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PREFACE TO THE FIRST EDITION.

THE following pages have been written at various times during

such brief intervals of leisure as the author could spare from his

professional duties. They are for the most part the result of

experience combined with theory ; it is therefore hoped that they

may supply the student with what has long been a want in

Engineering literature, namely, a Handbook on the TJieory of

Strains and the Strength of Materials, giving practical methods

for calculating the strains which occur in girders and similar

structures. The theory of transverse strain has, indeed, been

incidentally treated by writers on Mechanical Philosophy; their

researches, however, have been confined to strains in plain girders,

or to a few brief remarks on the more elementary forms of trussing,

which, without further development, are of little practical use, and

but too frequently afford a pretext for the ill-concealed contempt

which so-called practical men sometimes entertain for theoretic

knowledge.

A thorough acquaintance with the theory of strains and the

strength and other properties of materials forms the basis of all

sound engineering practice, and when this is wanting, even natural

constructive talent of a high order is frequently at fault, and the

result is either excess and consequent waste of material, or, what

is still more disastrous, weakness in parts where strength is

essential. The time has gone by when practical sagacity formed

the sole qualification for high engineering success. Before the
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improvement of the steam engine gave rise to a new profession

there were indeed some memorable names on the roll of engineers,

generally self-taught mechanics, whom great natural ability had

raised to pre-eminence in their profession ;
but practice which was

formerly excusable, or even worthy of the highest commendation,

would, now that knowledge has increased, be properly described as

culpable waste, arising either from prejudice or ignorance.

The usual resource of the merely practical man is precedent, but

the true way of benefiting by the experience of others is not by

blindly following their practice, but by avoiding their errors as

well as extending and improving what time and experience have

proved successful. If one were asked what is the difference between

an engineer and a mere craftsman, he would well reply, that the

one merely executes mechanically the designs of others, or copies

something which has been done before without introducing any new

application of scientific principles, while the other moulds matter

into new forms suited for the special object to be attained
;
and

though experience and practical knowledge are essential for this, he

lets his experience be guided and aided by theoretic knowledge, so

as to arrange and proportion the various parts to the exact duty

they are intended to fulfil.

Then prove we now with best endeavour

What from our efforts yet may spring ;

He justly is despised who never

Did thought to aid his labours bring.

For this is art's true indication,

When skill is minister to thought ;

When types that are the mind's creation

The hand to perfect form has wrought.

The well-educated engineer should combine the qualifications of

the practical man and of the physicist, and the more he blends these
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together, making each mould and soften what the other would

seem to dictate if allowed to act alone, the more will his works be

successful and attain the exact object for which they are designed.

The engineer should be a physicist, who, in place of confining his

operations to the laboratory or the study, exerts his energies in a

wider field in developing the industrial resources of nature, and

compelling mere matter to become subservient to the wants and

comforts and civilization of the human race.
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THE

THEORY OF STRAINS IN GIRDERS
AND

SIMILAR STRUCTURES.

CHAPTER I.

INTRODUCTORY.

1. Strain Tension Compression Transverse strain

Shearing-strain Torsion. On the application of force aft

bodies change either form or volume, or both together. Forces

considered with reference to the internal changes they tend to

produce in any solid are termed strains* and may be classified as

follows :

Tensile strains,

Compressive do.,

Transverse do.,

Shearing do.,

Torsional do.,

This five-fold division is made for convenience merely, for the

strength of any material, in whatever manner it may be employed,

depends ultimately on its capability of sustaining strains which tend

either to tear its parts asunder or to crush them together. It is

therefore of essential importance to know the ultimate resistance

to tension or compression which each material possesses, and thence

deduce those strains which may be safely imposed in practice.

To this end various experimenters have devoted their attention
;

*
It will be useful for the student to know that some writers apply the term

stress to what I have termed strain in the text, that is, to the combination of internal

forces or reactions which the particles of any body exert in resisting the tendency of

external forces to produce alteration of form, and they apply the term strain to what I

call deformation, that is, to alteration of form resulting from stress.

producing

fracture
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in the United Kingdom, none with more perseverance or success

than the late Eaton Hodgkinson, Esq., to whose life-long labours

we are mainly indebted for the physical investigations on which

calculations of the strength of structures are based.

a. Unit-strain Inch-strain Foot-strain. Wherever English

measures are used, tensile and compressive forces are measured by
the number of tons or pounds strain on the square inch or square

foot. It will be convenient, however, to have some short expression

for the strain on the unit of sectional area, irrespective of any

particular measure of length or weight, and I have adopted

the term Unit-strain to denote this quantity, and the words

Inch-strain or Foot-strain to express the strain per square inch or

square foot, as the case may be. The unit-strains of tension and

compression are represented indifferently by the symbol /, unless

it be desirable to distinguish them, in which case the unit-strain of

compression is represented by the symbol /'. Thus, if F be the

total strain in any bar whose area a, we have

F = af. (1)

Ex. 1. If the crushing uuit-strain of cast-iron be 42 tons per square inch, what

weight will crush a short solid pillar 9 inches in diameter ?

Here, a = ?-^
^_5 = 63 "6 inches,

/ = 42 tons.

Answer. F = af = 63'6 X 42 = 2,671 tons.

Ex. 2. If the tearing unit-strain of beech be 11,500 pounds per square inch, what

force in tons will tear asunder a tie-beam 1 5 inches square ?

Here, a = 15X15 = 225 square inches,

/= 11,500 Ibs.

Ansiver. F = 225 X l1 ^'00 = 1,155 tons.

3. Elasticity Cubic elasticity Linear elasticity. Besides

the strains of tension and compression another matter claims

attention, namely, the alteration of length or, in other words, the

elongation and shortening of the material subject to strain. Elasticity

is the property which all bodies under the influence of external

force possess to a greater or less degree of perfection of returning
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to their original volume or form after the force has been with-

drawn. Thus we have Cubic elasticity or elasticity of volume,

and Linear elasticity or elasticity of form. Fluids possess elasticity

of volume, but not of form. Solids possess both, but linear elasticity

alone demands our attention in questions relating to the strength

of materials.

4. Elastic stiffness and Elastic flexibility are correlative

terms which express the strength or weakness of the elastic reaction

of the fibres of any elastic solid, whether that reaction be due to

tensile or compressive strains, applied separately or in combination

so as to produce flexure or torsion. Thus, glass is elastically stiff,

indian-rubber elastically flexible. In general, the terms Stiffness

and Flexibility are not restricted to elastic solids, but express merely
the relative amount of resistance to change of form, whether the

material returns to its original shape or not after the force is

withdrawn. In this sense copper is stiffer than lead, but neither

is elastic, or but very slightly so. Elasticity should not, as in

popular language, be confounded with a wide range of elastic

flexibility. Glass, for instance, is both stiff and elastic, whereas

indian-rubber, though very flexible, is less perfectly elastic than

glass, that is, it returns with less exactness to its original form

after being strained. Again, a thin spring of tempered steel is

both elastic and flexible. In popular language, however, indian-

rubber is said to be more elastic than glass or steel, because its

range of elastic flexibility exceeds that of either.

5. Ductility Toughness Brittleness. Ductility is the re-

verse of elasticity and is the property of retaining a permanent

change of form after the force which produced it has been removed,

and the wider the range over which a body can be altered in shape

the more ductile it is said to be. Gold, for instance, is one of the

most ductile of metals, as it can be drawn out into extremely fine

wire or hammered into leaves of extraordinary thinness. Toughness

consists in the union of tenacity with ductility. Brittleness is

incapability of sustaining rapid changes of form without fracture,

and is opposed to toughness. Low-Moor iron, for instance, is

tough ;
a bar of it can be twisted into a knot without breaking ;
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but highly tempered steel is brittle ; though more tenacious than

iron, it breaks short without any sensible change of length ;
it is

not ductile ;
it will not stretch under strain. Sealing-wax also is

brittle
; though more ductile than iron under prolonged pressure, it

is not tenacious and will not bear a sudden change of shape with-

out fracture. Accurately speaking we may doubt if there is such

a thing as a perfectly elastic solid, for Mr. Hodgkinson's investi-

gations seem to prove that there is no strain, however slight, which

will not after its removal leave a permanent, though perhaps to

ordinary tests an inappreciable, alteration of length in any of the

materials on which he experimented. In other words, every

material is more or less ductile.* This view, however, is not held

by some authorities.

6. Set Influence of duration of strain. When the unit-

strain is considerable the defect of elasticity becomes very apparent

in some materials, especially in ductile metals, for they do not

return to their original length when released from strain, but are

sensibly elongated or shortened, as the case may be, by a certain

amount which varies according to the nature of the material and

the force applied. This residual elongation or shortening is called

the Set, and is not sensibly increased by subsequent applications

of the same unit-strain which first produced it. It should be

observed, however, that the ultimate set is not instantaneously pro-

duced on the application of force. Iron, and possibly all materials,

take time, more or less prolonged, to adapt themselves to new con-

ditions of strain. Hence, a rapidly applied force may snap a

brittle bar without producing any very perceptible change in its

length.

V. Hooked law Law ofelasticity Limit ofelasticity. It

is evident that the elastic reaction of any material is equal to the

force producing extension or compression, and it has been proved

by experiment that the following law of uniform elastic reaction,

expressed by Hooke in the phrase
" ut tensio sic vis," and generally

*
Report of the Commissioners appointed to inquire into the application of Iron to

Railway Structures, 1849, App. A, p. 1. Also, Experimental Researches on the Strength

and other Properties of Cast-iron, by E. Hodgkinson, pp. 381, 409, 486.
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known as the Law of elasticity, though perhaps not accurately true

of any solid, is practically true of the materials used in construction.

When any material is strained either by a tensile or a compressive

force, the elastic reaction of the fibres (equal to the applied force) is

proportional to their increment or decrement of length, provided the

alteration of length does not exceed a certain limit beyond which

the above stated law ceases to apply, and the change of length,

no longer regular, increases for each additional unit of strain

more rapidly than the reaction due to the elasticity of the fibres
;

this produces set and ultimately rupture. Experience has proved

that the safe working strain of any material does not exceed

its sensible limit of uniform elastic reaction, generally called the

limit of elasticity ; indeed, it generally lies considerably within it.

The limit of elasticity may also be defined to be the greatest strain

that does not produce an appreciable set. It will be seen hereafter

that with some materials, such as glass, there is no limit of elasticity

short of rupture, as they are elastic up to the breaking point and

apparently take no set when the strain is removed.

8. Coefficient of elasticity, E Table of coefficients. The

coefficient of elastic reaction, or briefly, the Coefficient of elasticity,
*

is represented by the symbol E, and is the weight (in Ibs.)

requisite to elongate or shorten a bar whose transverse section

equals a superficial unit (one square inch) by an amount equal to

its length, on the imaginary hypothesis that the law of elasticity

holds good for so great a range. In assuming that the coefficient

of elasticity is the same for compression and extension I have

followed Navier,t but some writers on the strength of materials

seem to overlook the fact that, if the law of elasticity be rigidly

exact, a given force of compression will shorten any material by the

same proportion of its original length that an equal tensile force

will extend it. In practice the coefficient of elastic compression

will generally be found to differ slightly from that of elastic

tension.

If a bar whose length = I be extended or compressed within

*
Called also the Modulus of elasticity.

t Resume des Lemons donne"es a VEcole des Fonts et Chaussees, p. 41.
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the limits of elasticity by a strain of / Ibs. per square inch, the incre-

ment or decrement of length X is expressed by the following relation,

whence, (2)

Ex. How much will an inch-strain of 5 tons stretch a bar of wrought-iron whose

length equals 10 feet ?

Here (see table following), E = 24,000,000 Ibs.,

/= 5 tons,

I = 10 feet.

Answer. = fl = 5 X 2,240 X 10 X 12 = .Q56
E 24,000,000.

It is obvious that the coefficient of elasticity should be deduced

from experiments in which the applied unit-strain lies within the

limit of elastic reaction. It should also be noted whether the

material has been previously stretched by excessive strain
; other-

wise the results will be anomalous. The following table contains

the coefficients of elasticity of various materials, derived chiefly

from experiments on transverse strain :

Description of Material.
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Description of Material.
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Mallet, Philosophical Transactions, 1862, p. 671.

Tredgold, Tredyold on the Strength of Cast-iron.

Young, idem.

Wertheim, Resistance des Mattriaux, par M. Morin, p. 46.

9. mechanical laws Resolution of forces. The investiga-

tion of transverse strains may be reduced to the three following

fundamental laws in mechanics :

If three forces acting at the same point balance (are in equilibrium),

three lines parallel to their directions willform a triangle the sides of

which are proportional to the forces. Also, If two out of three forces

which balance meet, the third passes through their point of inter-

section.

Hence, it follows that, if we know the magnitude and direction of

two intersecting forces, we can find both the magnitude and direction

Fig. i. of their resultant
;
and if the directions

of any two components into which a

single known force is resolved be given,

the amount of these components can be

found. Thus, the weight W, Fig. 1,

is supported by an oblique tie and a

horizontal strut. The weight and the

strains in the tie and strut meet at A,

and may be represented by the triangle

h t s. Let the sides of the triangle be as the numbers 3, 4 and 5 ;

then, if W := 3 tons, t will sustain a tension of 5 tons, and s a

thrust or compression of 4 tons. Calling the angle the tie makes

with the vertical line 9, the relation between these three forces

may be algebraically expressed as follows :

1O. The I<eveT. If a weight rest upon a beam supported by

two props at its extremities, these props react with two upward

pressures whose sum is equal to the weight, and by the principle of

the lever the portion of the weight sustained by either prop is to the

whole weight as the remote segment is to the whole beam.

Thus, in Fig. 2, ifW = 10 tons and the segments are as 3 : 2, the
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Fig. 2. reaction of the left abut-

ment, R = 4 tons; that

of the right, R' = 6 tons.

Calling the segments m
and w, these relations may
be algebraically expressed

as follows :

R + R' = R = W, R' =
m

W.
m -f- n

" m + n

It is obvious that this principle is not affected by any bracing of

the beam within itself, provided it merely rests on the points of

support.

11. Equality of moments. When any number of forces acting

in the same plane on a rigid body balance (are in equilibrium), the sum

of the moments of the forces tending to turn it in one direction round

any given point is equal to the sum of the moments of those tending to

turn it in the opposite direction. Also, when any number of forces

acting in the same plane have a single resultant, the sum of the

moments of each force round a given point is equal to the moment

of their resultant*

Thus, in Fig. 2, taking moments round the right abutment,

R X m + n = W n
; the amount of R' vanishes, since R' passes

through the point round which the moments are taken.

On these three mechanical laws the Resolution of Forces, the

law of the Lever and the Equality of Moments are founded all the

following investigations of the strength of materials when subject

to transverse strain.

13. Beam Girder Semi-girder. The term Beam is

generally applied to any piece of material of considerable scantling,

whether subject to transverse strain or not; as for example,
"
Collar-beam,"

"
Tie-beam,"

"
Bressummer-beana;" the two former

being subject to longitudinal strains of compression and tension

respectively, and the latter to transverse strain. The term Girder

is, however, restricted to beams subject to transverse strain and

* The moment of a force round a given point is the product of the force by the

perpendicular let fall on its direction from the point.
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exerting a vertical pressure merely on their points of support.

This term was originally applied to the main beams of floors, but

has now become universally adopted by engineers. A Semi-girder

is a cantilever, that is, a beam fixed at one extremity only and

subject to transverse strain
;

in addition to its vertical pressure

it exerts a tendency to overthrow the wall or other structure to

which it is attached.

13. Flanged girder Single-webbed girder Iftouble-

webbed or Tubular girder Box girder Tubular bridge.
In the term Flanged girder are included not only iron girders

of the ordinary I form, but also all girders which consist of one or

two flanges united to a vertical web, whether the latter be con-

tinuous as in plate girders, or open-work as in lattice and bowstring

girders. Flanged girders are again subdivided into Single-webbed

and Double-webbed or Tubular. A single-webbed girder is one

whose flanges are connected by a single vertical web. Thus, we

have "Single-webbed cast-iron girders,"
"
Single-webbed plate

girders,"
"
Single-webbed lattice girders,"

"
Single-webbed bow-

string girders," &c. A Double-webbed or Tubular girder is one

whose flanges are connected by a double vertical web, continuous

or open-work as the case may be. Small tubular girders formed

of continuous plates are sometimes called Box girders. A Tubular

bridge is merely a tubular girder of such large dimensions that the

roadway passes through the tube.

In the following theoretic investigations all girders are assumed

to be horizontal and without weight, unless otherwise stated.
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CHAPTER II.

FLANGED GIRDERS WITH BRACED OR THIN CONTINUOUS WEBS.

14. Transverse-strain Shearing-strain. The formulae

investigated in this chapter are, unless otherwise expressed,

applicable to all flanged girders whose webs are formed of bracing,

or if continuous, yet so thin that the transverse strength of the web

as an independent rectangular girder may be neglected without

sensible error. Our knowledge of the strains in this vertical web

when continuous is still imperfect. Analogy indeed leads us to

conclude that they follow laws similar to those which hold good in

braced girders, but in the absence of experimental proof this is to

a certain degree conjecture a conjecture, however, which I feel

confident my readers will share after they have had the patience to

read through this book.

The mode in which a load affects a girder may be thus analysed.

From experience we learn that the load bends the girder downwards

and develops longitudinal strains of tension and compression in the

flanges. If the semi-girder, represented in Fig. 3, be supposed

divided into vertical slices or transverse sections of small thickness,

the weight tends to shear or separate the section on which it imme-

diately rests from the adjoining one. The lateral connexion of the

sections, however, prevents this separation, and the second section

is drawn down by a vertical force equal to the weight which tends

to shear it from the third section and so on. Thus, a vertical force

equal to the weight is transmitted from section to section as far as the

point of support. This vertical strain has been aptly named the

Shearing-strain ; but few writers, until the last few years, have

noticed the practical results which follow from the fact that this

force can be communicated from section to section only through the

medium of some diagonal strain. Respecting the exact directions of

the strains which this shearing force develops in a continuous web
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we know nothing positively ;
it is probable that they assume various

directions crossing each other like close lattice-work, some vertical,

some diagonal, perhaps some curved. However this may be, we

know that certain of them must be diagonal, since the weight,

which is a vertical force, produces strains in the flanges, which are

longitudinal, through the medium of the web, which in fact fulfils

the part of bracing in a lattice girder. The reader will perceive

that we have really three sets of forces to deal with, namely,

horizontal, vertical, and diagonal forces. The latter, however, may
be resolved into horizontal and vertical components, and thus we

have at present only horizontal and shearing forces to consider,

recollecting that the shearing-strain of any transverse section of a

girder means the total vertical strain transmitted through that section,

including in the term shearing strain the vertical components of

diagonal strains.

15. Horizontal strains in braced or thin continuous

webs may be neglected. When the vertical web of a girder

with horizontal flanges is open-work like latticing, the shearing-

strain is altogether transmitted through the bracing, the flanges

being capable of conveying strains in the direction of their length

only ; but when the web is continuous, as in a plate-girder, there can

be no doubt that a certain amount of shearing-force acts upon the

flanges also, so inconsiderable, however, that we may practically

neglect it. If, however, one or both flanges are curved, the whole or

a considerable portion of the shearing-strain is conveyed through
that part of the flange which is sloped, the amount depending upon
its angle of inclination. In this case the web has less duty to

perform than if the flanges were horizontal, and its sectional area

may therefore be reduced. It will also be observed that the

diagonal strains developed by the shearing force in a continuous

web have horizontal components within the web itself, and con-

sequently, a continuous web aids the flanges to a certain extent,

for those parts of the web which adjoin the flanges share the

horizontal strains in the latter, and this flange action of the web is

greater the thicker the web is. When, however, the web is very

thin, the total amount of this flange action of the web is small
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compared with the strain in the flanges themselves and may
therefore be neglected without introducing any serious error. In

this chapter all horizontal strains in the web are neglected.

CASE I. FLANGED SEMI-GIRDER LOADED AT THE EXTREMITY.

Fig. 3.

16. Flanges At any cross section the horizontal compo-
nents of strain in the flanges are equal and of opposite
kinds Strength of flanged girders varies directly as the

depth and inversely as the length.

LetW = the weight,

I = the distance of any cross section AB from W,
d = the depth of the girder at this cross section,

T = the horizontal strain of tension in the top flange

at A,

C = the horizontal strain of compression in the

bottom flange at B.*

The segment A BW is held in equilibrium by the weight W,
the horizontal forces of tension and compression in the flanges at

A and B, and the shearing and horizontal strains in the web at

A B. Since these forces balance, the sum of the moments of those

which tend to turn A BW round any point in one direction is

equal to the sum of those which tend to turn it round the same

point in the opposite direction (11). If the point lie in the cross

section A B, the moment of the shearing force will be cipher,

since its direction passes through this point. Neglecting the

* When the flanges are oblique, T and C represent the horizontal components of

their longitudinal strains. The vertical components are a portion of the shearing-

strain.
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horizontal strain in the web when continuous, and taking moments

round A and B successively, we obtain the following relations :

Wl = Td=Cd (3)

whence,

T = C (4)

that is, at any cross section the horizontal component of tension in

one flange is equal to the horizontal component of compression in

the other.

If F represent the horizontal strain in either flange indifferently,

we have from eq. 3

* = " (5)

Eq. 5 proves that the weight which a flanged girder is capable of

supporting varies directly as the depth and inversely as the length.

When both flanges are horizontal, we have from eq. 4

/='/ (6.)

where a and/ represent the sectional area and unit-strain of the

upper flange, and a' andf those of the lower flange. Hence, when

both flanges are horizontal, the unit-strains in the flanges are to

each other inversely as the areas.

Ex. 1. A semi-girder, 9 inches deep, supports 7 tons at its extremity ;
what is the

strain in each flange at 12 feet from the load ?

Here, W = 7 tons,

1 = 12 feet,

d = 9 inches.

^-(Eq.6). F = Wi = I^li2LL2 = 112 tons.

If 4 tons per square inch be a safe working strain in the flanges, the sectional area

112
of each flange should = - = 28 square inches.

Ex. 2. If the flange be 15 inches wide and 1^ inches deep, what will be the

inch-strain ?

Here, a = 22'5 square inches,

F = 112 tons.

F 112
Answer. /= = -__ = 5 tons inch -strain nearly.d 22'5
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Ex. 3. A wrought-iron semi-girder is 7 feet long and 11 inches deep, and each

flange is 4 inches wide and ^ an inch thick
; what weight at the end will break it

across, the tearing inch-strain of wrought-iron being 20 tons ?

Here, F = af = 4 X '5 X 20 = 40 tons,

d = 11 inches,

Z= 7 feet.

Answer (Eq. 5). W = * = 40 * !1 = 5'24 tons.
I 7 X 12

17. Girder of greatest strength Areas of horizontal

flanges should he to each other in the inverse ratio of their

ultimate unit-strains. The distribution of a given amount of

material in the flanges, so as to produce the girder of greatest

strength, occurs when both flanges are simultaneously on the

point of rupture, for if either flange contain more material than

is required to sustain its proper strain when the other gives way,

it can spare some of the surplus material to strengthen the other.

When both flanges are on the point of rupture, / and f are

the ultimate unit-strains of tension and compression, and since

,
~f,

it follows that, to ensure the greatest strength with a

given amount of material in a girder with horizontal flanges, the

sectional areas of the flanges should be to each other inversely as

their ultimate unit-strains a result amply confirmed by experience.

is. Shearing-strain The weh should contain no more
material than is requisite to convey the shearing-strain
The quantity of material in the weh of girders with

parallel flanges is theoretically independent oftheir depth.

The shearing-strain is the same at each vertical section of the semi-

girder and equals W (14). If the flanges are parallel this strain is

transmitted from section to section of the web (15), which should

therefore have the same sectional area throughout and be suffi-

ciently strong to transmit the shearing-strain to the wall or point

of support. The web should also for economical reasons contain no

more material than is requisite to transmit the shearing-strain, for

any surplus material, if placed in the flanges, would increase the

strength of the girder more than if it were to remain in the web,

since its leverage to sustain horizontal strains would be thereby

increased. This will appear clearer when the reader has perused
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the succeeding chapters. From these considerations it follows that

the quantity of material required in the web of a girder with parallel

flanges is theoretically independent of the depth.

19. Girder of uniform strength Economical distribution

of material. A girder of uniform strength is one in which all

parts, both flanges and web, are duly proportioned to the strain

which they have to bear, i.e., are equally capable of sustaining

the particular strain which is transmitted through them. If such

a girder were perfect, there is no reason why any one part should

fail before another, since the train in each part is the same

sub-multiple of the ultimate or breaking-strain of that part. The

girder of uniform strength is obviously the most economical also in

its proportions, for no part has a wasteful excess of material ; the

tensile or compressive unit-strain is constant throughout the entire length

of each flange respectively, and the shearing-unit-strain in each section

of the web is the same as in every other section.

50. Flange-area of semi-girder of uniform strength when
the depth is constant. From eq. 6 we have when both flanges

are horizontal,

/-s
where / and a express the unit-strain and sectional area of either

flange indifferently at a distance I from the extremity.

In a girder of uniform strength / is constant for all values of I,

and the quantity -, to which f is

Fie. 4. Plan.
J a

proportional (since by hypothesis the

depth d is uniform), will be constant

for every value of I
; consequently a,

that is, the area of each flange, will

vary as /, and if the depth of the

flange be uniform, its breadth will

vary as /, and the plan of the flange

will be triangular, as in Fig. 4.

51. Depth of semi-girder of uniform strength when the

flange-area is constant. If, however, one flange be sloped, /
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Fig. 5.-Elevation.
and a in e

<l-
7 aPPty to the horizontal

flange only ; hence, if its sectional

area and unit-strain remain uniform,

d will vary directly as /, and the side

elevation of the girder will be trian-

gular as in Fig. 5. The strain in the

oblique flange exceeds that in the

horizontal flange in the ratio of their

lengths (9). This is due to the shearing-strain, which is entirely

transmitted through the oblique flange in addition to a horizontal

strain of the same amount as that in the horizontal flange, and the

longitudinal strain in the oblique flange is their resultant. In this

case the web has no duty to perform and may therefore be omitted,

the girder becoming the simplest form of truss, viz., a triangle.

CASE II. FLANGED SEMI-GIRDER LOADED UNIFORMLY.

Fig. 6.

83. Flanges. Let w = the load per unit of length,

I = the distance of any cross section A B
from the end of the girder,

d = the depth of the girder at this cross

section,

W = wl = the load on A C t

F = the total horizontal strain exerted by
either flange at A or B, that is, the

horizontal component of the longitu-

dinal strain if the flange is oblique.

The forces which keep A B C in equilibrium are the weights

uniformly distributed along A C, the horizontal strains of tension
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and compression in the flanges at A and B, and the shearing and

horizontal strains in the web at the plane of section A B. If the

web be continuous and very thin, we may, as in the previous case,

neglect the moments of the horizontal strains in the web as insig-

nificant compared with those of the other horizontal forces. The

sum of the moments round A or B of each weight in the length I

is equal to the sum of the weights multiplied by the distance of their

centre of gravity from A or B (11), that is, their collective moments

= wl -=. Equating this to the amount of the horizontal strain in

either flange round A or B, we obtain the following relations:

= fd <8>

(9)

'-S-S <>

Ex. 1. A cast-iron semi-girder, 8 feet long and 13 inches deep, supports a uniform

load of 1 ton per running foot ; what area should the top flange have at the abutment

in order that its inch-strain may not exceed 1'5 tons ?

Here, w = 1 ton per foot,

I = 8 feet,

d = 13 inches,

/= 1-5 tons.

From eq. 10, F =^ = 1 X 8 X 8 X 12 =^^
2d 2 X 13

Answer (eq. 1).
=fe JL = ^ = 19'7 inches.

Ex. 2. The lattice-bridge at the Boyne Viaduct is in three spans. Each side span is

140 feet 11 inches long and 22 feet 3 inches deep. The permanent load supported by

one main girder of a side span equals 0'68 tons per running foot, and the gross sectional

area of its lower flange over each pier is 127 inches. On one occasion an extraordinary

load in the centre span depressed it to such an extent as to raise the ends of the side

spans off the abutments, thus forming each side span into a semi-girder. What was

the compressive inch-strain in the lower flange at the piers ?

Here, w = 0'68 tons per foot ?

I = 140-92 feet,

d= 22-25 feet,

a = 127 inches.

Antwer (eq 10). / = ^ = ^- =
'68 X 140 '92 X 14 '92 = 2-4 tons inch-strain.

' 7
a 2ad 2 X 127 X 22'25
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53. Web Shearing-strain. When a semi-girder is uniformly

loaded the shearing-strain at any cross section is equal to the sum

of the weights between it and the extremity of the girder, since

this is the pressure transmitted through that section to the wall (14).

The shearing-strain therefore equals ivl, and varies directly in propor-

tion to the distance from the extremity of the girder, that is, directly

as the ordinates of a triangle. When the flanges are parallel, nearly

all the shearing-strain passes through the web, and its sectional area

should for economical reasons vary in this ratio also, for any excess

of material in the web beyond that required to transmit the

shearing-strain is valuable only for horizontal strains, and would

act with greater leverage, and therefore with greater effect, if

placed in the flanges.

54. Flange-area of semi-girder of uniform strength when
the depth is constant. From eq. 10 we have, when both flanges

are horizontal

^_VW7 ~ lad
~

where a and / represent the area and unit-strain of either flange

indifferently at a distance I from the extremity. If the girder be

of uniform strength, the unit-strain in each flange will be uniform

I*

throughout its length, and the quantity ,
to which / is propor-

Flg 7._ Plan. tional, will be constant, that is, the

sectional area of each flange will

vary as I
2

. Hence, if the depth of

the flange be uniform, its breadth

will vary as I
2

,
and the plan of

the flange will, if symmetrical, be

bounded by two parabolas whose

common vertex is at A, Fig. 7,

with the axis perpendicular to the

length of the girder.

35. Depth of semi-girder of uniform strength when the

flange-area is constant. If one flange be horizontal and the

other curved, / and a, in eq. 11, apply to the horizontal flange only;

hence, if its sectional area be constant and if the girder be of

A
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8. Elevation. uniform strength, d will vary as Z
2
,

and the side elevation of the girder

will be bounded by a parabola whose

vertex is at A, Fig. 8, with its axis

vertical. In this case it may be shown

that the whole shearing-strain passes

through the curved flange, and the

web has no duty to perform unless

the load rest upon the horizontal flange, in which case pillars,

represented by vertical lines (or suspension rods if Fig. 8 be

inverted with the weights beneath), are requisite for conveying

the pressure of each successive weight to the curved flange.

26. Strain in curved flange. The longitudinal strain in

the curved flange is the resultant of the shearing-strain and a

Fig. 9 - horizontal compression, the latter being equal to

the tension in the horizontal flange. If therefore,

the lines A 1, A 2, A 3, &c., Fig. 9, represent the

shearing-strains at different points, and if the

horizontal line A B represent F (or the uniform

horizontal compression), then the sloped lines B 1,

B2, B 3, &c., will represent the longitudinal strains

in the curved flange at these several points (9).

87. Semi-girder loaded uniformly and at the extremity

also* shearing-strain. If, in addition to a uniformly distributed

load, the semi-girder support a weight W at its extremity, the

shearing-strain at any section will equalW + wl Consequently,

when the flanges are parallel, the area of the web should increase in

arithmetical ratio as it approaches the wall and may be represented

by the ordinates of a truncated triangle. If, for instance, the line

A B, Fig 10, represent the length of a

uniformly loaded semi-girder, and if A C
represent the whole distributed load, that

is, the shearing-strain at the wall, then the

ordinates of the triangleABC will repre-

sent the shearing-strain at each point.

Now, let an additional weight W be

Pig. 10. Shearing-strain.
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suspended from the end of the girder at B, then, if B E represent this

weight, the ordinates of the rectangle A D E B will represent the

shearing-strains produced by it alone
; and when the girder supports

both it and the uniform load, the collective shearing-strains are

represented by the ordinates of the trapezium C D E B.

28. Flange-area of semi-girder of uniform strength loaded

uniformly and at the end when the depth is constant.

When both flanges are horizontal and the semi-girder supports a

uniformly distributed load in addition to the weight W at its

extremity, we have from eqs. 7 and 11,

Where a and / represent the area and unit-strain of either flange

indifferently at a distance I from the extremity. If the semi-girder

be of uniform strength, / will be constant and a will vary as

I (2W + wl), and, if the depth of the flange be uniform, its breadth

will vary in the same ratio. Consequently, the plan of the flanges

will, if symmetrical, be bounded by a pair of parabolas, differing

however, from Fig. 7 in the position of their vertices.

S9. Depth of semi-girder of uniform strength loaded

uniformly and at the end when the flange-area is constant.

If, however, one flange be horizontal and the other curved, / and

a, in eq. 12, apply to the horizontal flange only; hence, if its area

be uniform, d will vary as I (2W + wl\ and the elevation of the

girder will be bounded by a parabola.

Ex. A semi-girder, U'7 feet long and 22'25 feet deep, supports a uniformly

distributed load of 1'82 tons per running foot in addition to a weight of 161-6 tons at

the extremity. What is the inch-strain on the net section of the tension flange

at the point of support, its gross area being 132'6 inches, but reduced by rivet-holes

to the extent of fths ?

Here, W = 161'6 tons,

1= 447 feet,

d = 22-25 feet,

w = 1'82 tons per foot,

a
7 X 132 '6 = 103-13 square inches.

. 12). / =
' *
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CASE III. FLANGED GIRDER SUPPORTED AT BOTH ENDS AND
LOADED AT AN INTERMEDIATE POINT.

Fig. 11.

3O. Flanges. Let W = the weight, dividing the girder into

segments containing respectively m
and n linear units,

/ = m + n =: the length of the girder,

d = the depth at any given cross section

AB,
x = the distance of this cross section from

the end of the segment in which it

occurs,

F = the horizontal strain exerted by either

flange at A or B, that is, the hori-

zontal component of the longitudinal

strain if the flange be oblique.

On the principle of the lever (1O), the reaction of the left abutment

= vW, and A B C is held in equilibrium by this reaction of the left

abutment, the horizontal flange-strains at A and B, the shearing-

strain in the cross section A B, and the horizontal strains in the web

when continuous. Neglecting these latter when the web is thin,

and taking the moments of the other forces round A or B, we

obtain the following relations :

*-W*=Fd (13)

W = <">
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31. Maximum flange-strains occur at the weight.

If the cross section be taken at the weight, x = m, and eqs. 14

and 15 become ... _ Fdl ,.. .

mn

x attains its greatest value when it equals m ; hence, comparing

eqs, 15 and 17, we find that the horizontal strain at any point in

either flange attains its greatest value when the weight rests there.

32. Concentrated rolling: load, maximum strains in flanges

are proportional to the rectangle under the segments. If

W is a rolling load and the flanges are parallel, the maximum

strain at any point in either flange occurs when the load is

passing that point and is proportional to mn, that is, to the

rectangle under the segments.

33. Weight at centre. This rectangle attains its greatest value

when the weight is at the centre, in which case eqs. 16 and 17 become

W = (18)

Ad

Ex. 1. A cast-iron girder is 26 feet long and 274 inches deep, and the area of the

bottom flange = 16 X 3 = 48 inches. If the tearing inch-strain of cast-iron be 7 tons,

what weight laid on the middle of the girder will break it across by tearing the

bottom flange, omitting any strength which may be derived from the web ?

Here, I = 26 feet,

d = 27'5 inches,

f = 7 tons inch-strain,

a = the area of the bottom flange = 48 inches,

F = fa = 7 X 48 = 336 tons.

Answer (eq. 18). W = = 4 X 336 X 27'5 _ 118 .

g tong nearly-

Ex. 2. In an experiment made by Mr. G. Berkley,* a small double-flanged cast-iron

girder was broken by 18 tons in the centre. The following were the dimensions :

Effective length, I = 57 inches,

Total depth, d = 5'125 inches,

Area of top flange, a, = 2'33 X 0'31 = 072 sq. inches,

Area of bottom flange, a2
= 6'67 X 0'66 = 4'4 sq. inches,

Thickness of web, = 0'266 inches.

*
Proc., I. C. E., Vol. xxx., p. 254.
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What was the inch-strain in each flange at the centre of the girder at the moment

of fracture ?

An,, (a,. 19). Ingrain in top flange/- = = ,** tons.

7W *57 V 1 8
Inch-strain in lower flange/ = |L =

4.4 5.195
= U '37 tona -

It is not recorded which flange failed first, but as the tensile strength of the metal

was proved by direct experiment to be very high, namely, 13 '94 tons per square inch,

and as the inch-strain in the bottom flange fell considerably short of this, the girder

probably failed by the crushing of the top flange, the inch-strain in which, however,

was so unusually high, even for cast-iron, that this flange no doubt derived considerable

aid from the web.

Ex. 3. In an experiment recorded by Sir William Fairbairn,* a girder, cast from

a mixture of Gartsherrie, Dundyvan and Haematite Irons, 27 feet 4 inches long, 18

inches deep, and whose lower flange was 10 inches wide and 1$ inch thick, was

broken by a weight of 29 tons in the centre. What was the inch-strain at the centre

of the lower flange at the moment of rupture, supposing that it derived no aid from the

web which was f inch thick ?

Here, I = 27'33 feet,

d = 1-5 feet,

a = 15 sq. inches,

W =29-5 tons.

Answer (eq. 19). f = = = 8*96 tons.
4ad 4 X 15 X 1'5

34. Web, shearing-strain. The shearing-strain in each seg-

ment is uniform throughout that segment and equals the pressure

which is transmitted through it to the abutment (14). Thus, in Fig.

11, the shearing-strain at A B = ^-W = the reaction of the
I

left abutment. This shearing-strain is uniform throughout the left

segment, while that in the right segment is also uniform and equals

yW. When both flanges are horizontal, nearly all the shearing-

strain is transmitted through the web (15), and each segment

should have its web of uniform area adequate to sustain a

shearing-strain equal to the reaction of the adjacent abutment.

This may be represented graphically as follows: let the line

*
Application of Iron to building purposes, p. 171.
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Fig- 12.

FE

A F represent the length

of the girder, divided

by W into the segments

m and n, and let the

ordinate A B represent

the reaction of the left

abutment, = W, and let

represent the reaction of the right abutment. = yW ;
then the

ordinates of the rectangle A B CW will represent the shearing-

strains at each point in the left segment, and those of the rectangle

W D E F will represent the shearing-strains at each point in the

right segment. The sectional area of the web should therefore be

proportional to these ordinates when both flanges are horizontal.

When a single weight is at the centre of the girder, the rectangles

become equal, and, if both flanges are horizontal, the section of the

web should be uniform throughout its whole length, as it sustains

a uniform shearing-strain = -^-.2

35. Single fixed load, flange-area of girder of nniform

strength when the depth is constant. When both flanges

are horizontal, we have from eq. 15,

/= Z (20)
adl

where/ and a represent the unit-strain and area of either flange at

a distance x measured from the abutment. When the girder is of

uniform strength, / is constant throughout each flange, and a will

Fig. 13. Plan.
vary as or. Hence, if the

depth of the flange be

uniform, its width will

vary as #, and the plan

of the flange will be two

triangles united at their

bases, as in Fig. 13.

Ex. 1. A girder (see Fig. 11), 50 feet long and 4 feet deep, supports a load of 16 tons
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at 9 feet from one end
; what should be the area of the top flange in the middle of

the girder so that the inch-strain may not exceed 4 tons ?

Here, W = 16 tons,

I = 50 feet,

d = 4 feet,

/ = 4 tons inch-strain,

n = 9 feet,

x = 25 feet.

. 20). = =

Ex. 2. What is the strain in either flange at the load ?

Here, m = 41 feet.

. 17). F = H! =
4X

* = 29-5 tons.

Ex. 3. What is the shearing-strain in each segment ?

Answer. The segments are respectively 9 and 41 feet long, and the shearing-strain

throughout the shorter segment =~X 16 = 13'12 tons, and that throughout the
50

longer segment = X 16 = 2'88 tons.
50

36. Single fixed load, depth of girder of uniform strength
when the flange-area Is constant. If, however, one flange be

horizontal and the other sloped, / and a, in eq. 20, apply to the

horizontal flange only, and if its area be uniform, d will vary as or,

Fig. 14. Elevation. and the elevation of the

girder will be a triangle

whose apex is at the

weight, Fig. 14. In this

case the shearing-strain

is transmitted through
the oblique flange; the web may therefore be omitted and the

girder becomes the simplest form of truss. The longitudinal

strain in the oblique flange may be calculated according to the

principle explained in 9. When the weight rests upon the hori-

zontal flange, a strut h is required of sufficient strength to support

W and transmit its weight to the apex.

37. Concentrated rolling load, shearing-strain. If the

weight be a rolling load, the shearing-strain in either segment varies

directly as the length of the other segment (34). Consequently, it
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attains its greatest value at each point just as the weight passes,

when it suddenly changes both in amount and in the direction in

which it is transmitted, to the right or left abutment as the case

may be. In this case the maximum shearing-strain at each section

is proportional to its distance from the farther abutment and, if both

flanges be horizontal, the area of the web should increase in the same

Fig. 15. Shearing-strain. ratio also i.e., as the ordinates of

the figure ABODE, Fig. 15, in

which the horizontal line A B re-

presents the length of the girder,

and each of the vertical lines A E

and B C represents the weight of

the passing load.

38. Concentrated rolling load, flange-area of girder of

uniform strength when the depth is constant. In the case

of a single load traversing a girder both of whose flanges are

horizontal, we have at the place the weight is passing, from

eq. 17,
~~~,\A/

(21)
mnW
adl

where a and / represent the area and maximum unit-strain of either

flange at the weight, and m and n represent the lengths of the two

segments into which the weight divides the girder at the moment

of passing. If the girder be of uniform strength, / will be constant

throughout each flange, and a will vary as the rectangle inn.

Tig. 16. Plan. Hence, if the depth of

the flange be uniform, its

breadth will vary as mn

also, and the plan of the

flange, if symmetrical, will

be formed by the overlap

of two parabolas whose

vertices are at A A, Fig. 16.

39. Concentrated rolling load, depth of girder of uniform

strength when the flange-area is constant. If, however, one

flange be horizontal and the other curved, / and a apply to the
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Fig. 17. Elevation. horizontal flange only,

and, if its section be

uniform, d will vary as

ran. Hence, the elevation

of the curved flange will

be a parabola whose axis is vertical and its vertex at A, Fig. 17.

4O. Concentrated rolling: load, strain in curved flange
Section of curved flange. The maximum longitudinal strain at

any point in the curved flange of Fig. 17, i.e., the strain when the

weight rests over that point, may be thus obtained. Eq. 17 proves

that the horizontal component of this longitudinal strain is equal to

the strain in the horizontal flange at the same cross section ; it is

therefore a known quantity, and the longitudinal strain may be

found from it as follows: Let the line A B, Fig. 18, represent F,

Fig. 18.
i.e., the horizontal component ; draw A C
parallel to the tangent of the curve at the

given point, and draw B C perpendicular

to A B
;
then A C will represent the maxi-

mum longitudinal strain at the given point,

and B C will represent its vertical component, or that portion of

the shearing-strain which is transmitted through the curved flange

(9); the remainder of the shearing-strain passes through the

web, which indeed prevents the girder from assuming a form

similar to Fig. 14, a result that would occur were the curved

flange flexible like a chain and the web absent.

From what has just been stated it appears that the longitudinal

strain in the curved flange from a single rolling load = F sec 9

where represents the inclination of the flange to a horizontal

line, and its sectional area should increase therefore as it approaches

the abutments in proportion to seed, since, by hypothesis, F is

constant.
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CASE IV. FLANGED GIRDER SUPPORTED AT BOTH ENDS AND
LOADED AT IRREGULAR INTERVALS.

Fi<?s. 19 and 20.

41. Flanges. When several weights rest upon a girder, the

strain at any point in either flange is equal to the sum of the strains

due to each weight acting separately. An example in which

numbers are mixed with symbols will illustrate the method of

calculation better than symbols alone. Let the girder represented

in Fig. 19 be divided into any convenient number of equal parts or

units of length, say 10 ;
and let it be loaded with any number of

weights of different magnitudes, say 4, placed at irregular intervals,

as in the figure.

Let Wn W4 ,
W8 ,
W9. = the several weights,

/ = the length of the girder (divided into

10 units),

d = the depth at any given cross sectionA B,

measured in the same units as /,

F = the horizontal strain exerted by either

flange at A or B, that is, the horizontal

component of the longitudinal strain if

the flange be oblique.
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On the principle of the lever, the reaction of the right abutment

= 1<W 1+4W4+8W8+9W9),

and the segment A B C is held in equilibrium by the reaction

of the right abutment acting upwards, the weights W8 and W
9

pressing downwards, the horizontal flange-strains at A and B, the

shearing-strain in the cross section A B, and the horizontal strains

in the web when continuous. Neglecting the latter when the web

is thin, and taking moments round A or B, we have

Fd = A(Wj + 4W
4 + 8W8 + 9W9)

- 2W8
- 3W9

arranging, we have

F = 1(4 W, + 16W4 + 12W8 + 6W9).

If the weights are of equal magnitude, this becomes

C _38W_3.8W
~ld~ ~~dT

43. Webj shearing-strain. Bearing in mind the definition

given in 14, it will be apparent that the, shearing-strain at any cross

section r= those portions of the weights in the left segment which are

conveyed to the right abutment minus those portions of the weights in

the right segment which are conveyed to the left abutment. Thus,

in the foregoing example,

the shearing-strain at A B =
j(W, + 4W4 2W

8
W

9).

The shearing-strain may also be derived from another considera-

tion as follows. The vertical forces acting on the right segment
ABC are: the reaction of the right abutment acting upwards,

the weights W8 and W
9 pressing downwards, and the shearing-

strain at A B. The only other forces are horizontal, namely, the

horizontal components ofthe flange-strains at A and B ; consequently,

the vertical forces must balance each other, for otherwise there

would be motion, and we may therefore define the shearing-strain

at any cross section to be the algebraic sum of the external
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forces on either side of the section, forces acting upwards being

positive and those acting downwards being negative. For example,

we have the shearing-strain at A B = the reaction of the right

abutment minus the intermediate weights W8 and W9

= }(W t + 4W4 + 8W8 + 9W9)
- (W8 + W9)

- *

(V^ + 4W4
- 2W

8
- W

9)

as before. If the weights are of equal magnitude, this becomes

9W~ = 02 W.
6

The shearing-strain with irregular loading may be represented

graphically as follows : Using the same example as before, let the

line A M
, Fig. 20, represent the length of the girder, and let the

ordinates A B and M L represent to a scale of weights the shear-

ing-strains at the ends, that is, the reactions of the abutments;

then Bd will equal the sum of all the weights ;
mark off Ba, ab,

be and cd respectively equal to Wn W4 ,
W8 and W

9 ,
and

draw horizontal lines through these points till they intersect

vertical lines drawn through the weights. The ordinates of the

stepped figure ABCDEFGH I KLM, indicated by lines of

shading, will represent the shearing-strains in the web, and the

line E F shows where they part to the right and left.

Ex. A girder, 267 feet long and 22 feet 3 inches deep, supports three locomotives,

weighing 25 tons each, at points whose distances from the left abutment are respectively

19, 75 and 230 feet. What are the flange-strains and the shearing-strain at 180 feet

from the left abutment ?

Answer. The reaction of the right abutment = x 25 = 30'34 tons,
2b'7

and the strain in either flange at 180 feet from the left abutment = 80 '34 X "^ X 5

= 62-45 tons. The shearing-strain at the same point = 30-3425 = 5 '34 tons.
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CASE V. FLANGED GIRDER SUPPORTED AT BOTH ENDS AND

LOADED UNIFORMLY.

Fig. 21.

43. Flanges. Let I =r the length of the girder,

d = the depth of the girder at any given

cross section A B,

w = the load per unit of length,

W = wl = the whole load,

F = the horizontal strain exerted by either

flange at A or B, that is, the hori-

zontal component of the longitudinal

strain if the flange be oblique,

m and n = the segments into which the section

A B divides the girder.

The forces which keep A B C in equilibrium are the reaction of

the right abutment, = -TT-, the weights uniformly distributed

along AC, = urn, the horizontal strains of compression and tension

in the flanges at A and B, the shearing-strain in the plane of section

A B, and the horizontal strains in the web when continuous.

Neglecting these latter forces when the web is thin, and taking

the moments of the remainder round either A or B, we have (II)

^n-wn^ = Fd (22)

whence

_
___

wmn __ mnW ^ox

and

W =^ (24)
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Ex. A wrought-iron plate girder, 50 feet long and 4 feet deep, supports a uniformly

distributed load of 32 tons ;
what is the strain in either flange at 9 feet from one end ?

Here, W = 32 tons,

I = 50 feet,

d 4 feet,

m = 9 feet,

ri = 41 feet.

If 4 tons per square inch be a safe strain, the area of the flange should - = 7'4

square inches.

44. Strains at centre of girder. At the centre of the girder

i eq. 23,

VW id*

m = n and we have from eq. 23,

and

W = *
(26)

Ex. 1. A segment of either side span of the Boyne Viaduct, 101 '2 feet long and 22'25

feet deep, supports a uniform load of 1"68 tons per running foot
;
what is the strain at

the centre of either flange ?

Here, I = 101 "2 feet,

d = 22-25 feet,

w = 1*68 tons per running foot.

(eq. 25). F = =
'2 X = 96-6 tons.

Sd 8 X 22-25

Ex. 2. The Conway tubular bridge is 412 feet long from centre to centre of bearings,

and 23 '7 feet deep from centre of top cells to centre of bottom cells at the centre of

the bridge. The weight of wrought-iron in one tube, 412 feet long, is 1,147 tons, which,

however, is not quite uniformly distributed, as the sectional area of the tube is greater

at the centre than at the ends in the ratio of . Making an extra allowance for

this, and adding the weight of the permanent way and the light galvanized iron roof,

we may assume the total permanent load to be equivalent to 1,250 tons uniformly

distributed. What is the permanent strain in either flange at the centre of the girder

from this dead load ?

The gross area of the top flange at the centre of the bridge is 645 square inches
;

that of the bottom or tension flange is 536 square inches. If we assume that the
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weakening effect of rivet holes in the tension flange is equivalent to the aid which

the continuous webs gives the flange, which is the same thing as if we suppose

the gross area of the flange available for tension, we have the permanent tensile

inch-strain at the centre of the lower flange = -'- = 5'067tons. The collective
oob

area of the two sides, i.e., of the web, at the centre of the bridge, is 257 square

inches, and it will be shown in Chap. IV. that a continuous web theoretically aids the

flanges as much as if one-sixth of its area were added to each flange. Assuming

then that ,
= 43 square inches, are added to the compression flange, we have its

6

permanent inch-strain = = 3*948 tons. These calculations, it will be
DID + 43

observed, are based on the hypothesis that the web gives its full theoretical aid to

the flanges, which is much too liberal an allowance to make in reality. A train-

load of | ton per running foot, = 309 tons uniformly distributed over one line of way,

will increase the permanent unit-strains by nearly one-fourth, or more accurately,

the inch-strain in the tension flange at the centre of the bridge will = 6 32 tons and

that in the compression flange will = 4'924 tons.

Ex. 3. What are the flange-strains in one of the Conway tubes from the permanent

load at the quarter-spans where the depth from centre to centre of cells = 22 '25

feet?

Here, w = 1,250 tons,

I = 412 feet,

d = 22-25 feet,

n = ,

4

. c mn\N 3ZW 3X412X1250 ,.
* 23) ' F = Tar =m ~

32 X 22-25
= 2'17 """

The gross area of the top flange at each quarter-span = 566 square inches, that of

the bottom or tension flange = 461 square inches. If we assume, as before, that the

aid which the continuous sides theoretically give the tension flange compensates

for the weakening effect of rivet holes, we have the permanent tensile inch-strain in

the lower flange at each quarter-span = -1 = 4707 tons.

The area of both sides of the tube together at each quarter-span = 241 square

inches, and if we assume, as before, that one-sixth of this, or the full theoretic amount,

aids the compression flange, we have its permanent inch-strain at each quarter-

span = .

* = 3 '581 tons. On comparing the unit-strains in the flanges at the

quarter-spans with those at the centre of the tube we find that they are nearly equal,

and that the girder is therefore, as regards the flanges, a girder of very nearly

uniform strength.
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Ex. 4. One of the large tubes of the Britannia Bridge is 470 feet long from centre

to centre of bearings, and 2 7 '5 feet deep from centre to centre of flange cells at the

middle of the span, and its weight is 1,587 tons. What was the strain in either

flange at the centre while it was an independent girder and before it was connected

with the other tubes ?

(eq. 25). F =

The gross areas of the top and bottom flanges at the centre of the span are

respectively 648 and 585 square inches, and if we concede, as before, that the theoretic

aid which the webs give the tension flange is a sufficient compensation for the

weakening effect of rivet holes, we have the inch-strain in the lower or tension

flange = J = 5795 tons.
585

The area of both sides at the middle of the span = 302 square inches, and adding,

as before, the full theoretic proportion of one-sixth in aid of the compression flange, we
o QQA

have the compressive unit-strain in the upper flange = -- = 4'856 tons. The
648 X 50

student is cautioned that it is not safe practice to assume what has been claimed by
some advocates of continuous versus braced webs, and which has been conceded

above, namely, that so large a proportion as one-sixth of the web really aids each

flange, especially in large plate girders such as the tubular bridges. Hence, the unit-

strains in examples 2, 3, and 4 are doubtless below the reality.

45. A concentrated load produces the same strain in the

flanges as twice the load uniformly distributed. Comparing

eqs. 17 and 23, we find that the horizontal strain at any point in

either flange from a single weight resting there is double that

which would be produced by the same load uniformly distributed.

This, however, does not apply to the web.

46. Web5 shearing-strain. When the load is symmetrically

arranged on each side of the centre, the shearing-strain at the centre

of the girder is cipher, and at any other cross section it equals the sum

of the weights between it and the centre. This will appear evident

from the consideration that the shearing-strain at any section is the

pressure which is transmitted to the abutment through that section

(14). Hence, with a uniformly distributed load, the shearing-strain

is proportional to the distance from the centre of the girder, where

W
it is cipher, and increases towards the ends, where it equals-,

as the ordinates of a triangle. This may be represented graphically,
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Fig. 22. Shearing strain. as in Fig. 22, where the line A B

represents the length of the girder,

and the ordinates A C and B E

represent the reactions of each

W
abutment, =r

; connecting C and

E with the centre at D, the ordinates of the figure A C D E B will

represent the shearing-strains at each point along the girder. When
both flanges are horizontal, the sectional area of the web ought for

economical reasons to vary in the ratio of these ordinates, for any

surplus material would be more valuable for sustaining horizontal

strains if placed in the flanges, as its leverage would be thereby

increased.

Ex. 1. What is the shearing-strain in the web at each end of the girder in the first

example in 44?

Answer. Shearing-strain = ^-=
1>68 + 101 '2 = 85 tons.

Ex. 2. The iron work of one of the Conway tubes, 400 feet long in the clear span,

weighs 1,112 tons
; adding 400 tons for weight of permanent way, roof and a passing

train, we have a total load of 1,512 tons, of which one-fourth, = 378 tons, is the

shearing-strain at each end of each side where the web is about 19 feet high and | inch

thick. Consequently, its gross section = 142 '5 square inches, but as the vertical edges

of the plates are pierced by one-inch rivet holes, three inches apart centres, their net

section is one-third less, or 95 square inches, and the shearing-strain at the joints when

a heavy train is passing is about 4 tons per square inch of net section. In this

example no credit has been given to the outside plates of the cellular flanges, which

doubtless contribute their quota of strength to withstand shearing-strain.

47. Flange-area of girder of uniform strength when the

depth is constant. From eq. 23 we have, when both flanges are

horizontal,

/=5
^

(27)

where a and / represent the area and unit-strain of either

flange at any section which divides the girder into segments

containing m and n linear units. If the girder be of uniform

strength, / will be constant throughout each flange (19), and a

will vary as mn. Hence, if the depth of the flange be uniform,
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Fig. 23. Plan. its width will vary as

\>nn, and the plan of the

iange will, if symmetrical,

je formed by the overlap

)f two parabolas whose

ertices are at A A, Fig.

4. Depth of girder of uniform strength when the flange-

area is constant. If, however, the depth of the girder vary

while the area of the horizontal flange remains uniform, d will

vary as mn. Hence, the elevation of the curved flange will be

Fig. 24. Elevation. a parabola whose axis is

vertical, with its vertex

at A, Fig. 24. In this

case it may be shown that

the whole shearing-strain

passes through the curved flange, and that therefore no web is

required for diagonal strains. When, however, the load rests upon
the horizontal flange, pillars, represented by vertical lines (or

suspension rods, if Fig. 24 be inverted), are required to convey
the vertical pressure of each weight to the curved flange. The

longitudinal strain in the curved flange increases towards the points

of support and may be found by the method explained in 186.

49. Suspension bridge Curve of equilibrium. The hori-

zontal flange, Fig. 24, prevents the ends of the curved flange from

approaching each other
;

the same effect may be produced by

fastening the ends of the curved flange to the abutments, in which

case, the load being suspended below the curved flange, we have

the suspension bridge for a uniform horizontal load. The curve

which an unloaded chain of uniform section assumes from its own

weight is the catenary, which, however, differs but slightly from

a parabola when the ratio of the deflection to the span does not

exceed that commonly adopted for suspension bridges, viz., 5̂

If Fig. 24 be inverted and the horizontal flange replaced by
solid abutments, to keep the arch from spreading, we have the

arch of equilibrium for a uniform horizontal load, and when the



38 FLANGED GIRDERS WITH [CHAP. II.

arch has merely its own weight to support, the inverted catenary

becomes the arch of equilibrium. Every change in the position

of a load alters the form of the curve of equilibrium, whose

horizontal component is uniform throughout the whole curve; for

it is obvious that, if the horizontal strain at one point of a

flexible chain exceed that at another point, the intermediate

portion will move towards that side on which the stronger

pull is exerted, so as to conform to the position of equilibrium.

A suspension bridge, being flexible, accommodates itself to each

change of load, assuming at each moment the position of equili-

brium for the particular load to which it is temporarily sub-

jected ; but neither the rigid flanges of a girder, nor the voussoirs

of a stone arch, can thus suit themselves to the changing position

of the load. The web of the former, and the spandril walls of the

latter, are therefore requisite to enable a rigid structure to sustain

a variable load without fracture, which they do by converting

what would otherwise be transverse strains in the arch or flanges

into longitudinal ones.

CASE VI. FLANGED GIRDER SUPPORTED AT BOTH ENDS AND

TRAVERSED BY A TRAIN OF UNIFORM DENSITY.

5O. Passing: train of uniform density Shearing-strain

Flanges. When a distributed rolling load, such as a railway

train, traverses a girder, the shearing-strain throughout the un-

loaded segment may be found as follows. Let the train be of

uniform density per running foot, and its total length not less

than that of the girder.

Fig. 25. Shearing-strain.
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Let / = the length of the girder,

d the depth of the girder at A, in front of the train,

iv = the weight of the train per unit of length,

m and n =. the segments into which the front of the train divides

the girder, n being the loaded segment,
R z= the reaction of the left or unloaded abutment, i.e., the

shearing-strain in the segment m.

F the horizontal strain exerted by either flange at A,

that is, the horizontal component of the longitudinal

strain if the flange be oblique.

The girder is held in equilibrium by the upward reaction of each

abutment and the downward pressure of the train. This latter =
wn, which we may conceive collected at its centre of gravity whose

distance from the right abutment = ~
(11). Taking moments round

this abutment, we have Rl= wi. Hence,
'

R =^S (28)

This is the shearing- strain throughout the unloaded segment,

since it is transmitted through every section between the front of

the train and the left abutment (14). As the train moves forward,

the shearing-strain in front increases as the square of the loaded

segment, and varies therefore as the ordinates of a parabola, the

ordinates being represented by the vertical lines of shading in

Fig. 25, with the vertex at B.

The flange-strain in front of the train may be easily found by

taking moments round either flange at A^ when we have

51. Maximum strains in web occur at one end ofa passing:

train. It can be easily proved that the shearing-strain at

any point A is greater when the load covers the longer segment

than when it covers the whole girder. In the latter case the

load is uniformly distributed all over, and the shearing-strain

at A -w(
n m)

(46), but when the load covers the greater segment
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only, the shearing-strain at A = r. Subtracting the former
*2(in-\-n)

from the latter quantity, we obtain the following result. The

shearing-strain at the end of a passing train of uniform density

covering the greater segment exceeds that produced by a

load of equal density, but extending over the whole girder, by

a quantity equal to ^^, where ra represents the shorter and un-

loaded segment. It will be observed that this excess is equal to

the shearing-strain throughout the unloaded segment whenever

the train covers the lesser segment only.

Ex. A railway girder is 90 feet in length, and the heaviest train weighs 1 tons

per running foot; what is the maximum shearing-strain from this train at 15 feet

from one end ? This will occur when the train covers the greater segment, and we

have
I = 90 feet,

m 15 feet,

n 75 feet,

w = 1-25 tons.

An^er <,. 28). R=-=<X=7*5 ton,

58. Uniform load and passing; train, shearing-strain.
Let D Ej Fig. 26, represent a railway girder, and let the

Fig. 26.-Shearinff-strain.
ordinates D A and E C represent

the shearing-strains at its extre-

mities from a load uniformly

distributed over its whole length,

such as the permanent bridge-

load. Draw A B and C B to the

centre of D E and the ordinates of

the figure D A B C E will repre-

sent the shearing- strains at each

point due to this uniformly distributed load (46). Again, let D E
and E H represent the shearing-strains at the extremities from the

greatest rolling load of uniform density (say engines), when covering
the whole girder. Draw the parabolas D G H and E G F, and the

ordinates of the figure D F G H E will represent the greatest

shearing-strains due to this maximum rolling load. The ordinates
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of the two figures combined, namely A B C H G F, will represent

the greatest possible shearing-strains to which the girder is liable

whatever may be the position of the rolling load.*

53. Maximum si rain in flang-es occur with load all over.

The horizontal strains in the flanges attain their greatest value

when the load covers the whole girder, for the strain at each point

equals the sum of those produced by each weight acting separately,

and is consequently diminished by the removal of any one weight ;

the same result may be obtained by comparing equations 23 and 29,

when we find that the flange-strain in front of a train is less than

when the train covers the whole girder in the ratio ofy, where n
I

represents the segment covered by the train.

54. Area of a continuous web calculated from the

shearing-strain Quantity ofmaterial in a continuous web.
When the flanges are parallel, the theoretic area of a continuous web

may be calculated from the shearing-strain by the following rule :

,. ! PI Shearing-strain
{Sectional area of web = T>

Unit- strain

in which the unit-strain is the safe unit-strain for shearing. This

gives the minimum thickness, which, however, is often much less

than a due regard for durability requires ;
neither does this rule give

an adequate idea of the additional material required for stiffening

the web against buckling, of which more hereafter.

Ex. A single-webbed plate girder, 50 feet long and 4 feet deep, supports a uniformly

distributed load of 32 tons
;
what is the theoretic thickness of the web, if 4 tons per

square inch be a safe shearing unit-strain ? The shearing-strain at each end =16 tons,

and the theoretic section of the web = ^ = 4 square inches
;
but as the depth of

the girder is 4 feet, the thickness of the web would be only ?\ = TVth inch, which is

altogether too thin for safe practice. The second example in 46, however, shows that

the rule is applicable to the Conway tubular bridge.

On comparing 34, 37, 46, and 53, we find that when a girder

with parallel flanges and a continuous web is loaded in the manner

described below, where

/ the length, and

/ = the safe unit-strain for shearing force,

*
Appendix to Paper on Lattice Beams. By W. B. Blood, Esq., Proc. I. C. E.,

Vol. xi.. p. 9.
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the theoretic quantity of material in the web should be as fol-

lows:

Kind of load.
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CHAPTER III.

TRANSVERSE STRAIN.

56. Transverse strain. Let Fig. 27 represent a semi-girder

of any form whatever of cross section, loaded at the extremity with

the weight W, and let I = the distance ofW from any plane of

section A B. We know from experience that whenever a semi-

Pig. 27, girder such as that described is

subject to transverse strain, deflection

takes place, the upper edge being

extended and the lower edge com-

pressed. This longitudinal elongation

and shortening are not confined to

the outside fibres merely, but affect

those in the interior of the girder,

their change of length becoming less and less in direct proportion

as their distance from the edge increases, as is proved by the lines

A B and W D remaining straight after deflection. Experiments
also prove that the amount of deflection is proportional to the

bending weight, provided the limits of elastic reaction of the extreme

upper and lower fibres are not exceeded (?).*

5*. Mentral surface. The surface of unaltered length, N S, at

or near the centre of the girder, where extension ceases and com-

pression begins, is called the Neutral surface a term calculated to

produce a false impression that this part of a girder is free from

all strain, whereas, as has been already stated (14), the weight,

which is a vertical force, could not produce longitudinal strains in

the fibres except through the medium of certain diagonal strains,

which, as will be shown hereafter, act probably with their greatest

intensity in the vicinity of the neutral surface. The Neutral surface

of any girder is, therefore, that surface along which the resultant

*
Morin, pp. 122, 138.
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of the horizontal components of all the diagonal forces equals cipher;

and according to this definition it may be said to exist in diagonally

braced girders, in those at least in which the systems of triangulation

are numerous. The reader will find his physical conceptions of

these diagonal strains much clearer after he has studied the action

of diagonal bracing in succeeding chapters.
58. Neutral axis Centres ofstrain Resultant ofhorizontal

forces in any cross section equals cipher.- The line at X, per-

pendicular to the plane of the figure, and formed by the intersection

of the neutral surface with any cross section of the girder, is called

the Neutral line, or more generally, the Neutral axis of that

particular section. The Neutral axis of any section is, therefore,

the line of demarcation between the horizontal elastic forces of

tension and compression exerted by the fibres in that particular

section of the girder. For these tensile and compressive forces we

may substitute their resultants.

Let T = the resultant of the horizontal tensile forces above the

neutral axis,

C = the resultant of the horizontal compressive forces below

the neutral axis,

& = the distance between the points of application of these

resultants,

called the Centres of strain, or for distinction's sake, the Centres of

tension and compression. The segment A BW D is held in equi-

librium by the weight W, the horizontal resultants T and C, and

the shearing-strain at the section A B. Taking moments round

the centres of compression and tension successively, we have

Wl = T$ = C& (30)

whence

T = C (31)

Thus, in every girder of whatsoever form, the resultant of all the

horizontal forces in any cross section equals cipher, or in other words,

the horizontal forces in any cross section balance each other, a result

which has been already proved in the case of flanged girders (eq. 4).

We may arrive at the same conclusion from the following

consideration. Suppose a loaded girder to rest on rollers at both
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ends so as to be perfectly free to move in a horizontal direction.

If we consider the forces acting at any cross section we find that

they may be resolved into three series, the first of which is vertical,

viz., the shearing-strain ;
the second is horizontal, tending to thrust

the segments apart, and the third is likewise horizontal, tending
to draw them together. These horizontal forces must balance;

otherwise the girder would separate at the section, since by

hypothesis the segments are free to move horizontally on the points

of support.

59. Moment of resistance, M. Bending; moment. The

sum of the moments of the horizontal elastic forces in any transverse

section round any point whatsoever is called the Moment of forces

resisting rupture, or more briefly, the Moment of resistance of that

particular section.* Representing the moment of resistance by the

symbol M, we have for a semi-girder loaded at the extremity,

VW = M (32)

where I = the distance ofW from the transverse section. It will

be observed that the moment of resistance of any particular section

is constant, no matter round what point the moments of the

horizontal forces may be taken, since the sum of the tensile forces

is equal to the sum of the compressive forces, so that they form a

couple. The product VW is called the Sending moment of the

weight, and eq. 32 may be expressed in general terms as follows :

The moments of the external forces on either side of any given section

of a girder which tend to produce rotation round any point in that

section are equal to the moments of the horizontal elastic reactions in

the same section which resist rotation, or briefly, the bending moment

round any section = the moment of resistance.

The general case of a girder of any form of cross section is similar

to that of a flanged girder whose flanges are at the centres of

horizontal strain, and the formula in the several cases of flanged

girders in the previous chapter would be applicable to this general

case, if we only knew the resultants of the horizontal tensile and

compressive strains and also the distance between their points of

application.
* Called also the Moment of rupture.
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GO. Coefficient of rupture, S. The following method is

frequently adopted for calculating the breaking weight of solid

rectangular or solid round girders, though applicable to other forms

also, and possesses the advantage of being founded on general

reasoning independently of any assumption relating to the laws of

elastic reaction or of direct experiments on the tensile and com-

pressive strength of materials, which generally require special

apparatus and are therefore less easily made than experiments on

transverse strength. We have just seen (eq. 30), that the relation

between the weight, length, horizontal elastic forces and distance

between the centres of strain of a semi-girder fixed at one end and

loaded at the other, is expressed by the equation

in which F represents indifferently the sum of the horizontal elastic

forces, either above or below the neutral axis, and is therefore

proportional in girders of similar section to the number of horizontal

fibres in the girder, that is, to its sectional area
; & = the distance

between the centres of strain, and is evidently proportional to the

depth, and I = the length. Hence, we obtain the following

relations for a

Semi-girder loaded at the extremity.

W = (33)

(34)ad

in which W = the breaking weight,

a = the sectional area,

d = the depth,

I = the length,

and S is a constant, which must be determined for each material by

finding experimentally the breaking weight of a girder of known

dimensions and similar in section to that whose strength is required.

The constant S is called the Coefficient of transverse rupture, or more

briefly, the Coefficient of rupture* of that particular material and

* Sometimes called the Modulus of rupture.
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section .from which it is derived, and equals the breaking weight of

any semi-girder of similar section in which the quantity ~ = 1 .

By reasoning similar to that adopted in the several cases of

Chapter II., we have the following formulas for girders supported

and loaded in various ways :

61. Semi-girder loaded uniformly.

w =^ (35)
It

1\N
S = l^L

(36)
*2ad

68. Girder supported at both ends and loaded at an

intermediate point, the segments containing m and n linear units,

and I representing the length, = m + n.

W =^ (37)mn

8 = (38)
aal

63. Girder supported at both ends and loaded at the centre.

W = ^? (39)

s =

64. Girder supported at both ends and loaded uniformly.

w _
8^S

S =

65. Table of coefficients of rupture. These formulae,

though generally restricted in practice to solid rectangular and solid

round girders, are also applicable to girders of any form, provided

they are similar in section to the experimental girder from which

the coefficient S for that form is derived. In each class we must

obtain the coefficient of rupture for its particular section by expe-

rimentally breaking a model girder. This has been done for certain

forms of section and the results are given in the following tables

which contain the values of S, or the coefficients of rupture, which
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in the case of square or round sections are the breaking weights of

solid semi-girders whose length, .depth, and breadth are each one

inch, fixed at one end and loaded at the other. Hence, when using

these coefficients in the preceding equations, all the dimensions

should be in inches. The reader may easily satisfy himself that the

value of S is constant for all rectangular sections of the same depth

from the consideration, that any number of rectangular girders of

equal depth placed side by side have the same collective strength as

the single girder which they would become if united laterally. Hence

W
has the same value for the multiple girder as for one of its com-

a

ponent girders, and therefore, fVom eq. 34, S is the same in both.
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WOOD.

SOLID RECTANGULAR GIRDERS AND SEMI-GIRDERS.

49

DESCRIPTION OF WOOD.
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DESCRIPTION OF WOOD.
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DESCRIPTION OF STONE.
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quality of the same kind of stone, serves to show the caution

which should be used in their selection and the value to be

attached to the records of actual experiments."

Ex. 1. In an experiment made by the author, a wrought-iron bar, 4 inches deep and

| inch wide, had a weight of 1,568 Ibs. hung from one end, the other end being rigidly

fixed. It commenced bending at 2 ft. 8 in. from the load, at a part which had been

previously softened in the fire and allowed to cool slowly. What is the value of S ?

Here, W = 1,568 Ibs.,

I = 32 inches,

d = 4 inches,

a = 3 square inches.

A~~ <e,. 34). S = = - = 1-86 tons.

Comparing this with the tabular value of S for
" new rectangular bars whose deflection

limits their utility," it would appear that the useful strength of bars rendered

ductile by annealing is only one-half that of new bars fresh from the rolls. This result

is confirmed by two of Mr. Hodgkinson's experiments on annealed wrought-iron bars

heated to redness and allowed to cool slowly. See Appendix to Report of the Commis-

sioners on the Application of Iron to Railway Structures, pp. 45, 46.

Ex. 2. The teeth of a cast-iron wheel are 3'5 inches long, 2'3 inches thick, and 7

inches wide ;
what is the breaking weight of a tooth ?

Here, I = 3'5 inches,

d = 2-3 inches,

a = 16*1 square inches,

S = 2-25 tons.

Antwer (eq. 33). W = "-** = 16-1 X 2-8 X 2-25 = 23 .8 tong
I o'o

Ex. 3. A round wrought-iron shaft, 5 feet long and supported at the extremities,

sustains a transverse strain of 30 tons at 14 inches from one end ; what should its

diameter be when on the point of yielding ?

Here, W = 30 tons,

I = 5 feet,

m = 14 inches,

n = 46 inches,

S = 2-25 tons.

j 14 X 46 X 30 vd3

From eq. 38, ad = - = = 143'1 inches; but ad = "
whence

to OU X ^ /O 4

Ex. 4. In an experiment made by Mr. Anderson, a piece of memel fir, 2 inches deep

and 1|| inches wide, was securely fixed at one extremity, the projecting part being 2

feet long. It sustained a load of 504'5 Ibs. at the end for twenty hours without

breaking right across. This load, however, upset the timber on the lower or
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compression side next the fulcrum. What is the value of S derived from this

experiment ?

Here, W = 504'5 Ibs.

I = 24 inches,

d = 2 inches,

6 = 1'94 inches.

This value of S exceeds that given in the table, namely, 1,348 Ibs. The piece of

memel in this experiment was, however, remarkably straight-grained and well

seasoned, and consequently above the average.

Ex. 5. A horizontal gaff of red American pine, 15 inches square, is hinged to a

mast at the inner end and suspended by a chain 9 feet from the outer end. What

weight will it safely bear at the extremity ? In this example the outer segment is a

semi-girder 9 feet long, and we have

a = 15 X 15 inches,

d = 15 inches,

I = 9 X 12 inches,

S = 1,527 Ibs.

Awer (eq. 33). W = = 15X15X15X1,527 m^ tong>
I 9 X 12 X 2,240

For temporary purposes, and if the timber be perfectly sound, one-fourth of this, or 5 '3

tons, will be the safe quiescent load. If, however, the load, though temporary, is

hoisted up and down and therefore liable to produce jerks, one-sixth, or 3'5 tons,

will be the safe load, but if the timber be exposed to the weather and in frequent

strain, one-tenth, or 2'13 tons, will be the proper working load.

67. Strength ofsimilar girders Limit oflength. It appears

from the foregoing investigations that the strength of similar girders

varies as the square of their linear dimensions, for
,
in eqs. 33 to

CL

42, is constant in similar girders, and consequently the breaking

weight W varies as the area a. The weight of the girder itself,

however, varies as aZ, i.e., as the cube of its linear dimensions. If

this weight, which we shall call G, equal -th of the breaking

weight, we have the breaking weight of girders loaded uniformly

(eqs. 35 and 41),

W = K^? = nG
L

in which K = 2 for a semi-girder and 8 for a girder supported at
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both ends. The breaking weightW of a similar girder n times

longer is as follows :

W = "'K
^

S = Q

where n3G is the weight of the second girder. Hence, if the

weight of any girder is -th of its breaking weight, a similar girder

n times longer will break from its own weight. This defines the

theoretic limit of length of similar girders. The same idea may
be usefully expressed in the following terms: The unit-strains

of similar girders from their own weight will vary directly as any of

their linear dimensions. From this it also follows that, the weights

of similar girders are as the cubes of their unit-strains.

Ex. 1. The Conway tubular girder, 412 feet long, sustains from its own weight a

tensile inch-strain of nearly 5 tons in the lower flange at the centre of the bridge ;

what is the length of a similar girder whose tensile inch-strain is 7 tons ?

Answer. Length =
412 X 7 = 577 feet.

Ex. 2. The weight of the Conway tube is 1,147 tons ; what will be the weight of the

larger girder ?

Answer. Weight = 1,147 X ^ = 3,147 tons.

68. Neutral axis passes through the centre of gravity-
Practical method of finding: the neutral axis. If the law of

uniform elastic reaction hold good in girders subject to transverse

strain, the horizontal elastic reaction exerted by each fibre will be

in proportion to the extension or compression of the fibre, that is,

in direct proportion to its distance from the neutral axis (56). Its

amount will also be proportional to the sectional area of the fibre,

and if the variable distance from the neutral axis be called y, and the

sectional area dff (differential of
ff),

then the elastic force of the fibre

may be represented by ydff multiplied by a constant, and F, or the

sum of the horizontal elastic forces on either side of the neutral axis,

r, taken within proper limits and multiplied by the same

constant. This integral for the horizontal elastic forces on the

upper side of the neutral axis is equal to the similar expression for
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the horizontal elastic forces on the lower side (eq. 31). Now this

equality is also the condition which determines the position of the

centre of gravity of the section. Hence, it follows that, when the

fibres are not strained beyond the limit of uniform elastic reaction,

the neutral axis of any cross section of a girder passes through its

centre of gravity, and we have the following practical rule for

finding the position of the neutral axis where the section is unsym-

metrical, as in T" iron, or in girders with unequal flanges. Cut

a model of the cross section of the girder out of card-board or thin

sheet metal and find its centre of gravity by means of a plumb-bob
or by balancing it on a knife-edge. This will give the position of

the neutral axis of the girder quite accurately enough for practical

purposes.

Fig. 28.
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CHAPTEK IV.

GIRDERS OF VARIOUS SECTIONS.

69. moment of resistance. The following method of inves-

tigating the strength of girders of any form whatsoever of cross

section is based on the assumption that the law of uniform elastic

Fig' 29- reaction is true, that is, that the

horizontal fibres exert forces which

are proportional to their change of

length, and therefore directly pro-

portional to their distance from the

neutral axis, an hypothesis which

is sensibly true so long as the

strains do not exceed those which

are considered safe in practice, and which lie considerably within

the limits of uniform elastic reaction (56). Suppose a girder com-

posed of longitudinal fibres of infinitesimal thickness, and let us

consider the horizontal elastic forces developed by the weight W
in any cross section A B,

Let M = the moment of resistance of the section A B (59),

d = the depth of the girder,

y = the variable distance of any fibre in the section A B,

either above or below the neutral axis,

)3
= the breadth of the section at the distance y from the

neutral axis, and consequently a variable, except in

the case of rectangular sections,

/ = the horizontal unit-strain exerted by fibres in the same

section at a given distance c from the neutral axis,

c = a known distance, either above or below the neutral

axis, of fibres which exert the horizontal unit-

strain /.

According to our assumption, the unit-strain in any other fibres at
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a distance y from the neutral axis will be^. Let the depth of

the latter fibres = dy (differential of y) ; then the total horizontal

force exerted by the fibres in the breadth
ft

will = ^
ftydy.

The

moment of this force round the neutral axis = '-$y*dy, and the

integral of this quantity will be the sum of the moments of all the

horizontal elastic forces in the section A B round its neutral axis,

that is, the moment of resistance of the section in question (59).

Representing this as before by the symbol M, we have

M = tfdy (43)

in which the integral must be taken within proper limits for each

form of cross section and may be readily found for those sections

which occur in practice in the following manner.*

7O. Let h
l
= the distance of the top of the girder above the

neutral axis,

7i 2 = the distance of the bottom of the girder below the

neutral axis.

The expression for the moment of resistance becomes

in which
ft,

if variable, must be expressed in terms of y.

91. M for sections symmetrically disposed above and

below the centre of gravity. When the material is symmetri-

cally disposed above and below the centre of gravity, the neutral

axis bisects the depth (68), and if d = the depth, we have h
t
= 7i 2

d ,=
,
and

The values of M for the usual forms of cross section are as

follows, recollecting that/= the unit-strain in fibres whose distance

from the neutral axis = c.

* The reader will recognize the integral ^By*dy as that which expresses the Moment

of Inertia of the cross section round its neutral axis, represented by the symbol I.
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93. M for a solid rectangle.

Let b = the breadth,

d = the depth.

In the case of a rectangle, j3
= b and is therefore constant, and we

have from eq. 45,

93. M for a solid square with one diagonal vertical.

Let a = the semi-diagonal,

b = the side of the square.

The variable breadth
|3, expressed in terms of y,

= 2 (a y) ;
sub-

stituting this value in eq. 45, we have

Integrating and reducing,

M-#-*2 (47)"
3c
~

12c

The moment of resistance of a square, it will be observed, is the

same whether the sides or one diagonal be vertical.

94. M for a circular disc.

Let r = the radius.

The variable breadth
jg, expressed

in terms of y, becomes 2 VV2

y
2

;

substituting this value in eq. 45, we have

M =

Integrating and reducing,

M=^ (48)

95. M for a circular ring of uniform thickness.

Let r = the external radius,

r
l
= the internal radius.

The moment of resistance of a ring is equal to that of the external

circle minus that of the internal one, and we have from eq. 48,

M=(r-V) (49)
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If t = the thickness of the ring, r
l
= r t

; whence, by substitu-

tion in eq. 49,

M = 4r3

If the thickness be small compared with the radius the last three

terms may be neglected, and we have

M = *J
(50)

76. M for an elliptic disc with one axis horizontal.

Let b = the horizontal semi-axis,

d = the vertical semi-axis.

#2
y
2

The equation of an ellipse whose origin is at the centre is
j-2+^= 1

'>

hence, the variable
|3
= 2x = 2

-j^d* y* ; substituting this

value of
j(3

in eq. 45, we have for the moment of resistance of an

elliptic disc round its horizontal axis,

Integrating and reducing,

MTbfd
3

/F, 1N= r (vl)
4c

77. M for an elliptic ring with one axis horizontal.

Let b = the external horizontal semi-axis,

b
,
= the internal horizontal semi-axis,

d = the external vertical semi-axis,

d
l
= the internal vertical semi-axis.

If the ring be of uniform thickness, as generally occurs in practice,

both the external and internal curves cannot be true ellipses ;
when

however the ring is thin, we may assume that the ellipse passing

through the extremities of the internal axis is equidistant from the

external ellipse, and that the moment of resistance of the ring is

equal to that of the external minus that of the internal ellipse ;

whence (eq. 51), we have for the moment of resistance of an elliptic

ring round its horizontal axis,

M = ^ (bd*
- Vi 3

) (52>
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If t = the thickness of the tube, b
l
=r b t and d

l
= d t; sub-

stituting these values in eq. 52, expanding, and neglecting the

terms in which the higher powers of t occur, we have when the

thickness of the tube is small compared with its axis-minor,

M = (36 + d) (53)

9*8. Tiro classes of flanged girders. The term "flanged

girder," as has been already remarked (13), includes rectangular

tubes and braced girders as well as the ordinary single-webbed

plate girder. The sides of a tube, the braced web of a lattice

girder, and the continuous web of a plate girder all perform the

same duty of conveying the vertical pressure of the load (shearing-

strain) to the points of support, developing at the same time

longitudinal strains in the flanges. It is obvious, therefore, that

the sides of the tube are equivalent to the web of the single-

webbed girder, which is the form best suited for calculating the

moment of resistance.

Flanged girders may be subdivided into two classes.

1st. Those in which the web is formed of bracing, or, if con-

tinuous, yet so thin that the horizontal strains developed in it

are insignificant compared with those in the flanges. This class

has been already investigated in Chapter II.

2nd. Those in which the web is continuous and so thick that the

horizontal strains in it are of considerable value, in which case the

web acts as a thin rectangular girder, enabling the flanged girder

to sustain a greater load than is due merely to the sectional area

of its flanges. In either case it will be sufficiently accurate for

practical purposes if we suppose the mass of each flange concentrated

at one point or centre of strain, which may be assumed to coincide

with the intersection of the web and flanges (55).

79. M for the section of a flanged girder or rectangular

tube* neglecting the web.

Let a
t
= the area of the upper flange,

a2
= the area of the lower flange,

a3
= the area of the web above the neutral axis,

a4 = the area of the web below the neutral axis,
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h
{
= the height of the web above the neutral axis,

A2
= the height of the web below the neutral axis,

d = h
{ + h2

= the depth of the web,

A = a
l + a2

= the area of both flanges together.

From eq. 44 the moment of resistance of the flanges alone

If we neglect the web, the neutral axis passes through the centre of

gravity of the two flanges (68), and we have 7^ = ^- and h 2 =T^5
hence, by substitution,

M = ^jp (55)

80. M for the section of a flanged girder or rectangular
tube, including the web. When, however, the horizontal strains

in the web are too considerable to be safely neglected, the moment

of resistance of the web, derived from eq. 44, must be added to that

just obtained for the flanges (eq. 54), when we have

M ={{ (a,
+
|)

A, +
(a,

+
|) V} (56)

81. M for the section of a flanged girder or rectangular

tube with equal flanges, including the web. If the flanges

have equal areas, the neutral axis will be in the middle of the

depth, in which case h
l
= h 2

=
^,

and eq. 56 becomes

M =
^(6a + a') (57)

where a = the area of either flange,

a! = the area of the web.

The moment of resistance of a rectangular tube With flanges of

equal area may also be obtained from eq. 46 by subtracting the

moment of resistance of the inner from that of the outer rectangle

as follows :

(58)

where b = the external breadth,

b
l
= the internal breadth,
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d = the external depth,

d
l
= the internal depth.

83. M for the section ofa square tube ofuniform thickness*

either with the sides or one diagonal vertical. From eqs.

46 or 47,

where b = the external breadth of the tube,

b
l
= the internal breadth of the tube.

If t = the thickness of the tube, b
l
= b 2; substituting this

value in eq. 59, expanding, and neglecting the terms in which the

higher powers of t occur, we have when the thickness is small

compared with the breadth of the tube,

M = y2 (60)

When the value of M is known for any particular section of

girder we can easily find the value of the weight W in terms of /,

or vice versa, as explained in the following cases :

CASE I. SEMI-GIRDERS LOADED AT THE EXTREMITY.

Fig. 30.

83. Let W = the weight at the extremity,

/ = the distance of W from any cross section A B,

M = the moment of resistance of the section A B.

The forces which keep the segment A BW in equilibrium are the

weight W, the shearing-strain at A B, and the horizontal elastic

forces developed in the same section. Taking the moments of all

these forces round the neutral axis we have (eq. 32),

VW=M (61)
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84. Solid rectangular semi-girders.
Let b = the breadth,

d = the depth,

From eqs. 46 and 61,

where/= the unit-strain in fibres whose distance from the neutral

axis = c*

If, however*/= the unit-strain in the extreme fibres, c =
|,

and

we have

W =
-^- (62)

Ex. A piece of teak, 2 inches deep and l|f inches wide, is fixed as a semi-girder at

one extremity ; what weight hung 2 feet from the point of attachment will break it

across, the crushing inch-strain of dry teak being 12,000 Ibs. ?

Here, I = 2 feet,

6 = 1-94 inches,

d = 2 inches,

/= 12,000 Ibs.

Answer. W -/^2
-, 12>0 X l'* X 2 X 2 _^^

61 6 X 24

The crushing strength of teak being considerably less than its tearing strength, rupture
will probably ensue from the crushing of the fibres on the compressed side.

85. Geometrical proof. Eq. 62 may be easily deduced from

geometrical consideration as follows :

Let the rectangle A B C D, Fig. 31, represent in an exaggerated

-p- 31 degree the side view of any small

transverse slice whose breadth be-

fore deflection = A B. Suppose
the upper edge after deflection

stretched out to the length A6,

and the lower edge compressed to

Cd; then the lines of shading in the

two little triangles will represent

* When W = the breaking load, the unit-strain / has been called by some writers the

modulus of rupture of the material, but when W is the working load, it has been called

the working modulus. This must not, however, be confounded with the coefficient or

modulus of rupture, S, and it is better to restrict the expression to the latter coefficient.
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the alteration of length of the intermediate fibres, N S being

the neutral surface which divides the section into equal parts (56).

The sum of the horizontal forces exerted by the fibres in either the

upper or the lower half of the section is equal to the product of the

half section by the mean unit-strain of the fibres, and if/=the unit-

strain in the extreme fibres, then*^
is the mean unit-strain of all the

fibres, for it equals the unit-strain exerted by the fibres lying

mid-way between the neutral surface and either the upper or the

lower edge. The total strain of tension in the upper half and

that of compression in the lower half are, therefore, each equal to

9 * -Q-, where b and d represent the breadth and depth of the sec-

tion. Moreover, since the horizontal elastic forces in the various

fibres are proportional to the lines of shading in the two triangles

(?), the centres of tension and compression (58) coincide with

their centres of gravity, and their distance apart therefore = \d.

Hence, taking moments round either centre of strain, we have as

before,

86. Solid square semi-girders with one diagonal vertical

Solid square girders with the sides vertical are 1*414 times

stronger than with one diagonal vertical. If one diagonal is

vertical, we have from eqs. 47 and 61,

where/ = the unit-strain in fibres whose distance from the neutral

axis = c.

If, however, / = the unit-strain in the extreme fibres, c = =,

and we have,

W =g (63)

Comparing eqs. 62 and 63, we find that the transverse strength of
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a solid square girder with the sides vertical = -?-^ = l*414timesthe
6

strength of the same girder with the diagonal vertical.*

The strength of square semi-girders in the direction of their

Fig. 32. diagonals may be investigated in a different

manner as follows. Let Fig. 32 represent

a cross section of the girder, and let the

line AB represent the shearing force acting

downwards. We may conceive this replaced

by its components A C and A D parallel to

the sides of the girder. Since the section

AB
is square, each component will equal ==..

Now the force AC will produce tension in the side parallel to

A D, and the force A D will produce tension in the side parallel to

A C ; the corner will therefore sustain twice the strain that either

component alone would produce, that is, it will sustain a strain

2AB
which would be produced by a force equal to -==, = 1-41 4 A B,

acting in the direction of one side, which result agrees with that

already obtained.

87. Rectangular girder of maximum strength cut out of a

cylinder. It is sometimes required to cut a rectangular girder of

maximum strength out of round timber.

Let D = the diameter of the log,

b = the breadth of the girder of

maximum strength,

d = its depth.

From eq. 62, the strength ofa rectangular

girder is maximum when bd* is maximum,

or, since d2 = D 2 & 2
,
when 6D 2 b3

is

maximum. Equating the differential co-

efficient of this quantity to cipher, we have

* Barlow's experiments on battens of elm, ash and beech, 2 inches square and 36 inches

long, do not corroborate the theory in the text, for the strength of the elm was the

same whether fixed erect or diagonally, whereas it was found that ash and beech were

both a little weaker in the latter position. Strength of Materials, p. 143.
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>'=TD
'

from which we derive the following rule. Erect a perpendicular, p,

at one-third of the length of the diameter, and from the point where

this perpendicular intersects the circumference draw two lines, b

and d, to the extremities of the diameter
;
then b2 = ^ D 2 *

o

88. Solid round semi-girders.

Let r = the radius.

From eqs. 48 and 61,

w* =-"?.
4c

where/ = the unit-strain in fibres whose distance from the neutral

axis = c.

If, however, / = the unit-strain in the extreme fibres, c = r, and

W=1 (64)

89. Solid square girders are 1*7 times as strong as the

inscribed circle, and O-6 times as strong as the circumscribed

circle. Comparing eqs. 62 and 64, we find that the strength of a

solid square girder is 1*7 times that of the solid inscribed cylinder,

whereas its strength is only
- =0*6 times that of the solid cir-

cumscribed cylinder.f

90. Hollow round semi-girders of uniform thickness.

Let r = the external radius,

r
l
= the internal radius.

From eqs. 49 and 61,

where/ = the unit-strain in fibres whose distance from the neutral

axis = c.

*
Euclid, Book vi.

; Cor., prop. 8.

t In Barlow's experiments on very fine specimens of Christiana deal, the breaking

weight of girders 4 feet long and 2 inches square, supported at the ends and loaded in

the middle, was 1,116 Ibs. The breaking weight of round girders of the same length

and 2 inches in diameter was 772 Ibs. The ratio of these breaking weights = 1*45, not

17, which the theory in the text gives. Barlow, p. 142.
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If, however,/ = the unit-strain in the extreme fibres, c = r, and

W=^-. 4
) (65)

If, moreover, the thickness of the tube be small compared with

the radius, we have from eqs. 50 and 61,

W = (66)

where t represents the thickness of the tube.

Ex. A tubular crane post of plate iron is 11 feet high and 2 '4 feet diameter at the

base. The load on the crane produces a bending-strain equivalent to 20 tons acting at

right angles to the top of the post ; what should be the thickness of the plating at the

base in order that the inch-strain may not exceed 3 tons ?

Here, W = 20 tons,

I = 11 feet,

r = 1-2 feet,

f = 3 tons per square inch.

. 66). , =l= __i__ = 1.35inche..

91. Centre of solid round girders nearly useless. The

centre or core of a cylindrical girder may be removed without

sensibly diminishing its transverse strength ;
for it appears, from eqs.

64 and 65, that the strengths of two cylinders of equal diameters,

r4

one solid and the other hollow, are as
^
--

f ,
in which T and r

l
are

the external and internal radii
;

let r rr nr^ then the ratio becomes

-^ =-; if, for example, n = 2, the loss of strength in the hollow

cylinder amounts to only T̂ th of that of the solid cylinder while

the saving of material amounts to ^th. For this, among other

reasons, cylindrical castings, such as crane posts, should be made

hollow.

98. Hollow and solid cylinders of equal weight. It may
also be shown that the transverse strength of a thin hollow cylinder

is to that of a solid cylinder of equal weight as the diameter of the

former is to the radius of the latter. By eqs. 66 and 64, the ratio

of the strength of a hollow to that of a solid cylinder = 3 -,inr
i
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which r and t represent the radius and thickness of the hollow

cylinder, and r
{ represents the radius of the solid cylinder ;

since by hypothesis the two cylinders are of equal weight, we have

2rt =
T*!

2
; whence, by substitution, the ratio of strength becomes

,
that is, as the diameter of the hollow cylinder is to the radius of

r
i

the solid cylinder.

93. Solid elliptic semi-girders.

Let b = the horizontal semi-axis,

d = the vertical semi-axis.

From eqs. 51 and 61, we have,

VW = rf^*
4:0

where/ = the unit-strain in fibres whose distance from the neutral

axis = c.

If, however, f =. the unit-strain in the extreme fibres, c = d, and

W=- (67)

94. Hollow elliptic semi-girders.

Let b = the external horizontal semi-axis,

Z>,
= the internal horizontal semi-axis,

d = the external vertical semi-axis,

d
l

the internal vertical semi-axis,

From eqs. 52 and 61 we have

W/=5(foP Mi 3
)

where f = the unit-strain at the distance c from the neutral

axis.

If, however, / = the unit-strain in the extreme fibres, c = d,

and

W = g (M_V, 1
) (68)

If, moreover, the thickness of the tube is small compared with

the shorter axis, we have from eqs. 53 and 61,

(69)

where t = the thickness of the tube.
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95. Flanged semi-girder or rectangular tube* taking the
web into account.

Let flj
= the net area of the top flange,

2 the area of the bottom flange,

az the area of the web above the neutral axis,

4
= the area of the web below the neutral axis,

A, the distance of the top flange above the neutral axis,

h
2
= the distance of the bottom flange below the neutral axis,

/ = the unit-strain in fibres whose distance from the neutral

axis c.

From eqs. (56) and (61), we have

w = *' + Bi+ (70)

96. Flanged semi-girder or rectangular tube with equal
flanges. If the flanges are equal, we have from eqs. 57 and 61,

WZ = 4? (6a + a')

where d = the depth of web,

a = the area of either flange,

a' = the area of the web,

/ = the unit-strain in fibres whose distance from the

neutral axis = c.

If/ = the unit-strain in either flange, c = r , and we have

W=^(a + !"

'

l\ b>

In the case of a rectangular tube with equal flanges, the following

equation, derived from eqs. 58 and 61, may be used instead of

eq. 71,

where b the external breadth,

bi = the internal breadth,

d = the external depth,

c/j
= the internal depth,

/ = the unit-strain in the extreme fibres, in which case

d
c = -.
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97. Square tubes with vertical sides. If the tube is square

with vertical sides of uniform thickness, we have from eq. 72,

W =
^(i'-V) (73)

If, moreover, the thickness of the tube is small compared with its

breadth, we have from eqs. 60 and 61,

W = (74)

where t = the thickness of the side of the tube.

98. Square tubes with diagonal vertical Square tubes
of uniform thickness with vertical sides are 1*414 times

stronger than with one diagonal vertical. If one diagonal

of the square tube is vertical, the sides being of equal thickness, we

have from eqs. 59 and 61,

W*=X<6._V)
where / = the unit-strain at the distance c from the neutral

axis.

Iff = the unit-strain in the extreme fibre, c = =, and we have

If, moreover, the thickness of the tube is small compared with its

breadth, we have from eqs. 60 and 61,

W =
'i^l' (76)

where t = the thickness of the side of the tube.

Comparing eqs. 73 and 75, we find that the strength of a square

tube of uniform thickness, with the sides vertical, equals 1'414 times

the strength of the same tube with the diagonal vertical.

99. Square tubes of uniform thickness with vertical sides

are 1*7 times as strong as the inscribed circle of equal
thickness5 and O*85 times as strong as the circumscribed
circle of equal thickness Square and round tubes of equal
thickness and weight are of nearly equal strength.

Comparing eqs. 74 and 66, we find that the strength of a square

tube with vertical sides is to that of a round tube of equal thickness
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and whose diameter equals the side of the square (inscribed circle)
1 fi

as - . 1*7
;
whereas the strength of the square tube with verti-

y*4ij

cal sides is to that of a round tube of equal thickness but whose

diameter equals the diagonal of the square (circumscribed circle,) as
o

= 0'85. It also appears that the strength of the circumscribed

circle is twice that of the inscribed circle of equal thickness. If

square and round tubes are of equal thickness and weight, their

peripheries will be equal, that is, 45 = 2vr, or b = -r
; substituting

2

this value for b in eq. 74, and comparing the result with eq. 66, we
find that the relative strength of square tubes with vertical sides

and round tubes of equal weight and thickness = = 1-0472, or
o

very nearly a ratio of equality, the square tube being very slightly

stronger than the other. When semi-girders are subject to trans-

verse strain in various directions like crane posts, the round tube is

generally preferable to a square tube of equal weight, as the latter

is much weaker in the direction of the diagonals (98). Nevertheless,

rectangular tubes of plate iron, with strong angle iron in the

corners, form very efficient crane posts.

100. Value of web in aid of the flanges. The strength of a

girder with equal flanges and continuous web, in which full credit

is given to the web for the horizontal strains which it sustains, is

equal to the strength derived from the flanges alone plus that

derived from the web acting as an independent rectangular girder.

Eqs. 5 and 71 prove that a continuous web, in a girder with

flanges of equal area, does theoretically as much duty in aid of the

flanges as if one-sixth of the web were added to each flange and the

web were made of bracing. In girders with unequal flanges, the

centre of gravity, and therefore the neutral surface, is closer to the

large flange ; consequently the small flange will derive more benefit

from a continuous web than the large one.

101. Plan of solid rectangular semi-girder of uniform

strength^ depth constant. From eq. 62, the unit-strain in the
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Fig. 34. Plan.
extreme fibres of a solid rectangular

r/w
semi-girder/ ==. Iftheserni-

girder be of uniform strength (19),

f will be constant, and consequently

the quantity , to which / is pro-
DCb

portional, will also be constant.

Hence, if the depth of the girder

be uniform, b will vary as /, that is

the plan of the girder will be triangular, Fig. 34.

I O3. Elevation of solid rectangular semi-girder of uniform

Fig. 35. Elevation. strength, breadth constant. If,

however, the breadth be uniform,

d* will vary as Z, and if the top

of the girder be horizontal the

bottom will be bounded by a para-

bola whose vertex is at W and its

axis horizontal, Fig. 35.

103. Solid round semi-girder of uniform strength. From

eq. 64, the unit-strain in the extreme fibres of a solid round semi-

girder/ = 3
. If its strength be

uniform, r3 will vary as I, and the

semi-girder will be a solid formed by
the revolution of a cubic parabola

round a horizontal axis, Fig. 36. The

beak of an anvil is a rude approxi-

mation to this form of semi-girder.

104. Hollow round semi-girder of uniform strength.

From eq. 66, the unit-strain in the extreme fibres of a thin round

/ W
tube/= 2

' ^ ^s strength be uniform, / will be constant

and r^t will vary as I. When the thickness is constant, r z will

vary as Z, and a hollow semi-girder, formed by the revolution of

a parabola round a horizontal axis, will result. This, for instance,
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is the theoretic form for a hollow crane post of plate iron
; the cir-

cumscribing cone, however, is preferable in practice, as it is more

easily constructed.

CASE II. SEMI-GIRDERS LOADED UNIFORMLY.

Fig. 37.

105. Let I = the distance of any cross section, AB, from the

extremity of the girder,

w = the load per linear unit,

W = wl = the sum of the weights resting on AC,
M = the moment of resistance of the section AB.

The forces which keep ABC in equilibrium are the weights

uniformly distributed along AC, the shearing-strain at AB, and

the horizontal elastic forces developed in the same section. Taking
the moments of all these forces round the neutral axis of the section

A B, arid recollecting that the sum of the bending moments of the

separate weights is equivalent to the moment of a single weight

equal to their sum and placed at their centre of gravity (11), we

have (59),

W- = = M (77)
2 2

106. Solid rectangular semi-girders. From eqs. 46 and 77,

we have

W=/g (78)

in which b and d represent the breadth and depth of the girder, and

/ = the unit-strain in the outer fibres at top and bottom, in which

d
case c = -.
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1O7. Solid round semi-girders. From eqs. 48 and 77,

w =

where r =: the radius, and / = the unit-strain in the extreme fibres

at top and bottom, in which case c = r.

1O8. Hollow round semi-girders of uniform thickness.

From eqs. 49 and 77,

W =
g(r'-r,') (80)

in which r represents the external, and r
l
the internal radius, and

/ = the unit-strain in the extreme fibres at top and bottom. If,

moreover, the thickness, t, is inconsiderable compared with the

radius, we have from eqs. 50 and 77,

W = (81)

1O9. Flanged semi-girders or rectangular tubes* taking
the web into account. From eqs. 56 and 77,

W = ^< a/+?U+ . + V* (82)

where a
l
= the net area of the top flange,

a2
= the area of the bottom flange,

a
z
= the area of the web above the neutral axis,

a
4
= the area of the web below the neutral axis,

7*i
= the distance of the top flange above the neutral axis,

/j
2 the distance of the bottom flange below the neutral axis,

/ = the unit-strain in fibres whose distance from the neutral

axis rr c.

If the flanges are equal and iff =. the unit-strain in either flange,

in which case c =
^,
we have from eqs. 57 and 77,

Wzr -

where a = the area of either flange,

a' =. the area of the web,

d = the depth of the web.

11O. Flan of solid rectangular semi-girder of uniform
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strength, depth constant. From eq. 78, the unit-strain in the

outer fibres of a solid rectangular semi-girder loaded uniformly,

"
bd*

W
in which w represents the load on the unit of length, = ~.

When the strength of the girder is uniform throughout its whole

length (19), the quantity , to
uCL

which / is proportional, is constant,

and, if d be uniform, b will vary as

Z
2

,
and the plan of the girder will,

if symmetrical, be bounded by two

parabolas whose common vertex is

at A with the axis vertical, Fig.

38.

111. Elevation of solid rectangular semi-girder of uniform

strength^ breadth constant. If, however, the breadth be uni-

form, d will vary as /, and the elevation of the girder will be

triangular.

118. Solid round semi-girder of uniform strength. From

eq. 79, the unit-strain in the extreme fibres of a solid round semi-

girder loaded uniformly,
2W2

/ = :

*r*

If the strength be uniform, r3 will vary as Z
2

,
and the semi-girder

will be a solid formed by the revolution of a semi-cubic parabola

round a horizontal axis.

113. Hollow round semi-girder of uniform strength. From

eq. 81, the unit-strain in the extreme fibres of a thin round tube,

If the strength be uniform, r2 t will vary as /
2

. Hence, if t be

constant, r will vary as /, and the tube will be conical.

The strength of semi-girders of other sections loaded uniformly

may be obtained by multiplying the corresponding values of W in

the previous case by 2.
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CASE III. GIRDERS SUPPORTED AT BOTH ENDS AND LOADED
AT AN INTERMEDIATE POINT.

Fig. 39.

114. Let W = the weight, dividing the girder into segments

containing respectively m and n linear units,

I = m + n = the length of the girder,

x the distance of any cross section A B from that

end of the girder which is remote from W,
M = the moment of resistance of the section A B.

On the principle of the lever, the reaction of the left abutment =

-j
W, and the segment ABC is held in equilibrium by this reaction,

the shearing-strain at AB, and the horizontal elastic forces developed

in the same section. Taking the moments of all these forces round

the neutral axis of the section A B, we have (59),

" W x = M (84)

When / = the unit-strain in the extreme fibres at top or bottom,

c = the distance of the top or bottom from the neutral axis, and we

have the following expressions for the strength of each class of girder.
115. Solid rectangular girders.

Let b = the breadth,

d = the depth.

From eqs. 46 and 84,

W = (85)
bnx

If both the weight and cross section are at the centre of the girder,

x = n =
,
and

W = (86)
ol
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116. Solid round girders. From eqs. 48 and 84,

W = 2^ (87)

in which r the radius.

If both the weight and cross section are at the centre,

W = *-
3

(88)

117. Hollow round girders of uniform thickness. From

eqs. 49 and 84,

tvfl

"<-V)

where r and r
l represent the external and internal radii.

If both the weight and cross section are at the centre,

(UO)

If the thickness, t, is inconsiderable compared with the radius, we

have from eqs. 50 and 84,

(91)nx

If, moreover, the weight and cross section are at the centre,

W = (92)

Ex. A cylindrical tube of riveted boiler-plate, 0*095 inch thick, 27 feet long between

supports, 24"2 inches diameter, and weighing 0'4295 tons, was torn through a riveted

joint in the bottom by a weight of 4'857 tons at the centre (Clark, p. 92). What was

the tearing-strain per square inch in the bottom plate ?

Here, W = 4'857 +.0-21475 = 5'072 tons,

I = 27 feet,

r = 121 inch,

t - 0-095 inch.

VW 5-072 X 27 X 12
Answer (eq. 92). /= ^^ =

5
= 94 tons.

4 X 3-1 41 6 X 12T|X 0-095

11. Flanged girders or rectangular tubes* taking the web
into account. From eqs. 56 and 84,

(93)
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where a
l
= the area of the upper flange,

a2 the net area of the lower flange,

a
3
= the area of the web above the neutral axis,

a 4
= the area of the web below the neutral axis,

Aj = the height of the web above the neutral axis,

A 2
= the height of the web below the neutral axis,

/ = the unit-strain in fibres whose distance from the neutral

axis = c.

Ex. What is the unit-strain of compression in the upper flange at the centre of the

girder described in Ex. 2 (33), supposing the web taken into account? From a

full-sized card-board section of the girder it appears that the centre of gravity, that

is, the neutral axis of the section, (68), is 3 '57 inches below the intersection of the

upper flange with the web, and we have,

a
i
= -

72 square inches,

a3 = 4'4 square inches,

a3
= 3-57 X *266 = -95 square inches,

a
4
= 0-585 X '266 = '156 square inches,

Aj = 3'57 inches,

A2
= 0-585 inches,

c = 3-57 inches,

I = 57 inches,

I

n = x =
2>

W = 18 tons at the centre.

From eq. 93., 18 tons =
3^7^-57 { (

72 + ^) X(3'57)+
(
*4 + ^p)x(W) }

Solving this equation for the unit-strain in the compression flange, we have,

Answer. /'= 61'5 tons per square inch.

Comparing this with Ex. 2 (33), we see that taking the web into account has

reduced the inch-strain in the compression flange from 69'5 to 61'5 tons, or 8 tone

per square inch.

If the flanges are equal and/= the unit-strain in either flange, we
have from eqs. 57 and 84,

=*(+*)
in which a = the area of either flange,

a' = the area of the web,

d = the depth from centre to centre of flange.

If, moreover, the weight and cross section are at the centre,
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119. Plan of solid rectangular girder of uniform strength,

depth constant. From eq. 85, the unit-strain in the extreme

fibres of a solid rectangular girder,

/=

When the strength of the girder is uniform, the quantity , to

Fig. 40._pian. whicn f fc proportional,

will be constant. Hence,

if the depth, d, is uniform,

b will vary as x, and the

plan of the girder will be

two trianglesjoinedattheir

bases, Fig. 40.

ISO. Elevation of solid rectangular girder of uniform

strength,, breadth constant. If, however, the breadth be uni-

Fig. 41. Elevation. forni) ^2 WJU yarv ^ ^
and if the top of the

girder is horizontal, the

bottom will be bounded

by two parabolas which

intersect underneath the weight, with horizontal axes and their

vertices at the extremities of the girder, Fig. 41.

181. Solid round girder of uniform strength. From eq. 87,

the unit-strain in the extreme fibres of a solid round girder,

If the strength be uniform, r3 will vary as x, and the girder will

be formed by two spindles joined at their base, each spindle being

produced by the revolution of a cubic parabola round its axis.

122. Hollow round girder of uniform strength. From eq.

91, the unit-strain in the extreme fibres of a thin hollow cylinder,

In a girder of uniform strength, the quantity -^-,
to which / is

proportional, will be constant; hence, if t be uniform, r2 will vary
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as x, and the girder will be formed by two hollow spindles joined

at their bases, each spindle being generated by the revolution of

a. parabola round its axis. This, for instance, is the form which

the hollow axis of a transit instrument should theoretically have,

though a double cone is preferred in practice from its greater facility

of construction.

Id3. Concentrated rolling: load, plan of solid rectangular
girder of uniform strength when the depth is constant

Elevation of same when the breadth is constant. If W be

a single moving load, the maximum strain at each point will occur

as the load passes that point, for x attains its greatest value when

it equals in\ hence, from eq. 85, the unit-strain in the extreme

fibres of the section where the weight occurs,

(96)

If the strength of the girder be uniform, will be a constant
bd

quantity, and if d be uniform, b will vary as the rectangle under the

Fig. 42. Plan. segments ; hence, the plan

of the girder, if symmetri-

cal, will be bounded by
two overlapping parabolas

whose vertices are at A A,

Fig. 42. If, however, the

breadth be uniform, d2 will

vary as mn and the elevation of the girder will be a semi-ellipse,

Fig. 43.

Fig. 43. Elevation.
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CASE IV. GIRDERS SUPPORTED AT BOTH ENDS AND LOADED
UNIFORMLY.

Fig. 44.

134. Let I = the length of the girder,

w = the load per linear unit,

W = wl = the whole load,

m and n = the segments into which any given cross section

A B divides the girder,

M = the moment of resistance of the section A B.

The forces which hold A B C in equilibrium are the reaction of

the right abutment, = ^ the weights uniformly distributed along

A C, = wn, the shearing-strain at A B, and the horizontal elastic

forces in the same section. Taking the moments of all these forces

round the neutral axis of A B, we have (59),

Multiplying the left side of the equation by ,
we have

= M (98)

When / rr the unit-strain in the extreme fibres at top or bottom

of the section, c = the distance of the top or bottom from the

neutral axis, and we have the following expressions for the strength

of each class of girder.

13d. Solid rectangular girders.

Let b = the breadth,

d = the depth.
G
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From eqs. 46 and 98,

W = J
(99)6mn

If the cross section is at the centre, m = n = -, and

(100)

186. Solid round dirders. From eqs. 48 and 98,

W = 5^ (101)2mn

in which r = the radius.

If the section is at the centre, m = n = -, and

W = 2
(102)

. Hollou round girders of uniform thickness.

Let r = the external radius,

r
l
= the internal radius.

From eqs. 49 and 98,

w = <"'> '

(103)

At the centre of the girder m = n = 3, and

,') (104)

If the thickness, i, is inconsiderable in comparison with the radius,

we have from eqs. 50 and 98,

W = (105)mn

If, moreover, the plane of section is at the centre,

W =W (106)

188. Flanged girders or rectangular tubes* taking the

web into account. From eqs. 56 and 98,

W = ~ M , + 7 V + , + ^ V h (W7)
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Where a
{
= the area of the upper flange,

2
= the net area of the lower flange,

a3
= the area of the web above the neutral axis,

a4
= the area of the web below the neutral axis,

Aj = the height of the web above the neutral axis,

7t2
= the height of the web below the neutral axis,

/ = the unit-strain in fibres whose distance from the

neutral axis = c.

If the flanges are equal, and if/ = the unit-strain in either flange,

c = -
)t
and we have from eqs. 57 and 98,

W = . + (108)mn \ 6/
in which a = the area of either flange,

a' the area of web,

d = the depth of the web.

At the centre, m = n = -, and eq. 108 becomes

(109)

139. Plan of solid rectangular girder of uniform strength
when the depth is constant. From eq. 99, the unit-strain in

the extreme fibres of a solid rectangular girder,

3mnW
' =

When the strength of the girder is uniform, and the material conse-

quently disposed in the most economical manner, the unit-strain/will

be uniform (19), and the quantity^. to which it is proportional, will
QCL_Fig. 45. Plan._ be constant. Hence, if

the depth, d, be uniform,

b will vary as ran, and the

plan of the girder, if sym-

metrical, will be formed

by the overlap of two

parabolas whose vertices

are at A A, Fig. 45.
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130. Elevation of solid rectangular girder of uniform

strength when the breadth is constant. If, however, the

46. Elevation. breadth be uniform, d*

will vary as mn, and the

elevation of the girder

will be a semi-ellipse,

Fig. 46.

131. Discrepancy between experiments and theory-
Shifting of neutral axis Longitudinal strength ofmaterials

derived from transverse strains erroneous. The student

will naturally conclude that the formulas investigated in the present

and preceding chapters should give identical, or nearly identical,

results when they are applied to the same girder ; that, for instance,

the breaking weight of a solid rectangular semi-girder, calculated

by eq. 33, should closely agree with its breaking weight calculated

by eq. 62
; and, if our theory were complete, this would no doubt

be the case. To test its accuracy, let us compare these two equa-

tions, when we obtain this result,

that is, the value of S for solid rectangular girders of any given

material should equal one-sixth of the ultimate tearing or crushing

strength of that material, according as it yields by tearing or crush-

ing. In many instances, however, this will be found to be far

from the truth ;
for example, the value of S for small rectangular

bars of cast-iron = 3'4 tons (65), and 6 times this, = 20'4 tons, far

exceeds the tensile strength of ordinary cast-iron, which is about 7 or

8 tons per square inch. It must, indeed, be confessed that the law

of elasticity ceases to be applicable when we approach the limits of

rupture ;
and that the formulae for solid girders investigated in the

present chapter give their breaking weight much under what it really

is for many materials, and this discrepancy will probably be found

more marked in those whose ultimate tearing strain differs widely

from their ultimate crushing strain. Greater confidence, however,

may be placed in the formulae relating to hollow and flanged girders.

Mr. Hodgkinson endeavours to explain this discrepancy by a

change in the position of the neutral axis as soon as the limit of elastic
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reaction of the horizontal fibres has been passed, and gives some

reasons for this hypothesis derived from experiments on cast-iron,

in his Experimental researches on the strength of Cast-iron, p. 384.

This seems a plausible hypothesis, for if the neutral axis of a solid

rectangular cast-iron girder approach its compressed edge as the

weight increases, and after the limit of tensile elasticity has been

passed by the fibres along the extended edge, we shall have a larger

proportion than one-half the girder subject to tension, and conse-

quently the total horizontal tensile strain may exceed that derived

from our theory, which assumes that the neutral axis always passes

through the centre of gravity of the cross section (6). Mr.

Hodgkinson concludes from his experiments that the neutral axis

of a rectangular girder of cast-iron divides the depth in the pro-

portion of or
-J-
at the time of fracture, that is, that the compressed

section is to the extended section nearly in the inverse proportion

of the compressive to the tensile strength of the material. This

view is corroborated by experiments made by Duhamel,* who found

that sawing through the middle of small timber girders to Jths of

their depth from the upper or compression surface, and inserting a

thin hardwood wedge in the gap, did not diminish their ultimate

strength, and also by similar experiments made by the elder

Barlow, f which seem to indicate that the neutral axis in rectangular

girders of timber is very nearly at fths of the depth, and in rec-

tangular bars of wrought-iron at about Jth of the depth from the

compressed surface at the time of fracture.

Mr. W. H. Barlow, however, controverts Mr. Hodgkinson's

conclusions in two papers which will be found at page 225 of the

Philosophical Transactions for 1855, and at page 463 of the

Transactions for 1857. In the former of these papers Mr. Barlow

gives the results of micrometrical measurements on two cast-iron

rectangular girders, each 7 feet long, 6 inches deep and 2 inches

thick, which he subjected to transverse strain
;
his inference from

these experiments is that the neutral axis does not shift its position,

and this view seems in accordance with experiments made long ago

by Sir D. Brewster who transmitted polarized light through a little

*
Morin, p. 120. f Strength of Materials, pp. 126, 133.



86 GIRDERS OF VARIOUS SECTIONS. [CHAP. IV.

rectangular glass girder 6 inches long, 1'5 inch broad, and O28 inch

thick
; when this was bent by transverse pressure, the neutral surface

remained in the centre, and colours due to strain were developed

above and below it in curved lines, which may perhaps aid the

physicist in investigating the strains in continuous webs.* Unless,

however, the tensile and compressive elasticities of glass are

materially different near the point of rupture, as they are in cast-

iron when approaching its limit of tensile strength, this experi-

ment does not throw much light on the subject. The whole

question, it must be confessed, is one of great difficulty, and may

require numerous experiments before it can be satisfactorily solved.

One practical inference, however, is of great importance, namely, that

the tearing and crushing strengths of materials derived from experi-

ments on the transverse strength of solid girders are often erroneous,

and have even led astray men of such capacity as Tredgold.
133. Transverse strength of thick castings much less

than that of thin castings. In some experiments made by

Captain (now Colonel Sir Henry) James, as a member of the

Royal Commission for inquiring into the application of iron to

railway structures, it was found that the central part of bars of

iron planed was much weaker to bear a transverse strain than bars

cast of the same size.f He states that "it was found by planing

out f-inch bars from the centre of 2-inch square and 3-inch square

bars, that the central portion was little more than half the strength

of that from an inch bar, the relation being as 7 to 12." In page
111 of the same report, Mr. Hodgkinson showed that rectangular

bars of cast-iron, cast 1, 2, and 3 inches square, laid upon supports

4J feet, 9 feet, and 13^ feet asunder, were broken by weights of

447 ft>s., 1394 ft>s., and 3043 Ibs. respectively. These weights,

divided by the squares of the lengths, should give equal results
;
the

quotients, however, were as 447, 349, and 338 respectively. Mr.

Hodgkinson attributed this falling off and deviation from theory

partly to the defect of elasticity, which he had always found in

cast-iron, but principally to the superior hardness of the smaller

castings, t

*
Encycl. Metrop., Art. Light, par. 1090. f Iron Report, 1849, App. B., p. 250.

IPhil. Trans., 1857, p. 867.
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CHAPTEK V.

GIRDERS WITH PARALLEL FLANGES AND WEBS FORMED
OF ISOSCELES BRACING.

133. Object of bracing:. The primary object of bracing is to

convert transverse strains into others which act in the direction of the

length of the material employed and tend either to shorten or extend

it, according as the material performs the function of a strut or tie.

This object is attained by dividing the structure into one or more

triangles ;
for since the triangle, or some modification of it, is the

only geometric figure which possesses the property of preserving its

form unaltered so long as the lengths of its sides remain constant,

it is, therefore, that which is best adapted for structures in which

rigidity is essential for stability. Hence, three pieces at least are

required to constitute a braced structure. Take, for instance, the

common roof truss which is an example of one of the simplest

forms of bracing, Fig. 47. The weight W is transmitted through
47. a pair of struts S and S',

to the walls. As, how-

ever, the oblique thrust of

the struts would tend to

overthrow the walls, it is

necessary to connect their

feet by a tie-beam T.

The strains in the different parts may be derived from the principle

enunciated in 9.

The class of girders which I purpose investigating in this chapter

is that in which the flanges are parallel and connected by diagonals

which form one or more systems of isosceles triangles. This class

of bracing includes girders whose web consists of a single system

of triangles, such as " Warren's" girder, as well as girders whose

web consists of two or more systems of equal-sided triangles, such

as isosceles
" Lattice" girders.
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Definitions,

134. Brace. The term Brace includes both struts and ties.

135. Apex. The intersection of a brace with either flange is

called an Apex.
136. Bay. The portion of a flange between two adjacent apices

is called a Bay.
137. Counterbraced brace. A brace is said to be counterbraced

when it is capable of acting either as a strut or as a tie.

138. Counterbraced girder. A girder is said to be counter-

braced when it is rendered capable of supporting a moving load.

This may be effected either by counterbracing the existing braces,

or by adding others

139. Symbols. The symbol +> placed before a number which

represents a strain, signifies that the strain is compressive; the

symbol , signifies that the strain is tensile.

Axioms.

140. The strain in each brace or bay is uniform throughout its

length and acts in the direction of the length only. This will be

obvious if we consider a braced girder to be an assemblage or

framework of straight bars connected with each other by pins

passing through their extremities merely.

141. A brace cannot undergo tension and compression simul-

taneously.

142. If several weights, acting one at a time, produce in any brace

strains of the same kind, either all tensile or all compressive, the

strain produced by all these weights acting together will equal in

amount the sum of those produced by each weight acting separately.

143. If several weights, acting one at a time, produce in any brace

strains of different kinds, some tensile, some compressive, the strain

resulting from all these weights acting together will equal the algebraic

sum of all the strains; in other words, their resultant will equal the

difference between the sum of the tensile and the sum of the compressive

strains.

144. A uniformly distributed load may without sensible error be

assumed to be grouped into weights resting on the apices, each apex
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supporting a weight equal to the load resting on the adjoining half

bays. This view is evidently correct if each bay be connected with

the adjoining bays and diagonals by a single pin at their intersection,

as in " Warren's" girder. In this case each loaded bay is a short

girder covered by a uniform load, the vertical pressure of which is

transferred to the adjoining diagonals. In addition to the transverse

strain, each bay sustains a longitudinal strain which it transmits to

the adjacent bays, from which, however, it derives no aid to its

transverse strength on the principle of continuity. In practice, the

cross girders, on which the flooring rests, generally occur at the

apices, so that no bay is subject to transverse strain except from its

own weight.

CASE 1. SEMI-GIRDERS LOADED AT THE EXTREMITY.

Fig. 48.

145. Web. Let W = the load at the extremity of the girder,

5 = the strain in any diagonal,

F = the strain in any given bay of eitherflange,

n = the number of diagonals between the

centre of the given bay and the weight,

6 = the angle which the diagonals make with

a vertical line.

The weight W is supported by the first diagonal and the upper

flange, the former sustaining compression, the latter tension. At a

three forces meet and balance
; namely, the weight, the horizontal

tension of the upper flange and the oblique thrust of diagonal 1
;
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their relative amounts may therefore be represented by the sides of

the triangle abc (9). Hence, the tension in the first bay of the

upper flange is to W as ac is to cb, that is, F = Wfcmfl, and the

compression in the first diagonal is to W as ab is to cb, tha.t is,

2 = WsecO. The tension of ad is transmitted throughout the upper

flange to its connexion with the abutment, but the compression in

diagonal 1 is resolved at b into its components in the directions of

diagonal 2 and the lower flange, producing tension in the former and

compression in the latter. Thus, there are three forces in equilibrium

meeting at 6, and their relative amounts may be represented to the

same scale as before by the sides of the triangle edb ; whence, the

tension in diagonal 2 equals the compression in diagonal 1, and

the compression in the first bay of the lower flange equals twice

the tension in the first bay of the upper flange, = 2Wtan6.

In this way it may be shown that all the diagonals are strained

equally, but by forces alternately tensile and compressive, while the

flanges receive at each apex equal increments of strain each equal

to 2WtanO. The general formulae for the strain in any diagonal is

therefore

2 = WsecO (110)

Ex. If 6 = 45, sece = 1'414, and we have 2 = 1'414 W.*

146. Flanges. Since the flanges receive at each apex successive

increments of strain, each equal to 2Wfcm0, the resultant strains

in the successive bays, being the sum of these successive increments,

increase as they approach the abutment in an.arithmetic progression

whose difference = 2WtanO
; they are, therefore, for any given bay

proportional to the number of diagonals between it and the load,

and we have,

F = nWtanO (111)

where n represents the number of diagonals between the centre of

any given bay and the weight (SO).

Ex. In the last bay of the upper flange of Fig. 48, n~7, and if 6 = 45, tanQ = 1,

and we have F = 7W .

* See the table in Chap. xi. for the numerical values of the tangents and secants of

different angles.
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The tension in the last diagonal may be resolved at g into a

vertical force pressing downwards through the abutment, and a hori-

zontal force tending to pull the abutment towards the weight. The

relative amounts of these three forces may be represented by the sides

of the triangle fgh ; whence, the vertical pressure = W, and the

horizontal force = Wfcm0; the latter, added to the tension in the

last bay of the upper flange, gives the total horizontal force exerted

by the upper flange to pull the abutment towards W. It will be

observed that the horizontal thrust of the lower flange against the

abutment is equal and opposite to the pull of the upper flange, so

that they form a couple whose tendency is to overturn the abutment

on its lower edge next the weight.
147. Strains in braced webs may be deduced from the

shearing-strain. When the flanges are parallel and the bracing

consists of a single system of triangulation, the strain in any brace

is equal to the shearing-strain multiplied by seed. Hence, the

strains in the bracing might be deduced from the shearing-strain

in the web calculated in the manner explained in 18. The method

of the resolution of forces just described is, however, better cal-

culated to give a correct perception of the properties of diagonal

bracing, and it has, moreover, the advantage of being applicable to

lattice girders as well as those whose bracing consists of a single

system of triangles.

CASE II. SEMI-GIRDERS LOADED UNIFORMLY.

Fig. 49.
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14 . Web. LetW = the weight of so much of the load as

covers one bay, i.e., the weight resting

on each apex of the loaded flange (144),

n = the number of these weights between

any given diagonal and the outer end

of the girder,

2 = the strain in the given diagonal,

F = the strain in any bay of either flange,

= the angle which the diagonals make with

a vertical line.

W
The weight on the apex farthest from the abutment equals -,

z

since it is assumed to support the load spread over the outer half bay,

while the load spread over the half bay next the abutment is assumed

to rest on the apex in contact with the abutment and may therefore

be neglected. If each weight be supposed acting alone, it would,

as in Case I., produce strains of equal amount, but of opposite kinds,

in each diagonal between its point of application and the abutment,

without 'affecting that part of the girder which lies outside it
;
con-

sequently, when the whole load is applied, each diagonal sustains

the sum of the strains produced by the several weights which occur

between it and the outer end of the girder (835 143) and we have

2 = nWsecO (112)

Ex. The value of n for diagonal 5 is 2| ;
if = 45, sect) = 1*414, and we have

2 = 3-535 W.

149. Strains in intersecting; diagonals. When the apex of

any pair of diagonals supports a weight, W, the strain in that

diagonal which is nearer the abutment exceeds that in the more

remote by W#c0. But when an apex does not support a weight

(those, for instance, in the lower flange of Fig. 49), the strains in

the two diagonals are equal in amount but of opposite kinds.

150. Increments of strain in flanges. In the case of semi-

girders loaded uniformly, the increments of strain at the apices

increase as they approach the wall in an arithmetic ratio whose

difference = 2WtanO, and the resultant strains in each bay conse-

quently increase in a much more rapid ratio, viz., as the square of

their distance from the outer end of the girder (see eq. 11).
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151. Resultant strains in flanges. The resultant strains in

the bays may be represented by equations if desirable. For the

loaded flange,

F =
{
m (m 1) + i }

WtanO (113)

For the unloaded flange,

F = m2Wfcm0 (114)

where m represents the number of the bay measured along its own

flange from the outer end of the girder. These equations are

obtained by summation
;
their proof will afford instructive practice

to the student.

153. General law of strains in horizontal flanges ofbraced

girders. The strains in the flanges may also be derived from the

following law, which is applicable to all braced girders or semi-

girders with horizontal flanges, no matter how loaded, or whether

the bracing be isosceles, or the triangulation be single or lattice.

The increment of strain developed in the flange at any apex is equal to

the algebraic sum (i.e., the resultant,) of the horizontal components of

the strains in the intersecting diagonals. Keeping this in our recol-

lection, we may readily exhibit on a rough diagram first, the strains

in the diagonals; secondly, their horizontal components at. the

apices ;
and lastly, the successive sums of these components, that

is, the total strains in the several bays of each flange.

Ex. Let Fig. 50 represent such a diagram, the load being on the upper flange.

Let W = 10 tons,

e = 30,

SecO = 1-154,

Tan0 = 0-577.

Fig. 50.
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The horizontal numbers attached to the diagonals are the coefficients n in eq. 112 ;

these multiplied by Wsecfl give the strains in each diagonal (see the numbers written

alongside). The horizontal numbers at each apex are obtained by adding the coefficients

of the two intersecting diagonals, and when multiplied by Wtan6 give the horizontal

components of the strains in the diagonals, i.e., the increments of flange-strain at each

apex (see the vertical numbers at each apex). Finally, the successive additions of these

increments give the resultant strains in each bay (see the vertical numbers at the

centre of each bay). These may be checked by eqs. 113 and 114
; thus, in the 3rd bay

of the upper flange, F = (3X2 + )X10X '577 = 37'5 tons, which differs merely in

the decimals from the number obtained by the diagram.

153. Lattice web has no theoretic advantage over a single

system Practical advantage of lattice web JLong pillars.

If two or more systems of triangulation be substituted for the single

system just described, we have a lattice girder; and here I may
remark that lattice bracing has no theoretic advantage over a single

system of triangulation ;
its advantages are entirely of a practical

nature, consisting in the frequent support which the tension diago-

nals give to those in compression, and which both afford the flanges.

Long pillars are serious practical difficulties, owing to their tendency
Fi. 51- to flexure, and lattice tension bars subdivide the struts,

which would otherwise be long unsupported pillars, into

a series of shorter pillars and hold them in the direction

ofthe line of thrust. That this does not injuriously affect

the tension diagonals will be evident, when we reflect that

the longitudinal strain produced in a tension diagonal by
the deflection of a strut crossing it at right angles, in

the plane of the girder, bears the same ratio to the weight

on the strut, as twice the versine of the deflection curve

bears to the length of the half strut an amount quite

inappreciable in practice. If, for instance, a strut adc,

Fig. 51, be ten feet long, and if its central deflection under

strain, bd, equal half-an-inch (an amount much greater

than occurs in practice), the transverse force in the

direction of bd, which will sustain the thrust due to deflection, is to

the longitudinal pressure as -=-
,
that is, it is only ^th of the

weight passing through the pillar ;
so that in most cases a stout

wire in tension would be sufficiently strong to keep the pillar from
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deflecting in the plane of the girder. Again, if the force requisite

to resist the tendency of a strut to deflect at right angles to the plane

of the girder were supplied altogether by a tension brace, the longi-

tudinal strain in that brace would equal the weight on the strut, but

it does not follow that this strain is developed in the tension brace.

In fact, the force with which the ends of the tension brace are pulled

asunder is practically independent of the strut, for the increase in

the strain on the tension brace is only due to the difference between

the lengths be and dc. These considerations show that a mode-

rate lateral force will keep a long pillar from bending, and the

apprehension of long compression bars yielding by flexure in the

plane of the girder, or producing undue strains in the tension bars,

need not deter us from applying lattice bracing to girders exceeding

in length any girder bridge hitherto constructed. They also

explain the otherwise anomalous strength and rigidity of plate

girders and lattice girders whose webs are formed merely of thin

plates or thin bars. Such modes of construction are, however,

more or less defective. The struts should be formed of angle, ~|~>

or channel iron, or the material should be thrown into some other

form than that of a thin bar, which is quite unsuitable for resisting

flexure at right angles to the plane of the web. A very effective

method of stiffening thin compression bars has been applied to

tubular lattice girders. It consists of a species of light internal

cross-bracing between the opposite compression bars of the double

web
;

this stiffens them at right angles to the plane of the web,

while the tension braces keep them from deflecting in the plane of

the web (see Plate IV.)

154. multiple and single triangulation compared Lattice

semi-girders loaded uniformly. The effect of latticing, com-

pared with a single system of triangulation, is, as far as theory is

concerned, merely to distribute the load over a greater number of

apices, and consequently to reduce the strain in each of the original

diagonals in proportion to the increased number of systems ; for,

since the several systems are, as we have just seen, practically inde-

pendent of each other, each diagonal sustains the strain due to those

weights alone which are supported on the apices of the system to
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which it belongs. Eq. 112 will, therefore, give the strain in any
brace of a lattice semi-girder loaded uniformly, observing that the

coefficient n will now express the number of those weights alone

which are supported by that system to which the brace in question

belongs, and which occur between it and the outer end of the semi-

girder. The strains in the flanges of a lattice semi-girder increase

less abruptly than when one system of triangulation is adopted, and

are most conveniently obtained by a diagram similar to Fig. 50.

155. Girder balanced on a pier. The case ofa girder balanced

midway on a pier is obviously included in the preceding cases, since

each segment is a semi-girder.

CASE III. GIRDERS SUPPORTED AT BOTH ENDS AND LOADED
AT AN INTERMEDIATE POINT.

Fig. 52.

156. Web. LetW = the weight, dividing the girder into seg-

ments containing respectively m and n

bays,

I = m + n = the number of bays in the span,

S = the strain in any diagonal,

F = the strain in any bay of either flange,

= the angle which the diagonals make with

a vertical line,

x =. the number of diagonals between any

bay and either abutment, measured from

the centre of the bay.
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On the principle of the lever (1O), the reaction of the right

abutment = yW, and that of the left abutment =
y
W. Since the

flanges are capable of transmitting strains in the direction of

their length only (14O), they cannot transfer vertical pressures

to the abutments
;

~W must therefore be transmitted through the

diagonals on the right side of W to the right abutment, while

j
W pass through the diagonals on the left side of W to the left

abutment. These quantities are in fact the shearing-strains

described in 34, that is, they are the vertical components of the

strains in the diagonals of each segment. The actual strain in any

diagonal is to its vertical component as the length of the diagonal

is to the depth of the girder, or, calling the angle of inclination of

a diagonal to a vertical line 6, we have the strain in each diagonal

in the right segment,

2=^Wwc0 (115)

in the left segment,

(116)

The diagonals which intersect at the weight are both subject to the

same kind of strain, while the strains in the diagonals ofeach segment

are alternately tensile and compressive. If the weight be at the

centre of the girder all the diagonals will be equally strained.

157. Flanges. The tensile strain in the second diagonal, cd,

is resolved at c into its components in the directions of the top

flange and the first diagonal. The former =
-jWtanO,

and is

transmitted throughout the flange" as far as W, receiving at the

intervening apices successive increments of strain each equal to

Wtand. At W these horizontal strains are met and balanced by

a similar series of horizontal increments developed at each apex to

the right ofW and acting in the opposite direction to the first series.

The strains in the lower flange may be found in a similar manner,
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for the thrust of the first diagonal, ac, is resolved at a into a vertical

pressure on the abutment, = yW, and a horizontal tensile strain

in the lower flange which acts as a tie. As these three forces which

meet at a balance, their relative amounts may be represented by the

sides of the dotted triangle abc; hence, the horizontal strain in

the first bay of the lower flange =r
jWtanO, which is transmitted

throughout the flange as far as the bay underneath W, receiving

at each intervening apex successive increments each equal to

-^NtanQ.
Beneath W these strains are met and balanced by the

reverse series generated at the several apices in the right segment.

The resultant strain in any bay of either flange equals the sum

of the increments generated at the several apices between it

and the abutment of the segment in which it occurs. If the bay

be in the right segment and x be measured from the right abutment,

F = \NtanQ (lit)

If the bay be in the left segment and x be measured from the left

abutment,

F = \NtanQ (118)

The maximum strains in the flanges occur atW and are represented

by the equation

F = ~pWto0 (119)

Ex. See Fig. 52.

Let 6 = 30,

1 = 8,

m = 5-5,

n = 2*5,

seed = 1154,

tanO = 0-577.

From eqs. 115 and 116, the strains in each diagonal of the right segment = 0*7934 W,
and those in each diagonal of the left segment = 0*3606 W. From eq. 118 the coin-

pressive strain in bay A = 1*4425 W, and the tensile strain in bay B = 1*9834 W.

158. Concentrated rolling: load. If the weight be a rolling



CHAP. V.] AND WEBS OF ISOSCELES BRACING. 99

load, the strains in the diagonals will vary according to its position,

changing from tension to compression and vice versa, as it passes each

apex (37). If the upper flange supports the load, the maximum

compression in any diagonal occurs when the weight is passing its

upper extremity, and the maximum tension when passing the adjoin-

ing apex at that side to which the diagonal slopes downwards. If

the lower flange supports the load, the maximum tensile strain in

any diagonal occurs when the weight is passing its lower end, and

the maximum compressive strain when passing the adjoining apex

on that side to which the diagonal slopes upwards. The maximum

strain in any bay of the unloaded flange occurs when the moving
load is in the vertical line passing through that bay, as may be seen

from eqs. 117 or 118, for mx and nx are at their maximum when

they become mn (38). The maximum strain in any bay of the

loaded flange occurs when the passing load rests on the adjoining

apex on the side next the centre, for the product mn, in eq. 119, is

greater for this apex than for the adjoining apex on the side remote

from the centre.

159. Lattice girder traversed by a single load. In this

case the strains in the diagonals may be calculated by eqs. 115

and 116, for the reasoning by which these equations were deduced

is equally applicable to lattice girders. It will also be observed

that only one system of triangulation is strained at a time, i.e.,

supposing the load to rest on a single apex, which, however, is

seldom the case, as generally two or more adjacent apices are

loaded together.

CASE IV. GIRDERS SUPPORTED AT BOTH ENDS AND LOADED
UNIFORMLY.

Fig 53.



100 GIRDERS WITH PARALLEL FLANGES [CHAP. V-

160. Web. Let W = the weight of so much of the load as

covers one bay, i.e., the weight resting

on each apex of the loaded flange,

/ = the number of bays in the span,

n = the numberof weightsbetween any given

diagonal and the centre of the girder,

2 = the strain in the given diagonal,

F = the strain in any bay of either flange,

= the angle which the diagonals make

with a vertical line.

If the load be uniformly distributed so that an equal weight rests

upon each apex, the strains in the diagonals gradually increase from

the centre toward the ends. Any two diagonals equally distant

from the centre sustain all the intermediate load. If they are tension

diagonals, the weight is suspended as it were between them; if

they are compression diagonals it is supported by them as oblique

props. Each diagonal conveys, therefore, to the abutment the pres-

sure of the weights between it and the centre, and the sum of these

weights constitutes its vertical component or shearing-strain (46).

Hence, we have for a uniform load,

S = n\NsecQ (120)

161. Flange-strains derived from a diagram. The strain

in the flanges may be derived from the law stated in 158 by the

aid of a rough diagram, as explained in the following example :

Ex. 1. Let Fig. 54 represent one-half of a girder 80 feet long, with the bracing

formed of 8 equilateral triangles, and supporting a uniform load of half a ton per

running foot. From these data we have

W = 5 tons,

= 30,

1 = 8,

tan6 = 0-577,

sec9= 1-154,

Wton0 = 2-885tons,

Wsec0 = 5-770 tons.
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Fig. 54.

The horizontal numbers attached to the diagonals are the coefficients n, in eq. 120;

these, multiplied by Wsecfl, give the strains in the several diagonals (see the numbers

written alongside them). The horizontal numbers at each apex are the sums of the

coefficients attached to the intersecting diagonals ;
these multiplied by Wtand give the

horizontal components of the strains in the diagonals, that is, the increments of flange-

strain at each apex (see the numbers written in a vertical direction at each apex).

Finally, the successive additions of these increments give the resultant strains in the

flanges (see the numbers written in a vertical direction at the centre of each bay).

Ex. 2. Let Fig. 53 represent a girder 80 feet long, with the bracing formed of 8

right-angled triangles, and supporting a uniform load of half a ton per running foot.

Here W = 5 tons,

6 = 45,

l=S,
tan0 = 1,

sec0=l-414,

\NtanQ = 5 tons,

Wsecfl = 7-07 tons.

The strains in tons are as follows :

DIAGONALS,
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would produce if acting separately, and then taking as the resultant

strain from all acting together the sum or difference of the tabu-

lated strains, according as they are of the same or opposite kinds.

Thus, diagonal 4, Fig. 53, is subject to compressive strains from all

the weights except the first
;
the resultant strain is therefore found

by subtracting the tensile strain produced by the first weight from

the sum of the compressive strains produced by the remaining six

weights (143). This method, as applied to the first example in 161,

is exhibited in the annexed table, the numerals in the first column

of which represent the diagonals, and the letters in the upper row

the weights, in order of position. The numbers found at the inter-

section of a diagonal with a weight represent in tons the strain

produced in that diagonal by the weight in question (see eq. 115).

The last column contains the strains which the load produces when

distributed uniformly all over. These are obtained by adding

algebraically the several horizontal rows, and the strains thus

obtained should agree with those derived from eq. 120.

1
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conveniently found by the aid of a rough diagram, as already

described in 161.

164. Strains in flanges calculated by moments. The strains

in any given bay may also be obtained by taking moments round

the apex immediately above or below it. To obtain the strain in

bay C, Fig. 53, for example, take moments round the apex a. The

left segment of the girder is held in equilibrium by the reaction of

the left abutment (= 17'5 tons), the two first weights, Wj andW2 ,

the horizontal tension in C, and the strains at a. Taking moments

round the latter point, we have

Fd = 17-5 X '2-5b 5(1-5 + 0-5)6,

where F = the strain in the flange at C,

b =. the length of one bay,

d = the depth of the girder.

If = 45, b = 2d, and we have F = G7'5 tons, as in ex. 2, (161).

This method is, it will be perceived, merely a modification of

that described in 43. It is sometimes convenient for checking

results obtained by the resolution of forces.

165. tcirder loaded unsymmetrically. If the load be distri-

buted in an unsymmetrical manner, the strains produced by each

weight acting separately should first be tabulated, and then the

resultant strains may be obtained as indicated in 163.

166. ftJirder loaded symmetrically. If the central part of a

symmetrically loaded girder be free from load, the central braces

may be removed without affecting the strength of the structure.

If, for example, the girder represented in Fig. 53 support only

W
lf
W

2 ,
W6 ,
W

7 ,
the' braces in the interval, 5, 6, 7, 8, S', V, 6',

5 ;

, may be removed. If the central weight alone be wanting, then

braces 7, 8, 8', 7', may be removed.

167. Strains in end diagonals and bays. When the load is

symmetrical, each of the end diagonals sustains a strain equal to

one-half the load multiplied by secO, and the extreme bays of the

longer flange sustain a strain equal to one-half the load multiplied

by tanO. Consequently, when 9 = 45, the strain in each of these

extreme bays equals half the load.

16. Strains in intersecting diagonals General law of
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strains in intersecting: diagonals of isosceles bracing: \\lth

parallel flanges. When two diagonals intersect at a loaded

apex of a girder loaded uniformly, the strain in that diagonal

which is more remote from the centre exceeds that in the other

by WsecQ. The following law is applicable to all girders with

parallel flanges and isosceles bracing whether single or lattice;

when two diagonals intersect at an unloaded apex, no matter how the

load may be distributed, the strains in the two diagonals are equal in

amount, but of opposite kinds.

CASE V. GIRDERS SUPPORTED AT BOTH ENDS AND TRAVERSED
BY A TRAIN OF UNIFORM DENSITY.

Fig. 55.

169. Web. Let W = the weight of so much of the uniformly

distributed load as covers one bay,

i.e., the permanent load resting on

each apex,

W' = the weight of so much of the passing

load as covers one bay, i.e., the passing

weight on each apex,

I = the number of bays in the span,

n = the number of apices loaded by the

passing load between any given dia-

gonal and either abutment,

2 = the strain in the given diagonal due to

the permanent load,

2' = the maximum strain inthe given diagonal
due to the passing load,

= the angle the diagonals make with a

vertical line.
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The strains in the diagonals vary according to the position of

the passing train, not only in amount, but also in kind. If, for

instance, W t
alone rests upon the girder, diagonal 4 is subject

to tension. If now W2
be added, its tendency will be to produce

compression in diagonal 4, that is, a strain of an opposite kind

to that produced by W 1?
and the true strain which this diagonal

sustains, when both weights rest upon the girder, is equal to the

difference of the strains produced by each weight acting separately

(143). The third, fourth, fifth, sixth, and seventh weights tend

to increase the compression in diagonal 4, while the first weight

alone tends to produce tension. Consequently, the maximum

compression in this diagonal takes place when all the weights

except the first rest upon the girder, and the maximum tension

occurs when all the weights are removed except the first. The

same result may be arrived at in any particular case by means

of a table of strains, such as that in 168, where we find at the

intersection of diagonal 4 and Wu that this weight produces a

tension of O7 tons in the diagonal, while each of the remaining

weights produces compression. When all the weights rest upon
the girder, the first and last produce no effect on diagonal 4, since

the strains due to these weights are equal and have opposite signs.

In fact, these weights are supported exclusively by the flanges and

the last pair of diagonals at each end, and, as far as they alone are

concerned, all the intermediate diagonals might be omitted. If,

however, W x
be removed, the eighth part of W

7
is transmitted to

the left abutment, and consequently increases the compression in

diagonal 4 by the strain found in the table at the intersection of

W
7
and 4. If, on the other hand, W7

be removed, the eighth part

of Wj is transmitted to the right abutment, diminishing the com-

pression in diagonal 4 by the strain found at the intersection of Wj
and 4. In a similar manner we find from the table that any other

diagonal, 7 for instance, sustains the greatest amount of compression

when the first, second, and third weights alone rest upon the girder,

and the greatest tension when these are removed and the other

weights remain.

17O. maximum strains in web Strains in intersecting:
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diagonals. The maximum strain in any diagonal occurs when the

passing train covers only one segment (51) ;
and in general terms, the

maximum tensile strain in any diagonal occurs when the passing train

covers the segment from which the diagonal slopes upwards, and the

maximum compressive strain when it covers the segment towards which

the diagonal slopes upwards. When a pair of diagonals meet at the

unloaded flange, the strains in the two diagonals are equal in amount

but of opposite kinds, and the maximum tensile strain in one is equal

to the maximum compressive strain in the other, and vice versa (168).

171. Permanent load Absolute maximum strains. In all

the foregoing investigations the weight of the girder and roadway
has been left out of consideration, but in practice the perma-

nent load materially modifies the strains, especially in bridges of

large span where the ratio of the permanent to the passing load

is considerable. If the supported load be uniformly distributed,

its weight may be added to that of the structure, provided the

latter be also uniform, and the calculations made for their com-

bined weights as already explained for uniform loads. But when

the load moves, the strains in the bracing produced by the weight

of the permanent structure will be increased or diminished, or

even a strain of an opposite kind produced, according to the

position of the passing load. In order to obtain the absolute

maximum strains to which the bracing is liable under these cir-

cumstances, we must calculate first, the strains produced by the

permanent structure alone, and afterwards the maximum strains,

both tensile and compressive, due to the passing load alone. These

latter, when added to, or subtracted from, the strains produced by
the permanent load, according as they are of the same or opposite

kinds, will give the absolute maximum strains to which each brace

is liable in any position of the passing load.

178. Web, first method. Perhaps the simplest method of

obtaining the strains in the diagonals from a passing train is by

forming a table of strains produced by each weight acting sepa-

rately, as in 163. Then adding, first the tensile, and afterwards

the compressive, strains in each horizontal row, we obtain the

required maximum strains of each kind.
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Ex. The following example of a girder of eight bays will illustrate this method of

calculating the absolute maximum strains when the bridge is traversed by a load of

uniform density whose length is not less than the span. Let Fig. 55 represent a railway

girder, 80 feet long and 5 feet deep, the bracing of which is formed of 8 right-angled

isosceles triangles, with, the roadway attached to the upper flange. Let the permanent

bridge-load equal half a ton per running foot, and the greatest passing train of uniform

density equal one ton per foot
;
we then have

W = 5 tons from the permanent load,

W = 10 tons from the passing train,

l = S,

0=45
tanO = 1,

sec0 = l-414,

W*ec0 = 7-07 tons,

W
-y-sec0

= 177 tons,

(W + W) tanB = 15 tons.

S*
ga
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In owe example this occurs when the girder supports a uniformly distributed load of

1'5 tons per running foot, equivalent to 15 tons at each apex. The strains in the

several bays are given in the following table ; they are obtained by the aid of a diagram,

as described in 161.

Bays,
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Fig. 56.

From eq. 115 the strain in any diagonal from the passing

weight at W
The 1st apex = secO,

i

W
2nd apex =' 2 S- secO,

i

W
3rd apex = 3 ~

W'
nth apex n secQ,

where n represents the number of loaded apices between the

diagonal and one abutment. The maximum strain is equal to the

sum of these separate strains ; hence,

S' = (1 + 2 + 3 + . . . n) ^-sec6,

or by summation,

_n(n + 1) W'
(121)

Class B.

Girders in which the extreme apices of the loaded flange are

each distant one half-bay from the abutment, as in Fig. 57.

Fig. 57.
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The strain in any diagonal from the passing weight at

W'
The 1st apex = _ sect),

W
2nd apex = 3

y- secO,
1

W'
3rd apex = 5 -^

W y

nth apex = (2n 1)

Adding these together, we have the strain due to the passing load,

2' =

or by summation,

2' = (1 + 3 + 5 + 2w 1)
__

-w 2 W
S' = yX^-. (122)

Eq. 122 proves that the strains in the diagonals produced by a

passing load are proportional to the square of the loaded segment

(50).

Ex. The following example of a girder of 8 bays with equilateral triangles, belong-

ing to Class A, will illustrate this method of calculating the maximum strains produced

by a passing train of uniform density sufficiently long to extend over the whole bridge.

Let the girder be 80 feet long, the permanent load 0'5 tons per running foot, and the

passing load of greatest density (say engines) one ton per foot ; we then have, using the

same notation as before,

W = 5 tons from the permanent load,W = 10 tons from the passing train,

1 = 8,

6 = 30,

tan0 = 0-5773,

sec6 = 1-154,

Wscc = 5-77 tons

W
sece = 1-442 tons

(W+W') tone = 8 -66 tons.
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Diagonals
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in the bracing of lattice girders. Calculate the strains on the supposi-

tion that there is only one system of triangles. These divided by the

number of systems will give the strains in the corresponding lattice dia-

gonals. As, however, more exact methods of calculation are of easy

application, they are preferable to a rulewhich is merely approximate.

178. Web Flanges. In the case of a uniform load the strains

in the bracing may be calculated by eq. 120, observing that the

Fig. 58.

coefficient n will represent in a lattice girder the number of those

weights which occur between any given diagonal and the centre

of the girder, and which rest only on the apices belonging to

its own system of triangulation. This assumes that the strains

from weights belonging to different systems, but at equal distances

on opposite sides of the centre, such as W5 and Wn in Fig. 58,

do not pass through the intermediate diagonals, but merely through
the flanges and those diagonals of their respective systems which

occur between them and the abutments. This is the simplest way
of calculating the strains due to a uniform load, but they may also

be calculated for each system separately (163), in which case the

strains in the diagonals will differ somewhat from those obtained by
the first method. The strains in the flanges are most conveniently

obtained by the aid of a diagram of strains (161).

Ex. The following example of a lattice girder, 80 feet long and 10 feet deep, with

four systems of right-angled triangles, i.e., 16 bays, will illustrate the mode of calcula-

tion (see Fig. 58). If the uniform load equal half a ton per running foot, we have,

W = 2'5 tons = the weight on each apex,

6 = 45,

Wm-0 = 3-535 tons,

W tand = 2'5 tons,

n = the number of weights belonging to its own system
between any given diagonal and the centre of the girder.



CHAP. V.] AND WEBS OF ISOSCELES BRACING.

Fig. 59.

113

The numbers attached to the diagonals in the preceding diagram of strains are the

coefficients n, in eq. 120
; these multiplied by Wsecfl give the strains in the diagonals,

as in the following table, the upper row of which represents the diagonals in order of

position (see Fig. 58), and the lower row the corresponding strains in tons :

Diagonals.
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Ex. The following example of a lattice girder, 80 feet long and 10 feet deep, with

4 systems of right angled triangles, will illustrate this method (see Fig. 60) :

Fig. 60.

Let the permanent bridge-load equal half a ton per running foot and the passing

train equal one ton per running foot. From these data we have,

W = 2'5 tons at each apex from the permanent load,

W = 5'0 tons at each apex from the passing train,

I = 16 = the number of bays in the span,

= 45,

Wscc0= 3-535 tons,

disced = 0-442 tons,

W
tan0 = 0-47 tons.

The upper row in the table on p. 115 represents the passing weights, and the first

column represents the diagonals. The next fifteen columns contain the strains pro-

duced in the diagonals by each weight acting separately ;
these are derived from eqs.

115 and 116. The next two columns, marked C' and T', contain the maximum strains

of compression and tension produced by the passing load
;
these are obtained by adding

the strains of compression and tension in each row separately. The column headed 5

contains the strains produced by the permanent load ; it is copied from the previous

example in 138. Finally, the last two columns, marked C and T, contain the

absolute maximum strains which the combined passing and permanent loads can

produce ;
these are obtained by adding column 2 to columns C' and T' successively.

From this table it appears that diagonals 9, 10, and 11 are subject to both com-

pression and tension
; consequently, the six central diagonals require counterbracing.

The maximum strains in the flanges occur when the passing load extends uniformly

over the whole girder (53) ; they may be obtained by means of a diagram of strains

as explained in 178. In this example the flange-strains are three times greater than

in the example in 1J8, for the passing load per running foot equals twice the per-

manent load.

18O. End pillars. The end pillars of lattice girders are some-

times subject to transverse strain from the horizontal components
of the diagonals which intersect them midway between the flanges.

This transverse strain is, however, of slight amount, as it is merely
a differential quantity, being due to the excess of the strain in the



CHAP. V.] AND WEBS OF ISOSCELES BRACING. 115



116 GIRDERS WITH PARALLEL FLANGES [CHAP. V.

tension diagonals over those in compression, or vice versa. In

Fig. 60, for example, the vertical component of the diagonals

meeting at c is transmitted through the lower half of the pillar to

the abutment in addition to any pressure which it may receive

from the upper half. Their horizontal component, however, tends

to deflect the pillar outwards or inwards, according as the strain

in the compression or tension diagonal is in excess, and this trans-

verse strain converts the pillar into a vertical girder whose abutments

are the flanges. This excess does not attain its greatest value

when the girder is uniformly loaded
;
for since the load is on the

upper flange, the tension in diagonal IT equals the compression in

diagonal 3, and, on examining the preceding table, we find that the

greatest excess of strain in diagonal 1 over that in diagonal 3 occurs

when all the apices of the system to which the former diagonal

belongs are loaded, while those of the latter are free from load.

This of course is a condition of load which is very unlikely to occur

in practice, but it is quite possible that passing weights may rest

on two apices of the first system, say Wj andW5 ,
while the apices

belonging to the other system are free from load. This might

occur, for instance, if a pair of engines or heavy wagons were

to cross with a proper interval between them. If this were

to occur in our example, the horizontal component of the strain

in diagonal 1 would = O 5 + H) W/
tan fl = g-1 tons. The pillars

ought accordingly to be designed with adequate strength to meet

such transverse strains, as well as those of compression in the

direction of their length.

181. Ambiguity respecting strains in lattice bracing.
When a lattice girder contains three or more systems of triangles, a

slight ambiguity may occur respecting the strains if the load be dis-

posed on both sides of the centre. Take for example W7
and W9 ,

Fig. 60, which belong to different systems, but rest on apices equally
distant from the centre

; the whole of W
7 may be transmitted to

the left abutment through diagonals 7, 13', 3 and 17', and the

whole ofW
9 to the right abutment through diagonals 7', 13, 3' and

17, without producing strains in the other diagonals of either
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system, which indeed might be safely removed as far as these

weights are concerned. The method of calculation described in

178 assumes this to be the case. But again, y^ths of W
7 may

be transmitted to the right abutment, and -^ths to the left, through
the diagonals of its own system, and similarly withW

9 (1O). This

is assumed to be the case for the passing load in the example in 179.

Hence, there is a slight ambiguity respecting the strains, asthey may
go in either way, or partly in one, partly in the other, just as it is

impossible to say how much pressure is transmitted through any
one leg of a four-legged table. If, however, the girder be strong

enough to sustain the strain in whichever way it can be conveyed the

safety of the structure is secured, and practically there is a very

slight difference in the resulting strains whichever method of calcu-

lation is adopted. It may be thought that the "
principle of least

action" will necessarily determine the direction of the strains, i.e.,

that they will take that direction in which the work done is a mini-

mum
; practically, however, a slight inaccuracy in the exact length

of the bars will doubtless determine the direction they will take. It

ought also to be admitted that a structure will stand as long as it

has not exhausted the whole of its possible conditions of stability,

and it is therefore sufficient assurance that any structure will stand

if we prove that a certain state of stability can be realised.

188. Flange-strains calculated by moments. When cal-

culating the strain in any bay of a lattice girder by the method

of moments (164), we must not neglect the moments of the strains

in the diagonals. That part of the girder represented in Fig. 60,

for instance, which is to the left of a line drawn through bays a and b,

is held in equilibrium by the reaction of the leftabutment, the weights

Wj, W2 ,
and W

3 ,
the horizontal forces at a and b, and the oblique

forces in diagonals 4, 5, 13' and 14'. The moments of the former

pair of diagonals are opposed to those of the latter pair, but they

seldom balance exactly. Hence, the strains in two bays vertically

over each other are rarely precisely the same in value, but differ by
an amount equal to the horizontal component of the strains in the

diagonals which are intersected by a line joining them ; this, indeed,

is true whether the bays lie vertically over each other or not, and
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is merely a modification of the law stated in 58. Again, it would

be erroneous to expect that the strains in the bays of braced

girders when uniformly loaded must necessarily agree precisely

with those obtained by eqs. 23 or 25. In some cases it happens

that they do so agree, but in general they are only close approxima-

tions. This arises from our assuming that the load in braced girders

is concentrated at the apices, in place of being uniformly distributed.

In Fig. 60, for instance, the load on the extreme half-bays is assumed

to rest directly over the pillars, while that on the two central half-bays

is assumed to rest exactly on the central apex ; consequently, these

portions of the load are neglected in calculating the central strains

in the flanges by the method of moments. If, however, the moments

be calculated on the supposition that these loads act at their centres

of gravity, i.e., at a distance from the pillars equal to a quarter-bay,

and at a distance from the centre also equal to a quarter-bay, the

strain at the centre will agree with that obtained by eq. 25.

183. Web3 second method. The strains in the bracing of

lattice girders subject to passing loads of uniform density may be

expressed by an equation obtained in the following manner :

LetW the passing weight on each apex,

I = the number of bays in the span (= 16 in Fig. 61),

k = the number of systems of triangles, i.e., the number

of bays in the base of one of the primary triangles

(= 6 in Fig. 61),

2' = the maximum strain which any given diagonal sustains

from the passing load,

n = the number of bays between the given diagonal and

one of the abutments, measured along the loaded

flange,

p = the integral number of times that its own system

occurs between the given diagonal and the same

abutment, measured also along the loaded flange

(= the integral part of^),
iC

6 =. the angle which the diagonals make with a vertical

line.
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Fig. 61.

Suppose the load traversing the upper flange of Fig. 61
; diagonal a

sustains the maximum compressive strain when W3 and W9 rest

upon the girder, and in general, each brace will sustain the maxi-

mum strain when the passing load covers only one segment which

segment may be easily seen by inspection (17O) but the strain it

sustains is due to those weights alone which rest on the apices of its

own system. If, for example, there are n bays between the top of

diagonal a and the left abutment, then, on the principle of the lever,

the portion of W9 which is transmitted to the right abutment

through a = jW1
; and of W3

=
~

W. The maximum com-

pressive strain in diagonal a is equal to the sum of these quantities_
multiplied by secO, and equals (n + n

k)-j-secO ;
and in general,

the maximum strain in any given diagonal due to the passing load,_ _ _ _W
S' = (n + n k + n 2k + n 3k + . . . . n

pk)-j-secO,

or summing these up,

(123)

The maximum tension man the maximum compression in b (17O),

and 2' will represent compressive or tensile strains according as the

load traverses the upper or lower flange.

Ex. Let Fig. 62 represent a lattice girder 80 feet long and 5 feet deep, whose

bracing consists of two systems of right angled triangles with the load traversing the

upper flange.
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Fig. 62.

Let the permanent bridge-load equal half a ton per running foot, and the heaviest

passing train of uniform density equal one ton per foot. Then we have,

W = 2'5 tons at each apex from the permanent load,

W = 5 tons at each apex from the passing train,

a = 45,

Wsece = 3-54 tons,

sec6 = 0'44 tons,

an6 = 7*5 tons.

The strains in tons are given in the following table, the numbers in the first column

of which represent the diagonals in Fig. 62. The 2nd, 3rd, and 4th columns are the

coefficients in eq. 123, from which the maximum strains produced by the passing

load, columns C' and T', are derived. The strains produced by the permanent

bridge-load (column 2) are obtained from eq. 120, observing that the coefficient

n in that equation now represents the number of weights belonging to its own system

which occur between any given diagonal and the centre of the girder (158). The

last two columns, C and T, give the absolute maximum strains due to both permanent

and passing loads
; these are obtained by adding columns C' and T' successively to

column 2.

Diagonals.
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The maximum strains in the flanges occur when the passing load covers the whole

girder. They are most conveniently obtained by the aid of a diagram, as described in

1 98, and are given in the following table, the letters in the upper rows of which refer

to the bays in Fig. 62. The figures in the lower row represent the strains in tons.

Bays,
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CHAPTER VI.

GIRDERS WITH PARALLEL FLANGES CONNECTED BY VERTICAL

AND DIAGONAL BRACING.

184. Introductory. In the preceding chapter our attention

was confined to that form of braced web which consists of isosceles

triangles. There is, however, another class of bracing in common
use which consists of right-angled triangles, the braces being alter-

nately vertical and oblique. Besides its employment in the webs

of girders, this species of bracing is extensively used in scaffolding

and for stiffening the platforms of suspension bridges, but more

especially for horizontal cross-bracing between the flanges of large

girder bridges, so as to strengthen them against side pressure,

whether arising from the wind or other sources. The ordinary

form of plate girder is, as will be shown hereafter, a modification

of this form of bracing. Since the verticals may act as struts, and

the diagonals as ties, or vice versa, each of the following cases might
be subdivided

; this, however, is unnecessary, as in each case it will

be evident on inspection whether any given brace is designed to

act as a strut or a tie.

CASE I. GIRDERS SUPPORTED AT BOTH ENDS AND LOADED AT

AN INTERMEDIATE POINT.

Fig. 63.
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185. Let W = the weight, dividing the girder into segments

containing respectively ra and n bays,

I = m + n = the number of bays in the span,

= the angle between the diagonal and vertical

braces,

2 = the strain in a diagonal brace,

2' = the strain in a vertical brace.

On the principle of the lever,
-j
W is transmitted to the right

abutment through the bracing of the right segment (1O). Hence,

the strain in each vertical of the right segment,

2' = W (124)

Similarly in the left segment,

2' = **W (125)

These strains in the verticals are identical with the shearing-

strain of 34. The strains in the diagonals are the same as in Case

III. of the preceding chapter, that is, they equal the foregoing strains

in the verticals multiplied by secO (see eqs. 115 and 116). The

strains in the flanges may be found by the aid of a rough diagram of

coefficients in the diagonals (153), or more simply, by adding the

m
successive increments at the apices, each of which is equal to \NtanO

77

or
-j
WtanO, according as the apex lies to the right or left of W.

186. Single moving- load. If the load move, the girder

must be counterbraced (138); this may be effected either by

counterbracing the existing braces, or by adding a second series of

diagonals. In the latter case there will always be certain braces

not acting when the load is in any given position ; thus, when the

weight rests as represented in Fig. 63, and the verticals are in

compression, the dotted diagonals are free from strain.

187. Trussed beam. The trussed beam of the gantry or

travelling crane, Fig. 64, is a familiar example of vertical and

diagonal bracing. It is, however, seldom counterbraced by the
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Fig. 64.

dotted diagonals ; hence, when the weight rests on a, the tension rod

cde tends to straighten itself and thrust b upwards. This is counter-

acted by the stiffness of the horizontal beam, abe, which is generally

formed of a whole balk of timber. Fig. 64 when counterbraced is

a simple form of girder for small bridges.*

CASE II. GIRDERS SUPPORTED AT BOTH ENDS AND LOADED

UNIFORMLY.

Fig. 65.

188. By reasoning similar to that used in Case IV. of the preced-

ing chapter, it may be shown that each brace sustains a strain which

is due to all the weights between it and the centre of the girder.

Let W = the weight resting on each apex,

n = the number of weights between any given brace and

the centre of the girder,

= the angle between the diagonal and vertical braces,

2 = the strain in a diagonal,

2' = the strain in a vertical.

* The railway bridge over the Wye, near Chepstow, erected by the late Mr. Brunei,

is an example of this truss on a gigantic style. (See Clark on the Tubular Bridges,

p. 101). The road, however, is attached to the lower flange, but in small bridges it is

usual to place the truss upwards, like Fig. 64 inverted, for this arrangement leaves

greater headway beneath, and as the truss forms part of the hand-rail, it answers a

double purpose.
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The strain in each vertical equals the shearing-strain of 46, that is,

S' = nW (126)

The strain in each diagonal,

2 = nWsecO (127)

The increment of strain at each apex = nWtanO where n = the

number of weights between the diagonal which intersects that apex

and the centre ;
the successive additions of these increments will

give the resultant strains in the several bays.

CASE III. GIRDERS SUPPORTED AT BOTH ENDS AND TRAVERSED

BY A TRAIN OF UNIFORM DENSITY.

Fig. 66.

Fig. 67.

189. Web. When the load traverses the upper flange, each

vertical, if acting as a strut (Fig. 66), sustains the maximum

strain when the passing load rests on its own apex and on those

between it and the farther abutment: if acting as a tie (Fig. 67),

when its own apex is free from load and those between it and the

farther abutment are loaded.

When the load traverses the lower flange, each vertical, if acting

as a strut (Fig. 66), sustains the maximum strain when its own apex

is free from load and those between it arid the farther abutment

are loaded
;

if acting as a tie (Fig. 67), when its own apex and those

between it and the farther abutment are loaded.
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The maximum strain in any diagonal, if in tension (Fig. 66),

occurs when the load rests on each apex between it and the abut-

ment from which it slopes upwards; if in compression (Fig. 67),

when the load rests on each apex between it and the abutment from

which it slopes downwards (l?O).

Let W = the passing weight on each apex,

n the number of weights resting on the girder in the

foregoing cases of maximum strain,

I = the number of bays in the span,

the angle between the diagonal and vertical braces,

S := the maximum strain in a diagonal,

2' = the maximum strain in a vertical.

The maximum strain in any vertical is represented by the follow-

ing arithmetical series :

_ n) W
~T

Similarly, the maximum strain in any diagonal,

n(l+n) W
2
--

j-secv

(128)

(129)

The absolute maximum strains in girders subject to both fixed

and passing loads are found by tabulating the strains produced by
each class of load separately, and then adding or subtracting them

according as they are of the same or of opposite kinds

CASE IV. LATTICE GIRDERS SUPPORTED AT BOTH ENDS AND

TRAVERSED BY A TRAIN OF UNIFORM DENSITY.

Fig. 68.
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190. Web. In this form of latticing the verticals are generally

constructed so as to act as struts and the diagonals as ties, in

which case the dotted diagonals are theoretically unnecessary.

LetW the passing weight on each apex,

I = the number of bays in the span (= 10 in Fig. 68),

k = the number of systems of right-angled triangles, i.e.,

the number of bays in the base of one of the primary

right-angled triangles (= 2 in Fig. 68),

T = the maximum tensile strain which any given diagonal

sustains from the passing load,

n = the number of bays between the foot of the given

diagonal and that abutment from which it slopes

upwards,

p = the. integral number of times that its own (right-angled)

system occurs between the foot of the diagonal and

the same abutment, = the integral part of 7,

= the angle between the diagonal and vertical braces.

It may be shown by reasoning similar to that employed in 183,

that the maximum tensile strain in any diagonal,

T =
(n
-

Pjfj.
(p + 1)^' sect) (130)

The maximum compression in any vertical equals the maximum

tension in one of the conterminous diagonals divided by secO. If

the load traverses the upper flange, take the diagonal intersecting

at bottom on the side remote from the centre. If the load traverse

the lower flange, take the diagonal intersecting it at top on the side

next the centre.

191. End pillars Ambiguity respecting: strains in faulty

designs. In this form of latticing the end pillars are subject to a

severer transverse strain than in the isosceles latticing described in

the preceding chapter (18O). In the present case the end pillars

must be made sufficiently strong to sustain the horizontal com-

ponents of all the diagonalswhich intersect them between the flanges.

This inconvenience may be remedied by introducing short diagonal

struts, such as a, a, Fig. 68, which will relieve the end pillars of a
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certain, though indefinite, amount of transverse strain, and at the

same time diminish the compression in the bay c and the vertical d.

Both diagonals and verticals are occasionally constructed so as to

act indifferently either as struts or ties ; in such designs calculation

is at fault, for the strains may pass through the isosceles system

of triangles alone, or through the vertical and diagonal system

alone, or partly through one and partly through the other. In

such designs there will generally be found a certain waste of

material.
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CHAPTER VII.

BRACED GIRDERS WITH OBLIQUE OR CURVED FLANGES.

193. Introductory Calculation by diagram. The class of

braced girders to which our attention has been directed in the two

preceding chapters is characterized by the parallelism of the flanges.

We have seen that the strains in each part vary according to the

position of the load, and that they may be calculated by simple

formulae with a degree of accuracy which leaves nothing further

to be desired. I now propose investigating braced girders, one or

both of whose flanges are oblique or curved. The A truss and the

bowstring girder may be taken as the chief representatives of this

class, which also includes cranes of various kinds, crescent girders

and the braced arch. Formulae for strains are unsuited to this

species of bracing on account of the various inclinations of the

several parts of the structure. Instead, we have recourse to

carefully constructed diagrams in which strains are represented

to scale, by the aid of which, however, a degree of accuracy is

attainable which is practically nearly as perfect as that obtained

by the application of formulae to the girders described in previous

chapters.*

CASE I. BENT SEMI-GIRDERS LOADED AT THE EXTREMITY.

193. Derrick crane. The derrick crane, Fig. 69, consists of a

revolving post P, a jib J, a chain or tie-bar T, and two back-stays,

one of which is shown at B, the other, lying in a plane at right angles

to that of the figure, is not represented, being hidden by the post.

The derrick crane is generally made of wood. It is simple in con-

* Curved flanges are assumed to be polygonal, i.e
,
formed of straight lines joining

the apices (144).
K
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struction and easily erected. Hence, it is well adapted for temporary

works, as also for quarries or other situations where the back-stays'

Fig. 69 do not interfere with

the traffic. At the

peak A, three forces

meet, viz., the down-

ward pull of W, the

tension of the tie-bar

T, and the oblique

thrust of the jib J.

Since these three

forces are in equili-

brium, their relative

amounts may be represented by the sides of the triangle PTJ (9).

Hence, the tension of the tie-bar = =W, and the compression of

If the chain pass along T, and so over a pulley at b down to the

chain barrel bolted to the foot of the post, it relieves the tie-bar

of an amount of tension equal to that in the chain, namely, W
divided by the number of falls in the hanging part of the chain.*

If, however, the chain pass along the jib, the compression of the

latter is increased by an amount equal to the tension of the chain.

The tension in T being known, the strains in the post and back-

stays, which are its components, are easily found. This operation

is most conveniently performed by the aid of a skeleton diagram

(Fig. 69) drawn accurately to, scale. Let the jib and one back-stay

lie in the same plane. Lay off be by scale to represent the tension

in Tf =
pWj,

and draw cd parallel to B; then cd, measured by

the same scale, will represent the tension in the back-stay, and bd

the compression of the post. In this case the second back-stay is

* This is not accurately true, for the friction of the blocks, pulleys, &c., increases or

diminishes the tension of the chain, according as the weight happens to be raised or

lowered.
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free from strain, but when the jib does not lie in the same plane with

either back-stay, both back-stays are subject to strain; to a less

degree, however, than in the case already considered, as will appear
from the following considerations. Let Fig. 70 represent a plan of

Fig. 70. the crane, bh and bk being the

horizontal projections of the

back-stays, arid &A that of

the tie-bar and jib; let be

represent the horizontal com-

ponent of the tension in the

tie-bar (equal ce in Fig. 69),

then bf and by will represent

the horizontal components of

the strains in the back-stays, and hence, the strains in the back-

stays can be found. It is obvious, however, that either bf or bg

will attain its maximum when the tie-bar lies in the same plane

with one of the back-stays. Hence, the former case, in which the

jib and one back-stay lie in the same plane, is sufficient for us to

consider when calculating the requisite strength of the stays.

The strain in the post attains its greatest value when the plane

of the tie-bars and jib bisects the angle between the back-stays, for

then the sum of 6/and bg is maximum, and consequently, the sum

of the vertical components of the strains in the stays is maximum

also. But the strain transmitted through the post is equal to the

sum of these vertical components -j- or the vertical component of

the tension in the tie-bar, according as the latter slopes downwards

or upwards from the head of the post. The back-stays act some-

times as struts, sometimes as ties, and when the jib is swung round,

so as to lie alongside one of the back-stays, the latter will sustain

its maximum compression, equal to the maximum tension produced

when the jib and stay lie in the same plane. The radius of the

circle described by the jib, or the range of the derrick, is generally

capable ofadjustment by lengthening or shortening the tie-bar, which

is then a chain attached to a small auxiliary crab-winch fastened to

the post near the wr

orking barrel, in which case the working chain

passes along the jib. This form of derrick is convenient for setting
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masonry, as its range is equal to a circle described by the jib when

nearly horizontal, in which position moreover the crane is most

severely strained.

194. Wharf crane. The wharf crane, unlike the derrick crane,

has no back-stays. Consequently, the post is subject to transverse

Fig. 71. strain from the oblique pull

of the tie-bar; it is in fact

a semi-girder fixed in the

ground and loaded at the

extremity. The strains in

the tie-bar and jib are cal-

culated in the same way as

for the derrick crane. The

bending moment (59) of

the post attains its greatest

value at its intersection with tiie ground, and equals the horizontal

component of the tension in T multiplied by the height of the post

above ground. It may, however, be more conveniently found as

follows :

The whole crane above ac (the ground line,) is a bent semi-girder

held in equilibrium by the weight and the elastic forces at a (in this

case vertical). Taking moments round either the centre of tension

or the centre of compression at a (58), we have the bending moment

= W?-, where r = the radius of the circle described by the jib. From

this it follows that the transverse strain at a is not affected by increas-

ing the height of the post, which, however, diminishes the strains in

the jib and the tie-bar, and is so far attended with advantage ;
neither

is it affected by raising or lowering the peak of the jib in the same

vertical line. It also follows that the transverse strain on the post

is increased when the weight is farther out than the circle described

by the jib, for the leverage ofW is then increased and attains its

greatest value when the chain is at right angles to the jib. If the

post be fixed in the ground, the frame, to which the jib, tie-bar and

wheehvork are attached, is generally suspended by a cross head from

the top of the post which forms a pivot round which the cross-head

turns. In this form ofcrane the weight is transmitted from the pivot
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through the whole length of the post in addition to the longitudinal

strains to which as a semi-girder it is liable, and the section of the

post should theoretically be circular (99), since it may be equally

strained in all directions.* When the post revolves on its axis, the

jib and wheelwork are bolted to it and all move together on a pivot

at the toe-plate b. In this case the post should be double-flanged.

The underground portion is subject to a vertical compression equal

to the weight (viz., the difference of the vertical components of the

strains in the jib and tie-bar,) in addition to the longitudinal strain

derived from its acting as a semi-girder. When the post moves round

its axis, friction rollers may be advantageously placed between the

post and a curb plate which is secured to the masonry at a.

To find the amount and direction of the pressure at the toe, join

b with a point c vertically beneath W. The whole structure is

balanced by three forces, viz., the weight W> tne horizontal pressure

against the curb plate at a, and the pressure on the toe at b. The

two former forces pass through c
; consequently, the latter intersects

them at the same point (9). Hence, the sides of the triangle abc

represent the relative amounts of these forces, and we have the

horizontal component of the oblique pressure at b equal QW. The

vertical components equals W, which is otherwise evident.

195. Bent crane. This form of semi-girder has been adopted

for wharf cranes where head-room is required close to the

post. The flanges may be equi-distant, as in Fig. 72, though a

more pleasing form is produced by bringing them closer together

as they approach the peak.f

The weightW is supported by diagonal 1 and the first bay in the

lower flange E, producing tension in the former and compression

*
Square tubular posts built of boiler plates with angle iron at the corners form

very simple and efficient posts for small cranes not exceeding four or five tons.

t Tubular cranes of this form were first made with plate webs by Sir Wm.

Fairbairn (Proc. Inst. M. E., Part I., 1857), and the braced web was first adopted by

William Anderson, Esq., in a six-ton crane erected for the Government at the Pigeon

House Fort, near Dublin. Mr. Anderson also designed a very fine twenty-ton bent

crane, with plate webs, for the Russian Government, 60 feet high, and 31 '"6" radius.

(Trans. In&t. C. E. of Ireland, Vols. vi. and vii.)
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in the latter. The tension of diagonal 1 is resolved at d into its

components in the direction of A and diagonal 2. The resultant

of the strains in diagonal 2 and E, found by a triangle of force, is

resolved at g into its components in the directions of the third

diagonal and F. In a similar manner the resultant of the strains

in diagonal 3 and A is resolved into its components in diagonal 4

and B, and so on throughout the girder.

Fig. 72.

An example (see Fig. 72) will illustrate this fully,'and the student

is recommended to work it out for himself by the aid of a diagram

drawn accurately to a scale of not less than five feet to one inch.

The strains may be represented to a scale of ten tons to one inch,

though in many cases a larger scale will be found preferable.
* The

flanges are equi-distant, forming quadrants of two circles whose radii

are respectively 20 and 24 feet. The inner flange is divided into four

equal bays, on which stand equal isosceles triangles, and a weight of

10 tons is suspended from the peak. Draw ab vertically and equal

to 10 tons measured on the scale representing strains, and draw be

parallel to E so as to meet the diagonal 1 produced ; be and ac

represent the strains in E and diagonal 1, and measure on the scale

*
Rolling parallel rules, 15 or 18 inches in length, will be found useful for laying off

parallel lines of strain.
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of strains + 10*8 tons and 13 -

1 tons respectively. Next, take

de equal 13 !

1 tons (= ac), and draw ef parallel to diagonal 2, so as to

meet A produced ; ef and df represent the strains in diagonal 2 and

A, and measure + 18'8 tons and 21*7 tons respectively. Next,

produce diagonal 2 so that gh may equal 18'8 tons (= ef), and

draw hi parallel to E and equal 1O8 tons (= be) ; ig is the resultant

of the strains in diagonal 2 and E, and is transmitted through F

and diagonal 3. Draw ik parallel to F
;

ik and kg will represent

the strains in F and diagonal 3, and measure + 3O5 tons and 5 '4

tons respectively. Proceeding in this manner, we obtain the strains

given in the following table :

BRACING, .
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197. Lattice webs not suited for powerful bent cranes.

The chief merit claimed for the bent crane is the large amount of

head -room it allows underneath the jib, which enable boilers or other

bulky articles to be brought close up to the peak. This merit,

however, is balanced, and in many cases more than balanced, by the

greater simplicity of the ordinary wharf crane. The lattice web is

not well suited for bent cranes exceeding 10 tons, as the diagonal

bars become so wide, and leave so little open space, that plating

may be advantageously substituted for bracing.

CASE II. THE BRACED SEMI-ARCH.

. 73.

198. Swing1 bridge. This form of semi-girder is a modification

of the previous case, in which the radius of the upper flange becomes

infinite; it is suitable for swing bridges, in which case the end

next the abutment is prolonged backwards with parallel flanges

and loaded at the inner extremity with a counterpoise weight to

balance the projecting part. This backward continuation resembles

the semi-girder described in Case I., Chap. V. In order to obtain

the maximum strains when a concentrated load or a passing train

traverses the girder, we must first calculate the strains produced

by the weight on each apex separately, and tabulating these, we

can find what position of the load, if it be concentrated, or what

weights, if there are several, will produce maximum strains in each

part of the structure, and the methods of calculation described in

the preceding case are applicable to this one also.
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199. Single triang;nlation. When, however, there is but one

system of triangles in the bracing, the following plan is more simple

in practice, and as errors do not accumulate, it is less liable to

inaccuracy. Suppose a weight resting on the extremity of the

girder; on examining the forces which hold any portion CaWj
in equilibrium, we find that two of them, viz., the weight and

the horizontal tension in C pass through Wj ; consequently, the

third force, viz., the resultant of the strains in bay G and diagonal

6 also passes through Wj (9). In the same way it can be shown

that the resultants at each of the other lower apices pass through
Wr If the weight rest on any other apex, W2 for example, the

resultant strains produced by it at each lower apex pass through
W2 ; or, to express this more generally, the resultant strain at each

apex in the lower flange from a weight at any apex in either flange

will pass through the intersection of the horizontal flange with a

vertical line drawn through the weight, provided there be but one

system oftriangulation. Again, since the horizontal flange transmits

no vertical strains, the weight must be conveyed to the wall through

these resultant strains at each lower apex. Their vertical com-

ponents are in fact the shearing-strain and equal to the weight;

hence, knowing both their directions and their vertical components,

we can find their amounts. Thus, the resultant strain at a from Wj
may be found as follows : Draw a vertical line ab, equal (by a scale

of strains) to Wj, and draw be horizontally till it meet Wja produced ;

ac is the required resultant, and may be resolved into its components
in bay G and diagonal 6. The strain in the latter may next be

resolved at W4 in the directions of bay D and diagonal 7. The

former component is the increment of horizontal strain at the apex,

and when added to the sum of the preceding increments gives the

resultant strain in D. The strains in the other parts may be

obtained in a similar manner.

SOO. Example. The following example, Fig. 73, in which the

strains have been worked out on a diagram drawn to a scale of 5

feet to one inch, will be found useful practice for the student. The

projecting portion of the girder is 40 feet long, and 10 feet deep at the

wall, with a circular lower flange which has a horizontal tangent two
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feet below the extremity of the girder. Consequently, the versine of

the arch is 8 feet, and its radius 104 feet. The load is uniform and

equal to one ton per running foot, which for calculation is supposed
collected into weights of 10 tons at each upper apex except the

outer one, which has only 5 tons, or the load which rests on half a

bay. The strains have been calculated for each weight separately.
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on the accuracy of the work is, however, applicable only in the case

of a single system of triangulation. The strains in girders of this

form are not always such as might perhaps be expected at first

sight; Wj, for instance, produces compression in both diagonals 6

and 8, and in bay D a strain of less amount than in bay C. These

apparent anomalies occur when the resultant" at the lower apex, ac

for example, passes altogether above the lower flange.

SOI. Lattice semi-arch Triangular semi-girder. When
two or more systems of triangulation are introduced, the strains in

one system produce strains in the others in consequence of the

curvature of the arched flange, and this renders the calculations

more tedious than would otherwise occur. This remark applies

to all arched girders with lattice webs. In this particular case the

calculations would be much simpler if the girder were triangular

with a straight lower flange, since each bay would communicate its

strain directly to the adjoining bay without affecting the diagonals

at their junction, but this form of semi-girder has the disadvantage

of being somewhat unsightly in appearance, which in some cases

might prevent its adoption, whatever merits, and they are con-

siderable, it may possess in other respects.*

SOS. Inverted semi-arch. When head-room beneath is re-

quired, we may invert the girder represented in Fig. 73, so that

it will resemble one-half of a suspension-bridge. By so doing we

change the strains in kind, but not in amount.

* A large iron swing bridge, a drawing of which appeared in the Illustrated London

Keios for October 12, 1861, has been constructed at Brest, in France
;

it is formed of

two triangular semi-girders with vertical and diagonal bracing.
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CASE III. CRESCENT GIRDER.

Tig. 74.

SOS. Suitable for roofs Flanges. Frequent modifications

of the crescent girder occur in the roofs of our railway stations and

crystal palaces, to which its graceful outline and lightness of

appearance impart an air of elegance which no other form possesses

to the same degree. It may also be employed for bridges where

greater headway is required beneath the centre than at the

abutments. I shall, however, merely investigate the strains pro-

duced by a load symmetrically disposed on both sides of the

centre, such as a roof principal generally sustains. When the

girder is subject to a partial or a passing load, the more general
method of calculating the strains due to each weight separately,

and which is investigated in the next case, becomes necessary.

The horizontal strains at the centre of the flanges are equal and of

opposite kinds
;
their amount depends upon the central depth of the

girder and may be found by the method of moments as follows:

Let W = the load symmetrically distributed,

I = the span,

d = the central depth from flange to flange = Z>H,

I' = the distance of the centre of gravity of each half load

measured from the centre of the girder,

T = the tension at the centre of the lower flange,

C = the compression at the centre of the upper flange.
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The half girder, a&H, is held in equilibrium by the reaction of the

CW\=
-Q-

)
, by the left half load (which we may conceive

collected at its centre of gravity), and by the horizontal strains of

compression and tension at b and H. Taking moments round each

of these latter points successively, we have f
-

/'
J

= Td = Cc/;

whence,

T = C = W <*- 2 *'>
(131)

This, which is merely a particular form of eq. 25, proves that the

strains at the centre do not depend upon the height of the lower

flange above the chord line, but upon the depth of the girder from

flange to flange. The method of calculating the strains in other

parts of the girder consists in working by the resolution of forces

from either abutment, whose reaction is a known quantity,

towards the centre. The following examples, which have been

worked out on a diagram drawn to a scale of 5 feet to one inch,

and with strains represented by 4 tons to one inch, will explain this

clearly.

SO4. Example 1. The span of the girder, Fig. 74, is 80 feet
;
the

versines of the flanges respectively 1.0 and 16 feet; both flanges are

circular and each flange is divided into equal bays, with the excep-

tion of the extreme bays of the lower flange, which are each half as

long again as the other bays. The load is supposed equal to 8 tons

distributed, so that each apex sustains a weight of one ton
; hence,

the reaction of each abutment equals 4 tons, of which, however,

half a ton is at once balanced by the weight of the first half

bay of the roof which rests directly on the wall-plate. Conse-

quently, the resultant of the forces in A and E = 3'5 tons pressing

downwards on the wall. Draw ac = 3*5 tons, and draw cd parallel

to E until it meets A produced. The lines ad and cd represent

the strains in A and E, and measure by scale + 12*25 tons and

10'43 tons respectively. Next, lay off ef = ad, and draw fg

vertically equal to one ton, that is, equal to the weight at the first

apex. The line eg is the resultant of the strain in A and the weight
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at e, and the strains in B and diagonal 1 are its components, and

can therefore be found by resolving eg in their directions. Similarly,

the resultant of E and diagonal 1 may be resolved in the directions

of F and diagonal 2. At h we must find the resultant of three

forces, viz., the strain in B, the strain in diagonal 2, and the

weight resting on the apex. From this resultant the strains in C
and diagonal 3 are derived, and so on to the centre. The follow-

ing table contains these strains :

BRACING, .
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same span, depth and versine as the preceding example, but the

mode of bracing is similar to that described in Chapter VI. Each

flange is divided into eight equal bays and every alternate brace is

nearly radial to the lower flange.

Fig. 75.

The strains due to a load of one ton at each apex of the upper

flange are as follows:

BBACING, .
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occasionally constructed with equi-distant flanges, in which case it

is essential for accurate calculation that the girder rest on two

points only, either the extremities of the inner, or the extremities

of the outer, flange ;
otherwise we cannot say how much pressure

any one point sustains, just as the pressure on any one leg of a

four-legged table is indefinite. The girder in fact becomes an

arched rib and partakes of the uncertainty of the arch as regards

the direction of the line of thrust.

CASE IV BOWSTRING GIRDKIt.

Fig. 76.

SO7. Concentrated load. Let a single weight W3 rest upon
one of the apices which divides the girder into segments con-

taining respectively m and n segments. On the principle of the

lever, the pressure on the right abutment = - W3 ,
and thatm + n

on the left = - Wo. This latter quantity is the resultant of
in + n J

the strains in bays A and F, which can therefore be obtained from

it by a diagram of strains. Again, the strains in B and diagonal

1 may be derived from that in A, and by resolving the strain in

diagonal 1 in the directions of diagonal 2 and bay G, we obtain

the strain in the former and the horizontal increment of strain

developed at the first apex of the lower flange. This increment,

added to the strain in F, gives the total strain in G. The resultant

of the strains in B and diagonal 2 is also the resultant of those in

C and diagonal 3, which can therefore be derived from it, and so on.

SOS. Passing load Example Little coiinterbracing re-

quired in bowstring: girders of large size. When the load is a

concentrated passing load or a train, we must tabulate the strains
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produced by the weight on each apex separately, and thence deduce

what position of the load produces maximum strains. It will be

found that the maximum strains in the flanges occur when the train

covers the whole girder, and that they are of nearly uniform mag-
nitude throughout each flange, while the maximum strains in the

diagonals increase as they approach the centre, just the reverse of

what occurs in the webs of girders with horizontal flanges. The

following example, Fig. 76, will illustrate fully the mode of calcu-

lating the strains in this important form of girder. They have

been worked out on a diagram drawn to a scale of 5 feet to one inch.

The span is 80 feet, divided into 8 equal bays, and the bow is a

circular arc whose versine equals 10 feet, but, as there is no apex at

the crown, the central depth of the inscribed polygon, measured by

scale, equals 9*85 feet in place of 10 feet. The load is supposed to

traverse the lower flange and to be of uniform density, equal to one

ton per running foot, which is equivalent to 10 tons at each apex.
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On examining the foregoing table we observe that, when the

permanent (uniform) load is equal to, or less than, the passing load,

a large number of the diagonals require counterbracing ;
in this

example, for instance, diagonals 4, 5, 6, 7, and their counterparts at

the other side of the centre, require counterbracing. If, however,

the permanent load be much greater than the passing load, it may

happen that the diagonals will always be in tension and thus relieve

the engineer of one difficulty in large girders, namely, that of

providing against flexure in long struts. Hence, the bowstring

girder seems well suited for large spans. On examining the table

we also find that all the intermediate strains are multiples of those

in the columns under eitherW
t
or W

7
. They agree also in sign

with their sub-multiples. This arises from the reaction of each

abutment being directly proportional to the length of the remote

segment, and indicates a speedy method of filling up the table, viz.,

by calculating on a diagram the strains produced by the two

extreme weights and thence deriving those due to all the inter-

mediate weights.

8O9. Calculation by moments. When there is only one

system of triangulation, the work may be checked by calculating

the strains in some of the bays by the method of moments. Thus,

in the central bay E, the strain

35x4010x60
F = -

pr^
- = ol*2 tons compression,yoD

a close approximation to the amount in the table, as the discrepancy

is only 0'4 tons, or ^J^rd of the whole. Having found the strains

in the flanges by the method of moments, the strains in any pair of

intersecting diagonals may be found by decomposing the strains in

the two adjoining bays.

210. Uniformly distributed load . little bracing: required-
Absolute maximum strains. If a uniform horizontal load be

suspended by vertical rods from a circular bow, the diagonal bracing

will scarcely come into action, and the tension throughout the string

will be very nearly uniform, for a small arc of a circle differs but

slightly from the parabola which a chain (inverted arch) assumes

when loaded uniformly per horizontal foot (49). In this case the
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horizontal component of strain is nearly uniform throughout the

bow and equals the compression at the crown, or the tension in the

string. The vertical component at the springing is equal to the

half load, and at any other point it equals the half load supported

above the level of that point. The longitudinal compression at any

point in the bow is the resultant of these horizontal and vertical

components, and would be strictly tangential to the curve if it were

a parabola, i.e., the curve of equal horizontal thrust for a uniform

horizontal load. The bow forms a considerable item of the total

weight of a bridge of large span, and the annexed method of

calculating the strains will be found more accurate than one which

supposes the whole permanent load resting on the lower flange :

1. Calculate the maximum strains in both flanges and bracing

produced by the passing load of greatest uniform density,

as already explained.

2. Calculate the strains produced by the permanent load which

rests on the lower flange, including in this the string, road-

way and bracing. These may be obtained by proportion

from the strains produced by the passing load when the

latter covers the whole bridge.

3. Calculate the (nearly) uniform strain produced throughout

the bow and string by the weight of the former (eq. 25).

If greater accuracy is required the longitudinal strains in

the bow may be obtained by the method explained in 36.

Having these arranged in a tabular form, we can easily find the

absolute maximum strains which each part sustains. The 2nd and

3rd of the foregoing calculations may be replaced by the method

described in the preceding case for calculating the strains due to a

permanent load, without however simplifying the operation in

practice.

811. Single t riaiis ulal ion . second method of calculation.

When the bracing of a bowstring girder consists of a single system

of triangulation, as in Fig. 76, the strains may be calculated by a

method similar to that described in 199. Suppose, for example,

that W3 alone rests upon the girder, dividing the lower flange into

segments containing respectively m and n bays ;
the segment abc is
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held in equilibrium by three forces, viz., the reaction of the right

abutment, the horizontal tension at c, and the resultant of the strains

in K and diagonal 10. The two former meet at a
; consequently,

the third, the resultant at b, passes through the same point (9).

Again, since the lower flange is horizontal, it cannot convey a vertical

m
pressure to the abutment ; hence, W3 (

= the reaction of the

abutment,) must be conveyed through the bow and diagonals to the

right abutment, forming the vertical component of the resultant at

each upper apex. This suggests the following method of calculating

the strains. Draw bd vertically equal to m -f- n
W3 ,

and draw de

horizontally till it meets ba produced ; be represents the resultant at

b, and hence we can find its component in K and diagonal 10, or

in L and diagonal 11. The same reasoning will apply if all the

apices to the left of W3 are loaded, in which case diagonals 10 and

11 will sustain the maximum strains of tension and compression

which a passing train can produce in them. At the several apices

in the bow over the unloaded segment resultant strains will be

developed, each of which will pass through a and have the same

vertical component, viz., the reaction of the right abutment, provided

there be but one system of triangles. In the case of the train, bd

5) = W, since there
o

will represent

are 5 loaded apices in the left segment and 8 bays in the span.

This operation must be repeated at each apex of the bow.

The maximum strains in the diagonals of the example in 3O8

are calculated by this method and are given in the annexed table.

They agree closely with those previously obtained :

DIAGONALS.
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318. Inverted bowstring:, or fish-bellied g-irder Bow and

invert, or double-bow. The methods of calculating the strains

of the bowstring girder are also applicable to its inverse the fish-

bellied girder, i.e., the arc in tension with a horizontal flange in

compression, as well as the lenticular girder compounded of the

two, i.e.,, a bow and invert connected by bracing, such as the Royal

Albert Bridge, Saltash. Examples of these forms are, however,

comparatively rare, except in cast-iron girders and beams of steam

engines, but the fish-bellied girder is sometimes used for cross

road-girders.

CASE V. THE BRACED ARCH.

Fig. 77.

313. Law or the lever applicable to the braced arch.

Properly speaking, the braced arch is not a girder, since it

exerts an oblique thrust against the abutments (13), but it

resembles a girder in so many respects that the investigation of its

strains may fitly be considered in this chapter. In the braced

arch the upper flange is usually horizontal and supports the

roadway. Both flanges are in general subject to compression

throughout their whole length, and the lower one exerts an

oblique pressure against the abutments. In this respect the

braced arch resembles its prototype, the stone arch, while it also

resembles the girder in its capability of sustaining transverse

strain. The horizontal components of the pressures against the

abutments are equal and in opposite directions ; equal since, if

the horizontal reaction of one abutment exceed that of the other,
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the arch will move towards that side which exerts the weaker

thrust, a thing manifestly impossible. We may therefore conceive

a horizontal tie substituted for the horizontal reaction of the

abutments, and the arch will then follow the laws of girders,

exerting a vertical pressure only on the points of support. The

principle of the lever (1O) is, consequently, applicable to this form

of bracing, and hence we can find the direction and amount of

the thrust against either abutment for each position of the load.

Theoretically, the lower flange of the arch represented in Fig. 77

should not be continued across the crown of the arch, for if

it were, the strains in every part would be uncertain, since

the central bay of this flange would be subject to tensile

strains of indefinite amount, varying with the load and tem-

perature, and modifying therefore to an unknown extent the

horizontal reaction of the abutments. To illustrate this, let us

suppose for a moment that the reaction of the abutments is

replaced by a tie-bar
;
we then have three unknown horizontal

forces, viz., compression in the top flange, tension in the lower

flange at the crown, and tension in the tie-bar
;

also three known

vertical forces, viz., the weight and the vertical reaction of each

abutment. Now, it is evident that we cannot determine the three

unknown forces by the method of moments from these data, and

we must therefore get rid of the difficulty by supposing the lower

flange discontinued at the crown, which, indeed, is not far from the

truth in practice, for the two flanges generally merge into one,

and the less in depth is the line of junction of the two semi-

arches, i.e., the depth of the arch at the crown, the nearer will the

following theory and practice agree.

Let us now consider the effect of a single weightW6 . The left

semi-arch is subjected to two forces only, viz., the pressure of the

other semi-arch at the crown and the reaction of the left abutment

at a. Since equilibrium exists, these forces are equal and opposite ;

consequently, the reaction of the left abutment acts in the direction

aW4
. Again, the whole arch is balanced by the weight W6

and

the reactions of the abutments. The weight and the reaction of

the left abutment intersect at b
; consequently, that of the right
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abutment passes through the same point (9). ResolvingW6 in the

directions ba and be, we obtain these reactions, and once they are

known, we can work from the abutments towards the weight by
the resolution of forces and thus find the strains produced by W6

throughout the arch. Performing similar operations for each weight,

and tabulating the results, we can obtain the maximum strains of

each kind produced in every part of the structure. Those produced

in the arch represented in Fig. 77, by weights of 10 tons at each

apex, are given in the following table. The arch is 80 feet in span

with a rise or versine of 8 feet, and the depth measured from the

springing to the upper flange is 10 feet. The upper flange is

divided into 8 equal bays, and the bracing consists of a series of

isosceles triangles of which these bays form the bases.
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914. Strains in the braced arch loaded symmetrically re-

semble those in the semi-arch Portions of the flanges liable

to tensile strains from unequal loading-. On examining the

preceding table it will be observed that the strains produced in the

right semi-arch byW lt
W2 ,

and W3 are sub-multiples of those pro-

duced by W4 ;
this arises from the circumstance, that the reactions

of the right abutment from the weights on the left semi-arch act

all in the same direction, viz., cW 4 , and are proportional to the

distance of each weight from the left abutment. Hence, having

calculated the strains produced by W4 , we can deduce thence the

strains produced by the three other weights. On comparing this

table with that in 8OO, we find that the strains produced by a

symmetrical load in the diagonals and lower flange of the braced

arch and semi-arch are identical. If the weight of the structure

be small compared with that of the moving load, some of the

bays may sustain tensile strains from the latter. These are the

end bays of the upper flange and the central bays of the lower

flange.

815. Calculation by moments Calculation of strains in

a latticed arch impracticable., except when the load is

symmetrical. When there is only one system of triangulation,

the strains may be calculated by the method of moments in the

manner already explained in 2O9, and it is always desirable thus to

check calculations made by the aid of diagrams. When there are

two or more systems of triangulation, that is, when the web is

latticed, the strength may be calculated by working out the strains

from the weights towards the abutments, provided the load is dis-

posed symmetrically on each side of the centre, but when the

weights are distributed in an irregular manner this is not possible,

and accurate calculation seems out of the question, for then more

than two braces meet at the abutment, and we cannot say how the

reaction of the abutment, when decomposed, is divided between

them.

816. Flat arch, or arch with horizontal flanges. If the

radius of the lower flange be infinite, both flanges will be horizontal,

and this flat arch will resemble girders of the ordinary form. Fig.

57, but with their lower flanges severed at the centre so as to exert
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a lateral thrust against the abutments. When the load is uniform,

this thrust will equal the central compression in the upper flange.

This modification of the braced arch possesses some qualities which

merit our attentive consideration. In the first place the quantity

of material required for its lower flange is less than in girders of the

usual form, for the increments of strain increase as they approach
the abutments, and it is therefore more economical to convey
them from, than towards, the centre

;
and again, the heavier parts

of the lower flange are near the abutments instead of near the

centre, which is a matter of some importance in very large girders

whose own weight forms the greater portion of the total load.

81?. Rigid suspension bridge. When inverted, the braced

arch becomes a rigid suspension bridge. Other modifications might
be suggested, such as the crescent girder inverted, with a horizontal

roadway suspended beneath. The railway bridge over the Donau

Canal in Vienna, 83*44 metres long, is constructed on this latter

system. There are two suspension chains on each side formed of

flat links and equi-distant, one above the other, with bracing

between ; a trussed platform for the rails is suspended beneath by
vertical rods in the usual manner. The chains being equi-distant,

and therefore hung from four points, there must be an ambiguity
in the strains, as already explained in 3O6.

318. Triangular arch. If the lower flange of the braced

arch be formed of two straight bars meeting at the centre like

the letter A, so that the arch becomes two braced triangles, the

calculations as well as the construction will be much simplified,

especially where multiple systems of bracing are employed. This

arrangement has some great practical merits, its chief objection

being the inelegance of its outline, which, however, will be an

immaterial objection in many situations.

319. Cast-iron arches. The spandrils of cast-iron arches

frequently consist of vertical or radial struts without any diagonal

bracing whatever. This form of arch resembles the common

suspension bridge inverted ; and since the spandrils do not brace

the flanges together so as to change their transverse into longitu-

dinal strains, but resemble in their action the rungs of a ladder
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placed on its side, it is necessary to make the flanges sufficiently

deep to act as girders and sustain the transverse strain when the

moving load causes the line of thrust to pass outside the rib or

curved flange (49). Unless very massive, iron arches with vertical

spandrils may be expected to be more subject to vibration and

deflection than those with braced spandrils.

CASE VI. THE BRACED TRIANGLE.

S3O. The common A roof. In the common A roof, the span of

which seldom exceeds 40 feet, each pair of rafters is kept from
- 78 -

exerting a lateral thrust

against the wall by a

tie-beam, which is often

placed a few feet above

the wall-plate for the

sake of the head-room

which this arrangement

allows. Consequently,
each pair of rafters with their tie-beams constitutes a simple truss

which supports so much of the roof as lies between two adjacent

pairs of rafters.

Let W = the weight uniformly distributed over each pair of

rafters,

I = the span of the roof,

V = the length of each rafter,

d = the height of the ridge above the tie-beam, i.e., the

depth of the truss;

h the height of the ridge above the wall-plates,

T = the tension in the tie-beam.

Each rafter is held in equilibrium by the uniformly distributed weight
W

of the roof (equivalent to -^ acting downwards at the middle of
2

Cw\= -3-
J,

the
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horizontal thrust of the opposite rafter at the ridge and the hori-

zontal tension of the tie-beam. Taking the moments of these forces

round the ridge, we have,

_ /W
whence, V = -7

OCl

By taking moments round the foot of the rafter it may be shown

that the horizontal thrust of the rafters against each other at the

ridge T. This investigation of the horizontal strains in a simple

trussed girder is, it will be perceived, merely a repetition of that

given in 43 (eq. 25). Each rafter is subject to transverse strains

as a girder and to longitudinal compression as a pillar. The trans-

verse strains are produced by the components of W and of T at

/W
right angles to the rafter. The former =:

-^distributed uniformly.

The latter = y,T
=

, applied at the intersection of the rafter
I QClL

and tie-beam. Hence, the transverse strength of the rafter may
be calculated by eqs. 100 and 85, or perhaps, more conveniently by

eqs. 41 and 37. The longitudinal component of W compresses

the rafter like a pillar, and accumulates gradually from the

ridge, where it equals cipher, to the wall-plate, where it equals

^7.
The longitudinal component of T =. sr/ i~^77>

^ com-

presses that part of the rafter which lies between the ridge and

tie-beam, and is balanced by the longitudinal component of the

thrust of the opposite rafter at the ridge. When the tie-beam is

placed high, for the sake of room beneath, d is shortened and T
increased in the same proportion. The transverse strain and

deflection of the rafter is, however, increased in a higher ratio,

for not only is the component of T at right angles to the rafter

increased, but its bending moment also, in consequence of its

acting nearer to the centre of the rafter and farther from the

wall-plate, which acts the part of an abutment. When rafters are

in danger of sagging from their great length, a horizontal collar-

beam is attached midway between the ridge and the tie-beam.
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This collar-beam resists the tendency of the rafters to approach
each other and is subject to compression, in which case each

rafter is a continuous girder supported at both ends and at the

collar-beam, and subject to a transverse pressure from the roofing

/W
material equal to -^ distributed uniformly. If the tie-beam connect

the feet, and the collar-beam the centres, of each pair of rafters,

fths of this pressure is sustained by the collar-beam, the remaining

fths being supported by the thrust of the opposite rafter and the

5/W
reaction of the wall-plate (eq. 169). Hence, . .,

is the pressureoZL

against the collar-beam, measured at right angles to the rafter ;

resolving this horizontally, we have the longitudinal compression

5/W
of the collar-beam = -. ^y-. A collar-beam increases the tension of

the tie-beam, and this tension may be found when the strain in the

collar-beam is known by taking moments round the ridge.

The foregoing investigation is only an approximation to the

truth. The longitudinal strains produced in the rafter by the

forces acting at its ends will modify the longitudinal strains due to

the transverse forces, and an accurate investigation would be very

complicated, if not altogether impracticable, for we cannot say how

much of these longitudinal strains pass through the tension fibres

or lower side of the rafter, and how much pass through its compres-

sion fibres or upper side. If there be any tendency in the rafter to

sag, the probability is that they will pass altogether through the

compression fibres, and therefore the upper side of the rafter should

be strong enough to sustain the longitudinal strains produced by
the end forces in addition to the longitudinal strain due to the

transverse components of the load and tie-beam
;
but in general it

is unnecessary to take these longitudinal compression strains into

consideration, for when rafters fail they commonly give way on the

under side which is in tension. Of course, if the sag be very

considerable, so that a line joining the ridge and wall -plate passes

above the rafter, the longitudinal compression will increase the strain

in the tension flange in proportion to the vcrsine of the deflection.
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SSI. The A truss. Fig. 79 represents a simple form of

braced triangle, often used for iron roofs where the span does

not exceed 40 feet. The strains in the several parts may be

conveniently obtained by finding the reaction of either abutment

and working thence towards the centre, as explained in the

following example, which has been calculated by the aid of a

diagram drawn to a scale of 5 feet = 1 inch, and with a scale of

weights of 1 ton = 1 inch.

Fig. 79.

The span is 40 feet, the depth of the truss 8 feet, and the

height of the ridge above the wall-plate 10 feet. The load is

8 tons uniformly distributed, for which we may substitute its

equivalent, namely, the load on a whole bay, or 2 tons, con-

centrated at each apex, and the load on half a bay, or 1 ton, at

each abutment. The reaction of the left abutment = 4 tons, of

which 1 ton is immediately balanced by the weight,Wn concentrated

there, leaving 3 tons to be resolved in the directions of A and C,

the strains in which are respectively + 10'35 tons and 9 '38

tons. The vertical pressure of W2 is supported by A and F, and

when resolved in their directions produces + 0'9 and + T78 tons

respectively; the former being a downward thrust is opposed to

the upward thrust already existing in A; consequently, the dif-

ference, = -f-9'45 tons, is the thrust transmitted upwards through

B. At a we have two known forces, namely, the tension in C
and the thrust in F

; finding their resultant, and decomposing it

again in the directions of D and E, we have the strains in these
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bars rr 4*64 tons and 5'06 tons respectively. The following

table gives the strains in the left half truss in a collected form.

FLANGES AND BRACING.
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between 50 and 100 feet, and, if desirable, the secondary trussing

may be carried out to a much greater extent than in the figure, so

as to cover far wider spans. A braced triangle of the type

represented in Fig. 82 may also be used up to very large spans

indeed. Different modes of calculating the strains have been

suggested, but the method of working by the resolution of forces

from either abutment towards the centre seems the most satis-

factory, as illustrated in the following example, which has been

calculated by the aid of a diagram drawn to a scale of 5 feet to one

inch.

Fig. 82.

The span and depth are 60 feet and 15 feet respectively, and the

load distributed uniformly over the rafters, i.e., the upper flange, =
12 tons, which is equivalent to 2 tons concentrated at each of the

apices and 1 ton at each abutment. The upward reaction of the left

abutment =. 6 tons, of which 1 ton is at once balanced by Wp and

the remaining 5 tons, being decomposed in the directions of A and

D, produce a thrust of + 11-19 tons in A, and a pull of 10 tons

in D. At the next apex, W2 (2 tons,) is supported by A and F

in equal proportions, as they form the sides of an isosceles triangle,

and its components in their directions are each = + 2'24 tons;

that in the direction of A reduces its upward thrust to + 8 '95

tons which is transmitted onwards through B, while the thrust in

F produces a tension of 1 ton in G and reduces the pull in D so

that a tension of only 8 tons is transmitted through E. At

W3 we have its downward pressure (=2 tons,) added to the

downward pull of G (= 1 ton,) which gives a total vertical
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pressure of 3 tons at this apex ; this, when resolved in the directions

of H and B, produces a tension of 2"83 tons in H and reduces

the upward thrust in B so that only + 6' 71 tons is transmitted

through C. Resolving the downward thrust in H in the directions

of E and I
, we obtain a pull of 2 tons in I

,
to which should be

added a corresponding pull from the right half of the truss, so

that the total tension in I = 4 tons. We may check the

accuracy of the calculation by finding the strain in C by the

method of moments, as follows. The segment, W t C<2, is held in

equilibrium by the external bending forces, namely, the upward
reaction of the left abutment, the downward pressures ofWn W2

and W3 ,
and the resisting forces in the structure itself, namely,

the thrust in C and the various forces meeting at a; taking

moments round a, and measuring the distance Ca by scale, = 13*43

feet, we can find the thrust in C by the following equation,

F X 13-43 = 6 x 30 (1 X 30 + 2 x 20 + 2 X 10)

Where F represents the strain in C
; hence,

F =
l-S3

= 6 -7t nS
'

or nearly exactly the same as before.

The following table gives the strains in a collected form.

FLANGES AND BRACING A
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verticals in compression and the diagonals in tension, and sometimes

the tie is raised at the centre so as to form a low triangle and give

more head-room beneath; this of course diminishes the effective

depth of the truss, but it has the advantage of shortening the

length of the struts.

CASE VII. THE SUSPENSION TRUSS.

332. Suited for domed roofs. This form of truss is gene-

rally employed for supporting low-domed roofs resting on circular

walls, in which case the trusses intersect each other at the centre

Fig. 83.

and have a common central strut beneath the crown of the dome.

Each half of the bow, or upper flange, is strengthened by a

secondary truss D E F. At first sight there seems some ambiguity
about the strains, inasmuch as three braces intersect at the abut-

ment, and we cannot say how the reaction of the latter is distributed

among them. On a little consideration, however, the matter is

simple; let us confine our attention to the external forces which

keep the secondary truss, A B C D E F, in equilibrium, and taking

their moments round the centre of the roof, we have the moment

of the tension in the string K equal to the upward moment of the

reaction of the left abutment minus the downward moments of

W
2 and W3 . We can thus find the tension in the string, and

knowing this and the reaction of the abutment, we can readily

find their resultants in A and D, and from these again derive the

strains in the other braces. The following example will illustrate

this clearly. It has been worked out by the aid of a diagram drawn
M
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to a scale of 5 feet to one inch. Let Fig. 83 represent a suspension

truss, 80 feet in span, 5 feet in depth from the crown to a horizontal

line joining the wall-plates, and 15 feet in total depth. The bow

is divided into 6 equal bays, and the secondary truss has been

formed by making D a horizontal line, and the short struts G and I

parallel to the radial line which would pass through the centre of

B
;
thus A = B = C = E, and G = I, and D = F. Let the weight

of a sector of the circular roof supported by the half-truss,

A B C L K, = 9 tons, which is divided among the apices in pro-

portion to the area of the sector supported by each bay and,

assuming that the sector is a triangle, we shall have the weights at

the several apices as follows :

W! = 2f tons,

3
_

w4
= i

Since Wj rests directly on the wall-plate, we may leave it out of

consideration in calculating the longitudinal strains in the truss,

though it will be necessary to consider it subsequently when

calculating the transverse strength of A as an independent girder

supporting directly its proper share of distributed roof-load. The

secondary truss, A B C D E F, is held in equilibrium by
1. The oblique pull in the tie K,

2. The upward reaction of the abutment, = W2 + W3 + W4

= 6J tons,

3. The downward pressures ofW2 and W3 ,

4. W4 ,
the thrust of the central strut L, and that of the opposite

half-truss, all three intersecting at the crown.

If we take moments round the crown we get rid of the three

latter forces, but to do this we must find by scale

the leverage of K round the crown = 14*58 feet,

do. W
2 do. = 26-85 feet,

do. W
3 do. = 13-45 feet.

Taking moments round the crown, we have the

tension in K = 6*8 X 40-(4 x 26-85 + 2 x 18-43) =? .93 tons
14-58
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We now know two of the forces meeting at the abutment, namely,
the upward reaction of the abutment, 6| tons, and the tension

in K, = 7*93 tons. Finding the resultant of these, and decom-

posing it in the directions of A and D, we find the compression in

A = + 21 tons, and the tension in D = 12-86 tons. At W2

four forces meet, namely, the thrust in A, the weight W2 ,
the

thrust in G and the thrust in B. As we know the two former

forces we can find their resultant, and decomposing it in the

directions of G and B, we find the strains in these equal to + 2*25

tons and + 20*44 tons respectively. At
,
four forces meet, namely,

the tension in D, the thrust in G, and the tensions in E and H.*

The two former are known, and finding their resultant and decom-

posing it, we get the strain in E, = 9 '6 tons, and that in

H, = 3-2 tons. Proceeding thus, we find all the strains which

are given in the following table.

FLANGES AND BRACING.
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CHAPTER VIII.

DEFLECTION.

CLASS 1. Girders whose sections are proportioned so as to produce

uniform strength.

223. Deflection carve circular in girders of uniform

strength Amount of deflection not materially affected by
the web. The equations generally used for calculating the deflec-

tions of loaded girders are based on the assumption that the section

of the girder is uniform throughout its entire length, that is, that

there is the same amount of material at the centre as at the ends.

In scientifically constructed girders, however, this is not the case.

Each part is duly proportioned to the maximum strain which can

pass through it, so that no material is wasted
;
and when this occurs

in a girder with horizontal flanges and a uniformly distributed

load, that is, the load which produces the maximum strain in the

flanges, these latter will, as has been already shown in 4?, taper

from the centre, where their section is greatest, towards the ends

as the ordinates of a parabola. The girder is then said to be of

uniform strength, because the unit-strain in each flange is uniform

throughout the whole length of the flange and no part has an

excess of material, or is unduly strained beyond the rest (19). Now,
as the contraction and elongation are according to Hooke's law

proportional to the unit-strain, so long as it does not exceed the

limits which are considered safe in practice (7), the contraction per

running foot of the upper flange will be uniform throughout its

length, and the extension per running foot of the lower flange will

likewise be uniform throughout its length; and this uniform

contraction and elongation must produce a circular deflection, since

the circle is the only curve that is due to a uniform cause. At first

sight it may be thought that the continuous web of the plate girder,
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or the braced web of the lattice girder, will seriously affect the

amount of the deflection curve
;
but it can be readily shown by

carefully constructed diagrams, in which the alterations of length

due to the load are drawn to a highly exaggerated scale, that the

construction of the web has scarcely any influence on the curvature

so long as the unit-strains in the flanges are unaltered in amount by

the method of construction, and it is only when this is the case that

a fair comparison can be instituted between the rival girders.

Fig. 1, Plate I., represents one-half of a diagonally braced girder

of the simplest form, namely, a girder with one system of triangles

before the load rests upon it. Every part is then in its normal

state, and the girder will be horizontal. Now, suppose that a

uniform load deflects it and shortens each bay of the top, or com-

pression, flange by a certain quantity, while it lengthens each bay of

the lower, or tension, flange to a similar extent
;
and further, let us

suppose that the diagonals are alternately shortened and lengthened

by equal amounts, according as they are struts or ties. Fig. 2 now

represents the girder ;
the deflection curve forms a segment of a

circle whose centre is at A, a little to the left of the vertical line

drawn through the middle of the girder. Next, suppose that the

flanges are compressed and extended as in Fig. 2, but that the

diagonals remain of their original length as in Fig. 1, that is, that

their length is not affected by the load. Fig. 3 is the result,

which it will be perceived, is circular and differs but slightly

from Fig. 2, having its centre, however, at B, in the vertical

line drawn through the middle of the girder. It may at first

seem strange that A, the centre of Fig. 2, is not in the vertical

line passing through the middle of the girder. This is due to

the circumstance that, with a uniform load, the two central dia-

gonals, d and d', are subject to the same strain, either both lengthened

or both shortened, while all the other diagonals are alternately

lengthened and shortened. Hence, a very slight angle is produced

at the centre, as shown in Fig. 4, where the flanges are unaltered

as in Fig. 1, while the diagonals are alternately lengthened and

shortened as in Fig. 2. Considering, however, the exaggerated

scale of the diagrams, Fig. 4 is practically horizontal when compared
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with Figs. 2 or 3, and the chief effect of this common change in

the length of the two central diagonals is to throw the centre of

each half of the girder in Fig. 2 a little to the right or left of the

middle line. These diagrams give very interesting results
; they

show that the curvature of flanged girders is practically independent

of change of form in the web, and almost entirely due to the

shortening of the upper, and the elongation of the lower, flange ;

and a further inference may be derived from them, viz., that

deflection is practically unaffected by the nature of the web,

whether it be formed of plates or lattice bars, provided that the

unit-strains in the flanges are not increased or diminished by a

different formation of web. Consequently, if there be two girders

of equal length and depth, one a lattice, the other a plate girder,

having the same unit-strains transmitted throughout their respective

flanges, they will both deflect to the same extent.

SS4. Formula for the deflection of circular curves
Deflection of similar girders when equally strained varies

as their linear dimensions. The circumstance of the curve of

a loaded girder of uniform strength being circular enables us to

find a very simple equation for calculating its deflection.

Let adbgeh, Fig. 84, represent a girder supported at both ends

and of uniform strength for the load, which generally occurs when

the load is uniformly distributed.

Fig. 84.
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Let / = adb = the length of the girder,

d = de = the depth,

R = af = the radius of curvature,

X geh adb = the difference in length of the flanges after

deflection,

D = cd = the central deflection.

Since the deflection is very small compared with the radius of

curvature, we may assume cf = af R, and ab = adb = I; then

(Euclid, prop. 35, book iii.),

r
By similar triangles, R =

X

whence, by substitution, D = (132)
8#

in which the value of X is known, as it depends on the coefficients

of elasticity of the flanges and the strains to which they are subject.

This equation for the deflection curve confirms the previous inves-

tigation, for the depth, d, is the only quantity in the equation

which can be affected by a change in the length of the diagonals,

and it is obvious that a slight change in the value of d will not

affect that of D to any appreciable extent.

It follows from equation 132 that when similar girders sustain

the same unit-strains in their flanges, their deflections will vary

directly as any of their linear dimensions.

Ex. 1. The length and depth for calculation of the Conway tubular bridge are

respectively 412 feet and 237 feet, and it appears from ex. 2 (44) that the inch-strains

in the lower and upper flanges at the centre of the bridge from the permanent load are

5 '067 tons and 3 '9 48 tons respectively ;
what is the central deflection on the supposition

that the flanges are of uniform strength, which is very nearly true ? The coefficient of

elasticity of wrought-iron is 24,000,000 Ibs. = 10,714 tons per square inch; consequently,

it contracts or extends T^fr^th of its length for each ton per square inch, and we have

the following data :

I = 412 feet,

d = 237 feet,
A-t O

\ = -5f_ (5-067 + 3-948) = '347 feet.

Answer (eq. 132). D = = '!i7_*A1^ = 754 feet = 9'048 inches.
8tt 8 X 237
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The mean deflection of the two tubes immediately on removal of the platform was 8 '04

inches, and 8 '98 inches after taking a permanent set due to strain. When the permanent

way was added and after 12 month's use, the deflection of the second tube in the

month of January was 10 '3 inches. The deflection in hot weather would doubtless be

somewhat less. The deflection, from additional weight placed at the centre, was '01104

inch for each ton. (Clark, p. 662.)

Ex. 2. The length and depth for calculation of one of the large tubes of the Britannia

bridge are respectively 470 and 27 '5 feet, and from ex. 4 (44), the inch-strains at the

centre from the weight of the tube as an independent girder were 5795 and 4'856 tons

in the lower and upper flanges respectively. What was the central deflection ? Using

the same coefficient of elasticity as before, we have,

I = 470 feet,

d = 27-5 feet,

A = L (5795 + 4-856) = "467 feet.

Answer (eq. 132). D = =
'

=

The mean deflection of the two tubes of the up line, immediately on removing the

platform, was 1175 inches
; the mean deflection after being raised was 12'57 inches.

(Clark, p. 673.)

Ex. 3. A wrought-iron girder of uniform strength is 84 feet long and 7 feet deep.

A certain load produces a deflection of 1*2 inches at the centre
;
what are the unit-

strains in the flanges from this load ? From equation 132, we have,

.0 VX

The inch-strains in both flanges together =
a *

-j
_ 3.55 tongj whicil when

84 X 12

divided between the two flanges inversely as their sectional areas, will give the inch-

strain in each flange due to the given load.

CLASS 2. Girders whose section is uniform throughout their length.

885. The following investigations are based on the law ofuniform

elastic reaction, and are therefore only applicable to girders whose

strains lie within the limits of elasticity (3
1

).

Let W = the bending weight,

M = the moment of resistance of the horizontal elastic

forces at any given cross section of the girder (59),

x = the horizontal distance of the same section from the

left abutment,

y = the vertical distance of any fibre in the section, either

above or below the neutral axis,
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j3
= the breadth of the section at the distance y from the

neutral axis, and consequently a variable, except in

the case of rectangular sections,

/ = the horizontal unit-strain exerted by fibres in the given

section at a distance c from its neutral axis,

c = the distance from the neutral axis of horizontal fibres

which exert the unit-strain /,

I = the moment of inertia of any cross section round its

neutral axis, and consequently, a constant quantity

throughout the whole length of the girder when the

latter is of uniform section,

R = the radius of curvature,

E = the coefficient of elasticity.

It has already been shown (eq. 43) that M, the moment of the

horizontal elastic forces of any cross section round its neutral axis,

may be expressed by the equation,

provided the horizontal fibres are not strained beyond their limit

of elastic reaction. When the girder is of uniform section

throughout its length, the integral \
fiy*dy, being a definite integral,

will be a constant throughout the girder, and as it happens to

express the moment of inertia of the cross section round its neutral

axis (69), we may substitute for this integral the symbol I, when

we have

M = U (133)
G

In order to transform this equation into one involving the co-

ordinates .of the deflection curve, we must substitute for the three

variables, M, / and c, their values in terms of the co-ordinates x

and y. Let us first deal with / and c.

Fig. 85 represents a deflected semi-girder, whose neutral surface

isNS.
Let ab = a unit of length,

& and fc' r= the increment and decrement in length of a

linear unit of the extreme fibres after deflection.
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Fig. 85.

When the horizontal strains do not exceed the limits of elasticity,

we have the following relation,

/ E
c=R

Substituting this in eq. 133, we have the moment of resistance,

M = 1 1 (134)

From the principles of the differential calculus we know that, where

the deflection is small compared with the length of the curve,

1 d*

whence, by substitution in eq. 134, we have,

M=-Elg (135)

in which M is a positive or negative moment according as the

upper flange is in compression or tension, y being measured down-

wards. This equation expresses the moment of resistance of the

horizontal elastic forces at any section of a girder in terms of

the ordinates of the deflection curve, the coefficient of elasticity, and

the moment of inertia of the cross section round its neutral axis.

In order to solve eq. 135, there still remains before integration to

substitute for the variable M its value in terms of the ordinates of
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the deflection curve, which may be derived from the leverage of

the weight, observing that the moments of forces are to be taken as

positive or negative according as they tend to compress or extend

the upper flange. To effect this substitution we must consider

each case separately, and after integration, the value of I, which is

a different constant for each form of section, may be obtained by

multiplying the values of M, already determined in (31) and the

succeeding articles, by >(eq. 133).

CASE I. SEMI-GIRDERS OF UNIFORM SECTION LOADED AT THE

EXTREMITY.

SS6. Let W = the load at the extremity,

I = the length of the semi-girder,

x = the abscissa of the deflection curve measured

from the fixed end,

y the ordinate of the deflection curve measured

downwards,

D = the deflection at the extremity,

M = the moment of resistance of the horizontal

elastic forces at any given section, whose

distance from the fixed ends = x (59),

I = the moment of inertia of any cross section,

E = the coefficient of elasticity.

Taking moments round the neutral axis of the given section, we

have,
M = __W(J x)

Substituting this in eq. 135, we have,

Integrating,

E I ^ = W fix ~ \ + constant.

The constant = 0, for when as 0, also = 0, since the tangent
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of the curve is horizontal at the fixed end. Integrating again, and

determining that the new constant = 0, from the consideration that

y =. when x = 0, we have,

(136)

This is the equation of the deflection curve, y being the deflection

at any point whose distance from the fixed end equals x.

At the extremity where x = /, y =. D, and we have,

EID = W ô

whence, D =L (137)

837. Solid rectangular semi-girders Deflection of solid

square girders is the same with the sides or one diagonal
vertical. Let b = the breadth and d = the depth. From eqs.

46, 133, and 137,

Comparing eqs. 46 and 47, we find that the deflection of solid

square girders is the same whether the diagonal or one side be

vertical. Their strength, however, is not the same (86).

Ex. The piece of Memel timber, described in Ex. 4 (66), deflected 0'66 inch from

a load of 336 Ibs. hung at its extremity ; what is the value of E ?

Here, W = 336 Ibs.,

I = 24 inches,

6 = 1'94 inches,

d = 2 inches,

D = 0-66 inch.

Answer (eq. 138). E = = 1,800,000 Ibs.

888. Solid round semi-girders. Let r = the radius. From

eqs. 48, 133, and 137,

D = i
3

(139)

889. Hollow round semi-girders of uniform thickness.

Let t rr the thickness of the tube, supposed small in proportion to

its radius r. From eqs. 50. 133, and 137,

D = -
(140)
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S3O. Semi-girders with parallel flanges. When the web

is formed of bracing, or if continuous, is yet so thin that we may

safely neglect the support it gives the flanges, we have from eqs.

55, 133, and 137,

E = gSS (U1)

where A = a
l + 2

= the sum of the areas of the two flanges, and

d = the depth of the web.

When the web is taken into account and the flanges are of equal

area,

let a = the area of either flange,

a' = the area of the web.

From eqs. 57, 133, and 137,

D = ^

S31. Square tabes of uniform thickness, with the sides

or one diagonal vertical. From eqs. 59, 133, and 137,

4VW
D =

E(M-V)
where b and b

l
are the external and internal breadths.

If the thickness of the tube be small compared with the breadth,

we have from eqs. 60, 133, and 137,

D =

in which t represents the thickness of one side.

CASE II. SEMI-GIRDERS OF UNIFORM SECTION LOADED

UNIFORMLY.

233. Let Z = the length of the semi-girder,

x the abscissa of the deflection curve measured from

the fixed end,

y the ordinate of the deflection curve measured

downwards,

w = the load per unit of length,

W = wl = the whole load,
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D = the deflection at the extremity,

M = the moment of resistance of the horizontal elastic

forces at any given section, whose distance from

the fixed end = x (59),

E = the coefficient of elasticity.

Taking moments round the neutral axis of the given section, we

have,

M = -(*-*)

Substituting this in eq. 135, we have,

c I #y _ w
(l -y* d^~ JV"

Integrating,

E I -j- -^ (I ,v)
3 + constant.

ax o

When x = 0,
~ = also

; hence, the constant equals -TT . Substi-
ax b

tuting this value and integrating again,

E I y = --
(I #)

4
H--

^
--h constant.

Determining the second constant by the consideration that y =
when x =. 0, we have,

w ,, ...
t
wlzx wl*_

,

Ely =

At the extremity where x = /, y = D, and we have,

n w'* wp
D =

8EI
=

8EI

333. Deflection of a semi-girder loaded uniformly equals
three-eighths of its deflection with the same load concen-

trated at its extremity. Comparing eqs. 145 and 137, we see

that the deflection of a semi-girder loaded uniformly is to its deflec-

tion with the same load concentrated at the extremity as |. Hence,

to obtain the deflections of the various classes of semi-girders in the

case of a uniform load, we have merely to multiply the formula? in

the preceding case by f , recollecting that W will now represent the

uniformly distributed load.
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CASE III. GIRDERS OP UNIFORM SECTION SUPPORTED AT BOTH

ENDS AND LOADED AT THE CENTRE.

S34. Let I = the length of the girder,

x the abscissa of the deflection curve measured

from the left end of the girder,

y the ordinate of the deflection curve measured

downwards,

W rr the load at the centre,

D rz the deflection at the centre,

M = the moment of resistance of the horizontal elastic

forces at any given section whose distance from

the left end = x (59),

E = the coefficient of elasticity.

Taking moments round the neutral axis of the given section, we

have ..

Substituting this in eq. 135, we have,

Integrating,

... . dy ,E I ~ = -- constant.
dx 4

To determine the constant, we must recollect that the tangent of

the curve is horizontal at the centre; hence,
-~ = when x = -,
dx '2

W/2

and the constant = -
; substituting this,

7 . .
-

dx 4 \4

Integrating again, and observing that the second constant =
from the consideration that y = when x 0, we have,

which is the equation of the deflection curve.
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At the centre where x ~, y = D, and we have,

835. Solid rectangular girders. From eqs. 46, 133, and

146,
W/3

D = ra? <147>

in which b and d represent the breadth and depth of the girder.

Ex. From the mean of five experiments made by Mr. Hodgkinson on Blaenavon

cast-iron, No. 2,* it appears that the breaking weight and ultimate deflection of a

rectangular bar 13 feet 6 inches between points of support, 3 inches wide and 14 inch

deep, are respectively 819 Ibs. and 10'46 inches
;
what is the value of the coefficient of

transverse elasticity at the limit of rupture ?

Here, W = 819 Ibs.

I = 13-5 feet,

6 = 3 inches,

d = 1'5 inches,

D = 10'46 inches.

Ans. (eq. 147). E = ^ = 819 X (13'5 X 12)
3 = 8 200,000 Ibs. per square inch.

4Dbd3 4 X 10-46 X 3 X (l'5)
s

The deflection of the same bar when loaded with 260 Ibs., which was within the limit of

elasticity, was 2 inches. What was its coefficient of elasticity within this limit ?

Here, W = 260 Ibs.

D = 2 inches.

The reader should be informed that this coefficient of transverse elasticity of Blaenavon

iron is less than that of average cast-iron, especially when mixed.

836. Solid round girders. From eqs. 48, 133, and 146,

in which r represents the radius.

837. Hollow round girders of uniform thickness. From

eqs. 50, 133, and 146,
W/3

D = (149)

in which t represents the thickness of the tube, supposed small in

proportion to its radius r.

* See Report of Com. p. 69.
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838. CJirders with parallel flanges. When the vertical web

is formed of bracing, or if continuous, yet so thin that it affords

but slight assistance to the flanges in sustaining horizontal strains,

its stiffness as an independent girder may be neglected, and we have

from eqs. 55, 133, and 146,

-
raSS? (150)

in which A = a
{ + a2

= the sum of the areas of the top and bottom

flanges, and d = the depth of the web.

When the web is taken into account, and the flanges are of equal

area, from eqs. 57, 133, and 146,

W/3

D ~
'

in which a = the area of one flange and a' = that of the web.

839. The deflections of girders of other forms of section may be

obtained in a similar manner from eqs. 133 and 146 by substi-

tuting for M the corresponding values given in Chap. IV.

CASE IV. GIRDERS OF UNIFORM SECTION SUPPORTED AT BOTH

ENDS AND LOADED UNIFORMLY.

84O. Let I the length of the girder,

w the load per linear unit,

W = wl = the whole load,

x = the abscissa of the deflection curve measured from

the left end of the girder,

y = the ordinate of the deflection curve measured

downwards,

D = the deflection at the centre,

M rr the moment of resistance of the horizontal elastic

forces at any given section whose distance from

the left end = as (59),

E = the coefficient of elasticity.
N



178 DEFLECTION. [CHAP. VIII.

Taking moments round the neutral axis of the given section, we

have,

M =(la; X*)

Substituting this in eq. 135, we have

Elg =
_!(fa_,.) (152)

Integrating,

When x p
-~ = 0, and the constant becomes ^7 5 substituting

this, c I dy _ w Ix3
la;

2
Z

' -~~~~
Integrating again, and observing that the second constant =
from the consideration that y = when x = 0,

Eh = ~(z*-2W + l
3
*)

which is the equation of the deflection curve.

At the centre where x =
, y D, and we have,

n 5VW3

D:=
384EI=384ET

341. Central deflection ofa girder loaded uniformly equals
five-eighths of its deflection with the same load concentrated

at the centre. Comparing eqs. 153 and 146, we find that the

central deflection of a girder loaded uniformly is
-jj-ths

of the

deflection if the same load were concentrated at the centre. This

has been corroborated by experiments by M. Dupin on rectangular

girders of oak.*

848. No I id rectangular girders. From eqs. 46, 133, and

153,

n 5VW3

= *-*
where b and d represent the breadth and depth of the girder.

*
Morin, p. 140.
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Comparing eqs. 46 and 47, we find that the deflection of solid

square girders is the same, whether one side or the diagonal be

vertical. The former, however, is theoretically 1*414 times stronger

than the latter (86).

343. Solid round girders. From eqs. 48, 133, and 153,

(155)
96 Err4

where r represents the radius of the cylinder.

344. Hollow round girders of uniform thickness. From

eqs. 50, 133, and 153,

D= = -
(156)

384 EvrH

where r the radius, and t the thickness of the tube, supposed

small in comparison with the radius.

345. Girders with parallel flanges. When the web is formed

of bracing, or if continuous, yet so thin that its strength as an

independent girder may be neglected, we have from eqs. 55, 133,

and 153,

D _ 5AW4 5AVW3~~
where A = a

t + a2
= the sum of the areas of top and bottom

flanges, and d := the depth of the web.

If the web be taken into account and if the flanges have equal

areas, from eqs. 57, 133, and 153,

p _ 5^4 _ 5W/3

"
32 E(6a + a')d*

~
32 E(6a + a')d*

where a = the area of one flange, and a! = that of the web.

346. Discrepancy betwreen coefficients ofelasticity derived

from direct and from transverse strain. The coefficients of

elasticity derived from experiments on transverse strain do not

always agree with those derived from direct longitudinal tension

or compression ; they vary also with different forms of cross section,

as exhibited in the following table, which contains the coefficients

of transverse elasticity of cast and wrought-iron girders of the more

usual forms of cross section.
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MATERIAL.
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CHAPTER IX.

CONTINUOUS GIRDERS.

347. Continuity Contrary flexure Points ofinflexion.

A girder is said to be continuous when it overhangs its bearings, or

is sub-divided into more than one span by one or more intermediate

points of support. When a loaded girder is balanced on a single

pier at or near its centre, like the beam of a pair of scales, the

upper flange is subject to tension, the lower one to compression,

and the girder becomes curved with the convex flange uppermost.

If, however, the same girder be supported at its extremities, the

pier being removed, the strains in the flanges are reversed, the

upper flange being now compressed and the lower one extended,

and in this case the convex flange is underneath. If, while in this

latter position, we replace the central pier so as to form two spans,

the girder becomes continuous and partakes of the nature of both

the independent girders ;
each flange is in part extended, in part

compressed, and the curve becomes a waved line. Let Fig. 86

represent a continuous girder of two spans uniformly loaded.

The central segment B B' resembles the independent girder in

the first case, namely, when balanced over a pier; the extreme

segments, AB, B'A', resemble it in the second case, since one

end of each rests upon an abutment and the other end is sup-

ported by the central segment, which thus sustains besides its

own proper load an additional weight suspended from each
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extremity, equal to the half load on each of the end segments.

The points B, B', where the curvature alters its direction, are

called the points of contrary flexure, or more briefly, the points of

inflexion. The curves of the end and central segments have

common tangents at these points, and here the strains in the

flanges change from tension to compression, and vice versa.

Exactly at these points the strains in the flanges are cipher;

consequently, the flanges might be severed there without altering

the conditions of equilibrium in any respect. In fact, a continuous

girder may be regarded as formed of independent girders connected

merely by chains at the points of inflexion. In braced girders the

bracing acts as the chain, in others the continuous web.

848. Passing load. For the investigation of the strains in a

continuous girder it is necessary first, to find the points of inflexion,

and afterwards to calculate the strains in the separate segments on

the principles already laid down for independent girders. A passing

load complicates the question, for its effect is to alter the position of

the points ofinflexion, and consequently the lengths ofthe component

segments ; if, for instance, a passing train covers the left span, its

deflection will be increased and that of the right span diminished,

or even altogether removed, if the passing load be sufficiently

heavy to lift the right end off the abutment A'. The effect of

this partial loading on the points of inflexion will be to bring B
nearer to, and remove B' farther from, the central pier, and this is

that disposition of the load which gives the greatest length to the

segment A B
;

it is necessary, therefore, in the case of a passing
load to find this new position of the points of inflexion and

calculate the strains in A B as an independent girder of this

maximum length. Of course, the same calculations will suit B'A'

when it is of maximum length, that is, when the right span

only is loaded. The central segment, B B', becomes of maximum

length when the load is uniformly distributed over the whole

girder, and the points of inflexion have to be determined under

this condition of the load also. Having thus calculated the

strength of each part when subject to the load which produces the

maximum strain in the flanges of that part, we may assume that
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there is sufficient strength for any other disposition of the load,

since the motion of the points of inflexion is restricted within

these limits. The reaction of either abutment is equal to half

the load on the adjacent segment; thus, the reaction of the left

abutment equals half the load resting upon A B. The reaction of

the pier equals the load resting upon the central segment, B B 7

, plus

the sum of the reactions of the two abutments.

349. Experimental method of finding: the points of in-

flexion The depth of a girder does not affect the position

of the points of inflexion. The following method of finding the

points of inflection depends partly on theory, partly on experiment,

and is applicable to continuous girders containing any number of

spans. Take a long rod of clean yellow pine or other suitable

material to represent the continuous girder, and let it be supported

at intervals corresponding to the spans ofthe real girder. Next, load

this model uniformly all over, or each span separately, or in pairs, or

make any other disposition of the load which can occur in practice.

Now, it is clear that, if the model and its load be a tolerably

accurate representation of the girder and its load, the points of

inflection of the former will correspond with those of the latter
;

they might therefore be at once obtained by projecting the curves

of the model on a vertical plane. It is difficult, however, to do

this so as to determine the points of inflection with the requisite

accuracy, for the exact place where the curvature alters is never

very precisely defined to the eye. The pressures on the points of

support may, however, be measured with considerable accuracy,

taking the precaution of keeping them all in the same horizontal

line, as a slight error in their level would seriously affect the

curvature and lengths of the component segments. We shall

assume therefore that the reactions of the points of support have

been thus found experimentally.*

Let Fig. 87 represent a continuous girder containing any

number of spans, each loaded uniformly, and let 0,0,0, &c., represent

* It is a safe precaution to measure the pressures on the points of support with the

rod turned upside down as well as erect, and then take the mean measurement as the

true result.
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successive points of inflection, the intervals between which are

called segments.

Fig. 87.

Let R
1?
R

2 , R 3 ,
&c. = the reactions of the successive points of

support as found by experiment,

/, ', &c. = the lengths of the successive spans,

w, w
r

,
&c. = the loads per linear unit on each span,

a, 6, c = the lengths of certain parts of the girder,

as represented in the figure,

Q = the centre of the third segment.

RU the reaction of the left abutment, is equal to half the load on

the first segment a, whence, R t
=

,
and

a = l

(159)w
This equation gives the distance of the first point of inflexion

from the left abutment, since Rj is known from experiment.

R 2 ,
the reaction of the first pier, is equal to the load resting on

the girder as far as Q minus the reaction of the first abutment
;

that is, R 2
= wl + w'b R p whence,

I = R
- + ;~^ (160)

Again, taking moments round either flange at Q, which is now a

known point, we have,

Fd = R,(J + b) + R,b-wl
(1 +!>}-

in which F = the strain in either flange at Q, and d = the depth

of the girder; but from eq. 25 we have,
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c being the length of the third segment, as marked in the figure ;

substituting this value for Fd and arranging, we have,

The distance of the second point of inflexion from the first pier

= b y and so on. It will be observed that the depth of the

girder does not enter into these equations, and therefore does not

affect the position of the points of inflexion.

85O. Practical method of fixing: the points of inflexion

Economical position of points of inflexion. I shall here briefly

describe a method by which the points of inflexion of braced girders

may be fixed in any particular bay at will, so that there may be no

uncertainty respecting their position, or so that they may, if

desirable, be made to assume that position which is most advan-

tageous for economy in the flanges.

Let Fig. 88 represent a continuous lattice girder capable of free

horizontal motion on the points of support. Suppose that the point

of inflexion, as determined by theory, is at a, but that it is desirable

to fix it at ft, that is, to make that part of the upper flange which

lies between a and b subject to tension in place of compression.

This may be effected by severing the flange at 6, and lowering the

end of the girder on the left abutment slightly, so as just to separate

the parts at b. The left segment, c6, will then assume the condition

of an independent girder supported at one extremity by the abut-

ment and at the other by the oblique forces in diagonals d and e.

The upper flange from c to b will undergo compression, from b to

some corresponding point in the second span, tension. Further,
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the operation of fixing the point of inflexion in the upper flange

determines its position in the lower one also, for, when the former

is severed at 6, the only horizontal forces acting upon the seg-

ment cbf are the strains in the lower flange at / and the horizontal

component of the strains in diagonals d and e. This component

must therefore be exactly equal and opposite to the strain at /,

otherwise, the left segment, c6/, will move either to the right or

left, since by hypothesis it is free to move horizontally on the

abutment (58). Hence, it is evident that the point of inflexion

in the lower flange is not far from /, probably not farther than

the adjoining bay. Its position is determined by the condition

that the horizontal component of the strains in 'the diagonals inter-

sected by a line joining the points of inflexion in the two flanges

is equal to cipher. Thus, by leaving any particular bay in one of

the flanges of a continuous girder of two spans permanently severed,

we have the point of inflexion in that span fixed under all conditions

of the load
;
and when this is determined, we can find the strains in

the flanges over the pier, and thence deduce the position of the

point of inflexion in the second span. If the severed flange be

united when any given load rests upon the girder, though the point

of inflexion will move with every change of load, yet it will return

to its original position whenever a similar load rests on the girder

in the same position as when the flange was first severed.

If there be three spans, the central span may have both points of

inflexion fixed independently of each other, and these again will

determine the corresponding points in the side spans. The operation

is safe in practice, as was proved at the Boyne Viaduct, where the

points of inflexion in the centre span were fixed by severance in

those bays in which theory had previously indicated their probable

existence.* The most economical arrangement in theory for the

flanges of a large girder of one span uniformly loaded consists in

forming points of inflexion at the quarter-spans. In this case the

end segments of the upper flange must be held back by land chains,

as in suspension bridges, while those of the lower flange exert a

* See Description of the Boyne Viaduct in the Appendix.



CHAP. IX.] CONTINUOUS GIRDERS. 187

horizontal thrust against the abutments like the flat arch (316).

The two extreme segments of the girder thus form semi-girders,

while the central segment is an independent girder suspended

between them by the web.

The following theoretic investigations respecting continuous

girders are based on the assumption that the material is perfectly

elastic, and that the girder is of uniform section throughout its

whole length.

CASE I. CONTINUOUS GIRDERS OF TWO EQUAL SPANS, EACH

LOADED UNIFORMLY THROUGHOUT ITS WHOLE LENGTH.*

Fig. 89.

251. Pressures on points of support Points ofinflexion

Deflection. Let I AB = BC = the length of each span,

w = the load per linear unit of AB,
w' = the load per linear unit of BC,

RU R
2 ,
R 3
= the reactions of the three points of support

A, B and C, respectively,

x A/i =: the horizontal distance of any point P

from the left abutment,

y = hP = the deflection at that point,

M = the moment of resistance of the horizontal

elastic forces at P (59),

|3
= the inclination to the horizon of the tangent

to the curve at B,

* See Mr. Pole's paper on the "
Investigation of general formulae applicable to the

Torksey bridge," Proc. Inst. C. E., Vol. ix., p. 261.
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I = the moment of inertia of any cross section

round its neutral axis, and consequently, a

constant quantity throughout the whole

length of the girder when the section of the

latter is uniform from end to end,

E = the coefficient of elasticity.

The forces which hold the segment A P in equilibrium are the

reaction of the left abutment, R
l ;

the load wx uniformly distributed

over AP; the vertical shearing-strain at P, and the horizontal

elastic forces at the same place. Taking the moments of these

forces round the neutral axis at P, we have,

M = R,x ^L (162)

Substituting for M its value in eq. 135,

Integrating this, and determining the constant by the consideration

that j? = tanfi when x = I, we have,

Integrating again, and determining the second constant by the

consideration that y = when x = 0, we have,

(163)

which is the equation of the deflection curve from A to B.

At the point B, x = I and y = 0; substituting these values in

eq. 163, we have,

ton
'
3:=

2lET (3W
- 8R

') (164)

Applying a similar process to the second span, and remember-

ing that the angle |8
must in this case have a contrary sign, we

have,
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Again, taking moments round B, we have,

R
tl-^ = R 3l-^ (166)

also,

RI + R 2 + R s
=

(w + w'} 1 (167)

By solving these last four simultaneous equations we obtain the

reactions of the points of support, as follows :

R
l
= l2=*l (168)

R, =
1(10

+ 1*0* (169)

R z
= lw'- w

l (170)

At the points of contrary flexure the horizontal forces become

cipher. Hence, the distance of the point of inflexion in the left

span from A may be obtained from eq. 162, by making M = and

substituting for R
l
its value in eq. 168, as follows:

x = = lw- w
'l (171)w 8w

Similarly, the distance of the point of inflexion in the right span

measured from C,

The deflection y, in the left span, may be derived from eq. 163 by

substituting for tanQ its value in eq. 164, as follows:

<173)

The value of I for each form of cross section may be obtained

from 31 and the succeeding articles by the aid of eq. 133.

The maximum strains in the flanges occur over the pier, and half

way between the abutments and the points of inflexion, and when

the latter are known, may be easily determined on the principles laid

down in the second and fourth chapters for calculating the strains

in independent girders; see eqs. 12 and 23 for girders with

braced webs; or 70, 82 and 107 for girders with continuous

webs.
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S5S. Both spans loaded uniformly. If both spans have the

same load per running foot, w = u?', and we have

R! = R 3 =
jjfirf

(174)

R 2
=

^wl (175)

The distance of each point of inflexion from the near abutment,

x =
|j

(176)

Ex. The Torksey bridge is a continuous girder bridge in two equal spans, and was

erected by Mr. Fowler to carry the Manchester, Sheffield and Lincolnshire Railway

over the river Trent. Each span is 130 feet long in the clear, with a double line of

railway between two double-webbed plate main girders with cellular top flanges.

These main girders are 25 feet apart, with single-webbed plate cross-girders, 14 inches

in depth and 2 feet apart, attached to the lower flanges. The extreme depth of each

main girder is 10 feet. The depth from centre to centre of flanges is 9 feet 4f inches,

or ^th of each span. The gross sectional area of each top flange at the centre of

each span is 51 inches, and the net area of each lower flange is about 55 inches. The

thickness of each side of the web at the centre of each span is inch, increasing to -|

inch at the abutments and central pier.

The load on each span of 130 feet was estimated as follows :

Tons. Tons.

Rails and chairs, 8

Timber platform, 15

Cross -girders, 27 177

Ballast, 4 inches thick, 35

Two main girders, . . .
-

. .92
Rolling load, as agreed upon by Mr. Fowler and Capt.

Simmons (Government Inspector), . . . .195

Total distributed load, 372 tons.

The strength of the Torksey bridge as a continuous girder was calculated by Mr.

Pole from the following data :

The length of each span = 130 feet = 1,560 inches.

The total distributed load on the first span = 400 tons, or for each girder

200 tons.

The distributed load on the second span = 164 tons, or for each girder 82

tons.

The coefficient of elasticity is taken equal to 10,000 tons for a bar one inch

square.
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By eqs. 168, 169, and 170, the pressures of one main girder on the points of

support are as follows :

R! = 82-375 tons.

R2
= 176-250 tons.

K3
= 23-375 tons.

By eq. 171, the distance of the point of inflection in the loaded span is 22 feet 11

inches from the centre pier. The moment of inertia = 372,500 by Mr. Pole's calcu-

lation. The distance of the top plates from the neutral axis = 64 inches
;
that of the

bottom plates from the same axis = 56 inches, and the maximum strains in the

flanges of the longer segment, 107 feet long, are 4'55 tons compression per square

inch of gross area in the top flange, and 4 tons tension per square inch of net area in

the bottom flange. The deflection, with 222 tons distributed over one span, was 1-26

inches.

CASE II. CONTINUOUS GIRDERS OF THREE SYMMETRICAL

SPANS LOADED SYMMETRICALLY.*

Fig. 90.

S53. Pressure on points of support Points of inflexion

Deflection. Let Q be the centre of the centre span,

AB = CDr=/r= the length of each side span,

AQ = nl,

w = the load per linear unit on each side span,

w' = the load per linear unit on the centre span,

R! = the reaction of either abutment, A or D,

R
2
= the reaction of either pier, B or C,

x =. A/i =. the horizontal distance of any point P from

the left abutment.

y = hP = the deflection at this point,

M = the moment of resistance of the horizontal elastic

forces at P (59),

* For the elegant investigation in 853 and 354 the author is indebted to William

B. Blood, Esq., sometime Professor of Civil Engineering in Queen's College, Galway.
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j3
= the inclination to the horizon of a tangent to the

curve at B or C,

I = the moment of inertia of any cross section round

its neutral axis, and consequently, a constant

quantity throughout the whole length of the

girder when the section of the latter is uniform,

E = the coefficient of elasticity.

It can be shown by the same process of reasoning as that adopted

in 251 that the equation of equilibrium for any point P in the

side span, AB, is

M=R,-^ (177)

whence, as before,

8R
' ) (178)

The equation of equilibrium for any point in the centre span is

M = R^+ R
2 (tf_Z)_W^-|)-|'(#_0

2

(179)

Substituting for M its value in eq. 135,

Integrating, and determining the constant by the consideration that

-j- tanB when x = /, we have,
ax

El | = El tanfi + |fa( + ^(*-/)'-
R
A^i('-P)

+ R,l(x l) (180)

which is the equation of the deflection curve from B to C.

Since ~ = when x nl, we haye,
ax

_(_1)R,} (181)

also

R
1 + R 2

= / {w + (nl) w'} (182)
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From eqs. 178, 181, and 182, we obtain the reactions of the points

of support, as follows :

(l-5n 1-125) tg (n
i 3n-2

(l-5n 0-875) l(> + (n
* 2n + l)w'R *

= l 3n-2
The distance of the point of inflexion in either side span from the

abutment is obtained from eq. 177 by making M = 0.

9R
x = ^i

(185)w

The distances of the points of inflexion in the centre span from A
are obtained from eq. 179 by making M = 0, substituting for R,

its value in eq. 182, and solving the resulting quadratic, as follows :

The equation for the deflection of the side spans is the same as

eq. 173. That for the deflection at the centre of the centre span

where x = nl, is obtained by integrating eq. 180 and determining

the constant by the consideration that y = when x = /, as

follows :

+ (n 1)2 + I ten/3/ (n 1) (187)

The value of I for each form of cross section may be obtained from

71 and the following articles by the aid of eq. 133.

354. Three spans loaded uniformly. If the girder be loaded

uniformly throughout the three spans, w = w f

,
and the pressures

on the point of support become

- + 0-125)--
< 189)
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The distance of the point of inflexion in each side span from the

abutment is as before :

(190)w
The distances of the points of inflexion in the centre span from A
are as follows :

(191)

If the radicle in eqs. 186 or 191 vanish, there will be no strain

at Q, and the centre span will be cambered throughout. If the

value of R! in eqs. 183 or 188 be negative, the ends of the girder

will be lifted off the abutments, owing to the excess of load on the

centre span.*

255. Maximum strains in flanges. The maximum strains in

the flanges occur as follows : in the side spans when the passing

load covers both side spans, leaving the centre span free from load
;

in the centre span, when the passing load covers it alone, leaving

both side spans free from load; and over either pier, when the

passing load covers the centre span and the adjacent side span,

leaving the remote side span free from load. When the lengths

of the component segments are determined, the strains in the

flanges may be calculated by eqs. 12 and 23 if the girders are

diagonally braced, or by eqs. 70, 82 and 107 if they are plate

girders. The hypothesis of the load being symmetrically disposed

on either side of the centre prevents us from finding the points of

inflexion when the segment over either pier is of maximum length ;

we have, however, a close approximation to its maximum length in

the case of a passing load covering all three spans, and if desirable,

a small extra allowance may be made for greater security. When
the maximum length of the segment over either pier is thus deter-

mined, the calculation for the strains in its flanges are made as

indicated in previous chapters, recollecting that each of these pier

segments supports not only its own proper load, but also the weight

of half the adjoining segments with their load, suspended from its

extremities by the vertical web.

* The reader is referred to the description of the Boyne lattice bridge in the Appendix

for a practical example of the application of the foregoing formulae.
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S56. Maximum strains in web Ambiguity in calculation.

Though we obtain by these means the maximum strains of either

kind to which the flanges are subject, it does not follow that we have

also got the maximum strains in the web. Let o, for example, in

Fig. 90, be the point of inflexion when the segment Ao is ofmaximum

length. Now this segment does not remain of this maximum length

while a train is passing from A to B, that is, while the maximum

strains are being produced in the web of Ao
;
the point of inflexion

is much closer to A when the train first comes upon the bridge

(especially if the centre span happens to be traversed at the same time

by another train), and gradually moves forward towards B as the

train advances. It is incorrect therefore to calculate the maximum

strains in the web on the hypothesis that Ao is the length of the

segment while the load advances. The maximum strain in a diagonal,

at P for instance, takes place when the load covers A P, but the

point of inflexion is then really nearer A than the point o is, and the

maximum strain in the diagonal at P is therefore greater than if we

assume the segment constant in length during the advance of the

train. A similar or even greater uncertainty occurs in the centre

span, for there neither end of the segment is fixed.

857. Permanent load, shearing-strain. When a continuous

girder supports a fixed load, the strains in the web are not modified

at the points of inflexion. The horizontal strains in the flanges

change from tension to compression, or vice versa, at these points,

but the vertical or diagonal strains are transmitted through the web

just as if no points of inflexion existed. The effect of contrary

flexure is merely this
;
the horizontal increments of strain developed

in the flanges pull from the piers in place of thrusting towards the

centres of the component segments, and vice versa. Hence, when a

continuous girder of three, five, or any uneven number of spans,

is symmetrically loaded, the strains throughout the web of the

centre span are the same as if the centre span were an independent

girder supported at its extremities. This perhaps will be made

clearer from the consideration that the shearing-strain at any section

in the centre span, when the points of inflexion are symmetrical,

is equal to the weight between the section and the centre of the
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span, and this is the case whether there be any point of inflexion

or not. Thus, the shearing-strain at any point/, Fig. 90, is equal

to the load on fo' + that on o'Q; but if the central span were an

independent girder, resting on abutments at B and C and uniformly

loaded, the shearing-strain at / would equal the load on /Q, that

is, it would be the same as before.

859. Advantages of continuity \o< desirable for small

spans with passing loads,, or where the foundations are

insecure. The advantage of continuity arises from two causes;

first, from the smaller amount of material required in the flanges ;

secondly, from the removal of a certain portion of their weight from

the central part of each span to a position nearer the piers. The latter

is but a trifling advantage in continuous girders ofmoderate spans, say

under 150 feet, which' support heavy passing loads, for the part so

removed forms but a small proportion of the total weight. In the case

of a fixed load, however, the saving from this cause is considerable
;

but when the load is a passing train the advantages of continuity

are liable to be over-rated, especially in girders of small spans, for

on a little reflection it will be evident that, when the points of

inflexion move under the influence of the passing load, a greater

amount of material is required than if their position remained

stationary, and this moreover introduces the necessity of providing

for both tension and compression in those parts of the flanges which

lie within the range of the points of inflexion
;
this latter objection

is perhaps of little consequence when wrought-iron is the material

employed. A subsidence of any of the points of support of a con-

tinuous girder will cause a change of strain whose amount it is quite

impossible to foresee, and which may seriously injure the structure

or perhaps render it dangerous. Hence, continuous girders should

be avoided where the foundations of the piers are insecure. In

bridges of large span, where the permanent load constitutes the

greater portion of the whole weight, the advantage of continuity is

very considerable. The position of each point of inflexion alters but

little with a passing load, and a considerable portion of the per-

manent weight, Avhich would otherwise rest at, or near the centre,

of each span, is brought close to the points of support.
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CASE III. GIRDERS OF UNIFORM SECTION IMBEDDED AT BOTH
ENDS AND LOADED UNIFORMLY.

Fig. 91.

859. Strain at centre theoretically one-third* and strength
theoretically once and a half, that of girders free at the

ends. When both ends of a girder are built into a wall so as to be

rigidly imbedded there, the tangent to the girder at its intersection

with the wall is horizontal, and the strains closely resemble those

which occur in the centre span of a continuous girder of three

spans when the load is so disposed that the tangents over the piers

are horizontal.

Let I = the span from wall to wall,

w = the load per linear unit,

M' = the moment of resistance of the horizontal elastic forces

at the intersection of the girder with the wall (59),

M = the moment of resistance of the horizontal elastic forces

at any cross section P,

x and y = the co-ordinates of P, measured from a as origin,

I = the moment of inertia of any cross section round its

neutral axis,

E = the coefficient of elasticity.

Taking moments round P (eq. 135),

M=-Elg = ^-^-M' (192)

Integrating, and determining that the constant = from the con-

sideration that ~- when x = 0,
dx

_ . dy w.x3

E I -f- .

dx b
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Making x /, we have
-j-

0, and

Substituting this value in eq. 192, we have,

72

At the points of inflexion, M = 0, and we have a* Ix + ^ = 0,
o

whence,

x = I

(g-if )
= -211 J or -789Z (193)

The length of the middle segment = -578Z, and if the girder
be a flanged girder, the central strain in either flange (eq. 25)

(578)
2W2

.

77-7
=

nj-j, ln which d = the depth of the

girder. This central strain is just ^rd of what it would be were

the ends merely resting on the wall, in place of being built therein.

From eq. 12, we find that the strain in either flange at the wall

=
js^,

which is just double the strain at the centre of the flanges,

and frds of what would be the central strain from the same load

if the girder were merely resting on the walls. From this it

follows, that the strength of a girder of uniform section imbedded

firmly at both ends and loaded uniformly is theoretically once and a

half that of the same girder merely supported at the ends, and that

the points of greatest strain are at the intersections with the wall.

CASE IV. GIRDERS OF UNIFORM SECTION IMBEDDED AT BOTH

ENDS AND LOADED AT THE CENTRE.

S6O. Strain at centre theoretically one-half, and strength
theoretically twice* that of girders free at the ends.

Let W = the load at the centre of the girder, and let the other

symbols remain as before.

Taking moments round P (eq. 135),

"=-El = .-M' (194)
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Integrating, and determining that the constant = from the

consideration that ~ = when x = 0,

El$.= !'-&
dx 4

Making x = ~, we have
-^- 0, and

Substituting this value in eq. 194, we have,

At the points of inflexion M = 0, and we have their distance

from the walls,

x = l-
(195)

The length of the middle segment = ~, and its central strain is

just J of what it would be if the ends of the girder were not

imbedded in the wall but merely resting thereon. The strain at

the wall also is equal to the central strain; consequently, the

strength of a girder of uniform section imbedded firmly at both

ends and loaded at the centre is theoretically twice that of the

same girder merely supported at the ends. Mr. Barlow's experi-

ments on timber, however, do not corroborate this theory, as he

found the strength of an imbedded beam loaded at the centre to

be only 1-| times that of a free beam, and fracture always took

place at the centre, the ends being comparatively little strained.*

Our theory is doubtless defective in supposing that the horizontal

fibres at the wall are in the same state of strain as if the girder

were really a continuous girder in three spans, for in the latter

case the girder is bent downwards in each of the side spans,

whereas, when imbedded in the walls, the ends which correspond

to these side spans are horizontal, and consequently, the points of

inflexion are really nearer to the walls than in a truly continuous

girder.
*

Strength of Materials, pp. 32, 136.
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CHAPTER X.

QUANTITY OF MATERIAL IN BRACED GIRDERS.

CASE I. SEMI-GIRDERS LOADED AT THE EXTREMITY, ISOSCELES

BRACING.

861. Web.
Let W = the weight at the extremity,

I = the length of the semi-girder,

d = its depth,

6 = the angle the diagonals make with a vertical line,

/ the unit-strain,

Q = the cubical quantity of material in the diagonals,

Q' =: the cubical quantity of material in either flange.

Fig. 92. The cubical quantity of material

required for the diagonal bracing is

equal to the sum of the products of

the length and section of each brace.

When the triangles are isosceles and

the load is a single weight, the sec-

tion, if proportional to the strain, is

the same for all the diagonals, and

the quantity of material is therefore

equal to the product of their aggre-

gate length by their common section.

The line ATB, Fig. 92, is equal in

length to the sum of the several

diagonals; expressing its length in

terms of / and 0, we have

A B = l.cosecO

The section of each brace is equal to the total strain passing
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WsecO
through it divided by the unit-strain, =

^ (eq. 110). Multi-

plying this by the foregoing value for the length, we have,

W7Q= ~ secQ . cosecQ (196)

S63. Flanges. The quantity of material in the flanges is most

conveniently deduced from the principles stated in Chapter II. as

VW
follows: The sectional area of either flange at the wall = -^

Clf

(eq. 7), and when the girder is of uniform strength gradually

diminishes towards the extremity as the ordinates of a triangle (SO).

Hence, the quantity of material in one flange equals its sectional

area at the wall multiplied by ,
and we have,

(197)

CASE II. SEMI-GIRDERS LOADED UNIFORMLY, ISOSCELES

BRACING.

. Web, length containing a whole number of bays.

Let W = the total weight resting on the girder,

n = the number of bays in the longest flange, supposed a

whole number, and the other symbols as in Case I.

When the bracing is formed of isosceles triangles the length of

one bay equals 2d.tan9, whence,

l = 2nd.tanO. (198)

The quantity of material that the weight at any given apex

would require in the bracing, if it alone were supported by the

girder, may be obtained from eq. 196 by substituting for W and

(W\
=

)

, and the distance ofthe weight

from the wall. The quantity required for the whole load is equal

to the sum of the quantities required for the separate weights.

Hence, recollecting that the weight on the last apex equals half
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that on each of the other apices (144), we have, when there is no

half bay in the length, that is, where n is a whole number,

Q = 2d.tan9 (1 + 2 + 3 + . . . n) secB.cosecO

W=
-f-nd.tanQ.secO.cosecO.

Substituting for nd.tanO its value in eq. 198, we have,

W/
Q =

^secO.cosecB (199)

864. Web3 length containing: a half-bay. When the length

contains a half-bay, the quantity of material in the bracing, derived

from eq. 196,

W7 W/72

Q = ^ secO.cosecO + -^- sec*0.tanO. (200)
*J *Jl

365. Flanges. From eq. 11 the area of either flange at the

VW
wall =

X-TJ, and diminishes towards the extremity as the ordinates
*J(*

of a parabola, but from the well-known properties of the parabola

the area of A B C, Fig. 7, equals one-third of the circumscribed

rectangle. Hence, the quantity of material in either flange equals

its area at the wall multiplied by ~, that is,
o

W/2

CASE III. GIRDERS SUPPORTED AT BOTH ENDS AND LOADED

AT AN INTERMEDIATE POINT, ISOSCELES BRACING.

366. Quantity of material in the web is the same for each

segment. Let W = the weight resting on the girder,

/ = its length, and the other symbols as in Case I.

Let the weight divide the girder into segments containing

respectively m and n linear units, as in Fig. 52. The strains

throughout the girder will in no respect be altered if we conceive

it inverted, resting on a pier at W, and loaded with W at the
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right extremity, and with -,W at the left. Each segment will then

become a semi-girder loaded at its extremity. Hence, the quantity

of material in the bracing of each segment = -^
seed . cosecO

(eq. 196). The quantity of the material in the bracing of both

segments together is equal to twice this, that is,

Q =^ secO . cosecd (202)
J L

If the weight be at the centre, equation 202 becomes

W7
4 = ^00.MiMa (203)

S67. Flanges. From eq. 20, the sectional area of either flange

?7i7?^^

at the point where the weight rests = .
,

,
,
and diminishes gra-

dually towards each extremity as the ordinates of a triangle (35).

Hence, the quantity of material in one flange equals its area at the

weight multiplied by ^,
and we have,

(204)

If the weight be at the centre, eq. 204 becomes,

W/2

* = (205)

CASE IV. GIRDERS SUPPORTED AT BOTH ENDS AND LOADED

UNIFORMLY, ISOSCELES BRACING.

868. Well, length containing an even number of bays.
Let W = the total weight on the girder,

I = the length, and the other symbols as in Case I.

In order to avoid unnecessary minuteness in this case I shall first

assume that the number of bays in the half-length is a whole number,

in other words, that the length contains an even number of bays.

Let us consider each half of the girder by itself; the vertical

forces which act upon each half are the upward reaction of its
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abutment, and the downward pressure of the weights between the

abutment and the centre. The former pressure, if acting alone,

would require a certain amount of material for the bracing, obtained

by eq. 196, while the weights, leaving the reaction of the abutment

out of consideration, would require an amount of material which may
be obtained from eq. 199. The latter forces tend to relieve the

strain produced by the reaction of the abutment; consequently,

the true quantity of material required is equal to the difference of

the amounts which would be required were each set of forces to act

independently of the other. Hence, subtracting eq. 199 from 196,

and bearing in mind that W and I have twice the value they had

in the semi-girder, we have the quantity of material in the web of

the whole girder,
W7

Q = ^ secO.cosecO (206)

that is, half the quantity that would be required if all the weight
were concentrated at the centre.

269. Web, the length containing: an odd number ofbays.
If the half-length contain a half-bay, the quantity of material in the

bracing is obtained by subtracting eq. 200 from eq. 196, that is,

W7 W^72

Q =
^sec6.cosecO~-sec*0.tanO (207)

37O. Flanges. From eq. 25 the sectional area of either flange

VW
at the centre of the girder zr -, and diminishes towards either end

oja

as the ordinates of a parabola (4?). But the area of Fig. 23 equals

two-thirds of the circumscribed rectangle ; hence, the quantity of

material required for either flange equals its central section multiplied

2
by ^/, and we have,

o
W/ 2

V -
Jg (208)

which is two-thirds of the quantity that would be required if all

the weight were concentrated at the centre.
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CASE V. SEMI-GIRDERS LOADED AT THE EXTREMITY,
VERTICAL AND DIAGONAL BRACING.

Fig. 93. 2*1. Web. When every alter-

nate brace is vertical, as in Fig. 93,

we must divide the material in the

web into two parts, namely, that in

the vertical, and that in the diagonal

bracing.

Let Q = the quantity of material

in the diagonals,

Q" = the quantity of material

in the verticals, and

the other symbols as

before.

The quantity of material required for the diagonal bracing is as

before (eq. 196),
W7

(209)Q = - secO . cosecO

The strain transmitted through each vertical = W; hence, its

W
sectional area r. Multiplying this by the aggregate length

of the verticals (= l.cotd), we have,

Q" = cotB. (210)

CASE VI. BOWSTRING GIRDERS UNIFORMLY LOADED.

. Flanges. When a bowstring girder is uniformly loaded,

the strains are nearly uniform and equal throughout both flanges

(31O) ; hence, we can find a close approximation to the quantity

of material by multiplying the length of each flange by its sectional

area.

Let W the total weight uniformly distributed over the girder,

I = the length of the string,

nl = the length of the bow,
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d = the depth of girder at the centre,

Q' = the quantity of material in the string,

Q" = the quantity of material in the bow,

/ = the unit-strain.

The strain at the centre of either flange = -77-7 (eq. 25) ; hence,

VW
the sectional area of the flange = ,; multiplying this latter quan-

tity by the respective lengths of the string and bow, we have

WZ2
' =^ (2H)

('212')
j,

,/. \H*.UJ

S?3. The following table contains the corresponding values of

y and n, the depth being expressed in fractional parts of the length

d

1
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Fig. 94.

207

_ length of bow _ rO~~
(a)

also,

whence,

again,

whence,

Substituting in eq. (a) these values for r and 6, we have,

X2 + cZ
2

-i d _ (\ ,

d\ _\d ,n .

n .tan
5T %5 Xl" X v/ 1

**)

whence we can obtain the values of n corresponding to different

values of
y.

874. Quantity of material in the bracing independent of

depth Weights of railway girders up to 2OO feet span are

nearly as the squares oftheir length. The reader will observe

that the depth of the girder does not enter into those equations

which express the quantity of material required in the bracing,

whereas it enters into the denominator of those which express

the quantity of material in the flanges. Hence, we conclude

that altering the depth of braced girders does not affect the

amount of bracing (18) ;
but the quantity of material in the

flanges varies inversely as the depth, and consequently, the deeper

a girder is made the greater will be the economy, theoretically

speaking. In practice, the additional material required to stiffen

long struts generally defines the limit to which this increase of

depth can be judiciously extended; but of this in succeeding

chapters.
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It will also be observed that, when the ratio of depth to length

is constant, the quantity of material varies as VW, or ifW varies as

/, as Z
2

. Consequently, when such girders are of small weight

compared to the load, and when the latter is proportional to the

length, the weight of the girders will vary very nearly as the

square of their length which rule is approximately true for rail-

way girders up to 200 feet span.
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CHAPTER XL

ANGLE OF ECONOMY.

375. Jingle of Economy for Isosceles bracing: is 45. On

examining those equations in the last chapter which express the

quantity of material required for the vertical web of girders whose

bracing consists of isosceles triangles, we find that they may all be

expressed by one general equation,

Q = KsecO.cosecO

in which K for each case is a constant quantity depending upon
the length, weight, and unit-strain. Q is therefore proportional to

2
the variable quantity secO.cosecO, or to its equivalent, . ,

which

is a minimum when = 45. This proves that the angle of 45

is the most economical inclination for the diagonals of isosceles

bracing, and it is to be observed that certain of the diagonals

beingin compression, and therefore practically requiring a greater

amount of material to stiffen them than others, does not materially

affect this conclusion ; for, let the compression diagonals take m
times the quantity of material they would require on the supposition

that they were subject to tension in place of compression, then,

since every alternate diagonal is in compression when the load is

stationary, the foregoing expression becomes

Q = --tl ^secO.cosecO

but the variable part of this expression is secO.cosecO as before,

and therefore the angle of economy is 45.*

8*6. Angle of economy for vertical and diagonal bracing

is 55. The angle of economy in girders with vertical and

diagonal bracing differs from that in girders whose webs are formed

of isosceles triangles. From eqs. 209 and 210. we find that the

quantity of material in the bracing may be expressed as follows :

Q + Q" rr K (secO.cosecO + cotO).

* Mr. Bow first drew attention to the fact that 45 is the angle of economy for

isosceles bracing ;
see his Treatise on Bracing. Edinburgh, 1851.



210 ANGLE OF ECONOMY. [CHAP. xi.

It is necessary to equate the differential coefficient of the bracketed

part of this equation to cipher in order to find the value of 9 which

makes Q + Q/; a minimum. Doing so, we have,

cosec9.sec9.tan9 sec9.cosec9.cotB cosec29 = 0,

dividing by cosec9.sec9 and transposing,

tan9 = 2cot9

whence,
tan9 = VT, and 9 = 54 44' 8-2" = 55 nearly,

which therefore is the angle of economy for this form of bracing,

and has moreover the merit of forming lozenge-shaped openings,

which have a more agreeable appearance than square ones.

577. Isosceles more economical than vertical and diagonal
bracing^. The superior economy of the isosceles over the vertical

and diagonal system of bracing will be now apparent, for the quan-

tity of material required in the latter exceeds that in the former by
an amount never less than Q", and exceeds Q" when 9 differs

from 45.

578. Trigonometrical functions of 9. The following table

contains the value of different trigonometrical functions of 9.

Angle
of

bracing, 0.
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S79. Relative economy of different kinds of bracing
Continuous web theoretically twice as economical as a
braced web. By means of this table we can at once compare the

relative economy of different descriptions of bracing as follows :

Values of 9.
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CHAPTER XII.

TORSION.

Fig. 95.

38O. Twisting moment. Let one end of a horizontal shaft

be rigidly fixed and let the free end have a lever, L, attached at

right angles to the axis. A weight, W, hung at the end of this

lever, will twist the shaft round its axis and fibres, such as a&,

originally longitudinal and parallel to the axis, will now assume a

spiral form, ad, like the strands of a rope. Radial lines, such as

cb, in any cross section, will also have moved through a certain

angle, bed, which experiments prove to be proportional,

1. to ab, the distance of the section from the fixed end,

2. to L, the length of the lever,

3. to W, the weight,

provided the shaft be not twisted beyond its limit of elastic

reaction. If we consider any two consecutive transverse sections

of the shaft, we find that the one more remote from the fixed end

will be twisted round a little in advance of the other, and this

movement tends to wrench asunder the longitudinal fibres by one

of the sections sliding past the other. This wrenching action, it

will be observed, closely resembles shearing from transverse pressure
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(14). It is clear that, the farther the fibres are from the axis the

greater will be the arc through which they are twisted, and the

greater, therefore, will be their elastic resistance to wrenching, and

the greater also will be the leverage which they will exert, and we

may conceive, at least in shafts of circular, polygonal, or square

sections, the elastic reactions of the fibres replaced by a resultant

equal to their sum and applied in a linear ring round the axis,

whence, we have the twisting moment of the weight,

WL= F&

where F = the annular resultant of all the elastic reactions,

& =. the mean distance of this annular resultant from the

axis of the shaft.

F is proportional in shafts of different sizes, but similar in section,

to the number of fibres in the cross section, that is, in solid shafts

to the square of the diameter, and & is evidently proportional to

the diameter. Hence, we obtain the following relations.

881. Solid round, square^ or polygonal shafts Coefficient

of torsiona I niptare, T.

W = (214)

d=<\^ (215)

where W the breaking weight by torsion,

L = the length of the lever, measured from the centre of

the shaft,

d = the diameter of the shaft, if round
;
or its breadth, if

square or polygonal,

and T is a constant, which must be determined for each material

by finding experimentally the breaking weight of a shaft of known

dimensions and similar in section to that whose strength is required.

The constant, T, may be called the Coefficient or modulus of

torsional rupture of that particular material and section from

which it is derived, and equals the breaking weight of a shaft of

d3

similar section in which the quantity j-
= 1.

888. Hollow shafts of uniform thickness. The number of
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fibres in the cross section of a hollow shaft is proportional to the

product of the diameter by the thickness, and we have,

W =
T<^ (216)

where t = the thickness of the tube and the other symbols are as

before.

883. Coefficients of torsional rupture for solid round

shafts. The following table contains the values of T, or the

coefficients of torsional rupture, for solid round shafts
;
these are

the breaking weights of shafts one inch in diameter and whose

length, L, is also one inch
; hence, in using these coefficients in the

preceding equations, all the dimensions should be in inches.

COEFFICIENTS OF TORSIONAL BUPTUBE FOB SOLID BOUND SHAFTS.

MATERIAL.
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Here, W = 3,300 Ibs.,

L = 12 inches,

d = 1*382 inches.

Answer (eq. 214). T = = = S.300XU =
rf
3

1-382]
3

Ex. 2. What should be the diameter of a wrought-iron screw-propeller shaft, the

length of the crank being 13 inches and the pressure 15,000 Ibs., taking 8 as the factor

of safety ?

Here, W = 15,000 Ibs.,

L = 13 inches,

T = 9,800 Ibs.

Answer (eq. 215). d =
\J -y-

== ^159 = 5 '42 inches,

Ex. 3. What should be the diameter of a wrought-iron crane shaft, the radius of the

wheel being 16 inches, and the pressure at its circumference 300 Ibs., taking 10 as the

factor of safety ?

Here, W = 300 Ibs.,

L = 16 inches,

T = 9,800 Ibs.

Answer (eq. 215). d = 4= = -V^4 '9 = 17 inches.

284. Moment of resistance of torsion. The following more

exact method of investigating torsional strain resembles that applied

to transverse strain in 69, and, like it, is based on the assumption

that the law of uniform elastic reaction is true, that is, that the

fibres exert elastic forces which resist twisting in proportion to

their change of length, and (in circular sections at least) directly

therefore as their distance from the central axis. Suppose the

shaft composed of longitudinal fibres of infinitesimal thickness, and

let us confine our attention to any given cross section represented

by Fig. 96.

Fig. 96.
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Let W = the weight producing torsion at the end of the lever L,

L = the length of the lever, measured from the axis of

the shaft,

p = the distance of any fibre in the given cross section,

measured radially from the axis,

/ = the torsional unit-strain exerted by fibres in the

same section at a distance c from the axis, that is,

the resistance of the fibres to being twisted or

shorn asunder referred to a unit of sectional surface,

c = the distance from the axis at which the unit-strain/is

supposed to be exerted,

= the angle between the line p and a horizontal diameter

of the section,

r = the radius vector of the curve which bounds the given

section.

According to our assumptionthe torsional unit-strain exerted by fibres

at the distance p from the axis will =
;

if the thickness of a little

element of these fibres measured radially = dp (differential of
p,) and

if its width = pd0, the area of the element, shaded in the figure,

will = pdpdfl, and the resisting force exerted by it will = -
p
2

dpd0 ;

the moment of this round the axis = -
p
3

dpd0, and the integral of

this, within proper limits, is the sum of the moments round the axis

of all the elastic forces in the given section which resist torsion,

called the Moment of resistance to torsion of that particular section,

and this balances W L, or the twisting moment of W. We can

obtain the moment of resistance of the little triangle in the figure

by integrating the foregoing expression from p
= to p =r. Doing

this, we find the moment of resistance of the little triangle = r*dO,

and therefore the moment of resistance of the whole section can be

obtained by integrating this from = to 9 = Sir, as follows,

(217)
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885. Solid round shafts. In the case of round shafts the

radius vector r is constant, whence, from eq. 217,

WL = 5^
'

(218)

If / the torsional unit-strain exerted by fibres at the circum-

ference, c = r, and we have,

(219)

886. Hollow round shafts. The moment of resistance of a

ring is equal to that of the outer circle minus that of the inner

one, whence, from eq. 218,

Where r = the external radius,

r
l
=. the internal do.

If / = the torsional unit-strain exerted by fibres at the circum-

ference, c = r, and we have,

-V) (220)

If t = the thickness of the ring, T
I

r t, whence, by substitution,

W L =

If the thickness be small compared with the radius, the last three

terms may be neglected, and we have,

W L = 2vfr
2
t = 6'28/r

2
* (221)

We may perhaps get a clearer conception of the strains in a hollow

round shaft by imagining the tube to be formed of a series of

diagonal bars forming right-handed coils in one direction, and crossed

by other bars forming left-handed coils in the opposite direction, so

as to produce a spiral lattice tube, in which, however, the bars in

each series are so close together as to touch each other, side by side,

and thus form two continuous tubes. The effect of twisting this

double tube will be to extend one set of coils and compress the other

in the direction of their length, and this will tend to make the

tension coils collapse inwards towards the axis of the tube, and

force the compression coils outwards, but these tendencies, being
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equal and in opposite directions, will balance each other. We may go
further and imagine the coils springing at an angle of 45 from any

given cross section of the tube, and therefore at right angles to each

other, and if we suppose that the same piece of material can sustain

without injury strains of tension and compression passing through
it at right angles to each other, we have the section opposed to

.,,
either tension or compression =r

where r = the radius of the tube,

t the thickness of the tube.

If / = the unit-strain of tension or compression indifferently, we

have the twisting moment of the weight,

W L = 2irfr*t

which is the same as equation 221.

37. Solid square shafts.

Fig. 97. Let a = half the side of the square.

The radius vector r = asecO as far as one

quarter extends, that is, from 9 = up to 8

=
; hence, carrying the integral over the

triangle ABC, and multiplying by 8 to com-

plete the whole section, we have from eq. 217,

W L = sec*0 . dO = sec*0 .

and finally,

. dtanQ =

-. 8/
4

o

if / the torsional unit-strain exerted by the extreme fibres

in the corners, c = \/2a, and we have,

If d = the side of the square, eq. 222 becomes,

W L = |^ = 0-236/tf
3

(223)

Comparing eqs. 219 and 222, we find that the moments of resistance
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to torsion of the solid square shaft and the solid inscribed circle

are in the ratio of = 1*2.
ST

The foregoing theory of the strength of square shafts is based

on the hypothesis that the ratio - is a constant quantity at different
c

points of the cross section, but this is true for circular sections

only, and Professor Rankine gives the following equation for the

strength of solid square shafts on the authority of M. de St. Venant,

who has investigated the subject theoretically with great care.

W L = 0-281/d
3

(224)

This, it will be observed, makes the strength of a solid square

shaft nearly 20 per cent, higher than eq. 223.
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CHAPTER XIII.

STRENGTH OF HOLLOW CYLINDERS AND SPHERES.

8. Hollow cylinders Elliptic tubes. The strains in

hollow cylinders from fluid pressure, either within or without, may
be investigated as follows.

Fig. 98. Let d = the diameter of the cylinder,

t = the thickness of metal,

p =. the fluid pressure on each unit of

surface (generally in Ibs. or tons

per square inch),

/ = the tangential unit-strain, either of

tension or compression, according

as p is internal pressure tending to burst the cylinder,

or external pressure tending to make it collapse.

Let Fig. 98 represent a thin slice or cross section of a cylinder,

the thickness of the slice being one unit measured at right angles

to the plane of the paper, and let A B represent an imaginary

plane through the diameter. Suppose the lower half of the fluid

below this plane converted into a solid like ice an hypothesis

which will not affect the conditions of equilibrium in any way
then, the pressure exerted by the upper half of the fluid on the

surface, A B, of the lower half is obviously equal to pd, and this

pressure tends to separate the upper half of the cylinder from the

lower half by tearing the metal at A and B. Hence, the tensile

strain at either A or B = pd, that is,

2ft = pd (225)

The compressive strain due to external pressure, of the same

intensity as before, is equal and opposite to the tensile strain just

found, for we may conceive the solidified half cylinder removed and

a strong plate A B substituted for it, in which case the pressure on

the under surface of the plate will balance that on the outside of the

upper semi-cylinder as before. The same result may be arrived at
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in another way. Let a cylinder subject to internal pressure, as in

the first case, be immersed in a larger vessel, and let fluid be forced

into the latter until its pressure equals that within the cylinder, in

which case the previous tangential tensile strain due to internal

pressure will be cancelled, since the pressures inside and out

balance each other. Now, let the fluid inside the cylinder be

withdrawn and, the balance being destroyed, a tangential com-

pressive strain will result, equal and opposite to the tensile strain

which existed before the cylinder was immersed.

Ex. What should be the thickness of the plates of a cylindrical boiler, 6 feet in

diameter and worked to a pressure of 50 Ibs. steam per square inch, in order that the

working tensile strain may not exceed 1*67 tons per square inch of gross section ?

Here, d = 72 inches,

p = 50 Ibs. per square inch of surface,

/ = 1'67 tons = 3741 Ibs. per square inch of section.

Supposing the material equally capable of resisting tension and

compression, the strength of a cylinder subject to external pressure,

like the flue of a Cornish boiler, is theoretically the same as if it

were subject to an equal internal pressure. Practically, however,

the strength is much less, owing to the flue not being a perfect

circle in cross section. If the outside shell be not a perfect circle,

the tendency of internal pressure will be to render it more so,

whereas, with the flue, the tendency will be to increase the defect

and cause collapse, and Sir William Fairbairn has deduced from

an extensive series of experiments the following empirical rule for

calculating the strength of wrought-iron tubes, such as boiler flues,

within the limits of length which occur in ordinary practice.*

p = 806,300^ (226)
Let

where p = the collapsing pressure in Ibs. per square inch of surface,

t the thickness of the metal in inches,

/ = the length of the tube in feet,

d = the diameter in inches.

* Useful Information for Engineers, 2nd series.
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Ex. What is the collapsing pressure of a flue 10 feet long, 36 inches in diameter,

and composed of ^ inch iron plates ?

Here, t = 0'5 inch,

Id = 36 X 10 = 360,

logp log 806,300 + 219 log 0-5 log 360

= 5-9064967 + 219 X 1-69897 2-5563025 = 2'6909385.

Answer, p = 491 Ibs.

491
The safe working pressure for a land boiler would be =82 Ibs.; for an ordinary

6

4.Q1
marine boiler in which salt water is used, Ili = 61 Ibs.

8

It will be observed that the strength varies inversely as the

length, and Sir William Fairbairn found that "by introducing

rigid angle or T iron ribs (in practice from 8 to 10 feet apart,)

round the exterior of the flue, we vertically decrease the length

and increase the strength in the same proportion. Two or three

such rings on the flues of boilers, constructed of plates equal in

thickness to those of the shell, will usually render the resistance to

collapse equal to the bursting pressure of any other part of the

boiler." It was also found that the ordinary longitudinal lap-

joints in boiler flues were weaker than butt joints in the ratio of

about 7 to 10, and Sir William Fairbairn recommends that tubes

required to resist external pressure should be formed with longitu-

dinal butt joints with covering strips outside riveted to both plates.

Elliptical tubes are obviously very weak for resisting external

pressure, and it appears from Sir William Fairbairn's experiments
that their strength is the same as that of the osculating circle at

the flattest part of the ellipse ; thus, if a and b are the major and

minor semi-axes of the ellipse, the diameter of the cylinder of

2a2

equal strength will equal -j-
- If, for example, the ellipse be 6 X 4

feet, the diameter of the cylinder of equal strength will equal

2-* = 9 feet.
2

889. Cylinder ends. The flat ends of cylinders sustain a

total pressure equal to their area multiplied by the pressure per

unit of surface, that is,

total end pressure = ~-
(227)
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where p = the pressure per square unit of surface,

d = the diameter.

This end pressure is sustained by the rivets or bolts which connect

the ends of the cylinder to the sides, and if t = the thickness

of metal in the latter, the longitudinal tensile unit-strain in the

cylinder,

/= Sf +r*=^ (228)

Comparing this with eq. 225, we find that the longitudinal unit-

strain in a cylinder is one-half the tangential unit-strain. If the

cylinder be a boiler with internal flues, the end area is diminished

by the sectional area of the flues, which latter moreover support a

large share of the end pressure, so that the longitudinal unit-

strain in the shell is greatly reduced. Stay rods connecting the

ends above the flues reduce this longitudinal strain still more, so

that little anxiety need be felt about the transverse joints of the

shell giving way. The longitudinal joints of the shells of high-

pressure boilers are generally double-riveted and the cross joints

either single or double-riveted.

39O. Hollow spheres. We may conceive, as in the case of

the cylinder already investigated, an imaginary plane passing

through the centre of the sphere and dividing it into two equal

parts. The fluid pressing on the surface of this plane tends to

tear asunder the sphere along the circle formed by its intersection

with the plane. Hence, if

d = the diameter of the sphere,

t = the thickness of metal,

p = the fluid pressure per square unit of surface,

/ z= the tangential unit-strain,

wehave '

reducing,

4/ = pd (229;

Comparing this with eq. 225, we find that a sphere is twice as strong

as a cylinder of the same diameter and thickness of metal, and that

therefore the ends of egg-ended boilers are their strongest part.
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CHAPTER XIV.

CRUSHING STRENGTH OF MATERIALS.

891. Mature of compressive strain. In most of the foregoing

theoretic investigations it has been tacitly assumed that the tensile or

compressive strength of any material is proportional to its sectional

area, whatever that may be. This, however, is not always true of

compressive strains, and one of the first difficulties which the

student encounters, when seeking to reduce theory to practice, is

the necessity of providing in struts or pillars not only against

absolute crushing of the material, which in reality rarely occurs,

but more especially against flexure and buckling, to resist which a

greater amount of material is generally required than theory alone

might seem to indicate. To understand the matter clearly we

must recollect that the mode in which a pillar fails varies greatly,

according as it is long or short in proportion to its diameter. A
very short pillar a cube, for instance, of wrought -iron, timber, or

stone will bear a weight nearly sufficient to upset, to splinter, or

to crush it into powder; while a still shorter pillar such as a

penny, or other thin plate of ductile metal will often bear an

enormous weight, far exceeding that which the cube will sustain,

the interior of the thin plate being prevented from escaping from

beneath the pressure by the surrounding particles. Alluding to

his experiments on copper, brass, tin, and lead, Mr. Rennie

observes :
" When compressed beyond a certain thickness, the

resistance becomes enormous,"* and I have observed the same

thing in a very marked degree when experimenting on cubes of

cast zinc which slowly spreads out like a plastic material as the

strain increases. We can thus conceive how stone or other materials

in the interior of the globe withstand pressures that would crush

them into powder at the surface, merely because there is no room

* Phil. Trans., 1818, p. 126.
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for the particles to escape from the surrounding pressure. A long
thin pillar on the other hand, such as a walking cane, will yield by
flexure long before it is crushed, and if the bending be carried so

far as to break the pillar, the fracture will resemble that due to

transverse strain. Hence, it is convenient to subdivide the results

of compressive strain into flexure and crushing.

393. Flexure Crushing; Buckling; Bulging- Splintering.
Flexure is the bending or deflection of a pillar whose length is

very considerable in proportion to its thickness or diameter.

Crushing may be subdivided into buckling, bulging, and

splintering.

(a.) Buckling is the undulation, wrinkling, or crumpling up, usually

of a thin plate of a malleable material. Buckling is frequently

preceded by flexure
; when, for instance, long tubes of plate-iron

are compressed longitudinally, they first deflect, and finally fail by
the buckling or puckering of a short piece on the concave side.

(b.) Bulging is the upsetting or spreading out under pressure of

ductile or fibrous materials, such as lead, wrought-iron and timber,

also of many semi-ductile crystalline metals, such as cast-brass or

zinc.

(c.) Splintering is the splitting off in fragments of highly

crystalline, fibrous, or granular materials, such as cast-iron, glass,

timber, stone and brick ; the splintering of granular and vitreous

materials is often abrupt and terminates in their being crushed to

powder, while even the most crystalline metals are to some extent

ductile and therefore bulge slightly before they splinter. Again,
some materials, such as glass, form numerous prismatic splinters ;

others, like cast-iron, form two or more wedge-shaped or pyramidal

splinters, the plane of separation being oblique to the line of

pressure.

393. Crushing strength of short pillars Angle of frac-

ture. It has been found by experiment that the strength of short

pillars of any given material, all having the same diameter, does

not vary much, provided the length of the pillar is not less

than one, and does not exceed four or five diameters ; and

the weight which will just crush a short prism whose base equals
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one square unit (generally a square inch), and whose height is not

less than one or one and a half, and does not exceed four or five

diameters, is called the crushing strength of the material experi-

mented upon. When the height of a solid prism lies within these

limits "fracture is (generally) caused by the body becoming
divided diagonally in one or more directions. In this case the

prism, in cast-iron at least, either does not bend before fracture,

or bends very slightly ; and therefore the fracture takes place by
the two ends of the prism forming cones or pyramids, which split

the sides and throw them out ; or, as is more generally the case in

cylindrical specimens, by a wedge sliding off, starting at one of

the ends, and having the whole end for its base
; this wedge being

at an angle which is constant in the same material, though different

in different materials (see Plate II.). In cast-iron the angle is such

that the height of the wedge is somewhat less than f of the

diameter. In timber, like as in iron and crystalline bodies generally,

crushing takes place by wedges sliding off at angles with their

base which may be considered constant in the same material;

hence, the strength to resist crushing will be as the area of

fracture, and consequently as the direct transverse area, since the

area of fracture would, in the same material, always be equal to

the direct transverse area, multiplied by a constant quantity."* In

other words, eq. 1 is applicable to short pillars, and their crushing

strength is equal to their transverse section multiplied by the

crushing unit-strain of the material. If the length exceeds four

or five times the diameter, "the body bends with the pressure,

and though it may break by sliding off as before, the strength
is much decreased. In cases where the length is much greater

than as above, the body breaks across, as if bent by a transverse

pressure." f

From the foregoing observations the reader will perceive that

the crushing unit-strain of any material should be derived from

experiments on prisms whose height is not less than the length
of the wedge, nor so great that the prism will deflect. Mr.

*
Experimental Researches on the Strength of Cast-iron, by E. Hodgkinson, pp. 319, 323.

t Idem, p. 321.
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Hodgkinson seems to have preferred prisms whose height equalled

two diameters, and in Table I. it will be seen that prisms of

cast-iron, whose height equalled one diameter, generally bore more

than those whose height equalled two diameters. If, however,

the material, like glass and some limestones, do not form wedge-

shaped but longitudinal splinters, it seems probable that, within

considerable limits, the height of the specimen will not materially

affect its crushing strength. Experimenters on stone have gene-

rally used cubes; Mr. Hodgkinson's practice, however, seems

preferable. If the length of pillars never exceeded four or five

diameters, all we need do to arrive at the strength of any given

pillar would be to multiply its transverse area in square units by
the tabulated crushing strength of that particular material. It

rarely happens, however, that pillars are so short in proportion to

their length, and hence, we must seek some other rule for cal-

culating their strength when they fail, not by actual crushing, but

by flexure. If we could insure the line of thrust always coinciding

with the axis of the pillar, then the amount of material required

to resist crushing merely would suffice, whatever might be the

ratio of length to diameter. But practically it is impossible to

command this, and a slight error in the line of thrust produces a

corresponding tendency in the pillar to bend. With tension-rods,

on the contrary, the greater the strain the more closely will the

rod assume a straight line, and, in designing their cross section, it

is only necessary to allow so much material as will resist the

tensile strain. This tendency to bend renders it necessary to

construct long pillars, not merely with sufficient material to resist

crushing, supposing them to fail from that alone, but also with

such additional material, or bracing, as may effectually preserve

them from yielding by flexure. In masonry, heavy timber framing,
or similar massive structures, the desired effect is produced by
mere bulk of material, which insures the line of thrust always

lying at a safe distance within the limits of the structure. In

hollow pillars the same result is obtained by removing the material

to a considerable distance from the line of thrust, which, though
it may deviate slightly from the axis of the pillar, yet will not
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pass beyond its circumference. When the pillar is neither tubular

nor solid, one of the forms of section, represented in Fig. 99 is

generally adopted.

Fig. 99.

However, before treating about flexure, it seems desirable to

give the crushing strengths of short prisms of various materials

and afterwards show how these are modified by increasing the

length of the prism.

CAST-IRON.

394. Crushing strength of cast-iron. Table I. contains the

results of experiments by Mr. Hodgkinson
" on the crushing

strength of cylinders of cast-iron of various kinds
; the diameters

of the cylinders being turned to inch each, and the heights being

f and 1^ inches respectively. In both cases the height was so

small that the specimen could not bend before crushing. Before

each experiment was commenced, a very thin sheet of lead was laid

over and under the specimen, to prevent any small and unavoid-

able irregularity between its flat surface and those of the parallel

steel discs between which it was to be crushed." *

TABLE I. CRUSHING STRENGTH OP CAST-IRON.

Description of iron.
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TABLE I. CRUSHING STRENGTH OP CAST-IRON continued.

Description of iron.
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Table II. contains the '*

crushing weights of short cylinders of

different kinds of cast-iron, cut from the bars, 2| inches diameter

previously used (in experiments on pillars), and now turned to be

| inch diameter nearly, and 1 inch high. The results are means

from three or four experiments on each kind of iron. The specimens

were usually cut out of the iron between the centre and the

circumference of the bar, denominated the medium part. In several

cases they were cut out of the centre of the bar, and sometimes out

of the circumference."*

TABLE II. CRUSHING STRENGTH OF CAST-IRON.

Description of iron.
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TABLE II. CRUSHING STRENGTH OP CAST-IRON continued.

Description of iron.
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From the experiments recorded in the two foregoing tables it

appears that the average crushing strength of simple cast-irons does

not exceed 38 tons per square inch; the strength of mixtures,

however, is higher and may in general be taken at 42 tons per

square inch, though occasionally it reaches 50 tons. Repeated

meltings seem to have the effect of increasing the crushing strength

of cast-iron (See Chap. XVI.).
395. Hardness and crashing: strength of thin casting's

greater near the surface than in the heart Crushing*

strength of thin greater than that of thick casting's. Mr.

Hodgkinson found that " of the different irons tried in the experi-

ments on pillars, whether solid or hollow, the external part of the

casting was always harder than that near to the centre, and the iron

of the external ring of a hollow casting was very hard, the hardness

increasing with the thinness. Thus, in solid pillars 2J inches

diameter of Low Moor iron, No. 2 (Table II.), the crushing force

per square inch of the central part was 29'65 tons, and that of the

intermediate part near to the surface was 34'59 tons, whilst the

external ring, -J
inch thick, of a hollow cylinder 4 inches diameter,

of which the outer crust had been removed, was crushed with 39 '06

tons per square inch; and external rings of the same iron, thinner

than half an inch, required from 49'2 to 51'78 tons per square inch

to crush them. These facts show the great superiority of hollow

pillars over solid ones of the same weight and length."* Hence,

removing the skin of a thin casting reduces its strength to resist

compression.

396. Hardness and crushing* strength of thick casting's at

the surface and in the heart not materially different. " To

ascertain whether the internal strength of larger pillars varied in the

same manner as that of smaller ones, a cylindrical casting was made

5 inches diameter and 15 inches long. It was cast vertically, from

Blaenavon iron. Through the axis of this cylinder, a slab, 15 inches

long, 5 inches broad, and about 1 inch thick, was taken. Across the

middle of this slab five cylinders, 1J inch long and J inch diameter,

were obtained at equal distances from each other, the middle one

Phil. Trans., 1857, p. 890.
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being in the centre, and the outer ones as near as possible to the

sides. Comparing the results of the experiments (on crushing these

cylinders) it appears that the external part of the casting was some-

what stronger than the internal. But the variation was only from

62 to 66 (62,444 to 65,739 Ibs. per square inch), and therefore

much less than was obtained from the smaller masses." From this

and other experiments on small cylinders cut out of a slab of

Derwent iron, No. 1, cast 9 inches square and 12 inches long, "it

appears that the difference of hardness between the external and

internal parts of a large casting is much less than in a small one, and

may frequently be neglected."* For the safe working strain on

cast-iron see Chap. XXVIII.

WROUGHT-IRON.

397. Crushing: strength of wrought-iron 13 tons is the

limit of compressive elasticity of wrought -iron. The crush-

ing strength of wrought-iron varies with the hardness of the iron,

but ordinary wrought-iron is completely crushed, i.e., bulged, with

a pressure of from 16 to 20 tons per square inch, and when the

pressure exceeds 12 or 13 tons, Mr. Hodgkinson found that "in most

cases it cannot be usefully employed, as it will sink to any degree,

though in hollow cylinders it will sometimes bear 15 or 16 tons per

square inch." f The point at which compressive set sensibly com-

mences, that is, the limit of compressive elasticity, is about 12 tons

per square inch. For the safe working strain in practice see Chap.

XXVIII.

STEEL.

898. Crushing- strength of steel 31 tons is the limit of

compressive elasticity of steel. The following table contains

the results of experiments on the crushing weights of cylinders of

cast-steel by Major Wade,t U.S. Army:

* Phil. Trans., 1857, pp. 891, 892.

f Com. Rep., p. 121.

J Reports of Experiments on the Strength and other Properties of Metals for Cannons,

by Officers of the Ordnance Department, U.S. Army, p. 258. Philadelphia, 1856.
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TABLE III. CRUSHING STRENGTH OF CAST-STEEL.

Kind of cast-steel.
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bulged but did not crack
;
the average contraction of length (ultimate

compressive set) under this strain was for crucible steel 32 per cent.,

and for Bessemer steel 38 per cent., of the original length. From
31 experiments made subsequently by the same committee at

Woolwich Dockyard, on the compression of bars of crucible,

Bessemer, and cast-steel, 10 feet long and 1J inches diameter, the

maximum and minimum limits of compressive elasticity were 27 and

15 tons respectively, and the average was 2T35 tons per square inch,

which agrees sufficiently closely with the mean of the experiments

in Table IV. to allow us to assume 21 tons to be the practical limit

of compressive elasticity of average steel.

The reader will find in Chap. XVI. additional experiments by
Sir William Fairbairn on the crushing strength of various kinds

of steel. For the safe working load see Chap. XXVIII.

VARIOUS METALS.

399. Crashing: strength of copper^ brass, din. lead,

aluminium-bronze, zinc. The following table contains the results

of experiments by Mr. G. Rennie on the crushing strength of inch

cubes of different metals.*

TABLE V. CRUSHING STRENGTH OF VARIOUS METALS.

Description of metal.
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of diminution. When compressed beyond a certain thickness, the

resistance becomes enormous." The crushing weight of aluminium

bronze, according to Professor Rankine, is 59 tons per square inch.

In my own experiments I found that cast-zinc will spread out to

any degree under severe pressure, but it will bear 5 or 6 tons per

square inch without any very appreciable change of shape.

TIMBER.

3OO. Crushing; strength of timber Wet timber not nearly
so strong- as dry. The following table contains the results of

experiments by Mr. Hodgkinson on the crushing strength of various

kinds of timber,
" the force being applied in the direction of the

fibre."*
TABLE VI. CRUSHING STRENGTH OF TIMBER.

Description of wood.
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" The results in the first column were in each case a mean from

about three experiments upon cylinders of wood turned to be one

inch diameter, and two inches long, flat at the ends. The wood

was moderately dry, being such as is employed in making models

for castings. The second column gives the mean strength, as

before, from similar specimens, after being turned and kept drying
in a warm place two months longer. The lengths of these latter

specimens were, in some instances, only one inch, which reduction

would increase the strength a little. But the great difference

frequently seen in the strength, as given by the two columns, shows

strongly the effect of drying upon wood, and the great weakness of

wet timber, it not having half the strength of dry" a consideration

of much importance in works under water. For the safe working
load on timber see Chap. XXVIII.

STONE, BRICK, CEMENT, AND GLASS.

3O1. Crushing- strength of stone and brick. The following
table contains the crushing strength of stone and brick. For the

safe working load see Chap. XXVIII.

TABLE VII. CRUSHING STRENGTH OP STONE AND BRICK.

Description of stone.
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TABLE VII. CRUSHING STRENGTH OF STONE AND BRICK continued.
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The following table gives the results of experiments made by
Mr. Grant with a hydraulic press on the crushing strength of

various kinds of brick.*

TABLE VIII. CRUSHING STRENGTH OP COMMON BRICK AND BRICKS MADE OF

PORTLAND CEMENT.

Description of brick.
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limestones are among the weakest. The strength of the sand-

stones, like their mineral aggregation, is very variable."

The strength of stones, though bearing the same name and pre-

senting the same lithological characters, is so variable in different

localities, that, when any building of importance is proposed, it is

prudent to test the strength of the stone by actual experiment

rather than trust to books for the information required. In my
own experiments, I find that with granite and limestones the

first crack may be expected to take place with from one-half to

two-thirds of the ultimate crushing weight.
303. Crashing; strength of rubble masonry. Professor

Eankine states that " the resistance of good coursed rubble masonry
to crushing is about four-tenths of that of single blocks of the stone

that it is built with. The resistance of common rubble to crushing

is not much greater than that of the mortar which it contains."*

For the safe working load on masonry see Chap. XXVIII.
304. Crashing; strength of Portland cement, mortar and

concrete. The following table contains the results of experi-

ments by Mr. Grant on the crushing strength of Portland cement

and cement mortar, f

TABLE IX. CRUSHING STRENGTH OF PORTLAND CEMENT AND CEMENT MORTAR.

Description of cement or mortar.
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In these experiments the specimens were made into bricks

9 X 4'25 X 2*75 inches, and exposed to the pressure of a hydraulic

press on their flat surface of 9 X 4 -25 inches = 38'25 square

inches. The results would doubtless have been somewhat different

if they had been cubes. Each specimen showed signs of giving

way with considerably less pressure than that which finally crushed

it, the average ratio of the weight which produced the first crack

to that which finally crushed it being nearly as ^.

The following table gives the strength of lime mortar 18 months

old, on the authority of Rondelet.*

TABLE X. CRUSHING STRENGTH OF LIME MORTAR 18 MONTHS OLD.
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TABLE XI. PORTLAND CEMENT CONCRETE BLOCKS OF BALLAST, set and kept in Air

for One Year, also set and kept in Water for the same time.

Size of Block 12" X 12" X 12". Compressed.
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shaped ends about 5 inches long. This permits it to be mixed

stiff with but little water, and, when thus solidly rammed, the

stones will generally break sooner than the concrete in which

they are imbedded. In one of Mr. Grant's experiments a twelve-

inch cube of concrete, made with blue Lias lime and Thames

ballast 1 -f- 6, 10 months old and kept in water, bore 6 tons per

square foot, or 93 ft>s. per square inch. A similar cube of Lias

concrete, but made with Bramley Fall chippings 1 + 6, in place

of ballast, and also kept in water 10 months, bore 20'4 tons per

square foot, or 317 ft>s. per square inch.* For the safe working
load on concrete see Chap. XXVIII.

3O5. Crashing: strength of glass. The following table con-

tains the crushing strength of glass from experiments by Sir Wm.
Fairbairn and Mr. Tate.f

TABLE XII. CRUSHING STRENGTH OP ANNEALED GLASS BARS.

Kind of Glass.
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CHAPTER XV.

PILLARS.

306. Very long thin pillars. The law Fig. 100.

which determines the flexure of very long thin

pillars may be investigated theoretically as

follows: Let Fig. 100 represent a pillar of

uniform section throughout, not fixed at the

ends, very long in proportion to its breadth, and

just on the point of failing from flexure.

Let W = the deflecting weight,

D = the lateral deflection at the centre.

M = the moment of resistance of the

longitudinal elastic forces (59),

b = the breadth of the pillar,

d = its diameter or least lateral dimension,

/ = its length,

/ = the longitudinal unit-strain in the extreme fibres in a

horizontal section across the middle of the pillar,

X the difference in length between the convex and the

concave edges of the pillar,

C = the resultant of all the longitudinal forces of compres-
sion in the concave side at the plane of section,

T = the resultant of all the longitudinal forces of tension

in the convex side at the plane of section,

E = the coefficient of elasticity.

The upper half of the pillar is held in equilibrium by three sets

of vertical forces viz., the weight, acting in the chord-line of the

curve; the longitudinal tensile strains in the convex side at the

middle section; and the longitudinal compressive strains in the

concave side, also at the middle section. When the pillar is very

long in proportion to its width, and the deflection therefore
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considerable, even though the curvature be small,* we may assume

D equal to the distance from the chord-line to either the centre

of tensile or the centre of compressive strains. Taking moments

round either of these points indifferently, we have

W D = M nearly, (a)

Again, assuming that the deflection curve is a circle, from which it

can differ but slightly, we have from eq. 132,

D ~M nearlv ' (6)

whence, by substitution in eq. (a), we have,

W = f (o)

Further, recollecting that X is equal to the contraction of the

concave plus the extension of the concave edge, we have from eq. 2,

Substituting this in eq. (c), we have

W =
^jp- (230)

Replacing M by its values in 71 and the succeeding sections and

d 2c
recollecting that the ratio -, in eq. 230 is equal to the ratio

-j

in the 46th and succeeding equations, we obtain the following values

for the strength of long pillars f of various sections:

* Mr. Hodgkinson's experiments show that this investigation is not applicable to

pillars whose length is less than fifty diameters if made of cast-iron, or eighty

diameters if made of wrought-iron.

t Calling the diameter unity, it may be shown that the lateral deflection of a very

long pillar per unit of its length = Jth of the shortening of the concave side, or th of

the extension of the convex side, per linear unit, in the following manner :

Let R = the radius of curvature,

5 = the lateral deflection of a unit of length,

\' the longitudinal shortening or extension per linear unit,

and the other symbols as before
;

from (6), D = _ or, since d = unity,
= ^ -

od 4

also, S = ,andD =



246 PILLARS. [CHAP. xv.

307. I,o n^- solid rectangular pillars I,cms; solid round
pillars Long hollow round pillars Strength of long* pillars

depends on the coefficient of elasticity. From equations 46

and 230 we have for long solid rectangular pillars,

W = 2

-f^ (231)

where d = the shortest side.

From equations 48 and 230 we have for long solid round pillars,

W = (232)

where d = the diameter of the pillar.

From equations 49 and 230 we have for long hollow round pillars

w =^-^) (233)

where d = the external diameter,

d
l
= the internal diameter.

These equations prove that the strength of very long square or

round pillars varies as the fourth power of their diameter divided

by the square of their length, and the longer the pillar is in pro-

portion to its diameter, the closer will these equations represent the

truth
; in such pillars the neutral surface will not lie far from the

central axis, and the deflecting weight, W, will be small compared
to that which would crush a very short pillar of the same diameter.

It is also to be observed that the strength of very long pillars

depends, not on the strength of the material, but on E, which

represents its stiffness and capability of resisting flexure. This

theoretic result agrees with the fact that, although a short round

pillar of cast-iron will bear a much greater weight than a similar

pillar of wrought-iron, because the crushing strength of cast-iron is

from two to three times greater than that of wrought-iron, yet a

solid wrought-iron pillar over 26 diameters in length will support a

greater weight than a similar one of cast-iron, because the coefficient

of elasticity of wrought-iron is considerably higher than that of

cast-iron (338).

308. Strength of similar long pillars are as their trans-

Terse areas Weights of long pillars of equal strength and
similar in section, but ofdifferent lengths* are as the squares
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of their lengths. These equations also prove that the strengths

of similar long pillars are as the squares of any linear dimension,

that is, as their transverse areas
;
while their weights are as the

cubes of any linear dimension. Further, if the strengths of long

pillars of similar section remain constant while their lengths vary,

their transverse areas will vary as their lengths, and their weights

therefore will vary as the squares of their lengths.

3O9. Weight which will deflect a very long pillar is very
near the breaking weight. It appears from eq. (b) that, if a

very long pillar be bent in different degrees, D will vary as X, that

is, as/C?); and, from eq. (a), W =:
^y,

which is constant, since M

also varies as /; hence it follows, that W, the weight which keeps

the pillar bent, is nearly the same whether the flexure be greater or

less. This statement would be accurately true were it not that

the assumptions on which eqs. (a) and (b) are based and the law of

elasticity are only approximate. It will, however, agree very closely

with experiment when the pillar is long enough to allow D to be

considerable, even though the curvature be small. From this it

follows, that any weight which produces moderate flexure in a very

long pillar will also be very near the breaking weight, as a trifling

additional load will bend the pillar very much more, and strain

the fibres beyond what they can bear. This theoretic result is in

accordance with the following observation of Mr. Hodgkinson :

" From the first experiment on long hollow pillars with rounded

ends, it was evident that so little flexure of the pillar was necessary

to overcome its greatest resistance (and beyond this a smaller weight

would have broken it),
that the elasticity of the pillars was very

little injured by the pressure, if the weight was prevented from

acting upon the pillar after it began to sink rapidly, through its

greatest resistance being overcome."*

As all the longitudinal forces at the middle of the pillar balance,

we have the following equation :

C = T + W.
This enables us to predict how a very long pillar will fail, whether

* Phil. Trans., 1840, p. 411.
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by the convex side tearing asunder, or by the concave side crushing.

A long wrought-iron pillar, for instance, may be expected to fail

on the concave side, because its power to resist compression, i.e.,

bulging, is less than that to resist extension. A long pillar of cast-

iron, on the contrary, will probably fail by the convex side tearing

asunder, because the compressive strength of cast-iron greatly

exceeds its tenacity. This is corroborated by Mr. Hodgkinson's

experiments on long hollow cast-iron pillars which " seldom gave

way by compression."*
31O. Pillars divided into three classes according: to

length. Our knowledge of the laws of the resistance of pillars to

flexure, though perhaps not so satisfactory in a theoretic point of

view as might be desired, is, however, owing to Mr. Hodgkinson's
able investigations, aided by the liberality of Sir William Fairbairn,

the late Mr. R. Stephenson and the Royal Society, practically far

enough advanced to enable us to predict with considerable accuracy
the strength of pillars of the usual forms. The results of these

investigations are here given; the reader who desires more

detailed information respecting the experiments, is referred to Mr.

Hodgkinson's original papers,f in which he divides pillars into three

classes according to length :

1. Short pillars, whose length (if cast-iron, under four or five

diameters) is so small compared with their diameter that they fail

by actual crushing of the material, not by flexure ; the strength of

these has been already investigated in the previous chapter.

2. Long flexible pillars, whose length is so great (if cast-iron,

thirty diameters and upwards when both ends are flat, fifteen

diameters and upwards when both ends are rounded,) that they fail

by flexure like girders subject to transverse strain, the breaking

weight being far short of that required to crush the material when
in short pieces.

*
Phil. Trans., 1840, p. 409.

^Report of the British Association, Vol. vi. Philosophical Transactions, 1840

and 1857. Experimental Researches on the strength and other properties of Cast-iron.

By E. Hodgkinson, F.R.S. London, 1846. Report of the Commissioners appointed to

inquire into the application of Iron to Railway Sti-uctures, 1849.



CHAP. XV.] PILLARS. 249

3. Medium, or short flexible pillars, whose length is such that,

though they deflect, yet the breaking weight is a considerable

portion of that required to crush short pillars. This class includes

all pillars which are intermediate in length between those in the

first two classes, and they may be said to fail partly by flexure and

partly by crushing.

In the following remarks the passages in inverted commas are

verbatim extracts from Mr. Hodgkinson's writings.

LONG PILLARS WHICH FAIL BY FLEXURE; LENGTH, IF BOTH

ENDS ARE FLAT AND FIRMLY BEDDED, EXCEEDING 30 DIA-

METERS FOR CAST-IRON AND TIMBER, AND 60 DIAMETERS

FOR WROUGHT-IRON.

311. Long: pillars with flat ends firmly bedded are three

times stronger than pillars with round ends. "In all long

pillars of the same dimensions, the resistance to fracture by flexure

is about three times greater when the ends of the pillars are flat

and firmly bedded, than when they are rounded and capable of

turning." Exp. Res., p. 332. From this it follows, that pillars like

the jib of a crane would be much stronger if their ends were fixed ;

there is, however, a practical advantage sometimes in having them

jointed for the purpose of altering the range or height of the jib.

313. Strength of pillars with one end round and the other
flat is a mean between that of a pillar with both ends

round and one with both ends flat.
" The strength of a pillar,

with one end round and the other flat, is the arithmetical mean

between that of a pillar of the same dimensions with both ends

rounded, and with both ends flat. Thus, of three cylindrical pillars,

all of the same length and diameter, the first having its ends

rounded, the second with one end rounded and one flat, and the

third with both ends flat, the strengths are as 1, 2, 3, nearly."

Exp. Res., p. 332. This law applies to medium as well as to long

pillars, but in the medium pillars the strength of those with flat

ends varies from 3 to 1/5 times that of those with rounded ends, or

less according as we reduce the number of times which the length

exceeds the diameter. Phil Trans., 1840, pp. 389, 421.
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313. A long pillar with ends firmly fixed is as strong as a

pillar of half the length with round ends. " A long uniform

pillar, with its ends firmly fixed, whether by discs or otherwise, has

the same power to resist breaking as a pillar of the same diameter,

and half the length, with the ends rounded or turned so that the

force would pass through the axis." Exp. Res., p. 332.

Of this fact Mr. Hodgkinson offers the following explanation :

"
Suppose a long uniform bar of cast-iron were bent by a pressure

at its ends so as to take the form A.bcde/3, where all the curves

Fi 101 ^c, cde, efB, separated by the straight line AceB,

would be equal, since the bar was supposed to be

uniform. The curve having taken this form, suppose

it to be rendered immovable at the points b and /, by

some firm fixings at those points. This done, it is

evident we may remove the parts near to A and B,

without at all altering the curve bcdef of the part of

the pillar between b and /, and consider only that part.

The part bf,
which alone we shall have to consider,

will be equally bent at all the points b,d,f.
The

points c and e too are points of contrary flexure, con-

sequently the pillar is not bent in them. These points

are unconstrained except by the pressure which forces

them together, and the pillar might be reduced to

any degree in them, provided they were not crushed

or detruded by the compressing force. These points

may then be conceived as acting like the rounded ends

of the pillars, and the part cde of the pillar, with its

ends c and e rounded, will be bearing the same weight as the whole

pillar bcdef of double the length with its ends, If, firmly fixed."

Phil Trans., 1857, p. 855.

314. Hodgkinson's laws apply to cast-iron, steel, wronght-

iron, and wood. " The preceding properties were found to exist

in long pillars of steel, wrought-iron and wood," as well as cast-iron.

They apply only to pillars whose length is so great in proportion to

their diameter that the breaking unit-strain of the pillar is far short

(for cast-iron not exceeding one-fourth) of the crushing unit- strain

of the material. Exp. Res., pp. 333, 341.
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315. Position of fracture in long; cast-iron pillars.

Long uniform cast-iron pillars with both ends round break in one

place only the middle
;
those with both ends flat in three at the

middle and near each end
;
those with one end round and one flat,

at about one-third of the distance from the round end. Plate III.

represents the curves indicating the form of flexure in each class

of pillar. Phil. Trans., 1857, p. 858.

316. Discs on the ends add but little to the strength of

flat-ended pillars. Cast-iron pillars with discs on their ends are

somewhat stronger than those with merely flat ends, but the

difference of strength is trifling. Phil. Trans., 1840, p. 391.

317. Enlarging: the diameter in the middle of solid pillars

increases their strength slightly.
" In all the (solid cast-iron)

pillars with rounded ends, those with increased middles were

stronger than uniform pillars of the same weight, the increase

being about one-seventh of the weight borne by the former." This

increase of strength was more marked in pillars with rounded ends

than in those with discs, for " in the pillars with discs, those with

the middle but little increased had no advantage, with regard to

strength, over the uniform ones. But the pillars with the middle

diameter half as great again as the end ones bore from one-eighth

to one-ninth more than uniform pillars of the same weight with

discs upon the ends." Phil. Trans., 1840, p. 395.

318. Enlarging the diameter in the middle or at one
end of hollow pillars does not increase their strength.

In hollow (cast-iron) pillars of greater diameter at one end than the

other, or in the middle than at the ends, it was not found that any

additional strength was obtained over that of uniform cylindrical

pillars." .Efcp. Res., p. 349.

319. Solid square cast-iron pillars yield in the direction

oftheir diagonals. Solid "square (cast-iron) pillars do not bend

or break in a direction parallel to their sides, but to their diago-

nals, nearly." Exp. Res., p. 331.

320. Long pillars irregularly fixed lose from two-thirds to

four-fifths of their strength. "A (long) pillar irregularly

fixed, so that the pressure would be in the direction of the diagonal,

is reduced to one-third of its strength, the case being nearly
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similar to that of a (long) pillar with rounded ends, the strength of

which has been shown to be only Jrd of that of a pillar with flat

ends." Exp. Res., p. 350. And in two experiments on long solid

cast-iron pillars with the ends formed so that the pressure would not

pass through the axis, but in lines one-fourth of the diameter and

one-eighth of the diameter respectively from one side, the breaking

weights were little more than one-half that of a pillar of the same

dimensions with the ends turned so that the force would pass

through the axis, that is, their strength was reduced to about }th
of that of a similar flat-bedded pillar. Phil. Trans., 1840, pp.

413, 449.

331. Strength of similar long* pillars is as their transverse

area. The strength of similar long pillars is nearly as the area

of their transverse section. As derived from Mr. Hodgkinson's

experiments on cast-iron, the strength varied as the 1'865 power
of the diameter or any other linear dimensions. Exp. Res., p. 346.

This has already been proved theoretically in 308.

CAST-IRON PILLARS.

333. Hodgkinson's rales for solid or hollow round cast-

iron pillars whose length exceeds 3O diameters. The fol-

lowing formulae have been deduced by Mr. Hodgkinson from his

experiments to represent the breaking weights of pillars with both

ends flat and well bedded, and whose lengths exceed 30 diameters.*

If the ends are rounded or otherwise insecurely bedded, the

breaking weight given by the formulas must be divided by 3 (311).

Let W = the breaking weight in tons,

/ = the length of the pillar in feet,

d = the external diameter in inches,

d
t
= the internal diameter of hollow pillars in inches,

W = a coefficient varying with the quality of the cast-iron,

and derived from experiment.

Long solid round pillars of cast-iron.

W =m^ (234)

* Plat. Tram., 1857, pp. 862, 872.
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Long hollow round pillars of Low Moor cast-iron, No. 2.*

W = 42-347^^ (235)

Ex. What is the breaking weight of a solid round cast-iron pillar 10 feet long and 2

inches in diameter ? From table I., m = 42*6 tons,

23.5

Answer (eq. 234), W = m = *2'6 = 11-3 tons.

If the pillar be not very securely fixed at the ends, the breaking weight will

= y_? = 3-77 tons, and the safe load in practice will be th of this = '63 tons,
O

provided the pillar is not subject to vibration, in which case the safe load will be only

TVth = 0-314 tons.

The three following tables contain the values of the coefficient

m, derived from experiments on solid pillars of cast-iron 10 feet

long and 2J inches diameter, with their ends flat
;
also the powers

of diameters and lengths of pillars. Phil. Trans., 1857, pp. 872

and 850.

TABLE I. COEFFICIENTS m in eq. 234 (representing the strength of a pillar 1 foot

long and 1 inch in diameter.

Description of iron.
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TABLE I. COEFFICIENTS m in eq. 234 continued.

Description of iron.
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TABLE II. POWERS OF DIAMETERS, OR

255

5 continued.

2-53.5 = 24705
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323. Hodgkinson's rales for solid or hollow round cast-

iron pillars of medium length* i.e., pillars whose length
is less than 3O diameters* with both ends flat and well

hedded. " The formulae above (eqs. 234, 235) apply to all (cast-

iron) pillars whose length is not less than about 30 times the

external diameter ; for pillars shorter than this, it will be necessary

to modify the formulae by other considerations, since in these

shorter pillars the breaking weight is a considerable proportion of

that necessary to crush the pillar. Thus, considering the pillar

as having two functions, one to support the weight, and the other

to resist flexure, it follows that when the material is incompressible

(supposing such to exist), or when the pressure necessary to break

the pillar is very small, on account of the greatness of its length

compared with its lateral dimensions, then the strength of the

whole transverse section of the pillar will be employed in resisting

flexure; when the breaking pressure is half of what would be

required to crush the material, one half only of the strength may
be considered as available for resistance to flexure, whilst the other

half is employed to resist crushing ;
and when, through the short-

ness of the pillar, the breaking weight is so great as to be nearly

equal to the crushing force, we may consider that no part of the

strength of the pillar is applied to resist flexure." Exp. Res., p.

337. Acting on this view, Mr. Hodgkinson devised the following

formula for the ultimate strength of medium pillars of cast-iron

and timber whose length is less than 30 diameters, with both ends

flat and well bedded.

where W = the breaking weight in tons derived from the formulae

for long pillars, on the hypothesis that the pillar

yields by flexure alone,

c = the crushing weight of a short length of the pillar, i.e.,

its sectional area multiplied by the crushing unit-

strain of the material in tons,

W' the real breaking weight of the medium pillar in tons,

from the combined effects of flexure and crushing
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Ex. 1. What is the breaking weight of a solid pillar of Blaenavon iron, No. 3, 9 feet

long and 6 inches in diameter, with flat ends carefully bedded, and whose crushing

strength = 37 '3 tons per square inch ?

From Table I., m = 41 '2 tons,

c = 37-3 X 28-3 = 1056 tons,

from eq. 234, W = 41 '2 = 605 tons.
36

Answer, (eq. 236). Breaking weight,W = *05 * *056 = 457 tons.
605 ~r 792

If intended for a warehouse, the greatest load in practice should not exceed th of

this, = 76 tons, and that only when the ends are adjusted with the greatest care, so as

to have a very uniform bearing ;
when this is not the case the effect will be the same

as if the ends were rounded, in which case the breaking weight will be much less

(313), probably only . = Z = 228'5 tons, of which th, or the safe working

load, will = 38 tons.

Ex. 2. What is the breaking weight of a hollow flat-bedded pillar of the same iron,

of the same height and external diameter, and whose internal diameter = 4 inches ?

On examining Table II. (294), we find that the crushing strength of Blaenavon

iron, No. 3, medium, = 3 7 '3 tons per inch, while that of Low Moor, No. 2,

medium, = 34'6 tons. We may therefore assume that the coefficient in eq. 285 for

hollow cylinders of Blaenavon iron is the same as that for Low Moor.

Here, c = 37'3 X 157 = 586 tons,

from eq. 235, W = 42'35
529~ 128 = 472 tons nearly.

36

Answer, (eq. 236). Breaking weight,W =
i^ *|||j=303

tons,

of which th, or the working load, = 50'5 tons, i.e., when the ends are fitted with

W
extreme care

; otherwise, = 25'25 tons, is a sufficient load in ordinary practice.

334. A slight inequality in the thickness of hollow cast-

iron pillars does not impair their strength materially
Roles for the thickness oi'liollcnv cast-iron pillars. Referring

to castings of unequal thickness, Mr. Hodgkinson remarks :

" In experiments upon hollow pillars it is frequently found that

the metal on one side is much thinner than that on the other
;
but

this does not produce so great a diminution in the strength as

might be expected, for the thinner part of a casting is much

harder than the thicker, and this usually becomes the compressed

side." Phil. Trans., 1857, p. 862.

In practice, neither the excess or want of thickness should

exceed 25 per cent, of the average thickness; if, for instance, a
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hollow pillar is specified to be 1 inch in thickness, then in no

place should the metal be less than J inch or more than 1 inch

thick. General Morin gives the following rule, based on the

founder's experience, for the minimum thickness of ordinary hollow

cast-iron pillars* :

Height of pillar in feet, 7 to 10 10 to 13 13 to 20 20 to 27

Minimum thickness in inches, '5 '6
-8 I'O

Another practical rule is to make the thickness of metal in no

case less than T̂ th of the diameter of the pillar.

3S5. + and H shaped pillars. A cast-iron pillar of the +
form of section,

" as in the connecting rod of a steam engine, the

ends being movable, is very weak to bear a strain as a pillar, and

indeed less than half the strength of a hollow cylindrical pillar

of the same weight and length, rounded at the ends." Phil. Trans.,

1857, p. 893. Emp. Res., p. 350.

A cast-iron pillar of the H form of section with rounded ends

was found to be "
considerably stronger than the preceding, but

much weaker than a hollow cylinder of the same weight." Their

relative strengths, according to Mr. Hodgkinson's experiments, were

in the following proportions, all the pillars being of the same weight

and length and rounded at the ends. Phil. Trans., 1840, pp. 413,

449.

Hollow cylindrical pillar, . . . .100
H shaped pillar, ..... 75

-J- shaped pillar, ..... 44

336. Relative strength of i omul, square, and triangular

solid cast-iron pillars. From a comparison of Mr. Hodgkinson's

experiments it appears that long solid square cast-iron pillars are

about 50 per cent, stronger than solid cylindrical pillars of the same

length and of diameters equal to the sides of the squares, whereas

their area, i.e., their weight, is only 27 per cent, greater. This is equi-

valent to saying that the breaking unit-strain of a long solid square

cast-iron pillar is I
1 178 times that of the inscribed circular pillar of

* Resistance des MaMriaux, p. 110.
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equal length. Phil Trans., 1840, pp. 431, 437. Solid triangular

pillars of cast-iron with flat ends are somewhat stronger than those

with either circular or square sections. Phil. Trans., 1857, p. 893.

Their relative strengths, according to Mr. Hodgkirison's experiments,

were in the following proportions, all the pillars being of the same

weight and length :

Long solid round pillar, . . . .100
square ,, ... 93

,, triangular ,, . . . .110

From this it follows that for practical purposes the round pillar

is the most economical form of solid cast-iron pillar, since the

shape of the triangle will generally prohibit its use.

337. Gordon's rules for pillars. Professor Gordon has de-

duced from Mr. Hodgkinson's experiments the following convenient

formulas for the strength of pillars ;

Let/ = the breaking weight per square unit of section, i.e., the

breaking unit-strain,

r =r the ratio of length to diameter,

a and b = constants depending on. the material and the section of

the pillar.

1. Pillars with both ends flat and bedded with extreme care.

/= (237)

2. Pillars with both ends jointed or imperfectly fixed.

338. Solid or hollow round cast-iron pillars. The values

of the coefficients in Gordon's formula? for solid or hollow cast-iron

pillars are as follows :

a = 36 tons,

The following table has been calculated from these equations, and
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shows at a glance the breaking weight per square inch of solid or

hollow round cast-iron pillars of various ratios of length to diameter.

TABLE IV. FOB CALCULATING THE STRENGTH OF SOLID OB HOLLOW ROUND

CAST-IRON PILLARS.

Ratio of length to diameter.
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This, it will be observed, is nearly 24 per cent, higher than the 457 tons in example 1,

(323) ;
no doubt, because Professor Gordon's rule applies to average mixed irons, which

are in general stronger than simple irons, such as Blaenavon.

339. Solid or hollow rectangular cast-iron pillars. It

appears from Mr. Hodgkinson's experiments that the breaking

unit-strain of a long solid square cast-iron pillar is T178 times

that of the inscribed circular pillar of equal length (3S6), and,

guided by this, we may modify Gordon's formulae to suit rectangular

pillars by making r = the ratio of length to least breadth, and

The following table has been calculated on this basis, and gives

the breaking weight per square inch of solid or hollow rectangular

cast-iron pillars of various ratios of length to breadth.

TABLE V. FOB CALCULATING THE STRENGTH OF SOLID OB HOLLOW RECTANGULAR

CAST-IRON PILLARS.

Eatio of length to least breadth.
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of which one-sixth, = 33 '4 tons, will be the safe working load for ordinary warehouses,

when free from vibration.

For the safe working load on cast-iron pillars see Chap. XXVIII.

WROUGHT-IRON PILLARS.

33O. Solid wrought-iron pillars. Professor Gordon's for-

mula in 327 may be applied to solid rectangular wrought-iron

pillars by giving the coefficients the following values,

a = 16 tons I =^
The following table has been calculated from these formula, and

gives the breaking weight per square inch of solid rectangular

wrought-iron pillars of various ratios of length to least breadth.

TABLE VI. FOB CALCULATING THE STRENGTH OF SOLID EECTANGULAE

WROUGHT-IRON PILLARS.

Ratio of length to least breadth,
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Of this, one-fourth, = 31 '2 tons, will be sufficient in practice for a stationary load, and

that only when the ends are rigidly secured.

The following table, arranged in a convenient form by Mr. G.

Berkley, M.I.C.E., contains the results of experiments on the

compressive strength of solid rectangular wrought-iron bars, with

their ends perfectly flat and well-bedded, which were made under

Mr. Hodgkinson's supervision during the experimental inquiry

respecting the Britannia and Conway tubular bridges.*

TABLE VII. HODGKINSON'S EXPERIMENTS ON SOLID RECTANGULAR

WROUGHT-IRON PILLARS.

Form of section.
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TABLE VII. HODGKINSON'S EXPERIMENTS ON SOLID KECTANGULAR
WROUGHT-IRON PILLARS continued.

Form of section.
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I have made the following abstract from the foregoing experi-

ments in order to show how closely they corroborate Gordon's

formula? when applied to solid rectangular wrought-iron pillars.

TABLE VIII. TABLE DERIVED FROM HODGKINSON'S EXPERIMENTS ON SOLID

RECTANGULAR WROUGHT-IRON PILLARS CAREFULLY BEDDED.

Proportion of length to least breadth, .
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333. Resistance of long plates to flexure. An isolated

plate under compression may be regarded as a wide rectangular

pillar, or as a number of square pillars placed side by side, and it

will therefore follow the laws of pillars so far as deflection at right

angles to its plane is concerned. Hence, the ultimate resistance

of long unsupported plates to flexure is theoretically as the cube

of the thickness multiplied by the breadth and inversely as the

square of the length. Mr. Hodgkinson found that this closely

agreed with his experiments on plates whose length exceeded 60

times their thickness, and which were so long that they failed by
flexure with strains not exceeding 9 tons per square inch (see

Table VII.).* If, however, the plates form the sides of a tube,

this rule does not apply, since in that case they yield by buckling

or wrinkling of a short length and not by flexure, being held in

the line of thrust by the adjacent sides which enable them to bear

a greater unit-strain than if not so supported along their edges.

334. Strength of rectangular wronght-iron tubular pil-

lars is independent of their length within certain limits.

When the length of a rectangular wrought-iron tubular pillar does

not exceed 30 times its least breadth, it fails by the bulging or

buckling of a short portion of the plates, not by flexure of the

pillar as a whole, and within this limit the strength of the tube

seems nearly independent of its length. It is quite possible that

the ratio of length to breadth of rectangular wrought-iron tubes

might be considerably greater than 30 without very materially

affecting their strength, but the recorded experiments do not

extend sufficiently far to determine this point.

335. Crushing unit-strain of wrought-iron tubes depends
upon the ratio between the thickness of the plate and the

diameter or breadth of the tube Safe working-strain of

rectangular wrought-iron tubes. The crushing unit-strain of

a wrought-iron tubular pillar is generally greater the thicker the

plates are in proportion to the diameter or breadth of the tube,

and in most of the experimental rectangular tubes which sustained

a compression of 10 tons per square inch or upwards the thickness

* Com. Rep., p. 119.
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of the plate was not less than one-thirtieth of the breadth of the

tube. In the last experiment recorded in Table XII., a square

tube, 8 feet long, 18 inches in breadth, and made of J-inch plates

united by angle-irons in the corners, sustained a compressive strain

of 13'6 tons per square inch. Unfortunately there were no further

experiments made on tubes thus strengthened at the angles. From

this and other experiments, but especially from one made during

the construction of the Boyne Viaduct to test the strength of a

braced pillar, and which is described in the appendix at the end

of this volume, I infer that the strongest form of rectangular cell

to resist buckling is one in whose angles the chief part of the

material is concentrated, making the sides of plating or lattice

work to withstand flexure of the angles, in which case the sides

act the part of the web, and the angles act as the flanges of a

girder.

From what has been said we may conclude that a rectangular

plate-iron tubular pillar, whose length does not exceed 30 times its

least breadth and whose greatest breadth does not exceed 30 times

the thickness of the plates, will sustain a breaking weight of not

less than 12 tons per square inch, especially if the corners are

strengthened by stout angle-iron. When the ends of such pillars

are properly fixed, as in the compression flange of a girder,

experience sanctions a working-strain of 4 tons per square inch in

ordinary girder-work, and 3 tons in crane-work where shocks may
be expected.

I have deduced the foregoing conclusions respecting tubular

pillars chiefly from experiments conducted under Mr. Hodgkinson's

supervision during the experimental inquiry respecting the Con-

way and Britannia tubular bridges. The following tables exhibit

the results of these experiments reduced to a convenient form by
Mr. G. Berkley,* and the reader can judge for himself how far

the experiments warrant the foregoing conclusions.

* Proc. lust. C. K, Vol. xxx.
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STEEL PILLARS.

336. Solid Steel Pillars. Mr. B. Baker gives the following

values for the co-efficients in Gordon's formulas in 337, when

applied to solid steel pillars.*

Solid f Mil<l Steel . . a = 30 tons . . b =
round <

pillars. ( Strong Steel . . a = 51 tons . . b =

Solid f Mild Steel . . a = 30 tons . . b =
rectangular <

pillars. ( Strong Steel. . a = 51 tons . . b =

Ex. 1. What is the breaking weight of a mild cast-steel pillar, 10 feet long and 2

inches in diameter, securely fixed at both ends ? Here, the ratio of length to diameter

= 60, and we have, from eq. 237, the inch-strain,

30
f=

, 60_X_60
= 8<4tons ;

'

1400

multiplying this by the sectional area, we have,

Answer, Breaking weight = 3'1416 X 8-4 = 26'39 tons.

If the pillar is jointed at the ends, we have from eq. 238,

30
/= --4X60^60

= 2 '658t nS;

1400

multiplying this by the area as before, we have,

Answer, Breaking weight = 3'1416 X 2'658 = 8 '35 tons,

of which one-fourth, = 2 '09 tons, will be a sufficient load when the pillar is free from

vibration or shocks.

Ex. 2. What is the breaking weight of a mild cast-steel pillar, 1 feet long and 2

inches square, securely fixed at both ends ? Here, the ratio of length to breadth = 60,

and we have, from eq. 237, the inch-strain,

30
/=

60X60
= 12-245 tons;

'

2480

multiplying this by the sectional area, we have,

Answer, Breaking weight = 4 X 12-245 = 49 tons nearly.

If the pillar is jointed at the ends, we have from eq. 238,

30
f=

60^60
= 4

'

4 5t0nS;

620

multiplying this by the area as before, we have,

Answer, Breaking weight = 4 X 4'405 = 17'62 tons,

of which one-fourth, = 4'405 tons, will be a sufficient load for pillars free from shocks.

*
Strength of Beams, pp. 207, 209.
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TIMBER PILLARS.

337. Square is the strongest form of rectangular timber

pillar Hodgkinson's rules for olid rectangular timber

pillars. It appears from Hodgkirison's experiments that the

strength of long round or square timber pillars is nearly as the fourth

power of the diameter or side divided by the square of the length.

Also,
" of rectangular pillars of timber it was proved experimentally

that the pillar of greatest strength, where the length and quantity of

material are the same, is a square."*

Hodgkinson gives the following rules for the strength of timber

pillars with both ends flat and well bedded and whose lengths

exceed 30 diameters.f

Let W = the breaking weight in tons,

/ = the length of the pillar in feet,

d = the breadth in inches,

Long square pillars of Dantzic oak (dry).

W = 10-95 ~ (239)

Long square pillars of Red deal (dry).

W = 7-8
j, (240)

Long square pillars of French oak (dry)4

W=6-9^ (241)

When timber pillars are less than 30 diameters in length, they

come under the class of medium pillars, and their strength may be

calculated by eq. 236, the value of W being computed by one of

the equations just given. To find the strength of a rectangular

pillar, find as above the breaking weight of a square pillar whose

side is equal to the short side of the rectangle ;
this multiplied by

the ratio of the long to the short side will give the breaking weight
of the rectangular pillar.

Ex. 1. What is the breaking weight of a pillar of white deal, 9 feet long, 11 inches

wide and 3 inches thick ? Looking at the table in 3OO, we find that the crushing

*
Exp. Res., p. 351.

t Phil. Trans., 1840, pp. 425, 426.

The crushing strength of French oak, according to Rondelet, = 6,336 fts. per

square inch. Phil. Trans., 1840, p. 427.
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strength of white deal is about 1*2 times that of red deal, from which we may conclude

that the strength of a long square pillar of white deal, derived from eq. 240, is as

follows : ,.

W = 1-2 X 7-8 1

From this, the breaking weight of a pillar 9 feet long and 3 inches square =

1-2 X 7 '8 ~
2
= 9-36 tons, and we have for a pillar 11 inches wide,

Answer, Breaking weight =
11 X 9 '36 = 34'32 tons.

3
o t .00

If the pillar be not very securely fixed at the ends, its breaking weight will = =
3

11-44 tons (311), of which th, = 2'86 tons, will be a sufficient working load for

temporary purposes; and th, = 1'43 tons, for permanent use where protected from

the weather.

Ex. 2. What is the breaking weight of a strut of red deal, 26 feet long and 13 inches

square ? If the strut were long enough to give way chiefly by flexure (over 30 diameters

in length), its breaking weight, from eq. 240, would be

W = 7-8
ljj|

= 329-5 tons,

and if the strut were short enough (under 10 to 15 diameters in length), to give way by

crushing alone, its breaking weight would equal its sectional area multiplied by the

tabulated crushing strength of red deal in the table in 3OO, that is,

2240

As the strut is a medium-sized pillar, we have the true breaking weight, from eq. 236,

that is, provided the ends are very carefully bedded
; but if they are liable to rough

adjustment, as in the cross struts of a cofferdam, from which this example has been

taken, the breaking weight will probably be about the above, = 109 tons (313), and

the safe working load for this kind of temporary work will be one-fourth of this again,

= 27'25 tons.

33. Rondelet's and Brereton's rules for timber pillars.

Rondelet deduced the following rule from his experiments on the

compression of oak and fir.* Taking the force which would crush

a cube as unity, the force requisite to break a timber pillar with

fixed ends whose height is

12 times the thickness, will be |

24 J

36 - - J

48 - - i
60 TV
^ ?i > ^i

* Navier ; Application de la Mecanique, p. 200.
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Rondelet also found that timber pillars do not begin to yield by
flexure until their length is about ten times their least lateral

dimensions. This rule is easily applied, as illustrated by the

following examples :

Ex. 1. What is the breaking weight by Rondelet's rule of a white deal pillar, 9 feet

long, 11 inches wide, and 3 inches thick, with the ends very carefully secured ? From

the table in 3OO the crushing strength of white deal = 6781 R>s. per square inch, and

the crushing strength of a very short length of the pillar is therefore 11 X 3 X 6781,=

223,773 R>s. As the length of the plank is 36 times its least width, we have according

to Rondelet's rule,

Answer, Breaking weight = 223>778 = 74,591 Ibs. = 33'3 tons,
3

which differs but slightly from its strength calculated by Hodgkinson's rule in ex. 1,

337.

Ex. 2. What is the breaking weight of a red deal strut 26 feet long and 13 inches

square, with both ends securely fixed ? In ex. 2, 339, we found that the breaking

weight of a short length of the strut was 434 tons, and as the real length = 24 diameters,

Rondelet's coefficient is
; consequently we have,

A ft A

Answer, Breaking weight = - = 217 tons,

which is almost identical with the strength calculated by Hodgkinson's rule in the

example referred to.

Mr. R. P. Brereton states that " in experiments made with large

timbers, with lengths of from ten to forty times the thickness, he

had found that timber 12 inches square and 10 feet long bore a

weight of 120 tons; when 20 feet long it bore 115 tons; when 30

feet long 90 tons
;
and when 40 feet long it carried 80 tons."*

Plotting the curve of Mr. Brereton's experiments we get the

following :

TABLE XIV. FOR CALCULATING THE STRENGTH OF RECTANGULAR PILLARS OP

FIR OR PINE TIMBER.

Ratio of length to least breadth
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adjusted in the ordinary manner, that is, without any special

precautions.

Ex. 1. What is the breaking weight of a red deal strut, 26 feet long and 13 inches

square ? Here, the ratio of length to side is 24, and the breaking weight in the table

for this ratio is 103 tons per square foot
; consequently, for 13 inches square,

Ansiver, Breaking weight =
18 X 1B X 103 = 121 tons, nearly.

1 ^i /\ 1 2t

This answer, it will be observed, approximates very closely to the 109 tons obtained by

Hodgkinson's rule in ex. 2, 332.

Ex. 2. A pillar of ordinary memel timber, 20 feet long and 13 inches square,

was broken in a proving machine with 136 tons. What is its breaking weight

computed by the foregoing rule? Here, the ratio of length to side is 18 '5, and the

corresponding breaking weight from the table = 116 tons per square foot.

Answer, Computed breaking weight =
13 X 13 X

o
116 = 136 tons.

12 X 12

STONE PILLARS.

339. Influence of the height and number of courses in

stone columns. From Rondelet's experiments it would appear

that when three cubes of stone are placed on top of each other,

their crushing strength is little more than half the strength of a

single cube.* Vicat, however, attributes this result to imperfect

levelling and the absence of mortar or cement in the joints, and

he found from experiments on plaster prisms carefully bedded,

that the strength of a monolithic prism, whose height is A, being

represented by unity, we have the strength of prisms :

Of 2 courses and of the height h = O930

Of 4 2/i = 0-861

Of 8 4A = 0-834

even without the interposition of mortar. He concludes that the

division of a column into courses, each of which is a monolith, with

carefully dressed joints and properly bedded in mortar, does not

sensibly diminish its resistance to crushing ;
but he intimates that

this does not hold good when the courses are divided by vertical

joints.f

340. Crushing: strength of Rollers and Spheres. From

M. Vicat's experiments it appears that the strength of cylinders

employed as rollers between two horizontal planes is proportional

*
Morin, p. 72. t Idem, p. 76.
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to the product of their axis by the diameter, and that the strength

of spheres to resist crushing is proportional to the square of their

diameter. If the strength of a cube be represented by unity, that

of the inscribed cylinder standing on its base will be 0*80 ;
that of

the same cylinder on its side will be O32 ;
and that of the inscribed

sphere will be 0-26.*

BRACED PILLARS.

341. Internal Bracing Example. One of the chief practical

difficulties which occur in bridges of large span is the combination

of lightness with stiffness in long struts, such as the compression

bars of the web. The internal bracing represented in Fig. 102 is

a modification of the bracing so familiar in scaffolding. It is now

in common use for the compression bars of lattice girders, and the

bracing of iron piers, and as it unites the requisite qualities of

strength and lightness in an eminent degree, it is worth devoting

some space to investigating the nature of the strains in this form

of pillar.

The diagram represents the cross section and side elevation of a

Fig. 102.

lattice tubular girder of simple construction. The tension diagonals

(marked T,) intersect the compression diagonals (marked C,) at

moderate intervals, and keep them from deflecting, especially in

the plane of the girder. It is obvious, however, that long com-

pression bars, even though formed of angle or tee iron, have but

little stiffness in themselves, and we cannot trust to the tension bars

*
Morin, pp. 75, 82.
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keeping them in the line of thrust at right angles to the plane of

the girder, for the tension bars may not always be in a sufficient

state of strain (153). Hence, it is desirable, at least in long pillars,

to connect each pair of compression bars by internal cross-bracing,

as shown in the section. The strains to which a braced pillar is

subject may be investigated in the following manner, which, though

rude, is yet sufficiently approximate for practical purposes :

Let Fig. 103 represent a pillar which has become deflected, either

from the weight resting more on one side than on the other, or

from defective construction, or from accident.

Fi - 103 - Let W = the weight resting on one

side,

D = ab = the lateral deflection

in the interval of two bays,

I = Wa = ao = the length of

one bay,

R = the radius of curvature of

the deflected pillar,

P = the resultant of the strains

in Wa and ac, i.e., the

nearly horizontal pres-

sure produced on the two

braces intersecting at a, in

consequence of the weight

being transmitted through
a curved pillar.

At the apex, a, three forces balance, viz., the nearly vertical pres-

sures (each = W,) in the two adjacent bays, and their resultant P.

Hence, we have P = -, ;
but D =

JR>
therefore,

P =^ (242)

The pillar may therefore be regarded as a girder, each of whose

flanges is subject to a longitudinal pressure equal to W, in addition

to having a weight P resting on each apex. Hence, the strains in

the bracing may be found by the methods already explained in
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Chapters V. and VI. If the pillar have a tendency to assume an

S form, the strains developed in the internal bracing in one loop of

the curve may, to some extent, neutralize those produced in the

other. If, however, the pressure on one side exceed that on the

other by any known or assumed quantity, then their difference of

length, and the corresponding deflection, may be obtained as

explained in the chapter on deflection, but in practice, errors of

workmanship will almost always exceed the amount of deflection

produced by a difference of pressure and experience must dictate

the requisite allowance. Let, for example, a pillar with internal

bracing, composed of two systems of right-angled triangles, similar

to that represented in Fig. 102. be 30 feet long and two feet wide,

and let each bay be 2 feet in length, in which case there willbe 15

bays in each side, and let the total load on the pillar = 40 tons, or

20 tons on a side. Now, suppose that the maximum error of

workmanship amounts to half an inch of lateral deflection in the

centre of the pillar, in which case R will equal 2,700 feet, then

the pressure P, produced at each apex by a vertical pressure of 20

tons on each side of the pillar, is as follows :

As there are 14 apices in each system of bracing, i.e., 1 on each

side, the strain in each of the end braces = -

= 328-6 Ibs. (eq. 120). We thus see that the strain in the

internal bracing is comparatively trifling, and that the difficulty of

providing against flexure in long compression braces is not so

formidable as might have been supposed. It will be observed that

the internal bracing develops longitudinal strains in the side bars

at each apex. These increments ar^ however, insignificant com-

pared with the pressure due to the weight.

343. Each bay of a braced pillar resembles a pillar with
rounded ends Compression flanges of girders resemble
braced pillars. In braced pillars the side bars must be made stiff

enough to resist flexure for the length of one bay between the apices

of the internal bracing. Each bay cannot, however, be regarded as
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a pillar of this length firmly fixed at the ends, but rather as one

with rounded ends, since it might assume a waved form like the

letter S, consecutive bays deflecting in opposite directions. This

remark also applies to the compression flanges of girders. The

vertical webs preserve them from deflecting in a vertical plane ;
the

cross-bracing between the flanges performs the same service in a

horizontal plane, and the compression diagonals, especially if they

are braced pillars, also convey a large share of rigidity from the

tension flanges and roadway to the compression flanges. The

failure of the latter, therefore, as far as flexure is concerned, is thus

generally confined to the short length of one bay.

343. Strength of braced pillars Is independent of length
within certain limits Working strain. From Hodgkinson's

experiments on plate-iron tubular pillars, it seems highly probable

that the strength of braced pillars is also within considerable limits

independent of their length, for internal bracing will generally be

made somewhat stronger than theory alone might require (334).

In my own practice I adopt 4 tons per square inch of gross

section (excluding, of course, the cross bracing,) for the working-

strain of wrought-iron braced pillars in ordinary girder-work. In

crane-work, where shocks may occur, 3 tons per square inch is

enough. In both cases the ends of the pillar are supposed to be

firmly fixed by construction.



CHAPTER XVI.

TENSILE STRENGTH OF MATERIALS.

344. Nature of tensile strain. The tendency of tensile strain

is to draw the material into a straight line between the points of

attachment, and, unless its shape alters very suddenly or the mode

of attachment is defective, so as to produce indirect strain, each

transverse section will sustain a uniform unit-strain throughout its

whole area ; eq. 1 is, therefore, applicable to ties without any other

practical correction than this, that if the material be pierced with

holes, such as rivet or bolt holes in iron, or knots in timber, the

effective area for tension in any transverse section is not the gross,

but the net area which remains after deducting the aggregate area

of all the holes or imperfections which occur in that particular

transverse section.

CAST-IRON.

345. Tensile strength. The following table contains the

results of Mr. Hodgkinson's experiments on the tensile strength

of various kinds of British cast-iron.* Those samples whose

specific gravity are given are the same irons as those whose

crushing strengths have been already stated in Table I., 894.

TABLE I. TENSILE STRENGTH OF CAST-IRON.

Description of iron.
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TABLE I. TENSILE STRENGTH OF CAST-IRON continued.

Description of iron.
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From these experiments it appears that the average tensile

strength of simple British irons is 7 tons per square inch. The

strength of mixed irons, however, often reaches 9 or 10 tons, while

that of some American cast-iron is nearly double of this.

346. Cold-blast rather stronger than hot-blast iron

mixtures stronger than simple irons. On comparing the

tenacity of hot and cold-blast iron in the first part of the foregoing

table, it will be observed that, with one exception, the cold-blast

irons are rather stronger than the hot-blast irons of the same make.

This is confirmed by experiments made in the United States, where,

since 1840, hot-blast iron has been condemned for ordnance pur-

poses.* The following are the conclusions which the late Mr.

Robert Stephenson deduced from a series of experiments on the

transverse strength of cast-iron bars, made preparatory to the com-

mencement of the high level bridge at Newcastle.

1. Hot-blast is less certain in its results than cold-blast.

2. Mixtures of cold-blast are more uniform than those of hot-

blast.

3. Mixtures of hot and cold-blast give the best results.

4. Simple samples do not run so solid as mixtures.

5. Simple samples sometimes run too hard, and sometimes too

soft for practical purposes .f

Having regard to the fact that hot-blast is now in general

use, and that it seems to improve some kinds of iron, probably
those of a hard nature, the best plan for the engineer to adopt
is to specify the test which he requires the iron to stand and

let the founder bear the responsibility of producing the required

result.

347. Re-melting within certain limits, increases the

strength and density of cast-iron. Re-melting cast-iron seems

to have an important effect in increasing its density as well as in

*
Report on the Strength and other Properties of Metals for Cannon. By Officers of

the Ordnance Department, U.S. Army. Philadelphia, 1856, p. 338.

f Rep. of Iron Com., App., p. 389.
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improving its tensile and transverse strength, as appears from the

following experiments by Major Wade on proof bars of No. 1

Greenwood pig-iron thrice re-melted :*

TABLE II. EXPERIMENTS ON THE TENSILE AND TRANSVERSE STRENGTH OF

RE-MELTED CAST-IRON.
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and proof bars, 5 feet long and 1 inch square, were cast each time,

and broken by transverse strain, the distance between the supports

being 4 feet 6 inches. The results are given in the following

table:

TABLE III. EXPERIMENTS ON THE TRANSVERSE AND CRUSHING STRENGTH OP

KE-MELTED CAST-IRON.

No. of

meltings.
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TABLE IV. EXPERIMENTS ON PROLONGED FUSION.
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iron are attended with a heavy waste of material, which goes far to

compensate for the increase of strength. The tensile strength,

as influenced by the size of the masses and rapidity of cooling,

varies with the condition of the iron previous to casting. If the

refining process, by lengthened fusion or numerous re-meltings, be

carried too far, the resulting product will be of a hard, brittle

quality ;
and when cast into small articles, be chilled to that extent

as to be incapable of working with steel cutting-tools. Cast into

larger articles, however, and cooled more slowly, a maximum

tenacity may be developed, and the texture of the iron be found of

a character to bear cutting-tools on its surface. Continuing the

operation too long also produces a thickening of the molten iron,

until it is of too great a consistence for the proper filling of the

moulds, and the prevention of air cavities in the body of the

casting. The burning away of the carbon is attended with a loss

of fluidity ;
and this defect occurring, there is no remedy short of

introducing further portions of the original crude iron, to restore,

by mixing, a certain degree of fluidity."

349. Tensile strength of thick castings of highly decar-

bonized iron greater than that of thin ones Annealing
small bars of cast-iron diminishes their density and tensile

strength. It has been already shown (138) that the transverse

strength of thin castings exceeds that of thick ones, and it might

naturally be thought that this was always due to greater tensile

strength in the smaller castings. This, however, seems to be

disproved by the following experiments by Major Wade, of the

United States army, who found that small castings in vertical dry

sand moulds had a less tensile strength than large gun castings

similarly moulded and cast at the same time.* The diminution of

tensile strength in the small bars amounted to nearly 5 per cent.,

while their transverse strength was 14 per cent, greater than that of

bars cut from the guns, as is shown in the following table :

*
Report on Metals for Cannon, p. 45.
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TABLE V. COMPARISON OF PROOF BARS CUT FROM THE BODY OF THE GUN, WITH

THOSE CAST AT THE SAME TIME IN SEPARATE VERTICAL DRY SAND MOULDS,

SHOWING THE DIFFERENCE IN THE SAME IRON, CAUSED BY SLOW COOLING IN LARGE

MASSES, AND MORE RAPID COOLING IN SMALL CASTINGS.

Guns.
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observe, is much stronger and denser than ordinary English cast-

iron, the mean tensile strength of a large number of American

guns cast in 1851 being 37,774 Ibs., or nearly 17 tons per square

inch.*

350. Indirect pull greatly reduces the tensile strength
of cast-iron. Mr. Hodgkinson found " that the strength of a

rectangular piece of cast-iron, drawn along the side, is about one-

third, or a little more, of its strength to resist a central strain."!

In proving specimens of cast-iron in a testing machine it is essential

that the strain pass exactly through the axis of the specimen,

otherwise the apparent will be much less than the real tensile

strength.

351. Cast-iron not suited for tension. Cast-iron is liable to

air-holes, internal strains from unequal contraction in cooling and

other concealed defects which often seriously reduce its effective

area for tension and, as its tenacity is only about one-third of that

of wrought-iron, the latter material or steel should be preferred

for tensile strains whenever practicable. For these reasons cast-

iron is seldom used in the form of a tie-bar. It frequently occurs,

however, in tension in the lower flanges of girders with continuous

webs, for the safe working strain in which see Chap. XXVIII.

WROUGHT-IRON.

353. Tensile strength of wronght-iron Fractured area

Ultimate set. We are indebted to Mr. David Kirkaldy for an

exceedingly valuable series of experiments on the tensile strength

of wrought-iron and steel, made by means of a lever testing machine

at the works of Messrs. Robert Napier and Sons, Glasgow.} The

following tables contain abstracts of the more important results of

these experiments. The column headed "
Tearing weight per

square inch of fractured area" gives the breaking weight per square

inch of the area when reduced by the specimen drawing out under

proof. The ratio of this to the "
tearing weight per square inch of

*
Report on Metah for Cannon, p. 276.

t Ex. Res., p. 312.

J Experiments on Wrouyht-iron and Steel, by David Kirkaldy, Glasgow, 1863.
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original area" indicates the quality of the iron, whether ductile or

the reverse. The soft and ductile irons draw out to a small
" fractured area," and consequently have a very high unit-strain

referred to it, whereas the hard irons stretch but little under proof,

and therefore have a comparatively low unit-strain referred to the

same standard. The last column, headed " Ultimate elongation

or tensile set after fracture," gives the ratio of the increment

of length after fracture to the original length before fracture,

in the form of a percentage of the latter. The figures in this

column are greater or less according as the material is more or less

ductile, and consequently, this
" set after fracture" is a test of the

toughness and ductility of the iron under proof. In my own

practice I find that the "
set after fracture" is more easily measured

than the " fractured area," and that it is a very convenient test of

the ductility and toughness of the iron.

TABLE VI. TENSILE STRENGTH OF WROUGHT-IRON BARS.

NOTE. All the pieces were taken promiscuously from engineers' or merchants' stores,

except those marked samples, which were received from the makers.

District.
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TABLE VI. TENSILE STRENGTH OP WROUGHT-IRON BARS continued.

District
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TABLE VI. TENSILE STRENGTH OF WROUGHT-IRON BARS continued.

District.
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TABLE VI. TENSILE STRENGTH OP WROUGHT-IRON BARS continued.
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TABLE VII. TENSILE STRENGTH OP ANGLE IRON.

NOTE. All the pieces were taken promiscuously from engineers' or merchants'

stores, except those marked samples, which were received from the makers.

District.
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TABLE IX. TENSILE STRENGTH OP WROUGHT-IRON PLATES.

NOTE. All the pieces were taken promiscuously from engineers' or merchants'

stores, except those marked samples, which were received from the makers. L denotes

that the strain was applied lengthways of the plate ; C, crossways.

District.
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TABLE IX. TENSILE STRENGTH OF WROUGHT-IRON PLATES continued.

District.
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about 10 per cent, weaker than the mean results in the foregoing

table, and that their set after fracture, lengthways, rarely exceeds

5 per cent, of the total length ;
also that Staffordshire and North

of England iron are generally tougher than Scotch iron.

354. Hirkaldy's conclusions. Mr. Kirkaldy sums up the

results of his experimental inquiry in the following concluding

observations, which the student should study carefully :

1. The breaking strain does not indicate the quality, as hitherto assumed.

2. A high breaking strain may be due to the iron being of superior quality, dense,

fine, and moderately soft, or simply to its being very hard and unyielding.

3. A low breaking strain may be due to looseness and coarseness in the texture, or

to extreme softness, although very close and fine in quality.

4. The contraction of area at fracture, previously overlooked, forms an essential

element in estimating the quality of specimens.

5. The respective merits of various specimens can be correctly ascertained by com-

paring the breaking strain jointly with the contraction of area.

6. Inferior qualities show a much greater variation in the breaking strain than

superior.

7. Greater differences exist between small and large bars in coarse than in fine

varieties.

8. The prevailing opinion of a rough bar being stronger than a turned one is

erroneous.

9. Rolled bars are slightly hardened by being forged down.

10. The breaking strain and contraction of area of iron plates are greater in the

direction in which they are rolled than in a transverse direction.

11. A very slight difference exists between specimens from the centre and specimens

from the outside of crank shafts.

12. The breaking strain and contraction of area are greater in those specimens cut

lengthways out of crank shafts than in those cut crossways.

13. The breaking strain of steel, when taken alone, gives no clue to the real qualities

of various kinds of that metal.

14. The contraction of area at fracture of specimens of steel must be ascertained as

well as in those of iron.

15. The breaking strain, jointly with the contraction of area, affords the means of

comparing the peculiarities in various lots of specimens.

16. Some descriptions of steel are found to be very hard, and, consequently, suitable

for some purposes ;
whilst others are extremely soft, and equally suitable for other uses.

17. The breaking strain and contraction of area of puddled-steel plates, as in iron

plates, are greater in the direction in which they are rolled; whereas in cast-steel

they are less.

18. Iron, when fractured suddenly, presents invariably a crystalline appearance ;

when fractured slowly, its appearance is invariably fibrous.
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19. The appearance may be changed from fibrous to crystalline by merely altering

the shape of specimen, so as to render it more liable to snap.

20. The appearance may be changed by varying the treatment, so as to render the

iron harder and more liable to snap.

21. The appearance may be changed by applying the strain so suddenly as to render

the specimen more liable to snap, from having less time to stretch.

22. Iron is less liable to snap the more it is worked and rolled.

23. The " skin" or outer part of the iron is somewhat harder than the inner part, as

shown by appearance of fracture in rough and turned bars.

24. The mixed character of the scrap-iron used in large forgings is proved by the

singularly varied appearance of the fractures of specimens cut out of crank shafts.

25. The texture of various kinds of wrought-iron is beautifully developed by im-

mersion in dilute hydrochloric acid, which, acting on the surrounding impurities,

exposes the metallic portion alone for examination.

26. In the fibrous fractures the threads are drawn out, and are viewed externally,

whilst in the crystalline fractures the threads are snapped across in clusters, and are

viewed internally or sectionally. In the latter cases the fracture of the specimen is

always at right angles to the length ;
in the former it is more or less irregular.

27. Steel invariably presents, when fractured slowly, a silky fibrous appearance ;

when fractured suddenly, the appearance is invariably granular, in which case also

the fracture is always at right angles to the length ; when the fracture is fibrous, the

angle diverges always more or less from 90.

28. The granular appearance presented by steel suddenly fractured is nearly free of

lustre, and unlike the brilliant crystalline appearance of iron suddenly fractured
;
the two

combined in the same specimen are shown in iron bolts partly converted into steel.

29. Steel which previously broke with a silky fibrous appearance is changed into

granular by being hardened.

30. The little additional time required in testing those specimens, whose rate of

elongation was noted, had no injurious effect in lessening the amount of breaking

strain, as imagined by some.

31. The rate of elongation varies not only extremely in different qualities, but also

to a considerable extent in specimens of the same brand.

32. The specimens were generally found to stretch equally throughout their length

until close upon rupture, when they more or less suddenly drew out, usually at one

part only, sometimes at two, and, in a few exceptional cases, at three different places.

33. The ratio of ultimate elongation may be greater in short than in long bars in

some descriptions of iron, whilst in others the ratio is not affected by difference in the

length.

34. The lateral dimensions of specimens forms an important element in comparing

either the rate of, or the ultimate, elongations a circumstance which has been hitherto

overlooked.

35. Steel is reduced in strength by being hardened in water, while the strength is

vastly increased by being hardened in oil.

36. The higher steel is heated (without, of course, running the risk of being burned)

the greater is the increase of strength, by being plunged into oil.

X
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37. In a highly converted or hard steel the increase in strength and in hardness is

greater than in a less converted or soft steel.

38. Heated steel, by being plunged into oil instead of water, is not only considerably

hardened, but toughened by the treatment.

39. Steel plates hardened in oil, and joined together with rivets, are fully equal in

strength to an unjointed soft plate, or the loss of strength by riveting is more than

counterbalanced by the increase in strength by hardening in oil.

40. Steel rivets, fully larger in diameter than those used in riveting iron plates of

the same thickness, being found to be greatly too small for riveting steel plates, the

probability is suggested that the proper proportion for iron rivets is not, as generally

assumed, a diameter equal to the thickness of the two plates to be joined.

41. The shearing strain of steel rivets is found to be about a fourth less than the

tensile strain.

42. Iron bolts, case-hardened, bore a less breaking strain than when wholly iron,

owing to the superior tenacity of the small proportion of steel being more than coun-

terbalanced by the greater ductility of the remaining portion of iron.

43. Iron highly heated and suddenly cooled in water is hardened, and the breaking

strain, when gradually applied, increased, but at the same time it is rendered more

liable to snap.

44. Iron, like steel, is softened, and the breaking strain reduced, by being heated

and allowed to cool slowly.

45. Iron subject to the cold-rolling process has its breaking strain greatly increased by

being made extremely hard, and not by being
"
consolidated," as previously supposed.

46. Specimens cut out of crank-shaft are improved by additional hammering.

47. The galvanizing or tinning of iron plates produces no sensible effects on plates

of the thickness experimented on. The result, however, may be different, should the

plates be extremely thin.

48. The breaking strain is materially affected by the shape of the specimen. Thus

the amount borne was much less when the diameter was uniform for some inches of

the length than when confined to a small portion a peculiarity previously unascer-

tained, and not even suspected.

49. It is necessary to know correctly the exact conditions under which any tests are

made before we can equitably compare results obtained from different quarters.

50. The startling discrepancy between experiments made at the Koyal Arsenal, and

by the writer, is due to the difference in the shape of the respective specimens, and not

to the difference in the two testing machines.

51. In screwed bolts the breaking strain is found to be greater when old dies are

used in their formation than when the dies are new, owing to the iron becoming harder

by the greater pressure required in forming the screw thread when the dies are old

and blunt than when new and sharp.

52. The strength of screw-bolts is found to be in proportion to their relative areas,

there being only a slight difference in favour of the smaller compared with the larger

sizes, instead of the very material difference previously imagined.

53. Screwed bolts are not necessarily injured, although strained nearly to their

breaking point.
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54. A great variation exists in the strength of iron bars which have been cut and

welded
;
whilst some bear almost as much as the uncut bar, the strength of others is

reduced fully a third.

55. The welding of steel bars, owing to their being so easily burned by slightly over-

heating, is a difficult and uncertain operation.

56. Iron is injured by being brought to a white or welding heat, if not at the same

time hammered or rolled.

57. The breaking strain is considerably less when the strain is applied suddenly in-

stead of gradually, though some have imagined that the reverse is the case.

58. The contraction of area is also less when the strain is suddenly applied.

59. The breaking strain is reduced when the iron is frozen
;
with the strain gra-

dually applied, the difference between a frozen and unfrozen bolt is lessened, as the

iron is warmed by the drawing out of the specimen.

60. The amount of heat developed is considerable when the specimen is suddenly

stretched, as shown in the formation of vapour from the melting of the layer of ice on

one of the specimens, and also by the surface of others assuming tints of various shades

of blue and orange, not only in steel, but also, although in a less marked degree, in

iron.

61. The specific gravity is found generally to indicate pretty correctly the quality of

specimens.

62. The density of iron is decreased by the process of wire-drawing, and by the

similar process of cold rolling, instead of increased, as previously imagined.

63. The density in some descriptions of iron is also decreased by additional hot-

rolling in the ordinary way ;
in others the density is very slightly increased.

64. The density of iron is decreased by being drawn out under a tensile strain,

instead of increased, as believed by some.

65. The most highly converted steel does not, as some may suppose, possess the

greatest density.

66. In cast-steel the density is much greater than in puddled-steel, which is even

less than in some of the superior descriptions of wrought-iron.

The foregoing extracts afford the reader but a meagre idea of

Mr. Kirkaldy's laborious researches, and the student who seeks

more detailed information regarding his experiments, or the instru-

ments and method he adopted in testing specimens, is referred to

his book on the subject.

355. Strength of iron plates lengthways 1O per cent,

greater than crossways Removing skin of wrought-iron
does not injnre its tensile strength. From Table X. it appears

that the average strength of wrought-iron plates drawn in the

direction of their length is about ten per cent, greater than when

drawn across the grain. The "set after fracture" is also much

greater in the direction of the fibres. This agrees with Mr. Clark's
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experiments* as well as with my own experience. With reference

to the effect of removing the outer skin or glaze on rolled iron,

Mr. Kirkaldy observes,
" The generally received opinion, that by

removing the * skin' the relative strength was greatly reduced, or

that a rough bar was much stronger than one turned to the same

diameter, is proved to be erroneous." f

356. Bar and angle iron are tougher and stronger than

plates Boiler plates Ship plates Hard iron unfit for ship-

building. Both bar and angle iron are tougher and stronger than

plate iron, and from Table X. it appears that bars of ordinary

sizes are nearly 14 per cent, stronger than plates; perhaps this

does not apply to bars of large section, say three inches in diameter

and upwards. The great demand for iron ships has given rise to

the manufacture of a cheap quality of plate iron called "ship" or

"boat" plates; this iron is generally inferior in strength and

toughness to "boiler" plates, and is often so hard and brittle that

its set after fracture does not exceed two or three per cent, of the

length, even with the grain, while its tensile strength is frequently

less than eighteen tons per square inch. There can be no greater

mistake than to suppose that hard iron is fit for ships. Iron plates

which are tough and ductile like copper will, when struck, often

escape with a mere dint or bulge, whereas hard iron under the same

circumstances will crack or tear, especially along a line of rivet holes.

357. Large forgings not so strong as rolled iron

Annealing reduces the tensile strength of small iron, but
increases its ductility Annealing injurious to large forgings
Very prolonged annealing injurious to all wrought-iron

Excessive strain renders iron brittle. It is generally believed

that large forgings are less tenacious than small ones. About

this, however, there is some difference of opinion, and the sub-

ject requires further experiments before it can be definitively

settled, t Large forgings certainly require greater manufacturing

skill than small ones, and it is probable that large forgings, such as

* Clark on the Tubular Bridges, p. 377.

t Expts., p. 27.

t See discussion on Mr. Mallet's paper on the Coefficients of Elasticity and Rupture

in Massive Forgings. Proc. Imt. C. E., Vol. xviii., p. 296.
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shafts for marine engines, are somewhat weaker in tensile strength

than bar or plate iron to which the rolling process imparts a fibrous

structure; this view seems to be confirmed by Mr. Kirkaldy's

experiments on hammered iron in Table VI. Annealing small

iron reduces its tensile strength (354 44), though it increases

its ductility and toughness, which are sometimes more important

qualities. For instance, it is a good practice to anneal old crane

chains which have become brittle by overstraining, and thus

render them less liable to snap from sudden jerks. Annealing large

forgings is injurious, as it produces a crystalline structure, the

reverse of fibrous, and very prolonged annealing of small sized iron

seems to have a similar bad effect.* If an iron bar be torn asunder

several times in succession, its tensile strength each time will

apparently increase, because it first gives way at the weakest point,

next time at the second weakest, and so on ; but though several

applications of the tearing strain do not diminish its ultimate

strength to resist a steady pull, they take the ductility or stretch

out of the iron and render it hard and brittle and therefore liable

to snap from sudden shocks. For the safe working load of wrought-

iron see Chap. XXVIII.
IRON WIRE.

358. Tensile strength of iron wire Annealing; iron wire

reduces its tensile strength. From Mr. Telford's experiments

it appears that the strength of iron wire ^th inch diameter = 36

tons per square inch.f The strength of the iron wire used by
Mr. Roebling at the Niagara Falls suspension bridge was nearly

100,000 Ibs. (= 44'6 tons) per square inch. This wire measures

18*31 feet per lb., and is
" small No. 9 Gauge, 60 wires forming

one square inch of solid section."J

The following table contains the results of experiments made by
M. Seguin on iron-wire of different sizes and qualities.

*
Morin, p. 47.

f Barlow on the Strength of Materials, p. 283.

J Papers and Practical Illustrations of Public Works of Recent Construction, both

British and American. Weale : 1856. pp. 16, 18.

RtsumZ des lemons sur Vapplication de la Mecanique. Par M. Navier. Bruxelles,

1839, p. 30.
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TABLE XI. TENSILE STRENGTH OP IRON WIRE.

Description of Wire.
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That annealing iron wire seriously impairs its tensile strength

may be inferred from the foregoing experiments.

STEEL.

359. Tensile strength* ultimate set and limit of elasticity

of steel. The following table contains the results of experiments

on the tensile strength and other properties of steel bars 50 inches

long and 1-382 inch diameter (= 1-5 sq. inch), made by Mr.

Kirkaldy for the " Steel Committee," the samples being carefully

turned down from two-inch square bars.*

TABLE XII. TENSILE STRENGTH AND LIMIT OF ELASTICITY OF STEEL BARS.

Kind of Steel.
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by the same Committee at Woolwich Dockyard on various

descriptions of steel bars 10 feet long and 1J inch diameter.

TABLE XIII. TENSILE STRENGTH AND LIMIT OF ELASTICITY OP STEEL BARS.

Kind of Steel
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Tables XV. and XVI. contain the principal results of Mr.

Kirkaldy's experiments on the tensile strength of steel bars and

plates.* His " conclusions" respecting steel will be found in 354.

TABLE XV. TENSILE STRENGTH OF STEEL BARS.

NOTE. All the pieces were taken promiscuously from engineers' or merchants'

stores, except those marked samples, which were received from the makers.

District.
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TABLE XVI. TENSILE STRENGTH OF STEEL PLATES.

NOTE. All the pieces were taken promiscuously from engineers' or merchants'

stores, except those marked samples, which were received from the makers. L denotes

that the strain was applied lengthways of the plate ; C, crossways.

District
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greater in steel than in iron plates, amounting to nearly 20 per

cent, in some specimens. The reader will also observe that the

ultimate tensile set of steel plates is in general small compared
with that of the tougher kinds of iron in Table IX. This

indicates the direction to which manufacturers of steel should

direct their attention, as for many purposes, especially shipbuild-

ing, toughness and ductility are quite as essential as great tensile

strength (356). Sometimes steel plates are so brittle as to fly

in pieces under the hammer, or split in punching, and thick plates

are said to possess this undesirable quality to a greater degree than

thin ones, and occasionally they fly without any apparent cause

whatever shortly after they have been riveted in place. Com-

plaints also are made of want of uniformity of texture, some

plates of a lot being all that could be desired, while others of the

same lot may be hard and brittle. Owing to this uncertainty

the manufacture of steel plates seems still in a transition state,

and consequently, engineers and shipbuilders have not made use of

the material to the extent to which its superior tensile strength

seems to destine it.

It appears from papers on the treatment of steel, read at the

annual meeting of the Institution of Naval Architects in April,

1868, that steel plates, such as are now sometimes used in ship-

building, may be obtained of a tensile strength of from 30 to 35

tons per square inch. Punching, as compared with drilling,

reduced the strength of Bessemer steel plates 33 per cent. It

was found, however, that annealing these punched Bessemer

plates restored them to their original strength. In other experi-

ments on mild puddled steel plates the loss of strength from

punching was 21 per cent., and there was no benefit from subse-

quent annealing. With mild crucible steel plates the loss of

strength from punching was 7 per cent., and the gain of annealed

over unannealed was 14 per cent. Annealing was also recom-

mended to equalize the strength of steel, as in a batch of plates

sent in by the same manufacturer the plates sometimes greatly

differ, and a bath of molten lead was recommended as a cheap and

certain mode of annealing. It was also stated that enlarging the
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die when punching steel, so as to give the die a large clearance, as

much as ^th inch, round the punch and make a taper hole, gave
a great advantage with Bessemer steel, amounting to 25 per cent.,

but in experiments on iron plates it was found that a greater

clearance than the usual one of 7̂ th inch rather injured the iron.

Mr. Krupp says with regard to the treatment of cold cast-steel

boiler plates: "In working the plates cold, all sharp turns,

corners, and edges must be avoided or removed. The surfaces of

cuts and rivet-holes must, before bending and riveting, be worked

and rounded off as neatly as possible, so that no rough and serrated

places remain after cutting and punching." He also recommends

as a general rule that the plates should be thoroughly and equally

annealed at a dark-red heat after every large operation, and that

they should certainly have such annealing at the conclusion of all

operations. The directions given by him as to bending hot are

as follows :
" The plates should be heated, preparatory to bend-

ing, to a heat not exceeding a bright cherry-red. Also the greatest

possible portion of the surface should be heated, and not merely

the edge, and even, where practicable, the whole plate should be

equally heated. By this means the strains which arise from local

heating and cooling, and which are much greater in cast-steel

plates, on account of their higher absolute and reflex density, than

in iron, are, by the general heating of the plate, more equably

distributed. The thickest and toughest plates can be broken by
local heating, bending and cooling. Bends which cannot be com-

pleted in one, or at most in two consecutive heatings, must be

made gradually and equably over the whole extent to be operated

on." In bending, for example, to an angle of 90, the whole

plate should first be bent through about one-third of the angle,

then through another third, and finally to the complete angle :

" After the whole of these operations, the plate is to be equably

annealed at a dark-red heat, which will thus equalize the strains

caused by the previous working."* For the safe working-strain of

steel see Chap. XXVIII.

* Reed on Shipbuilding.
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STEEL WIRE.

361. Tensile strength of steel wire. In experiments made

for the Atlantic Telegraph the strength of steel wire '095 inch

diameter was 1950lbs., while that of special charcoal wire of the

same size was 750 fibs.*

VARIOUS METALS AND ALLOYS.

363. Tensile strength of various metals and alloys. The

following table contains the tensile strength of various metals and

alloys by several experimenters.

TABLE XVII. TENSILE STRENGTH OP VARIOUS META.LS AND ALLOTS.

Description of Metal.
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TABLE XVII. TENSILE STRENGTH OP VARIOUS METALS AND ALLOTS continued.

J

Description of Metal.
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a much higher pressure than the gun-heads which are at the top,

and they are consequently both stronger and denser than the latter.

The small bars cast in the gun mould are stronger than those cast

separately, probably in consequence of their being under greater

pressure, and because they were fed, as they solidified, from the

mass of the gun with which they communicated. Major Wade
also attributes their superiority to the annealing process they

underwent after solidification, from the proximity of the large

mass of the gun.*

364. Alloys of copper and tin. The following table contains

the results of experiments made by Robert Mallet, Esq., F.R.S.,

on the physical properties of certain alloys of copper and tin.f

TABLE XVIII. PHYSICAL PROPERTIES OF ALLOYS OP COPPER AND TIN.

COPPER AND TIN.
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tensile strength of timber drawn in the direction of the fibres.

For the safe working-strain see Chap. XXVIII.

TABLE XIX. TENSILE STRENGTH OP TIMBER LENGTHWAYS.

Description of Wood.
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OF MATERIALS. 323

TIMBER LENGTHWAYS continued.

Description of Wood.
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TABLE XIX. TENSILE STRENGTH OF TIMBER LENGTHWAYS continued.

Description of Wood.
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STONE, BRICK, MORTAR, CEMENT, GLASS.

367. Tensile strength of stone. As stone is rarely employed
in direct tension, there are but few experiments on its tensile

strength, and it would be desirable to have these corroborated.

TABLE XXL TENSILE STRENGTH OF STONE.

Name of Material.
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36. Tensile strength of Plaster of Paris and Lime
mortar.

TABLE XXII. TENSILB STRENGTH OP PLASTER OP PARIS AND LIME MORTAR.

Name of Material.
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is stopped by a sieve the meshes of which are ^th of an inch in

diameter, for the coarser particles act to a great degree like inert

grains of sand and consequently reduce the value of the cement.

TABLE XXIII. METROPOLITAN MAIN DRAINAGE PORTLAND CEMENT,

SEVEN DAY TESTS, from 1866 to 1871.

Names of Manufacturers and Agents.
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TABLE XXIV. Results of Experiments with Portland Cement, weighing 112fts.

per bushel, mixed with different proportions of Sand, showing the Breaking Weight
on a sectional area of 2'25 square inches.

1 Month.
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TABLE XXV. Results of Experiments with Portland Cement weighing 123 Ibs. to

the imperial bushel, gauged neat, and with an equal proportion of clean Thames

Sand. The whole of the specimens were kept in water from the time of their

being made till the time of testing.

Age.
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TABLE XXVI. Southern Outfall Works, Crossness. Summary of Portland

Cement Tests, from 1862 to 1866, showing generally increase of strength with

increased specific gravity.

Number of

bushels.
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TABLE XXVII. Results of Experiments with neat Eoman Cement, manufactured

by Messrs. J. B. WHITE and BROTHERS.

Time kept immersed
in water.
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371. Tensile strength of Keene's3 Parian, and Medina

cements. The following tables contain the results of Mr. Grant's

experiments on the tensile strength of Keene's, Parian and Medina

cements. The two former are chiefly used for internal decoration.

Keene's cement is made by soaking plaster of Paris in alum water,

then re-burning and grinding it
;
Parian cement is made by mixing

gypsum with borax in powder, then calcining the mixture and

grinding it. Medina is a natural cement with rather more lime

than Roman cement, and is inferior in strength to Portland cement,

which, as already stated, is an artificial mixture of chalk and clay.

Quick-setting Medina is useful for pointing the joints of marine

masonry which have been set in Portland cement. It hardens

rapidly and prevents the rising tide from washing the slower

setting Portland out of the joints before it has had time to harden

sufficiently to resist the action of water in motion.

TABLE XXIX. Kesults of 120 Experiments with Keene's Cement, manufactured by

Messrs J. B. WHITE and BROTHERS ;
and Parian Cement, manufactured by Messrs.

FRANCIS and SONS.
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TABLE XXX. Results of 100 Experiments with Medina Cement, manufactured by
Messrs. FRANCIS, BROTHERS, 1864.

Age and time Immersed
in water.
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" The pressed gault bricks show the lowest amount of ad-

hesiveness ; partly because of their smooth surface, and partly

because in making them some oily matter is used for lubricating

the dies of the press through which they are passed before being

burnt. In the case of the perforated gault bricks the cement-

mortar seems to act as dowels, and the results are consequently

high. The Suffolk and the Fareham red bricks, which each

absorb about a pound of water per brick, adhere much better

than the Staffordshire, which are not absorbent. This shows the

importance of thoroughly soaking bricks which are to be put

together with cement, as dry bricks deprive the cement-mortar of

the moisture which is necessary for its setting." Mr. Robertson

found that the adhesion of first-class hydraulic mortar, made of

blue Lias lime and ground in mortar pans for forty minutes,

to blue vitrified Staffordshire bricks, not too highly glazed, was

40 tbs. per square inch, after six months
;
while to the hardest

grey-stocks, although watered, as in practice, the adhesion was only

36 ft>s., or 10 per cent. less. To soft "place" bricks, the adhesion

was only 18 Ibs., or 55 per cent, less than to blue bricks.*

3?3. Grant's conclusions. The following conclusions are the

result of Mr. Grant's numerous experiments on cement during the

execution of the Southern Metropolitan Main Drainage Works :

1. Portland cement, if it be preserved from moisture, does not, like Roman cement,

lose its strength by being kept in casks, or sacks, but rather improves by age ;
a great

advantage in the case of cement which has to be exported.

2. The longer it is in setting, the more its strength increases.

3. Cement mixed with an equal quantity of sand is at the end of a year approximately

three-fourths of the strength of neat cement.

4. Mixed with two parts of sand, it is half the strength of neat cement.

5. With three parts of sand, the strength is a third of neat cement.

6. With four parts of sand, the strength is a fourth of neat cement.

7. With five parts of sand, the strength is about a sixth of neat cement.

8. The cleaner and sharper the sand, the greater the strength.

9. Very strong Portland cement is heavy, of a blue-grey colour, and sets slowly.

Quick setting cement has, generally, too large a proportion of clay in its composition,

is brownish in colour, and turns out weak, if not useless.

10. The stiffer the cement is gauged, that is, the less the amount of water used in

working it up, the better.

* Proc. Inst. C. E., VoL xvii, p. 420.
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11. It is of the greatest importance, that the bricks, or stone, with which Portland

cement is used, should be thoroughly soaked with water. If under water, in a quiescent

state, the cement will be stronger than out of water.

12. Blocks of brick-work, or concrete, made with Portland cement, if kept under

water till required for use, would be much stronger than if kept dry.

13. Salt water is as good for mixing with Portland cement as fresh water.

14. Bricks made with neat Portland cement are as strong at from six to nine months

as the best quality of Staffordshire blue brick, or similar blocks of Bramley Fall stone,

or Yorkshire landings.

15. Bricks made of four parts or five parts of sand to one part of Portland cement

will bear a pressure equal to the best picked stocks.

16. Wherever concrete is used under water, care must be taken that the water is

still. Otherwise, a current, whether natural or caused by pumping, will carry away the

cement, and leave only the clean ballast.

17. Roman cement, though about two-thirds the cost of Portland, is only about

one-third its strength, and is therefore double the cost, measured by strength.

18. Roman cement is very ill adapted for being mixed with sand.

374. Tensile strength of glass Thin plates of glass

stronger than stout bars Crushing strength of glass is

13 times its tensile strength.

TABLE XXXII. TENSILE STRENGTH OP GLASS.

Description of Glass.
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than when burst by internal pressure in the form of thin globes.

This difference is, no doubt, mainly due to the fact that thin

plates of this material generally possess a higher tenacity than

stout bars, which, under the most favourable circumstances, may
be but imperfectly annealed." " The ultimate resistance of

class to a crushing force is about 12 times its resistance to
to o

extension"* (3O5).

CORDAGE.

335. Tensile strength of cordage. The following table

gives the sizes, weights, and strength of different kinds of best

Bower cables employed in the British Navy.f The strength was

determined by the chain-testing machine in Woolwich Dockyard,

in which the strain is measured by levers.

TABLE XXXIIL TENSILE STBENGTH OP BOWER CABLES.

Best Bower hempen cables, 100 fathoms.
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so that every fibre is brought into close contact by the twisting

and compression of the strand
;
the tar thus fills up every interstice,

and the rope becomes a firmly agglutinated elastic substance almost

impermeable to water. But, although rope so made is both

stronger and more durable, it is less pliable, and therefore the cold

registered rope is more generally used for crane work, where the

rope must be wound round barrels, or passed through pulleys."*

TABLE XXXIV. TENSILE STRENGTH OF TARRED HEMP ROPE.

Size of

Ropes.
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376. Strength and weight of Cordage English rule-
French rule. By the old ropemakers' rule the -square of the

girth in inches multiplied by four gave the ultimate or breaking

strength of the rope in cwts., and it was a good rule for small

cordage, up to 7 inches in girth. The square of the girth divided

by four was considered to represent the weight of a fathom in

pounds.* The old ropemakers' rule for strength is equivalent to

2-51 tons per square inch of section. The French rule, as given

by Morin,t allows 2-79 tons per square inch for the tearing weight

of tarred hemp cordage.

377. "Working strain of Cordage. Cordage rapidly deterio-

rates by use and exposure to the weather, and when passed

round barrels or pulleys the outer strands are subject to greater

strains than those next the barrel. For this reason, as well as in

order to diminish useless work, the diameters of pulleys and barrels

should be made as large as practicable. Experience alone can

estimate the proper allowance to be made for wear and friction,

which latter is sometimes excessive in badly made blocks, and after

deducting this allowance from the original tearing strength, one-

fourth of the remainder is a sufficient load for continued strain,

and one-third for merely temporary purposes, though workmen

often apply one-half. A common practical allowance for friction

in ordinary tackles is one-third of the theoretic amount; if, for

example, the tackle consists of an upper and lower block with

three pulleys in each block, there will be 6 parts to the rope and

W
the theoretic pull on each part will = -~-

; the foregoing rule,

1/33W
however, makes the pull on each part ~ ,

and the rope

should therefore be one-third stronger than if friction had not

existed.

CHAINS.

378. Stud-link or Cable chain. Close-link or Crane
chain Long open-link or Buoy chain middle-link chain.

*
Glynn's Rudimentary Treatise, p. 92.

t Resistance des Materiaux, p. 41.



CHAP. XVI.] TENSILE STRENGTH OF MATERIALS. 341

Stud-link chain is chiefly used for ships' cables, and derives its

name from the cast-iron stud or stay which is inserted across the

shorter diameter of each oval link to keep the sides from closing

together under heavy strains. It also prevents the chain from

kinking, to which long links without stays are liable. Short or

close-link chain, called also rigging or crane chain, is that in common

land use. It is well adapted for crane work where flexibility is

essential to enable the chain to pass freely round barrels and

pulleys. Long open-link chain without studs is used for permanent

mooring cables, where flexibility is a secondary object, and where

lightness is desirable, as in the case of light-ships or beacon buoys.

Middle-link chain is occasionally used
;

its link is intermediate in

length between those of the close and open-link chains.

The standard proportions of the links of the different kinds of

chain are as follows, in terms of the diameter of the bar of iron :

Extreme length. Extreme width.

Stud-link, - 6 diameters. - 3'6 diameters.

plose-link, 5 do. - 3'5 do.

Open-link,
- 6 do. - 3*5 do.

t
Middle-link, - 5'5 do. - 3'5 do.

'

End-links, - 6'5 do. - 4'1 do.

End-links are the links which terminate each 15-fathom length

of chain
; they are longer and wider than the common links in

order to allow the joining shackles to pass through, and they

require therefore to be made of stouter iron, generally 1*2 diame-

ters of the common links.

379. Tensile strength of stud-chain. The following table

contains the results of experiments on the tensile strength of stud-

chain made by Mr. William Smale, leading man of the test house

in Her Majesty's Dockyard, Woolwich.* Mr. Smale found that

the average tearing weight of good round bars of one inch diame-

ter was 19 tons, = 24*19 tons per square inch of section, their

greatest strength being about 20 tons, = 25'46 tons per square inch

of section.

*
Report from the Select Committee on Anchors, &c. (Merchant Service), 1860.

Appendix, pp. 151, 152.
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TABLE XXXV. TENSILE STRENGTH OP STUD-CHAIN.

Size
of

Chain.
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dealer in chain cables or anchors shall not sell, consign, or contract

to sell or consign, nor shall any person purchase or contract to

purchase any chain cable whatever, or any anchor exceeding

168 Ibs., which has not been previously tested and duly stamped,

and where any chain cable is brought to a tester for the purpose

of being proved, he shall test every fifteen fathoms of it in the

manner following ; that is to say,

1. He shall select and cut out a piece of three links from

every such fifteen fathoms and shall test that piece by subjecting

it to the appropriate breaking strain mentioned in the second

schedule to this Act (see the last column in Table XXXVI.) :

2. If the piece so selected fail to withstand such breaking strain,

he shall select and cut out another piece of three links from the

same fifteen fathoms, and shall test such piece in like manner :

3. If the first or second of such pieces of any fifteen fathoms

of cable withstand the breaking strain, he shall then, but not

otherwise, test the remaining portion of that fifteen fathoms of

cable by subjecting the same to the tensile strain mentioned in

the Act of 1864 (see the Admiralty proof-strain in the 7th column

of Table XXXVI.) :

4. He shall not stamp a chain cable as proved which has not

been subjected to the breaking and tensile strains in accordance

with the provisions of this section, or has not withstood the same.

For stud-chain the Admiralty proof-strain equals 630 Ibs. per

circular ith of an inch of the diameter of the bar, equivalent to

11-46 tons per square inch of each side of the link. Hence, this

proof-strain for stud-chains is about two-thirds of the ultimate

strength of cables of good quality, and one-half the strength

of good round bar iron i.e., the Government proof of a stud-

chain is equal to the ultimate strength of the single bar of which

it is made, supposing this equals 23 tons per square inch, = 18'064

tons per circular inch.

Ex. A one-inch stud-chain has 1'57 square inches of area in both sides of the link

together, and 1'57 X 11'46 = 18 tons = the proof-strain. The ultimate strength of
O

good chain should reach -X 18 = 27 tons, and the breaking weight of the single bar

should not be less than 18'064 tons, = 23 tons per square inch, and the iron should be

tough and fibrous with a "set after fracture" of not less than 15 per cent.
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The following table gives the proof-strains and weight per 100

fathoms of stud-chain cables for Her Majesty's Naval Service,

also the appropriate breaking strain referred to in the Act of

Parliament.

TABLE XXXVI. ADMIRALTY PROOF-STRAIN AND APPROPRIATE BREAKING-STRAIN
FOR CHAIN CABLES.
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The "appropriate breaking strains" of the heavier chains are

almost exactly 16 tons per square inch of each side of the link
;

for the smaller sizes they are about one ton higher.

Cables generally weigh the full weight allowed, the iron being

rolled a little full to allow for waste in the manufacture. Those

for the merchant service are usually made in lengths of 15 fathoms

each, with joining shackles connecting the lengths together.

381. Close-link chain Proof-strain. The Admiralty proof-

strain for close-link chain is 420 Ibs. per circular Jth of an inch of

the diameter of the bar, or two-thirds of the proof for stud-chains ;

this is equivalent to 7*64 tons per square inch of each side of the

link, or nearly one-half the breaking weight of the chain. The

following table gives the proof-strain and weight per 100 fathoms

of close-link chain, the extreme length of links not to exceed 5

diameters of the bar
; it also gives the size and weight of rope of

equal strength.

TABLE XXXVII. ADMIRALTY PROOF-STRAINS FOR CLOSE-LINK CHAIN.

Diameter of

Chain.
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TABLE XXXVII. ADMIRALTY PROOF-STRAINS FOR CLOSE-LINK CHAIN continued.

Diameter of

Chain.
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length must be taken out, since there is not room for a shackle to

pass through the ordinary close-link or stud-link. When, how-

ever, a long-link chain breaks, the links adjoining the fracture can

be connected together without taking out a whole 15-fathom

length, as a shackle will generally pass through any of the common

links. The old Admiralty proof for large open long-link chain

without studs was 315 ibs. per circular Jth of an inch, or one-half

the proof of stud-chain, as shown in the following table ; the links

were generally of great length.

TABLE XXXVIII. ADMIRALTY PROOF-STRAINS FOR PENDANT AND BRIDLE CHAINS.

Diameter
of iron.
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less than 16 tons per square inch of each side of the link, or

880 Ibs. per circular th inch of the diameter of the bar. The

lengths of chain from which the test pieces are taken are then

made good and re-proved as before.

In the French Marine the proof for stud-chains fth inch in

diameter and upwards equals 1 0*8 tons per square inch of the bar.

For chains less than |th inch, without studs, the proof is 8' 9 tons

per square inch.*

383. Working-strain of chains should not exceed one-

half the proof-strain. Mr. Glynnf states that chains "
may

safely be worked to half the strain to which they have been
11 A d

proved, but not to more." This for stud-chain - - 5 '73
2

tons per square inch of each side of the link, or about one-third of

the ultimate strength of good chain and one-fourth of that of round

bar-iron. For close-link chain this rule allows
,
= 3'82 tons

per square inch of each side of the link, or about one-fourth of the

ultimate strength of common chain and one-sixth of that of bar-

iron. When, however, chains are liable to shocks, as in cranes,

one-third of the proof-strain, = 2*55 tons per square inch of each

side of the link, will be a sufficient working load.

384. Comparative strength of stud and open-link chain.

I am indebted for the following practical observations to the

courtesy of Messrs. Brown, Lenox, & Co., the eminent manu-

facturers of anchors and chains :
" We are not of opinion that

studs increase the strength of chain, or enable it to bear a heavier

ultimate breaking strain than if made without them, both descrip-

tions being made of the same length of link. The object of their

being used is to prevent collapse of the link, which in open-link

chain takes place at a strain considerably below the breaking

weight, and, of course, renders the chain unserviceable. They

thereby enable chains, made with them, to be used for heavier

strains than open-link chain, but do not add to their ultimate

*
Morin, Resistance des Mattriaux, p. 42.

f Rudimentary Treatise on the Construction of Chains, p. 91.
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strength indeed, from the experiments we have tried, and the

experience we have had, we are inclined to believe that the link

without stay-pins almost invariably breaks at a higher strain than

stud-chains. The proof for studded chain is the higher, only

because a sufficient proof cannot be given to open-link chain before

the link spoils its form and becomes rigid. The stay prevents

collapse, by which the link is prevented elongating so much, and

taking its natural position before its utmost power is exhausted

and a break ensues. The link, if sound in the workmanship, will

nearly always break near the stay-pin, which is caused by the nip
across the stay-pin. If made without stays, it will collapse until

it is rigid, and the iron will reach as near as possible the direct

line of the strain, or right through the centre of the chain; the

sides of the links will incline inwards, and the break will ensue at

the nip across the crown of the next link."

385. Weight and strength of liar-iron, stud-chain, close-

link chain, and cordage. The weight of a stud-chain in ibs.

per foot is very nearly equal to 9 times the square of the diameter

of the bar
;

for instance, a two-inch stud-chain weighs 36 Ibs.

per foot nearly. Stud-chain is about 3J times as heavy as the

bar of which it is made: thus, one fathom of 1J inch stud-

chain weighs about 125 Ibs. a bar 21 feet long would weigh about

124 Ibs. Close-link chain is about 4 times as heavy as the bar:

thus, one fathom of 1 J chain weighs about 140 ibs. a bar 24 feet

long would weigh about 141 ibs. Close-link chain is about 12 per

cent, heavier than stud-chain made with stay-pins of Government

dimensions
; large and heavy stays are introduced by some manu-

facturers into ordinary cables, thereby greatly increasing the useless

weight of cast-iron, and enabling the chain to be sold cheaper by

weight. The following table shows at a glance the relative weights

and strength of bar-iron, stud-chain, close-link chain, and hemp

cordage.
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TABLE XXXIX. WEIGHTS AND STRENGTH OF BAB-IRON, CHAIN AND CORDAGE.



CHAP. XVI.] TENSILE STRENGTH OF MATERIALS. 351

TABLE XL. STRENGTH OF ROUND IRON WIRE KOPE AND HEMP ROPE, BY

J. A. HOBBLING, C.E. Continued.
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TABLE XLL WEIGHT, STRENGTH, AND WORKING LOAD OF HEMP AND ROUND IRON
AND STEEL WIRE ROPES, AS STATED BY THE MAKERS, MESSRS. NEWALL AND Co.

OF GATESHEAD-ON-TYNE.

HEMP.
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387. Tensile strength of flat iron and steel wire ropes
and flat hemp rope.

TABLE XLII. WEIGHT, STRENGTH AND WORKING LOAD OF FLAT HEMP ROPE

AND FLAT IRON AND STEEL WlRE KOPES, AS STATED BY THE SAME MAKERS.

HEMP.
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tensile strength of bones of horses, oxen and sheep varies from

33,000 to 42,500 Ibs. per square inch.*

The following are the results of Mr. H. Towne's experiments

on the tensile strength of single leather belts.f
Tearing weight

per inch wide.

Through the lace holes, 210

Through the rivet holes, 382

Through the solid part, 675

The thickness being *219 inch, the tensile strength of the solid

leather was 3,082 Ibs., = 1*376 tons per square inch. The strengths

of new and partially used belts were found to be nearly identical.

The maximum working strain may vary from one-fourth to one-

third of the tearing weight, i.e., from 52 to 70 ft>s. per inch wide of

ordinary single belting, but the former is the safer rule. Helvetia

leather belting, manufactured by a peculiar process by Messrs.

Norris and Co., of Shadwell, London, from fresh Swiss ox hides,

is stated to be stronger and more flexible than ordinary tanned

English belting, as shown by the following table, which contains

the results of Mr. Kirkaldy's experiments. J

TABLE XLIIL TENSILE STRENGTH or LEATHER BELTING.
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Professor Rankine states that the tenacity of raw hide is about

once and a half that of tanned leather, and that the tenacity of

whalebone is 7,700 Ibs. per square inch.* Mr. Box states that

the tensile strength of gutta-percha is 1,680 Ibs., = - 75 ton, per

square inch, and that in belting it will bear about 400 Ibs. per square

inch.f

Bevan found that the adhesion of common glue to dry ash

timber amounted to 715 tbs. per square inch when the glue was

freshly made and the season was dry; when the glue had been

frequently melted and in the winter season, the adhesion varied

from 350 to 560 Ibs. per square inch. The tensile strength of

solid glue was 4,000 Ibs. per square inch.t

*
Machinery, p. 475.

f Box on Millgearing, p. 69.

J Phil. Mag., 1826, Vol. Ixviii., p. 112.
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CHAPTER XVII.

SHEARING-STRAIN.

39O. Shearing: In detail Simultaneous shearing*. The

nature of shearing-strain* in the vertical web of girders has been

already investigated in the second chapter, and we have frequent

examples of the same kind of strain, though on a smaller scale, in

rivets or similar connexions which sustain forces tending to cut

them across at right angles to their length. For example, the

rivet joining the blades of a pair of scissors is subject to a shearing-

strain equal to the pressure applied to the handles, plus the

resistance of the fabric which is being cut. The latter also is

subject to a shearing-strain, differing, however, in character from

that which the rivet sustains in consequence of the inclination of

the blades which sever only a short length of the fabric at a time.

Machines for shearing metals act on this principle, their cutting

edges being generally set at an acute angle to each other, so that

they shear plates in detail, and thus diminish the effort exerted at

each instant of time ;
in punching machines, however, the whole

circumference of the hole is cut at the first effort, and subsequent

pressure is merely necessary to overcome friction and push out the

burr. The shearing-strains which occur in engineering structures

generally resemble that which rivets sustain, where the whole

transverse area simultaneously resists shearing. In this case it is

clear that the strength of the rivets is proportional to their sectional

area ;
in other words, if F and / represent the total and the unit

shearing-strains, eq. 1 will apply to shearing as well as to tensile

and compressive forces, provided always that the cutting edges

bear simultaneously over the whole surface of the rivet or material

under strain.

*
Called Detrusion by some authors.
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391. Shearing strength of cast-iron. The shearing strength

of cast-iron, according to Professor Rankine, is 27,700lbs. = 12-37

tons per square inch. In my own experiments I have found its

shearing strength equal to 8 or 9 tons per square inch, which

is substantially the same as its tensile strength.

392. Experiments on punching wronght-iron. Table I.

exhibits the results of experiments made at Bristol by Mr. Jones,
" on the force required for punching different sized holes in different

thicknesses of plates, up to 1 inch diameter and 1 inch thickness
;

the force was applied by means of dead weights with a pair of

levers giving a total leverage of 60 to 1, so that 1 cwt. in the scale

gave a pressure of 3 tons on the punch ; the weights were added

gradually by a few Ibs. at a time until the hole was punched."*

TABLE I. EXPERIMENTS ON PUNCHING PLATE IRON.

Diameter
of hole.
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TABLE II. EXPERIMENTS ON PUNCHING HAMMERED SCRAP IRON.

No. of

experi-
ment.
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TABLE III. EXPERIMENTS ON SHEARING WROUGHT-!RON continued.

No. of

experi-
ment.
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parallel cutters. The force in tons per square inch of section cut

with the bars

Flatways. Edgeways.

tons. tons.

3 XU inch was 18'2 and 20'1 or 10 per cent, less flatways.

4Xli 14-3 17-9 20

3 XI 157 21-1 26

5*X1| 167 22-6 26

6 Xl 15-0 18-4 18

"A trial was also made of the force required to shear some hard

railway tyres If inch thick, and the result was 185 tons total

edgeways, and 99 tons flatways (Nos. 30 and 31). A 3 inch square
bar of rolled iron was also tried, and the force required was 155

tons total, against a total of 165 tons required for a hammered bar

of the same section (Nos. 28 and 29)."*

During the construction of the Britannia and Conway tubular

bridges several experiments were made by means of a lever on the

shearing strength of bars of rivet iron Jth inch diameter. " The
mean result from these experiments gives 23*3 tons per square
inch as the weight requisite to shear a single rod of rivet iron of

good quality. The ultimate tensile strength of these same bars

was also found to be 24 tons; hence their resistance to single

shearing was nearly the same as their ultimate resistance to a

tensile strain." Two plates fth inch thick were also "riveted

together by a single rivet |th inch diameter, and the rivet was

sheared by suspending actual weights from the plate; the rivet

thus sustained 12-267 tons, or 20'4 tons per square inch. Three

plates were then united by a similar rivet, and the rivet was

sheared in two places by the centre plate. The ultimate weight

suspended from the rivet was 26'8 tons, or 22*3 tons per square

inch of section."f

394. Shearing strength of wrought-iron equals its tensile

strength. From these various experiments on punching and

shearing, we may infer that the shearing strength of wrought-iron
is practically equal to its tensile strength, and that the safe shearing

*
Proc. Inst. Mech. Eng., 1858, p. 74.

t Clark on the Tubular Bridges, p. 392.
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unit-strain for wrought-iron rivets or bolts is practically the same

as the safe tensile unit-strain in the plates they connect, i.e., about

5 tons per square inch of section in ordinary girder-work.
395. Shearing strength of rivet steel is three-fourths

of its tensile strength. From Mr. Kirkaldy's experiments it

appears that the shearing strength of rivet steel is 63,796 Ibs.,

= 28-48 tons per square inch, the tensile strength of the bar

employed being 86,450 Ibs., = 38'59 tons per square inch of area.*

Hence, the shearing strength of rivet steel is about three-fourths

of its tensile strength. The tensile strength of some rivet steel

used in one of H.M. ships was 35*93 tons per square inch.f The

heads of steel rivets are very apt to fly off, and Lloyd's committee

have prohibited their use in shipbuilding.

396. Shearing strength of copper. From experiments by
Mr. Joseph Colthurst on punching plates of wrought-iron and

copper with a lever apparatus, it appears that the force required

to punch copper is two-thirds of that required to punch iron.
" It

was observed, that duration of pressure lessened considerably the

ultimate force necessary to punch through metal, and that the use

of oil on the punch reduced the pressure about 8 per cent."t

397. Shearing strength of fir in the direction of the

grain Shearing strength of oak treenails. From Mr.

Barlow's experiments on the resistance of fir to drawing out, i.e.,

shearing, in the direction of the grain, it appears that this

amounts to 592 Ibs. per square inch, or nearly one-twentieth of

the tensile strength of the timber lengthways.

The following table contains experiments by Mr. Parsons of

H.M. dockyard service, on the "transverse strength of Treenails

of English oak, used as fastening for planks of 3 and of 6 inches in

thickness, and subjected to a cross strain."
||

*
Experimental Inquiry, p. 71.

f Eeed on Shipbuilding, p. 382.

I Proc. Inst. of C. ., Vol. i., p. 60.

Barlow on the Strength of Materials, p. 23.

Murray on Shipbuilding in Iron and Wood, p. 94.
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TABLE IV. STRENGTH OF TREENAILS OP ENGLISH OAK.
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they were evidently, on examination, either of bad or over-seasoned

material. In the experiments on treenails, the plank generally

moved about half an inch previous to the fracture of the treenail."

From these experiments Professor Rankine deduces,

1. That the shearing strength of English oak treenails across the

grain is about 4,000 Ibs. per square inch of section.

2. That in order to realize that strength, the planks connected

by the treenails should have a thickness equal to about three times

the diameter of the treenails.*

* Civil Engineering, p. 459.
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CHAPTER XVIII.

ELASTICITY AND SET.

398. Limit of Elasticity Net Hooke's law of elasticity

practically true. It has been already stated in 5 that Mr.

Hodgkinson's experiments led him to infer the non-existence of a

definite elastic limit within which, if the particles of a substance be

displaced, they will return exactly to their original relative positions

after the disturbing force is removed. The opposite view was held

by Professor Robison, whose opinions are also entitled to great

respect. In the article on the "
Strength of Materials" in the

Encyclopaedia Britannica, he writes as follows :
" It is a matter of

fact that all bodies are in a certain degree perfectly elastic ; that

is, when their form or bulk is changed by certain moderate com-

pressions or distractions, it requires the continuance of the changing

force to continue the body in this new state
;
and when the force

is removed, the body recovers its original form. We limit the

assertion to certain moderate changes. For instance, take a lead

wire of one-fifteenth of an inch in diameter and ten feet long ; fix

one end firmly to the ceiling, and let the wire hang perpendicular ;

affix to the lower end an index like the hand of a watch ; on some

stand immediately below, let there be a circle divided into degrees,

with its centre corresponding to the lower point of the wire
;
now

turn this index twice round, and thus twist the wire. When the

index is let go, it will turn backwards again, by the wire untwisting

itself, and make almost four revolutions before it stops ;
after which

it twists and untwists many times, the index going backwards and

forwards round the circle, diminishing, however, its arch of twist

each time, till at last it settles precisely in its original position.

This may be repeated for ever. Now, in this motion, every part

of the wire partakes equally of the twist. The particles are

stretched, require force to keep them in their state of extension

and recover completely their relative positions. These are all the
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characters of what the mechanician calls perfect elasticity. This

is a quality quite familiar in many cases, as in glass, tempered steel,

&c., but was thought incompetent to lead, which is generally

considered as having little or no elasticity. But we make the

assertion in the most general terms, with the limitation to moderate

derangement of form. We have made the same experiment on a

thread of pipe-clay, made by forcing soft clay through the small

hole of a syringe by means of a screw, and we found it more elastic

than the lead wire; for a thread of one-twentieth of an inch

diameter and seven feet long allowed the index to make two turns,

and yet completely recovered its first position. But if we turn the

index of the lead wire four times round and let it go again, it

untwists again in the same manner, but it makes little more than

four turns back again ; and after many oscillations, it finally stops

in a position almost two revolutions removed from its original

position. It has now acquired a new arrangement of parts, and

this new arrangement is permanent like the former
; and what is

of particular moment, it is perfectly elastic. This change is

familiarly known by the denomination of a set."*

Whatever opinion the reader may hold regarding the existence

or non-existence of a definite elastic limit, experiments prove that

Hooke's Law of Elasticity, namely, that the elastic reaction of the

fibres is proportional to their increment or decrement of length,

according as they are subject to tension or compression, is for all

practical purposes substantially true of most of the materials used

in construction over a very considerable range of strain, extending
in some cases even to the breaking weight of the material (7).

CAST-IRON.

399. Decrement of length and set of cast-iron in com-

pression Coefficient of compressive elasticity. We are in-

debted to Mr. Hodgkinson for some valuable experiments on the

decrements of length and compressive sets of eight bars of cast-iron,

each 10 feet long and 1 inch square nearly. The first pair of bars

were Low Moor iron No. 2 ;
the second pair, Blaenavon iron No. 2 ;

* Enc. Brit., 8th Ed., Vol. xx., p. 749, Art. "
Strength of Materials."
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the third pair, Gartsherrie iron No. 3; and the fourth pair, a

mixture of Leeswood iron No. 3 and Glengarnock iron No. 3, in

equal proportions. Table I. contains the mean of these experiments

reduced to a convenient unit-strain by Mr. Clark, and I have

added in the last column the coefficients of compressive elasticity

per square inch, obtained by dividing the original length, viz.,

120 inches, by the decrements of length per ton in the second

column (8).*

TABLE I. DECREMENTS OP LENGTH AND COMPRESSIVE SETS OF A CAST-IRON BAR
10 FEET LONG AND 1 INCH SQUARE.

Tons

per square
inch.
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Mr. Hodgkinson makes the following remarks on these experi-

ments :
" The great difficulty of obtaining accurately the decre-

ments and sets from the small weights in the commencement of

the experiments, rendered those decrements and sets, particularly

the latter, very anomalous ; it was found, too, that some of the

bars which had been strained by 16 or 18 tons had become very

perceptibly undulated. It has not been thought prudent, there-

fore, to draw any conclusion from bars which have been loaded

with more than 14 to 16 tons ; and it may be mentioned that the

results from 2 to 14 tons are those only which ought to be used in

seeking for general conclusions."* (See the mean value of E' in

the last column.)

The results of Table I. are exhibited graphically in Fig. 104,

where the longer curve refers to the total decrements of length,

and the shorter one to the sets. The ordinates represent the

weights in column 1, and the abscissas the total decrements of

length and sets in columns 3 and 4 respectively of Table I.

Fig. 104.

DECREMENT OP LENGTH AND SET OF CAST-IRON IN COMPRESSION.

Rep. of Iron Com., App., p. 64.
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The uniformity of the curve of decrements shows that there is

no abrupt alteration in the compressive elasticity of cast-iron as -

far as 17 tons per square inch and possibly up to a higher amount.

400. Hodgkinson's formulae for the decrement of length
and set of cast-iron in compression. The following formula

was deduced by Mr. Hodgkinson from his experiments on the four

different irons just described to express the relation between the

load and the corresponding decrements of length in cast-iron bars

1 inch square and of any length.*

\'= I {-012363359 VH)00152853 -000000001 9 12 12W} (243)

Where V= the decrement of length in inches,

I = the length in inches,

W = the weight in Ibs. compressing the bar.

Mr. Hodgkinson expressed the compressive set of bars of Low
Moor cast-iron 10 feet long by the following equationf :

Compressive set in inches = -543X' 2 + -0013. (244)

401. Increment of length and set of cast-iron in tension

Coefficient of tensile elasticity. The following table shows the

increments of length and tensile sets of cast-iron bars 10 feet long

and 1 inch square, reduced by Mr. Clark from Mr. Hodgkinson's

experiments
"
upon round bars of iron, united together at the ends,

so that the whole length, exclusive of the couplings, was 50 feet,

except in two instances, where the length was 48 feet 3 inches.

There were nine experiments upon these connected lengths, and

the experiments were upon four kinds of cast-iron Low Moor

No. 2, Blaenavon No. 2, Gartsherrie No. 3, and a mixture of

iron, composed of Leeswood No. 3 and Glengarnock No. 3, in

equal proportions. There were two experiments upon each of the

simple irons, and three upon the mixture, and the mean results

were afterwards reduced to those of 10 feet and 1 square inch

exactly."
" The bars were suspended vertically, and acted upon

directly by weights attached at their lower ends."! I have added

in the last column the coefficients of tensile elasticity, obtained by

*
Rep. of Iron Com., App., p. 109.

f Idem, p. 123.

J Idem, pp. 59, 51 ;
and Clark on the Tubular Bridges, p. 379.
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dividing the original length, viz., 120 inches, by the increments of

length per ton in the second column.

TABLE II. INCREMENTS OF LENGTH AND TENSILE SETS OF A CAST-IKON BAR
10 FEET LONG AND 1 INCH SQUARE.

Tons,

per square
inch.
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no abrupt change in the tensile elasticity of cast-iron up to 6'5 tons

per square inch, and possibly up to the limit of rupture, the mean

of which for the 4 irons experimented on was 7'014 tons per square

inch.

By the aid of Tables I. and II. we can easily find approximately

the decrement, increment, or set of cast-iron bars of any section.

Ex. The compression flange of a new cast-iron girder, 40 feet long, which has not

been previously strained, will be shortened by an inch-strain of 6 tons by an amount

equal to 40 X 0-0130513 = 0'522052 inch, and its set, or residual decrement of length

after the load has been removed, will equal 40 X 0'0011798 = 0'047192 inch. If the

whole of this set were permanent, which however is problematical, the flange would be

permanently shortened by this amount, and on any subsequent application of the same

load its new decrement of length would = 0'522052 0'047192 = 0'474860 inch.

4O3. Hodgkinson's formula* for the increment of length

and set of cast-iron in tension. The following formula was

deduced by Mr. Hodgkinson from his experiments on the ex-

tension of the four different irons just described, to express the

relation between the load and the corresponding increments of

length in cast-iron bars 1 inch square and of any length.*

X= J{-00239628-V-000005 74215 - '000000000343946W} (245)

Where A. = the increment of length in inches,

I = the total length in inches,

W = the weight in ft>s. extending the bar.

The tensile set of bars 10 feet long is as follows :

Tensile set in inches = -0193?, + -64X2
(246)

4O3. Coefficients of tensile, compressive and transverse

elasticity of cast-iron different. On comparing Tables I. and

II. it will be observed that, though the mean of the coefficients of

compressive elasticity up to 14 tons, and of tensile elasticity up
to 5 tons, per square inch are substantially the same, namely,

1 2,000,000 lb s. per square inch, the several coefficients themselves

differ materially, especially as they approach the limit of tensile

strength ;
for instance, at 6 tons per square inch the coefficient of

compressive elasticity is 1'25 times that of tensile elasticity. The

coefficients of transverse elasticity derived from experiments on a

*
Rep. of Iron Com., App., pp. 60, 108.
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moderate and on the ultimate deflection of a rectangular bar of

Blaenavon iron, broken by transverse pressure, are also different,

though they closely approach the limiting coefficients of tensile

elasticity in Table II. See ex. in 835, also 246.

404. Increment of length and set of cast-iron extended
a second time Relaxation of set Viscid elasticity. Mr.

Hodgkinson made a second series of experiments on the extension

of some parts of the coupled bars which were strained nearly to

their breaking point, but had escaped actual rupture at the first

trial.* Their total increments of length on the second trial,

though very nearly the same as before, were slightly less for the

higher loads. It might perhaps be supposed that bars once

stretched would not again take a set, provided the second load did

not exceed that previously applied. This, however, was not the

case, for the barstook sets again, though in general less than

before, their mean ultimate set being nearly half that on the first

trial. It is very probable that cast-iron, and also other materials,

recover a portion of the set when the strain producing it is

relaxed for some time in fact, that there exists a sort of sluggish

elasticity, due perhaps to a certain viscidity of the material.

Possibly, constant repetitions or long continuation of strain would

render the set permanent. Experiments alone can settle these

points, which, however, have more interest for the physicist than

practical importance for the engineer.

405. Set of cast-iron bars from transverse strain nearly

proportional to square of deflection. The set of cast-iron

bars subject to transverse strain is nearly proportional to the

square of their deflection, though somewhat less, and may be

expressed approximately by the following formula deduced by Mr.

Hodgkinson from his experiments on rectangular bars of Blaenavon

cast-iron bent transversely by a load in the middle. |

D 2

Transverse set in inches = -^= (-47)
ol'O

in which D represents the deflection of the bar in inches.

*
Rep. of Iron Com,., App., p. 61.

t Ibid., p. 69.
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WROUGHT-IRON.

4O6. Decrement of length of n ronght-iron in compres-
sion Coefficient of compressive elasticity Elastic limit.

The following table contains the results of experiments by Mr.

Hodgkinson on the compression of two wrought-iron bars 10 feet

long and 1 inch square nearly, the weights increasing at first by 2

tons and afterwards by 1 ton at a time.*

TABLE III. DECREMENTS OF LENGTH OF WROUGHT-IRON BARS 10 FEET LONG

AND 1 INCH SQUARE NEARLY.

Bar 1.

Area of section= 1 -025 X V025= 1-0506

square inches.
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increase with considerable uniformity in proportion to the weight,

until the pressure reaches the elastic limit of about 12 tons per inch,

after which irregular bulging begins, the amount of which, no doubt,

will depend on the quality of the iron, the hard and brittle irons

bulging less than the tough and ductile kinds. The mean decrement

of length per ton per square inch within this elastic limit= '0000964

= th of the original length. Hence, the coefficient of
10,o7o

compressive elasticity of bar iron from Hodgkinson's experiments

= 10,376 tons = 23,243,179 ft>s. per square inch.* In several

experiments made by the "
Steel Committee" on the compression

of iron bars 10 feet long and 1J inch diameter, the mean limit of

compressive elasticity was 12*32 tons per square inch, and the mean

decrement of length within this limit was '00007725, = rarrrvtk
1.2,y4o

of the original length for each ton, which makes the coefficient of

compressive elasticity of these particular bars = 12,945 tons =
29,000,000 Ibs. per square inch, or very nearly equal to that of

steel,f

4O7. Increment of length and set of wrought-iron in

tension Coefficient of tensile elasticity Elastic limit

Effects of cold-hardening and annealing on the elasticity

of iron. Table IV. contains the results of experiments by Mr.

Hodgkinson on the extension and set of two bars of annealed

wrought-iron of the quality denominated "
best," reduced to the

standard of bars 10 feet long and 1 inch square ;
their real dimen-

sions were as follows :J

Bar 1. Bar 2.

Length, - - 49 feet 2 inches, - 50 feet.

Mean diameter, - '517 inch, - - -7517 inch.

Mean area of section, -2099 square inch, -44379 square inch.

*
Rep. of Iron Com., App., p. 172.

f Expts. on Sted and Iron.

Rep. of Iron Com., App., pp. 47, 49.
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TABLE IV. INCREMENTS OP LENGTH AND TENSILE SETS OP Two ANNEALED
"BEST" WRODGHT-TBON BARS, 10 FEET LONG AND 1 INCH SQUARE.

Barl.
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TABLE IV. INCREMENTS OF LENGTH AND TENSILE SETS OP Two ANNEALED

WROUGHT-IRON BARS, 10 FEET LONG AND 1 INCH SQUARE continued.

Barl.
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From these experiments Mr. Hodgkinson inferred that the

coefficient of tensile elasticity = 27,691,200lbs. = 12,362 tons per

square inch.* The limit of tensile elasticity, it will be observed,

lies between 11 and 12 tons per square inch.

The relation between the weights and corresponding increments

of length of the first bar in the foregoing table are exhibited

graphically in Fig. 106, in which the ordinates represent the

weights per square inch of section, and the abscissas the corre-

sponding increments of length.

Fig. 106.

INCREMENT OP LENGTH OP WROUGHT-IRON IN TENSION.

The following table is given by Mr. Clark at p. 373 of his work

on the Britannia and Conway tubular bridges. Though not

expressly so stated, it is probably reduced from Mr. Hodgkinson's

experiment on Bar 1 in Table IV.

*
Rep. of Iron Com., App.j p. 172.
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TABLE V. INCREMENT OP LENGTH AND TENSILE SET OF A NEW WROUGHT-IRON

BAR, 10 FEET LONG AND 1 INCH SQUARE.
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The foregoing tables and the diagram show that the increment

of length of annealed wrought-iron in tension increases with great

uniformity in proportion to the weight, and nearly equals '00008,

of the length for each ton per square inch up to 11 or

12 tons, after which the law suddenly changes, and rapid and

rather irregular stretching begins, the amount depending, no doubt,

on the quality of the iron, i.e., its hardness or ductility.

Mr. Barlow also made several experiments on bars of wrought-iron,

from which he inferred that its limit of tensile elasticity is about

10 tons per square inch, and that it extends "000096 = -- -r~th
J- \J j^r L I

of its length for each ton within this limit.* In experiments made

by the " Steel Committee" on 10 feet lengths of iron bars, 1J

inches diameter, the mean limit of tensile elasticity was 12 '7 tons

per square inch, and the mean increment of length within this

limit was '0000784 = , R gth of the original length for each ton
1Z, 1 00

per square inch.

General Morin also made some experiments on fine charcoal

iron wire, and found that the process of hardening wire by cold

drawing increased its limit of elasticity to about 19 tons per square

inch, while the coefficient of elasticity remained the same as that

of ordinary bar iron, viz., 12,473 tons per square inch. Annealing
iron wire had the effect of reducing its coefficient of tensile elasticity

to 10,009 tons per square inch.f We may conclude from these

various experiments that the elastic limit and the coefficient of

elasticity of wrought-iron vary considerably with the quality and

condition of the iron, but for practical purposes we may generally

adopt 12 tons as the limit of elasticity, and 24,000,000 fibs., = 10,714

tons per square inch, as the coefficient of elasticity of ordinary plate

and bar-iron, either in tension or in compression, though sometimes

it may reach 29,000,000 Ibs.
;
the former is equivalent to an

*
Strength of Material, p. 315.

f Proc. Inst. C. E., Vol. xxx., p. 261.
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alteration of
jTrynth

-000093 of the original length for each

ton per square inch.

408. Elastic flexibility of cast-iron twice that of wrought-
iroii Law of elasticity truer for wrought than for cast-

iron. Comparing the coefficients of elasticity of cast and wrought-

iron, we find that the elastic flexibility of cast-iron is nearly twice

as great as that of wrought-iron, that is, the alteration of length
from the same unit-strain is nearly twice as great in cast as in

wrought-iron ;
in other words, wrought-iron is nearly twice as stiff

as cast-iron. On this account a girder of cast-iron will deflect

nearly twice as much as a similar one of wrought-iron, provided

the flanges of both girders are subject to the same unit-strains. It

will also be observed that Hookes' law of the proportionality of the

loads to the changes of length they produce is less exact for cast

than for wrought-iron within the limits of elasticity.

409. Stifftiess of imperfectly elastic materials improved
by stretching Practical method of stiffening wrought-iron
bars Limit of elasticity of wrought-iron equals 12 tons per
square inch Proof-strain should not exceed the limit of

elastictiy. When an imperfectly elastic material has received a

permanent set from the application of any weight which is sub-

sequently removed, the material becomes more perfectly elastic

than before within the range of strain which first produced the set,

and its alteration of length per unit of strain is less than at first.

When, for instance, a girder is tested for the first time, its deflection

exceeds that produced by a subsequent application of the same load.

Hence, the common practice of "
stretching" girders by heavy

loads before their final inspection. In compound structures, such

as lattice girders, some of the initial deflection may, perhaps, be

attributed to the separating or closing together of the numerous

joints on the first application of a heavy load, though probably the

greater portion is due to the straightening of parts in tension

originally constructed a little out of line. The ultimate deflection

of a bar of soft wrought-iron subject to transverse strain is very

considerable, and when the useful load which such a bar will carry

is determined by the amount of deflection rather than by its
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breaking weight, its useful strength, i.e., its stiffness, may be much

increased by giving it a considerable camber when at a dull red

heat, and afterwards straightening it when cold. Such a bar, as

far as deflection in the direction in which it was straightened is

concerned, is stronger than before.* For practical purposes the

limit of elasticity of wrought-iron, as already stated, does not exceed

12 tons per square inch, and though higher strains than this may
not in the least diminish its ultimate strength, yet they will take the

" stretch" out of the iron and may thus render what was originally

tough and ductile metal so hard and brittle as to be seriously

injured for many purposes. A tough quality of iron will evidently

sustain sudden shocks with greater impunity than brittle iron, and

previous over-straining may perhaps thus explain the unexpected

rupture of chains with suddenly applied loads considerably below

their statical breaking weight. For instance, sudden jerks from

surging may double the usual safe working strain of a chain and

thus strain it temporarily beyond its limit of elastic reaction. This

frequently repeated will produce permanent elongation and render

the chain brittle until it has been annealed (357). These con-

siderations show that the proof-strain of wrought-iron should not

exceed its limit of elasticity.

41O. Experiments on elasticity liable to error Sluggish
or viscid elasticity. Scientific conclusions derived from experi-

ments on the elasticity of materials in which the effect of previous

strain is overlooked are evidently worthless, and it should be recol-

lected that time ought to be allowed after each experiment in order

to let the material adjust itself to the new condition of strain,

especially when the load approaches the limits of rupture, in which

case the deformation, or change of form, may continue for a con-

siderable time after the load is laid on, especially if aided by
vibration. Referring to the Britannia and Conway Tubular Bridges

Mr. Clark observes,
" In all the tubes a considerable time elapsed

before they attained a deflection which remained constant. Time

is an important element in producing the ultimate permanent set

* Clark on the Tubular Bridget, p. 449.
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in any elastic material; but when the permanent set due to the

strain is once attained, the continuance of the same strain induces

no further deflection, which is confirmed by the fact, that no sub-

sequent change has occurred in the deflection of the Conway

Bridge from two years of use, nor has any increase in the versed

sine of the Menai Suspension-bridge taken place in twenty-five

years, where the strain is greater than in the plates of the Conway

Bridge, and liable to be considerably varied from the oscillation

which occurs in gales of wind. The permanent strain in the

Britannia Bridge is under three-fifths of that in the Suspension

Bridge. The effect of time in producing permanent elongation has

been also observed at the High Level Bridge (Newcastle-upon-

Tyne), where the wrought-iron tie-chains, which resist the thrust

of the arches, although under much less strain than the above,

continued to extend for a considerable period before they attained

a set at which they remained constant. These motions are so

extremely minute that they are only ascertainable in large rigid

structures, where they are measured by the corresponding increase

of deflection."*

The residual set, after the strain has been removed, also takes

time to adjust itself to a permanent condition, and some crude

experiments of my own tend to prove that the set of wrought-iron

relaxes to a considerable extent, even after the lapse of several days

after the strain has been removed.

STEEL.

411. I^aw of elasticity true for steel Coefficient and limit

of elasticity of steel. Numerous experiments made by the

"
Steel Committee" prove that the law of elasticity applies to

steel with great exactitude within the limit of elastic reaction

which for practical purposes is about 2 1 tons per square inch both

for tension and compression (898 and 359). Within this limit the

mean decrement of length per ton per square inch from compression

= -0000743 = th of the original length, and the mean
lo,4:oy

* Clark on the Tubular Bridges, p. 671.
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increment from extension = '0000764 =:
-, ^"nuTT^1 of the original

length. Taking the mean of these, the coefficient of either tensile

or compressive elasticity = 13,274 tons = 29,733,760 Ibs. per

square inch. From Sir William Fairbairn's experiments on deflec-

tion under transverse strain, the coefficient of transverse elasticity

= 31,000,000 fts. (359). For practical purposes we may assume

30,000,000 ft>s., = 13,393 tons per square inch, as the coefficient

of elasticity of steel, which is 25 per cent, greater than the

usual coefficient for wrought-iron, though the latter sometimes

approaches 29,000,000 Ibs., or very closely that of steel.

TIMBER.

418. Limit of elasticity of timber not accurately de-

fined Coefficient of elasticity depends on the dryness of

the timber. Experiments on timber by MM. Chevandier and

Wertheim lead them to form the following conclusions.*

1. The density of timber appears to vary but slightly with age.

2. The coefficient of elasticity, on the contrary, diminishes

beyond a certain age and depends on the dryness and aspect as

well as the nature of the soil in which the trees grow, northerly

aspects and dry soils raising the coefficient.

3. The coefficient of elasticity is not sensibly affected by cutting

trees before or after the sap is down.

4. Properly speaking, there is no true limit of elasticity, as

there is always a permanent set along with an elastic elongation.

5. The limit of elasticity rises with the dryness of the timber, and

wet timber takes a permanent set more readily than dry timber.

6. In timber artificially dried in a stove, the limit of elasticity

coincides nearly with the limit of rupture, i.e., such timber takes

scarcely any permanent set.

7. Artificial drying greatly increases the stiffness of timber.

STONE.

413. Vitreous materials take no set. It is stated by Dr.

Robinson that " hard bodies of an uniform glassy structure, or

*
Morin, Resistance des Afattriaux, p. 37.
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granulated like stones, are elastic through the whole extent of their

cohesion, and take no set, but break at once Avhen overloaded."*

It may be doubted whether this is true of all granulated bodies

like stones, for Mr. Mallet, referring to his experiments on crushing

small cubes of quartz and slate rock from Holyhead, 0*707 inch

upon each edge, observes,
" the per-saltum way in which all the

specimens of both rocks yield, in whatever direction pressed, is

another noteworthy circumstance. The compressions do not con-

stantly advance with the pressure, but, on the contrary, the rock

occasionally suffers almost no sensible compression for several

successive increments of pressure, and then gives way all at once

(though without having lost cohesion, or having its elasticity per-

manently impaired), and compresses thence more or less for three

or four or more successive increments of pressure, and then holds

fast again, and so on. This phenomenon is probably due to the

mass of the rock being made up of intermixed particles of several

different simple minerals, having each specific differences of hard-

ness, cohesion, and mutual adhesion, and which are, in the order

of their resistances to pressure, in succession broken down, before

the final disruption of the whole mass (weakened by these minute

internal dislocations) takes place. Thus it would appear that the

micaceous plates and aluminous clay-particles interspersed through
the mass give way first. The chlorite in the slate, and probably

felspar-crystals in the quartz-rock, next, and so on in order, until

finally the elastic skeleton of silex gives way, and the rock is

crushed. It is observable, also, that this successive disintegration

does not occur at equal pressures, in the same quality and kind of

rock, when compressed transverse and parallel to the lamination."f

Hookes' law probably applies up to the limit when the first crush-

ing of the weakest ingredient occurs. What takes place afterwards

corresponds with the intermittent way in which wrought-iron in

tension stretches once the limit of elasticity has been passed.

*
Encyc. Metr., 8th ed., art.

"
Strength of Materials," Vol. xx., p. 756.

f Phil. Trans., 1862, p. 669.
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CHAPTER XIX.

TEMPERATURE.

414. Arches camber* suspension bridges defied, and
girders elongate, from elevation of temperature Expansion
rollers. Changes of temperature affect bridges very differently

according to their mode of construction. An increase of tem-

perature causes the crowns of iron arches which are confined

between fixed abutments to rise, and the spandrils to extend

lengthways, chiefly along their upper flange or horizontal member
;

hence, room for longitudinal expansion should be provided by

leaving a vertical space between the ends of the spandrils and the

masonry of the abutments above springing level. When iron

arches extend over several spans, the spandrils of the different

spans should not be rigidly connected together like continuous

girders, for then their expansion may cause a dangerous crushing

strain along the vertical line of junction and throughout the

horizontal member, a portion of which strain will, no doubt, be

transmitted to the ribs themselves. When, therefore, it is con-

sidered desirable to connect together the spandrils of consecutive

iron arches, this should be effected by sliding covers, or some

similar contrivance, which, though they restrain lateral motion, yet

will allow perfect freedom for changes of length. The rise in the

crown of one of the cast-iron arches of Southwark Bridge was

observed by Mr. Rennie to be about 1*25 inches for a change of

temperature of 50F; the length of the chord of the extrados is

246 feet and its versed sine is 23 feet 1 inch; accordingly, the

length of the arch, which is segmental, is 302O8 inches.* The

cast-iron bridge of Charenton, whose span and versed sine are 35 and

* Trans. Inst. C. K, VoL iii., p. 201.
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4 metres respectively, has been observed to rise 14 millimetres

('55 inch) on the side exposed to the west from an elevation of

14C. in the temperature of the air.*

Stone arches are affected in a similar way to iron arches. With

increased temperature the crown rises and joints in the parapets

open over the crown, while others over the springing close up.

The reverse takes place in cold weather
;
the crown descends, joints

over the springing open and those over the crown close. When
stone or iron arches are of large span these movements from changes

of temperature will generally dislocate to a certain degree the

flagging and pavement of the roadway above. This is very con-

spicuous in Southwark Bridge.

An increase of temperature causes suspension bridges to deflect,

just the reverse of what happens with arches. Girders, which exert

only a vertical pressure on the points of support, extend longi-

tudinally under the same influence, and on this account it is usual

in long bridges to provide expansion rollers, or, if the span be

moderate, sliding metallic surfaces, under one end of each main

girder. It may be questioned, however, whether sliding surfaces

remain long in working order, and some engineers prefer timber

wall-plates beneath the ends of the girder, even when the span

reaches 150 feet. In place of being supported by rollers, which are

apt to set fast, girders are sometimes hung from suspension links, the

pendulous motion of the links affording the requisite longitudinal

movement due to change of temperature.! The chains of suspen-

sion bridges are generally attached to saddles which rest on rollers

on top of the towers ; the object of these, however, is rather to

compensate for unequal loading than for changes of temperature.

415. Alteration of length from change of temperature
Coefficients of linear expansion. The coefficient of linear

*
Morin, Resistance des Matgriaux, p. 116.

\" Expansion rollers were placed under one end of each principal of the roof over

the New-street Station, Birmingham, 212 feet span ;
the other end was attached to

cast-iron columns. The rollers did not move, but the columns rocked 0'01917 inches

for each degree Fahrenheit. (Proc. Inst. C.E., Vol. xiv., p. 261.) Expansion rollers

were also placed under one end of each of the crescent-shaped principals of the old

Lime-street Station, Liverpool, 1534 fee* sPan>
but ^d not act. (Idem, Vol. ix., p. 207.)

2 c
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expansion of any material is the fractional part of its length at zero

centigrade which it elongates or shortens from a change of one unit

of temperature, generally 1C. The alteration of length for other

changes of temperature is expressed by the following equation :

X = nkl (248)

Where I = the length of the bar at 0C.,

k = the coefficient of linear expansion of the material for

one degree centigrade,

n = the number of degrees through which the temperature

of the bar is raised or lowered,

\ the increment or decrement of length due to a change

of temperature equal to n degrees.

Ex. The total length of the Britannia wrought-iron tubular bridge is 1,510 feet, and

an increase of temperature of 26F. caused an increase of length of 3| inches, what is

the coefficient of linear expansion of the tube for 1C. ? (Clark, p. 715.)

Here, I = 1510 feet = 18120 inches,

n = 26F. = 14-44C.,

A = 3-25 inches.

3-25
Answer, Jc = = = 0-00001 2421 inch,

14-44X18120

which, it will be observed, agrees closely with the coefficient of expansion of wrought-

iron in the table below.

The following table contains the coefficients of linear expansion

of various materials for one degree centigrade.

TABLE I. COEFFICIENTS OF LINEAR EXPANSION FOR 1C.

Description of Material.
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TABLE L COEFFICIENTS OF LINEAR EXPANSION FOB 1C. continued.

Description of Material.
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TABLE I. COEFFICIENTS OP LINEAR EXPANSION FOR 1C. continued.

Description of Material
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TABLE I. COEFFICIENTS OF LINEAR EXPANSION FOB 1C. continued.
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expansion; in other instances no effect of this kind was perceptible.

Mr. Adie also found that in white Sicilian marble a permanent
increase in length was produced every time that its temperature

was raised, the amount of increase diminishing each time."*

418. A. change of temperature of 15C. in cast-iron, and
7*5C. in \vrought-iron3 are capable of producing a strain of
one ton per square inch Open-work girders in the United

Kingdom are liable to a range of 45C. The alteration of

length of a cast-iron bar within the range of three tons tension and

seven tons compression per square inch, which include the ordinary

limits of working strain, is about '000175 of the original length

for each ton per square inch, and its coefficient of linear expansion

for 1C. = -000011467 according to Adie; consequently a change
of temperature of about 15C. (= 27F.) is capable of developing

a force equal to one ton per square inch. Again, if we assume

that the alteration of length of a bar of wrought-iron for both

tensile and compressive strains = '000093 of its length for each

ton per square inch, its coefficient of expansion for 1C. being

000012204, a change of temperature of about 7'5C. (= 13'5F.)
is capable of developing a force equal to one ton per square inch.

Hence, a given change of temperature will develop twice as much

force in wrought as in cast-iron. The range of temperature to

which open-work bridges through which the air has free access are

subject in this country seldom exceeds 45C. (= 81F.), for which

range wrought-iron alters '000549, or nearly T^o*n f '^s original

length. This change of length is nearly equivalent to that which

would be produced by a strain of 6 tons per square inch. The

range of temperature of cellular flanges may, however, exceed that

mentioned above, as Mr. Clark mentions that the temperature of

the Britannia Tubular Bridge, before it was roofed over, differed

"
widely from that of the atmosphere in the interior, for the top

during hot sunshine has been oberved to reach 120F., and even

considerably more
; and, on the other hand, a thermometer on the

surface of the snow on the tube has registered as low as 16 F."f

* Dixon's Treatise on Heat, p. 34.

t Britannia, and Conway Tubular Bridges p. 71
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A familiar instance of the contractile force of wrought-iron in

cooling is exhibited in the tires of wheels. " An ingenious appli-

cation of this force was also made in the case of a gallery in the

Conservatoire des Arts et Metiers in Paris, whose walls were

forced outwards by some horizontal pressure. To draw them

together M. Molard, formerly director of the Museum in that

establishment, had iron bars passed across the building, and

through large plates of metal bearing on a considerable surface of

the external walls. The ends of these bars were formed into

screws, and provided with nuts, which were first screwed close

home against the plates. Each alternate bar was then elongated

by means of the heat of oil lamps suspended from it, and when

expanded the nuts were again screwed home. The lamps being

removed, the bars contracted, and in doing so drew the walls

together. The other set of bars was then expanded in the same

manner, their nuts screwed home, and the wall drawn in through

an additional space by their contraction. And this series of

operations was repeated until the walls were completely restored

to the vertical, in which position the bars then served permanently

to secure them."*

419. Tabular plate girders are subject to vertical and
lateral motions from changes of temperature Open-work
girders are nearly quite free from these movements. In

addition to the longitudinal movements to which all girders are

subject from changes of temperature, tubular plate girders move

vertically or laterally whenever the top or one side becomes hotter

than the rest of the tube. Referring to the Britannia Tubular

Bridge, Mr. Clark states that " even in the dullest and most rainy

weather, when the sun is totally invisible, the tube rises slightly,

showing that heat as well as light is radiated through the clouds.

On very hot sunny days the lateral motion has been as much as 3

inches, and the rise and fall 2 inches and T%ths."t These vertical

and lateral motions have not been much observed in lattice or

open-work girders; no doubt because the air and sunshine have

*
* Dixon's Treatise on Heat, p. 121.

f Tubular Bridges, p. 717.
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free access to all parts and thus produce an equable temperature

throughout the whole structure.

430. Transverse strength of cast-iron not affected by
changes of temperature between 16F. and 6OOF.
It appears from Sir William Fairbairn's experiments on the trans-

verse strength of cast-iron at various temperatures from 16F.

upwards, that its strength
"

is not reduced when its temperature

is raised to 600F., which is nearly that of melting lead; and

it does not differ very widely, whatever the temperature may be,

provided the bar be not heated so as to be red hot."*

431. Tensile strength of plate-iron uniform from OF. to

4OOF. It also appears from Sir William Fairbairn's experiments

on wrought-iron at various temperatures that the tensile strength

of plates is substantially uniform between 0F. and 400F. This

result is corroborated by the experiments of the committee of the

Franklin Institute appointed to report on the strength of materials

employed in the construction of steam boilers. Sir Wm. Fairbairn

also found that the strength of the best bar-iron was increased

about one-third when the temperature reached 320F., after which

it again diminished.! This, however, seems anomalous, and further

confirmation would be desirable.

*
Hodgkinson's Exp. Res., p. 378.

f* Useful Information for Engineers, second series, pp. 114, 124.
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CHAPTER XX.

FLANGES.

422. Cast-iron girders. The compression flange of cast-iron

girders is frequently made stronger than is theoretically necessary

for the purpose of rendering it sufficiently stiff to resist side

pressure, vibration, or other disturbing causes
;
in a word, to resist

flexure. As the average crushing strength of cast-iron is about

5 times its tensile strength, theory indicates the most economical

proportion of the compression to the tension flange, when both are

horizontal, to be also 1 to 5 (l?), whereas it is generally made

much stronger than this, its area being sometimes one-third of

that of the tension flange. Hence, cast-iron girders rarely fail in

the compression flange and it is a common practice to calculate

their strength, as well as that of wrought-iron girders, from the

leverage of the tension flange by the following well-known modifi-

cation of eq. 18:

W = ^ (249)

in which W = the breaking weight at the centre in tons,

a = the net area of the tension flange in square inches,

d = the depth of the web at the centre in inches,

/ = the length between bearings in inches,

c = a coefficient depending on the material.

For cast-iron double-flanged girders the coefficient c = 4 x 7

= 28, the average tensile strength of simple cast-irons being about

7 tons per square inch. For wrought-iron box girders with equal

flanges, c = 4 X 20 = 80, the tensile strength of ordinary plate

iron being about 20 tons per square inch. This equation omits any

strength derived from the vertical web acting as an independent

rectangular girder (1OO) ;
it gives, therefore, too low a result when
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the area of the web forms a large portion of the total cross section,

or when the tensile strength of cast-iron exceeds 7 tons; on the

other hand, the formula will give too high a result with narrow

plate girders which, if unsupported, generally fail by bending

sideways.

423. Cellular flanges. The closed cell was for some years

a favourite form for the compression flange of tubular plate girders,

whereas the tension flange was generally made of one or several

plates riveted together so as to form practically one thick plate.

Fig. 107.

The adoption of the cell in this instance arose from the impression

that it was better adapted than other forms of pillar for resisting

flexure, and so no doubt it was when used as a pillar without

extraneous support. Its connexion with the continuous web, how-

ever, prevents the flange from deflecting in a vertical direction,

for at each point along its length it is held rigidly in the direction

of the thrust, nor can it escape from this without separating from

the side plates, and it is obvious that a very moderate force will

hold a pillar in the line of thrust when the flexure is of trifling

amount (153). It should also be kept in view that the stiffness of

a long unsupported plate to resist flexure is proportional to the cube

of its thickness (333), and consequently, if the top and bottom

plates of the cell be riveted together, we have a plate 8 times as

stiff as either separately. If to these we add the central plate and
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the upper half of each side of the cell (so as to leave the depth

of girder measured from the centre of the cell to the lower flange

unaltered) and the spare angle irons, we have a top flange at least 3

times as thick and therefore 27 times as stiff to resist vertical flexure

as the unsupported top of the original cell. Though we do not

thoroughly know the laws which govern the buckling of the sides

of a tube (335), it is evident that the pile of plates possesses a

superiority over the cell in this respect. It is, moreover, clear that

the lateral stiffness of the flange is scarcely, if at all, affected by

using one thick plate of the same width and sectional area as the

cell, for, regarding the pile as a girder on its side, we have the

adjacent parts of the double web performing the duty of flanges in

place of the sides of the cell. One great objection to the cell is

this
;
a large extent of surface is exposed to corrosion and is at the

same time difficult of access and therefore liable to be neglected ;

at the best its preservation is costly, and depends on the amount of

care which the painter may feel inclined to bestow on an irksome task,

for the proper completion of which he feels but little responsibility

since his work is rarely inspected, while during its tedious and

unhealthy performance he is obliged to assume an unnatural and

fatiguing posture.*

434. 1'iled flanges Long; rivets not objectionable.

When several plates are built into one pile it may be objected that

great length of rivet is required, and that the workmanship is in

consequence less sound
;
but this objection has no real value so far

as the riveting is concerned. In parts of the Britannia Tubular

Bridge rivets passed through six layers of iron of an aggregate

thickness of nearly 3J inches,f and in the Boyne Viaduct many
rivets passed through six and seven plates, and in some parts even

nine. As I had forgotten the exact method of manipulating these

long rivets at the Boyne Viaduct, I obtained from Mr. Colville,

* A painful soreness of the eyes and tendency to faint are experienced in close

cells whenever the stifling vapour of new lead paint is not removed by constant

currents of fresh air passing through them. Hence, when the ventilation is defective,

the painter must come out at short intervals to breathe the fresh air.

\- Britannia and Comvay Tubular Bridges, p. 575.
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the intelligent superintendent of the iron-work, the following

details :

" The longest rivet we had was about 8 inches long and the

holes must be well rimed out. The rivets were kept cool, head

and point, by dipping in water, and the body of the rivet made

very hot, which enabled the workmen to use the cup tool and the

heavy hammer at once. Some of the long rivets I had cut out

after being riveted, to see what they looked like, and I must say

they filled better than I expected, being at top of the piers, which

was very difficult to get to. I see no difficulty in riveting such

thickness as was at the Boyne Bridge, but it must be with care in

the heating of the rivets and using about a 14 Ib. hammer and cup
tools. Common light riveting hammers would only upset the

rivet at the point and would not fill in the body in such thickness

as 4J to 5 inches." Mr. Clark made some experiments on rivets 12

inches long, most of which "broke at the head in cooling, and it was

found necessary to cool the centre part of the rivet artificially

previous to inserting them, the head and tail alone remaining red-

hot. In this manner the contraction was avoided and the rivets

remained sound." This seems to be the reverse of the practice at

the Boyne Bridge, but it is probable that in Mr. Clark's experi-

ments the heads of the rivets were damaged by prolonged hammer-

ing with light hammers, as he inserted some red-hot rivets 8 feet

long in some castings of great strength, which, therefore, could not

yield to the tension, and these rivets on cooling remained in all

cases perfectly sound and had merely undergone a permanent
extension proportionate to the temperature.*

435. Punching and drilling tools. Careful attention is doubt-

less required in punching plates so that the holes in the successive

layers may coincide, and without proper precaution much trouble

and expense would be incurred in subsequent riming out the holes,

but this labour may, to a great extent, be avoided by using accurate

templates, or when the magnitude of the work warrants such an

outlay, by punching machines similar to the Jacquard machine used

* The Tubular Bridyes, p. 395.
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at the Conway Bridge, and subsequently at the Boyne Viaduct and

Canada Works, and constructed expressly for the purpose of pro-

ducing accurate repetitions of any required pattern.* Drilling tools

for boring several holes at once have been introduced with much

success, as at Charing-cross Bridge. Such tools will often repay

their first cost by the saving of manual labour in punching and

plating, besides insuring more accurate work, but for ordinary

girder-work the common punching machine is the cheapest tool.

436. Position of roadway Compression flange stiffened

by the compression bracing: of the web. The roadway is

generally attached to one or other of the flanges, but is sometimes

placed midway. The latter position is objectionable, since we then

lose the advantage of horizontal rigidity which the roadway imparts

to the flange to which it is attached. Moreover, less material is

generally required for forming the connexion between the cross-

girders and the main girders at the flanges than elsewhere. When
local circumstances do not determine the level of the road it may at

first sight appear desirable to connect it with the upper or compres-

sion flanges, so as to stiffen them against horizontal flexure, and

this is generally the best position with shallow girders, as it allows

the load to be placed more immediately over the longitudinal axis

of each girder and thus dispenses with heavy cross-girders, which

is often a very important saving, besides removing any tendency to

unequal strain which a one-sided load on the lower flanges might

produce. But with large and deep girders, independently of the

theoretic consideration that the lower the centre of gravity the

more stable the structure, some slight counterbalancing advantage

results from connecting the road with the lower flange, as the

expense of a parapet is saved and there is a greater appearance of

security when a train travels through, instead of over, a tubular

bridge. When the roadway is attached to the lower flanges and the

depth of girder is not sufficient to admit of cross-bracing between the

upper flanges, the horizontal stiffness of the road is communicated

to the upper flanges by the internal bracing of the compression

* For a description of this machine see Part 121 of the Civil Engineers' and Architects'

Journal.
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braces when the web is a double-latticed web like Fig. 102, or

by vertical angle-iron frames when the web is plated, and in the

latter case triangular gussets are sometimes introduced to connect

these stiffening frames with the cross-girders. The cross-girders

are also occasionally prolonged like cantilevers and their extremities

connected by raking struts with the upper flanges, as is usual in

the parapets of wooden bridges.

437. Waste of material in flanges of uniform section

Arched upper flange Waste of material in continuous

girders crossing unequal spans. It frequently happens that

the flanges have a greater sectional area near their ends than theory

requires, in order to preserve the symmetry of the flange through-

out its entire length and avoid injudicious thinning of the material.

This source of loss does not exist in the bowstring girder, as in it

the strain is nearly uniform throughout each flange. A compromise

may be effected between the bowstring girder and that with parallel

flanges by arching the upper flange, as in Fig. 108. In this form

of girder the strains near the ends of each flange are increased and

Fig. 108.

thus the extra material is utilized at the same time that the strains

in the end braces are diminished in consequence of the oblique

flange taking a share of their shearing strain. The mode of calcu-

lation is the same as for the bowstring girder. For a similar cause

to that just mentioned there is sometimes a waste of material in the

flanges of continuous girders of uniform depth crossing spans of

very unequal length. In this case the segments over the smaller

spans are much deeper in proportion to their length than those over

the larger spans, and hence a considerable waste of material may
arise from carrying the general design of the flanges symmetrically

throughout.
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438. I n excess of strength in one flange does not increase

the strength of braced girders, though it may slightly in-

crease the strength of girders with continuous webs. If

the flanges of a braced girder be well proportioned, both flanges

will fail simultaneously with the breaking load, and any increase of

strength in one flange only does not increase the strength of the

girder, but rather diminishes its useful strength by the excess of

dead weight. When, however, the web is continuous, an increase

of strength is produced by enlarging one of the flanges beyond its

due proportion for the following reason: The unit-strain in the

re-enforced flange is less than before; consequently, there is less

alteration in its length from strain and the neutral surface ap-

proaches closer to it than if the flanges were duly proportioned ;

hence, a larger proportion of the web aids the weaker flange. The

useful strength of the girder, however, is not necessarily increased,

since the extra strength thus obtained may merely suffice to sup-

port the extra weight of the re-enforced flange (1OO).

439. Bearing surface on the abutments Working load

on expansion rollers. The area of bearing surface of a girder

on the abutments should be sufficient to prevent un.due crushing

of the wall-plates on top of the abutments. A common rule for

cast-iron girders is to make the length of bearing on the abutment

equal to the depth of the girder at the middle, say Jjth of the

span. It does not seem desirable to put a greater pressure on

cast-iron expansion rollers than 2 or 3 tons per linear inch, and

where the length of a girder does not exceed 150 feet, creosoted

timber wall-plates will generally be found preferable to rollers or

metallic sliding beds, both of which are apt to become rigid (414).
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CHAPTER XXI.

WEB.

430. Plate web Calculation of strains. In lattice girders

the flanges and the compression braces are intersected at short

intervals and thus divided into short pillars as far as their

tendency to flexure in the plane of the girder is concerned
; this

support is carried to its extreme limit in plate girders, the charac-

teristic feature of which is the continuity of the vertical connexion

(single or double, as the case may be) between the flanges. As the

thin webs of plate girders are ill adapted to resist buckling or

flexure under compression, it is usual to stiffen them by vertical T
or angle irons reaching from flange to flange, like the frames of a

ship. On a little consideration it will be obvious that these

stiffening frames make the web more rigid at short intervals in

vertical lines; thus this method of constructing plate girders

resembles the vertical and diagonal bracing investigated in the

sixth chapter, and the strains in the web may be approximately

calculated in the manner there described, though they are more

frequently obtained from the shearing-strain, as explained in 54.

If these frames are placed diagonally in place of vertically, the web

will resemble the class of bracing investigated in the fifth chapter

and should be treated accordingly.

431. IntlHK'iiH.v respecting
1 direction of strains in con-

tinuous webs Bracing1

generally more economical than

plating Minimum thickness of plating in practice Relative

corrosion of metals. Besides these compressive strains acting

in directions more or less defined, there exist in the web of every

plate girder diagonal tensile strains which cross the stiffening frames

and whose directions are not so clearly defined and doubtless vary

to some extent with every position of the load. It thus appears
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that some portions of the web of plate girders are simultaneously

sustaining tension and compression and it might therefore seem at

first sight that a continuous web is more economical than one

formed of diagonal bracing, since in the former arrangement

the same piece of material performs a double duty, which in the

diagonal system requires two distinct braces (S79). Theoretically

this view is correct if it be conceded that one and the same portion

of material is capable of sustaining without injury both tensile and

compressive strains transmitted through it simultaneously at an

angle with each other and, in the absence of direct experiment,

there seems some reason for believing this to be the case within the

limits of strain which are considered safe in practice. For instance,

the shell and ends of a cylindrical boiler with internal flue are

subject to tensile strains, the former in two directions at right angles

to each other, the latter in various directions, while the flue is

subject to tension longitudinally and compression transversely.

Again, experiments on the strength of riveted joints have not

indicated any source of weakness in the plates other than that due

to the reduction of area by the rivet holes or the mode of punch-

ing, and if moderate compression does reduce tensile strength,

closely riveted joints, such as those of boilers, would be perceptibly

weakened by the compression caused by the contraction of the

rivets in cooling. Further, in experiments on the tensile strength

of iron bars, their ends are frequently grasped by powerful nippers

which compress them sufficiently to prevent the bar slipping

through, and it seldom breaks where thus compressed, rupture

generally taking place near the centre. It seems, therefore, reason-

able to infer that a moderate strain of either kind does not affect

the ultimate strength of iron to sustain a strain of the other kind

at right angles to the former. However this may be, practical

reasons prevent plate-iron webs from being so economical as those

formed of bracing, except in small or shallow girders, or girders

which sustain unusually heavy loads and in which therefore the

shearing strain is exceptional, or near the ends of girders of very

large span ;
for unless the plating be reduced in thickness to

the extent which theory indicates as sufficient, but which is quite
2 D



402 WEB. [CHAP. xxi.

unsuitable for practical reasons, the bars of the braced web will

require so much less material than the continuous web of a plate

girder as to make the former really the more economical.

One quarter inch may be assumed to be the minimum thickness

that experience sanctions for the plating of permanent structures.

A thinner plate than this may with care last for years, but few

engineers would wish to risk the stability of any important

structure on the chance of such frequent attention to prevent

corrosion as so great a degree of tenuity would require. Indeed,

T
5
^ is quite thin enough for ordinary practice, and | or

-|
inch if a

girder is within the influence of air charged with salt, as when

railway bridges cross tidal estuaries. Mr. Mallet gives the relative

oxidation of certain metals in moist air as follows :*

Cast-iron,
- '42

Wrought-iron,
- - *54

Steel, -56

He also states at p. 27 of his third report to the British -Associa-

tion in 1843 on the action of air and water upon iron, that in one

century the depth of corrosion of Low Moor Plates, as deduced

from his experiments, would be
Inch.

In clear sea water, - 0*215

In foul sea water, - 0'404

In clear fresh water only,
- 0'035

433. Plating; more economical than bracing: near the ends
of very long" girders Continuous webs more economical in

shallow than in deep girders. When the span is of great

extent the opens between the braces towards the ends become

smaller from the increased width of the bars and therefore nearly

equal to their overlap ; hence, there is a certain length of girder

beyond which it may be found more economical to form the ends

of the web of continuous plating and the intermediate portion of

diagonal bracing. The length of girder at whose extremities the

same amount of material is required for the web, whether formed

of bracing or of plates, depends, among other things, on the ratio

* On the Construction of Artillery, p. 138.
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of depth to span. In large railway girders, in which this ratio is

frequently about 1 to 15, the span beyond which it becomes more

economical to substitute plating near the ends in place of bracing

lies between 300 and 400 feet. Take, for instance, the single-line

railway bridge of 400 feet span, whose weight is calculated in

Example 4, in the chapter on the estimation of girder-work.

The length is 400 feet and the depth is 26'67 feet, or l-15th of

the length, and the maximum weight, including the permanent

load, which the bridge has to support is 1,490 tons distributed

uniformly. One-fourth of this, or 372*5 tons, is the shearing-strain

supported by the web at each end of each main girder. Now, if the

bracing be at an angle of 45, which is the angle of economy, the

strain in the end diagonals will equal the shearing-strain multiplied

by T414, = 526*7 tons, requiring, at 4 tons per square inch, a

gross section of 131*7 square inches.* If the iron be half-inch

thick, the width of the end diagonal will equal 263 inches, as in

Fig. 109, in which for simplicity only one system of triangulation

is represented, since the overlap will be the same whether one or

several systems be adopted.

Fig. 109.

It is evident that the overlap of the bars considerably exceeds the

open spaces. This example, therefore, has attained the span beyond
which it would be more economical to employ plating for the end

portions of the web. If -inch plating be considered sufficiently

thick the limit would of course happen sooner. If, however, the

depth were greater than 1-1 5th of the length, the limit would be

* In consequence of the rivet holes, 4 tons per square inch of gross section is for

tensile strain assumed equivalent to 5 tons per square inch of net section.
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greater than in our example. It is obvious also, from what has

just been stated, that the relative economy of plate webs is greater

in shallow than in deep girders ; for, if bracing were used, the

opens between the braces would be much smaller in the former

than in the latter case, and consequently, if these opens be filled

up by continuous plating, there will be less waste of material in

the shallow than in the deep girder.

433. Greater proportion of a continuous web available

for flange-strains in shallow than in deep girders. That

plate girders derive from the continuity of the web some increase

of strength over that due to the sectional area of the flanges is

certain (1OO), but the amount of horizontal strain which a thin web

is capable of transmitting is, in large girders, generally too indefinite

to .admit of any considerable reduction in the area of the flanges on

this account and is, therefore, practically of slight importance, for

it seems unlikely that horizontal strains of compression can be

transmitted with much energy through the thin continuous web

of a deep girder, except in that portion which is close to the flange

and therefore stiffened against buckling by its connexion therewith.

In shallow plate girders, however, such as those used for the cross-

girders of bridges, deck-beams of ships, fire-proof floors, &c., the

web generally forms a large portion of the whole section, possesses

considerable strength by itself, and is therefore available for hori-

zontal as well as vertical strains. These considerations show that

the flanges of a shallow plate girder derives a greater percentage

of aid from the web than those of a deep girder.

434. Deflection of plate girders substantially the same
as that of lattice girders. From these considerations it would

also appear that the deflection of plate girders is little, if at all, less

than that of lattice girders, the length, depth and flange-area being

the same in both
;
for if their flanges be subject to the same unit-

strains, their deflections will be alike (333). Even assuming that

the web does relieve the flanges of horizontal strain to the full

extent which theory indicates, the deflection will not be very

materially diminished thereby, for it appears from eq. 151 that

a continuous web is for horizontal strain equivalent to only Jth
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of its area placed in each flange. Plate girders, it is true, are

generally thought to be stiffer than those with braced webs, and

closely latticed girders than those with only one or two systems
of triangulation, but I am not aware of accurate comparative

experiments on this subject. It is quite possible that when the

compression flange has but few points supported by intersecting

braces it may assume under strain a slightly undulating line, and

therefore be a little shorter than a similar flange held straight at

short intervals by close latticing or a plate web; this would of

course increase the deflection.

435. Webs of cast-iron girders often add materially to

their strength. The webs of cast-iron girders are usually made

much stronger than is required for the mere transmission of the

shearing-strain. Hence, they rarely require stiffening ribs, and the

web should add to the strength of such girders, calculated merely
from the leverage of either flange round the other as a fulcrum, by
an amount nearly equal to the breaking weight of the web taken

separately. Stiffening ribs are generally to be avoided in cast-iron

girders, as they have been found to cause rupture in some instances

from unequal Contraction of the metal.

436. Minute theoretic accuracy undesirable. In construct-

ing wrought- iron girders of small span, say under 30 or 40 feet,

it is generally more economical to make the lattice bars of one, or

at most of two sizes throughout, even though they might be safely

reduced in section as they approach the centre. This arises from

the expense and trouble of having different templates and a stock

of bars of various sizes. It is, therefore, cheaper to have a slight

excess of material than go to the nicety of sizes which would be

theoretically strong enough. For a similar reason 2J inches may
be assumed to be the minimum useful width for a lattice bar of

ordinary railway girders. When of less width it is generally

necessary to swell out the rivet holes in the forge, so as to avoid

reducing the effective section of the bar and, independently of the

bad effect sometimes produced by heating the iron, this process is of

course more expensive than cold punching. One result of all this is

that the central bracing is generally stronger than theory requires.
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437. JInltiple and single systems of triangnlatioii com-

pared Simplicity of design desirable Ordinary sizes of

iron. This leads to another consideration, viz., the number of

systems employed in bracing. It has been already stated in 153

that the practical advantage of a multiple over a single system of

triangulation consists in the more frequent support given to the

compression bars by those in tension, and by both to the flanges,

thus subdividing the parts which are subject to compression into a

number of short pillars and restraining them from deflection, chiefly

in the plane of the girder. It may also be urged in favour of close

latticing, that if an accident, such as an engine running off the line,

occurs on a bridge with the braces few and far apart, that in such a

case the safety of the whole structure is menaced by the fracture of

a single bar, whereas a closely latticed or plate girder is not only

freer from this danger, but affords greater security in case of one

bar being originally defective, while to the public eye it has the

semblance of greater safety, a consideration not altogether to be

despised. The number of systems adopted will also depend on the

distance between the cross-girders which generally occur at an

apex, and on the practical consideration of what sized material is

the most economical
;
and this again will depend on two things, the

first cost of iron of small and large scantlings and the subsequent

cost of workmanship, which latter item varies much according to

the simplicity or complexity of the design. No definite rule can

be laid down for all cases, but one consideration of importance

should not be overlooked in seeking after apparent economy at the

outset. The larger the scantlings and the more simple the method

of construction, the smaller is the surface exposed to atmospheric

influences and the more easily detected is any corrosion or decay.

The chief advantage of masonry is its permanent character. No
rust or decay in it requires constant attention or painting and, if

well executed at the outset, masonry truly deserves the title of

permanent.

It will be useful to recollect that bars or strips are not rolled

wider than 9 inches; when a greater width than this is required

narrow plates with shorn edges must be used. Plates exceeding 4
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feet in width, or 15 feet in length, or containing more than 32

square feet, or weighing more than 4 cwt., are generally charged

extra
;
also T or angle iron, the sum of whose sides exceeds 9 or 1

inches. Plates can be rolled up to 7 feet wide, or 30 feet long, or

60 square feet in area, but such sizes are very costly ; they increase

in thickness by sixteenths of an inch, and are generally called sheet

iron when less than -f^ inch thick. Ordinary angle iron can be got

in lengths of from 30 to 36 feet, and up to 6 X 6 X J inches.

438. Testing small girders by a central weight equal to

half the uniform load is inaccurate. Small girders are fre-

quently tested by a central weight equal to half the uniform or

passing load which they are expected to carry with safety. Though
convenient, this is not altogether a fair trial of the web. Let W =
the proof load in the centre, and 2W =: the uniform load. The

web of a girder designed to support a central load, W, should be of

uniform strength, for it sustains throughout a shearing- strain equal

W
to

-^-(34).
The web of a girder designed for a uniform load,

2W, should increase from the centre where the shearing-strain is nil,

towards the ends where the strain = W, in proportion to the dis-

tance from the centre (46) ;
and the web of a girder designed to

support a passing load of the same density as the uniform load

should increase from the centre towards the ends, where the shear-

ing-strain W, in the ratio of the square of the distance from the

further end (5O). Consequently, the strain in the centre of the

W
web from a passing load =

-j-.
It is obvious, therefore, that the

web near the centre is subject to a much greater strain from a

central load than from a uniform or passing load of twice its weight,

whereas at the ends the reverse of this takes place. The impor-

tance of these remarks may be practically lessened by the con-

siderations referred to in 436.

439. Connexion between web and flanges Uniform strain

in flanges Trough and HH-shaped flanges Rivets pre-

ferable to pins Limit of length of single-webbed girders.

In wrought-iron girders the shearing area of the rivets con-

necting each brace with the flanges should equal the net section
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of the brace
;
otherwise there is a risk of its separating from the

flanges at a much lower strain than would destroy the brace. If

the web be a continuous plate, the shearing area of the connecting
rivets should equal its theoretic horizontal section, i.e., the horizontal

net section of a plate whose thickness is that which theory demands;

in practice, however, the plate area is generally considerably in

excess of what theory requires and hence the rivet area seldom

equals its horizontal net section. The trough-shaped section, such

as that represented in Plate IV., is a favourite form for the flanges

of tubular braced girders as it affords great facilities for attaching
the bracing to the flanges. Objections have been raised to the

trough with deep vertical plates on the ground that the unit- strain

is not constant throughout its whole area, the unconnected edges
of the vertical plates being subject to a severer unit-strain than the

horizontal plates in consequence of each brace giving off its hori-

zontal component of strain at a point which generally lies nearer

the free edge of the vertical plate than the centre of gravity of

the whole section. Let us confine our attention to the upper or

compression flange, as similar reasoning applies to that in tension.

This tendency to excessive local strain is sometimes supposed to

show itself by a slight undulation or buckling of the free edge of

the vertical plate endeavouring to escape from the line of thrust.

This buckling, however, is not necessarily a sign of excessive local

compression, but rather of defective stiffness in the lower part of

the plate, for if it were stiffened laterally so that it could not

escape from the line of thrust, and if the unit-strain along this

edge were greater than that in the horizontal plates, the result

would be that the whole flange would camber from the shortening
of its lower edge. This, however, does not take place, and hence

it is reasonable to suppose that the strain is not very unequally
distributed throughout the whole section. Undulation certainly is

a defect and proves that the plate is not standing up to its work,

and therefore not subject to excessive compressive strain
; it rather

indicates that a small portion of the vertical plate at each apex on

the side remote from the centre may be in tension, pulling, instead

of thrusting, the flange towards the centre. Vertical plates ought
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therefore to be thick enough to resist buckling, say yjtii of their

depth (335), or else be stiffened by an angle iron along their free

edges. The weight of the trough itself, acting as a series of short

girders between the apices, tends to produce local tension in the

lower edges of the vertical plates, and so far counteracts excessive

coinpressive strain, and the whole flange being held at short

intervals by the bracing resembles a long thin pillar inside a tube ;

the pillar may undulate slightly and press here and there against

the sides' of the tube, but the compressive strain may for all

practical purposes be considered as being distributed uniformly

throughout the whole section of the pillar. The H section of

flange also has its advocates, who maintain that it is free from the

objections alleged to lie against the trough section. The practical

convenience of the latter, however, will probably enable it to hold

its ground against its rival. The student who wishes to learn the

views of eminent engineers on this subject is referred to the

discussions on " The Charing Cross Bridge" and " Uniform Stress

in Girder Work," in the 22nd and 24th Vols. of the Proceedings

of the Institution of Civil Engineers. The main bracing is some-

times connected to the vertical plates by pins, like those of sus-

pension bridges. Judging, however, from the experience gained at

the Crumlin viaduct where riveting was substituted for pins, after

some years' wear and vibration had loosened the latter* it seems

generally desirable jto make rigid connexions, and for this purpose

riveting is at once the most convenient and effective method.

Moreover, pins evidently do not form so firm a termination for a

strut as riveting, a matter of great importance in long pillars (311).

The braces should intersect somewhere in the vertical plate. In

very faulty designs they are sometimes arranged so that they do

not intersect each other in the flange, but would, if produced,

meet considerably outside it, in which case the flange is subject to

an injurious cross-strain and is liable to become broken-backed from

the compression braces thrusting it upwards while the tension

braces pull it down, or vice versa. In some instances this has

* The Engineer, November, 1866, p. 384.
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produced disastrous results. When the vertical plate is deep

enough to give a choice of position, the apex may either be in the

middle or rather closer to the upper edge, the latter position being

perhaps the better of the two.

The length of single-webbed girders rarely exceeds 150 feet.

Indeed, a double web seems desirable when the span exceeds 40

feet, as there can be no doubt that it contributes greatly to ,the

stiffness of the flange plates to be bound by angle iron along both

edges when their width exceeds 18 or 20 inches, and, regarding

the whole flange as a long unsupported pillar, it is obvious that its

resistance to lateral flexure is far greater when the angle irons are

along the edges than when they are central.
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CHAPTER XXII.

CROSS-BRACING.

44O. Weather-bracing? Maximum force of wind Pres-
sure of wind may be considered as uniformly distributed

for calculation. Cross-bracing generally fulfils two functions;

it acts as a horizontal web, holding the compression flanges at

short intervals in the line of thrust and thus preserving them

from lateral flexure to which all long pillars are liable; it also

braces the whole structure in a horizontal plane, stiffening it

against vibration and strengthening it to resist the side pressure of

the wind just as the vertical web enables the main girders to sus-

tain the downward pressure of the load. When the roadway is

attached to the lower flange and the depth of the main-girders is

not sufficient to admit of cross-bracing between the upper flanges,

the latter must be made sufficiently wide to resist any tendency

they may have to deflect sideways under longitudinal compression

and their lateral stiffness may be calculated by the laws of pillars,

though they are much aided by the internal bracing of latticed

webs or the angle iron stiffening frames of plate webs, which

convey a large share of rigidity from the roadway to the upper

flanges. Under these circumstances the roadway and cross-bracing

between the lower flanges have to resist the greater portion of

the lateral pressure of the wind whose maximum force in this

country may, for the purpose of calculation, be assumed equivalent

to a uniform pressure of 25 Ibs. per square foot of side surface

exposed to its influence. The pressure of the wind is not always,

as might be supposed, uniformly exerted along the whole length of

a girder. With reference to the effect of violent gales on the

Britannia Bridge, Mr. Clark remarks: "The blow struck by the

gale was not simultaneous throughout the length of the tube, but

impinged locally and at unequal intervals on all parts of the length

which presented a broadside to the gale."* A little further on he

remarks :

" The tube, however, on no occasion attained any serious

* The Tubular Bridges, p. 455.
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oscillation, but appeared, to some extent, permanently sustained in

a state of lateral deflection, without time to oscillate in the opposite

direction." Hence, the effect of wind may be assumed to be not very
different from that of a uniformly distributed load; as a precau-

tionary measure, however, it is desirable to make the central weather-

bracing somewhat stronger than would be requisite if the pressure

wrere really uniform.

441. Rouse's table of the velocity and force of wind
Beaufort scale. The following table of the velocity and corres-

ponding pressure of the wind by Mr. Rouse is given by Smeaton

in the Philosophical Transactions for the year 1759 :

TABLE I. KOUSE'S TABLE OF THE VELOCITY AND FORCE OP WIND.

Velocity of the Wind.
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The following table contains the Beaufort scale which is used

in the Navy to represent the force of the wind, but it conveys no

information respecting its actual pressure or velocity and is there-

fore of little use for scientific purposes.

TABLE II. BEAUFORT SCALE.

0. Calm.

1. Light air, steerage way.

2. Light breeze, ship in full sail will go 1 to 2 knots.

3. Gentle breeze, dc. 3 to 4 do.

4. Moderate breeze, do. 5 to 6 do.

5. Fresh breeze, ship will carry royals.

6. Strong breeze, single reefed topsails and topgallant sails.

7. Moderate gale, double reefed topsails, jib, &c.

8. Fresh gale, triple reefed topsails, &c.

9. Strong gale, close reefed topsails and courses.

10. Whole gale, will scarcely bear close reefed main topsail and

reefed foresail.

11. Storm, storm staysails only.

12. Hurricane, which no canvas could withstand.

443. Cross-bracing; must be cownterbraced Best form of

cross-bracing: Initial strain advantageous. As the wind

may blow on either side of a bridge it is necessary to counterbrace

the cross-bracing throughout; hence, the description of bracing

described in Chap. VI., with transverse struts and diagonal ties, is

well suited for cross-bracing and, in order to make it stiff and come

into action before much lateral movement takes place, it is de-

sirable to put a small initial strain on the diagonals. This will

tend also to stiffen the whole structure against lateral vibration

from loads in motion. The initial strain may be produced by

coupling screws, cotters, or similar appliances. When the design

does not admit of these the transverse struts may be first riveted

in place, and then the diagonals may be riveted while they are

temporarily expanded by heat
;
when cold the whole will be in a

state of slight strain. The same effect may be produced in small

tubes by laying them on their side so that the cross-bracing may
be in a vertical plane ;

a few weights will then stretch one system
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of diagonals, and when thus strained the second series may be

riveted in place; after the removal of the weights the required

degree of initial strain will be produced if the operation has been

carefully performed. The sagging of the horizontal tension bars of

cross-bracing from their own weight will also aid in producing the

required amount of stiffness, provided the bars be supported in a

horizontal position while riveting up.

The absence of the initial strain alluded to was strongly marked

in the Britannia Bridge, for Mr. Clark remarks :
" The effect of

pressure against the side of the tube is very striking; a single

person, by pushing against the tube, can bend them to an extent

which is quite visible to the eye ;
and ten men, by acting in unison,

and keeping time with the vibrations, can easily produce an

oscillation of 1^ inch, the tube making 67 double vibrations per

minute."* A severe storm on the 14th of January, 1850, pro-

duced oscillations not exceeding one inch. This, however, was

before the two tubes were connected together, side by side.

443. Strains produced in the flanges by cross-bracing:
End pillars of girders with parallel flanges and bow of

bowstring girders are subject to transverse strain. When
there are both upper and lower cross-bracings, each has to sustain

one-half the pressure of the wind
; consequently, in every gale the

compression flange on the weather, and the tension flange on the

lee side have their normal strains somewhat increased, while those

in the other flanges are diminished to the same extent. This

increase and diminution of strain are, however, generally insigni-

ficant compared to the strains produced by the load and are, of

course, less in open-work girders than in those with solid sides

which present a larger unbroken surface to the action of the wind.

When cross-bracing occurs between the upper flanges, the

pressure of the wind against the upper half of the girder is

transmitted to the abutments or piers through the end pillars

which form the terminations of the web immediately over the

points of support, at least so much of it as is not conveyed by the

web stiffeners to the lower flanges and thence to the abutments.

* The Tubular Brides, p. 717.
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These pillars are, therefore, semi-girders as well as pillars, for they

are subject not only to vertical compression from the shearing-

strains in the main bracing, but to lateral pressures at top tending

to overthrow them, which are nearly equal in amount to one-half

the total pressure of the wind. Thus, if there be two main girders

and four end pillars, each of the latter sustains a transverse pressure

at top nearly equal to one-eighth of the pressure of the wind. It

is, therefore, desirable to fix the lower ends of these pillars very

securely by means of strong iron gussets attached to the masonry,

or, if these be inadmissible from the longitudinal expansion of the

bridge, to a cross road-girder,, which may be made stronger and

stiffer than usual for this purpose, so as to resist the racking action

of the wind.

The bowstring girder, with roadway attached to the string, does

not admit of cross-bracing between the bows throughout their

entire length, but only near the centre where there is sufficient

headway for carriages beneath. The ends of the bows are, con-

sequently, subject to transverse strains similar to those just described

in the case of the end pillars of girders with horizontal flanges.



416 CROSS-GIRDERS AND PLATFORM. [CHAP. XXIII.

CHAPTER XXIII.

CROSS-GIRDERS AND PLATFORM.

444. Maximum weight on cross-girders Distance be-

tween cross-girders. The cross-girders of railway bridges sup-

port the platform, ballast, sleepers and rails
;
and when the interval

between them does not exceed that between two adjacent axles of

a locomotive, say 6 or 7 feet, the greatest load which each cross-

girder has to support is determined by the weight resting on one

pair of driving-wheels, which rarely, if ever, exceeds 16 tons, or

8 tons per wheel. Consequently, if the effect of the rails, sleepers

and platform in spreading the load over several girders be neglected,

each cross-girder, however close they may be together, ought to be

capable of sustaining 16 tons if the bridge be made for a single

line, and twice this if made for a double line, in addition to the

dead weight of platform, ballast and permanent way, and as a train

of ordinary locomotives and tenders, that is, the load of maximum

density, does not exceed 1J tons per running foot, it would

obviously be the most economical arrangement to place the cross-

girders, at all events, not closer together than the above stated

distance of 6 or 7 feet.* It may, perhaps, be supposed that cross-

girders placed at shorter distances need not be so strong in con-

sequence of the rails, sleepers and platform distributing the load

over several cross-girders, and this, no doubt, is to a certain extent

correct, and numerous bridges have been constructed on this

principle. Government Inspection is now, however, more critical

* The cross-girders of the Boyne Viaduct are 7 feet 5 inches apart, equal to the

diagonal of the square formed by the lattice bars of the main-girdera. The interval

between those of the Britannia and Conway Tubular Bridges is 6 feet.
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than formerly, and each cross-girder should be strong enough to

sustain the load on the driving wheels of the heaviest engine

which can come on the line, inasmuch as the sleepers may decay,

joints may occur in the rails close to a cross-girder, or the platform

may require renewal and perhaps be altogether removed for this

purpose.

445. Rail-girders or keelsons Economical distance be-

tween the cross-girders Weight ofsingle and double lines

Weight of snow. When the cross-girders are farther than 3

feet apart (the distance between centres of sleepers) the rails may
be supported by shallow longitudinal girders resting on the cross-

girders or framed in between them, and in certain cases, especially

when the levels permit the cross-girders to be of great depth,

these rail-girders may be economically made of considerable length,

with the cross-girders placed at long intervals apart, in some cases

20 feet asunder
;
but care must be taken not to strain the lattice

bars of the main girders beyond their safe limit by bringing too

great a local pressure on those which intersect at the ends of the

cross-girders. The rail-girders may be conveniently made of

plating or lattice work, similar in general design to the main girders

of small bridges and framed in between the cross-girders. In

some cases these rail-girders run above the cross-girders in un-

broken lines from end to end of the bridge like the keelsons of

a ship. This arrangement requires greater depth from soffit of

bridge to rail than the former, and cannot therefore be so fre-

quently adopted. Mr. Win. Anderson has shown the great

economy of placing the cross-girders 12 feet apart or upwards,

especially with double line bridges, by means of the following data

and estimate based thereon.*

Maximum weight of engine,
- - 34 tons,

Maximum load on driving wheels, - 16 tons,

Wheel base, - - 12 feet,

Depth of cross-girders,
- - 75 th of span.

* Trans. Inst. of C. E. of Ireland, Vol. viii., 1866.

2 E
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SINGLE LINE.



CHAP. XXIII.] CROSS-GIRDERS AND PLATFORM. 419

In bridges of moderate span it is generally more economical to

place the main-girders immediately beneath the rails; they then

act as rail-girders and thus dispense with cross-girders. When,
however, there is but little head-room beneath the rails, a modi-

fication of the trough girder may be adopted, such as that designed

by Mr. Anderson for one of the bridges on the Dublin, Wicklow

and Wexford Railway, and represented below.

Fig. 110.

Half Longitudinal Section and half Elevation of Bridge.

Fig. 111.

Cross Section of Bridge.

Each rail is carried between a pair of plate girders connected

by short cast-iron saddles on which the sleeper and rail are laid

and to which they can be securely bolted. The girders are thus

accessible in every part for cleansing and painting without dis-

turbing the permanent way, and at the same time no water can

lodge in any part of the structure.*

446. Regulations of Board of Trade. The following are

the regulations of the Board of Trade respecting the cross-girders

and platforms of railway bridges.

1. The heaviest engines in use on railways afford a measure

of the greatest moving loads to which a bridge can be subjected.

* Tram. Inst of C. E. of Ireland, Vol. viii., p. 45.
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This rule applies equally to the main and the transverse girders.

The latter should be so proportioned as to carry the heaviest

weights on the driving wheels of locomotive engines.

2. The upper surfaces of the wooden platforms of bridges and

viaducts should be protected from fire.

3. No standing work should be nearer to the side of the widest

carriage in use on the line than 2 feet 4 inches at any point

between the level of 2 feet 6 inches above the rails and the level

of the upper parts of the highest carriage doors. This applies to

all arches, abutments, piers, supports, girders, tunnels, bridges,

roofs, walls, posts, tanks, signals, fences and other works, and to

all projections at the side of a railway constructed to any gauge.

4. The intervals between adjacent lines of rails, or between lines

of rails and sidings, should not be less than 6 feet.

447. Roadways of public bridges Buckled-plates.

The roadways of iron public bridges are generally formed in one

of the four following ways.

1. Brick arches spring between the lower flanges of the longi-

tudinal or cross-girders as the case may be, and their haunches

are levelled up with concrete, over which the pavement is laid.

Sometimes a thin layer of tar asphalt is spread over the concrete

to prevent surface water from percolating through the brickwork.

The span of the arches, that is, the distance between the girders,

may vary from 4 to 8 feet, and iron cross-ties are required at

moderate intervals to bind the girders together and prevent them

from spreading sideways under the thrust of the arches. The

weight of a square foot of this roadway, exclusive of girders and

cross-ties, may be estimated as follows :

Ibs. fts.

Brickwork, 4 inches deep,
- - 36 if 9 inches deep, 72

Concrete, averaging 4 inches deep,
- 47 if 6 do. 70'5

Asphalt, \ inch deep, 7 7

Pavement and sand, 9 inches deep,

or 12 inches of broken stone,
- 110 - 110

200 259-5
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2. Arched wrought-iron flooring plates, f to \ inch thick, are

riveted to the upper flanges of the longitudinal girders and their

haunches are levelled up with asphalt or concrete, over which the

pavement or broken stone is laid as before. These arched plates

also require cross-ties to prevent the outside girders from spread-

ing, but the plates themselves may often be made to take an

important share in the structure by strengthening the upper, or

compression, flanges of the girders, and thus economizing material.

The weight per square foot of this roadway, excluding cross-ties,

may be estimated as follows :

tbs. Ibs.

Arched plates, 20 to 26

Asphalt, averaging 3 inches deep,
- - 42 if 4 inches, 56

Pavement or broken stone as before,
- 110 - - - 110

172 192

3. Flat cast-iron plates, f to 1 inch thick with stiffening ribs

on the upper surface, are bolted to the upper flanges of the

longitudinal girders and then levelled up with asphalt to the top

of the ribs, 3 or 4 inches deep, over which the pavement or broken

stone is laid as before. The weight per square foot of this road-

way is from 20 to 30 fts. more than in the last case, but no cross-

ties are required.

4. Wrought-iron buckled-plates, to T
5 th inch thick, are bolted

or riveted to the upper flanges of the longitudinal girders and

levelled up with concrete or asphalt, over which the broken stone

or pavement is laid as before. Angle or tee iron covers are riveted

to the cross joints of the plates and support them at frequent

intervals like short cross-girders. The weight per square foot of

this roadway, including the angle or tee iron covers, is closely the

same as in case 2.

The following data respecting Mallet's buckled-plates are

derived from the trade circular.

The resistance of square buckled-plates is directly as the thick-

ness and inversely as the clear bearing. A buckled-plate, bolted

or riveted down all round, gives double the resistance of the same
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plate merely supported all round, and if two opposite sides be

wholly unsupported, its resistance is reduced in the ratio of 8 to 5.

Within the limit of " safe load" the resistance is nearly the same,

whether it be upon the crown or uniformly diffused. The stiffness

at any point of the plate, as against unequal loading, is as the

square of the thickness nearly, and inversely as the curvature.

The curvature (unless for special object) should never exceed that

which will just prevent the "crippling load" bringing the plate

down flat, by compression of the material ; less than 2 inches

versed-sine of curvature has been found sufficient for inch

buckled-plates 4 feet square. A 3 foot square buckled-plate, of

ordinary Staffordshire iron in. thick, 2 in. width of fillet, 1J in.

curvature, supported only all round, requires upwards of nine

tons diffused over about half the superficies at the crown to cripple

it down, and double this, or eighteen tons to cripple it, if firmly

bolted or riveted down to rigid framing all round. A similar

plate of soft puddled steel has been found to bear nearly double

the preceding, or thirty-five tons to the square yard. Mr. Thomas

Page, C.E., has proved the buckled-plates of the floor of West-

minster new bridge each averaging 7 feet by 3 feet, inch thick,

and 3J inch curvature by lowering upon the crown of each a

block of granite of seventeen tons weight, which they sustained

without injury. In structures exposed to impulsive loads, such as

railway or other bridge flooring, one-sixth of these "crippling

loads" should not be exceeded for the safe load, nor one-fourth

for quiescent loading. The size of buckled-plates formed of one

single rolled plate is only limited by the breadth, to which sheet

or plate iron can be rolled, at market prices ; and the sizes that

have been found most advantageous for the majority of purposes

are plates of 3 feet and of 4 feet square, or of those widths by the

full length of the sheet. Square plates of either of the two

ordinary market sizes are always to be preferred, on the ground
of economy in prime cost, and in application, and facility in being

obtained promptly from the makers. Square plates produce a

stronger floor, with a given weight of iron, than any rectangular

plate ; the resistance of the latter being that nearly of a square
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plate, whose side is equal to the longer dimension. If rectangular

plates be used the longer edge should not be much more in length
than twice the shorter. Economy is always consulted by sup-

porting each plate all round one pair of opposite fillets resting on

the girders or joists of the structure, and the joints of the cross

fillets supported by an angle iron above, thus forming a lap plate.

TABLE OF STRENGTH, WEIGHT, AND COST OP BUCKLED-PLATES.

No. Thickness of Plate.

Weight
per square
yard of

Buckled-

Plate,

excluding
the angle
iron at the

cross-

joints.

Weight of
an equal
surface

(1 square
yard) of

Corrugated
Plate of

correspond-
ing

thickness.

Safe passive
load,

uniformly
diffused per
square yard,
for three

feet square
Buckled-
Plates.

Safe im-

pulsive
load,

uniformly
diffused

per square
yard, for

three feet

square
Buckled-
Plates.

Cost per
superficial

yard of

Buckled-

Plate,
at 13

per ton.

Nearest
number
of square
yards in

one ton of

Buckled-
Plates.

B.W.G. inch.

No. 18 = -048

No. 16 = -066

No. 12 = -107

1-8

3-16

1-4

5-16

3-8

17-3

23-6

387

45-0

67-5

90-0

112-5

135-0

Ibs.

207

28-3

46-4

54-0

81-0

108-0

135-0

162-0

tons.

0-27

0-43

0-64

1-0

2-5

4-5

6-2

9-0

tons.

0-20

0-32

0-48

075

1-7

3-0

4-7

6-8

8. d.

2 2

2 10

4 7

5 3

7 11

10 6

13 2

15 8

sq. yards.

129

95

57

49

33

24

20

16

NOTE. The safe loads in columns 5 and 6 may be taken at double for buckled-

plates of puddled steel.

Nos. 1, 2, and 3 Applicable to roofing, iron house building, and fireproofing,

flooring, &c.

Nos. 4 and 5 For the lighter class of bridge and other floors.

Nos. 6 and 7 For the heavier floors of railway and other bridges, and viaducts :

No. 6 is that adopted for the new bridge at Westminster, London : No. 7 for

bridges in India.

No. 8 Has not hitherto been found necessary in any structures, however

heavy.

The working loads on public bridges are given in Chapter

XXVIII.



424 COUNTERBRACING. [CHAP. XXIV.

CHAPTER XXIV.

COUNTERBRACING.

448. Permanent or dead load Passing: or live load.

The strains in the web of a braced girder are constant both in

amount and kind so long as the load remains stationary. If,

however, the load changes its position the strain will alter in

amount, and perhaps in kind also, and it is to meet this latter

change in the character of the strain that counterbracing is re-

quired. Now, a certain portion of the load which every girder

sustains is fixed and consists of what I have elsewhere called the
"
permanent load," or " dead load," including in this term the

weight of the whole superstructure, viz., the main girders, cross-

girders, cross-bracing, platform, rails, sleepers and ballast. This

permanent load produces definite strains in the bracing which

remain constant, both in amount and kind, until a further load

comes upon the bridge. Let us consider the effect of a moving or

"live" load of uniform density, say a train of carriages, traversing

a girder with horizontal flanges, and we may chiefly confine our

attention to the strains developed in the bracing at either end of

the train, as it has been shown in 51 and 1?O, that the maximum

strains in the bracing from train-loads occur at these points. As

the advancing train approaches the centre of the girder the normal

strains in the bracing between the centre and the front of the train

are diminished, or even reversed, by the passing load. In the

latter case each brace attains its maximum reverse strain as the

front of the train passes it and counterbracing must be provided

accordingly. During the same period, i.e., while the train advances

towards the centre, the permanent strains in the second half-girder

are receiving gradual increments of their own kind, but each brace

in this half does not attain its state of maximum strain until the
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train has crossed the centre and is so far advanced that its front is

passing that particular brace, after which the strain again diminishes

till the other end of the train is passing, when the strain is either

at its minimum, or, if altered, attains its maximum of the reverse

kind to that produced by the permanent load, in which case there-

fore the brace requires counterbracing.

449. Passing loads require the centre of the web to be
counterbraced fcarge girders require less counterbracing

in proportion to their size than small ones. The permanent

load is usually disposed symmetrically on either side of the centre
;

consequently, the normal strains in the bracing near the centre

are less in amount than in other parts, and it is in the central

braces alone that strains of a reverse character are produced

by a moving load, requiring counterbracing for some distance

on either side of the centre. It is evident that the heavier

the permanent load is, the less will be the amount of counter-

bracing required for a given passing load. It has been already

shown in 5O that the shearing-strain (to which the strain in the

w'n'

bracing is proportional) at the end of a passing train = ^~- where
v

w' = the passing load per linear unit,

I = the length of the girder,

n = the length covered by the advancing load.

But the shearing-strain at the same point from the permanent load

where w the permanent load per linear unit, and n and I are as

before, n being supposed less than
^.

Now, if n be proportional to

I in girders of different lengths, the shearing-strain from the

passing load will vary as w'l, and that from the permanent load

as ivl', and, since w increases in large girders as some high power

of the length, while w f

may be considered constant for girders of

all sizes, the shearing-strain due to the permanent load will bear

a considerably greater ratio to that from the passing load in long

than in short girders. Consequently, the proportion which the
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counterbracing bears to the whole amount of material diminishes

rapidly with the span of the girder. The counterbracing termi-

nates where the two shearing-strains are equal, and the point where

this occurs may be determined by equating them to each other and

solving the resulting equation for n as follows :

Arranging according to powers of n,

w'n 2 + 2wln id2 =
solving for n,

in "i v in" -4- ww
-')

(0)
W

If, for example, w = w/,

w = J (
1 + \/2) = -414J

45O. Counterbracing of vertical and diagonal bracing

Large bowstring girders require little connterbracing.

Girders with vertical and diagonal bracing, such as that inves-

tigated in Chapter VI., may be counterbraced either by making
the bracing near the centre capable of acting indifferently as struts

and ties, or by adding a second system of diagonals crossing the

first. If this counterbracing be carried throughout the whole

length of the girder (as in cross-bracing), it is possible by tighten-

ing it up to produce an initial strain in the bracing proper, in

which case the effect of a load will be to diminish the strain in the

counterbracing, which, however, will relapse into its former state

of strain as soon as the load is removed (44S).

I cannot close these observations on counterbracing without

drawing attention to one important merit which bowstring

girders possess. When the load is uniformly distributed the

strains in the bracing are tensile, for the lower flange and load

are merely suspended from the bow, which differs but slightly from

the curve of equal horizontal thrust and therefore requires but little

bracing to keep it in form. Hence, compressive strains are produced

in the bracing only under the influence of passing loads
;
and in

large girders, where the permanent load of string and roadway
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is great compared with the passing load, it may happen that the

compressive strains produced by the latter do not exceed the

tensile strains which the bracing sustains in its normal state. If,

for instance, the permanent load of the lower flange and roadway
in the example worked out in 808 were twice as heavy as the

passing load, the strains in all the diagonals would be tensile under

all circumstances ;
even if the permanent load were only once and a

half as heavy as the passing load, diagonal 6 alone would sustain

slight compression. In this case the difficulty of providing against

flexure in long compression bars does not arise, and the only part

of the structure subject to compression is the bow, which from its

large sectional area can be economically constructed of a form

suited to resist buckling or flexure.
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CHAPTER XXV.

DEFLECTION AND CAMBER.

451. Deflection curve of girders with horizontal flanges
of uniform strength is circular. It has been already shown in

Chap. VIII. that the deflection curve of girders with horizontal

flanges of uniform strength, that is, girders whose flanges vary in

sectional area so that they are subject to the same unit-strain

throughout the whole length of each flange respectively, is circular

and easily calculated by a simple formula (eq. 132). When, how-

ever, the flanges are of uniform section throughout their whole

length, and their strength therefore excessive near the ends, the

deflection will be somewhat less, and may be calculated by the

method explained in SS6 and the following articles. When the

strength of a girder is not uniform, there is of course a certain

waste of material, which, however, cannot always be avoided,

although some methods of construction the cellular flanges of

tubular bridges for instance are more liable to this objection than

others, as they cannot in practice be tapered off towards the ends in

accordance with theory.

453. Deflection an incorrect measure of strength. Since

the deflection depends not only on the unit-strains in the flanges,

but also on the proportion of length to depth, on the coefficient of

elasticity of the material, and to some extent on the mode of con-

struction, the popular rule by which the strength is estimated from

the deflection alone, though possessing the merit of simplicity, is

extremely vague and liable to lead to false conclusions unless when

comparing girders of the same length, depth, and material. The

deflection of any particular girder, however, is sensibly proportional

to the load, provided the strains are within the elastic limit, which

they always are in safe practice.
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453. Camber ornamental rather than useful Permanent
set after construction. As the amount of deflection is in

practice very small compared with the length of a girder, no appre-

ciable diminution of strength is produced merely by the change

from a horizontal line to the deflection curve, for deflection, unless

so excessive as to change the vertical reaction of the abutments

into an oblique one, is the result, not the cause, of increased

strain. A downward curve, or even a truly horizontal line is,

however, less pleasing to the eye than a slight camber
; hence, it

is desirable to give an initial camber somewhat in excess of the

calculated deflection, so that when the girder is loaded no per-

ceptible sag may suggest the idea of weakness, even though

imaginary. It should also be borne in mind that the various parts

of a built girder are put together free from strain and are fre-

quently a little out of line
; consequently, when a large girder first

supports its own weight, and again, but in a less degree, when it

is tested with a heavy load for the first time, there is a certain

slight motion from the closing up or stretching out of the various

parts accommodating themselves to their new state. A permanent

set is the result, which, however, is not necessarily indicative of

weakness, provided it is not increased by subsequent loads, which

should only produce a temporary deflection. This congenital set

sometimes nearly doubles the calculated deflection.

454. Loads in rapid motion produce greater deflection

than stationary or slow loads Less perceptible in large
than small bridges Reflection increased by road being
out of order Railway bridges under 4O feet span re-

quire extra strength in consequence of the velocity of

trains. The Commissioners appointed to inquire into the ap-

plication of iron to railway structures "carried on a series of

experiments to compare the mechanical effect produced by weights

passing with more or less velocity over bridges, with their effect

when placed at rest upon them. For this purpose, amongst other

methods, an apparatus was constructed, by means of which a car

loaded at pleasure with various weights was allowed to run down

an inclined plane; the iron bars which were the subject of the

experiment were fixed horizontally at the bottom of the plane, in
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such a manner that the loaded car would pass over them with the

velocity acquired in its descent. Thus the effects of giving different

velocities to the loaded car, in depressing or fracturing the bars,

could be observed and compared with the effects of the same loads

placed at rest upon the bar. This apparatus was on a sufficiently

large scale to give a practical value to the results
;
the upper end

of the inclined plane was nearly 40 feet above the horizontal

portion, and a pair of rails, 3 feet asunder, were laid along its whole

length for the guidance of the car, which was capable of being

loaded to about 2 tons
;
the trial bars, 9 feet in length, were laid

in continuation of this railway at the horizontal part, and the

inclined and horizontal portions of the railway were connected by
a gentle curve. Contrivances were adapted to the trial bars, by
means of which the deflections produced by the passage of the

loaded car were registered ; the velocity given to the car was also

measured, but that velocity was, of course, limited by the height of

the plane, and the greatest that could be obtained was 43 feet per

second, or about 30 miles an hour. A great number of experiments

were tried with this apparatus, for the purpose of comparing the

effects of different loads and velocities upon bars of various

dimensions, and the general result obtained was that the deflection

produced by a load passing along the bar was greater than that

which was produced by placing the same load at rest upon the

middle of the bar, and that this deflection was increased when the

velocity was increased. Thus, for example, when the carriage

loaded to 1,120 ft>s. was placed at rest upon a pair of cast-iron bars,

9 feet long, 4 inches broad, and 1J inch deep, it produced a

deflection of -f$ths of an inch
; but when the carriage was caused

to pass over the bars at the rate of 10 miles an hour, the deflection

was increased to y^ths, and went on increasing as the velocity was

increased, so that at 30 miles per hour the deflection became 1J

inch
;
that is more than double the statical deflection. Since the

velocity so greatly increases the effect of a given load in deflecting

the bars, it follows that a much less load will break the bar when

it passes over it than when it is placed at rest upon it, and

accordingly, in the example above selected, a weight of 4,150ibs. is
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required to break the bars if applied at rest upon their centres ;

but a weight of 1,778 ibs. is sufficient to produce fracture if passed

over them at the rate of 30 miles an hour. It also appeared that

when motion was given to the load, the points of greatest deflection,

and, still more, of the greatest strains, did not remain in the centre

of the bars, but were removed nearer to the remote extremity of

the bar. The bars, when broken by a travelling load, were always
fractured at points beyond their centres, and often broken into four

or five pieces, thus indicating the great and unusual strains they
had been subjected to."

* These experiments show that a load in

rapid motion causes greater deflection than the same load at rest

or moving slowly, especially when the moving load is very large

compared with the dead weight of the girder. The increase,

however, is generally slight in railway practice, and the greater the

weight of the structure is to that of the passing train the less will

be the increment of deflection due to rapid motion. The difference

of deflection caused by a locomotive crossing the central span of

the Boyne Viaduct, 264 feet in the clear between supports, at a

very slow speed and at 50 miles an hour was scarcely perceptible,

and did not exceed the width of a very fine pencil stroke, but the

increase of deflection is more marked in bridges of small span, as

appears from the following experiments made on the Godstone

Bridge, South Eastern Railway, by the Commissioners appointed

to inquire into the application of iron to railway structures.! The

Godstone is a cast-iron girder bridge, 30 feet in span, with two

lines of railway.
Tons.

Weight of two girders,
- - 15

Weight of platform between these girders,
- 10

Weight of half the bridge, i.e., dead load,
- 25

Weight of engine,
-

Weight of tender, - -32

Moving load,

* Iron Com. Report, p. XL f Idtm, App., p. 250.
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Velocity in feet per second.
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suddenly lifted, and this of course had to be sustained by the girders

as well as the ordinary weight of the train."*

The conclusions of the Commissioners, as given at p. xviii. of

their report, is as follows :

" That as it has appeared that the effect

of velocity communicated to a load is to increase the deflection

that it would produce if set at rest upon the bridge; also that

the dynamical increase in bridges of less than 40 feet in length is

of sufficient importance to demand attention, and may even for

lengths of 20 feet become more than one-half of the statical

deflection at high velocities, but can be diminished by increasing

the stiffness of the bridge ;
it is advisable that, for short bridges

especially, the increased deflection should be calculated from the

greatest load and highest velocity to which the bridge may be liable ;

and that a weight which would statically produce the same

deflection should in estimating the strength of the structure, be

considered as the greatest load to which the bridge is subject."

455. Effect ofcentrifugal force. Centrifugal force produces

a very slight but appreciable increase of pressure when the load

passes rapidly across girders which, though ordinarily level, become

deflected by the load, and still more so if they happen to have

been built originally hollow in place of being level or cambered.

The increased pressure due to this cause is expressed by the fol-

lowing well known equation :

P - "2W
(251)* n~ \ )

9
Where P = the pressure due to centrifugal force,

R = the radius of curvature in feet,

W = the load,

v = the velocity in feet per second,

g = the acceleration due to gravity = 32 feet per second.

Ex. 1. A girder bridge 200 feet in span is deflected 0'25 foot below the horizontal line

by a certain load, W, at rest ; what is the increased pressure due to centrifugal force

if W traverses the bridge at the rate of 60 miles an hour ?

Here, v= 60X528 = 88 feet per second.
60X60

R= 100X100 = 20,000 feet.

* Iron Com. Report, App., p. 412.

2 P
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Ex. 2. If the span were only 100 feet, and the deflection and velocity as before, we

would have R = 5,000 feet, or ^th of its former value, whence,
\A/

Answer, P = -0484W =
|L nearly.

456. Practical methods of producing: camber and measur-

ing- deflection. The deflection of a girder supported at both

ends is the result of the lower flange being extended while the

upper one is shortened, and camber may be produced by the reverse

of this, that is, by making the bays of the upper flange slightly

longer than those of the lower one when the girder is in process

of construction (833).

When small girders are under proof, their deflection may be

conveniently measured, unless there happens to be a strong wind,

by means of a fine wire fastened to one end of the girder and

passing over a pulley attached to the other end, where a small

weight will keep it in a state of constant tension. The deflections

should be read on a scale attached to the girder itself; when

measured from an object fixed outside the girder they cannot be

depended on, owing to the supports on which the ends of the

girder rest being compressed by the weight of the testing load.

When great accuracy is not required the deflection of a girder

bridge from passing loads may be measured by means of two

wooden rods, the bottom of one of which rests on the surface of

the ground beneath the bridge, while the top of the second rod is

pressed upwards against the soffit of the girder, so that they over-

lap each other midway ;
a pencil line is then ruled across both

rods, and when the upper one is depressed by a passing load its

line will descend slightly, the distance between the two lines giving

the deflection of the girder.
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CHAPTER XXVI.

DEPTH OF GIRDERS AND ARCHES.

457. Depth of girders generally varies from one-eighth
to one-sixteenth ofthe span Depth determined by practical
considerations. The depth of large girders, with the exception

of triangular trusses, seldom exceeds l-8th, or is less than l-16th of

the span. For many years the common rule for cast-iron girders

was to make the depth 1-1 5th of the span and this established a

precedent for wrought-iron girders, but modern practice has with

great advantage increased the ratio, so that from l-8th to 1-1 2th

are now common proportions for braced girders. As the leverage

of the flange is directly as the depth, while the quantity of material

in the web is theoretically independent of it, it might be inferred

that the deeper the girder the greater the economy (S?4). The

practical limit, however, is defined by the extra material required

to stiffen long compression bars or thin deep plate webs, nor should

we overlook the necessity of having sufficient thickness in the web

for durability and sufficient material in the compression flange to

keep it from flexure or buckling. The following table contains

the principal dimensions of some important Bowstring bridges,

which are generally made deeper than girders with horizontal

flanges.
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458. Economical proportion of web to flange Practical

roles. When a given quantity of material is to be distributed in

the most advantageous manner, the thinner the web and the more

the material is concentrated in the flanges, the stronger will the

girder be, provided the web retains sufficient material for trans-

mitting the shearing-strain ;
but when, as is frequently the case in

small girders, the girder derives a considerable portion of its

strength from the web acting as an independent rectangular girder,

its thickness being determined from practical considerations, there

is a certain depth, depending on the thickness of the web and

the relation between the flanges, which will produce a girder of

maximum strength. If the flanges are of equal area this depth

may be found as follows :

Let I = the length of the girder,

b = the thickness of the web, as determined by practical con-

siderations,

d rr the depth of the girder,

a = the area of either flange,

a' = bd = the area of the web,

A = 2a-j-a' = the total sectional area, which is a given

quantity.

From equation 71, we have for the weight which an equal-

flanged semi-girder loaded at the end will support,

in which / is the unit-strain in either flange. W is maximum

when d (a+ . )
is maximum, and in order to find what value of

V
b

/

d will produce this result we must equate the differential coefficient

of d (+7r) to cipher, first substituting for a and a' their values

in terms of d and the constant A, as follows :

-~ l2 3

Equating the differential coefficient of the term within the bracket

to cipher, we have,
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whence,

^ =
^A (252)

The depth therefore should be such that the web may contain Jths

of the whole amount of material.

The thickness of the webs of wrought-iron plate girders for

railway or public bridges should not be less than T
5
^ inch (431),

while those of cast-iron girders generally vary from 1 to 2 inches.

The following rule for the minimum thickness of cast-iron webs is

given by M. Guettier, a skilful French founder.*

Length of girder. Minimum thickness of cast-iron Webs.

4 metres, - 20 millimetres = 0*8 inches.

5 25 = 1-0

6 30 = 1-2

8 35 = 1-4

StiiFening ribs are sometimes formed at right angles to the webs

of cast-iron girders, so as to act as brackets to the flanges, but

they are apt to shrink unequally in cooling and produce dangerous

cracks in the casting.

459. Depth of iron and stone arches. The two following

tables contain the principal dimensions of some important iron and

stone arched bridges. See also the tables relating to cast-iron

arches and wrought-iron roofs in Chap. XXVIII.

*
Morin, Resistance des Materiaux, p. 277.
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CHAPTER XXVII.

CONNEXIONS.

46O. Appliances Tor connecting: iron-work Strength of

joints should equal that of the adjoining: parts Screws.

One general rule applies to all jointed structures, namely, that the

strength of the whole is limited by that of its weakest part, and

accordingly the strength of joints should not be less than that of

the parts which they connect. The usual appliances for connecting

iron-work may be divided into four classes :

1. Screws. 3. Gibs and cotters.

2. Bolts or pins. 4. Rivets.

The strain to which the above-mentioned connectors are subject

is generally a shearing-strain, and as the strength of iron to resist

shearing is practically equal to its tensile strength (394), the

strength of an iron rivet, bolt, cotter, or screw, is measured by the

product of the area subject to shearing multiplied by the tearing

unit-strain of the iron. The thread of a screw which is subject

to longitudinal tension may be "
stripped" or shorn off by the nut

;

in the case of V threaded screws both nut and screw may be

stripped simultaneously midway between the base and vertex of

the thread, and the shearing area is approximately measured by
the circumference of the screw at base of thread multiplied by
half the length grasped by the nut ;

in the case of square threads

the shearing area is the same. From this it follows that the

length of the nut should be at least one-half the effective or net

diameter of the screw. In practice it is generally made equal to

1 or 1 times the gross diameter and the diameter of a nut, or

bolt-head, or rivet-head is seldom less than twice that of the bolt.

461. Bolts or pins Proportions of eye and pin in flat

links Upsetting- and bearing: surface. A bolt or pin is the
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simplest appliance for connecting together two pieces of iron, and

as the principal considerations connected with a bolt joint also

apply to other and more complex forms, I shall devote a short

space to its investigation. Take, for example, the joint of a

suspension bridge, the chains of which are formed of long flat

links connected by pins passing through eyes formed at their

ends. Such a joint may fail in six ways.

Fig. 112.

1. By the link tearing through the eye at cd, for want of

sufficient material to withstand the longitudinal tensile strain.

Hence, the sectional area at cd should theoretically equal that of

the shank at ab, but in practice it may be somewhat greater, as the

strain is less direct round the eye than in the body of the link.

2. By the end of the link being split along one or two lines,

such as gh and ik, for want of sufficient area to resist the shearing

action of the pin. Hence, the combined areas at gli and ik

should theoretically equal that of the shank at ab, but in practice

be considerably greater, as this part of the eye acts as a short girder

whose abutments are ce and fd ;
this causes the outer circumference

near h and k to be in severe tension and, therefore, very liable to

tear, especially when the " reed" of the iron is open, as is frequently

the case with bar and angle iron.

3. By the pin being shorn across. This arises from its diameter

being too small. Hence, if the pin be iron and in double-shear,

its area should in no case be less than one-half that of the shank

at ab (394).

4. By the pin bending. This also arises from its diameter being

too small to afford the requisite stiffness, but ultimate failure may
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generally be prevented by the links being kept from spreading

asunder by a head and nut on the pin, at the loss, however, of

freedom of motion.

5. By the link tearing through the shoulder at Im, in consequence

of the curvature or change of form being too abrupt to permit the

lines of strain in the shank bending gradually round the eye.

6. By the crown of the eye being upset between g and i. This

arises from the bearing surface of the pin being too small in

proportion to the longitudinal strain, in which case there is an

excessive pressure on each superficial unit at the crown of the eye,

whereby the material there is upset, and the sides of the eye at

e and / become first unduly attenuated and then torn, the rent

extending from the inside towards the circumference. Sir C. Fox

has drawn attention to this latter source of failure in a valuable

communication to the Royal Society, in which the following

remarks occur :*
" If the pin be too small, the first result on the

application of a heavy pull on the chain will be to alter the

position of the hole through which it passes, and also to change it

from a circular to a pear-shaped form, in which operation the

portion of the metal in the bearing upon the pin becomes thickened

in the effort to increase its bearing surface to the extent required.

But while this is going on, the metal round the other portions of

the hole will be thinned by being stretched, until at last, unable

to bear the undue strains thus brought to bear upon it, its thin

edge begins to tear, and will, by the continuance of the same strain,

undoubtedly go on to do so until the head of the link be broken

through, no matter how large the head may be
;

for it has been

proved by experiment that by increasing the size of the head,

without adding to its thickness (which, from the additional room it

would occupy in the width of the bridge, is quite inadmissible), no

additional strength is obtained. The practical result arrived at

by the many experiments made on this very interesting subject is

simply that, with a view to obtaining the full efficiency of a link,

the area of its semi-cylindrical surface bearing on the pin must be a

* "On the Size of Pins for connecting Flat Links in the Chains of Suspension

Bridges." Proc. Roy. Soc., VoL xiv., No. 73, p. 139.
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little more than equal to the smallest transverse sectional area of its

body; and as this cannot, for the reasons stated, be obtained by
increased thickness of the head, it can only be secured by giving a

sufficient diameter to the pins. That as the rule for arriving at

the proper size of pin proportionate to the body of a link may be

as simple and easy to remember as possible, and bearing in mind

that from circumstances connected with its manufacture the iron

in the head of a link is perhaps never quite so well able to bear

strain as that in the body, I think it desirable to have the size of

the hole a little in excess, and accordingly for a 10 inch link I

would make the pin 6f inch in diameter, instead of 6^ inch, that

dimension being exactly two-thirds of the width of the body, which

proportion may be taken to apply to every case (where the body
and heads are of uniform thickness). As the strain upon the iron

in the heads of a link is less direct than in its body, I think it right

to have the sum of the widths of the iron on the two sides of the

hole 10 per cent, greater than that of the body itself. As the pins,

if solid, would be of a much larger section than is necessary to

resist the effect of shearing, there would accrue some convenience,

and a considerable saving in weight would be effected, by having

them made hollow and of steel." Mr. G. Berkley also has made

several valuable experiments on the strength of links, from which

he concludes that the diameter of the pin should equal fths of the

width of the shank, while Mr. Brunei in his latest practice adopted

the same proportion of pin as Sir C. Fox, but made the curve of

the shoulder exceedingly gradual the radius being 7 '6 times the

width of the shank with the object of deflecting the lines of

strain along the shank as gradually as possible before passing

round the eye, the experiments which were made for the Chepstow

and Saltash bridges having led to the belief that strength depended

more upon the shape of the shoulder than upon excess of metal

about the eye.*

The following table gives these and other proportions adopted

by the foregoing authorities in a concise form :

*
Proc. Inst. G. E.

%
Vol. xxx., pp. 220 and 271.
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TABLE I. PROPORTIONS OP THE EYES OP FLAT BAR LINKS.
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Fig. 114.

Double-Shear.

447

Fig. 115.

Single-Shear.

When a joint connects plates in tension, the aggregate shearing

area of the rivets on each side of the joint line multiplied by the safe

shearing unit-strain of the rivets should equal the total working strain

transmitted through the plates. It thus happens in girder-work

that the collective shearing area of the rivets of a well proportioned

tension joint is nearly equal to the effective plate area, i.e., the net

area of the plates after deducting rivet holes (394). In practice the

rivet area is generally made about l-10th greater, in order to com-

pensate for any inequality in the distribution of the strain among
the rivets. In steel plating the rivet area, if the rivets are steel,

should be one-third greater than the net area of the plates, but the

heads of steel rivets are very apt to fly off (395). When a joint

connects compression plates whose ends do not butt closely against

each other, the thrust is transmitted through the covers and tends

to shear the rivets across exactly in the same manner as when a

tensile strain is transmitted, and the foregoing rule applies here also.

If, however, the compression plates have their ends planed square

and then brought very carefully into close contact so as to form

a "jump" joint, a short cover and one, or at most two, transverse
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rows of rivets on each side of the joint line will suffice, as the use

of the cover in this case is merely to keep the plates in line but not

to transmit the thrust. A jump compression joint is erroneously

supposed to be stronger than one in which the plates are slightly

apart with the covers and rivets duly proportioned as for a tension

joint, and engineers are sometimes over-exacting in this respect,

expecting water-tight joints when the contractor gets only 18s. or

20s. per cwt. for the girder. A real jump joint with the plates

butting along their whole width is rare, as the process of riveting

generally draws the plates slightly apart and an interval of a

hundredth of an inch is theoretically as bad as a quarter inch. A
little caulking of the edges, however, makes all smooth to the eye,

and the so-called "jump" joint passes muster. A practical remedy
for this is described in 464.

With respect to the ordinary method of riveting in transverse

rows, each row containing the same number of rivets, Mr.

Hodgkinson deduced from his experiments that " the strength of

plates however riveted together with one row of rivets, was reduced

to about one-half the tensile strength of the plates themselves
;
and

if the rivets were somewhat increased in number, and disposed

alternately in two rows, the strength was increased from one-half

to two-thirds or three-fourths at the utmost."*

Reducing these conclusions to a convenient standard, we have the

following rule for the relative strength of lap-joints :

Strength of the unpunched plate,
- 100

Strength of a double-riveted joint,
- 66

Strength of a single-riveted joint,
- 50

Nearly all experimenters on the subject agree, and my own

experience corroborates the fact, that punching reduces the tensile

strength of iron to a greater degree than the aggregate area of

the metal punched out, and a close examination of the border of

each hole shows that it has been subject to a certain degree of

violence, which in most cases has injuriously affected the fibre of

the iron. Drilling does not damage the metal surrounding the

* Iron Com. Rep., App , p. 116.
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hole, and it is therefore preferred where the nature of the work

will permit the extra cost of drilling over punching. Mr. Maynard
inferred from his experiments that drilled plates are 19 per cent,

stronger than punched plates. There can be little doubt, however,

that the exact percentage will depend 1., on the condition of the

punching tool, i.e. t the maintenance of the proper proportion of

size between the punch and die; and 2., on the quality of the

iron a tough coppery iron, like Low Moor, suffering less injury

from punching than a hard brittle iron, and thick plates suffering

more than thin ones. Mr. Maynard was also led to the conclusion

that rivets in drilled holes were 4 per cent, weaker than rivets in

punched holes, because the sharp edges of the drilled plates have a

tendency to shear off the rivets cleaner than those in the punched

plates, and he finally concluded that the difference is 15 per cent,

in favour of drilled work when compared with punched work.

463. Covers Single and double covers compared Lap-
joint. The strength of the covers of tension joints, and compression

joints where the plates do not butt closely, should equal that of the

plates ; hence, a single cover should resemble a short length of the

plate and each side of a double cover be at least half as thick as the

plate.

As the quantity of material required for covers forms a very

considerable percentage of the plates (12 per cent, and upwards,

depending on the length of the plates), it is of great importance

that the joints be as few as possible and arranged in the very

best manner. This is more especially the case in large girders,

where every ton of useless weight requires perhaps several tons in

the main girders for its support, as will be shown in a succeeding

chapter. For this reason large plates, with few joints, though

they may cost extra per ton, will often make a cheaper girder

than plates of ordinary sizes with more numerous joints (43?). In

the usual method of cover riveting, two or three transverse rows

of rivets are placed on each side of the joint line, each row

containing the same number of rivets, and the effective area of the

plate, if in tension, is reduced by the aggregate section of the

rivet holes in any one row. Hence, it would appear that the fewer
2 G
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rivet holes there are in each transverse row the less is the plate

weakened and the more is its material economized. But this again

requires several successive rows of rivets in order to provide

sufficient rivet area, thus introducing the necessity of long covers,

which may more than counterbalance the saving in the plates.

The size of the plates therefore will determine to some extent the

economical length of the covers as well as the transverse pitch of

the rivets.*

The few experiments described in 393 seem to indicate that

rivets in single-shear will not withstand so great a unit-strain as

rivets in double-shear; this, however, requires confirmation, and

good experiments on the strength of various forms of rivet joints

are much wanted. From those recorded by Sir William Fairbairn

in the appendix to the first series of " Useful Information for

Engineers," it appears that, so far as the plates are concerned, a

single-cover or lap-joint with only one transverse row of rivets in the

lap is considerably weaker (in the experiments about 25 per cent,

less) than a double-cover joint of the same theoretic strength, i.e.,

with the same net area of plates taken across the rivet holes. This

arises from the distortion of the single cover or lap-joint which,

yielding in its effort to assume a straight line between the points of

traction, bends the plates slightly and makes them liable to tear

across the line of rivet holes. When, however, a single-cover or

lap-joint had two or more transverse rows of rivets in the lap its

strength was not less than that of a double-cover joint of equal plate

area. If the plates are kept in a straight line by being riveted to

an angle iron or web, like the flange plates of a girder, it is still

more likely that the strength of a single-cover joint will be fully

equal to that of a double-cover joint of the same theoretic strength,

but whenever convenient, the double-cover should be adopted from

economical motives, as it gives double-shear to the rivets, and need

therefore be only half as long as a single cover with the same rivet

area. The common lap-joint represented first in Fig. 115, is,

however, an exception to this, as the lap need not be longer than

half the single cover represented beneath it.

* The "pitch" is the distance measured from centre to centre of rivets.
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464. Tension Joints of wiles Compression joints of piles
require no covers if the plates are well butted Cast-zinc

joints. I have already advocated the piling of plates over each

other when a large flange area is required, and I have shown that

long rivets form no practical objection to this arrangement

(433, 484). When several plates are riveted together their joints

are generally arranged in steps, and the length of each cover equals

the lap of one plate multiplied by the number of plates + 1.

Thus, in Fig. 116, the pile consists of three plates and the length

. 116.

of each cover equals four laps. The length of lap is generally twice

the longitudinal pitch of the riveting. The thickness of the covers

of tension piles should be somewhat greater than half that of one

plate, for it is clear that when a joint occurs in an upper or lower

plate, more than half the tension in that plate will be thrown into

the nearest cover. Hence, it is a good rule to make the covers of

tension piles not less than fths of the thickness of a single plate.

If a pile of several plates be in compression and closely fitted

so as to butt against each other, no covers will be required, and

great economy will result from this in very large girders, so much

so as amply to repay the extra expense of planing the ends of the

plates and bringing them carefully into close contact. To ensure

this, however, requires considerable attention, for the riveting

process has, as already observed, a tendency to open the joints

slightly, but cast-zinc, which is a very hard substance, may be

usefully employed for running into the compression joints of

wrought as well as cast-iron, provided they are sufficiently open

to let the molten metal flow freely. The joints of the cast-iron

voussoirs of the Bridge of Austerlitz in Paris, finished in 1806,

were thus formed,* and in my own practice I have used cast-zinc

for filling up the irregular intervals between the ends of the arched

ribs of a cast-iron bridge of 96 feet span and the wall-plates from

* Enc. Brit., 8th Ed., art.
" Iron Bridges," Vol. xii., p. 581.
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which they sprang ;
in the latter case accurate fitting would have

been extremely difficult, if not impossible, and a very satisfactory

and close joint was made by slightly warming the parts with a fire

of chips
" to expel the cold air," as the workmen say, before

pouring in the molten zinc. The heat probably expels moisture and

assists the flowing of the metal into the narrower crevices. I have

also used cast-zinc very successfully for securing crane posts (both

cast and wrought-iron) in their foundation plates, where it ensures

close contact without the cost of fitting. The following description

of this method of forming the joints of a cast-iron arch of 133 feet

span on the Pennsylvania Central Railroad occurs at p. 244 of

Haupt on Bridge Construction :
" The joints were separated to

the distance of one-fourth of an inch, and filled with spelter (cast-

zinc) poured into them in a melted state
;
this was very conve-

niently done by binding a piece of sheet-iron around each joint,

and covering it with clay. The material introduced being nearly

as hard as the iron itself, and filling all the inequalities of the

surface, rendered the connexion perfect." If the space between

two plates be very narrow, the joint should be placed in a vertical

position so that gravity may aid the flow of the metal, and a little

tin added to the zinc is said to render the latter more fluid.

465. Various economical arrangements of tension joints.

The following method of riveting reduces the tensile strength of

the parts connected less than that in common use, and possesses the

merit of being applicable to plates as well as bars. Its peculiarity

consists in diminishing the number of rivets in each row as they

recede from the joint-line, and at the same time slightly increasing

the thickness of the cover or covers beyond that of the parts

connected. Fig. 117 represents this arrangement applied to a bar

or narrow plate with double covers. There are eight different ways
in which the joint may fail. 1. By the bar tearing at a, where its

area is reduced by only one rivet hole. 2. By both covers tearing

at b, where each is weakened by two rivet holes; this, however,

is compensated for by their united area being somewhat greater

than that of the bar. 3. By the bar tearing at b at the same time

that the rivet at a is double-shorn. 4. By the rivets on one side
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of the joint line double-shearing. 5. By the rivets on the alternate

half-faces single-shearing. 6. By the rivets on one half-face single-

shearing while the opposite cover tears at b. 7. By both covers

tearing at a simultaneously with the rivets double-shearing at b.

8. By both covers tearing at a simultaneously with the bar

tearing at b. If, for example, the plates are 7 inch x \ inch,

connected by two T
5

(
-th inch covers with yfth inch rivet holes, the

net area of the plate at a is 3*1 square inches nearly; the double-

shearing area of the rivets at one side of the joint line equals 3'1

inches, and the net area of both covers together at b is 3*36 inches.

Fig. 117.

Finally, the net area of the plate at b together with the double-

shearing area of the rivet at a equals 3 -7 inches. This joint is

therefore tolerably well proportioned, while the effective strength

of the plates is really reduced by only one rivet hole, viz., that at a.

A similar plan of joint is applicable to broad plates, Fig. 118.

Fig. 118.

When this mode of riveting is applied to a pile of plates, the
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extra thickness of the covers should be sufficient to compensate for

the reduction in the strength of the whole pile caused by the

close transverse riveting at the joints.

When bars or plates are lap-jointed the arrangement proposed

by Mr. Barton, and represented in Fig. 119, is an excellent one.

Fig. 119.

The diagonal joint running obliquely across the plate is another

useful arrangement, and it appears from experiments instituted by
Mr. J. G. Wright that the strength of a single-riveted diagonal

lap-joint at 45 was 64*7 per cent, of that of the solid plate, whereas

the strength of a similar straight joint was only 48'2 per cent., the

increase in strength of the diagonal joint being 34 per cent, over

the other, that is, the diagonal single-riveted joint was nearly as

strong as an ordinary straight double-riveted joint.*

466. Contraction of rivets and resulting: friction ofplates
Ultimate strength of rivet-joints not increased by friction.

Rivets contract in cooling and draw the plates together with such

force that the friction produced between their surfaces is generally

sufficient to prevent them from slipping over each other so long as

the strain lies within limits which are not exceeded in practice,

and when this occurs the rivets are not subject to shearing strain.

From experiments made during the construction of the Britannia

Tubular Bridge it appears that the value of this friction is rather

variable.f In one experiment with a Jth inch rivet passing through

three plates, and therefore in double-shear, it amounted to 5*59

tons, in another with a |th inch rivet and two plates lap-jointed

with T
5
^th inch washers next the rivet heads it reached 4*73 tons,

while in a third experiment with three plates and |th inch rivet

with ^ inch washers next the rivet heads, making the shank of the

*
Proc. Inst. M. K, 1872, p. 77. t Clark on the Tabular Bridges, p. 393.
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rivet 2J inch long, the middle plate supported 7*94 tons before it

slipped. In these experiments the hole in one or both plates was

oval and the sliding took place abruptly. Though the friction of

riveted plates may be sufficient to convey the usual working- strain

without subjecting the rivets to shearing, it does not follow, nor

do experiments indicate, that the ultimate strength of a rivet joint

is increased by this friction. It is an interesting fact, however,

that rivets in ordinary girder-work and plating are subject to a

tensile and not a shearing strain.

467. Girder-makers', Boiler-makers' and Shipbuilders'

rales for riveting' Chain-riveting. Joints may fail by each

rivet splitting or shearing out the piece of plate in front of itself.

Consequently, the minimum theoretic distance of the rivets from

the edge of an iron plate or from each other lengthways should be

determined by the consideration that the shearing area of the

plate (along two lines) between each rivet and the one behind it, or

between each rivet in the first row and the edge of the plate, be

not less than that of the rivet. If, for example, the rivets in

Fig. 117 be f inch and the plates J inch thick, the shearing area

of each rivet (in double-shear) equals 1 square inch nearly,* and

the distance of the edge of the rivet holes from the joint line should

theoretically not be less than 1 an inch. Practically, however, this

is insufficient, for punching tends to burst the edges of the holes if

placed so close to each other or to the edge of the plate, especially

if the plate be thick or of brittle quality, and in boilers the dis-

tance between the holes and the edge of the plate is usually about

once the diameter of the rivet. If the distance exceed this it is

difficult to make the seam steam-tight by caulking. In girder-

work, which does not require caulking like a boiler, this distance is

seldom less than 1J times the diameter of the rivet, and the pitch

may vary from 2^ to 5 or even 7 inches, but should not exceed 15

times the thickness of a single plate, from 6 to 12 times being

common practice. The rivets in ordinary girder-work range from

* Rivet holes are generally punched from J^nd to -j^th inch larger than the nominal

size of the rivet, in order that the latter when red hot may pass freely through the

hole. Hence, the area of a f inch rivet, after riveting, is nearly half a square inch.
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j to 1 inch and occasionally l inch in diameter. The rivet holes

in first-class work are now frequently bored out with drilling

machines, so as to avoid the weakening effect of punching on the

plates. The great majority of girder-work, however, will probably

always be done by the punch, as it does not pay to have the holes

drilled unless in large girders where there are frequent repetitions

of the same pattern (435). The following table shows the usual

practice in boiler-work.

TABLE II. RULES FOB BOILER RIVETING.

Thickness
of

plate.
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Lloyd's rules for the dimensions of rivets in ship-building are as

follows :

TABLE III LLOYD'S RULES FOR SHIP RIVETING.

Thickness of Plates
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" Rivets to be four diameters apart, from centre to centre, longi-

tudinally in seams and vertically in butts, except in the butts where

treble riveting is required, where the rivets in the row farthest

from the butt may be spaced eight diameters apart, centre to centre.

Rivets in framing to be eight times their diameter apart, from

centre to centre, and to be of the size required in the above table.

All double or treble riveting in butts of plates to be in parallel

rows, or what is termed chain riveting. It is recommended that

the necks of all rivets be bevelled under the head so as to fill the

countersink made in punching, and their heads should be no thicker

than two-thirds the diameter of the rivet." It will be observed

that the pitch may be one-third as great again in water as in

steam joints.

The term "
chain-riveting" is applied to riveting in several

transverse rows, the rivets being placed longitudinally one behind

the other like the links of a chain. It merely means that both the

longitudinal and transverse rows of rivets form straight lines, in

place of the rivets being zigzag.
46. Adhesion ofiron and copper bolts to wood Strength

of clenches and forelocks. The shearing strength of oak

treenails has been already given in 397. The two following tables

are also the results of Mr. Parson's experiments.*
" The first of

these tables exhibits the adhesion of iron and copper bolts, driven

into sound oak, with the usual drift, not clenched, and subject to

a direct tensile strain. By drift is meant the allowance made to

insure sufficient tightness in a fastening; it is therefore the quantity

by which the diameter of a fastening exceeds the diameter of the

hole bored for its reception."

*
Murray on Shipbuilding, p. 94.
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TABLE V. TABLE OF THE ADHESION OF IRON AND COPPER BOLTS DRIVEN INTO

SOUND OAK WITH THE USUAL DRIFT, NOT CLENCHED, AND SUBJECTED TO A DIRECT

TENSILE STRAIN.

Diameter
of the
Bolt.
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TABLE V. TABLE OP THE ADHESION OF IRON AND COPPER BOLTS DRIVEN INTO

SOUND OAK WITH THE USUAL DRIFT, NOT CLENCHED, AND SUBJECTED TO A DIRECT

TENSILE STRAIN continued.

Diameter
of the
Bolt.
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TABLE VI. TABLE OP THE STRENGTH OF CLENCHES AND OP FORELOCKS, AS

SECURITIES TO IRON AND COPPER BOLTS, DRIVEN SIX INCHES, WITHOUT DRIFT,

INTO SOUND OAK, EITHER CLENCHED OR FORELOCKED ON RlNGS, AND SUBJECTED

TO A DIRECT TENSILE STRAIN Continued.

Diameter
of the Bolt.
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" In the experiments on the clenches, the clenches always gave

way; but with the forelocks it as frequently occurred that the

forelock was cut off as that the bolt broke ;
and in the cases of the

bolt breaking, it was invariably across the forelock hole. Accord-

ing to the tables, the security of a forelock is about half that of

a clench. It appears an anomaly that the strength of a clench on

copper should be equal to that of one on iron. But, in con-

sequence of the greater ductility of copper, a better clench is

formed on it than on iron. Generally the thickness of the fractured

clench in the copper was double that in the iron. With rings of

the usual width for the clenches, the wood will break away under

the ring, and the ring be imbedded for two or more inches before

the clench will give way. With the inch copper-bolts, all the

rings under the clenches turned up into the shape of the frustrum

of a cone, and allowed the clench to slip through at the weights

specified.
"
Experiments with ring-bolts were made to ascertain the

strength of the rings in comparison with the clenches. The rings

were of the usual size, viz. : the iron of the ring one-eighth inch

less in diameter than that of the bolt. It was found that the

rings always carried away the clenches, but that they were drawn

into the form of a link with perfectly straight sides. The rings

bore, before any change of form took place, not quite one-half the

weight which tore off the clenches. It appears that the rings are

well proportioned to the strength of the clenches."

469. Adhesion of nails and wood-screws. " The following

abstract of Mr. Bevan's experiments exhibits the relative adhesion

of nails of various kinds, when forced into dry Christiana Deal, at

right angles to the grain of the wood."*

*
Tredyold's Carpentry, p. 189.
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TABLE VII. ADHESION OP NAILS OF VARIOUS KINDS IN DRY CHRISTIANA DEAL.

Kind of Nails.
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and the time was 15 minutes
;
the nails curved a little and were

then drawn. Another experiment was made in the same manner

with dry oak, an inch thick, in which the force required was

1,009 Ibs.
; the sixpenny nails curved, and were drawn by that

force. Dry sound ash, an inch thick, joined in the same manner

by two sixpenny nails, bore 1,220 Ibs. 30 minutes without sensibly

yielding; but when the stress was increased to 1,420 Ibs. the pieces

separated with an easy and gradual slide
; curving and drawing the

nails as before, one of which broke.

" The following experiments on the force necessary to draw screws

of iron, commonly called wood screws, out of given depths of wood,

were made by Mr. Bevan. The screws he used were about two

inches in length, ^j diameter at the exterior of the threads, -f^fo

diameter at the bottom, the depth of the worm or thread being

TUUo' an(^ the number of threads in one inch zz 12. They were

passed through pieces of wood, exactly half an inch in thickness,

and drawn out by the weights stated in the following tables :

TABLE IX. RELATIVE ADHESION OF SCREWS IN DIFFERENT WOODS.

Kind of Wood.
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at the joining, was also determined; the pieces being joined by
two screws

;
the resultant of the force coinciding with the plane of

the joint, and in line with the places of the screws. With Chris-

tiana deal, seven-eighths of an inch thick, joined by two screws

one and five-eighths of an inch in length, and five-fortieths of an

inch in diameter within the worm, a load of 1,009 Ibs. gradually

applied broke both the screws at the line of joint, after elongating

the interior of the hole and sliding about six-tenths. With very

dry seasoned oak, 1 inch thick, two screws one and five-eighths

long, and six-fortieths diameter within the thread, bore 1,009 Ibs.

for ten minutes without any signs of yielding: with 1,137 Ibs. both

screws broke in two places; each screw about two-tenths of an

inch within each piece of wood ;
the holes were a little elongated.

With dry and sound ash, 1 inch thick, with screws 2^ inches

long, passing one quarter of an inch through one of the pieces, the

diameter at bottom of the worm seven-fortieths
;
the load began

with was 1,224 fibs.
; gradually increased for two hours to 2,661 Ibs.

;

they produced a slow and moderate sliding, not separation, the

screws being neither drawn nor broken; but probably would, if

not removed on account of night coming on, and putting an end to

the experiment."

2 H
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CHAPTER XXVIII.

WORKING STRAIN AND WORKING LOAD.

4*O. Working strain Fatigue Proof strain English

role for working strain Coefficient of safety. The work-

ing strain is the strain to which any material is subject in actual

practice, but the term, unless accurately defined, is somewhat

ambiguous, as it is applied to strains which the material sustains

on rare occasions from extraordinary loads, as well as to those to

which it is liable in ordinary every-day use. For instance, a

railway girder may sustain a constant strain of 3^ tons per square

inch from the permanent bridge-load, which rises to 4| tons when

an ordinary train passes, but reaches a maximum of 5 tons with a

train of the greatest possible density, such as locomotives
;
or again,

the chains of a suspension bridge may sustain only 2J tons per

square inch from the permanent or dead weight of the structure,

while a dense crowd of people may occasionally raise this to 6 tons

per square inch. In such cases we have three classes of strains.

1. The permanent strain, due to the permanent or dead weight

of the structure itself, and from which the material suffers what

has been termed fatigue. 2. The ordinary working strain, due to

ordinary live loads added to the dead weight of the structure.

3. The maximum working strain, due to the greatest load possible

in practice added to the dead weight of the structure, and it is

this latter maximum strain which defines the strength of any

structure, and which therefore we have to consider in this chapter.

The proof load of a bridge is generally equal to the greatest load

possible in practice, but the proof strain of separate parts of a

structure, such as the individual links of a suspension bridge, is

frequently 50 per cent, over their intended maximum working
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strain when in the structure. As might have been anticipated,

different opinions are held respecting the safe unit-strain for each

kind of material. English practice generally makes the working
strain some sub-multiple of the tearing or crushing strength of the

material, while General Morin and others recommend the working
strain to be such that the resulting alteration of length shall in no

case exceed one -half that which corresponds to the limit of elasticity.

Neither rule should be adopted to the exclusion of the other, but

as we know the limit of elasticity of but few materials (in fact only

wrought-iron and steel), and as those which are not ductile seem

to have no very definite limit at all (see Chap. XVIII.), the

common English rule seems more generally applicable, and it has

the sanction of extensive experience in its favour. The term

factor, or coefficient of safety is applied to the ratio of the

breaking to the working strain. If, for instance, the tearing

inch-strain of plate-iron is 20 tons, and the working inch-strain

5 tons, the coefficient of safety will be 4.

CAST-IRON.

471. Effect of long: continued pressure on cast-iron pillars

and bars. To determine the effect of long continued pressure

upon cast-iron, Sir Wm. Fairbairn had four pillars cast of Low-Moor

iron
;
the length of each was 6 feet, and the diameter 1 inch, and

they were rounded at the ends. The first was loaded with 4 cwt.,

the second with 7 cwt., the third with 10 cwt., and the fourth with

13 cwt. These weights are respectively 30, 52, 75, and 97 per

cent, of the weight which had previously broken another pillar of

the same dimensions when the weight was carefully laid on without

loss of time. The pillar loaded with 13 cwt. bore the weight

between five and six months and then broke ;
that loaded with 10

cwt. was increasing slightly in flexure at the end of three years ;

when first taken its deflection was '230 inch, and after each

succeeding year it was '380, '380, and "409. The other pillars,

though a little bent, did not alter. In these experiments we see

that a cast-iron pillar bore a steady load of one-half its breaking

weight for three years without alteration, while the deflection of
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another pillar with three-fourths of its breaking weight was in-

creasing slightly at the end of the same period.*

To ascertain how far cast-iron bars might be trusted with per-

manent loads, Sir Win. Fairbairn made the following experiments

also :
" He took bars, both of cold and hot blast iron (Coed Talon,

No. 2), each 5 feet long, and cast from a model 1 inch square ; and

having loaded them in the middle with different weights, with

their ends supported on props 4 feet 6 inches asunder, they were

left in this position to determine how long they would sustain the

loads without breaking. They bore the weights, with one excep-

tion, upwards of five years, with small increase of deflection, though
some of them were loaded nearly to the breaking point." After

that time, however, less care was taken to protect them from

accident, and three others were found broken. They were examined,

and had their deflections taken occasionally, which are set down in

the following Table, which contains the exact dimensions of the

bars, with the load upon each.f

*
Experimental Researches by E. Hodgkinson, p. 351.

f Idem, p. 374.
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TABLE I. EXPERIMENTS ON THE STRENGTH OF CAST-IRON BARS TO RESIST LONG-

CONTINUED TRANSVERSE STRAIN.
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fifteen months
;
after which time there has been, usually, a smaller

increase in their deflections, though from four to five years have

elapsed. The beam in experiment 8, which was loaded nearest to

its breaking weight, and which would have been broken by a few

additional pounds laid on at first, had not, perhaps, up to the time

of its fracture, a greater deflection than it had three or four years

before; and the change in deflection in Experiment 1, where the

load is less than frds of the breaking weight, seems to have been

almost as great as in any other
; rendering it not improbable that

the deflection will, in each beam, go on increasing till it becomes a

certain quantity, beyond which, as in that of Experiment 8, it will

increase no longer, but remain stationary (41O). The unfortunate

fracture of this last beam, probably through accident, has left this

conclusion in doubt." Mr. Hodgkinson inferred from these

experiments that cast-iron girders might be safely trusted with

one-third of their breaking weight. This conclusion, however, he

seems to have subsequently modified, when a member of the Iron

Commission in 1849, which reported in favour of not less than

one-sixth.

473. ITects of long-continued impact and frequent de-

flections on cast-iron bars. The Commissioners appointed to

inquire into the application of iron to railway structures, reported

as follows on the effects of long-continued impacts and frequent

deflections of cast-iron bars :
" A bar of cast-iron, 3 inches square,

was placed on supports about 14 feet asunder. A heavy ball was

suspended by a wire 1 8 feet long, from the roof, so as to touch the

centre of the side of the bar. By drawing this ball out of the

vertical position at right angles to the length of the bar, in the

manner of a pendulum, to any required distance, and suddenly

releasing it, it could be made to strike a horizontal blow upon the

bar, the magnitude of which could be adjusted at pleasure either

by varying the size of the ball or the distance from which it was

released. Various bars (some of smaller size than the above) were

subjected by means of this apparatus to successions of blows,

numbering in most cases as many as 4,000; the magnitude of

the blow in each set of experiments being made greater, or smaller,
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as occasion required. The general result obtained was, that when

the blow was powerful enough to bend the bars through one-half

of their ultimate deflection (that is to say, the deflection which

corresponds to their fracture by dead pressure), no bar was able to

stand 4,000 of such blows in succession; but all the bars (when

sound) resisted the effects of 4,000 blows, each bending them

through one-third of their ultimate deflection.

" Other cast-iron bars, of similar dimensions, were subjected to

the action of a revolving cam, driven by a steam-engine. By this

they were quietly depressed in the centre, and allowed to restore

themselves, the process being continued to the extent, even in some

cases, of an hundred thousand successive periodic depressions for

each bar, and at a rate of about four per minute. Another con-

trivance was tried by which the whole bar was also, during the

depression, thrown into a violent tremor. The results of these

experiments were, that when the depression was equal to one-third

of the ultimate deflection, the bars were not weakened. This

was ascertained by breaking them in the usual manner with

stationary loads in the centre. When, however, the depressions

produced by the machine were made equal to one-half of the

ultimate deflection, the bars were actually broken by less than

nine hundred depressions. This result corresponds with and con-

firms the former.

"
By other machinery, a weight equal to half of the breaking

weight was slowly and continually dragged backwards and forwards

from one end to the other of a bar of similar dimensions to the

above. A sound bar was not apparently weakened by ninety-six

thousand transits of the weight.

"It may, on the whole, therefore, be said, that as far as the

effects of reiterated flexure are concerned, cast-iron beams should

be so proportioned as scarcely to suffer a deflection of one-third of

their ultimate deflection. And as it will presently appear, that the

deflection produced by a given load, if laid on the beam at rest, is

liable to be considerably increased by the effect of percussion, as

well as by motion imparted to the load, it follows that to allow the

greatest load to be one-sixth of the breaking weight, is hardly a
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sufficient limit for safety even upon the supposition that the beam

is perfectly sound.

" In wrought-iron bars no very perceptible effect was produced

by 10,000 successive deflections by means of a revolving cam, each

deflection being due to half the weight which, when applied stati-

cally, produced a large permanent flexure.

*' Under the second head, namely, the inquiry into the mechanical

effects of percussions and moving weights, a great number of ex-

periments have been made to illustrate the impact of heavy bodies

on beams. From these, it appears, that bars of cast-iron of the

same length and weight struck horizontally by the same ball (by

means of the apparatus above described for long-continued impact),

offer the same resistance to impact, whatever be the form of their

transverse section, provided the sectional area be the same. Thus

a bar, 6 X 1 inches in section, placed on supports about 14 feet

asunder, required the same magnitude of blow to break it in the

middle, whether it was struck on the broad side or the narrow one,

and similar blows were required to break a bar of the same length,

the section of which was a square of three inches, and, therefore,

of the same sectional area and weight as the first.

" Another course of experiments tried with the same apparatus

showed, amongst other results, that the deflections of wrought-iron

bars produced by the striking ball were nearly as the velocity of

impact. The deflections in cast-iron are greater than in proportion

to the velocity.
" A set of experiments was undertaken to obtain the effects of

additional loads spread uniformly over a beam, in increasing its

power of bearing impacts from the same ball falling perpendicularly

upon it. It was found that beams of cast-iron, loaded to a certain

degree with weights spread over their whole length, and so attached

to them as not to prevent the flexure of the bar, resisted greater

impacts from the same body falling on them than when the beams

were unloaded, in the ratio of two to one. The bars in this case

were struck in the middle by the same ball, falling vertically through

different heights, and the deflections were nearly as the velocity

of impact."*
*

Rep. of Iron Com., p. x.
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473. Working; strain of cast-iron girders Rale of
Board of Trade Working- strain of cast-iron arches

French rule Proving cast-iron. The reader will observe that

the Commissioners considered one-sixth of the breaking strain

hardly a sufficient limit of safety for cast-iron girders when liable

to percussion arid deflection from moving loads. This inference

was, no doubt, influenced by their experiments on bars which were

much lighter in proportion to their trial loads than ordinary bridge

girders are compared with the loads which traverse them. As a

general rule, one-sixth of the breaking strain may be taken as the

safe working strain for cast-iron girders which are liable to vibra-

tion, as in railway or public bridges, but when the load is stationary

and free from all vibration, such as water tanks, one-fourth of the

breaking strain is safe. When, however, cast-iron girders are

liable to sudden severe shocks, as in crane posts or machinery,

their working strain should not exceed one-eighth of their breaking

strain. The railway department of the Board of Trade has laid

down the following rule for the guidance of engineers in the con-

struction of railways:
" In a cast-iron bridge the breaking weight

of the girders should be not less than three times the permanent
load due to the weight of the superstructure, added to six times

the greatest moving load that can be brought upon it." Notwith-

standing this rule, engineers will do well not to design cast-iron

girders for railway bridges of less strength than six times the total

maximum load, that is, six times the permanent load added to six

times the greatest moving load. The reader who desires detailed

information respecting the practice of our most eminent engineers

during the reign of cast-iron is referred to the evidence attached

to the "
Report of the Commissioners appointed to inquire into

the application of iron to railway structures" in 1849. It seems

certain that the transverse strength of thick rectangular cast-iron

bars is less than that of thin ones (13S), ,but it does not neces-

sarily follow that the strength of large flanged girders is diminished

by the massiveness of the casting, or that they are relatively

weaker than smaller girders of similar section, for the quality of the

iron will, no doubt, materially influence their strength (3483 349).
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Experiments on a large scale can only decide these questions,

which, however, have less importance now than when the Iron

Commission sat in 1849, as it is very unlikely that large cast-iron

girders will be employed in important works when wrought-iron

is available.

Cast-iron can be readily got, on specification, to stand from 7J

to 9 tons per square inch in tension; consequently, the rule of

one-sixth allows an inch-strain of from 1 J to 1J tons for the usual

safe tensile working-strain in the lower flanges of cast-iron girders,

but this material is quite unfitted for tie-bars for the reasons

referred to in 35O and 351. Cast-iron will safely bear 6 or 7 tons

per square inch in compression, provided it be in a form suited to

resist flexure
;
but the effects of flexure will seriously diminish the

safe unit-strain for pillars or unbraced cast-iron arches, in which the

line of pressure may vary so as to alter the calculated unit-strain

very materially, perhaps as much as 50, or even 100 per cent. In

practice, the safe working-strain of cast-iron arches rarely exceeds 3

tons per square inch. For instance, the calculated working strain

in the Severn Valley Bridge carrying the Coalbrookdale Railway,

200 feet span and 20 feet rise, is between 2J and 3 tons per square

inch,* while that of the centre arch of Southwark Bridge, 240

feet span, is about 2 tons per square inch.

The French ministerial limit of working strain for cast-iron in

tension is one kilogramme per square millimetre (= 0'635 tons

per square inch), and in compression five kilogrammes per square

millimetre (= 3-175 tons per square inch), and the following

table, prepared by M. Poir^e, engineer of Fonts et Chaussees,

illustrates some of the best French practice in cast-iron arches. f

*
Proc. Inst. C. E,, Vol. xxvii., p. 109.

t Morin's Resistance des Mattriaux, p. 114.
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I?!
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The direct tensile strength of cast-iron may be tested in the

manner described in 483, but it is also usual to prove its trans-

verse strength by breaking small rectangular bars made of the

same metal and at the same time as the principal castings. The

following tests were applied in the case of the cast-iron sleepers

provided for the Great Indian Peninsula Railway.
" The mixture

of metal is to be such as will produce the strongest and toughest

castings, and is to be approved as such by the consulting engineer.

The contractor must cast twice each day, from the same metal as

that used in the sleepers, two duplicate bars 3' 6" X 2" X I",

and two duplicate castings of the form shown on the contract

drawing, and exactly \" square for a length of \\" in the middle.

One of the two bars must be tested on edge, on bearings 3 feet

apart, by placing weights on the centre thereof, to ascertain its

elasticity and breaking weight; and one of the two castings must

be tested in a suitable machine of approved construction to ascer-

tain the tensile strength of the iron. The company's inspector

will reject all sleepers cast on any day when each of the bars will

not bear 30 cwt. placed on the centre without breaking, or when

each bar does not deflect at least O29 of an inch before fracture,

and when each casting will not bear a tensional strain of 11^ tons

per square inch of section. Three sleepers will also be tested each

day by a weight of 3{ cwt. falling through 5' 6", the same having

previously been subjected to blows from the same weight falling

through 2' 0", 2' 6", 3' 0", 3' 6", 4' 0", 4' 6", and 5' 0" suc-

cessively after the sand foundation (which shall not be more than

24 inches thick under the centre of the sleeper and laid on a cast-

iron bed plate 8 inches thick, and weighing 2 tons,) has been well

consolidated to the satisfaction of the consulting engineer or his

inspector; and whenever every sleeper so tested does not bear

these blows without cracking, or showing other signs of failure,

the day's make will be rejected. Immediately after every sleeper

is cast, it must be protected in a manner which will satisfy the

company's engineer, that the process of cooling will proceed so

slowly, that its strength will not in any degree be diminished by
too rapid or unequal cooling."* Some engineers consider this proof

* Proc. Inst. C. K, Vol. xxx., p. 225.
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rather high, and specify that test bars, 2x1 inch, placed edgeways

on bearings 3 feet apart, shall support a weight on the centre

of 25 cwt., as it appears that sleepers can be obtained which would

stand better, as far as blows went, without using so high a bar test

as that above described. It is a singular fact that there is an

excess of about 16 per cent, in the weight that a 2-inch X 1-inch

test-bar will support when cast on edge and proved as cast, over

that which it will support when proved with the underside as cast

placed at the top as proved, and 8 per cent, over the weight which

the same test-bar will support if cast on its side or end, and proved

on edge.* Hence, cast-iron girders should be cast with the tension

flange downwards in the sand.

474. Working load on cast-iron pillars. Owing to the

want of recorded information it is difficult to assign what propor-

tion of the breaking weight eminent engineers have considered to be

the safe working load for cast-iron pillars. The opinions elicited by

the Commissioners appointed to inquire into the application of iron

to railway structures throw little or no light on the matter, as the

evidence was chiefly confined to the strength of girders under

transverse strain. Navierf gives l-5th of the breaking weight as

the safe load in practice. Francis, J an American engineer, also

gives l-5th; while Morin adopts l-6th. My own experience

leads me to recommend that cast-iron pillars supporting loads free

from vibration, such as grain, should in general not be loaded with

more than l-6th of their calculated breaking weight. In factories

or stores, where strong vibrations from machinery occur, the

working load should not exceed l-8th
;
and if the pillar be liable

to transverse strains, or severe shocks, like those on the ground

floors of warehouses where loaded waggons or heavy bales are apt

to strike against them, the load should not exceed l-10th of the

breaking weight, or even less when the strength of the pillar

depends rather on the transverse strain to which it is liable than

*
Proc. Inst. C.E., Vol. xxx., pp. 228, 267.

f- Application de la Mecanique, p. 204.

J On the Strength of Cast-iron Pillars, p. 17. New York, 1865.

Resistance des Mate">'iaux, p. 106.
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the weight it has to support. For instance, the pressure of wind

against a light open shed, supported by pillars, may produce a

transverse strain which will be very severe compared with that due

to the mere weight of the roof. The same thing may occur if heavy

rolling goods, such as casks or loaves of sugar, are piled up against

the pillar in such a manner as to cause horizontal pressure like

that of a liquid. It is also necessary to take into consideration the

foundations on which the pillars rest, for if these yield unequally,

one pillar may sustain much more than its proper share of load.

Wrought-iron is gradually superseding cast-iron for struts in

machinery; when, however, cast-iron is adopted, it is well that

the working load should, at all events, not exceed l-10th of the

calculated breaking load. In all these cases it is essential to con-

sider carefully whether the pillar is flat bedded or very securely

fixed at the ends, as a slight imperfection in this respect, either

immediate or prospective, will reduce the strength to one-third in

long pillars, and somewhat less in medium pillars, and if there is

any doubt whatever on this point it will be only common prudence

to assume in the calculations that the pillar is imperfectly bedded

(311 3 318). The reader will find practical rules for the thickness

of hollow cast-iron pillars in 334, and examples of calculation from

388 to 389.

WROUGHT-IRON.

475. Effects of repeated deflections on wronght-iron bars

and plate girders. Sir Henry James and Captain Galton made

some experiments in Portsmouth Dockyard for determining the

effects produced by repeated deflections on wrought-iron bars.*

These experiments were made with cams caused to revolve by
steam machinery, which alternately depressed the bars and allowed

them to resume their natural position for a great number of times.

Two cams were used
;
one was toothed on the edge so as to com-

municate a highly vibratory motion to the bar during the deflection
;

the other, a step cam, first gently depressed the bar and then

released it suddenly when the full deflection had been obtained.

The depressions were at the rate of from four to seven per minute,

and the following table gives the principal results :

*
Rep. of Iron Com., App. B., p. 259.
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TABLE III. EXPERIMENTS ON REPEATED DEFLECTIONS OP WROUGHT-IRON BARS,

2 INCHES SQUARE AND 9 FEET LONG BETWEEN POINTS OP SUPPORT.

No. of

experiment.
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permanent set as the statical weight due to the same deflection of

1 inch.

With the view of arriving
" at the extent to which a bridge or

girder of wrought-iron may be strained without injury to its

ultimate powers of resistance, and to imitate as nearly as possible

the strain to which bridges are subjected by the passage of heavy

railway trains," Sir William Fairbairn caused a weighted lever to

be lifted off and replaced alternately, by means of a water-wheel,

upon the centre of a wrought-iron single-webbed plate girder of

the usual construction, with double angle-irons and flange-plates

riveted on top and bottom respectively. The dimensions of the

girder were as follows:*

Extreme length,
- 22 feet.

Length between supports,
- 20 feet.

Extreme depth,
- 16 inches.

Weight of girder,
- - 7 cwt. 3 qrs.

Square inches.

Area of top flange, 1 plate, 4 inches X i inch, - 2*00

2 angle-irons, 2 x 2 X T
5
ff

.
- 2*30

4-30

Area of bottom flange, 1 plate, 4 inches X J inch, TOO

2 angle-irons, 2 X 2 X T
3
ff ,

1 '40

2-40

Web, 1 plate, 15J X J inch, - - 1-90

Total sectional area in square inches, - - 8*60

The area of the | inch rivet holes in the bottom flange, two in

each angle-iron and two in the plate, is equal to *625 square

inches, which reduces the effective flange area for tension from 2*4

to 1*775 square inches. The web being continuous gave some aid

to the flanges, but as it was composed of 9 short plates with

vertical joints and single-riveted covering strips, the amount of

aid given to the tension flange probably did not exceed one-half

the theoretic aid of a perfectly continuous web (1OO), that is, it

probably equalled one-twelfth of the gross area of the web, or

*
Useful Information for Engineers, third series, p. 301.
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0*158 square inches; adding this to the net area of the bottom

flange, we have a total of 1'775 + 0-158 = 1'933 square inches

available for tension, and assuming the tearing strength of the iron

to have been 20 tons per square inch, and the depth for calculation

to be taken from inside to inside of the angle-iron flanges, which

measures 14J inches, we have the breaking weight in the centre,

from eq. 18, as follows :

... 4Fd 4 x (20 x 1-933) x 14-75 _W=-r = - -^^ - = 9-5 tons.

The compression flange, it will be observed, was much stronger than

that in tension, and hence it may be supposed that a larger fraction

than one-twelfth of the web should be added to the lower flange

(488). The extra strength on this account must, however, have

been very small and could scarcely raise the breaking weight beyond
10 tons. Sir William Fairbairn, however, calculated the breaking

weight at 12 -8 tons by an empirical formula derived from the

model tube at Millwall. The following table contains a summary
of the experiments with the corresponding tensile strains, cal-

culated on the supposition that 10 tons was the true statical

breaking weight at the centre, and that 20 tons per square inch

was the tearing strength of the iron.

TABLE V. EXPERIMENTS ON REPEATED DEFLECTIONS OP A SINGLE-WEBBED PLATE-

IRON GIRDER, 16 INCHES DEEP AND 20 FEET LONG BETWEEN POINTS OF SUPPORT.
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Girder repaired by replacing the broken angle-irons on each side, and putting a

patch over the broken plate equal in area to the broken plate itself.
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for the tearing strength of iron is generally injured by punching,

especially if there be too great a clearance between the punch and

die, or if the iron be brittle and, though it is not the practice, it

would be more correct to diminish the gross section by the sum
of the rivet holes multiplied by a factor greater than unity,

perhaps 1/1, or 1*2. It may, perhaps, be supposed more accurate

to add a constant quantity, say Jth inch, to the diameter of each

hole in place of adding a percentage, but it is probable that the

weakening effect of punching is greater the thicker the plate,

and as thick plates have generally larger rivet holes than thin

ones, the percentage allowance will be more accurate in practice-

Good experiments on this subject are much wanted. Meantime,
the weakening effect of punching affords an argument in favour of

drilling holes, especially in hard and brittle materials. Punching
will probably do little injury to soft and ductile iron, or to mild

steel, especially when the latter is subsequently annealed (463).

The following rule has been laid down by the Board of Trade for

the strength of railway bridges.
" In a wrought-iron bridge the

greatest load which can be brought upon it, added to the weight
of the superstructure, should not produce a greater strain on any

part of the material than 5 tons per square inch." This rule is

now confined to parts in tension, in which case the 5 tons is com-

puted on the net area only, while the usual limit of strain in the

compression flanges is 4 tons per square inch of gross area, and, as

the tearing and crushing strengths of ordinary plate iron are re-

spectively 20 and 16 tons per square inch, the foregoing rules are

equivalent to stating that one-fourth of the breaking strain is the

maximum safe working strain for wrought-iron girders which are

subject to vibration like railway bridges, and this is now the

recognized English practice. When wrought-iron girders support

a dead load, like water tanks or grain lofts, they will safely bear

one-third of their breaking strain, but when liable to sudden

severe shocks, as in gantries or cranes, the working strain should

not exceed one-sixth of the computed breaking strain.

The safe tensile working strain for ordinary bar, angle, or tee

iron in girder-work is generally the same as for plates, namely, 5



484 WORKING STRAIN AND [CHAP. XXVIII.

tons per square inch of net section, but bar iron of extra quality,

such as the links of suspension bridges, will safely bear 6 tons per

square inch. Special care is taken with the manufacture of this

class of iron, and it is customary to prove each link individually to

a strain of from 8 to 10 tons per square inch before it is admitted

into the suspension chain, the tearing strength of the iron being not

less than 24 tons per square inch. For merely temporary purposes

wrought-iron will bear safely a tensile strain of 9 tons per square

inch, unless when subject to violent shocks, in which case 6 tons

will be sufficient.

The French rule for wrought-iron railway bridges is that in no

part shall the strain, either of tension or compression, exceed 6

kilogrammes per square millimetre, i.e., 3*81 tons per square inch

of gross section.

427. Gross area available for compression Compress!ve

working strain of wrought-iron Flanges of wrought-iron

girders are generally of equal area. The total sectional area

of a riveted plate is available for compression (flexure being duly

provided against), since the thrust is transmitted through the rivet

just as if it were a portion of the solid plate, for, if the rivet head

be properly hammered up, its shank will upset and fill the hole

completely. Even supposing that the rivet do not perfectly fill

the hole, an exceedingly small motion of the parts, which must

take place before crushing commences, will cause the strain to pass

through the shank. In practice, however, the longitudinal con-

traction of each rivet in cooling will produce an amount of friction

between the surfaces riveted together which is generally sufficient

to resist any movement so long as the strain lies within the usual

working limits (466). The crushing strength of wrought-iron is

generally taken at 16 tons per square inch (897), and the safe limit

of compressive working strain in girder-work is, according to

ordinary English practice, 4 tons per square inch over the gross

area, provided the section is so large that it can without extra

material be put into a form suitable for resisting flexure or

buckling. This is generally the case with the compression flanges

of girders. When, however, a thin sheet, like the web of a plate
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girder, sustains compression, or when the theoretic section of a

strut is small, as in the compression bars of a braced web, it is

necessary to add additional material to prevent flexure or buckling.

Angle, tee, or channel iron are suitable for plate stiffeners or for

short struts; for long struts the plan of internal cross-bracing,

represented in Plate IV., may be advantageously adopted, the

cross-bracing, of course, not being measured as effective area to

resist crushing, since it merely keeps the sides in line, but sustains

none of the longitudinal thrust, and in small scantlings it will be

prudent to limit the maximum compressive working strain to 3

tons per square inch. The working strain of wrought-iron pillars,

when subject to shocks, like the jib of a crane, should not exceed

l-6th of the computed breaking weight ;
with quiescent loads l-4th

is a safe rule. The reader is referred to 33O and the following

articles for the mode of calculating the strength of wrought-iron

pillars of various sections.

When wrought-iron arches have braced spandrils, the ribs are

free from transverse strain and will safely bear as high longitu-

dinal strains as the flanges of girders, but if the spandrils are

not braced, the line of pressure in the ribs may vary under the

influence of passing loads and thus double, or even treble the normal

working strain (819). The extreme compressive strains, produced

by the most unfavourable combination of circumstances in the

wrought-iron arched ribs of the Victoria Railway Bridge, in

four spans of 175 feet each, which was designed by Mr. John

Fowler, are said in no case to exceed 4J tons per square inch.*

The flanges of wrought-iron girders are generally made of equal

or nearly equal area, for the deduction for rivet holes in the tension

flange is compensated by the higher unit-strain in the net area

between the holes which is effective for tensile strain.

428. Shearing: working- strain Pressure on bearing- sur-

faces Knife edg-es. The shearing strength of wrought-iron is

substantially the same as its tensile strength (394), from which it

follows that the shearing working strain of iron rivets or bolts in

ordinary girder-work may equal 5 tons per square inch of section,

* Proc. Inst, C.E., Vol. xxvii., p. 67.
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but, as already stated in 468, the rivet area of a tension joint is

usually about 10 per cent, in excess of what this rule allows, in

order to compensate for accidental inequalities in the distribution

of strain among the rivets. When calculating the area of a plate

web from the total shearing-strain in the manner described in 54,

it is a safe rule to adopt 4 tons per sectional inch of web as the

maximum shearing unit-strain, but this rule gives no idea of the

amount of material requisite for stiffening the web, and which can

only be determined by experience in each separate case (43O).

The bearing surface of a round bar, such as the pin or bolt of a

flat link, is measured by the product of its diameter by the length

of bearing, and it appears from the experiments referred to in

461, that the statical working pressure on a bearing surface of

wrought-iron may equal 1*5 times the safe tensile strain, that is,

it may equal 7*5 tons per square inch of bearing surface. The

pressure of rivets in double-shear against the middle plate, sup-

posing friction does not affect the bearing pressure (466), is often

double of this, and the pressure of the links of a chain against

each other must also be far greater. The rule of the Board of

Trade for the steel knife edges of public chain-testing machines

requires that the pressure shall not exceed 5 tons per linear inch

of knife edge. In my own practice I have frequently put a

pressure of 10 tons on each linear inch, and occasionally 17 tons,

and found no bad effects.

479. Working-strain of boilers Hoard of Trade role-
French rale. The working load of fresh water boilers should

not exceed one-sixth of their bursting pressure, though locomo-

tives are occasionally worked (very unsafely) to one-fourth.

One-seventh of the bursting pressure seems a proper working
load for salt water boilers, as they are liable to greater hardship

than fresh water boilers. The following table will illustrate these

rules in a convenient form, applied to parts in tension ;
the strains

are given in tons per square inch of gross area. The method of

calculating the strength of boiler flues is explained in Chap. XIII.
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TABLE VI. TENSILE WORKING-STRAIN OF BOILERS.
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merely; when in compression, one ton, or 2,240 Ibs. per square

inch, is an ordinary rule, though, properly speaking, the safe

working strain will depend on the strength of the rod to resist

flexure, and will therefore vary, like that of other pillars, with the

ratio of length to diameter.

481. Examples of working: strain in wroug-ht-iron girder
and suspension bridg-es. The following tables contain examples
of the working strains in some important wrought-iron girder and

suspension bridges. Several of the suspension bridges in Table

VIII. have toll-gates which prevent the occasional load from

reaching so high as 80 Ibs. per square foot of platform. There

are also regulations to prevent horses or vehicles from going faster

than a walking pace. See "
Working Load on Public Bridges

"

near the end of this chapter.
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483. sirens;* h and quality of materials should be stated
in specifications Proof strain of chains and flat liar links

Admiralty tests for plate-iron. In drawing- up specifications

for girders, ships, or boiler-work, it is well to specify the tearing

strength and quality of the materials. Plates may be tested by

tearing asunder samples of the following shape [7^ ^ in a

proving machine, several of which are now to be found throughout
the kingdom. The amount of elongation of wrought-iron or steel

under tensile strain is a test of toughness, a most desirable

quality for many purposes, though of little importance in the

compression flanges of girders. In my own practice I require the

tensile set after fracture (ultimate elongation,) of ship plates and

tension plates of girders to be not less than 5 per cent, of their

original length, when torn with the grain ; at right angles to the

grain the set is generally much less, perhaps only 1 or 2 per cent.

I also require their tensile strength to be not less than 20 tons

per square inch with the grain, and 18 tons across the grain (3533

3533 356). In proving cast-iron, care should be taken to round

off the arrises of the pin-holes by which the sample is suspended,

so that the strain may pass accurately through its axis (35O).

Chains are now tested in proving machines sanctioned by the Board

of Trade (38O to 383), and it is customary also to prove all the

flat bar links of suspension bridges to 9 or 10 tons per square

inch, but the proof strain should in no case exceed the limit of

elasticity, say 12 tons per square inch, lest the ductility of the

iron be impaired and brittleness result (4O9).

The following are the Admiralty tests for wrought-iron ship

plates :

PLATE-IKON (FIKST CLASS).
B.B.

Tensile strain per ( Lengthways, - -22 tons,

square inch.
'

Crossways,
- 18

FORGE TEST (HOT).

All plates of the first class, of one inch in thickness and under, should be of such

ductility as to admit of bending hot, without fracture to the following angles :

Lengthways of the grain,
- 125 degrees.

Across, - - - - - - - - 90
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FORGE TEST (COLD).

All plates of the first class should admit of bending cold without fracture, as

follows :

With the grain.

1 in. and \% of an inch in thickness to an angle of 15 degrees.

I IS 20

I -H 25

I, A 4 35

TV i, I 50

A i >, 70

T
3
F under, 90

Across the grain.

I in., }%, |, and | of an inch in thickness to an angle of 5 degrees.

!> T%> 4 15

TV I 20

AM* 30

& under, 40

PLATE-IRON (SECOND CLASS).
B.

Tensile strain per ( Lengthways, - - 20 tons.

square inch.
'

Crossways,
- - 17

FORGE TEST (HOT).

All plates of the second class of one inch in thickness and under, should be of such

ductility as to admit of bending hot, without fracture, to the following angles :

Lengthways of the grain,
- - 90 degrees.

Across, - - 60

FORGE TEST (COLD).

All plates of the second class should admit of bending cold without fracture, as

follows :

With the grain.

1 in. and \% of an inch in thickness to an angle of 10 degrees,

i tt 15

I
.

tt 20

I. A 4
'

30

h i 45

A i ,, 55

fe under, 75

Across the grain.

f in. and ^ of an inch in thickness to an angle of 5 degrees.

8 A 4 ,, 10

TS I 15

tk i 20

A under, 30
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Plates, both hot and cold, should be tested on a cast-iron slab, having a fair surface,

with an edge at right angles, the corner being rounded off with a radius of an inch.

The plate should be bent at a distance of from 3 to 6 inches from the edge.

It is intended that all the iron shall stand the forge tests herein named, when taken

in four feet lengths, across the grain ;
and the whole width of the plate, along the grain,

whenever it may be necessary to try so large a piece ; but a smaller sample will

generally answer every purpose.

All plates to be free from lamination and injurious surface defects.

One plate to be taken indiscriminately for testing from every thickness of plate,

sent in per invoice, provided they do not exceed fifty in number. If above that

number, one for every additional fifty, or portion of fifty.

Where plates of several thicknesses are invoiced together, and there are but few

plates of any one thickness, a separate test for plates of each thickness need not be

made ; but no lot of plates of any one thickness must be rejected before one of that

lot has been tested.

" The sample pieces cut from the plate, after having their edges

planed, are secured one by one to the cast-iron slab, about 3 or 4

inches from its edge, and are then bent down by moderate blows

from a large hammer. The result may be greatly affected by

humouring and coaxing on the part of the hammer-man. By
striking the iron in the direction of the fibre the workman can

make an inferior iron bend with less symptoms of distress than a

better iron may exhibit when used more roughly. The same

leniency may be shown to the iron by bending it under a steady

pressure instead of by blows. The blows should, therefore, be

delivered not too lightly, and about square to the surface, and the

first signs of fracture should be observed and recorded. The

samples for the hot test are heated until they assume an orange

colour, and are then bent down to the prescribed angles in the

same way as in the cold test."*

STEEL.

483. Working strain for steel Steel pillars Admiralty
tests for steel plates. We cannot yet infer from extensive

practice what is the safe working strain for steel. Probably one-

fourth of the tearing strain, or 8 tons per square inch, is a safe

tensile working strain for mild steel plates such as those described

in 36O. The most important steel girder bridge which has come

* Keed on Shipbuilding, pp. 385, 395.
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under my notice is that constructed of puddled steel by Major

Adelskold, of the Royal Swedish Engineers, for the Herljunga

and Wenersborg Railway in Sweden. The girder is an inverted

bowstring, carrying the railway in one span of 137J feet over

a rapid torrent.
" The dimensions are calculated for a strain of

8 tons per square inch, every portion having been tested to 16

tons per square inch before being put in place."* The crushing

strength of steel is so high that 12, or even 15 tons, per square

inch is perhaps a safe compressive working strain when the material

is not permitted to deflect, but when in the form of a solid pillar,

the strength of mild steel seems to be only about If times that of

wrought-iron (336). Experiments are, however, still wanting to

determine this, and, until such are made, it will scarcely be safe to

adopt for steel pillars a higher load than 50 per cent, above that

which a similar section of wrought-iron would safely carry. The

Admiralty tests for steel plates for shipbuilding are as follows :

Tensile strain per ( Lengthways, - 33 tons.

square inch.
'

Crossways, - 30

The tensile strength is in no ease to exceed 40 tons per square inch.

FOBGE TEST (Hor).

All plates of one inch in thickness and under, should be of such ductility as to admit

of bending hot, without fracture, to the following angles :

Lengthways of the grain, - 1 40 degrees.

Across the grain, - 110

FORGE TEST (COLD).

All plates should admit of bending cold, without fracture as follows :

With the grain.

1 inch in thickness to an angle of 30

I 40

I 50

I 60

k 70

& ,, 75

I 80

T^T 85

and under, 90

Across the grain.
Degrees.

1 inch in thickness to an angle of 20

i 25

I 30

I 35

k 40

A 50

ff ,, 60

A n 65

and under, 70

The edges should be drilled or sawn, and not punched, in cutting the sample from the

plate. In other respects they should be treated as already described for wrought-iron.f

* The Engineer, VoL xxii., p. 240, 1866.

+ Reed on Shipbuilding, p. 399.
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Steel rivets are very brittle and their heads frequently fly off,

and accordingly it is usual to unite steel plates with iron rivets, of

much larger size, however, than would be required for iron plates

of the same thickness.

TIMBER.

484. F.iisrlisli , American and French practice Permanent

working: strain Temporary working; strain. The use of

timber in important structures is now so rare in the United

Kingdom that it is difficult to assign the working strain which

English engineers consider safe. At the Landore viaduct, con-

structed by the late Mr. Brunei of creasoted American pine

in compression, with wrought-iron in tension, the timber was

generally calculated to bear 373 Ibs. per square inch, though
in some parts of the structure the strain was allowed to reach

560 Ibs., or 50 per cent, more.* At the Innoshannon lattice

timber bridge, erected by Mr. Nixon on the Cork and Bandon

railway, the ordinary working strains in the flanges were 484 Ibs.

compression, and 847 ibs. tension per square inch. After 16

years' life this bridge was so decayed that it became unsafe and

was replaced by a wrought-iron structure in 1862. f In America

large timber bridges are still common, and General Haupt, a

distinguished American engineer, "has not considered it safe to

assign more than 800 Ibs. per square inch as a permanent load, and

1,000 ft>s. as an accidental load,"t and in a paper on American

timber bridges, read by Mr. Mosse at the Institution of Civil

Engineers in 1863, it is stated that about 900 Ibs. per square inch

is usually considered by American engineers to be the limit of safe

compression for timber framing. Navier and Morin, distinguished

French authorities, recommend that the working strain of timber

should not exceed one-tenth of the breaking strain
|| and, owing to

its liability to decay, this rule seems safe practice for structures

* Proc. Inst. C.E., Vol. xiv., p. 500.

t Trans. Inst, C.E. of Ireland, Vol. viii., p. 1.

J Haupt on Bridge Construction, p. 62.

Proc. Inst. C.E., Vol. xxii., p. 310.

II Navier, p. 103, and Morin, pp. 51, 64, 68.
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which are exposed to the weather, but when timber is under cover

one-eighth of the breaking strain is a safe working load. For

merely temporary purposes a strain of one-fourth of the breaking

weight is probably safe, provided there are no shocks, as Mr. Barlow,

referring to tensile strain, states that he "
left more than three-

fourths of the whole weight hanging for 24 or 48 hours, without

perceiving the least change in
the^state

of the fibres, or any
diminution of their ultimate strength."* With reference to

transverse strain, however, Tredgold states that "
one-fifth of the

breaking weight causes the deflection to increase with time, and

finally produces a permanent set,"f and the reader should recol-

lect that the coefficients of rupture of timber, tabulated in 65,

were derived from selected samples of small size and require

therefore to be reduced to about one-half when applied to ordinary

timber of large size. The method of calculating the strength of

timber pillars has been already described in 337 and 338.

485. Short life of timber bridges Risk of fire. In the

paper on American timber bridges already referred to, Mr. Mosse

states that they do not last in good condition more than 12 or 15

years, the timber being generally unseasoned and shrinking much

after being framed. When covered in to protect them from the

weather " and cared for, any shrinkage of the braces being im-

mediately remedied, it is believed these bridges will remain in

good condition double the usual time, or about twenty-five years."

Some of the old Continental bridges, however, lasted much longer

than this, but fire seems to be as common an agent of destruction

as time in America, where doubtless, the long dry summers give it

every advantage.

486. Working load on piles depends more npon the
nature of the ground than upon the actual strength of the

timber Working load at right angles to the grain. As

piles in foundations beneath masonry are buried in the ground,
which itself supports an uncertain share of the weight of the

superstructure, it is impossible to say exactly what weight rests on

the pile and how much on the surrounding soil. The piles in the

* Barlow on the Strength of Materials, p. 24. f Tredgold's Carpentry, p. 57.
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foundations of the High Level Bridge at Newcastle, erected by
Mr. R. Stephenson, were 40 feet long and driven through sand and

gravel till they reached the solid rock. One of these foundation

piles was tested with a load of 150 tons, which was allowed to

remain several days, and upon its removal no settlement whatever

had taken place. The piles are four feet from centre to centre,

filled in between with concrete made of broken stone and Roman

cement, and the utmost pressure that can come upon a single pile

is 70 tons, supposing none of the weight to be carried by the inter-

vening planking and concrete.* The piles in the Royal Border

Bridge, erected by Mr. Stephenson over the river Tweed, in 1850,

are American elm driven from 30 to 40 feet into gravel and sand
;

the pressure on each of these is also 70 tons, neglecting any

support derived from the intervening soil,f and this is the severest

load on piles I find recorded.

Assuming the piles in these two instances to be 15 inches square,

and that no part of the weight was supported by the ground

between the piles, the pressure does not exceed =^ = 45 tons per

square foot, or 700 Ibs. per square inch
; if, however, the piles

were only 12 inches square, the pressure is nearly 1100 Ibs. per

square inch. Some of the uprights in the lofty scaffolding on

which the land spans of the Britannia Bridge were built carried 28

tons per square foot, or 435J Ibs. per square inch. The horizontal

timbers, however, were somewhat compressed under this load.J The

working load on timber piles, surrounded on all sides by the ground,

may vary, according to Rondelet, from 427 to 498 fibs, per square

inch, and Professor Rankine
|| says:

" It appears from practical

examples that the limits of the safe load on piles are as follows :

" For piles driven till they reach the firm ground, 1000 Ibs. per

square inch of area of head (= 64'3 tons per square foot).

" For piles standing in soft ground by friction, 200 Ibs. per square

inch of area of head" (= 12*85 tons per square foot).

*
Encycl. Brit., Art. " Iron Bridges," Vol. xii., Part iii., p. 604.

t Proc. Inst. C.K, Vol. x., p. 224. Clark on the Tubular Bridges, p. 549.

Morin's Resistance des Materiaux, p. 71. II Manual of Civil Engineering, p. 602.

2 K
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Professor Rankine's rule is based on sound principles, for the

nature of the ground, and the resistance which it offers to the pene-

tration of the piles, have generally more to do with their safe work-

ing load than the strength of the timber has. As far as the latter

alone is concerned, we might safely load piles surrounded by the

ground with l-5th of the crushing weight of wet timber, which,

according to Hodgkinson's experiments, is equivalent to a load of

about l-10th of the crushing weight of dry timber (3OO). When,

however, loaded piles project above the surface of the ground

they act in the capacity of pillars, and their strength accordingly

should exceed that of piles surrounded by earth. The safe work-

ing load of timber at right angles to the grain is about one-third

of that lengthways. For instance, 300 Ibs. per square inch is a

sufficient load for pine or fir cross-sleepers, and, if we estimate that

the pressure from the driving wheel is equal to 8 tons when the

engine is running, the bearing surface of the rail in a cross-sleeper

road should not be less than from 50 to 60 square inches. Three-

fourths of this will probably be sufficient if the sleepers are made

of hard wood. A similar rule applies to timber wall-plates, such

as those which support the ends of girders.

FOUNDATIONS, STONE, BRICK, MASONRY, CONCRETE.

487. Working load on foundations of earth, clay, gravel
and rock. Professor Rankine states that " the greatest intensity

of pressure on foundations in firm earth is usually from 2,500 Ibs.

to 3,500fts. per square foot, or from 17 Ibs. to 23 Ibs. per square

inch," and that " the intensity of the pressure on a rock foundation

should at no point exceed one-eighth of the pressure which would

crush the rock."* Foundations should be placed sufficiently deep

to protect them from the influence of frost or running water, nor

should it be forgotten that excavations and pumping operations in

the neighbourhood of buildings frequently cause subsidence of the

foundations and superstructure. The following table contains a

few examples of heavy pressures on foundations.

*
Civil Engineering, pp. 380, 377.
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Observations.
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4. Working? load on rabble masonry* brickwork* con-

crete and ashlar-work. The crushing strength of building

materials has been already given in Chap. XIV. The working

load on rubble masonry, brickwork, or concrete, rarely exceeds one-

sixth of the crushing weight of the aggregate mass, and this seems

a safe practical limit. General Morin, however, states that mortar

should not be subject to a greater pressure than one-tenth of its

crushing weight.* The ashlar voussoirs of an arch, where the line

of thrust may vary considerably from the calculated direction,

should not be subjected to a greater (calculated) pressure than one-

twentieth of that which would crush the stone. It is safe to apply

the same rule to all ashlar-work, as it is very difficult, if not

impossible, to command a perfectly uniform pressure throughout

the whole bed of each stone, and a slight inequality in the line of

pressure may cause splintering or flushing at the joints. Vicat's

experiments on plaster prisms (339) and the examples of pressure

given in the following table, seem to show that the weight on

stone columns may sometimes reach as high as one-tenth of the

crushing strength of the stone. This, however, is a much severer

load than is usual in modern practice and cannot be recommended

as very safe.

Ex. What is the safe load per square foot for brickwork in cement, similar to that

whose crushing weight is given at p. 238. Here, the crushing weight = 521 Ibs. per

square inch = 33*5 tons per square foot, and we have,
OO. K

Answer, Safe working load = - =5*6 tons per square foot.
6

*
Resistance des Materiaux, p. 51.
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TABLE XII. EXAMPLES OF WOKKING LOADS ON
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each line, as this is a denser load than that of an ordinary goods
train.*

Until lately it has been usual to take one ton per running foot

on each line as the ruling load for engines. This, however, is

scarcely safe practice, since many engines now exceed this, as shown

by the following tables, for the first of which I am indebted to

A. M'Donnell, Esq., Locomotive Superintendent of the Great

Southern and Western Railway, Ireland, and for the second to

J. Ramsbottom, Esq., late Locomotive Superintendent of the

London and North Western Railway.

* The following memorandum shows the weight of a train of wagons loaded with

sulphur ore on the Dublin, Wicklow and Wexford Railway :

"
Weight of mineral engine loaded, 27 tons.

tender do. 17 do.

Length of engine and tender, buffer to buffer, 44 feet.

Wagon, empty 4 tons, loaded 12 tons ; length 18 feet, out to out of buffers. Two
other descriptions of wagons, one 12 feet, and the other 14 feet 6 inches long, taking

one ton less and weighing about 5 cwt. less. A mineral train of engine, 20 wagons
and van, will weigh about 280 tons and its length will be about 400 feet when

buffers are close up ;
when running, somewhat longer."
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Occasional monster engines occur on some railways, generally

where the gradients are unusually steep, as illustrated in the

following table :

TABLE XVI. EXAMPLES OF MONSTER ENGINES ON VARIOUS RAILWAYS.

1
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long and weighing 32 tons on a twelve-feet wheel base, rest on the

centre of a bridge 32 feet in length, the strain in the flanges is

obviously greater than would occur if 42'7tons(z= 32 X 1^) were

distributed uniformly over the whole length of the bridge. A
40-foot bridge would, it is true, have the weight of only one such

engine on the centre at a time, and if the load on the middle pair

of wheels equal 1 6 tons, and that on the leading and trailing pairs

(6 feet on either side of the centre), equal 8 tons respectively, the

equivalent load concentrated at the centre of the bridge is 27*2

tons, or 54*4 tons distributed. If there were three such engines in

a row, the pressure might be slightly increased by the weight on

the leading and trailing wheels of the extreme engines, each of

which would have one pair of wheels, or 8 tons, resting on the

bridge within 2 feet of the abutments. This is equivalent to Tti

tons concentrated at the centre, or 3*2 tons distributed over the

bridge. Adding this to the 54'4 tons due to the central engine, we

have a total weight equivalent to a distributed load of 57*6 tons, or

1'44 tons per running foot. This arrangement of engines produces

the greatest strain at the centre of the flanges. Again, two such

engines might stand with their buffers in contact at the centre of the

40-foot bridge, and, though their outer ends would project beyond
each abutment, their collective wheel base would cover only 36 feet

of the bridge. This arrangement of engines produces greater

strains than the former near the ends of the flanges. Indeed, these

end strains will in some cases slightly exceed those given by the

following rules, but this is compensated for by the flanges being

generally made heavier near the ends than theory requires (437).

49O. Standard working: loads for railway bridges of

various spans. The following tables are intended to give the

results of the preceding observations in a concise form. They are

based on six assumptions :

1. The working load for railway bridges 400 feet in length and

upwards does not exceed | ton per running foot on each line.

2. No more locomotives than will cover 100 feet in length follow

each other without interruption; hence, the working load per

foot diminishes as the span increases from 100 feet up to 400 feet.
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3. Engines may be arranged on bridges less than 100 feet long

so as to produce greater strains than would be due to the engine

load if it were of uniform density ; hence, the equivalent working
load per foot increases as the span diminishes from 100 feet

downwards.

4. Bridges less than 40 feet in span are subject to concentrated

loads from single engines, as well as to extra deflection from high-

speed trains.

5. The standard locomotive is assumed to be 24 feet long and to

have 6 wheels with a 1 2 feet base
;
to have half its weight resting

on the middle wheels, and one-fourth on the leading and trailing

pairs respectively, which are supposed to be at equal distances on

either side of the middle wheels.

6. Standard Engines are assumed to weigh 24 tons, 30 tons, and

32 tons, according to their construction. This makes the standard

load 1 ton, 1J ton, or 1^ ton per foot run of single line, according

to the weight of the engines which work it, but it is safest to take

the higher standards for the railways in Great Britain, as they are

so interlaced that engines may pass from one line to another, and it

is quite possible that we have not yet arrived at the limit of weight.

BRIDGES FROM 40 TO 400 FEET IN LENGTH.

If the standard working load (the heaviest engine) on a 100-foot

bridge weigh 1 ton per foot, while that on a 400 -foot bridge weighs

75 tons per foot, the difference (= '25 ton per foot) must be

gradually distributed among the intervening 300 feet; in other

25
words, the difference for each 10 feet in length = -^ = '0083 tons.

ou

The differences for the other standards may be found in a similar

way, and the following table contains the values of the working

loads corresponding to the three standards for bridges of various

lengths between 40 and 400 feet.
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TABLE XVII. WORKING LIVE LOADS FOB EAILWAY BRIDGES

FROM 40 TO 400 FEET IN LENGTH.

Length
of bridge
in feet.
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TABLE XVIII. WORKING LIVE LOADS FOE RAILWAY BRIDGES

UNDER 40 FEET IN LENGTH.

Length
of bridge
in feet.
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in the fact that the bracing of the central parts of small girders

is for practical reasons generally made stronger than theory

requires (436), and it will generally be found sufficient to calculate

the web strains on the supposition that the passing load is of

uniform density, and equal in weight per running foot to the

working loads given above.

493. Proof load of railway bridges English practice

French Government rule. No definite rule has been yet made

by the Board of Trade for the proof load of railway girder bridges,

but it is a common practice on the inspection of any important

bridge to load each line with as many engines and tenders as the

bridge will hold, and measure the corresponding deflection. This

proof is generally assumed to vary from 1 ton per running foot on

the longer bridges to 1J ton on the shorter ones ; but when a bridge

exceeds a certain span, say 150 feet, it is obviously unreasonable to

cover it with heavy engines, and ballast wagons may be used along

with two or three engines so as to bring the proof load more in

accordance with Table XVII.

The following are the French Ministerial regulations for the

proof loads of wrought-iron railway bridges :

a. For bridges under 20 metres each span, a dead load of 5,000

kilogrammes per running metre of each line (= T5 tons per running

foot).

b. For bridges exceeding 20 metres each span, a dead load of

4,000 kilogrammes per running metre of each line (= l"2 tons per

running foot), but in no case less than 100,000 kilogrammes.

c. In addition to the foregoing proof by dead weight, a train

composed of two engines (each weighing with its tender at least

60 tons), and wagons (each loaded with 12 tons), in sufficient

number to cover at least one span, is driven across at a speed of

from 20 to 35 kilometres (12 to 22 miles) per hour.

d. A second trial is made by driving at a speed of from 40 to

70 kilometres (25 to 43 miles) per hour a train composed of two

engines (each with its tender weighing 35 tons), and wagons loaded

as in ordinary passenger trains, in sufficient number to cover at

least one span.
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e. For bridges with two lines the trains are made to traverse each

line, at first in parallel, and then in opposite directions so that the

trains may meet at the centre.

WORKING LOAD ON PUBLIC BRIDGES AND ROOFS.

493. Hen marching: in step and running- cattle are the
severest loads on suspension bridges A crowd of people is

the greatest distributed load on a public bridge French
and English practice 1OO Ibs. per square foot recom-
mended for the standard working load on public bridges
Public bridges sometimes liable to concentrated loads as

high as 18 tons on one wheel. It is generally considered

that infantry marching in step will strain suspension bridges

far more severely than any other form of passing load. The

actual dead weight of troops on the march is said to be about

35 Ibs. per square foot, but this statical load does not represent

the true strain due to troops marching in step ; on this subject

Drewry came to the following conclusions :

"
1st, That any body

of men marching in step, say at three to three and a half miles

per hour, will strain a bridge at least as much as double their

weight at rest
; and, 2nd, that the strain they produce increases

much faster than their speed, but in what precise ratio is not

determined. In prudence, not more than one-sixth of the num-

ber of infantry that would fill a bridge, should be permitted to

march over it in step; and if they do march in step, it should

be at a slow pace. The march of cavalry, or of cattle, is not so

dangerous; first, because they take more room in proportion to

their weight; and secondly, because their .step is not simul-

taneous."* Referring to the Niagara Falls Suspension Bridge

Mr. Roebling observes " In my opinion a heavy train, running at

a speed of twenty miles an hour, does less injury to the structure

than is caused by twenty heavy cattle under a full trot. Public

processions marching to the sound of music, or bodies of soldiers

keeping regular step, will produce a still more injurious effect."f

A crowd of people constitutes the greatest distributed load on a

*
Drewry on Suspension Bridges, p. 190.

t Papers and Practical Illustrations of Public Works, p. 29. Weale, London.
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public bridge, and 15 adults are generally estimated to weigh

1 ton, which gives an average of 149*3 fts. to each adult. Different

statements, however, have been made respecting the number of

people that can stand in a given space, and in order to test this

I packed twenty-nine Irish artisans and one boy, taken from a

forge and fitting shop, and weighing collectively 4,382 fts. or

146 fts. per individual, on a weigh-bridge 6' I" X V 10" = 29'4

square feet. In this experiment the men overhung the edges of

the weigh-bridge to a slight extent and gave too high a result,

and accordingly, on another occasion I packed 58 Irish labourers,

weighing 8,404 Ibs. or 145 fts. a man, in the empty deck-house

of a ship, 9' 6" X 6' 0" = 57 square feet ; this gives a load of

147'4 fts., or very nearly one man per square foot, and is, I believe,

a perfectly reliable experiment. Such cramming, however, could

scarcely occur in practice except in portions of a strongly excited

crowd, but I have no doubt that it does occasionally so occur.

The standard proof load for suspension bridges in France was

formerly 200 kilogrammes per square metre, = 41 fts. per square

foot.* This may be a sufficient standard for bridges with gate-

keepers at the ends to prevent overcrowding, but it is obviously

insufficient for bridges which are free to the public, especially in

the vicinity of towns, and modern French practice seems to have

raised the standard to 82 fts. per square foot.f Drewry adopted

70 fts. per square foot of platform as the greatest load that a public

bridge would sustain if covered with people.! Tredgold and Pro-

fessor Rankine estimate the weight of a dense crowd at 120 fts. per

square foot, and the late Mr. Brunei is said to have used 100 fts.

in his calculations for Hungerford Suspension Bridge. Mr.

Hawkshaw adopted 80 fts. per square foot for the footpaths of

Charing Cross Bridge, | and (in conjunction with Mr. W. H.

Barlow) 70 fts. for the Clifton Suspension Bridge,f where there are

*
Drewry on Suspension Bridges, p. 113.

t Trans. Soc. ofEny.for 1866, p. 197.

J Drewry on Suspension Bridges, p. 189.

Tredgold's Carpentry, p. 169, and Rankine's Civil Engineering, p. 466.

II Proc. Inst. C. ., Vol. xxii., p. 534.

U Idem, Vol. xxvi., p. 248.
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toll-gates and regulations that carriages and horses shall cross at a

walking pace. In my own practice, I adopt 100 ft>s. per square
foot as the standard working load distributed uniformly over the

whole surface of a public bridge, and 140 ft) s. per square foot for

certain portions of the structure, such, for example, as the foot-

paths of a bridge crossing a navigable river in a city, which are

liable to be severely tried by an excited crowd during a boat race,

or some similar occasion. Public bridges are also subject to con-

centrated loads at single points of quite as severe a character as

those to which railway bridges are liable
; if, for instance, a marine

boiler, a large cannon, an iron girder, a heavy forging or casting

be conveyed across a public bridge, the weight resting on a single

pair of wheels may reach or even exceed 16 tons. For example,

the crank shaft of H.M. armour-plated ship Hercules weighing,

shaft and lorry, about 45 tons on four wheels wras refused a

passage across Westminster iron bridge in 1866 for fear of injury

to the bridge, and had to be conveyed across Waterloo stone

bridge,* and I am informed that even much lighter weights are

habitually sent round by the stone bridge. It is necessary there-

fore to make not only the main ribs and cross-girders, but every

part of the sheeting or platform on which the road material rests,

strong enough to bear heavy local loads, which, as we have seen

in the foregoing instance, may sometimes reach nearly 12 tons on

a single wheel.

494. Weight of roofing materials and working load on
roofs Weight of snow Pressure of wind against roofs.

The following table contains the weights of various roofing

materials, exclusive of framing, which is given separately.

*
Engineer, Vol. xxii., p. 298, Oct., 1866.



518 WORKING STRAIN AND [CHAP. XXVIII.

TABLE XIX. WEIGHTS OF VARIOUS ROOFING MATERIALS.

Kind of covering.

Lbs. per square
foot of roof

surface.

Copper,

Lead, -

Zinc, 13 to 16 zinc gauge,

Corrugated iron, 20 to 16 B. W. G., -

Slating, first quality,
-

Do., second quality,

Rendering of Mortar 4 inch thick,

Stone slate,

Plain tiles,

Pantiles,

Thatch of straw,

Ordinary timber framing for slated roofs,

Boarding inch thick,

Do. IJ do.,

I inch glass, exclusive of sash, bars, or frames,

1-0

6 to 8

1-5 to 2

2-5 to 4

6 to 7

8 to 9

5 to 6

24

18

6-5

6-5

5 to 6

2-5

4-2

3-5
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The following table gives the size and weight of Welsh slating,

and the number of squares (100 square feet) of roof each mil. of

1,200 slates will cover, 4 inches being allowed for lap.

TABLE XX. WEIGHT OF WELSH SLATING.

Kind of slate.
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When the weight of the covering per square foot, and the

distance of the principals apart, are constant for roofs of different

spans, the weights of the principals will vary nearly as the squares

of the spans (S74), and if estimated per square of ground, directly

as the spans ; acting on this rule, Mr. W. H. Barlow states that

with an ordinary truss, the distance between the principals being
30 feet, and the covering being boarding, slating and glass, the

weight of metal required in the principals can be expressed

approximately in tons per square of ground covered (100 square

feet), by dividing the span in feet by 320, which gives the fol-

lowing weights for different spans :

Span of roof in feet. Weight of Principals in tons,

per square of ground covered.

80 - -250

120 - -375

160 - -500

200 - -625

240 - -750

The previous remarks apply more especially to large roofs whose

principals are far apart. In smaller roofs, say under 120 feet span,

it is unusual to place the principals farther apart than from 8 to

12 feet, and Mr. Henderson states the results of his experience

regarding these in the following terms.*
" If a roof was to be covered with slates, either laid upon iron

laths, or upon boarding, for ordinary spans, the principals would be

fixed 8 feet apart, from centre to centre
;
whilst if the roof was to

be covered with corrugated iron, either painted or galvanized, the

principals would be 12 feet apart, from centre to centre, and purlins

of T iron would be used to carry the corrugated iron. The

distance of 8 feet apart for the principals, in the former case, was

fixed by the fact of that being the greatest limit to which it was

safe to go with the ordinary L iron laths, in one case, and 1^ inch

boarding in the other. The distance of 12 feet apart, for the

principals of roofs covered with corrugated iron was arrived at, by
that being about the limit to which purlins of T iron 4 inches deep

*
Proc. Inst. C.K, Vol. xiv., p. 268.
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could be applied, and from the fact of the same strength which

would suffice for principals, placed at distances of 8 feet apart for a

slated roof, being also sufficient when placed at 12 feet apart, if the

roof was covered with corrugated iron, on account of that covering,

with its supports, being so much lighter than a covering of slates

with their supports, that expression,
*

supports,' being intended to

apply only to the laths and the boarding, or purlins, as the case

might be.* The four descriptions of coverings, including every-

thing except the principals themselves, might be stated to be of the

following values per square (in the year 1855):

"1st. A covering consisting of L iron laths and slating, including

the laths, slates, gutters, skylights, louvre standards and blades,

rain-water pipes, glass, and painting complete, at 5 10s. per square.
" 2nd. A covering consisting of 1^ inch beaded boarding, grooved

and tongued with iron tongues, including the boarding, slates,

gutters, skylights, louvre standards and blades, rain-water pipes,

glass and painting complete, at 5 17s. 6d. per square.
" 3rd. A covering consisting of T iron purlins and corrugated

sheet iron No. 18 B.W.G., painted with four coats on each side,

including the purlins, the sheet iron covering, the skylights, the

louvre standards and blades, rain-water pipes, glass, and painting

complete, at 6 12s. 6d. per square.
" 4th. A covering consisting of T iron purlins, and corrugated

galvanized sheet iron No. 18 B.W.G., including the purlins, the

sheet iron covering, the skylights, the louvre standards and blades,

rain-water pipes, glass, and painting complete, at 7 per square.
" The whole of the above calculations were based upon the case

of a roof of 60 feet span in the clear, from centre to centre of the

shoes, with one-third of the entire surface of covering glazed, and

with a raised louvre over the centre, for ventilation. For roofs of

60 feet square, such as the above covering was intended for, the

* " This is perhaps not quite correct, because, although the principals and covering are

much lighter, yet in order to make a fair comparison, the same strength ought to be

provided for wind and weather
;
but the truth is, that corrugated iron covering has

generally been introduced with a view to economy, and the principals have been made,

even comparatively, somewhat lighter and not so strong as for slated roofs."
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principals placed in the one case 8 feet apart, from centre to centre,

and in the other case 12 feet apart, from centre to centre, would

weigh about 18 cwt. and cost about 25. In the one case each

principal would serve for about five squares of roofing, measured on

plan, and in the other case for about seven squares and a half.

It therefore followed, that the weight per square, in the one case,

would be about 3 cwt. 2 qrs. 24 ft>., and in the other case, about

2 cwt. 1 qr. per square, whilst the cost, in the one case, would be

5 per square, and in the other case, a little more than 3 10s.

The average weight of covering, if slating was used, would be

about 9 cwts. per square, and if galvanized iron was used it would

not exceed 5J cwts. per square. The foregoing facts, in reference

to covering, might be considered to hold good for all cases, where

a similar description of roofing was used, with principals 8 feet

apart in the one case, and 12 feet apart in the other, and, of course,

it would be understood that these dimensions were given as the

extreme limits. If the principals were fixed further apart, the

strength of the supports of the covering must be increased, and

that would augment the expense. For instance, taking a roof

where the principals were fixed 24 feet apart, from centre to

centre, the purlins would have to be increased in strength to such

an extent as would double the price per square for the purlins

themselves, but the expense of the other part of the covering would

not be altered. As already stated, for a roof of 60 feet span, the

principals themselves would weigh 18 cwts. each, and these prin-

cipals might be used either 8 feet apart or 12 feet apart, according

to the covering adopted. For roofs of greater spans the weight of

the principals would increase as the squares of the span (the load per

superficial foot and the pitch of the rafter being the same), so that

the weight of a principal, for a roof of 120 feet span, would be

72 cwts., but of course some trifling alterations in the weight might

arise from variations in the details and connexions."

Morin states that snow weighs ten times less than water, and

that it may accumulate on roofs to half a metre, or nearly 20

inches in depth, when it will weigh 10 ft>s. per square foot.* Mr.

* Resistance des MaUriaux, p. 382.
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Zerah Colburn estimates that the weight of saturated snow on

bridges in America is equal to 6 inches of water, or 30 ibs. per

square foot over the whole floor of a bridge.* The maximum

pressure of wind against bridge girders has been already given in

44O as equivalent to a horizontal pressure of 25 ibs. per square

foot of vertical surface. The slope of a roof must greatly diminish

this, and it will be sufficient to assume the maximum eifort of the

wind against a sloped or curved roof to be equivalent to a down-

ward pressure of 20 ibs. per square foot, acting separately on each

side. For ordinary roofs in the English climate it will be

sufficiently accurate if we calculate their strength on the suppo-

sition that they are liable to the following loads:

1. A uniform load of 40 Ibs. per square foot of ground surface,

distributed over the whole roof.

2. A uniform load of 40 Ibs. per square foot of ground surface

distributed over the weather side of the roof, and 20 ibs. on the

other side which is away from the wind. This 40 ibs. will generally

cover the weight of slates, boarding or laths, purlins, framing or

principals, snow and wind for roofs under 100 feet in span. For

roofs exceeding 100 feet in span, we may assume that the total

load is increased by 1 ib. per additional 10 feet thus, the load for

calculation on a 200 feet roof will be

1. A uniform load of 50 ibs. per square foot of ground, dis-

tributed over the whole roof.

2. A uniform load of 50 ibs. per square foot of ground plan

distributed over one half the roof, and 30 Ibs. on the other. When
the strength of roof is calculated by the foregoing rules, the

working strain in iron tie rods may be as high as 7 tons per

square inch of net area, unless they are welded, or unless their

section is very small, in either of which cases 5 tons will be

enough.

*
Proo. last. C. K, Vol. xxii., p. 546.
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CHAPTER XXIX.

ESTIMATION OF GIRDER-WORK.

495. Theoretic and empirical quantities Allowance for

rivet holes in parts in tension generally varies from one-

third to one-fifth of the net section. Chapter X. contains

formulas for calculating the theoretic amount of material required

for braced girders with horizontal flanges, when their length, depth,

load and unit-strain are known. In order to render these formulae

of practical use in estimating girder-work, certain large additions,

derived from experience, must be added to the theoretic quantities.

If, for instance, the girder be made of wrought-iron, the formulas

are based on the supposition that the material is in one continuous

piece whose whole section is equally effective for resisting strain.

This is not the case in reality, for rivet holes in parts subject to

tension, stiffeners in those subject to compression, covers, packing,

rivet heads and waste all require certain additions to the theoretic

quantities which experience alone can supply. When the general

design is arranged, it is easy to estimate the increased percentage

of material arising from the weakening effect of rivet holes in parts

subject to tension (476). In girder-work the allowance for rivet

holes generally varies from one-third to one-fifth of the net sectional

area according to the design ;
the larger allowance of one-third may

be required for the tension diagonals of small girders ;
a medium

allowance of one-fourth for the tension diagonals of large girders

and the tension flanges of small ones ;
and an allowance of one-

fifth for the tension flanges of large girders.

496. Allowance for stiffeners in parts in compression

varies according' to their sectional area Large compression

flanges seldom require any allowance for stiffening Com-

pression bracing requires large percentages. The additional

percentage of material required to withstand flexure or buckling in
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parts subject to compression is not so easily estimated. It will

generally be found to diminish in proportion as the area of the

part increases, for when the area is considerable, a stiff form of

cross section may be given with little or no extra material. This

is frequently the case with the compression flange, especially in

large girders. Long compression braces, however, require much

extra stiffening and the amount of this varies within considerable

limits. In the Boyne Lattice Bridge the extra material required

to stiffen the various compression braces varied from 60 to 128

per cent, of the theoretic amount (calculated at 4 tons per square

inch) which would have been required to resist crushing merely, if

flexure had been left out of consideration, the higher percentages

being required in the central diagonals whose scantlings were

small, since they had to sustain but slight strains. In bridges

above 250 feet span, with two main girders and a double line of

railway, a sufficiently close approximation will generally be made

if we assume the extra quantity of material to resist flexure in the

compression bracing equal to as much again as the theoretic

quantity calculated by the formulae, but when the bridge is

designed for a single line of railway this percentage is insufficient ;

perhaps, in this case twice the theoretic quantity would generally

be a safe allowance, as the extra quantity required for stiffening

the compression bracing of a single-line bridge is not widely

different from that required for the double line.

497. Allowance for covers in flanges varies from 13 to

15 per cent, of the gross section Estimating? girder-work
a tentative process. The allowance for covers will also vary
much with the design, long flange-plates requiring fewer covers

than short ones (463 to 465). In the piled flanges of the Boyne
lattice girders, the covers formed about 12 per cent., or nearly

l-8th, of the plates and angle iron. In the cellular flanges of the

Conway tubular bridge, the covers of the compression flange formed

5 per cent, of the plates and angle iron, and those of the tension

flange 28 per cent.; adding both flanges together, the covers

formed about 15 per cent, of the plates and angle iron.*

* Clark on the Tubular Bridges, p. 586.
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The process of estimating the quantities in any proposed bridge
is tentative and depends upon experience, for it is necessary to

assume a weight for the permanent bridge-load, and then make the

calculations with the various practical allowances above mentioned.

Now, the resulting weight from this calculation may not agree
with that which has been assumed. In this case the first estimate

gives an approximation for a second calculation, and even a third

may be necessary where great nicety is required. The following

examples will illustrate this method of forming estimates:

EXAMPLE 1.

498. Double-line lattice bridge 867 feet IOIIR. I shall

select for the first example a wrought-iron lattice bridge for a

double line of railroad of the same length, depth and width as the

central span of the Boyne Lattice Bridge, the weight of which is

given in detail in the appendix. As the Boyne Bridge is a con-

tinuous girder in three spans, its central span, of course, requires

less material than a bridge of equal dimensions which has not the

same advantage of continuity.

Let I =: 267 feet = the length measured from centre to

centre of end pillars (55),

d = ^~ = 22-25 feet = the depth,
i'Z

9 = 45 = the angle of the bracing, whence

sec0. cosecfl = 2 (878),

/ = 5 tons tensile inch-strain of net section,

/' = 4 tons compressive inch-strain of gross section,

and let the width of platform between the main girders equal 24

feet as in the Boyne Bridge. Let the maximum passing load equal

1 ton per running foot on each line, = 534 tons when covering

both lines together, and let us assume that the permanent bridge-

load equals 490 tons, which gives the total load supported by the

girders as follows :

W = 534 + 490 - 1024 tons.

With this load uniformly distributed, the theoretic quantities of

material (eqs. 206 and 208) are as follows, 4'6 cubic feet of wrought-

iron being assumed equal to 1 ton.
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Tons.

Tension bracing =
*

r = 94*93 cubic feet,*
- 20*64

Compression bracing (= fths of the tension bracing), 25*80

Tension flange I = ^ X tension bracing, eq. 208
J

, 82*56

Compression flange (= |ths of the tension flange),
- 103*20

Total theoretic weight, - 232 -2O

The true quantities are obtained from the foregoing by adding

the percentages derived from experience, as follows:

Tons. Tons.

Theoretic tension bracing,
- - 20 '64

Rivet holes, say Jth of net section,
- 5*16

Theoretic compression bracing,
- - 25*80 .

o l*bU
'80 )

'80 )Add as much again for stiffening,
- 25

Theoretic tension flange,
- - 82'56

j
Rivet holes, say }th of net section,

- 16*51 )

Covers of tension flange, say Jth of flange,
- 12*38

Theoretic compression flange,
- 103*20

Covers of compression flange, say Jth of flange,
- 12*90

304*95

Rivet heads, packings, waste (437, 436), say 10 per cent., 30*49

"Weight of iron in the main girders, - 335-44

35 cross-girders, 7 feet 5 inches apart, each

1-32 tons (see Appendix, "Boyne Viaduct"), 46*20 )

Cross-bracing, do. do. 17-66 j

Weight of iron between end pillars, - 399-3O
6-inch planking of platform 24 feet wide,

= 3,204 cubic feet, 50 cubic feet per ton, 64*08

Longitudinal timbers under rails, 12 inches

X 6 inches = 534 cubic feet,
- 10'68

Barlow rails, 356 yards, @ 100 ibs. per yard,
- 15'89

90*65

Permanent bridge-load between end pillars, 489-95

* NOTE. The theoretic quantity of material in the tension bracing is only one-half

that given by eq. 206, which represents the quantity for the whole web.
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being O05 tons less than that assumed. In order to obtain the

total weight of wrought-iron in the bridge, we must add the weight
of the 4 end pillars with their 2 lower cross-girders and 2 top

cross-girders and gussets (443), say 30 tons in all, to the weight
of iron between the end pillars ;

this makes the total weight of

wrought-iron in the structure = 399'30 + 30 = 429-3O tons.

In this example we find that 335*44 tons of iron are required in

the main girders to support themselves and an additional load of

688*56 tons uniformly distributed. Consequently, each ton of

additional load uniformly distributed requires /OO.K/. = 0*487 tons

of iron in the main girders, and if an additional load of 100 tons of

ballast were spread over the platform, we should add 48' 7 tons of

iron to the main girders to support the weight of this ballast

without the unit-strains being increased.

499. Permanent strains Strains front train-load

Economy due to continuity. The permanent inch-strains, that

is, the inch-strains due to the permanent bridge-load of 489*95 tons,

are 2*39 tons tension and 1*91 tons compression; those due to the

main girders alone, weighing 335'44 tons, are 1/64 tons tension and

1*31 tons compression, and those due to a train-load of one ton per

running foot on each line uniformly distributed are 2*61 tons tension

and 2 '09 tons compression. The actual weight of iron in the main

girders of the long central span of the Boyne Bridge = 297*41

tons; the difference between this and our example = 335*44

297*41 = 38*03 tons, which represents the saving effected in the

central span of the Boyne Bridge by its connexion over the piers

with the side spans. As, however, this connexion causes a certain

loss of material in the shorter side spans, the total amount of

economy produced by continuity is probably less than that above

stated (858, 481).

EXAMPLE 2.

500. Single-line lattice bridge 4OO feet long. A wrought-

iron lattice bridge for a single line of railway, 400 feet long from
2 M
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centre to centre of end pillars, 25 feet deep and 14 feet wide

between main girders, with the bracing at an angle of 45. Using

the same symbols as before, we have,

/ = 400 feet,

d = 4 = 25 feet,
lo

= 45,

/ = 5 tons tensile inch-strain of net section,

f =. 4 tons compressive inch-strain of gross section.

Let the maximum train load equal f ton per running foot (49O),

and assuming that the permanent bridge-load equals 1300 tons, we

have the total distributed load,

W = 300 + 1300 = 1600 tons.

The theoretic quantities with their empirical percentages are as

follows (eqs. 206, 208).

Tons. Tons.

1600 X 400
Theoretic tension bracing =

4 X X 144:

IP. fppf npr tnn . 4.8-2 1

60-4

4 X 5 X 144

222-2 cubic feet, @ 4-6 cubic feet per ton,
- 48'3

Rivet holes, say one-fourth of net section, - 121

Theoretic compression bracing (= fths of the

theoretic tension bracing),
- 60'4

Add twice as much for stiffening
- - 120*8

1600x400x16,, . n
Theoretic tension flange = 12x5x144

hATl 9.^7'fi ^

309-1
1,185-18 cubic feet, @ 4-6 cubic feet per ton, 257-6 )

Rivet holes, say th of net section, - 51"5 )

Covers, say Jth of flange,
- 38'6

Theoretic compression flange (= |ths of the

theoretic tension flange),
- 322 '0

Covers, say ^th of flange,
- 40'5

951-8

Rivet heads, packings, waste, say 10 per cent.,
- 95'2

Iron In main girders, 1O47 O
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Cross-girders = 400 X 0*18 tons (445),

Cross-bracing, say,

Weight of iron between end pillars, - 1154-0

Platform, rails, sleepers and ballast = 400 X 0'36

tons (445), 144-0

Permanent bridge-load between end pillars, - 1298-O

being 2 tons less than that assumed. If the 4 end pillars and

cross-girders over the abutments weigh 40 tons, the total weight
of wrought-iron in the bridge = 1,154 + 40 = 1194 tons.

From this estimate it appears that 1047 tons of iron are required

in the main girders to support themselves and an additional load of

553 tons uniformly distributed; consequently, each ton of additional

load uniformly distributed requires for its support -^=^- = 1*89 tons
OOo

in the main girders. If, for instance, the maximum train-load be

1 ton in place of f ton per running foot, this uniformly distributed

load will amount to 400 tons in place of 300 tons, that is, 100 tons

more than has been assumed, and this will require 100 X 1*89 =
189 tons extra iron in the main girders for its support, and the

increased total load on the bridge will be 289 tons, or nearly three

times the useful addition. The iron in the flanges, including the

10 per cent, for rivet heads, packings and waste, weighs 781-2 tons
;

the iron in the web, also including the percentage for rivet heads,

&c., weighs 265'8 tons ; consequently, each ton of useful load uni-

781*2
formly distributed requires ,, =1*41 tons of iron in the flanges,

and -.. ,
= 0'48 tons in the webs. The inch-strains due to the

553

permanent bridge-load of 1,300 tons between the end pillars are 4'06

tons tension and 3*25 tons compression, while those due to a uni-

formly distributed train-load of f ton per running foot are 0'94

tons tension and 0'75 tons compression.-
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EXAMPLE 3.

5O1. Single-line lattice bridge 4OO feet long, as in Ex. 2,

bat with higher unit-strains. A wrought-iron lattice bridge

of the same dimensions as the last, but in place of the inch-strains

being 5 and 4 tons let

/ = 6 tons tensile inch-strain of net section,

f = 5 tons compressive inch-strain of gross section.

Assuming that the permanent bridge-load = 960 tons, we have the

total distributed load,

W = 300 + 960 = 1,260 tons.

The quantities are as follows (eqs. 206, 208).

Tons. Tons.

1260 X 400
Theoretic tension bracing = ^ ^- ^TJ

=

145-83 cubic feet, @ 4-6 feet per ton, - 31'7
j

Rivet holes, say of net section,
- - 7'9 )

Theoretic compression bracing (= fths of the

theoretic tension bracing),
- 38*0 )

Add three times as much for stiffening,*
- 1 14*0 )

1260x400x16
Theoretic tension flange = ^ ~ . . =

777-8 cubic feet, @ 4'6 cubic feet per ton, 1691
j

Rivet holes, say Jth of net section, - 33' 8 )

Covers, say Jth of flange,
- 25 '4

Theoretic compression flange (= fths of the

theoretic tension flange),
- 202*9

Covers, say Jtli of flange,
- 25*4

648-2

Rivet heads, packings, waste, say 10 per cent., - 64*8

Iron in main girders, - 713"O

* In this example I allow three times, in place of twice the theoretic amount,

because the extra quantity of material required for stiffening the compression bracing

is but slightly affected by the adoption of higher unit-strains.
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Cross-girders, as in last example,
-

Cross-bracing, say,

Weight of iron between end pillars, -

Platform, rails, sleepers and ballast, as in last,

Permanent bridge-load between end pillars, - 959-O

being 1 ton less than that assumed. If the four end pillars and

cross-girders over abutments weigh 35 tons, the total weight of

wrought-iron in the bridge = 815 + 35 = 85O tons.

The main girders in this example, weighing 713 tons, support

themselves and an additional load of 547 tons uniformly distributed.

Consequently, each ton of useful load uniformly distributed re-

713
quires for its support ^-y

= 1*304 tons in the main girders. The

inch-strains due to the permanent bridge-load of 960 tons between

6 x 960 , 5 X 960
end pillars = 9

= 4'57 tons tension, and = 3'81

tons compression, while those produced by a uniformly distributed

train-load of f ton per running foot are T43 tons tension and 1-19

tons compression.
5O2. Great economy from high unit-strains in long:

girders Steel plates. Comparing this with the preceding

example, we find a saving in the main girders equal to 1,047

713 = 334 tons, or nearly 47 per cent, of the lighter bridge.

The saving may even be greater than this, since I have neglected

any reduction in the weight of the cross-girders due to higher

unit-strains. These two examples illustrate the great economy

produced in large girders by adopting high unit-strains. In

place of the weights of the main girders being in the inverse

ratio of the unit-strains, as might be supposed at first sight, we

find that they vary in a much higher ratio, at least in large

bridges where the main girders form a large proportion of the total

load (62). Economy from the adoption of high unit-strains will be

chiefly marked in the flanges and tension bracing, owing to the

necessity of having a certain amount of material to stiffen the

compression bracing, no matter how high the ultimate crushing
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strength of the material may be. Even a better method of riveting

or jointing may produce a very important saving in a large girder,

by not requiring so may holes in the tension plates, or such large

covers at the joints. Mild steel plates, which are now manufactured

at a cost not much exceeding that of the better kinds of iron, but

about once and a half as strong as the latter, will, doubtless, enable

the engineer to construct girders over spans which have been

hitherto impracticable. The tensile strength of steel is known
;

it

is to be hoped that satisfactory experiments will be made to deter-

mine its stiffness, that is, its strength to resist flexure when in the

form of long pillars an essential element in its application to

girder-work (483).

5O3. Suspension principle applicable to larger spans than

girders. We are now in a position to understand how suspension

bridges can be built over spans far exceeding those to which rigid

girders are applicable, for not only are there no compressive strains

in the webs of suspension bridges, but the compression flange of

the girder is superseded by land chains, and the structure between

the piers is thus relieved of the weight of one flange. Moreover,

the material used is generally of such an excellent quality that it is

capable of sustaining with safety a higher unit-strain than ordinary

plate-iron (476), and there is also a less percentage of material

required for the joints of suspension chains, as pins passing through

eyes in the ends of long bar links supersede the ever-recurring

rivets of plated work and the whole intermediate shank of the link

is thus available for tension without waste.

EXAMPLE 4.

50-1. Single-line lattice bridge 4OO feet long, with in-

creased depth. The preceding example illustrates the great

economy effected in large girders by the adoption of high unit-

strains. Let us now examine the result of a slight increase of

depth, all the other dimensions and the unit-strains remaining the

same as in Example 2, but in place of the depth being 25 feet, i.e.,

one-sixteenth of the length, let

d = ~ = 26-67 feet,
lo
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Assuming, the permanent bridge-load to be 1,190 tons, we have the

total distributed load,

W = 300 + 1190 =1490 tons.

The quantities are as follows (eqs. 206, 208).
Tons. Tons.

.. v 1490X400
Theoretic tension bracing = -

A ^ =-T-J
=

4: X X -1-4:4:

207 cubic feet, @ 4-6 feet per ton, - - 45 '0
j g>2

Rivet holes, say th of net section,
- 11*2 )

Theoretic compression bracing (= fths of the

theoretic tension bracing),
- - 56*2

j
_ .

Add for stiffening the same as in Ex. 2,* - 120'8 )

,, ,. 1490x400x15
1 neoretic tension nange = ^ * =rn =

12x5x144
1034-7 cubic feet, @ 4-6 feet per ton, - 225-0

j
Rivet holes, say |-th of net section,-

- 45'0 )

Covers, say Jth of flange,
- 33'7

Theoretic compression flange (
= fths of the

theoretic tension flange),
- -

.
- 281 '2

Covers, say Jth of flange,
- 35*1

852-2

Rivet heads, packings, waste, say 10 per cent., 85'2

Iron in main girders, - - 937-4

Cross-girders, as in Ex. 2,
- 72-0

Cross-bracing, do., 35'0

Weight of iron between end pillars,
- - 1O44-4

Platform rails, sleepers, and ballast, as in Ex. 2,
- 144*0

Permanent bridge-load between end pillars, 1188-4

* In place of adding, as usual, twice the theoretic amount for stiffening, viz.,

2X56-2 = 112-4 tons, I have assumed that this example requires the same quantity

as Ex. 2, for though the load in this example is less, yet the length of the compression

bracing is greater than in Ex. 2, and the assumption in the text, therefore, will

be probably not far from the truth.
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being 1-6 tons less than that assumed. If the four end pillars and

cross-girders over the abutments weigh 40 tons, the total weight

of wrought-iron in the bridge = 1044-4+40 = 1O84-4 tons.

The main girders in this example, weighing 937*4 tons, support

themselves and 552'6 tons uniformly distributed. Consequently,

each ton of useful load uniformly distributed requires for its support

=r 1'7 tons nearly in the main girders. The inch-strains due
OO^'D

to the permanent bridge-load of 1190 tons between end pillars

5x1190 ,4x1190= . = 4 tons tension, and .. , = 3'2 tons compression.

The inch-strains due to the main girders, weighing 937'4 tons,

5x937-4 ,4x937-4=
1490

= 3'14 tons tension, and = 2'52 tons com-

pression. The inch-strains due to a train-load of f tons per

5 x 300
running foot over the whole bridge =

^
, =1-0 ton tension,

and
1

- = 0*8 tons compression.

505. Weights of large girders do not vary inversely as

their depth. Comparing this with Ex. 2, the saving of material

in the main girders = 1047 937*4 = 109'6 tons. We find

therefore that the weights of the girders in these two examples
are inversely as the 1'7 power of the depths, but this particular

proportion is accidental (8*4).

EXAMPLE 5.

506. Single-line lattice bridge 48O feet long. A wrought-
iron lattice bridge for a single line of railway, 480 feet long from

centre to centre of end pillars, 30 feet deep, and 14 feet wide

between main girders. Using the same symbols as in Ex. 1, we

have,

I = the length = 480 feet,

d = the depth = ^ = 30 feet,

6 = 45= the angle the diagonals make with a vertical line,

/ = 5 tons tensile inch-strain of net section,

/'= 4 tons compressive inch-strain of gross section.
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Let the maximum passing load = J ton per running foot (489),
and assuming that the permanent bridge-load weighs 2760 tons,

we have the total distributed load,

W = 360 + 2760 = 3120 tons.

The quantities are as follows (eqs. 206, 208).
Tons. Tons.

Theoretic tension bracing =

cubic feet, @ 4-6 feet per ton, - - 113-0
]

Rivet holes, say th of net section, - 28'3 j

Theoretic compression bracing (
= |ths of the

theoretic tension bracing),
- - 141*3

j
Add twice as much for stiffening,*

- 282*6 j

3120x480x16
Theoretic tension flange 12x5x144

. fiH9-Q >

723-5
2773-3 cubic feet, @ 4'6 feet per ton, - - 602*9 )

Rivet holes, say Jth of net section, - 120'6 j

Covers, say Jth of flange,
- 90*4

Theoretic compression flange (
= fths of the

theoretic tension flange),
- - 753'6

Covers, say Jth of flange,
- 94'2

2226-9

Rivet heads, packings, waste, say 10 per cent., 222- 7

Iron in main girders, - - 2449-6

Cross-girders =480x0-18 tons (445),
- 86'4

Cross-bracing,t
- 50*4

Weight of iron between end pillars, - - 2586-4

* This allowance for stiffening is probably excessive.

f The quantity of cross-bracing is proportional to VW (eq. 206), where W represents

the pressure of the wind against the side of the bridge ;
if this pressure be assumed

proportional to the product of length and depth, which is the case in plate girders,

the quantity of cross-bracing in similar girders will vary as I
3
. As, however, the side

surface of similar lattice girders does not in general increase so rapidly as Z
2
,
and as

also the empirical percentages are somewhat less in large than in small bridges, it will

probably be nearer the truth to assume that the quantity of cross-bracing is proportional

to the square of the length. If, therefore, a bridge 400 feet long (Ex. 2,) requires 35

tons, one 480 feet long will require 35 X
||
= 50'4 tons.
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Weight of iron between end pillars,
- 2586-4

Platform, rails, sleepers, and ballast, = 480 X
0-36 tons (445), 172-8

Permanent bridge-load between end pillars, 2759*2

being 0'8 less than that assumed. If the weight of the four pillars

and cross-girders at the ends be assumed equal to 70 tons, the

total weight of wrought-iron in the bridge will equal 70 +
2586-4 = 2656-4 tons.

The inch-strains due to the permanent bridge-load of 2760

tons between end pillars are .... , = 4*42 tons tension, and

Q = 3'54 tons compression. The inch-strains due to the
OL'ZO

main girders, weighing 2449*9 tons, are -
*>-i 9 r\

~ = 3*92 tons

4x2449*6
tension, and - = 3'14 tons compression. The inch-

oL'20

strains due to a train-load of f ton per running foot over the whole

5x360 ,4x360
bridge =

~ = 0'576 tons tension, and ^ Q
= 0'46 tons

compression.

5O7. Waste of material in defective designs. In this

example, 2449'7 tons of iron in the main girders support themselves

and an additional load of 670'4 tons uniformly distributed over the

bridge. Consequently, each ton of useful load requires for its

2449-6
support = 3'65 tons of iron in the main girders. This

illustrates the great waste of material produced by defective designs

for large bridges, since every ton of iron uselessly added involves

the necessity of adding 3*65 other tons for its support, making

collectively upwards of 4J tons which might be saved were the

design skilfully planned.

EXAMPLE 6.

5O. Single-line lattice bridge 48O feet long-, as in Ex. 5,

but with higher unit-strains. A wrought-iron lattice bridge of
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the same dimensions as the last, but in place of the inch-strains

being 5 and 4 tons respectively,

Let / 6 tons tensile inch-strain of net section,

/' = 5 tons compressive inch-strain of gross section.

Assuming that the permanent bridge-load equals 1710 tons, we

have the total distributed load,

W = 360 + 1710 = 2070 tons.

The quantities are as follows (eq. 206, 208).

Tons. Tons.

,, , 2070x480
Theoretic tension bracing = - -

rTT =4 x b X 144

287-5 cubic feet, @ 4-6 feet per ton, - - 62-5
j

,

Rivet holes, say ^th of net section,
- 15*6 )

Theoretic compression bracing (
= Jths of the

theoretic tension bracing),
- - 75'0

| aor\.r\

Add three times as much for stiffening,*
- 225"0 j

.
fl

2070x480x16
Theoretic tension flange = y^ g

, . *

1533-3 cubic feet, @ 4-6 feet per ton, - 333-3
j

Rivet holes, say J-th of net section,
- 66-7 j

Covers, say Jth of flange,
- 50'0

Theoretic compression flange (
=

f-
ths of the

theoretic tension flange),
- 400*0

Covers, say Jth of flange,
- 50'0

1278-1

Rivet heads, packings, waste, say 10 per cent., 127-8

Iron in main girders,

Cross-girders, as in last example,
-

Cross-bracing, say,

Weight of iron between end pillars, 1537-3

Platform, rails, sleepers and ballast, as in last, 172*8

Permanent bridge-load between end pillars,
- 171O-1

being O'l ton greater than that assumed. If the four pillars and

* See note to Ex. 3, p. 532.
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cross-girders at the ends weigh 50 tons, the total weight of

wrought-iron in the bridge will equal 50 + 1537'3 = 1587-3

tons.

In this example, the main girders, weighing 1405-9 tons, support

themselves and an additional load of 664*1 tons uniformly dis-

tributed. Consequently, each ton of useful load requires for its

support
- = 2-117 tons in the main girders. The inch-

strains due to the permanent bridge-load of 1710 tons between

6 x 1710 . , 5 X 1710
end pillars

=
2070

= tension, and

tons compression. The inch-strains due to the main girders,

weighing 1405'9 tons, are mc\
------- = ^'^ ^ons tensi n

>

5 X 1405-9 . r . , ,= 3'4 tons compression. The inch-strains due to a

uniformly distributed train-load of f ton per running foot over the

6x360 , 5x360 n Q _whole bridge are
9^70

*"0^ tons tension, and
-o'OTO

=

tons compression.
509. Great economy from high unil-sf rains in large

girders. The economy effected in large girders by the adoption

of high unit-strains is very marked in this example. Compared
with the preceding example, the saving amounts to 2656'4

1587-3 = 1069-1 tons, or nearly 68 per cent, of the lighter bridge

(508, 67).

EXAMPLE 7.

510. Single-line lattice bridge 48O feet long, as in Ex. 5,

but with increased depth. The previous example illustrates the

great economy in large bridges due to the use of a material capable

of sustaining high unit-strains with safety. We shall now examine

the effect of a slight increase of depth, all the other dimensions and

the unit-strains remaining the same as in Ex. 5. In place of the

depth being 30 feet, or J
ff
th of the length, let

d - l
-'= 32 feet.

15
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Assuming the permanent bridge-load to be 2435 tons, we have the

total distributed load,

W = 360 + 2435 = 2795 tons.

The quantities are as follows (eqs. 206, 208).

Tons. Tons.

Theoretic tension bracing = j^-
5
g

X 4
,

9
,
-

4 X 5 X 144

465-8 cubic feet, @ 4-6 feet per ton, - - 101*3
j

Eivet holes, say Jth of net section, - - 25'3 j

126 '

6

Theoretic compression bracing (
= |ths of the

theoretic tension bracing), - 126 '6
)

Add for stiffening the same as in Ex. 5,* - 282'6 j

4 9
'2

Theoretic tension flange =
480x15

12 x 5 X 154

2329 cubic feet, 4-6 feet per ton, - - 506'3
|

Eivet holes, say }th of net section, - - 101'3 j

6 7
'6

Covers, say Jth of flange,
- - 76-0

Theoretic compression flange (
= |ths of the

theoretic tension flange),
- 6 32 '9

Covers, say Jth of flange,
- 79' 1

1931-4

Rivet heads, packings, waste, say 10 per cent., 193-1

Iron in main girders, - - 2124*5

Cross-girders, as in Ex. 5,
- 86*4

Cross-bracing, do., 50*4

"Weight of iron between end pillars,
- 2261-3

Platform, rails, sleepers and ballast, as in Ex. 5,
- 172'8

Permanent bridge-load between end pillars, - 2434-1

being 0*9 ton less than that assumed. If the four pillars and

cross-girders at the ends weigh 70 tons, the total weight of

wrought-iron in the bridge will equal 70 + 2261-3 = 2331*3 tons.

The main girders, weighing 2124*5 tons, support themselves and

* See note to Ex. 4, p. 535.
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670'5 tons uniformly distributed. Consequently, each ton of

2124'5
useful load uniformly distributed requires for its support _,. - =r

3*17 tons in the main girders. The inch-strains due to the per-

5 X 2434
manent bridge-load of 2434 tons between end pillars =

4 x 2434
4-35 tons tension, and caz = 3'48 tons compression. The

inch-strains due to the main girders, weighing 2124'5 tons n
5 X 2124-5 , 4 x 2124-5- = 3-8 tons tension, and r,nK = 3'04 tons com-

pression. The inch-strains due to a train-load of f ton per running

foot over the whole bridge = - = 0*64 tons tension, and
i Jo

4 x 360
TOK~~ = V9

**- tons compression.

511. Weights of large girders do not vary inversely as

their depth. Comparing this with Ex. 5, the saving effected in

the main girders by a slight increase of depth = 2449*6 2124'5

325*1 tons. We find also that the weights of the girders in

these two examples are inversely as the 2*2 power of their depths

(505).
EXAMPLE 8.

519. Single-line lattice bridge 6OO feet long. A wrought-

iron bridge for a single line of railway, 600 feet long between

centres of end pillars, 37 -

5 feet deep, and 14 feet wide between

main girders. Using the same symbols as in Ex. 1, we have,

/ = 600 feet,

d = ^ = 37-5 feet,
lo

e = 45,

/ = 5 tons tensile inch-strain of net section,

f' = 4: tons compressive inch-strain of gross section.

Let the maximum passing load = | ton per running foot, and

assuming that the permanent bridge-load weighs 9100 tons, we

have the total distributed load,

W = 450 + 9100 = 9550 tons.
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The quantities are as follows (eqs. 206, 208).
Tons. Tons.

Theoretic tension bracing =o

1989 6 cubic feet, @ 4-6 feet per ton, - 432-5
|

Rivet holes, say th of net section, - - 108*1 }
Theoretic compression bracing (

= |ths of the

theoretic tension bracing), - 540*6
)

Add as much again for stiffening,*
- 540'6 )

Theoretic tension flange = ^0x600x1612x5x144
10,611 cubic feet, @ 4-6 feet per ton, 2306-7 )

Rivet holes, say Jth of net section. - 461-3 )

Covers, say Jth of flange,
- ... 346-0

Theoretic compression flange ( = |ths of the

theoretic tension flange),
- ... 2883*4

Covers, say Jth of flange, ..... 360'8

7980-0

Rivet heads, packings, waste, say 10 per cent., - 798'0

Iron in main girders, - - 877O-O

Cross-girders = 600x018 tons (445), - - 108'0

Weight of iron between end pillars, - 8886-O

Platform, rails, sleepers, and ballast = 600 X
0-36 tons (445), 216'0

Permanent bridge-load between end pillars, - 91O2-O

being 2 tons in excess of that assumed. No allowance has been

made for cross-bracing, for the sectional area of the flanges is so

great that they would probably extend over the whole space

between the main girders so as to form a tubular bridge, and

thus supersede the usual cross-bracing formed of cross-girders

* The quantity of material in the web is so large that it can be thrown into a form

suitable for resisting flexure without much extra stiffening ; I have therefore added

only half the percentage for stiffening that was adopted in most of the preceding cases.
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and diagonal tension bars. If the four' pillars and cross-girders

at the ends be assumed equal to 200 tons, the total weight of

wrought-iron in the bridge will equal 200 + 8886 = 9O86 tons.

In this example, 8778 tons of iron in the main girders support

themselves and an additional load of 772 tons uniformly dis-

tributed over the bridge. Consequently, each ton of useful load

ftT7R
requires for its support -=-,=^-

= 1T37 tons of iron in the main
/ (4

girders. The inch-strains due to the permanent bridge-load of

9100 tons between end pillars are = 4*76 tons tension,

4x9100
and - . A = 3'81 tons compression. The inch-strains due to

5 X 8778
the main girders, weighing 8778 tons, are = 4*6 tons

tension, and 7^7: = 3*67 tons compression. The inch-strains

due to a train-load of J ton per running foot over the whole bridge

5x450 AOQK . 4x450
= 0-235 tons tension, and -KK = 0188 tons com-

pression.

EXAMPLE 9.

513. Single-line lattice bridge 6OO feet long, as in Ex. 8,

bat with higher unit-strains. A wrought-iron bridge of the

same dimensions as the last, but in place of the inch-strains being
5 and 4 tons,

Let / = 6 tons tensile inch-strain of net section,

/ = 5 tons compressive inch-strain of gross section.

Assuming that the permanent bridge-load = 3800 tons, we have

the total distributed load,

W - 450 + 3800 = 4250 tons.

The quantities are as follows (eqs. 206, 208).

Tons. Tons.

Theoretic tension bracing = =
4x6x144

737-8 cubic feet, @ 4-6 feet per ton,
- - 160-4

Rivet holes, say th of net section, - -401
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Tons. Tons.

Theoretic compression bracing (
=

f-
ths of the

theoretic tension bracing),
- 192-5

]

Add twice as much for stiffening,
- 385*0

j

*'"*

Theoretic tension flange =
42

1

5
?
X
R

60
1 ?/

6 =
12x6x144

3935-2 cubic feet, @ 4'6 feet per ton, - 855'5
|

Rivet holes, say Jth of net section, - - 171*1
)

Covers, say Jth of flange,
- 128*3

Theoretic compression flange (
= fths of the

theoretic tension flange),
- - 1026'6

Covers, say Jth of flange,
- - - 128*3

3087-8

Rivet heads, packings, waste, say 10 per cent., - 308*8

Iron in main girders, 3396-6

Cross-girders, as in last example,
- 108'0

Cross-bracing,*
- 78*8

Weight of iron between end pillars, 3583-4

Platform, rails, sleepers and ballast, as in last

example,
- 216'0

Permanent bridge-load between end pillars,
- 3799-4

being 0*6 tons less than that assumed. If the four pillars and

cross-girders at the ends weigh 100 tons, the total weight of

wrought-iron in the bridge will equal 100 X 3583'4 = 3683-4 tons.

In this example the main girders, weighing 3396'6 tons, support

themselves and an additional load of 853*4 tons uniformly

distributed. Consequently, each ton of useful load requires for its

f\ O A f* f*

support _ = 3'98 tons in the main girders. The inch-strains
*

due to the permanent bridge-load of 3800 tons between end pillars

= 5-36 tons tension, and ^|^ =4-47 tons com-

* See note to Example 5, p. 537.

2 N
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pression. The inch-strains due to the main girders, weighing

3396-6 tons, are ~ = 4-8 tons tension, and

4-0 tons compression. The inch-strains due to a uniformly dis-

tributed train-load of ton per running foot over the whole bridge

*64 tons tension and = '53 tons

sion.

514. Great economy from high unit-strains in very large

girders. The economy due to the adoption of high unit-strains

in girders of great size, whose permanent weight forms by far the

larger portion of the total load, is very conspicuous in this example.

Compared with the preceding example, the saving amounts to

9086 3683-4 = 5402-6 tons, or nearly 147 per cent, of the

lighter bridge (5OS, 5O9).

EXAMPLE 10.

515. Single-line lattice bridge. 6OO feet long, as in K\.

8, but with increased depth. Let us now examine the effect

of a slightly increased proportion of depth to span. In Ex. 8, the

depth is -j^th of the length ;
let the proportion now be ^th, and

retaining all the other dimensions and unit-strains as before, we have,

I = 600 feet,

d = 1= = 40 feet,
lo

e = 45,

/ = 5 tons tensile inch-strain of net section,

/ = 4 tons compressive inch-strain of gross section.'

Let the passing load equal J ton per running foot, and assuming

the permanent bridge-load to equal 6800 tons, we have the total

distributed load,

W = 450 + 6800 = 7250 tons.

The quantities are as follows (eqs. 206, 208).
Tons. Tons.

r , . 7250x600
Theoretic tension bracing = T = =-=-7 =4x5x144

1510-4 cubic feet, @ 4-6 feet per ton,
- 328'

l

41U'D
Rivet holes, say Jth of net section, - - 82;
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Tons. Tons.

Theoretic compression bracing (
= fths of the

theoretic tension bracing), . 410-5
)

Add for stiffening the same as in Ex. 8,* - 540' 6 f

Theoretic tendon flange = g^ =

7552-1 cubic feet, @ 4'6 feet per ton, 1641-8 )

Rivet holes, say }th of net section, - 328'4
)

Covers, say Jth of the flange,
- - - 246*3

Theoretic compression flange (
= fths of the

theoretic tension flange),
- - 2052-2

Covers, say Jth of the flange, - 256 5

5886-8

Rivet heads, packings, waste, say 10 per cent., - 588'7

Iron in main girders, - 6475-5

Cross-girders, as in Ex. 8, 108*0

Weight of iron between end pillars, - 6583-5

Platform, rails, sleepers and ballast, as in Ex. 8,
- 216*0

Permanent bridge-load between end pillars, - 6799-5

being 0*5 tons less than that assumed. If the four pillars and

cross-girders at the ends weigh 160 tons, the total weight of

wrought-iron in the bridge will equal 160 + 6583*5 = 6743-5
tons.

The main girders, weighing 6475 '5 tons, support themselves

and 774-5 tons uniformly distributed. Consequently, each ton

of useful load uniformly distributed requires for its support

_., = 8-36 tons in the main girders. The inch-strains due

to the permanent bridge-load of 6800 tons between end pillars

5 * 68QO = 4-69 tons tension, and = 3-75 tons com-
iZOU

* See note to Ex. 4, p. 535.
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pression. The inch-strains due to the main girders, weighing

5x6475-5
,
4x6475-5

6475*5 tons, are ^'47 tons tension, and

= 3-57 tons compression. The inch-strains due to a uniformly

distributed train-load of j ton per running foot over the whole

5x450 A 01 , 4x450 A
bridge are ..-,.

= 0*31 tons tension, and ^^^ = 0'248 tons

compression.
516. Weights >f very large girders vary inversely in a

high ratio to their depth. From this example we see that very

considerable economy is effected in girders of great size, whose

permanent weight forms the larger portion of the total load, by

increasing the ratio of depth to length, even in a slight degree.

Compared with Example 8, the saving in the main girders = 8778

6475"5 = 2302'5 tons, and the weights of these girders are in-

versely as the 4-7 power of their depths (511).

EXAMPLE 11.

517. Connterbracing required for passing loads cannot be

neglected in small bridges Single-line lattice bridge 1O

feet long. The examples given in the preceding pages are those

of large bridges, exceeding 250 feet in span, in which the per-

manent bridge-load forms such a large portion of the total load

that I have neglected the extra material required for counter-

bracing the web so as to enable it to meet the maximum strains

produced by the passing load when in motion. This is allowable,

since the empirical additions for stiffening the compression bracing

are probably in excess of those actually required in large girders.

In short girders, however, it is necessary to make some allowance

in the bracing for the load being in motion, in place of being

uniformly distributed, and there is, moreover, a greater propor-

tional waste both in the flanges near the ends, and in the web near

the centre, than in large girders (487, 436). Hence, the allowance

for waste, &c., will be more than 10 per cent. The following

example of a wrought-iron lattice bridge for a single line of rail-

way, 108 feet long, 9 feet deep, and 14 feet wide between main
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girders, will illustrate this. Using the same symbols as in Ex. 1,

we have,

I - 108 feet,

d = ~ = 9 feet,

= 45,

f 5 tons tensile inch-strain of net section,

/' = 4 tons compressive inch-strain of gross section in the

flanges, and 3 tons in the bracing (4W).
Let the maximum passing load = 1*32 tons per running foot (49O),

and assuming that the permanent bridge-load = 105 tons, we have

the total distributed load,

W= 143+ 105 = 248 tons.

The quantities are as follows (eqs. 206, 208).

248 X 108 Tons- Tons -

Theoretic tension bracing =
A. *J * -L^t

ton. - - 2-02 }

2-69

4x5x144
~

9-3 cubic feet, @ 4'6 feet per ton, - - 2'02

Rivet holes, say Jrd of net section, - -67

Theoretic compression bracing, (
= frds of the

theoretic tension bracing),
- 3' 3 7 \

Add twice as much for stiffening and counter- V 10*11

bracing,
- - 6*74 )

,, n 248x108x12
Iheoretic tension flange = -^-^ =

.,
. . =

12 x 5 x 144

37-2 cubic feet, 4-6 feet per ton, - - 8'09
j

Rivet holes, say Jth of net section, - 2'02 )

Covers, say ^th of the flange,*
- T68

Theoretic compression flange (
= fths of the

theoretic tension flange),
- 10-11

Covers, say |th of the flange, T68

36-38

Rivet heads, packings and waste, say 25 per cent.,
- 9'09

Iron in main girders,
- 45'47

* In large girders it is important to diminish the dead load as much as possible, and

it is therefore worth paying extra for large plates so as to diminish the percentage for

covers. This, however, is not the case with small girders : hence, the percentage of

covers is larger in this than in the preceding examples.
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Iron in main girders, .......
Cross-girders = 108x0*18 tons (445),

-

Cross-bracing, say,

Iron between end pillars, 65-91

Platform, rails, sleepers and ballast = 108x0-36

tons (445), - 38-88

Permanent bridge-load between end pillars,
- 1O4-79

being 0'2 1 ton .less than that assumed. If the four end pillars

weigh 1-5 ton, the total weight of wrought-iron in the bridge

will equal 65'91 +1*5 = 67-41 tons.

In this example, the main girders, weighing 45*47 tons, support

themselves and an additional load of 202*53 tons uniformly dis-

tributed over the bridge. Consequently, each ton of useful load

45*47
uniformly distributed requires for its support U>AL>.KQ

== 0'2245 t
t
ons

of iron in the main girders. The inch -strains in the flanges, due

to the permanent bridge-load of 105 tons, are ~.~ = 2*12 tons

tension and . = 1*7 tons compression. The inch-strains due

5 x 45*47
to the main girders alone, weighing 45*47 tons, are ^j~

= 0*92

4x45*47
tons tension, and TQ = 0*73 tons compression. The inch-

strains in the flanges, due to a uniformly distributed train-load

of 1*32 tons per running foot over the whole bridge, are

a ,.. = 2*88 tons tension, and = 2'3 tons compression.

518. Error in assuming the permanent load uniformly dis-

tributed in large girders Empirical percentages open to

improvement. In the foregoing examples it has been tacitly

assumed that the weight of the main girders is uniformly dis-

tributed. This is erroneous, because there is a preponderance of

material in the flanges at the centre. It is true that the amount of

bracing, both in the web and in the horizontal bracing, increases
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towards the ends and hus to a great degree compensates for the

variation of section in the flanges. Still, the difficulty remains in

the case of very large girders whose own weight forms the greater

portion of the total load, and this preponderance of flange weight
near the centre is the chief reason why single girders are less

economical than continuous ones when the span is very great.

The empirical percentages adopted in the foregoing examples

may perhaps be objected to, and it must be confessed that they are

liable both to criticism and to correction from future experience.

I have, however, made the most of the few recorded facts on which

dependence can be placed, and would here suggest to my brother

engineers that they should, as opportunity occurs, place on record

in a tabular form the detailed weights of wrought-iron and steel

girders, in order that this branch of our practice may attain that

amount of precision that such statistical information alone can

supply. In furtherance of this object I have added in the

Appendix the detailed weights of the Boyne lattice bridge, which

I collected when Resident there, also the details of the Conway
tubular plate bridge and a few others. The examples in the

present chapter indicate the direction in which improvements in

constructive detail may be sought with most prospect of success.

In very large girders this is a matter of great importance, for even

a very slight diminution of any of the empirical percentages may
effect a large amount of economy.

519. Fatigue of the material greater in long than in short

bridges. Though the maximum unit-strains may be the same in

two bridges, one long and the other short, the permanent unit-

strains, that is, the fatigue of the material from the permanent load

(47O), will be much higher in the bridge of great span. Thus, com-

paring Examples 2 and 11, we find that the fatigue, or permanent

inch-strains, of a railway bridge 400 feet long, are 4*06 tons tension

and 3'25 tons compression, while the corresponding inch-strains

of a bridge 108 feet long, are 2'12 tons tension and 1-7 tons

compression. If iron possessed unlimited viscidity, that is, the

property of slowly and continuously changing shape, like pitch,

under prolonged strains of moderate extent, it seems reasonable to
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suppose that the longer bridge would fail sooner than the short one,

in consequence of its progressive deflection increasing more rapidly.

Experience does not favour this hypothesis, for though experiments
render it probable that all ductile metals will change shape to

an unlimited extent under enormous pressure, in this respect

resembling plastic clay, it seems equally certain that no continuous

deformation takes place in structures whose unit-strains are kept

well within the limits of elasticity (41O). Again, it is conceivable,

nay probable, that severe fatigue (especially if aided by vibration),

may so alter the constitution of iron as to weaken parts in tension,

either by rendering them brittle or by actually diminishing their

tensile strength (4O9). If this were the case within the limits of

strain which occur in practice, the longer bridge should still fail

first. If, on the other hand, large fluctuations in the amount of

strain affect the molecular condition of iron injuriously, and

produce a tendency to rupture, then the short bridge should fail

sooner. The experiments recorded in Chap. XXVIII. will prevent

anxiety in either case when the working strains do not exceed

those in usual practice (471, 478, 475).

GIRDERS UNDER 200 FEET IN LENGTH.

52O. Flanges nearly equal in weight to each other* and
web nearly equal in weight to one flange. When an iron

lattice girder of the ordinary proportions of length to depth does

not exceed 200 feet in span, the flanges are very nearly equal in

weight to each other (477), and the web is very nearly equal in

weight to one flange. Moreover, the quantity of material in the

compression flange is nearly equal to its theoretic central area

multiplied by its length ;
for though, in correct practice, the section

of the flange is reduced towards the ends, it so happens that the

empirical allowance for covers, rivet heads, packings and waste,

that is, the difference between the actual and the theoretic flange,

is closely compensated for by assuming that the flange carries its

theoretic central area uniformly throughout the whole length.

Hence, we have the following empirical formula for the weight of

material in the main girders, which will be found convenient in

practice.
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O 7 f)

G = ^ =
g

al, nearly. (253)

where G = the weight of the main girders and end pillars in tons,

a = the theoretic area of both compression flanges

together at the centre, in square feet,

/ = the length in feet,

4-6 = the number of cubic feet of wrought-iron in one ton.

For girders loaded uniformly we have (eq. 25),

_VW
~8/d

whence, by substitution in eq. 253,

WZ2

(254)

whereW = the total distributed load in tons, including the weight

of the girder,

I = the length in feet,

d = the depth in feet,

/= the working strain in tons per square foot of gross

section.*

Ex. In Ex. 11, for instance, G = 248X(108X108) = 46
.5 tonS) wycn is but very

slightly less than the former result.

591. Anderson's rule Weights of lattice and plate

girders under SOO feet in length. I am indebted to William

Anderson, Esq., for the following simple rule, derivable from eq.

254, for approximate estimates of railway bridges under 200 feet

in length, whose depth is TLth of their length, and whose working

inch-strains are 5 tons tension and 4 tons compression. Multiply the

total distributed load in tons by 4, and the product is the weight of the

main girders, end pillars and cross-bracing in Ibs. per running foot.

Ex. 1. The total distributed load in Ex. 11 equals 248 tons; hence, 4X248=

992 Rs. = the weight of main girders, end pillars and cross-bracing per running foot,

and their total weight = 992Xl08 = 47'8 tons, which agrees very closely with the992X108
11 weigut =

former result.

* The reader will recollect that the usual tensile working strain of iron, namely, 5

tons per square inch of net section, practically requires the same sectional area as the

usual compressive working strain of 4 tons per square inch of gross section (-4
I

5"S
I

).
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The following table contains the weights of wrought- iron lattice

girders for railway bridges up to 200 feet in length, calculated by

the foregoing rule for the three different standard working loads

described in 49O. In making use of this table, the reader will

bear in mind the following conditions :

a. The working strains in the flanges are 5 tons per square

inch of net section for tension, and 4 tons per square inch

of gross section for compression.

b. The proportion of depth to length = T̂ .

c. The dead weight of cross-girders, platform, ballast, sleepers,

and rails = 0'54 tons per running foot of single line (445).

d. The weight of main girders for a double-line bridge is twice

that given in the table for a single-line bridge.

e. It is probable that the weights in the table for the longer

bridges, say above 140 feet, are rather in excess of truth,

and that those for the shorter bridges, say under 60 feet,

are slightly under the truth.
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TABLE I. WEIGHTS OP SINGLE-LINE WROUGHT-IRON LATTICE RAILWAY GIRDERS,
THE DEPTH BEING j^TH OF THE LENGTH.

Length of bridge
from centre to

centre of bearings.
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TABLE II. WEIGHTS OP WRODGHT-IRON PLATE GIRDERS, the depth being l-10th

of the length, and the working strain 4'5 tons per (gross ?) square inch in tension.

r
feet.
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538. Weights of similar girders under SOO feet span

vary nearly am the square of their length \o definite ratio

exists Between the lengths and weights of very large

girders. An analysis of the foregoing tables shows that the ratio

of the weights of similar railway girders from 40 to 200 feet in

length vary between the square and the 2*3 power of their lengths

(874). In Example 2, the main girders, 400 feet long, weigh

1047 tons, and in Example 5, a similar pair of main girders, 480

feet long, weigh 2449'6 tons. These weights are nearly as the 5th

power of the lengths. Again, comparing Examples 3 and 6, which

differ from the two former merely in having higher unit-strains,

we find the weights of the main girders, which are 713 tons and

1405*9 tons respectively, are nearly as the 4th power of the lengths.

These comparisons show that no definite ratio exists between the

lengths and weights of very large girders, and any argument based

on such an assumption must be altogether fallacious.
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CHAPTER XXX.

LIMITS OF LENGTH OF GIRDERS.

523. Cast-iron girders in one piece rarely exceed 5O feet

in length Com pound girders advisable for greater spans if

cast-iron is used. Cast-iron girders in one piece rarely exceed

50 feet in length, though this is by no means the possible limit of

length of single castings, for Mr. Hawkshaw has employed cast-iron

in single girders of 86 feet span,* and Sir Wm. Fairbairn mentions

a bridge with girders, each 76 feet long in one casting, that were

made in England and erected on the Haarlem Railway in Holland.f

When cast-iron girders are required of greater length than 40 or

50 feet, it is advisable to truss them with wrought-iron, as cast-

iron is ill-suited for resisting tension (351). Disastrous results

have sometimes attended the use of compound girders, and they

acquired a very bad reputation at one time, but the fault lay not

so much in the combination of the two materials as in the mode of

combination, which sometimes betrayed sad ignorance of the

elementary principles on which girders should be constructed, the

depth of the trussed girder having been in some instances con-

siderably less at the centre than at the ends.

534. Practical limit of length of wronght-iron girders

with horizontal flanges does not exceed ?OO feet. Vested

interests and local peculiarities generally determine the spans of

large bridges and it may therefore seem useless to attempt

solving the question,
" What is the practical limit of length of a

girder?" Curiosity on this subject is, however, natural, and I

may therefore claim indulgence for devoting a short space to

investigating a question which, indeed, is not altogether devoid of

*
Proc. Inst. C. E., Vol. xiii., p. 474.

t On the Application of Iron to Building Purposes, p. 27.
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practical utility. When the dimensions, weight and unit-strains of

any given girder are known, we can find the length of a similar

girder which will barely support itself; for it has been already

shown in 67, that if the weight of a given girder equals -th of its

breaking weight, a similar girder n times longer will just break

with its own weight. Thus, in the first example in the previous

chapter, a pair of girders whose depth equals 1-12th of their length,

267 feet long and weighing 335*44 tons, sustain from their own

weight 1*64 tons tension and 1*31 tons compression per square
inch

; supposing the tensile and compressive strength of plate iron

to be 20 tons and 16 tons per square inch respectively, these work-

ing strains are equal to the breaking strains divided by 12-2.

Hence, a similar girder 12'2 times longer, or 3257 feet in length,

will just break down from its own weight. Now, the length of a

similar girder whose working strains are only one-fourth of its

3257
ultimate strength will be j =814 feet nearly, which therefore

is the extreme possible limit of an iron lattice girder whose depth

equals 1-1 2th of its length, whose inch-strains are 5 tons tension and

4 tons compression, and whose empirical percentages are similar to

those in the first example of the preceding chapter. The practical

limit is of course far short of this and probably does not exceed

650 feet.

Again, in Ex. 4, the main girders, 400 feet long, whose depth

equals 1-1 5th of their length and which weigh 937*4 tons, sustain

3' 14 tons tension and 2'52 tons compression per square inch from

their own weight. As these strains are equal to the ultimate

strength of ordinary plate iron divided by 6*35, a similar girder 6 '35

times longer, or 2540 feet in length, will just break down from its

own weight. Hence, the length of a similar girder whose working

strains from its own weight are l-4th of its ultimate strength

will be -^j = 635 feet, which therefore is the limiting length of

an iron lattice girder whose length equals 15 times its depth, whose

inch-strains are 5 tons tension and 4 tons compression, and whose
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empirical percentages are similar to those adopted in the fourth

example of the preceding chapter. The practical limit probably

does not exceed 500 feet.

Again, in Ex. 9, the main girders, 600 feet long, whose depth

equals l-16th of their length and which weigh 3396'6 tons, sustain

4*8 tons tension per square inch from their own weight. This

equals the ultimate tensile strength of ordinary plate iron divided

by 4'16; hence, a similar girder 4'16 times longer, or 2496 feet in

length, will just break down from its own weight, and the length

of a similar girder whose working tensile inch-strain from its own

weight is 6 tons, or Q . QaQ of its ultimate strength, will be =
O'OOO O'OOO

749 feet. This therefore is the limiting length of an iron lattice

girder whose tensile inch-strain is 6 tons, whose depth equals

1-1 6th of the length and whose empirical percentages are the same

as those adopted in Ex. 9 of the preceding chapter. The practical

limit is, doubtless, below 600 feet.

From these few examples we may reasonably infer that, even

with the most careful attention to proportion and economy, the

practical limit of length of wrought-iron girders with horizontal

flanges does not exceed 700 feet. For girders of greater span steel

must be employed.
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CHAPTER XXXI.

CONCLUDING OBSERVATIONS.

535. Hypothesis to explain the nature of strains in con-

tinuous webs. The reader who has perused the foregoing pages
with even slight attention has probably arrived at the conclusion

that diagonal strains are not confined to braced girders, but are also

developed in every structure which is subject to transverse strain.

This follows at once from the mechanical law, that a force cannot

change its direction unless combined with another force whose

direction is inclined to that of the former. Thus, a vertical pres-

sure cannot produce horizontal strains in the flanges without

developing diagonal ones at the same time in the web. The

following hypothesis will perhaps give a clearer conception of the

nature of the strains in continuous webs. It is offered, however,

merely as a conceivable condition of these strains.

Fig. 120.

Let Fig. 120 represent part of a closely latticed girder whose

neutral surface, or surface of unaltered length is N S. The strain in

each diagonal of an ordinary lattice girder is uniform throughout its

entire length (14O). Now, suppose that horizontal stringers are

attached to the lattice bars at their first intersections next the flanges,

and let us confine our attention to the upper one marked c. As

soon as the girder deflects under a load, this stringer will become

compressed; consequently, it will relieve the upper flange of a

certain portion of the horizontal strain which the flange would
2 o
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sustain were the stringer absent, and the unit-strain in the stringer

will be to that in the flange as
jrr>.

The part of each diagonal

above the stringer will also be relieved of a certain portion of

its strain, depending on the horizontal component it yields up to

the stringer. Now, conceive similar stringers attached at each

horizontal row of lattice intersections above and below the

neutral surface, in which case each stringer will sustain horizontal

unit-strains directly proportional to its distance from the neutral

surface where they are cipher, while, on the other hand, the strains

in the diagonals will diminish as they approach the flanges, their

decrements of strain being cipher at the neutral surface and

increasing towards the flanges in the direct ratio of their distance

from the neutral surface, provided the stringers are all of

equal area. We thus see that the diagonal strains, and therefore

the shearing strain in solid girders, or in girders with con-

tinuous webs, act with greatest intensity in the neighbourhood of

the neutral surface where the horizontal strains are nil, while they

act with least intensity at the upper and lower edges where the

horizontal strains are most intense. This theory agrees with an

instructive experiment made by Mr. Brunei on a single-webbed

plate girder, 66 feet long between bearings and 10 feet deep at the

centre, in which the web, formed of inch plates with vertical lap

joints, gave way by several of these joints near one end tearing

open in the neighbourhood of the neutral surface.*

Fig. 121.

* Clark on the Tubular Bridges, p. 437.
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When a single weight rests upon a girder with a continuous web,

it sends off strains radiating out from the weight in all directions,

as represented in Fig. 121, and we may conceive that this first

series of diagonal strains are resolved at every point along their

length into diagonal and horizontal strains, as in the lattice girder ;

this second series of diagonal strains being again resolved in a

similar manner, and so on, and thus we have horizontal and diagonal

strains interlacing at various angles in all girders except those in

which they are forced to take definite directions by means of the

bracing, but there will probably exist certain lines of maximum

strain, either straight or curved, whose directions will vary according

to the position and amount of the weight, as well as the flexibility

of the material. The student may make some instructive experi-

ments on this subject by the aid of a model girder formed by

stretching a web of drawing paper over a light rectangular frame

of timber, which will represent the flanges and end pillars. By the

aid of little movable wooden struts, to represent verticals, he can

vary the directions of the lines of strain to a very considerable

extent.

It is not at first sight easy to see how strains are transmitted

through the neutral surface, for the particles there are apparently

undisturbed in form. It is conceivable, however, that particles

which are spherical when free from strain may become elongated

by tension in one direction and shortened by compression at right

angles to it, so as to assume an oval shape, while horizontal lines

parallel to the neutral surface, N S, retain their original length, as

represented in Fig. 122.

Fig. 122.

5S6. Strains in Ships. An iron ship is a large tubular
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I

structure, more or less rectangular in section, underneath which the

points of support are continually moving, so that, when the waves

are high and far apart, the deck and bottom of the vessel are

alternately extended and compressed in the same way that the

flanges of a continuous girder are near the points of inflexion when

traversed by a passing train. The sides of a ship are formed of

continuous plating with vertical frames at short intervals, and form

very efficient webs; the bottom also is, from its large area, fully

adequate to its duty as a flange. The sides and bottom flange

of the girder are therefore fully developed, but the upper iron

flange is sometimes altogether wanting, or else sadly out of pro-

portion to the remainder of the structure. This deficiency is

properly remedied, either by attaching what are technically called

stringers to the topsides, or better still, by making the upper deck

entirely of iron with a thin sheeting of planks resting on the iron.*

Deck stringers are horizontal plates which run continuously fore

and aft beneath the planking of the deck. They are seldom more

than 3 or 4 feet in width, but in some few cases extend as far as the

hatchways. Similar stringers are occasionally riveted to the sides

underneath each of the lower decks, and when stringers in the

same plane on opposite sides of the ship are connected by diagonal

tension braces, the latter, in conjunction with the deck beams, form

very efficient cross-bracing, and greatly increase the strength and

stiffness of the ship when labouring in a heavy sea. Bulkheads act

as gussets or diaphragms, and stiffen the ship transversely by

preventing any racking motion from taking place in the direction

of their diagonals.

537. Iron and timber combined form a cheap girder
Timber should be used in large pieces* not cut up into

planks Simplicity of design most desirable in girder-

work. Within certain limits of length, one of the cheapest forms

of girder is one made of timber in compression with wrought-iron

in tension (1873 881). The earlier types of wooden lattice bridges

had little or no iron in their composition and were characterized by

* The author has built several iron vessels in which tar asphalt is substituted for

the timber sheeting.
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the small scantlings of the parts, the closeness of the latticing, and

in many cases, a want of stiffness both vertically and laterally.

This defect was, no doubt, often due to insufficient flange area, but

may also be attributed to the small size of the scantlings, and

consequent multiplicity of joints. The remedy is obvious. Timber

in compression should be used in bulk, and not cut up into thin

planks. Laminated arches, it is true, are an apparent exception to

this rule, but in reality a laminated beam possesses the aggregate

section of its component parts which are bound together so that

they act as one solid piece. Even when used in tension, it may be

doubtful economy to use several thin planks where one of larger

section would suffice. The liability to decay from moisture

lodging in the numerous joints is another serious objection to

close timber latticing, though this is sometimes diminished by the

protection of a roof extending over the whole bridge (485).

In conclusion, it may not be amiss to say a few words on

designing girders. Simplicity and consequent facility of construc-

tion should never be lost sight of. Complicated arrangements are

to be deprecated, whether designed to affect some saving more

apparent than real, or, as one is sometimes tempted to conjecture,

from a craving after novelty. The various parts of girder work

should, as much as possible, be repetitions of the same pattern,

easily put together and accessible for preservation or repair. Hence,

as a rule, closed cells, difficult forgings, curved forms where straight

ones would effect the object equally well, and a great variety of

sizes to meet excessive theoretic refinement, are to be carefully

avoided.





APPENDIX.

BOYNE LATTICE BRIDGE.

538. General description and detailed weights of girder-
work. The Boyne Viaduct carries the Dublin and Belfast

Junction Railway across the valley of the River Boyne near

Drogheda, and consists of several lofty semi-circular stone arches

on the land, and a wrought-iron lattice bridge in three spans over

the water, the surface of which is about 90 feet below the girders,

so that vessels of considerable tonnage can sail beneath. The

girder-work is formed of two lattice double-webbed main girders,

having their top flanges connected by cross-bracing, and the lower

flanges connected by cross-girders and diagonal ties, so as collectively

to form an openwork tubular bridge for a double line of railway,

as shown in cross-section in Plate IV. Each main girder is a

continuous girder, 3 feet wide and 550 feet 4 inches long, in three

spans. The centre span is 267 feet from centre to centre of

bearings, and 264 feet long between bearings. Each side span is

140 feet 11 inches long from centre to centre of bearings, and 138

feet 8 inches long between bearings. The flanges are horizontal

throughout, and the depth of girder, measured from root to root of

angle irons, is 22 feet 3 inches, or l-12th of the centre span and

TTTrrth of each side span. Each of the terminal pillars is 18 inches
b'o4

broad in elevation and has a bearing surface of 3 X 1*5 = 4-5

square feet ; each of the pillars at the ends of the centre span is

3 feet broad in elevation and has a bearing surface of 3x3 = 9

square feet. The cross-girders are 7 feet 5 inches apart from

centre to centre and correspond with the intersections of the lattice

bars, which are placed at an angle of 45 and form squares of 5

feet 3 inches on the side. The quantities of material in the

girder-work are as follows :

* For further description, see Proc. Inst. C.E., Vol. xiv. ; also, Proc. Inst. C.E. of

Ireland, Vol. ix.
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TABLE I. WEIGHT OP WROUGHT-IRON IN BACH SIDE SPAN, 140 FEET 11 INCHES

BETWEEN CENTRE OP BEARINGS AND 30 FEET WIDE FROM OUT TO OUT.

Two BOTTOM FLANGES.

Two TOP FLANGES.

Plates and angle iron,

Covers,

Packings,

Rivet heads,

Plates and angle iron,

Covers,

Packings,
-

Rivet heads,

TWO DOUBLE-LATTICED WEBS.

Tension diagonals,
-

Compression do.,

Rivet heads at intersections,

CROSS-BRACING.

6 lattice cross-girders connecting top flanges,

Horizontal diagonal tension bars (top and bottom) and a longitu-
dinal angle iron stiffener along the centre at top,

Rivet heads,

CROSS-GIRDERS.

18 lattice road-girders, including end gussets,

Iron between end pillars,

Platform planking,
-

Longitudinal sleepers (double line),

Rails and joint plates (Barlow's),
-

Permanent load on one side span, -

equal to 1'36 tons per running foot for the double line.

Tons.

27-45

3-57

6-38

2-44

27-10

3-84

6-40

2-25

10-96

27-70

0-13

3-70

5-36

o-io

Tons.

39-84

39-59

38-79

916

29-40

2-45

8-56

40-41

191-51
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TABLE II. WEIGHT OF WROUGHT-IRON IN THE CENTRE SPAN, 267 FEET BETWEEN

CENTRES OF BEARINGS AND 30 FEET WIDE FROM OUT TO OUT.

Two TOP FLANGES.

Two BOTTOM FLANGES.

Plates and angle iron,

Covers, -

Packings,

Rivet heads,

Plates and angle iron,

Covers, - ...
Packings, - .

Rivet heads,

TWO DOUBLE-LATTICED WEBS.

Tension diagonals,

Compression do., ...
Rivet heads at intersections,

CROSS-BRACING.

11 lattice cross-girders connecting top flanges,
-

Horizontal diagonal tension bars (top and bottom) and a longitu-
dinal angle-iron stiffener along the centre at top,

- - 10 '6 9

Tons.

79-09

9-38

11-83

518

8219

9-85

11-90

5-18

30-80

51-76

25

677

Tons.

105-48

10912

82-81

Rivet heads,

CROSS-GIRDERS.

35 lattice road-girders, including end gussets,

Iron between end pillars, -

Platform planking,

Longitudinal sleepers (double line),

Rails and joint plates (Barlow's),

Permanent load on centre span, -

equal to 1'64 tons per running foot for the double line.

20

17-66

4613

55-57

4-62

16-20

361-20

76-39

437-59
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TABLE III. WEIGHT OP WROOOHT-IRON IN THE PILLARS AND CROSS-GIRDERS

OVER SUPPORTS.

PILLARS, &c., OVER EACH LAND ABUTMENT.
Tons. Tons.

2 terminal pillars at end of one side span,
- 6'38

1 lattice cross-girder connecting heads of pillars,
- 3 '40

1 lattice cross-girder and gussets connecting feet of pillars,
- 3'45

PILLARS, &c., OVER SOUTH RIVEB PIER.*

2 pillars at south end of centre span,
- - 15 '30

1 lattice cross-girder connecting heads of pillars,
- 5*24

1 lattice cross-girder connecting feet of pillars,
- 1'09

2 gussets between pillars and pier,

PILLARS, &c., OVER NORTH RIVER PIER.

2 pillars at north end of centre span,
- - 15' 30

1 lattice cross-girder connecting heads of pillars,
- 5 '24

1 lattice cross-girder connecting feet of pillars,
- - 5'02

13-23

24-06

25-56

TABLE IV. SUMMARY OP WROUGHT-IRON.

Tons.

One side span,
- - 151*10

Second do.,
- 151 '10

Centre span,
- 361 "20

Pillars, &c., over one land abutment, - - 13'23

Do. second do. - 13'23

Do. south river pier, 24'06

Do. north river pier,
- 25 "56

Total weight of wrought-Iron in the 3 spans,
- 739-48

550 feet 4 inches in total length, equal to T344 tons per running foot for

the double line of railway.

* The pillars are firmly secured to this pier ;
rollers are used on the north pier and

on both abutments.
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TABLE V. WEIGHT OP SOLE-PLATES, HOLLERS AND WALL-PLATES.

OVER TWO ABUTMENTS. Tons. cwts. qrs. tt>s.

4 planed cast-iron sole-plates riveted to feet of pillars,
- 17 2 16

4 planed cast-iron wall-plates resting on the masonry, - 2 11

2 sets of 4-inch wrought-iron rollers and frames over the
north abutment, - - - 10 2

2 sets of 4^-inch wrought-iron rollers and frames over
the south abutment, - - 12 2 26

OVER SOUTH RIVER PIER.

2 cast-iron sole-plates riveted to feet of pillars,
- - 19 12

2 cast-iron wall-plates resting on the masonry, - 5 4

OVER NORTH RIVER PIER.

2 planed cast-iron sole-plates riveted to feet of pillars,
- 19 12

2 planed cast iron wall-plates resting on the masonry,
- 4 13 16

2 sets of 5-inch chilled cast-iron rollers and wrought-iron
frames, - - - - - 1 15 16

Total weight of sole-plates, rollers and
wall-plates, - - - 18 2 1 14

5S9. Working? strains and area of flanges. The strains

produced by the permanent bridge-load, plus one ton of train-load

per running foot on each line of way, do not exceed 5 tons tension

per square inch of net area, i.e., after deducting the rivet holes, and

4 tons compression per square inch of gross area. The gross

sectional area of the top flange of each main girder in the centre

of the centre span = 11 3*5 square inches; the gross area of the

bottom flange at the same place =127 square inches, and its net

area = 99 square inches
;
over the piers, between the centre and

side spans, the gross area of the top flange of each main girder

= 132*6 square inches, and its net area = 103'4 square inches; the

gross area of the bottom flange at the same place = 127 square

inches. At the points of inflexion in the centre span, about 40

feet from the piers measured towards the centre of the bridge, the

gross area of each flange = 68*5 square inches.
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53O. Points ofinflexion Pressures on points ofsupport.
The points of inflexion may be obtained by the method explained

in 853,. as follows :

Fig. 123.

Let Q be the centre of the centre span, and o and o' the points

of inflexion.

Let / = A B = C D = 141 feet nearly,

A Q = n/, whence n = ..... = 1*95 nearly,

w = the load per running foot on either side span,

wf = the load per running foot on the centre span,

R! = the reaction of either abutment, A or D,

R 2
= the reaction of either pier, B or C.

When the bridge supports its own weight only,

w = 1*36 tons and w' = 1*64 tons.

CASE 1.

531. maximum strains in the flanges of the side spans.
These occur when the passing load covers both side spans and the

centre span is unloaded (855) ;
in which case, assuming that the

maximum train-load is equivalent to one ton per running foot on

each line of way, we have,

w = 3-36 tons and w r = 1-64 tons.

From equations 183 and 184 the pressures on the points of

support are as follows :

R, = 170 tons. R
2
= 523 tons.
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The positions of the points of inflexion, obtained from equations
185 and 186, are as follows:

Ao = 101-2 feet. Bo' = 53-2 feet.

The strain in each of the four flanges midway between A and o,

i.e., in the centre of the first segment, is 96*6 tons (eq. 25).

CASE 2.

533. Maximum strains in the flanges of the centre span.
These occur when the passing load covers the centre span alone,

in which case,

w = 1'36 tons and w' = 3*64 tons.

The pressures on the points of support are as follows :

RI = 24-6 tons. R
2
= 704 tons.

R! being negative, signifies that a load of 24-6 tons is required at

each end to prevent the girder from rising off the abutments (854),

and this was actually the case when the bridge was proved with

one ton per running foot on each line of the centre span, the side

spans being unloaded. The girder was temporarily tied down to

the abutments by bolts secured to the masonry, but the bolts drew

out and the ends of the girder rose more than an inch above their

normal position on the rollers. The weight of a locomotive at

each end, however, soon brought them down again. With the

lighter working loads which occur in practice this rising off the

abutments does not occur. The position of the points of inflexion

in the central span is as follows :

Bo' = 40-3 feet,

and the strain in each of the four flanges in the centre at Q = 355

tons (eq. 25). At this place the net area of each lower flange = 99

355
square inches and the tensile inch-strain therefore =

-^-
= 3'6

tons.

CASE 3.

533. Maximum strains in the flanges over the piers. The

maximum strains over a pier occur when the centre span and the

adjacent side span are loaded, and the remote side span is unloaded.

We have, however, no formula for this condition of load, but we
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have a close approximation to it when the passing load covers all

three spans (855), in which case,

w = 3'36 tons and wr = 3*64 tons.

The pressures on the points of support are as follows :

R! = 107 tons. R 2
= 853 tons.

The positions of the points of inflexion are as follows (eqs. 185

and 186):-
Ao = 63-4 feet.

'

Bo' = 44-7 feet.

The strain in each of the four flanges over the piers = 406*4 tons

(eq. 12). The net area of each upper flange at this place = 103'4

square inches and the tensile inch-strain therefore = .TTTTT = 3'93
10o'4

tons.

534. Points of inflexion fixed practically Deflection

Camber. The points of contrary flexure in the centre span were

practically fixed in the manner described in 85O. Two joints in

the upper flange, 170 feet apart and equi-distant from the piers,

were selected for section. The rivets were cut out and drifts tem-

porarily inserted in their place. These drifts were then cautiously

struck out with a light hammer, and a slight closing of the joints

proved that a certain amount of compression had previously existed

in place of perfect freedom from strain. The extreme ends of the

side spans were then lowered, one an inch, the other half an inch,

which caused the joints to open about ^th of an inch. In this

condition it was obvious that no strain was transmitted through
the joints, and they were then finally riveted up, the altered

levels of the extreme ends of the side spans being maintained

by rollers of the proper diameter placed beneath the terminal

pillars. Tables VI. and VII. contain the deflections produced by
various conditions of load during the first, or Engineer's testing,

and the second, or official testing of the bridge by the G overnment

Inspector (4O9).
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Each span was built on the platform with a camber in order that

the sky-line might be nearly horizontal when the bridge was finished

(453). The camber at the centre of the centre span at different

periods was as follows :

TABLE VIII. CAMBER AT CENTRE OF THE CENTRE SPAN.

Inches.

During construction on the platform, - . . 3.43

After wedges were struck and bridge was self-supporting,
- - - 1*56

After fixing points of inflexion and lowering the ends of the side spans, - 1-80

After the second, or official testing of the bridge,
- - - 0'84

After four months' traffic,
- - - - - . - 0'90

535. Experiments on the strength of braced pillars.

The following experiments were made at the Boyne Viaduct in

1854, to determine the strength of one of the compression diagonals

of the web which were made of flat bar iron similar to the tension

diagonals, but with the addition of internal angle irons and cross-

bracing riveted between them as already described in 341. The

theory of braced pillars was then imperfectly understood, and

it was determined to test by direct experiment whether this

arrangement of internal cross-bracing would enable a bar, thin in

proportion to its length, to sustain an endlong pressure like a pillar,

such as the compression diagonals should sustain in the bridge.

Accordingly, the following experiments were made on one of the

smaller compression diagonals which occur near the centre of the

centre span, the author being present and recording the results.

EXPERIMENT 1.

The first experimental pillar resembled Fig. 1, Plate V., in every

respect, except the lower portion, which was formed as shown in

Fig. 4. This pillar, which was 31' 6" in length with 4" X J" side

bars, was erected in the midst of some timber scaffolding which had

been used for a stone hoist. The testing weight was suspended

below the wooden framing on which the pillar stood by long sus-

pender rods which were attached to cross pieces of timber resting
2 P
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on the top of the pillar (see Figs. 2 and 3). By this arrangement

the pressure was made to pass more accurately through the axis of

the pillar than if the testing weight had been heaped up on top ;
it

was also more convenient to load at the lower level. Cross bars

/,/,/, were attached to the sides at the same intervals as the latticing

in the main girders, and were connected at their ends to the scaffold-

ing, so as to represent the tension diagonals in the bridge ;
and here

I may again remind the reader that the chief advantage of a multiple

over a single system of triangulation consists in the more frequent

support given by the tension bars to those in compression, as well

as by both to the flanges; the parts in compression are in fact

subdivided into short pillars, and thus prevented from deflecting in

the plane of the girder (153). A cord was stretched vertically, in

order to get the lateral deflections during the experiment. These

were taken at three points, A, B, C, Fig. 1, and the symbols +
or placed before a deflection in the table signifies that it was in

the direction of the same sign engraved at the sides of the figure.

TABLE IX. LATERAL DEFLECTIONS OP A BRACED PILLAR.

Date.
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of each side bar near the ends of the pillar were left without internal

angle iron, and when the weight amounted to 47J tons, this part

yielded sideways, as shown in Fig. 5. The area of the two side-

bars at the part which failed amounted to 5 square inches; con-

sequently, the compressive strain which passed through them at

the moment of yielding equalled 9J tons per square inch.

EXPERIMENT 2.

The pillar in the first experiment failed, as indeed had been

anticipated, by the upper part moving sideways past the lower, as

if connected to it by hinges. The pillar was taken down, the

injured part removed, and the length thus reduced to 28' 6". The

repaired pillar, Fig. 1, was then replaced within the scaffolding and

the following table contains the observations recorded, which include

the contraction in length of each side under compressive strain.

These latter observations were made by the aid of wooden rods

suspended at each side from near the top of the pillar. Each rod

was 24' 8J" in length from the point of suspension to the index at

the lower end, and it will be observed that the contraction of one

side exceeds that of the other in a very anomalous manner, which

can only be explained by supposing that the timber framing yielded

more beneath one side than the other and thus caused a greater

strain of compression to pass through that side of the pillar which

contracted most.

TABLE X. LATERAL DEFLECTIONS AND YEBTICAL CONTRACTION OF A BRACED PILLAR.

Date.
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TABLE X. LATERAL DEFLECTIONS, &o. continued.

[APP.

Date.
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The sectional area of that part of the pillar which was subject
to compression, namely, the side bars and the angle irons, was

7-5 inches. The compression therefore equalled 11 tons per square
inch at the period of failure. For a very short portion at c, where

the bracing ended, the angle irons of the lower cell and that to

which the internal lattice bars were connected were not in one con-

tinued piece, and the whole weight passed through the unsupported
side bars, which were, however, a little thicker here than elsewhere

from a weld having been made at that point, so that the area of

both side bars together equalled 6 square inches
;
this short length

was therefore subject to a compression of nearly 14 tons per square

inch. If we wish to compare the economy of this form of pillar

with a tubular one, we must add the cross area of the lattice bars to

that of the side bars and angle irons, in order to obtain the strain per

sectional inch of material in the whole pillar. The cross area of the

lattice bars = 2 inches nearly ; adding this to the area of the side

bars and angle irons, we have the total sectional area of the braced

pillar
rr 9J inches, and the compression per square inch of material

employed 8*7 tons. This is a favourable result when compared

with those arrived at by Mr. Hodgkinson in his experiments on

tubes subject to compression, for if the same amount of iron were

thrown into the form of a plated tube, it would have such thin sides

that the ultimate crushing inch-strain would probably fall very far

short of 87 tons (335). We may regard the lattice pillar as one

side of a tube, in the corners of which the chief part of the material

is collected and the sides of which are formed of bracing, connecting

and holding the corner pillars in the line of thrust.

536. Experiments on the effect of sfow and quick trains

on deflection. The following experiments were made at the

Boyne Viaduct to try the effect of slow and quick trains on

vibration and deflection :

April bth, 1855. The lateral oscillation at the centre of the

centre span from an engine and tender going at the rate of from

30 to 50 miles an hour equalled 0'05 inch on each side, i.e., the

total oscillation equalled 01 inch. That from a slow engine

was scarcely perceptible. The deflection at the centre of the

centre span, measured on the same side as the line on which
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the engine and tender travelled, both for quick and slow speeds

equalled -25". The same deflection was produced when the engine

was brought to a stand at the centre of the centre span. If any

difference of deflection with different speeds was perceptible, those

deflections which were produced by rapid travelling exceeded the

others by a very small amount, perhaps the width of a fine pencil

stroke, but for all practical purposes they were identical. On

starting the engine from rest at the centre of the bridge the

deflection was momentarily increased to a very slight extent. There

were about five quick trains, of which one travelled at 48 and the

others 50 miles an hour, and about as many slow ones (454).

NEWARK DYKE BRIDGE, WARREN'S GIRDER.*

537. This bridge carries the Great Northern Railway across

the Newark Dyke, a navigable branch of the river Trent. It is a

skew girder bridge, formed of a single system of equilateral triangles

on Warren's principle. Each girder consists of a hollow cast-iron

top flange, and a bottom flange, or tie, of wrought-iron flat bar

links, connected together by diagonal struts and ties, alternately of

cast and wrought-iron, which divide the whole length into a series

of equilateral triangles, 18 feet 6 inches long on each side. There

are two main girders to each line, between which the train travels

on a platform attached to the lower flanges. The length from

centre to centre of points of supports is 259 feet, and the clear

span between the abutments is 240 feet 6 inches. The depth
from centre to centre of flanges is 16 feet, or nearly l-16th of

the length. The permanent weight of bridge for a single line of

railway, consisting of two main girders, top and bottom cross-

bracing, platform, &c., is as follows:
Tons. Cwts.

Wrought-iron, - 106 5

Cast-iron, - - 138 5

244 10

Platform, rails, handrail and cornice, - 56

Total permanent weight for one line of way, 3OO 1O

*
"Description of the Newark Dyke Bridge." Proc. Inst. C.E., Vol. xii.
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With a load of one ton per running foot the central deflection

amounted to 2f inches. The strain with this load, whether tensile

or coinpressive, is said not to exceed 5 tons per square inch on any

part.

CHEPSTOW BRIDGE, GIGANTIC TRUSS.*

538. This bridge was erected by Mr. Brunei to carry the

South Wales Railway across the river Wye near Chepstow. It

consists of two gigantic trusses, one for each line of way, 305

feet long and about 50 feet deep, and resembling Fig. 64, p. 124,

with this exception, that the roadway is attached to the lower

flange. The compression flange of each truss is a round plate-

iron tube, 9 feet in diameter and fth inch thick, with stiffening

diaphragms at intervals, and supported by cast-iron arched standards,

or end pillars, which rest on the piers. The side girders are plate

girders which are divided by the truss into three spans. The

weight of iron in one bridge for a single line of railway is as

follows :

Tons.

298 feet run of tube and butt plates, 127J-

Hoops of ditto over piers,
7

Side and bottom plates for attachment of main

chains,
- 15

Side plates for attachment of counterbracing chains, 2

Stiffening diaphragms, 26 feet apart,
4

Rivet heads, &c., 4f

Total weight of one tube (top flange),
- 16 1J

Main chains, eyes, pins, &c.,

Counterbracing chains, eyes, pins, &c.,
-

Vertical trusses,
- - 18 2

Total weight of side-bracing,
-

Encyc. Brit., Art. "Iron Bridges," and Clark on the Tubular Bridges, p. 101.
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Tons.

Side girders, cross-girders, &c., - - 130

Saddles, collars, &c., at points of suspension,
- 22

152

Total weight of iron for one line of railway,
- 46O

CRUMLIN VIADUCT, WARREN'S GIRDER.*

539. The Crumlin Viaduct is situated on the Newport section

of the West-Midland Railway about five miles from Pontypool.

The structure is divided by a short embankment into two distinct

viaducts of exactly similar construction. The larger viaduct has

seven, the smaller three openings of 150 feet from centre to centre

of piers. The girders are " Warren's Patent" of 148 feet clear

span, but not connected together as in continuous girders. The

compression flange is a rectangular plate-iron box or tube, and the

tension flange is formed of flat wrought-iron bars; both flanges

increase in sectional area from the ends towards the centre. The

diagonals form a series of equilateral triangles of angle and bar iron,

the section of those in compression being in the form of a cross.

The length of each side of the triangle is 16 feet 4 inches. The

maximum tensile strain in the diagonals from the permanent load

plus a train-load of one ton per running foot was 6*65 tons per

square inch of net section when the bridge was first made, the

maximum tensile strain in the lower flange from the same load

was 5 '75 tons per square inch of net section, and in no part did

the maximum compression strain from the same load exceed 4 -31

tons per square inch of gross section. The viaduct has four girders,

two to each line of railway with the road above the girders. The

weights for a single line, 150 feet long, were as follows when the

bridge was first made, but a very large amount of additional

material appears to have been added subsequently for the purpose

of strengthening it.f

*
Trans* Inst. C. E. of Ireland, Vol. vii., p. 97 ; and Humber on Bridges, 1st ed.

f Engineer, 1866, Vol. xxii., p. 384.
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Tons. Cwts.

A pair of main girders, - 37 18

Cross-bracing of do., - - 3 3

Platform, - 18 1

Permanent way, - 15 3

Hand-railing, - - 9

Total permanent weight for one line of way, 83 5

The tension flange of one girder weighs 5'97 tons, of which

1-5 ton, or one-fourth, was required to make the connexions of the

flange.

PUBLIC BRIDGE OVER THE BOYNE, LATTICE GIRDER.*

54O. This bridge crosses the river Boyne at the Obelisk near

Drogheda. The main girders are double-webbed lattice girders,

128 feet long, and 10 feet 8 inches deep, or l-12th of the length.

The clear span between the abutments is 120 feet, and the clear

width of the roadway, between the inside planes of the lattice bars,

is 16 feet 8 inches. Sufficient strength is provided in the main

girders to sustain a total load of 3 cwt. per super foot of roadway

when the iron in tension is strained up to 5 tons per square inch of

net section, and that in compression up to 4 tons per square inch of

gross section. The cross-girders are shallow plate girders about 3J

feet apart and capable of supporting a load of 5 cwt. per super foot,

the additional strength being given to meet the contingency of a

very heavy load resting on each girder in succession with the same

working strains as above. The roadway is supported on buckled

plates resting on the cross-girders; these plates weigh 67Jft>s. per

square yard 'and have a versine of
2-J- inches, four plates being laid

in the width of the bridge. A layer of wooden chips, sand and

coal tar was first laid so as to cover a little over the level of the

crown of the buckled plates and upon this was laid asphalt 8 inches

deep, consisting of broken stones, sand and coal tar.

The following table gives the actual weight, the theoretic weight,

* Trans. Inst. C.E. of Ireland, Vol. ix., p. 67.
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and the percentage of material practically required over the

theoretic weight, i.e., the loss of iron due to rivet holes, cover

plates, stiffeners and waste.

TABLE XL SUMMARY OF MATERIALS IN THE BOYNE OBELISK BRIDGE,

120 FEET SPAN.

Top flange, in compression,
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BOWSTRING BRIDGE ON THE CALEDONIAN RAILWAY.*

541. This bridge was erected by Mr. E. Clark to carry the

Caledonian Railway over the Monkland Canal. The arch is partly

wrought-iron and partly cast-iron, and the tie or lower flange

consists of wrought-iron plates. The total length of the girders is

148 feet, and the depth is 15 feet or about l-10th of the length.

The whole weight of the girders for a double line is 128 tons.

CHARING-CROSS LATTICE BRIDGE, f

543. This bridge was erected by Mr. Hawkshaw to carry the

Charing-Cross Railway across the Thames on the site of the

Hungerford Suspension Bridge, the chains of which were removed

to Clifton. It comprises nine independent spans, six of 154 feet

and three of 100 feet. The leading particulars of one of the 154

feet spans are as follows. The main girders are wrought-iron

lattice tubular girders, the web consisting of two systems of nearly

right-angled triangles. The tension diagonals are Howard's patent-

rolled suspension links, and the compression diagonals are forged

bars, varying in thickness from 2J to 3 inches, and united in

pairs by zigzag internal cross-bracing. The flanges are formed of

horizontal plates in piles, with four vertical ribs attached by angle

irons to the horizontal plates, the two outer ribs being 2 feet deep

and the two inner ones 21 inches deep. The flanges therefore

resemble the usual trough section, but with 4, in place of 2 ver-

tical ribs (439). The diagonals have enlarged ends with eyes,

and are attached to the vertical ribs by turned pins of puddled

steel. In addition to the diagonals already mentioned, there are

vertical bars 1 inch thick connecting each pin in the upper flange

with that in the flange directly beneath ;
these vertical bars form

diagonals to the squares made by the diagonal bracing and are

superfluous (191). The extreme length of the main girders is 164

feet, their extreme depth is 14 feet, and the depth from centre to

centre of pins is 10 feet 9 inches, but the distance between the

*
Encyclopaedia Britannica, Art. " Iron Bridges," p. 605.

f Proc. Inst. C. E., Vol. xxii. ;
and Trans. Soc. Eng. for 1864.
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centres of gravity of the flanges is 12 feet 9 inches, or nearly

1-12th of the clear span, and this seems to have been assumed to

be the correct depth for calculating the working strains, which

with 1J ton per foot on each line, are stated to be 5 tons tension

per square inch of net section, and 4 tons compression per square

inch of gross section. The cross-girders are attached to the under

sides of the lower flanges, and project beyond them with cantilever

ends which support footpaths 7 feet wide. These cross-girders are

1 1 feet apart and correspond with the apices of the diagonals in the

lower flanges. There are four lines of railway and the width in the

clear between the main girders is 46 feet 4 inches. The weight of

iron in one main girder, including the end pillars, is as follows :

Tons. Cwts. Qrs.

Top flange, 70 4 2

Bottom do., 67 15 2

Web, 46

End pillars, 600
Weight of iron in one main girder, 19O O O

Taking the rolling load at 1J tons per foot of single line, the

maximum distributed load on each main girder is nearly as

follows:
Tons.

Rolling load on two lines = 156 X 2J tons, - 390

One main girder, deducting end pillars,
- 184

One half the cross-girders and cantilevers, - 67

Rails for two lines, 7

Timber in the half platform and longitudinals under rails, 41

Load of people on one footpath at 100 Ibs. per square foot, 48J

Total distributed load on one girder,
- 737J

The foregoing load is exclusive of cornice, hand-rail, fish-plates,

bolts, spikes, chairs for rails, hoop-iron tongue and bolts for planking

and ballast.

CONWAY PLATE TUBULAR BRIDGE.*

543. The Conway bridge was erected by Mr. Robert Stephenson

* Clark on the Tubular Bridges.
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to carry the Chester and Holyhead Eailway over the river Conway,
in North Wales. It consists of two wrought-iron plate tubular

bridges placed side by side, with one line of railway in each tube.

The entire length of each tube is 424 feet, the clear span is

400 feet, and the effective length for calculation 412 feet. The
external depth at the centre is 25 feet 6 inches, or nearly 1-1 6th of

the length, thence it diminishes gradually towards the ends where

it is 22 feet 6 inches. The external width is 14 feet 9 inches; the

clear width inside is about 12 feet 6 inches. The tubes are placed

9 feet apart and are not connected in any way.

TABLE XII. TABULAR STATEMENT OF WROUGHT-IRON WORK IN THE CONWAY

BRIDGE ONE TUBE, SINGLE LINE, LENGTH 424 FEET.
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SIDES.

Tons. Cwts.

Plates acting as sides,
- - 163

Covers and proportion of T-iron acting as

covers, - 90 10

Gussets, stiffeners, arid projecting rib of

T-iron engaged in stiffening the sides, 101 16

llivet-heads, 23 15

379 1

LOWER FLANGE.

Plates and angle-iron in tension,

Plates and angle-iron acting as covers,

Transverse keelsons,

Rivet-heads,

[APP.

Per cent.

43-0

24-0

27-0

6-0

100-0

Tons. Cwts.
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which became 8'98 inches after they took a permanent set due to

the strain (41 0). The deflection, from additional weight placed at

the centre, is "01104 inch per ton. The difference of deflection due

to change of temperature, between noon and midnight on the 5th

of July, 1848, was 1'56 inches (419).

BROTHERTON PLATE TUBULAR BRIDGE.*

544. The Brotherton bridge, on the York and North Midland

Railway is a tubular plate bridge with one line of railway in each

tube. The span is 225 feet, the depth 20 feet or 1-1 1th of the

span nearly, and the width of each tube between the side plates

is 11 feet.

The weight of one tube is as follows :

Wrought-iron between the bearings,
- 198 tons.

Wrought-iron on the bearings,
- - 13 ,,

Cast-iron on the bearings,
-

14J ,,

Cast-iron in rollers and plates,
- 9^

Total weight of iron for one line of railway, 235 tons.

The top flange is composed of a single plate in thickness, and

no cells whatever have been used either in top or bottom.

545. Size and weights of various materials. The following

tables refer chiefly to the size and weights of various materials, and

will be found useful for reference.

*
Encycl. Brit., Art. " Iron Bridges," p. 609.
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TABLE XIII. VALUES OP GAGES FOR WIRE AND SHEET METALS IN GENERAL

USE, EXPRESSED IN DECIMAL PARTS OP THE INCH.*

Birmingham Wire
Gage for Wire,

and for Sheet Iron
and Sheet SteeL
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TABLE XIII. VALUES OP GAUGES FOE WIRE AND SHEET METALS IN GENERAL

USE, EXPRESSED IN DECIMAL PARTS OP THE INCH continued.

Birmingham Wire
Gauge for Iron Wire,
and for Sheet Iron
and Sheet Steel.



594 WEIGHT OF METALS. [APP.

TABLE XIV. WEIGHT OF A SUPERFICIAL FOOT OF VARIOUS METALS IN LBS.



APP.] WEIGHT OF METALS. 599

TABLE XV. WEIGHT OP A LINEAL FOOT OP ROUND AND SQUARE BAR IRON
LBS. (Molesworth).

Breadth
or diam.
in inches.



596 WEIGHT OF TIMBER. [APP.

TABLE XVI. SPECIFIC GRAVITY AND WEIGHT OF A CUBIC FOOT OF DIFFERENT

WOODS/

Kind of Wood, and state.



APP.] WEIGHT OF TIMBER. 597

TABLE XVI. SPECIFIC GRAVITY AND WEIGHT OP A CUBIC FOOT OP DIFFERENT
WOODS continued.



598 WEIGHTS OF VARIOUS MATERIALS. [APP.

TABLE XVII. SPECIFIC GRAVITY AND WEIGHT OF A CUBIC FOOT OF VARIOUS MATERIALS.
'

Name of the Substance.



APP.] WEIGHTS OF VARIOUS MATERIALS.

TABLE XVII. SPECIFIC GRAVITY AND WEIGHT OF A CUBIC FOOT OF VARIOUS MATERIALS

continued.

Name of the Substance.
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TABLE XVII. SPECIFIC GRAVITY AND WEIGHT OP A CUBIC FOOT OF VARIOUS MATERIALS

continued.

Name of the Substance.



APP.] TONS CONVERTED INTO LBS. AVOIRDUPOIS. 001

TABLE XVIII. FOR CONVERTING TONS INTO LBS. AVOIRDUPOIS.

Tons.
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TABLE XIX. FOE CONVERTING LBS. AVOIRDUPOIS INTO TONS.

Lbs.



APP.] CHANNEL IRON SECTIONS. 60S

TABLE XX. CHANNEL IRON SECTIONS OP VARIOUS THICKNESSES,

IN PROPORTION TO THEIR SIZE.

Base.



604 ROLLED IRON GIRDERS.

TABLE XXI. ROLLED IRON GIRDERS.

[APP.

Depth.
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TABLE XXI. ROLLED IRON GIRDEBS continued.

Depth.



606 ROLLED IRON GIRDERS.

TABLE XXI. ROLLED IRON GIRDERS continued.

[APP.

Depth.
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TABLE XXII. DECK BEAM IRON.

607

Depth
of

Beam.



608 ANGLE IRON. [APP.

TABLE XXIV. ANGLE IRON SECTIONS OF VARIOUS THICKNESSES,

IN PROPORTION TO THE SIZE.

EQUAL SIDED ANGLE IRON.



APP.] ANGLE IRON.

TABLE XXIV. ANGLE IRON SECTIONS continued.

609

UNEQUAL SIDED ANGLE IRON.



610 ANGLE IKON.

TABLE XXV. ANGLE IRON.

[APP.

ROUND BACKED.



APP.] ANGLE IRON.

TABLE XXV. ANGLE IRON continued.

611

SQUARE ROOT.



612 TEE IRON. [APP.

TABLE XXVII. "T IRON SECTIONS OP VARIOUS THICKNESSES,

IN PBOPORTION TO THE SIZE.

Table. Leg.
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TABLE XXVII. J IRON SECTIONS continued.

613

Table. Leg.



614 TEE IRON.

TABLE XXVII. T IKON SECTIONS continued.

[APP.

Table. Leg.
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INDEX

ART.

A truss,
-

220, J1

Alloys, coefficients of linear expansion, - -415

crushing strength,
- -

:J'.<'.

tensile strength, 362 to 364

Aluminium bronze, 299, 362

Angle-iron pillars,
-

ordinary sizes of, 437, 545

tensile strength,
- 352, 353

Angle of bracing, trigonometrical functions, - 278

economy for bracing,
- -275, 276

fracture from crushing,
- 293, 302

Annealing cast-iron,
- 349

chains, -
. 357, 409

copper wire,
- - 362

glass,

gun metal,

steel,
- 360

wrought-iron,
- - 354, 357, 358, 409

Antimony, coefficient of linear expansion,
- - 415

Apex, 135

Arch, braced,
- 213

cast-iron, - 219, 459, 473

-flat, - - 216

laminated

stone,

triangular,
-

wrought-iron,

Arches, how affected by changes of temperature,
-

Ashlar work, working load,

Axioms, -

Ballast, weight of - 445 545

Bay, - - '136

Beam,

Bearing surface, -

.

Bell metal, tensile strength,
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ART.

Belting leather, tensile strength and working strain,
- - 389

Bending moment, - - - 59

Bent crane, - - 195

girders,
- 192

Birmingham wire gage,
- - 545

Bismuth, coefficient of linear expansion,
- - 415

Board of Trade regulations respecting railway bridges, 446, 473, 492

Boilers, strength of,
- 288

working load on,
- - 479

Boiler-maker's rules for riveting,
- - 467

Bolts and pins, strength and adhesion in timber, -
460, 461, 468

Bone, 8, 389

Bow and invert, or double-bow girder,
- - 212

Bowstring girder,
- -

207, 272, 443, 450, 457

at Saltash,
- 212

on the Caledonian railway,
- - 541

quantity of material in,
- - 272

Box girder,
- - 13

Boyne viaduct, description and details,
- - 528 to 536

Brace, - 137

Braced arch,
- 213

-pillars, 341, 535

semi-arch, - - 198

triangle,
- 220

Bracing. (See "Angle of Economy"
"
Counterbracing," "Cross-bracing," "Lat-

tice,"
"
Web")

Brass, coefficient of elasticity,
- - 8

coefficient of linear expansion,
- 415

crushing strength,
- - 299

tensile strength,
- - 362

wire, tensile strength,
- 362

Brewster, experiment on glass girder,
- - 131

Brick, coefficient of linear expansion,
- 415

crushing strength,
- - 301

working load,
- - 488

Bridges. (See "Appendix," "Cast-iron," "Lattice," "Public," "Railway" "Steel,"

"Suspension" "Swing" "Timber," "Tubular,"
"
Wrought-iron")

Brittleness,
- 5

Bronze. (See
" Gun metal.")

aluminium, - 299, 362

Brotherton plate tubular bridge, description,
- 544

Buckled-plates,
- 447

Buckling,
- 292

Bulging,
- - 292
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ART.

Cables. (See
"
Chains,"

"
Cordage.")

Camber, practical method of producing, . 455

ornamental rather than useful,

Cast-iron, annealing, effect on strength,

arches, 219, 459, 473

coefficient of elasticity,
- -

8, 246, 399 to 405

do. linear expansion,
- - 415

do. transverse rupture, 65

do. torsional rupture,
- - 283

cold and hot blast, relative strength, - 346

compound girders of cast and wrought-iron, - 523

corrosion,

crushing strength,
- 294

deflection, 246, 472

effect of changes of temperature, 418, 420

elastic flexibility twice that of wrought-iron,
- - 408

girders,
- 132, 422, 435, 458, 523

indirect pull reduces the tensile strength,
- 350

mixtures stronger than simple irons,

-
pillars,

- 322 to 329, 471, 474

prolonged fusion, effect on tensile strength,
- - 348

-
proof strain, 473, 482

re-melting, effect on tensile strength,

set,
- - 399 to 405

shearing strength,

Stirling's toughened,

tensile strength,

working strain and working load,
- 473, 474

relative strength of thin and thick castings,
- 132, 295, 296, 349

Cellular flanges,

Cement. (See
"
Keene, Medina, Parian, Portland, Roman")

Centres of strain,
-

Centrifugal force, effect on deflection,

Chains, - 35 7> 378 * 385

flat-link,
-

-proof-strain,
-

weight,
-

working-strain,

Chain-riveting,

Channel-iron pillars,

- sizes of,

Charing-cross Lattice Bridge, description,
-

Chepstow Truss Bridge, description,

Clay, working-load,
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ART.

Clenches and forelocks, strength of,
- - 468

Coefficient of elasticity, E,
- 8

linear expansion,
- - 415

transverse rupture, S,
- 60 to 66

torsional rupture, T,

safety,
- 470

Cold and hot-blast iron, relative strength,
- - 346

Collar-beam,
- 220

Columns, stone,
- 339, 448

Compound girders of cast and wrought-iron,
- - 523

of timber and wrought-iron, - 187, 527

Compressive strain, subdivisions of,
- 292

symbol of, +, - 139

Concrete, crushing strength,

-
working load,

- 488

Connexions. (See
"
Joints.")

- 460 to 469

Continuous girders, 247 to 260, 427, 499

ambiguity respecting strains in webs, - 256

( not desirable for small spans with passing loads, or where

(. foundations are insecure, - - 258

of two equal spans, each loaded uniformly,
- - 251

of three symmetrical spans, loaded symmetrically,
- - 253

Contrary flexure. (See "Inflexion.")

Conway Plate Tubular Bridge, description,
- 543

Copper, coefficient of linear expansion,
- - 415

crushing strength,
- - 299

shearing strength,
- - 396

tensile strength,
- - 362

weight and specific gravity,
- 362

wire, - 362

Copper-bolts, adhesion of in timber, - 468

Cordage, tensile strength,
- - 375 to 377, 381, 386 to 388

weight, - - 375, 376, 381, 385 to 387

working strain,
- 377, 386 to 388

Corrosion of metals,
- 431

Cotters, - - 460

Counterbraced brace, - 137

girder,
- - 138

Counterbracing, - 174, 175, 186, 187, 208, 448 to 450, 517

Covers, allowance for in estimating girder-work,
- - 497

strength and proportions of,
- 463 to 465

Crane, bent, - 195

-
derrick, - - 193

lattice 197
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Crane, travelling, or gantry,
- - - - 187

tubular, - - - 195

wharf, -
. . ij)4

working- strains,
- - - 473 to 484

Crescent girder,
- . 203

Cross-bracing,
- - 440 to 443

Cross-girders,
... . - 444 to 447

Cruciform-iron pillars,
- . 332

Crumlin Viaduct, description,
- - 539

Crushing strength of materials,
- - 291 to 305

Crushing, subdivisions of, . 292

Cubic elasticity,
... 3

Curve of equilibrium,
- -49

Cylinders and spheres, strength of,
- - 288

Deflection, . 223 to 246, 434, 451 to 456

effect of centrifugal force on,
- - - 4">fi

experiments on deflection, - 454, 471, 472, 475, 534, 536

method of measuring deflection of girders,
- - 456

not affected by nature of web, - 223, 434

of small bridges increased by loads in rapid motion, - - 454, 489

of continuous girders, 251, 253, 534

of girders of uniform section, - - 225

do. of uniform strength, 223, 224, 451

of lattice and plate girders nearly alike, J23, 434

of similar girders,
- - 224

Depth of girders and arches, - 18, 274, 457 to 459

for calculation,

weights of girders do not vary inversely as their depths,
- 505, 511, 516

Derrick Crane,
- 193

Detrusion,

Diagonals. (See "Bracing,"
"
Web")

law of strains in intersecting diagonals,

Diagram, calculation by,
-

Drilling tools,
- - 425

Drilling preferable to punching,
-

Ductility,
- -5, 356, 357

E, coefficient of elasticity,

Earth, working pressure on,

Economy, angle of,

relative economy of different kinds of bracing,

Elastic flexibility and elastic stiffness,

Elasticity and set,
- - - - 3 to 8, 398 to 413
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ART.

Elasticity, cubic,
- - 3

coefficients of, E, 8, 399 to 413

law of elasticity (Hooke's law), 7, 393

limit of,
... 7, 398 to 413

linear,

modulus of,

sluggish or viscid,
- - - 404, 410

tensile, compressive and transverse elasticity often different,
-

8, 246, 403

Ellipse, moment of resistance of,
- 76, 77

Elliptic semi-girders,
- 93, 94

Engine-work, working strain,

Engines, weight of, 489, 490

Equality of moments, - 11

Equilibrium, curve of,

Estimation of girder-work,
- 495 to 522

Expansion from heat, coefficients of linear,
- 415

effect on girders, arches and suspension bridges,
- - 414

-
rollers, 340, 414, 429

F, symbol which represents the total strain,
- 2

/, symbol which represents the unit-strain of tension or compression,
- - 2

/', symbol which represents the unit-strain of compression,

Factor or coefficient of safety,
- 470

Fatigue of materials, - - 470, 519

Fish-bellied girders, or inverted bowstring, - 212

Flanges,
- -

17, 100, 152, 422 to 429, 439, 443, 477, 496, 497, 520

Flexibility, 4

Flexure, - - 292

Foot-strain, - 2

Forelocks, strength of,
- - 468

Forgings, tensile strength of,
- 352, 354, 357

Foundations, working load on,
- - 487

Fractured area, - - 352

French rules for working strain,
-

473, 476, 479

proof load and working load of bridges,
- 492, 493

proof strain for chains and ropes,
-

376, 382

Friction due to riveting,
- - 466

Gages for wire and sheet metals, - - 545

Gantry or travelling crane, - 187

Gasholder roof,
- 222

Girder, - - - 12

arched, - 213

bowstring. (See
"
Bowstriny.")
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Girder, box, . - - - ] :j

cast-iron. (See
"
Cast-iron.")

compound cast and wrought-iron, - . 623

compound timber and iron, . 187, 527

continuous, . 247, 427

crescent, - . 203

cross, - . 444 to 447

curved, - - 192

deflection, .
223, 451

-depth, - . .j;,7

double-bow, - . - 212

double-webbed, or tubular, - 13

-
elliptic,

-
93, 94

estimation of,
- - 495 to 522

fish-bellied, - 212

imbedded at both ends and loaded uniformly,
- - 259

do. and loaded at the centre,
- - - 260

lattice. (See
"
Lattice girder.")

-limit of length, 67,524

of uniform strength,
- 19

plate. (See "Plate girders")

proving. (See
"
Proof load.

'

')

quantity of material. (See
"
Quantity.")

rail girder, or keelson,

rectangular girder of maximum strength cut out of a cylinder,
- 87

road girder,

similar girders. (See "Similar girders")

single-webbed,

temperature, effect on girders,
- 414, 418, 419

timber. (See
"
Timber")

-
triangular, 201, 218, 220

trough,

-trussed, - 187

-tubular. (See
" Plate" girder.")

-

Warren's,

weight of girders under 200 feet in length,

with parallel flanges and isosceles bracing,

do. do and vertical and diagonal bracing,
-

working loads on. (See "Public bridges" "Railway bridges" "Jtooft.")

wrought-iron. (See
"
Wrought-iron")

- loaded at an intermediate point,
-

loaded at the centre,

- loaded uniformly, 43, 124, 160, 177, 188, 2<

do. and traversed by a train of uniform density,
-
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ART.

Girder, loaded unsymmetrically, - .
41, 155

traversed by a concentrated rolling load, 32, 37 to 40, 54, 123, 158, 186, 491

traversed by a train of uniform density,
- -

50, 169, 189, 190, 489, 490

Girder-work, estimation of - 494 to 522

Glass, coefficient of linear expansion,
- - . - 415

crushing strength,
- - - - 305

elasticity of,
- . - 413

girder, Brewster's experiments on,
- . 13J

tensile strength,
- - 374

weight and specific gravity, -
305, 545

Glue, tensile strength and adhesion to timber, - - . 339

Gold, coefficient of linear expansion, - - - 415

weight and specific gravity, - _ 545

Government inspection of railway bridges. (See
" Board of Trade.")

Gravel, working load on,
- . 437

Gun metal or bronze, annealing, effect on strength, - - 363

coefficient of elasticity,
- g

high temperature at casting injurious to strength,
- - 363

tensile strength,
- . .

362, 363

Gutta-percha, tensile strength and working-strain, - - 389

Heat. (See
"
Temperature")

Homogeneous metal, tensile strength,
- . 359

Hooke's law of elasticity, . .
7^ 393

Horizontal bracing, - . . . 440

Hot and cold-blast cast-iron, relative strength,
- - - 346

Impact, effect of long continued impact on cast-iron bars, - - 472

Inch-strain, . - - 2

Inertia, moment of, .... 69 225

Inflexion, points of, ..... 247

economical position of,
- ... 250

experimental method of finding,
- - - 249

not affected by depth of girders,
- - - 249

practical method of fixing,
- - -

250, 534

Initial strains in bracing, method of producing, ..... 442

Internal bracing, - ..... 34^

Inverted bowstring, . . . - 212

Iron. (See "Angle-iron,"
"
Cast-iron," "Plates,"

"
Tee-iron,'

"
Wrouyht-iron")

Isosceles bracing,... . ---133
Joints, - 439

?
460 to 469

bolts and pins, 460, 461, 468

cast-zinc, - ---.,.. 454
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Joints, clenches and forelocks, ... . . 4^3

jump. 462, 464
-

lap, . 462 to 465

in piles of plates,
-

423, 424, 464

nails and bolts,
- -

468, 469

riveted. (See "Rivets.")

screws, - - -
354, 460, 469

treenails,
- - 897

Keelsons, or rail girders,
... - 445

Keene's cement, tensile strength,
- - 371

Knife edges, working load on, - - 478

Laminated beams, - - 527

Lancashire gage for steel wire,

Lattice bridges, description of. (See Appendix.)

Lattice crane, -... . -197
Lattice girders, ambiguity respecting strains,

- - 181, 191, 215

curved or oblique,

deflection,
- 223, 224

effect of temperature,
- 418, 419

effect of concentrated load,
- 445, 491

end pillars subject to transverse strain,
- 180, 191,443

estimation of quantities,
- 495 to 522

loaded uniformly,
- 177

timber, - - ^-1

traversed by a passing train,
- - 179, 190

traversed by a single load,

weight of,
- 521

Lattice pillars,
- - 341

semi-arch,

-
semi-girder, 154, 197, 201

Lead, coefficient of elasticity,

coefficient of linear expansion,

crushing strength,
-

elasticity,
-

tensile strength,

weight and specific gravity,

Leather, tensile strength,
-

Length for calculation,
-

-limit of,
- 67,524

Lever, law of the,

Lime. (See
"
Concrete," "Mortar")

Limestone. (See
"
Stone")
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ART.

Limit of elasticity, 7, 393 to 413
-

length of girders, .
67, 524

Linear expansion from heat, coefficients of,
- - - . - 415

Liverpool and Lloyd's rules for ship riveting,
- ... 457

Locomotive. (See "Engine")

M, moment of resistance to rupture,
- - - -

59, 69 to 82

Machinery, working strain, - .... 480

Masonry, crushing strength,
- - - 393

working strain, . . . - 488

Mechanical laws, - .... 9

Medina cement, tensile strength,
- ..... 371

Modulus of elasticity,
- .... 8

of rupture,
- ... 60

Moment of inertia, ....
69, 225

of resistance to rupture, M> - - -
59, 69

of rupture, . . - 59

of resistance to torsion, - .... 284

Moments, equality of, - - - 11

strains calculated by,
- -

164, 196

Mortar, adhesion of,
- ...... 372

crushing strength, - - - - - - 304

tensile strength,
-

368, 369, 370

weight and specific gravity,
- - - - 545

working load, - .... 437

Nails, bolts and screws, adhesion of,
- -

468, 469

Neutral axis,
- ... 58

passes through centre of gravity of section, -
68, 131

practical method of finding, - 68

shifting of, - - - 131

Neutral line,
- ...... 58

Neutral surface, - - - - . . . . - 57
Newark Dyke Bridge, description, . - - 537

Obelisk Bridge over the Boyne, description, .... 549

Oblique or curved girders, . - 192

Palladium, coefficient of linear expansion, - . - 415

Parian cement, tensile strength,---... 371

People, crowd of, the greatest distributed load on a public bridge,
- - 493

Piles of plates, .

-

423, 424, 464

Piles, working load on timber, - - - - 486

Pillars, 306
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ART.

Pillars, angle-iron, - ...
braced, - . - 341 to 343, 535

cast-iron,
- - 322 to 329, 47 1

channel iron, 332

cross shaped, +, - - 325

discs add little to the strength of flat-ended pillars,
- - - 316

effect of long-continued pressure on the strength of pillars,
- 471

end pillars of girders,
-

180, 191, 443

effect of enlarged diameter in the middle or at one end, - - 317

H -shaped, . 325

Hodgkinson's laws, - 311 to 326

Gordon's rules, - - 327

lattice. (See "Braced," above.}

long flexible pillars which fail by flexure, - 306, 310, 311

medium, or short flexible pillars, which fail partly by flexure, partly by

crushing,
- - -

310, 323

short pillars which fail by crushing, - 293, 310

similar long pillars, strength of,
- - 308, 321

steel,
- -

336, 483

stone,
- -

339, 488

strain passing outside axis of pillar reduces its strength greatly,
- - 320

strength of very long pillars depends on their coefficient of elasticity,
- 307

tee-iron,
- - 332

theory of very long pillars,

three classes of pillars,

timber, - - 337, 338, 484 to 486

triangular,
- 326

-tubular, - 334, 335, 423

weight which will deflect a very long pillar is very near the breaking

weight,
-

wrought-iron,
- 330 to 335, 477, 535

Pins, ... - 439, 460 to 469

Plaster of Paris, adhesion to brick and stone,

tensile strength,

weight of cast plaster,
-

Plates, boiler,

friction of riveted plates,

ordinary sizes of,

-piled,

resistance to flexure,

ship,

strength. (See
"
Wrought-iron.")

temperature, effect on strength,
-

ten per cent, stronger lengthways than crossways,
'2 S
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Plate girders, calculation of strains. (See
"

Web.") 54, 100, 430 to 435

deflection same as that of lattice girders of equal length,
- 223, 434

effects of temperature,
- - 419

examples. (See "Appendix.")

weights of,
- 521

Platform of bridges,
- 426, 444 to 447

Platina, coefficient of linear expansion,
- - 415

weight and specific gravity,
- - - 545

Points of inflexion or contrary flexure. (See
"
Inflexion.")

Portland cement, crushing strength,
- - 301, 304

- tensile strength,
- 369

(See
"
Concrete,"

"
Mortar")

Proof strain and proof load,
- - 409, 438, 470, 482, 483, 492, 493

(See
"
Chains,"

"
Cast-iron,''

"
Wrought-iron.")

Public bridges, working load, ... - 493

weight of roadway, - 447, 540

Punching experiments,
- - 392, 396

injurious effect on plates,
- 462,476

tools,
..... - 425

Quantity of material in bowstring girders, 272,450

in girders with horizontal flanges
- -

18, 54, 261

in different kinds of bracing compared, - - 279

theoretic and empirical,
- - 495 to 522

Rail girders, or keelsons, - - 445

Railway bridges, estimation of,
- - 495 to 522

proof load,
- 492

roadway, - 444, 445

rules of Board of Trade, 446, 473, 476, 492

rules of French Government, - 473, 476, 492

under 40 feet in length require extra strength,
- 454, 490, 491

weight of bridges under 200 feet span,
- - 620, 521

(444 to 446, 473 to 478,
-working strain and working load,

-

| 481, 489 to 492

Resistance to rupture, moment of, M, - 69, 69 to 82

to torsion, moment of, . - 284

Resolution of forces,
-

9, 639

Riveting, chain, - ... 467

Rivets, - - 394, 395, 424, 439, 460 to 467

boiler-makers' rules, ..... - 467

friction due to contraction,
- 466

girder-makers' rules,
- - 462 to 467, 476
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Hivets, long rivets not objectionable, - . . . -424
preferable to pins for girder-work, . . - 439

snip-builders' rules, ...... 457
-

steel, 395, 462, 483

working strain, 462

Rivet-holes, allowance for weakening effect of,
-

462, 476, 495

drilled in first-class work, .... 425, 462, 467

Roadway, - - -
426, 444 to 447

Rollers and spheres, crushing strength,
- - 340

expansion, under ends of girders, 340, 414, 429

Roman cement, tensile strength,
- - 370

coefficient of linear expansion,
- - -415

Roof A, - 220

cost of, . - '494
arched, . 203

working load on, - 494

Roofing materials, weight of, - - 494

Rope. (See
"
Cordage

" and "
Wire.")

Rubble masonry, crushing strength,

working load,
- - 488

Rupture, coefficient or modulus of S, 60 to 66

moment of, M, - - - 59

S, coefficient or modulus of transverse rupture,
- - 60 to 66

Safety, coefficient or factor of,
- - 470

Screws, strength of 354, 460, 469

adhesion in wood,
- 469

Semi-arch, braced, 198

inverted,
- 202

lattice,
- 201

Semi-girder,

loaded at the extremity,
- 16, 83, 145, 226

loaded uniformly,
- - 22, 105, 148, 232

loaded uniformly and at the extremity also,

triangular,
-

Set,
- - -

6, 298 to 413

Set, relaxation of, 404, 410

. ultimate set after fracture,
-

vitreous materials take no set,

Shearing experiments,

in detail,

simultaneous, -

( 14, 15, 18, 23, 34, 37, 42, 46, 50 to- strain in girders, ^ ^^ 43J> 4?8
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Shearing strength. (See
" Cast-iron" "

Copper,"
"
Rivets," "Steel,"

"
Timber,"

"
Treenails,"

"
Wrought-iron")

Ship-builders' rules for riveting,
- - 467

Ship plates. (See
"
Plates.")

Ships, strains in,
- 526

Silver, coefficient of linear expansion,
- -415

Similar girders, deflection of - - 224

.limit of length,
- 67,524

strength of,
- 67

weight of,
-

67, 274, 522, 524

Snow, weight of,
- 445, 494

Solder, tensile strength,
- - 362

coefficient of linear expansion,
- - 415

Specific gravity, alloys,
- - 362, 364, 545

bricks,
- - 301,545

cast-iron, 345, 347, 348, 349, 545

glass, 305, 545

stone, - - 301, 545

tables and weights of various materials,
- 545

timber, - 65, 545

wrought-iron,
- - 354, 545

(See
"

Weight.")

Speculum metal, tensile strength and specific gravity,
- - 364

coefficient of linear expansion,
- - 415

Spheres, strength of hollow, - - 290

Spheres and rollers, crushing strength,
- - 340

Splintering, 292

Steel, annealing improves and equalizes strength of steel plates,
- - 360

coefficient and limit of elasticity,
- -

8, 298, 359, 411

coefficient of linear expansion, - - 415

coefficient of transverse rupture, 65

coefficient of torsional rupture,
- - - 283

corrosion of,
--- - 431

crushing strength,
- - 298, 483

girders,
- - 483, 502

pillars, 336, 483, 502

proving,
- -

482, 483

punching reduces strength,
- - 360

-
rivets, . 354, 395, 483

shearing strength,
....... 364, 395

ship plates,
- - 360, 483

tensile strength,
- 354, 359, 483

ultimate set after fracture,
- - 359

wire, ......... 361
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Steel wire rope,
- .

386, S87

working strain, --..... 433

Stiffness, elastic, ......4
Stone arches, - - ... . . . . 459^ 433

coefficients of elasticity,
- - . . . .

8, 413

coefficients of linear expansion, -
415, 417

coefficients of rupture, --.... (55

columns, ... . 339 ?
443

crushing strength, ..... 301

elasticity of stone not always apparently in accordance with Hooke's

law, - . 413

tensile strength,
- ..... 367

working load, - - 488

Strain, centres of, - 58

classification of,
- - 1

crushing, - 291

inch-strain, - 2

foot-strain, 2

shearing. (See
"
Shearing") -

14, 390

tensile,
- - 344

torsional,
- - 280

unit,
- 2

Strut. (See
"
Pillar.")

Suspension chains, proof strain,
- 476, 481, 482

proportions of eye and pin,

working strain,
- 476, 481

Suspension bridges, 49, 217, 414, 481, 503

rigid,
- 217

temperature, effect of,

working load,
- 481, 41

-truss,
- 222

Swivel or swing bridge,
-

Symbols + and
,

- 139

T, coefficient or modulus of torsional rupture,
- - 281, 283

Tee-iron pillars,
-

Temperature, coefficients of linear expansion of various materials,

effect on cast-iron,
- -418, 420

effect on girders and bridges, 414, 418, 419

effect on wrought-iron,

effect on stone bridges,
- - 414, 417

effect on suspension bridges,

effect on timber, -

Tenders, weight of,
- 489
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Tensile strength of materials, - - 344

Timber, adhesion of bolts and screws in timber,
'

- 468, 469

adhesion of glue to,
- 364

coefficients and limit of elasticity, 8, 412

coefficients of linear expansion,
- - 415, 416

do. of transverse rupture,
- 65

do. of torsional rupture,
- 283

crushing strength at right angles to the fibre,
- - 486

crushing strength lengthways,
- - 300

girders,
- 484, 485, 527

lateral adhesion of the fibres,
- - 366

-
piles,

- 486

pillars,
- 337, 338, 484 to 486

shearing strength,
- 397

should be used in large scantlings,
- 5 27

tensile strength,
- 365

wet timber not nearly so strong as dry to withstand crushing,
- - 300

working strain,
- ... 484 to 486

Tin, coefficient of elasticity, 8

coefficient of linear expansion,
- 415

crushing strength,
- - 299

tensile strength,
- - 362, 364

Torsion, - 1, 280

Torsional rupture, coefficient or modulus of T, - - 281, 283

Toughness,
- - 5

Trade, Board of Trade regulations respecting railways,
- - 446, 473, 476, 492

Travelling crane, or gantry,
- 187

Treenails, strength of, 397

Triangular arch, -

girder,
- 220

semi-girder,
- - 201

Trigonometrical functions of 0, the angle of economy, - - 278

Trough girders,
- - 4 45

section of flange,
- - 439

Trussed girders,
- - 187, 523

Tubular bridges and tubular girders,
- 13

examples of. (See
"
Appendix.")

effect of changes of temperature on,
- - 418, 419

effect of wind, - - 442, 443

Tubular pillars,
- - 334, 335

Twisting moment, - ... 280

Uniform strength,

Unit-strain, ... - 2
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Unit-strain, economy from high unit-strains in large girders,
-

502, 509, 61 4

Upsetting of iron under pressure, . 473, 486

Vertical and diagonal bracing,
- - - 184

Warren's girder,
- - 133

economy, relative, . . . 279

example. (See
"
Appendix.")

Web, - 430 to 439, 625

ambiguity respecting strains in,
-

181, 191, 206, 215, 256, 431

angle of economy in braced webs, - - 275

braced- generally more economical than plated webs, - - 279,431

quantity of material in,
- -

18, 54, 261 to 274, 495 to 622

continuous or plate, nature and calculation of strains, 15, 64, 430, 431, 525

do. minimum thickness in practice, - 431

do. more economical in shallow than in deep girders, 482, 433

do. more economical than bracing near the ends of very

long girders,
- - - - 432

do. value of in aid of flanges,
-

15, 78, 100, 433, 435

Weight of ballast, 445, 545

chains, 380, 381, 385

cordage,
- 375, 376, 381, 386, 387

cross-girders,
- - 445

engines and tenders, - -
489, 490

girders under 200 feet in length,
- -

274, 521

people,
-

-I
1

.';}

permanent way,
- 445

roadway,
- 445, 447

roofing materials, - - 494

snow,... - 445, 494

-
timber, 65, 546

various existing bridges. (See "Appendix.")

various materials,

wire rope,
- - 386, 387

(See
"
Specific gravity.")

Whalebone, tensile strength,
- - 389

Wharf crane, - - 194

Wind, force of,
- 440, 441, 494

Wire, copper, tensile strength,

gages,
... - ,M:>

iron, tensile strength,

rope, tensile strength and weight,

do., working load,

Wood. (See
"
Timber.")
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Wood screws, adhesion of,
- 469

. , ( 335, 343, 377, 378, 383, 386, 387, 388, 429, 446,
Working strain and working load,

j ^Q ^^
Wrought-iron, annealing, effect on strength,

- 357, 358, 407

boiler plates, 356, 479

_ coefficient and limit of elasticity,
- -

8, 297, 406 to 410

coefficient of linear expansion,
- - 415

coefficient of transverse rupture,
- 65

do. of torsional rupture,
- - 283

r- corrosion of,
- 423, 431

crushing strength,
- 297

deflection,
- 475

elastic flexibility half that of cast-iron,
- - 408

elastic limit,
-

297, 406 to 410

forgings, tensile strength,
- 357

Kirkaldy's conclusions, - - 354

ordinary sizes of,
- 437, 545

pillars,
- - 331 to 335

plates. (See
"
Plates")

practical method of stiffening bars,
- 409

proving,
----- - 409, 482

punching experiments,
- 392, 396

removing skin not injurious to strength,
- - 355

set after fracture,
- 352

shearing strength,
- 392 to 395, 478

ship plates. (See "Plates")

temperature, effect of
, 418, 419, 421

tensile strength,
- 352, 353

toughness very valuable, - 356, 360, 482

wire, tensile strength,
- - 358

-
working strain,

- 475 to 482, 494

Yellow metal, tensile strength,
- 362

Zinc, coefficient of elasticity,

coefficient of linear expansion,
- 415

crushing strength,
- - 299

joints,
- 464

tensile strength,
-

.
- 362

weight and specific gravity,
- - 545
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