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PREFACE.

IN a science that has existed from the time of

Archimedes, and occupied the attention of the

most celebrated Mathematicians of many cen-

turies, much new matter cannot be expected.

Little more now remains to be done than to

collect, arrange, and simplify the results already

obtained; this therefore is the task I proposed
to myself, in undertaking the preparation of

the following treatise on Statics.

That a treatise was necessary, which should

present the subject under one continuous chain

of reasoning, with a uniform system of nota-

tion, and having its several parts dependent on

the same first principles and definitions, will

not I think be denied. In what degree, how-

ever, the present \vill supply the \\ant of such

a, treatise, must now be left to the public to

rmine.

The Jir-t chapter commence- uith MHIIC ^
i.il notions of mech.mieal force. I luac pur-
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posely avoided setting forth any abstract ideas

of its nature ; inasmuch as such considerations,

so far from throwing light on the subject, do

generally involve us in the greater darkness

the further we pursue them.

It appeared to me, that while we are igno-

rant of motion, we must of necessity remain

also ignorant of the existence of force ; and

as the idea of matter does not include in it

the idea of motion, we infer that motion is

not an essential, but a consequential state of

matter ; for it can scarcely be imagined how

matter can pass into a certain state, which is

not essential to its existence, without the agency
of an independent cause. Wherefore, without

further inquiry into the nature of this cause,

I have denominated it Force ; and as motion is

the most simple, natural, and general evidence

our senses can receive of the existence of force;

and seeing, moreover, that we have originally

(that is to say, independently of subsequent
deductions of reason) no other test of its ac-

tion, I have not scrupled to take motion as

the measure of its intensity in Statics, as well

as in Dynamics.
I am aware that the introduction of motion

as a necessary fundamental idea in a treatise

on Statics, (the science of Rest), does, in a cer-

tain degree, appear absurd, and has accordingly



been reprobated by some writers ; but, notwith-

standing all that has been said upon the dis-

tinction between Statical and Dynamical force,

it does not appear that any real difference in

the nature of the two forces has ever been

clearly made out ; the only difference established

having reference rather to the state of the body
acted upon, or of that in which the force resides,

than to the forces themselves. No one, I believe,

will question the correctness of the two following-

fundamental principles :

1st. We know nothing of force but what we

learn from its effects.

2ndly. Force is that which produces, or tends

to produce motion.

Now the latter virtually confesses that motion

is the only natural and uninfluenced effect of

force; and, therefore, we infer from the former,

that motion is the only natural and uninflu-

enced means we can have of discovering the

properties of force. Upon these grounds, as

well as the considerations before mentioned,

that there is no difference in the natur

Dynamical and Statical force; I have (Art. .">)

taken the direction in which a free particle

Ifl to move \\hen acted on by a 1

the direction in which the force acts; and

have used the quantity of motion produced
in a uixcn time a

|
the measure of il I Intel

h
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It this measure be found inconvenient in prac-

a more convenient method of measuring

i'S must be investigated, but we cannot assume

weight as such a measure, because such an

assumption supposes us to be acquainted with

the nature of the force of gravity, when, at the

sank- time, \M' are supposed altogether ignorant

of every force.

In Art. 24, the reader will find a new demon-

stration of the fundamental proposition of the

science, the composition of two equal forces

acting at a point. It does not require a know-

ledge of Mathematics beyond the most simple
elements of Algebra, and Plane Trigonometry ;

this simplicity of principle, it is hoped, will,

when the importance of the proposition is con-

sidered, be deemed a sufficient apology for its

length: for it does not appear, that brevity

has ever yet been attained in it, without a vio-

lation of that degree of simplicity, which ought
to be accounted superior to all other considera-

tions, in establishing a proposition which is the

basis of a science, and of the truth of which

a clear perception is therefore absolutely neces-

sary for securing a proper conviction of the

truth of the numerous propositions which rest

upon it.

Many writers on Statics commence with the

consideration of the lever, and take certain
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experimental results* respecting its equilibrium

as the fundamental principles of the science.

This method, though allowable, on account of

its great simplicity, when the science was in

its infancy, ought not now to be adopted, when,

as is agreed upon by all, the science has at-

tained a very considerable degree of maturity.

In such a system of Statics, the composition of

forces acting at a point is usually deduced from

the conditions of equilibrium of two forces acting

on the bent lever, which have been previously

deduced from the straight lever, by introducing

the principle of the transmissibility of force.

Now it is manifest, that* when forces act at a

point, no transmission can take place ; and,

consequently, the composition and resolution of

forces would remain unaltered, if the principle

of transmission were not true; wherefore, in

establishing the composition of force by the

lever, or by any other method involving the

Among these, we find it stated as an axiom,

two equal weights hanging perpendicularly from the extremities of

the equal arms of a straight lever, will be in equilibrium.

1 am of opinion, however, that this ought to be deduced from the

nature of force. It is, I suppose, considered as an axiom, that the equal

will halanee fr>m the similarity of circumstances under which they

<-ir influence. Hut this is the kind of rea^onin^ \s liich in HobervaJ's

Balance (page 274) would lead us int.. to he

upon with suspicion. I helic\e it DM] 'i,if thr

action of force on no gr i than a single particle OUgtot
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transmission of force, we introduce a super-

fluous principle, and thereby make it depend

upon experiments foreign to the subject, when

in fact it ought to follow from the definition of

force, and be independent of all experiments,

whose sole object is not limited to the illustra-

tion of the nature of force itself: and, therefore,

every demonstration of it, which professes to

be grounded on philosophic principles, and the

rules of strict and logical reasoning, ought not

to involve the transmission of force either di-

rectly or by implication.

In the second chapter the law of the trans-

mission of force is proved by a simple and

obvious experiment, and its effect in reducing
two very extensive classes of forces to the

formulae of Chapter I, is pointed out in Arts.

44, 45. I have thought it necessary to insist

upon the impossibility of establishing this prin-

ciple by theory, because several authors have

attempted to do so. Of attempts of this kind,

those which depend upon removing successively

different portions of the rigid body, until it is

reduced to a straight line, are evidently not at

all to the purpose, since they take for granted
that these portions may be removed without

prejudicing the effect, which is precisely the

property to be proved. The demonstration given

by Poinsot (Elemens de Statique, No. 13, page 16,
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.3i< -me edition,) also begs the question. His

words are " Mais en considerant la force P

(appliquee en A) et son egale et contraire P'

appliquee en B, il est vtanifeste que leur effet cst

aussl mil. On peut done les supprimer, . . . .

"

The property which is here said to be manifest is

that which the demonstration was designed to

prove.

It will not, I think, be said, that I have laid

too great stress upon this point, when it is con-

sidered that there is scarcely a single property of

forces acting on a rigid body which can be de-

monstrated without introducing the principle in

question ; and, indeed, it is of such importance,

that were it not for the single exception of a very

remarkable class of forces denominated couples,

all forces whatever acting on a rigid body might
at once be reduced by its means to others acting

at it point. With respect to the last mentioned

class of forces, considerable care has been taken

clearly to point out their origin, and to shew

that their separate treatment is not so much
a matter of convenience as of necessity. In

the enunciations and demonstrations of their

properties I have, for the preservation of unifor-

mity, frequently deviated considerably from their

admirable inventor Poinsot.

The fourth chapter contains a completely new

demonstration of the important principle of Vir-
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tual Velocities. The proof given by Lagrange

(Mecanique Analytique, page 22, et seq.) in

which the forces are replaced by systems of

p ul lies, has of all others obtained the greatest

celebrity ; but is, I think, liable to two fatal

objections.

First. In the sentence (page 24 ibid)
" car

le poids tendant toujours a descendre s'il y a

un deplacement du systeme qui lui permette

de descendre, il descendra necessairement et pro-

duira ce deplacement dans le systeme," (which

is the point d'appui of the demonstration, and

which Lagrange seems, from the manner in

which he states it, to think very evident) the

principle to be proved is indirectly taken for

granted.

Second. After the systems of pullies have

been adjusted, and when a displacement of the

body is being caused, it ought to be taken into

account, that, as the intensities of the original

forces depended upon the positions of the points

at which they acted, they would be changed

simultaneously with the position of the body,

so that it is impossible for any displacement

(no matter how small) to take place without

causing an alteration of the original forces ;

and, consequently, as these forces are to be

represented by the systems of pullies, a si-

multaneous change of systems of pullies ought
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also to be continually taking place, so long

as the displacement of the body is being

effected. If this objection be valid, no reason-

ing respecting either the ascent or descent of
"

le poids
"

can be instituted ; and, therefore,

the demonstration will become invalid. It will

be no answer to this objection to say that the

displacement is indefinitely small, for if there

be a displacement at all, however small it may
be, there will be a change of the forces, and

consequently there must be a change of pullies.

It has been my aim, that each chapter should,

as far as was possible, present one continuous

chain of reasoning ; and with the view of pre-

serving this chain unbroken, I have thrown all

the Problems into the last chapter ; and have

there also presented such other considerations and

applications of theory, as could not well be intro-

duced into their proper places without drawing
the student's attention too far aside from the main

object of the chapter to which they belong.

I have to apologize to the reader for using
two systems of Differential Notation. I was

induced to do so from a conviction that both

have their peculiar advantages, and are equally

good in principle. If it be recollected, that in

functions of one variable, _^,
9

, . . . in
ax ax

one system are represented by r/y, ds .... in the

other, no i^reat inconvenience can ari^c from it.
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Though it was no part of my design, in

compiling the present treatise, to enter into

the lengthened details of practical Mechanics,

yet I have been anxious so far to give it a

practical bias as should make the student ac-

quainted with the imperfections and deficiencies

of theory, and the difficulties to be expected
in applying it to practice ; and in several in-

stances (which may serve as precedents for

other cases), I have shewn how, by proper

experiments, such an extension of the theory

is effected as enables us to overcome several

of the most important of these impediments.

ST. JOHN'S COLLEGE, CAMBRIDGE,

January 14th, 1S31-.
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STATICS.

CHAPTER I.

IMINARV NOTIONS, AND ON FORCES ACTING <>\ N

SINGLE PARTICLE OF MATTER.

1. THE least conceivable portion of matter is railed a

/'urficle. The position of a particle can be determined

by referring it to other bodies which are supposed to

be fixed. If by this or any other method, the position

be found to be different at successive instants of time, the

particle is said to be in Motion: but so long as the position

remains the same, the particle is at Rest.

2. The principal properties of matter which we assume

in the present Science are //tftcfirify, Mobility, K.rti'?mion,

re; am! fapcnetrab&ity.

3. We conceive of matter, that it ran exist in a state of

<|iiiexccnce; or, in other words, that motion is not essential

to its existence: and hence it would seem, that matter once

at re i po-slNy j>a-- into a state of motion without

tkm of an external Rgglt of s,me kind >r other.

B



This agent, whatsoever its nature or essence may be, is

known to us by its effects only, and is called force.

4. A force may be considered as sufficiently determined

when we know its
Intensity, Direction , and Point of ap-

plication, that is, the point at which it immediately acts.

For when these are known, the effects, with which alone we

are concerned, can under any given circumstances be calcu-

lated ; and to calculate these is the general object of the

Science of MECHANICS. That part of Mechanics which

relates to bodies at rest is called STATICS ;
the name

DYNAMICS is given to the other part.

5. Since whatever we know of Force is gathered solely

from its effects, the terms Intensity and Direction of a

force, are to be interpreted solely of the unmodified effect

which the force is known to produce upon an unimpeded

particle of matter in free space. This principle is usually

presented under the following form :

1 st. A force produces motion in the direction in which

it acts.

2ndly. The intensity, or, as it is generally called, the

magnitude of a force is measured by the quantity of motion

produced in a given time.

6. A force may be very conveniently represented in

every respect by a straight line drawn from the point of

application, in the direction of the force, and of a length

proportional to the intensity.

.

7. The size or bulk of a body is called its Volume, and

the quantity of matter it contains is called its Mass.

8. By experience we know, that the matter of which

most bodies consist, can be compressed or squeezed into



ce; from which it appears that some bodies, are

composed of more compact matter than others: and, cui

quently, though two bodies may he of exactly t! !/e.

yet they may contain very unequal quantities of matter.

A known body, composed of matter uniformly diffus-

ed through all its parts, is taken as a standard to which all

others are referred. Its volume is culled the unit of volume,

and its quantity of matter, the unit of mass. If a body hi-

V times the size, and contain M times the quantity of

matter: V and M are taken as the measures of the volume

and mass of the second body. Also, supposing the matter

of the second body to be uniformly diffused through all it-

parts, if a portion of it, oi' the same si/o as the standard

Ixxly, contain
ft

times as much matter, p is willed the den-

>f the second body ;
and it is evident that

M = PV.

10. It' M-veral forces act simultaneously on a particle

previously at rest, they will either put it in motion, or it

will still remain at rest. In the latter case, the forces are

l -e in equilibrium: but, in the former, the particle

will heirm to move in a certain direction; and as it miirhl

have been made to move exactly in the same manner by a

single force only of a proper magnitude, acting in thai

din draw the important conchi-ion, that a single

a proper maiznitude, and applied in a proper di;

lion, may, without producini: any alteration in the effect,

luted lor any proposed set of forces. A single fo

UW the l},tnltnttt ol' the othn

i i. dine eohsi aUo i>

/. that I



substitute any set of forces of which it is the resultant; and

the forces so substituted are called the components of the

single force.

12. For any set of forces we may substitute any other

set which has the same resultant.

For the resultant is the true measure of a set of forces,

and this being the same for the two sets, it is indifferent

which we use.

13. -The words resultant and component are relative

therefore respectively to the two mechanical properties just

stated, and it is evident, from the very definition and nature

of a resultant, that no system of forces can have more

than one resultant : but the converse, that no force can

have different sets of components, is not true.

14. From the case of Art. 10, where the particle still

remains at rest, after a set of forces has been applied, we

draw a conclusion as important as the preceding, viz :

That a set of forces which are in equilibrium may altoge-

ther be removed or added, without altering the state of the

particle, or the Statical effect of other forces acting on it,

which are not in equilibrium.

This property is distinguished by the appellation of

" The superposition of equilibrium."

15. AXIOM. Two forces are equal, which in precisely

similar circumstances would produce the same result.

Equal forces are usually defined to be such, as when

applied at the opposite ends of a straight rod in contrary

directions, coinciding with the direction of the rod, would



keep each other in equilibrium. But this definition is not

good, inasmuch as it involves the property of the transmis-

sibility offeree (see Chap. II.) ;
and is, moreover, rather a

demonstrable property, than an axiomatic definition, as will

be shewn presently.

16. It follows at once from these properties, that when a

set of forces is in equilibrium, they may all be increased or

diminished in any proportion, without disturbing the equi-

librium ; and if they are not in equilibrium, and be all in-

creased or diminished in any proportion, their resultant will

1 >e increased or diminished in the same proportion.

For doubling all the forces is the same as adding an equal

set of forces, and the resultant of each will be equal, and

coincide in direction ; and the resultant of these resultants,

or what is the same, that of all the forces, will be double

the former ; and similar reasoning may be used if they be

altered in any other proportion.

17. Two equal forces acting on a particle in opposite

direction-, are in equilibrium.

For if in consequence of these two forces motion ensue, we

may refer its direction to one of the forces; let it for instance

make an angle with the first force, then since the forces

are equal and opposite, an equal motion will take place in a

tioO making an anL'lef/ with the second force, and there-

fore Opposi^ tn the former direction : which is impossible,

le cannot move in opposite directions at the

same time. Hence no motion will ensue, and the fun-ex will

be in equilibrium.

Tin once by some writer- in the^e

-i^ned whv one should

'her than iln- other;" but as this appeals rather In
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our ignorance than to our knowledge, proof above given

seems preferable.

18. If to a particle acted on by any forces not in equili-

brium, we apply a force equal and opposite to their resultant.

the whole will be in equilibrium.

For instead of the first forces, we may substitute their

resultant (Art. 10), and then the whole is reduced to two

equal and opposite forces acting on a point, which are

in equilibrium by last article.

19. Conversely : If two forces acting on a point are in

equilibrium, they are necessarily equal and opposite.

For let two forces F,, F2 acting on the particle P (Fig* 1),

in the directions PF
t , PF

2 ,
be in equilibrium, and, if

possible, let F
f
PF

2
not be a straight line. Produce Ff to/,

and make the angle /PF2

'

.=s angle/ PF2
. Then, since

PF
2

'

is in a similar situation to PF
2
with regard to PF,, if

F
2
were to act in the direction PF

2 , it would produce equi-

librium with F
2 ; and, consequently, F2 produces the same

effect whether it acts in the direction PF
2
or PF

2 , which is

impossible, and therefore PF2
cannot be in a different

direction from Pf. Hence, when two forces acting on a

point are in equilibrium, they necessarily act in opposite

directions ; and they must also be equal, for if F
z
and F

2

(Fig. 2) acting on P in opposite directions are not equal, a

force F
2

'

equal to F, acting in place ofF2
would be in equili-

brium with FJ (Art. 17) : and hence F
2

'

and F
2
in the same

situation produce equal effects, and are consequently equal

(Art. 15). But F
2

is equal to F,, and consequently unequal

to F2 , which is absurd. Hence F, and F
2
are equal, and they

have been shewn to be opposite.



Hence when aru forces acting on a particle, aiv in

equilibrium, any one of them is equal, and opposite to the

hunt of the iv

~! . \\hich are in equilibrium must i.

sarily be equal and opposite, two forces >ucl\ as I
1

',
and Iv

2

_. 3, which arc not opposite, n< -arily i;

resultant, and as it is a matter of considerable importance,

-hall proceed to determine its position.

siiltant of two forces F, and F
2

is situated in

lane I^Pl'V

For if it be not in that plane, ii must be either above or

Hut it cannot be above, for any reason which would

it such a position miirht be used to assign it a similar

'ii below
;

for these two positions are similarly situated

with reirnrd to the forces F, and F.
2

: there would .

quently he iiants, which (Art. 13) is impossible. The

resultant (hen cannot be situated above the plane of the

and in a similar way we may shew that it cannot be

below, and therefore it must be in the plane.

2ndly. Ii lies within the anirle K,rK,
l
;or the leniency of

1'',
is to draw the ]>ar(iele P in the

ion PF,. while that o' ! fn the din

;jul hence it is jirobable the rei.l ft liich is the

ii ill dir

of cither, but intermediate to h<>ih ; and therefore within the

aiiirle I'l'l' :
.

.!i>e(|uently ih resultant, which is asinine

:hat would produce the same motion, mu->t be situated

within the an-le V :

,i i> her- Dinted with to ibis '.Jud Case, can

hardly l>e called a proof, but is rather a stron- rea-

that the resultant is situated wiUiin the ungfle
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included by thi* i'onvs. Perhaps, at'tor what is said in the

1st Case, it may be regarded as an axiom.

22. Since F, and F
2
do in part hinder each other from

producing their whole effects, it appears that their resultant

must be less than their sum ; for their resultant can only be

equal to their sum when neither interferes with the other,

which, as we have seen, is not the case ; consequently

R < F, -f F2
.

23. If the forces F
l
and F

2
are equal, their resultant R

will bisect the angle FjPF2
.

For if there be a reason why PR should lie nearer to PF
1

than to PF
2 ,

there must be a similar reason why it should

lie nearer to PF
2
than to PF

19
since the forces are equal ;

and hence there would be two resultants, which is impossible

(Art. 13) : consequently PR bisects the angle Ft
PF

2
.

24. Having thus determined the direction of the Re-

sultant of two equal forces, we proceed to the more difficult

problem of finding its magnitude.

Let Fp/j (Fig. 4) be two equal forces acting on the

particle P, and R their resultant bisecting the angle Fffr
Since R is less than the sum of the two forces F

A
and f^

R R
(Art. 22), it is clear that ^ >, or its equal ^- 9

is always^
i "HA "^

\

less than 1
; and, consequently, an angle may be found

such that

2p
= cos 0>

or R = 2F, cos 0.

The angle is perfectly unknown at present, but from

Art. 16, we learn that so long as the angle FjP/J remains
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the same, continues unchanged ; that is, if we have two

sets of forces inclined at the same angle with each other

we shall have R = 2
l
cos 0, and R' = 2F/

cos 0, and therefore

RrR'-F^F/ ...... (A),

that is, the resultants are proportional to the components.

Let now F.,, f^ be two other equal forces acting on P,

who<e resultant is also equal to R, the angles F,PF2 , / i

l>eing each equal to RPF, or RP/*r Now at P apply four

es, each equal to x, two of them respectively in the

directions PF
2 , P/"2 , and the other two in the direction PR :

and let them be of such magnitude, that Fj may be the

Itant of the one in the direction PF
2
and one in the

direction PR. Then, since these two contain the same angle

as F
l and/,, and F, is their resultant,

F, = 2x cos 0.

Also, if we substitute instead <>'
F, and f

}
,
their compo-

nents (Art. lOj, we may consider R as the resultant of the

forces J-, x, x, and JT; of which two act in the same direction

as R ; and, consequently, R / is the resultant of the two

/, which act in the direct i.ms PF
2 , P/^; and sin.v, 1>\

R is the resultant of 1^ and /!,, which act in the

nine directions,

.'. R : R - 2x :: F
2

: x, from (A);

.
\\ R

-V.r-x-
Hut R = 2F, cos B = 2 . 2orcos 0. cosO = 4# cos* 0,

= 2 cos 20;

R=2F,cos
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It appears then, that in the formula

R = 2F, cos 0,

if we double the angle at which the forces are inclined, we

must also double 0.

We will now suppose, that when the angle at which the

forces act is a multiple n, or any inferior multiple of
}Pfly

true that in the same formula the corresponding equi-

multiple of is to be taken ;
so that

R = 2FW cosw0= 2FH_1 cos(w
-

1) 0= ....= SF^osfl.

Apply (Fig. 5) at P, as before, four forces in the directions

PF^, PFn_p Pfn+l and P/'M_ l respectively, each of such a

magnitude x } that FM may be the resultant of the two in the

directions PFH+1 ,
PFM^,, and/n of the other two;

But if, instead of the forces Fn , fu9
we substitute their

four components, we may consider R as the resultant of the

forces x, x 3
x9 and x 9 of which two acting in the directions

PFW_P P/L, will have 2x cos (n 1) 9 for their resultant

in the direction PR, and consequently R 2x cos ( n 1) 9

is the resultant of the other two which act in the same

directions as Fn+l and/n+l ; consequently, from (A),

R : R - 2x cos (n
-

1) 9 :: Fw+1 : x;

R R <-

R - 2 cos 9 cos n9 2 sin 9 sin n9.
x

For th, ^ F, MP F^_,
=

^F,P/,, (Fig. 4).
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But R = 2FB cos 7*0 = 4x cos V coe //u.

r>

/. ^ = 4 cos0 cos w0 2 cos cos w0 2 sin M >in

firH= 2 (cos cos W0 sin >in ;z0),

= 2cos(;*-f 1)0;
.-. R = 2F,.4l cos(w + 1)0.

Hence the formula is true for a multiple (n + 1) if it be

true for n and all inferior multiples : but it has been shewn

to be true for 2 and 1, and consequently it is true for multi-

ples 3, 4, 5, 6, .... and generally, by induction, for any

multiple whatever.

It appears then, that as we increase the angle at which two

equal forces (F, F) act, we must increase the angle in the

same proportion, and then, that the formula

R = 2F cos

still holds good. This, however, supposes the anirle between

the forces to be a multiple of F, P/t (Fig. 4), which may
not happen to be the case ; but by taking the original angle

F, P/j exceedingly small, we may find a multiple of it

which shall differ from FPF a proposed angle by less than

any assignable quantity. It is evident then, that FPF
and have an invariable ratio to each other, so that if FPR
= $, then

- = constant quantity = c. suppose ;

. R = 2Fcosc0.
To determine the value of c, we <>lerve that (Art. 17 ) it

I
1

'

and I
1

'

ad at an angle TT, or are (i|>|>ii li other,

fin which case =
-J

thc\ have no resultant.
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Now none but angles which are odd multiples of
^

have their cosines = ;

/. c = an odd integer
= 1, as we shall shew.

For if c is not = 1, let the angle FPF be such that

^ = ~, which is therefore less than a right angle, and then

R = 2F cos
c<t>
= 2F cos

|
= 0.

But since the angle FPF is, in this case, = -, and there-
c

fore less than TT, the resultant cannot be (Art. 21), which

is absurd, and consequently c = 1. We arrive therefore at

the general result, that if F, F be two equal forces acting on

a particle, and inclined to each other at the angle 2$, their

resultant R is inclined to each of them at the angle <, and

its magnitude is determined by the equation

R = 2F cos .

25. It will be immediately obvious, that since the forces

F and F are perfectly equal and similarly situated with

respect to PR, they contribute equally to the resultant R
; and,

consequently, the efficiency of each in the direction PR is

equal to J R, or F cos 0. This is the portion each contributes

to make up R, and since R is less than their sum (Art. 22),

that part of each force, which is lost, is spent in hindering

the other from producing any effect, except in the direction PR.

Hence, if one of them were by any impediment whatever

hindered from producing effect, except in the direction PR,
its efficiency in that direction would be F cos $ ; for, in this

case, the impediment merely supplies the place of that part
of the other force which was employed in the same office.
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We may therefore state, as general facts,

1-t. That in compounding forces into one, force is lo>t :

that is, the whole quantity of resultant force is not so great

as the whole quantity of component force.

2ndly. That the efficiency (or, as it is often called, the

resolved part) of a force F, in a direction making an angle ^
with that in which it acts, is equal to F cos .

26. To determine the magnitude and direction of the

resultant of any two forces acting on a particle.

Let F,/ (Fig. 6) be the two forces acting on the particle

P, R their resultant, perpendicular to which draw LPM ;

let a, ft
denote the angles FPR, /PR respectively, and

the angle Pf between the forces. Then the efficiencies of

F and/, in the direction PR, are respectively F cos a, f cos
ft,

the sum of which must be equal to R, since the efficiency of

R is equivalent to the united efficiencies of F and fin any

proposed direction, because R is their resultant.

. . R = F cos a + /cos ft (I).

Now the efficiency of R in the direction PL perpendi-

cular to itself = R cos 90a =
; and the efficiency of I

in the direction PL = F cos FPL, and that of/ in the

same direction =/ cos/PL,

/. = F cos FPL -f/cos/PL,
or = F cos (90

-
a) +/cos (90 -f /3),

or = F sin a -/sin/3, (2);

and by squaring equations (1) and (2), we have

= F2 cos2 a -f 2F/ cos a cos ft -f /2 cos2 ft,

= F' sin2 a - 2F/ sin sin
ft -f /' sin2

ft ;

and adding these together,

K F* + '_': sin ,. >in p \ f2
.
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Mut because ^ = a -f /3,

.*. cos 4>
= cos a cos /3

sin a sin |3; and, consequently,

The same result is sometimes thus stated: If

two sides of a triangle, taken in order, represent the magni-

tudes and directions of two forces acting on a point, the

third side, taken in the opposite order, will represent the

magnitude and direction of their resultant.

Let NP, PM (Fig. 7) be taken to represent the magni-

tudes and directions of two forces F,/", acting on the point

P; complete the triangle PNM; and from N draw Nm in

any direction whatever, and perpendicular to it draw Pp,

Mm.

Then if we estimate the forces F and / in the direction

N/
; Np being = NP cos PNwz, and pm being = PM cos

angle between PM and pro ; Np, pm will respectively repre-

sent their efficiencies in that direction, and therefore Nm
will represent their united efficiency in that direction. But

we observe that Nw = NM cos MNwi, and therefore NM
n -presents the magnitude and direction of a single force

which is equivalent to F and f in the direction Nra, and

since this is any direction whatever, the single force repre-

sented by NM must be in every respect equivalent to the

two F, /, and therefore it represents their resultant R ; and

it i- manifest that NM, the direction of R, is in the contrary

order to NP, PM, which are the respective directions of the

given forces.

28. Hence it appears, that the three sides of a triangle,

taken in order, will represent the magnitudes and directions

"f thr-- -vhich u<mUl keep ;i particle at rest (Art. 18).



Also, because the sides ot a triangle are proportional to the

sine- ut' the opposite angles, it is man i test that when three

8 acting on a particle are in equilibrium, any one of

them is proportional to the -sine of the angle contained

between the directions of the other two.

29. The form under which the result of Art. 26 is best

known, is the following, which is distinguished by the name

of " The Parallelogram of Forces."

If two straight lines drawn from a point, representing the

magnitudes and directions of two forces, be completed into

a parallelogram, the diagonal drawn from the same point

will represent the magnitude and direction of their resultant.

Let FP/*R (Fig. 8) be a parallelogram so constructed ;

PF, Pff respectively representing the magnitudes and direc-

tions of the forces F,/; then PR will represent the magnitude

and direction of their resultant. For, because FR is parallel

and equal to Pf, the two sides PF, FR of the triangle PFR

represent the magnitudes and directions of F and f\ and

therefore PR, taken in opposite order (Art. 27), will repre-

sent their resultant.

30. The following proposition is somewhat more general

than the preceding one, and is often called " The Polygon

of Forces"

If all the sides of a polygon, except the last, taken in

order, represent the magnitudes and directions of

acting 0:1 a
j
.article, the hi^t side, taken in the opposite order,

will represent the magnitude and direction of their :

ant.

true whether the ^ides of the poKuon he all

ited in one plane or not.

T\. \\\ \\C . CD Pig,
'.' Ml the I-

, point P. -loin PH.
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PC. Then the torn'* represented by PA, AB, are equivalent

to that represented by PB (Arfc^T); and, therefore, those

represented by PA, AB, BC, are equivalent to those repre-

sented by PB, BC ; and, consequently, to that represented

by PC (Art. 27) ; and so on, till we cometo the last side PD,
which will represent the resultant of all the forces.

31. From this, and Art. 18, it appears, that the sides

of any polygon represent the magnitudes and directions of

forces which acting on a particle will be in equilibrium.

32. Hence we may resolve a force into as many compo-
nent forces, acting in given directions, as we please.

For take a line to represent the magnitude and direction

of the proposed force, and upon that line construct a polygon

having its sides parallel to the directions in which it is pro-

posed the components are to act, and they will represent the

components both in magnitude and direction.

33. The most important case of the resolution of a force

is, when the components are required to act parallel to three

given lines which are at right angles to each other: and, for

this reason, we shall enter upon this case more particularly

than in last article.

Let Ox, Oy, Oz (Fig. 10) be the three given lines at

right angles to each other. From O draw OF to represent

the magnitude and direction of the force, which it is pro-

posed to resolve into component forces parallel to Ox, Oy,
Oz respectively. From F draw FM parallel to Oz, meeting

the plane xOy, passing through Ox and Oy in M ; from M
draw MN perpendicular to Ox. Then ON, NM, MF
ivpre-cnt the components of OF, and they are respectively

parallel to the given lines. Let a, )3, y denote the angles
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FO.r, FO?/, FO^, which the direction of F makes with the

given lines ; and X, Y, Z, the components, parallel to O.r,

Oy, Oz. Then, because MF is parallel to Oz, and there-

fore perpendicular to OM, we have

MF = OF.cosOFM,
= OF . cos FO*,

= OF . COS 7.

Now MF and OF represent Z and F respectively ;

/. Z = Fcos 7 .... (1).

In :i similar manner,

Y=F cos/3 .... (2),

= Fcosa .... (3).

34. REMARK. The angles a, |3, 7 are not absolutely

independent of each other.

For MF = OF cos 7 ;
and so NM = OF cos j3,

and

ON = OF cos a.

But OF2 = OM2
-f MF2

,

= ON2
-f NM2

-f MF2
,

= OF2
. cos2 a -|- OF2

. cos2 |3 + OF2
. (

/. 1 = cos2 a 4- cos2 (3 -f cos2 y.

:n which erpiation, any two of the angles a, /3, 7 beiuu

i. the third may be found.

In employing the equations (1), (2) and (3) of last article,

Cation must never l>e l-t >"mht of.

35. The converse of Art. 33 may be easily etl. -nd : viz.

j. Lr iviiiLr tli: ac-linir on a particle at riijlit

angles to each other, to liud their resultant.

lei X, Y, Z be the three force* I- their resultant ;

and a, /3, 7 th> -vhich the direction of K makes \\ith

mponent \ \

D
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/ = F cos 7 ;

and, by adding together the squares of these equations,

Xs
-f Ya + Z2 = F2

(cos* a + cos2 /3 -f cos2 7),

= F2
, by Art. 34

;

/. F = v'X* + Y* + Z* .... (1),

which determines the magnitude of F ;
and the equations

** ** /o\
=
F="

determine its position.

36. Having given the magnitudes and directions of a

set of forces acting on a particle, to determine their resultant.

Let Fj, F2, F3
be the forces, and ap j3,, 7l ;

a
a> & y*> a

3 &> 73? ti16 angles which their

directions respectively make with three fixed linesO#, Oy,Oz,
at right angles to each other, as in Art. 33; and denote their

respective components in the direction parallel to Ox by
X p X2 ,

X
3 , and those parallel to Oy and Oz by

Yj, Y
2 , Y3 ,

and Z,, Z
2,
Z

3 , which

quantities are known from the equations

X, = Fj cos a,,
X

2
= F

2
cos a

2 , X3
= F

3
cos a

n , ....
YT7 r\ -\r T7 /O XT' Ti1 O
jrrrFjCOS^p Y

2
= F

2
COS L, Y^^F^COS/3^ ....

I 1 f I * A I ' J *J I J*

Z,
' f

}

"
7,, Z

2
= F

2
COS y,, 2

3
= F

3
COS y,, ....
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The proposed forces are therefore equivalent to throe lour-.

one in the direction of O.T ~ X, + X
2 4- X 3 f ...

,

one in the direction of Oy Y, 4- Ya -f- Y3 4- . . . . ,

and one in the direction ofO* = Z
{
4- Z

s 4- Z3 -I- . . . . ,

which denote respectively by 2X, SY and 2Z.

Now (Art. 12) the resultant of the proposed fore

the same as the resultant of these three ; if, then, we denote

it by R, and the angles which its direction makes with

the lines Ox, Oyy Oz by a, j3, 7, we have, by Art. 35,

R-v'QsX) 2 * (SY)* 4- (SZ)
2
,

SX SY SZ
and cos a = -^ > cos |3

= -fr an^ cos 7 ~p~ J ^y which

four equations every thing required is determiaed.

37. If Oar, Oy, Oz be taken as the co-ordinate axes,

and a, by c be the co-ordinates of the particle P, on which

the forces act, and x t y, z be those of any point in the line

of direction of the resultant ; then the equations ofthis line are

x a b z c

If the particle on which the forces act be at tl*e origin of

co-ordinates, a, b, c.are each equal to zero, and the equations

of the line of direction of the resultant become

x
.

v**^ v"V v*7*
2t A. ~- f- /-

38. T-o iiod the e(iuati juilibriuni o! a >ei oi

forces acting on a particle.

l!' then.* be an equilibrium, the fore -I have ,

iltant, and th \\VJL the notation ol' Art. o''. l\ inn-!
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But the right hand number of this equation is composed

of three quantities, which being squares, are essentially

positive, and therefore their sum cannot be = 0, unless

SX = 0, SY = 0, and SZ = , . . . . (A),

these three equations are therefore equivalent to the one

R = ; and may be substituted for it. They are called the

equations or conditions of equilibrium ; for when they are

satisfied there must be an equilibrium, because, in that case,

R = 0; and unless they are all satisfied there cannot

be an equilibrium, for then R would not to be equal to

zero.

Being, then, both necessary to and sufficient for complete

equilibrium, they are taken as the criteria of the equilibrium

of forces acting on a point.

39. To find the efficiency, in a given direction, of a set

offerees acting on a particle.

Using the notation of Art. 36, let , ^, 0, be the inclina-

tions of the given direction to the three fixed lines Oar, Oy,
Oz respectively ; and the angle between this and the

resultant R. Then

COS = COS a COS -f COS |3 COS rj -f- COS y COS 0,

which determines 0.

And since the resultant R may be substituted for the

proposed forces (Art. 10), and its efficiency in the proposed

direction = R ^os (Art. 25), the efficiency of the set of

forces in the given direction must be R cos 0, and conse-

quently is equal to

VXsX)
2
-f (SY)

2+ (SZ)
2
.(cosacos<: + cosjScosT/ -f cosy cos0).

40. In the case of equilibrium R = 0, and conse-

quently R cos $ = 0, whatever be the value of
tj> ;

and
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hence, when any set of forces acting on a point are in

equilibrium, their efficiency in any direction whatever is

equal to zero.

41. REMARK. Since the directions of the lines Oar, Oy,

Oz, may be taken ad libitum, and that the necessary condi-

tions of an equilibrium are, that the efficiencies of the forces

in these three directions shall be respectively equal to zero;

it appears that if we can find three directions at right

to each other, parallel to which the efficiencies of any

set offerees are respectively equal to zero, then the efficiencies

of the same set, in any other direction whatever, is equal to

zero.



CHAPTER U

ON FORCES ACTING ON A RIGID BODY.

42. A rigid body is one, the relative position of whose

parts cannot be changed.

43. In treating of the action of force on rigid bodies,

the first object is to ascertain what influence the form

of the body has upon the direction in which a force

is transmitted through it. For it is to be observed, that

when a force acts upon a particle of a rigid body, its

effect is not confined to that particle alone, but is distribut-

ed over the whole body. Now let M (Fig. 11) be a rigid

body of any form, and F a force acting upon one of its

particles at P, in the direction PF; produce FP through

the body. It is found, by experiment, that the effect

of the force F is distributed through the body in the

same manner (or, in other words, that the effect which F

produces is precisely the same) when it acts at any point Q
in the line FP as when it acts at P. This is

" The Law of

the Transmissibility of Force;" from which it appears, that

the effect of a force is not altered by changing the point of

application to any other in the line of the direction in which

the force acts.

When the point of application is changed according to

this law, the force is said to be transmitted; and some
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writers have supposed the principle to be self-evident, and

have, accordingly, dismissed the subject in few words;

others have attempted a proof, but in every instance the

proof will, upon examination, be found to take for granted

the principle to be proved. The truth is, the principle is

a most curious physical fact, which, in the present state of

our knowledge, cannot be deduced from any reasoning, &

priori, but must be established by experiment alone. A great

variety of different experiments, by which the principle

in question can be established, might be mentioned, but

we shall select only one, which possesses the advantage of

being very conclusive and easily made.

Let M (Fig. 12) be a rigid body of any form, F a force

acting upon a particle of it at the point P, and let Q (not in

the line FP) be a fixed point about which the body is freely

moveable. Draw QL parallel to PF. Then it will be found

that the body will turn round the point Q until it comes into

such a position that P is in the line QL, as in Fig. 13.

The same result will be observed, if instead of having Q
fixed, we apply there a forcef in a direction opposite to F ;

for it is found that F acting at P, and f acting at Q, in

opposite directions, are only in equilibrium when they

equal and situated in the line QPL, as in the Figure. This

eriment shews most distinctly that force is transmitted

in the li: direction
;

lor the force f will balance F
at wliataoever point in the lino FQ, I

1

'

be applied; and

lliei the same effect at each point in that

.t could not always be kept in equili-

brium b\ f, which remains unaltered in every re*|>ect

H Concur/ I irces are those whose directions all

i the same point, and since such forces, acting

transmitted to the point "f con-
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course, they are by this means at once reduced to forces

acting on a point, and consequently fall under the preceding

chapter, all the theorems and formulae of which are appli-

cable to them.

It may be objected, that when the point of concourse js

situated without the body, the forces cannot be transmitted

to it, for, by referring to the last article, it will be seen that

transmission can only take place to points which are rigidly

connected with and form part of the body. But the objec-

tion is removed, by considering that the forces do not in

reality act at the point of concourse, but each at its own

point; and this action is the same as it would be if the

point of concourse were rigidly connected with the body,
and the forces transmitted to it.

45. Two parallel forces act at different points of a rigid

body, to determine their resultant.

Let F
t
and F

2 (Figs. 14, 15) be the two forces, A and B the

points at which they act, or any other convenient points in the

lines of the directions in which they act, to which they may be

transmitted. At A and B apply two equal forces /x andy2,

of any convenient magnitude, in opposite directions. These

being in equilibrium will not alter the effect or resultant of the

other forces F
t
and F

2 (Art. 14). NowF
t and/i will have a

resultant w within the angle F IA/'l (Art. 21) ;
and the result-

ant n of F
2 andy2 will, in like manner, lie within the angle

F
2B/2. Produce the directions of these two resultants to

meet, if possible, in some point P, and transmit them to

that point (Art. 43). The two parallel forces F, and F
2,

acting at A and B, are consequently equivalent to the two m
and n, acting at P, where we may again resolve the latter

into their primitive components/,,/2 ,
in opposite directions,

parallel to AB ; and F
( ,
F2 , parallel to the original forces.



The two/,,/, being equal and opposite, may be removed

i Art. 14); and hence, the two which remain are the original

-

transposed parallel to themselves to the point P,
and drawing PC parallel AF, or BF

2 , we may now transmit

tin-in to any point in PC.

We see then, that there exists a certain line PC in the

riirid body, to any point of which we may transpose the

a without altering their effect.

This line PC we call the Diameter of Parallel Forces.
x
>\

"

thus at once reduce the action of parallel forces on a

i'ody, to the action offerees on a point.

Hence, when the forces act in the same direction, their

re>ultant R is equal to the sum, but when they act in

opposite directions it is equal to their difference, and in

the direetion of the greater.

46. To determine the position of the diameter P(

TO that PC, CA, PA form a triangle, whose sides are

in the directions of the forces F
t , /, and their resultant ;//,

and are therefore proportional to them (Art. 27); henee,

F.r/.nPCrAC,
and similarly,/2

: F
2

: : BC : PC,

/. F, : F, ::BC: AC, because/, =/,.

The portion of the diameter may therefore be thus

I: take A. H. am two points in the lines in

\\hirh the L'iven furees act, and divide AH. when the forces

act in the <nme direction, or AH produced on the side

ater, when they act in opposite directions,

in the point (', so that the Moments may be inversely

proportional to the nding forces. The line drawn

illel to the -iven I



47. For the sake of simplifying our results, we shall

consider forces which act in a certain direction as positive,

and those which act in the contrary direction as negative.

Hence, the signs -;- and , when applied to forces, in like

manner as to lines, merely denote contrariety of direction ;

and, as in Fig. 14,

R = F
I + F

2 ;

this formula is equally applicable to Fig. 15, if we take care

in using it to observe, that as F
2
acts in a direction opposite

to that of Fu it must be affected with the opposite sign ;

and thus, for that case,

R - F
t

- F
2

.

Seeing, therefore, that we can deduce the results which

belong to that case, from the results which belong to Fig.

14, by merely introducing the proper symbol of affectation

of the forces, we shall use only the former formula, and

state the general result under this form.

The resultant of two parallel forces is equal to their

sum, and acts in their diameter.

The word sum being understood in the sense here ex-

plained, i.e. requiring each force to be affected with its

proper symbol of direction.

48. We can also deduce another formula for the position

of the diameter, winch will be equally applicable to the two

cases represented by Figs. 14, and 15.

In AB (Fig. 14) take^any point O; then it has been

shewn (Art. 46), that

F
L

: F2
: : BC : AC,

: : OB - OC : OC - OA,

;; (F, + F
2)

. OC - F, . OA + F
2

. OB,

or R . OC = F, . OA + F
2

. OB (1).



But, in Fig. 15, F, :F, ::BC: AC,

:: OB-OC : OA - DC,
and /. (F t

-
F,) . OC = F, . OA - F

2
. OB,

which we observe may be derived at once from (1) by

merely affecting F with the proper symbol of direction
;

we therefore take (1) as the general result, and state it

thus:

If a line be drawn through a given point, cutting the

lines of directions of two parallel forces and their diameter,

the sum of the products of each force into the part inter-

cepted between the given point and the line of its direction,

is equal to the product of their resultant into the part

intercepted between the point and the diameter.

49. For the sake of simplicity, the line is usually drawn

at riiiht angles to the direction of the forces, the intercepted

parts then become perpendiculars from the given point

upon the lines of direction of the forces, and upon their

diain-

Now the product of a force into a perpendicular, from a

Lr iven point upon the line of the direction in which it a

called the moment of the force about that point; and hence

we may state the general result of last article in more simple

tiTMK. thus:

The siiim of the mninrnN of two parallel forces about any

p >int in their own plum-, is erjual to th<> moment of their

ivMiltant about the same point.

With respect to the perpendiculars drawn from the .uiven

we IIIIK! observe that they are to l>c affected with

their
,

mbols of direction, so that if the point () lie*.

I

.vith the



50. By means of these properties of parallel forces we

can, without trouble, decompose any single force into two

others parallel to it, and acting at given points ; we shall,

therefore, not dwell upon it, but proceed to observe that it

is essential to the success of the demonstration of Art. 45,

that the lines wA, wB should meet in a point P, which will

always be the case, except when the given forces Fp F2
are

equal, and act in contrary directions. If we construct a

figure for this case, we shall find that wzA, ?zB are parallel,

and therefore never meet; the demonstration therefore fails

on this hypothesis, and the results just obtained are in-

applicable.

In fact, we can shew that it is impossible two such forces

should have a resultant,* for any reasoning which would

assign them a resultant, referred to one of the forces, would

assign them an equal resultant in the contrary direction,

upon referring it to the other force, for they are equal and

act in opposite directions. Hence there does not exist any

single force which can be substituted for them. This we

may call the irreducible case of parallel forces, inasmuch as

the given forces cannot be reduced to any thing simpler

than themselves.

51. A system of two such forces (Fig. 16) is called a

couple, and is usually written thus (F, F). The perpen-

dicular distance AB between them, is called the arm of the

couple, and the product F . AB is called the moment of

* Some authors, however, considering this as an extreme case of the

general proposition, have found, that the forces have a resultant O, acting

at an infinite distance ; but as it does not seem to be very intelligible how

a force O can act at all, so as to produce any effect, this method of treating

the case of equal parallel forces has been thought too perplexing to be

admitted into an elementary treatise.
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tlif couple. This is agreeable to the definition in Art. 49.

For let O be any point in the plane of the couple, then

(Art. 49) the sum of the moments of F and F, that is, the

moment of the couple

= F.OA-F.OB,
= F.(OA-OB),
= F . AB,

which is manifestly altogether independent of the position of

the point O.

The axis of a couple is a straight line at right angles

to the plane of the couple, passing through the middle point

of iN arm, and in length proportional to its moment ; the

l>ldtir of the couple is the plane which passes through the

directions of its two forces.

We shall call all couples positive which tend to turn the

body on which they act, in the direction of a right-handed

screw ; and those which tend to turn it in the direction of

a left-handed screw, negative. For example, the couple

exhibited in Fiur - H>, is a positive couple.

53. All couples of the same kind (i.e. positive or nega-

tive) are equivalent, if their moments are equal and their

planer parallel.

let (F, - F;, and (/, /) (Fig. 17), be two couples

of the same kind, whose planes are parallel and moments

equal; and let (F, F') be a parallel couple of equal

moment and of an opposite kind ; and,

their arm- AI>. nh, A'B', to be parallel.

-'"in A \ , i;i; . interacting in C. Then, by similar trian-

\Ul, A'CB',

\c : \< \i; : A i;

::F I



so

1 .AH = F.A IV, the moments of the couples being

equal.

1 1 once (Art. 46) C is a point in the diameter of the two

parallel forces F, F. In a similar manner we may shew

that C is a point in the
N
diameter of the two parallel forces

- F, P. We may therefore transpose them all to C

(Art 45) ; and, consequently, the two couples (F, F),

(F/ F), are equivalent to the four forces F, F,
- F, F, acting at C, and are therefore manifestly in

equilibrium. In a similar manner (/i /), and (F, F7

)

are in equilibrium, and consequently (F, F), and (/, f)
are equivalent, since each of them balances (F', F7

).

2ndly. Let (F,
- F), and (F, - F), Fig. 18, be two

couples ofopposite kinds, equal in every respect, and situated

in the same plane, so as to have coincident axes passing

through C. Let AF, A'F, intersect in D; and - FB,
- FB7

in E; and let mCn pass through D, C, E ;
it bisects

the angles FDF, FEF. Now the forces F, F, may be

transmitted to D, and then they will have a resultant m, in

iirection Dm, because they are equal (Art. 23). Fora

similar reason F, F, will have an equal resultant n, in

tho direction Era
;
and consequently the four forces of the two

couples are equivalent to the two equal and opposite forces

m, n, which, being transmitted to C, are in equilibrium

(Art. 17). Hence the couple (F, F) is balanced by

(F, F) ; and if this latter couple were still farther turned

round its axis, it would still balance (F, F), and there-

1'oiv, turning a couple round its axis, does not alter its

effect.

Hence, reverting to Case 1, it appears, that if the arm of

( > ll
l
)lc (/> -/) be not parallel to the arm of the

couple (F, F), they will still be equivalent, for one of



them may be turned round its axis, without altering its

effect, until their arms become parallel.

54. By means of the last article, we can change any pro-

posed couple into an equivalent one in a parallel plane,

which shall either have an arm of a given length, or its forces

of given magnitude.

For if (F, - F) and (/, -/) be the couples, and AB,
ab, their arms, they will be equivalent, if

F.AB =f.ab.

Hence, if the first couple be given, and the arm of the

second, the magnitude of/will be known from the equation

f= VJ ab
'

Or if/ be given, and its arm be required, it may be found

from the equation

55, Hence, if we have any number of couples (Fp F
t),

(F2 ,
F

2),
.... acting in parallel planes, whose arms

are respectively equal to a
t ,
a
2 , . . . . we can reduce them

to couples with arms equal to b. In this case the new

>les are,

and by removing them into one plane, so that, their axes

may coincide (Art. 53), and turning them round till their

equal arms coincide, they will he reduced to a single couple.

-
S) suppose, whose arm is b, and each .it' whose forces

is equal to

F
-J '/;

v3 +-.... = s,

.-. Sb = H>, + I



Hence, wlion couples act in parallel planes, they can be

reduced to a single parallel resultant couple, whose moment

is equal to the sum of all their respective moments.

5G. Conversely : We can decompose any proposed couple

into as many other couples in parallel planes as we please,

the only condition to be observed, being, that the sum of

the moments of the component couples must be equal to the

moment of the proposed couple. The moment of a negative

couple is, of course, to be accounted negative, and the word

sum is used as explained in Art. 47.

57. Since two equal couples will evidently (Art. 16)

produce double the effect of one of them ; three, treble ;

and so on
; it follows, that the efficiency of a couple may be

properly measured by its moment. For a couple is equiva-

lent to two or more couples when its moment is equal to the

sum of their moments.

We shall, therefore, in what follows, designate a couple

by its moment; and consider it as determined when its

moment and the inclination of its plane are known.

58. Before proceeding further in the subject, we shall

put the results of some of the preceding articles in a form

better adapted to the future purposes of the chapter.

Let Ox, Oy, Oz (Fig. 19) be the three co-ordinate axes

at right angles to each other, and suppose the two proposed

forces, which we shall now denote by Z
t ,
Z

2 , to act in a

direction parallel to Oz, and therefore at right angles to the

plane xOy. Transmit them to the points A, B, where their

directions meet that plane ; and let CR be their diameter.

Draw Aa, Ce, Bb parallel to Oy, and let 9 be the angle at

which AB is inclined to Ox.



/. ac = AC cos 0,

be = BC cos 0.

But if x
{) y v ,

and x^ y2 , are the co-ordinates of A and

B, and x, y those of C ; that is, if x
l
= Oa, :r

2
= O*,

Oc x, yl Aa, y2
= B6, and Cc = i/ ; then

oc = *'-.*,.

and be = x^ x' ,

.'. x1 x
l

AC cos 0,

and jr
2
-x' = BC cos 0.

But, by Art. 46,

X, : Z
a

: : BC : AC,
: : BC cos : AC cos 8,

:: x.
2

x' : x' x
{ ;

.'.Z
l (x'--xJ=Z,(x,-x'),

/. (Z, + Z
a)

. ^ = Z^ + Z
a.r,.

And, in a similar manner,

(Z, + Z
8)

.
J,'
= Z,y, + Ztyt.

Or, if R, be the resultant of Z, and Z,, it acts at C, in

tin- direction CR, and is = Z, + Z
a,

.-. R,*' = Z,*, + ZA -i

R,y = z,y, + z^,/

59. Now arcordiiii: to the definition of Art. 49, Z,y ( ,

Z^y2 , R,y', an- tin- monuMits of the forces Z,, Zs , R (
about

the points <7, ^>, c re-] K'I lively, and as these points are

:t<'<l in the lino O.r, when we speak of these moments col-

lectively, we call them the moments of Z,, X,, H
t
about the

line, or more frequently in this rase the axis O.r. And, in a

similar manner, by drawing perpendiculars from A, B, C

upon Oy, we shall find that Z,^, Z^rt , R^ are the res-

pective moments of Z,, Z a , R, about the n\U ()//.
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From the equations (1) it appears, that the sum of

the moments of two parallel forces about any line, situa-

ted in a plane at right angles to the direction in which they

act, is equal to the moment of their resultant about the

same line.

The position of their diameter is determined by the

equations

Vi

60. Suppose, now, that there is a third force Z
3 acting

parallel to the former, at a point in the plane #Oy, whose

co-ordinates are x^ y3 ;
and let R

2
be the resultant of the

three, and x"
', y" the co-ordinates of the point where it

may be supposed to act in the plane xQy.

Then, by (Art. 10) substituting Rt
instead of the forces

Z
l
and Z

2 ,
of which it is the resultant, we may consider

R
2
as the resultant of R

t
and Z

3, and hence

R
2
= R

L 4- Z 3 , by Art, 47,

= Z,+ Z
2 + Z

3 ;

and R.X : = R,o/ f Z
3
^
3 ,

and, similarly, R.y = Z
ly l +

By pursuing this method, it will appear that if instead of

three we have any number (ri) of parallel forces Zp Z
2 ,

Z
3 , . . . . Zn ;

of which R is the resultant, and or, y the

co-ordinates of the point in the plane arOy, at which it may
be supposed to act, then

R = Z, + Z
2 + Z

3 4- ..... -h Zw
- SZ . . . . (1),

Rx =Z
l
x

l+Zj:9+Z&+ . . .+ZA =S(Z30 . .(2),

andRy - 2^+ 2^,4-2^3+. . +Znyn
= S(2y) . . (3).
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61. It appears, from this demonstration, that there i-\i-i*

a certain line parallel to the direction of the forces, to any

point of which they may all be transposed, without altering

their effect; and thus the property and definition of Art. 45

become general. We observe also, that equations (2) and

(3) extend the property enunciated for two forces, at the

end of Art. 59, to any number of forces.

The position of the diameter is to be determined from

the equations

The symbol 2 is used as an abbreviation of the word sum,

and in using these formulae, care must be taken to affect

each 'force and co-ordinate with their proper symbols of

direction.

62. There is one case in which the demonstration of

Art. 60 fails, it is when Z
l + Z

a + Z
3 + ... t- Z. = 0.

Hut since some of the force*, in this instance, mn-t act in a

negative direction, we may find the resultant S of the positive

forces, and the point A (Fig. 20) at which it acts; in the

..e way we may find ( S) the resultant of all the ne^i

forces, and the point B at which it acts. Draw A'/, H6

parallel to Oy. Then S, and S, form a couple: of

which the moment about the a\U O.r

= S.Aa-S.J
= moment of the poetise forces

lab
moment of the nr^ativ.- 1m

= moment of all the

- i;

- Hg
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6 denoting the angle of inclination of AB, or the plane of

the couple, to the line O# ; AQ also being parallel ab.

.'. - S . AB. sin 6 = S(Zy) ..... (1).

Again, the moment of the couple about Oy
= moment of S about Oy

-f moment of ( S) about Oy,
= moment of the positive forces

4- moment of the negative forces,

= moment of all the forces about Oy,

But the moment of S about Oy S . Oa,* and that of

(-S) =8.06,
/. S(Za?) = - S . Oa + S . Ob,

= S(Ob - Oa)

= S.ab

= S.AB cos0;

/.-S.AB.cos0= S(Za7) ........... (2).

Dividing (1) by (2), we have

and adding their squares together,

(S. AB)= (SZo:)
2

4- (SZy)2 ..... (4).

This last equation gives S . AB, the moment of the re-

sultant couple ;
and (3) determines the position of its plane.

REMARK. It appears then, that when a couple is equi-

valent to a set of parallel forces, its moment round the axis

of x is equal to the sum of their moments round the same

* The sign is used, because the positive forces tend to turn the body
round Oy in a negative direction. See Art. 52.



37

axis; now the axis of j may be taken in any position what-

ever; and if the parallel for< vs U> siu-h as to form a set of

couples, it will appear that the moment (round any axis) of

a couple, which is equivalent to any set of coupl.-

equal to the sum of the moments of all the couples about

the same axis. Consequently, on the same principle as

before (Art. 57), we may take the moment of a couple round

an axis as the measure of its statical etlieiency about that axis.

63. It appears, from the investigations of this chapter,

that a set of parallel forces can be reduced to a single

resultant force when SZ is not equal to zero, and to a

single resultant couple when SZ is equal to zero.

64. We are now able to determine the conditions of

equilibrium of a set of parallel forces acting on a rigid

body.

As observed in last article, if there be not an equilibrium,

there will be either a single resultant force, or a resultant

couple; and, consequently, that there may not be a single

resultant force, we must have

SZ =0.

And that the resultant couple may vanish, we miM have

its arm AB = 0, for then it degenerates into two <

, acting at the same point in opposite directions,

which, by Art. 17, are in equilibrium : lien

= S . AB,
and /.

j
+ (SZy)

f
,

an equation which i> equivalent t<> the t

v // (land v./i/) = 0.

n are, ktaebra, fhlW Auditions of complete equili-

brium of parallel forces acting on a ri^id Ixxly, ?ii.

v/ n. , n ,| i / 0, S(Zv
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which must be all satisfied, otherwise there cannot be an

equilibrium; and if they are satisfied, there will necessarily

be an equilibrium, for there will then be neither a single

resultant force, nor a resultant couple.

65. We have found the resultant of forces, on the

supposition that they are all parallel to one of the axes of

co-ordinates, that being the form under which the results are

most frequently wanted
;
but to render the subject complete,

we shall suppose them to be parallel to each other, but not

parallel to any one of the co-ordinate axes
; and, besides

this, we shall not transmit the forces, but shall refer each

force to that particle on which it acts.

Let F,, F2 ,
F

3 , (Fig. 21) be the forces acting on

the particles A, B, D, . . . . of a rigid body. Refer the body

to the co-ordinate axes Ox, Oy, Oz. Join A, B ; and let

the diameter of the two forces F
1?
F

2 , pass through C. Draw

Aa, Eb, Cc, parallel to Oz, and therefore per-

pendicular to the plane xOy.

Let xv ylt
z

l ;
x y2 ,

2
2 ;

x
3 , y3 , z3 , be the

respective co-ordinates of the points A, B, D, and

x y y, z, ofC ;
and let be the angle of inclination of AB

to abf then

z
' _

Zi
= Cc - Aa = AC sin 0,

and z
2
- st = Bb Cc = BC sin 6.

Now, by Art. 46, F, : F
2

:: BC : AC,

::BC.sin0: AC . sin 0,
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Again, by transposing the forces F, and F
a
to C (Art. 45),

or considering their resultant F, \- F., (Art. 47 j as act inn

there, we have, putting j-"
//'

c' for the co-ordinates of C',

the point through which passes the resultant of the three

forces Fp F
2 , F3>

or which is the same, of th- -f F.j

andF
3 ,

In this manner, introducing successively a single f

until all are taken in, and putting x y z for the co-

ordinates of the point at which the resultant of all the given

forces acts. we shall at length obtain the final expression

or, more concisely.

*.SF= S(Far) ..... (1).

Very frequently the product of a force into the perpen-

dicular distance of the particle on which it acts from a

plane, is called the moment of the force with respect to that

plane. Now it will be observed that zr r.,, j,..... are

the perpendicular distances of the particles on which the

1 . Kv .... respectively act from the plane <()//;

and, consequently, as the plane xOy is not re-trieted as to

position by the demon.strutioii !' the >\j
: ,ixt i:i\eii.

we may enunciate equation (1) in general terms, thus :

The moment of anysy- parallel forces, uith respect

to any plane, is equal to the moment of their re-ultant with

respect to the same plane.

I I "iice for the planes jrOz, and yQz, respectively, we

jf.'tf 1 !// . UKi
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06. Since the expressions 2F, S(F#), S(Fy) and S(Fz)

do not at all depend upon the direction in which the system

of parallel forces acts, but only on the magnitudes of the

forces themselves, and on the positions of the particles on

which they act, it follows that the position of the point,

whose co-ordinates are xyz, determined from the equations

_
-

; .

SF ' y ~
~"sF~' SF

'

will be fixed in position, although the forces change their

directions in any manner, so as still to continue parallel to

each other.

There exists, then, a certain point in every rigid body,

through which the diameter of a given system of parallel

forces always passes, whatever be the position of the body
with respect to the forces, providing the same force always

acts on the same corresponding particle.

This point is of great importance in Mechanical Investi-

gations, and has been called The Centre of Parallel

Forces.

67. If the centre of parallel forces be in the origin O
of co-ordinates, xyz are each = 0, and therefore

S(Fa:) = 0, S(Fy) = 0, S(FZ) = 0.

Hence the moment of any system of parallel forces, with

respect to any plane passing through the centre of parallel

forces, is equal to zero.

The demonstration of Art. 65 fails when SF = 0, as it

ought ; for we know that, in that case, there is no diameter

(Art. 63), and consequently no centre of parallel forces.
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08. A force may be transposed parallel to itself, by the

introduction of a couple in a plane parallel t

Let F be a force acting at the point A (Fig.

suppose P the point to which F is to be transposed. At 1*

apply two forces F, and F, each equal and parallel to F ;

they will not disturb the body (Art. 14). The single \\

juently be considered as equivalent to the three

F, - F, and F,, of which (F, F) form a couple, which

may be transposed any where parallel to its own plane,

and the latter F
t

is nothing else than the original force F

transposed to P.

69. Since the moment of the introduced couple ~- I* /

ndicular distance between AF and PF,, and that this

moment is positive or negative, according as P lies :

right or left of A, we can, by transposition of a force to a

proper position, introduce either a positive or n

couple, of any proposed magnitude, by vary in L: the per-

pendicular distance between PI 4

'

and AF.

70. If the plane of a couple be parallel to the direction

of any force, they may always be red need to a single

equivalent for

Let F be the given force acting at a (Fig. 23), and

(S, S) the given couple, whose arm is AB. Change it

into another, whose forces (/, /) shall each be e.pial to F.

and let its arm h" equal ti

.-./.o6 = S. \l> Art. 54).

Now turn the couple (/, /), round its axis (Art. 53),

till its forces are both parallel to nV, which may be

tin- plane of the eonpl.- is parallel to F; and then

! parallel to itocl
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figure. Then, because F and /are equal and opposite,

they may be removed (Art. 14), and there only remains the

single force /, acting at b, which is, consequently, the

resultant of the proposed couple and single force.

71. If from a point two straight lines be drawn parallel

and equal to the axes of two couples, and completed into a

parallelogram, the diagonal will be the axis of a couple

equivalent to them both.

Let L and M be the moments of two couples ;
and in the

line of intersection of their planes take AB (Fig. 24), of any

convenient length, and reduce the couples to others (F, F)

and (fy /) in the same planes respectively, having the

common arm AB (Arts. 53, 54) ;

/. F.AB=L, and/.AB = M.

Take AF, -- FB, each equal to the axis of the couple

(F, F) ; and A/, /B, each equal to that of the other

couple; and complete the parallelograms, and draw the

diagonals AR, BR, as in the figure.

Then, since AF, A/ are equal to the axes of the two

couples, they represent their moments
;

/. AF: A/:: L : M,

::F.AB:/. AB,

:: F :/;

that is, they are proportional to the forces F,/, and therefore

(Art. 29) AR is proportional to their resultant (R), and it

represents it in direction also. Similarly, BR is proportional

to, and represents in direction, the resultant
( R) of F

and /. From the equality of the parallelograms FA/,

FB/, it is manifest that the angle FAR = angle FBR, and



therefore AR is parallel to BR ; consequently RABR is

the plane of the resultant couple (R, H >. And since AB
is at right angles to AF and A/, it is at right angles to t he-

ptane FA/, and therefore to AR
; similarly, it is at

angles to BR ; and therefore AB is the arm of the resultant

couple. Its moment is R . AB ; which denote by G.

Now from the triangle AFR we h

AF: A/: AR::F:/:R,

:: F. AB:/. AB : R Aii.

::L:M:G.

Consequently AR is equal to the axis of the resultant

coHple G, and RABR is its plane. But if lines be drawn, as

in the enunciation of the proposition, they will be respect-

ively equal and perpendicular to the lines AF, A/, AR ; and

will consequently form the two sides and diagonal of a pa-

rallelogram, the sides being the axes of the component

couples, and the diagonal that of their resultant.

T'J. If be the angle between the planes of the two

couples, we shall 1 .

?LM^ ^ ^ *

G2 = La
4- 3LM + cos

ft 4- M''.
4

. in the triangle AFR,

AR2 = AF2 - 2AF . FRcos AFR 4- FR,
= AF - 2AF . A/ cos (*

- FA/) 4- A/*,

= AF2 - 2AF . A/ cos (w - *) + A/*,

= AF2 + 2AF.A/co8f + A/*;

I. Ht it has been sh. -wn. th.it \l\ \/. \K. i

represent L, M, G, ami therrf.

M'.
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73. The iiK^t useful case of the composition and resolu-

tion of couples, is when the component couples are situated

in planes at right angles to each other. Let 6 be the angle

between the planes of the couples L and G; then, on re-

fering to Fig. 24, and supposing the angle FA/ a right

angle, we have

\F = AR cos 0, andA/= AR cos (90
-

0) = AR sin 9,

and therefore L = G cos 0,

and M = G sin 0.

By these two formula we may resolve a proposed couple

G into two other couples, situated in planes at right angles

to each other. But if the components L and M are given,

the resultant couple will be determined in magnitude and

position from the two equations,

G2 = G2 cos2 + G2 sin2

= L2 + M2
;

G sin 9 M
tan 9 = ~-^ ^.G cos 9 L

74. Hence any proposed couple G can be resolved into

two other couples, the one situated in a plane parallel, and

the other in a plane perpendicular, to a given line. And if

9 be the inclination of the given line to the plane of the

proposed couple, the moments of the component couples are

respectively,

Gcos0, and G sin 9.

75. If from a point three straight lines be drawn,

respectively parallel and equal to the axes of three couples,

and completed into a parallelepiped, the diagonal drawn from

the same point will represent the axis of a couple which is

equivalent to thorn all.



Let AB, AC, AD (Fig. 25) be respectively equal and

parallel to the axes of three QOttpfegj complete them into a

parallelepiped, and draw the diagonal AE. Join DE, AN.

Then, by Art. 71, the couples whose axes are parallel to

AC, AB, are equivalent to one wh is AN ; and thi^

and the couple whose axis is parallel to AD, are equivalent

to one whose axis is AE; hence AE is parallel and equal

to the axis of the resultant couple.

76. The most useful case of the last article is, when the

planes of the three couples are mutually at riizht an/

The parallelepiped CEBD then becomes rectangular ;

and the lines AB, AC, AD, AE, being at right angles

to the planes of the couples (Art. 52), will be mutually

inclined to each other, in the same angles at which

the planes of the couples and that of their resultant are

inclined.

Let now L, M, N, denote respectively the moments of

the couples, whose axes are parallel to AB, AC, AD ; and G
that of their resultant, whose a\i< is parallel to AE. X, /LC,

v

the angles which the plane of this couple makes with the

planes of its three components; which will, ivxpivtively, be

equal to the angles at which their axes are inclined ; viz.

the angles EAB, EAC, EAD. Then, as in Art. 33,

AB = AE . cos EAB,
AC = AE.cosEAC .

and AD = AE . cos EAD.

hut AB, AC, AD, AE, rc-pcetively represent the

moments L, M, N, G (Art. 52), and tb

I -~ G cos X,

M = G cos
/LC,

\ -i G cos K
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Which formula' will enable us to resolve a given couple G
into throe other couples, acting parallel to three given rect-

angular pi

77. If the three component couples L, M, and N, be

given to find the magnitude and position of their resultant

G, we must use the formulae

G2 = G2
(cos

2 X + cos2
fi + cos2 v) . . . . (Art. 34),

= (G cos X)
2
-f (G cos M)

2 + (G cos v)
2
,

= L2 + M2 + N2
;

L M N
and cos X =

^,
cos p = -^

, and cos v
g.

78. We come now to determine the resultant of forces

acting upon a rigid body in any directions whatever.

Let Fj, F2 ,
F

3 ,
be the forces, and refering the

body to a system of rectangular co-ordinate axes, \etx
l y^zv

x*y* zv x*y* z& be the co-ordinates of the

respective points on which they act
; a

t /3j yv a^ |32 72 ,

3 ft 7a ^e resPective inclinations of their direc-

tions to the co-ordinate axes of a;, y, z ; X, Y, Zp X2
Y

2
Z

2,

X
3
Y

3
Z

3, their respective rectangular components

(Art. 33), parallel to the same axes.

/. X, = Fj cos a,, Yj = F
1
cos

j3p Z
t
= F

1 cosy,,

X
2

F
2 COSa2>

Y
2
= F

2 cos/32 ,
Z

2
= F

2 cosy2,

X=Fcosa, Y = Fcos3, Z =

Take away the original forces Fp F
2 , . . . . and substi-

tute, instead of them, their rectangular components thus

determined ;
the whole system will then be reduced to three

separate and distinct sets of parallel forces, viz.

Xj, X2 , X3 , .... parallel to the axis of x ;

Y,, Y2 , Y3 , .... parallel to that of y,

and Zp Z
8 ,
Z

3 , .... parallel to that of z.-
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Let P (Fig. 26) be the point in the plane xOy, to which

the force Z, may be transmitted, and at the origin O apply

two forces Z
t
and Zp each parallel and equal to Z

t
; this

force (Art. 69) is then reduced to an equal and parallel force

Z
t acting at the origin, and a couple (Z t , Z

t)
whose arm

is OP ; which, by Art. 73, we may resolve into two couples,

the one in a plane parallel to *Oz, whose moment = Z
l
x

l

(Art. 62), and the other in a plane parallel to yOz, whose

moment = Z^,. If we, in this manner, also resolve Z
2 , Z3,

.... into corresponding equal forces acting at the origin O,

and couples in planes parallel to xOz and yOr, it is manifest

that Zp Z
3>
Z

3
. . . . will be equal to a single force acting

at the origin

= z, + z, + z, + ......
= 2(2),

to a couple in a plane parallel to xQz (Art. 55), whose

moment

= -
2(2*),

and to a second couple in a plane parallel to //O~, whose

moment

4-

B similar method we find tliat the forces Y,, Y2 , Y3

. . are cquivuK'i, :iu
r lt' Torre i!N', actini: at tin'

origin, and to two r.mpl.-,, th-- one in a jhun' parallel l->

/, uhoM' moment = ^(\ 2 ). and the other in a plane

parallel to xOi/ y whose moment = 2 1 > ..nd the forces

\ , X
3

. . . . are er|ni\alent to a U] v\; at

the origin, and to two couples respectively parallel ti the

planes yOar, zOx, whose mon \).
Upon the wl n, it appears that the i^iven forces

1 . are equivalent,
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1st. To three forces SX, SY, SZ, acting at the origin

parallel to the co-ordinate axes; which may be reduced

(Art. 36) to a single force R at the origin, in a direction

making angles a, |3, y with the axes of co-ordinates, such

that

R2 = (SX)
2 + (SY)

2
-f (SZ)

2 ....... (A),

2X SY SZ
and cos a =

-^-, cos/3 = -gr, cosy = -g-
.... (B).

2ndly. To two couples in planes parallel to zOy,
whose moments are 21 (Zy) and --S(Yz); which, by
Art. 55, are equivalent to a single parallel couple, whose

moment

= S(Zy)
-

S(Y*), or S(Zv/ - Y) ;

to two other couples in planes parallel to xQz, whose

moments are S(X^r) and S(Za?), and which may be

reduced to a single parallel couple, whose moment

And to two couples in planes parallel to yOx, whose moments

are 2(Yor) and S(Xy), which, as before, are equivalent to

a single parallel couple, whose moment

-
Xy).

The six couples are thus reduced to three, acting

respectively parallel to the planes zOy, xOz, and yOx,
which are mutually at right angles. If, therefore, G be the

moment of the couple, which is the resultant of these three ;

and X, fi 9
v the inclinations of its plane to their planes, that

is, to the three co-ordinate planes ; also, for brevity, writing

L for

M for S(X^ - Zx),

andNforS(Y#-X?/),
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.we have, I

>y
Art. 77,

G2 = L*+ M2 + N2
: (C),ML N

cos X =
-g, COS/LC

=
, and cos v g . . . . (D).

It appears, then, that any proposed system of forces can

be reduced to a single resultant force acting at the origin,

iN magnitude being determined by the equation (A), and

its direction by equations (B) ; and to a single resultant

couple, whose moment is determined by equation (C), and

the position of its plane by equations (D).

79. Hence any set of forces can either be reduced to a

single resultant, or, at any rate, to two resultant forces.

we have shewn that it can in general be reduced

to a single force R, and a couple ; transpose the couple,

till the direction of one of its forces passes through the

origin, transmit the force to that point, and compound it

with R, which acts at the same point. If the transmitted

force is equal and opposite to R, they may he removed

(Arts. 17, 14), and the set is then reduced to the remaining

force; but if they are not equal and opposite, their resultant

and the remaining force of the couple are the two to which

the system can be reduced.

80. If the resultant R should happen to he parallel to

the plane of the couple G, the system i ;ill further

reduced. For, as < in Art. 70, such a system can he

reduced to a single for I parallel to R, and the

the sole effect of this reduction will l>e i

at which R ft means of these properties we can

investigate the condition, that a system offerees may have a

single resultant, and find the point at which this resultant

M
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Tor the sine of the angle, at which tho direction of R is

inrlsnod to the plane of G, is

cos a cos A 4- cos
j3 cos

ju 4- cos y cos v ;

and, in the case under consideration, this angle, and therefore

its sine, is equal to zero ;

/. = cos a cos A 4- cos /3 cos
ju 4- cos y cos v,

SX L SY M SZ N
:

~R 'G + ~R'G'] TT '0
.'. = LSX 4- MSY + NSZ ..... ____ (2)

is the condition required.

Let, now, O be the origin, and a, b, c be the co-ordinates

of the point P, at which the resultant acts when the forces

satisfy this condition. Then, since the method of investi-

gation of Art. 78 reduces the forces to a resultant force

acting at the origin and to a couple, if the origin had

been at P instead of O, there would be no resultant couple.

Now, by writing x' 4- a, y 4- b, z 4- c, instead of x, y, z

in the equations of Art. 78, we shall obtain the same results

as if we had begun with supposing P the origin ; for this is

nothing else than transposing the origin to P. These

substitutions give us

= S (Zy - Y*') 4- 6SZ - cSY,

or denoting S(Zy'
-

Ys') by L',

L = L' 4- &SZ - c2Y ;

but, in a similar manner, denoting 2 (Xz Z#'), and

S(Ya/
-- X^) by M' and N', and observing that the

moment of the resultant couple must be equal to zero, there

being in fact no couple at all, we have

= L'2
4- M'2

-f N/a
,
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an equation which is equivalent to the three separate and in-

dependent ones,

L' = 0, M' = 0, and N' = 0.

Hence
L=&2Z-cSY;

and, similarly, M = cSX flSZ; > . . - (3).

If the first of these be multiplied by SX, the second by

^ . and the results substituted in the equation of condi-

tion (2), we shall, after a little reduction, obtain the last

equation. Hence it appears, that not more than two of the

equations (3) are independent, and consequently they belong

to a straight line, at any point of which the resultant of the

forces may be supposed to act
;

and therefore (Art. 43)

they are also the equations of the line in which the single

resultant acts.

81. If a line be drawn parallel to the duvet i.n in which

R acts, the orL -ordinaies may be removed from one

point to another of this line, without altering the moment

and the inclination of the resultant couple.

For, remove the origin from O to a point \\ho-

ord mates are a, b, c;

\. \. *2 ,-Y.

M-M' r-v\ ,.

N-N'= VY

, M', N' frit) Utaitl l<>r all values of

a, 6, c, which fulfil the conditions

/>^/ < v>

cSX aSZ _- conni

which |uationsofaliiie parallel to th-

nt to
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another of this line, without altering the moments L', M', N',

and consequently without altering G', the moment of the

resultant couple, since

G'2 = L'2 + M'2 + N' 2
.

82, From Art. 37, it appears, that in all cases where

the forces do not admit of a single resultant, the equations

of the line in which the resultant R acts, when O is the

origin, are

SX
=
SY

=
SZ

' (1) -

Also, the equation of a plane through the origin O,

parallel to the plane in which the resultant couple acts, is

La? + My + N* = . . . . (2) ;

which, taken in conjunction with the two equations

R2 = (SX)2 + (SY)2 + (SZ)
2
,

G2 = L2 + M2 + N2
,

completely determine the magnitudes and positions of the

resultant force and couple to which a set of forces may be

reduced ; and may be used instead of the equations (A),

(B),(C),(D)ofArt. 78.

83. If be the angle between the direction of R and

the plane of the couple G, then

sin $ = cos a cos X + cos
)3

cos p + cos y cos v ;

and, by Art. 73, we may resolve G into two couples ; one

in a plane parallel to R, and the other in a plane at right

angles to R ; the moments of these couples being

G cos 0, and G sin 0, respectively.

It must be observed, that the former of these two planes

is not any plane passing through R, but only that one which

is inclined to the plane of G, in the same angle $ as the line

of the direct ion of R.
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Now when we change the origin of co-ordinates, we intro-

duce a couple (Art. 68), (k suppose) in a plane parallel to the

direction of R, which we may compound with G cos 0, and

their resultant will be a couple also situated in a plane

parallel to the direction of R; and consequently G sin 0,

which is perpendicular to R, is not at all altered by trans-

posing the origin. It is also obvious, that we might

transpose the origin to such a point Q (Art. 69) as to c; ;

k, the introduced couple, to be equal and opposite to G
cos $ ; and, in this case, the only remaining couple is

( ' Mn0, or

G (cos a cos A + cos
)3 cos p -f cos y cos v),

L2X + MSY 4- NX/
-IT-

and it is evident, that this is the least possible resultant

couple ; call it K. Then, when Q is the origin, the forces F
lf

F
2

. . . . are reducible to a resultant R acting at Q, and to a

Itant couple K in a plane at right angles to the direction

of R. This is the most simple reduction of the proposed

forces, and on this account Q is called the Principal

Origin : and as this origin may be at any point in the Line

parallel to the direction of R pa^in^ through Q, such a

line is called the Central Axis; and the couple K the

Principal Couple.

84. To find the equation of the central ;:\

Let a, by c be the co-ordinates of Q any point in this

line, an I remove the origin to Q, by writing x' + a, y' -f b,

J + c, t- , as in Art. 80;

/. L = L' f

\ Y
i
'.^
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But since K is the resultant in this case, and the angles

which the plane of K makes with the co-ordinate planes

are a, /3, 7, for it is perpendicular to the direction of R
(Art. 83),

/. L' = K cos a, M' = K cos
J3,

N' =K cos r,

orI/, If, N' =
XV JV

consequently, the equations of the central axis are any two

of the throe

&SZ-cSY = L-*|5,iv

cSX-aSZ=M-^,
= N _K2Z

85. If the original origin should happen to be the

principal origin, then a, b, c are each equal to zero, and

M =
J.2Y,

M N

equations which are satisfied whenever the origin of co-

ordinates happens to be a point in the central axis.

86. If it were required that the resultant should pass

through a given point, we must transpose the origin of co-

ordinates to that point, as in Art. 80.

87. To find locus of all the origins which give resultant

couples of equal momenK
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Take Q the principal origin tor the origin of co-ordinates;

and transpose the origin, as in Art. 68, from Q to any point

P, at tin* (i
/>
from the central axis. This will intro-

a couple, whose. moment is Up (Art. <>
(

.h, and whoso

plane is parallel to the direction of R, and, in this case,

at right angles to the plane of K. Consequently, the

moment of the couple which is compounded of R/> and K
which is therefore the resultant couple

when P is the origin. Now we observe, that K and R are

unchangeable, and consequently this moment is the same

for all resultant couples corresponding to origins at the

di>tanee
/>

from the central axis; such a series of origins

will evidently form a cylindrical surface, having the central

for its

vx In the general problem of Art. 78, if it should

happen that R = 0, an equation which is equivalent to

the t!

SX - 0, SY - 0, SZ = 0,

equal i !' Art. 80 is then satisfied, and it would thence

appear, that the forces would admit of a single resultant,

which i< evidently not the c;t the resultant i> a

couple. This- apparent contradiction, ho\\o\vr, may be

removed by obsemni:. that the real condition to be >atUtied

in the Article referred to, is

cos a co >s
/3

cos p 4- <
%os y cos v = 0,

I.
vY M SZ N

TT-5+TT-G+ If

which is i -d, althoti-h the

I -\ + MSY -f- N^X =
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There* cannot lu an equilibrium in this case, since,

although R is evanescent, there yet remains a couple which

will cause the body to have a tendency to rotatory motion.

Equation (2), therefore, in Art. 80, though it is in general

the equation of condition that a force and a couple may
admit of being reduced to a single force, does not hold

good in the case under consideration ; the proper equation

being (1).

We come now to investigate the conditions of equilibrium

of forces acting on a rigid body, and for the sake of dis-

tinctness we shall consider the rigid body ;

1st. As having a fixed point.

2ndly. As having a fixed axis.

Srdly. As'being perfectly free.

89. To determine the conditions of equilibrium of a

rigid body, having a fixed point.

Since one point of the rigid body is fixed, we may
determine the conditions of equilibrium by transposing the

origin to that point.

Let a, b y c be the co-ordinates of the fixed point, trans-

pose the origin, as in Art. 80 ; the effect of this will be to

change the resultant couple into another G', such that

G'2 = L' 2
-f M'2 + N'*.

But there cannot be an equilibrium unless this couple

vanishes, for so long as it exists, it will produce a tendency
to rotatory motion round the fixed point ;

/. G' = 0,

an equation which is equivalent to the three

L' = 0, M' = 0, N' = 0.
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Consequently, as in the article referred to, the three

equations of condition are

L =
(A).

L = b2Z - cSY,
1

M = c2X - aSZ, I ...

N=aSY-fcSX. J

These equations are sufficient for equilibrium, for when

they are satisfied

L' = 0, M' = 0, N' = 0,

and therefore the couple G' vanishes, and the forces are

reduced to the force R acting at the fixed point, which, of

course, produces no effect upon the rigid body.

If the fixed point be at the origin of co-ordinates,

a, b, c are each equal to zero, and the conditions of equi-

librium are

L = 0, M = 0, N = 0.

90. To find the conditions of equilibrium of a rigid body,

supposing it to have a fixed axis.

Let a, b, c be the co-ordinates of a known point P in

the axis, O being the origin ; 0, x , ^ the angles which it

makes with the co-ordinate axis ; then its equations arc

x a _ y b _z c.

cos
<p

~~

cosx
~

cos;/,

'

and remove the origin from O to P, by writing x+a, y+b,
2! + c, for x, y t z, as in Art. 80 ;

then the equations of the

axis become

cos
4>

cos x cos
\//

'

and the forces the body are equivalent to u

1 acting at P, and to a couple G' ; such that

R' = (SX) 4- (SY) + (3BZ),

and G'' = L/a
\- M* + N

i
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and the angles X', /', v ', which the plane of this couple

makes with the co-ordinate planes, are determined from the

equations

v L'
,

M' N'
cos A =

r,, cos^t ==
r7, cos*' = >.

Now the force R, acting at a point in the fixed axis, will

produce no effect, being entirely resisted by it
;

and the

couple G' may be resolved (Art. 74) into two other

couples, the one in a plane parallel to the fixed axis, whose

moment is equal to G' cos 0, being the inclination of the

fixed axis to the plane of G7

; and the other, whose moment

is equal to G' sin 0, or

G' (cos $ cos X' + cos x cos
fjL + cos \t/ cos v'),

in a plane at right angles to the fixed axis. The former of

these, being transposed into a plane passing through the

fixed axis, will be wholly resisted by it, and the latter will

be wholly effective in turning the body round the axis ;

there cannot therefore be an equilibrium, unless this couple

yanish, and if it vanish, there will necessarily be an

equilibrium. Hence the only condition of equilibrium of a

rigid body having a fixed axis, is

= G' (cos ^ cos X' 4- cos ^ cos p -f cos
-fy

cos
>'),

= L' . cos $ -h M' . cos x 4- N' . cos ^/,

or

= L cos 4-M cos x -fN cos
if/ -f (cSY &SZ) cos

by substituting for L', M', N' their respective values,

L



REMARK. The condition expressed by the equation (B)

is, that the moment of all the forces round the tixed axis is

equal to zero. The proof of this we shall reserve for the

next chapter, (see Art. 100).

91. To find the condition of equilibrium of a body acted

upon any forces, supposing it free.

In this case both R and G must be evanescent, which

conditions are equivalent to the six independent conditions,

2X = 0,

SY = 0,

^I ; }....<c>.
M ^o!
N = 0,

And when these are satisfied, R and G are each evan-

eicent ;
and there is no tendency to a motion, either of

Translation or of Rotation ; and, consequently, there is a

complete equilibrium. And they are all necessary to

equilibrium, for if they are not all satisfied, then either R or

G will exi>t, and there will be a corresponding tendency to

M, either of Translation or of Rotation.

The six equations (C), since they are necessary and

sufficient f<>r equilibrium, (that is, there cannot be an equili-

brium unless they are xati-fied, and when they are satisfied

there must be an equilibrium), are taken as the criteria of

equilibrium of any forces acting on a free rigid body.
The tir-t three provide, that there shall be no motion from

place to place ; and the other three, that there shall be no

rotation or angular motion round any a\k

I HI ((') of la-t article heiuij applied

Art. 90, we find that the c.-ixl
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expressed by it, is satisfied independently of the values of

^, X, ^ > a > b9 c ; and, consequently, when the conditions

M = 0,

N = 0,

are satisfied, there is an equilibrium about any axis whatever.

And, consequently, when a free body is in equilibrium, we

may introduce any axis in any position, and the equation of

condition of equilibrium about that axis will be satisfied ;

and, conversely, it must be satisfied, or there will not be an

equilibrium. Consequently, ifa rigid body be in equilibrium,

the moment of the forces acting on it, about any axis

whatever, must be equal to zero, a property which will be

found extremely useful in a subsequent chapter, in the

solution of Mechanical Problems of equilibrium.



CHAPTER III

ON THE THEORY OF MOMENTS.

THE great importance of the moments offerees in the solu-

tions of Statical Problems will have been already apparent,

from its frequent occurrence in the preceding Theory. We
shall therefore, in the present chapter, lay before the reader

some of the most important theorems on the subject.

93. To find the moment of a force about a given axis.

Let F, the proposed force, act at the point C (Fig. 27) of

a rigid body, which has a fixed axis AB. At P any point in

AH. apply a force F, equal and parallel to the force F, so

as to form a couple (F, F). Then the moment ofthe force

V about the axis AB is equal to zero, because it acts at

a point in the axis ; and hence the moment of F aboutAB
= moment of F about AB

-\- moment of - I
1

'

about AB,

= moment of the couple (F, -* F) about AB.

Now tin-
efficiflOCy Of couple is measured by its moment

(Art. 57).

Therefore tin 4 moment of F about AH measures the efli-

eienry of the K. F) about AB. But. in ordei

the c<>ii| |i I I abo'il XT.
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let the moment of (F, F) be denoted by G, and the

angle between the plane of G, and the axis AB by ; and

resolve the couple (F, F) into two couples, the one in a

plane parallel to the axis AB, whose moment, by Art. 74,

will be G cos 0, and the other in a plane at right angles to

AB, whose moment is G sin 0. The former of these

couples, acting in a plane parallel to the axis, may be

transposed parallel to itself, and then turned round till its

arm coincides with the arm AB ; and then its two forces,

acting at two points in the fixed axis AB, can have no

tendency to turn the body round AB
; and, in fact, will

produce no effect at all upon the body. Consequently the

moment of F about AB, which measures the efficiency of

(F, F), and therefore also the efficiency of the compo-
nents of (F, F) measures that of the only efficient

component, viz. the one acting in a plane at right angles to

AB ; but this efficiency is also measured by G sin 0, because

its plane is perpendicular to AB ;

.*. moment of F = G sin
<J>.

It appears then, that to find the moment of a force about

an axis, we must form it into a couple, by applying an

equal and parallel force in the contrary direction at any

point of the axis, and then the moment of that component of

this couple, which acts in a plane at right angles to the

given axis, will be equal to the moment of the proposed

force.

94. To find the moment of any forces, acting on a rigid

body about a fixed axis, passing through the origin of

co-ordinates.

Apply at the origin for each force an equal one parallel
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to it and in the opposite direction; this process will transform

the forces into couples, as in the last article, which will be

identical with those introduced in Art. 78, by transposing

the original forces to the origin. Then (using the notation

of Art. 78) the moment of the resultant of these couples

is G, and acts in a plane, making angles X, /K, v with

the co-ordinate axes. Now denote the angles which the

given fixed axis makes with the co-ordinate axes, by 0, x> i//;

then the sine of the angle between this axis and the plane

of G, is

COS X COS $ -f COS
fJL

COS x 4- COS v COS
I//,

and consequently the moment of the forces about the given

axis, which is equal to the moment of that component of G
which is at right angles to the axis, is equal to

G (cos X cos $ -t- cos p cos x + cos v cos
i/,),

= L cos $ -f M cos x 4- N cos
i//.

95. The moment of the forces about the axis ofa:, is e< pial

to that component of G, which is in a plane at ri^ht audit's

to the axis of x = G cosX = L. In like manner the

nts about the axes of y and z, are M and N rc-

.e]y.

CosXcOS^ + COS//COS X + COS v COS ^ is the

of the anjjle between the nivcn axis' and the ;i\i* of (..

: iTodurt of a moment into the eo.sine of the

M its axes and any given a died the pn.
:

of lite moment upon that axiv 1 1 !
>

. < .

i- fh- projection of(r npon the axis of Jj and so M, N arc

upon tl:
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Also L cos
^>,
M cos x> N cos ^ are the projections of

L, M, N upon the given fixed axis, consequently the

moment of a system of forces round an axis passing through

the origin of co-ordinates, is equal to the sum of the

projections of their moments about the co-ordinate axes

upon that axis.

97. Of all axes passing through the origin to find that

about which the moment is the greatest.

Since the moment round any axis is equal to the

projection of G upon the axis, it will be the greatest

possible when that projection is equal to G, or when the

axis of G is parallel to the fixed axis. In this case the

fixed axis makes angles X, p, v with the co-ordinate axes,

and is at right angles to the plane of G.

98. The moment of the forces about any axis through

the origin, at right angles to the axis of greatest moment, is

equal to zero.

For the moment about any such axis is equal to the pro-

jection of G upon it

= Gcos90 = 0.

99. The moment of the forces is the same round all axes

through the origin, which are equally inclined to the axis of

greatest moment, and which, therefore, form about it a

conical surface, having its vertex in the origin of co-

ordinates.

For the projection of G upon any axis of this kind is

equal to G . cos of the angle, at which the axis in inclined

to the axis of greatest moment, and is therefore constant.



100. To find the moment of the forces round any axis

which does not pass through the origin of co-ordinates.

Use the notation of Art. 80, then the moment of the forces

about the izivon axis is equal to

L' cos -f M' cos x + N' cos
i//

= (L+ CSY-6SZ) cos0

-f (M + aSZ - cSX) cos x

-f (N f 6SX - a2Y) cos ^,

= L cos 4- M cos x -f N cos
\^

+ (c2Y - &2Z) cos

- cSX) cos x

101. The moment of any forces about an axis is equal

to the moment of tlu-ir ivsultant force and couple about the

same a\k

r, usinij the notation of last article, the moment of R,

or, which is the same, the sum of the moments of 2\, ^Y,

I/ round the a\i-

/ v V Avy f}\
< 2. t 'i2.fi \*/>

the sum of their moments round tli^ axis of y is

\ /*

and round th;i

I I-'iieo the moment of K round the i;iven axis, which i*

equal to the sum of the j.rojec-tions of the monuMi:

upon thv

N' - btt) cos^ 4- (aSZ cSX) cos x

I



The moment of the couple G, about the same axis, is

found in like manner to be

L cos $ + M cos x 4- N cos
;//.

The sum of these two is equal to the moment of the

forces about the given axis, as is evident by comparing the

sum with the expression in last article for the moment of

the forces.

102. In all cases where there is no resultant couple, the

moment of the forces is equal to the moment of their

resultant.

103. The reasoning of Art. 97 being true of any origin,

it appears that there is an axis of maximum moment cor-

responding to every point that may be taken as the origin of

co-ordinates ; now it is proposed to find where the origin

of co-ordinates must be situated, that the corresponding

maximum moment may be less than the maximum moment

corresponding to any other origin.

It appears, from the article just mentioned, that the max-

imum moment for any origin is equal to the moment of the

resultant couple corresponding to it. Hence, then, the origin

which gives the least resultant couple will be the one

required. It is, in fact, the principal origin mentioned in

Art. 83, and the axis required is the central axis, whose

position is determined in Art. 84.

104. It will at once be evident, from the general method

of reasoning on the subject of moments, and from the

observation of Art. 87, that the maximum moment is the

same for all origins situated in a cylindrical surface whose

axis is the central axis.



CHAPTER IV

ON THI: PRINCIPLE or VIRTUAL VELOCITIES.

105. WE conceive of matter that it can move with any

degree of quickness or slowness ; and, in speaking of the

precise degree of quickness or slowness, we use the term

velocity as its measure. The velocity of a body when

moving at a constant rate of motion, is the length of the path

it describes in a given standard unit oftime, the length being

expressed in standard units of length. In common trans-

actions the unit of time most generally employed, is an hour,

and the unit of length a mile ; thus we say, a coach travels at

the rate of eight miles an hour. If these units of time and

length were universally employed in speaking of motion, it

would be sufficient, in the instance just mentioned, to say,

the velocity of the coach is S. As these units are not

however in universal use, most English writers on the

theory of Mechanics, have agreed to take a foot and a

/ as the unit of length and time
;

an agreement which

will he observed in thi< tre.r

Three [a niie observation \\ith respect to the

'

a l.ody. \shich (for the rii:h! understandini: of

riftciple which i< the main .-I o M sideration in
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fhis chapter) it is of great importance* should be made.

When it is said that a coach travels at the rate of eight

miles an hour, it is not necessary that the coach should

actually travel so far as eight miles ; the rate has nothing to

do with the actual distance travelled
;

if the coach pass by
^ce it only for an instant, we say that it is going

at the r j!tt miles an hour, meaning, that if it were

to continue travelling without altering its speed, it would

have proceeded eight miles at the end of an hour. Hence,

though the motion of a body continue but for an instant, it

may have moved with the same velocity as if it had

travelled for an hour. Sometimes the rate of a body's

motion is continually changing, in which case we speak of

its velocity at different points of its path; and the velocity

at any proposed point is, how many feet it would proceed
in a second if the rate were not to be changed during that

time. In this sense we speak, in the present chapter, of

the velocity with which a body begins to move
; but the

body is not supposed actually to move through a finite

space, but merely through a space so small that it can only

be said to have begun to move.

107. Having given the velocity of a body in one direc-

tion, to find its velocity in any other direction.

Let AB (Fig. 28) represent the velocity and direction of

the body's motion
; EF the direction in which we are to

estimate its velocity. Draw EG at right angles to EF;
Aa, Bb parallel to EF, and AC parallel EG. Then every

line perpendicular to EG in the plane FEG is parallel to,

and therefore in the same direction as EF. Hence, to find

the velocity of the body in the direction EF is the same

as to find the velocity with which it recedes from the line

EG ;
which is further evident, from the consideration that
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the body can only recede from the line K( > . by increasim;

its distance from it, ami every such increase of distance

arises from motion parallel to, and therefore in the di-

rection of EF.

Now at A the body's distance from K(i is a\. and at

the end of one second, \vhen the body is at B, its distance is

bB ; consequently, in one second, the body has receded from

E(j, through the space />B a\ ; that is, the velocity of

the body in the direction EF is bB A.

Let v be the actual velocity of the body, the quantity

which is represented by AB; and let he the an;le at

which AB is inclined to the direction EF, in which we

are to estimate v ; then the velocity in the direction EF
= bB-aA.
= bB- bC,

= <

r AB cos ABC,
= V COS 0.

II i estimate a body's velocity, in any proposed

direction, by multiplying it by the cosine of the angle of

inclination.

Hence the velocity in a direction at ri^ht angles (

AB
= v cos 90 = 0.

Hi'.). h' a rii:id body move in any manner, the motion

at any instant takes place about an imaginary fixed a\i>.

_r. 29) be any two particles of a

y ; Aflf, Bb the palhs the\ describe in the N
. m , irixianl ;

P>Qthe oenl urrature of tbete paths; then the line

joiniim I'C^ will be the axis about which the \vh.>le body
turns durini: the instant that A takes to pa^ to

ft,
and B to b.
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I'or it' the successive contemporaneous positions of A and

B be joined, while passing from A to a, and from B to b, the

joining lines will form a species of conical surface ; and since,

by reason of the rigidity of the body, they are all of the

same length, the planes APa, BQ6, in which lie the curves

Aa, B6, formed by their extremities, must be parallel. Now
since A by turning round P describes the angle APa, in

the same time that B by turning round Q describes the

angle BQ&, the figure APQB in the same time turns

round PQ, and comes into the position aPQ6, (for AP = aP,

and BQ = Z>Q, because P and Q are the centres of curva-

ture of Aa, Bi). Consequently every particle of the body
situated in the line AB turns round the axis PQ.

Since, then, APa, BQ are the planes of motion of the

particles A, B; and these motions have been shewn to

take place about PQ ; PQ must be at right angles to those

planes. In like manner, if the motion of any other particle

C takes place about the point R, PR must be at right angles

to the planes of motion, APa, CRc ; hence both PQ and

PR are perpendicular to APa, which is impossible (Eucl.

xi. 13) unless they coincide
; in which case R is a point

in PQ, and the motion of C takes place about PQ : and

since C is any particle, therefore the motion of the whole

body takes place round PQ. Wherefore, at the instant the

body was in the first position ABC, its motion was about PQ.
The line PQ, whose existence is here determined, is that

which, in Dynamics, is called the axis of instantaneous

rotation.

1 10. When a body moves with the uniform velocity r

during t seconds, the length (s) of the path described is tv.

For, by the definition ofvelocity (Art. 105), v is the length
of the path described in one second ; and since the motion is
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uniform, an equal length will be described in every succeed-

ing second, therefore the whole space s = tv. The same

equation holds if t be not an exact number of seconds, but

contain a fraction of a second; for the motion being uniform,

in half a second the space will be $v, in a quarter it will be

#, and so on.

111. When the motion of a body is not uniform, but

varies continually, then v = d
t
s ; v being the velocity at

the time t when the body has just described the space s.

For suppose the motion to continue for the additional

time St, at which moment let its velocity be v -f $v, and

the whole space described s 4- $s. Then the space $s has

been described in the time &, with the velocities varying

between v and v + $v.

If the velocity had been uniform and equal to t? during

the time $t, the space described would have been roV, by
.rticle

;
but if it had been uniform and equal to v<+$v,

the other extreme, the space described would have been

(t> -f 8w) St. Wherefore, v and v 4- $v being the extremes

of velocity, it is manifest that the extreme spaces which

could be described in the time cf, are v$t, and (y -f $v) t
;

the one beini: Lrreater and the other less than the actual

space os ; seeing, then, that r\ mu>t always of necessity lie

between the t\so quantities just mentioned, it follows,

by dividing ly cf, that K nlu-nyx lie., ltd wren rand v+ $v.

Now these latter quantities approach to\\anU equality, the

limit being v; and the quantity approaches to

its limit ; wh units mi, :al.
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When a body turns unilbnnly round an axis., the

angle through which it turns, in one second of time, is

called its angular velocity. The velocity defined in Art. 105

is sometimes called linear velocity, to distinguish it from the

velocity defined in this article.

113. The connection between the angular (w) and linear

velocity (y) of a particle, is expressed by the equation

v = tap;

p being the distance of the particle from the axis of rota-

tion.

For the particle moves in a circle whose radius is p, and

circumference 2pir ; and if t be the time (number of seconds)

of turning once round, then

tv 2p-rr;

for since v is the length of the path described in one second,

tv must be the length described in t seconds.

Again, since w is the angle described in one second, tw

must be the angle described in t seconds
; but the angle

described in t seconds is 2?r,

/. 2-n- = ta,

.'. tv ptw,

. . V = pa.

It must be observed, that it is not necessary the body
should actually move during one second, in order that this

equation may hold
; it will be equally true, if v and w be

the linear and angular velocities with which the particle

begins to move. (See Art. 106).

114. When a body begins to turn round an axis, the

direction in which any one of its particles begins to move is

that of a tangent to the circle which it begins to describe.



For a tangent to a circle is a line which passes through

two adjacent points of its circumference, and therefore a

particle, in passing from the first of these points to the

second, must move along the tangent.

115. The vlrt it'll velocity of a body acted on by a force,

i> its velocity estimated in the direction in which the force

acts.

116. If a particle be restrained by a rod or a cord, so

that it can only move in the circumference of a circle, of

which the rod or the cord is the radius
;

the initial virtual

velocity of the particle, with regard to the restraining force

which the rod or cord exerts upon it, is equal to zero.

For the particle begins to move in the direction of a

tangent (Art. 114) to the circle, and therefore in a direction

at right angles to the radius, which is that in which the

restraining force acts. Hence the virtual velocity 0,

Art. 108.

117. If a body rest against a smooth curve or surface,

tin- iv- train ing force of the curve or surface acts in the

direction of a normal at the point against which it rests.

The demonstration of this pr<perl\ is very little more

than an explanation of llie w.>rd smooth. By a smooth

ft or >iirtaee, we mean, one that can ofier no impediment

be mot inn of a body aloni: it. Now it' the restrainini:

rL'ht angles to the curve or sur!'.

I'-t it art in a direction making an anizle with it : and let

V 1 hide of the n straining force; thru, by

fed part of I' in the direction of a tangent

=: F 00t4
L
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which can only be counteracted by an equal action of the

curve or surface in the opposite direction.

Consequently the surface exerts a force F cos 9 to impede
the motion of a body along it, which is impossible, by the

definition of the word smooth.

.'. F cos = 0,

.'. cos = 0,

that is, the restraining force acts at right angels, and

therefore in the direction of a normal, to the curve or

surface.

118. Let a body rest against the point P (Fig. 30)

of a curve AB, and let PQ be the radius of curvature

at P; then when a body moves from P along the curve,

it begins to move in the circumference of a circle whose

centre is Q, and therefore its initial motion is in the

direction of a tangent at P, and consequently at right

angles to QP ; consequently the virtual velocity (in the

direction QP)

= (velocity of P along tangent at P) . cos
| (Art. 107) ;

= 0.

1 19. If a system of rigid bodies, connected by hinges,

inextensible rods or stretched cords, be in equilibrium, and

the equilibrium be disturbed by any cause whatever, in a

manner consistent with the connection of the parts of the

system ; that is, so that nothing be broken, that the cords

continue stretched, and that such bodies as rested against
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fixed points, curves or surfaces, still continue to rest against

them, the equation

*>i 4- Fa
t>
a -f F3

t<
3 -f . . . + P.*. =

is satisfied ; F,, F
2 , F3 , . . . . Fn being the forces acting

on the system, and v
l9

vv v
3

. . . . vn, the virtual veloci-

ties at the very beginning of the motion of the particles on

which the forces respectively act. Those virtual velocities

which take place in a direction opposite to that in which

the corresponding forces act, are to be accounted negative.

This is the Principle of Virtual Velocities.

For the sake of clearness we shall call the bodies of the

system A, B, C L, and suppose that there are

n of them.

Let F, (Fig. 31) be the force which acts on the particle P
of the rigid body A ; and when the disturbance takes place,

let MN be the axis about which A begins to revolve.

Draw qp perpendicular to PF, and MN ; and through it

draw a plane at right angles to MN, in which draw pf

perpendicular toqp; pfwill be a tangent to the circle which

f describes, and therefore the direction (Art. 114) in

which/? begins to move. Let 9 = the angle fp'F l
; then,

forming Fl
into a couple, according to Art. 93, by applying

a force at y, its moment will be F, . qp9 and the component

of this, which is situated in the plane fjxj (by Art. 74), is

F, . qp . cos 0,

which is therefore the moment of F
l
about MN. Now if w

be the initial angular velocity of the body about MN, the

initial linear velocity of p will bi 1

equal to

W>.u (Art. 11

and will take ]>hi(v in the din (Art. 114). Now,
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because P and p are situated in the line in which the

force Fj acts, the virtual velocity of P = that ofp, otherwise

the distance Pp would not be invariable, and the body

would not be rigid. Hence

v^
= the virtual velocity of P

= velocity of p in the direction pYl

= (velocity ofp in the direction^/'), cos Z^fpY^

= qp . u . cos O t

.'. qp.cosO = -\

Hence the moment of Fj about MN F,
-1

.

Similarly, the moments of F
2, F3

. . . ., the other forces

which act on A, are respectively F
2
-2

, F
3 -?.

Amongst the forces F
t,
F2, F3

. . . . here mentioned as

acting on A, we include those which the other bodies exert

on it through the medium of the connecting parts of the

system, for these forces help to keep A in equilibrium,

Therefore, by Art. 92, the sum of the moments of all the

forces acting on A, is equal to zero ; that is,

w

and /. FlVl + F
2
v
2 + F

3
y
3
4- . . . . = . . ; . (1).

In like manner, if F
r, F^ ...... be the forces acting

on B, then

,vr + FH-IIVH + =0.... (2).

And F,, FJ+,, .... being those which act on C, we have

and so on for the other bodies of the system. Adding



( 'ther the n equations thus formed v\e have, includiiii: all

the forces in the system,

j
+ F

2r., -f F3
#
3
4- .... 4- FM

r
M
= :

or, more briefly, 2(Fi?) = .... (a).

Now, because there is an equilibrium before the disturb-

ance, the forces which B, C, D . . . . L respectively exert

on A, are exactly counterbalanced by, and therefore equal

to those which A exerts on them; equation (1) therefore

contains (n I ) terms, belonging to the respective actions

of B, C, D . . . . L on A ; and, similarly, equations (2),

(3), (4) .... (n) contain one term each for the action of

A on B, C, D L, respectively; those in (1) are

ectively equal to those which correspond to them in

(2), (3), (4) . . . . (n) with contrary signs, so that in the

addition made to obtain (a) they all disappear. The equality

of the corresponding terms may be thus shewn. It has just

been proved, that the force which A exerts on B is equal

and opposite to that which B exerts on A ; and, because

that which connects A with B remains of unvariable length,

if the virtual velocity of that point of A where B's action is

communicated to it, be positive, the virtual velocity of that

point of B, where A's action is communicated to it, must be

equal to it and negative, and conversely. Hence, in adding

(1) and (2) together, the actions of A and B on each other

entirely disappear ; in adding the other equations, the whole

of A's action on the rest of the -y-lcni disappears. In the

same way it may be shewn, that the mutual actions of all the

bodies disappear in the addition math' to obtain (a). But

of the system bo at all connected with fixed

'f hinges, rods, or cords, or if they rest on

points, curves, ,,r Mirfaccs, their action will not disappear by

Illation
:
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cause, viz. because the virtual velocities corresponding to

them are equal to zero (Art. 116). Hence, then, equation

(a) contains no mutual forces, arising from the actions of the

parts of the system against each other ; and no actions of

fixed points, curves, or surfaces, nor of rods, nor stretched

cords, fastened so as to have one end unconnected with the

system. In this state it constitutes what is called the

principle of virtual velocities*



CHAPTER V,

ON THE CENTRE OF GRAVITY.

120. We have hitherto supposed matter to be devoid of

tendencies of every kind, and ready to pay undivided

obedience to any influence of the nature of force that might
be impressed upon it It is found, however, that all ter-

rial bodies have a constant tendency towards the earth,

and as, in practical Mechanics, we are chiefly concerned

with bodies subject to this influence, it becomes absolutely

necessary to take it into account. In order, however,

that we may do this in the most convenient manner, it

will be necessary to establish some properties of a certain

point, called the Centre of Gravity, which exists in every

1 body; and to ]>oint out, and illustrate by examples,
the various methods which have been employed for the

determination of that point in bodies of different forms.

121. It is found by observation to be a general fact,

that all matter has a natural tendeney to coin.' tu^etlier. and

to form one mas-
iiicntly, that different porti

>!' I'

kept uMimlrr Pfhiofa is

of counterbalancing this tend-',
_.

. \\ are not
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concerned to inquire into the nature and essence of the

cause of this universal tendency in matter, it is sufficient for

us to know, that since it produces motion in matter, it is a

force.

The force of Gravity is that particular force which

causes the tendency of every body towards the earth.

The Weight of a body is the tendency of it towards the

earth, as compared with the tendency of another body taken

as a standard ; and is distinct from heaviness or gravity,

which is its absolute tendency to the earth, no comparison

being made with the tendency of other bodies. Weight is,

in fact, the measure of heaviness.

122. With regard to the force of gravity, we observe

that it penetrates the innermost parts of bodies, and acts

equally upon every part. For we know, by experiment,

that under the exhausted receiver of an air pump, bodies of

unequal magnitudes, and altogether differing in form and

kind, such as a ball of lead, a shilling, a feather, a shapeless

piece of wood, or a particle of dust, fall from the top to the

bottom of the receiver in the same time ;
whence we infer,

that the molecules of a descending body fall in the same

manner as if they were simply contiguous without being

connected ; and, consequently, that the force of gravity acts

equally on every part.

We may hence conclude, that the comparative tendencies

(at the same place) of different bodies to the earth's centre,

or, in other words, their weights, are exactly proportional

to the number of equal parts, or units of matter, which

they respectively contain ; the tendency of each body being,

in fact, as we have just proved, equal to the sum of the equal

tendencies of the equal units of which it consists.



Consequently, if the tendency of th<* standard unit <>\

matter, mentioned in Art. 9, be represented by g, andW be

the weight of a body whose mass is M and volume V, then

As a force is known only by its effects, the quantity g
represents the force which produces the tendency of the

standard unit to the earth ; and (Art. .5) this force is

measured by the velocity generated by it in a falling body
in one second of time. In the latitude of London, it is

found that a falling body acquires a velocity of 32 . 19 feet

in a second, and therefore for that latitude

It i- here to bo observed, that the weight of the

sank' body is different at different places MM tlr earth's

at the* equator, and increases as wo

advance towards the p.le whore it is tin* i,
rrent*M. And

even at the same distance from the equator it diminish^ in

the inverse duplicate' ratio of its distance from the- earth's

rent ro as we ascend: and, as we descend into the

in tho direct simple ratio of the distance from the centre.

JSut in all bodies and systems of bodies, which are usually

i of in Static-., the di
'

f the di-' ;' their

respective parts from tho earth's centre is so very small,

nparison of the radius of the earth (4000 in

that wo may L''nerall\ , without MO^bfe enOT, consider tho

nt in mo>t practical questions that

v at any proposed
cnll.-d ii,,. I'rrfird/ d,

I
it may be discovered by

M
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suspending a heavy body by a thread, or by drawing a line

perpendicular to the surface of still water. A plane at right

angles to the vertical is called a horizontal plane, and it is

evident, since the earth is spherical, that the horizontal

plane which touches the surface of still water, changes its

position in passing from place to place ;
and so the vertical,

which is always at right angles to it, also changes its

position ; but since the mutual distances of the bodies of

all systems, usually treated of in the present science,

are exceedingly small, compared with the earth's radius,

we may consider the surface of still water as a horizontal

plane to a small extent, and consequently the verticals as

parallel. We can, consequently, apply to all bodies acted

on by gravity the theorems and principles of Chapter II.

125. From Art. 66, we therefore gather at once, that

in every system of particles invariably connected together,

there exists a certain point, through which the resultant of

the forces which gravity exerts on the different parts always

passes. It is there shewn, that for every system
* of

parallel forces, such a point exists
;

and that its situation

depends, in general, upon the magnitude of the respective

forces. That position of it which corresponds to the forces

erected by gravity upon the system, is called the Centre of

Gravity. Some writers have called this point also, the

centre of parallel forces, but it is manifest that appellation

is too general.

There is an exception in the case of parallel forces, which are reducible

only to a couple ; but, in case of gravity, all the forces act in one direction,

and are therefore reducible to a single resultant acting at the centre of

parallel forces.



126. One property of the Centre of Gravity, particu-

larly worthy of remark, is, that it does not depend at all

upon the intensity of the force of gravity. For divide the

whole system into very small equal molecules, the quantity

of matter in each being m, and their number n, and denote

the force exerted upon a unit of matter by g ; then the force

exerted on each molecule = mg (Art. 122). And ifxv yv z
} ;

be the co-ordinates of the molecules, and

x y z those ofthe centre of gravity, we have, by Art. 66,

mg . x. 4- nig./' , -\- nigs 4- . . . to n terms
*K ~~~~

T r .

* _ _ _ _-_->

/ntr f ;//f 4- ///^ 4- . . . to //. terms

Similarly,y =

an(1 : = :> -f ^ + ^ -t-

n

It appears tlu-n, that the co-ordinates of the centre of

gravity a.e tin 1 means* of the co-ordinates of the molecules,

and consequently its position is independent of the intensity

of gravity. Hence the centre of gravity of any body is a

certain point within it, the place of which depends only on

ativc disposition of its equal molecules. The imc-ti-

izatinn of its place is therefore a matter purely ireometrical,

and ma\ I'-
1

applied to any body \\hatevcr ; and for this

reason we < ik <f the centre of LT,I\ ity of bodi.

d from the influence of tin- earth, and when, in fact,

erence is intended to lie made cither to the earth or to
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gravity ; the point alluded to, being no other than the one

determined from the geometrical principles just laid down,

vjz . that its co-ordinates are the respective means of the

co-ordinates of all the equal molecules of which the body is

composed.

127. Since the resultant of the forces which act on the

particles of a body passes through the centre of gravity, if

tli at point be supported the body will be in equilibrium

in every position. For instead of the forces themselves,

we may substitute their resultant, which will be counter-

acted by the point of support, and this will be the case if

the body be turned round that point into any position

whatsoever.

128. And since the resultant may be applied at any

point in the line of its direction (Art. 43), if the point

of support be not in the centre of gravity, but in any point

of ii vertical passing through it, the body will be in

equilibrium. And conversely, if a body be suspended from

any point in it, it will not be at rest till the centre of

gravity and the point of suspension, are situated in the

same vertical.

This property may sometimes be employed jn finding the

centre of gravity. For if the body be successively suspend-

ed from two points in it, and the corresponding verticals

be drawn upon or through the body, their common point

of intersection will be the centre of gravity.

129. It follows at once, from Art. 127, that if all the

particles which are situated in a line passing through the
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centre of gravity be supported, the body will rest in equili-

brium on that line in all positions. And the converse is

true, viz. that if a body rest in equilibrium, in all positions,

on a fixed line, the centre of gravity must be in that line
;

for, unless the centre of gravity were in that line, a position

niL'lit be found in which the vertical through the centre

of gravity did not pass through a point of support, and

consequently the body would not be in equilibrium in all

positions, which is contrary to the hypothesis.

Hence, if we can find several lines on which a body will

rest in all positions, the centre of gravity will be in their

common point of intersection.

130. Many authors have defined the centre of gravity

to be that point on which a body will rest in equilibrium,

in all positions, when acted on by gravity ; but it seems

better to derive its definition from the general one of the

centre of parallel forces. This method has the advantage

of proving the existence of the point before we give it a

name : and renders the explication of its various properties

more simple and general.

1U. Since the resultant of all the forces of gravity,

which act on the particles of a body, may be supposed
to act ;.f ih.- centre of gravity, and is equal to their Mini

\\e. may, in any investigation in which this

resultant is required, suppose the whole mass united at

the cv v ity; and hence it becomes important
t<> know the situation of this point in ' f dilll-rent

It is not always comenient to divide a proposed

body into equal molecules, as was Art 1
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t lu- ivtore becomes necessary, in that case, to use other

formulae for the determination of the centre of gravity.

Let mv w2 , m3, ..... be very small masses into which

the body may conveniently be supposed to be divided ;

x\y\ zv x*y* zv *3#3 *3- their co-ordinates.

Then the forces which urge them are gm lt gm2, gm3 ,

..... respectively ; and therefore, substituting in Art. 66,

we obtain

;. =
gm3 + .

l
-V- ra

2
#
2 -f mjc -f . . .

and, similarly,

S(fg)

133. Since, whatever be the position of the plane yz, we

have always

x.^m S(wiar),

it appears that the moment, with respect to any plane, of

the whole mass collected at its centre of gravity, is equal to

the sum of the moments of all the molecules, with respect

to the same plane.

134. If the origin of co-ordinates be in the centre of

gravity, then S(ma;) = 0, S (my) = 0, and ^(mz) = 0;

for x, ij,
and s are, in that case, each equal to zero.

135. Since the mass of a body of uniform density is

measured by the product of its volume into ils density



fArt. 9) ; if/^, p^ py . . . . he the densities, and Vp Va , V3 ,

..... the volumes of the molecules
///,, ;//. ;

3
......

we shall have

the molecules helm: so small, that every part of each

one may be considered of uniform density. Hence, by

substitution in the formulae of last article, we have

;

It' tlie density of the whole system be the same,

,,,
= pa

= p3
. . . . and these formulae are simplified

dividing >ut
( >, thus,

.

IJnt it is to be carefully observed, that these formula?

!y to be applied to such bodies as are of homonen-ms

:ak

The general ap|)lication of these formula* depends
on the Integral Calculus, hut then- -\v cases which

can he made to depend upon the more simple principles

of Art 129, and with them we shall accordingly commence

,

les on ii; I of lindiim the p

"f th-- f -ravitv in 1
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All bodies will be supposed homogenous, or of uniform

density, unless the contrary is mentioned.

138. If through any figure a plane can be drawn, so

that the figure shall be symmetrical with regard to it;

that is, so that the two parts of the figure which are

situated on opposite sides of that plane are perfectly

similar and equal ; the centre of gravity shall be in that

plane.

For the moment of the volume on one side is exactly

equal to the moment of that on the other side, with respect

to that plane, and these moments will have contrary signs,

and therefore their sum will be equal to zero. But this

sum (Art. 133) is equal to the moment of the whole

volume, collected at its centre of gravity, with respect

to the same plane ;
which cannot be the case unless the

centre of gravity be in that plane.

139. Hence, if we can find two such planes differently

situated, the centre of gravity will be in the line of their

intersection
;

and if we can find a third plane, the centre

of gravity will be . that point where it cuts the line of

intersection of the other two ; in other words, it will be

the common point of intersection of any three planes, by
which the figure can be symmetrically divided.

140. It follows, from these properties,

1st. That the centre of gravity of a sphere, or of a

spheroid, or of a cube, is its centre.

2ndly. That the centre of gravity of a parallelepiped is

the middle point of one of its diagonals, and of a cylinder,

the middle point of its axis.
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3rdly. That the centre of gravity of any figure of revolu-

tion is some point in the axis.

141. When we speak of the centre of gravity of a line,

or of a plane figure, it is to be understood that the line

consists of material particles, and the plane figure of a

single lamina of particles, or else, that the thickness is every

where the same, and inconsiderable.

142. Hence the centre of gravity of a straight line is its

middle point ;
of a circle, or ellipse, or square, its centre;

and it will follow, from reasoning precisely similar to that of

Art. 138, that if we can draw two straight lines in a plane,

by each of which the figure is divided into two equal and

symmetrical parts, the centre of gravity is the point of their

vtion. This property will enable us to determine at

once, by inspection, the centre of gravity of almost all

regular plane figur

143. To find the centre of gravity of a plane triangle.

Let ABC (Fig. 32) be the triangle, bisect one of the

sides a N 1 1C in D, and join AD. Then we may suppose

the triangle made up of material particles, arranged in

lines parallel to BC ;
1 any one of them. Then.

by the similar triangles HAD, /;Ad,

BD:DA::/W I A,
I, >imilarly. I).\ : DC :: fl\: dc,

. . HI) : DC :: W: dc.

Hut HI) = DC, then-tore W = fc; and, consequent h .

d is t
1

..ravifv >;
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Similarly, the centre of gravity of every other line parallel

to BC,of which the triangle consists, is somewhere in AD;

consequently the whole triangle would rest in equilibrium on

\ I ). o.iKfpuMitly its centre of gravity is in AD (Art. 129).

In the same manner it would appear that the centre of gravity

of the \\hole triangle is in BE, which bisects AC, and hence

G, the point of intersection of AD and BE, is the point

requi:

144. It may be observed that the line AD is divided in

G, so that DG = | AD.

join DE, then because CA, CB are divided at E,

D in the same proportion, viz. each bisected, therefore DE
is parallel to AB

; and, therefore, the angle DEG is equal

to the angle ABG, and angle EDG to the angle BAG, and

consequently the triangles ABG, DEG are similar ;

/. AG:DG:: AB : DE
:: AC: EC:: 2: 1.

Hence AG = 2DG,
and /. AD = AG + DG = 3DG.

.'. DG^
145. The following method, of finding the centre of

gravity of a triangle, is very simple and elementary.

Let ABC (Fig. 33) be the triangle ; DEF the triangle

formed by joining the middle points of its sides. ABC is

thus divided into four triangles AFE, FBD, EDC, DEF,
perfectly equal and similar ; each one of which we may

suppose collected at its own centre of gravity (Art. 133), and

then tin- distance ofthe centre of gravity of the whole triangle

from BC, \vill be the mean of the distances of the centres

of gravity of all the lour equal ones, of which it is composed

(Art. 120), from (lie same line BC.
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Let /i = the perpndkmlar from A upon BC, x = the

distance of the centre of gravity of one of the small tri-

angles from its base, which is, of coarse, the same for

each of them.

Then the linear dimensions of the triangle ABC, being

double those of any one of the similar small triangles,

the distance of the centre 'of gravity of ABC from its

base is 2x ;

.-. 2* = i J(JA + .r) + (JA-*) + x + *| =5 + n,

h
' * =

rr

and 2x = -
:

o

which shews that the centre of gravity is distant from each

side, exactly one third of the distance of the opposite angular

point.

146. Before leaving the plane triangle we may remark,

that if three equal bodies have their centres of gravity

situated in the three angular points of the triangle ABC,
the centre of gravity of these bodies will be the same

a- that of the triaii

For to find the centre of gravity of the three bodies,

we have only to dbserve, that BD bein.n equal to DC,
the two B, C will l>e in equilibrium on D, (sec note, page

83); and therefore the three on a line pa^in^r through

\, I) : in the same manner they will be in equilibrium on

BE, and therefore (i is their common centre of gravity.

I fence (Art. 126) the distance of the centre of i:ra\ ity of a

.MY plane, i> the mean of the distance-

1 the Still''
I''
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147. To find the centre of gravity of a quadrilateral

figure.

Let ABCD (Fig. 34) be the trapezium ; AC, BD its

diagonals intersecting in E ; G its centre of gravity ; GI,

GK parallel to the diagonals. Then, supposing the trapezium

to be made up of the two triangles ADC, ABC, we have

(Art. 136),

(trapezium ABCD) . (perpendicular from G on AC)

(A ABC).(perpendicular from its centre ofgravity on AC)

(A ADC).(perpendicular from its centre ofgravity on AC),

=|( A ABC) . (perpendicular from B on AC)

y( A ADC), (perpendicular from D upon AC).

Now the triangles ABC, ADC, having a common base

AC, are proportional to the perpendiculars from B and D
on AC, which are also proportional to BE, DE respectively ;

hence, in the above equation, instead of the triangles ABC,
ADC, and the trapezium, which is their sum, write respect-

ively the quantities BE, DE, and BE 4- DE, to which they

are proportional ; and, instead of the perpendiculars from

B, D and G, or I, which is equal to it, write respectively

BE, DE, and El, which are proportional to them; and

then we have

(BE -f DE) . El = |BE2 -
$ DE2

= * (BE + DE)(BE - DE),

/, El = $ (BE - DE).

And, similarly, EK = (AE CE).

Hence, setting off El equal one-third of the excess ofEB
above ED ; and EK equal to one-third of the excess ofAE
above EC ;

and drawing IG, KG parallel to the diagonals

of the trapezium, G will be the point required.



148. To find the centre of gravity of any other rectilinear

figure we must divide it into triangles, and suppose each

triangle collected at its own centre of gravity ; we can then

find the common centre of gravity of the whole by the

formulae of Art. 136.

149. To find the centre of gravity of a triangular

pyramid.

Let A (Fig. 35) be the vertex, and BCD the base of the

pyramid. E, H the centres of gravity of the base and the

face ACD. Join AE, BH, BE, AH. Then, because E is

the centre of gravity of the base, therefore BE produced,

bisects CD. For a similar reason, AH produced, bisects

CD; and therefore BE, AH intersect in F; consequently,

AE, BH, which are in the plane ABF, intersect each other

in some point G.

Now we may suppose the pyramid made up of triangular

laminae of particles, situated in planes parallel to the base ;

let cbd be one of them, cutting AF in /, and AE in e.

This triangle is, of course, exactly similar to the base of the

pyramid, and being parallel to it, cd must be parallel to

CD ; and therefore the triangles CAF, cA/* are similar,

.-. c/:A/::CF:AF;
for a similar reason, A/: (If:: AF : DF,

/. cf: ,//::CF:DF;

but CF being equal to DF, cf must be equal to dft
and

consequently th- centre of gravity of the trianirUj cbd

>t be in the line
///. |

\ KB being cut by parallel

planes,/^ must l>e parallel to KB, and the tr VE,

are similar,

Ac::FE: AK:
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but, fur a similar reason,

Ae : be :: AE : BE,

.'.fe: be :: FE : BE.

But BE = 2FE, and therefore be = 2fe, consequently

e is the centre of gravity of the lamina bed. In the same

manner, all the laminae of which the pyramid consists, have

their centres of gravity in AE, wherefore the pyramid

would balance on AE in all positions ; and, consequently,

the centre of gravity is in that line. For like reasons, it is

in the line BH, and therefore G, the point of intersection,

is the centre of gravity of the pyramid.

Join HE. Then, because FE : FB : : 1 : 3 : : FH : FA,
therefore HE is parallel to AB, consequently the triangles

HEG, BAG are similar ;

/. GE : AG :: EH : AB :: FE : FB :: I : 3,

/. AG = 3GE,

/. AE = AG + GE = 4GE,

/. GE = i . AE.

Hence, join the vertex and the centre of gravity of the

base, and the centre of gravity of the solid will be at the

distance of one-fourth of this line from the base.

150. It may be shewn, by a method very similar to the

one in Art. 146, that if four equal bodies be placed in the

four angular points of the pyramid, their common centre of

gravity will coincide with the centre of gravity of the

pyramid ; and then the distance of the centre of gravity of

any triangular pyramid, from any plane, is equal to the

mean of the distances of its angular points from the same

plane.



151. The line joining the centre of gravity of the base

BCD, and that of any parallel section bed of the pyramid

being produced, passes through the vertex A.

If a plane be drawn through the centre of gravity

of the pyramid parallel to the base, a fourth part of every

line drawn from the vertex to any point in the base will be

intercepted between this plane and the base.

For a fourth part of AE is intercepted, and therefore

(Eucl. xi. 16) every line from the vertex to the base must

be divided in the same proportion.

153. Hence, if a perpendicular be drawn from A upon
the base, a fourth part of it will be intercepted between the

base and a piano parallel to it through the centre of gravity

of tin; pyramid. And, conversely, if we take a point in the

pttpeodictllar at the distance of one-fourth of its length

from the base, a plane being drawn through that point

parallel to the base will pass through the centre of gravity

of the pyramid; consequently, all other triangular pyramids

line parallel planes will have their mm
ty situated in that pi;

l.'jl. To find the centre of ^ia\ ity of any pyramid.

Let g (Fig. 36) be the centre of gravity of the base >!' the

pyramid ; join A^. Then, by a method exactly .similar to the

one pursued in Art. 1 lO. it may be shewn that the ecu:

Lrra\ity of all the plane lamin.e, parallel to the bascof which

. ramid may I

- made up. lire in Ag,
and consequently the . .id is

in V
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But \ve can divide the base BCDEF into triangles,

and suppose the pyramid made up of triangular pyramids,

constituted upon these triangles as bases, and having the

common vertex A. These, by the last article, will have

their centres of gravity in a plane parallel to the base

BCDEF, which divides Ag in G, so that Gg = Ag;
consequently the centre of gravity of the whole pyramid will

be in that plane, and as it is also in Ag, it must be at G.

155. There is nothing in this demonstration to limit the

number of sides of the base of the pyramid, and therefore

in a cone, upon a curvilinear base of any form whatever,

which we may suppose a polygon of an infinite number of

sides, the centre of gravity will be found, by joining the

vertex and the centre of gravity of the base, and taking

a point in that line at the distance of one-fourth of its length

from the base.

156. To find the centre of gravity of the frustum of a

cone or pyramid cut off by a plane parallel to the base.

Let BCD (Fig. 37), bed be the two ends of the frustum,

which are, of course, similar figures; g, g their centres of

gravity ;
G the centre of gravity of the frustum, which will

be in the line gg', because the centre of gravity of every

lamina parallel to the base is in that line. Now, complete

the frustum into a pyramid, its vertex A will be in gg' pro-

duced (Art. 151); and put a, b for the lengths ofcorrespond-

ing parts of the two ends of the frustum, and c for gg'.

Then Ag' and Ag being like dimensions of the top

pyramid, and the whole pyramid as also 6, and a
; and, be-

cause the like demensions of similar figures are proportional,

/. a : b:: Ag : Ag' ,
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.'. a : a - h : : Ag : Ag Ag' = gg' = r,

A
ac

& ~~
a 6*

be
Similarly, Ag' = ^

.

Now, measuring along gA, the distance of the centre

of gravity of the whole pyramid from g = J-
. r; and the

distance of the centre of gravity of the top pyramid

from g'
= I .

a _, , and therefore, measuring from g, it

= c -f J .
-

j ; also, putting x for the distance of the

centre of gravity of the frustum from g, measuring along

gA, we have, by Art. 136,

dc
(uhole pyramid). J. 7

(hec 4- J.
-

But similar solid figure* are as the cubes of their like

dimensions, wherefore the whole pyramid, the top pyramid,

and the frustum, \\hich is the difference between them,

are proportional to rt
3

,
6 :l

, and a :i

/>
3

respectively; and

luting these in the last equation for the quant ii

which they are proportional, we liave

aa
/>-f a^-f ^3 -4/

) + (a-6)6-Ka~6)/
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tlkM-elbiv, by dividing the equation by a b,

c f

(a
2

-f ab -f 62
) x = -: . ( a2 4 a& f i 2

-f ao -f 62 -f

_ a + a -f

T
'

a- -t- r/6 + b-

General Properties of the Centre of Gravity.

I.

157. From Chap. I, and Art. 44, Chap. II, it appears

that when forces Fp F
2, F3

, . . . acting in any direction

converging to a point O (Fig. 38) are in equilibrium, their

components in any proposed direction are such as would also

produce equilibrium. Wherefore, if these forces be respec-

tively represented by the lines OF,, OF2
. . . . the sum of

their projections Qfv O/' , O/*3 .... on the axis OX
ought to be equal to zero. But, if we draw through the

point O a plane MN perpendicular to OX, these projections

are equal to the respective distances of the points Fa ,
F

2 ,

F
3

. . . . from that plane ;
and since their sum is equal

to zero, their mean distance from it is also equal to zero.

Consequently, when any concurrent forces acting on a rigid

body are in equilibrium, the point to which the directions

of the forces converge is the centre of gravity of a system

of equal bodies or particles, placed at the extremities of

lines drawn from that point of concourse and representing

the forces in magnitudes and directions ; and conversely,
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158. In a system of equal bodies or particles if we draw,

from their respective centres of gravity, lines to the centre

of gravity of the system, then any forces represented in

magnitudes and directions by these lines will be in

equilibrium.

For the mean distance of the extremities of these forces

from any plane passing through the centre of gravity will

be equal to zero ; and the sum of the components of these

forces in any proposed direction will be also equal to zero ;

and consequently the forces will in equilibrium.

159. It appears then, that if three forces tending to a

point are in equilibrium, that point is the centre of gravity

of the triangle formed by joining the extremities of the

vliich represent the magnitudes and directions of the

forces; for the centre of gravity of this triangle coincides

with that of three equal bodies, placed at its angular

pointy (Art. 146).

I, in the same manner, if four forces tending to a

point are in equilibrium, this point is the centre of gravity

of the triangular pyramid, whose edges are the lines which

join the extremities of the lines which represent the forces

in tafegnitude and direction.

l'><>. Conversely; there will be an equilibrium between

\\liicli uiv represented in magnitude and direction,

)iy
the lines joining the centre of izravitv of a triangle or

:iid with if- angular points.
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II.

161. If the mass of each particle of a system be multi-

plied by the square of its distance from a given point, the

sum of the products will be the least possible when the

given point is the centre of gravity of the system.

Let the centre of gravity of the system be taken for the

origin of co-ordinates ; and put a, b, c for the co-ordinates of

the given point O (Fig. 39) ; x^ yl
z

lf x^ y2
z
2 , .... for those

of the particles m lt
mv .... of which the system consists.

Then

(Om,)
2 =

Or,
-

a)
2 + (y,

-
&)

2 + (*,
~

c)*,

= x
i

Jr y\ + *i
2
-f a

2
-f &2 -f c2 2ax

l 2fyj- 2cz l9

= (Gm^ + (GO)
2-

2ax,
-

2by,
- 2tel5

because (G,)
2 == x* + i/,

2
-J- zf, and GO2 = a2

-f 6
2
-f c2.

Hence

m
{

. (Om^ - m
l

. (Gmtf + m
}

. (GO)
2

- 2a . m
l
x

l
2b .

Similarly,

"
2

- (Og2 = m
2

. (Gm^ + m
2

. (GO)
2

- 2a . mfa 2b

= m
3

. (GmJ* + m, . (GO)
2

and, consequently, by adding the corresponding sides of the

equations together,

m, . (OmO2 + 2
. (Om2)

2 + m
3

. (Om^ -f . . . .

= m,. (G<)
2 + m

3
. (Gm^

2
-f m3

. (Gm3)
2
-f , . . .

+ (m, -h m2 + m
3 -f ..... ) . (GO)

2

- 2a . (ml
x

l -f m^2 -f m3
x
3 + .....)

- 2b . (m ly l + m^/2 -f

2c .
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Hut, because the centre of gravity of the >y>tem is in the

origin of co-ordinates, we have, by Art. 134,

= mft +
= "Wi -f

=
OTI*, -f "Va -f 3

~
3 + -

Consequently,

=
///,

. (Gm,)
2

-f wz
2

. (Gm2)
2
-f ro

+ (TO, -j-
w

a + w
3 +....) (GO)2

,

or, as it may be more conveniently written,

S \m (O;w)
2
J
= S^(Gm)2

| + Si . (GO)
2
.

I
;
r m this equation it appears, that the sum of the

products of each particle into the square of its distance

from the point O, is greater than S|w(G0i)
2
| by the

quantity Sw.GO2
; and since S|w(Gw)2

|
does not

depend at all upon the position of the point O, the sum

will be the least possible when GO = 0, that is, when

the point O is in the centre of gravity of the system.

l
f >~. So lonjz us the distance of O from G remains the

same, the quantity 2jw(Gm)
2
| {- 2w . GO4 retains the

same value; if, 11. O 1x3 fixed in space, and the

body be made to turn round its centre of gravity, the

sum of the products of each particle of the system into

the square of its distance fmm () remains unaltered.

163. The two last articles are equally true if m
lf
my w*

a ,

lies instead of single particles, observing,

in thatcaae, that
./-,;/, r,, ^jf,^ *3 y,*r will be

the co-ordinate- ol'tbci: life centre^ nf gravity.
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164. Suppose the bodies all equal to m
9
and let their

number be n, then

= m
}

.

= m

and, similarly, 2 m (G?ra)
2 = m . S(Gw)a

; also 2m = w,

4- ma 4- *w
3 4- . = m + m + m + . . . . to n terms

= nm
; consequently, by substituting in the equation of

Art. 161, we obtain

m . 2(Om)
2 = m . S . (Gw)

2
4- wm . (GO)

2
,

.'. S(Ow)
2 = S . (G7?i

2
) 4- w . (GO)

2
.

It appears then, that in a system of n equal bodies, the

sum of the squares of the distances of their centres of

gravity from a given point, is greater than the sum of the

squares of the corresponding distances from the centre of

gravity of the system, by n times the square of the distance

of this latter from the given point.

Hence, if ABC be a triangle, G its centre of gravity, and

O a point situated either in the plane of the triangle or not,

we have

AO2
4- BO2

4- CO 2 = AG2
4- BG2

4- CG2
4- 3 . GO2

.

And in a triangular pyramid whose angular points are

A, B, C, D, and centre of gravity G,

AO 2
4- BO2

4- CO2
4- DO2

= AG2
4- BG2

4- CG2
4- DG2

4- 4 . GO2
.

For, by Art. 146, the centre of gravity of the triangle

coincides with that of three equal bodies placed at its

angular points ;
and the centre of gravity of the pyramid

with that of four equal bodies at its angular points.

(Art, 150).
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III.

105. If each particle of a system be multiplied, as in

Art. 161, by the square of its distance from a given point,

thi' sum of the products will be greater than it would be if

tin* whole system were collected at its centre of gravity, by

a quantity which is found by multiplying the products

of the bodies taken two and two respectively, by the

ires of their mutual distances, and dividing the sum

of these products by the sum of all the bodies.

For let O (Fig. 40) be the given point, Gthecentre ofgravity

of the system of particles or bodies mp m^ my .... Take

O for the origin, and let x, y, z be the co-ordinates of G ;

XSJ\ *P -r
;!/. ~- '.^3*3' ..... those

U!M>, let
(///,>// ./), (///,;//.,), (///.///,)

.... be used to denote the

<li>tun<v> li"iwetMi
///,

and ///.
>//,

and
;/?,, >//., and ///.

Jf
....

Then, by Art. 1

;//,./-, 1
HI ,r, 1- ///

:i

.r
;J

\~ . . . .

y . ^m =
;//,//, + ;//.,//., 1 \

. . . .

z. 2m = ?//,r, | ///,r, { /// r . |
. . . .

.irini; each of th.-e eniations, and adding the

'tain

OG* x///)
2

MI,

'

i mf.fpmjf i ///.*.(()///_,) i
----

I
-' )

I
....

i ^>" i //,//, i MS) !-

>

A .(x.fr
> >

-f .............
. . lor their

' -
//. 2i

f
>

. . respectively.



104

But (tffjW,) being the distance between two points, whose

co-ordinates are x
l y l

zv #
2 y>2

*
2,
we have

=
(x,
-

xtf + (y,
-

ytf + (z }

-
sj*,

= x? + y? + *? +

-f (Om2)
2 - 2 (or^2 + yiya -f

Similarly,

3 + ^3 + i 3)

(Om3)
2 -

+ +

Consequently, by substitution, OG2

m
3
2
.(Om3)

2

,)
9

-I- (Om2)
2 -K

(Om3)
2 -

(m.

= (m, + m
2 -f m3 -f ---- )

-f (m, + *
2 -h % 4-

4- (???, -f m2 -f m3 4- ---- ) m3 (Ow3)
2
-f

the term S^n*^, (WS)*J being understood to represent

the sum of the products of the particles, taken two and two,

into their mutual distances.



105

Hence dividing by Sw, and transposing,

Sfm (Om)*l = (s) . OG> +
S
fo|"

which expresses the property to be proved.

166. From Art. 161 we have

= 2\m(Gmyi + 2m (GO)2
;

which, substituted in the equation above obtained, gives

A result which might have been obtained at once,

without the aid of Art. 161, by supposing O to coincide

with G.

l'>7. If now, as in Art. 165, we suppose all the bodies

equal, and jt in number, the last equation becomes

m . 2(Gm)
2 = ?

. S(7W,m2)
2

;

Hence, in any system of n equal bodies, the sum of the

squares of the lines joining their centres of gravity, two

and two, is equal to n times the sum of tho squares

distances of those points from the centre of gravity

of the system.

-equently, in the case of the triangle (Art. 1

'

lir* + AC4 + AB = 3.(AG* + BG2
4- CG).

II ; nin ot the squares of the sides of a triangle

, ial t< three tini- nil >f the squan's of the

distances of its angular p it- rent re of {I
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In the case of the triangular pyramid we have

AB2 + AC2 + AD2
4- BC2

-f BD2 + CD2

= 4 (AG2
-f BG2 + CG2

-f DG2
).

Hence the sum of the squares of the six edges of a

pyramid is equal to four times the sum of the squares

of the distances of its angular points from its centre of

gravity.

IV.

Guldin's Properties of the Centre of Gravity.

169. 1st. LetBC (Fig. 41) be a plane curve line, made

up of equal material particles, adjacent to each other ; and

suppose this material curve to revolve about a fixed axis

AD, situated in its own plane, through any angle ; it

will trace out a surface of revolution, which we may also

suppose to consist of equal material particles. Draw

BA, Pp, CD perpendicular to the axis AD. Then any

particle as P will trace out a portion of the circumference

of a circle, whose radius is Pp, comprehended between

two radii inclined to each other, at an angle ; and since

this angle is the same for every part of the generating

curve, the portion of the surface generated by any particle

will be proportional to its distance from the axis; and,

consequently, the whole surface generated will be the

same as if all the particles of the generating curve had

been placed in a line parallel to the axis AD, at their

mean distance ; that is, since the particles are equal (Art.

126) at the distance of the centre of gravity of the

curve BC from AD. Now this latter surface will be a
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portion of a cylindrical surface, who>e length is equal to

that of BC, and the radius of whose base is equal to

the distance of the centre of gravity of BC from AD.

The surface of such a portion of the cylinder is found

by multiplying its length by the circumference of the base,

which latter being equal to the path described by the

centre of gravity of BC, it appears

That the surface generated by a curve line, revolving

about a fixed axis, is equal to the product of the length
''a- rf/rre, by the length of the path described by its

/. This is the first of Guldin's properties.

170. The second may be thus stated: The volume

> rated />// a jtlane area, revolving about a fixed axis

in its own plane, is equal to the product of the area into

the length of the path described by its centre of gravity.
For let BC (Fig. 42) be the given plane area, which we

may .suppose to consist of equal adjacent particles. Then,

civ IK- fore, the portion of the whole volume generated by

any particle P, is proportional to its distance Pp from the

AJ) ; and, < -ousequently, the volume generated by BC,
is tin 1 same a> would lie generated if they were all placed at

their mean distance from AD, that is, at the distance of

the centre of gravity (i, of the given area BC from AD.
now a be the portion of the area BC occupied by a

le particle; then the volume which thi* would generate

when plaeed at the same di-tanee a- ( i from AD, is equal

to a x length of its path = a X length of the path of G.

And it' all the particle* were placed at this distance, the

\ohi rated by each would be equal, and there*

the whole \<>liime proportional to the number of Lrcneratm^

particles. Consequently, if there he // particle* in !>('. the

volume Mild he L; '<v them all. when placed
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at the same distance as G from AD = n x x length of

G's path. But since a is the area occupied by one particle,

na will be the area occupied by all the particles, that is,

na = area BC
;

and since the volume actually generated

by BC is the same as would be generated if all its particles

were removed to the same distance as G from AD, it must

be equal to

(area of BC) . (length of G's path),

which agrees with the enunciation.

V.

171. When a system of connected bodies, acted on by

gravity, is in equilibrium, the altitude of the common

centre of gravity is either a maximum or a minimum;

the meaning of the terms maximum and minimum, as here

used, being that the centre of gravity would necessarily

descend in the one case, and ascend in the other, respec-

tively, in passing out of a position of equilibrium.

Let m
l9
w

2, m3
. . . . be the particles of the system in

equilibrium; z^ 2
2 ,

z
3

their respective altitudes

above a given horizontal plane; z the altitude of their

common centre of gravity above the same plane ; g the

force exerted by gravity on a unit of matter. Then the

forces Acting on the particles mv mv m
3

. . . . are m^,
m*g> ms8> respectively, as in Art. 126, and therefore,

by the principle of virtual velocities,
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Now v,
= dfv t\2

= d
(
z.19

ro
3rf,*3 4- . . . . = 0.

But, by Art. IdBjM^-fJNy^-fm,*, 4. . . . .

therefore, by differentiation,

OT^ -f avfca 4- w3^3 t-
=

</,*.S*t;

.'. r/,z. Sw = 0;

/. d> = 0.

Since, then, the differential coefficient of z is equal to

zero, z will in general be either a maximum or a minimum,

though it may happen to be neither, according to circum-

<tamvs, which we shall proceed to investigate.

Let the system be disturbed from its position of equi-

librium at the time t, and let the motion continue during a

time //, then the altitude of the centre of gravity at the time

/ 4- h will, by Taylor's theorem, be

\Vhcivfotv it is evident that the centre of gravity will

have as<vnd'd or descended, in consequence of the disturb-

ance, according as the quantity

is positive or negative-, which U the remaining condition,

that r may be a minimum <>r u iiiaximum resj>ectively.

If tin- centre of gravity have neither ascended nor

dMCendcd during the disturbance, then

= Wi.A + irf,
3i.A3

f ....

lor all the values h successively takes durini: the time of the

di>turlianre. wln-n-tore

= r/V
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and therefore z is neither a maximum nor a minimum,

being, in fact, a constant quantity.

172. By Art. 131, it appears that if the centre of

gravity of the system be rigidly connected with the bodies

of the system, we may transpose all the forces m^g,

.... to that point. Let this be done ; then,

1st. If the altitude of the centre of gravity be a maximum

when in equilibrium, as soon as a disturbance takes place

it will begin to descend, and the forces which act upon it

will cause it to descend still farther from the position of

equilibrium. This is called a position of unstable equi-

librium.

2ndly. But if the altitude be a minimum, and a disturbance

takes place, it will ascend, and the forces which act upon it

will endeavour to destroy its motion, and ultimately bring

it back again into the position of equilibrium. This is

called a position of stable equilibrium.

3rdly. If the centre of gravity neither ascend nor des-

cend, the forces which are transposed to it can neither

carry it forward nor backward, for it still continues in a

position of equilibrium. This is called a position of neuter

equilibrium.
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VI.

173. If a body be placed with its base upon a plane, it

\vill stand or fall, according as a vertical through its centre

of gravity falls within or without its base.

Let the vertical Gg, through the centre of gravity G of

n body of any form, fall within the base AB in Fig. 43,

and without it in Fig. 44. And let Ag be perpendicular

onGg.

Then, if mv i
2 ,

t/i
3
... be the particles of the body,

mg, mg, m^g . . . will be the forces impressed upon them,

which we may transpose (Art. 131) to G ; the whole force

acting there will be

\- w,rr + *g# 4- .....

= g (m i + 2 + M
3+)

- w,
W denoting the weight of the body.

Now it is man i test the body cannot fall over without

turning round some extreme point of its base; let this

point be A; then the effort of gravity to turn the body
about

In Fiir. 43, this ellort N exerted to turn the body in a

rvrtion, wliieh is evidently imposxiMe. hecau^

trtidei in <-ontaet with tli<- base AB cannot lie mmed
in that direction, therefore the body cannot fall over about

. M wa\ it may In- -hewn that it eunnot tall

itluT point in the base, and tlnT-l're it will

stand,
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But, in Fig. 44, the effort W . A.g is exerted to turn the

body in a negative direction, and as there is nothing to

hinder the particles of the base, which are in contact with

the plane, from moving in that direction, the body will

fall over.

174. The body, in Fig. 43, cannot be overturned about

A, except by a force which tends to turn it in a negative

direction; and the only force to oppose it is W, whose

moment is

W.As;

consequently, such a body cannot be overturned by any

force whose moment is less than

W.Ag.
REMARK. The reasoning of the last two articles is equally

good if the plane on which the body is placed be not

horizontal but inclined, providing the body be prevented

from sliding, by the roughness of the plane, or any equiva-

lent cause.

175. Since a force whose moment is just greater than

W . Ag can overturn the body, if the base and therefore Ag
be extremely small, a very small force will be sufficient to

overturn it ; hence it must be extremely difficult to balance

a body upon a point, as the slightest agitation of the air

would overturn it.

176. Although when the vertical through the centre of

gravity falls within the base, bodies will stand firm, yet

they will have different degrees of firmness or stability.

If the body be overthrown about A, its centre of gravity

will describe the arc of a circle whose centre is A and

radius AG, (Fig. 45) ;
and as soon as G gets beyond G',
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the highest point of this arc, the vertical from G will fall

to the left of A, and then the body will fall over of itself.

In order then, that a force may overthrow the body, it must

be capable of elevating its centre of gravity to G'; the

higher therefore G' is above G, that is, the greater is

AG' - Gg, or AG - Gg,

the more stable will the body be. We may therefore take

W(AG'-Gg')
AG + Gg

, very nearly,
o

a> the measure of the stability of a body standing upon a

horizontal plane. From this measure of stability, it appears,

1 it That if two bodies be perfectly similar and equal, the

heavier will stand firmer than the lighter.

2ndly. That if two bodies of equal weights stand on

equal bases the one whose centre of gravity is highest will

. >st easily overturned.

Hence a wanton loaded with hay is more easily over-

turned then if loaded with an equal weight of a heavier

and a coach will not be so liable to be

overthrown when it has inside p^Bengertj as when it has

none.

REMARK. If a l<dy rest upon points instead of a flat

base, it will he stable or not, according as a vertical through

its centre of gravity falls within the polygon formed, by

passing a thread round the points mi which it rests.

1 1 nee no animal can stand unless the vertical through

're of gravity falls within the polygon, whose angular

Q
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points are its feet; and this being very large for all four-

footed animals, they find it very difficult to stand on two

feet.

177. To find the centre of gravity of a plane curve.

Let AB (Fig. 46) be the curve line ; O.r, Oy rectan-

gular axes in its plane to which it is referred by its equa-

tion. P any point in AB, and Q very near to P. Let

OM = x, MP = y, MN -^ $x, AP = s, PQ = &,
u = the moment of AP about Oy, $u that of PQ
about Oy.

Now the moment of PQ about Oy is greater than it

would be if PQ were all collected at P, that is,

$u > x . s ;

and it is less than if PQ were all collected at Q, that is,

%u < (x -f &r) &.

$u . 8*
Hence *- is always greater than &*->

and always less than x -~- + $s.

Now this being always the case; and seeing that the

two latter quantities are ultimately (that is, have their

limits) equal; it is evident, that all three are ultimately

equal. The limit of ;
- is dxu, and that of x -~- and

QX cX

x -r
j- $s is xdxs, wherefore

dgu xd,s9

But, if x, y are the co-ordinates of the centre of gravity

of AP, we have, by Art. 136,

xs = u =ft(xd,s).
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And, similarly, we shall find

//.v
= u = fy(ydys),

by changing the independent variable.

From these two equations # and y are to be determined.

REMARK. The same result may be deduced from

Guldin's first theorem.

For let the curve AP revolve about the axis Oar, then

urface generated by it is known, by the Differential

Calculus, to be

Hut, by the theorem of Guldin, this surface is equal to

the product of the arc AP into the length of the path of its

centre of gravity.

Now the distance of the centre of gravity of AP from

Ox is y, and its path is the circumference of a circle whose

radius is y, its length is therefore equal to J

And, similarly,

x.s =

178. The<e results may hi- adapted to polar co-ordinate^,

1\ the usual method.

For join OF, and put OP = r, .rOP - It,

then x = rcosO, y = rsinW.
and therefore

i (tl^.\- * .<IM.

=L W
=f^



\rnif.(xd/) =/e

.". x ./e V (df)* -f r2 = /e

and. similarly,

rr2
=/e(rsin

Ex. 1. To find the centre of gravity of an arc of a

circle.

Let AB (Fig. 47) be the arc, G its centre of gravity, C
its middle point, O the centre of the circle. Join OC, this

will pass through G, because it divides AB symmetrically

(Art. 138).

Let O be taken for the origin of co-ordinates ; and OC
for the axis of x

; x, y the co-ordinates of any point in

AB. Draw AM perpendicular to OC.

Then d.9= / ., :vV x*

/fi
*Y -

j==== _ aVV-^ + C:

The integral taken from x = OM to x = OC, or from

y = AM to y = 0, will give the moment of AC, the double

of which will be 2a . AM, the moment of AB.

.'. x . (arc) = 2a . AM = (radius) . (chord of AB),

_ (radQ. (chord)
arc

REMARK. Suppose the arc AB to revolve about the

axis OY, through an angle 0, the length of the path

i bed by its centre of gravity = xQ, and therefore the

surface generated = (arc AB) . xQ, (Art. 1 69) ; which
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= (chord of AB) . OC . 0. Now OC . 9 is the length of

the path of the point C, and therefore (chord of AB).OC.0
is equal to the surface that would be generated by a tangent

at C, equal in length to the chord. Hence the surface of

any zone of a sphere is equal to the curve surface of its

circumscribing cylinder.

Ex. 2. To find the centre of gravity of the arc of a

Let BC (Fig. 48) be the base, and AB the axis of the

simicycloid ; P any point in the arc AC ; PM perpendicular

to AB. AM = x, MP = y, * = AP, AB = 2a.

Tlu'ii the equation of the cycloidal arc AC is

V = /lax x* -f- avers-1 -;

Trt*
, by differentiation,vax x

*-*
x

J

Also,

2a\ 'Jr xs

= 75-;

\M.
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Again,

f, (ydfs) = ys-fx (sd,y), by integrating by parts,

Now this integral ought to vanish when x = 0,

16a2
and /. C = ;

o

4 J- 16'

/. (yd,s) =~-ys+ gV^. (2a - a:)

2 -

-3-

2
-

4 3 }Q

o o

which gives y. Hence, x y the co-ordinates of the centre of

gravity of the arc AP are known, and by writing 2a for x,

we shall find

*.AB, andBC-f.AB,

to be the co-ordinates of the centre of gravity of the whole

arc AC.

Ex. 3. As an example of the application of the formulae

for spirals, let us find the centre of gravity of the semiarc

of one node of the Lemniscate.

Let P (Fig. 49) be any point in the semiarc APB, put

r = AP, = #AP, AB = a. Then the equation of the

Lemniscate is

r2 = a8 cos 20;

.*. rd$r = a2 sin 29, by differentiating;

.*. r2 (</0r)
2
4- r4 = a4

, by adding the squares of these

two equations ;
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i - 2 siirW

The integral of this, taken from = 0, to = 45,

gives the length of the arc APB.

Again,

/e (r cos ^(rfer)
2 + r2) = ^ (r

cos
0A)

= a2 sin 8;

a2
which taken between the same limits as before, gives ^.

ni

:. x . arc APB =
^,

which gives #.

Also,

/6 (rsin 6 v\^r)
a
-f r2)

= /"fr sin
0.-)

=

which, between the same limits as before, gives

.'. //. arc APB = a2
( I -

y j,
which i^ivcsy.

oprrati.Hi v ;ivMiinin^ an ftl i> h that

y* A .

a n I }

*& I .cnA 1^ v'-J.roisO */'Z I , /
j
_

j g jn ^,

il is to he t
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The following examples are added for practice.

Ex. 4. Theequation ofa catenary being - f e 4- e~~ ),

the co-ordinates of the centre, of gravity of the semiarc, may

be found from the equations

2sx = sx + ay,

sy = sy ax.

Ex. 5. The equation of a parabola being y* = 4ax, the

co-ordinates of the centre of gravity of the arc, cut off by
the latus rectum, are

a 3-v/2-loge (l

179. To find the centre of gravity of an area.

Use the same construction and notation as in Art. 177,

except that x y now denote the co-ordinates of the centre

of gravity of the area PAM. Let A equal the area PAM,
and SA equal the area of the small increment PMNQ ;

u equal the moment of A about OY ; then $u = moment

of SA about Oy will be greater than if SA were collected

into one mass in PM, and less than if collected into one

mass in QN ; consequently,

$u > x . 8A,

and Sw < (x -f Sa?) . SA

< ar.SA-t- Stf.gA;

Su SA
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Seeing, therefore, that
^- always lies between these two

S\ SA
quantities x ~ and x *--h 8A, both of which, as &r is

diminished, tend to xdfi. as their limit, and that ~- has

,w for its limit, these limits must be equal ; wherefore

d
t
u = xdMA.

But, by the Differential Calculus, d,A = y,

/. du = #

But, by Art. 136,

w = iA = i./,y,

Again, let now w denote the moment of A about ox, and

therefore u the moment of SA about ox.

Since PMNQ is very nearly a parallelogram, the distance

of its centre of gravity from ox will be greater than i PM,
and less than J QN, and, consequently,

Sw > Jy . SA and < (y + fy) . SA ;

.
SK SA SA

and from these, by similar reasoning to that employed

above, we obtain

d,U = tyd,\,

or, by changing tlu independent variable,

But u = yA =
?/>,.'/,
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Equations (1) and (2) determine the position of tjie

centre of gravity of the area AM.

Ex. 6. To find the centre of gravity of the common

parabola, whose equation is y
1 = kax.

Let PAM (Fig. 50) be the parabola, AM = #, MP = y.

Then,

/=
g
v 4a . x >

2

2a

Consequently,
3

$*y^5

Ex. 7. To find the centre of gravity of the area of a

semicycloid.

Using the notation and figure of Ex. 2, we have

= xy /rO*,y) by integrating by parts ;

= xy I (x Y ~ !
J>

by substituting for d
gy ;

= xy -



1-23

But

f, v2

by parts ;

/"
flj^p ___ Q*1

x* = x </2ax x* / ^
a ,by integrating

_!?'

fa

therefore, by transposing and dividing by 2,

= 4 (* - a) ^ 2aP z* 4- Jo
2

.". /,y = .ry i (a? a) v' 2ax x* J a
2 vers~ l-

,

4- a) verar 1 -
;

=
-f a?

and, by writing 2a for JT, this becomes aV, the area of the

semicycloid.

Again,

= i^ -
lf.(*?d,y)> bY integrating by parts;

x1 , by substituting for d,y ;

i (2fla?
- )*- ia (T- a)

- ia
3

= TT (4-/'
7
-f a.r 4- 3a2) V Vox - a*

+ i
1

-, l.\ sul>stitiiim- lor y :
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and, by writing 2a for xt this gives %a*ir for the moment of

the semicycloid about the axis of y .

Also,

fg (y
2
)
= y*x 2fg (xyctty), by integrating by parts ;

= y*x 2fM (y*/2axx
2
), by substituting for d

fy-

Now,

a) */2azx* . vers" 1-

Whence we have,

|o:
3

\a (2ax

by substituting for y ;

= 2ax*-$z*+2a f
(</2axa?.v&nr^.

Integrating by parts,

2 /, (V 2ax- x*.

((x a)V

I

fa? a -f a2 vers"1-. dg vers'
1

-) ;

(because
d, vers" 1 - = . \,

a </2ax x1)

i(x a) ^ 2ax x* + a2 vers-1- > . vers-1

^

- a (xa) V2ax x?

= \a (2axx*)- x*+a (a+x) V 2ax ^.

-
a)

2
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3-7T
2

And, by writing 2a for x, this becomes |a
3

\- . a3
,

the half of which is Ja
3

(
, 7?

) ,
the moment of the semi-

\ /4 o/

cycloid about the axis of x.

Consequently,

which give

180. To find the centre of gravity of a curve, considered

as a spiral.

Let P (Fig. 51) be any point in the curve, Q very near

to P, r = OP, 0= xOP, $0 = JL POQ. Then,

by the Differential Calculus, the area of the triangle POQ is

r2S0, and ifg be its centre of gravity, the ultimate position

of g is in OP, at a distance from O = |r (Art. 144) ; and

may ultimately suppose the whole triangle collected at

the ultimate position of g, and therefore its moment about

Ox = $r*$0.gm = ir
2
S0.1rsin0. Hence, if u be the

moment of the area AOP about Ox,

$u = ^r
3 sin 0.80.

WhorHbri', dividing by 80 and taking the limits,

= jr'sinfl;

But u = y . area AOP = y . J/e (r),

'
'
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In a similar manner, we find

Ex. 8. To find the centre of gravity of a portion of a

parabola cut off by a chord through its focus.

Let A (Fig. 52) be the vertex, S the focus, and BC
the focal chord ; P any point in the parabola, SP = r,

ASP By AS = a ; then the polar equation of the curve,

is

*
r = a sec2

^;

J;

(because da tan- =
V

n
2
+ tan2

2-^tan o)

^because sec2 H = 1 -f tan 2
^

If o = ^. BSA ; by writing a for in this expression, the

value of/e(r
2
) for ASB, is

And since z. CSA = 180 a, by writing this for 9

in the same expression, the value of/e(r
2
) for ASC, is
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Where the whole value of/e(r*) is

f a2

(3
cot -f cot3 ^ f 3 tan

"
f tan 3

. , a .a
sin 3

-j
cos3 -

a .

008
2

Sm
2

by writ - and - - for cot - and tan -
_ a a * ~
sin co-

2

= V6 . . .. , because sin a = 2 sin ^ cos -^.sm j a 22
Again, /e(r

3 cos 0) = a3

J
(sec6 - cos 0\

= 2a3
. I

6 -H

tan - tan^ rf
e
tan ,

Tlu value of which. rorrc<jx)n<lm^ to tlic wholt* area, is

| a3

^5
cot

^
- cot*? 4. 5 tan

I
- tan* "V

t .>-
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.1 v -/ -^;
-

5

6
-

."3 (s -t );

/. x | a (.5
4 cosec2 a),

= a(l 4 cot2 a).

Also,

/e(r
3 sin 0) = 2a3

*

sec6

^
.
sin

^
cos

g),

S

ec<|.tan|),

/* / /) /)

== 4a 3
I

(
sec2 ~ . tan ^ . d$ ta

J0\ * ^

/*./! /I /I /X
ylll/i "l " l"li "\= 4a3 tan- flr

e
tan r -f tan3

^ cf
e
tan - ,

JQ\ * * * *J

The value of this corresponding to the whole area,

observing that the moments of BSA and of CSA about AS
have contrary signs, is

a3

(2
tan2

1
+ tan<

|-2 cot2

1
- cot4

|),

sin3 a

a 16a3
f.

u J.UU.

,'. y- V --r-r = y '-7-^ COt a,
sin3 a sin3 a

/. ^ = 2a cot a.

Ex. 9. To find the centre of gravity of a quadrant of a

circle, whose equation is x* + y
2 = a2.

^ = *-> V =*~'
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Ex. 10. To find the centre of gravity of the sector of a

circle.

The centre being the origin, and the line bisecting the

sector being the axis of x, it will be found that

j
(radius),

arc
, andy =

Ex. 11. To find the centre of gravity of a node of the

Lemniscate.

181. To find the centre of gravity of a solid of revolu-

tion.

Let AB (Fig. 4G) be the curve, by the revolution of

which round Ox the iriven solid is generated. Make the

same construction and notation as before. Let V denote

the volume of the solid generated by the revolution of

AMP, and 8V that generated by PMNQ; u -- the moment

of V round Oy, and $u that of 8V about Oy.

The moment of 8V about Oy is greater than it would be

if 8V were all collected in the circular plane generated by

PM, that
if,

Su > x. 8V;

and it is less than it would be if V were all collected in

the circular plane generated by QN, thai is,

$u < (x + 8#) . 8V.

S*. 8V
Hence -K- is always greater than x . -x-

,

8V
and always less than *-*-. 1 ^V.



Whence, as in Art. 177,

But x, y being the co-ordinates of the centre of gravity

ofV,

Now dtV = n-y
2
, by the Differential Calculus; and,

therefore, V == 7r/,y
2

; consequently

and/. .//y
2)=/

From Art. 140, it is manifest that

y = 0.

Ex. 12. To find the centre of gravity of a hemisphere.

A hemisphere is generated by the revolution of a quadrant,

whose equation is

* 2ax x*-.

which gives, for the whole hemisphere, by writing a for x,

the quantity \ a\

Again,

which, by writing a for x, becomes

=
{.
a = |- of the radius.

Ex. 13. Given the altitude and the radii of the ends

of a parabolic frustum, to find its centre of gravity.
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Let PM (Fig. 53) and QN be (a, b) the radii of the

ends, and MN (c) the altitude of the frustum ;
G its centre

of gravity : also let y
2 4mx be the equation of the

generating parabola APQ. Then

= 4m/> = 2mi* + C.

This taken from x AM, to x = AN, gives for the

frustum the expression

2m (AN)2 -2m. (AM)2
,

which is equal to 2mfa*x*), denoting AN, AM by
. respectively,

= 2m fa + a:,) fa - -r,),

= 2m fa 4- x
}) c.

Again,

f.(xf) = 4m f,(x*),

= $mz3
-f C;

which, taken between the same limits as before, becomes

**<***-*&,
= $ m (x* -I- x^ -\- xft fa - xj,

Hence AG =

- .

/. MG = AG

. . 5LJL5&JLV -__ _ " ./
1

.

at.'

, (*,-*.i

*^



j 4- 4///r
t

_~
3*

because 4WX, = aa
, and

I'll is formula gives the distance of the centre of gravity

from the smaller end of the frustum.

K\. 14. In a cone, generated by the revolution of a

right angled triangle about one of it sides.

x = | . of that side.

>

Ex. 15. In the solid formed by the revolution of a

semicycloid about its axis.

_~'

x being from the base along the axis.

Ex. 16. In the paraboloid, formed by the revolution of

the parabola, whose equation is y
m+ n am xn

,

m -!- 3n x
=

182. To find the centre of gravity of a solid of any

form.

Let Ox, Oy, Oz (Fig. 54) be the rectangular co-ordi-

nates, to which the solid is referred by its equation. Let

ABPC be a portion of the surface of the solid, compre-

hended between the co-ordinate planes xOz, yOz, and

the planes P/?NC, PpMB respectively parallel to them.

Through the point S very near to P draw planes Ssnc,

parallel to the former. Let x, ?/, z, bo the co-ordi-



nates of P, and x 4 r, y 4 Sy, 4 S* those of S. Then,

ni: the volume of the paraUeTopiped Ps hy A, its

moment about the axis Or is "renter than if it were all

collected in the plane P<y, and less than if collected in the

plane Rs ; that is, the moment of A

greater than //
\.

and less than (y 4 y) A.

But now if u be the moment of the solid PO about

CXr, the moment of SOBmPn about Ox will be (by

Taylor's theorem applied to two variables #>y),

-1- d/tyU . .ry 4 ....

4- . . . .

and hy the same theorem . applied to the variable x, the

moment of the solid B///P about O>r, is

>? 4 ....

and, similarly, the moment of the solid CnP,

'/)
2 4

Subtract in i: both these from the former* we find the

moment of the parallelepiped
P\ to be e(pial to f/

f
d
y
u .

$x$y 4 ..... ; consequently, this (piantity always lie^

.-n //A and <y } r//) A : and, therefore, dt
d
yu 4-

...... n\\\

"

ten'U to | a^ it** limit, and consequently the
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two quantities y . and y .^ + Sy .

ŷ
tend to

equality with i/z; and d
gdyu -f . . . . which always lies

between them, tends to dg
d
y
u as its limit; the three limits

are therefore equal ; consequently,

dtdyu = yz\

Now the volume of PO is equal to/,/,*, and its moment
about Ox is

y /./,*;

wherefore, by Art. 136,

y.f.f,z=fj,(yz) ..... (2).

By a similar investigation, we should find

i-/,/,* =/,/,(**> ..... (I)-

And observing that the centre of gravity of the paralle-

lepiped A is ultimately in its middle point (Art. 140), we

should find

---- (3)-

i ARK. It is evident, that by taking an elementary

parallelepiped A, at right angles to the plane yOz, we might
also obtain

'

x -fifty =/,/*

and ii' the elementary parallelepiped were at right angles

to the plane yOz, we should find

*-/,/* =/./-
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These formula? are, in tact, often more convenient than

those first given : and the most convenient is to be deter-

mined by the form of the body and its situation with

respect to the co-ordinate axes ; the choice must, hou

be left to the skill of the reader, as no general rules can l>e

laid down. In every case, the greatest care is requisite in

taking the integrals between proper limits.

All the three sets of formulae are comprehended in the

following,

y- /,/,/. i =/,/,/. y,

Ex. 17. To find the centre of gravity of a portion of a

cone, comprehended between two planes passing through

the axis at right angles to each other.

Let AOBC (Fig. 55) be the portion of the cone, O the

centre of the base, being the origin of co-ordinates. Let

a = OC, b = OA. Then the equation of the surface

of the con

>!' the whole cone is ^ &2, and consequentlyo

the volume of AOBC is
p,

Also,

= J'
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Thix integral i- to be taken between the limits x =
and z = 0, or .r and .r =s </ h* if, consequently

between the proper limits,

/. () = *(* -
?/')
- \a +,

thereto iv,

=A /, (0 = i% -
i?/

3 + + c.

Tliis being taken from y 0, to y = OB = b, gives

/,/, (**) = i*3 - i*3 + T'T ^

.*. x .

Y^
^2 = -TO* from equation (1) ;

. b
.'. x = -.

7T

From the symmetrical form of the solid, we know that

y = x\ and, from Art. 155, z = J#

Ex. 1 8. To find the centre of gravity of the eighth part

of an ellipsoid.

Let ABC (Fig. 56) be the eighth part of an ellipsoid, its

centre coinciding with O the origin of co-ordinates. Then

OA, OB, OC being represented by , b, c respectively,

the equation of the surface of the ellipsoid will be
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This integral is to be taken from y = 0, to z = ; or

b _
from y = 0, to y = - V a* - ./

-
; and, between these limits,

This integral is to be taken from x = 0, to ,r = a ; and

betwmi tln 1^ 1 limits we have

bc-rr 2a* T

Again, t> find the value oi'fffy (
> lor\e that

/,(**) =
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which, taken between the same limits as before, viz.-

x = 0, and x a, gives

Hence x . ~ - 1g >

b Ib

.*. x = fa.

Similarly, y = # ;

and i = f-e.

Ex. 19. To find the centre of gravity of a portion of a

paraboloid, comprehended between two planes passing

through the axis at right angles to each other.

If a be its length, and b the radius of its base, the

co-ordinates of its centre of gravity will be

= * fl' y = *'-"

183. To find the centre of gravity of a surface of

revolution.

Employing the notation and figure of Art. 117, let u be

the moment of the surface generated by the arc AP, and

therefore $u the moment of that generated by PQ ;
let S

denote the former, and SS the latter of these surfaces so

generated. Then the moment of S about Oy is greater

than if it were all collected in the circumference of the
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circle described by P, and less than if collected in the

circumference of that described by Q, that is,

SM is greater than x . S,

and less than (x + &r) . SS ;

Sw. SS
.*.

j-
1S greater than x *-,

S
and less than x

-^- -f S.
o^'

Equating the limits, as before, we have

d
t
u = xd,S,

= 2irxydgs, since dxS = 2-irydgS ;

But

u the moment of S about Qy = .rS = i . STT/, (ydts),

'

xf.Ws) =f,

And it is evident, from the symmetrical form of tho

surface, that y = 0.

184. We may adapt this formula to polar co-ordinates,

by writing r cos 0, r sin 0, for a: and y respectively.

I fence

/ JrVr' + (</,/)
. MM W{ =/e

20. To find the ri-ntrc of gravity of tlu surface of

a cone.

Here the generating curve is a straight line OB; and

if // equal the altitude O\ ( 1'jir. 57), and b equal tin-
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radius AB of the base of the cone, the equation of this

lino will be

bx

which, taken between the limits x = 0, and or = OA = a,

gives

Also,

which, between the same limits, gives

/, (xydjs) =
.*. x . J b */($ _j_ b

z = y ab

.'. a? = fa.

Ex. 21 . To find the centre of any position of a sphere.

This surface is generated by the revolution of an arc OB,

(Fig. 58) whose equation is

y = </2ax x1
,

x being = OA, and y = AB;
/. ds = Vl
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'

f,(ydfs) = y> =
and f,(xyilj) = fm

ax =

> =

I-A. 'J'J. To find the centre of gravity of the surface

generated by the revolution of a semicycloid about its axis.

' - 7r ~
: "

K\. 23. To find the centre of yravity of the surface

of a paraboloid.

Taking the focus as origin of co-ordinates, we find the

distance of the centre of gravity from the directrix

sec* - 1

Ex. 24. To find the centre of gravity of the surface

generated by the revolution of a node of the Lcmniscate.

6 1 cos
'

-">. To find thi- cvntiv i' a Mirtace of any

It', in Art. 182, we uae A to denote the elementary
"f the

j)risni 1'x, \\e -hull have

''"'"'"'"''ivX
v/l

|
:./.-

,
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and by proceeding exactly as in that article, we shall find

.,

y /./, tf

186. To find the centre of gravity of a curve of double

curvature.

If we use S for the length of the curve line, and SS for

the length of a very small portion of it, we shall have the
'

-8S _
hmit of

j
= rfjg

= VI +(d,y)
a
-f (rf^)

a
, and it will be

found that

187. We shall now add a few examples of finding the

centre of gravity when the density is variable. Questions

of this kind depend upon the formula of Art. 135, viz.

. .SfcVy). S(pV*)"
>2/

S(pV)'
"

188. To find the centre of gravity of a physical line, the

density of which, at any point, varies as the nth
power of

its distance from a given point in the line produced.

Ex. 25. Let AB (Fig. 59) be the given line, and C the

given point; p = the density at a point in AB, whose

distance from C = 1 ; a = CA, b = CB, x = CP,
x = PQ. Since a physical line is of uniform thickness
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throughout, we may take the length of any portion of it as the

measure ofthe volume of that portion ;
hence r = the volume

of PQ, and as the density varies as (distance from C)
n
,

Wherefore the density at P is jj&*y and PQ is ultimately

of uniform density, therefore the value of pV for PQ, is

.'. s(pV) =

c '

between the limits x a and x b.

Again,

between the same limits as

Wherefore x being the distance oi tin- centre of gravity of

the line from C, we h; ;

__

n-f 1 M^-
n + 2'6"+>-
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REMARK. \\'\w\\ n 1,

fJL
. log, X -{- C,

And S(pVar) = fi (b
-

a) ;

Again, when w = 2,

_ /i (6
- a)

~~S~

and SVa? =

ab

Ex. 26. To find the centre of gravity of a triangular

plate, of uniform thickness, the density of which at any point

varies as the nth
power of its distance from a line through

the vertex parallel to the base.

Let ABC be the triangle, CD a line through its vertex

parallel to its base
; /u

the density at a point in the
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triangle at the distance from CD is I ; P, Q two points in

AC very near each other, through which draw Pp, Qq
parallel to the base; b = AC, c = AB, x = CP, &r = PQ,
6 = z. CAB = ACD (Fig. 60).

Then the density at every point in the line Pp =
fi (x sin 0)

n
, which may be ultimately taken as the density

at every point of the element Pq. We may regard P^ as a

parallelogram, whose base

3T(*=
-T-, by similar triangles ACB, PCp ;

and whose altitude is PQ sin = r . sin ;
its area,

which we may take as the measure of its volume, is

therefore

and its mass

= -r . &c . sin ;

*\

= n(xsinO)".-r-
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And the moment of the element Pq about CD

Therefore the moment of the triangle about CD

= ./.(* "in T,

Wherefore, if a line passing through the centre of gravity

of the triangle, parallel to the base, cut AC at a distance x

from C, the distance of the centre of gravity from CD will

be x sin 6, and

/. x sin 9 =

n + 2

* n + 2

-^'(bsmOY
+l

b sin 0;
/? 4- 3

..
72 + 3

And if CE be drawn bisecting the base, the centre of

gravity must be in that line; hence we have two lines

passing through the centre of gravity, and consequently

it is the point of their intersection.
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Ex. 27. To find the centre of gravity of a quadrant of

a circle, the density at any point of which varies as the nth

power of its distance from the centre.

Let ACB (Fig. 61) be the quadrant; CD, Cd two

radii making angles with CA respectively equal to 0,

+ $0 ; AC = a, CP = Cp = r, PQ = pq = 8r ;

p.
= density at the distance I from the centre ; therefore

the density at P or p = /*?". Now we may ultimately

consider Pq as a parallelogram, whose sides are PQ and

Pp, or $r and r$0, and its area = r$r . 6, which may be

taken as the measure of its volume ;

.'. S(pV) =

~
n +

fn.m = 0,to0 =|.

Again, x = r cos 0, and

.rSr.80.r i

f (/ir*^ cos 0) = , .*
' r"** cos 4- C,

71 -f-
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= jr&/'<
8
co.rf,

~
n + 3

between the same limits as before.

. _
-

,n+2

And it is manifest, from the symmetrical form of the

figure, with regard to CA and CB, that y = x.

Ex. 28. A sector of a circle ACB (Fig. 62) revolves

round one of its radii AC through a given angle (/3), and

generates a solid, the density at any point of which varies

as the (n)
th
power of its distance from the centre C ; to find

the centre of gravity of the solid.

Since the solid is perfectly symmetrical with regard to

a plane passing through AC, and bisecting the angle ]3, the

centre of gravity must be in that plane. Let CA be the

axis of x, and a line in the plane BCA at right angles to

AC, the axis of
?/ ; the axis of z being at right angles

to both.

/. i =
//

tan .
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Let a = AC, a = z. BCA, = ECA, $6 = FCE,
CP = Cp = r, PQ = pq = 8r, /z

= the density at the

distance 1 from C. Then the area of the parallelogram Qp
= r80.gr;

and when the sector revolves about AC, this parallelogram

generates a volume

= r sin . . rS0 . Sr, (Art. 170),

for P's distance from AC is r sin 0, and in revolving through

the angle /3,
the length of its path is r sin . /3. The

density of this volume

and therefore

20>V) = . sin

But/r
r +a sin =

^-sin
-f C,

7+3

n -f 3
sin 0,

from r = 0, to r = a.

irnm . - O. = a.
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Again, S(pV) = S(/u/3r^
a sin . Sr . $0. r cos 0),

. __

=
^T4-

aC S
2'

In order to find z, we must divide the volume generated

by the revolution of the parallelogram Pq into elements ;

to this end, let there be two planes passing through AC
and inclined to the plane BCA, at the angles and -j- ^

respectively ; then the portion comprehended between them

will be equal to the volume generated by Pq, in revolving

through an angle 80, and therefore is

= r sin .
$<t>

. r$0 . gr (Art. 170),

And the density of this element is /ur
n
, and therefore its

mass is

and its distance from the plane ABC is r sin . sin 0, as is

evident from the construction ; and therefore its moment

= pr*+* Sr . sin2 30 . sin fy ;



151

taken from = 0, to =
/3.

Now/e
sin2 = J/e(l

- cos

a sin2g

2 T~

taken from = 0, to = a.

ua"+4 3
= S ~

- i sin 2a),

7i + 3 a

^T
a sin a cos a

|3

and therefore y = i cotf-,

. 3
4-3 o

(OS
2

8
2 a ~ sisng cos a
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Ex. 29. Find the centre of gravity of a cone, the

density at every point of which varies as the square of

its distance from a plane through the vertex parallel to

the base.

Ex. 30. Find the centre of gravity of the eighth part

of a sphere, the density at any point whose distance from

the centre is s, being proportional to

a . -ITS

-sin -,
s 2a

where a denotes the radius of the sphere.

There is reason to believe the law of density stated in

this question does approximately represent that of the

earth.



CHAPTER VI.

<>\ i in; M!.( HANICAL POWERS.

189. IN laying down the theory of Statics we liave

considered force in a general point of view, and our reason-

in Lr ^ are accordingly applicable to every cause which can

produce motion. We have mentioned in the last chapter,

that the earth possesses the property of producing motion

irds its centre in all matter abandoned to its influence.

This influence is exerted incessantly, and gives weight and

motion to many solids and fluids; which, in their turn,

often become the causes of motion in other matter. All

living animals also have the property of exerting force in a

limited degree ; this capability is called strength; by the

:eise of it they move from place to place and commu-

nicate motion to other bodies at will. It is to ! ved,

ever, that every animal employed in moving bodies

spends of necessity a certain portion of its strength in moving

iKi-lfat. the same time: the quantity of strength so spent

depends upon the speed with which the animal is require 1

to move, and there i-, in tact, a certain velocity for each

icular animal with which it can only jiM move itself

without any load at all. For a like reason then- i> a

limit to the velocity with which a man can move his ;

X
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or his hand, or his finger; and therefore it would be as

useless for him to attempt to perform an operation with any

of these members, requiring a greater velocity than it can

move with, as it would be for him to attempt to lift a

weight beyond his strength.

For the purpose of rendering his strength available in

such instances as these, and to enable him to call in the

assistance of animals, stronger or fleeter than himself, and

to make use of those natural forces mentioned above,

MACHINES have been invented
; and, as it appears that we

are hindered from accomplishing certain objects by three

causes, viz.

1. Not being able to apply our strength in a proper

manner ;

2. Not being able to move with sufficient velocity ;

3. Not having sufficient strength ;

so it will be found, that notwithstanding an almost infinite

variety of machines have been invented, their effects may
nevertheless be reduced to three corresponding classes;

viz.

1. To change the direction of the force employed.

2. To render velocity produced greater than that with

which the agent employed can move.

3. To enable the force employed to overcome a much

larger force.

Every machine, however complicated its construction, is

found to be reducible to a set of simple ones, called the

Mechanical Powers. These, though authors differ con-

siderably on the subject, are generally said to be six in

number
;

viz.
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1 . The Lever :

2. The Pulley ;

3. The Wheel and Axle :

4. The Inclined Plane;

5. The Screu :

6. The Wedge.

These are not the most simple machines ; for, rods used

in pushing, and cords used in pulling, are much more

simple ;
in fact, every machine will be found to be a com-

bination of levers, cords, and inclined planes, and these

might consequently be called the simple j Mechanical

Powers, with much greater propriety than the six before

mentioned. As, however, these are not very complicated

in construction and application, and as levers, cords, and incli-

ned planes do always, in actual practice, present themselves

in machinery, in one or more of these six combinations, it

will very much facilitate our enquiries into any proposed

machine, to be acquainted with their forms and the advan-

tages to be expected from their use.

In speaking of any machine, the force which is applied

to work it is called the irtirkhig power, or, simply, the

Power ; the weight to be raised, or resistance to be over-

come, is called the JVe.ight; the point where the machine is

applied to produce its effect is called the working point;

and the fraction

Weight

Power

is called the Mfchnitirnl Adrnntage (by some authors the

Potrrr, l.nt thi> creates confusion by conl'mindim: if \\ith

ih- '

the m.ichine.
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therefore its parts ought to be so arranged and adapted
that the given power may be able to overcome the proposed

weight, and move it with the requisite degree of celerity ;

but, in discussing the theory of the Mechanical Powers,
it will be sufficient to determine the ratio of the weight to

the power when they balance each other, for then the

slightest addition made to the power will cause it to

preponderate and put the machine in motion.

191. It is very important to remark, that when a power
is employed in working a machine, a very considerable

portion of it is found not to reach the Working point, being

spent in overcoming the stiffness of the cords and the

roughness of surfaces which rub against each other. Much

power is also lost through the imperfection of workmanship,
the bending of rods, beams and other materials, which are

intended to be rigid, the resistance of the air, &c. ; but the

introduction of the consideration of these things, though

very important in a practical point of view, would only tend

to embarrass the student by rendering our investigations

tedious and perplexing. We shall therefore at first suppose

cords to be perfectly flexible, surfaces quite smooth, work-

manship geometrically exact, rods and beams perfectly

rigid, the air to offer no resistance ; &c.
" It is scarcely necessary to state, that, all these suppo-

sitions being false, none of the consequences deduced from

them can be true. Nevertheless, as it is the business of

Art to bring machines as near to this state of ideal perfec-

tion as possible, the conclusions which are thus obtained,

though false in a strict sense, yet deviate from the truth

in but a small degree. Like the first outline of a picture,

they resemble in their general features that truth, to
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which, after many subsequent corrections, they must finally

approximate.
" After a first approximation has been made on the

several suppositions which have been mentioned, various

effects, which have been previously neglected, are succes-

!y taken into account. Roughness, rigidity, imperfect

flexibility, the resistance of air and other fluids, the effects

of the weight and inertia of the machine, are severally

examined, and their laws and properties detected. The

modifications and corrections thus suggested, as necessary

to be introduced into our former conclusions, are applied,

and a second approximation, but still only an approxima-

tion to truth is made. For, in investigating the laws which

regulate the several effects just mentioned, we are compelled

to proceed upon a new group of false suppositions. To
determine the laws which renulate the friction of surfaces,

it is necessary to a nine that every part of the surfaces of

contact are uniformly rounh: that the solid parts which

are imperfectly rigid, and the cords which are imperfectly

flexible, are constituted throughout their entire dimensions

of a uniform material ; so that the imperfection does not

prevail more in one part -than another. Thus all irregu-

larity is left out of account, and a general average of

the eflerts taken. It is obvious therefore, that by these

means we have still failed in obtaining a result exactly

conformable to the real state of things ; but it is equally

obviou-, that we have obtained one much more conformable

to that state than had been previously accomplished, and

>ufli( -ienily near it for most practical purpo

"This apparent imperfection in our instruments and

IN of investigation, is not peculiar to JVI. ; it

pervades all departments of natural seieruy. In Astronomy.

the motion, i he cckstiul bodies, ami their various changes
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and appearances, as developed by theory, assisted by obser-

vation and experience, are only approximations to the real

motions and appearances which take place in nature. It

is true that these approximations are susceptible of almost

unlimited accuracy ; but still they are, and ever will con-

tinue to be, only approximations. Optics, and all other

branches of natural science, are liable to the same obser-

vations."*

192. We shall introduce the theory of the Mechanical

Powers with the following general proposition, which is

applicable to any machine whatever.

If the power P balance the weight W on any machine ;

and if when the machine is put in motion the point at which

P acts begins to move with a virtual velocity v, and the

working point moves with a velocity w estimated in the

direction opposite to that in which W acts, then

Pv = Ww.

For since the virtual velocities of P andW are respectively

v and w, and since the mutual actions of the parts of the

machine against each other may be neglected, the principle

of virtual velocities (Art. 119) gives

Pt; + W ( w>) = 0;

/. Pv = Ww.

The quantity w will always be positive, since W is a

force to be overcome, and therefore, in working the machine,

the working point will move in a direction opposed to the

action of W.

Captain Hater's Treatise on Machines.
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REMARK. From the equation above given, we have

W v

F 5=
5'

Hence w is less than v in the same proportion as P is

less than W ; and therefore, whatever advantage we may

gain by a machine in moving large weights with small

powers, we lose again in time, for W moves slower than P
in the proportion w : v or P : W. In like manner, what

we lose in power we gain in time. We shall illustrate this

principle by an example.

Let it be required to raise a weight of 600/65. with a force

of \5Qlbs. through 10 feet, with any machine whatever.

Without employing any machine, the power I50lbs.

can raise GOQlbs. in four separate and equal portions

through 10 feet each, and the labour exercised, or power

it. IN the same as in raising one portion through

four times 10 feet, that is, through 40 feet. But if

a machine be employed, the power's velocity is to the

weight's velocity :: W : P :: 4 : 1, and therefore the power
mu>t descend through 40 feet to raise W through 10 feet,

the same as before. The only real advantage therefore

gained by machinery, in this case, is that it enables us to

do that at once, which we should otherwise be obliged to

do atfour Kcparatf ti

193. We may further observe, that if the construction

of a machine } such that when the point at which P acts

M uniformly, the working point also moves uniformly ;

or, which Jv tin- >anif thin-, if the velocity of P alua\< has

to that of W a constant ratio (which is the ca^e with a

great Dumber of machines)j
then

l\ \
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.t, *' bein<i the spaces < Inscribed by P and W in any

time.

For, in this case, s and s' arc proportional to the actual

velocities of P and W, and these again are proportional to

the virtual velocities v and w.

194. It is a peculiar property of machines of this class,

that P and W are in a state of neuter equilibrium ; and

therefore balance in all positions (Art. 172), and .conse-

quently the centre of gravity of P and W neither ascends

nor descends.

I. On the Lever.

195. DEF. A Lever is a rigid rod, moveable in a

certain plane about one of its points, which is fixed and

called its fulcrum.

196. In a lever the power is to the weight inversely as

the perpendiculars from the fulcrum upon the directions in

which they act.

(Both the power and weight are supposed to act in the

plane in which the lever is moveable, which is technically

called the plane of the lever).

Let AB (Figs. 63, 65) or AC (Fig. 64) or BC (Fig. 66)

be a lever whose fulcrum is C ; A, B the points at which the

power P and weightW act ; CY, CZ perpendiculars from C

upon their directions. Then the equilibrium will not be

disturbed by applying at C two forces P', P7

parallel and

equal to P, and two others W, W parallel and equal to W.
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'We liave thus, six forces acting on the lover, of which

(P, F) and (W, W) form two couples, and the two

remaining forces P, W bein^ counterbalanced by the re-

action of the fulcrum, may be removed Hence the couple

(P, F) whose arm is CY, balances the couple (W, W)
whose arm is CZ, consequently their moments must be

equal ;

.. P.CY = W.C7.

To find the pressure on the fulcrum C.

We have shewn that P and W are equivalent to two

forces F, W acting at C, and two equal couples (P, F),

(W, W) ;
these couples may be removed, because they

are equal and opposite, and therefore balance each other.

It appears then, that P and W are equivalent to F and W'

acting at C. Consequently the pressure on the fulcrum is

the same as if the power and weight were both transposed

to it parallel to themselves.

197. We have considered the weight of the lever

inconsiderable when compared with P and W, but if this

should not he tin 4

ease, let w be its weight, G its centre of

gravity. Then we may suppose the whole force iv, which

irravity exerts upon the lever, to be applied atG (Art. 131);

this force may be converted into a couple whose moment

is w . CG, and as then- is an equilibrium between the three

couplr ;m of the moments of the two which act in

one direction (i.e. positive or negative) must be equal to

that of the third;

.. P.CY +t0.CG = W ( /.

the equation of equilibrium in this C

REMARK. Examples offerer! of the same kind a- th

in ML:. M. are the common balai . pokers, &c. ;
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and scissors, pincers, &c. are instances of two such levers

having a common fulcrum.

Examples of levers of the same kind as those in Figs.

64, 66, are the oars and rudders of boats, cutting-knives

moveable about one end, &c. ; and tongs, sheep-shears, &c.

are instances of the combination of two such levers with a

common fulcrum.

Examples of the bent lever, in Fig. 65, are gavelocks,

jemmies, bones of all animals, &c.

198. We have defined a lever to be a rigid rod, but

we may consider any rigid body having a fixed axis as

a lever, whose fulcrum is the axis ; and if powers Pp P2,

P
3

. . . . Pn, act upon this lever, and balance the weights

Wp Wv W3
---- W OT ,

then

or S(Pp) = S(Wte>).

The powers and weights being supposed to act in planes at

right angles to the axis, and pv p^ . . . . pn ; w
} ,
w

2
. . . wm

being the respective perpendiculars from the axis upon the

directions in which the powers and weights act.

This may be proved as before, by converting the powers

and weights into couples, and then transposing them into

one plane ;
and it will also appear, that the pressure on the

axis or fulcrum is the same as it would be if all the forces

were transposed in their own planes parallel to themselves to

the axis.
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II. On the Pulley.

199. DEF. A Pulley is a wheel of wood or metal,

turning on an axis through its centre at right angles to its

plane, and usually enclosed in a frame or case, called its

block, which admits a rope to pass freely over the circum-

ference of the pulley, in which there is usually a groove to

receive it, and prevent its slipping out. The1

pulley is said

to be fixed or moveable, according as its axis is stationary

or not. An assemblage of several pullies is called a system

of pulleys or a movffle.

200. It will be necessary before investigating the pro-

pertie^ of the pulley to premise, that if a cord be stretched

by two equal forces applied at its extremities in contrary

directions, there will be a tendency to break ;
the force which

the rope, in consequence of the cohesion of its particles,

exerts to resist this tendency, must be equal and opposite

to that which causes the tendency ; it is called the tension of

the rope. Hence tension is a force which is exerted equally

in every part, tends from the extremities of a cord towards

the middle, and is always equal to either of the equal

v which the cord is stretched. If one end of the

i of lie-in^ acted on 1 lened to

a fixed point, the ten>ion will not he altered ; for the fixed

point will, by its reaction, exactly supply the place of the

force.

201. In the single fixed pulley the power and weight

jiial.

Let ABK (Fig. 07) he the pulley, C its centre, ON its

block ;
P and \\ ilie

|

nd \feii_' hi .iclini: ,i! the
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extremities of the cord passing over the pulley, and having

the part AB in contact with it. Then we may consider

ABK as a lever whose i'ulrrum is C, and therefore drawing

the radii CA, CB to the points A and B, we have

P.CA ^ W.CB, (Art. 196);

/. P == W.

Hence it appears that no mechanical advantage is gained

by the use of this pulley ;
the only purpose for which it is

used isjo change^the direction in which a force is trans-

mitted.

To determine the pressure on the fulcrum C, transpose

the forces P and W to that point (Art. 196), and put for

the angle at which AP and BW are inclined to each other,

and let R be the pressure, which is, of course, the resultant

of these transposed forces.

.-. R2 = P2 + 2PW cos 9 + W2
(Art. 26),

= P2 + 2P2 cos + P2
,

= 2P2
(1 + cos 0),

= 4P2 .cos2

|;

/. R = 2P cos |

This pressure bisects the angle PCW, and is transmitted

to N, the fixed point to which the block is attached.

202. In the single moveable pulley, the power is to

the weight : : 1 : 2 x cosine of,
half the angle between the

strings.

Let the power P act at the extremity P of the cord PABD

(Fig. 68), which passes under the pulley ; has the part AB
in contact with it ;

'

and its other extremity fastened at D.
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The weight W hangs from the block at N.
,

Exactly as in the last case, we find the pressure on the

centre C to be

6 being the angle between the strings AP, BD ; this force

is transmitted through the block in the direction CN,

bisecting the angle 0, wherefore the action of W must be

equal to it and in the opposite direction, otherwise there

cannot be an equilibrium;

/. W = 2P
cos|,

A
and consequently P : W :: 1 : 2 cos^.

203. No mechanical advantage can be gained by the

use of this pulley, unless

and .'. cos 5 > i> cos 60;
Z

/. < 120;

that is, unless the M rings are inclined to each other at a less

angle than

The greatest possible advantage will be gained when the

n

Brings are parallel, for then = 0, and cos - = 1,

and then-fore W = 2P.

204. If tin- weight of the pulley and its Mock In-

considerable, it must I.e boandUfod as an additional

and ;nlded to \V in tin- boTO i'\|>ressituis.
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205. To find the conditions of equilibrium in a system

of pullies, where each pulley hangs by a separate string,

the strings being all parallel.

Let A,, A 2 , A 3
. . . (Fig. 69) be the pullies ; M,, M2 ,

M
3

. . . the points where the strings are fastened. Then P is

equal to the tension of the string passing under A-, and W
equal that of the string passing under A

2
. The two strings

AtP, A X
M have to support the tension of NjA2 ; NjA2

and

M
2
A

2 support that of N
2
A

3 , and so on ; therefore, by

(Art. 203),

(P =) tension of A,P : tension of NjA2
:: 1 : 2,

tension ofN
t
A

2
: tension of N

2
A

3
:: 1 : 2,

tension ofN
2
A

3
: tension of N

3
W (= W) :: 1 : 2:

/. P : W :: 1 x 1 X 1 X :2x2x2
If n be the number of moveable pullies, then

P: W :: 1 : 2 ;

.-. W = 2" P.

206. If the weights of the pullies and blocks are con-

siderable, let A
i,
A

2 ,
A

3
. . . . represent the weights of the

pullies and blocks denoted by those letters in the figure ;

and let T|, T2
.... be the tensions of the strings NjA2,

N
2
A

3, .... Then, as before,, the weights of the pullies

must be added to the tensions of the respective cords which

they support; P T j_ A 1 9
. 4 Jr . lj 4- -A)

.. l . A ,

/. T
1
= 2P-Ar

Similarly, T2
= 2T,

- A
2,

= 22P~2A
1
-A

2,

1
3

r=z 1
2 -**3>

= 23P - &A
}

- 2A
2
- A

3 ,
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and so on, the law being manifest
; then, since the tension of

the last string = W, we have

W = 2" P - 2-> A,
- 2"~ 2

A, - 2"- 3 A
3
- ..... - Aw.

It appears from this expression, that the weights of the

pullies diminish the advantage of this system.

207. If all the pullies are equal, then

W = 2"P - A
1 (2-

1 + 2"-* -h ..... + 1),

= 2-(P-A I) + AI;

/. W - A
l
= 2 (P - A,).

Hence, if we suppose both the power and weight dimi-

nished by the weight of a pulley, we may then neglect

the consideration of the heaviness of the pullies.

208. In the system (Fig. 70) where each string is

attached to the weight, let Tp T
2 , . . . be the tensions of

the first, second, . . . strings ; then if the weights of the

pullies are inconsiderable, we have

T Pi, i ,

T
2
= 2T, = 2P (Art. 203),

T
3
= 2T

2
= 22

P,

and if there }>< n i^panUe itrifl

T. B -'P.

Now W is supported by the tensions of the n M;

M<l



168

.-. W = T
t + T

2 + . < . . + T.,

= P (1+2 + 2*+... 2- 1

),

209. In the system (Fig. 71), let Tp T2 ,
.... be the

tensions of the first, second .... strings ; then T
2
has to

support three tensions equal to P ;

/. T, = P,

T
2
= 3T\ = 3P,

T
3
= 3T

2
= 32

P,

and if there be (n) different strings, the tension of the

last is

Tw
= &-*P.

Now the weight W is supported by two strings whose

tensions are each equal to Tv two of which the tensions are

equal to T
2, &c.

.-. W = 21\ + 2T
2 + . . . + 2TK ,

= 2P (1 -f 3 + 32
-f . . . . 3"-'),

= P.(3- 1).

REMARK. If the weights of the pullies and blocks are

not inconsiderable, they may be taken into account, in this

and every other system, by adding each to the tension of

that string which supports it, as in Art. 206.
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In the- tyttem, Fig. 1'2, the weight \V is sup-

ported by the tensions of all the strings at the lower block,

and as it is the same string which passes round all the

pullies, the tension of every part = P; wherefore, if there

be n pullies in the lower block, there ;uv 'J/> strings sup-

porting the weight, and therefore

\V =

III. On the. Wheel ami Axle.

Jll. The wheel and axle consists of a cylinder and a

wheel firmly attached to each other, and being moveable

about a fixed axis coinciding with the axis of the cylinder,

and passing through the centre of the wheel at right angles

to its plane, as in Fig. 73.

The power P acts by means of a cord wrapped round

the circumference of the wheel C, and the weight W is

listened to a cord which is wound upon the cylinder AB
a> P turn-* the machine round its axis: and thus W is

raised.

To find the condition of equilibrium on the wheel

and axle.

\\ may consider P and W as forces acting upon a :

body \vith a fixed a\i, and therefore their moments about

that axis must be equal :

P > rpendicular upon iN direction from the

= \V . (perpendicular upon its direction from tl

Now these perpendiculars are respectively the radii of

the \\hcel and of the cl\iin

.'. P .
' radii-

'

.'lius of the nxle).

Z
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213. If the thickness of the rope be considerable, it

lu taken into account.

We may suppose the actions of P and W to be trans-

mitted along the middle or axis of the rope, and then the

perpendiculars upon the directions of P and W will be

respectively equal to

radius of wheel + radius of rope,

and radius of axle 4- radius of rope,

and the condition of equilibrium is

P.(rad. wheel -f rad. of rope) = W (rad. axle -|- rad. of rope)

This diminishes the advantage of the machine.

214. The pressure on the axis of this machine may be

found by transposing P and W in their own planes parallel

to themselves to the axis.

IV. On the Inclined Plane.

215. This machine is nothing more than a plane inclined

to the horizon. The condition of equilibrium may be thus

found.

Let AB (Fig. 74) be the plane ; AC parallel and BC
perpendicular to the horizon

;
W the weight, P the power.

Draw WR perpendicular to the plane, WG perpendicular

to the horizon. P is supposed to act in the plane RWB.
The weight W is kept at rest by three forces, viz. P in

the direction WP
; gravity (

= W ) in the direction WG,
and reaction R of the plane in the direction WR (Art. 117).

Denote the angle PWB by 0, and the inclination BAC
of the plane to the horizon by A ; and resolve the three
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forces, acting on the point W, in a direction parallel to the

piano, the sum will be

P cos PWB - W cos AWG + R cos RWB
= Pcosfl- W.sinA.

But since there is an equilibrium, this sum must be equal

to zero, (Art. 40.) ;

/. Pcos0 = W sin A.

216. If P's direction should happen to be parallel to

the base, = and cos = 1 ;

.. P = WsinA.

But if P's direction should happen to be parallel to the

horizon, = A and cos ( A )
= cos A

;

/. Pcos A = WsinA;
. . P = W tan A.

217. To find the reaction (which is equal to the pres-

sure on the plane) resolve the forces in a direction at right

angles to that in which P acts ;

/. R cos RWP -f W cos GWP = 0, (Art. 40) ;

or R sin + W cos (90 -f A -f 0) = ;

- W
sin 6

V. On the

This mechanical power is a combination of the

,n<l inclined plum-; it may be conceived to be thu*

Let ABCD(Fig. 75) be a cylinder; BEFC a ivn

B] the rirriii iincler.
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Divide tin- rectangle into any convenient number of equal

GE, IK, CK; and draw their diagonals BH,

QK, II
4

'. Then, if this rectangle CE be wrapped upon

the cylinder, so that BE coincides with the circumference of

the base, E, H, K, F will respectively fall upon the points

B, G, I, C of the cylinder, and the lines BH, GK, IF

will trace out upon its surface a continuous spiral thread

BLGMINC winding uniformly up the cylinder. The

cylinder is usually made protuberant where the spiral line

BLGMINC falls upon it so that the thread becomes a

winding inclined plane, projecting from the cylinder as in

Fig. 76, and differing from the inclined plane BH * in

nothing but its winding course. This is the external screw.

The internal screw is formed by applying the parallelogram

BEFC to a hollow cylinder, equal to the former, and

making a groove where the thread falls to fit the protuberant

thread of the external screw. This internal screw is often

called a nut, and the other the screw. When the two screws

The following illustration renders this very clear :

" When a road directly ascends the side of a hill, it is to be considered as

an inclined plane ; but it will not lose this mechanical character, if, instead

of directly ascending towards the top of the hill, it winds successively round

it, and gradually ascends so as after several revolutions to reach the top.

In the same manner a path may be conceived to surround a pillar by which

the ascent may be facilitated upon the principle of the inclined plane.

Winding stairs constructed in the interior of great columns partake of this

character ; for although the ascent be produced by successive steps, yet if a

floor could be made sufficiently rough to prevent the feet from slipping, the

ascent would be accomplished with equal facility. In such a case the wind-

ing path would be equivalent to an inclined plane, bent into such a form as

"inmodate it to the peculiar circumstances in which it would be

required to be used. It will not be difficult to trace the resemblance be-

tween such an adaptation of the inclined plane and the appearances presented

hv tlio thread of the screw ; and it may hence be easily understood that a

.rrew is nothing more than an inclined plane, constructed upon the surface

N K.VJ j.n's .



are thus adapted to each other, the external or the internal

screw, as ti, requires, may he moved by means of a

lever about their common axis, as in Figs. 77, 78. The

force beinir applied to the lever at right angles to it, in a

plane parallel to the base of the cylinder.

The screw and nut thus applied to each other, resemble

two inclined planes, such as BHG and HBE, one of which

is laid upon, and slides down the other; and as the planes

wind round the cylinder a rotatory motion ensues. When
the machine is worked, the weight is laid upon the nut,

and thus causes its inclined plane to press upon that of the

screw in the direction of gravity. The consequence would

that the nut and weight with it would begin to slide

down the thread of the screw and descend, but this is

prevented by confining the nut so that it cannot have a

rotatory motion, but only one of ascent or descent. The

w is then turned round by means of a lever passing

through its head, and thus its inclined thread sliding under

that of the nut, forces the nut and the weight upon it to

ascend, just as by pushing the inclined plane EBH in the

direction EB, the plane GBH would be made to ascend.

One turn of the screw raises the weight through an altitude

equal to the distance between two threads. Sometimes,

however, the nut is firmly fixed so as to admit of no motion

whatever, (as in FiLr >. 77, 78) ; and then the thread of

tin- screw, in sliding under that of the nut, forces the screw

to descend and press violently against any obstacle which may
to it In some cases the weight is not applied

to the nut, but to the ICTOWj hut as the two inclined planes

etl\
e.jiial and similar, it will require the same

; weight on one as- on the other, and for

this reason one im<'sti'jatiui will ser\e jor both.
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power P at the end of a lever; and the moment of P to

turn the screw round

= P x length of the lever,

and therefore P is equivalent to a force

P x length of the lever

rad. cylinder

actini: immediately at the thread of the screw in a horizon-

tal direction parallel to that in which P acts. Now the

inclined plane on whichW rests, by means of the nut, is only

BH wrapped round the cylinder; its inclination to the

horizon or base of the cylinder is therefore HBE.

Hence, by Art. 216, we have

length of lever ^TP X -
jf r^ ~ = W . tan HBE.

rad. of cylinder

W HE
'BE'

_ w distance between two threads

circumf. of cylinder

But the radii of circles are proportional to their circum-

ferences ;

length of lever _ circumf. described by power
rad. of cylinder

"
circumf. of cylinder

p circumf. by power _ -^ dist. between two threads
'

circumf. of cylinder

~
circumf. of cylinder

p _ w disk between two threads
'

circumf. described by power'

As the distance between two successive threads can be

made very small, and the circumference described by the

power as large as we please, the advantage of this machine

is very great ; and it is remarkable, that it does not depend

upon the thickness of the screw.



REMARK. When the nut i< fixed, the end of the screw

moves through the distance between two threads, while

the end of the lever at which the power acts, describes one

whole circumference. Now suppose that the length of

the lever is 3J inches, then the circumference described

by its end is 1 1 inches nearly ; and if there be 50 threads

in one inch of length of the screw, the lever must turn round

50 times, and therefore its end will move through

50 x 1 1 = 550 inches

while the end of the screw descends through one inch.

And if the end of the lever describe one inch, the end of

the screw will describe the (-5-577)'* part of an inch. The very

slow motion of the screw, which may be thus communicated

by a very considerable motion of the end of the lever,

renders it a very convenient instrument for the measure-

ment of small spaces. When the lever is made to move

over a graduated circle, the screw is called a Micrometer

screw, and is very useful in Astronomy when very minute

portions of tin* divisions of a graduated circle are to be

rtaified,

VI. On the Weti

219. A wedge is the solid figure defined by Euclid

(book xii. del', iv.jas a triangular prism. Its two ends arc

eijiial and similar triangles, and is three .sides rectangular

paralleloL'r . It U principally used in split-

hodies whin; rv strongly

lj
and in rai-iim ver\ Ughtl thresh a small

altitude, lor the purpose of introducing a lever, or some

other more convenient machine. AI i- called its edge,
<'DKr CARD and FABK its/acei.
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When used, its edge is introduced into a small cleft

prepared to receive it, and then by violent blows with a

hammer on its head its body is driven between the

substances, which are thus separated by an interval equal

!> the breadth of the head. After this, a larger wedge

may be introduced, if necessary, and treated as before, until

the requisite degree of separation is effected.

As the wedge is driven in by violent blows, if its sides

were perfectly smooth it would start back by the pressure

of the obstacles upon them in the interval between the

strokes ; and thus we should fail in effecting and maintain-

ing the requisite degree of separation, and the machine

would be rendered useless. In practice, however, the

friction in this machine is always so great as to prevent

any recoil, and forms, in fact, the principal resistance to

be overcome in driving the wedge. The mode of working

this machine will at once present itself to the reader as

being totally different in principle from that of all the

other machines we have described. These are made to

work by the constant and steady exertion of a power,

uniformly pressing upon that point of the machine at which

it is applied, and gradually producing motion in the

weight; but in this machine motion is accumulated in

a hammer, by suffering it to descend from an altitude,

and is suddenly by an impulse transferred to the wedge.

In this case it must be evidently a useless labour to attempt

to calculate the ratio of P to W, when they act by pres-

sures, as in the other mechanical powers, and are in

equilibrium. It is true, when we know this ratio, a slight

increase* of P will gradually produce a motion in W, and

This, however, supposes the sides to be perfectly smooth, for otherwise

the friction itself, without the assistance of any power at all, would preserve
the equilibrium.
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thus separate the obstacles
;

but this mode of working the

machine is so widely different from that actually practised,

that it would be a waste of time and labour to attempt an

explication on Statical principles. The slightest stroke with

a hammer is found to be far more effective than several tons

of pressure. The only theoretical property of the wedge
which agrees with practice is that its advantage is increased

by diminishing its angle DBE.
All cutting instruments, such as knives, swords, hatchets,

chisels, plains used by carpenters, nails, pins, needles, &c.

are modifications of the wedge. Of these, knives, plain's,

pins and needles, are usually worked by pressure, but

swords, hatchets, chisels, nails, &c. are worked by per-

ion.

\ x



CHAPTER VII.

ON FRICTION, AND THE RIGIDITY OF CORDS.

220. We have defined force to be that which can

produce motion ; this, however, does not embrace the

forces to be considered in this chapter. And hence it is

necessary to observe, that there are two kinds of forces,

which have been denominated by some authors active and

passive. The former appellation belongs to all those

which fall under our definition of force ; but the latter

is applied to such forces, as having no energy in themselves

to put a body in motion, do nevertheless constantly diminish

existing motion, and oppose its production in a body at

rest. That this opposition is of the nature of force, in

those effects which it can produce, (and we know nothing

of force but by its effects) is very manifest
;

for the same

diminution of existing motion, and the same opposition

to the production of new motion, which are the effects of

passive forces, might be effected by employing active

forces in directions opposite the existing motion in the one

case, and to the direction in which there was a previous

tendency tg a production of motion in the other case.

Since then, we might theoretically employ active for passive

forces, the latter must be of the same essential nature as

the former, so far as they have effects, but the former having

a more extensive nature, embrace within their effects those
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belonging to the latter. Care must therefore be taken,

if it be found necessary to substitute theoretically active

for passive forces in any investigation, that we suppose

them divested of such effects as passive forces do not

possess in common with them. Among the most familiar

instances of passive forces we might enumerate, the resist-

ance offered by the air, water, and all fluids, whether

elastic or not, to the motion of bodies within them ; and the

resistance to rotatory and progressive motion in bodies

which rub against surfaces with which they are in conta

this latter resistance is called friction, and is distinguishable

into two kinds.

1st. Statical friction, or resistance to the production

of motion in a quiescent body.

2ndly. Dynamical friction, or the resistance which di-

minishes existing motion.

Of these two kinds, since all machines are designed to

work, the latter is of more importance in practical Mecha-

nics; and it would accordingly not be improper to postpone

the consideration of friction, till the student has made

himself acquainted with some of the most elementary parts of

Dynamics. Under this supposition > we shall not hesitate to

introduce some simple considerations depending upon that

branch of Mechanics.

1'Yiction, as before observed, i^ the resistance of

one surface to the motion of another upon it, and a^ then-

thive \says in which our surface can mmv upon another.

it will he convenient to subdivide both Statical and

Dynamical friction into thnv corivxpnndinu' heads.

Ut. When the MirfaccN jn contact are two plai

Jndly. When the surface*, in OOtf .1 solid and a

hollo\\
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3rdly. When a cylinder rolls (without rubbing) upon a

plane.

luus \\hich govern the action of friction cannot be

tied need from theoretical considerations, though these will

render us great assistance in our researches by pointing

out tin 1

experiments which are most likely to lead us to

the discovery of them, as well as shewing the inconclu-

sivenoss of other experiments, on which we might otherwise

be induced to rely. It is to be regretted, however, that

the experiments which have been made upon the subject by

different philosophers are frequently at variance; and, con-

sequently, the theory cannot be said to have arrived at that

state of perfection which is desirable.

222. The statical friction of plane surfaces is, under

like circumstances, proportional to the pressure.

For let AB, ab (Fig. 80) be two planes in contact, placed

in a horizontal position, the lower one AB being firmly fixed,

but the upper one ab free to slide upon it. To ab attach

a horizontal string Z>D passing over a pulley D, and having

a dish C suspended from it. Load ab with a weight w,

and denote the whole pressure of the plane ab on AB by W.
Pour fine sand into the dish C until it begins to move, and

then the weight of the dish and sand is the measure of the

statical friction of the planes corresponding to the pressure

W. If ab be loaded with more weights until the pressure

is 2W, the friction is found to be double of what it was

before ; when the pressure is 3W, the friction is trebled ;

and so on. Wherefore the statical friction of plane surfaces

is proportional to the pressure,

This result was confirmed by Coulomb and Ximines for

very considerable pressures ; in extreme cases, where the

ires were very large indeed, the friction was observed
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to be rather less in proportion than for small pressures; the

deviation from the above law was however so small, even

for extreme cases, that we shall not fall into any very con-

siderable error, in supposing the law to be uninversally true.

The following method of establishing the property of the

proportionality of the friction to the pressure, is very con-

venient for experiments.

Let the body W (Fig. 81) be placed upon an inclined

phme AB, and then let the altitude BC be slowly increased

until the plane has acquired such an elevation that W
begins to slide down it ; at this moment the friction just

balances the weight W, and since it acts parallel to the

plane in the direction AB, we may consider W as kept in

equilibrium by a power in that direction,

friction . .
"^-r- = sm A >

l

V (Art. 216),

c^s~A'J

sin A
r- = tan A;

cos A
.'. friction = (pressure) .tan A.

223. The fraction
,

is usually called the coeffi-

pressure'

cient of friction, and is taken as its measure. It appears

then, that in the last experiment the coellicient of friction

is equal to the tangent of the inclination of the plane.

224. It being granted that the friction is proportional

to the prettOre when the surlae. .en, then, whatever

be the magnitude nt'th-
kCt,

the friction will

the prelim' is the same.

Let the body \V *

'

l-'iir. *1 ) ha\e faces; whose areas

are C and I) >|nan- inche- : then uhen the first fm06 i- in
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contact with the plane, the whole pressure is supported on

C square inches, and therefore the pressure on each square

inch, is equal to

pressure

and therefore the friction upon each square inch of surface

= pressure tan A
\_x

Consequently the friction upon the whole surface

-p
tan A x number of square inches,

pressure= tan A x C,o

= (pressure) . tan A.

In the same way it may be shewn that the friction upon

the second surface

= (pressure) . tan A,

and therefore the friction of a body is the same whether the

surface on which it rests be large or small. When the sur-

face is very small, the pressure on each square inch becomes

very large, and then the friction, as observed in Art. 222,

becomes somewhat less in proportion to the pressure ; and

therefore the friction is less, in a slight degree, when the

body rests upon a small surface than a larger.

225. The Dynamical friction of plane surfaces is a uni-

formly retarding force
;

which diminishes as the pressure

increases.

Let W (Fig. 82) be the body whose friction is to be

determined; AB the plane on which the body presses; and

let W be drawn along the plane by the weight P ; and let

F denote the friction. Then if F be supposed a uniform



1S3

force, we shall derive the formula lor the motion of W
or P from the common principles of Dynamics.

Let g the force of gravity; then the moving force

which P exerts on W = P, and that which friction exerts

isF;
.'. the whole moving force on W = P F,

W 4- P
and the mass moved is--

, (Art. 122, Statics) ;

o
P _ P

therefore the accelerating force on W or P = ===-^ . g

(Art. 16, Dynamics); and therefore, if .9 be the space

ascended by W or descended by P in the time t, we have,

by Art. 53, Dynamics,
P F

'

P F

It appears then, that if the space varies as the square of

the time, then the friction must be uniform ; and if when

P and W are increased or diminished in the same pro-

portion, the space still bears the same proportion to the

square of the time, and in that case

P-F
P-W = constant ;

.'. P + Woe P-F;
P P !'

w 1
l * w~w ;

P
but ^ is constant in this case, and therefore

P
is constant ;

. . Foe W,
and therefore the Dynamical friction will be proportional to

re^nnv
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Tin* late Profe^or Vince, having first premised, what we

have just proved, that if the space described varies as the

ire of the time, then friction is a uniform force ; and if,

further, the space and time continue unchanged when P
and W are increased or diminished in the same proportion,

then the friction is proportional to the pressure, but other-

wise not
;
instituted some experiments, from which we select

the following, for the purpose of establishing the proposition

at the head of this article. He adjusted a plane parallel to

the horizon and so placed a pulley that it could be elevated

or depressed, (see Fig. 82) in order to keep the string

parallel to the plane. An accurately divided scale was

placed near the pulley perpendicular to the horizon, by the

side of which P descended. Upon this scale was a move-

able stage, which the Professor adjusted to the space

through which the moving force descended in any given

time ; the time was measured by a well regulated pendulum
clock beating seconds.

1st. EXPERIMENT.* A body was placed upon the hori-

zontal plane, and a moving force P applied, which from

repeated trials was found to descend 52J inches in 4 seconds;

(by the beat of the clock and the sound which P made

when it struck against the stage, the space could by moving
the stage be very accurately adjusted to the time). The stage

was then removed to that point to which P would descend

in 3 seconds, upon the supposition that the spaces described

by P were proportional to the squares of the times, and

this space was found to agree very accurately with the time.

The stage was then removed to that point to which P ought
to descend in 2 seconds on the same supposition as before;

and this was also found to agree very accurately with the

time. Lastly, the space was adjusted to that space which

*
Gregory's Mechanics.
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ought to be described in 1 second, and this was also found

to agree very accurately with the time. Now iu order to

find whether a difference in the time of descent could be

observed by removing the stage a little above and below

the positions which corresponded to the above times, the

experiment was tried, and the descent was always found too

soon in the former case, and too late in the latter case ;

by which the Professor was assured that the spaces first

mentioned corresponded exactly to the times. For the

greater certainty, each des< 1 eight or ten

times. Other experiments were made with different bodies

moving with different velocities, and results were always

obtained confirmatory of the one just detailed ; by which

it was clearly established,

That Friction is a uniformly retarding force.

This is however only true when the surfaces in contact

are hard ; for from experiments made with bodies eovered

with cloth, woollen. &r. the friction was found to in

with the velocity.

Kxi'nmiKVT. When W was 10 ounces and P 4

then P descended through 51 inches in '2 seconds;

but when \V and P were loaded, so as to become 20 and s

-.then 1* descended through 56 inches in ^>ivnnd>;

and, asrain. when VV and P \\vre increased to oO and 1'J

ounces, P > <1 throilgh f>3 inches in l* seconds; and

then-tun- the friction was diminished, with i i.> flu*

pressure, as the pressure increased.

letcrmine the iVi in these cases, we

tiie formula

f P 1

* _
I'

\
W

* feet 386 inche* nearly.

B u
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Let /,, fv /3
be the coefficients of friction in the three

cases respectively,

.-. in the first, 51 =
|.

/./,=. 307.

In the second, 56 =
f g . 2Q

>4;

/./, = . 298.

In the third, 63 =
|. ^"^ , 4 ;

/./,= . 285.

From which it appears, that the coefficient of friction

decreases as the pressure increases; and this result was

confirmed by a great number of experiments with different

pressures and velocities.

226. From this result, precisely as in Art. 224, it follows

that a body will be less retarded when it slides with a

small face in contact with a plane, than when it moves with

a larger face in contact; but as this inference was directly

at variance with the received opinions, Professor Vince

deemed it necessary to confirm it by actual experiments.

3rd. EXPERIMENT. A body was taken whose flat side

was to its edge as 22 : 9; and it described 33 inches in

2 seconds on its flat side, and 47 inches in 2 seconds on its

edge ; P being the same in both cases.

4th. EXPERIMENT. Another body was taken, and one of

its faces being covered with fine rough paper, it described

on that face 25 inches in 2 seconds
; but the paper being

taken off from the middle of the face, so as only to leave
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a very small slip
- of an inch in breadth at the two ends,

it described 40 inches in 2 seconds.

These and many other experiments, which it is not neces-

sary to detail here, agreed in confirming the inference drawn

from the preceding experiments.

227. In the same body Statical friction is greater than

Dynamical friction ; that is, it requires a greater force to

put a body at rest in motion, than is requisite to preserve

the motion undirninished when once it is produced.

This was thought by Professor Vince to arise from the

cohesion of the body to the plane when it is at rest, and

which does not happen when the body is in motion.

5th. EXPERIMENT. A body whose weight was 16 ounces

was laid upon the plane (Fig. 82), and it was found that

after the body had been put in motion, a power P of 4

ounces would continue the motion without acceleration; in

this case, therefore, the friction must have just been equal

to the accelerating force of P. But when the body was

stopped, P could not put it in motion again until it had

been increased by 2 ounces.

Other experiments of a .similar kind were made, and

they all agreed in shewing that the Statical friction is con-

siderably greater than the Dynamical. This difference not

having been sufficiently attended to by some philosophers,

great discrepancies are found by comparing the results of

their experiments with those of Professor Vinee.

REMARK. Notwithstanding! however, that these expen

.ippt'jir
ti> have been conducted with all possible care

to guard agaii ption, yet Coulomk \\lio \\as sup-
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ported in almost all his results by Ximines, has arrived at

very different conclusions, from experiments apparently

quite as carefully conducted. For fear of extending this

chapter to too great a length, we shall merely give a few of

the most important of his results, referring the reader for

further satisfaction to Coulomb's original paper, in the

10th volume of the Memoires des Savans Strangers ; and

to the Terria e Pentica delle Resist, de sol ne' loro Attr.

of Ximines.

228. ( 1 ). Both Statical and Dynamical friction are pro-

portional to the pressures.*

(2). When a body of wood is first laid upon another, the

Statical friction increases for a few minutes, when it attains

its maximum, and no further alteration takes place. In

making experiments, therefore, it is necessary to wait some

time before the body is put in motion.

(3). Friction between substances of the same kind is

greater than when they are of different kinds.

(4). The velocity has very little, if any influence, except
when one body is composed of wood and the other of metal,

in which case the resistance increases with the velocity.

It is also found that friction is diminished by oiling and

polishing the surfaces in contact. There is a limit however

to the latter, for if they be very highly polished, the resist-

ance increases.

There is a reason for preferring the result obtained by Professor Vince
to this ; for if a body be placed upon an inclined plane (as in Art. 222), not

quite suiKciently elevated to overcome the friction ; upon being loaded with
a small additional weight, it will begin to descend without further elevation
of the plane, which contradicts at once the principle of Coulomb, and
confirms that of Vincc.
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Tin 1 friction of cylinders rolling on plan

proportional to their pre-s>mvs directly and their radii

inversely.

Let AB, CD (Fig. 83) be two planes, so placed that when

a cylinder EF is laid upon them, it coincides with both.

To the extremities of a string which is wrapped once or

twice round the cylinder to prevent it from sliding, two

equal scales G, H are attached. Into these equal weights

are placed till the requisite degree of pressure of the

cylinder upon the planes is produced. Fine sand is then

to le poured into one of them until motion commences, its

weight is then equal to the friction. We may also pour

the sand into the other scale, and take a mean of the

results, as a more accurate result. In this way Coulomb

found, from numerous experiments,

1st. That with the same cylinder and different pres-

sures, the friction is proportional to the pressure.

^ndly. That witli the same pressure and cylinders of

different diameters, the friction is inversely proportional to

their radii.

Wherefore, when both the pressures and radii are different,

the friction varies

pressure

radius
'

230. It is remarkable, that friction of this kind, unlike

that between two planes, is not diminished by greasing or

oiling the surfaces of the planes nnd cylinder. Also the

Statical friction is somewhat greater than the Dynamical
friction. When a cylinder of mahogany, nbout .> inches

in diameter, was rolled upon a plane of oak, the coefficient

of friction wft - 'nit when it was rolled nj>on a plan.-
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of elm, the coefficient was not more than. 01. This kind

of friction, therefore, is much less than that between planes.

231. To determine the friction of solid cylinders revolv-

ing in hollow cylinders.

An apparatus for this purpose may be used, such as that

exhibited in Fig. 84
; any requisite degree of pressure may

be produced by loading the scales with equal weights, and

then the friction will be determined by pouring fine sand into

one of the scales until motion ensues. The experiment must

be tried with both scales, and the mean of the results taken.

Let Fig. 85, be a projection of the apparatus on a plane at

right angles to the cylinder. A, B the centres of the two

cylinders ;
C the point of contact ; pAq perpendicular to

the strings pP, Qq ; and AD parallel to them. Then the

motion will commence by the point C of the solid cylinder

sliding down the arc of the hollow cylinder. Let/" be the

coefficient of friction. To find the pressure at C, let w be

equal to the weight of the cylinder, r equal to its radius ;

P and Q the weights in the scales, equal the angle CAD.
Resolve P, Q and w in the direction AC, their sum is

(P-f Q + w)cosO,

which must be equal to the pressure at C.

And because there is an equilibrium, the sum of the

moments of P, Q, and w about C, is equal to zero

(Art. 92) ;

.'. = P(r r sin0) wr sin0 Q(r + r sin 0);

. _ P Q weight of the sand
=
P + <e + w = P + Q+w

Hence the pressure (P -f Q -f w) cos is known. The

friction at C = f (P + Q + w) cos 0, and takes place in

the direction of a tangent at C perpendicular to BC. Now
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resolving P, Q, and w in this direction, their sum is

(P -f Q -f w) sin 0, which must be equal to the friction ;

.-. /(P + Q + w) cos = (P + Q 4- M>) sin ;

/./= tan0,

which is known because sin is known.

By means of numerous experiments made with the appa-

ratus of Fig. 84, the fraction

weight of sand

P + Q + IT

is found to be nearly constant, except for large pressures,

when it diminishes
;

wherefore f, which is equal to the

tangent of that angle, of which this fraction is the sine, is

nearly constant, but diminishes with large pressures. This

is the Statical friction ; but the Dynamical friction, which is

the most useful in practice, is to be determined in a manner

somewhat different, as follows. Suppose the friction to be

uniform, then because the point A remains stationary during

the motion, the angular motion of the cylinder takes place
2

about A. Now . is the moment of inertia of the cylin-
o

P + Q
der ; and - -

. r2 is the moment of inertia of P and Q ;

o
also the moment of the forces affecting rotation about A, is

pr _ Qr - Fr,

F denoting the friction ; wherefore the accelerating force

on P's descent

(P - Q - F) r P-Q-F
"

o w
'

f Q o w r*
-
P + Q+

g
which being constant, we shall have

= * P + Q +
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for the ivlation between the space and time; wherefore if

the friction is constant, the space descended by P varies as

the square of the time.

Now, by experiment, it is found that the space descended

by P does vary very nearly as the square of the time, and

therefore the friction is nearly uniform. Coulomb, in his

experiments, made the hollow cylinder revolve ; his appara-

tus was similar to that of Fig. 86. This is the case of

the wheels of carriages, which revolve round the axles.

He also deduced, from his experiments, that the friction is

considerably less when the two cylinders are of different

substances, than when of the same. Hence the propriety

of having the axles of wheels in clocks, watches, and other

machines, which are of steel, to run in brass.

We may remark, with respect to the mechanical powers ;

1 st. That in the way the lever is commonly used, it is not

subject to friction.

2ndly. That in the pulley the Dynamical friction is very

great, on account of the rubbing of the sides of the pulley

against its block.

3rdly. That in the wheel and axle, the Dynamical friction

is very small, and is nearly proportional to the pressure

X radius of the axis x angular velocity.

4thly. That in the inclined plane, the Dynamical friction

is not very great, being generally intermediate to the two last

mentioned ; and it is of two kinds, according as the body

slides or rolls ; the former being very much greater than the

latter.

5thly. That in the screw the Dynamical friction is large,

being frequently sufficient to prevent the recoil of the

weight after the power ceases to act ; there is, however, less

friction with a square than a triangular thread.



(Hlily. That in (he \\vdije, tin 1 friction, as already

explained, is by tar tlie greater <> be overcome; it

, cr diminishes with the anizle of the wedge.

RBMABK. 11 ;he various kinds of friction here

d of, Coulomb has made a great number of experi-

on the friction of pivot*, but as the subject is rather

lonn. ami does not seem to admit of compression, we must

beg leave to refer to the original paper, in the Memoirs of

of the French Academy, for the year 1790.

To explain the ellect of the rigidity of cordage

upon pullies, wheel and axles, &c.

We have hitherto, for reasons before mentioned, con-

sidered ropes and cords as perfectly flexible, and this

supposition will not be very erroneous, when the work to

be done by a machine is so light, that very tine silken

U may be used with safety. But upon, & more

nU have a considerable dei:r

rigidity ; and, consequently, it becomes nee. > take

into consideration th ' effect of this rigidity upon pullies.

capstans and other machines, in which ropes are used.

The theory of rigidity, which has been invented for this

IN fortunately found to be much more *ati>factory than

: the theories of friction which have hitluno been dis-

P and \V (Fig. 87) be the pouer and
weight,

ided at th.- ends of a cord
|<

:lie pulley

\T>, \\ho>e centre ifl < '. Draw the horizontal di

then \\i :p W, A and 1* \\ill

still lie th-' extreme
p.-!

; of the 'h the

ich will i exhibited in Fi

in con rigidity. D> /ontal
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diameter in this position, and Pp, W?# perpendicular to it.

\\V may transmit the forces P and W, which act at

P and W. to the points p and w; and, consequently, the

effect of rigidity is to increase the arm at which the weight

acts by the quantity bw, and diminish that at which the

power acts by the quantity ap. Both these lessen the

mechanical advantage of the machine
;

but by numerous

experiments, it is found that ap is so very small, that its effect

may be neglected ;
we have, consequently, only to deter-

mine bw, by which the arm at which the weight acts is

lengthened.

To this end it is necessary to observe, that the magnitude

of bw depends upon three things,

1st. The tension of the rope.

2ndly. Its materials, and the manner in which it has

been twisted in the making of it.

3rdly. Its diameter.

Now denote bw by x, the radius of the rope by r, and

the radius of the cylinder over which the rope is bent by R.

Then (Fig. 88) P . aC = W . Cu>,

or P . R == W . (R + x),

p _ w = W . ~.

Now P - - W is the force necessary to overcome the

rigidity of the rope, and put the apparatus in motion;
but this force is rendered necessary, in consequence of the

three causes above mentioned ; of which the portion arising

from the first (tension), varies as W, and may be represented

by bW ; that arising from the second, is evidently constant

for the same rope, and may be represented by a
; and that

from the third, depends on r, and may be proportional to

some power of it (r
n
) ; upon the whole we may represent

this force by



'
/AV '

which must therefore be equal to W . ~ ;

I it:,

u

a, b, n being constant quantities for the same rope,

to be determined by experiment. This formula, though

empirical is found to agree very accurately with the results

deduced from experiments.

In his experiments on this subject, Coulomb employed

an apparatus (Fig. 89) similar in principle to that of

Fig. 83. Having first estimated the friction of the cylin-

der by the method there pointed out, and changed the

thread to which the scales are suspended for the rope ;

he added small weights to one of the scales, uutil an ex-

tremely slow motion commenced.

Let Wp W2 ,
W

3
be the values ofW in three experiments

with the same rope, passing over cylinders, whose radii are

R,, R.
2 ,
R

3 respectively ; and let Q,, Q.2 , Q3
be the corres-

ponding additional weights added before motion commences;

.-. Q,= ^(a
+ ftW,),

Q, = <-

iV
3

Th-se llnve equation-* will enable UN to determine //, //

and n in terms of known quantities and then / i- kinmn

from flu- .-qua
1

i (a i
'\\
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tor any value ofW whatever. If we make a fourth experi-

ment, we shall have

which will serve as a criterion of the accuracy of the empi-

rical form, which is made the foundation of the investigation.

The value of n was found to be very nearly equal to y 3,

hut it gradually diminished as the cord was Worn, until it.

reached \f2 ; and the value of #> or the effect of the rigidity,

was then nearly cortstant for all velocities ; and, consequently,

there is always a constant part of the power spent in sur-

mounting the friction and stiffness of the cords employed.



CHAPTER VIII.

Mls( KLLANEOUS PROBLEMS.

(1). Three forces acting on a point are found to bo

in equilibrium, when their directions make angles 105,

ind 135
3
with each other. Find the proportion of the

forces to each other.

In Art. 28, it was shewn that any one of the forces is

proportional to the sine of the angle between the directions

of the other two ; if therefore Fp F2 ,
F

3
are the forces, and

105, 120% 135 the angles to which their directions are

opposite, we shall have

I-',
: I' : T ::

rif
105 :

^

OJ ihe j'oroes isfrom which, when the

given, the muLMiitndrx nt'tlic other* will he known.

(2). \ cord 1' \< ,i fixed point

\. and (Irawn in dinVivnt dirrctintis h\ inn-.-sl' ami Q.

Midi that the pressure \ in arithinetir in<';i'

the
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The pivxsure on A must be equal and opposite (Art. 20)

to the resultant P and Q, otherwise there would not be an

equilibrium ; and as it is, by the question, equal to J(P-fQ),

we have, by Art. 26,

J(P -i- QV = P* + 2PQ . cos PAQ + Q2
;

.'. J(P -f Q9
)
= ^PQcosPAQ = |PQ cos(TT-PAQ);

/. cos (,r
- PAQ) =

from which equation the angle PAQ will be known.

(3). A weight W is sustained upon an inclined plane

by three forces, each equal to ^ W, one acting vertically

upwards, another parallel to the plane, and the third

horizontally ; required the inclination of the plane.

Let F
lf
F

2 , F3 (Fig. 91) be the forces, equal the

inclination of the plane to the horizon. The weight W is

kept in equilibrium by five forces
19
F

2 ,
F

3 ,
the force of

gravity W, and the reaction R of the plane.

Now by Art. 40, the sum of the resolved parts of these

forces in any direction is equal to zero ; and since they are

all known, except the reaction, which is perpendicular to the

plane, resolve them in a direction at right angles to R
;

that is, parallel to the plane, in order that the resolved part

of the unknown force R may disappear in the resulting

equation.

Wherefore, resolving v v F
3 , W, R parallel to the

plane, the resolved parts are respectively,

FjCos^O -61), F2cosO, F3cos0,-Wcos(90-0),Rcos90,

or
l
sin 0, F

2 , F3cos0,
-W sin ,0.

Wherefore,

F, sin 9 + F
2 4- F3

cos 8 - W sin = :



-Wsin0 = D-;

/. 1 + cos0 == 2sin0;

/. 2 cos*
^
= 4 sin cos-;

.'. tan - = J, by dividing by 2 cos2 -
;

.'. = 2tan->J,

= 2 x 26 33' 54%
= 53 7' 48",

the inclination required.

(4). A given sphere rests upon two inclined planes; to

find the pressure upon each.

Let AB, AD (Fig. 92) be the planes ; 0, $ their respective

inclinations ; C the centre of the sphere, W its weight ;

B, D the points against which it presses.

Now the sphere may be supposed collected at its centre

of gravity C (Art. 131) ; and since the reactions of the pianos

at B, D, take place in directions at right angles to the

planes (Art. 117), and therefore passing through C, we

may transmit all the forces to C. Wherefore, denoting the

l>iv-uresat Band D, by Rp R2 ,
we shall have, by Art. 28,

K, : R
2

: W :: sin R,('\V : sin R
t
CW : sin RjCR,.

\ IM !W = 90 -f 0, as will be evident by drawing
a linr t'niMi C parallel to tho horixon ;

n z.R,CW ^=90+^,
and Z. R,CR9

= D( I* 1 -DAB = ^-|-:
. . K, : R

a
: W :: sin (90+ 0) : sin (90 + f) : sin (f -f 0),

-

if,
: -in i <

t
>

\
I) :

I*
U

1 &

9
sin(0 f 6)
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(5). Two weights sii|)port each oilier, upon two given

iiK-lined planes, having a common vertex, by means of a

string passing over a pulley at the common intersection of

the planes ; required the proportion of the weights ; the

parts of the strings being parallel to the planes (Fig. 93).

Let a, j3 be the inclinations of the two planes ; P, Q the

weights resting upon them. Then it is evident that each of

the weights is hindered from falling down the plane on

which it rests by the tension of the same string ; if therefore

T be this tension, since it acts parallel to the plane in each

case, we have, by Art. 216,

T = P sin a,

and T Q sin |3 ;

.*. P sin a = Q sin
|3 ;

P
sinj3

AC
"
Q

~ z

^hTa
~ =

BC ;

that is, each weight is proportional to the length of the

plane on which it rests.

(6). Three equal forces'act upon a particle, so that their

directions include angles 105, 120, and 135; to find the

magnitude and position of their resultant.

Let Fp Fa ,
F

3 (Fig. 94) be the forces acting at the point O;

take OF/or the axis of z, and OY perpendicular to it for

that of?/ ;
and let the resultant R make an angle a with Ox.

Then the resolved part of the forces in the direction Ox

= F
1
cos + F

2
cos F

2
O# + F

3
cos F

3O#,

= F, + F
2
cos 120 + F

3
cos 135,

= F,
- F

2 *in 30 - F
3
sin 45,

which must be equal to R cos a.
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And in a similar manner, resolving the forces in the direc-

tion Oy, we obtain

R sin a = F, sin + F
2
sin F

2
O^ F

3
sinF

3Oa;,

= F
2
sin 120 - F

3
sin 135,

= F2 cos30~-F3 cos45,

.-
1 2 l

'

2 '

- y/2= F
H

--
K sin a

/. tan a = --
>

cos a \/ 2 1

.Man(l80--)= ^*^* = ^^ > V/3
-

= .7673269

= tan 37 30';

.'. 180 -a = 37^3(y;

/. a = 142 30',

\\hirh deteniiines the direction of the resultant.

tin, R2 = R 2 cos2 a -f R2 sin2 a,

i

-
5-2^/6

= F,
2 x .0681484;

. . K =
l'\ / .2

which dctcniiiiics the niiiLniitudc !' the resultant.

(7). Two weights 1*, (. 1 by a string

i li.iri/.)nt;il i

support a weight W which hanus irnm a rin^ (', which

upon id,. Ntrini; .Mi ; 'inino th.
jpOfi

c(juililriuin < Fig. 95).

D D
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Since both P and Q are supported by the tension of the

same string, we must have

P = tension,

and Q = tension ;

. . P = Q.

Also, we may consider the point C as kept at rest by the

tensions of BC and AC, and the weightW ; and, therefore,

any one of these forces is proportional to the sine of the

angle between the directions of the other two
; wherefore

the angle ACW = angle BCW, and consequently the

string from which W hangs being produced bisects the

angle ACB ; wherefore, if ACB = 0, then

BCW = TT -
|,

and

P : W :: sin BCW : sin ACB,

: : sin (TT
-J

: sin Q,

. e . o e
sin

g
: 2 sin

^
. cos

^,

: : 1 : 2 cos = ;

/. P = JWseclZ

Hence if it were possible for ACB to be a straight line,

(\

we should have = 90, and .'. sec ^ = oo ; and, conse-
& Z

quently, P is infinitely greater than W. Whence we in-

fer that it is impossible for any weights, however great

they may be, to stretch the cord ACB until it becomes

straight.
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\\e may also remark, thai since sec- -
}

is necessarily

greater than 1,

P > JW.
And therefore an equilibrium will be impossible, unless

P and Q are together greater than W.

(8). Two weights P and Q of 3 and 4 Ibs. respectively,

are suspended from a bent lever ACB (Fig. 96), whose

fulcrum is C, and arms AC, BC are 15 and 12 inches ;

to find the position of equilibrium ;
the angle ACB at

which the arms are inclined being 120 .

From C draw Ca, Cb perpendicular to the directions of

the strings AP, BQ ; therefore the condition of equili-

brium is

P . Ca = Q . Cb, (Art. 196).

Now to express this equation in terms of known quantities,

let ACa = a + 0, and ECb = a 0, and therefore ACB
= 180 -

(a + 0)
-

(a
-

0) =-- 180 - 2a = 120;
. -> = 180 - 1JO = 60;
/. a = 30.

Also, let CA = a, CB = 6, and consequently Ca = a

< a 4- 0), and Cb = b cos (a 9) ;

. . P. a cos(a + B) = Q. 6 cos (a 0) ;

.". P'/(cosacos0 sinasinfl) = Qi. (cos a cos 4- sin a sin 0);

. . Pa(l tanatanfl) = Qb (1 -f tan a tan0),

by dividing by cos a cos ;

IV/-Q6" um " '

iv-rq/r''
01 "-

*.'* -i-ia

.T7T5TT7T2"

=

nr
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... tan(- 0) = ^=.0558726,

= tan 3 11' 53";

/. 0= -3 IT 53";

/. ACa = + 8 -= 26 48' T',

andBCb = a-8 = 33 11' 53",

which are the inclinations of the arms of the lever to the

horizon.

(9). AE is a straight lever weighing 3j Ibs. ,
at the points

A, B, C, D, E hang weights equal to 3, 7, I, 5 and 2 Ibs.

respectively ; required the point O, on which the whole will

rest in equilibrium ; AB, BC, CD, DE being equal to

8, 6, 2, 10 inches respectively (Fig. 97).

Let G be the centre of gravity of the lever, W its weight,

Fp F2
. . . F5

the weights suspended from it. Then we may

suppose the matter of the lever suspended at G (Art. 131) ;

and, therefore, by Art. 198,

F
t .OA+F2

.OB:=F
3 .OC4-F4

.OD+ F5.OE+W.OG,
or F, . OA + F

a
. (AO - AB) = F

3
. (AC - AO)

+ F
4 (AD - AO) 4- F5 (AE - AO) + W (AG - AO);

FyAB + FrAC + F
4
.AD + F

6.AE + W.AG
, + F

2 + F
3 + F

4 + F
5 + W

Now AG = AE = 13 inches ;

.
. _ 7.8+1.14+5.16 + 2.26 + 3^.13

-3 +7+1 + 5 + 2+3J
495 . 22 .

:^,= H B inches.

( 1 0). LM is a sphere whose radius is 6 inches and weight

3J Ibs., upon the plane AM, inclined to the horizon at an

angle 60 ; AB is a beam whose weight is 100 Ibs. and length



fi toot, moveable about a hinge at A. and by ii> pressure

on tlic sphere preventing it from rolling down the plane.

Determine the position of the beam and sphere (Fig. 98).

Let W = weight of the beam which we may suppose

collected at its centre of gravity G. w that of the ball ;

AB = 2a, and r = radius of the ball ; a = the inclina-

tion of the plane to the horizon, and 26 = BAM
; C the

centre of the sphere ; L, M the points of contact.

The beam AB is kept in equilibrium about the fulcrum

A by its gravity (= W) acting at G, and the reaction R
LC

at L. Now
-r-y-

= tan ^ ;
.'. AL = r cot 8 ; and, there-

AJLt

, tlio moment of R about A = R.rcotfl.; and that

of W = W . AG . cos (a + 20) = W . a cos (a + 20) ;

.'. Rr cot = W cos (a 4- 20) ;

.-. R = .tan0cos(a + 20).

Again, the sphere is kept at rest by the reactions at

L and M and its own weight w, all of whose directions

j.a-s tl in nigh C, they may therefore be transmitted to that

point ;
wherefore resolving these forces parallel to the plane

AM, in order that the resolved part of the unknown reaction

at M may disappear, we have

R sin 20 - w sin a = 0, Art. 40;

. sin 20 tan cos (a -f 20)= tfsina;

//' /'

.'. -J -in
\

'llh
,

in a;

-f logsnu, JO

Now co> <n = cos ('.n \ ;.'//) iin .

^
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therefore

2 log sin 0+ log sin (30-20) = log^^ + log sin 60 -f 20,

= 27.4024174.

By approximation we find that the value of 0, which

fulfils this equation, is

= 4 54' 30" nearly,

and therefore a + 20 = 69 49',

which is the inclination of the beam to the horizon.

The position of the sphere is known from the equation

AM = AL = r cot 0,

= J cot 4 54' 30",

= 5 . 822314 feet.

(11.) A uniform beam rests with its ends upon two

planes inclined to the horizon at angles 45 and 30
;

to

determine the position of equilibrium, (Fig. 99).

Let AB be the beam, G its centre of gravity ; a, j3 the

inclinations of the two planes, and 9 that of the beam to the

horizon
; R, R' the reactions at A and B. Then we may

consider AB as a rigid body kept at rest by the forces R, R7

and its own weight at G. Resolve these forces parallel to

the horizon,

.'. R sin a R sin]3 = 0;

R, sin/3.
'

R' sin a
'

also, the moments about an axis through G must be equal

to zero, (Art. 92).

Now the moment of R = R . AG sin GAR,
= R.AG.cosGAO,
= R . AG cos (a + B),

for GAO = a 4- 0, as will be found by drawing from A
a line parallel to the horizon.



207

>, the moment of R = - R' . BG cos (/3
-

0) :

/. R.AGcos(a + 0)-R'.BGcos(/3-0) = 0;

.
BG cos (ff

- 0) _ R^ _ sin
)3 .

'

AG'cos(a+ 0)~R'
:=

sina'

BG cc
?

s (P
~

0) _. AG cos ^a + g)
"

sin
/3

cos
"

sin a cos
'

or BG (cot/3 4- tan0) = AG (cot a tan 0) ;

AG BG
: _. cota __.cot0,

= 1 cot 30 - * cot 45,

= . 3660254,

= tan 20 6' 14" ;

/. = 20 6' 14",

the inclination of the beam to the horizon.

(12.) A weight W (Fig. 100) is suspended from one

extremity of a string, which passes through a ring C at its

other extremity ; to find the position of equilibrium ; the

string passing over two pullies A and B.

Since the tension of the string is the same in every part,

w<> may consider the point C as being acted upon by three

forces, each equal to (lie tciiM>n W; wherefore the angles

between tin- Brings at C must be all eqiml, (^Art. -Js\ and

therefore each equal to 120. To determine the position

of C draw Art, B/> perpendiodlai t<> thr horizon, and make

the angles CAa and CBb each = 60, and the point C in

which AC and BC intersect will lie the point required.

(13.) Let AC (Fig. 101) be a curve in a verticil plane ;

'P, Q ueiL'hts attached to a string pa^in^ over a pulley B
in its axis BAar; to determine the j^tsitimi <>f equilibrium.
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Draw QM perpendicular to B.f, and let QG be a normal

at Q. x = BM, y = QM. Then Q is kept at rest by

the action of three forces; viz. the tension (= P) of the

string QB, the gravity o Q (= Q) in a direction parallel

to BG, and the reaction (= R) in the direction GQ ; these

three directions are parallel to the sides of the triangle

GBQ ; its sides therefore represent the magnitudes of the

forces, (Art. 28) ;

.
P _= BQ = v^+F

'

Q
"

BG
"

x 4- ydty

for BG = BM + MG = x + ydty. This formula will

be simplified by representing BQ by r, for then

r =
and rdr x + ydfy ;

r *
.

'

Q
~

rdjr

~~
dr

.'. Pdr = Qdx.

REMARK. We might have deduced this result imme-

diately from the principle of virtual velocities ;
for BP

= length of string r,

.'. d
t (BP) =-dt

r = virtual velocity of P,

and d
t
x = virtual velocity of Q ;

.'. Pd
t
r =

.'. Pdr = Qdx.

1st. As an application of this general formula, let us

suppose AC a parabola, and B a point in the directrix.

Then the equation of a parabola is

y
a = 4m (AM),
= 4m (x m) ;
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/. r* = x* 4- y
l = ^2 + 4/iur 4/

/. rdr xdi -\

x + 2m dr Q

p = r;

5W + 2m)
2 = r2 = ^ + 4;>u; - 1

= (x 4- 2w)
2 - 8m2

;

2ndly. Suppose B the focus, then the equation of the

parabola becomes

I/// . AM (Fig. 102),

= 4m O -f TO) ;

r'
2

j-- -f //-
.- ./

r U:

!.n\ tin- \\ciL'lit^ uiiKt be equal, and thru iln*y will

hulaurr in 6V<

,ly. Letth.-rtirvr hr a qua. 103).

Let I) be the centre, hm vertical. \\h ft, produce

'J'hru flir equation !' the circle i>

( //w) + (mQ)
2
,
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. y a

r2 = .r
2

/. rdr =
a*

- Q =
P
~

dx

ax if

<2ay. (a y)

by substituting for r and x their values in terms of y.

. Q

(14). If the weight P, instead of hanging perpendicu-

larly, rests upon a curve aPc (Fig. 104), we shall find at once,

by the principle of virtual velocities, that

Pdx + Qdx = 0,

where x = Bm, and x = BM.

For the virtual velocity of P is d
t
x' y and ofQ is dp, and

Q^ = 0;

+ Qrf^r = 0.

To this we must join the following, from the nature of

the machine,

VV2
-f y'

2 + \/o?2 + y
2 =

/,

being equal to Pm, and / to the length of the string.



Let Ac (Fig. 105) be a circle, AC a parabola, and B a

point in its directrix. Then the equation of AC is

y* = 4ro(jr- /

and that of Ac is

3/2
= 2a O' - m) (x

- w)
a

;

'

I = Jx"1 4- y'
a

4- vV2
4- y

2

m) 4 2/Tw;' m2 4

a
\ wWy
- 2am m2

Sjr*~+ ~\mx 4m*

(x 4- 2m) (/a:

*x* 4- ^rnx --

from which equation x is to be determined.

(15). The beam CD (Fii:. 10<>) rests with one end D

upon a i:iv. ri inclined plane 1)15, and the other is suspended

by a string from a fixed point A ; to find its position.

Draw AB perpendicular to the plane ;
and let AC, CD

make with AB angles equal to ^, 9 ; and let be the incli-

nation of DB to the horizon ; let (i be the centre of gravity

of the beam : put CG ^ DO =: (I ; AC = 6, AB = C *

R = the reaction at 1). and T =q the tension of A(\ Then,

if from C a line be drawn parallel to DP), we *hullha\'.

from the nature of the machim-.

a cos0 |
// cos

(j,

= c. . . . . (1).

The forces which kept the beam at reM are l\, T and it*

own weight ; resolving llie^e parallel to the hri/on. in 01

that the weight of the beam ma\ di-appcar. \\e I

ia T ,; v
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Taking the moments about G, in order that the weight of

the beam may disappear, we have, the moment of R about

G = R . DG sin = R . a sin 6 ; and that of T about

G = T . GC sin (0
-

0) = - T . a sin (9
-

0).

/. R . a sin - T. asin (0
-

0) = 0, (Art. 92).

Eliminating R and T between this and equation (2),

we have

sin (0 0) __ R _ sin
(ft a)

sin 6
~
T

"
~~sina

.*. cos cot . sin = cot a . sin cos ;

.'. cot = i (cot a + cot 6) ;

2 (cota'+cotfl)
2

S * "
4 + (cot a + cot Of

But from equation (1) we have

b cos = c cos ;

from which equation 6 is to be determined, and then from

the equation
2 cot cot a + cot 0.

(16). Two weights P, Q (Fig. 107) are connected by a

string PAQ passing over the top of a circle situated in

a vertical plane, find the position of equilibrium.

Draw CA vertical, and PM, QN horizontal; let AP
= a s, AQ = a + s, where 2a = the length of the

string ; and r = the radius CB.

. . CM = rcosACP,
a s



Wherefore the altitude ol'the common

I Q above BD,
a $ ,>. s

Pr cos 4- Qr cos
f- (Art. 136) ;P+Q

which. .171, must be a maximum or a minimum

when there i an equilibrium j and, therefor

P cos - -
-h Q cos - he a maximum or minimum ;

P . a s Q . a \-
\ _ , ,. . .

.*. . sin -- sin- = . . (1), by differentiating;
r r r

T / <l *\ r\ ( a s H . S\
.'. P (sin -cos -- cos-sin- I = Q sin - cos --f cos-sin-

]
;

V / / / rj V r r)

s P - Q a

which determines the position of equilibrium.

If it be required to ascertain whether the position be one

of stal Me equilibrium, we must differentiate

it hand member of equation (1), and find the sign of

the result. Its differential eoemVier

a-s Q a

the sign of which is , lor the quantity within the brackets

vssarily positive, because it jv. equal to

-t. of com, cent, grav. of P and ( '. 1 )

"7~
wherefore the aliit i ,uium,

and therefore the position is one ..I' un^ahle equilibrium.

17 ppeeod i rains!

a smooth \M, and the other end is^u.p.-n.led

by a strii lind ilie
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Let G be the centre of gravity of the beam ; 6 = the

angle PAQ, and = the angle MPQ; x = AP; W
= the weight of the beam, and R = the reaction of the

wall at P. Then the beam is kept at rest by three forces,

the reaction R at P, its own weight W at G, and the

tension of the string AQ ; wherefore, resolving these forces

in a direction at right angles to AQ, in order that the

unknown tension may disappear from the result, we find the

resolved part of R is R cos 9, and of W is W sin ;

wherefore

R cos0 - W sin = 0, (Art. 91) ...... (I),

and taking the moments of the forces about Q, in order that

the moment of the unknown tension may not appear in the

result, we have the moment of R about Q = R . PQ cos 0,

and that ofW = W . GQ sin ;

.'. R . PQ cos^
- W . GQ sin

<f>
= 0, (Art. 92) ;

. PQ.cosd, W cos

.sin^R
:=

s!

cos _ GQ sin
'

cos~0
~~

PQ
*

wn

_ =
PQ' sin PAQ

~"

PQ . PQ'
2 _ AQ2

But 00.,=

AQ2 - PQ2

. GQ.AQ ..
#2 + PQ2_AQ2 AQ

. GQ ='

PQ
. PQ - GQ

; PQ + GQ ( PQ ^ ;

which determines the position of the point P.
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(18). A rod AB (Fig 109) is placed in a smooth hemis-

pherical bowl, so as to rest against the edge of the bowl at

P with one extremity A within
;

to determine the position of

equilibrium.

Let G be the centre of gravity of the rod, C the centre

<f the hemisphere ; R, R' the reactions at P and A, = the

angle at which AB is inclined to the horizon APC.
The beam is kept at rest by the reactions R and R' and its

own weight at G ; therefore, resolving the forces parallel to

the horizon. \ve have the resolved part of R = R sin 0,

and that of R' = - R' cos 20;

/. R sin - R' cos20 = 0, (Art. 91).

And taking the moments about G, we have the moment

ofR = R.PG; and that of R' = R'. AGsin0;

/. R . PG - R7

. AG sin = . . . (Art. 92) ;

sin 9 R' PG
s20 R

"

AGsinfl'

.
AG cos 20 2cos*0- 1

,
'

PG
==

sin2
=

1 - cos2
:

AG AG 2 cos*0-- 1

IA

'

AP \<i + PG
~

cos2

Now AP = 2CPcos0;

2cos2 0-l
COS2

**-
i A / **

= ST^ *

j/ 64.

AG . . / \(-

-(
TP

/. 4AP = 8CPcos0= AG

(19.) A beam All Fig, 110),
.f uniform thicknew,

M Imri/.Hit.tl pl;tll.' DK.
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and its upper end on a plane inclined to the horizon, at an

angle fi(V. The beam makes an angle of 30 with the

horizon : to find the force which must act horizontally at

the foot A to prevent sliding.

Let i the force required, R the reaction at B,

W weight of the beam ; G its centre of gravity ;

a = ECB, )3
= BAG. Then the beam is kept at rest

by four forces, viz. its own weight at G, the reactions at B
and A, and the horizontal force x; resolving these in a

direction parallel to the horizon, we have the revolved part

ofR = R sin a, that of x x, that of W 0, and

that of the reaction at A = ;

.*. x R sin a ;

.*. x R sin a.

Also, considering A as a fulcrum, the moment of

W = W. AG cos|3, and that of R = - R . AB sin

ABR = ~ R . AB cos ABC = R . AB cos (a - /3),

the moments of the other two forces are = 0, wherefore

W . AG . cos j3
R . AB cos (a

-
/3)
= 0;

R = W.AG
AB '

cos (a /3)

'

.*. x = R sin a,

W. AG sin a cos/3
AB '

cos (a )3/

= W - AG J__
AB 'cota + tan ft'

W. AG 1
:

2.AG "cot 60 + tan 30'

W 1
:

* J_ J_'
v/S"

1"^
Wjs/3

4



(20). A beam AB moveable in a vertical plane about

a hinge at B, leans against a prop CD situated in that

plane ;
to determine the strain upon the prop CD (Fig. 111).

Let 9 = the angle ABD, a = the angle CDB, G the

centre of gravity of the beam, R = the reaction at C,

which will be perpendicular to AC. The beam AB is

kept in equilibrium about the fulcrum B by its own weight

W acting at G, and the reaction R at C ; now the moment

ofW = - \\ , BG cos 0, and that of R = R . BC ;

.. R.BC - W.BGco90 = 0;

And the pressure on the prop in the direction CD,

= R cos (TT
- RCD),

= R sin DCB = R sin (a -f 0),

~ BG _ BG CD BG sin
*

therefore the pressure in the direction

ppv
w BG sin (a 4- 0) cos0 sin

CD* sin a

Tliis force t.-ii'ls to compress the prop, but the

which tends to break it, is the resolved part uf K. in a

direetion at right angles to DC, and is therefore

nRCD IJ . -l)( I', ^Rcos(7r-a-0),
= R cos (a -f 0),

Q (a 4- 0) cos sin

'I'l"'iv will be no tendeuc) to l.ivak the pn.p, if DrB I,,.

riszlit an ,.

I I



In tliis solution we have- supposed the beam AB against

which the prop thrusts to be perfectly smooth; but if

it should happen that the friction at C is sufficient (or

if there should be a pin at C) to prevent a sliding ten-

dency, the thrust of the prop will be wholly effective in the

direction of
i^s length, and the solution will accordingly

be somewhat different from that given above.

(21). A beam AB (Fig. 112) leans against a prop CD,
and the end A is prevented from sliding upon the horizontal

plane AD by a string AD fastened at D
; to find the tension

of the string.

Let T =: the tension, R the reaction of the prop at C,

W = the weight of the beam, G its centre of gravity,

= BAD. The forces which support the beam are W,
T, R, and the reaction of the horizontal plane at A

;
where-

fore, resolving these forces parallel to the horizon, we have

their resolved parts respectively equal to 0, T, R sin 0,

and 0;

/. T R sin = 0.

Again, considering A as the fulcrum, their moments are

respectively W . AG cos 0, 0, R . AC, and
;

.-. W . AG . cos - R . AC =
;

/. T = Rsinfl =

Now AC2 = AD* + CD2
,
sin =

, cos =
,

. _ W.AG CD. AD
AC AC2

W AG - CD AD
'

(AD2
-f CD2

)f*

(22). Two beams AB, AC rest against each other upon
the horizontal plane ED at A, and against two smooth
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parallel urtu-al \\alK at B, C ; to tiiul the portion of

equilibrium (Fig. 113).

Let G, rr he the centres of gravity of the beams ; W, w
their weights ; 0, $ their inclinations to the horizon ;

R = the

reaction of the vertical wall at B. Then the beam AB is

n equilibrium by R, W. the mutual horizontal pr>

nt' the beams at A against each other, and the vertical re-

action of the horizontal plane ED at A ; the resolved parts

of these parallel to the horizon are respectively R, 0,

- mutual pressure, and ;

.'. R mutual pressure = ;

/. R mutual procure at A.

Similarly, the reaction at C the mutual pressure at A,

and therefore the reaction at C R. Again, the moments

four forces which keep AB at rest, about A as a

fulcrum, are respectively R . AB sin 0, W . AG cos B, 0,

and
;

. R . AB sin - W . A( ; . tibfl H = 0.

Milarly, R . AC sin ^ w . A , ^
.

W.A(. //--
U (/

' ;

tan
ft _ cot ^ Ag . AB

cot
=

\\ \(. . \c
"

Also, from the nature of the

!,D =AD+AI-:.
= AB cos + A(

.t tin- and r.juation ( 1 ). both y and U ma\ he

(23). AC, BC (l'i-. Ill
,

|,y a

' ''d re, tin- Oil nits f). Iv in the

'ontal In nine tli.

librium.
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Let G, g be the centres of gravity ; A, B the weights of

the beams AC, BC ; R, R' the reactions of the point D, E ;

join DE, and let 0, ft
be the inclinations of the beams to

the horizon ; i.e., = CDE, ft
= CED. Draw CH

perpendicular to DE ; then the beam AC is kept at rest

by its own weightA at G, the reaction R at D, and the ten-

sion of the hinge at C ; supposing C the fulcrum, we have

the moment of A ^ A . CG cos 0, that of R = R . DC,
and that of the tension of the hinge at C = 0,

/. R . DC - A . CG cos =
Similarly, R'. CE B . Cg cos

ft
=

Also, when the equilibrium is once established, it will not

be disturbed by supposing the hinge at C to become rigid ;

in which case the beams become a rigid body resting on

two points D, E ; and kept in equilibrium by R, R' and

its own weight ; wherefore, resolving the force parallel to

the horizon, we have

R sin - R sin
ft
= 0,

sin R' B.Cgcosft DC
'snTft"

: R- CE A.CGcos0 Dy(

B Cg DC cos
ft~

A'CG'CE'c^sHfl'

B Cg sin
ft

cos
ft

11

A'CG'sinTcos 0'

A CG sin2
ft

cos
ft .Q\

*'

B'Cg
==

sin2 cos 0"

'

Again, resolving R, R' and the weight (A-f B) of the rigid

body ACB, perpendicular to the horizon, we have

R cos + R' cos
ft
-

(A + B) = ;

. .-. A 4- B = R cos 4- R' cos
ft,

CG n T, C#= A . ~~ . cos2 + B ^4 cos2
ft,



= A . . sin cosa -f B .

/.(A t-B).CH = A.CG sin0cos2
0+B.Cg-sin4>cos

2
0,

= A.CO[sin 6 cos2 6+1^ . sin cos2 0),

= A.CGfsin co&O+^l
* 9

. sin d> cos2*) by (2),
sin 2

^ cos

= A.CG sin2 9 cos (cot 6+ co

.'.(A-fB).DE == (A-fB)CH(cot0-fcot^),
= A.CG sin2 cos 9 (cot + cot 0)

2
,

= A.CG sin2 cos (cot
2

4- 2 cot cot 4- co

= A.CGcos3 l^s/A.

. cos + cos^

}>y means of this and equation (2), and may be

determined.

(24). A paraboloid, formed by the revolution of a given*.

parabola about its axis, is placed with its convex surface

upon a horizontal piano ; to determine (lie position of

equilibrium.

Let !/// l>e the latiix rectum of the generating parabola

A I>0 (Fig. 115). P the point <>t' the paraboloid in contact

with the plane, I*N vertical. PM perpendicular to AC.

Then the solid is kept in equilibrium by the reaction at T

in the direction PN, and its own weight, at its centre of

gravit\ : and, ill \rt. I'Js . the crntre of -ra\it\

mn-t b.- in I*\ iM-(|inMilK it is at N.
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Now MN = 2m, and AN == $ AC (Ex. 16, page 132);

let be the inclination of the axis AC to the horizon ;

.AM = MP2 = 4m2 cot2 0;

.'. AM = m cot2 0;

[
AC = AN = m cot2 + 2m = m cosec2 -f

/2 AC _

.'. cosec 6 = [-T
--- 1

\3 w

I f-~ be not > 1, or if AC be not > f ra, the solid

can only rest in equilibrium with its axis AC in a vertical

position.

(25). A solid composed of a cone and hemisphere of

equal bases, placed base to base, rests with the convex

surface of the hemisphere in contact with a horizontal plane;

having given the radius of the hemisphere, to determine

the dimensions of the cone (Fig. 116).

Let ABC be the cone, BCD the hemisphere, AD their

common axis ; g, G their centres of gravity ; P the point on

which the body rests. Then, since the solid is supported

by the reaction at P in the direction PO, its centre of

gravity must be in that line (Art. 128), and it is at O ;

wherefore, by Art. 134,

(hemisphere) . GO (cone) . gO = . . . (I).

Now the cone and hemisphere are respectively y and f of

their circumscribing cylinders, and as these cylinders have a

common base, viz. the base of the hemisphere and cone,

.*. cone : hemisphere :: | AO : f . DO,

:: AO : 2DO.



GO DO. IA. I '20, page 130), and gO =
therefore substituting in (I), we have

jDO.f.DO = AO.i.AO;

/. 3DO2 = AOa
;

/. 4DO2 = AO2 + DO 2
,

= AO2 + CO2 = AC2
;

. >DO = AC,

orBC == AC,

wherefore the triangle ABC is equilateral

Since the normal to the hemisphere at any point passes

through O, the solid will be in equilibrium upon any point

(if the hemisphere.

(26). A solid generated by the revolution of a given

curve about its a \i<. is placed with its convex surface upon
a horizontal plane ; to determine the position of equilibrium.

Let APB (Fig. 115) be the generating curve, AC its

axis, P the point in contact with the plane, PN a vertical,

which is a normal and may be shewn, as in Prob. 24, to pass

through the centre of gravity of the solid.. The question is

therefore reduced to finding the normal which passes

through the centre of Lr ra\it\. Let = the inclination of

the axis AC to the horizontal plane, that is, to the tangent

at P. Draw PM perpendicular to AC, and put x = AM,
y == MP.

/. tan = d
fy, by Din". Calc.,

also, MN =
yd.y, ly Dill*. Calc. ;

. \N = ar
', /.

But | 1
, AN = yT- the inlr-rraU fcoba tnk.-n
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Hoiuv, then. (bo position of the solid will be known from

tin* two equations

tan 6 = d
gy,

and the equation of the generating curve.

Ex. Suppose the solid to be a hemispheroid, generated

by the revolution of a quadrant of an ellipse about its major

axis.

= 1 ab*, from x ^= to x = a,

= b

^ ($ax* - i^ + C,

= T
5
T .

26a , from x = to x = a,

and yd,y = -
2 (a - x) ;

.
, _

a2 - b*

But tan = d
ty,

b a x
a

Sab

by substituting for .r; its value.



If T be less than (-r )
the solid can only rest on its ver-

o \o/

tex A.

(27). A solid of any form whatever is placed with its

convex surface upon a horizontal plane ; to determine the

position of equilibrium.

Let z = f(x, y) be the equation of its surface referred

to three rectangular co-ordinate axes ; and let p, q be the

partial differential coefficients of 2 with respect to x and y

respectively; also, let x y z be the co-ordinates of the

centre of gravity of the solid, which are known by the

formulae of Art. 182. Then the horizontal plane on which

the body rests will be a tangent plane to the surface at

the point of contact, and the normal at that point will pass

through the centre of gravity. If therefore a, |3, y be the

inclinations of the co-ordinate axes of x, y, z to the hori-

zon, or (which is the same) the inclinations of the tangent

plane to tli then 90 a, 90 |3,
l "> -

y will

be the inclinations of the vertical normal through the

of gravity to- the co-ordinate axes, and therefor*

MII = j .

si "/3 = ./ , 7i .

sin y = V \ + p* .f 7

and th piations of thi* normal are

x-x+p(z-z) = 01

y _ ,, ! 7 (
: _

*) = oJ
'

from these two and the equation r /\r, y) the val

: tniivt be ili-teniiined, and then Mil.-fitul.Ml ir-

'
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Ex. If the solid be the eighth part of a sphere, the

equation of its surface will be

a2 = a-
2

4- 2/

2 + *>

whence we find p = -, q = - y
~. Also, by Ex. 18, page

136, x y = z = %a; wherefore, substituting in (2),

frt x -
(fa z)

= 0,

fr - y - y-
(*

-
*) = >

.-. ,,. = = , = JL
;

'

P = 9 = - !
;

.'. sin a = sin /3
= sin 7 = 4s = 5773503,

1/6

= sin 35 15' 52";

.-. a = /3
= 7 = 35 15' 52".

(28). To determine the nature of the equilibrium when

a body rests upon a curve surface.

Let bAc (Fig. 117) be the body, and BAC the surface on

which the body rests. Draw the normal DArf at the point of

contact A, this will necessarily pass through G the centre

of gravity of the incumbent solid, (Art. 128). Let now

the solid be slightly disturbed from its position of rest, by

causing it to roll along the surface AB ; and let U P c' be its

new position ; #', G', d! being respectively the positions taken

by A, G, and d. Then, as every point of aP has been in its

turn in contact with a corresponding point of AP, therefore

AP = rtP.

Let now Pp be a vertical, then the body cannot be in equi-

librium, unless Pp pass through G' (Art. 128); but if it



227

does not, then the body will go back to its original position,

or depart farther from it, according as G' falls to the right

or left of [*ji;
that is, the position bAc will be stable, un-

stable, or neuter, according as G' falls to the right or left

of P/>, or coincides with it ; that is, according as
fi/>

is

greater than, less than, or equal to aG'. To express these

conditions more conveniently, draw a normal DPp' at P,

then AD, adf are ultimately the centres of curvature of the

arcs AB, A.b at A ; denote them by R, r respectively ;
and

let = the angle PDA ; and ff ^ the angle PdVi;

/. PA = RO, and pa = rff ;

.' f R0 = r& ;

ff R
;
e
=

7
m

sin dP sincfP

=^ ultimately,

Rr
z

the
|.

( itinn will be *fo6/, UHXtMi'., OF ne//

according as

RrAG is < > or = A
.

>

1 1 1

or
A(T R

RBMAHK. If the surface BAC be concau- iottMd "I

convex, as is supjHJSed in the aln\e dcnxMistratidi. then '

nei
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1 1 1
^ r

"

If the surface of support be a plane, then R is infinite,

and YT = 0, and the conditions are
K

AG < > or = r.

Ex. What segment of a paraboloid will rest in a position

of neuter equilibrium upon a spherical surface whose radius

isR?

Let 4m be the latus rectum of the parabola, by the revo-

lution of which the paraboloid is generated ; then r = the

radius of curvature at the vertex = 2m ; and, by Ex. 16,

page 132, AG =
far,

1 -L+l-
'fa? aTR
.', x

which gives the length of the axis of the parabolic segment.

(29). A body P (Fig. 118) rests upon a curve line AB,

being acted on by given forces in the plane of the curve ;

to determine the position of equilibrium.

Let Ox, Oy be the rectangular co-ordinates to which the

curve is referred by its equation, draw PM parallel to Oy,
and PR a normal at P. Resolve the forces which act on P
into others parallel to the axes Ox, Oy ;

and let X, Y be

their respective sums ; then we may consider P as kept at

rest by the action of three forces X, Y, and the reaction R in

the direction PR
;
but we may resolve the latter into

- Rd
sy parallel to the axis Ox,

and Rd
s
x parallel to the axis Oy,

where x = OM, y MP, and K AP
; for d

sy, d
t
x
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an* the cosines of the armle< \vhirh PR makes with Or,

/. = X -
and = Y + RdjeJ

Multiply the first by <h\ the second by dy, and add,

.'. = Xrf.r -f \dy .... (2),

which is the condition of equilibrium.

If the pressure sustained by the curve be required, we

hnve

R* = R24*2
4- RV

.-. R = V X* + Y4
.

Ex. 1. Suppose AB to be a parabola whose axis is Of/,

and that the particle is acted on by gravity in the direction

PM, and by a force tending from Oy, and proportional to

the distance from Qy.
Let g denote the force of gravity, and px the force tend-

ing from Oy ;

. . X = px, and Y = g;
also the equation of the curve is

,
.'. dy -

and = Kdx 4-

xdx
.^

n
that is, there cannot be an equilibrium unless thejatu>

2n
Q of the ; be equal t< 2R, and ulicu this con-



230

ilition is sutislii'tl the particle wili remain in equilibrium on

any point of the curve.

Ex. 2. A body P rests on the surface of a prolate sphe-

roid (Fig. 119), and is attracted towards the foci S and H,
with forces respectively varying as (SP)

m and (HP)
n

;
to find

the position of equilibrium.

Let the force in the direction SP = a (SP)
m

, and that

in the direction HP =
/3 (HP)". Let the centre C be

the origin of co-ordinates x CM, y = PM ; and, there-

fore, SP = a + ex and HP = a ex ; a, e the semi-

major axis and eccentricity. Now the resolved parts of

a (SP)
m in the direction

Q1V/T

of a? = - a(SP)
ro

.-gp
= a (a + ex)-1

(ae + x),

PM
of y = -

a(SP)"
1

.

gp
- - a (a + ex)"^y ;

and, similarly, the resolved parts of
|3 (HP)

n in the

direction

of x =
j3 (a eaf)

n~ l

(ae x),

.'. X = a(a+eo;)
m
-*(ae+x)+ /3( ex)

n
-\ae x),

Y = - a (a+ ex)
m~l

y
- P(a-exy

n~ l

y.

Now = X</# -f

a y

X1 yl tyX
for because ^ + ^ =z I, .-. rfy

=

~^^;
/. =

.-. =
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.'. u (a \
,'. )"-< a\ae >ea

a?) = /3(a-e.r)'"
1

o*(<ie-r

a

from which equation the value of ./ i>; to be determined.

This equation expresses that the forces are equal at the

point P.

(30). A body P rests upon a curve surface, being acted

on by given forces in any directions
; to determine the

ition of equilibrium.

Let z = f(x, y) be the equation of the surface on which

P rests; p, q the partial differential coefficients of z with

regard to x9 y respectively. Resolve the forces which act

on P parallel to the three co-ordinate axes, and let X,

Y, Z be their respective sums, and R the reaction of the

surface at P, which takes place in the direction of a normal.

Then we may consider P as kept at rest by the four forces

V V, Z and R. Now the resolved part of R in the

direction



232

wherefore, by dividing the first by p and the second by q,

we have

which combined with equation of the given surface will give
the point P.

The pressure on the surface is evidently equal to

R =

Ex. A body rests on an ellipsoid whose equation is

*V- + --i
a*
+

b*
+

c2
~

and is attracted towards the co-ordinate planes by forces

which are respectively proportional to its distances from

them ; to determine the position of equilibrium.

Let ax, fiy, yz be the respective forces ;

/. X=-a:r, Y = -
0y, Z = - yz ;

also, by differentiating the equation of the given surface,

. aa2 = j36
2 = -yc

2
;

these two conditions must be satisfied, otherwise there

cannot be an equilibrium at all, and when they are satisfied

the body will rest on any point of the given surface.



On the Funicular Polygon.

(31). ABCDEF (Fig. 120) is a cord, supposed devoid

of weight, suspended from two points A, F in a horizontal

line
;

at the knots B, C, D, E weights Wp W2 ,

W
3 ,
W

4
.... are hung ; to determine the proportion of

these weights that it may hang in a given form. This is

called the funicular polygon.

From A draw Ac, Ad, Ae, Af respectively parallel to the

portions BC, CD, DE, EF of the cord
; and denote the

respective inclinations of AB, BC, CD to the

horizontal line AF by a, /3, y, & . . . . ; draw BM vertical.

Then B is kept at rest by the tension of AB, BC and the

weight Wp which forces are respectively parallel to the

sides BA, Ac, cB of the triangle ABc, and are therefore

proportional to them. Therefore W
t
is proportional to Br.

In the same manner W
2

is proportional to cd ; and they

are on the same scale, for in both Ac represents the tension

ofBC.

W, _Bc BM-rM
* W

2

~~
cd

~ : cM r/M'

AM tan q AM tan /3= AM tan /3 AM tan /
- tan a tan /3"

tan/3 tan y'

W land tan

It appears. therefore, that any one of the uei^hN IN pn>.

<nal to thr (lifli'ivnr.' !' tin- taiiijnitN of the anglivs at

uliidi tli- polygon, which form the angle
;it wliich it i- ^iiNpni'l.Ml. are inclined to the lion

II II
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REMARK. The angles MAe, MA/, which are situated

above the line AF, are to be accounted negative.

The horizontal tension of any string is represented by AM,
for it is the resolved part of the lines AB, Ac, A.d

which represent the whole tensions ; and this horizontal

tension : any weight (W2 suppose) : : AM : cd : : 1 : tan
j3

tan y.

The tension of any string BC : the horizontal tension ::

Ac: AM:: AM seep: AM:: sec0: 1.

(32). IfAB, BC, CD . . . ., in the preceding figure,

instead of being lines devoid of weight, be heavy beams of

wood, or bars of metal, connected at the joints A, B, C,

D by hinges, we must consider each beam as

exerting by means of its weight vertical forces at its extre-

mities. Thus, if wv wv w3
.... be the weights of AB,

BC, CD .... we may consider BC as exerting equal

pressures \ w2
at B and C in a vertical direction, the centre

of gravity of the beam being supposed at its middle point ;

in like manner AB exerts a vertical pressure equal to ^w l

at B, and therefore we may consider W
l + J(z0, + ^

2)
^

the whole weight suspended at B. Similarly, the weights to

be considered as suspended at C, D, .... are respectively

W
2 -f iO.2 + w

3) ;
W

3 4 J(t03 + O; . . . .

and these weights are to be used instead of those given in

the preceding article.

Their considerations are intimately connected with the

construction of suspension bridges.

If W,, W2 ,
W

3
are evanescent, then the weights

to be considered as suspended are ^(w l -f z#
2), %(w2 + w

3)

. . . . ; and if the beams are all equal, each of these become

equal to wr
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On ttie Caten fir
i/.

(33). To deduce the equation of the catenary from the 1

properties of the funicular polygon.

DEF. A catenary is the curve assumed by a fine chain

or flexible string when suspended from its extremities.

Let AOF (Fig. 121) be the catenary, which we may
consider a funicular polygon, whose sides are the equal

indefinitely small links of the chain of which it is composed.

Let PQ be one of the links; O the lowest point; OK
vertical ; PM, QN perpendicular to OK ; Pp parallel to

MN ;
x = OM, y = PM, OP = *, MN == g.r, ;>Q =

$y, PQ = 8*, T = the horizontal pressure which we have

seen is the same for every beam or link ; W = the weight

of a portion of the chain whose length is /
;

.'. the weight of PQ = ^~
9

and since the weights of the links are equal, the weiiiliN to

be considered as suspended at P, Q .... are each equal to

Wherefore if be the inclination of PQ to the horizon,

and + $0 that nf the next link, we have

T:W.*::1 : tan (0 + 80) - tan W.

I : sec2 0. SO ultimately ;

fl'.W^y.'
W 8-X

scc*0 = TIT- 4- by takiii-: the limits. 1,\

the link- iM'lctinitcK -mall.
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W 5
.*. tanO 7-.T,by integration.

. dx_ W 5
'

dy~ T'l'

This expression may be rendered more simple by writing

Tl
a for ;

then

dx s

Ty
=

a>

:. ds = tJdx1 -f dy
2
,

sds

:. x + C =
To determine the value of the constant we must observe

that x = 0, when 5 = 0, and therefore C = a;

.'. x + a = \/2 2.

the equation required.

To determine the meaning of a, we have

W:T:: / : a,

and therefore as / is the length of chain whose weight is

W, a must be the length of chain whose weight is equal

to the horizontal tension.

(34). The tension at the point P : the horizontal tension

T :: sec : 1. (Prob. 31, Rem.)
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Hut tantf - -.. /. ><c2 == I + tan'0 = 1

,. | ^
.". tension at P : horizontal tension ::

'-
: 1,

a

:: x -f a : a.

Now a is the length of a portion of the chain whose

weight is equal to the horizontal tension, and therefore

x + a is the weight of a portion of the chain whose length

is equal to the tension of the chain at P
; wherefore produce

KO to B, so that OB may be equal to a, and draw BC

perpendicular and PL parallel to KB ; and PL will repre-

sent the tension at P, for it is equal to BM = a + x.

BC is called the directrix of the catenary.

(35). The equation of the catenary will be simplified by

taking B for the origin instead of O ; for then x = BM
= a -f OM ; and since

(a + OM)2 = a2 + *2 ;

If the relation between x and y be required, we have

* = V*2 -** ...... (1);

therefore

xdx
dy* = ds = 7p^ ;

.'. y = a log/*
+ ^** Zf\ by integration .

\ a /
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If the relation between y and 5 be required, we have

from (1)

'='-
= -

'(a) -(-)
*

2y 2v

= e* 2 + e a
;

2s t .2=-.* (3).

(36). The equation of the catenary may also be deduced

independently of the funicular polygon.

Let PT (Fig. 122) be a tangent to the curve at the point

P ; then after the chain has assumed its form of equilibrium,

it will not be disturbed by supposing the part PO to be-

come rigid ; in which case the rigid body PO is kept at

rest by the action of its own weight in the direction MT ;

the tension of PT in the direction TP, and the horizontal

tension at O in the direction PM, which forces being in the

directions of the sides of the triangle MTP are also propor-
tional to them

;

/. weight of OP : tension at O :: MT : MP,

MT
: MP : l '

or s : a :: tan : 1;

.-. J? = tan0=-,
dy a

9

the same equation as before deduced.
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(37). We have supposed the density of the chain to be

uniform, but if this be not the case, let the density at P
be p ; then the weight of an element $s

= gp$s, (Art. 122) ;

and, therefore, the weight of OP = gf(pds) = gf,(pd,*) \

and since, as above shewn,

weight of OP : tension of O : : tan = ^ : 1
;

dy

We may simplify this equation by supposing a = the

length of chain of density I, whose weight is equal to the

tension T;
:

- T = ga ;

- .* ^
= pdts y by differentiation . . . (1);

<>r a . (dyS)*
= p x (radius of curvature) ;

_ a . sec2 of the inclination .

radius of curvature ''

for dj8
= secant of the inclination uf the tangent at P

to the hori/nn. Ivjuation (2) gives the density at any

nt IVin order that the chain may haim in a i:i\cn l'rni;

thus, in order that a chain may hang in form of a semi

eirele, the density at any point miM \ary as tlie >quare

of th- tlie inclination .!' tlie tangent at that
j-
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to the horizon. On the contrary, equation (1) will give the

form when the density is known. As an example, suppose

the density at any point to be proportional to the tension at

the same point.

Referring to the figure, we have

PT
T : tension at P :: MP : PT :: 1 :

,

1 :sec0:: i :

dy

Wherefore p the tension at P

ds a ds

whence, from equation (1),

a ds a , ds

*
'y '

.'. b cotf-1

(dgy) = y -f C, by integration.

To determine the constant C, we observe that at the

lowest point, y = 0, dty=ao, and cof1

(dxy) = 0, and
therefore C = 0.

= cot

M
6

log.cos|=C-f,
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and if we take the lowest point for the origin of co-ordinates.

.r = when y 0, and therefore C = ;

y x

b b

y *

/. cos |- == e~i ,

b

y -

or secf = &
b

This is the form of a chain that is equally able to bear

its own weight in every part ; the density or thickness at

any point varies as

ds f AtoYtt
-v- , or as

{ 1 4- I -r-] / .

dy' { \dy) I

But, from equation (I),

/ / i / . s*r\4" y

.'. thickness or density oc H +

ocsec^,

(38). To find the catenary when the chain is acted on

by a force tending to a fixed centre.

Let C (Fig. 123) be the centre of force, O the 1.

point of the curve ; PY a tangent at P, and CY a perpen-

dicular upon it
; CP = r, CY = p, F = the force acting

on P in the direction PC, t = the tension at P, CM = #;
the remainder of the notation as before. The mass of

PQ =
p$g, and the fonv which acts upon it in the direction

MC is F -, and therefore the uei-ht of PQ in that direc-

tion

i i
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and, therefore, the weight of OP in that direction

Similarly, the weight of OP in the direction PM

And the forces which keep OP in equilibrium are these

two weights, and the tensions at A and P ;
wherefore by

resolving them in the directions of x and y, we have

By differentiating these equations with regard to s, we

find

- =^rf> 4 rf

... (1).

Multiply these respectively by d
sz, dsy, and add, observing

that d
sxd?x -f dsydfy = 0, because (^a;)

2
-f y)

2
1,

/. pds
r = rf/ ;

Again, multiply equations (1) by y and # respectively,

and subtract ;

.-. = t (yd?x
-

xd?y) -h df . (yds
x -



C' = t(ydt
x xd

fy), hy intonation,

= tp, by the Differential Calculus ;

Tliis equation will give us the form of the curve when

the law of the force and density are known. By differentia-

ting it, we have

C'dp_

which gives the law offeree, that a chain of given density

may hanir in a .niven form. Also,

,&p
pp.

which L'ive* Uic law of density or thickness, that a chain

*-u*pended from two points, and being acted upon by a given

force, may hang in a given form.

If the force be repul>ive, F must be accounted negative.

To find the catenary uhen the chain i> acted on

l>y any force* in its own plum*.

r>inir the liiruiv and notation of the la>t prohlem. n

on P in direction* parallel to the ro-ordinatc

and let \. ^" In- tlie c.Miiponents. 'I'lien, |.roceedir?n exactly

88 bclniv. \\e find in-t

'

I

/ / t/
i/
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Multiply by dtx, dty, and add ;

/. -fp(Xdx 4 Y<fy) + C = t . . . . (1).

Multiply y and x, and subtract

-
P (Xy - Ya?) = t (yd?x

-
a?rf,

8
y) + df . (yds

x -

:.fsP (Yx - Xy) + C' = t(yds
x - xdy) . . . . (2),

and by eliminating t between (1) and (2) we shall have the

equation of the curve.

On Roofs and Bridges.

(40). Jf the whole figure of problem 31, be inverted or

turned round the horizontal line AF through an angle of

180, as in Fig. 124, we shall find the same relations between

the weights as before
;

it will also appear, from the same

reasoning, as in Prob. 32, that the weights to be considered

as hanging from B, C, D .... are the same as there inves-

tigated. In this state the problem contains the whole theory

of roofs, arches, and bridges. If ABCDEF be considered

as a roof, of which AB, BC .... are the beams, then

the horizontal thrust at A and F tending to push out the

walls on which the roof is erected, is represented by AM,
on the same scale as that wherein Be represents the weight
to be supposed suspended from B, it is therefore equal to

tan a tan j3

This thrust is usually prevented from taking effect upon
the walls by inserting the ends A, F of the beams AB, FE
into another AF called the tic-beam, which is thus made to
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MMtaatthewhole thnttl : at other time- the walls arc prevented

from bulging by buttresses, or shores, built against them.

If it were required to construct a roof of given .span

with given beams, which has to support given weights, we

must take an equal number of smaller proportional beams, and

connect them by strings or pins at the joints, so as to allow

thorn to move freely, and load them with proportional weights.

Then if this model be suspended from its extremities at a

proportional distance, as in problem 31, it will assume the

required form, which we have merely to turn round AF
through au angle of 180, and it will be a perfect model

of the required roof; and will possess the property

of being in equilibrium in every part. In such a roof

there will be no unnecessary strain on any part of the

materials of which it is constructed, and consequently no

part will require to be unnecessarily strong. In this simple

manner we may also obtain the model of a bridge of

given span, by taking a great number of very short 1 teams

to represent the arch stones, and connecting them as before.

It' when we suspend this model-string of arch stones loaded

with we'iL'hN proportional to what (in the place they occupy
in the bridge) they will have to sustain, we find that the

bridge would be too lofty, we must remove the points of

Mi-speiiMnn farther apart, until \\e have obtained the proper

altitude. This method will ur ive us a bridge, in perfect

equilibrium in c\ery part, and in which there k there!

no injurious >train, no pealOH -tivnjth, nor dan^erou^ ucak-

ness in any part.
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On Balances.

(41). A balance is any instrument invented for the pur-

pose of comparing the heaviness of different bodies
; that is,

for ascertaining their weights.

The common balance (Fig. 125), consists of an inflexible

rod AB, called the beam, resting upon a fulcrum C at its

middle point ; from its extremities A, B are suspended two

equal scales D, E by means of fine chains or strings. The

fulcrum C and the points of support are in the same straight

line, but the centre of gravity of the beam is a little below

C. In this state the balance when unloaded ought to rest

with its beam AB in a horizontal position. Ifa weight be put

into one of the scales, the common centre of gravity of the

scale and its load will be in the vertical passing the point of

support, (Art. 128) ; and therefore we may transmit both the

scale and its load to the point of support. Wherefore, when

weights are placed in the scales, we may suppose them

placed immediately at A and B, and therefore the balance

becomes a straight lever whose fulcrum is C ; and since the

arms AC, BC are equal, there will be an equilibrium

when the weights are equal (Art. 196). If the weights

are unequal, letG (Fig. 126) be the centre of gravity of the

beam AB in the oblique position assumed in consequence

of the inequality of the weights. Let w be the weight of

the beam, which by Art. 131 we may suppose to be

placed at G ; S the weight of each of the equal scales ;

P, W the weights in D and E respectively ; = the incli-

nation of the beam to the horizon. Then the machine is

kept at rest by four parallel forces, viz. S + P at A,
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S -|- W at B, w at G ami the reaction of the fulcrum at C*;

the perpendiculars from C upon the directions of theM>

forces are AC cos 6, CB cos 0, GC sin 0, and zero
;
there-

fore, by Art. 198,

(S -f P) AC cos0 41 u> . GC sin = (S -f W) . BC cos
;

.'. P . AC + w . GC tan = W . BC,

by dividing by cos0, and observing that AC = BC ;

W-P AC
/. tan = --

pTTvw GC

The sensibility of a balance consists in the beam attain-

ing considerable obliquity, when the difference between

P and W is extremely small ; and therefore the obliquity

attained by different balances when loaded with the same

weights, might be taken as a measure of their respective

sensibilities. As W P is constant in this case, and as

v nearly equal to tan 0, we may use

AC
w.GC

a> the measure of the stability.

A different measure of stability is however generally

used. Which may be thus explained. Let S be the difler-

ence between W and P which produces a given (which is

tin* same for all balances) very minute appreciable devia-

tion ff'

/n fti o ^
'/or tan

?:=-.(,

the ratio of the whole prelim- P -f W -f 2S -\

(Art. !'.)$) on tin- fulcnun to this *c taken as the

llg
V in this me
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\*hirh is constant, and using 2P -f- 2S -f //-, tor the pres-

sure on the fulcrum, the fraction

P + S -f %w AB
10

"
GC

i< the measure generally employed. From either of these

measures we derive the following general results :

That the sensibility of a balance is increased,

1st. By increasing the length of the beam.

2ndly. By diminishing the distance of its centre of

gravity from the fulcrum.

Srdly. By diminishing its weight.

For further information on subjects connected with the

common balance, the reader is referred to Captain Kater's

Treatise on Machines.

(42). On the Steelyard, or Roman Balance. This

instrument is a lever AB (Fig. 127) with unequal arms AC,
CB ; the fulcrum being C. As it is commonly constructed,

the longer arm AC preponderates over the shorter CB
;

let therefore G be the centre of gravity of the beam AB,
at which point we may suppose its weight w collected.

And let P be a given weight suspended from p}
and Q

the body to be weighed from B. Then (Art. 197)

= W.CB;
__ P ' CP -f~

oc P . Cp 4- w . CG,

octy + p.CG.

Now let D be such a point that when P is suspended

from D, if just balances the beam,

/. P. CD = w.CG;
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. . CD = CG;

/. W oc Cp -f CD x D^.

It appears therefore, that the weight W is proportional

to the distance ofp from D. If we suppose then, that when

p is at E, W is one pound, then makiiig EF, FH, HI
each equal to DE ; when p is at F, H, I .....

W will be 21bs., 3lbs., 41bs., .... respectively, and we

may number the points E, F, H . . . . 1, 2, 3 . . . respec-

tively; and if the spaces DE, EF .... be subdivided

into sixteen equal parts, each of them will correspond to one

ounce, and we shall be able to ascertain W with correspond-

ing accuracy by sliding the weight P along the arm AC until

it comes into such a position as to balance W, and then

reading off its place, which will be the number of pounds
and ounces which express its weight.

The advantage of this balance is, that it requires but one

_rht P, and the pressure on the fulcrum, on which the

friction depends, being equal to P -f- W, is less than in the

common balance so long as the substance to be weighed

is heavier than P; on the contrary, however, when the

substance to he weighed is not so heavy as P, the pressure

on the fulcrum is greater than in the common balance, and

consequently the friction, which diminishes the sensibility

of the machine. is greater] and, therefore, for the deter-

mination of small weights the common balance is to he

preferred, both on account of tli.- diminution of friction

and also because small weights can be more accurately

subdivided than small spaces on the arm.

(43). On th- Da i Bal w. Thtt inatnunent coatifti

"\%. 128), at , nd \ of uhirh is

K K
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a given weight A, and at the other B a dish D to receive

tin1 substance to be weighed. The fulcrum or point of

support C is made to slide along AB until the beam is

horizontal, and by its place on the graduated beam AB the

\\viijht of the substance put into the scale-pan is deter-

mined. The method of graduating the beam AB may be

thus investigated. Let G be the centre of gravity of the

instrument (including the beam, weight A, and scale-pan*

D), P its weight ; W the weight in the scale D. Then we

may suppose P applied at G (Art. 131), and since there is

an equilibrium between P and W about the fulcrum C,

/. W . BC = P . CG = P . (BG - BC),

= P.BG-P.BC;

-p + W"

Wherefore, when W has the values 0, 1, 2, 31bs., ____ and

w.BG ra.BG n.EG n.EG
ifP be wlbs., BC has the values - ,

- ^ ,
-

^,
--

,

n n -f I n + 2 n +3
..... which quantities are in harmonica! progression,

because their reciprocals are in arithmetical progression. The
divisions 0, 1 ; 1, 2; 2, 3; . . . . may be again subdivided,

if necessary, and when this beam is thus prepared, the

weight W may be ascertained with as much facility as in

the common steelyard; but the disadvantage of this balance

is, that as the weight increases the intervals between the

divisions become smaller, and consequently it is not so well

adapted for determining large weights as small ones.

The scale-pan is here supposed to be transmitted to B.
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On Elastic Strings.

(44). Strings made of certain substances are found to

be elastic
;

that is, they admit of being lengthened by the

application of forces to their extremities, and regain their

original dimensions, or nearly so, when the forces are

removed. Spiral springs composed of steel wire, such as

the one exhibited in Fig. 129, are found to possess the same

property in a remarkable degree. The connection between

the force which stretches a string, or a spring of the kind

here mentioned, and the increase of length cannot be in-

vestigated from mathematical considerations, but is to be

determined entirely by experiments.

Let MN (Fig. 130) be a very smooth horizontal table;

AB an elastic string or spring laid upon it and fastened

at A
;
W a weight stretching the string by mean* of a

thread passing over the pulley C, whose position is such

that ABC coincides with the table. Then, if W stivt< -hes

the string to b y and another weight W >tivtehes it still

farther to b', it is found that

B6:B#:: W : W;
that is, the excess of a iven clastic string or spiral spring

above its natural length is proportional to the weight

which stetches it.

(45). Hence it follows that this excess is, in different

strings of the same make and materials, proportional to their

_'ths. For the tension of a string being the same in

ry part, if we divide the strinir into any number of

equal parts, tin ., of length in each part \\11J l>e

equal, and therefore the increase of the \\hole striu;: will

be
]

these equal 'iieh
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it contains ; that is, to its length. Consequently, upon the

\\ hole, the increase of length of a string is proportional to

(its length) x (weight which stretches it).

Wherefore, if L be the natural length of a string, and /

its length when stretched by a weight W,

/-LxL.W = C.LW;
where C denotes a constant dependent on the material,

thickness and make of the string.

(46). Suppose the string AB (Fig. 131), whose length

is a, to be suspended vertically from one end A, and

stretched by its own weight w only; to determine the

increase of its length.

In AB take any points P, Q very near to each other,

and when the string is stretched let b, p, q, a be the

points corresponding to B, P, Q, A ; x BP, Sa? = PQ,

y = bp} By = pq. Then x is stretched into ty by the

weight of bp or BP which = ;

therefore, dividing by &r, and taking the limits,

~ wx
d,y-\ ==C---;

C wo? ,

.'. y
- x =

^
.

, by integration ;

C wa?
. . ab AB = ^ --- - 4 Cwa.

& a

Hence the increase is one half of what it would be, if

AB were stretched upon a horizontal table by a weight

equal to its own weight.
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(47). If a weight W be now suspended from />, we can

determine the further increase of length.

For the weight which stretches
/>y is, in that case,

/. a* -AB = CWtf + Cu-ci.

Of this increase the part J Czra we have seen is due to

the weight of the string, and therefore CWa, the part due

to the weight W, is the same as if the string had no

weight. Hence when a string is stretched by several forces,

each one produces as great an increase of length as it

would do if the other forces did not act.

(48). Two weights P, Q (Fig. 132), resting on two

inclined planes AB, AC, are connected by a given elastic

string ;
to find the position of equilibrium.

Let a, be the inclinations of AB, AC, and that of

P(J to the horizon; a = the natural length of PQ ;

T = its tension. Then 1* is kept in equilibrium on the

plane AB by T acting in the direction PQ ;

/. T cos APQ = P sin a, (Art. 215).

But APQ = a-0;
r., P sill a

i a - )'

i i T, " p
Similarly. T = -

j-f
coe (fi \

Ih
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cos sin |3

"

cos sin a
'

.'. P (cot /3
tan 0) = Q (cot a -f tan 0) ;

Atan0 = ^^g^L,
and PQ = a + C . a . T

C . P sin a
+

cos

PsmaN
(a-0)>

From which PQ is known, and thence AP and AQ by
means of the triangle APQ, whose angles are all known.

(49). Two equal weights P, Q (Fig. 133) are connected

by an elastic string, whose natural length is BC
;
to find

the nature of the curves BP, CQ, on which they will

always rest in equilibrium with the string parallel to the

horizon
;
the plane of the curves being vertical.

It is manifest, since the weights are equal, that the curves

must also be equal. Bisect BC in A, and draw AM
vertical

;
AB = AC = a, AM = x, MP = MQ = yt

T = the tension of PQ;
.'. PQ - BC = C . BC . T,

or2y 2a = C. 2a .T;

/. y a = CaT.

But P being sustained upon the curve BP by its gravity

P and the force T, we have by Prob. 29,

/. T =
.'. y a =

/. (y a)
2 = 2CaP#, by integration,

which is the equation of a parabola. Hence BP, CQ are

two semi-parabolas, whose vertices are B, C.
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(50). Let a cordPAQ (Fig. 13-1) passing over a smooth

cylinder, be acted upon by two equal forces P, Q ;
to find

the pressure of the cord upon the cylinder.

Since the tension and the curvature of the cord are the

same in every part in contact with the cylinder, the pressure

upon every point will be the same. Let AB be a very

small element
; join CA, CB (C being the centre of curva-

ture), and let AT, BT be tangents at A and B. Then

AB is kept at rest by the tensions at A and B, and the

reactions of the cylinder at every point of AB. All these

equal reactions may be supposed to take place at the middle

point D, (that being the place of their resultant). These

three forces are in the directions TA, AD, DT respectively,

which pass through the point T, and may therefore be

transmitted to it. Wherefore, putting the angle ACB = 0,

the angle ATB = 180 -
0, and since the pressure DT

i^ the resultant of the two tensions at A, B (Art. 20),

we have

(pressure on A.By= P*+ 2P.Pcos(\8W-0) + P* (Art. 26),

for P is equal to each of the tensions ;

.'. (pressure on AB)
2 = 2P*(1 - cos 0),

= 4P* sin*|
2

ultimately,

.'. pressure on AB = \'U.

And as the pre^ure on e\er\ equal element is the

tlh- Q of the cylinder is equal to the

product !' the tension into the aiiirle (expressed in tern

the radius, -
I by the are ;it the 001
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(51). An elastic ring CD (Fig. 135) is placed round a

vertical cone and descends by its own weight ; required tin 1

position of equilibrium.

Let AB be tbe axis of the cone ; CD the position of

equilibrium of the ring ;
a the radius of the ring when

unstretched, AB = x, a = the angle CAB, T = the

tension of the ring. Then the original length of the ring

= 27ra, and the stretched length = 2?r . x tan a, for

BC = x tan a;

.'. 27T# tana- Zira = C.27ra.T;

T _ x tan a a

~M~
Therefore the pressure of the ring upon the cone, in a

horizontal plane,

= T . %r = 1*L.ZL
. 2,, (Prob. 50).

Q\J

and this being the force which, acting horizontally, sustains

the ring upon the inclined plane, viz. the surface of the

cone, whose inclination to the horizon is 90 a, we have,

by Art. 216,

= Wcota,
where W denotes the weight of the ring ;

aCW
.*. BC = x tan a = a + - - cot a,

<7T

/, CW \
=
a(l+-2

- cot
),

which determines the position of equilibrium.

(52). White's Pulley. In the common systems of pullies,

each pulley has its own independent centre of motion, and

consequently, as they all move with different velocities and



with different derive- ofpmtMn F them will IK- liable

to greater wear than others, which will very much tend to

increase the friction and other inequalities and resistances;

which will mvatly diminish the efficiency of the machine. To

obviate these difficulties, Mr. James White invented a moufle

(Fig. 136), consisting of two blocks A, B ; into which grooves

cut, the radii of those in the lower block being as the

numbers 1, 3, 5 . . . . and the radii of those in the upper

block being as the number> :.. 1, . . . . Now, suppose

the lower block to be raised through one inch, then each

of its strings will be shortened one inch, and therefore the

circumference of the pulley BA t
describes one inch; that of

AA,, two inches ; that of BB
2 , three inches, and so on

;

which numbers being proportional to the radii of th

>

pullies, they will all move with the same angular

velocity; and, consequently, each block instead of being

composed of separate pullies may consist of one solid piece

of wood or metal, containing the grooves before mentioned.

The disadvantage of this system is, that if the cord hi 4 at

all elastic the friction becomes very great, on account of the

tension not being the same in every part.

(53). Hunter's Screw. We have seen (Art. 2 IS) that

the ad\;mt;iure of a screw increases in proportion as tli<>

distance between ill-- thread^ diminishes, and as the length

lexer at which the po\\er act increases: thcr

by making the threads of the screw sullicicnlly fine, we

may increase tin- advantage u> much as we please; hut there

is a limit to the fineness of the thread : lor as all the u

.-MI upon them, if the;, fine they will not l.e

siitlicieiitK slroiii: to hear the load laid upon them. If we.

00 the CMiitrarv. increase the len-th of the arm of the lever,

for the pi- bfl :id\aiita^r of

I. I
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the power will have to describe an inconveniently large

space. To obviate these natural defects, and increase the

advantage to any degree, Mr. Hunter invented the screw

in Fig. 137 ; A and B are two common screws, of which

A is also a hollow screw to admit B, which is fastened to

the moveable plane D of wood or metal. If D, d be the

distances between two threads of the screws A, B respect-

ively ; then, while the power describes one circumference,

A descends through D, and B ascends in A through d,

and the space descended by the plane D is D d
; for when

A descends it carries B along with it, though B is at the

same time ascending in A. Wherefore, by Art. 193,

P . (circumf. described by P) = W . (D d) ;

W
_ circumf. described by P

T = D d

Now we can make D and d as nearly equal as we

please without diminishing the strength of the machine,

and therefore the advantage of this screw admits indefinite

increase.

(54). It appears from Art. 212, that the advantage of a

wheel and axle is

rad . of wheel

rad. of axle
'

which might theoretically be augmented ad libitum, either

by increasing the radius, or by diminishing that of the axle.

But by the former means, the power would practically have

to describe an inconveniently large space, and the machine

would become cumberous
; and, in the latter case, it would

be too weak to bear the pressure of the weight upon its

axle. To remedy these inconveniences, and at the same
time to increase the advantage in any requisite degree, the
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form of Fig. 138, has been given to it; where A is the

\\heel, B and C two axles of unequal radii, firmly fixed to

each other, and having the same axis. The cord BDC as

P descends is wound upon the axle B with the larger

radius, and is at the same time unwound from the axle C
with the smaller radius; it passes under a pulley D, to

which the weight W is attached. Let R be the radius of

the wheel, r r those of the axles B, C. Then when the

machine turns once round, P descends through 2?rR, and

the length of the cord wound upon B is 2wr, and the length

unwound at the same time from C is 2irr' ; wherefore, upon

the whole, the length of cord hanging down from the axles

is diminished by

and, therefore, as there are two parts of the cord, W has

ascended through

irr Trr.

Wherefore, by Art. 193,

P: W::7rr-7rr':27rR,

, : : r - r : 2R ;

i *
W 2R

.

'

. the advantage = =- -
, ;

and as we can diminish the denominator of this fraction as

much as ue please, without weakening the materials of the

machine, there is no limit to the advantage of it,

what arises from the very great length of cord that must he

used iu raUinn W through a very small

i . The. OY//0//. Tliis instrument is represented in its

simpleM form in Fi.i;. 130. \\here A I'' is the profile of a

. ^ \l'. l'< \H i" mo\cal>lc



260

about a f passing through A ;
it is connected witli

BC by a compass joint at B ; and the other end C of BC,
i.\ means of a pin passing through it, is compelled to move

in the vortical groove EF. The power is applied at G, a

point in AB, in the plane of the rods ABC. It causes B
to come nearer to AF ; and, consequently, C presses down-

> upon any obstacle opposed to it. It is obvious this

machine is only applicable in those cases in which C is

required to descend through a small space, as in printing,

where it presses the paper upon the type.

Let W = the reaction at C, P the power applied

horizontally at G, = the angle BAF, a = AB, b =
BC, c = AG, and let GP intersect AF in p. Then

Gp = c sin 0, and therefore the virtual velocity of P

= d
t (Gp) = c cos . dfl.

Also AF = a cos + b cos BCA, therefore the virtual

velocity of F or W
= d

t (AF) = - a sin 0^0 - b sin BCA.d, (BCA).

Now sin BCA = T sin ;

o

and /. cos BCA.<Z,(BCA) = |
cos dfl ;

.'. the virtual velocity ofW
n j i\

-
e\ a cos dfl= asm .dfl asm 0. T . vT^r ,

b cos BCA

/. cos0 \
/i j/=

1 1 -*- 7 ~njTrr )
a sin dfl.

\
r

b co* BUAy

Wherefore, by Art. 192, the advantage of the machine

_
W c cos dfl
P ~~

/ ~~a cos
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b cos BCA . f/ cos

a' a sin (a cos 4- 6cosi>

AG.C6
AH. tt/>. AC'

when* IM is drawn j)arallcl to GP.

(56). A combination ofwheels and axles may be used in-

stead of the machine in Prob. 54, when that is inconvenient

and great advantage is required. Fig. 140 represents

a combination of three of these mechanical powers. An

endless strap passes over the axle a and the wheel B, and

another strap passes over the axle b and the wheel C. If

two successive wheels are required to turn in opposite

direetions, the strap must be crossed as between A and B
in the figure; when the wheels are to turn in the same

direction, the strap must not be crossed. B and C are turned

by the friction of the straps upon their surfaces
;
and hence it

is manifest, that if the force to be overcome by any wheel

be greater than the friction of its strap, the strap will slip

round without carrying the wheel with it, and the action of

the machine will cease. Wherefore, in order to make the

friction upon the surfaces of the wheels and axles as great

as possible, they are covered with leather, which is nailed or

Allied on them ; and both this leather and the concave side

of the straps are suffered to be in u rough state ; the friction

is also increased by crossing the straps

To calculate the advantage of this combination, denote

of the string d and e by T, T
1

;
then ^iiuv 1*

l-alurnvs tin- tension T on the axle </. \ve ha\e. \>\ Art.'JTJ.

T _ rad. of wheel A
I' I of axle a

'
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F _ rad. of wheel B
T

"

rad. of axle b
'

,W rad. of wheel C
and rfv = T ?! i jT rad. ot axle c

and, therefore, by multiplying these equations together,

we have

W . product of radii of all the wheels

P product of radii of all the axles

(57). To calculate the friction of the straps in the last

problem.

Let C (Fig. 141) be the centre of the wheel (or axle) APB
over which passes the strap TAPBT. LetAB be the arc of

contact, PQ a very small element of it. T, T
7

the tensions

of AT, BT ; t = the tension at P, t + $t = that at Q ;

ACP = 0, PCQ = S0, / = the coefficient of friction.

Then, by Prob. 50,

the pressure on PQ = t$0 ultimately ;

/. the friction on PQ =/. t$0.

But the tension at Q = tension at P friction of PQ ;

/. friction on PQ = t (t -f &),

.'. Y =
/, by dividing by *&0 and taking

the limits ;

/. log t fO + C by integration.

Now at A, t = T and = 0;

/. log T = C,

and at B, t = T and = ACB.
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/. log-T = -/.ACB + logT;

/. T = T.*-'' ACB
;

. . T - T = T(l -<r/- ACB
),

a quantity which is equal to the whole friction, and increases

as the angle ACS increases, and will evidently be the

greatest when the strap is crossed.

(58). Toothed Wheels. By far the most general modi-

fication under which wheels and axles are used in practical

Mechanics, is that of toothed wheels.

Let A, a (Fig. 142) be the centres of two wheels BC, be ;

upon the circumferences of which let teeth or cogs D, E, F ;

d> e>f> of any proposed form, be raised at equal distances

all round ;
in order that this may be possible, the radii of the

two wheels must be in proportion to the number of teeth that

are to be constructed upon them. If one of the wheels (be

for instance) be turned round its axis a, its teeth will press

upon the teeth of the other wheel BC, and turn it round its

axis A in a contrary direction, and as two correspond HILT

teeth F,f separate from each other in consequence of the

motion, two others D, d come in contact; and thus the

wheel a is enabled to produce a continuous motion in the

wheel A. Similar teeth are constructed upon the axles of

each wheel, and the axle .so prepared is called \\jtiniinij and

its teeth are called leaves. From the nature of the wheel

and axle it i> manifest that moll. MI is communicated to each

wheel, in (hi- modification, by a pinion in which it run- as in

1

\.\, where P dcMvmliiiL: turns with it the pinion n

which turns the wheel B, and this carries with it the
,

h which turns the wheel (
'

and axle <\ and raise* the weight

\V. fn flu- case, as in proM '
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W _ product of the radii of the wheels

P product of the radii of the

radius of A product ofnumber of teeth in the wheels

radius of c productofnumberofleaves in the pinions'

Here there are no teeth in A and c, on which account wo

have not reduced their radii to equivalent numbers of teeth.

(59). In the description of toothed wheels we have

said that the teeth or cogs are to be of any proposed form ,

because in fact they are commonly made in any form that

meets the fancy of the maker. It must not be imagined,

however, that all forms are equally advantageous, as we shall

easily understand by referring to Fig. 144, and tracing the

actions of the teeth upon each other during their motion.

Suppose be to begin to turn round, and let us trace the

actions of dandD. When d first comes in contact with D,

the latter presses against the side of c? in a single line of

points, very near the extremity of d, in the direction of a

normal to the side of d, that is, in the direction pD perpen-

dicular to the radius ad. Therefore, drawing Ap parallel

ad; the action of d may be transmitted to p, and its effi-

ciency varies

as Ap.

But as the wheel be continues turning, the point of

contact D slides along the side of d, and thus produces a

very strong friction, and consequently rapid wear both of

the side of d and of the edge of the tooth D. This goes

on till d and D come into the position e and E, when their

sides are for a moment in contact, and then the efficiency

of d in turning D varies

as AD.

When the teeth d and D leare this position a similar
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is in a reverse order ; and the edge of the tootli d presses

against and rubs the side of the tooth D.

It appears then, with teeth of the form of those in this

figure,

1st. That the efficiency of the pressure which one tooth

exerts upon another, and consequently the motion produced,

is very irregular, being in one position proportional to A/>,

and in another to AD.

2ndly. That the edges of the teeth are subject to very

rapid wear in consequence of rubbing with a single line of

points in contact with the sides of the teeth of the other

wheel, which latter is thereby also very soon worn hollow,

and the whole rendered useless.

Srdly. That in consequence of the rubbing of the teeth

against each other much of the power is rendered inef-

fective.

4thly. That since there are favourable and unfavourable

positions, the power must be sufficient to move the weight in

the most unfavourable position with the requisite decree of

celerity; and consequently, when the machine is in the

most favourable position there will be a jjreat excesx ,,f

power which will cause the machine to move much too

rapidly, and often produce fractures ; nothing in fact having

SO great a tendency to tear asunder the parts of a machine

and r.-ndcr it useless as an irregular motion of this kind.

I'Yoin these considerations it will at once be evident that

the best form of the teeth will be, when,

N Tli- teeth of one wheel press upon those of (he

other in Mich a direction that the elii, he uniform ;

that is, xiich that tl. up.m th

from A and fl are f cnnMant l"!i"ths.
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Jiuily. The teeth of one wheel do not rub but roll

upon those of the other.

3rdly. The motion of one tooth upon another is uniform.

When these conditions are fulfilled, it is also necessary

that the distances of the axes of the wheels should be such

that as great a number of teeth may be in contact at one

time as possible, and that there may be no jolting nor

violence of any kind when two teeth separate or come in

contact. These precautions will diminish the chances of

fracture very much.

Many forms of teeth have been proposed fulfilling one or

more of these conditions, but it seems to be agreed on that

the following is the best.

(60). Let ABD (Fig. 145) be a given wheel on which

it is proposed to erect teeth ; and let AB be the proposed

breadth of a tooth. Upon AD wrap a string and fasten it

at D. Then unwrap it, beginning at A, and its extremity

A will trace out the curve Aa called the involute of the

circle AD. In a similar manner, describe the involute B&

intersecting the former in C ; then ACB will be the tooth

required, which may be taken as a pattern of all the others

to be formed upon the wheel. In a similar manner the

leaves of the pinion may be found, by first constructing a

pattern by means of the involute of its circumference. Let

PL be a position of the thread whose extremity generates

the involute Aa
;

then we may suppose the point L to be

fixed for an instant, and therefore P will begin to describe

an arc of a circle whose centre is L, and therefore PL is

a normal to the curve AC, and OL the perpendicular upon
this normal is constant. In the same manner it may be

shewn, that the normals to the leaves of the pinion are all



constant and equal to the radius of the pinion. Wherefore,

since the leaves of the pinion press against the teeth of the

wheel in the directions of normals at the points of contact,

and the perpendiculars on these directions are always the

same, the action will be uniform, and consequently the

motion will be uniform also.

Let A, a (Fig. 146) be the centres of two toothed wheels,

P the point of contact of two teeth C, c ; L, / the line of

pressure wljich is a tangent to both circles, cutting Aa in

B. This line is fixed in position, because the circles are

given in magnitude and position ; and therefore B is a fixed

point. Also, the angular motion of P about / = the an-

gular velocity of the wheel a, and therefore the linear

motion of P along the tooth cP IP . angular velocity of

wheel . Similarly, the linear motion of P along the tooth

CP = LP x angular velocity of the wheel A. Nowthe angular

velocities of A and a, are proportional to-^y
and ,w*}

tively.

iocity of P along CP LP / al LP
:G

velocity of P along cP
==
AL /P

~
At 7F

As this ratio is not one of equality, the teeth will not roll

but rub;* and consequently there will !>. *ome friction;

tin- 'iMunce of the centre- A. n. ma] hmxever be so ad.ji,

as to cause the i ruction

ai U>
U

revisals
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not to differ much irom unity, and then the friction will be

hut small.

Notwithstanding this defect, the form of the teeth here

detailed possesses very great advantages over every other,

on account of the uniformity of action, and consequent

uniformity of effect, which it produces.

(61). In the construction of wheel-work, there is yet one

thing of practical importance to be observed. If the num-

ber of leaves in a pinion be an aliquot part of the number of

teeth in the wheel in which it runs, a leaf of the pinion will

always come in contact with the same set of teeth in the

wheel
;

for instance, if there be 5 leaves in the pinion, and

30 teeth in the wheel, a leaf of the pinion will rub upon

every 5th tooth in the wheel, and there will be 6 teeth

which are rubbed by the same leaf, and by no other. Hence,

unless both the pinion and wheel are quite accurately con-

structed, and each of perfectly homogeneous materials,

things which it is almost impossible should occur in practice,

there will be a considerable inequality of wear; and con-

sequently the machine will be sooner worn out than it other-

wise would. In order to remedy this, the numbers of leaves

and teeth ought to be prime to each other, and then each

leaf of the pinion will
g
in its turn come in contact with each

tooth of the wheel, and perfect uniformity of wear will be

ensured.

(62). The Endless Screw. This machine, represented

in Fig. 147, consists of a screw A whose axis is BC ; and

a wheel and axle D, E ; the wheel being furnished with

teeth exactly fitting the threads of the screw. The screw is

by means of the winch CP, and its thread instead of
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nst a nut, press against the teeth of tin' wheel.

and force them forward; each turn of tin* screw or winch,

advancing the wheel one thread of the screw ; or, which is

the same, one tooth of the wheel. The winch must there-

fore be turned round as many times as there are teeth in

the wheel, in order to turn the axle E once round. Where-

fore, putting R for the radius of the circle described by the

power P ;
r for that of the axle E, and n for the number

of teeth in the wl*?el D ; the circumference described by

P = 2ir R, and therefore the space described in one turn

of the wheel D, is

rrR.

But the space ascended by W in the same time = the

circumference of the axle E

Consequently, by Art. 193,

W 2n nR R

(63). Limits of Equilibrium. Friction, as observed in

Chapter VII, opposes the commencement of motion, and

consequently if P and W are in equilibrium on any machine

supposed tree from friction; we might, when friction

acts, diminish |, and still W would he prevented by the

fnctiOB from beginning tq mme; ue may m> on diminish-

ing P until W has such an excess of weight that if P be any

more diminished W will overcome the friction and begin to

mo\e; thi> \alue of P is the least that can maintain equi-

librium, and is therefore called the inferior limit of 1*.

On the contrary, if instead of diminishing I

J we had

increased it continually, we should have arrived at such a

value, that if it were anv more increased it would <



270

come the friction and put the machine in motion ; this is

called the superior limit of P.

(64). To find the limits of equilibrium on the inclined

plane.

L?t AB (Fig. 74) be the plane, AC its base, BC its

altitude; / = the coefficient of friction; therefore the

friction = /R, and for the inferior limit this force acts upon
W in the direction WB. W is therefore kept at rest by
four forces P, R, fR and W acting respectively in the

direction WP, WR, WB and WG; wherefore, first resolv-

ing these parallel to AB, and then perpendicular to AB, we

have separately, by Art. 40,

P cos PWB+R cosRWB +/R cos -W cosAWG = 0,

and

P sin PWB +R sinRWB +/R sinO-W sin AWG = 0,

which equations, by using the notation of Art. 215, become

Pcos0+/R- WsinA = 0,

Psin0 + R - W cosA = 0;

. P _ W si"A /.cos A
* .t V * /\ / 7\" .>

cos u j . sin v

by eliminating R. The superior limit will be obtained by

changing/ into /, and is therefore

p w sin A +/ cos A
JL ^^ W . /> ., . 7J~-

cos +J sin 9

These expressions may be put under very simple forms by

using o for the inclination of the plane in the last experiment

of Art. 222; for then, by Art. 223,/ = tan a, and therefore

the inferior value of P, becomes



w

= w

= w
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sin A tail a . cosA
cos 8 tan a . sin W

sin A sin a

cos a cos sin a sin

sin (A a)

cos(0+ a)'

Similarly, the superior value of P is

W sin (A + q)

(0
-

a)'

In a similar manner we may determine the limits of

equilibrium in any proposed machine whatever.

(65). A body W rests upon a horizontal plane AB

(Fig. 148) ; required the direction WP in which the least

possible power P must act in order to move it.

Put angle PWB = 8, and denote the coefficient of

friction by tan a ; therefore the friction acts in the direction

WA, and is equal to/R; and to find the superior limit

of P, we observe that this may be deduced from the last

problem by supposing A =
;

. p Wsina
"
COS(0-0)'

which will IK' the least poil>le, when a = 0, or

= a, and

/. P = W sin

is the least possible limit of P. And since 6 = ./. ii

111 that M tin' best an^le of drauiihl is exactly that

obliquity which shouM !., i;ncn to a road in order to

enable a carriaie .if itself.

Ii "lili|nit\ i> soiiieti.- <1 ihe angle of repose,

and is that an^le which determine! the proportion

friction to the pressure in ti i method, explained in
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Art. 222. Tin1 more rough the road is, the greater will

this angle be; and therefore it follows, that on bad roads

the obliquity of the traces to the road should be greater

than on good ones. On a smooth Macadamized way, a

very slight declivity would cause a carriage to roll by its

own weight; hence, in this case, the traces should be nearly

parallel to the road.

" In rail roads, for like reasons, the line of draught should

bo parallel to the road, or nearly so." *

(66). Friction Wheels are a contrivance for diminishing

the effect of friction when the pressure is very great.

A and B (Fig. 149) are two equal wheels, whose axes

are a, b
; which are so situated that the line ab is hori-

zontal ;
C is another wheel sustaining a great pressure, and

having one end c of its axle resting upon the wheels A, B.

The other end of its axle is supported on two other wheels,

similar and equal to A, B, which are also fixed upon the

same axles as A and B. To calculate the friction in this

construction, let f be the coefficient of friction of a and b ;

and f the coefficient of rolling friction of c, which by
Art. 230 is very much less than/; R = radius of A or B,

r the radius of their axles a, b ; and r' the radius of the

axle c ; W = the weight of A and its axle, which is also

that of B and its axle ;
W = the weight of C, its axle

and load.

The friction of the two ends of a =/(W+iW) nearly;

and its moment

and, therefore, the whole moment opposing the motion of C
=/(2W

Captain Katcr's Machines.



which is equivalent to a friction /(2W + W').^ acting at

the circumference of c
;

wherefore the whole friction at the

circumference of c =/W'+/(2W + W'). Now if there

were no friction wheels, the friction opposing c would be

/w,
and ratio of the two is

which is very small, because/', W and r are respectively

very much smaller than f,W and R. And, consequently,

this contrivance does very much diminish the friction, pro-

viding the wheels A, B are not too heavy nor too small.

In practice W is very much less than W, and conse-

quently we may use the expression

as the measure of the advantage gained by the use of

friction wheels.

(67). RobervaTs Balance. This machine consists of

four straight rods AH, H/>, ha, n\ (Fig. 1.50), form

parallelogram in a vertical plane, and being connected by

compass joints at H, b, a, A ; at C and D the middle points

of the rods AH and dh there are fixed axes about which

they arc movcable ; GE, FH are two rods rigidly connected

with Aa and H/y, from which the equal weights P and Q
are suspended. The jn'cnliarity of this balance is, that P
and Q will he in equilibrium from whatever points ,,f tin-

rods GE and K1I they are suspended. To prove \\\\^ pro

. suppose the machine t le |it in motion: then if \
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ascends, B will descend through an equal space ; and as AB
ba must necessarily continue to be a parallelogram, Aa and

B will continue parallel to CD, and therefore each vertical;

wherefore E will ascend and F will descend though spaces

respectively equal to those described by A and B, and

therefore equal to each other. It is also manifest, since Aa
and B6 continue vertical during the motion, that GE and

FH move parallel to themselves, and consequently the

space ascended by P is equal to that descended by Q,

wherefore they satisfy the equation of Art. 193, and are

consequently in equilibrium in every position by Art. 194.

As the two parts of this balance, to the right and left of the

points of support C, D, are perfectly equal and similar,

a priori reasoning would lead us to imagine that P and Q
could not balance unless placed in corresponding positions.

THE END.

METCALFE, PRINTER, CAMBRIDGE,
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