in virtue of equation (11), article thirty-three, where A represents

the mean magnitude of the errors lying between A and A + dA.

Hence, the sum of the errors between these limits is

and the sum of the errors between A = a and A = b is

N

Substituting the complete expression for </>(A) from equation (10)

this becomes

Hence, the sum of the positive errors of the system is

Nu / -*,
-; I Ae kz

dA,k Jo

and the sum of the negative errors is

Nu r
k J-<*

These two integrals are obviously equal in magnitude and opposite
in sign. Consequently the sum of all of the errors of the system
taken without regard to sign is

Ae-^A (17)

7TCO
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Hence from equation (15),

~
N

and introducing the numerical value of IT,

A =0.3183-- (19)
CO

37. The Mean Error. The mean error M of a single meas-

urement in a given series is the square root of the mean of the

squares of the errors in the system determined by the given
measurements. Expressed mathematically

A^ + A^-f-.* + A^_[A1
N

'

N

This equation includes all of the errors that belong to the given

system. Hence, as pointed out in article thirty-six, in regard to

equation (15), it cannot be applied directly to a limited series of

measurements.

By equation (16) the number of errors with magnitudes between

the limits A and A + dA is equal to , . Consequently
/c

the sum of the squares of the errors between these limits is equal
#A2

4>(A)dA
k

in the last article,

to -
.; . Hence, by reasoning similar to that employed

(21)

/
/

2N r A%
-,
*

since the integrand is an even function of A. Integrating by
parts,

7TCO

The first term of the second member of this equation reduces to
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zero when the limits are applied. Putting t
2 for in the

K

second term,

[Al-^P^a- (22)
TT^CO

2
Jo 2 7TC0

2

in virtue of equation (13a). Hence,

N 2*
and

M =

= 0.3989--
CO

(23)

38. The Probable Error. The probable error E of a single

measurement is a magnitude such that a single error, chosen at

random from the given system, is as likely to be numerically

greater than E as less than E. In other words, the probability

that the error of a single measurement is greater than E is equal

to the probability that it is less than E. Hence, in any extended

series of measurements, one-half of the errors are less than E and

one-half of them are greater than E.

The name "
probable error," though sanctioned by universal

usage, is unfortunate; and the student cannot be too strongly
cautioned against a common misinterpretation of its meaning.
The probable error is NOT the most probable magnitude of the

error of a single measurement and it DOES NOT determine the

limits within which the true numeric of the measured magnitude
may be expected to lie. Thus, if x represents the measured
numeric of a given magnitude Q and E is the probable error of x,

it is customary to express the result of the measurement in the

form
Q = x E.

This does not signify that the true numeric of Q lies between the

limits x E and x + E, neither does it imply that x is probably
in error by the amount E. It means that the numeric of Q is as

likely to lie between the above limits as outside of them. If a
new measurement is made "by the same method and with equal

care, the probability that it will differ from x by less than E is

equal to the probability that it will differ by more than E.
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In article thirty-three it was pointed out that the probability

that an error, chosen at random from a given system, lies between

the limits A = a and A = b is represented by the area under the

probability curve between the ordinates corresponding to the

limiting values of A. Hence, the probability that the error of a

single measurement is numerically less than E may be represented

by the area under the probability curve between the ordinates y-E

and y+E ,
in Fig. 7, and the probability that it is greater than E by

the sum of the areas outside of these ordinates. Since these two

FIG. 7.

probabilities are equal, by definition, the ordinates correspond-

ing to the probable error bisect the areas under the two branches

of the probability curve.

Since the probability that the error of a single measurement is

less than E is equal to the probability that it is greater than E
and the probability that it is less than infinity is unity, the

probability that it is less than E is one-half. Consequently,

putting A equal to E in equation (13), article thirty-three,

Pw =~ rw T" 1

e-dt -
2-

\J

From Table XI,

PA = 0.49375 for the limit t = 0.47,

PA = 0.50275 for the limit t = 0.48,

and by interpolation,

PE = 0.50000 for the limit t = 0.47694.

Hence, equation (24) is satisfied when

(24)

= 0.47694,
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and we have

CHARACTERISTIC ERRORS

E 0.47694 k

VTT w

= 0.2691 -
CO

49

(25)

39. Relations between the Characteristic Errors. Elimina-

k
ting- from equations (18), (23), and (25), taken two at a time, we

obtain the relations

(26")

E = 0.4769 VTT -A = 0.8453 -A,

E = 0.4769 V2 M = 0.6745 M,.

which express the relative magnitudes of the average, mean, and

probable errors. These relations are universally adopted in com-

MAE
k k k

FIG. 8.

puting the precision of given series of measurements, and they
should be firmly fixed in mind.

The three equations from which the relations (26) are derived

may be put in the form

A = 0.3183

k co

M _ 0.3989

k co

E = 0.2691

k co

The probability curve in Fig. 8 represents the distribution of

the errors in a system characterized by a particular value of co,

(27)
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determined by a given series of measurements. The ordinates

AM A E
VA> VM> and Us correspond to the abscissae

-^> -jp
and

-"&
>
com"

puted by the above equations. Consequently, yA represents the

probability that the error of a single measurement is equal to

+A, yM the probability that it is equal to +M, and yE the prob-

ability that it is equal to +E. In like manner y-A , y-M ,
and

y~E represent the respective probabilities for the occurrence of

errors equal to A, M, and E.

A curve of this type can be constructed to correspond to any

given series of measurements, and in all cases the relative loca-

tion of the ordinates yA , yM) and yE will be the same. It was

pointed out in the last article that the ordinates yE and y-E bisect

the areas under the two branches of the curve. Consequently,

in an extended series of measurements, somewhat more than one-

half of the errors will be less than either the average or the mean
error. Moreover, it is obvious from Fig. 8 that an error equal to

E is somewhat more likely to occur than one equal to either A or M.
Since each of the characteristic errors A, M, and E, bears a

constant relation to the precision constant co, any one of them

might be used as a measure of the precision of a single measure-

ment in a given series, so far as this depends on accidental errors.

The probable error is more commonly employed for this purpose
on account of its median position in the system of errors deter-

mined by the given measurements.

It is interesting to observe that the ordinate yM corresponds to

a point of inflection in the probability curve. By the ordinary
method of the calculus we know that this curve has a point of

inflection corresponding to the abscissa that satisfies the relation

Substituting the complete expression for y

Hence,
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is the abscissa of the point of inflection. Comparing this with

equation (23) we see that

and consequently that the ordinates yM and y-M meet the prob-

ability curve at points of inflection.

40. Characteristic Errors of the Arithmetical Mean. Equa-
tion (23) may be put in the form

CO
2 1

where M is the mean error of a single measurement in a series

corresponding to the unit error k and the precision constant w.

Consequently the probability function,

"***&
y = we k

y

corresponding to the same series may be put in the form

y = ae 2M
*. (i)

If A i, A 2 ,
. . . AJV are the accidental errors of N direct measure-

ments in the same series, the probability P that they all occur in

a system characterized by the mean errorM is equal to the product
of the probabilities for the occurrence of the individual errors in

that system. Hence,

If the individual measurements are represented by a\ t 0,2,

. . . aN ,
and the true numeric of the measured quantity is X,

Ai = ai - X; A 2
= az

- X\ . . . A# = aN - X,

and, if x is the arithmetical mean of the measurements, the corre-

sponding residuals are

n = ai x', rz = 2 x; . . . rN = aN x.

Consequently, if the error of the arithmetical mean is 5,

X - x = 5,

and
Ai = n -

5; A 2
= r2

-
5; . . . A# = rN 8.

Squaring and adding,

[A
2
]
=

[r
2]-25M+ATS2

;

(28)
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since [r] Is equal to zero in virtue of equation (14), article thirty-

five. When this value of [A
2
]

is substituted in (ii), the resulting

value of P is the probability that the arithmetical mean is in

error by an amount 6. For, as we have seen in article thirty-five,

the minimum value of [r
2
] occurs when x is taken equal to the

arithmetical mean. Consequently, P is a maximum when <5 is

equal to zero and decreases in accordance with the probability

function as 5 increases either positively or negatively.

We do not know the exact value of either X or 5; but, if ya is

the probability that the error of the arithmetical mean is equal

to an arbitrary magnitude 5, the foregoing reasoning leads to the

relation

2M2

But the arithmetical mean is equivalent to a single measurement

in a series of much greater precision than that of the given meas-

urements. Hence, if o>a is the precision constant correspond-

ing to this hypothetical series and Ma is the mean error of the

arithmetical mean, we have by analogy with (i)

a*

ya
= wae

2 M 2
. (iv)

Equations (iii) and (iv) are two expressions for the same prob-

ability and should give equal values to ya whatever the assumed

value of 5. This is possible only when

2M
,

and

1 N~
2M2

Hence,

M MM a
= =
VN

Consequently, the mean% error of the arithmetical mean is equal
to the mean error of a single measurement divided by the square
root of the number of measurements.

Since the average, mean, and probable errors of a single meas-

urement are connected by the relations (26), the corresponding
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errors of the arithmetical mean, distinguished by th.e subscript

a, are given by the relations

4 = -4=; Ma
= -^=; Ea

=
-?j=. (29)VN VN VN

41. Practical Computation of Characteristic* Errors. As

pointed out in article thirty-seven, the square of the mean error

[A
2
1M is the limiting value of the ratio ^rp
when both members

become infinite, i.e., when all of the errors of the given system
are considered. But the errors of the actual measurements fall

into groups, as explained in article thirty-three, and the errors in

succeeding groups differ in magnitude by a constant amount k,

depending on the nature of the instruments used in making the

observations. Consequently, the ordinates, of the probability

curve, corresponding to these errors are uniformly distributed

along the horizontal axis. Hence, if we include in [A
2
] only the

errors of the actual measurements, the limiting value of the ratio

fA 2
l

L

-^-
when N is indefinitely increased will be nearly the same as if

all of the errors of the system were included. Since the ratio

approaches its limit very rapidly as N increases, the value of M
can be determined, with sufficient precision for most practical

purposes, from a somewhat limited series of measurements.

If we knew the true accidental errors, the mean error could be

computed at once from the relation

(v)

and, since the residuals are nearly equal to the accidental errors

when N is very large, an approximate value can be obtained by
using the r's in place of the A's. A better approximation can be

obtained if we take account of the difference between the A's

and the r's. From equation (28)

[A
2
]
=

[r
2
] + AT52

, (vi)

where 6 is the unknown error of the arithmetical mean. Probably
the best approximation we can make to the true value of 8 is to

set it equal to the mean error of the arithmetical mean. Hence,
from the second of equations (29)
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Consequently, (vi) becomes

NM2 =
[r

2
] +

and we have

(30)

Thus the square of the mean error of a single measurement is

equal to the sum of the squares of the residuals divided by the

number of measurements less one.

Combining (30) with the third of equations (26), article thirty-

nine, we obtain the expression

E = 0.6745V^rj <31 )

for the probable error of a single measurement. Hence, by equa-

tions (29), the mean errorMa and the probable error Ea of the

arithmetical mean are given by the relations

and * =
- (32)

When the number of measurements is large, the computation
of the probable errors E and Ea by the above formulae is some-

what tedious, owing to the necessity of finding the" square of

each of the residuals. In such cases a sufficiently close approx-

imation for practical purposes can be derived from the average
error A with the aid of equations (26). The first of these equa-
tions may be written in the form

[A3 = T [A]
2

N 2 N2
'

If we assume that the distribution of the residuals is the same as

that of the true accidental errors, a condition that is accurately

fulfilled when N is very large, we can put

N
Consequently,
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When the mean error M is expressed in terms of the A's, equation

(30) becomes

[A
2

]_ M
N

'

N-l'
or

[Ag = N [Sp.

[r
2
] tf- 1 [r]2

'

Consequently

[A? [r?

and, since this ratio is equal to A 2
,
we have

== and A =-
X (33)

-1) NVN-1
Combining this result with the second of equations (26) and the

third of (29), we obtain

E = 0.8453 .

^
;
Ea = 0.8453-^ .

(34)
VN(N-1)' NVN-1

The above formulae for computing the characteristic errors from

the residuals have been derived on the assumption that the true

accidental errors and the residuals follow the same law of dis-

tribution. This is strictly true only when the number of measure-

ments considered is very large. Yet, for lack of a better method,
it is customary to apply the foregoing formulas to the discussion

of the errors of limited series of measurements and the results

thus obtained are sufficiently accurate for most practical purposes.

When the highest attainable precision is sought, the number of

observations must be increased to such an extent that the theo-

retical conditions are fulfilled.

The choice between the formulae involving the average error

A and those depending on the mean error M is determined largely

by the number of measurements available and the amount of

time that it is worth while to devote to the computations. When
the number of measurements is very large, both sets of formulae

lead to the same values for the probable errors E and Ea ,
and

much time is saved by employing those depending on A. For

limited series of observations a better approximation to the true

values of these errors is obtained by employing the formulae in-

volving the mean error. In either case the computation may be
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facilitated by the use of Tables XIV and XV at the end of this

volume. These tables give the values of the functions

0.6745 0.8453 0.84530.6745

VN(N-1)'
and

NVN-l'

corresponding to all integral values of N between two and one

hundred.

42. Numerical Example. The following example, represent-

ing a series of observations taken for the purpose of calibrating

the screw of a micrometer microscope, will serve to illustrate the

practical application of the foregoing methods. Twenty inde-

pendent measurements of the normal -distance between two

parallel lines, expressed in terms of the divisions of the micrometer

head, are given in the first and fourth columns of the following

table under a.

a
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= =b 0.267; A a
=

Ar ^ =
0.0596,NVN-l

E = 0.8453 7== = 0.226; # = 0.8453^-^ = = 0.0504,

where the numerical results are written with the indefinite sign

since the corresponding errors are as likely to be positive as nega-

tive.

When formulae (30), (31), and (32) are employed we obtain the

mean errors,

and the probable errors

E = 0.6745

The values of the probable errors E and jEk, computed by the

two methods, agree as closely as could be expected with so small

a number of observations. Probably the values d= 0.210 and

0.047, computed from the mean errors M and Ma ,
are the more

accurate, but those derived from the average errors A and A a are

sufficiently exact for most practical purposes. An inspection of

the column of residuals is sufficient to show that eleven of them
are numerically greater, and nine are numerically less than either

of the computed values of E. Consequently, both of these values

fulfill the fundamental definition of the probable error of a single

measurement as nearly as we ought to expect when only twenty
observations are considered.

If we use D to represent the measured distance between the

parallel lines, in terms of micrometer divisions, we may write

the final result of the measurements in the form

D = 194.170 =t 0.047 mic. div.

This does not mean that the true value of D lies between the

specified limits, but that it is equally likely to lie between these

limits or outside of them. Thus, if another and independent
series of twenty measurements of the same distance were made
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with the same instrument, and with equal care, the chance that

the final result would lie between 194.123 and 194.217 is equal to

the chance that it would lie outside of these limits.

Equation (25), article thirty-eight, may be written in the form

-co 0.4769

Taking E equal to 0.210, we find that

v = 2.271
k

for the particular system of errors determined by the above meas-

urements. Consequently, the probability for the occurrence of an

error less than A in this system is, by equation (13), article thirty-

three,
2.271.A

and, since there are twenty measurements, we should expect to

find 20 PA errors numerically less than any assigned value of A.

The values of PA, corresponding to various assigned values of

A, can be easily computed with the aid of Table XI and applied,

as explained in article thirty-four, to compare the theoretical

distribution of the accidental errors with that of the residuals

given under r in the above table. Such a comparison would have

very little significance in the present case, however it resulted,

since the number of observations considered is far too small to

fulfill the theoretical requirements. But it would show that,

even in such extreme cases, the deviations from the law of errors

are not greater than might be expected. The actual comparison
is left as an exercise for the student.

43. Rules for the Use of Significant Figures. The funda-

mental principles underlying the use of significant figures were

explained in article fifteen. General rules for their practical ap-

plication may be stated in terms of the probable error as follows:

All measured quantities should be so expressed that the last

recorded significant figure occupies the place corresponding to the

second significant figure in the probable error of the quantity
considered.

The number of significant figures carried through the compu-
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tations should be sufficient to give the final result within one unit

in the last place retained and no more.

For practical purposes probable errors should be computed to

two significant figures.

The example given in the preceding article will serve to illus-

trate the application of these rules. The second significant figure

in the probable error of the arithmetical mean occupies the third

decimal place. Consequently, the final result is carried to three

decimal places, notwithstanding the fact that the last place is

occupied by a zero. It would obviously be useless to carry out

the result farther than this, since the probable error shows that

the digit in the second decimal place is equally likely to be in

error by more or less than .five units. If less significant figures

were used, the fifth figure in computed results might be vitiated

by more than one unit.

In order to apply the rules to the individual measurements, it

is necessary to make a preliminary series of observations, under

as nearly as possible the same conditions that will prevail during

the final measurements, and compute the probable error of a

single observation from the data thus obtained. Then, if possible,

all final measurements should be recorded to the second significant

figure in this probable error and no farther. It sometimes happens,

as in the above example, that the graduation of the measuring
instruments used is not sufficiently fine to permit the attainment

of the number of significant figures required by the rule. In such

cases the observations are recorded to the last attainable figure,

.or, if possible, the instruments are so modified that they give

the required number of figures. Thus, in the example cited, the

second significant figure in the probable error of a single measure-

ment is in the second decimal place, but the micrometer can

be read only to one-tenth of a division. Hence the individual

measurements are recorded to the first instead of the second

decimal place. In this case the accuracy attained in making the

settings of the instrument was greater than that attained in

making the readings, and an observer, with sufficient experience,

would be justified in estimating the fractional parts to the nearest

hundredth of a division. A better plan would be to provide the

micrometer head with a vernier reading to tenths or hundredths of

a division. In the opposite case, when the accuracy of setting is

less than the attainable accuracy of reading, it is useless to record
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the readings beyond the second significant figure in the probable

error of a single observation.

For the purpose of computing the residuals, the arithmetical

mean should be rounded to such an extent that the majority of

the residuals will come out with two significant figures. This

greatly reduces the labor of the computations and gives the calcu-

lated characteristic errors within one unit in the second significant

figure.



CHAPTER VI.

MEASUREMENTS OF UNEQUAL PRECISION.

44. Weights of Measurements. In the preceding chapter
we have been dealing with measurements of equal precision, and

the results obtained have been derived on the supposition that

there was no reason to assume that any one of the observations

was better than any other. Under these conditions we have

seen that the most probable value that we can assign to the

numeric of the measured magnitude is the arithmetical mean of

the individual observations. Also, if M and E are the mean and

probable errors of a single observation, Ma and Ea the mean and

probable errors of the arithmetical mean, and A/" the number of

observations, we have the relations

# = 0.6745 M;
'

Ea
= 0.6745Mn ,

M E
v (35)

The true numeric X of the measured magnitude cannot be

exactly determined from the given observations, but the final

result of the measurements may be expressed in the form

X = x Ea ,

which signifies that X is as likely to lie between the specified

limits as outside of them.

Now suppose that the results of m independent series of meas-

urements of the same magnitude, made by the same or different

methods, are given in the form

X = xi E lt

X = x% it EZ,

X = xm d= Em .

61
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What is the most probable value that can be assigned to X on

the basis of these results? Obviously, the arithmetical mean of the

x's will not do in this case, unless the E's are all equal, since the

x's violate the condition on which the principle of the arithmetical

mean is founded. If we knew the individual observations from

which each of the x's were derived, and if the probable error of

a single observation was the same in each of the series, the most

probable value of X would be given by the arithmetical mean of

all of the individual observations. Generally we do not have the

original observations, and, when we do, it frequently happens that

the probable error of a single observation is different in the differ-

ent series. Consequently the direct method is seldom applicable.

The E's may differ on account of differences in the number of

observations in the several series, or from the fact that the prob-

able error of a single observation is not the same in all of them, or

from both of these causes. Whatever the cause of the difference,

it is generally necessary to reduce the given results to a series of

equivalent observations having the same probable error before

taking the mean. For it is obvious that a result showing a small

probable error should count for more, or have greater weight,

in determining the value of X than one- that corresponds to a

large probable error, since the former result has cost more in time

and labor than the latter.

The reduction to equivalent observations having the same

probable error is accomplished as follows: m numerical quanti-
ties wi, w2 ,

. . . wm ,
called the weights of the quantities Xi, x2 ,

. . . xm ,
are determined by the relations

E* Ea
2 E*W

^E?> W
*=Ef'>

' ' Wm
=E^' (36)

where Ea is an arbitrary quantity, generally so chosen that all

of the w's are integers, or may be placed equal to the nearest

integer without involving an error of more than one or two units

in the second significant figure of any of the E's. In the following

pages E8 will be called the probable error of a standard observa-

tion. Obviously, the weight of a standard observation is unity
on the arbitrary scale adopted in determining, the w's; for, by
equations (36),
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Such an observation is not assumed to have occurred in any of

the series on which the x's depend, but is arbitrarily chosen as a

basis for the computation of the weights of the given results.

By comparing equations (35) and (36), we see that E\ is equal

to the probable error of the arithmetical mean of w\ standard

observations. But it is also the probable error of the given

result XL Consequently x\ is equivalent to the arithmetical

mean of wi standard observations. Similar reasoning can be

applied to the other E's and in general we have

Xi = mean of w\ standard observations,

x2
= mean of w2 standard observations,

xm = mean of wm standard observations.

(i)

The weights Wi, w2} . . . wm are numbers that express the rela-

tive importance of the given measurements for the determination

of the most probable value of the numeric of the measured mag-
nitude. Each weight represents the number of hypothetical

standard observations that must be combined to give an arith-

metical mean with a probable error equal to that of the given

measurement.

45. The General Mean. From equations (i) it is obvious

that
= the sum of Wi standard observations,
= the sum of wz standard observations,

wmxm = the sum of wm standard observations,

and, consequently,

-f + wmxm

is equal to the sum of w\ + ^2 + . . + WTO standard observa-

tions. Since the probable error E8 is common to all of the

standard observations, they are equally trustworthy and their

arithmetical mean is the most probable value that we can assign

to the numeric X on the basis of the given data. Representing
this value of XQ we have

_ WiXi + W2X2 + * + WmXm X
Q(
_V

Wl+W2 + . . . + Wm

The products W&1, etc., are called weighted observations or meas-
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urements, and x is called the general or weighted mean. The

weight WQ of XQ is obviously given by the relation

wo = wi + w2 + - + wm , (38)

since XQ is the mean of w standard observations.

Equation (37) for the general mean can be established inde-

pendently from the law of accidental errors in the following manner:

Let coi, o>2 ,
. . . wm represent the precision constants correspond-

ing to the probable errors EI, Ez ,
Em ,

and let ws be an

arbitrary quantity connected with the arbitrary quantity E8 by
the relation

#8
= 0.2691 -

fc>

Then, by equations (25) and (36),

i
2 C02

2
COTO

2

Wl =
~^>

W2 =
l^>

*-
IF-

(39)

If XQ is the most probable value of the numeric X, the residuals

corresponding to the given aj's are

ri = xi XQ', r2
= xz XQ', . . . rm = xm x .

The probability that the true accidental error of x\ is equal to r\

s

in virtue of equations (39). Similarly, if 2/1, 2/2, Vm are the

probabilities that r\, r2 ,
. . . rm are the true accidental errors of

xm}
OJ.2

T-TT

2/2
= co 2e

Hence, if P is the probability that all of the r's are simultaneously

equal to true accidental errors, we have

w z

-Tr--
P = (wio> 2 . . . ov)e

and the most probable value of X is that which renders P a

maximum. Obviously, the maximum value of P occurs when
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(wirf + w 2r 2
2 + . . . + wmrm2

) is a minimum. Consequently the

most probable value XQ is given by the relation

^T (wiri
2 + w2r2

2 + + wmrm2
)
= 0.

Substituting the values of the r's and differentiating this becomes

Wi (Xi XQ) + W 2 (X2 XQ) + Wm (xm XQ)
= 0.

Hence,

WiXi + W2X2 + + WmXm
XQ

;

: : j

as given above.

If we multiply or divide the numerator and denominator of

equation (37) by any integral or fractional constant, the value

of #o is unaltered. Hence, from (36), it is obvious that we are at

liberty to choose any convenient value for Ea) whether or not it

gives integral values to the w's. Equations (36) also show that

the weights of measurements are inversely proportional to the

squares of their probable errors and consequently we may take

#!2 E? EJw2
=

wi-^-', w3
= w 1 ^-; . . . wm =

wi-^-- (40)
Etf 1 &m

Hence, if we choose, we can assign any arbitrary weight to one of

the given measurements and compute the weights of the others

by equation (40).

The foregoing methods for computing the weights w\, w 2 , etc.,

are applicable only when the given measurements x\, x2 , etc., are

entirely free from constant errors and mistakes. When this

condition is not fulfilled the method breaks down because the

errors of the x's do not follow the law of accidental errors. In

such cases it is sometimes possible to assign weights to the given

measurements by combining the given probable errors with an

estimate of the probable value of the constant errors, based on a

thorough study of the methods by which the x's were obtained.

Such a procedure is always more or less arbitrary, and requires

great care and experience, but when properly applied it leads to a

closer approximation to the true numeric of the measured magni-
tude than would be obtained by taking the simple arithmetical

mean of the x's. Since it involves a knowledge of the laws of

propagation of errors and of the methods for estimating the pre-
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cision attained in removing constant errors and mistakes, it can-

not be fully developed until we take up the study of the under-

lying principles.

46. Probable Error of the General Mean. When the given

x's are free from constant errors and the E's are known, the weights

of the individual measurements are given by (36), and the weight

W of the general mean is given by (38). Consequently, if E is

the probable error of the general mean, we have by analogy with

equations (36)

1*0=14 and #0=-- (41)

If we choose, E may be expressed in terms of any one of the E's

in place of E8 . Thus, let En and wn be the probable error and

the weight of any one of the x's, then by (36)

E>

W

and eliminating Ea between this equation and (41) we have

(42)

When the weights are assigned by the method outlined in the

last paragraph of the preceding article, or when, for any reason,

the w's are given but not the E's, (41) and (42) cannot be applied

until Ea or En has been derived from the given x's and w's. If

the number of given measurements is large, the value of E8 corre-

sponding to the given weights can be computed with sufficient

precision by the application of the law of errors as outlined below.

If the number of given measurements is small, or if constant

errors and mistakes have not been considered in assigning the

weights, the following method gives only a rough approximation
to the true value of Es ,

and consequently of E Q) since the condi-

tions underlying the law of errors are not strictly fulfilled. It will

be readily seen that while E8 may be arbitrarily assigned for the

purpose of computing the weights, when the E's are given, its

value is fixed when the weights are given.

Let xi, z2 ,
. . . xm represent the given measurements and

Wi, ^2 ,
... wm ,

the corresponding weights. Then, if o?8 repre-
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sents the precision constant of a standard observation, and wi

that of an observation of weight w\, we have by (39)

Consequently, if 2/A is the probability that the error of x i is equal

to A,

and, by equation (11), article thirty-three, the probability that

the error of x\ lies between the limits A and A + dA is

Now, WiA2
is the weighted square of the error A, and in the follow-

ing pages the product VwA will be called a weighted error. Hence,

if we put d = VwjA, and dd = Vw { dA, we have for the probability

that the weighted error of Xi lies between the limits 5 and d -\- dd

Since the same result would have been obtained if we had started

with any other one of the x's and w's, it is obvious that this equa-

tion expresses the probability that any one of the x's, chosen at

random, is affected by a weighted error lying between the limits

5 and d + dd. But, if rid is the number of #'s affected by weighted
errors lying between these limits, and m is the total number of

as's, we have also

or

Hence, the sum of the squares of the weighted errors lying between

5 and 5 -f- dd is given by the relation

S2
us -TO-,* ,= m82
-re dS,

=" m
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and, by the method adopted in articles thirty-six and thirty-seven,

we have

[g] = 2 a), r
m A: Jo

where [5
2
] is supposed to include all possible weighted errors

between the limits plus and minus infinity. Introducing the

values of the S's in terms of the w's and A's this becomes

m m

which is an exact equation only when the number of measure-

ments considered is practically infinite.

If M8 is the mean error of a standard observation, we have from

equation (23)

Hence, from equation (26)

.
= 0.6745

Now, we do not know the true value of the A's and the number of

given measurements is seldom sufficiently large to fulfill the con-

ditions underlying this equation. But we can compute the gen-

eral mean XQ and the residuals

Ti = Xi XQ] r2
= X2 XQ] . . . Tm = Xm X

,

and, by a method exactly analogous to that of article forty-one,

it can be shown that the best approximation that we can make is

given by the relation

[wr
2
]

m m 1

Hence, as a practicable formula for computing E8 ,
we have

Ea
= 0.6745V-T' (43)~ m 1

and consequently E is given by the relation

Eo = 0.6745V... r ,,'

in virtue of equation (41).
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When the probable errors of the given measurements are

known, and the weights are computed by equation (36), the value

of E8 computed by equation (43) will agree with the value arbi-

trarily assigned, for the purpose of determining the w's, provided
the x's are sufficiently numerous and free from constant errors

and mistakes. The number of measurements considered is

seldom sufficient to give exact agreement, but a large difference

between the assigned and computed values of E8 is strong evidence

that constant errors have not been removed with sufficient pre-

cision. On the other hand, satisfactory agreement may occur

when all of the x's are affected by the same constant error. Con-

sequently such agreement is not a criterion for the absence of

constant errors, but only for their equality in the different meas-

urements.

47. Numerical Example. As an illustration of the applica-

tion of the foregoing principles, consider the micrometer measure-

ments given under x in the following table. They represent the

results of six series of measurements similar to that discussed in

article forty-two, the last one being taken directly from that

article. The probable errors, computed as in article forty-two,

are given under E. They differ partly on account of differences

in the number of observations in the several series, and partly

from the fact that the individual observations were not of the

same precision in all of the series. The squares of the probable
errors multiplied by 104 are given under E2 X 104 to the nearest

digit in the last place retained. It would be useless to carry them

out further as the weights are to be computed to only two signifi-

cant figures.

X
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E's from the assigned w's and E8 gives the numbers in the last

column of the table. Since these numbers agree with the given

E's within less than two units in the second significant figure, we

may assume that the approximation adopted in computing the

w's is justified. If the agreement was less exact and any of the

differences exceeded two units in the second significant figure, it

would be necessary to compute the w's further, or, better, to adopt
a different value for E8 ,

such that the agreement would be suffi-

cient with integral values of the w's.

For the purpose of computation, equation (37) may be written

in the form

XQ
= C +

- C) + w, (x2
- C) + Wm (Xm C)

where C is any convenient number. In the present case 193 is

chosen, and the products w (x 193) are given in the first column
of the following table.

w (x - 193)
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since its weight corresponds exactly to its probable error, equa-

tion (42) gives

Eo = 0.066 i/ = 0.031.
51

If the second, third, or fifth measurement had been chosen, the

results derived by the two formulae would not have been exactly

alike; but the differences would amount to only a few units in the

second significant figure, and consequently would be of no prac-

tical importance. However, it is better to proceed as above and

select a measurement whose weight corresponds exactly with its

probable error as shown by the fifth column of the first table

above.

The residuals, computed by subtracting x from each of the

given measurements, are given under r in the second table; and

their squares multiplied by 104 are given, to the nearest digit in

the last place retained, under r2 X 104
. The last column of the

table gives the weighted squares of the residuals multiplied by
104

. The sum, [wr
2
], is equal to 0.784. Hence by equation (43)

E8
= 0.6745 1/

'784 = =t 0.27,
o

and by equation (44)

JB,
= 0.6745J^- = 0.037.

51 X o

These results agree with the assumed value of E8 and the pre-

viously computed value of E as well as could be expected when
so small a number of measurements are considered. Conse-

quently we are justified in assuming that the given measurements

are either free from constant errors or all affected by the same

constant error.

In practice the second method of computing EQ is seldom used

when the probable errors of the given measurements are known,
since its value as an indication of the absence of constant errors

is not sufficient to warrant the labor involved. When the prob-

able errors of the given measurements are not known it is the

only available method for computing EQ and it is carried out here

for the sake of illustration.



CHAPTER VII.

THE METHOD OF LEAST SQUARES.

48. Fundamental Principles. Let Xi, X2 ,
. . . Xg ,

and FI,

Y2 ,
. . . Yn represent the true numerics of a number of quan-

tities expressed in terms of a chosen system of units. Suppose
that the quantities represented by the Y's have been directly

measured and that we wish to determine the remaining quantities

indirectly with the aid of the given relations

YZ = FZ (Xl, Xz, . . . Xq),

Yn = Fn (Xi,Xz, . . X q ).

(45)

The functions FI, F2 ,
. . . Fn may be alike or different in form

and any one of them may or may not contain all of the X's, but

the exact form of each of them is supposed to be known.

If the F's were known and the number of equations were equal
to the number of unknowns, the X's could be derived at once

by ordinary algebraic methods. The first condition is never ful-

filled since direct measurements never give the true value of the

numeric of the measured quantity. Let s i; s2 ,
. . . sn represent

the most probable values that can be assigned to the F's on the

basis of the given measurements. If these values are substituted

for the F's in (45), the equations will not be exactly fulfilled and

consequently the true value of the X's cannot be determined. The
differences

Fi(Xi,XZ) . . . X q)-si = k

Fz(Xi,Xz, . . . Xq)-s2
= k

*, . . . X q)-sn = An

(46)

represent the true accidental errors of the s's.

Let Xi, Xz, . . . x q represent the most probable values that we
can assign to the X's on the basis of the given data. Then, since

72
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the s's bear a similar relation to the Y's
} equations (45) may be

written in the form

Fi (Xi, X2) . . . X q )
= Sb

F2 (xi, x2) . . . xq)
= s

2}

Fn (xi, x2} . . . xq)
= sn ,

(47)

where the functions F i} F2 , etc., have exactly the same form as

before. When the number of s's is equal to the number of x's,

these equations give an immediate solution of our problem by
ordinary algebraic methods; but in such cases we have no data

for determining the precision with which the computed results

represent the true numerics Xi, X2) etc.

Generally the number of s's is far in excess of the number of

unknowns and no system of values can be assigned to the x's

that will exactly satisfy all of the equations (47). If any assumed
values of the x's are substituted in (47), the differences

^1 (Xi, X 2) . . . X q) Si = 7*1,

F2 (xi, x 2) . . . x q )
- s2

= r2 ,

Fn (Xi, X2 ,
. . . Xq)

-
S-n = Tn

represent the residuals corresponding to the given s's. ^Obviously, f
the most probable values that we can assign to the x's will be

those that give a maximum probability that these residuals are

equal to the true accidental errors AI, A 2 ,
etc.

If the s's are all of the same weight, the A's all correspond to

the same precision constant co. Consequently, as in article thirty-

five, the probability that the A's are equal to the r's is

and this is a maximum when

ri
2 + r2

2 + . . . + rn
2 =

[r
2
]
= a minimum. (49)

Hence, as in direct measurements, the most probable values that

we can assign to the desired numerics are those that render the

sum of the squares of the residuals a minimum. For this reason

the process of solution is called the method of least squares.
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Since the r's are functions of the q unknown quantities x i} x2)

etc., the conditions for a minimum in (49) are

provided the x's are entirely independent in the mathematical

sense, i.e., they are not required to fulfill any rigorous mathe-

matical relation such as that which connects the three angles of

a triangle. The equations (47) are not such conditions since the

functions Fi} F2 , etc., represent measured magnitudes and may
take any value depending on the particular values of the x's that

obtain at the time of the measurements. When the r's are re-

placed by the equivalent expressions in terms of the x's and s's as

given in (48), the conditions (50) give q, and only g, equations

from which the x's may be uniquely determined.

If the weights of the s's are different, the A's correspond to

different precision constants coi, 0)2, . . .
,

con given by the rela-

tions

where wa is the precision constant corresponding to a standard

measurement, i.e., a measurement of weight unity; and wi, w2 ,

. . .
,
wn are the weights of the s's. Under these conditions, as

in article forty-five, the most probable values of the re's are those

that render the sum of the weighted squares of the residuals a

minimum. Thus, in the case of measurements of unequal weight,

the condition (49) becomes

wiri
2 fw2

2 + + MV 2 = [wr
2
]
= a minimum, (51)

and conditions (50) become

AM =
; ^M =

0; ... AM =
. (52)

49. Observation Equations. The equations (50) or (52) can

always be solved when all of the functions FI, F2) . . . Fn are

linear in form. Many problems arise in practice which do not

satisfy this condition and frequently it is impossible or incon-

venient to solve the equations in their original form. In such

cases, approximate values are assigned to the unknown quantities
and then the most probable corrections for the assumed values

are computed by the method of least squares. Whatever the form
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of the original functions, the relations between the corrections can

always be put in the linear form by a method to be described in a

later chapter.

When the given functions are linear in form, or have been

reduced to the linear form by the device mentioned above, equa-
tions (47) may be written in the form

+ to +
+ to +

+ piX q
=

si,

= s2 ,

pnxq
=

(53)

where the a's, 6's, etc., represent numerical constants given either

by theory or as the result of direct measurements. These equa-
tions are sometimes called equations of condition; but in order

to distinguish them from the rigorous mathematical conditions,

to be treated later, it is better to follow the German practice and

call them observation equations, "Beobachtungsgleichungen."

By comparing equations (47), (48), and (53), it is obvious that

the expressions

+ to + CiX3 +
-f to + c2x3 +

bnx cnx3

s2 = r2 ,

pnx q
- sn = rn

(54)

give the resi'duals in terms of the unknown quantities x\, xz , etc.,

and the measured quantities si, s 2 ,
etc.

50. Normal Equations. In the case of measurements of

equal weight, we have seen that the most probable values of the

unknowns x\, x2 , etc., are given by the solution of equations (50)

provided the x's are independent. Assuming the latter condition

and performing the differentiations we obtain the equations

dr, dr.

dr3

dx t

(0
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Differentiating equations (54) with respect to the x's gives

dri _ dr2 _
~dx\

~ ai '

dxi
~~

dx c

= an ,

= bn ,

dr2

and hence equations (i) become

r2a2 +
i + r262 + .

.
drn

' dx q

+ rnan = 0,

+ rnbn = 0,

(ii)

(iii)

-
. . . + rnpn = 0.

Introducing the expressions for the r's in terms of the x's from

equations (54) and putting

[aa]
= didi -{- a2a2 -|- a3a3 ~h ~h dndn}

w>

[as]
= diSi + a2s2 + a3s3 +

[bd]
= bidi + 6 2a2 + b sds +

[66]
= &!&! + 6262 + 6363 +

[be]
= 6iCi + 62c2 + 63c3 +

ansn ,

6nan = [ab]j

bnbn,

6ncn

(55)

equations (iii) reduce to

[aa] x-i + [ab] xz + [ac] x3

[ac] [be] x2 + [cc] x3

[bp]x q =[bs],

[CP] X*
= N, (56)

giving us q, so-called, normal equations from which to determine

the q unknown x's.

Since the normal equations are linear in form and contain only

numerical coefficients and absolute terms, they can always be

solved, by any convenient algebraic method, provided they are

entirely independent, i.e., provided no one of them can be ob-

tained by multiplying any other one by a constant numerical
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factor. This condition, when strictly applied, is seldom violated

in practice; but it occasionally happens that one of the equations

is so nearly a multiple or submultiple of another that an exact

solution becomes difficult if not impossible. In such cases the

number of observation equations may be increased by making
additional measurements on quantities that can be represented

by known functions of the desired unknowns. The conditions

under which these measurements are made can generally be so

chosen that the new set of normal equations, derived from all of

the observation equations now available, will be so distinctly

independent that the solution can be carried out without difficulty

to the required degree of precision.

By comparing equations (53) and (56), it is obvious that the

normal equations may be derived in the following simple manner.

Multiply each of the observation equations (53) by the coefficient

of xi in that equation and add the products. The result is the

first normal equation. In general, q being any integer, multiply

each of the observation equations by the coefficient of xq in that

equation and add the products. The result is the gth normal

equation. The form of equations (56) may be easily fixed in

mind by noting the peculiar symmetry of the coefficients. Those

in the principal diagonal from left to right are [aa], [66], [cc], etc.,

and coefficients situated symmetrically above and below this

diagonal are equal.

When the given measurements are not of equal weight, the

observation equations (53), and the residual equations (54) remain

unaltered, but the normal equations must be derived from (52)

in place of (50). Since the weights Wi, w2 , etc., are independent

of the x's, if we treat equations (52) in the same manner that we

have treated (50), we shall obtain the equations

* + wnrnan = 0,

'. .4 Wn&n =
0,

(iv)

+ Wtfzpz+ ' ' ' + Wnrnpn = 0,

in place of equations (iii). Hence, if we put

[iWia]
= Wididi -f~ WzClzCLz ~\~

' ' '
~\~ WndnCLnj

(57)[was] = WidiSi + w&zSz + + wnansnj

'

-\-WnpnPn,
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the normal equations become

[waa] xi + [wab] x2 + [wac] z3

[wab] Xi + [wbb] xz + [wbc] xz

[wac] X! + [wbc] x2 + [wcc] xz

+ [wap] xq
=

[was],

+ [wbp] xq
=

[wbs],

+ [wcp] xq
=

[wcs], (58)

[wap]xi+ [wbp]x2 + [wcp]x$ + + [wpp]x q
=

[wps].

These equations are identical in form with equations (56), and

they may be solved under the same conditions and by the same

methods as those equations. Consequently, in treating methods

of solution, we shall consider the measurements to be of equal

weight and utilize equations (56). All of these methods may be

readily adapted to measurements of unequal weight by substitut-

ing the coefficients as given in (57) for those given in (55).

51. Solution with Two Independent Variables. When only
two independent quantities are to be determined the observation

equations (53) become
"

=
s,

and the normal equations (56) reduce to

[aa] Xi + [ab] x2
=

[as],

[ab] X! + [bb] x2
=

[bs].

Solving these equations we obtain

[bb] [as]
-

[ab] [bs]

[aa] [bb]
-

[ab]
2

_ [aa] [bs] [ab] [as]

[aa] [bb]
-

[ab]
2

As an illustration, consider the determination of the length Z/

at C., and the coefficient of linear expansion a of a metallic

bar from the following measurements of its length L t at temper-
ature t C.

(56a)

(59)

t
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or

Within the temperature range considered, L t and t are connected

with LO and a by the relation

L t
= Lo (1 + at),

L t
= Lo + L at, (v)

and a set of observation equations might be written out at once

by substituting the observed values of L t and t in this equation.

But the formation of the normal equations and the final solution

is much simplified when the coefficients and absolute terms in the

observation equations are small numbers of nearly the same order

of magnitude. To accomplish this simplification, the above func-

tional relation may be written in the equivalent form

and if we put

it becomes

L t
- 1000 = Lo - 1000 + WL<xx

L t
- 1000 = s; JQ

=
6,

LO 1000 = Xi] 10 LOCK = Xz,

Xi -J- 6^2 = s.

(vi)

Using this function, all of the a's in equation (53a) become equal

to unity and the 6's and s's may be computed from the given

observations by equations (vi).

the observation equations are

xi + 2 z2
=

xi + 3 x2
=

Hence, in the present case,

.36,

.53,

x l +x2
=

.74,

zi + 5z2
=

.91,

Xl + 6x2
= 1.06.

For the purpose of forming the normal equations, the squares

and products of the coefficients and absolute terms are tabulated

as follows :

Obs.
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= 3.60,
= 16.18,

and by (59) we have

_ 90 X 3.60 - 20 X 16.18

5 X 90 - 400

5 X 16.18 - 20 X 3.60

=
0.008,

= 0.178.
5 X 90 - 400

From these results, with the aid of relations (vi), we find

Lo = xi + 1000 = 1000.008,

L a = ^ = 0.0178,

0.0178 = 0.0000178,

and finally

Lt
= 1000.008 (1 + 0.0000178 1) millimeters. (vii)

The differences between the values of L t computed by equation

(vii), and the observed values give the residuals. But they can

be more simply determined by using the above values of x\

and Xz in the observation equations and taking the difference

between the computed and observed values of s. Thus, if s'

represents the computed value and r the corresponding residual

s' = 0.008 + 0.178 6,

and r = s
f

s.

With the values of s and 6 used hi the observation equations we
obtain the residuals as tabulated below:

s'
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52. Adjustment of the Angles About a Point. As an illus-

tration of the application of the method of least squares to the

solution of a problem involving more than two unknown quanti-

ties, suppose that we wish to determine the most probable value

of the angles AI, AZ, and A 3 , Fig. 9, from a series of independent
measurements of equal weight on the angles Mi, M2 ,

. . . M6 .

If the given measurements were all exact, the equations

AI = Mi; AZ = M2 ;
A 3

= M3 ;

AI-\- AZ = M4 ; AI + AZ -{-As = MS; and Az -\- As = Me,

would all be fulfilled identically. In practice this is never the

case and it becomes

necessary to adjust the

values of the A's so that

the sum of the squares

of the discrepancies will

be a minimum. The

adjustment may be ef-

fected by adopting the

above equations as ob-

servation equations and

proceeding at once to

the solution for the A's

by the method of least

squares. But the ob-

served values of the M's

usually involve so many
significant figures that

the computation would

be tedious. It is better

to adopt approximate
values for the A's and then compute the necessary corrections by
the method of least squares.

For this purpose, suppose we adopt MI, M2 ,
and M3 as approxi-

mate values of A\, A 2 ,
and A s respectively and let xi, Xz, and x3

represent the corrections that must be applied to the M's in order

to give the most probable values of the A's. Then, putting

AI = MI + xi, AZ = MZ + Xz, and A 3
= M3 + #3 , (viii)

the above equations become

FIG. 9.
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+ x2

=
0,

=
0,

=
0,

= M4
-

(Af! + M2),

To render the problem definite, suppose that the following

values of the M's have been determined with an instrument read-

ing to minutes of arc by verniers:

Mi = 10 49'.5, M4
= 45 24'.0,

M2
= 34 36'.0, M6

= 60 53'.5,

M3
= 15 25'.5, M6

= 50 O'.O.

Substituting these values in the above equations we obtain

xi =
0,

x2
=

0,

2'.5,

Adopting these as our observation equations and comparing with

(53) we obtain the coefficients and absolute terms tabulated below:

Oba.
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Substituting these values in (56) the three normal equations

become

-0.5,

1 xi -f 2 x2 + 3 z3
=

1,

and solution by any method gives

xi = 0.625; x2
= -

0.75; x3
= 0.625.

With these results together with the given values of MI, Mz,
and M3 we obtain from equations (viii)

A! = 10 50M25,

A 2
= 34 35'.25,

A 3
= 15 26M25.

In a problem so simple as the present the normal equations are

generally written out at once from the observation equations by
the rule stated in article fifty, without taking the space and time

to tabulate the coefficients, etc. But, until the student is thor-

oughly familiar with the process, it is well to form the tables as

a check on the computations and to make sure that none of the

coefficients or absolute terms have been omitted. For this reason

the tabulation has been given in full above and the student is

advised to carry out the formation of the normal equations by
the shorter method as an exercise.

53. Computation Checks. When the number of unknowns
is greater than two and a large number of observation equations
are given with coefficients and absolute terms involving more than

two significant figures, the formation of the normal equations is

the most tedious and laborious part of the computations. It is,

therefore, advantageous to devise a means of checking the com-

puted coefficients and absolute terms in the normal equations
before we proceed to the final solution.

For this purpose compute the n quantities t\ t ^2, ... tn by the

equations
ai + &i -f ci + - + pi = ti,~

02 + &2 4- c2 -f + pz = h,

On + & + Cn -f - + pn =
(60)
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where the a's, b's, etc., are the coefficients in the given observa-

tion equations. Multiply the first of equations (60) by Si, the

second by s2 , etc., and add the products. The result is

[as] + [bs] + [cs] + + \ps]
=

[ts]. (61)

In the same way, multiplying by the a's in order and adding, then

by the b's in order and adding, etc., we obtain the following rela-

tions

[aa] + [db] + [ac] + .-. + [ap]
=

[at],

[ab] + [bb] + [be] + + [bp]
=

[bt],

[ac] + [be] + [cc] + + [cp]
=

[ct], (62)

[ap] + \bp] + [ep] + . . . + \pp]
=

\pt].

If the absolute terms in the normal equations have been accu-

rately computed, equation (61) reduces to an identity. If the

coefficients have been accurately computed equations (62) all

become identities. Hence (61) is a check on the computation of

the absolute terms and equations (62) bear the same relation to

the coefficients. The extra labor involved in computing the quan-
tities [ts] t [at], . . .

, [pt] is more than repaid by the added confi-

dence in the accuracy of the normal equations.

When all attainable significant figures are retained throughout
the computations, the checks (61) and (62) should be identities.

In practice the accuracy of the measurements is seldom sufficient

to warrant so extensive a use of figures, and, consequently, the

squares and products, aa, ab, . . . as, at, etc., are rounded to such

an extent that the computed values of the x's will come out with

about the same number of significant figures as the given data.

Judgment and experience are necessary in determining the number
of significant figures that should be retained in any particular

problem and it would be difficult to state a general rule that

would not meet with many exceptions. When the computed
coefficients and absolute terms are rounded, as above, the checks

may not come out absolute identities, but they should not be

accepted as satisfactory when the discrepancy is more than two

units in the last place retained.

54. Gauss's Method of Solution. When the normal equa-
tions (56) are entirely independent, they may be solved by any
of the well-known methods for the solution of simultaneous

linear equations and lead to unique values of the unknown quan-
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titles xi, x2) etc. Gauss's method of substitution is frequently

adopted for this purpose since it permits the computation to be

carried out in symmetrical form and provides numerous checks

on the accuracy of the numerical work. The general principles

of the method will be illustrated and explained by completely

working out a case in which there are only three unknowns.

Since the process of solution is entirely symmetrical, it can be

easily extended for the determination of a larger number of

unknowns, but too much space would be required to carry through

the more general case here.

When only three unknowns are involved, the normal equations

(56) and the check equations (60) and (61) may be completely

written out in the following form, the computed quantities and

equations being placed at the left, and the checks at the right.

[aa] xi + [ab] x2 + [ac] x3
=

[as]. [aa] + [ab] + [ac]
=

[at].

[ab] xi + [bb] x2 + [be] x3
=

[bs]. [ab] + [bb] + [be]
=

[bt].

[ac] xi + [be] x2 + [cc] x3
=

[cs]. [ac] + [be] + [cc]
=

[ct].

[as] + [bs]+[cs] =[st].\

Solve the first equation on the left for xi y giving

[as] [ab] [ac]
Xi = 7 7 f 1 X2 f 1 X$.

[aa] [aa] [aa\

Compute the following auxiliary quantities:

(63)

[56]
_ P4 [ &]

=
[bb 1], [bt]

- piM = [^ ' 1LL

aa]

[a61

[6c]- M L
" M

~ M =
[6s

'
1] ' M ~ N1 =

[st

As a check on these computations we notice that

[bb 1] + [be
-
1]
=

[bb] + [be]
-

|^| ([ab] + [c]),
[aaj

=
[bt]

-
lab]

-
([at]

-
[aa]),
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In a similar way we may show that we should have

[6c-l] + [cc-l]
= [cM] and [6s- 1] + [cs- 1]

=
[st- 1].

Substituting (64) in the last two of (63) and placing the above

checks to the right, we have the equations

[bb -I]x2 + [be 1] xs
=

[bs 1], [bb 1] + [be- 1]
=

[fa 1],

[be -I]x2 + [cc 1] z3
=

[cs 1], [be 1] + [cc- 1]
=

[ct 1], (65)

[6s-l] + [cs.l] = [s*. 1],.

which show the same type of symmetry as (63), but contain only
two unknown quantities. Solve the first of (65) for x2 giving__*2

~[6&.l] [bb-lf
3 '

and compute the following auxiliaries:

[<*!] -
[l^jlfc-1]

= [-2], [cM] - l~ }̂

[bt. 1}
=

let- 2],

(cs 1}
-
|^jj

[bs 1}
-

[cs 2], [st 1]
-
|^|j

(bt 1]
= [* 2}.

By a method similar to that used above we can show that we
should have

[cc 2]
=

[ct 2] and [cs 2]
=

[st 2].

Hence, substituting (66) in the last of (65), we have

[cc 2] x3
=

[cs 2], [cc 2]
=

[ct 2],

[cs.2] = N-2],
and consequently

[cs 2] _.
*"fc^t' (67)

Having determined the value of x3 from (67), x% may be cal-

culated from (66), and then Xi from (64).

A very rigorous check on the entire computation is obtained as

follows: using the computed values of Xi, xz ,
and z3 in equations

(54), derive the residuals

(68)

- s2 ,

Tn = dnXi ~|- OnX2 ~\- CnXs Sn ,

and then form the sums

[rr]
= n2 + r2

2 + r3
2 + - - - + rn

2
,

[SS]
= Si

2 + S2
2 + S3

2 + + n
2

.



ART. 55] THE METHOD OF LEAST SQUARES 87

If the computations are all correct, the computed quantities will

satisfy the relation

W = M-[aS]-M[6S .l]- [cs
.
2] . (69)

To prove this, multiply the first of (68) by ri, the second by r%,

etc., and add the products. The result is

[rr]
=

[ar] Xi + [br] x2 -f [cr] 3
-

[sr].

But from equations (iii), article fifty,

[ar]
=

[br]
=

[cr]
=

0,

consequently
[rr]=- []. (70)

Multiply each of equations (68) by its s; add, taking account of

(70), and we obtain

[rr]
=

[ss]
-

[as] Xi - [6s] xz
-

[cs] xz .

Eliminating x\, X2 ,
and z3 ,

in succession with the aid of (64), (66),

and (67) we find

[rr]
=

[ss]
-

[as]
-

[6s 1] x2
-

[cs 1] x9,

and finally

r i r i las] r i [&s
*
1] n n tcs

'
2] r Ol

[rr]
= M ~yM -

I667i]
[6s

'
1]
-
RT2]

[cs
' 2] '

which is identical with (69).

55. Numerical Illustration of Gauss's Method. The fore-

going methods are most frequently used for the adjustment of

astronomical and geodetic observations, and their application to

particular problems is fully discussed in practical treatises on

such observations. The physical problems, to which they are

applicable, usually involve the determination of an empirical

relation between mutually varying quantities. Such problems

will be discussed at some length in Chapter XIII, and the corre-

sponding observation equations will be developed.

It would require too much space to carry out the complete dis-

cussion of such a problem, in this place, with all of the observa-

tions made in any actual investigation. But, for the purpose of

illustration, the most probable values of xi, Xz, and x3 will be
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derived, from the following typical observation equations, by
Gauss's method of solution:

+ 2x2 + 0.4z3
=

+ 4x2 + 1.6x3 =

+ 6 x2 + 3.6 z8
=

+ 8x2 + 6.4x3
=

+10x2 +10.0^3 =

0.24,
-

1.18,
-

1.53,
-

0.69,

1.20,

4.27.

Since the coefficient of xi is unity in each of these equations,

the products aa, ab, aCj as, and at are equal to a, 6, c, s, and t,

respectively. Consequently the first five columns of the follow-

ing table show the coefficients, absolute terms, and check terms

(t
= a + b + c) of the observation equations as well as the

squares and products indicated at the head of the columns. The
sums [aa], [ab], etc., are given at the foot of the columns and the

checks, by equations (61) and (62), are given below the tables.

In the present case, the coefficients are expressed by so few signifi-

cant figures that it is not necessary to round the computed products
and consequently the checks come out identities.

aa
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The normal equations and their checks might now be written

out in the form of equations (63), but, since the coefficients and

other data necessary for their solution are all tabulated above, it

is scarcely worth while to repeat the same data in the form of

equations. The computation of the auxiliaries [bb 1], [be 1],

etc., and the final solution for x i}
x2) and #3 by logarithms is best

carried out in tabular form as illustrated on pages 90 and 91.

The meaning of the various quantities appearing in these tables, and

the methods by which they are computed, will be readily under-

stood by comparing the numerical process with the literal equa-

tions of the preceding article. When the letter n appears after a

logarithm it indicates that the corresponding number is to be taken

negative in all computations.
The computation of the residuals by equations (68) and the

final check by (69) is carried out in the following table, where

Scale, is written for the value of the expression axi + bx2 + cxs,

when the computed values of x\, x2 ,
and x3 are used and s bs. is

the corresponding value of s in the observation equations. Thus

+- Si = Si calc.
~

Si obs.-

I*
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jfl
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03
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and the corresponding empirical relation becomes

s = 0.245 a - 1.0003 6 + 1.4022 c.

A small number of observation equations with simple coefficients

have been chosen, in the above illustration, partly to save space
and partly in order that the computations may be more readily

followed. In practice it would seldom be worth while to apply
the method of least squares to so small a number of observations

or to adopt Gauss's method of solution with logarithms when the

normal equations are so simple. When the number of observa-

tions is large and the coefficients involve more than three or four

significant figures, the method given above will be found very
convenient on account of the numerous checks and the symmetry
of the computations. In order to furnish a model for more

complicated problems, the process has been carried out completely

even in the parts where the results might have been foreseen

without the use of logarithms.

56. Conditioned Quantities. When the unknown quantities,

Xi, Xz, etc., are not independent in the mathematical sense, the

foregoing method breaks down since the equations (50) no longer

express the condition for a minimum of [rr]. In such cases the

number of unknowns may be reduced by eliminating as many of

them as there are rigorous mathematical relations to be fulfilled.

The remaining unknowns are independent and may be deter-

mined as above. The eliminated quantities are then determined

with the aid of the given mathematical conditions.

For the purpose of illustration, consider the case of a single

rigorous relation between the unknowns, and let the correspond-

ing mathematical condition be represented by the equation

0(x lt x,, . . .
,
x q) =0. (71)

As in the case of unconditioned quantities, the observation equa-

tions (53) are

+ C&s + + piX q
=

Si,

cnx3 pnx q
=

The solution of (71) for x\, in terms of Xz, xs ,
. . .,

xq , may be

written in the form

xi=f(xz,xa , ..*,*) (72)
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Introducing this value of xi, equations (53) become

+ ClX* + * + PlXq
=

Si,

+ C2X3 + + P2Za
= S2 ,

4- cnz3 + + pnxq
= s.

Since the form of 6 is known, that of / is also known. Hence, by

collecting the terms in x%, xS} etc., and reducing to linear form,

if necessary, we have

bixz + ci'xs + + p\xq
=

s/,

The x's in these equations are independent, and, consequently,

they may be determined by the methods of the preceding articles.

Using the values thus obtained in (71) or (72) gives the remaining

unknown x\. The #'s, thus determined, obviously satisfy the

mathematical condition (71) exactly, -and give the least magnitude
to the quantity [rr] that is consistent with that condition. They

are, consequently, the most probable values that can be assigned

on the basis of the given data.

As a very simple example, consider the adjustment of the

angles of a plane triangle. Suppose that the observed values of

the angles are

si = 60 1'; s2 = 59 58'; s3 = 59 59'.

The adjusted values must satisfy the condition

xi + x2 + x* = 180,
or

xi = 180 - x2
- x3 .

Eliminating Xi from the observation equations,

xi = Si't Xz = s2 ;
and xs s3 ;

and substituting numerical values we have

xz +x3
= 119 59',

x2
= 59 58',

x3
= 59 59'.

The corresponding normal equations are

2z2 + z3
= 179 57',

= 179 58',
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from which we find

x2
= 59 58'.7 and xs

= 59 59'.7.

Then, from the equation of condition,

xi = 60 1'.6.

When there are two relations between the unknowns, expressed

by the equations
01 (xi, xt ,

. . .
,
x q)

=
0,

02 (xi, x2 ,
. . .

,
xq)

=
0,

they may be solved simultaneously for xi and x2 ,
in terms of the

other x's, in the form

xi = fi(x3 , xt, . . .
,
x q),

xz
=

/2(z3, $,..., xq).

Using these in the observation equations (53) we obtain a new set

of equations, independent of x\ and x* t
that may be solved as

above. It will be readily seen that this process can be extended

to include any number of equations of condition.

When the number of conditions is greater than two, the compu-
tation by the above method becomes too complicated for practical

application and special methods have been devised for dealing

with such cases. The development of these methods is beyond
the scope of the present work, but they may be found in treatises

on geodesy and practical astronomy in connection with the prob-

lems to which they apply.



CHAPTER VIII.

PROPAGATION OF ERRORS.

57. Derived Quantities. In one class of indirect measure-

ments, the desired numeric -X" is obtained by computation from

the numerics Xi, Xz , etc., of a number of directly measured mag-

nitudes, with the aid of the known functional relation

X = F(X 1,Xi ,
. . . ,X q).

We have seen that the most probable value that we can assign to

the numeric of a directly measured quantity is either the arith-

metical mean of a series of observations of equal weight or the

general mean of a number of measurements of different weight.

Consequently, if x\, Xz, . .
,
xq represent the proper means of

the observations on Xi, X2 ,
. . .

,
Xq the most probable value

x that we can assign to X is given by the relation

x = F (xi, xz ,
. . .

,
x q)

where F has the same form as in the preceding equation.

Obviously, the characteristic errors of x cannot be easily deter-

mined by a direct application of the methods discussed in Chapters

V and VI, as this would require a separate computation of x from

each of the individual observations on which Xi, Xz, etc., depend.

Furthermore, it frequently happens that we do not know the

original observations and are thus obliged to base our computa-
tions on the given mean values, x\, Xz, etc., together with their

characteristic errors.

Hence it becomes desirable to develop a process for computing
the characteristic errors of x from the corresponding errors of

Xij xz, etc. For this purpose we will first discuss several simple

forms of the function F and from the results thus obtained we
will derive a general process applicable to any form of function.

58. Errors of the Function Xi Xz X3 =t . . . Xq .

Suppose that the given function is in the form

X = Xi + X2 ,
or X = Xi - X2 .

These two cases can be treated together by writing the function in

the form
X = X\ db Xz,

95



96 THE THEORY OF MEASUREMENTS [ART. 58

and remembering that the sign indicates two separate problems
rather than, as usual, an indefinite relation in a single problem.
If the individual observations on Xi are represented by ai, a2 ,

. . .
,
an ,

and those on X2 by 61, 6 2 ,
. . .

,
bn ,

we have

n n

and the most probable value of X is given by the relation

x = Xi xz.

From the given observations we can calculate n independent
values of X as follows :

Ai = ai &i, A 2
= az d= 62 ,

. . .
,
A n = aw db 6n ,

and it is obvious that the mean of these is equal to x. The true

accidental errors of the a's are

Aai = oi Xi, Aa2
= a z Xi, . . .

,
Aan = an Zi;

those of the 6's are

Ah = 61
- Z2 ,

A6 2
= 6 2

- Z2 ,
. . .

,
A6n = bn

- X2 ;

and those of the A's are

^A l =A 1-X )
&A 2=A 2-X, . . .

,
&An=A n-X.

We cannot determine these errors in practice, since we do not

know the true value of the X's, but we can assume them in literal

form as above for the purpose of finding the relation between the

characteristic errors of the x's.

Combining the equations of the preceding paragraph with the

given functional relation, we have

AA X
=

(ai 60 - (Zi Z2)

=
(a!

- ZO (61
- Xz)

= Aai A&i,

and similar expressions for the other AA's. Consequently

(AAO 2 = (AaO
2 d= 2 AaiA&i + (A6i)

2
,

(AA 2)
2 = (Aa2 )

2 d= 2 Aa2A6 2

(AA n )
2 = (Aan )

2 2 kantU)n

Adding these equations, we find

[(AA)
2
]
= [(Aa)

2
]

2 [AaA6] + [(A6)
2
].
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Since Aa and Ab are true accidental errors, they are distributed

in conformity with the three axioms stated in article twenty-four.

Consequently equal positive and negative values of Aa and A6

are equally probable and the term [AaA6] would vanish if an

infinite number of observations were considered. In any case it

is negligible in comparison with the other terms in the above

equation. Hence, on dividing through by n, we have

[(AA)1 = [(Aa)l
[(A6)*]_

n n n

and by equation (20), article thirty-seven, this becomes

MA
2 = Ma

2 + Mb
2
, (73)

where MA is the mean error of a single A, Ma that of a single a,

and Mb that of a single b. Since x, xi, and z2 are the arithmetical

means of the A's, a's, and 6's, respectively, their respective mean

errors, M , MI, and M2 ,
are given by the relations

M 2 M 2 Tlfi2

M* = ^, itf-=, and M, = ^-
n n n

in virtue of equations (29), article forty. Consequently, by (73)

M2 = Mi2 +M2
2
,

or M =VMi2 + M2
2

. (74)

Since the mean and probable errors, corresponding to the same

series of observations, are connected by the constant relation (26),

article thirty-nine, we have also

+ Ef, (75)

where E, EI, and Ez are the probable errors of x, x\, and #2,

respectively.

It should be noticed that the ambiguous sign does not appear
in the expressions for the characteristic errors. The square of

the error of the computed quantity is equal to the sum of the

squares of the corresponding errors of the directly measured quan-

tities; whether the sign in the functional relation is positive or

negative. Thus the error of the sum of two quantities is equal

to the corresponding error of the difference of the same two quan-
tities.

Now suppose that the given functional relation is in the form

X = Xi d= X 2 Xt .
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The most probable value of X is given by the relation

x = xi xz x3y

where the notation has the same meaning as in the preceding

case. Represent x\ xz by xp ,
then

a; = xp =t z3 ,

and, by an obvious extension of the notation used above, we have

MP
2 = Mi2 + M2

2
,

Mz = MP
2 + M 3

2

= Mi2 + M2
2 + M3

2
.

Passing to the more general relation

X = Xi X2 X3
- - - X,,

we have a; = 1 db #2 x3 z
fl ,

and, by repeated application of the above process,

M2 = M M 2 MJ + - - + M 3
2

,
)

+ -E-

Thus the square of the error of the algebraic sum of a series of

terms is equal to the sum of the squares of the corresponding

errors of the separate terms whatever the signs of the given terms

may ba

59. Errors of the Function a\Xi =t 0:2^2 db asX3 =b - a qX q .

Let the given functional relation be in the form

X =

where a\ is any positive or negative, integral or fractional, con-

stant. The most probable value that we can assign to X on the

basis of n equally good independent measurements of X is

x =
aiXi,

where Xi is the arithmetical mean of the n direct observations

ai, a2 ,
as ,

. . .
,
an .

The n independent values of X obtainable from the given obser-

vations are

AI ami, Az aids, . . .
,
A n = a\an .

The accidental errors of the a's and A's are

Aai = a\ Xij Aa2
= a2 X\ t

. . .
,
Aan = an X\,

and

A4i = Ai - X, A^ 2
= A t -X, . . .

,
AA n = A n -X.
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Combining these equations we find

and similar expressions for the other AA's. Consequently

(AAO 2 = ai
2
(Aax)

2
,

and [(AA)
2
]
= ai [(Aa)

2
].

If M and Af i are the mean errors of x and xi t respectively,

and Jf,..I3.

Hence M2 = onWi2
, (77)

and, since the probable error bears a constant relation to the

mean error,
E2 = a^!2

. (78)

When the given functional relation is in the more general form

X = aiXi =b 0:2^2 =b 0.3X3 =b otqXqj
we have

x =

where the a;'s are the most probable values that can be assigned
to the X's on the basis of the given measurements. Applying

(77) and (78) to each term of this equation separately and then

applying (76) we have

t

E2 =

where the ATs and E's represent respectively the mean and prob-
able errors of the x's with corresponding subscripts.

60. Errors of the Function F (X l} X2 ,
. . .

,
Xq).

We are now in a position to consider the general functional

relation

X = F (Xi, Xz, . . .
,
Xq),

where F represents any function of the independently measured

quantities Xi, X2 ,
etc. Introducing the most probable values of

the observed numerics, the most probable value of the computed
numeric is given by the relation

x = F fa, x2) . . .
, Xq). (80)

This expression may be written in the form

& l ), (Z2 -f-52 ..
. . .

, (* + ,)!, 0)
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where the I's represent arbitrary constants and the.S's are small

corrections given by relations in the form

Obviously, the errors of the 5's are equal to the errors of the corre-

sponding x's. For, if Mi, Ms, and MI are the errors of Xi, 5i, and

Zi, respectively, we have by equation (74)

Ms
* = Mi2 + Mf.

But MI is equal to zero, because I is an arbitrary quantity and any

value assigned to it may be considered exact. Consequently

Mi2
. (ii)

Since the I's are arbitrary, they may be so chosen that the

squares and higher powers of the-5's will be negligible in compari-

son with the 8's themselves. Hence, if the x's are independent,

(i) may be expanded by Taylor's Theorem in the form

dF d
, \ **

where = F (z, z, . . .
, x)

=
>

and the other differential coefficients have a similar significance.

When the observed values of the x's are substituted in these

coefficients, they become known numerical constants.

The mean error of F (li, Z2 ,
. . .

,
lq) is equal to zero, since it

is a function of arbitrary constants; and the mean errors of the

5's are equal to the mean errors of the corresponding x's by (ii).

Consequently, if M, Mi, M2 ,
. . .

,
M q represent the mean errors

of x, Xi, xz ,
. . .

,
xq , respectively, we have by equation (79)

/dF - . V
, fdF , , V

,= F~ MI )
+ brr^2

)
+

\dxi I \dx2 I N~~ , ,
.

(OL)

where the E's represent the probable errors of the x's with corre-

sponding subscripts.

Equations (81) are general expressions for the mean and prob-

able errors of derived quantities in terms of the corresponding

errors of the independent components. Generally x\ t
x2 , etc.,
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represent either the arithmetical or the general means of series of

direct observations on the corresponding components, and EI, Ez,

etc., can be computed by equations (32) or (41). In some cases,

the original observations are not available but the mean values

together with their probable errors are given.

For the purpose of computing the numerical value of the differ-

r\Tj1 r\Tj1

ential coefficients -r ; > etc., the given or observed values of
oXi 0X2

the components x i} x2) etc., may generally be rounded to three

significant figures. This greatly reduces the labor of computa-
tion and does not reduce the precision of the result, since the E's

and M's are seldom given or desired to more than two significant

figures.

61. Example Introducing the Fractional Error. The prac-

tical application of the foregoing process is illustrated in the follow-

ing simple example: the volume V of a right circular cylinder is

computed from measurements of the diameter D and the length L,

and we wish to determine the probable error of the result. In

this case, V corresponds to x, D to xi, L to x2) and the functional

relation (80) becomes

Also, if EV, ED ,
and EL are the probable errors of V, D, and L,

respectively, the second of equations (81) becomes

where
sv

and
dV d /I \ 1 n2
-r^F-

= ^F \ -7 TTL) L ]
= -TrD*.

dL dL\4 / 4
Hence

The computation can be simplified by introducing the frac-
TTT

tional error -^~- Thus, dividing the above equation by

we have

^ =4^! +^T7"O 7~^9 I T O
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or, writing PV, PD, and PL for the fractional errors,

Py2 = 4 Pz>
2 + PL\

PV
and finally

Ev = FPF = V

A similar simplification can be effected, in dealing with many
other practical problems, by the introduction of the fractional

errors. Consequently it is generally worth while to try this ex-

pedient before attempting the direct reduction of the general

equation (81).-

In order to render the problem specific, suppose that

D = 15.67 0.13 mm.,
L = 56.25 d= 0.65 mm.,

then V = 10848

PD = = =

PL = ^ =^ = .0116; Pz,
2 = 135 X 10-6

,

=
0.020,

Ev = VTV = 220 mm
Hence

7= 10.85 0.22 cln.
3

62. Fractional Error of the Function aX^1 X Z2
U2 X

Xa
n5.-

Suppose the given relation is in the form

X = F(Xl) =aXi
where a and n are constants and the =fc sign of the exponent n is

used for the purpose of including the two functions aXi+n and

aX-r^ in the same discussion. In this case equation (80) becomes

x = axi n
,

and the second of (81) reduces to

But

_=_
Consequently
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If P and PI are the fractional errors of x and xi, respectively, we
have

E*-

Hence

i

P = nP,. (82)

If we replace n by in the above argument, (80) becomes

_

x = aXi m
,

and we find

m
Hence the fractional error of any integral or fractional power of

a measured numeric is equal to the fractional error of the given
numeric multiplied by the exponent of the power.

If the given function is in the form of a continuous product

X = aX l X X, X X X qt

(80) becomes x = axi X x2 X X xq .

dF
Hence = axz X x3 X X xg ,

ox\
I dF 1

and - =

Hence, by (81),

JP _ Ei2 EJ Eg
2

rz
~

7~2
~f~ ~~2 ~r T >

Js JL>1 JU2 Lq

and, if P, PI, P2 ,
. . .

,
Pq represent the fractional errors of the

#'s with corresponding subscripts,

Combining the above cases we obtain the more general rela-

tion

X = aXi 1 X Xz 2 X * * X Xq ,

and the corresponding expression for (80) is

Applying (82) to each factor separately and then applying (83) to

the product, we find

f - - - +nfPf. (84)
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For the sake of illustration and to fix the ideas this result may
be compared with the example of the preceding article. If we

put x = V, Xi = D, HI = 2, x2
= L, n2

=
1, a = -7

,
P = Py,

PI = PD, and PZ = PL the above expression for x becomes

V = %TrD
2
L,

and (84) becomes

Occasionally it is convenient to express the probable error in

the form of a percentage of the measured magnitude. If E and

p are respectively the probable and percentage errors of x,

p= 100 - = 100 P. (85)x

Consequently (84) may be written in the form

P
2 = niW + n2

2
p2

2 + + nfp*, (84a)

where pi, p2 ,
. . .

, p q are the percentage errors of Xi, x2 ,
. . .

,
xq ,

respectively



CHAPTER IX.

ERRORS OF ADJUSTED MEASUREMENTS.

WHEN the most probable values of a number of numerics

Xi, X2,etc., are determined by the method of least squares, the

results Xi, x2,etc., are called adjusted measurements of the quan-
tities represented by the X's. In Chapter VII we have seen how
the x's come out by the solution of the normal equations (56) or

(58), and how these equations are derived from the given obser-

vations through the equations (53). In the present chapter we
will determine the characteristic errors of the computed x's in

terms of the corresponding errors of the direct measurements on

which they depend.

63. Weights of Adjusted Measurements. When there are q

unknowns and the given observations are all of the same weight,

the normal equations, derived in article fifty, are

[aa] Xi + [ab] x2 + [ac] x3 + - + [ap] x q
=

[as],

[db] x, + [66] x2 + [6c] *,+ + [bp] x q
=

[bs],
(56)

[ap] xi + [bp] xz + [cp] x3 + + [pp] xq
=

[ps].

Since these equations are independent, the resulting values of the

x's will be the same whatever method of solution is adopted. In

Chapter VII Gauss's method of substitution was used on account

of the numerous checks it provides. For our present purpose
the method of indeterminate multipliers is more convenient as it

gives us a direct expression for the x's in terms of the measured

s's. Obviously this change of method cannot affect the errors of

the computed quantities.

Multiply each of equations (56) in order by one of the arbitrary

quantities AI, A 2 ,
. . .

,
A q and add the products. The result-

ing equation is

(86)

+ ([db] A 1 + [bb] A, + + [bp] A q) x2

+ >

=
[as] A l + [6s] A 2 + + [ps] A q .

105



[ob] A, + [66] A* + + [6p] A q
=

0,
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Since the A's are arbitrary and q in number, they can be made to

satisfy any q relations we choose without affecting the validity

of equation (86). Hence, if we determine the A's in terms of the

coefficients in (56) by the relations

(g7)

equation (86) gives an expression for x\ in the form

xi = [as] Ai + [&*] 4i +!-'+ \ps]A t . (88)

If we repeat this process q times, using a different set of multipliers

each time, we obtain q different equations in the form of (86).

In each of these equations we may place the coefficient of one of

the x's equal to unity and the other coefficients equal to zero, giv-

ing q sets of equations in the form of (87) for determining the q sets

of multipliers. Representing the successive sets of multipliers by
A's, B's, C"s, etc., we obtain (88), and the following expressions

for the other x's :

x2
=

[as] Bi + [bs] ft +...;+ \p8]
B q ,

x3
=

[as] Ci + [6s] C2 + + \ps] C q ,

xq
=

[as] P! + [6s] P2 + + \ps] P q .

From equations (87), it is obvious that the A's do not involve

the observations Si, s2 ,
etc. Consequently (88) may be expanded

in terms of the observations as follows:

Xi = ctiSi + azs2 -f + ctgSq , (89)

where the a's depend only on the coefficients in the observation

equations (53) and are independent of the s'a. Since we are con-

sidering the case of observations of equal weight, each of the s's

in (89) is subject to the same mean error M8 . Her e, if MI is

the mean error of Xi, we have by equations (79), article fifty-nine,

Mx2 = ai
2Ms

2 + 2
2Ma

2 + - + an2M,2

=M M,2
.

But, if Wi is the weight of x\ in comparison with that of a single s,

we have by (36), article forty-four,

Wl
w i

(90)
Mi2

[act]
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since the ratio of the mean errors of two quantities is equal to the

ratio of their probable errors.

Comparing equations (88) and (89), with the aid of equations

(55), article fifty, we see that

biA 2 + +piA q ,

(i)

an
= pnA q .

Multiply each of these equations by its a and add the products,

then multiply each by its b and add, and so on until all of the

coefficients have been used as multipliers. We thus obtain the

q sums [aa], [ba], . . .
, [pa], and by taking account of equations

(87) we have

[aa]
=

1, >

[ba]
=

[ca]
= . =

[pa]
= 0. )

Hence, if we multiply each of equations (i) by its a and add the

products, we have

[aa]
= A i.

Consequently equation (90) becomes

A l

(91)

The weights of the other x's may be obtained, by an exactly

similar process, from equations (88a). The results of such an

analysis are as follows:

M

M a
2 P t

(91a)

Obviously the coefficients of the sums [as], [bs], etc., in equa-

tions (88) and (88a) do not depend upon the particular method by
which the normal equations are solved, since the resulting values

of the x's must be the same whatever method is used. Conse-

quently, if the absolute terms [as], [bs], . . .
, [ps] are kept in literal

form during the solution of the normal equations by any method

whatever, the results may be written in the form of equations
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(88) and (88a); and the quantities AI, B 2) etc., will be numerical

if the coefficients [aa], [ab], . . .
, [bb], . . .

, [pp] are expressed

numerically.

Hence, in virtue of (91) and (91 a), we have the following rule

for computing the weights of the z's.

Retain the absolute terms of the normal equations in literal

form, solve by any convenient method, and write out the solution

in the form

a?i
=

[as] A! + [bs] A 2 + [cs] A 3 + - + \ps] A qt

x2
=

[as] B l + [bs] B 2 + [cs] B 3 + - - - + \ps] B q ,

x q
=

[as] P 1 + [bs] P2 + [cs] P, + - - + [ps] P q .

Then the weight of x\ is the reciprocal of the coefficient of [as] in

the equation for x\, the weight of x2 is the reciprocal of the co-

efficient of [bs] in the equation for x%, and in general the weight of

xq is the reciprocal of the coefficient of [ps] in the equation for x q .

As an aid to the memory, it may be noticed that the coefficients

AI, B2 , Cs, . . .
,
Pq ,

that determine the weights, all lie in the

main diagonal of the second members of the above equations.

When the number of unknowns is greater than two, the labor of

computing all of the A's, B's, etc., would be excessive, and conse-

quently it is better to determine the x's by the methods of Chap-
ter VII. The essential coefficients AI, B 2 ,

C3 ,
. . .

,
P q can be

determined independently of the others by the method of deter-

minants as will be explained later.

If the given observations are not of equal weight, the weights
of the x's may be determined by a process similar to the above,

starting with normal equations in the form of (58), article fifty.

The result of such an analysis can be expressed by the rule stated

above if we replace the sums [as], [bs], . . .
, [ps] by the weighted

sums [was], [wbs], . . .
, [wps], the notation being the same as in

article fifty.

64. Probable Error of a Single Observation. By definition,

article thirty-seven, the mean error M8 of a single observation is

given by the expression

_ Af + A^+.-.+A.' _ [AA]
, (iii)n n

where the A's represent the true accidental errors of the s's.

When the number of observations is very great, the residuals given
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by equations (54) may be used in place of the A's without causing

appreciable error in the computed value of M8 . But, in most

practical cases, n is so small that this simplification is not admis-

sible and it becomes necessary to take account of the difference

between the residuals and the accidental errors.

Let Ui, u2 ,
. . .

,
u q represent the true errors of the x's ob-

tained by solution of the normal equations (56). Then the true

accidental error of the first observation is given by the relation

Ol (Xi + Ui) + 61 (X2 + U2) + + Pl (Xq + U q)
-

Si = Ai.

But, by the first of equations (54),

aiXi + 6ix2 -f cixs + + pixq si = ri,

where r\ is the residual corresponding to the first observation.

Combining these equations and applying them in succession to

the several observations, we obtain the following expressions for

the A's in terms of the r's:

ri + aiui + biu2 + CiU3 + - + piUq = Ai,

A 2 ,
,.*

+ bnu2 + cnu3 + + pnuq
= An .

Multiply each of these equations by its r and add; the result is

[rr] + [ar] HI + [br] u2 + [cr] u3 + + [pr] uq
=

[Ar].

But by equations (iii), article fifty,

[ar]
=

[br]
=

[cr]
= =

for]
=

0, (v)

and, consequently,

[rr]
=

[Ar]. (vi)

Multiply each of equations (iv) by its A and add. Then, taking

account of (vi), we have

[rr] + [aA] Ul + [6A] u2 + + [pA] uq
= [AA]. (vii)

In order to obtain an expression for the u's in terms of the A's,

multiply each of equations (iv) by its a and add, then multiply

by the b's in order and add, and so on with the other coefficients.

The first term in each of these sums vanishes in virtue of (v), and

we have

[aa] ui + [ab] w2 + + [ap] uq
=

[aA],

[db] Ul + [bb] u, + + \bp] uq
=

[6A],

lap] ui + [bp] u2 + - - - + [pp] uq
=

(viii)
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These equations are in the same form as the normal equations (56)

with the z's replaced by u's and the s's by A's. Hence any solu-

tion of (56) for the x's may be transposed into a solution of (viii)

for the u's by replacing the s's by A's without changing the coeffi-

cients of the s's. Consequently, by (89), we have

and similar expressions for the other u's.

The coefficients of the u's in (vii) expand in the form

[aA] = aiAi + a2A 2 + + anAn .

Hence

[aA] ui = aiaiAi
2 + a2 2A 2

2+.+ ananAn
2
,

Since positive and negative A's are equally likely to occur, the

sum of the terms involving products of A's with different subscripts

will be negligible in comparison with the other terms. The sum
of the remaining terms cannot be exactly evaluated, but a suffi-

ciently close approximation is obtained by placing each of the A 2
's

equal to the mean square of all of them,
---* Consequently, as

the best approximation that we can make, we may put

n

But, by equations (ii), [aa] is equal to unity. Hence

[aA] - M.
iv

Since there is nothing in the foregoing argument that depends on
the particular u chosen, the same result would have been obtained

with any other u. .Consequently, in equation (vii), each term that

involves one of the u's must be equal to --
!i and, since there

tv

are q such terms, the equation becomes

Hence, by equation (iii),

and
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where the r's represent the residuals, computed by equations (54) ;

n is the number of observations ;
and q is the number of unknowns

involved in the observation equations (53). In the case of direct

measurements, the number of unknowns is one, and (92) reduces

to the form already found in article forty-one, equation (30), for

the mean error of a single observation.

When the observations are not of equal weight, the mean error

M8 of a standard observation, i.e. an observation of weight

unity, is given by the expression

2 =
n

where the w's are the weights of the individual observations.

Starting with this relation in place of (iii) and making correspond-

ing changes in other equations, an analysis essentially like the

preceding leads to the result

Ma =^'^-, (93)
T n q

which reduces to the same form as (92) when the weights are all

unity.

Introducing the constant relation between the mean and probable

errors, we have the expressions

E8
= 0.6741/-M- , (94)V n q

for the probable error of a single observation in the case of equal

weights, and

E8
= 0.674\/-^i, (95)

V n q

for the probable error of a standard observation in the case of

different weights.

Finally, ifMk ,
Ek ,

and wk represent the mean error, the probable

error, and the weight of xk , any one of the unknown quantities,

we may derive the following relations from the above equations

by applying equations (36), article forty-four:

Ms
-
= 7= V '

A/in. T n o

(96)
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when the weights of the given observations are equal, and

Mk = -^= = L Y/-^->
v Wk vWk n ~ Q

E, 0.674
Ek =

/
-
=

(97)

~
2

when the weights of the given observations are not equal.

65 . Application to Problems Involving TwoUnknowns . When
the observation equations involve only two unknown quantities,

the solution of the normal equations is given by (59), article

fifty-one, in the form

_ [66] [as]
-

[ab] [bs]

[aa] [bb]
-

[ab]
2

'

_ [aa] [bs] [ab] [as]

[aa] [bb]
-

[ab]
2

By the rule of article sixty-three, the weight of Xi is equal to the

reciprocal of the coefficient of [as] in the equation for Xi, and the

weight of #2 is equal to the reciprocal of the coefficient of [bs] in

the equation for x2 . Hence, by inspection of the above equations,

we have

[aa] [bb]
-

[ab]
2

_

W2
=

[bb]

[aa] [bb]
-

[ab]
2

[aa]

(98)

Since there are only two unknown quantities, and the observa-

tions are of equal weight, equation (92) gives the mean error of a

single observation when q is taken equal to two. Hence

(99)

where n is the number of observation equations and [rr] is the

sum of the squares of the residuals that are obtained when the

computed values of Xi and Xz are substituted in equations (53a),

article fifty-one.

Combining equations (98) and (99) with (96), we obtain the

following expressions for the probable errors of Xi and x2 :

0.674

E2
= 0.674

v/

v/

[66]

[aa][bb]
-

[ab]
2 n-2

[aa] [rr>

[aa] [bb]
-

[ab]
2 n-2

(100)
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For the purpose of illustration, we will compute the probable

errors of the values of x\ and x2 obtained in the numerical prob-

lem worked out in article fifty-one. Referring to the numerical

tables in that article, we find

[aa]
=

5; [ab]
=

20; [bb]
=

90; n = 5;

[rr]
= 9.60X 1Q-4 .

Hence, by equations (100),

*' V
/
5X90-400

By equations (vi), article fifty-one, the length L of the bar at

C., and the coefficient of linear expansion a are given by the

relations

L = iooo + si; a = -L.*.
10 -L70

Since L is equal to #1 plus a constant, its probable error is equal

to that of Xi by the argument underlying equation (ii), article

sixty. Hence

EL. = E! = =fc 0.016.

To find the probable error of a, we have by equations (81), article

sixty,

But, since L is very large in comparison with x2 ,
the second term

on the right-hand side is negligible in comparison with the first.

Consequently, without affecting the second significant figure of

the result, we may put

= Ei X 10- 4 = =fc 0.038 X 10- 5
.

Hence the final results of the computations in article fifty-one may
be more comprehensively expressed in the form

L Q
= 1000.008 db 0.016 millimeters,

a = (1.780 db 0.038) X 10~5
,
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when we wish to indicate the precision of the observations on
which they depend.

66. Application to Problems Involving Three Unknowns. The
normal equations, for the determination of three unknowns, take

the form

[aa] Xi + [ah] x2 + [ac] x3
=

[as],

[ac] xi + [be] x2 + [cc] x3
=

[cs].

Solving by the method of determinants and putting

we have

[as]

x2
=

[as

[as]

Hence, by the rule of article sixty-three,

D
Wl

[bb][cc] -[be]
2 '

= D
2

~~

[aa] [cc] [ac]
2 '

D
[aa][bb]-[ab]*'

[aa]

[ab]

[ac]



ART. 66] ERRORS OF ADJUSTED MEASUREMENTS 115

The auxiliary [cc 2] is independent of the absolute terms [as],

[6s], and [cs]. The auxiliary [cs 2] may be expanded as follows:

[oc] r
, [6cl] (

, [ab][6cl] (
,~

PTTJ \

M -

Hence the coefficient of [cs] in the above expression for x$ is

r

-
~y, and, consequently, the weight of x$ is equal to [cc2].

[CC ZJ

Substituting this value for ws in the third of equations (x) and

eliminating D from the other two we have

[aa] [bb 1]

[66 (101)

w3
=

[cc 2],

where the auxiliary quantities [66 1], [cc 1], and [cc 2] have the

same significance as in article fifty-four.

The weights of the x's having been determined by equations

(101), their probable errors may be computed by equations (96).

In the present case q is taken equal to three, since there are three

unknowns, and the r's are given by equations (68).

In the numerical illustration of Gauss's Method, worked out in

article fifty-five, we found the following values of the quantities

appearing in equations (96) and (101):

[aa]
=

6; [66]
= 220; [6c]

=
180; [cc]

= 157;

[66 1]
= 70; [cc 1]

=
76.0; [cc 2]

=
5.97;

[rr]
= 0.00120; n =

6; q
= 3.

These values have been rounded to three significant figures, when

necessary, since the probable errors of the #'s are desired to only
two significant figures. Substituting in equations (101) we have

Wl =
6X7 _2

5.97 -1.17,
220 X 157 - 180

70
^2 = y^5.97

=
5.50,

w3
= 5.97,
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From equation (94)

\E.

and, by equations (96),

a
= 0.674 1/

'0012 =
0.0135,

0.0135
. O.UUoo.

Consequently the precision of the measurements, so far as it

depends on accidental errors, may be expressed by writing the

computed values of the x's in the form

xi = 0.245 0.012,

X2 =- 1.0003 0.0057,

z3
= 1.4022 0.0055.

Since the last significant figure in each of the x's occupies the same

place as the second significant figure in the corresponding prob-

able error, it is evident that the proper number of figures were

retained throughout the computations in article fifty-five.



CHAPTER X.

DISCUSSION OF COMPLETED OBSERVATIONS.

67. Removal of Constant Errors. The discussion of acci-

dental errors and the determination of their effect on the result

computed from a given series of observations, as carried out in the

preceding chapters, are based on the assumption that the meas-

urements are entirely free from constant errors and mistakes.

Hence the first matter of importance, in undertaking the reduction

of observations, is the determination and removal of all constant

errors and mistakes. Also, in criticizing published or reported

results, judgment is based very largely on the skill and care with

which such errors have been treated. In the former case, if suit-

able methods and apparatus have been chosen and the adjust-

ments of instruments have been properly made, sufficient data is

usually at hand for determining the necessary corrections within

the accidental errors. In the latter case we must rely on the dis-

cussion of methods, apparatus, and adjustments given by the

author and very little weight should be given to the reported

measurements if this discussion is not clear and 'adequate.

No evidence can be obtained from the observations themselves

regarding the presence or absence of strictly constant errors.

The majority of them are due to inexact graduation of scales,

imperfect adjustment of instruments, personal peculiarities of the

observer, and faulty methods of manipulation. They affect all

of the observations by the same relative amount. Their detec-

tion and correction or elimination depend entirely on the judg-

ment, experience, and care of the observer and the computer.
When the same magnitude has been measured by a number of

different observers, using different methods and apparatus, the

probability that the constant errors have been the same in all of

the measurements is very small. Consequently if the corrected

results agree, within the accidental errors of observation, it is

highly probable that they are free from constant errors. This is

the only criterion we have for the absence of such errors and it

117
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breaks down in some cases when the measured magnitude is not

strictly constant.

Sometimes constant errors are not strictly constant but vary

progressively from observation to observation owing to gradual

changes in surrounding conditions or in the adjustment of instru-

ments. The slow expansion of metallic scales due to the heat

radiated from the body of the observer is an illustration of a

progressive change. Such variations are usually called systematic

errors. They may be corrected or eliminated by the same methods

that apply to strictly constant errors when adequate means are

provided for detecting them and determining the magnitude of

the effects produced. When their range in magnitude is compara-
ble with that of the accidental errors, their presence can usually be

determined by a critical study of the given observations and their

residuals. But, if they have not been foreseen and provided for

in making the observations, their correction is generally difficult

if not impossible. In many cases our only recourse is a new series

of observations taken under more favorable conditions and accom-

panied by adequate means of evaluating the systematic errors.

A general discussion of the nature of constant errors and of the

methods by which they are eliminated from single direct observa-

tions was given in Chapter III. These processes will now be con-

sidered a little more in detail and extended to the arithmetical

mean of a number of direct observations. Let a\ t
d2 ,

as ,
. . .

,
an

represent a series of direct observations after each one of them

has been corrected for all constant errors. Then the most prob-

able value that can be assigned to the numeric of the measured

magnitude is the arithmetical mean

x =
q i + fl2 + +an

/jx

IV

Now suppose, that the actual uncorrected observations are 01, o 2 ,

o3 , ,
on ,

then

ai = 01 + cj + cj' + cj" + + ci<*>
= 01 + [cj,

a2
= o2 + cj + c2

" + cj" + + c2
("> = o2 +

C*n
= On + Cn

' + C" + Cn
'" + + cj* = On+ [c

where the c's represent the constant errors to be eliminated and

may be either positive or negative. There are as many c's in

each equation as there are sources of constant error to be consid-
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ered. Usually, when all of the observations are made by the

same method and with equal care, the number of c's is the same
in all of the equations. Substituting (ii) in (i)

J
. = 0l + 02+ +. [Cj + [cj+ - - +[ftj

n n '

When there are no systematic errors

Cl = Cz = C3
' =

Cl
" = C2

" = C," = = Cn
" = C",

= C3
' = * = Cn

Consequently

[ci]
=

[cz]
=

[c3]
= =

[cn]
=

[c], (iv)

and we have

x = + [c]n
= Om + c' + c" + c"' + -f c<>, (102)

where om is written for the mean of the actual observations.

Hence, when all of the observations are affected by the same con-

stant errors, the corrections may be applied to the arithmetical

mean of the actual observations and the resulting value of x will

be the same as if the observations were separately corrected before

taking the mean.

The residuals corresponding to the corrected observations ai,

a2 ,
a3 ,

. . .
,
an are given by equations (3), article twenty-two.

Replacing x and the a's by their values in terms of om and the

o's as given in (102) and (ii), and taking account of (iv), equations

(3) become

ri = di X = Oi+ [Ci]
- Om- [C\

= 01
- Om,

r2
= a2 x = o2 + [c2] om [c]

= o2 om ,

(103)

rn = an - X = On + [Cn] -Om- [c]
= On

- Om .

Consequently, when there are no systematic errors, the residuals

computed from the o's and om will be identical with those com-

puted from the a's and x. Hence, if the uncorrected observations

are used in computing the probable error of x, by the formula

/ WE = 0.674\/ /
J

1X >

V n (n 1)
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the result will be the same as if the corrected observations had

been used; and, as pointed out above, the observations and their

corresponding residuals give no evidence of the presence of strictly

constant errors.

When the constant errors affecting the different observations

are different or when any of them are systematic in character,

equation (iv) no longer holds, and, consequently, the simplifica-

tion expressed by (102) is no longer possible. In the former case

the observations should be individually corrected before the mean
is taken. The same result might be obtained from equation (iii),

but the computation would not be simplified by its use. In the

latter case the several observations are affected by errors due to

the same causes but varying progressively in magnitude in response

to more or less continuous variations in the conditions under

which they are made.

In equations (ii) the c's having the same index may be con-

sidered to be due to the same cause, but to vary in magnitude
from equation to equation as indicated by the subscripts. The

arithmetical means of the errors due to the same causes are

, _ Ci' + C2
' + + Cn

'

Cm '~
~

_
Cm -

n

and the mean of the observations is

01 + 02 + ' ' '

Om =
n

Substituting (ii) in (i) and taking account of the above relations

we have
X = Om + Cm

' + Cm
" + ' ' ' + Cw<> . (104)

Hence, in the case of systematic errors, the most probable value

of the numeric of the measured magnitude may be obtained from

the mean of the uncorrected observations by applying mean cor-

rections for the systematic errors. When all of the errors are

strictly constant equation (104) becomes identical with (102)

because all of the errors having the same index are equal. Obvi-



ART. 68] DISCUSSION OF COMPLETED OBSERVATIONS 121

ously it also holds when part of the c's are strictly constant and the

remainder are systematic.

If we use the value of x given by (104) in place of that given

by (102) in the residual equations (103), the c's will not cancel.

Hence, if any of the constant errors are systematic in nature,.the

residuals computed from the o's and om will be different from

those computed from the a's and x; and, consequently, they will

not be distributed in accordance with the law of accidental errors.

In practice it is generally advisable to correct each of the ob-

servations separately before taking the mean rather than to use

equation (104), since the true residuals are required in computing
the probable error of x, and they cannot be derived from the un-

corrected observations. Whenever possible the conditions should

be so chosen that systematic errors are avoided and then the

necessary computation can be made by equations (102) and (103).

68. Criteria of Accidental Errors. We have seen that the

residuals computed from observations affected by systematic errors

do not follow the law of accidental errors. Hence, if it can be

shown that the residuals computed from any given series of obser-

vations are distributed in conformity with the law of errors, it is

probable that the given observations are free from systematic

errors or that such errors are negligible in comparison with the

accidental errors. Observations that satisfy this condition may
or may not be free from strictly constant errors, but necessary

corrections can be made by equation (102) and the probable error

of the mean may be computed from the residuals given by

equation (103).

Systematic errors should be very carefully guarded against in

making the observations, and the conditions that produce them

should be constantly watched and recorded during the progress

of the work. After the observations have been completed they

should be individually corrected for all known systematic errors

before taking the mean. The strictly constant errors may then

be removed from the mean, but before this is done it is well to

compute the residuals and see if they satisfy the law of accidental

errors. If they do not, search must be made for further causes

of systematic error in the conditions surrounding the measure-

ments and a new series of observations should be made, under

more favorable conditions, whenever sufficient data for this pur-

pose is not available.
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Residuals, when sufficiently numerous, follow the same law of

distribution as the true accidental errors. Consequently system-

atic errors and mistakes might be detected by a direct comparison
of the actual distribution with the theoretical, as carried out in

article thirty-four, provided the number of observations is very

large. However, in most practical measurements, the residuals

are not sufficiently numerous to fulfill the conditions underlying
the law of errors, and a considerable difference between their

actual and theoretical distribution is quite as likely to be due to^

this fact as to the presence of systematic errors. Whatever the

number of observations, a close agreement between theory and

practice is strong evidence of the absence of such errors but it is

seldom worth while to carry out the comparison with less than

one hundred residuals.

When the residuals are numerous and distributed in the same

manner as the accidental errors, the average error of a single

observation, computed by the formula

Vn(n- 1)'

and the mean error, computed by the formula

satisfy the relation

M = 1.253 A.
Also the formulae

E = 0.8453 A and E = 0.6745M
give the same value for the probable error of a single observation.

When the number of observations is limited, exact fulfillment of

these relations ought not to be expected, but a large deviation

from them is strong evidence of the presence of systematic errors

or mistakes. Unless the number of observations is very small,

ten or less, the relations should be fulfilled within a few units in

the second significant figure, as is the case in the numerical example
worked out in article forty-two.

Obviously the arithmetical mean is independent of the order

in which the observations are arranged in taking it, but the order

of the residuals in regard to sign and magnitude depends on the

order of the observations. When there are systematic errors and
the observations are arranged in the order of progression of their
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cause, the residuals will gradually increase or decrease in absolute

magnitude in the same order; and, if the systematic errors are

large in comparison with the accidental errors, there will be but

one change of sign in the series. Thus, if the temperature is

gradually rising while a length is being measured with a metallic

scale and the observations are arranged in the order in which they
are taken, the first half of them will be larger than the mean and
the last half smaller, except for the variations caused by accidental

errors. For the purpose of illustration, suppose that the observa-

tions are

1001.0; 1000.9; 1000.8; 1000.7; 1000.6; 1000.5; 1000.4.

The mean is 1000.7 and the residuals

+ .3; +.2; +.1; .0; -.1; -.2; -.3

decrease in absolute magnitude from left to right, i.e., in the order

in which the observations were made. There are five cases in

which the signs of succeeding residuals are alike and one in which

they are different; the former cases will be called sign-follows and

the^latter a sign-change. This order of the residuals in regard to

magnitude and sign is typical of observations affected by sys-

tematic errors when they are arranged in conformity with the

changes in surrounding conditions. Since such changes are usually

continuous functions of the time, the required arrangement is

generally the order in which the observations are taken.

Such extreme cases as that illustrated above are seldom met
with in practice owing to the impossibility of avoiding accidental

errors of observation and the complications they produce in the

sequence of residuals. Generally the systematic errors that are

not readily discovered and corrected before making further re-

ductions are comparable in magnitude with the accidental errors.

Consequently they cannot control the sequence in the signs of

the residuals but they do modify the sequence characteristic of

true accidental errors.

In any extended series of observations there should be as many
negative residuals as positive ones, since positive and negative

errors are equally likely to occur. After any number of observations

have been made, the probability that the residual of the next obser-

vation will be positive is equal to the probability that it will be nega-

tive, since the possible number of either positive or negative errors

is infinite. Consequently the chance that succeeding residuals
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will have the same sign is equal to the chance that they will have

different signs. Hence, if the residuals are arranged in the order

in which the corresponding observations were made, the number
of sign-follows should be equal to the number of sign-changes.
The residuals, computed from limited series of observations,

seldom exhibit the theoretical sequence of signs exactly because

they are not sufficiently numerous to fulfill the underlying condi-

tions. Nevertheless, a marked departure from that sequence

suggests the presence of systematic errors or mistakes and should

lead to a careful scrutiny of the observations and the conditions

under which they were made. If the disturbing causes cannot be

detected and their effects eliminated, it is generally advisable to

repeat the observations under more favorable conditions. The
numerical example, worked out in article forty-two, may be cited

as an illustration from practice. The observations were made in

the order in which they are tabulated, beginning at the top of the

first column and ending at the bottom of the fourth column. In

the second and fifth columns we find ten positive and ten negative
residuals. The number of sign-follows is ten and the number of

sign-changes is nine. This is rather better agreement with the

theoretical sequence of signs than is usually obtained with so few

residuals. It indicates that the observations were made under

favorable conditions and are sensibly free from systematic errors

but it gives no evidence whatever that strictly constant errors

are absent.

Although the foregoing criteria of accidental errors are only

approximately fulfilled when the number of observations is lim-

ited, their application frequently leads to the detection and elimi-

nation of unforeseen systematic errors. The first method is rather

tedious and of little value when less than one hundred obser-

vations are considered, but the last two methods may be easily

carried out and are generally exact enough for the detection of

systematic errors comparable in magnitude with the probable error

of a single observation.

69. Probability of Large Residuals. In discussing the dis-

tribution of residuals in regard to magnitude, the words large and

small are used in a comparative sense. A large residual is one that

is large in comparison with the majority of residuals in the series

considered. Thus, a residual that would be classed as large in a

series of very precise observations would be considered small in
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dealing with less exact observations. Consequently, in expressing

the relative magnitudes of residuals, it is customary to adopt a

unit that depends on the precision of the measurements considered.

The probable error of a single observation is the best magnitude
to adopt for this purpose, since it is greater than one-half of the

errors and less than the other half. If we represent the relative

magnitude of a given error by S, the actual magnitude by A, and

the probable error of a single observation by E,

S =
|- (105)

The relative magnitudes of the residuals may be represented in

the same way by replacing the error A by the residual r. It is

obvious that values of S less than unity correspond to small re-

siduals and values greater than unity to large residuals in any
series of observations.

In equation (13), article thirty-three, the probability that an

error chosen at random is less than a given error A is expressed

by the integral
*/~ A

o / v
j

PA =
-^= e-*dt. (13)
V-n-Jo

Equation (25), article thirty-eight, may be put in the form

V ** k
& =

7= ->
VTT a?

where $ is written for the numerical constant 0.47694. Hence,

introducing (105),

and (13) becomes

P8
= 'eft. (106)

Obviously this integral expresses the probability that an error

chosen at random is less than S times the probable error of a

single observation. It is independent of the particular series to

which the observations belong and its values, corresponding to

a series of values of the argument S, are given in Table XII.

Since all of the errors in any system are less than infinity, Poo

is equal to unity. Hence the probability that a single error,
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chosen at random, is greater than S times E is given by the rela-

tion

Qs = 1 - Pa- (V)

Now the residuals, when sufficiently numerous and free from

systematic errors and mistakes, should follow the same distri-

bution as the accidental errors. Hence, if ns is the number of

residuals numerically greater than SE and N is the total number

in any series of observations, we should have

Qs = T?" (vi)

Since the numerical value of P8 ,
and consequently that of Q8

depends only on the limit S and is independent of the precision

of the particular series of measurements considered, the ratio
jj.

>

corresponding to any given limit S, should be the same in all

cases. Consequently, if N observations have been made on any

magnitude and by any method whatever, n8 of them should corre-

spond to residuals numerically greater than SE. Conversely, if

we assign any arbitrary number to na , equation (vi) defines the

number of observations that we should expect to make without

exceeding the assigned number of residuals greater than SE.

Hence, if Na is the number of observations among which there

should be only one residual greater than S times the probable

error of a single observation, we have, by placing ns equal to

one in (vi), and substituting the value of Q8 from (v),

*--r^>r (107)

The fourth column of the following table gives the values of Na ,

to the nearest integer, corresponding to the integral values of the

limit S given in the first column. The values of P8 in the second

column are taken from Table XII, and those of Q8 in the third

column are computed by equation (v).

S
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To illustrate the significance of this table, suppose that 143

direct observations have been made on any magnitude by any
method whatever. The probable error E of a single observation

in this series may be computed from the residuals by equation (31)

or (34). Then, if the residuals follow the law of errors, not more
than one of them should be greater than four times as large as E.

If the number of observations had been 1351, we should expect
to find one residual greater than five times E, and on the other

hand if the number had been only twenty-three, not more than

one residual should be greater than three times E.

Although the probability for the occurrence of large residuals

is small, and very few of them should occur in limited series

of observations, their distribution among the observations, in

respect to the order in which they occur, is entirely fortuitous.

A large residual is as likely to occur in the first, or any other,

observation of an extended series as in the last observation. Con-

sequently the limited series of observations, taken in practice,

frequently contain abnormally large residuals. This is not due

to a departure from the law of errors, but to a lack of sufficient

observations to fulfill the theoretical conditions. In such cases

there are not enough observations with normal residuals to balance

those with abnormally large ones. Consequently a closer approxi-

mation to the arithmetical mean that would have been obtained

with a more extended series of observations is obtained when the

abnormal observations are rejected from the series before taking

the mean.

Observations should not be rejected simply because they show

large residuals, unless it can be shown that the limit set by the

theory of errors, for the number of observations considered, is

exceeded. This can be judged approximately by comparing the

residuals of the given observations with the numbers given in the

first and last columns of the above table, but a more rigorous test

is obtained by applying Chauvenet's Criterion, as explained in the

following article.

70. Chauvenet's Criterion. The probability that the error

of a single observation, chosen at random, is less than SE is

expressed by Pa in equation (106). Now, the taking of N inde-

pendent observations is equivalent to N selections at random from

the infinite number of possible accidental errors. Hence, by

equation (7), article twenty-three, the probability that each of
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the N observations in any series is affected by an error less than

SE is equal to P N
. Since all of the N errors must be either greater

or less than SE}
the probability that at least one of them is greater

than this limit is equal to 1 P8
N

. Placing this probability

equal to one-half, we have

i - P." = i,

or

P. - (1
- (vii)

If the limit S is determined by this equation, there is an even

chance that at least one of the N observations is affected by an

error greater than SE.

Expanding the second member of (vii) by the Binomial Theorem

11 N -I I (N- l)(2N-l) 1

N 2 1-2-N2 4 1-2- 3- N* 8

1-2-3 . . . K-NK

The terms of this series decrease very rapidly and all but the first

are negative. Consequently the sum of the terms beyond the

second is small in comparison with the other two; and, whatever

the value of N, (1 %)
N

is nearly equal to, but always slightly

less than,
-

^-^
-

. Since P8 and S increase together, the limit

T determined by the relation

2N-1
2N (108)

is slightly greater than the limit S determined by (vii). Hence,

if N independent direct observations have been made, the prob-

ability against the occurrence of a single error greater than

A r = TE (109)

is greater than the probability for its occurrence. Consequently,

if the given series contains a residual greater than Ar ,
the prob-

able precision of the arithmetical mean is increased by excluding

the corresponding observation.
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Equations (108) and (109) express Chauvenet's Criterion for the

rejection of doubtful observations. In applying them, the prob-
able error E of a single observation is first computed from the

residuals of all of the observations by either equation (31) or the

first of equations (34) with the aid of Table XIV or XV. If any
of the residuals appear large in comparison with the computed
value of E, PT is determined from (108) by placing N equal to

the number of observations in the given series. T is then obtained

by interpolation from Table XII, and finally Ar is computed by
(109). If one or more of the residuals are greater than the com-

puted A r ,
the observation corresponding to the largest of them is

excluded from the series and the process of applying the criterion is

repeated from the beginning. If one or more of the new residuals

are greater than the new value of Ar ,
the observation correspond-

ing to the largest of them is rejected. This process is repeated

and observations rejected one at a time until a value of Ar is ob-

tained that is greater than any of the residuals.

When more than one residual is greater than the computed
value of Ay, only the observation corresponding to the largest

of them should be rejected without further study. The rejection

of a single observation from the given series changes the arith-

metical mean, and hence all of the residuals and the value of E
computed from them. If r and r' are the residuals corresponding

to the same observation before and after the rejection of a more

faulty observation, and if Ar and Ar
'

are the corresponding

limiting errors, it may happen that r' is less than A/, although r

is greater than Ay. Hence the second application of the criterion

may show that a given observation should be retained notwith-

standing the fact that its residual was greater than the limiting

error in the first application, provided an observation with a

larger residual was excluded on the first trial.

To facilitate the computation of Ay, the values of T corre-

sponding to a number of different values of N have been

interpolated from Table XII and entered in the second column

of Table XIII.

For the purpose of illustration, suppose that ten micrometer

settings have been made on the same mark and recorded, to the

nearest tenth of a division of the micrometer head, as in the first

column of the following table.
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Obs.
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temperature, until it can be applied to the arithmetical mean in

connection with the corrections for other strictly constant errors.

This is because the systematic variations in the length of the

scale are so small that the unavoidable errors in the observed

temperatures and the adopted coefficient of expansion of the scale

can produce no appreciable effect on the corrections to mean

temperature. The effect of these errors on the larger correction

from mean to standard temperature is more simply treated in

connection with the arithmetical mean than with the individual

observations.

Let 01, 02, . . .
,
on represent a series of direct observations

corrected for all known systematic errors and satisfying the

criteria of accidental errors. We have seen that the most prob-

able value that we can assign to the numeric of the measured mag-

nitude, on the basis of such a series, is given by the relation

x = om + c'+c"+ -

+cfe>, (102)

where om is the arithmetical mean of the o's, and the c's represent

corrections for strictly constant errors. If the c's could be deter-

mined with absolute accuracy, or even within limiting errors that

are negligible in comparison with the accidental errors of the o's,

the only uncertainty in the above expression for x would be that

due to the accidental error of om . Hence, by equations (103), if

Ex and Em are the probable errors of x and om, respectively, we

should have

*. = *_ = 0.674Vy '.' (HO)

. .

If we follow the usual practice and regard the probable error of a

quantity as a measure of the accidental errors of the observations

from which it is directly computed, equation (110) still holds

when the accidental errors of the c's are not negligible; but, as we

shall see, Ex is no longer a complete measure of the precision of x

in such cases.

In practice each of the c's must be computed, on theoretical

grounds, from subsidiary observations with the aid of physical

constants that have been previously determined by direct or

indirect measurements. For the sake of brevity the quantities

on which the c's depend will be called correction factors. Since all

of them are subject to accidental errors, the computed c's are

affected by residual errors of indeterminate sign and magnitude.
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When the probable errors of the correction factors are known the

probable errors of the c's may be computed by the laws of propa-

gation of errors with the aid of the correction formulae by which

the c's are determined.

Equation (102) gives x as a continuous sum of om and the c's.

Consequently, if we represent the probable errors of the c's by
Ei t

E2 ,
. . .

,
Eq , respectively, we have by equation (76), article

fifty-eight,

Rx
2 = Em* + Ei* + +E q*, (111)

wnere Rx is the resultant probable error of x due to the correspond-

ing errors of om and the c's. To distinguish Rx from the probable

error EX) which depends only on the accidental error of om ,
we

shall call it the precision measure of x.

Although equation (111) is simple in form, the separate compu-
tation of the E'SJ from the errors of the correction factors on which

they depend, is frequently a tedious process. Moreover several

of the c's may depend on the same determining quantities. Con-

sequently the computation of x and Rx is frequently facilitated by

bringing the correction factors into the equation for x explicitly,

rather than allowing them to remain implicit in the c's. Thus,

if a, )8, . . .
, p represent the correction factors on which the c's

depend, equation (102) may be put in the form

x = F(om,a,0, . . .
, P). (112)

Hence, by equation (81), article sixty,

where Ea , Ep, etc., are the probable errors of a, ft, etc.

For example, suppose that om represents the mean of a num-

ber of observations of the distance between two parallel lines

expressed in terms of the divisions of the scale used in making
the measurements. Let t\ represent the mean temperature of the

scale during the observations; L the mean length of the scale

divisions at the standard temperature U, in terms of the chosen

unit; a the coefficient of expansion of the scale; and ft the angle

between the scale and the normal to the lines. Then, if the

individual observations have been corrected to mean temperature

ti before computing the mean observation om ,
the best approxima-
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tion that we can make to the true distance between the lines is

given by the expression

x = omL\l]+a(ti - t ) I ,

in which the correction factors L, a, /?, fa, and to appear explicitly ,

as in the general equation (112). A more detailed discussion of

this example will be found in article seventy-three.

If we represent the separate effects of the errors Em ,
Ea ,

. . .
,

Ep on the error Rx by Dm ,
Da , D$, . . .

,
DPJ respectively, we

have

*-*/ D- -SE*->

:.:i
'
D> * TP E <m>

and (113) becomes

R*2 = Dm* + Da
2 + Df + - - - + DP

2
. (115)

In some cases the fractional effects

_Drn, _D. . _D,m ~
x

' a ~
x '

' '
' p

~
x

can be more easily computed numerically than the corresponding

D's. When this occurs, the fractional precision measure

is first computed and then Rx is determined by the relation

Rx = x-Px . (117)

While equations (112) to (117) are apparently more complicated

than (102) and (111), they generally lead to more simple numerical

computations. Moreover the probable errors of some of the

correction factors are frequently so small that they produce no

appreciable effect on Rx . When either equation (115) or (116) is

used, such cases are easily recognized because the corresponding

D's or P's are negligible in comparison with Dm or Pm . Obvi-

ously the same condition applies to the E's in equation (111), but

the numerical computation of either the D's or the P's is generally

more simple than that of the E's in (111) because approximate
values of om and the correction factors may be used in evaluat-

ing the differential coefficients in (114). The allowable degree of

approximation, the limit of negligibility of the D's, and some other
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details of the computation will be discussed more extensively
in the next article.

If the true numeric of the measured magnitude is represented

by Xj the final result of a series of direct measurements may be

expressed in the form
X =xRx, (118)

where x is the most probable value that can be assigned to X on

the basis of the given observations, and Rx is the precision measure

of x. In practice x may be computed by either equation (102)

or (112), or the arithmetical mean of the individually corrected

observations may be taken, and Rx is given by equations (111),

(115), or (117), the choice of methods depending on the nature

of the given data and the preference of the computer.
The exact significance of equation (118) should be carefully

borne in mind, and it should be used only when the implied condi-

tions have been fulfilled. Briefly stated, these conditions are as

follows :

1st. The accidental errors of the observations on which x

depends follow the general law of such errors.

2nd. A careful study of the methods and apparatus used has

been made for the purpose of detecting all sources of constant

or systematic errors and applying the necessary corrections.

3rd. The given value of x is the most probable that can be

computed from the observations after all constant errors, system-
atic errors, and mistakes have been as completely removed as

possible.

4th. The resultant effect of all sources of error, whether acci-

dental errors of observation or residual errors left by the correc-

tions for constant errors, is as likely to be less than Rx as greater

than Rx .

The expressions in the form X = x Ex ,
used in preceding

chapters, are not violations of the above principles because, in

those cases, we were discussing only the effects of accidental

errors and the observations were assumed to be free from all con-

stant errors and mistakes. Such ideal conditions never occur in

practice. Consequently Rx should not be replaced by Ex in

expressing the result of actual measurements in the form of equa-
tion (118), unless it can be shown by equation (115), and the given
data that the sum of the squares of the D's corresponding to all

of the correction factors is negligible in comparison with Z)m2
.
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In the latter case Ex and Rx are identical as may be easily seen

by comparing equations (110), (111), and (115).

72. Precision of Derived Measurements. When a desired

numeric Z is connected with the numerics Xi, X2 ,
. . .

,
Xq

of a number of directly measured magnitudes by the relation

XQ = F (Xi, X%, . . .
,
X q),

the most probable value that we can assign to XQ is given by the

expression
x = F(x 1,xt, . . .

,
x q), (119)

where the x's are the most probable values of the X's with corre-

sponding subscripts. Each of the component x's, together with

its precision measure, can be computed by the methods of the pre-

ceding article. The precision measure of XQ may be computed
with the aid of equation (81), article sixty, by replacing the E's in

that equation by the R's with corresponding subscripts.

Sometimes the numerical computations are simplified and the

discussion is clarified by bringing the direct observations and the

correction factors explicitly into the expression for XQ. If oa ,

Ob, . . .
, Op are the arithmetical means of the direct observa-

tions, after correction for systematic errors, on which Xi, xz ,
. . .

,

x q respectively depend, and a, /?, . . .
, p are the correction

factors involved in the constant errors of the observations, equa-

tion (119) may be put in the form

x = d (oa ,
ob ,

. . .
,
op , a, j8, . . .

, p). (120)

The function 6 is always determinable when the function F in

(119) is given and the correction formulae for the constant errors

are known.

Representing the precision measure of XQ by R ,
and adopting

an obvious extension of the notation of the preceding article, we

have, by equation (81),

Introducing the separate effects of the E's,

*-*' ' ' '
= *=l^'

(121) becomes

*' ' ' '
; '-*- (122)

. (123)
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The fractional effects of the E's are

P _. . P =5*. P = ^. . P _A?^ "
XQ

'
' p x ' a

Z ' p
"

XQ

'

and the fractional precision measure of x is given by the relation

XQ

When the numerical computation of the P's is simpler than that

of the D's, PO is first computed by equation (124) and then RQ

is determined by the relation

#o = z Po. (125)

The expression of the final result of the observations and com-

putations in the form
XQ = XQ RQ

has exactly the same significance with respect to XQ, XQ, and RQ

that (118) has with respect to X, x, and Rx . It should not be

used until all of the underlying conditions have been fulfilled as

pointed out in the preceding article. Confusion of the precision

measure R with the probable error E0) and insufficient rigor in

eliminating constant errors have led many experimenters to an

entirely fictitious idea of the precision of their measurements.

When the correction factors are explicitly expressed in the

reduction formulae, as in equations (112) and (120), the only
difference between the expressions for direct and derived measure-

ments is seen to lie in the greater number of directly observed

quantities, oa , o&, etc., that appear in the latter equation. The
same methods of computation are available in both cases and the

following remarks apply equally well to either of them.

For practical purposes, the precision measure R is computed
to only two significant figures and the corresponding x is carried

out to the place occupied by the second significant figure in R.

The reasons underlying this rule have been fully discussed in

article forty-three, in connection with the probable error, and

need not be repeated here. In computing the numerical value

of the differential coefficients in equations (113), (114), (121), and

(122), the observed components, om ,
oa , o&, etc., and the correc-

tion factors, a, , etc., are rounded to three significant figures,

and those that affect the result by less than one per cent are neg-

lected. This degree of approximation will always give R within
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one unit in the second significant figure and usually decreases the

labor of computation.

Generally the components om ,
oa,

ob , etc., represent the arith-

metical means of series of direct observations that have been

corrected for systematic errors. In such cases the corresponding

probable errors Emt Ea, Eb, etc., can be computed, by equations
in the form of (110), from the residuals determined by equations
in the form of (103), with the aid of the observations on which

the o's depend. If the observations are sufficiently numerous,
the computation of the .27's.may be simplified by using formulae

depending on the average error in the form

E = 0.845 fl=> (34)
n Vn 1

where [f] is the sum of the residuals without regard to sign and n

is the number of observations. If the observations on which any
of the o's depend are not of equal weight, the general mean should

be used in place of the arithmetical mean and the corresponding

probable errors should be computed by equations (41), (42), or

(44), depending on the circumstances of the observations.

The o's in equation (120) are supposed to represent simultane-

ous values of the directly observed magnitudes. When any of

these quantities are continuous functions of the time, or of any
other independent variables, it frequently happens that only a

single observation can be made on them that is simultaneous

with the other components. In such cases this single observation

must be used in place of the corresponding o in (120), and its

probable error must be determined for use in equation (122).

For the latter purpose, it is sometimes possible to make an auxil-

iary series of observations under the same conditions that pre-

vailed during the simultaneous measurements except that the

independent variables are controlled. The required E may be

assumed to be equal to the probable error of a single observation

in the auxiliary series. Consequently it may be computed by
formulae in the form,

E = 0.674*
/W

E = 0.845

n- I

or

[r]
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where n is the number of auxiliary observations, and the r's are

the corresponding residuals. In some cases this simple expedient

is not available; and approximate values must be assigned to the

E's on theoretical grounds, depending on the nature of the meas-

urements; or more or less extensive experimental investigations

must be undertaken to determine their values more precisely.

Such investigations are so various in character and their utility

depends so much on the skill and ingenuity of the experimenter,

that a detailed general discussion of them would be impossible.

They may be illustrated by the following very common case.

Suppose that one of the components in equation (120) repre-

sents the gradually changing temperature of a bath. In com-

puting xQ we must use the thermometer reading o t taken at the

time the other components are observed. The errors of the fixed

points of the thermometer and its calibration errors enter the

equation among the correction factors a, /?, etc., and do not con-

cern us in the present discussion. In order to determine the

probable error of o t ,
the temperature of the bath may be caused

to rise uniformly, through a range that includes o t , by passing a

constant current through an electric heating coil, or the bath

may be allowed to cool off gradually by radiation. In either case

the rate of change of temperature should be nearly the same as

prevailed when o t was observed. A series of corresponding obser-

vations of the time T and the temperature t are made under

these conditions, and the empirical relation between T and t is

determined graphically or by the method of least squares. The

probable error of o t may be assumed to be equal to the probable

error of a single observation of t in this series, and may be com-

puted by equation (94), article sixty-four.

Some of the correction factors a, ft, etc., appearing as com-

ponents in equations (112) and (120), represent subsidiary obser-

vations, and some of them represent physical constants. The

subsidiary observations may be treated by the methods outlined

above. When the highest attainable precision is desired, the

physical constants, together with their probable errors, must be

determined by special investigation. In less exact work they

may be taken from tables of physical constants. Such tabular

values seldom correspond exactly to the conditions of the experi-

ments in hand and their probable errors are seldom given.

Generally a considerable range of values is given, and, unless
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there is definite reason in the experimental conditions for the

selection of a particular value, the mean of all of them should be

adopted and its probable error placed equal to one-half the range
of the tabular values. The deviations of the tabular values from
the mean are due more to differences in experimental conditions

and in the material treated than to accidental errors. Conse-

quently a probable error calculated from the deviations would
have no significance unless these differences could be taken into

account. The selection of suitable values from tables of physical
constants requires judgment and experience, and the general

statements above should not be blindly followed. In many cases

the original sources of the data must be consulted in order to

determine the values that most nearly satisfy the conditions of

the experiments in hand.

In good practice the conditions of the experiment are usually

so arranged that the D's, in equation (123), corresponding to the

direct observations oa , o&, etc., are all equal. None of the D's

corresponding to correction factors should be greater than this

limit, but it sometimes happens that some of them are much
smaller. Since R is to be computed to only two significant

figures, any single D which is less than one-tenth of the average
of the other D's may be neglected in the computation. If the

sum of any number of D's is less than one-tenth of the average
of the remaining D's they may all be neglected. A somewhat

more rigorous limit of rejection can be developed for use in plan-

ning proposed measurements, but it is scarcely worth while in

the present connection since the correction factors and all other

quantities must be taken as they occurred in the actual measure-

ments, and negligible D's are very easily distinguished by inspec-

tion after a little experience.

After #o has been determined, x may be computed by either

equation (119) or (120). If (119) is used the x's must first be

determined by (102) or (112). Sometimes the computation may
be facilitated by using a modification of (120), in which some of

the correction factors appear explicitly while others are allowed

to remain implicit in the z's to which they apply. Such cases

cannot be treated generally, but must be left to the ingenuity of

the computer. Whatever formula is used, the observed quanti-

ties and the correction factors should be expressed by sufficient

significant figures to give the computed XQ within a few units in
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the place occupied by the second significant figure of R . Occa-

sionally the total effect of one or more of the correction factors is

less than this limit and may be neglected in the computation. For
f$W 7?

a single factor, say a, this is the case when a is less than ~
73. Numerical Example. The following illustration repre-

sents a series of measurements taken for the purpose of cali-

brating the interval between the twenty-fifth and seventy-fifth

graduations on a steel scale supposed to be divided in centimeters.

The observations were made with a cathetometer provided with

a brass scale and a vernier reading to one one-thousandth of a

division. One division of the level on this instrument corre-

sponds to an angular deviation of 3 X 10~ 4
radians, and the ad-

justments were all well within this limit. The steel scale was

placed in a vertical position with the aid of a plumb-line, and,

since a deviation of one-half, millimeter per meter could have

been easily detected, the error of this adjustment did not exceed

5 X 10~ 4 radians. Consequently the angle between the two

scales was not greater than 8 X 10~ 4
radians, and it may have

been much smaller than this. The temperature of the scales was

determined by mercury in glass thermometers hanging in loose

contact with them. The probable error of these determinations

was estimated at five-tenths of a degree centigrade, due partly

to looseness of contact and partly to an imperfect knowledge of

the calibration errors of the thermometers.

Twenty independent observations, when tested by the last

two criteria of article sixty-eight, showed no evidence of the pres-

ence of systematic errors or mistakes. Consequently the mean
om ,

in terms of cathetometer scale divisions, and its probable

error Em were computed before the removal of constant errors.

The following numerical data represents the results of the obser-

vations and the known calibration constants of the cathetometer.

Mean temperature of the steel scale, T 20 0.5 C.

Mean temperature of the brass scale, ti 21.3 =t 0.5 C.

Mean of twenty observations on the measured

interval in terms of brass scale divisions, om . . 50.0051 db 0.0015 scale div.

Mean length, at standard temperature, of the

brass scale divisions in the interval used, S. . 0.999853 d= 0.000024 cm.

Standard temperature of brass scale, t 15.0 C.

Coefficient of linear expansion of brass scale, a. (182 12) X 10~ 7
.

Angle between two scales, /3, less than 8 X 10- 4 rad.
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The most probable value that can be assigned to the measured
interval is given by the expression

Since ft is a very small angle,
--- may be treated by the approxi-COS p

mate formulae of Table VII, and the above expression becomes

where

t = fa-to.

The quantity S (1 -f- at) is very nearly equal to unity. Hence,

neglecting small quantities of the second and higher orders, the

correction due to the angle ft is

< 0.000016.

Since this is less than two per cent of the probable error of om ,
it is

negligible in comparison with the accidental errors of observation.

Consequently the precision of x is not increased by retaining the

term involving ft, and we may put

x = OmS (1 + at). (a)

The probable error of tQ is zero, because the accidental errors of

the temperature observations, made during the calibration of the

brass scale, are included in the probable errors of S and a com-

puted by the method of article sixty-five. Consequently the

probable error of t is equal to that of fa, and we have

t = 6,3 0.5 C.

In the present case equation (115) is the most convenient for

computing the precision measure ,.RX of x. Only two significant

figures are to be retained in the separate effects computed by

equation (114). Consequently the factor (1 + at) may be taken

equal to unity, and the numerical values of om and S may be

rounded to three significant figures for the purpose of this com-

putation. Thus, taking om equal to 50.0, S equal to 1.00, and

the other data as given above, we have
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Dm= -Em= S(l+ at) Em= 1 X Em= 0.0015.
oom

D,= ~QEt =om (l + at) E,= 50 X Ea
= 0.0012.

do

Da=~Ea = OmStEa = 50 X 6.3 X Ea = 0.00038.
da

m =50 X 182 X 10~ 7 X Et
= 0.00046.

ot

Dm2= 225.0 X 10~ 8

A,2 = 144.0 X 10~8

Z> 2 = 14.4 X 10~8

A2 = 21.2 X 10~8

[D
2
]
= 404.6 X 10~8

Hence, by equation (115),

Rx*= [D
2
]
= 404.6 X 10- 8

,

JBX = V404.6 X 10- 8 = 0.0020.

For the purpose of computing x, it is convenient to put the

given data in the form

Om= 50 (1+0.000102),
S = 1- 0.000147,

at = 0.000115.

Then, by equation (a),

x = 50 (1 + 0.000102) (1
-

0.000147) (1 + 0.000115),

and by formula 7, Table VII,

x = 50 (1 + 0.000102 - 0.000147 + 0.000115)
= 50 (1 + 0.00007)

= 50.0035.

This method of computation, by the use of the approximate
formulae of Table VII, gives x within less than one unit in the last

place held, and is much less laborious than the use of logarithms.

Since the length S of the cathetometer scale divisions is given

in centimeters, the computed values of x and Rx are also expressed

in centimeters and our uncertainty regarding the true distance L
between the twenty-fifth and the seventy-fifth graduations of the

steel scale is definitely stated by the expression

L = 50.0035 d= 0.0020 centimeters,
at the temperature

Tr = 20.00.5C.
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The above discussion shows that the precision of the result

would not have been materially increased by a more accurate

determination of T, fa, and a, since the effects of the errors of

these quantities are small in comparison with that of the errors

of om and S. The probable error of om might have been reduced

by making a larger number of observations and taking care to

keep the instrument in adjustment within one-tenth of a level

division or less. But the given value of Em is of the same order

of magnitude as the least count of the vernier used, and, since

each observation represents the difference of two scale readings,

it would not be decreased in proportion to the increased labor of

observation. Moreover, the terms Dm and D8 in the above value

of Rx are nearly equal in magnitude, and it would not be worth

while to devote time and labor to the reduction of one of them

unless the other could be reduced in like proportion.



CHAPTER XI.

DISCUSSION OF PROPOSED MEASUREMENTS.

74. Preliminary Considerations. The measurement of a

given quantity may generally be carried out by any one of several

different, and more or less independent, methods. The available

instruments usually differ in type and in functional efficiency. A
choice among methods and instruments should be determined by
the desired precision of the result and the time and labor that it is

worth while to devote to the observations and reductions.

Since the labor of observation and the cost of instruments in-

crease more rapidly than the inverse square of the precision

measure of the attained result, a considerable waste of time and

money is involved in any measurement that is executed with

greater precision than is demanded by the use to which the result

is to be put. On the other hand, if the precision attained is not

sufficient for the purpose in hand, the measurement must be

repeated by a more exact method. Consequently the labor and

expense of the first determination contributes very little to the

final result and the waste is quite as great as in the preceding
case. Sometimes the expense of a second determination is

avoided by using the inexact result of the first, but such a saving

is likely to prove disastrous unless the uncertainty of the adapted
data is duly considered.

In general the greatest economy is attained by so planning
and executing the measurement that the result is given with the

desired precision and neglecting all refinements of method and

apparatus that are not essential to this end. While these con-

siderations have greater weight in connection with measurements

carried out for practical purposes they should never be neglected
in planning investigations undertaken primarily for the advance-

ment of science. In the former case the cost of necessary measure-

ments may represent an appreciable fraction of the expense of

a proposed engineering enterprise and must be taken into account

in preparing estimates. In the latter case there is no excuse for

burdening the limited funds available for research with the expense
144
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of ill-contrived and haphazard measurements. The precision

requirements may be, and indeed usually are, quite different in

the two cases, 'but the same process of arriving at suitable methods

applies to both.

75. The General Problem. In its most general form the

problem may be stated as follows : Required the magnitude of a

quantity X within the limits R, X being a function of several

directly measured quantities X\, X2 ,
etc.

;
within what limits must

we determine the value of each of the components X\, Xz ,
etc.?

In discussing this problem, all sources of error both constant and

accidental must be taken into account. For this purpose the

various methods available for the measurement of the several

components are considered with regard to the labor of execution

and the magnitude of the errors involved as well as with regard to

the facility and accuracy with which constant errors can be removed.

After such a study, certain definite methods are adopted pro-

visionally, and examined to determine whether or not the re-

quired precision in the final result can be attained by their use.

As the first step in this process, the function that gives the rela-

tion between X and the components, Xi, X2 , etc., is written out

in its most complete form with all correction factors explicitly

represented. Thus, as in article seventy-two, the most probable

value of the quantity X may be expressed in the form

XQ
= 0(oa,obj . . .

, p,a,/3, . . .
, p), (120)

where the o's represent observed values of X\ t
X2 , etc., and a, /3,

. . .
, p, represent the factors on which the corrections for con-

stant errors depend as pointed out in connection with equation

(112), article seventy-one.

The form of the function 0, and the nature and magnitude of

the correction factors appearing in it, will depend on the nature

of the proposed methods of measurement. Since all detectable

constant errors are explicitly represented by suitable correction

factors, all of the quantities appearing in the function may be

treated as directly measured components subject to accidental

errors only. Hence the problem reduces to the determination

of the probable errors within which each of the components must

be determined in order that the computed value of XQ may come

out with a precision measure equal to the given magnitude RQ .

If all of the components can be determined within the limits set
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by the probable errors thus found, without exceeding the limits

of time and expense imposed by the preliminary considerations,

the provisionally adopted methods are adequate for the purpose
in hand and the measurements may be carried out with con-

fidence that the final result will be precise within the required

limits. When one or more of the components cannot be deter-

mined within the limits thus set without undue labor or expense,

the proposed methods must be modified in such a manner that the

necessary measurements will be feasible.

76. The Primary Condition. The present problem is, to

some extent, the inverse of that treated in articles seventy-one

and seventy-two. In the latter case the given data represented

the results of completed series of observations on the several

component quantities appearing in the function 0, together with

their respective probable errors. The purpose of the analysis was

the determination of the most probable value XQ that could be

assigned to the measured magnitude and the precision measure

of the result. In the present case approximate values of x and

the components in 6 are given, and the object of the analysis is

the determination of the probable errors within which each of the

components must be measured in order that the value of XQ,

computed from the completed observations, may come out with a

precision measure equal to a given magnitude R .

If D
, Db, . . .

,
Dp ,

Da) Dp, . . .
,
Dp represent the separate

effects of the probable errors Ea , Eb, . . .
,
Ep ,

Ea , Ep, . . .
,

Ep of the components oaj ob ,
. . .

,
op , a, /3, . . .

, p, respec-

tively, we have, as in article seventy-two,

and the primary condition imposed on these quantities is given by
the relation

#o2 = Da2 + ZV + - + ZV + ZV + iy + - - . +DP
2

. (123)

The precision measure R and approximate values of the com-

ponents are given by the conditions of the problem and the pro-

posed methods of measurement. The E's, and hence also the

D's, are the unknown quantities to be determined. Conse-

quently there are as many unknowns in equation (123) as there

are different components in the function 0. Obviously the problem

is indeterminate unless some further conditions can be imposed



ART. 77] DISCUSSION OF PROPOSED MEASUREMENTS 147

on the D's; for otherwise it would be possible to assign an infinite

number of different values to each of the D's which, by proper
selection and combination, could be made to satisfy the primary
condition (123).

77. The Principle of Equal Effects. An ideal condition to

impose on the D's would specify that they should be so determined

that the required precision in the final result XQ would be attained

with the least possible expense for labor and apparatus. Un-

fortunately this condition cannot be put into exact mathematical

form since there is no exact general relation between the difficulty

and the precision of measurements. However, it is easy to see

that the condition is approximately fulfilled when the measure-

ments are so made that the D's are all equal to the same magnitude.

For, the probable error of any component is inversely proportional

to the square root of the number of observations on which it

depends and the expense of a measurement increases directly

with the number of observations. Consequently the expense

Wa of the component oa is approximately proportional to 7^-5 or,
&a

n/j 1

since r is constant, to -^ 9 . Similar relations hold for the other
doa Da

2

components. Hence, as a first approximation, we may assume

that
A2 A2 A2 A2

where W is the total expense of the determination of x
,
and A is

a constant. By the usual method of finding the minimum value

of a function of conditioned quantities, the least value of W con-

sistent with equation (123) occurs when the D's satisfy (123) and

also fulfill the relations

_
dDa

"* ^
dDa

=

ML + ***?- o
dDb

^ *

dDb

-

=
SD * ^

dD
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where K is a constant. Introducing the expressions for R<? and

W in terms of the D's, differentiating, and reducing, we have

and by equation (123)

where AT is the number of D's in (123) or the equal number of

components in the function 6. Consequently equation (123) is

fulfilled and the condition of minimum expense is approximately
satisfied when the components are so determined that the separate

effects of their probable errors satisfy the relation

Da = Db
= - . - = Da = Dp = = -.

(127)

Equation (127) is the mathematical expression of the principle

of equal effects. It does not always express an exact solution of

the problem, since A is seldom strictly constant; but it is the

best approximation that we can adopt for the preliminary com-

putation of the D's and E's. The results thus obtained will

usually require some adjustment among themselves before they

will satisfy both the preliminary considerations and the primary
condition (123). We shall see that the necessary adjustment is

never very great; and, in fact, that a marked departure from the

condition of equal effects is never possible when equation (123) is

satisfied.

Combining equations (122) and (127), we find

E ^
.

^ - E ^
.

^

VAT
"

de
' a VN

'

de
'

da

w Ro i
.

* = ~~7= '
~^7T >VN <&' VN y,
dob 5/3

(128)

Hence, if the final measurements are so executed that the probable
errors of the several components are equal to the corresponding

values given by equations (128), the final result XQ, computed by

equation (120), will come out with a precision measure equal to
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the specified RQ ,
and the condition of equal effects (127) will be

fulfilled.

In computing the E's by equation (128), RQ is taken equal to

the given precision measure of XQ and N is placed equal to the

J/3

number of components in the function 0. The derivatives T
doa

etc., are evaluated with the aid of approximate values of the

components obtained by a preliminary trial of the proposed

methods or by computation, on theoretical grounds, from an

approximate value of XQ and a knowledge of the conditions under

which the measurements are to be made. Since only two sig-

nificant figures are required in any of the E's, the adopted values

of the components may be in error by several per cent, without

affecting the significance of the results. Moreover, any number

of components, whose combined effect on any derivative is less

than five per cent, may be entirely neglected in computing that

derivative. Consequently the function frequently may be sim-

plified very much for the purpose of computing the derivatives and

this simplification may take different forms in the case of differ-

ent derivatives. No more than three significant figures should be

retained at any step of the process and sometimes the required pre-

cision can be attained with the approximate formulae of Table VII.

Since equation (127) is an approximation, the E's derived from

equations (128) are to be regarded as provisional limits for the

corresponding components. If all of them are attainable, i.e., if

all of the components can be determined within the provisional

limits, without exceeding the limit of expense set by the prelim-

inary considerations, the solution of the problem is complete and

the proposed methods are suitable for the work in hand.

78. Adjusted Effects. Generally some of the E's given by
(128) will be unattainable in practice while others will be larger

than a limit that can be easily reached. In other words, it will

be found that the labor involved in determining some of the

components within the provisional limit is prohibitive while

other components can be determined with more than the pro-

visional precision without undue labor. In such a case the pro-

visional limits are modified by increasing the E's corresponding
to the more difficult determinations and decreasing the E's that

correspond to the more easily determinable components in such a

way that the combined effects satisfy the condition (123).
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The maximum allowable increase in a single E is by the factor

. For, taking Ea for illustration,

B0a

and consequently

Hence (123) cannot be satisfied unless all of the rest of the D's

are negligibly small. For example, if there are nine components,

VN is equal to three. Consequently no one of the E's can be

increased to more than three times the value given by the condi-

tion of equal effects if (123) is to be satisfied. When, as is fre-

quently the case, the number of components is less than nine, or

when more than one of the E's is to be increased, the limit of

allowable adjustment is much less than the above. The extent

to which any number of E's may be increased is also limited

by the difficulty, or impossibility, of reducing the effects of the

remaining E's to the negligible limit.

If the probable errors given by equations (128) can be modified,

to such an extent that the corresponding measurements become

feasible, without violating the condition (123), the proposed

methods are suitable for the final determination of XQ. Other-

wise they must be so modified that they satisfy the conditions of

the problem or different methods may be adopted provisionally

and tested for availability as above.

Sometimes it will be found that the proposed methods are

capable of greater precision than is demanded by equations (128).

In such cases the expense of the measurements may be reduced

without exceeding the given precision measure of XQ by using less

precise methods. But such methods should never be finally

adopted until their feasibility has been tested by the process out-

lined above.

A discussion on the foregoing lines not only determines the

practicability of the proposed methods, but also serves as a guide

in determining the relative care with which the various parts of

the work should be carried out. For, if the final result is to come

out with a precision measure RQ ,
it is obvious that all adjustments

and measurements must be so executed that each of the com-



ART. 79] DISCUSSION OF PROPOSED MEASUREMENTS 151

ponents is determined within the limits set by equations (128),

or by the adjusted E's that satisfy (123).

79. Negligible Effects. In the preceding article it was

pointed out that the availableness of proposed methods of meas-

urement frequently depends on the possibility of so adjusting the

E's given by equations (128) that they are all attainable and

at the same time satisfy the primary condition (123). Generally

this cannot be accomplished unless some of the E's can be reduced

in magnitude to such an extent that their effect on the precision

measure R is negligible.

On account of the meaning of the precision measure, and the

fact that it is expressed by only two significant figures, it is obvi-

ous that any D is negligible when its contribution to the value of
73

#0 is less than
y^. Thus, if Ri is the value of the right-hand

member of equation (123), when Da is omitted, Da is negligible

provided

or

0.

Squaring gives
0.81 Bo2 < #i2

,

and by definition

R<? - RS = D*.

Consequently
0.81 #o2 < #o2 - D*,

and
Z>a

2 <0.19# 2
,

or
Da < 0.436 #o.

Hence, if Da is less than 0.436 #
,
it will contribute lees than ten

per cent of the value of RQ . Since the true error of x is as likely

to be greater than R as it is to be less than RQ ,
a change of ten

per cent in the value of RQ can have no practical importance.

Consequently Da is negligible when it satisfies the above condi-

tion. However, the constant 0.436 is somewhat awkward to

handle, and if Da is very nearly equal to the limit 0.436 RQ, the

propriety of omitting it is doubtful. These difficulties may be

avoided by adopting the smaller and more easily calculated limit

of rejection given by the condition

D = RQ . (129)
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This limit corresponds to a change of about six per cent in the

value of Ro given by equation (123), and is obviously safe for all

practical purposes. Since the above reasoning is independent of

the particular D chosen, the condition (129) is perfectly general

and applies to any one of the D's in equation (123).

When two or more of the D's satisfy (129) independently, any
one of them may be neglected, but all of them cannot be neg-

lected without further investigation for otherwise the change in

Ro might exceed ten per cent. This would always happen if all

T~)

of the D's considered were very nearly equal to the limit ~^-o

However, by analogy with the above argument, it is obvious that

any q of the D's are simultaneously negligible when

+ D2
2 + . . . + D 3

2 == Jflo, (130)

where the numerical subscripts 1, 2, . . .
, q are used in place

of the literal subscripts occurring in equation (123) in order to

render the condition (130) entirely general. Thus DI may corre-

spond to any one of the D's in (123), D 2 to any other one, etc.

By applying the principle of equal effects, the condition (130)

may be reduced to the simple form

D, = D 2
= ... = D q

= -^ (131)
3 Vg

If some of the D's in (131) can be easily reduced below the limit

p
j=. ,

the others may exceed that limit somewhat without violating
3 V q

the condition (130). However, equation (131) generally gives the

best practical limit for the simultaneous rejection of a number of

D's, and all departures from it should be carefully checked by (130).

To illustrate the practical application of the foregoing discussion,

suppose that the practicability of certain proposed methods of

measurement is to be tested by the principle of equal effects

developed in article seventy-seven. Let there be N components
in the function 0, and suppose that q of them, represented by
ai, 2, . . .

,
a q ,

can be easily determined with greater precision

than is demanded by equations (128), while the measurement
of the remaining N q components within the^limits thus set

would be very difficult. Obviously some adjustment of the E's

given by (128) is desirable in order that the labor involved in the

various parts of the measurement may be more evenly balanced.
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The greatest possible increase in the E's corresponding to the

N q difficult components will be allowable when the E's of the

q easy components can be reduced to the negligible limit. To
determine the necessary limits, R is taken equal to the given

precision measure of XQ, and the negligible D's corresponding to

the q easy components are determined by equation (131). Then

by equations (122), the corresponding E's will be negligible when

E!=Z -^
3 Vq
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the computations. Thus, suppose that the volume of a right

circular cylinder of length L and radius a is to be computed
within one-tenth of one per cent, how many figures should be

retained in the constant TT? In this case

n / \ 17 9 T
(Oa , , , )

= y =
*&lt,

RQ = 0.001 V = 0.001 7ra
2
L,

60 6V

= 0.00105.
0.001 7T

If TT is taken equal to 3.142 the error due to rounding is 0.00041 .

Since this is less than the negligible limit Er ,
four significant

figures in TT are sufficient for the purpose in hand.

It sometimes happens that the total effect of one or more of the

components in the function 0, on the computed value of x
,

is

negligible in comparison with RQ. This will obviously be the case

when
60 RQ

a^
a ^ IF'

for a single component a or when

KM
\
2

-L-/
de

z~~ a i) + (^~~
dai I \da2 da

for q components. Thus, on the principle of equal effects, the

components i, <*2 , ,
<* 3 will be simultaneously negligible

when they satisfy the conditions

1 RQ 1
*155

i

(133)

RQ 1

daz

7"> 1

\7^'~d0~

Such cases frequently arise in connection with the components
that represent correction factors.
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80. Treatment of Special Functions. During the foregoing

argument, it has been assumed that the function 6 in equation (120)

is expressed in the most general form consistent with the pro-

posed methods of measurement. Such an expression involves the

explicit representation of all directly measured quantities, and

all possible correction factors. Part of the latter class of com-

ponents represent departures of the proposed methods from the

theoretical conditions underlying them, and others depend upon
inaccuracies in the adjustment of instruments. In practice it

frequently happens that the general function is very compli-

cated, and consequently that the direct discussion of precision

as above is a very tedious process. Under these conditions it is

desirable to modify the form of the function in such a manner as

to facilitate the discussion.

Sometimes the general function 9 can be broken up into a series

of independent functions or expressed as a continuous product

of such functions. Thus, it may be possible to express 6 in the

form

XQ = 6 (oa ,
ob ,

. .
., a, |8, . . .)

= /i(ai,a2 ,
. . . )/2 (&i,&2 ,

. . . )/3 (ci,c2 ,
. . .

or in the form

XQ = d (Oa ,
Ob) .

(134)

(135)= /i(ai,a2 ,
. . . ) X/2(&i,&2, . ) X/3 (ci,c2 ,

. . .

X ... X / (mi, m2) . . . ),

where the a's, &'s, . . .
,
and m's represent the same components,

oa ,
ob ,

. . .
, a, 0, . . .

,
that appear in 6 by a new and more

general notation. The functions /i, /2 ,
. . .

, fn may take any
form consistent with the problem in hand, but the precision dis-

cussion will not be much facilitated unless they are independent
in the sense that no two of them contain the same or mutually

dependent variables. Sometimes the latter condition is imprac-
ticable and it becomes necessary to include the same component
in two or more of the functions. Under such conditions the expan-
sion has no advantage over the general expression for 0, unless

the effect of the errors of each of the common components can

be rendered negligible in all but one of the functions. It is

scarcely necessary to point out that equations (134) and (135)

represent different problems, and that if it were possible to expand
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the same function in both ways, the component functions /i,

/2, , fn would be different in the two cases.

For the sake of convenience let

/I (Oi, 2, )
= 2

/2 (6l, 62 ,
. . . )

= ^2

jfn (Wi,m2 ,. . . )
= 2

Then equation (134) may be written in the form

X = Zi 2 2!3 . . . d= 2, (137)

and (135) may be put in the form

x = zl Xzz Xz3 X . . . Xzn . (138)

First consider the case in which the function representing the

proposed methods of measurement has been put in the form of

(137). Since the precision measure follows the same laws of

propagation as the probable error, the discussion given in article

fifty-eight leads to the relation

# 2 = 7^2 + #2
2 + Rf + _ m + Rn2

} (139)

where RQ is the precision measure of x
,
and each of the other R's

represents the precision measure of the z with corresponding sub-

script. Hence, by the principle of equal effects, provisional

values of the R's may be obtained from the relation

R, = R2
= R, = . . .

= Rn = A .

(140)

The R's having been determined by (140), the corresponding

probable errors of the a's, 6's, etc., may be computed by the

methods of the preceding articles with the aid of equations (136).

If the provisional limits of precision thus found are not all attain-

able with approximately equal facility, the conditions of the

problem may be better satisfied by moderately adjusted relative

values of the probable errors as pointed out in article seventy-

eight. Obviously the adjusted values must satisfy equation (139)

if the value of x computed by (137) is to come out with a pre-

cision measure equal to the given R .

When the function representing the proposed methods can be

put in the form of (138) the computation is facilitated by intro-

ducing the fractional errors

P =
; Pl = !

;
P2

= f2;...; Pn = f" (141)
XQ Zi Zz Zn
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For, by the argument underlying equation (83), article sixty-two,

Po2 = Pi2 + P2
2 + Pa2 + . . . + P 2

, (142)

and, by the principle of equal effects, provisional values of the

P's are given by the relation

Pi = P2
= P3

=
. . .

= P = *=. (143)Vn

Since RQ and approximate values of the components are given,

PO can be computed with sufficient accuracy with the aid of

(138) and the first of (141). Consequently provisional fractional

limits for the components can be determined by (143), and the

corresponding precision measures by the last n of equations (141).

Beyond this point the problem is identical with the preceding

case, except that the adjusted limits of precision must satisfy

(142) in place of (139).

The methods developed in the preceding articles are entirely

general and applicable to any form of the function 6, but they

frequently lead to complicated computations. In the present

article we have seen how the discussion can be simplified when the

function can be put in either of the particular forms represented

by (134) and (135). Many of the problems met with in practice

cannot be put in either of these special forms, but it frequently

happens that the treatment of the functions representing them

can be simplified by a suitable modification or combination of the

above general and particular methods. The general ideas under-

lying all discussions of the necessary precision of components

have been discussed above with sufficient fullness to show their

nature and significance. Their application to particular prob-

lems must be left to the ingenuity of the observer and computer.

81. Numerical Example. As an illustration of the fore-

going methods, suppose that the electromotive force of a battery

is to be determined, and that the precision measure of the result

is required to satisfy the condition

R = 0.0012 volts, (i)

T->

within the limits T?!>i-e -> #o must lie between 0.0011 and

=b 0.0013 volt. Preliminary considerations demand that the

expense of the work shall be as low as is consistent with the

required precision.
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The given conditions are most likely to be fulfilled by some

form of potentiometer method. Suppose that the arrangement

of apparatus illustrated in Fig. 10 is adopted provisionally; and,

to simplify the discussion, suppose that the various parts of the

apparatus are so well insulated that leakage currents need not

be considered. The generality of the problem is not appreciably

affected by the latter assumption since the specified condition

can be easily satisfied in practice within negligible limits. With

what precision must the several components and correction

factors be determined in order that equation (i) may be satisfied?

-T&Z

FIG. 10.

Let V = e.m.f. of tested battery BI,

Et = e.m.f. of Clark cell B 2 at time of observation,

t = temperature of Clark cell at time of observation,

Ri = resistance between 1 and 2,

Rz = resistance between 1 and 3,

/ = current in circuit 1, 2, 3, B3 ,
1 when the key K is open,

5i = algebraic sum of thermo e.m.f.'s in the circuit 1, 2, 6,

G, 1 when K is closed to 6,

2
=

algebraic sum of thermo e.m.f. 's in the circuit 1, 3, a,

G, 1 when K is closed to a,

Ei5 e.m.f. of Clark cell at temperature 15 C.,

a. = mean temperature coefficient of Clark cell in the

neighborhood of 20 C.



ART. 81] DISCUSSION OF PROPOSED MEASUREMENTS 159

When the sliding contacts 2 and 3 are so adjusted that the

galvanometer G shows no deflection on closing the key K to

either a or 6,

RI RZ
Consequently

F = (^+62)|-
1 -5 1 . (ii)

-fi/2

But

(in)
Hence

F = -B16 !l-a-15)jf-
1 + 2 f-

1 -8 1 . (iv)
KZ n>z

The resistances RI and #2 are functions of the temperature; but,

since they represent simultaneous adjustments with the cells BI
p

and Bz and are composed of the same coils, the ratio ~ is inde-
KZ

pendent of the temperature. Thus, if Rt

' and R t

"
represent the

resistances of the used coils at t C., and ft is their temperature

coefficient,

RS Ri(l+ fit) Ri

whatever the temperature t at which the comparison is made.

This advantage is due to the particular method of connection and

adjustment adopted, and is by no means common to all forms of

the potentiometer method.

Under the conditions specified above, equation (iv) may be

adopted as the complete expression for the discussion of precision.

It corresponds to equation (120) in the general treatment of the

problem. Suppose that the following approximate values of the

components, which are sufficiently close for the determination of

the capabilities of the method, have been obtained from the

normal constants of the Clark cell and a preliminary adjustment
of the apparatus or by computation from a known approximate
value of V:

#15 = 1.434 volts; a = 0.00086;

t = 20 C.; Ri = 1000 ohms;

R 2
= 1310 ohms; V = 1.1 volts.

The thermoelectromotive forces 5i and 52 are to some extent

due to inhomogeneity of the wires used in the construction of

the instruments and connections. For the most part, however,

(v)
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they arise from the junctions of dissimilar metals in the circuits

considered. Suppose that the resistances R\ and #2 are made of

manganin, the key K of brass, and that the copper used in the

galvanometer coil and the connecting wires is thermoelectrically
different. Both 5i and 5 2 would represent the resultant action

of at least six thermo-elements in series. While these effects can-

not be accurately specified in advance, their combined action

would not be likely to be greater than twenty-five microvolts per

degree difference in temperature between the various parts of the

apparatus, and it might be much less than this. Obviously 5i

and 6 2 are both equal to zero when the temperature of the appa-
ratus is uniform throughout.

By equations (133), article seventy-nine, the correction terms

depending on thermoelectric forces will be negligible in compar-
ison with the given precision measure R

,
when 5i and 62 satisfy

the conditions

. 1 #o 1 , - 1 flo 1
' l

*3'vT5E ^s'vTE'
ddi dd2

In the present case

Ro = 0.0012 volt; q = 2;

dV . dV R l

sE*--
1 '

and srsr
Consequently the above conditions become

-
5^i? . _L _ 0.00028 volt = 280 microvolts,

3 v 2 1

_L - 0.00037 volt = 370 microvolts.
0.76

From the above discussion of the possible magnitude of the thermo-

electromotive forces in the circuits considered, it is obvious that

these limits correspond to temperature differences of approxi-

mately ten degrees between the various parts of the apparatus.
Since the temperature of the apparatus can be easily maintained

uniform within five degrees, the last two terms in equation (iv)

are negligible within the limits of precision set in the present

problem. Hence, for the determination of the required precision

of the remaining components, the functional relation (iv) may be

taken in the form

(vi)
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By equation (123), article seventy-six, the primary condition

for determining the necessary precision of the components is

R<? = 144 X 10~ 8 = Z>!
2 + > 2

2 + D 3
2 + >4

2 + D<?, (vii)

where dV 67 67

67 (viii)

and EI, EZ, E3 , E^ E$ are the required probable errors of EI$, a, t,

Ri, and Rz, respectively.

For the preliminary determination of the jE"s by the principle

of equal effects, equation (127), article seventy-seven, becomes

= 0.00054. (ix)VN V5
Neglecting all factors that do not affect the differential coefficients

by more than one unit in the second significant figure and adopt-

ing the approximate values of the components given in (v),

67 R! 1000 n _j- =
p-

= T^ =
0.76,

d-Cns /t2 lolU

=- E15a= - - 0.00094,
it/2

= Eu = 0.0011,
it 2

(x)

Hence, by combining (viii) and (ix), or directly from equations

(128), article seventy-seven,

,
0.00054

(xi)

Ez
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In practice the attainableness of these limits might be deter-

mined experimentally; but in the present case, as in most practical

problems, general considerations based on theory and previous

experience lead to equally trustworthy results. In the first place,

it is obvious that the temperature of the Clark cell can be easily

determined closer than 0.6 C. Consequently the limit (c) is easily

attainable and might possibly be reduced to a negligible quantity.

The constants of the normal Clark cell are known well within

the limits (a) and (b). But it requires very careful treatment of

the cell to keep Ei6 constant within the limit (a), and new cells,

unless they are set up with great care and skill, are likely to vary

among themselves and from the normal cell by more than 0.0007

volt. Consequently the limit (a) is somewhat smaller than is

desirable in practical work of the precision considered in the

present problem. On the other hand, the limit (b) is very rarely

exceeded by either old or new cells unless they are very care-

lessly constructed and handled. Hence E2 could probably be

reduced to the negligible limit.

With a suitable galvanometer, the nominal values of the resist-

ances Ri and R% can be easily adjusted within the limits (d) and

(e). But EI and E5 must be considered practically as the pre-

cision measures of R i and R2 . They include the calibration

errors of the resistances, the errors due to leakage between the

terminals of individual coils, and the errors due to nonuniformity
of temperature as well as the errors of setting of the contacts 2

and 3, Fig. 10. The resultant of these errors can be reduced

below the limits (d) and (e), but in the present case it would be

convenient to have somewhat larger limits in order to reduce the

expense of construction and calibration.

Hence, while all of the E's given by equations (xi) are within

attainable limits, the preliminary consideration of minimum

expense would be more likely to be fulfilled if the limits (a),

(d), and (e) were somewhat larger. Obviously the magnitude of

these limits can be increased without violating the primary con-

dition (vii) provided a corresponding decrease in the magnitudes
of the limits (b) and (c) is possible.

By equation (131), article seventy-nine, the separate effects D2

and DZ will be simultaneously negligible if

n n 1 #o 1 0.0012
1/2 = DZ =

7^ = ~
;= ^

3 Vq 3 V2
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Hence, by equations (132), the errors of a and t will be negligible
when 0.00028E2

= ^~ =; 0.000051, (b')

and
00028

Ets mm ^o-3oc. (C')

Since these limits can be reached with much greater ease than the

limits (a), (d), and (e), they may be adopted as final specifica-

tions and the corresponding Z)'s may be omitted during the deter-

mination of new limits for the components E 15) R 1} and R%.

Under these conditions, equation (ix) becomes

Hence the largest allowable limits for the errors of EM, Ri, and

RZ are OOOfiQ~ = 0.00091 volt, (a')

= .63 ohm, (d')

While these limits cannot be quite so easily attained as (b') and

(c'), they cannot be increased without violating the primary con-

dition (vii). Consequently they satisfy the condition of minimum

expense, so far as the proposed method is concerned, and may be

adopted as final specifications.

The fractional errors corresponding to the specified precision

measure of V and the above limiting errors of the components

Po = Y = 0.0011 = 0.11%,

Pi =~ = db 0,00063 = 0.063%,

P2
= ^ = 0.059 = =t 5.9%,

P3
= y = 0.015 = db 1.5%,

P4 = ~ = =fc 0.00063 = d= 0.063%,

P5
= f-

5 = 0.00063 = 0.063%.
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Consequently in order to obtain a value of V that is exact within

0.11 per cent by the proposed method, a must be determined

within 5.9 per cent, t within 1.5 per cent, and E.-&, Ri, and R 2) each

within 0.063 per cent. These limits are all attainable in practice

under suitable conditions, as pointed out above. Hence the pro-

posed method is practicable.

If the final measurements are so devised and executed that the

above conditions are fulfilled, the precision of the result computed
from them will be within the specified limits and the expense of

the work will be reduced to the lowest limit compatible with the

proposed method. The desired result might be obtained at less

expense by some other method, but a decision on this point can

be reached only by comparing the precision requirements and

practicability of various methods with the aid of analyses similar

to the above.



CHAPTER XII.

BEST MAGNITUDES FOR COMPONENTS.

82. Statement of the Problem. The precision of a derived

quantity depends on the relative magnitudes and precision of the

components from which it is computed, as explained in Chapter
VIII. Thus, if the derived quantity XQ is given in terms of the

components x\, x^ . . .
,
xq by the expression

x = F (xi, x2 ,
. . .

,
xg), (144)

the probable error of XQ is given by the expression

EQ
* = SSEJ + S2

2E2
Z + + Sq*Eq

2
, (145)

where the E's represent the probable errors of the x's with corre-

sponding subscripts, and

AF AF AF

*-& *-&'< (146)

The error E, corresponding to any directly measured com-

ponent, is generally, but not always, independent of the absolute

magnitude of that component so long as the measurements are

made by the same method and apparatus. For example: the

probable error of a single measurement with a micrometer caliper,

graduated to 0.01 millimeter, is approximately equal to 0.004

millimeter, whatever the magnitude of the object measured so

long as it is within the range of the instrument. Hence, when
the methods and instruments to be used in measuring each of

the components are known in advance, the probable errors EI,

E2 , etc., can be determined, at least approximately, by preliminary

measurements on quantities of the same kind as the components
but of any convenient magnitude. Under these conditions the

E's on the right-hand side of equation (145) may be treated as

known constants, and, since the S's are expressible in terms of

Xi, xz , etc., by equations (146), the value of E corresponding to

the given methods cannot be changed without a simultaneous

change in the relative or absolute magnitudes of the components.
165
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Since equation (144) must always be fulfilled, and since the

value of XQ is usually fixed by the conditions of the problem, a

change in the magnitudes of the re's is not always possible. But
it frequently happens that the form of the function F is such that

the relative magnitudes of the components can be changed through
somewhat wide limits and still satisfy equation (144). Thus, if

a cylinder is to have a specified volume, it may be made long and

thin, or short and thick, and have the same volume in either case.

Consequently it is sometimes possible to select magnitudes for

the components that will give a minimum value of E and at the

same time satisfy equation (144).

The problem before us may be briefly stated as follows : Having

given definite methods and apparatus for the measurement of the

components of a derived quantity reo, what magnitudes of the

components will give a minimum value to the probable error EQ of

XQ and at the same time satisfy the functional relation (144)?

It can be easily seen that a practical solution of this problem
is not always possible. In the first place the form of the function

F may be such as to admit of but a single system of magnitudes
of the components, and consequently the value of EQ is definitely

fixed by equation (145). In some cases there are no real values

of the re's that will satisfy both (144) and the conditions for a

minimum of EQ. When values can be found that satisfy the

mathematical conditions they are not always attainable in prac-

tice. Finally the probable errors Ei, E2 , etc., may not be inde-

pendent of the magnitudes of the corresponding components or

it may be impossible to determine them in advance of the final

measurements.

When the E's are not independent of the re's it sometimes

happens that the fractional errors

Pi = ? ; p*
= ?'> p*

= ? (147)
3/1 it/2 Xq

are constant and determinable in advance. In such cases the

problem may be solvable by putting (145) in the equivalent form

Ef = SfPfy? + SfPfxf +!>+ Sq*Pq*xq*, (148)

expressing the S's in terms of the components by equations (146),

and determining the values of the re's that will render (148) a

minimum subject to the condition (144).
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When a practicable solution of the problem is possible, it is

obvious that the results thus obtained are the best magnitudes
that can be assigned to the components, and that they should

be adopted as nearly as possible in carrying out the final measure-

ments from which XQ is to be computed.

83. General Solutions. The general conditions for a mini-

mum or a maximum value of EQ
2
,
when XQ is treated as a constant

and the variables are required to satisfy the relation (144), but

are otherwise independent, are

dF
^ A =

U,
0)

where K is an arbitrary constant. By introducing the expressions

(145) and (146), transposing and dividing by two, equations (i)

become

Slgtf1
. + S,g^ + ...

o O&1 ET 2 _j_
O 0O2

pi 2 i

1
dx2

2

^2 (149)

When the S's have been replaced by x's with the aid of equa-

tions (146), the q equations (149), together withj(144), are theoreti-

cally sufficient for the determination of all of the q + 1 unknown

quantities Xi, x2 ,
. . .

,
xq ,

and K. However, in some cases a

practicable solution is not possible, and in others the components
or their ratios come out as the roots of equations of the second

or higher degree. The zero, infinite, and imaginary roots of these

equations have no practical significance in the present discussion

and need not be considered. Some of the real roots correspond to

a maximum, some to a minimum, and others to neither a maximum
nor a minimum value of E Z

. In most cases the roots that corre-

spond to a minimum of E 2 can be selected by inspection with the
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aid of equation (145), but it is sometimes necessary to apply the

well-known criteria of the calculus.

Dividing equation (145) by xQ2 and putting

XQ dX2
' q

XQ XQ dXqXQ XQ dXi

gives the expression

PZ = EI
X 2

XQ
(150)

+ T*E* (151)

for the fractional error of XQ. Since XQ is a constant in any given

problem the maxima and minima of P 2
correspond to the same

values of the components as those of EQ
2

. Sometimes the form

of the function F is such that the expression (151), when expanded
in terms of the x's, is much simpler than (145). In such cases it

is much easier to determine the minima of P 2 than of E 2
. For

this purpose the equations of condition (i) may be put in the form

6X1 XQ dXi

KdF_
XQ 6X2

dx,

(152)

, q XQ dXq

and by substitution and transposition we have

dTi dT% dTg
1

dxi
2

dxi
2 q

dxi

dT<

(153)

When the components are required to satisfy the condition (144)

and a given constant value is assigned to XQ, equations (153) lead

to exactly the same results as equations (149). In fact either of

these sets of equations can be derived from the other by purely

algebraic methods when the $'s and T's are expressed in terms of

the x's. In practice one or the other of the sets will be the simpler,

depending on the form of the function F; and the simpler form
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can be more easily derived by direct methods as above than by
algebraic transformation.

In some problems the magnitude of one or more of the com-

ponents in the function F can be varied at will and determined

with such precision that their probable errors are negligible in

comparison with those of the other components. Variables that

fulfill these conditions will be called free components. Since any
convenient magnitude can be assigned to them, their values can

always be so chosen that the condition (144) will be fulfilled

whatever the values of the other components. Consequently the

latter components may be treated as independent variables in

determining the minima of EQ
2 or PQ

2
.

Under these conditions the E's corresponding to the free com-

ponents can be placed equal to zero, and either E 2 or P 2 can

sometimes be expressed as a function of independent variables

only by eliminating the free components from the S's or the T's

with the aid of equation (144). When this elimination can be

effected, the minimum conditions may be derived from equations

(149) or (153), as the case may be, by placing K equal to zero and

omitting the equations involving derivatives with respect to the

free components. This is evident because the remaining com-

ponents are entirely independent, and consequently the partial

derivatives of EQ
2 or P 2 with respect to each of them must vanish

when the values of the variables correspond to the maxima or

minima of these functions. When the elimination cannot be

accomplished, neither equations (149) nor (153) will lead to con-

sistent results and the problem is generally insolvable.

In practice it frequently happens that the free components are

factors of the function F, and are not included in any other way.
Under these conditions they do not occur in the T's corresponding

to the remaining components, since the form of equations (150)

is such that they are automatically eliminated. Consequently,

in this case, the conditions for a minimum are given at once by

equations (153) when K is taken equal to zero, since the derivatives

with respect to the free components all vanish and the correspond-

ing E's are negligible. It is scarcely necessary to point out that

the remarks in the paragraph following equations (149), except

for obvious changes in notation, apply with equal rigor to equa-

tions (153), whether K is zero or finite. The values of the x's

derived from these equations should never be assumed to corre-

spond to the minima of P 2 without further investigation.
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84. Special Cases. Suppose that the relation between the

derived quantity XQ and the measured components xi, #2 ,
and xs

is given in the form

XQ = ax?* + bxj1* + cxj
1
*, (ii)

where a, b, c, and the n's are constants. If the probable errors

Eit
Ez ,

and E3 of the x's with corresponding subscripts are known,
and independent of the magnitude of the components, what mag-
nitudes of the components will give the least possible value to the

probable error E of XQ?

By equations (146),

Si = arnxi^-V; S2
= bn&^'-V; Ss

= c/W^-D. (iii)

Consequently

dSi , i\ ( <>\ ^$2 rv ^$3 _.-!(, -I)**-*; ._ =0; =
0,

Substituting these results in equations (149) and dividing the

first equation by Si, the second by $2 ,
and the third by SS) the

conditions for a minimum value of EQ
2 become

Efari! (m - 1) xi<*-*> = K,

Dividing the second and third of these equations by the first

and transposing the coefficients to the second member gives the

ratios of the components in the form

x2
(n^- 2)

= EJani (ni-l)
T,(tti-2)

~~
EL2Jmn (n n - IV

(HI
-

1)
~

(ns
-

These two equations together with (ii) are theoretically sufficient

for the determination of the best magnitudes for the three com-

ponents xij Xzj and x$] but it can be easily seen, from the form of

the equations, that a solution is not practicable for all possible

values of the n's.
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For example, if the n's are all equal to unity, the ratios of the

components given by (iv) are both indeterminate, each being

equal to
^-

Consequently the problem has no solution in this

case. This conclusion might have been reached at once by
inspecting the value of EQ

2
given by equation (145), when the S's

are expressed in terms of the components. Thus, placing the n's

equal to unity in equations (iii) and substituting the results in

(145), we find

Since E<? is independent of the x's it can have no maxima or

minima with respect to the components.
When each of the n's equals two, equations (iv) are inde-

pendent of the x's, and consequently the problem is not solvable.

In this case (ii) becomes

XQ =

and (145) reduces to

E 2 = 4

Since these equations differ only in the values of the constant

coefficients of the x's, no magnitudes can be assigned to the com-

ponents that will give a minimum value to EQ
2
,
and at the same

time satisfy the equation for XQ.

If each of the n's is placed equal to three, equation (ii) takes

the form
XQ = ax^ + bx2

* + c#3
3
, (v)

and equations (iv) become

Xt~bEf'
(iv')

C#3
2

In this case the problem can be easily solved when the numerical

values of the coefficients and the E's are known. As a very

simple illustration, suppose that
7 -f J 77T -TGI ~Ij1 XT'

a = o = c = 1, and J^i = & 2 MS &,

then, by (iv') and (v),

and, by (145) and (iii),
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Since a decrease in the magnitude of one of the x's involves an

increase in that of one or both of the others, in order to satisfy

equation (v), and since the fourth power of a quantity varies

more rapidly than the third, it is obvious that the minimum
value of E 2 will occur when the x's are all equal. Consequently
the above solution corresponds to a minimum of E 2

.

It can be easily seen that there are many other cases in which

equations (ii) and (iv) can be solved, and also some others in

which no solution is possible. The extension of the problem to

functions in the same form as equation (ii), but containing any
number of similar terms, involves only the addition of one equa-

tion in the form of (iv) for each added component. Obviously
these equations hold for negative as well as positive values of the

coefficients and exponents of the x's.

As a second example, consider the functional relation

x = axi
n i X xf*. (vi)

In this case the solution is more easily effected by the second

method given in the preceding article. By equations (150)

Consequently

and equations (153) reduce to the simple form

^ES=-K; %Ef
= -K,

;

(viii)

where EI and E2 are the known constant probable errors of Xi and

#2. Eliminating K, we have

Consequently the problem is always solvable when n\ and n2

have the same sign. When they have different signs the solu-

tion is imaginary. Hence there are no best magnitudes for the

components when the derived quantity is given as the ratio of

two measured quantities.



ART. 85] BEST MAGNITUDES FOR COMPONENTS 173

The extension of this solution to functions involving any num-
ber of factors is obvious. When the exponents of all of the
factors have the same sign the problem is always solvable but
the best magnitudes thus found may not be attainable in practice.
If part of the exponents are positive and others are negative the

solution is imaginary.

85. Practical Examples.

I.

In many experiments the desired result depends directly upon
the determination of the quantity of heat generated by an electric

current in passing through a resistance coil. Let I represent the

current intensity and E the fall of potential between the terminals

of the coil. Then the quantity of heat H developed in t seconds

may be computed by the relation

JH = TEt,

where J represents the mechanical equivalent of heat. If H is

measured in calories, I in amperes, E in volts, and t in seconds,

y
is equal to 0.239 calorie per Joule and the above relation becomes

H = 0.239 lEt. (ix)

Suppose that the conditions of the problem in hand are such

that H should be made approximately equal to 1000 calories.

Since the resistance of the heating coil is not specified it can be so

chosen that 7 and E may have any convenient values that satisfy

the relation (ix) when H has the above value. Obviously t can

be varied at will, by changing the time of run, and (ix) will not

be violated if suitable values are assigned to / and E. If the

instruments available for measuring /, E, and t are an ammeter

graduated to tenths of an ampere, a voltmeter graduated to

tenths of a volt, and a common watch with a seconds hand, what

are the best magnitudes that can be assigned to the components,

i.e., what magnitudes of /, E, and t will give the computed H
with the least probable error?

By comparing equations (ix) and (vi), it is easy to see that

the present problem is an application of the second special case

worked out in the preceding article when a third variable factor

Z3
n 3 is annexed to (vi). H corresponds "to x0) I to Xi, E to xz ,

t to

#3/and all of the n's in (vi) are equal to unity. Consequently
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the solution can be derived at once from three equations in the

form of (viii) if suitable values can be assigned to the probable
errors of the components.

With the available instruments, the probable errors E
i}
Ee ,

and

Et of /, E, and t, respectively, will be practically independent of

the magnitude of the measured quantities so long as the range
of the instruments is not exceeded. Under the conditions that

usually prevail in such observations the following precision may
be attained with reasonable care:

Et
= 0.05 ampere; Ee

= 0.05 volt; Et
= 1 second.

The conditions for a minimum value of the probable error E
of H can be derived by exactly the same method that was used

in obtaining equations (viii), or these equations may be used at

once with proper substitutions as outlined above. Consequently
the best magnitudes for the components are given by the simul-

taneous solution of (ix) and the following three equations,

^2
_ K . ^_ E?

~P
= ~ K

> ~W~
~ K

>

~P
=

Eliminating K and substituting the numerical values of the

probable errors we have

E_Ee _. l_Et _
I
~
E<~

L
> I~ Ei~

Consequently
E = I and t = 20 /. (x)

Substituting these results and the numerical value of H in (ix)

we have
1000 = 0.239 X 20 X /3

,

and hence
I = 5.94 amperes

is the best magnitude to assign to the current strength under the

given conditions. The corresponding magnitudes for the electro-

motive force and time found by (x) are

E = 5.94 volts and t = 119 seconds.

If the above values of the components and their probable errors

are substituted in equation (151), the fractional error of H comes

out
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and the probable error of H is given by the relation

EQ
= 1000 Po =15 calories.

If any other magnitudes for the components, that satisfy equa-
tion (ix), are used in place of the above in (151), the computed
value of E will be greater than fifteen calories. Consequently
the above solution corresponds to a minimum value of EQ .

In order to fulfill the above conditions the resistance of the

heating coil must be so chosen as to satisfy the relation

*-

Since our solution calls for numerically equal values of I and E,
the resistance R must be made equal to one ohm.

It can be easily seen that small variations in the values of the

components will produce no appreciable effect on the probable
error of H, ^ince the numerical value of E is never expressed by
more than two significant figures. Consequently the foregoing

discussion leads to the following practical suggestions regarding

the conduct of the experiment. The heating coil should be so

constructed that the heat developed in the leads is negligible in

comparison with that developed between the terminals of the

voltmeter. The resistance of the coil should be one ohm. The
current strength should be adjusted to approximately six amperes
and allowed to flow continuously for about two minutes. Under

these conditions the difference in potential between the terminals

of the coil will be about six volts. The conditions under which

7, E, and t are observed should be so chosen that the probable

errors specified above are not exceeded.

If the above suggestions are carried out in practice the value

of H computed from the observed values of /, E, and t by equa-

tion (ix) will be approximately 1000 calories, and its probable

error will be about fifteen calories. A more precise result than

this cannot be obtained with the given instruments unless the

probable errors of 7, E, and t can be materially decreased by

modifying the conditions and methods of observation.

II.

A partial discussion of the problem of finding the best magni-

tudes for the components involved in the measurement of the

strength of an electric current with a tangent galvanometer may
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be found in many laboratory manuals and textbooks. Such dis-

cussions are usually confined to a consideration of the error in the

computed current strength due to a given error in the observed

deflection. On the assumption, tacit or expressed, that the effects

of the errors of all other components are negligible it is proved
that the effect of the deflection error is a minimum when the

deflection is about forty-five degrees. Although the tangent gal-

vanometer is now seldom used in practice it provides an instructive

example in the calculation of best magnitudes since the general

bearings of the problem are already familiar to most students.

In order to avoid unnecessary complications, consider a simple

form of instrument with a compass needle whose position is

observed directly on a circle graduated in degrees. Suppose that

the needle is pivoted at the center of a single coil of N turns of

wire, and R centimeters mean radius. Under these conditions the

current strength I is connected with the observed deflection (f> by
the relation

where H is the horizontal intensity of a uniform external magnetic
field parallel to the plane of the coil. In practice the plane of the

coil is usually placed parallel to the magnetic meridian and H
is taken equal to the horizontal component of the earth's mag-
netism.

N is an observed component but it can be so precisely deter-

mined by direct counting, during the construction of the coil,

that its error may be considered negligible in comparison with

those of the other components. Furthermore it can be given any
desired value when an instrument is designed to meet special

needs, and a choice among a number of different values is possi-

ble in most completed instruments. Consequently the quantity

x TT may be treated as a free component, represented by A, and

the expression for the current strength may be written in the

form
7 = A#.tan0. (xi)

Comparing this expression with the general equation (144) we
note that / corresponds to x0) H to x\, R to x2 ,

and to z3 .

Since A is free, the components H, R, and </> are entirely inde-

pendent; and any convenient magnitudes can be made to satisfy
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(xi) by suitably choosing the number of turns in the coil. Con-

sequently, as pointed out in article eighty-three with respect to

functions containing a free component as a factor, the conditions

for a minimum probable error of / are given by equations (153)

with K placed equal to zero. By making the above substitutions

for the x's in equations (150) and performing the differentiations

we have

I/' 7?' oi-r O ^
*

V^^X
11 /L bill cp

Consequently
0/77 -i z\nn H^TIol i 1 . o J. 2 f\

OJ. 3 ~

dH
=

~H~2 ' dH ; ~dH
=

'

*^/T7 *\ ATT "I fk T7

?l n
^ 2 _ _ L ^ 3 _ n.

dR
~

dR R2
'

dR
'

dTi ^ = n- dTz = 4cos2<?i>

d0 60
"

60 sin2 2
'

and, if the probable errors of H, R, and are represented by E\ 9

EZ, and #3, respectively, equations (153) become

If EI and E2 could be made negligible, as is tacitly assumed in

most discussions of the present problem, the first two of equations

(xiii) would be satisfied whatever the values of H and R. Conse-

quently these components would be free and would be the only

independent variable involved in equation (xi). Under these

conditions the minimum value of the probable error of 7 corre-

sponds to the value of derived from the third of equations (xiii).

The general solution of this equation is

0= (2n-l)|>

where n represents any integer. But, since values of greater

than
I

are not attainable in practice, n must be taken equal to

unity in the present case and consequently the best magnitude

for the deflection is forty-five degrees. It is obvious that (xi)

can always be satisfied when / has any given value, and is

equal to forty-five degrees by suitably choosing the values of the

free components 2V, H, and R.
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If the fractional error of / is represented by P and the T's

given by equations (xii) are substituted in (151),

H2 ' R2 '

sin2 20

Pi2 + P2
2 + Pa2

,

(xiv)

= Pi2 + P2
2 + P3

2
,

where
2=

: and

are the separate effects of the probable errors E\, EZ, and E3)

respectively. If both ends of the needle are read with direct and

reversed current so that represents the mean of four observa-

tions, EZ should not exceed 0.025 or 0.00044 radians, and it might
be made less than this with sufficient care. Consequently, when

<j>
is equal to forty-five degrees,

P3
= 0.00088.

By an argument similar to that given in article seventy-nine it can

be proved that PI and P2 will be simultaneously negligible when

they satisfy the condition

p l
= P2

= iA = 0.00021.
3V2

Hence, in order that the effects of E\ and E% may be negligible in

comparison with that of E3 ,
H and R must be determined within

about two one-hundredths of one per cent.

With an instrument of the type considered it would seldom be

possible and never worth while to determine H and R with the

precision necessary to fulfill the above condition. In common

practice E\ and E2 are generally far above the negligible limit

and it would be necessary to make both H and R equal to infinity

in order to satisfy the first two of the minimum conditions (xiii).

Hence there is no practically attainable minimum value of P .

This conclusion can also be derived directly by inspection of

equation (xiv). P 2 decreases uniformly as H and R are increased,

and becomes equal to Ps2 when they reach infinity.

Although a minimum value of P is not attainable, the fore-

going discussion leads to some practical suggestions regarding

the design and use of the tangent galvanometer. For any given

values of E\, E2 ,
and E3 ,

the minimum value of PS occurs when <j>

is equal to forty-five degrees. Also PI and P% decrease as H and

R increase. Consequently the directive force H and the radius
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of the coil R should be made as large as is consistent with the

conditions under which the instrument is to be used, and the

number of turns N in the coil should be so chosen that the observed

deflection will be about forty-five degrees.

The practical limit to the magnitude of R is generally set by a

consideration of the cost and convenient size of the instrument.

Moreover when R is increased N must be increased in like ratio

in order to satisfy the fundamental relation (xi) without altering

the observed deflection or decreasing the value of H. There

is an indefinite limit beyond which N cannot be increased with-

out introducing the chance of error in counting and greatly in-

creasing the difficulty of determining the exact magnitude of R.

Above this limit E2 is approximately proportional to R, and, as

can be easily seen by equation (xiv), there is no advantage to

be gamed by a further increase in the magnitude of R.

H can be varied by suitably placed permanent magnets, but

it is difficult to maintain strong magnetic fields uniform and con-

stant within the required limits. Even under the most favorable

conditions, the exact determination of H is very tedious and

involves relatively large errors. Consequently Pi2
is likely to be

the largest of the three terms on the right-hand side of equation

(xiv). Under suitable conditions it can be reduced in magnitude

by increasing H to the limit at which the value of EI begins to

increase. However, such a procedure involves an increased value

of N in order to satisfy equation (xi), and consequently it may
cause an increase in E2 owing to the relation between N and R
pointed out in the preceding paragraph. In such a case the gain

in precision due to a decreased value of PI would be nearly bal-

anced by an increased value of P%.

In common practice the instrument is so adjusted that H is

equal to the horizontal component of the earth's magnetic field

at the time and place of observation. Unless H is very carefully

determined at the exact location of the instrument, EI is likely

to be as large as 0.005 ~5 and, since the order of magnitude
Cat,

of H is about 0.2 ^r , -Pi will be approximately equal to 0.025.
cm

Hence both P2 and P3 will be negligible in comparison with PI if

they satisfy the relation

P2
= P3

= -
^j=

= 0.0059.
"3 V2
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Under ordinary conditions R and < can be easily determined within

the above limit. Consequently, in the supposed case,

PO = PI = 2.5 per cent,

and it would be useless to attempt an improvement in precision

by adjusting the values of N, R
}
and <. With sufficient care in

determining H, PI can be reduced to such an extent that it be-

comes worth while to carry out the suggestions regarding the

design and use of the instrument given by the foregoing theory.

But when the value of H is assumed from measurements made in

a neighboring location or is taken from tables or charts the per-

centage error of / will be nearly equal to that of H regardless of

the adopted values of R and <. Under such conditions PQ can-

not be exactly determined but it will seldom be less than two or

three per cent of the measured magnitude of I.

The above problem has been discussed somewhat in detail in

order to illustrate the inconsistent results that are likely to be

obtained in determining best magnitudes when the effects of the

errors of some of the components are neglected. It is never

safe to assume that the error of a component is negligible until

its effect has been compared with that of the errors of the other

components.

III.

Figure eleven is a diagram of the apparatus and connections

commonly used in determining the internal resistance of a bat-

tery by the condenser method. G is a ballistic galvanometer,

C a condenser, R a known resistance, KI a charge and discharge

key, Kz a plug or mercury key, and B a battery to be tested.

Let Xi represent the ballistic throw of the galvanometer when

the condenser is charged and discharged with the key K2 open,

and xz the corresponding throw when K2 is closed. Then the

internal resistance RQ of the battery may be computed by the

relation

Ro = R^L^l. (XV)

Under ordinary conditions the probable errors of x\ and x^

cannot be made much less than one-half of one per cent of the

observed throws when a telescope, mirror, and scale are used. On

the other hand the probable error of R should not exceed one-tenth

of one per cent if a suitably calibrated resistance is used and the
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connections are carefully made. When these conditions are ful-

filled, it can be easily proved that the effect of the error of R is

negligible in comparison with that of the errors of Zi and x2 .

Furthermore any convenient value can be assigned to R, such

<T2 R
"
!L-A/WVW\AAAA/

B
FIG. 11.

that (xv) will be satisfied whatever the values of Xi and #2. Con-

sequently R may be treated as a free component and the throws

Xi and xz as independent variables.

For the purpose of determining the magnitudes of the com-

ponents R, xij and xz that correspond to a minimum value of the

fractional error P of RQ, we have by equations (150) and (xv)

Consequently

- X2)
(xvi)

Since x\ and x2 are independent, K must be taken equal to zero

in the minimum conditions (153). Hence, dividing the first two

equations by T i} we have

1 xi 1

1

E,2 -^

=
o,

=
0,

(x,-xz) 2 x 2 x 2
2
(x l -xz) 2

where EI and E2 are the probable errors of x\ and 2 , respectively.
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Multiply each of these equations by --1

^ 2
and they as-

sume the simple form

+- *

Since #i2 and Ez2 are always positive, it is obvious that there

are no values of Xi and x% that will satisfy both of these equations

at the same time. Hence, when Xi and x z can be varied inde-

pendently, they cannot be so chosen that the fractional error P
will be a minimum. However, if Xz is kept constant at any as-

signed value, PO will pass through a minimum when Xi satisfies

equation (a). On the other hand if any constant value is assigned

to Xi the minima and maxima of P will correspond to the roots

of equation (b).

In practice x\ is the throw of the galvanometer needle due to

the electromotive force of the battery when on open circuit; and

it is very nearly constant, during a series of observations, when
suitable precautions are taken to avoid the effects of polariza-

tion. Both Xi and Xz can be varied by changing the capacity
of the condenser or the sensitiveness of the galvanometer, but

their ratio depends only on the ratio of R to R. Consequently,
if any convenient magnitude is assigned to Xi, the root of equa-
tion (b) that corresponds to a minimum value of PO gives the

best magnitude for the component Xz.

Since x\ and x2 are similar quantities, determined with the same
instruments and under the same conditions, E\ is generally equal

to EZ. Hence, if we replace the ratio -- by y, equation (b) be-

^-2^-1 = 0^ (b')

The only real root of this equation is

y = 2.2056.

By equations (151) and (xvi)

Putting E l
= Ez = E and - =

y,
Xz

Pl = y* + y*

E* x 2 -l 2
'
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Since Xi is necessarily greater than x2 , y cannot be less than unity.

P 2

Under this condition it can be easily proved by trial that -==
&

approaches a minimum as y approaches the value given above,

provided any constant value is assigned to x\.

Equation (xv) may be put in the form

R Q
= R(y- 1),

and, by introducing the value of y given by the minimum condi-

tion (b')> we have
R = 0.83 R .

Consequently the greatest attainable precision in the determina-

tion of RQ will be obtained when R is made equal to about eighty

three per cent of RQ. If R is adjusted to this value Xi and x% will

satisfy equation (b), whatever the magnitude of the capacity used,

provided the observations are so made that E\ and E% are equal.

When the internal resistance of the battery is very low it is

sometimes impracticable to fulfill the above theoretical conditions

because the errors due to polarization are likely to more than off-

set the gain in precision corresponding to the theoretically best

magnitudes of the components. In such cases a high degree of

precision is not attainable, but it is generally advisable to make R
considerably larger than RQ in order to reduce polarization errors.

86. Sensitiveness of Methods and Instruments. The pre-

cision attainable in the determination of directly measured com-

ponents depends very largely on the sensitiveness of indicating

instruments and on the methods of adjustment and observation.

The design and construction of an instrument fixes its intrinsic

sensitiveness; but its effective sensitiveness, when used as an indi-

cating device, depends on the circumstances under which it is used

and is frequently a function of the magnitudes of measured quan-
tities and other determining factors. Thus; the intrinsic sensi-

tiveness of a galvanometer is determined by the number of

windings in the coils, the moment of the directive couple, and

various other factors that enter into its design and construction.

On the other hand its effective sensitiveness as an indicator in a

Wheatstone Bridge is a function of the resistances in the various

arms of the bridge and the electromotive force of the battery

used. An increase in the intrinsic sensitiveness of an instrument

may cause an increase or a decrease in its effective sensitiveness,
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depending on the nature of the corresponding modification in

design and the circumstances under which the instrument is

used.

By a suitable choice of the magnitudes of observed components

and other determining factors it is sometimes possible to increase

the effective sensitiveness of indicating instruments and hence

also the precision of the measurements. On the other hand,

as pointed out in Chapter XI, the precision of measurements

should not be greater than that demanded by the use to which

they are to be put. In all cases the effective sensitiveness of

instruments and methods should be adjusted to give a result

definitely within the required precision limits determined as in

Chapter XI. Consequently the best magnitudes for the quan-
tities that determine the effective sensitiveness are those that

will give the required precision with the least labor and expense.

The methods by which such magnitudes can be determined depend

largely on the nature of the problem in hand, and a general treat-

ment of them is quite beyond the scope of the present treatise.

Each separate case demands a somewhat detailed discussion of

the theory and practice of the proposed measurements and only

a single example can be given here for the purpose of illustration.

Since the potentiometer method of comparing electromotive

forces has been quite fully discussed in article eighty-one, it will

be taken as a basis for the illustration and we will proceed to find

the relation between the effective sensitiveness of the galvanom-
eter and the various resistances and electromotive forces involved.

Since the directly observed components in this method are the

resistances R\ and R%, the effective sensitiveness is equal to the

galvanometer deflection corresponding to a unit fractional devia-

tion of Ri or R z from the condition of balance.

From the discussion given in article eighty-one it is evident that

the potentiometer method could be carried out with any conven-

ient values of the resistances R\ and R2 provided they are so ad-
7-

justed that the ratio - satisfies equation (ii) in the cited article.
tiz

The absolute magnitudes of these resistances depend on the electro-

motive force of the battery J53 and the total resistance of the cir-

cuit 1, 2, 3, B3 ,
1 in Fig. 10. The effective sensitiveness of the

method, and hence the accuracy attainable in adjusting the con-

tacts 2 and 3 for the condition of balance, depends on the above
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factors together with the resistance and intrinsic sensitiveness of

the galvanometer.

Since RI and R% are adjusted in the same way and under the

same conditions, the effective sensitiveness of the method is the

same for both. Consequently only one of them will be considered

in the present discussion, but the results obtained will apply with

equal rigor to either. The essential parts of the apparatus and

connections are illustrated in Fig. 12, which is the same as Fig. 10

with the battery B 2 and its connections omitted.

FIG. 12.

Let V = e.m.f. of battery BI,

E = e.m.f. of battery B3 ,

R = resistance between 1 and 2,

W = total resistance of the circuit 1, 2, Bs , 1,

G = total resistance of the branch 1, G, BI, 2,

I = current through B3)

r = current through R,

g = current through BI and G.

When the contact 2 is adjusted to the balance position

Consequently

=
0, r = 7, and 7=^ =

-^

(xvii)

This is the fundamental equation of the potentiometer and must

be fulfilled in every case of balance. Consequently E must be
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chosen larger than V because R is a part of the resistance in the

circuit 1, 2, Bz , 1, and hence is always less than W. Equation

(xvii) may then be satisfied by a suitable adjustment of R.

By applying Kirchhoff's laws to the circuits 1, G, BI, 2, 1, and

1, 2, B3) 1, when the contact 2 is not in the balance position, we
have

Rr-Gg= V,

and Rr + (W - R) I = E.

But r = I - g.

Hence RI-(R + G)g = V,

and WI - Rg = E.

Eliminating I and solving for g we find

WV -RE

If D is the galvanometer deflection corresponding to the current

g and K is the constant of the instrument

g = KD.

Most galvanometers are, or can be, provided with interchange-

able coils. The winding space in such coils is usually constant,

but the number of windings, and hence the resistance, is variable.

Under these conditions the resistance of the galvanometer will be

approximately proportional to the square of the number of turns

of wire in the coils used. For the purpose of the present discussion,

this resistance may be assumed to be equal to G since the resist-

ance of the battery and connecting wires in branch 1, G, BI, 2,

can usually be made very small in comparison with that of the

galvanometer. The constant K is inversely proportional to the

number of windings in the coils used. Consequently, as a suffi-

ciently close approximation for our present purpose, we have

TvK =
T=>VG

where T is a constant determined by the dimensions of the coils,

the moment of the directive couple, and various other factors

depending on the type of galvanometer adopted. Hence, for any
given instrument,
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VG
The quantity -jr

is the intrinsic sensitiveness of the galvanometer.

It is equal to the deflection that would be produced by unit current

if the instrument followed the same law for all values of g.

By equation (xix) and (xviii)

VG WV-RE
T *R*-WR-WG'

The variation in D due to a change dR in R is

dD VG E(R*-WR-WG)+(WV-RE)(2R-W)
dR

'

T
'

(R*-WR-WGY
When the potentiometer is adjusted for a balance, D is equal to

zero and WV is equal to RE by equation (xvii). Hence, if d is the

galvanometer deflection produced when the resistance R is changed
from the balancing value by an amount dR, equation (xx) may
be put in the form

1 VVG

The fractional change in R corresponding to the total change dR
is

. I '-f : I
Consequently

1 VVO~' '

is the galvanometer deflection corresponding to a fractional error

Pr in the adjustment of R for balance. The coefficient of Pr in

equation (xxi) is the effective sensitiveness of the method under

the given conditions. If this quantity is represented by S, equa-

tion (xxi) becomes
8 = SPr ,

8 I

All of the quantities appearing in the right-hand member of this

equation may be considered as independent variables since equa-

tion (xvii) can always be satisfied, and hence the potentiometer
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can be balanced, when R, V, and E have any assigned values, if

the resistance W is suitably chosen.

If d' is the smallest galvanometer deflection that can be defi-

nitely recognized with the available means of observation, the frac-

tional error P/ of a single observation on R should not be greater

5'
than -~ Since the precision attainable in adj usting the potentiom-o
eter for balance is inversely proportional to P/, it is directly pro-

portional to the effective sensitiveness S. By choosing suitable

magnitudes for the variables T, G, R, and E, it is usually possible

to adjust the value of S, and hence also of P/, to meet the re-

quirements of any problem.
From equation (xxii) it is evident that S will increase in magni-

tude continuously as the quantities T, R, and E decrease and that

it does not pass through a maximum value. The practicable in-

crease in S is limited by the following considerations: E must be

greater than V, for the reason pointed out above, and its variation

is limited by the nature of available batteries. Since E must
remain constant while the potentiometer is being balanced alter-

nately against V and the electromotive force of a standard cell,

as explained in article eighty-one, the battery B3 must be capable
of generating a constant electromotive force during a considerable

period of time. In practice storage cells are commonly used for

this purpose and E may be varied by steps of about two volts by
connecting the required number of cells in series. Obviously E
should be made as nearly equal to V as local conditions permit.

When the potentiometer is balanced

V E

If R is reduced for the purpose of increasing the effective sensitive-

ness, W must also be reduced in like ratio, and, consequently, the

current 7 through the instrument will be increased. The prac-
tical limit to this adjustment is reached when the heating effect

of the current becomes sufficient to cause an appreciable change
in the resistances R and W. With ordinary resistance boxes this

limit is reached when 7 is equal to a few thousandths of an ampere.

Consequently, if E is about two volts, R should not be made much
less than one thousand ohms. Resistance coils made expressly
for use in a potentiometer can be designed to carry a much larger
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current so that R may be made less than one hundred ohms with-

out introducing serious errors due to the heating effect of the

current.

The constant T depends on the type and design of the galva-
nometer. In the suspended magnet type it can be varied some-

what by changing the strength of the external magnetic field, and

in the D'Arsonval type the same result may be attained by chang-

ing the suspending wires of the movable coil. The effects of the

vibrations of the building in which the instrument is located and

of accidental changes in the external magnetic field become much
more troublesome as T is decreased, i.e., as the intrinsic sensitive-

ness is increased. Consequently the practical limit to the reduc-

tion of T is reached when the above effects become sufficient to

render the observation of small values of 6 uncertain. This limit

will depend largely on the location of the instrument and the care

that is taken in mounting it. Sometimes a considerable reduc-

tion in T can be effected by selecting a type of galvanometer
suited to the local conditions.

If the quantities T
7

, R, V, and E are kept constant, S passes

through a maximum value when G satisfies the condition

*?'

It can be easily proved by direct differentiation that this is the

case when

G =

Hence, after suitable values of the other variables have been de-

termined as outlined above, the best magnitude for G is given by

equation (xxiii). Generally this condition cannot be exactly ful-

filled in practice unless a galvanometer coil is specially wound for

the purpose; but, when several interchangeable coils are available,

the one should be chosen that most nearly fulfills the condition.

In some galvanometers T and G cannot be varied independently,

and in such cases suitable values can be determined only by trial.

Since the ease and rapidity with which the observations can be

made increase with T, it is usually advisable to adjust the other

variables to give the greatest practicable value to the second

factor in S, and then adjust T so that the effective sensitiveness
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will be just sufficient to give the required precision in the deter-

mination of R.

As an illustration consider the numerical data given in article

eighty-one. It was proved that the specified precision require-

ments cannot be satisfied unless R is determined within a frac-

tional precision measure equal to 0.00063. Allowing one-half

of this to errors of calibration we have left for the allowable error

in adjusting the potentiometer

Pr
' = 0.00031.

If a single storage cell is used at B$, E is approximately two volts,

and, with ordinary resistance boxes, R should be about one thou-

sand ohms, for the reason pointed out above. This condition is

fulfilled by the cited data; and, for our present purpose, it will be

sufficiently exact to take V equal to one volt. Hence, by equa-

tion (xxiii), the most advantageous magnitude for G is about

five hundred ohms; and, by equation (xxii), the largest practi-

cable value for the second factor in S is

ST = V
Jf = 0.0224.

gf1-41+0

With a mirror galvanometer of the D'Arsonval type, read by

telescope and scale, a deflection of one-half a millimeter can be

easily detected. Consequently, if we express the galvanometer
constant K in terms of amperes per centimeter deflection, we must

take 5' equal to 0.05 centimeter; and, in order to fulfill the specified

precision requirements, the effective sensitiveness must satisfy the

condition

S' 0.05

~P7~00003l~

Combining this result with the above maximum value of ST we
find that the intrinsic sensitiveness must be such that

0.0224 _
161

Hence the galvanometer should be so constructed and adjusted
that

G = 500 ohms,
and

TK = = = 6.2 X lO"6 amperes per centimeter deflection.
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D'Arsonval galvanometers that satisfy the above specifications

can be very easily obtained and are much less expensive than

more sensitive instruments. They are so nearly dead-beat and

free from the effects of vibration that the adjustment of the poten-

tiometer for balance can be easily and rapidly carried out with

the necessary precision. Hence the use of such an instrument

reduces the expense of the measurements without increasing the

errors of observation beyond the specified limit.



CHAPTER XIII.

RESEARCH.

87. Fundamental Principles. The word research, as used

by men of science, signifies a detailed study of some natural

phenomenon for the purpose of determining the relation between

the variables involved or a comparative study of different phe-

nomena for the purpose of classification. The mere execution of

measurements, however precise they may be, is not research. On
the other hand, the development of suitable methods of measure-

ment and instruments for any specific purpose, the estimation of

unavoidable errors, and the determination of the attainable limit

of precision frequently demand rigorous and far-reaching research.

As an illustration, it is sufficient to cite Michelson's determination

of the length of the meter in terms of the wave length of light. A
repetition of this measurement by exactly the same method and

with the same instruments would involve no research, but the

original development of the method and apparatus was the result

of careful researches extending over many years.

The first and most essential prerequisite for research in any field

is an idea. The importance of research, as a factor in the advance-

ment of science, is directly proportional to the fecundity of the

underlying ideas.

A detailed discussion of the nature of ideas and of the conditions

necessary for their occurrence and development would lead us too

far into the field of psychology. They arise more or less vividly

in the mind in response to various and often apparently trivial

circumstances. Their inception is sometimes due to a flash of

intuition during a period of repose when the mind is free to respond
to feeble stimuli from the subconscious. Their development and

execution generally demand vigorous and sustained mental effort.

Probably they arise most frequently in response to suggestion or

as the result of careful, though tentative, observations.

A large majority of our ideas have been received, in more

or less fully developed form, through the spoken or written dis-

course of their authors or expositors. Such ideas are the common
192
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heritage of mankind, and it is one of the functions of research to

correct and amplify them. On the other hand, original ideas,

that may serve as a basis for effective research, frequently arise

from suggestions received during the study of generally accepted
notions or during the progress of other and sometimes quite differ-

ent investigations.

The originality and productiveness of our ideas are determined

by our previous mental training, by our habits of thought and

action, and by inherited tendencies. Without these attributes,

an idea has very little influence on the advancement of science.

Important researches may be, and sometimes are, carried out by
investigators who did not originate the underlying ideas. But,
however these ideas may have originated, they must be so thor-

oughly assimilated by the investigator that they supply the stim-

ulus and driving power necessary to overcome the obstacles that

inevitably arise during the prosecution of the work. The driving

power of an idea is due to the mental state that it produces in the

investigator whereby he is unable to rest content until the idea

has been thoroughly tested in all its bearings and definitely proved
to be true or false. It acts by sustaining an effective concentra-

tion of the mental and physical faculties that quickens his in-

genuity, broadens his insight, and increases his dexterity.

In order to become effective, an idea must furnish the incentive

for research, direct the development of suitable methods of pro-

cedure, and guide the interpretation of results. But it must

never be dogmatically applied to warp the facts of observation

into conformity with itself. The mind of the investigator must
be as ready to receive and give due weight to evidence against

his ideas as to that in their favor. The ultimate truth regarding

phenomena and their relations should be sought regardless of

the collapse of generally accepted or preconceived notions. From
this point of view, research is the process by which ideas are

tested in regard to their validity.

88. General Methods of Physical Research. Researches

that pertain to the physical sciences may be roughly classified

in two groups: one comprising determinations of the so-called

physical constants such as the atomic weights of the elements, the

velocity of light, the constant of gravitation, etc.; the other

containing investigations of physical relations such as that which

connects the mass, volume, .pressure, and temperature of a gas.
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The researches in the first group ultimately reduce to a careful

execution of direct or indirect measurements and a determination

of the precision of the results obtained. The general principles

that should be followed in this part of the work have been suffi-

ciently discussed in preceding chapters. Their application to prac-

tical problems must be left to the ingenuity and insight of the

investigator. Some men, with large experience, make such appli-

cations almost intuitively. But most of us must depend on a

more or less detailed study of the relative capabilities of available

methods to guide us in the prosecution of investigations and in

the discussion of results.

In general, physical constants do not maintain exactly the same

numerical value under all circumstances, but vary somewhat with

changes in surrounding conditions or with lapse of time. Thus

the velocity of light is different in different media and in dispersive

media it is a function of the frequency of the vibrations on which

it depends. Consequently the determination of such constants

should be accompanied by a thorough study of all of the factors

that are likely to affect the values obtained and an exact specifica-

tion of the conditions under which the measurements are made.

Such a study frequently involves extensive investigations of the

phenomena on which the constants depend and it should be

carried out by very much the same methods that apply to the

determination of physical relations in general. On the other

hand, the exact expression of a physical relation generally involves

one or more constants that must be determined by direct or in-

direct measurements. Hence there is no sharp line of division

between the first and second groups specified above, many re-

searches belonging partly to one group and partly to the other.

The occurrence of any phenomenon is usually the result of the

coexistence of a number of more or less independent antecedents.

Its complete investigation requires an exact determination of the

relative effect of each of the contributary causes and the develop-
ment of the general relation by which their interaction is expressed.

A determination of the nature and mode of action of all of the

antecedents is the first step in this process. Since it is gen-

erally impossible to derive useful information by observing the

combined action of a number of different causal factors, it becomes

necessary to devise means by which the effects of the several

factors can be controlled in such manner that they can be studied
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separately. The success of researches of this type depends very

largely on the effectiveness of such means of control and the

accuracy with which departures from specified conditions can be

determined.

Suppose that an idea has occurred to us that a certain phenome-
non is due to the interaction of a number of different factors that

we will represent by A, B, C, . . .
,
P. This idea may involve

a more or less definite notion regarding the relative effects of the

several factors or it may comprehend only a notion that they are

connected by some functional relation. In either case we wish

to submit our idea to the test of careful research and to determine

the exact form of the functional relation if it exists.

The investigation is initiated by making a series of preliminary
observations of the phenomenon corresponding to as many vari-

ations in the values of the several factors as can be easily effected.

The nature of such observations and the precision with which they
should be made depend so much on the character of the problem
in hand that it would be impossible to give a useful general dis-

cussion of suitable methods of procedure. Sometimes roughly

quantitative, or even qualitative, observations are sufficient. In

other cases a considerable degree of precision is necessary before

definite information can be obtained. In all cases the observa-

tions should be sufficiently extensive and exact to reveal the gen-

eral nature and approximate relative magnitudes of the effects

produced by each of the factors. They should also serve to detect

the presence of factors not initially contemplated.
With the aid of the information derived from preliminary obser-

vations and from a study of such theoretical considerations as

they may suggest, means are devised for exactly controlling the

magnitude of each of the factors. Methods are then developed
for the precise measurement of these magnitudes under the con-

ditions imposed by the adopted means of control. This process

often involves a preliminary trial of several different methods

for the purpose of determining their relative availability and pre-

cision. The methods that are found to be most exact and con-

venient usually require some modification to adapt them to the

requirements of a particular problem. Sometimes it becomes

necessary to devise and test entirely new methods. During this

part of the investigation the discussions of the precision of meas-

urements given in the preceding chapters find constant applica-



196 THE THEORY OF MEASUREMENTS [ART. 88

tion and it is largely through them that the suitableness of

proposed methods is determined.

After definite methods of measurement and means of control

have been adopted and perfected to the required degree of pre-

cision, the final measurements on the factors, A, B, C, . . .
, P,

are carried out under the conditions that are found to be most

advantageous. Usually two of the factors, say A and B, are

caused to vary through as large a range of values as conditions

will permit while the other factors are maintained constant at

definite observed values. At stated intervals the progress of the

variation is arrested and corresponding values of A and B are

measured while they are kept constant. From a sufficiently

extended series of such observations it is usually possible to make
an empirical determination of the form of the functional relation

A =/i(); C,Z>, . . . ,P. constant. (i)

On the other hand, if the form of the function /i is given as a

theoretical deduction from the idea underlying the investigation,

the observations serve to test the exactness of the idea and de-

termine the magnitudes of the constants involved in the given

function. By allowing different factors to vary and making

corresponding measurements, the relations

A =/2 (C); B,D, . .
, P, constant,

A =/n (P); ,C,Z>, ., constant,

(ii)

may be empirically determined or verified. As many functions of

this type as there are pairs of factors might be determined, but

usually it is not necessary to establish more than one relation for

each factor. Generally it is convenient to determine one of the

factors as a function of each of the others as illustrated above;
but it is not necessary to do so, and sometimes the determination

of a different set of relations facilitates the investigation.

During the establishment of the relation between any two

factors all of the others are supposed to remain rigorously con-

stant. Frequently this condition cannot be exactly fulfilled with

available means of control, but the variations thus introduced

can usually be made so small that their effects can be treated as

constant errors and removed with the aid of the relations after-

wards found to exist between the factors concerned, For this
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purpose frequent observations must be made on the factors that

are supposed to remain constant during the measurement of the

two principal variables. If the variations in these factors are not

very small all of the relations determined by the principal measure-

ments will be more or less in error and must be treated as first

approximations. Usually such errors can be eliminated and the

true relations established with sufficient precision, by a series of

successive approximations. However, the weight of the final

result increases very rapidly with the effectiveness of the means of

control and it is always worth while to exercise the care necessary
to make them adequate.

When the functions involved in equations (i) and (ii), or their

equivalents in terms of other combinations of factors, have been

determined with sufficient precision, they can usually be com-
bined into a single relation, in the form

or
A=F(B,C,D, . . . ,P),

F(A,B,C,D, ,P)=0,
(iii)

which expresses the general course of the investigated phenomenon
in response to variations of the factors within the limits of the

observations. Such generalizations may be purely empirical or

they may rest partly or entirely on theoretical deductions from

well-established principles. In either case the test of their validity

lies in the exactness with which they represent observed facts.

While an exact empirical formula finds many useful applications

in practical problems it should not be assumed to express the true

physical nature of the phenomenon it represents. In fact our

understanding of any phenomenon is but scanty until we can

represent its course by a formula that gives explicit or implicit

expression to the physical principles that underlie it. Conse-

quently a research ought not to be considered complete until the

investigated phenomenon has been classified and represented by a

function that exhibits the physical relations among its factors.

(i It is scatcely necessary to point out that a complete research

as outlined above is seldom carried out by one man and that the

underlying ideas very rarely originate at the same time or in the

same person. The preliminary relations in the form of equations

(i) and (ii) are frequently inspired by independent ideas and

worked out by different men. The exact determination of any
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one of them constitutes a research that is complete so far as it

goes. The establishment of the general relation that compre-

hends all of the others and the interpretation of its physical signifi-

cance are generally the result of a process of gradual growth and

modification to which many men have contributed.

89. Graphical Methods of Reduction. After the necessary

measurements have been completed and corrected for all known

constant errors, the form of the functions appearing in equations

(i) and (ii), or other equations of similar type, and the numerical

value of the constants involved can sometimes be determined

easily and effectively by graphical methods. Such methods are

almost universally adopted for the discussion of preliminary obser-

vations and the determination of approximate values of the con-

stants. In some cases they are the only methods by which the

results of the measurements can be expressed. In some other

cases the constants can be more exactly determined by an appli-

cation of the method of least squares to be described later. Usu-

ally, however, the general form of the functions and approximate

values of the constants must first be determined by graphical

methods or otherwise.

Let x and y represent the simultaneous values of two variable

factors corresponding to specified constant values of the other

factors involved in the phenomenon under investigation. Suppose
that x has been varied by successive nearly equal steps through
as great a range as conditions permit and that the simultaneous

values x and y have been measured after each of these steps while

the factors that they represent were kept constant. If all other

factors have remained constant throughout these operations, the

above series of measurements on x and y may be applied at once

to the determination of the form and constants of the functional

relation

This expression is of the same type as equations (i.) and (ii).

Consequently the following discussion applies generally to all

cases in which there are only two variable factors. If the sup-

posedly constant factors are not strictly constant during the

measurements, the observations on x and y will not give the true

form of the function in (iv) until they have been corrected for

the effects of the variations thus introduced.
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As the first step in the graphical method of reduction, the

observations on x and y are laid off as abscissae and ordinates on

accurately squared paper, and the points determined by corre-

sponding coordinates are accurately located with a fine pointed

needle. The visibility of these points is usually increased by

drawing a small circle or other figure with its center exactly at

the indicated point. The scale of the plot should be so chosen

that the form of the curve determined by the located points is

easily recognized by eye. In order to bring out the desired rela-

tion, it is frequently necessary to adopt a different scale for ordi-

nates and abscissae. Usually it is advantageous to choose such

scales that the total variations of x and y will be represented by

approximately equal spaces. Thus, if the total variation of y is

numerically equal to about one-tenth of the corresponding vari-

ation of x, the i/'s should be plotted to a scale approximately ten

times as large as that adopted for the x's. In all cases the adopted

scales should be clearly indicated by suitable numbers placed at

equal intervals along the vertical and horizontal axes. Letters

or other abbreviations should be placed near the ends of the axes

to indicate the quantities represented.

The points thus located usually lie very nearly on a uniform

curve that represents the functional relation (iv). Consequently
the problem in hand may be solved by determining the equation

of this curve and the numerical value of the constants involved

in it. Sometimes it is impossible or inadvisable to carry out such

a determination in practice and in such cases the plotted curve

is the only available means of representing the relation between

the observed factors. In all cases the deviations of the located

points from the uniform curve represent the residuals of the

observations, and, consequently, indicate the precision of the

measurements on x and y.

The simplest case, and one that frequently occurs in practice, is

illustrated in Fig. 13. The plotted points lie very nearly on a

straight line. Consequently the functional relation (iv) takes the

linear form

y = Ax + B, (v)

where A is the tangent of the angle a between the line and the

positive direction of the x axis, and B is the intercept OP on
the y axis. For the determination of the numerical values of the
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constants A and B, the line should be sharply drawn in such a

position that the plotted points deviate from it about equally in

opposite directions, i.e., the sum of the positive deviations should

be made as nearly as possible equal to the sum of the negative

deviations. If this has been carefully and accurately done, the

constant B may be determined by a direct measurement of the

intercept OP in terms of the scale used in plotting the y's-

0.10

05

25

FIG. 13.

50 75

The constant A may be computed from measurements of the

coordinates x\ and 2/1 of any point on the line, not one of the plotted

points, by the relation

If the position of the line is such that the point P does not fall

within the limits of the plotting sheet, the coordinates, Xi, y\ and

2, 2/2, of two points on the line are measured. Since they must

satisfy equation (v),

2/i
= Axi + B,

and

2/2
= Ax2 + B.

Consequently

A = and B
X 2

The points selected for this purpose should be as widely separated
as possible in order to reduce the effect of errors of plotting and
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measurement. The accuracy of these determinations is likely to

be greatest when the vertical and horizontal scales are so chosen

that the line makes an angle of approximately forty-five degrees

with the x axis. Space may sometimes be saved and the appear-

ance of the plot improved by subtracting a constant quantity,

nearly equal to B, from each of the y's before they are plotted.

Many physical relations are not linear in form. Perhaps none

of them are strictly linear when large ranges of variation are con-

sidered. Consequently the plotted points are more likely to lie

nearly on some regular curve than on a straight line. In such

cases the form of the functional relation (iv) is sometimes sug-

gested by theoretical considerations, but frequently it must be

determined by the method of trial and error or successive approxi-

mations. For this purpose the curve representing the observa-

tions is compared with a number of curves representing known

equations. The equation of the curve that comes nearest to the

desired form is modified by altering the numerical values of its

constants until it represents the given measurements within the

accidental errors of observation. Frequently several different

equations and a number of modifications of the constants must

be tried before satisfactory agreement is obtained.

When the desired relation does not contain more than two inde-

pendent constants, it can sometimes be reduced to a linear relation

between simple functions of x and y. Thus, the equation

y = Be~Ax
, . (vi)

represented by the curve in Fig. 14, is frequently met with in

physical investigations. By inverting (vi) and introducing
'

log-

arithms, we obtain the relation

log* y = log* B - Ax.

Hence if the logarithms of the y's are laid off as ordinates against

the corresponding x's as abscissae, the located points will lie very

nearly on a straight line if the given observations satisfy the func-

tional relation (vi) . When this is the case, the constants A and

loge B may be determined by the methods developed during the

discussion of equation (v). If logarithms to the base ten are

used the above equation becomes
^|

log y = logio B -
x,



202 THE THEORY OF MEASUREMENTS [ART. 89

where M is the modulus of the natural system of logarithms. In

^
this case the plot gives the values of logio B and

-^
from which

the constants A and B can be easily computed. When the plotted

points do not lie nearer to a straight line than to any other curve,

y

10

\

\

0.5 1.0 1.5

FIG. 14.

equation (vi) does not represent the functional relation between

the observed factors and some other form must be tried. Many
of the commonly occurring forms may be treated by the above

method and the process is usually so simple that further illustra-

tion seems unnecessary.

The curve determined by plotting the x's and y's directly fre-

quently exhibits points of discontinuity or sharp bends as at p
and q in Fig. 15. Such irregularities are generally due to changes
in the state of the material under investigation. The nature- and

causes of such changes are frequently determined, or at least

suggested, by the location and character of such points. The
different branches of the curve may correspond to entirely differ-

ent equations or to equations in the same form but with different

constants. In either case the equation of each branch must be

determined separately.

The accuracy attainable by graphical methods depends very

largely on the skill of the draughtsman in choosing suitable scales

and executing the necessary operations. In many cases the errors
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due to the plot are less than the errors of observation and it would
be useless to adopt a more precise method of reduction. When
the means of control are so well devised and effective that the

constant errors left in the measurements are less than the errors

of plotting it is probably worth while to make the reductions by
the method of least squares, as explained in the following article.

y

'FiG. 15.

90. Application of the Method of Least Squares. In the

case of linear relations, expressible in the form of equation (v),

the best values of the constants A and B can be very easily deter-

mined by applying the method of least squares in the manner

explained in article fifty-one. However, as pointed out in the

preceding article, very few physical relations are strictly linear

when large variations of the involved factors are considered.

Consequently a straight line, corresponding to constants deter-

mined as above, usually represents only a small part of the course

of the investigated phenomenon. Such a line is generally a short

chord of the curve that represents the true relation and conse-

quently its direction depends on the particular range covered by
the observations from which it is derived.

When the measurements are extended over a sufficiently wide

range, the points plotted from them usually deviate from a straight

line in an approximately regular manner, as illustrated in Fig. 16,
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and lie very near to a continuous curve of slight curvature. Meas-

urements of this type can always be represented empirically by a

power series in the form

y = A + Bx + Cx* + . - -

, (vii)

the number of terms and the signs of the constants depending on

the magnitude and sign of the curvature to be represented.

FIG. 16.

Since equation (vii) is linear with respect to the constants A, B,
C, etc., they might be computed directly from the observations

on x and y by the method of least squares. Usually, however,
the computations can be simplified by introducing approximate
values of the constants A and B. Thus, let A' and B' represent
two numerical quantities so chosen that the line

y'
= A' + B'x

passes in the same general direction as the plotted points, in the

manner illustrated by the dotted line in
pig. 16. The difference

between y and y' can be put in the form

y y'
= (A A') + MI (B B'} -^ 4- M2C + . . .

(viii)MI M2

where Afi, M2 , etc., represent numerical constants so chosen that
*Y* s2

the quantities y - y', -=, etc., are nearly of the same order
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of magnitude. For the sake of convenience let

(ix)and

The quantities s, 6, c, etc., may be derived from the observations,

with the aid of the assumed constants A', B', MI, Mz , etc.; and xi,

xz ,
xS} etc., are the unknowns to be computed by the method of

least squares. After the above substitutions, equation (viii) takes

the simple form

xi + bx2 + cx3 + =
s,

which is identical with that of the observation equations (53),

article forty-nine. As many equations of this type may be formed

as there are pairs of corresponding measurements on x andj y.

The normal equations (56) may be derived from the observation

equations thus established, by the methods explained in articles

fifty and fifty-three. Their final solution for the unknowns Xi, Xz,

xsj etc., may be effected by Gauss's method, developed in article

fifty-four and illustrated in article fifty-five, or by any other con-

venient method. The corresponding numerical values of the

constants A, B, C, etc., may then be computed by equations (ix).

These values, when substituted in (vii) , give the required empirical

relation between x and y.

If a sufficient number of terms have been included in equation

(vii), the relation thus established will represent the given measure-

ments within the accidental errors of observation. The residuals,

computed by equations (54), article forty-nine, and arranged in

the order of increasing values of y, should show approximately as

many sign changes as sign follows. When this is not the case

the observed y's deviate systematically from the values given by

equation (vii) for corresponding x's. In such cases the number of

terms employed is not sufficient for the exact representation of the

observed phenomenon, and a new relation in the same general

form as the one already tested but containing more independent

constants should be determined. This process must be repeated

until such a relation is established that systematically varying

differences between observed and computed y's no longer occur.

The observation equations used as a basis for the numerical

illustration given in article fifty-five were derived from the follow-
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ing observations on the thermal expansion of petroleum by equa-

tions (viii) and (ix), taking

A' = 1000; B' = l; M l
= 10; and M2

= 1000.

X
temperature



ART. 90] RESEARCH 207

where A, B, C, etc., represent constants to be determined and y t x,

z, etc., represent corresponding values of observed factors.

Sometimes the form of the function F is given by theoretical

considerations, but more frequently it must be determined, to-

gether with the numerical values of the constants, by the method
of successive approximations. In the latter case a definite form,

suggested by the graphical representation of the observations or

by analogy with similar phenomena, is assumed tentatively as a

first approximation. Then, by substituting a number of different

corresponding observations on y, x, z, etc., in (154), as many inde-

pendent equations as there are constants in the assumed function

are established. The simultaneous solution of these equations

gives first approximations to the values of the constants A, B, C,

etc. Sometimes the solution cannot be effected directly by means
of the ordinary algebraic methods, but it can usually be accom-

plished with sufficient accuracy either by trial and error or by
some other method of approximation.

Let A', B'
', C', etc., represent approximate values of the con-

stants and let 61, 5 2 ,
5 3 , etc., represent their respective deviations

from the true values. Then

A=A' + 5 1 ;
B = B' + d2 ]

C = C' + 5 3 , etc., (155)

and (154) may be put in the form

y-F\(A' + Sd, (B' + fc), (C" + .)---- ,*,*, . - . | (x)

If the S's are so small that their squares and higher powers may
be neglected, expansion by Taylor's Theorem gives

y-F(A',B',C', . . . ,x,z, . .

dF dF , dF

,,. . .,,,..

By putting
y-F(A',B',C', . . . ,x,z, . . . )

=
;

(156)

and transposing, equation (xi) becomes

adi + 65 2 + c53 + . . .
= s. (157)

As many independent equations of this type as there are sets of

corresponding observations on y, x, z, etc., can be formed. The

absolute term s and the coefficients a, 6, c, etc., in each equation

are computed from a single set of observations by the relations
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(156) with the aid of the approximate values A', B
f

, C", etc. Since

the resulting equations are in the same form as the observation

equations (53), the normal equations (56) may be found and

solved by the methods described in Chapter VII. The values

of $1, 62 ,
53 , etc., thus obtained, when substituted in (155), give

second approximations to the values of the constants A, B, C,

etc.

The accuracy of the second approximations will depend on the

assumed form of the function F and on the magnitude of the correc-

tions Si, 6 2 ,
6 3 ,

etc. If these corrections are not small, the con-

ditions underlying equation (xi) are not fulfilled and the results

obtained by the above process may deviate widely from the correct

values of the constants; but, except in extreme cases, they are

more accurate than the first approximations A', B f

, C', etc. Let

A", B", C", etc., represent the second approximations. The

corresponding residuals, n, r2 ,
. . .

,
rn , may be computed by

substituting different sets of corresponding observations on y,

x, z, etc., successively in the equation

F(A",B",C", . . . ,x,z, . . . )-y =
r, (xii)

where the function F has the same form that was used in comput-

ing the corrections 5i, ^2, 53 ,
etc. If these residuals are of the same

order of magnitude as the accidental errors of the observations

and distributed in accordance with the laws of such errors, the

functional relation

y = F(A",B",C", . . . ,x,z, . . . ) (158)

is the most probable result that can be derived from the given
observations.

Frequently the residuals corresponding to the second approxi-

mations do not atisfy the above conditions. This may be due

to the inadequacy of the assumed form of the function F, to

insufficient precision of the approximations A", B", C", etc., or

to both of these causes.

If the form of the function is faulty, the residuals usually show

systematic and easily recognizable deviations from the distribu-

tion characteristic of accidental errors. Generally the number of

sign follows greatly exceeds the number of sign changes, when the

residuals are arranged in the order of increasing y's, and opposite

signs do not occur with nearly the same frequency. Sometimes
the nature of the fault can be determined by inspecting the order
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of sequence of the residuals or by comparing the graph correspond-

ing to equation (158) with the plotted observations. After the

form of the function F has been rectified, by the above means or

otherwise, the computations must be repeated from the beginning

and the new form must be tested in the same manner as its prede-

cessor. This process should be continued until the residuals cor-

responding to the second approximations give no evidence that

the form of the function on which they depend is faulty.

When the residuals, computed by equation (xii), do not suggest

that the assumed form of the function F is inadequate, but are

large in comparison with the probable errors of the observations,

the second approximations are not sufficiently exact. In such

cases new equations in the form of (157) are derived by using A",
B"

, C", etc., in place of A', B
f

, C', etc., in equations (156). The
solution of the equations thus formed, by the method of least

squares, gives the corrections 5/, 52 ', 53 ', etc., that must be applied

to A", B", C", etc., in order to obtain the third approximations

At tt A n I x / . T>itt ~Dir I <j
/ . r</n rut

\
* t . 4.= A -f- di ;

> = n + 62 ;
C = C + 03 ;

etc.

These operations must be repeated until the residuals correspond-

ing to the last approximations are of the same order of magnitude
as the accidental errors of the observations.

Although an algebraic expression, that represents any given
series of observations with sufficient precision, can usually be de-

rived by the foregoing methods, such a procedure is by no means

advisable in all cases. In many investigations, a graphical repre-

sentation of the results leads to quite as definite and trustworthy
conclusions as the more tedious mathematical process. Conse-

quently the latter method is usually adopted only when the former

is inapplicable or fails to utilize the full precision of the observa-

tions. In all cases the choice of suitable methods and the estab-

lishment of rational conclusions is a matter of judgment and

experience.

91. Publication. Research does not become effective as a

factor in the advancement of science until its results have been

published, or otherwise reported, in intelligible and widely acces-

sible form. It is the duty as well as the privilege of the investiga-

tor to make such report as soon as he has arrived at definite

conclusions. But nothing could be more inadvisable or untimely
than the premature publication of observations that have not been

thoroughly discussed and correlated with fundamental principles.
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Until an investigation has progressed to such a point that it makes

some definite addition to existing ideas, or gives some important

physical constant with increased precision, its publication is likely

to retard rather than stimulate the progress of science. On the

other hand, free discussion of methods and preliminary results is

an effective molder of ideas.

The form of a published report is scarcely less important than

the substance. The significance of the most brilliant ideas may
be entirely masked by faulty or inadequate expression. Hence

the investigator should strive to develop a lucid and concise style

that will present his ideas and the observations that support

them in logical sequence. Above all things he should remember

that the value of a scientific communication is measured by the

importance of the underlying ideas, not by its length.

The author's point of view, the problem he proposes to solve,

and the ideas that have guided his work should be clearly defined.

Theoretical considerations should be rigorously developed in so

far as they have direct bearing on the work in hand. But general

discussions that can be found in well-known treatises or in easily

accessible journals should be given by reference, and the formulae

derived therein assumed without further proof whenever their

rigor is not questioned. However, the author should always

explain his own interpretation of adopted formulae and point out

their significance with respect to his observations. Due weight
and credit should be given to the ideas and results of other workers

in the same or closely related fields, but lengthy descriptions of

their methods and apparatus should be avoided. Explicit refer-

ence to original sources is usually sufficient.

The methods and apparatus actually used in making the re-

ported observations, should be concisely described, with the aid

of schematic diagrams whenever possible. Well-known methods

and instruments should be described only in so far as they have

been modified to fulfill special purposes. Detailed discussion of

all of the methods and instruments that have been found to be

inadequate are generally superfluous, but the difficulties that have

been overcome should be briefly pointed out and explained. The

precautions adopted to avoid constant errors should be explicitly

stated and the processes by which unavoidable errors of this

type have been removed from the measurements should be clearly

described. The effects likely to arise from such errors should be
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considered briefly and the magnitude of applied corrections should

be stated.

Observations and the results derived from them should be

reported in such form that their significance is readily intelligible

and their precision easily ascertainable. In many cases graphical

methods of representation are the most suitable provided the

points determined by the observations are accurately located

and marked. The reproduction of a large mass of numerical data

is thus avoided without detracting from the comprehensiveness

of the report. When such methods do not exhibit the full pre-

cision of the observations or when they are inapplicable on account

of the nature of the problem in hand, the original data should be

reproduced with sufficient fullness to substantiate the conclusions

drawn from them. In such cases the significance of the obser-

vations and derived results can generally be most convincingly

brought out by a suitable tabulation of numerical data. An
estimate of the precision attained should be made whenever the

results of the investigation can -be expressed numerically.

Final conclusions should be logically drawn, explicitly stated,

and rigorously developed in their theoretical bearings. They
express a culmination of the author's ideas relative to the inves-

tigated phenomena and invite criticism of their exactness and

rationality. Unless they are amply substantiated by the obser-

vations and theoretical considerations brought forward in their

support, and constitute a real addition to scientific knowledge,

they are likely to receive scant recognition.



TABLES.

The following tables contain formulae and numerical data that

will be found useful to the student in applying the principles

developed in the preceding chapters. The four figure numerical

tables are amply sufficient for the computation of errors, but more
extensive tables should be used in computing indirectly measured

magnitudes whenever the precision of the observations warrants

the use of more than four significant figures.

The references placed under some of the tables indicate the

texts from which they were adapted.

TABLE I. DIMENSIONS OF UNITS.

Units.
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TABLE II. CONVERSION FACTORS.

Length Units.

Logarithm.

1 centimeter (cm.) _
= 0. 393700 inch 1 . 5951654

"
"

= 0. 0328083 foot 2. 5159842
" = 0. 0109361 yard 2. 0388629

1 meter (m.) = 1000 millimeters 3. 0000000
" = 100 centimeters 2. 0000000
" = 10 decimeters. 1.0000000

1 kilometer (km.) = 1000 meters 3. 0000000
= 0. 621370 mile 1. 7933503

" = 3280. 83 feet 3. 5159842

1 inch (in.)
= 2. 540005 centimeters 0. 4048346

1 foot (ft.) =12 inches 1.0791812
= 30. 4801 centimeters 1 . 4840158

1 yard (yd.)
= 36 inches 1. 5563025

" =3 feet 0. 4771213
" = 91.4402 centimeters 1.9611371

1 mile (ml.) = 5280 feet 3 . 7226339
" = 1760 yards 3. 2455127

= 1609. 35 meters 3.2066497
= 0.868392 knot (U. S.) 1.9387157

Mass Units.

1 gram (g.)
= 1000 milligrams 3. 0000000

" = 100 centigrams 2. 0000000
" = 10 decigrams 1. 0000000

= 0.0352740 ounce (av.) 2.5474542
" = 0. 00220462 pound (av.) 3. 3433342

= 0. 000068486 slugg 5. 8355997

1 kilogram (kg.)
= 1000 grams 3. 0000000

1 ounce (oz.) (av.) = 28. 3495 grams 1. 4525458
= 0. 062500 pound (av.) 2. 7958800

" =0.0019415 slugg 3.2881455

1 pound (Ib.) (av.) = 16 ounces (av.) 1.2041200
" = 453. 5924277 grams 2. 6566658

= 0.0310646 slugg 2.4922655

1 slugg (sg.)
= 32. 191 pounds (av.) 1. 5077345

= 515.06 ounces (av.) 2.7118545

= 14601. 6 grams 4. 1644003

1 short ton (tn.)
= 2000 pounds (av.) 3. 3010300

= 907. 185 kilograms 2. 9576958
" =62. 129 sluggs 1 . 7932955
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TABLE II. CONVERSION FACTORS (Concluded}.

Force Units.

The following gravitational units are expressed in terms of the earth's

attraction at London where the acceleration due to gravity is 32.191 ft./sec.
2

or 981.19 cm./sec Logarithm.

1 dyne = 1 . 01917 milligram's wt 0. 0082469
" = 0. 00101917 gram's wt 3 . 0082469
" =2.2469 X 10-6

pound's wt 6.3515811

1 gram's wt. = 981.19 dynes 2. 9917531

1 kilogram's wt. = 1000 gram's wt 3. 0000000
= 98. 119 X 104

dynes 5.9917531
= 2.20462 pound's wt 0. 3433342

1 pound's wt. =0. 45359 kilogram's wt 1 . 6566658
= 44.506 X 104

dynes 5.6484189

1 pound's wt. (local)
= 0/32.191 pound's wt. at London.

g = local acceleration due to gravity in ft./secT
2

.

Mean Solar Time Units.

1 second (s.)
= 0. 016667 minute 2. 2218487

" = 0. 00027778 hour 4. 4436975
= 0.000011574 day 5.0634863

1 minute (m.) = 60 seconds 1 . 7781513
" =0.016667 hour 2.2218487

= 0.00069444 day 4.8416375

1 hour (h.)
= 3600 seconds 3. 5563025
= 60 minutes 1. 7781513

" = 0. 041667 day 2. 6197888
1 day (d.)

= 86400 seconds 4. 9365137
= 1440 minutes 3. 1583625

" =24 hours 1.3802112
1 mean solar unit = 1 . 00273791 sidereal units 0. 0011874

Angle Units.

1 circumference = 360 degrees 2. 5563025
= 2 TT radians 0. 7981799

" = 6.28319 radians 0. 7981799
1 degree () = 0. 017453 radian 2. 2418774

= 60 minutes 1. 7781513
= 3600 seconds 3. 5563025

1 minute (') =2. 9089 X 10-4 radians 4 . 4637261
= 0.016667 degree 2.2218487
= 60 seconds 1. 7781513

1 second (')
= 4.8481 X KH5 radians 6 . 6855749
= 2. 7778 X 10-4

degrees 4. 4436975
= 0. 01667 minute 2. 2218487

1 radian = 57.29578 degrees 1. 7581226
= 3437.7468 minutes 3. 5362739
= 206264.8 seconds . . 5. 3144251
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TABLE III. TRIGONOMETRICAL RELATIONS.

a3
. a5

t <t\,sma = a 777 +T? (!)
(2n-l)!

cos2 a = 1 cos 2 a
2 cosec a

_ . ce a cos a tan a= 2 sin ^ cos tr
2 2 cot a sec a

tan a 1 - = cos a tan a
Vl+tan2 a VI + cot2 a

= sin /3 cos (|8 a) cos /3 sin (/3 a)

= cos /3 sin (0 + a) sin /8 cos (/3 + a).

l/la =y
cos a
2~~

2 tan a
sin 2 a = 2 sin a cos a =

.,

1 + tan2
a.

sin2 a = 1 cos2 a = \ (cos 2 a 1).

sin (a j8)
= sin a cos cos a sin 0.

sin a =fc sin /3
= 2 sin (a d= /8) cos |( =F 0).

sin2 a + sin2
/3
= 1 cos (a + /3) cos (a /8).

sin2 a sin2 = cos2
/3 cos2 a = sin (a + 0) sin (a /8).

V 1 + sin a = sin | a + cos a.

VI sin a = (sin | a cos \ a).

cos

cos2 i a sin2 | a

cot a

V 1 + tan2 a V 1 + cot2 a

sin a cot a 1

= sin a cot a

COS ^ a =

tan o; cosec a sec a

= cos cos (a + /8) + sin sin (a + 0)

= cos /? cos ((8
-

a) + sin ft sin (0 a).

1 + cos a
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TABLE III. TRIGONOMETRICAL RELATIONS (Continued).

cos 2 a = 2 cos2 a 1 = 1 2 sin2 a

1 - tan2 a= cos2 a sm2
a. = ^

1 + tan2 a

cos2
a. = 1 - sin2 a = (cos 2 a + 1).

cos (a d= 0) = cos a cos T sin a sin 0.

cos a + cos = 2 cos 5 (a + 0) cos H 0)-

cos a cos = 2 sin (a -f 0) sin | (a 0) .

cos2 a + cos2 = 1 + cos (a + 0) cos (a
-

0).

cos2 a cos2 = sin2 sin2 a = sin (a + 0) sin (a 0).

cos2 a sin2 = cos (a + 0) cos (a 0) = cos2 sin2 a.

sin a + cos a = V 1 + sin 2 a.

sin a cos a = Vi sin 2 a.

sin2 a + cos2
a. = 1.

sin2 a cos2
a: = cos 2 or.

tan a = a + | a3 + -

r
2
5 CK

5 + 3^5 a7 + . . . w> a> TT

sin a. sin 2 a 1 cos 2

cos a 1 + cos 2 a sin 2 a

V'l
cos 2 a _ 4 /

1+ cos 2 a
" V cos2 a VI sin2 a

= Vsec2 a I

tan 2 a =

cosec a: Vcosec2 a-l

= cot a 2 cot 2 a
cot a

sin (a + 0) + sin ( 0) _ cos (a 0) cos (a + 0)

cos (a + 0) + cos (a 0) sin (a + 0)
- sin (a

-
0)

2 tan a 2 cot a 2

1 tan2 a cot2 a 1 cot a tan a

tan f a. = -
;

- = cosec a cot or.

1 + sec a

( . R\
tan a tan _ cos 2 cos 2 a

*W *
1 T tan a tan

~
sin 2 =F sin 2 a

sin (a 0)
tan a tan =

cos a cos
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TABLE III. TRIGONOMETRICAL RELATIONS (Concluded).

Ill 2
cot a. = -- - a j= a

3
^r-= a

5
TT > a > IT

a: 3 45 olo

cos a _ sin 2 a _ 1 + cos 2 a
sin a

~~

1 cos 2 a
"~

sin 2 a

V/
1 + cos 2 o: _ cos a vl sin2 a
1 cos 2 a Vl cos2 a

= tan a. + 2 cot 2 a.
tan a.

_ 1 tan2
a. _ cot2 a 1 cot a tan a

"

2 tan a 2cota ~^~

cot - a =
(1 + sec a) cot a

2<-.
v j.

|
kjv/v; <-*. y vv/u c*. :

cosec a cot a

1 =F tan a tan /? cot cot =F 1
cot (a d= 0) =

tan a tan cot d= cot a

sin

TABLE IV. SERIES.

Taylor's Theorem.

/(*+&)=/(*) + AT (*) + ^/" (*)+;+ ^/W (x) +

f(x + h, y + k,

where u = f (x, y, z).

Maclaurin's Series.

/(0) + f /' (0) + !/" (0) + + fj/N (0).
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TABLE IV. SERIES (Concluded}.

Binomial Theorem.

= xm +
rn

x^ly +m(n^ xm_^ +

. . .
,

* (m - 1) . . . (m - n + 1) ^-y>

when m is a positive integer, also when m is negative or fractional and
x > y. When x < y and m is fractional or negative the series must be

taken in the form

(x + y)
m = y

m + j y
m-*x+

v

^
*'

y*-'z +
m (m - 1) . . . (m - n + 1)

n!

Fourier's Series.

j- / \ It it ""E
i t 2 7TX , 3 7TX .

/ (x)
= - 6 + &i cos H &2 cos - + 6 3 cos H

C C C

. TTX . . 2irX . . STTX
,+ 01 sin \- a 2 sin h a3 sin f-

c c c

where
1 r+ c

,/ v WTTX .

>m = ~
I / (*) COS - dx,

C / c t/

1 f+c r/ v . m-n-x ,

m = -
\ f(x) sm dx,

C / c ^

2 /
c

, , , . WTTX ,= -
I / W sin- "

C /o C

provided / (x) is single valued, uniform, and continuous, and c > x >
c. For values of x lying between zero and c the function may be ex-

panded in the form

, / x . TTX . . 2-JTX . . 3 TTX
,

f (x)
=

0,1 sin --\-a-i sin--H a 3 sin ---(- ,

where a

Also f(x) =^60 + 61 cosy 4-6 2 cos + 6 3 cos

2 r c
- / x WTTX ,

where bm = -
I / (x) cos- ax.

C JQ C

General Series.

xloga (x log a)
2

(x log a)
3

(x log a)
n~~ ~~ ~~ ~

.- :>}
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TABLE V. DERIVATIVES.

U, F, W any functions; a, 6, c constants.

dx

F2

S :***St^T?

axx

a , loga e.
_loga x= ,

dU

a . i at;_
logaC7 .= __

V dx

= ax log a.

dx

d

dx
(

a

dx

sm x = cos x.
ax

. r , .sm aC7 = a cos ac7 ^ ,

ax ax

a l
tan x = r = sec2 x:

ax cos2 x

cos x = sm x.
ax

a -i
cot x = . ,

= cosec2 x.
ax sin2 x

sec x = tan x sec x;
oX

cosec x = cot x cosec x.
ax

log sinx = cotx; log cos x = tan x.
ox

The following expressions for the derivatives of inverse functions hold

for angles in the first and third quadrants. For angles in the second and

fourth quadrants the signs should be reversed.

ax

tan- 1 x = =
ax i

.

T- cos- 1 x =
dx

i
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TABLE VI. SOLUTION OF EQUATIONS.

The following algebraic expressions for the roots of equations of the

second, third, and fourth degrees are in the form given by Merriman.

(Merriman and Woodward, "Higher Mathematics"; Wiley and Sons,

1896.)
The Quadratic Equation.

Reduce to the form
x2

Then the two roots are

x\ = a + a? 6; z2
= a Va2 b

The Cubic Equation.
Reduce to the form

= 0.

Compute the following auxiliary quantities :

B = - a2 + 6; C = a3 -
f ab + c;

Then the three roots are

xi=-a + (si + s2), _
xz =-a -Mi+s2) +| V-_3(Sl -s2),

x3
= - a - HSI + s2)

-
| V- 3 (si

- s a).

When B3 + C2
is negative the roots are all real but they cannot be de-

termined numerically by the above formulae owing to the complex nature

of si and s 2 . In such cases the numerical values of the roots can be deter-

mined only by some method of approximation.

The Quartic Equation.
Reduce to the form

z4 + 4az3 + 66z2 + 4cz + d = 0.

Compute the following auxiliary quantities :

g = a*-b; h = 63 + c2 -2abc + dg; fc = |ac - 62 - |d;

I = I (h + V^TF')* + 1 (h
- VF+^)*;

u = g + l',
v = 2g-l; w = 4u* + 3k - 12gl.

Then the four roots are

xi = a + ^u + Vy +

a u

in which the signs are to be used as written provided that 2 a3 3 ab + c

is a negative number; but if this is positive all radicals except Vw are to

be changed in sign.

The above expressions are irreducible when hz + k* is a negative number.
In this case the given equation has either four imaginary roots or four real

roots that can be determined numerically only by some method of approxi-
mation.
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TABLE VII. APPROXIMATE FORMULA.

In the following formulae, a, /3, 5, etc., represent quantities so small that

their squares, higher powers, and products are negligible in comparison with

unity. The limit of negligibility depends on the particular problem in

hand. Most of the formulae give results within one part in one million

when the variables are equal to or less than 0.001.

1. (l+a)n=l+n; (1 -a)n = 1 - na.

4.

6
l = 1 --'

,

l = 1 +-'

Vl+ n' Vl -a n

7.

9. (x + a

When the angle a, expressed in radians, is small in comparison with unity

a first approximation gives

10. sin a =
a', sin (x a) = sin x a cos x.

11. cos a =
1; cos (x a) = cos x =F a sin x.

12. tan a = a] tan (x d= a) = tana; ^

The second approximation gives

13. sin a = a -TT ;
sin2 a = a2 1 ^r-

o \ o

a2

14. cos a = 1
-5- ;

COS2 a = 1 a2
.

3 / o \
15. tana = a +

^-|
tan2 a = a2

( 1 +
^
a2 V

(Kohlrausch, "Praktische Physik.")
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TABLE VIII. NUMERICAL CONSTANTS.

Logarithm .

Base of Naperian logarithms: e = 2. 7182818 ........ 0. 4342945

Modulus of Naperian log.: M =^ = 2.30259 ........... 0.3622157

Modulus of common log.:
= log e = 0. 4342945 ......... 1. 6377843

Circumference
,.. 14159265 . 0. 4971499

Diameter

2?r = 6.28318530 .............. 0.7981799

- =0.3183099 . 1.5028501
7T

Tr
2 = 9.8696044 . . ............. 0.9942998

V^ = 1.7724539 ............... 0.2485749

|
= 0.7853982 ............... 1.8950899

5 =0.5235988 . 1.7189986
o

w = Precision constant; k = Unit error; A = Average error;

M = Mean error; E = Probable error.

4p
= 0.31831 ................. 1.5028501

^ = 0.39894 ................. 1.6009101

^ = 0.26908 ................. 1.4298888

^ = 1.25331 ................. 0.0980600
A.

f = 0.84535 ................. 1.9270387
A.

= 0.67449 ................. 1.8289787
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TABLE IX. EXPONENTIAL FUNCTIONS.

X



224 THE THEORY OF MEASUREMENTS

TABLE X. EXPONENTIAL FUNCTIONS.

Value of e
x<t and erx<i and their logarithms.

X
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TABLE XI. VALUES OF THE PROBABILITY INTEGRAL.

t
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TABLE XII. VALUES OF THE PROBABILITY INTEGRAL.

3
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TABLE XTV. FOR COMPUTING PROBABLE ERRORS BY FORMULA
(31) AND (32).

AT
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TABLE XV. FOR COMPUTING PROBABLE ERRORS BY FORMULAE (34).

N



TABLES 229

TABLE XVI. SQUARES OP NUMBERS.

n
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TABLE XVI. SQUARES OF NUMBERS (Concluded).

n
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TABLE XVII. LOGARITHMS; 1000 TO 1409.

231
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* TABLE XVIII. LOGARITHMS.
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TABLE XVIII. LOGARITHMS (Concluded).
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* TABLE XIX. NATURAL SINES.
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TABLE XIX. NATURAL SINES (Concluded).

235
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* TABLE XX. NATURAL COSINES.
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TABLE XX. NATURAL COSINES (Concluded).
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TABLE XXI. NATURAL TANGENTS.
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TABLE XXI. NATURAL TANGENTS (Concluded).
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* TABLE XXII. NATURAL COTANGENTS.
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TABLE XXII. NATURAL COTANGENTS (Concluded).
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TABLE XXIII. RADIAN MEASURE.
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TABLE XXIII. RADIAN MEASURE (Concluded).

243





INDEX.

A.

Absolute measurements, 5.

Accidental errors, axioms of, 29.

errors, criteria of, 121.

errors, definition of, 26

errors, law of, 29, 35.

Adjusted effects, 149.

Adjustment of the angles about a

point, 81.

of the angles of a plane triangle, 93.

of instruments, 15, 183.

of measurements, 21, 42, 63, 72.

Applications of the method of least

squares, 203.

Arithmetical mean, characteristic

errors of, 51.

mean, principle of, 29.

mean, properties of, 42.

Average error, defined, 44.

Axioms of accidental errors, 29.

B.

Best magnitudes for components,
fundamental principles, 165.

general solutions, 167.

practical examples, 173.

special cases, 170.

C.

Characteristic errors, defined, 44.

errors, computation of, 53, 57, 66,

71, 99, 101, 112, 114.

errors of the arithmetical mean, 51.

errors, relations between, 49.

Chauvenet's criterion, 127.

Computation checks for normal equa-

tions, 83.

Conditioned measurements, 17.

quantities, determination of, 92.

Constant errors, elimination of, 117.

errors, defined, 23.

Conversion factor, defined, 3.

factor, determination of, 8.

Correction factors, defined, 131.

Criteria of accidental errors, 121.

Criticism of published results, proper
basis for, 117.

Curves, use of, in reducing observa-

tions, 198.

D.

Dependent measurements, 17.

Derived measurements, defined, 12.

measurements, precision of, 135.

quantities, defined, 95.

quantities, errors of, 99.

units, 4.

Dimensions of units, 5.

Direct measurements, defined, 11.

measurements, precision of, 130.

Discussion of completed observa-

tions, 117.

of proposed measurements, general

problem, 145.

of proposed measurements, prelim-

inary considerations, 144.

of proposed measurements, primary

condition, 146.

E.

Effective sensitiveness of instru-

ments, 183.

Equal effects, principle of, 147.

Equations, observation, 74.

normal, 75.

Error, average, 44.

fractional, 101.

mean, 46.

probable, 47.

245
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Error, Continued.

unit, 31.

weighted, 67.

Errors, accidental, 26.

characteristic, 44.

constant, 23.

definition of, 18.

of adjusted measurements, 105.

of derived quantities, 99.

of multiples of a measured quan-

tity, 98.

of the algebraic sum of a number

of terms, 95.

of the product of a number of

factors, 102.

percentage, 104.

personal, 25.

propagation of, 95.

systematic, 118.

systems of, 33.

Examples, see Numerical examples.

F.

Fractional error, defined, 101.

error of the product of a number

of factors, 102.

Free components, 169.

Functional relations, determination

of, 15, 195, 198, 203.

Fundamental units, 4.

G.

Gauss's method for the solution of

normal equations, 84.

General mean, 63.

principles, 1.

Graphical methods of reduction, 198.

I.

Independent measurements, 17.

Indirect measurements, 11.

Intrinsic sensitiveness of instru-

ments, 183.

Law of accidental errors, 29, 35.

Laws of science, 2.

Least squares, method of, 72.

M.

Mathematical constants, use of, in

computations, 153.

Mean error, defined, 46.

Measurement, defined, 2.

Measurements, absolute, 5.

adjustment of, 21, 42, 63, 72.

derived, 12.

direct, 11.

discussion of, 117, 144.

independent, dependent, and con-

ditioned, 17.

indirect, 11.

precision of, 19, 130, 135.

weights of, 61.

Method of least squares, applica-

tions of, 203.

of least squares, fundamental prin-

ciples of, 72.

Mistakes, 26.

N.

Negligible components, 154.

effects, 151.

Normal equations, computation
checks for, 83.

equations, derivation of, 75.

equations, solution by determi-

nants, 114.

equations, solution by Gauss's

method, 84.

equations, solutions by indetermi-

nate multipliers, 105.

equations, solution with two in-

dependent variables, 78.

Numeric, defined, 2.

Numerical examples:

Adjustment of angles about a point,

81.

Adjustment of angles of a plane

triangle, 93.

Application of Chauvenet's crite-

rion, 129.

Best magnitudes for components,

173, 175, 180.

Characteristic errors of direct

measurements, 56, 70.
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Numerical examples Continued.

Coefficient of linear expansion, 78.

Discussion of proposed measure-

ment, 157.

Effective sensitiveness of potenti-

ometer, 190.

Errors of a derived quantity, 101.

Fractional errors, 101.

Precision of completed measure-

ment, 140.

Probable errors of adjusted meas-

urements, 113, 115.

Probable error of general mean, 69.

Propagation of errors, 101.

Solution of normal equations by
Gauss's method, 88.

Weighted direct measurement, 69.

O.

Observation, denned, 15.

equations, 74.

standard, 62.

Observations, record of, 16.

report of, 211.

representation of, by curves, 198.

P.

Percentage errors, 104.

Personal equation, 26.

errors, 25.

Physical tables, use of, 138.

Precision constant, 35.

Precision of derived measurements,
135.

of direct measurements, 130.

of measurement, denned, 19.

Precision measure, denned, 132.

Preliminary considerations for select-

ing methods of measurement,
144.

Primary condition, 146.

Principle of the arithmetical mean,
29.

of equal effects, 147.

Probability curve, 32.

function, 34.

Probability curve Continued.

function, comparison with experi-

ence, 40.

integral, 37.

of large residuals, 124.

of residuals, 30.

principles of, 28.

Probable error, denned, 47.

error of adjusted measurements,

111, 112, 116.

error of the arithmetical mean, 53.

error of direct measurements, com-

putation of, 54, 55, 57.

error of the general mean, 66, 68.

error of a single observation, 54,

68, 108.

error of a standard observation, 62.

Propagation of errors, 95.

Publication, 209.

R.

Research, fundamental principles,

192.

general methods, 193.

Residuals, defined, 27.

distribution of, 29.

probability of, 30, 124.

S.

Sensitiveness of methods and instru-

ments, 183.

Separate effects of errors, 133, 135.

Setting of instruments, 15.

Sign-changes, defined, 123.

Sign-follows, defined, 123.

Significant figures, use of, 19, 58.

Slugg, defined, 9.

Special functions, treatment of, 155.

Standard observation, defined, 62.

Systematic errors, defined, 118.

Systems of errors, 33.

of units, 7.

T.

Tables, list of, ix.

Transformation of units, 8.

Treatment of special functions, 155.
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U. W.

Unit error, 31. Weighted errors, 67.

Units, c.g.s. system, 7. mean, 63.

dimensions of, 5. Weights of adjusted measurements,

engineer's system, 7. 105, 112, 114.

fundamental and derived, 4. of direct measurements, 61.

systems in general use, 7.

transformation of, 8.

Use of physical tables, 138.

significant figures, 19, 58.
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