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PBEFACE.

THE favourable reception accorded to my book entitled
'

The

Strength and Elasticity of Structural Members '

has induced me
to write the present volume on

'

The Theory of Structures.'

This new volume, although self-contained and independent,

forms a continuation of the previous one, suitable for more

advanced students and draughtsmen engaged in structural

design. The elementary principles and formulae of the former

volume are extended and utilised for the determination of the

stresses in, and the design of, masonry and steel structures.

Experience in the practical design of structures, and the

teaching of students, has convinced me of the great importance

of numerical examples for presenting the methods of design in a

clear and intelligible form. I have consequently devoted a large

part of this book to the working out of practical examples, in the

hope that it may form not only a useful text-book for Engineer
students at the Universities and Technical Colleges, and those

proceeding to the Examination for the Associate Membership of

the Institution of Civil Engineers, but also that it may form

a useful book of reference to Engineers and Architects engaged
in the design of structures.

Chapter I. deals with principal stresses, and the ellipse of

stress so far as to make clear the theory of earth pressure, and

to explain the geometrical constructions for obtaining the thrust

on retaining walls in Chapter II. In Chapter III., the stresses

due to eccentric loading are considered, and the conditions of
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iv PBEFACE

stability of masonry structures fully analysed. Chapters IV;

to VII. deal with girders of various types girders with parallel

chords, parabolic girders, and curved girders not parabolic.

Numerical examples are given for each of these types, and the

stresses obtained in the different members due to dead and live

loads. These stresses are then utilised for the practical design

of the members.

Chapter VIII. is devoted to the important subjects of wind

pressure, portal bracing, and the design of high trestles, each of

which is dealt with as a practical numerical example. In

Chapters IX. and X. the maximum shearing forces and bending

moments due to both dead and live loads are obtained for

continuous girders, cantilever girders, suspension and stiffening

girders.

In Chapter XL the strength of riveted joints is considered,

and numerous practical examples of the design of such joints are

worked out.

Chapter XII. gives the design for a plate girder 60 feet span.

Chapter XIII. deals with the strength of columns and struts

in cast iron, wrought iron, and steel, with several applications

of the results to the actual design of struts. Chapter XIV.

treats very fully of the design of arched ribs and braced arches.

Numerical examples are taken, and the stresses obtained for dead

and live loads.

The final chapter is devoted to the theory of reinforced concrete,

an important branch of Structural Engineering. Examples of

beams, T beams, floors, columns, and retaining walls have been

fully worked out.

K. J. W.
ENGLEWOOD, ENGLEFIELD GREEN :

June 1909.
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CHAPTER I.

COMPOUND STEESSES PEINCIPAL STRESSES.

1. Combination of a pair of simple longitudinal stresses
in directions at right angles to one another.

Let ABCD be a small rectangular block of material of unit

thickness whose sides are perpendicular to the stresses /a , /2
.

To determine the intensities of the normal and tangential stresses

on any inclined plane BD, the normal to which makes an angle
with the direction offr

(a) LIKE STEESSES. (Both compression or both tension.)
Let fn and ft

be the intensities of the normal and tangential
stresses on the plane BD.

Consider the separate equilibrium of the parts into which the

block is divided by the diagonal plane of section BD (Fig. 1).

The total stress on each of the faces AB and CD = fl
AB.

The total stress on each of the faces BC and AD = /2 BC.

Kesolving perpendicular to BD for the normal stress,

fBD= f^AB cos 6 +f2
BC sin 0.

Therefore / =^ cos 2

0+/2
sin

2

(1).

To get the tangential or shearing stress, resolve along BD

ftBD =f^AB sin -/2
BC cos 6.

Therefore ft
= (/x /2)

sin 6 cos

= (A--> sinze .(2).
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If / =/2 , then/, =/i ; and/ = 0.

at the tar

Max./=-

From (2) we see that the tangential stress is a maximum
when 6 = 45 :

4

8

The normal stress on the same plane inclined at 45 is

2

(b) UNLIKE STRESSES. (One compression, the other tension.)

If the stresses f and /2
are of opposite sign, /j being a tension

and/2
a thrust (Fig. 2), then the intensity of the normal stress on

BDis

The intensity of the tangential stress on BD

ft
=

(/i +Q sin cos = sin 2 0.

In this case, if the stresses are equal intensity flt then on a

plane inclined at 45 there is no normal stress. There exists only
a tangential or shearing stress on the two planes inclined at 45
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to the axes along which the stresses act. The intensity of this

shearing stress is

To find the magnitude and direction of the intensity of the

resultant stress on the plane BD (Fig. 1). Like stresses.

Let /be the intensity of the resultant stress.

Then, sincefBD is the resultant of /L
AB and /2 BC acting at

right angles to each other,

Therefore /= ^ff cos2 0+/2
2
sin

2

(3).

Let a be the angle which resultant stress makes with the

direction offlf
then

Unlike Stresses. If the stresses /x
and /2 are of opposite

sign say /2
= -/2

then

tana = ? tan 6;
fl
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that is, the resultant stress makes the same angle with the direction

of/!, as in the case of like stresses, but lies on the opposite side

of it.

2. Principal stresses.

Planes on which the stresses are wholly normal are called

planes of principal stress, and the stresses themselves principal
stresses.

Let AB and CD (Fig. 3) be a pair of rectangular planes through
upon which the stresses are wholly normal ; they are the

planes of principal stress ; the

stresses themselves are called

the principal stresses at 0, and
their directions (OX, OY) are

called the axes of principal
stress. The axes of principal
stress have the property that the

intensity of stress along one of

them is greater and along another

o ^ is less than in any other direc-

tion. These are respectively
called the axes of greatest and
least principal stresses. The

-p. 3 greatest principal stress is im-

portant to determine, as it mea-
sures the greatest intensity of stress which the material has to

bear.

3. Ellipse of stress.

A state of stress in two dimensions can always be represented

by an ellipse, the semi-axes of which are the principal stresses,

and their directions the axes of 'stress.

Given a pair ofprincipal stresses,^ andf2 , acting at right angles
to one another, to determine the magnitude and direction of the

resultant stress on a plane whose normal is inclined to the direction

offt at an angle 6, in terms of the principal stresses.

The resultant stress may be found graphically as follows :

In Fig. 4, OD and OB are the planes of principal stress and
BD is the plane inclined at an angle 6 to OD, the axis of/.

On the perpendicular to the plane BD, set off OQ to represent

/!, and OP to represent /2
. Draw QM perpendicular to fl9 and

PE parallel to / to meet QM in E. Describe circles with radii

/! and/2
from as centre.

Then OE represents the resultant stress on the plane BD in

magnitude and direction, and the locus of E is an ellipse.
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Let / be the intensity of the resultant stress, and let a be the

angle which its direction makes with the axisfr
Now OQ=f, ; OP=/2

.

And OM=OQ cos 6=fl
cos 6

EM = OP sin 0=/2 sin 6.

Therefore =OE = cos

And

\

\
\

Fig. 4.

Equations (5) and (6) are the same as Equations (3) and (4)

OR represents the intensity of stress on the plane BD in mag-
nitude and direction. In the limit, when the triangle ODB
becomes very small, then D and B coincide with 0.

Let x, y be the co-ordinates of R,

then x=RM=f2
sin 0=/sin a (7).

y=OM=fl
cos 0=fco$a (8).

And
^
= sin 0,

& =cos 0.

/2 /IO9 /

Therefore
*
+^=1, and tan a =? tan 6.
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Thus R lies on an ellipse, called the ellipse of stress, with its axes

(2/! and 2/2) lying in the planes of principal stress. The semi-

axes are equal to the principal stresses. If the pair of stresses,

/,, /2 , have opposite signs, then/2
must be set off on the opposite

side of 0, and OR the radius vector of ellipse lies on the other

side of OM.
If /! = /2 , OR is at right angles to BD, and the ellipse becomes

a circle. Thus : (a) If a pair of principal stresses at a point be of

like sign (both compression or both tension) and be equal in

intensity, then the stress on any third plane through the point
is of the same intensity and is normal to the plane (see Fig. 5) ;

(b) If the pair of principal stresses be unlike (one tension and the

other compression) and be of equal intensity (/i= /2), the

resultant stress on any other plane is of the same intensity, but,

since in this case tan a = tan 6, the line of action of the

MM
J> S, J

B

Fig. 5.

resultant stress makes the same angle with OM as the normal
to the plane, but lies on the opposite side of OM to the resultant

in case (a) (see Fig. 6).

4. To determine the planes of principal stress, and the
magnitude of the principal stress on these planes.

Suppose /! and /2 of the preceding article to be replaced by
stresses of any magnitude and direction on two faces at right

angles. Kesolve these stresses into normal and tangential

components. The tangential components must be equal. Let

/ and // be the intensities of the normal components, and

q the intensity of the equal tangential components on the two

planes at right angles (Fig. 7). It is required to find a plane DB
such that the stress on it is wholly normal, and to determine/
the intensity of that stress. Let 6 be the angle which BD makes
with DO. Consider the equilibrium of the right prism DBO of

unit thickness.
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Resolving vertically, we get

fDBcosO=q BO +/ DO ;

that is, ffn= q tan 6

Resolving horizontally,

f-fn
l = g cot <9

.(9).

(10).

Subtracting

fn jn
1 = q (cot tan 0)

= 2q cot 2 6.

Therefore tan 2 = .
2g

. , (11).

Two values of satisfy this equation that is, 6 = 6 and
Q = 90 + 0. Thus there are two planes at right angles to each

Fig. 7.

other on which the stress is wholly normal that is, there are

two principal planes.
The value of the principal stress on these planes is got by

multiplying (9) and (10).

The two roots of this equation give the two principal stresses,

solving

From (12) it follows that the sum of the normal components
of stress on any two rectangular planes is equal to the sum of

the principal stresses.



8 THE THEORY OF STRUCTURES [CHAP.

5. To determine the plane BD, so that the resultant stress
on it makes the greatest possible angle with the normal to
the plane.

Let/j and/2
be the principal stresses, both of the same sign,

and/, greater than/2
.

Then

and

/! = * + =* an identity,
z z

/2 =A +/2_/i_--/2 an identity.
'-

Fig. 8.

By Art. 3 the resultant stress due to the pair of equal-like princi-

pal stresses is of intensity^l"^
2 and normal to BD. The stress on

BD due to the equal-urilike principal stresses l
~

2
- is of intensity

2

i^2 inclined at an angle 6 on the opposite side of the direction
2i

of/ (Fig. 8).

Compound these by the triangle of forces (Fig. 9). From
set off ON in the direction of the normal ONS to the plane to

l
"

-*2
represent From N draw NR to represent

l
~

* in a

direction parallel to OQ, making an angle 2^ with the normal
ON. Then OR the third side of the triangle ONR t taken in the

reverse order to the other two forces, will represent in magnitude
and direction the intensity of the resultant stress on BD.
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It can be seen that the angle EON = ft will be a maximum
when NR is perpendicular to RO.

In this case, since the angle ORN = 90,

Therefore /= v7i/2

Also

Fig. 9.

From Equations (7) and (8) tan a =y tan 0.

J\

But from construction, OQ being parallel to NR,

a = 90-0.

Therefore cot =^2 tan 0;
Ji

or,

and tan = (16).
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The value of 0, as determined from Equations (15) or (16), gives
the position of the plane BD on which the stress makes the

greatest possible angle with the normal to the plane.

Evidently if the angle GNS is bisected by JVM, then NM is

the direction of fr

6. Conjug-ate stresses.

The obliquity of a stress is the angle between the direction

of the stress, and the normal to the plane upon which it acts.

^ Two stresses are said to be conjugate when
each stress acts upon a plane parallel to

the direction of the other. Thus, in Fig. 10,

DOB and D 1OB ] are two planes, the

normals to which are respectively NO
and N 10. The stress acting on the plane
DOB at is parallel to the plane D 1OB ,

and its obliquity is the angle D^ON. If

the stress on the plane D 1OB is parallel
to the plane DOB, then its obliquity is the angle DON1

. Thus,
the conjugate stresses at any point in a strained solid have

equal obliquities.

7. To find the ratio of the intensities of two eonjug-ate
stresses whose common obliquity is given. (Fig. 11.)

Let the angle ft be the common obliquity ; fL
and /2

the prin-

cipal stresses. On the normal OM, set off ON = &-?&, and

f f
with N as centre, and radius = J

-
1
~~^*, describe a semi-circle

cuttingOM in the pointsM and 8. Draw the line OE 1E. making
an angle @ with the normal ON, and intersecting the circle at

E 1 and E
;

Join EN and E 1N.
Now the two triangles ONE and ONE1 have each two sides

which are the constant components
^

1"
^2 and ft T"1^2- and have

the common angle #. Thus OE and OE 1 are conjugate stresses,

with a common obliquity .

Draw the tangent OT and join NT. The angle NOT is the

maximum value which the obliquity @ can have, and corresponds
to the case in which the ratio of the conjugate stresses is unity.
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Let
</>
be the maximum value of /3.

r = OR be the greater of the two conjugate stresses.

r
l
= OR1 be the lesser of the two conjugate stresses.

Draw NP perpendicular to and bisecting RR.

Now r + r1= OR + OR
l= 20P = t/i + /2) cos

and rr,
= ORx OR 1 = OT2 = ON2-NT2

B

Fig. 11.

Again, since NP =
( "I }

sm .

Therefore

PR = PE1 = VRN2-NP2 =

- cos2

Hence r = OP + RP= JJL^ (cos /3 + Vcos
2
/3
- cos2

and r
x
= OP - PR 1=^t/2

(cos IB
- Vcos

2 - cos2
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Therefore
r - CQS

cos /3 \/cos
2
ft cos2

r
1 _ cos - Vcos

2
/3
- cos2

<f>Ul . . .

F cos /9 + \/cos
2
/3 cos2

The angle /3 may have any value between zero and
<f>.

In

the former limit the conjugate stresses are perpendicular to each

other and become principal stresses. When the obliquity is

the greatest possible, /3 = </>,
then E and R l coincide in T, and

the limit of the ratio of the conjugate stresses becomes unity.



CHAPTEE II

EARTH PRESSUEE.

8. Stability of earthwork Rankine's theory.

Angle of repose. The slope of a mass of loose dry earth thrown

upon a horizontal plane will gradually slip until it finally attains

a slope of equilibrium. The greatest inclination of the slope to

the horizontal at which the earth will stand permanently is

called the angle of repose, and is usually denoted by $.

Angles of Eepose.

Earth
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move along the plane AB. Let these be pressed together by the

pressures F (intensity/) inclined to the normal at an angle 0.

F can be resolved into components F cos 6 normal to AB
arid F sin 6 parallel to AB.

In order that the prism may be in equilibrium there must
be a stress q on the vertical faces, the tangential component of

which must be equal to that of/, i.e. /sin 6.

With reference to the plane AB the stability is unaffected by
q, since its normal components balance one another, and its

tangential components are at right angles to AB.
Hence, when slipping is just about to take place, and 6 = $

F sin 6
fjL
= ^ C = tan 6.

Fcos<

If the Fig. 13 is turned so that F becomes vertical, and repre-
sents the weight of the material, then AB is inclined at the

angle of repose (<) to the horizontal.

At every point in a mass of earth

there is a tendency to slip along all

planes except the planes of principal

stress, and this slipping tendency in-

creases with the obliquity of the resul-

tant stress, but is independent of the

magnitude of the stress.

9. Condition of equilibrium of a

JrJWttJirr mass of earth.
t/cA

Earth can only resist compressive
/* forces, consequently the principal

Fig 13 stresses at a point in a mass of

earth must both be compressive. In

Chapter L, Art. 5, it has been shown that, if / and /2
be the

principal stresses, both of the same sign, / being greater than /2 ,

and /3 be the maximum obliquity of the resultant stress,

then sin /3= ^ ^
2
, Equation 14, Art. 5,

/1+/2

/I - 1 + Sm
'

/2 l-sin/e*

But
<j)

is the greatest value of (3 consistent with equilibrium,

. /! _ 1 + sin <

*

/;~ 1-sinf
/! is the intensity of the vertical pressure.

/2
is the intensity of the horizontal lateral pressure.
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Hence, the necessary condition of equilibrium of a mass of
earth is, that the ratio of the greater principal stress to the lesser

1 + sin
<f>

1 sin d>

'shall not exceed

That is,

and therefore

+ sin

= /. 1 sin
(f>

CASE I. KETAINING WALL WITH A VERTICAL BACK, EARTH
HORIZONTAL AND LEVEL WITH TOP OF WALL. (Fig. 14.)

Let H = height of wall.

$>
w = weight of cubic foot of earth in Ibs.

<f>
=. angle of repose.

D

Fig. 14.

Consider one foot of length of the wall. Let h be the depth
below the horizontal surface of a small prism of earth. The

intensity of vertical pressure/x
at that depth = wh Ibs. Hence

the intensity of the horizontal pressure.

/2 = ir^! ,
x wh Ibs. per sq. ft.
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As < is constant, /2 is proportional to h.

Thus/2
is zero at top, and increases uniformly to

/, =
*~ s

!

n< wH at the bottom.
1 -f sm $

Therefore the average intensity of pressure on wall

__
1 sin <f> wH~
1 + sin

<f>
^T

and the total horizontal pressure per foot length of wall

P 1 sni
<ft

WH2

"
r+sin^>

'

~2~~'

If BE be drawn to represent the horizontal pressure at ., i.e.

BE = Iz5?_* . wH, and E joined to A, then ^5 gives the
1 + sm <j>

variation of the horizontal thrust. The total pressure P is repre-
rj

sented by the area of the triangle ABE, and acts at a point
ô

above the base.

Let W = the weight of wall per foot of length, and let its line

of action cut the base at 0.

Let R, the resultant of P and W cut the base at M.
M must fall within the middle third of base.

Again, taking moments about M.
Since the Moment of Stability must be equal to or greater

than the Overturning Moment,

TFxOMmustbe^P . ^.
o

That is WxOMZ 1-*^l+sui0 6

CASE II. EETAINING WALL WITH VERTICAL BACK SUR-

CHARGED. (Fig. 15.)

A wall is said to .be surcharged when the earth slopes up from
the top of wall. The inclination of the earth to the horizontal

cannot, of course, exceed the angle of repose. Let the inclina-

tion of earth surcharge =
ft. Consider a small parallelepiped

LMNO with vertical sides at a depth H. The intensity of vertical

pressures on the sloping faces LM and NO is

r = loH cos ft Ibs. per sq. ft.
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These pressures being vertical, and parallel to the faces LN and
MO, the pressures r

l
on the vertical faces LN and MO must be

parallel to LM and NO, that is, parallel to the surface slope.

r and r
l
are conjugate stresses.

In Chapter I., Art. 7, Equation 18, the ratio of the intensities

of two conjugate stresses with a common obliquity ft was found
to be : _

>y/cos'
2

ft cos'
2
<b

l __ cos

r cos /3 + v/cos^-cos
2

Fig. 15.

NOTE. When $ = , r
x
= r.

Substituting for r its value wff cos

Pressure at base = wH cos ft .

C
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Lay off BE to represent this pressure. (Fig. 15.)

Then, resultant pressure on wall P = area of triangle ABE
'-v/cos

5wH' cosw
rnq/3

2
- cos/*-

COS/3 +

'

CQS^

-COS*

H
The resultant pressure acts at a point at height

--- above the base,
o

and is parallel to the surface slope of the earth.

10. Retaining* wall surcharged. Geometrical construc-
tion from ellipse of stress.

ABCD (Fig. 16) is the section of wall with sloping back.

Let w = weight of earth per cubic foot.

,, H height of wall.

ft = angle of surcharge.

,, <f>
= angle of repose.

D
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The construction is carried out according to Arts. 5 and 7,

Chapter L, the figures of which should be referred to. We know
that r the vertical conjugate pressure on a layer at depth H

wH cos /9. Having got r,
- * ^2 and &-J-*- can be got from

z z

Fig. 11, Art. 7, and then the resultant thrust according to Fig. 9,

Art. 5. Eeferring first to Fig. 11, Art. 7, draw BO parallel to the

surcharge AM, and at any point draw OM normal to the

plane BO. . OM H cos #. Draw OE vertical that is,

making an angle with OM, and make OE = OM, then OE
represents the vertical conjugate stress r, which is equal to

w H cos /3. Draw OT making an angle (/>
with OM, and from any

point L in OM describe an arc of a circle touching OT and

cutting OE in Q. Draw EN parallel to QL, then

ON = <f> ; NE = ^
2i A

Bisect the angle MNE by the line NS, then NS is the direction

of the principal axis of ellipse of stress.

To determine the resultant stress at B, refer to Fig. 9, Art. 5.

Draw BNi normal to the back of wall AB, and draw BG parallel

to NS. Set off BN,= ON= -" From N
l
set o&N

l
G=N

l
B

'2

and on N
:
G mark off N^** NE = ^4^2

.

2t

Then R^B represents the pressure at B, which is equal to

w x R^B.

The resultant thrust P = w^f . H, is parallel to Efi, and
i

acts at \H above base.

11. Depth of foundations in earth. (Fig. 17.)

Let R = height of wall in feet.

w weight of earth per cubic foot.

w
l
= weight of masonry per cubic foot.

t = thickness of wall in feet.

< = angle of repose.

,, d = required depth of foundation.
c2
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When the wall has just stopped subsiding and the earth on each

side is just on the point of heaving up, fl
will be a maximum.

Therefore immediately below the wall we have

/ . _ / 1 sin
<f>

At the same level outside the

foundation the horizontal pres-
sure is a maximum, since the

earth is on the point of heaving
up.

-,
/. 1 sin 6

.-. wd = f^ ^ T,

wd = 1 sin

.1 + sin $>J

Now, considering one

length of wall,

/1
= I

LJ,

w vl + sin
<f>

foot

feet,

or if W = weight of wall per
foot run

wt

EXAMPLES.

1. A retaining wall 14 feet high, with vertical back, of the section

shown in Fig. 18, has to support a bank ofearth the upper surface of
which is horizontal and level with the top of wall. Determine the

total pressure on one foot length of wall, also the direction of the

resultant pressure on base.

The earth weighs 120 Ibs. per cubic foot, and its angle of

repose is 27. The masonry weighs 140 Ibs. per cubic foot.

/! = Uw = 14 x 120 = 1680 Ibs. per sq. ft.

= 168

Average pressure ==*& = 315-4 Ibs. per sq. ft.

Total pressure P = 315-4 x 14 = 4416 Ibs.

Weight of wall W = 9 x 7 x 140 = 8820 Ibs.
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The resultant R is got by compounding P and W ; it cuts the base

within the middle third.

Surface

Fig. 18.

2. A retaining wall 20 feet high, with vertical back, of cross

section as in Fig. 19, sustains an embankment of earth, the angle of

surcharge being 20. Weight of masonry 140 Ibs. per cubic foot ;

weight of earth 120 Ibs. per cubic foot ; angle of repose 30. Find
the total thrust on the wall and the resultant pressure on the base.

Weight of wall W = 12 x 10 x 140 = 16800 Ibs.

Data /3 = 20 ;
< = 30.

w = 120 Ibs. ;
H = 20 feet.

r = wH cos ft
= 2078-4 Ibs. per sq. ft.



22 THE THEORY OF STRUCTURES [CHAP.

Now r
l

the conjugate pressure parallel to surface slope is got
from Equation 18, Art. 7 :

r\ __ cog/8 x/cos* 13 cos7^
7

"

cos + -/cos2 - cosV

0-44.
(KI4--0-366

0-94 + 0-366

/. fi
= 2078-4 x 0-44 = 914-5 Ibs. per sq. ft.

Fig. 19.

Average conjugate stress = 457*2 Ibs. per sq. ft.

Total thrust per foot length of wall, parallel to the surcharge, is

P = 457-2 x 20 = 9144 Ibs.
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The resultant E got by compounding P and W cuts the base

within the middle third.

3. A masonry -wall weighing 140 Ibs. per cubic foot is 24 feet

high and 3 feet thick. The earth in foundation weighs 120 Ibs. per
cubic foot and the angle of repose is 30. Determine the least depth

of the foundation.
Take one foot in length of wall.

Let d required depth of foundation.

yi
= intensity of vertical pressure at bottom of foundation.

= 24x3
3

xl40 = 3360 Ibs. per sq.ft.

Intensity of vertical pressure at same depth outside the founda-

tion

-sn
but

t

3360
=

/. d = 3*1 feet.

4. A concrete pillar 12 feet high and 3 feet square rests on base

of concrete 5 feet square and 2 feet thick, and carries a load o/82 tons

on top. Find the least depth of foundation necessary for a founda-
tion in earth weighing 120 Ibs. per cubic foot, the angle of repose

being 28.

Weight of concrete 150 Ibs. per cubic foot.

The concrete pillar and base weighs

158 x 150 = 23700 Ibs. = 10-5 tons.

.*. Total weight on bottom of foundation = 42'5 tons.

/! = intensity of vertical pressure at bottom of foundation

x 2240

25

wd = intensity of vertical pressure at same level but outside

foundation

= 120 d.

. 120 d _ f\ sin <\ 2

n*14-

3808 * 1 + sin 0/

d = ?M x 0-14 = 4-5 feet.
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5. Example of retaining wall worked out from ellipse of stress

according to Art. 10.

A retaining wall, ABCD (Fig. 20), 20 feet high, icith vertical

back, is surcharged with earth, the surface slope being inclined at

20. Determine the magnitude and direction of the resultant thrust

on wall and the maximum intensity of pressure on the base.

Let top width = 2 feet. Bottom width =
-^

. 20 = 8 feet.

Weight of masonry per cubic foot = 140 Ibs.

Weight of earth per cubic foot = 120 Ibs.

Angle of repose of earth = $ = 32.

The wall has been taken with vertical back so as to be slightly
different from Art. 10, in which the back was sloping. The
construction is the same.

Draw BO parallel to the surface slope. At any point in

BO draw OM perpendicular to BO. Draw OR vertical that is.

making an angle of 20 with OM, and make OR = OM. Draw
OT, making an angle <j>

= 32 with OM. At any point L in OM
draw an arc tangent to OT, cutting OR in Q, join LQ, and draw
RN parallel to LQ, meeting OM in N. Bisect the angle MNR by
NS, then NS in the direction of the principal axis of stress.

Now draw BN l normal to back of wall and equal to ON,
draw BG parallel to NS, and make Nfi = BNr Join Nfi,
and make N^ = NR. Join E

XB, then R^B represents the
thrust at B in magnitude and direction. By scale R^ = 8.

/. Thrust at B = w . R^B = 120 x 8 = 960 Ibs.,

and resultant thrust P = - '

^~ H2

=^ . 20 = 9600 Ibs.

= 4-3 tons,
TT

acting parallel to R^B at a point above the base.
u

Weight of wall per foot run

W = 5 x 20 x 140 = 14000 Ibs. = 6'25 tons.

Compounding P and W we get R9 the resultant thrust on base
BC in magnitude and direction. This resultant cuts the base
at the middle third nearest C, and its component normal to the
base is 8 tons by scale.
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The maximum stress at C is therefore by Art. 19, Chapter III.

~~
area of base

= ^ = 2 tons per sq. ft.

SI

Scales,

nch- IFcob.
1
/4 Inch- 1 Tow.

Fig. 20.
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Fig. 21.

12. Wedge theory.

Suppose a mass of earth supported by a wall AB. If the

wall be removed a wedge or prism of earth ABC will fall away,
and ultimately take a slope BD, making an angle <p (the angle
of repose of the earth) with the horizontal. (Fig. 21.)

A r n The prism ABD, if it were in

one mass, will be in equilibrium
without exerting any pressure on

AB, because its tendency to slip

down BD would be resisted by the

friction of the surface.

If we take a prism ABC, the

surface BC being inclined at an

angle greater than
</>,

it will exert

a pressure on the wall due to its

weight, diminished by the friction

on slope BC. A smaller prism
than BAG will obviously exert

less pressure, so that there must
be some prism or wedge between AB and BD for which
the pressure on the back of the wall is a maximum. It will

be now proved that this maximum pressure occurs when the

triangle BAG = triangle BCE, where CE is at right angles to

BD. If the back of the wall is not vertical AB is taken as a

vertical plane at right angles to the plane of the paper.

13. Maximum earth thrust. Plane of rupture.

The algebraic determination of the maximum horizontal

thrust is tedious, but the graphic application of the result is very
simple.

Let Fig. 22 represent a retaining wall surcharged with earth

sloping at an angle less than the angle of repose. Let <f> = angle
of repose, and the angle which plane of rupture makes with
the natural slope of the earth BD. Considering the equilibrium
of the wedge or prism BAG, the three forces acting on it are :

(1) W, the weight of the wedge ABC acting at its centre of

gravity.

(2) The reaction P, which is equal to the pressure on the wall,

This pressure is assumed horizontal asacting at - -- from B.
o

the friction on AB is neglected.

(3) The reaction E
l
of the plane BC making an angle </>

with
the normal HN, and from the figure it can be seen that it makes
an angle with the direction of W.
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From the triangle of forces P = W tan 6.

.'. Maximum horizontal thrust is

Area of triangle ABC x tan x w,

where w weight of cubic foot of earth.

Fig. 22.

In Fig. 23 draw the triangles ABC and ABD. From A and C
draw AF, CE perpendicular to BD, and draw EG also perpen-
dicular to BD, to meet DA the surface slope produced in G.

Let BG c, BD = b, AF = a, CE = x, which varies with 6.

Let angle ADB = @.

Then the horizontal thrust on AB = wx area ABC x tan 6

2 6-

Differentiating for a maximum

(b x cot /3) (a %x) + (ax x2 cot

/. x2 cot 26& a& =
= 0.

(1)
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This equation may be written :

abbx = x (bx cot /3)
= x . BE.

That is, the triangle BAG = the triangle BCE.

Hence, the horizontal earth thrust is a maximum when the

area BAG = area BCE.

D

Fig. 23.

Now, horizontal earth thrust == w x area ABC tan 6

= w x area BCE tan 6

wx'

IT (2).

Solving Equation (1) for x, we get

x
cot /3

The minus sign being taken, since x cot @ cannot be greater

than 6. Butcot/3=-.
c

.-. Maximum horizontal thrust from (2)

According to Dr. Scheffler's theory the direction and magnitude
of the thrust is modified by the friction on the plane AB. If

the coefficient of friction = tan <, then the component of
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friction = P tan
<f>,

and the resultant pressure on the vertical

plane by his theory is represented by P, = P sec.
</> (Fig. 24).

The following formula for the

maximum horizontal earth pressure
on a vertical wall based on the

Wedge Theory is proved in
'

Strength
and Elasticity of Structural Mem-
bers

'

(Woods). It is easy of ap-

plication and friction is taken into

account
yu,

is the coefficient of

friction for earth on earth and is

assumed the same for earth on

masonry.
Surface of earth level with top

of wall :

, T ^ wh2

Max. P = Fig. 24.

14. To find the resultant pressure on the base of a retain-

ing* wall in magnitude, direction, and position, friction being*
taken into account.

Let t be the thickness of base (Fig. 25).

,, Ji be the height of wall.

d be the distance of the point where the resultant cuts
the base from the outer edge of base.

P be the maximum pressure of the earth on wall acting

at a height
- above base.

o

W 1
be the weight of the wall.

E be the resultant pressure on base of wall.

,, a be the angle which the direction of resultant makes
with horizontal.

,, b be the distance of line of action of W from outer edge
of base.

JJL
be the coefficient of friction.

Then resolving horizontally and vertically,

R cos a = P,

E sin a = TFj + ^P.

Therefore E2 = P2 + (W l + /*P) (3),

and tan a (4).



80 THE THEOEY OF STRUCTURES [CHAP.

Taking moments about outer edge of base,

Ed sin a =WJ)+pPt P .

n

Therefore d =
W^fiP

(5).

Fig. 25.

Equations (8), (4), (5) give the magnitude, direction, and

position of the resultant pressure.

15, Graphic method of determining- the earth thrust from
wedge theory.

CASE I. SURFACE OF EARTH HORIZONTAL.

In Fig. 26 draw EG perpendicular to the natural slope of earth

G A Surfcuce,

to meet the surface produced at G. With centre G, and radius

<GA, describe the arc AK, then

BK = c -/cc^a.
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Draw AE perpendicular to GB, then

but =
c, and GE = c a,

.'. GK
and -

a).

Hence

31

CASE II. SURCHARGED RETAINING WALL, THE SURFACE
SLOPING AT AN ANGLE LESS THAN

</>.

Draw a perpendicular from B to the natural slope, meeting
the surface slope produced at G (Fig. 27). On BG describe a

Fig. 27.

semi-circle. From A draw a perpendicular AEL to GB, cutting
the semi-circle at L. With centre G, and radius GL, describe the

arc LK cutting GB at K.

Then xGE =
= c

Hence

CASE III. SURCHARGED RETAINING WALL, THE SURFACE
SLOPING AT AN ANGLE 0.

Fig. 28 represents this case, and we see that c = a ; therefore
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Hence

.-. c \/c(c a)
= c = BK.

w
2

P = ~ BK2
.

Fig. 28.

EXAMPLE.

Design a retaining wall 18 feet high, built of masonry weighing
140 Ibs. per cubic foot. The weight of the earth is 120 Ibs. per
cubic foot, and the angle of repose 28.

Assume a cross section for the wall DBCE as in Fig. 29,

the width at the top being 2 feet and at the base 8 feet.

The graphic construction for earth thrust is drawn according
to Case II., and BK by scale measures 12-5 feet.

.-. P = - BK2 = x 12-5'
2

JL '_.

= 9375 Ibs. = 4-18 tons,

and P
l
= P sec. 28 = 4-72 tons.

Weight per foot run of masonry acting at S
= 12600 Ibs. = 5-6 tons.

Weight per foot run of earth wedge DBA
= 2280 Ibs. = 1-02 ton acting at T.

The total weight W = 6*62 tons acting at the common
centre of gravity.

Compounding P x
and W, we find the direction and magnitude

of E the resultant pressure on the base. It cuts the base within

the middle third, the distance from the centre of base to centre

of pressure being 1 foot.

E = 9-8 tons.
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Scales
- 1Foot

Fig. 29.

Its component normal to the base = 9 '4 tons.

The maximum intensity of pressure at C by Equation 5, Art. 16

f 9-4 ,9-4x1x4
/1= T H

l_x_8^
12

= 1-17 + 0-9 = 2-07 tons per sq. ft.



CHAPTEE III.

STKESSES DUE TO ECCENTRIC LOADS STABILITY OF
MASONEY STRUCTURES.

STRESS AT A PLANE SECTION DUE TO NON-AXIAL LOADS.

16. Stress on a section or joint, the load being- eccentric
OP non-axial.

Let AB (Fig. 30) represent the trace of a section on a plane
at right angles to it, being that of a line through its centre of

area. Let F be the resultant force normal to the section, its

line of action intersecting AB in N. The point of application
of F must be on a centre line of the cross section. F is also the

resultant internal stress developed at AB.
Let ON = X

Q ;
that is, the distance from centre of area to

centre of stress, commonly called the
'

eccentricity
'

or
'

deviation
'

of the load.

x
l
and #

2
be the distances from to B and A respec-

tively.

A = area of the surface AB.

/! and/2
be the intensities of stress at B and A respectively.

,, I = the moment of inertia of the section about an axis

through at right angles to the plane of the figure,

that is, at right angles to the plane containing the

centre of area and point of application of load.

k = the corresponding radius of gyration.
Now the force F at N is equivalent to an equal F at 0, and a

couple whose moment is M = Fx .

(a) The intensity of stress due to F acting at centre of area

Tyl

is -, uniformly distributed over the section.
A

(b) The intensity of the uniformly varying stress due to the

bending moment M = FxQ on any line distant x from is

. At the edge B this = ; and at A = -2
. By the
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principle of superposition the resultant stress is the algebraic
sum of these two intensities. Compressive and tensile stresses

are regarded as positive and negative respectively.

Hence, adding (a) and (b) we get :

Intensity of stress at edge B

-5C
Intensity of stress at edge A

/o = .

l+Wi\
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In the above the force F was a thrust. If the force is a

pull or tensile then write F for F, and as before/! and/2 will be
tensile if negative and compressive if positive.

For a pulling force equations (5) and (6) become

(7)..

If the resultant of the loading forces is a force R inclined to

the section or joint, then F in the above equations is the com-

ponent of E normal to AB.
The force F may act outside the section, as in a curved braced

crane with suspended weight, or as in the case of a vertical post
with fixed horizontal bracket which carries the load.

17. Strength reduced by non-axial loading
1

.

The strength of a member depends on the maximum, not on
the mean intensity of stress ; hence the strength is reduced if

the load is non-axial, owing to the unequal distribution of stress,

in the ratio of the mean intensity of stress to the maximum
intensity of stress that is, in the ratio of

F
A

and the safe working load is reduced in the same proportion for

a deviation x from the centre of area.

18. Neutral axis of stress.

With a non-axial load the distribution of stress is assumed
to be a uniformly varying one that is, the intensity of stress

at any point in the section varies directly as the distance of that

point from a fixed line in the plane of the section. This line is

called the neutral axis of the stress, because at all points of that

axis the normal intensity of stress is zero. In Fig. 30 the neutral

axis of the stress lies beyond the boundary of the section, and
the stress is of one sign all over the surface. If the neutral axis,
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as in Fig. 31, falls within the section, it divides the section into

two parts, on one of which there is tension and on the other

compression. The ordinates of the shaded figure are proportional
to the stress at any point in the section.

F , MX,Max. compressive stressfl
= -.- +

F
A\ (9).

Max. tensile stress
F
A

F
A (10).

Fig. 31.

The position of the neutral axis or the point where the reversal

of stress takes place is determined by the value of x2 , which makes

/2
= in Equations (4) or (10).

Thus let xn
= OE, Fig. 31.

Then for /, = 0,

i,

or (11).

19. Limiting- value of x09 without reversing the sign of the
stress.

It is necessary, especially in the case of masonry joints, to

limit the value of x
,
in order to ensure that at no part of the

joint will the stress be tensile, as unaided by the introduction

of steel no masonry joint can be depended on to resist tension.
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This limiting value of x is found by equating /2 in Equation (6)

to zero

Or

Ax
l

(12).

KECTANGULAR JOINT. Let Fig. 32 represent a rectangular
section, with sides whose lengths are t and I parallel to OX and
OY respectively.

Then =!,, = , !,.,.= ,

where IYT is the Moment of Inertia of section about axis through
perpendicular to XX containing the centre of area 0, and N

the point of application of load.

B

T~
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When x =
--, the value of the intensity of stress varies from
D

fF\
2f

j
at the edge nearest the resultant to zero at the opposite

edge (Fig. 32).

Again, when # = -, the distance of N, the centre of pressure,

from the nearest edge of section parallel to OY is

, _ t

If d is less than -, then a part only of the joint is available tc;

o

resist pressure, and the breadth of this useful part is (Fig. 33)

and Equations (5) and (6) apply only to that part of the joint
whose breadth is t

19 x and
x

l
in these equations being

then measured from an

distant -1 fromaxs

edge nearest F.

the

So that,

when d < -, that part of
o

the area of joint to which

(5) and (6) apply is

A, = 3dl,

and the maximum intensity
of stress is

Fig. 33.

CIRCULAR SECTION.
Let D = diameter. Then for this section

A TrD2 D T irD*
A rp I

4~
3

2' 64'

Therefore by equation (12) XQ
=

-^ (15).
o

Hence the limit of deviation of the point of application of the

resultant force from the centre to ensure stress of the same sign

all over the circular section is .

o
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In a hollow circular section of outside diameter D and inside

diameter D
l
the limit of deviation is

T"k 2

(16).

20. Extreme intensities of stress for a rectangular
section in terms of d, the distance of the centre of stress
from the nearest edge of section.

The position of the centre of stress N is sometimes given by
its distance from the nearest edge of the section or joint.

Let F = resultant normal pressure.
t = breadth of joint AB.
d = distance of centre of stress N from the edge B.

/j and /2
the extreme intensities of stresses at edges B

and A respectively.
From Equation (2), Art. 16,

If the width of the joint at right angles to AB be unity,

Then s = -d; x,
=

; fc
2 =; A = lxt.

Therefore /! =
a-') i

A
12

(17).

And f - F/2 T 1-

t\

2

12

Let/ be the average stress-intensity on the section that

is, , then from (17)

or (19).
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Equation (19) gives the value of d, the distance of the centre

of pressurefrom the edge of section, where f^ is the maximum stress-

intensity, andf is the average stress-intensity on the section.

As before, we get the limiting value of d, so that there shall be
no tension on the section, but putting/2

= 0.

To fulfil this condition we must have

EXAMPLES.

1. A short T-iron, 5"x4"xJ", supports a thrust normal to

the cross section of 10 tons acting at a distance of f inch from the

centre of area on the opposite side to flange. The point of applica-
tion of thrust is on the centre line of the vertical leg. Determine
the maximum and minimum intensities of stress.

Since the centre of area and point of application of load lie

in the centre plane of the leg, we must use the moment of inertia

about an axis through centre of area perpendicular to this plane
that is, parallel to the flange. Call this axis XX.

Then Ixx = 5'77 inch units ; A = 4'25 sq. in.

x = f inch ; F = 10 tons.

The distance of the centre of area from upper edge of flange= 1-0.5 in.

/. x.
2
= 1-05, and x

l
= 4-1*05 = 2'95 in.

From Equation (1). Intensity of stress at outer edge of leg

10 10xjx2-95
4-25 5-77

= 2'35 + 3'8 = + 6'15 tons per sq. in. compressive.

From Equation (3). Intensity of stress at upper edge of

flange

/2
= 2-35 3-8 = 1*5 ton per sq. in. tensile.

2. A short piece of l.-beam, 12" x 6", weighing 44 Ibs. per
foot run, sustains a normal thrust of 50 tons acting at a distance of
1J in. from the centre of area on the centre line of the web. Deter-

mine the maximum and minimum intensities of stress.
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The Moment of Inertia about axis through centre of area

parallel to flange = 315'3 inch units.

A = 12-94, hence k2 = 243.

x = 1J in.
;
X

L
= x.

2
6 in.

From Equation (2).

Maximum intensity of stress at outer edge of flange nearest

the load

= JL_=
12-94 ^ '

2x24-3

=
1^(^0-87)

= + 5*3 tons per sq. in. compressive.

From Equation (4).

Minimum intensity of stress at outer edge of flange furthest

from load

77* / T /y
/ J? ( ~t

(\*"'\

/2 ="

"j (* ^7.2

= + 2*4 tons per sq. in. compressive.

3. In Example No. 2, if the length of T.-beam is, say, 8 to 10

times the least width, which corresponds to a short column, determine

what load it will carry with a deviation as before of 1
J- in., for a

maximum stress intensity of 6 tons per sq. in.

= 56 ton,

4. A mild steel bar of rectangular section, 3 ins. by 1 in., trans-

mits a tensile force of 5 tons. The bar is cranked, so that the line

of action of the load, though parallel to the axis of the bar, coincides

with the middle of one of the smaller sides. Determine the maximum
and minimum intensities of stress on a normal cross section.

A = 3 sq. in. ; F= 5 tons ; x = | in. ; xl
= f in.
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Maximum intensity of stress

-F

-5 /' 3x3xl2
3 V 2x2

l2\

x9'

= 6*6 tons per sq. in. tensile.

/2
=r-5 (l-3)

= + 3*33 tons per sq in. compressive.

5. A braced curved crane carries a load of 8 tons suspended

from the top, at a distance of 15 feet from centre of area of base.

The horizontal section at the base is a hollow rectangle 18" x 12"

outside dimensions and 1 inch thick. Determine the extreme in-

tensities of stress on the section, if the load hangs in the plane of the

central principal axis parallel to the longer side.

A = 216-160 = 56 sq. in.

7 = 12xl8 3

_10xl6
3

~T2~ 12

= 2418-6 inch units

/. k2 = 43*2 inch units.

X = 15 x 12 = 180 in.
;
x

l
= 9 in.

F = 8 tons.

Hence, maximum intensity of stress, Equation (2)

8 /., ^180x9

| (1 + 87-5)

= 5*5 tons per sq. in. compressive.

Minimum intensity of stress, Equation (4)

2
jj

= 5*2 tons per sq. in. tensile.

6. A short strut of i

r, section, 12" by 5", weighing 39 Ibs. per

foot run, area 11-47 sq. in., sustains a load of 20 tons, which

through faulty design is carried at the outer edge of centre of flange,
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instead of at the centre of area. Determine in what ratio the strut is

weakened.

If the force acted at centre of area, the uniform stress all over
-n\

section would be .

A
As the force acts at a distance ic from centre of area,
Maximum intensity of stress

Therefore strength is reduced in the ratio of

1

In example x
?
= 6 in., x

1
= 6 in.

k- about axis through centre of area parallel to flange, i.e.,

perpendicular to plane containing centre of area and load
= 22*8 inch units.

Hence strength is reduced in ratio of

7. The vertical joint at crown of an arch ring is 1J ft. thick.

The horizontal thrust H at the crown per foot of length of arch is

6 tons acting at a distance of 3 in. above the centre of area.

Determine the maximum intensity of stress on the joint.
In this example XQ

= 3 in. = J foot, t = f foot.

1 x J
3 27

12 8 x 12

M = HxQ
= 6 x foot tons.

_6x2,6xixj
3 27

96

= 4 + 4 = 8 tons per sq. ft.
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21. Stability of masonry structures.

The conditions of stability at a plane joint are :

I. That the portion of the structure above the joint shall not
overturn.

II. That the maximum intensity of pressure at any point in

the joint shall not exceed a certain limit known to be safe.

III. That the portion of the structure above the joint shall

not slide along the surface of the joint.

As the two first conditions are dependent on the position of

the centre of pressure, those conditions may be stated as :

I. The centre of pressure must fall within certain limiting

positions on the surface of the joint.

II. The angle between the direction of the resultant pressure
and the normal to the joint must be less than the

angle of friction.

It is well to note again with reference to Condition I. that, as

no tensile stress is permissible at any point in the surface of a

masonry joint, the limiting distance of the centre of pressure
from the centre of area is :

For a rectangular joint, the thickness of the joint.

v-j .
T , Diameter

Solid circular joint,
- - .

8

Hollow circular joint of outside diameter D and inside

diameter D lt

22. Consideration of the conditions of stability. Moment
of stability External moment.

CONDITION I. Let Fig. 34 represent in section a portion of

a pier or buttress, AB being the trace of one of the bed joints.
Let W = the weight of the structure above AB, its line of

action intersecting AB in D.
P = resultant of the external forces acting on the part

whose weight is W.
be centre of area of AB, and C the centre of pressure.

x and y be the horizontal and vertical co-ordinates of E>
the point of application of P, with reference to C.

6 and
<f>

be the inclinations to the horizontal of AB and
the direction of P respectively.

The horizontal and vertical components of P are :

P cos and P sin
<j>.

Consider the moments of P and W round the limiting position

of the centre of pressure which is nearest to the line of action of P.
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This moment of W is usually called the 'moment of stability,'

and that of P the 'external moment.'

For stability the moment of stability must be equal to or

greater than the external moment.

Fig. 34.

Taking moments about C :

The moment of P (which is equal to the algebraic sum of its

component moments)
= P(y cos $ x sin <)..

Moment of W
= W. DC cos 0,

and stability requires that

W . DC cos *> P (y cos < -x sin 0).

23. Line of resistance.

Let aa and bb be two joints of a masonry structure, at a

distance ab apart.
Let c

t
be the centre of pressure of the joint aa, and let P

T

denote the amount and direction of the resultant force on that

joint. By compounding P, with the weight of the block ab, the

resultant P
2
is obtained acting on the joint bb through the centre

of pressure c.
2
.

Proceeding similarly, the centre of pressure and resultant

at each successive joint below can be determined, and the stability
of the structure examined.

The polygon c,,c2 '
c
3 , &c., formed by joining the successive

centres of pressure by straight lines is called the '

line of resistance.'

CONDITION II.

24. The maximum intensity of pressure at any point of
the joint shall not exceed the safe working strength of the
material.

When the position of the centre of pressure is determined the

maximum intensity of pressure can be computed by Equations (1)

or (17).
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25. Limiting* intensities of pressure on earth foundations.

Rock, 8 to 12 tons per square foot.

Gravel and clay, 2 tons per square foot.

Loamy soil, 1 ton per square foot.

Good lime concrete, 3 to 4 tons per square foot.

CONDITION III.

26. The angle between the direction of the resultant
pressure and the normal to the joint must be less than the
angle of friction.

To satisfy this condition it is necessary that the tangential

component of the resultant pressure shall not exceed the resistance

of friction at the joint, which is the normal component of resultant

multiplied by the coefficient of friction (or tangent of the angle
of repose).

If <b is the angle of repose, then
/JL
= tan is the coefficient

of friction.

Let N and T be the normal and tangential components of the

resultant thrust E,

then T must not be greater than fj,N ;

T
that is, = must not be greater than p

or tan ^,

if 6 is the angle between the direction of resultant thrust and the

normal to joint. A factor of safety for frictional stability of 1J
is usual, that is

tan 6 must not exceed
-f-
tan <,

or
-f-

of is the limiting value of the angle of friction.

The following values may be taken for
</>,

the angle of repose ;

and
IJL
= tan

<f> (Kankine) :

Surfaces
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The maximum intensity of compressive stress on any plane
should not exceed 8 to 12 tons per square foot.

Maximum intensity of compressive stress. See Fig. 36,

Example 6.

In Art. 20, Equation (17), we found an expression for the
maximum intensity of compressive stress

/.-(>-)
which is the vertical intensity of stress due to a vertical force F
acting on a horizontal joint of thickness t.

In the case of a dam, the resultant is inclined at an angle (6)

to the normal that is, to the vertical if we are considering a
horizontal joint.

Now, if we assume that the reacting stresses are parallel to

the resultant, then the maximum intensity of compressive
stress on horizontal plane,

But, in order to obtain the real maximum intensity of compressive
stress, we should consider a plane at right angles to the resultant,
and this maximum value is from (2)

8d\ ,,

If W is the weight of dam, then

WE =
cos 6

Hence, maximum intensity of compressive stress on a plane

perpendicular to E is

IfE acts at the middle third, i.e., d = , Equation (4) becomes

2TF

t cou2
0'

Shear. In a paper read before the Institution of Civil En-

gineers on the stresses in masonry dams, by Sir John Ottley and
Dr. A. W. Brightmore, it was shown that the intensity of shear

stress on the base was practically constant owing to the fixing
of the dam at that level, but that on a horizontal section above
the base the intensity of shear increases from zero at the inner

face to a maximum at the outer face, so that the shear stresses
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to be provided for are not necessarily those at the base, but at

planes above the base near the outer profile.

Approximate section for high dams.

Molesworth's formula for high dams :

If x = depth in feet below the top surface of a horizontal

plane.

y = horizontal distance in feet from a vertical line through

top inner edge of water face to outer edge of the down
stream face.

z = horizontal distance in feet from the same vertical

line to the edge of the inner or water face.

p = safe pressure in tons per square foot on masonry.

and . =
p

From these equations the section of dam can be drawn, and
the line of resistance drawn for reservoir empty and full.

These lines should fall within the middle third of all horizontal

planes. Calculate the maximum intensity of compressive stress

and if necessary modify the form of section.

The top width may be about 10 feet.

EXAMPLES.

1. A masonry pillar, 4 feet diameter, is built ofmasonry weighing
140 Ibs. per cubic foot. It is subjected to a wind pressure ivhose

normal intensity is 50 Ibs. per square foot. Determine the greatest

safe height of the pillar.

Assume that, owing to the convexity of the pillar, the effective

wind pressure per square foot is half the normal intensity on a

plane section through the axis of pillar.

Let h = height of pillar.

Effective wind pressure per square foot

*>V OK_ _ _ 25.

Weight of pillar

= w = x
4

-

2

x 140/i = 1760/t Ibs.
7 4

Total effective wind pressure

= 25 x li x 4
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Taking moments about the limiting position of the centre of

d
pressure, ^.e., x =

,

o

lOOfe x \
= W

g
= 1760ft x i = 880/1.

.-. h == 17-6 feet.

2. A rectangular pier of masonry, 8 feet by 4 feet in section, and

weighing 140 Ibs. per cubic foot, is 10 feet high. It is subjected to a

horizontal thrust of 2 tons applied at the top of the pier, normal to

the short side. Investigate the stability of the joint at the top of the

footings and calculate the greatest and least intensities of pressure.

Weight of pier is

w 8 x 4 x 10 x 140 OA^
~2240~

= 20 tons '

Pressure P = 2 tons.

Let
Xp

be the distance from centre of area to centre of pressure
at the joint under consideration.

Then Wx,
= P x 10.

The limiting value of # is . 8 = 1-33 ft.

Therefore the condition that there shall be no tensile stress is

satisfied. The normal component of the resultant pressure

= W = 20 tons.

Hence maximum intensity of pressure

W Wx^x,
~Z H

I

=
20 20_xJ^x4

"32 4x8 3
"

12

=
20

4-
15

32 32

1*1 ton per sq. ft.

Minimum intensity of stress

20_15
32 32

= 0-16 ton per sq. ft.
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Frictional stability.

= -i.

By reference to table for values of tan < it will be seen that
the condition of frictional stability is amply fulfilled.

3. Stability of a detached buttress shown in Fig. 35.

The thickness of buttress perpendicular to the paper is 4 feet.

The loads applied to the buttress in the middle of the above
thickness are :

P
1
= 3 tons, acting vertically 1 foot 6 inches from the right hand

top edge.

PS = 12 tons acting at a point 11 feet from the top inclined at 45.

Weight of masonry 130 Ibs. per cubic foot.

Joints AA
V
and BBr

The weight of masonry above AA
l
= 17*9 tons.

The weight of masonry between AA
l
and BB

l
= 21 tons.

Centre of area of block above AA
l

is j, and centre of area of

block between AA
l
and BB

l
is n.

To find m, the centre of pressure of the joint AAr
In order to get the construction for resultants within limits

of figure the horizontal and vertical components are taken.

The forces acting above AA
i
are the weight 17.9 tons (acting

vertically through ?'), P, and P
?
.

First compound vertical weight 17*9 tons with the vertical force

P
1? by setting up ab = 17*9 tons on line of action P1? and setting

down cd = 3 tons on vertical through j ; then the vertical through
/ is the line of action of resultant of weight 17*9 tons and Pr
Produce this vertical to meet P

2
in g. From g draw gi and ih,

the horizontal and vertical components of gh = 12 tons. From
g set up vertically the length

gk 17-9 tons + 3 tons + ih.

From k draw Id horizontal = gi.

Then Ig is the resultant of all the forces acting above AA
} ,

which when produced cuts AA
{

in m, the centre of pressure

required. Its component normal to AA
l
is gk.

Id
The point m lies within the middle third, and

^-
is evidently

less than the limiting value - x O5.
5

Centre of pressure r of joint BB l
is found by combining the

resultant Ig of the forces acting on AA\ with 21 tons, the weight
of the block AB

l acting vertically through n its centre of area.

2
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Produce Ig to intersect the vertical through n at o. From
o set up op = gk + 21 tons ; and from p draw pq horizontal

=
gi. Then qo is the resultant of all the forces acting above

BBr Produce qo to cut the joint BB 1
in r, which is the centre

of pressure.

f
PI ^3 tons

I

~P2-12tcns

Fig. 35.

The normal component of resultant is po
= 3 + 12 sin 45 + 17-9 + 21

= 50-4 tons.
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The centre of pressure r is at the middle third near the edge B.

Hence, maximum intensity of compressive stress at B

7-5x4
= 3-36 tons per sq. ft.

4. A masonry wall with verticalface is subjected to water pressure.
The wall is trapezoidal in vertical section ; the thickness at the top

being t.
2 , and the thickness at the bottom tr If the water is level

with the top .of wall, determine the height h of the wall so that the

resultant pressure will act at the outer middle third of the base.

Let w = weight of cubic foot of water.

w
l
= weight of cubic foot of masonry.

p =
specific gravity of the masonry = *.

Consider a strip of wall 1 foot long.
The section of wall can be divided up into a rectangle of area

tji, and a triangle of area L 2 h.

The resultant water pressure is
!2p acting at a height of -

above the base.

Taking moments about the outer middle third of t
lt we get

wji
6 6

Therefore/^2 = p (C + M*-**
2

)
................

:

.

(!);.

or, if h and t.
2
are given, then ^ can be found from this equation.

To find the distance of the line of action of weight of wall from
the vertical face.

Let x = distance required. Taking moments about inner

edge of base.

Section
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.*. X =

Triangular dam.

If t.
2
= in equation (1) of this example, the vertical section

of the wall becomes a triangle of base t
l
and height h, and we get

v = Pt*.

Therefore h = t, V p,

h
or

5. A masonry dam trapezoidal in section with a vertical face,

height 20 feet, thickness at top 4 feet, thickness at base 12 feet, has

to retain water level with the top. Determine the maximum intensity

of pressure on the base. Weight of masonry 140 Ibs. per cubic foot.
Consider 1 foot length of wall.

To find distance of line of action of weight from vertical face

take moments about inner edge of base.

Divide the section into a rectangle and triangle.

Area Arm Moment

80
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z 5-6

20
=

1(T
=

3

.-. z = 3-7 feet.

Therefore total distance from inner edge of base to centre of

pressure
= 4-3 + 3-7 = 8 feet.

V\n Qi
Hence ic = eccentricity of load = 8 6 = 2 feet = -

.

The point of application of resultant is therefore at the middle
third nearest the outer face.

Hence maximum intensity of stress (Art. 19)

= 2 ^ = 2
-^5 = 1-66 ton per sq. ft.

A. 1.2

Shear.

The intensity of shear on base, which is practically uniform,

=
<j'o

6 = 0-47 ton per sq. ft.

Frictional stability.

If 6 is the angle between resultant pressure and the normal
to base

= =0-56,

IT

which is less than |- tan <f>, and therefore safe,

6. A masonry dam lias a horizontal base 115 feet wide. It

retains a depth of water of 150 feet. Assume that the weight of
1 foot in length of the dam is 500 tons, and that the resultant

thrust acts at 45feetfrom outer edge of base. Determine the maximum
intensities of stress on the base. Fig. 36. Take 1 cubic foot of
ivater to iveigh -^ of a ton.

Consider 1 foot in length of the dam.
The total water pressure is

Horizontal component of resultant thrust = 312-5 tons.

Vertical component of resultant thrust = 500 tons.
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Substituting in Formulas (18) and (19)

OW / Qf7\Maximum intensity of stress,/!
= f2 -J

2 x 500 ' 3x45N
"Us" v

= 7*18 tons per sq. ft.

Minimum intensity of stress, /2
ar =iLrr

t \ t

2x500/3x45_ 1

115 V 115
"

= 1*5 ton per sq. ft.

312-5 Tons

Fig. 30.

These are the vertical intensities at the outer edges of the
horizontal base B and A respectively.

The mean intensity is - = 4'34 tons per sq. ft.

NOTE. The maximum intensity of pressure is on a plane at

right angles to the resultant E.

Resultant pressure = V500 2 + 312-5 2 = 589 tons.
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Maximum intensity of stress on a section at right angles to

the resultant

/i

COS0

where

Hence,

522
589'

589
The maximum stress intensity at B = 7 'IS x -

5UO

=. 8'4S tons per sq. ft.

The maximum stress intensity at A 1*5

= 1-75 ton per sq. ft.

Shear. The intensity of shear on base is practically uniform

589

500

and equals
01 f).K5" = 2-7 tons per sq. ft.

115

28. To find the height to which a masonry dam of tri-

angular section may be built consistent with the conditions
of stability : (a) That the resultant pressure shall cut the
base at f of its thickness from the inner face ; (6) That the

limiting intensity of pressure shall not be exceeded.

Assume the water level with the top of the dam (Fig. 37).

Let h height of dam.
t = thickness at base.

W = weight of masonry.

p = specific gravity of

masonry.
E = resultant pressure

on base.

., / = limiting intensity
of pressure.

w
{
= weight of one cubic

foot of masonry
= pw.

w = weight of one cubic

foot of water.

In the latter part of Ex-
Ficr 37

ample 4, page 54, it was shown
that in the case of a triangular section in which condition (a) is

fulfilled
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Assume that the stresses on base are parallel to the resultant,
the maximum intensity of pressure will be on a plane at right

angles to B, and if this intensity is / tons per square foot, then
the intensity on the horizontal base AB = f cos 6.

Therefore average intensity of pressure on AB = ^ co
.

2i

But average intensity of pressure on AB is

W
E = cos

AB h_

VP .

h cos tf

. /cos_0 = W Vp~
2 Tfcol

or <___
2 h

But TF=^_L = .

/i

o
and cos =

Substituting for W and cos 6 in Equation (1)

-_ who.
1+p

Hence, / = ivh (!+/?),

or h = -,/
w(\+p)

EXAMPLE.

A masonry dam, triangular in section, is 25 feet liigh (Fig. 38).

Determine the thickness of base and draw the line of resistance for
the two cases (a) reservoir empty ; (b) reservoir full. Find the

maximum pressure on base. Specific gravity of masonry = 2J.
Let t = thickness at any section of wall.

h = corresponding height.

Thickness at base = ^ = ^- = -
5-= 16 feet 7J inches.

Vp V2i 3
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Make the thickness at top 8 feet. If we draw a vertical

through the outer edge of this 3 feet it cuts the sloping triangular
line at a depth of 4 feet 6 inches below top.

Divide the remainder, the height, 20 feet 6 inches into 4 equal

spaces, each 5 feet 1-| inch high ; and we thus get 5 sections,

including the base.

Fig. 38.

To find the different values of water pressures P, and the

weights of masonry in order to get the resultants

P = where w = weight of 1 cubic foot of water =

Trr WJl" 1 Wh2
/-

I- 1/ A ^ A / _

ton.
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The ordinate at base from vertical line of triangle to inner face

is 4J inches, making the total thickness of base = 16'*7i" + 4|"
= 17 feet.

For the reservoir empty, the centre of pressure on any joint
is got by drawing the vertical line through the centre of area of

the masonry section above joint. For the reservoir full, the

centre of pressure on any joint is got by finding the intersection

of the resultant (of water pressure and weight of masonry above
the joint) with the joint.

The water pressures act horizontally at a height of above
o

the joint. The joints considered and the blocks of masonry
into which they divide the section are numbered 1 to 5 from the

base upwards.

Table of Dimensions, Weights, and Pressures.

Depth below



CHAPTEE IY.

TYPES OF GIRDERS WORKING STRESSES AND CROSS SEC-
TIONAL AREAS STRESSES IN GIRDERS WITH PARALLEL
CHORDS BY METHOD OF COEFFICIENTS.

29. Chords and web. Forms of girders.

A girder consists of

(a) An upper member arranged in a straight or polygonal
line, and called the

'

top chord
'

or
'

top flange.'

(b) A lower member similarly formed and called the
'

lower

chord
'

or
'

lower flange.'

(c) A series of members, either all inclined, or some vertical

and others inclined, connecting the two chords, and forming
with them a series of triangles. These are called the

'

web.'

A girder of uniform depth has both chords straight and parallel.
A girder of variable depth has usually the top chord curved

or polygonal, and the bottom chord straight, the greatest depth
being at the centre.

Girders of uniform depth belong to two principal classes :

(a) Those in which the web-bars make alternately equal and

opposite angles with the vertical, forming with the chords a

system of isosceles triangles. This type is called a
*

Warren

girder.'

(b) Those in which the web-bars are alternately vertical and

inclined, forming with the chords a system of right-angled triangles.
This type is called a ' Pratt Girder

'

or
'N girder.'

The portion of either chord comprised between two adjacent

joints is called a
'

bay
'

or
*

panel length
'

; each corresponding
division of the girder is called a

*

panel.'

30. Loads on girders.

(a) The dead load due to the weight of the main girders, cross

girders, flooring, and lateral bracing ; it is usually taken as a

uniform load, and is considered either as equally distributed at
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the joints of one chord, or as distributed at the joints of the two
chords, each joint of the same chord carrying an equal load.

(b) The live load which travels over the bridge, such as a crowd
of people or a train of vehicles.

There are two methods of considering the live load in the

design of girder.

(a) The equivalent uniform load. To find the uniform load

which is equivalent to the actual load draw the maximum bending
moment diagram for the loads and then find the parabola which
circumscribes or passes everywhere just outside this diagram.
This parabola is the bending moment diagram of the equivalent
uniform load.

(b) A typical live load is taken, consisting of a series of loco-

motive and wagon axle loads, and the maximum bending
moments are found for different positions of the axle loads.

Both these methods are applied in the examples which follow.

31. Counterbraeing-.

For certain positions of the live load the ties or tension

members of the web will be subject to compression. The maxi-

mum stress in a tension member of the web is the sum of the

maximum tensile stresses due to dead and live loads. The
minimum stress in the same member is the difference between

the dead load tensile stress and the live load compressive stress,

and if the live load compressive stress is greater than the dead

load tensile stress, then, of course, the minimum stress is com-

pressive.
The tie-bars in which this reversal of stress takes place must

be counterbraced by inserting a second diagonal tie in the panel,

crossing the first in the opposite direction. These panels in

which two diagonals occur are said to be counterbraced, and the

additional diagonal is called a counterbrace. Both these diagonals
are tension members, one only being in action at a time

;
and the

minimum stresses for these diagonals in a counterbraced panel
are zero.

Counterbraeing is also often done by bracing and stiffening

the tie with extra material.

32. Working stress. Area of cross section of members.

The working stress is the maximum stress which a member
will have to bear in actual practice when fully loaded, and should

be a fraction only of the breaking strength. The factor by
which the breaking strength is divided to get the working stress

is called the 'factor of safety.'
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This method of determining the working stress is an empirical
one. Wohlers's experiments prove that the safety of a structure

depends not on the maximum intensity of stress to which it is

exposed, but on the range of stress and the number of repetitions
of the range of stress. Thus, if a structure is subjected to a

steady load, the working stress may be greater than when the
structure is subject to a varying stress of one kind (tensile or

compressive) ; and when the structure is subjected to alternate

stress of opposite kinds (tensile and compressive) the working
stress must be still less.

LAUNHARDT'S AND WEYRAUCH'S METHOD.
Let t be the statical breaking strength.

Then, if the piece be subjected to stresses which vary from
a maximum S to a minimum S,

Launhardt-Weyrauch formula gives

The breaking stress = %t (1 + 1
331lru

-

V
' max. S<

With a factor of safety of 3, we get

Working stress = U ( 1 + \
nlm *M , . . (a).

v max. SJ

The sectional area of the bar or member

_ the maximum load

working stress

DYNAMIC METHOD (Claxton Fidler).
If a bar or member of a structure is strained by an initial

stress P, and an additional stress F
be suddenly applied, which produces
a deformation /, we get a stress strain

diagram as in Fig. 39, in which the

energy P + F is represented by the
area ABEH, and the work done on
the bar is represented by the area
ABGC. As these two areas must be A

,

equal, we get
*----

c
*'-

due toF
and the dynamically increased stress Flg ' 39 *

= statical stress + variation in stress ;

or, denoting the initial stress DB = P by min. S, and BE
= P+ Fbymax. S,
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then GE, the variation in stress = max. S. min. S.

that is :

The maximum dynamically increased stress

= max. S+ (max. S min. S).

If, as before, t = statical breaking stress, and 3 = factor of

safety,
Area of cross section of member

_ max. S + (max. S min. S)

i
3

- B
{max. 8+ (max. S-min.

,S')| (b).
t

NOTE. The maximum stress is the maximum static stress

due to both dead and live loads.

In applying this formula, the variation of stress is more

gradual in the flange or chord members of triangulated girders
than in the other members, and for these it is usual to take half
the variation only, thus :

g
Flange area = -- {max. S + -| (max. S min. S) (c).

ANOTHER EULE for determining the maximum stress in any
member is to add to the dead load stress the maximum live load

stress multiplied by a coefficient. This coefficient is 2 in all

cases, except for the upper and lower chords of triangulated

girders for which a coefficient of 1*5 may be used.

Thus, cross sectional area of member

g= (dead load stress + 2-live load stress) (d).

EXAMPLES.

1. The stresses in a mild steel member of a structure are as

follows :

Stress due to dead load = 50 tons tension.

Stress due to live load coming

from one side = 30 tons tension.

Stress due to live load coming
from the other side = 10 tons compression.

Determine the working stress by Launhardt-Weyrauch method

and the necessary cross sectional area of the member.

From (a)

rtr i
2 . /- -, min.

Working stress = ~
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Take t = 27 tons per square inch
;

Max. =50 + 30 = 80.

Min. S = 50-10 = 40.

Working stress = 1 + J

6x5
4

Cross sectional area

= 7| tons per square inch.

Q A
= = lOf square inches.

'I

2. The stresses in one of the web-braces of a mild steel girder are :

Stress due to dead load = 60 tons tension.

Stress due to live load

Longer segment covered =100 tons tension.

Shorter segment covered =15 tons compression
Determine the cross sectional area of the member by dynamic

method, equation (b), and by rule equation (d).

Max. S = 160 tons tension. Min. S = 45 tons tension.

Max. S min. S = 115 tons.

t = 27 tons per square inch.

Area of cross section from equation (b).

275= - = 30' 6 square inches
y

From equation (d)

Area of cross section

_ 60 + 2 x 100 __ 260

~9~ 9

= 29 square inches.

3. The stresses in a tension web-brace near the centre of a mild

steel girder are as follows :

Stress due to dead load = 7 tons tension.

Stress due to live load

Longer segment covered = 59 tons tension.

Shorter segment covered = 27 tons compression.

Should the brace have a counterbrace, and, if so, find the sectional

area of the brace by dynamic method.

Max. S = 66 tons tension.

Min. S = 20 tons compression.

The panel must be counterbraced, since the compressive liva

load stress exceeds the dead load tensile stress.
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If counterbraced by a second diagonal brace the min. S = 0.

Hence, by equation (fr), taking t = 27 tons per square inch,

66 + (66-0)Area of cross section = -

y

= = 14f square inches.
tj

33. Stresses in girders with parallel chords.

METHOD OF COEFFICIENTS, THE LIVE LOAD BEING ASSUMED
EQUALLY DISTRIBUTED AT PANEL POINTS.

The total stress in any member of a girder can be conveniently
found by adding algebraically the partial stresses occurring in

that member, due to the load at each panel point taken separately.
The work may be arranged in tabular form as explained in the

examples which follow. The method is according to notes taken

from the late Professor Reilly.

Stresses in web members.

Let n = the number of equal bays or panel lengths in the

girder.

W = load at a panel point.
a = the number of bays between the single load con-

sidered and the lejt support.

,, b = the number of bays between the same load and the

right support.
6 = angle of inclination of bracing with horizontal.

Considering the single load W.
The shearing force on any vertical section to the left of W

n

The shearing force on any vertical section to the right of W
_ Wa

n

Now the shearing force F in any panel length is equal to the

vertical component of the stress in the inclined brace in that

panel, and the i

Stress in inclined brace = F cosec 6.

Thus, the numerical value of the partial stress in a brace to

the left of the single load W is

/., _ W cosec 6 7
,H^
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and in a brace to the right of the load W
Tf cosec

For any given brace the stress due to each load on the same
side of the brace is of the same sense ; but the stress due to a load

on the other side of the brace is opposite in sense.

Thus, for the same brace /', /" must have opposite signs.
The total stress in any one brace will then be the algebraic sum

S/'+'-S/" .................. (3).

The first sum includes all the loads on the right of the brace
and the second all the loads on the left of the brace. The girder,

being usually symmetrical, the braces on the left of centre line

will be considered, and compression will be indicated by a + sign ;

tension by a sign.

Thus /' will be + for struts, for ties.

/" will be for struts, + for ties.

Stress in any one brace due to dead load.

Let W
l
= dead load acting at each joint.

Then from Equations (1), (2), and (3) the stress

/!
= + x cosec 6

j
2 b - 2

a] .......... (4).
lu V

'

Stress in any one brace due to live load only.
Let TF2

= live load acting at each joint.

Considering a brace in the left hand half of the girder the
maximum stress in it occurs when all the joints to the right of

the brace are each loaded by JF
2 , the joints to the left of the

brace being unloaded.

The value of this stress is

/2
= 2/' = cosec 6 2 b ............. (5)

where the summation includes all the loaded joints on the right
of a vertical section cutting the brace in question.

The sense of /2
is positive or negative according as the brace is

a strut or a tie.

The minimum stress occurs when the shorter segment only
is loaded that is, when all the joints to the left of the brace
are loaded by TF

2 ; its value is

Q 2 a
IV

where the summation includes all the loads on the left of the brace.

The sense of /2

'

is positive or negative according as the brace
is a tie or a strut.

F2
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Resultant stresses due to both dead and live loads.

Maximum =^ + /2 )
/m

Minimum =fl + /2

'

Signs being implied.
If the maximum and minimum are both of the same sign

no counterbrace is required, if of opposite sign then a counter-

brace is necessary.

34. Stress in the chord members due to dead and live

loads.

The maximum stress in each member of the chords occurs

when the span is fully loaded with both the dead and live loads.

The amount of this stress for any one chord member or bay
is the sum of the horizontal components of stress in all the inclined

braces between the bay in question and the nearest support.
The horizontal component of stress in an inclined brace is equal
to the vertical component multiplied by cot 0.

Thus the maximum stress in any chord member is

rJE2 cot ^{S&-^a}].. ..(8),n J

where the sign of summation includes all the braces between the

nearest support and the bay considered.

The stress in each member of the top chord is compressive,
and in each member of the bottom chord tensile when the girder
is simply supported at the two ends.

The application of this method is best illustrated by the

examples which follow.

EXAMPLES.

1. A Warren girder of 100 feet span (Fig. 40), length of panel
10 feet, depth 10 feet, carries a uniform dead load o/0-6 ton per foot

10

run, and a uniform live load of 1J ton per foot run, both supported
at the joints of the top chord. Determine the maximum stress in

each brace and chord member.
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W
l
= 0-6 x 10 = 6 tons.

W2
= 1J x 10 = 15 tons.

= tan- 1 2 = 63 26'.

cosec = 1-118; cot 6 = 0-5.

w wyLA = cosec 6 = 0-671 ;
2^ cosec = 1-68 ;

w

cot = 1-05.
n

The stresses are most easily obtained by arranging the work
in tabular form (see Table L, page 71).

In Fig. 40 the braces of each kind, viz. struts and ties,

are numbered in order from the left to the centre of span. The
first column of table contains those numbers for braces of one

kind ties are taken in the present example. Columns 2 to 10
contain the coefficients a, b, corresponding to the loaded joints
1 to 9 of the top boom. The signs prefixed are according to the

sense of stress in the ties. The values of a are positive, since the

load on the left of a tie produces positive or compressive stress

on it, and those of b are negative since a load on the right produces
negative or tensile stress in the same tie.

Column 11 gives 2 "b 2 a.

12 26.
13 2 a.

Column 14 gives/: (Equation 4), being the numbers in column 11

W
multiplied by -i cosec 6.

n
Columns 15 and 16 are got by multiplying the numbers in

W
columns 12 and 13 respectively by ? cosec 6.

n
Column 17 gives the maximum stresses for lies, obtained from

columns 14, 15, 16 by Equation (7), the value of the minimum
stress only being given where it is of opposite sign to the maximum.

Column 18 gives the maximum stresses in struts, which are

equal in value and opposite in sense to those in column 17, since

the struts and ties, similarly numbered, meet at the same joint
of the unloaded chord and are equally inclined in opposite direc-

tions.

Column 19 contains the horizontal components of stress

in braces, being the numbers in column 11 multiplied byWYY
* cot (9, Equation (8).
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Columns 20, 21 give the maximum stress in each bay of the

top and bottom chords, being the sum of the horizontal com-

ponents of stress in all the inclined braces between the bay in

question and the nearest support.
Thus Bay 1-2 of top chord. The braces between this bay and

the left support are tie 1, strut 1, and tie 2.

Hence stress in bay 1, 2 = 2 x 47 -25 + 36-75
= 131-25 tons compression.

Bay 1-2, bottom chord. The braces between this bay and left

support are tie 1, strut 1, tie 2, and strut 2.

Hence stress in bay 1-2 = 2 x 47-25 + 2 x 36-75
= 168-00 tons tension.

Check by moments.
To find the stress in middle bay of top chord.

Take moments about the bottom joint 4.

M = ~
(6 + 15) tons x 4 bays- (6 + 15) tons (J + 1 J + 2J + 8}) bays

2t

= 21
(^-8)

= 257-25 bay tons.

MM
Stress = : =

a
= 257-25 tons,

1 bay

which agrees with the tabular calculation.

2. A Pratt girder, 104feet span (Fig. 41), divided into 8 bays with

depth y
1

-^ of the span, carries a dead load of 4 tons and a Iwe load of

Fig. 41.

7*5 tons, both concentrated at the joints of the bottom chord. Deter-

mine the stress in each member of the bracing and chords.

From Fig. 41 it is seen that the first inclined brace is a strut,

and Nos. 2, 3, 4 are ties. Consequently in the first line of Table II.

the coefficients b are 4-, and in 2nd, 3rd, and 4th lines the

coefficients a are + and b are .

The vertical 1-1 is a tie, simply transmitting the load from

joint 1 of the bottom chord to joint 1 of top chord. Verticals

3 and 4 are struts. Vertical 44 simply steadies the double bay
3-4-5 of top chord.

Data. W
l
= 4 tons ; W2

= 7'5 tons ;
n = 8.
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In order to allow for the increased stress due to the live load
W

l
is taken = 2 x 7*5 = 15 tons.

(s)= cot
~ l ^~ = cot

-
]

l-25 = 38 40'.

(ro)

Cosec 6 = 1-6; cot 6 = 1-25.

W 4. W 1 ^
J.I-1- cosec = | x 1-6=0-8 ton :

2 cosec 0=r x 1-6= 3 tons.
n 8 w 8

EiEa cot (9 = ^ x 1-25 = 2-97 tons.
n 8

In Table No. II. the stresses -are obtained and arranged in

tabular form.

The verticals 3 and 4 meet the inclined braces 3 and 4 at

joints 2 and 3 of the unloaded chord, hence

Stress in vertical 3 = stress in inclined brace 3 x sin

stress in inclined brace 3

and stress in vertical 4 =

cosec 6

stress in inclined brace 4

cosec 6

Check by moments.

To find the stress in bay 3-4 of bottom chord.

Take moments about joint 3 of the top chord.

M = I (4+ 15) tons x 3 bays -(4 + 15) tons (1 + 2) bays
2i

- 19
(^-3)

= 142-5 bay tons.

Then, since depth = 0*8 bay,
Stress in bay 3-4 bottom chord

= -178-1 tons.

3. A girder (Fig. 42), span 144 feet, divided into 6 bays by
isosceles triangular bracing, depth TV of the span, carries a dead

load of J ton per foot run and a live load of 1 ton per foot run sup-

ported at the joints of bottom chord and at points midway between

them. Determine the stress in each member of the bracing and
chords.

In this form of girder the effective bay length is halved. The
verticals are ties each transmitting the load carried at its foot

to the top chord, the stress in each being W l + Wr
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As the load on girder acts at the joints of both top and bottom

chords, the stress is different in each diagonal brace.

In Table III. the coefficients are taken for half-bays, and the

sign prefixed to each is that of the stress in the brace to which
it refers. Thus, since braces 1, 3, 5 are struts and 2, 4, 6 ties,

the values of 2a are and of 2& + in the first, third, and fifth

lines of table, and in the second, fourth, and sixth lines these signs
are reversed.

Fig. 42.

Number of half-bays = 2n 12.

144
Length of half-bay = ~ = 12 feet.

2

144
Depth of girder = -

** = 14-4 feet.

14*4
Inclination of diagonal braces 6 = tan

~
- = 50. 12'.

Cosec 6 = 1-3; cot 6.= 0-833.

Dead load at each joint of half-bay = 12 x J = 6 tons = W
l

Live load at each joint of half-bay = 12 x 1 =12 tons.

To allow for the increased stress due to live load

W .

2
= 2 x 12 = 24 tons.

^ cosec 6 = ~ x 1-3 = 0-65.
2n 12

* cosec 0=^x1-3 = 2-6.
2n 12

w
i +W* cot = ^ x 0-833 = 2-08.
2ti 12

Check by moments.

To find the stress in bay 5-7 of top chord.

Take moments about bottom joint 6.

M = -ii
(6 + 24) tons x 3 bays

2

-(6 + 24) tons (1 + 1 + 11 + 2 + 21) bays

= 30 ^3
-7ij =270 bay tons.
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There!creatress = ^TObaytons =
270

450 tong compression.
depth in bays 0*6

4. A girder of double triangulation (Fig. 43) of span 108 feet is

divided into 9 bays by web-bracing inclined at 45. The girder

carries a dead load of 1 ton per joot run, and a live load 1J ton

per foot run, both at the joints of bottom chord. Determine the stress

in each member of the bracing and chords.

In Fig. 43 the two braces meeting at each joint of the unloaded

chord are distinguished by the same number.

There are two systems of. triangulation. For the bracing,
the two systems must be considered as separate, whereas the

chords must be taken as common to both systems. The joints

of the loaded chord belong to each system alternately, and the

two systems of bracing are numbered, the one with even figures,

the other with odd figures. Hence in Table IV. the coefficients

a and b for each brace are placed in the alternate columns, whose

numbers are those of the bottom joints belonging to the same

Fig. 43.

system as the brace, consequently in each horizontal row alternate

columns are blank.

The coefficients are for tie braces only ;
and the signs prefixed

are of the corresponding stresses in these members.
The stresses in the diagonal struts are equal and opposite

in sense to those in the diagonal ties having the same number.
The stresses in the bays of chords are obtained by successive

addition of the horizontal components of stress in inclined braces.

Thus, stress in bay 3-4 of bottom chord = stress in bay 2-3 +
horizontal component of stress in brace 3 + horizontal com-

ponent of stress in brace 5.

Stress in bay 4-5 bottom chord = stress in bay 3-4 + horizontal

component of stress in brace 4 horizontal component of stress

in brace 6.

In this case the horizontal component of stress in brace 6 is

subtracted, since the braces 4 and 6 are inclined in opposite

directions, and the stresses in both are tensile.
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In the example

n = 9, length of bay =^ = 12 feet.
y

The dead and live loads are :

W
l
= 12 x 1 = 12 tons.

W 2
= 12 x 1 J = 18 tons.

To allow for increased stress due to live load

W2
taken = 2 x 18 = 36 tons.

6 = 45
; cosec 6 = 1-414; cot = 1.

W 19
--1 cosec = . x 1-414 = 1-89 ton.
n 9

W 3fi
?L* cosec = x 1-414 = 5-66 tons.
n 9

*VHr. cot tf = ff x 1 = 5-32 tons.
n 9

The stress in the vertical end post 1 is the vertical component
of stress in the brace 1

= stress in tie 1 x sin = 151 x 0-707
= 106-76 tons.

Check by moments.

Stress in bay 4-5 of top chord = stress in bay 4-6 + stress in

bay 3-5
= 2 x stress in bay 3-5.

The reaction at due to loads at joints 2, 4, 6, 8 is

^ = (1 + 3 + 5 + 7) bays (48) tons

9 bays
= 85-3 tons.

Taking moments about bottom joint 4.

M = 85-3 tons x 4 bays 48 tons x 2 bays
= 245-2 bay tons.

Since the depth of girder = 1 bay

Stress in bay 3-5 = , = 245*2 tons compression.

The stress in bay 4-6 of the top chord due to loads at 1, 3, 5, 7

is the same.

Therefore stress in bay 4-5 of top chord is

2 x 245-2 = 490-4 tons.



CHAPTEE V.

GIEDEKS WITH PAEALLEL CHOEDS GENEEAL METHOD-
DEAD AND LIVE LOADS CONSIDEEED SEPAEATELY.

The stresses due to dead load only are considered in this

chapter. For the stresses due to live load see Chapter VII., in

which the live load stresses are worked out for a curved girder,
the only differences between the two cases being that in the

curved girder the depths vary, and the members of top chord
member are inclined. In the parallel girders of this chapter
both chords are horizontal and the depth is constant.

35. Dead load considered separately.

The dead load on a bridge consists of the weight of the two
main girders, and the weight of the platform load, which includes

the cross girders, stringers, flooring, rails, sleepers, and fastenings.
One half the weight of each main girder is assumed to be dis-

tributed at the panel points of the upper chord, and one half

at the panel points of the lower chord.

One half the platform load is taken as distributed at the

panel points of the chord (upper or lower) which carries this load.

Let W total weight of one main girder.
w = weight per foot run of platform load.

,, I = length of main girder.

,, n = number of panels.

Then, if the platform load is carried on the lower chord,

Weight at each panel point of the lower chord

(1}

Weight at each panel point of upper chord

*- ..................... (2) -

Stresses in bracing and chord members due to dead load.

In parallel girders the stress in the chords or flanges is

horizontal, consequently the vertical shearing force can only be
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resisted by the vertical component of the stresses in the diagonal
braces, and it is the horizontal components of the same stresses

which produce the increment of chord stress at each panel point.

Bracing. Let = inclination of inclined braces to horizontal.

First determine the shearing force in each panel. The

shearing force in any panel is the vertical component of stress

in the inclined brace in that panel.
The stress in the inclined brace = the shearing force x cosec 0.

In Fig. 44, S= Fcosec d.

The stress in vertical is got by considering
the vertical equilibrium of the forces acting on
the joint at either of its ends.

Chord members or bays.
The horizontal component of stress in an

inclined brace is equal to the vertical component
of stress x cot 0.

In Fig. 44, H= V cot 0.

The stress in any bay is the sum of the hori-

zontal components of stress in all the inclined

braces between one end of the girder and the bay in question.

Working from one end of girder towards the centre, at each

panel point an increment of chord stress is added equal to the

horizontal component of stress in the inclined brace or braces

which meet the chord at that panel point.
The following examples illustrate the method. The results

are tabulated, but with numerical examples the results can often

be more conveniently written on a line diagram of the girder.

EXAMPLES.

1. A Pratt or N truss of 8 panels (Fig. 45) carries a loadjtW l

at each panel point of the lower chord, and a load W% at the panel

H
Fig. 44.

\Rr4W+
Fig. 45.

points of upper chord. Determine the stresses in bracing and

chord members.



GlBDEES WITH PAEALLEL CHOEDS 81

The diagonal members of bracing are ties ; the verticals are

struts. The upper chord is in compression, and the lower chord
in tension.

The stress in any vertical is the vertical component of stress

in the diagonal brace to which it is joined at the upper chord

plus the load TF2
on top of vertical. The girder being sym-

metrical, it is only necessary to find the stresses in one half.

BRACING

s
tuo j3

.5 PQ

Shearing
Force

Vertical

Components
of Stress

Stress

in

Brace

VERTICALS

No. Stress

aB
1C
cD
dE

31

2J

31

2J
lJ

J

COS6C 6

cosec 6

cosec

cosec 6>

aA
IB
cC
dD
eE

CHORDS

Horizontal

Components
of Stress

Stress

No. of Bay

Upper
Chord

Lower
Chord

bC
cD

cot 6 cot ab
be

cd

def

AB
BC
CD
DE

2. A Pratt truss (Fig. 46), 112feet span, depth 12 feet, is divided

into 12 panels, each of length 16 feet. The weight of the two main

girders is 84 tons, and the weight of the platform load carried on
the lower chord is 0'6 ton per foot run. Determine the dead load

stresses in the bracing and chord members.
The girder being symmetrical, and symmetrically loaded only

one half of the girder is shown in Fig. 46.

The weight of one main girder
= = 42 tons.

A
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Assuming this weight to be equally distributed at the panel
points of upper and lower chords.

42
Weight at each panel point of upper chord = -- = 3 tons.

2x7

Weight at each panel point of lower chord = 3 tons.

Platform load carried at panel points of lower chord

= . = 4-8 tans.

Therefore total load at each panel point of upper chord
= 3 tons ; total load at each panel point of lower chord
= 3 + 4-8 = 7-8 tons.

-s-j -s-t
Keaction at each support = | (54-6 + 21) = 37'8 tons.

1-5-

43-2

39

b 72-0

432

\R

7-8

C 86-4-

72-

,d 86-4

864
7-8

Fig. 46.

7-3 78

BRACING
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braces are in tension ;
the verticals in compression. The upper

chord is in compression ;
the lower chord in tension.

3. A Warren girder bridge of 120 feet span (Fig. 47), with

equilateral bracing and the lower chord divided into 8 bays each

15 feet long, carries a dead load consisting of the weight of two main

girders 89*6 tons, and a platform load of O64 ton per foot run.

Determine the stresses in bracing and chords.

The platform load is carried on the lower chord.

on./?

Weight of one main girder = -- = 44*8 tons.

Load at each panel point of upper chord, Equation (2),

F = = 2-8 ton,

In distributing the loads each panel point is assumed to take

the load on half a bay on each side of it. Hence, on the upper
chord the load at joint a = f 2*8 = 2-1 tons, and at joint A the

load is J 2-8 = 0'7 ton.

Load at each panel point of lower chord, Equation (1),

44-8 . 0-64 x 120 = 7-6 tons.
2x8 2x8

6 = 60 ; cosec 6 = 1-16
; cot = 0-58.

7-6

The stresses are obtained as shown in table.

If F shearing force on a vertical section cutting any inclined

brace, the stress in that brace is

F cosec 0.

And the stress in any bay of either chord is the sum of the

horizontal components of stress of all the inclined braces between
G2
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the left support and the bay in question. The braces aA, bB,

cC, dD sloping downwards towards the nearest support are

struts ; and the braces aB, bC, cD, dE sloping downwards towards

the centre are ties. The upper chord is in compression, the

lower chord in tension.

BRACING
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takes half the load between the two adjoining joints on each side

of it.

cosec 6 = 1-8 ; cot 6 = -

6

I
R

1
=

Fig. 49.

The stresses are worked out in table below.

BRACING
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Upper chord is in compression, lower chord is in tension.

Braces sloping downward towards centre are in tension, those

sloping upwards towards centre are in compression.
5. Fig. 50 represents the half elevation of a Warren girder with

two series of triangulations. The span, 100 feet, is divided into

10 equal bays with web-bracing inclined at 45. Weight of the two

main girders is 96 tons. The platform load carried on the lower

chord is 0'72 ton per Joot run. Determine the stresses in bracing
and chords.

In order to distinguish the two systems of triangulation, one

is shown in thin lines ; the other in thick lines.

Rj-4ZTons .

that if 21 toTbS for Thick trvouiguLaJwrv
21 tons for Thin

Fig. 50.

To determine the stresses in the bracing, the two systems of

triangulation must be regarded as separate from one another.

Hence to find the shear force on a vertical section cutting any
thin line brace, only the loads on the thin line system must be

considered, and similarly for the thick line system.
The stresses in the chords are due to both systems of bracing.

Thus the stress in any bay is the sum of the horizontal com-

ponents of stress in all the braces (thick and thin) between it

and the support.

Weight of one main girder
= 48 tons.

Load at panel points of upper chord = -- - = 2-4 tons.
A x lu

Load at panel points of lower chord, Equation (1),

48 0-72x100
ft

.

=
2^10

+
"2x10-

= 45
; cosec 6 = 1-414 ; cot 6 = 1.
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BRACING
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Load at each panel point of lower chord, Equation (1),

840-64 x 175

2xl4 2 x 14
= 7 tons.

The two systems of triangulation are shown in Fig. 51
; one

drawn in thin lines, the other in thick lines.

In determining the stresses in the bracing, each component
girder or system must be considered as separate from the other,
and for the loads only which rest on its own panel points.

The stresses in the chords are due to both systems of bracing.
The stress in each vertical is the vertical component of stress

in the brace which meets it at the top chord plus the load carried

at its upper end.

The vertical component of stress in the inclined brace aB of

first panel is the stress in the vertical bB to which it is connected

at lower chord plus the load of 7 tons at foot of vertical

= 28 + 7 = 35 tons.

The horizontal component of stress in the inclined brace aB
= vertical component x cot

(/>= 35x0-625 = 21 -9 tons.

BRACING
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Weight of one main girder = 96 tons.

Load at each panel point of upper chord = 96 = 2-4 tons.

Load at each panel point of lower chord, Equation (1),

96 0-7 x 240

In this case 6 = 45
;
cot 6 = 1 ; cosec = 1-414.

cot
</>
= \ cot 6 = J.

2-4 2-4- 2-4 Z-4 2-4- 2-4 2-4- 2-4- 2-4
^2-4

^,OU v |Z^ v j,C ^lA ,jg, ^jf, ^jg. J[h ^j, J$ti

Fig. 52.

BRACING
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As in last example, each system or separate girder with its

own loads must be taken separately for finding the stresses in the

braces, whereas both systems of bracing contribute to the stresses

in the chords.

The vertical component of stress in first inclined brace

aA = the sum of the vertical components of stress in aD, aC,
and aB = 86-8 + 41 -4 + 9-2 = 87 '4 tons.

The chord stress in first bay ab of upper -chord = sum of the

horizontal components of stress in aA, aC and aD = 43*7 + 20-7 +
86*8 = 101-2 tons.

.
The stress in all verticals is compressive,

except that in aB which is tensile and equals 6*8 tons, the load

at its foot.

The stresses required are worked out in table on preceding

page.



CHAPTEE VI.

PARABOLIC GIRDERS.

36. Parabolic girders.

In a parabolic girder the upper or compression chord is a

polygon inscribed in a parabola, which is the curve of bending
moment. The lower chord is straight, subject only to tension.'

The bracing, or web members, consists of verticals dividing the

span into bays of equal length, together with either one set of

diagonal braces, in each of which both compressive and tensile

stress may occur, according to the position of the live load ; or

with two sets diagonal braces crossing one another, in which

only tensile stress can occur.

Fig. 53 represents a girder of single triangulation ; the form
of the upper chord is that of the bending moment curve, the girder

being uniformly loaded.

Let M = bending moment at a vertical section.

y = the ordinate of the axis of upper chord at the same
section that is, the ordinate of the moment curve.

F = shearing force on same section.

I length of span.

(f>
= angle of inclination with the horizontal of that bay

of upper chord cut by the section.

H = stress in that bay of the lower chord cut by section,

which is also the horizontal component of the inclined

stress in the curved chord ;
these two forming a

couple with arm y, which constitutes the moment
of resistance.

Then
M = Hy.

But M is proportional to the ordinate y of the moment curve.

Hence H is constant.
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Taking moments about the centre of upper chord, and calling

yc the centre ordinate or depth,

H -" m

Again F= =
ax

-

ax
= H tan

but H tan <> is the vertical component of stress in the bay of

curved chord cut by section. Therefore this vertical component
balances the shearing force, and the diagonal brace is unstrained.

No stress, therefore, occurs in the diagonal braces of ilie web

when the girder is uniformly loaded. Hence in such a girder

subject only to a uniform dead load the diagonal bracing may be

omitted.

The stress in the bay of curved chord at section

8 = #sec< (2);

that is, the stress is proportional to the inclined length of the bay,
since the horizontal length is constant.

37. Depths of girder at the panel points. Inclinations of

bays of polygonal chord and diagonal braces.

Let n = number of equal bays in the straight chord.

yc
= depth of girder between the axes of chords at the

centre of span in bay units.

yr
= the depth at the end of the r

th
bay nearest the

centre.

(j> f
= the angle of inclination of the r

th
bay of the polygonal

chord with horizontal.

r
= inclination to the horizontal of diagonal r.

W = total of dead and live loads per bay, applied at each

panel point of the straight chord.

A bay is taken as the unit of length.

The method of numbering the different members of the

girder is clearly shown in Fig. 54. The following proofs are taken
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generally for the r
th member of chords and bracing ; consequently

the results can be applied to any member desired. These proofs
are rather lengthy, but the formulae derived are simple and easily

applied.
The bending moment at the centre of the span is

Me
= -bay units ............. .., . .(3).

8

The bending moment at the end of the rth bay is

Mr
=
^r(n-r)

........................ (4).

Now, the depths being proportional to the bending moments,

r (n r)

yc Mc n^ n2

8

Therefore y,
= 4

r̂ n ~?J yc . . . (5).

From this equation the depths of the girder at the end of each

bay can befound when the central depth is given.
If H = horizontal component of stress in polygonal chord

due to the dead and live loads covering the whole span,
The stress in bay r of the polygonal chord is

8r
= H sec <pr .

Inclination of bays of polygonal chord.

yr y r_ i
1

Now, tan
(/>,.
=

\ K /.
= - (Mr Mr_})

W
|-r-r

. Or since H

= (_&. + !). ............. ........... (6),
IV

and sec
</>,.
= V 1 + tan2

</>r
-

Inclination of diagonals.

tan 6r
= yr

and sec 6r
= \/l -h y*
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38. Maximum stress in the members of a parabolic girder.

Chords.

Fig. 54 represents a parabolic girder with web of single tri-

angulation.
The maximum stress in chords occurs when the whole span

is fully loaded with dead and live loads. Also the horizontal

component of stress in the chords is constant.

m^
*fff7.

P.-

K r +Tbays ->j<- n ~(r + 1) bays

To find the maximum stress in any member of the polygonal

chord, say, the rtk

bay.
Produce the bay r of upper chord to meet the verticals drawn

through the two supports at L and M, then

LM = I sec (7),

where I = length of the girder.

But we have previously shown that the stress in bay r

Sr
= H sec c

; (8).

Therefore, from (7) and (8) we see that the intercept LM repre-
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sents the total stress in bay r of polygonal chord on the same scale

that I represents the horizontal component,
wV

=

%;
w being the sum of the intensities of the uniform dead and live

loads.

39. Web-bracing-.

Let Wl
= dead load carried at each joint of the straight chord.

W IIVP
J> '' 2

- -lAVC J5 J) 75 ?J J>

compressive and tensile stress be positive and negative

respectively.

Dead load.

By Art. 36,

Stress in each diagonal brace = 0.

Stress in each vertical = Wl
tension.

Live load.

To determine the maximum tension in diagonals r, and maximum
compression in vertical r in left-hand half of the span.

Let Fr
= vertical shearing force on left side of an approxi-

mately vertical section cutting the (r + l)
th

bay
of straight chord, and the rth vertical.

H,, H,.+ ,

= horizontal components of stress in the r*
1 and

(r + l)
tb

bays of the polygonal chord due to

partial live load specified.

y y, + i
= depths of girder at joints r, r + 1 respec-

tively.
Take a bay as the unit of length.
The maximum stresses required occur when the lower joint

r 4- 1 and all the joints to the right are loaded.

Then Fr
= reaction at left support.

+1

(9).

The horizontal component of stress in diagonal r

y, y r +i

By Equation (5)

+ i
=

>.
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Substituting these values in (10), and for Fr from (9) we get
Maximum horizontal component of stress in diagonal r

Maximum tensile stress in diagonal r

= -^*
U
SGC Or tension . ..(12).

8ff

The length of diagonal being proportional to sec 6,., we see

that the stress in any diagonal is proportional to its length, and

that its horizontal component is constant and = W2 J
1
-

.

%c
To find the stress in diagonal r graphically.
Since the horizontal component of stress in the chords, when

the girder is fully loaded with the live load, is

c

we see from (11) that

The maximum horizontal component of stress in any inclined

brace

= H
n

'

Now the horizontal projection of any brace

_
I

n

Therefore, the actual length of each brace represents the maximum
stress in it, on the same scale that I represents the horizontal com-

ponent of stress (H), the girder being fully loaded with the live load.

Maximum compressive stress in vertical r.

Considering the vertical equilibrium of the segment on the
left of an approximately vertical section cutting the vertical r

and the r
th

bay of polygonal chord.

Maximum compressive stress in vertical r

-- tan
<f>r

yr

Substituting for tan
<f>r

from Equation (11), and for Fr from

Equation (9).
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Maximum compressive stress in vertical r

ow V" * V" *> r 77 _r^/i" At /

W= *

(r 1) (w r 1) compression (13).

To find the maximum compressive stress in diagonal r, and the

maximum tension in vertical r.

When all the joints of the straight chord are loaded byW2 , the
resultant stress in any brace is the algebraic sum of the maximum
compressive and tensile stresses. Under such loading we have
seen (Art. 36) that there is no stress in the diagonals, and that the

tensile stress in each vertical is equal to the load carried at its

foot.

Hence
Maximum compression in diagonal r -t- maximum tension in

diagonal r = 0.

Therefore by Equation (12)
W nMaximum compression in diagonal r = ^- . sec O

t
.

Again,
Maximum tension in vertical r + maximum compression in

vertical r = W 2
.

Therefore by Equation (13)
WMaximum tension in vertical r TF2 ^-? (r 1) (n r - 1)

W= s
2

(r + 1) (n r + 1) tension.
Zn

Eesultant stresses due to both dead and live loads.

Diagonals
W n W n-~- sec Or tension ; -^- sec Or compression.

Verticals

On the middle vertical the stress is tensile, and is equal to the

sum of the vertical components of the stresses in the two middle

bays of the polygonal chord.

40. Case IL Web with double triangulation.

In this form of web, in which there are two diagonals, crossing
one another in each panel, both these diagonal braces are ties,

and are unaffected by the dead load.
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In Fig. 55 all the braces meeting at one joint of the polygonal
chord have the same number as the joint, but the numbers of

the new diagonals (which slope upwards towards the centre)
are dashed. Thus r

l
is the number of the new diagonal meeting

the upper joint r.

(4-)

(1} (3) (*J (5) (6)

Fig. 55. .

STRESSES DUE TO LIVE LOAD.

The maximum tension in diagonal r1

, and maximum com-

pression in vertical r, occur when the lower joint (r 1) and all

joints to the left are loaded with W2
.

The maximum tension in diagonal r
1 can be shown to be

which is the same expression as that for the maximum tension

in diagonal r, Equation (12), Art. 39.

So that the maximum tensile stress is the same for the two

diagonals meeting at the same joint of polygonal chord.

The maximum compression in vertical r can be shown to be

W
-^

(r 1) (n r 1) compression,2n

which is the same expression as Equation (13), Art. 39.

Thus the compressive stress on any vertical is a maximum
for that distribution of the live load causing maximum tension

in either of the diagonals meeting at its upper extremity, and
the magnitude of the compressive stress is the same for either

condition of loading.
The maximum tension in any vertical due to the live load

occurs when the girder is fully loaded, and is = W 2
.

STRESSES DUE TO DEAD LOAD.

On any diagonal = 0.

On any vertical = Wr

EXAMPLE.

A parabolic girder of single triangulation (Fig. 54, Art. 38),

span 150 feet, divided into ten equal bays of 15 feet, carries a
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dead load of 6 tons per bay and a live load of 15 tons per bay. The
central depth is 20 feet. Determine (a) the depths at panel points
1, 2, 3, 4, and verify by differences; (b) the maximum stress (H)
in the straight chord; (c) the maximum stresses in the second and

fifth bays of the polygon chord ; (d) the maximum stresses due to

the live load occurring in first and fourth diagonals from one support.
Data : I = 150 feet ;

n = 10
; bay = 15 feet.

yc
= y :)

= 20 feet = i bay.

W 1
= 6 tons ; F2

= 15 tons.

(a) y f
= 4^ r (?i-r). Equation (5). Art 37.

13 ^
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Therefore
flfa
= 196-87 x 1-07 =210 tons.

S5
= 196-87 x 1-0014=197 tons.

(d) Let Dp D
4
be the stresses in diagonals 1 and 4 respec-

tively
Then

D, = ^ sec er

= 14-06 sec r .

Now sec
l
= VI +2/i

3 = VI + 0-48 2 = 1-109,

sec 4
= -v/f+2/T = vT+FSS 2 = 1-624,

Therefore,
D

l
= 14-06 x 1-109 = 15-6 tons.

D4
= 14-06 x 1-624 = 22-7 tons.

The stresses in cases (c) and (d) could be found at once

graphically from the frame diagram ; as in case (c) the constant

horizontal component of stress is 196 '87 tons, and in case (d)

the constant horizontal component is 14-06 tons.



CHAPTEB VII.

CURVED GIRDERS NOT PARABOLIC.

41. Curved girders not parabolic.

In various designs of girders one chord is curved, but its panel

points do not lie on a parabolic curve. In these cases the methods
of determining the stresses as explained for parabolic girders will

not hold good.
The following example illustrates the method of determining

the stresses for such a girder due to dead and live loads.

The live load in this case has been taken as a series of axle

loads followed by a uniform load.

Example : Data. Span 130 feet, divided into 8 equal bays,
each 16-25 feet long, of the form shown in Fig. 56.

Table of heights at panel points.

B
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Live load.

The bridge is to be designed for a live load consisting of two
type locomotives, and a train taken as a uniform load of 1-4 ton

3-66.

45-50

Fig. 56.
46-50

per foot run. Each axle of locomotive is assumed to carry
16 tons (Fig. 57).

TYPE OF LOCOMOTIVE.

Tr\ {j6~3\J^r\
--, 4 I 1 1 ( 1 1-

Fig. 57.

STRESSES DUE TO DEAD LOAD.
The distribution of dead load is shown in Fig. 56.

The inclination to horizontal of any one member of upper
chord is denoted by <f>.

The girder and loading being symmetrical, the stresses are
tabulated for members on one side of the centre of span only.

Chords.
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is the difference between the horizontal components of stress in

the chord members to right and left of it.

For values of H see table on preceding page.
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Structural Members,' page 128, and is briefly outlined here as

applied to a practical example.
The live load is taken to consist of two locomotives (of which

the type is shown in Fig. 57) followed by a uniform load of

1*4 ton per foot run.

As the bridge is to be designed for a single track, the axle

loads for each girder are = 8 tons, and the uniform load
2

1-4-- = 0-7 ton per foot run. The axles are taken 5 feet apart,

centre to centre ; the distance between the two locomotives is

2x7' 6" = 15 feet ; and the distance from last axle to the head
of the uniform load 9 feet.

In Fig. 58, AA L
is the span, AA 1

is produced to A" making
A'A" equal to the span, and on it are marked the panel points.
First take the leading axle immediately over the right-hand

support A' (Fig. 58) and draw the bending moment diagram as

explained in
*

The Strength and Elasticity of Structural Members,'

pages 88 and 89. Calculate the moment of each successive load

about A the left support, starting with the leading axle load,

which is over the right support A'. Set these moments down to

scale consecutively on the line Aa, drawn perpendicular to AA1

.

The moments are :

Tons Feet

A m l
= 8 x 130 = 1040 foot tons.

m
]
m.

2
= 8 x 125 = 1000

w
2
m3

= 8 x 120 = 960
w3w4

= 8 x 115 = 920

ra
4
ra5

=-8 x 100 = 800
= 8 x 95 = 760
= 8 x 90 = 720
= 8 x 85 = 680

=

Total = 8901-6

Join A lm
l
and draw a vertical through the second load to

meet A lm
l
in 2, join 2w2

and draw the vertical through third load

to meet it in 3
; join 3w3

and draw a vertical through fourth load

to meet it in 4, and so on to point 8. Join 8m
8
and from this

line set down vertical ordinates - for any convenient values
2

of x measured from P the head of the uniform load. We thus

get the curved line ^4
12348a. Now join A la and the required

moments at the panel points due to the train of loads when the
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leading axle is at A 1 can be got by measuring the ordinates bb
} ,

cc
{ , ddlt &c., between the base A la and the curved line ^4

!

2348a;
the ordinates being drawn vertically below the panel points of

girder. That these intercepts between the straight line base and
the curved line represent the bending moments is evident since

the bending moment at any point is the moment of the reaction

minus the moments of the loads.

MatD = Dd,- Dd = ddr

Leading axle atB }
.

Now suppose the girder to move forward to the right one panel

length. L is the new position of A 1 and the span is represented

by LB. As the train is assumed to remain stationary the leading
axle is now one panel back from A 1

, that is, is at B 1
. Bb is the

moment of the reaction at the right support and the moments of

the loads about B are represented by the intercepts on Bb. Join

Lb ; then the bending moments for train of loads leading axle

being at B 1 are measured by the ordinates under the panel

points, between the new base Lb and the curved line LA l%48b.

The curved line of moments for the downward forces serves

for every position of the train of loads.

sfrt

?c

Q ^
t 3 ^
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train being stationary the leading axle is over C l

. The bending
moments as before are got by measuring the ordinates vertically
below the panel points from the new base Mc to the curved line

of moments, MLA l248c. This process is continued until the

leading axle finally comes over the left support A that is, the

train has moved off the bridge.
The bending moments at the several panel points as obtained

by scale for the different positions of the live load are given in

the table on the preceding page, and the method of obtaining the

stresses in- the girder from these bending moments will now be

explained.

43. Live load stresses.

Maximum stresses in chord members.
The maximum bending moments are taken from the previous

table.

Thus, in column E the maximum moment is 2,000 feet tons.

In columns D and D l

,, ,, 1,850
In columns C and C l

1,500
In columns B and B l

1,000
The girder being symmetrical, and the train liable to pass

in either direction over the bridge, the maximum moments for

corresponding panel points on each side of the centre are taken.

Table of stresses in chord members for the left half of girder ; corre-

sponding members in the right hand half have like stresses. (Fig. 56.)
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The maximum horizontal component of stress in any inclined

brace is the difference between the maximum horizontal com-

ponents of stress in the chord members to left and right of it :

thus,
The leading axle being taken at the foot of the brace,
The horizontal component of stress in brace

Moment at foot of brace Moment at head of brace

depth at foot of brace depth at head of brace

In the accompanying table of stresses the bending moments
are taken from the table (Art. 42, page 106) got from the bending
moment diagram for live load.

Table of maximum stresses in inclined braces. (Fig. 56.)

8
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stress in HE (5*4 tons). The compressive live load stress in GD
is 11 tons, which is somewhat less than the tensile dead load stress

in it, 12*6 tons ; but as these stresses are so nearly equal it is

advisable to introduce the counterbrace HC. The counter-
brace GB is not necessary, as the dead load tensile stress in

FC (27-4 tons) is much greater than the live load compressive
stress in it (7*2 tons).

In the panels which are counterbraced, both diagonal braces
are subject only to tension, one being in action at a time.

Verticals.

Eesolving vertically at the intersection of vertical with top
chord, the stress in any vertical is equal to the vertical component
of stress in upper chord member on the side of vertical towards
the centre of span plus the vertical component of stress in inclined
brace at head of the vertical minus the

vertical component of stress in chord member
on the support side of vertical (Fig. 59).

The maximum stress in any vertical

occurs when the brace at its head is trans-

mitting its maximum stress, and the maxi-
mum horizontal components of stress in

braces is taken from the previous table.

We must first find the horizontal com-

ponents of stress in the chord members to right and left of each
vertical due to the leading axle of train load at the foot of brace
which meets the vertical in upper chord.

Leading
Axle
at
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The stress in the first vertical F ]B l
is tensile, and is approxi-

mately half the weight of the greatest number of wheel loads

that can be got on A lC l = J x 5 x 8 = 20 tons tension.

Table of maximum compressive stresses in verticals. (Fig. 56.)

For horizontal components see the two previous tables. The
vertical components are got by multiplying the horizontal com-

ponents by the tangent of the angle of inclination of the member.

1
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Wind load to be treated as dead load.

In the present example the surface exposed may be taken
at 2,600 square feet, which gives a wind load on the girder of

40 tons, say, 24 tons on the lower chord, 16 tons on the upper
chord. The wind bracing is shown in plan in Fig. 60. The

girders are assumed 16 feet apart centre to centre. The stresses

in the chords and bracing are calculated as for an .ZV or Pratt

truss. There are cross diagonal braces as the wind may blow
on either girder. One set of braces only being in action at a

time.

Fig. 60 shows plan of bracing for lower chord. The stresses

obtained from the shearing force in panel lengths are written on
the diagram. Since 6 45 nearly,

t = cot = 1,

e = cosec 6 = 1'414.

Wind load. Lower system of bracing. Stresses.

Chords
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45. Total stresses.

In the tables of total stresses, which is used for the design
of the different members, the live load stresses are in each case

multiplied by 2, in order to allow for the sudden application of

the load.

The dead load stresses are got from tables on pages 102 and

103, and the live load stresses from tables on pages 107 to 110.

For diagram of girder see Fig. 56, page 102.

Lower chord. Tension.

Member
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Verticals (+ sign compression, sign tension).

113

Member FB
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Members GH and HJ (Fig. 62).

One section will suit for these two members as the stresses are

so nearly equal. Take HJ, which bears the greater stress.

Total stress = 245-4 tons.

245*4
Area = - - = 43 square inches.

Add rivets as in FG = 2*25 .,

Area required 45 '25

Area provided
1 top plate, 24" x y = 12 square inches.

2 side plates, 18" x T
7/ = 15-75

4 angles, 8^ x 3J" x J" = 13-00

2 outside side plates between

angles, lOf
"
x f

" = 8-QO

Total area provided =48-75

The general cross section is preserved throughout, the increased

area required being got by the addition of outside plates between
the angles ;

in this way the centre

of gravity of the section is not

altered and a constant distance

is preserved between the side

plates. This leads to simplicity
in the design of verticals which
are fixed between the side plates.

If a greater sectional area were

required, vertical side plates
should be added inside of the

full depth of the cross section.

Plates should not be used of

less thickness than f inch.

LOWER CHORD. Tension : Working stress 8 tons per square inch.

The section of lower chord must be similar to that of the upper
chord ;

the distance between the side plates in each case being
the same so as to allow the verticals to fit between them.

Members AC, CD, DE.
The stress in DE is 239*5 tons. The cross section is shown

in Fig. 63.

Total stress = 239-5 tons.

239 '5 = 29-9 square inches.
8

k 24 . >i

Fig. 63.

Area =

Add for rivet holes = 2-2

Area required . .
= 31*15
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Area provided

1 bottom plate, 24" x f
" = 9 square inches.

2 side plates, 18" x Ty = 15-75

2- angles, 3J" x 8J" x'J" ......= 6-50

Total area provided = 31-25

This section is the least that can be adopted for similarity of

the upper and lower chords, and as the stresses in AC and CD
are less than in DE it can be adopted throughout.

As stated before, if a larger cross section were required it should

be got by the addition of side plates.

BRACES AND COUNTERBRACES. Tension.

Member
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Area required
= max. load

~6~

L Irons
4*4 * '/z

= 55 '12 (\+ 22-4x22-4x1'

6V 30,000x2-1

= 20 square inches app.

Area provided (Fig. 64)
= 20-25 square inches.

Verticals HD and JE.
If Eankine's formula be applied in

the same manner it will be found that

the following section gives ample area :

|
One plate 14" x f";

4 angle irons 4" x 3" x f".

Vertical FB is in tension, the stress

in it being 49*34 tons, but since for

practical construction it is advisable to

keep all the verticals of the same form

of section, this vertical may be formed

of one centre plate 14" x f
" and 4 angle irons 4" x 3" x f ,

the

same as HD and JE, which is more than sufficient area, but

gives uniformity of design.

Fig. 64.

%'Rivete 4'PiLctu

Fig. 65.
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Connexion of brace and vertical to chord.

Fig. 65 shows the general arrangement of the connexion of one

plate of brace and vertical to gusset plate and side plate of upper
chord.

End sloping member FA.
This member is in compression. The most convenient design

is to make it of such a section as to fit in between the vertical

side plates of the upper and lower chords, as the verticals do.

Fig. 66.

Fig. 66 shows a suitable cross section, the area of which has been

got by the application of Kankine's formula :

Total stress = 223 tons ; least fe
2 = 39 ; I = 24-85 feet.

Area = 40 square inches.

If more area is required, thicker side plates might be used,
or two additional side plates might be placed between angle
irons.



CHAPTEE VIII.

WIND PRESSURE. POKTAL BRACING. HIGH STEEL
TRESTLES.

47. Wind pressure. Lateral bracing
1

.

The wind force on a bridge is provided for by means of an

upper lateral system of bracing, attached to the upper chords of

the vertical girders, and a lower lateral system attached to the

lower chords. Thus, in the case of girders with horizontal chords,

the lateral or wind girders are horizontal, and the chords of the

main vertical girders form the chords of the lateral girders. The

depth of the horizontal wind girders is equal to the distance apart
of the vertical girders.

Since the lateral girders have the same chords as the vertical

girders, in order to determine the resultant stresses in the latter

we must add the wind stresses to the dead and live load stresses.

The form of the lateral bracing is usually of the same form as

the vertical girders, either of the Pratt or Warren type, as the case

may be.

Arrangement of bracing.
The wind loads are assumed horizontal, equally distributed

at the panel points. As the wind pressure may act in either

direction on a bridge, the stresses in the lateral or horizontal

system of bracing may be reversed.

Fig. 67 shows the plan of horizontal bracing for a bridge of

4 panels. If the wind blows in the direction of the arrows, the

inclined braces shown in full lines

v * *
J ; will be in tension

;
but if the

wind loads are reversed, then

these same braces will be in com-

pression. In order to avoid this

reversal of stress the panels are

counterbraced, a second diagonal as shown in dotted lines being
introduced in each panel length. When the wind acts in the

direction of arrows, the inclined braces in full lines are in tension,
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those shown dotted being unstressed. When the wind pressure
is reversed then the dotted diagonal braces are tension and the
full line diagonals are unstressed. Hence the diagonals are

subject to tension only.

48. Methods of estimating- wind pressure.

In practice the estimate of wind pressure to be allowed for in

the design of a bridge varies a good deal. In America the general

practice seems to be to assume a pressure of about 50 Ibs. per

square foot of exposed surface for the unloaded bridge ; but with
a train on the bridge a pressure of 30, Ibs. per square foot on the

exposed area of bridge and train, the wind load on train being
treated as a moving load.

The exposed area in the case of triangulated girders is twice

the area of the surface of girder as seen in elevation, so as to

provide for wind pressure on the leeward girder.
The train surface is taken 10 feet high, the top of it being

assumed 12 feet 6 inches and the bottom 2 feet 6 inches above
rail level.

Thus, as a preliminary calculation, with a train on the bridge,

taking 10 square feet per foot run as the area of truss exposed,
and 10 square feet as the area of train surfaces per foot run, we

get:

(a) A dead load of 30 x 10 = 300 Ibs. per foot run of bridge.

(5) A live load of 30 x 10 = 300

If (a) is assumed as equally distributed between upper and
lower horizontal systems, we have

On the lateral system of upper chord

A dead load of 150 Ibs. per foot run of girder,
On the lateral system of lower chord

A dead load of 150 Ibs. per foot run of girder

plus a live load of 300 Ibs. per foot run of girder.

The wind loads on the horizontal system of upper or unloaded
chord may be taken as equally distributed on the windward and
leeward sides, or as acting entirely on the windward side. For
the loaded chord they are taken wholly on the windward side.

Government of India.

The Government of India rules are :

For bridge unloaded. A wind pressure of 56 Ibs. per square
foot on the full surface of both girders.

For bridge loaded. A wind pressure of 34 Ibs. per square
foot on (a) the train surface taken 10 feet high that is, from
2 feet to 12 feet above rail level, and (b) on the surface of both

girders outside the train.
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This is taken as a static load.

Wind load is not taken into consideration in areas of main
members unless it exceeds 25 per cent, of the dead, live and

impact.

49. Portal bracing
1

.

The object of the portal bracing is to transmit the reactions

of the upper wind bracing to the abutments and to stiffen the

end posts against vibrations.
c e *n In calculating the stresses

in portal bracing and end

posts, the latter are assumed
to be fixed at their lower

ends, the connexions of the

end cross girder being made
sufficiently rigid to secure

this result.

The form of the portal

bracing depends a good
deal on the depth available

in order to allow the stan-

dard clear vertical height
above rail level.

In addition to the strong

portal bracing between the

end posts there is usually
a lighter transverse bracing,
or sway bracing, connecting
the vertical members of

girders. The stresses in the members of portal bracing are

quickly found by the method of sections.

A much fuller treatment of this subject is to be found in
*

Modern Framed Structures,' by Johnson, Turnlaure, and Bryan,
which I have consulted.

EXAMPLES.

1. A lattice bridge of the Pratt type, as shown in half elevation

in Fig. 68, span 220 feet, is divided into ten equal bays of%2 feet each.

Depth 26 feet, centre to centre of chords. Width between girders
16 feet.

The half plans of wind bracing for upper and lower chords
are shown in Fig. 68, and, as explained before, only one diagonal
brace is stressed.

Length of each diagonal brace and end post
= -\/22

2 + 26 2 = 34 feet.

HALF PLAN - TOP BRACING.

HALF PLAN - LOWER BRACING.

Fig. 68.
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UPPER WIND BRACING. DEAD PANEL LOAD.

Loading. For the upper wind bracing the bridge is taken as

unloaded that is, no train on the bridge, and the wind load on

this upper system is taken as

J {
Twice the area of elevation of one girder }

at 50 Ibs. per sq. ft.

Approximately, the area of exposed surface in elevation of

one girder = 1,560 square feet.

Hence, total wind pressure per foot run of bridge
'

,3120x50 = Q .32
220x2240^

0*32
Wind pressure per foot run of upper chord =

^
= 016 ton.

a

Therefore, panel wind load for upper chord

= 0-16 x 22 - 3-52 tons (1).

OVERTURNING MOMENT FOR BRIDGE.

Reactions. Corresponding stresses in end posts and chords.

(a) The overturning moment of these wind forces about lower

chord is

8 x 3-52 x 26 = 732-16 feet tons,

which must be balanced by a reaction couple at each end of the

span. The value of each of these abutment wind reactions is

therefore

Zp^J = 22-88 tons,
2 x 16

acting upwards on the leeward girder and downwards on the

windward girder. Thus, as in elevation of girder (Fig. 68) the

reaction at the ends of the leeward girder is increased by 22 '88

tons, and the corresponding compressive stress in the inclined

post is

22-88 cosec = 22 '8
^
x 84 = 30 tons.

^D

Corresponding tensile stress in lower chord is

22-88 cot 6 = 19-4 tons.

The compressive stress in upper chord is also 19*4 tons.

These stresses are uniform throughout the chords, as, excepting
the end inclined post, there is no stress in the diagonals.

(b) Stresses due to wind load on train. Live load.

Assuming the train surface exposed as 10 square feet per foot

run and the wind pressure as 34 Ibs. per square foot, then the wind
load on train is 340 Ibs. per lineal foot. Assume this load to act

at a height of 11 feet above the plane of lower wind bracing.
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Therefore wind load for one panel length

340 x 22

2240"
= 3-34 tons

and reaction at leeward end of cross girder is

3-34x11

16
= 2-3 tons.

Hence the effect of the overturning action of wind on train

is to produce a load of 2 '3 tons per panel of lower chord down-
ward on the leeward girder, and the stresses are obtained as for

a live load of 2'3 tons per panel. For the windward girder the

stresses are of the same value as for the leeward girder, with

reversed sign.

DEAD WIND LOAD ON LOWER CHORD BRACING.

In addition to the live load due to wind on the moving train,

there is a dead wind load which may be taken at 34 Ibs. per square
foot over an exposed area of about 6J square feet per lineal foot

of girder
= 6J x 34 = 221 Ibs. = TV ton per lineal foot.

That is, a dead panel load of = f = 2-2 tons per lineal foot (3).

Wind Bracing. Stresses (Fig. 68).

The top lateral system is a horizontal Pratt girder of 8 panels

supported at the ends by the portal struts. The dead wind
load carried at each upper panel point is 3 '52 tons, Equation (1).

The lower lateral system consists of a horizontal Pratt girder
of 10 panels, for which the panel dead load is 2*2 tons, and the

panel live load is 3 '34 tons, Equations (3) and (2).

The length of diagonals = V22'
2 +

cosectf = ^=ib

= 27'2 feet.

If F is the shear in any panel length, the stress in diagonal
in that panel = F cosec 6.

Top Lateral Stresses Tensile.

Member
|

Shear
|



VIII.] PORTAL BRACING 123

In determining the section of the braces the area required

may be small ; but as the braces are long and require stiffness

angles should be used. In this case all the diagonal braces

might be angle bars 6" x 3|" x f ".

Lower Lateral Stresses Tensile.
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On the other side of portal bracing at top there is half a panel
load

=^ = 1-76 ton.
Zt

It is assumed that the end posts sue fixed at their lower ends

by the end cross girder connexions
;
also that the plane of contra-

flexure mn is midway between the bottom of portal bracing and
the foot of the end posts. Thus m and n are points in inflection.

The reactions H and V may be considered as applied at the

points of inflection m and n, at which points the bending moment
is zero.

The horizontal reactions at m and n are generally assumed

equal.

Hence H = = ^ tong
a

The vertical reactions are got by taking moments about
m or n.

V= 15 '84 * 22* = 22 tons.
16

Stress in top horizontal strut, b
]

b.

Taking moments about point o in lower strut,

Stress = 1*08* 10-5 + 7-92x11 -75

= 14-08 +

10-5

7-92x11-75

10-5

= 14-08 + 8-8

= 22-9 tons compressive.

Stress in lower horizontal strut, op.

Taking moments about & 1
.

Q . 7-92 x 22-25
Stress = -^-

= 16-8 tons compressive.
Stress in diagonals

4
= 9-9 tons.

End posts.
The maximum bending moment in the end posts

= Hxll-75
= 7-92x11-75
= 93-06 feet tons.

J-
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The compression in mp is 22 tons = F.

The tension in no is 22 tons = F.

There is no direct stress in pb and obl
.

The area of the end post must be designed to resist the
combined compressive stress due to the maximum bending
moment plus the direct stress F plus the stresses due to dead
and live loads.

2. Portal bracing.
Where the headroom above rail level is restricted a very

common form of portal bracing is shown in Fig. 70.

Let the inclined length of the end post be 34 feet and the

depth of the portal bracing at junction with end posts be 8 feet,

the width between end posts being 16 feet.

Take, as in last example, a wind force of 14*08 tons at hip b.

The plane of contraflexure is assumed half way between the

foot of posts and bottom of the portal bracing fixing at o.

As before, assuming the horizontal components H as equal, we?

have
2tf = 14-08.

... H = 7-04 tons.

To get F, take moments about m or n.

,. V = 14
';*

21 = 18-48 tons.
ID

Stress in ot

= Fcosec 6 = 18-48 cosec 45
= 18-48 x 1-414 = 26-1 tons tension.

Stress in pt
= 26-1 tons compression.

Stress in sr. Moments about t.

Stress in ,r = 7-04x21-18-48 x8 = Q
4

Therefore, also, stress in rb and sb l = 0.

Stress in bt. Moments about o.

14-08x8 + 7-04x13
Stress in bt =

= 14*08 +

Stress inWt

=
7*04x13

8

8

7-04 x 13

8

= 25*52 tons compression.
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Maximum bending moments in the end post

= 7-04 x 13 = 91-52 foot tons.

The direct compression in mp = V = 18-48 tons.

The direct tension in no = V = 18-48 tons.

The members bb l
, pt,

and ot might each be formed of two

V

*lane ofContraflexiirt

or

Fig. 70.

angle bars 6" x 3'

angle bars 6" x 3|" x f ", spaced J inch
b apart.

The other members, br, rs, and
~p sb l

might be formed of two angle

j_
bars 3|" x 8J" x f".

Connexions made by |-inch gusset

plates.

Sway bracing.
The bracing between verticals of

main girders may be lighter than the

portal bracing. Fig. 71 shows two

^ simple forms, in which the top and
k bottom horizontal members may be

of some such section as

2 angles 4" x 3" x f
"

separated by a

f-plate 1 foot to 9 inches deep,

the diagonal braces being Tee bars

, riveted to the top and bottom f
"
plates.

Fig. 71.

50. Steel trestles.

Steel trestles are now greatly used as piers for bridging over

deep valleys. The general type of such a bridge is shown in

elevation in Fig. 72, and a transverse section showing one trestle

is given in Fig. 74. The girders are usually plate girders. The



VIII.] STEEL TRESTLES 127

trestles are braced together longitudinally in pairs so as to form
towers. The tower spans are usually 30 or 40 feet, and the

intermediate spans 60 feet. The length of the intermediate

spans depends partly on the height of pier, but chiefly on the

weight that can be conveniently dealt with in erection by over-

hanging. For a single line of rails the towers consist of four

columns, braced longitudinally and transversely; the longitudinal

bracing is required to resist the longitudinal force parallel to the

rails, due to the sudden application of the brakes to a moving
train ;

the transverse bracing is to resist wind pressure. In order

to increase the lateral stability of the trestles against overturn-

ing the columns are built to a batter of about 1 to 6 that is,

1 horizontal to 6 vertical. The amount of batter necessary is

determined from the condition that the trestles should not require
to be anchored, so as to secure them against overturning that

Fig. 72.

is, there should be no tension at the base of the windward column.
If the bridge is on a curve, the centrifugal force should be taken
into account. The determination of the stresses in a high bridge
trestle will best be explained by an example.

Example.
Let a railway viaduct consist of a series of plate girders, the

length of the tower spans being 40 feet, and the length of the
intermediate spans between towers 50 feet. Height of trestles

72 feet, divided up by bracing into 3 tiers or sections each 24 feet

high. Batter of columns transversely 1 in 6. Width at top,
10 feet. Width at base, 34 feet. Depth of girders, 5 feet.

Fig. 73 shows longitudinal elevation of one 40-feet tower

span. Fig. 74 gives a transverse elevation showing one trestle.

The stresses in the members are to be calculated for the

following loads : Dead load, live load, wind pressure on girder,
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train, and towers, and the longitudinal force due to the sudden
retardation of moving train.

DEAD LOAD STRESSES.

Weight perfoot run of 50 feet span= 660 Ibs. (girders) + 540 Ibs.

(floor and permanent way)
= 1200 Ibs.

Weight perfoot run of 40 feet span=600 Ibs. (girders) + 540 Ibs.

(floor and permanent way)= 1140 Ibs.

-H-50

Fig. 73.

The weight of one tower with longitudinal and transverse

bracing may be assumed as about 48 tons.

The dead load at top of each column due to girders

= the sum of the reactions of the 40 feet and 50 feet girders

_ 570 x 20 4- 600 x 25

2240
= 12 tons.

The dead load due to weight of one 24 feet length of column

at each apex
48

4x3
= 4 tons.
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Let ^ = inclination of the column to vertical.

Vertical height of one length of column = 24 feet.

Inclined length of column = V2-FT4* 24-33 feet.
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Sec 6 = 2
,

=1-0137.
24

tan =
J.

Dead load stresses. + sign denotes compression, sign
denotes tension.

-A
l
B

l
= +12 sec = +12x1-0137= +12-17 tons.

:J5
1
C

1
= +(12 + 4) x 1-0137 = +16-2 tons.

CD = C
1
D

1

= +(12 + 8) x 1-0137 = + 20-3 tons.

AA
1
= +12 tan = +-

1
-
2 = +2 tons.

BB, = + ^=+2-7 tons.
D

CCj = + ~ = + 3-3 tons.
D

There is no stress in diagonal members due to the symmetrical
vertical loads.

LIVE LOAD STRESSES.

The live load due to the weight of the heaviest train load

which can be concentrated on the spans may be taken as 50 tons

at the top of each column.

Live load stress in column

= +50 sec = +50x1-014
= + 50-7 tons.

Live load stress in top transverse strut AA
l

= 50 tan = -

b

= +8-34 tons.

The stress in diagonal transverse braces is zero, as in the

case of dead load.

LONGITUDINAL FORCE DUE TO THE SUDDEN APPLICATION

OF BRAKES TO MOVING TRAIN.

Stresses.

The longitudinal horizontal force acting at the top of the

tower is

The maximum weight due to train on trestle x coefficient

of friction

= 50 xi = 10 tons

assuming the coefficient of friction as 4-.
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The longitudinal diagonal bracing must be designed to resist

this force.

To determine the stresses in columns and diagonals of longi-
tudinal bracing the following data are necessary :

Distance apart longitudinally at tower trestles = 40 feet.

Inclined length of one section of column == 24-33 feet.

Length of diagonal = V24-33
T+"40s = 46*8 feet.

If /3 = inclination to horizontal of diagonals,
Stress in longitudinal diagonals of tower

= 10 xsec #.

= -11-7 tons.

Stress in columns.

AB = A,B, = 10 tan/3 = 10 x
2

-^ = 6-08 tons.

EC = B
l
C

l
= 2 x 6-08 = 12-16 tons.

CD = C
l
D

l
= 3 x 6-08 = 18-24 tons.

WIND STRESSES.

There are two cases to consider (a) when the structure is

loaded with train and (b) when the structure is unloaded.

Case (a). The surface of the train exposed to the wind is

assumed as 10 square feet per lineal foot, and the depth of girder
and floor is taken as 6 feet.

The wind pressure is taken as 34 Ibs. per square foot.

Thus, we have in this case a horizontal force of 340 Ibs. per
lineal foot acting at a height of 8 feet above base of rail, a hori-

zontal force of 34 Ibs. per square foot on the girders and floor,

and a horizontal force assumed at yV of a ton per foot of vertical

height of columns.

Case (b). For the structure unloaded the horizontal force

of wind is taken as 50 Ibs. per square foot on the girders and
floor, and a horizontal force of ton per foot of vertical height of

columns.

Consider Case (a) : one trestle.

Wind pressure on train acting 8 feet above base of rail

= 34x10
x
50 + 40 ^

2240 2

Wind pressure on girders and floor (6 feet deep) acting 3 feet

above top of column

K2
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Wind pressure at top panel point of column

=
,'5 ?!

=

,, at first panel point below top

= A x 24 = 2-4 ton.

at second panel point below top

= --- x 24 = 2-4 tons.

Wind stresses in columns.

To find the stress in any division of the column take moments
about the opposite apex ; thus, for the stress in^4jB take moments
about AV and for the stress in B

1
C

1
take moments about C.

The lever arms are :

10 cos = 9-86 feet.

18 cos = 17-75

26 cos 6 = 25-6

34 cos e = 33-5

Stress in AB = _ + x
_ = - 11-15 tons.

y*o

A lBl = + 7x_38_ 4x27 I.2x24
17*75

BC = -22-7 tons.

p ~ ,_7x 62 + 4x51 + 1-2x48 + 2-4x24
11 =

~25T6~"
= +29-41 tons.

,, CD = -29-41 tons.

n n 7x86 + 4x75 + 1-2x72+2-4x48 + 2-4x24
i
L>

i
=

33-5

= + 34-7 tons.

When the wind acts from the other side the stresses would be

A,B,= -11-15; AB= +22-7; B^= -22-7; BC= +29-41;

C.D^-29-41; CD=+347.
Stresses in horizontal struts.

For AA
l
take moments about F, the point where wind-

ward column produced meets vertical through Ar

Q, . AA 7x46 + 4x57 + 1-2x60
Stress in AA

l
= +
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For BB
} , 0(7,, DD l

take moments about E, the point in

which the two columns produced meet.

Stress in BB, = + 7xl6 +
4

54
= + 7*1 tons.

nn ^ 0/(
GOi =

~78~
= +7'3 tons.

When the wind acts from the other side the stresses in hori-

zontal struts would be the same.

Stress in diagonals.
Take moments about E, the point in which the two columns

produced meet. Fig. 74.

Let = angle of inclination of column to vertical.

Let V 2 , 3
be the angles of inclination to vertical of

BA 19 CB }9 DC
l respectively, then tan 6 =

,
= 9 27';

L
= 30 15'

; 2
= 42 30'

; 0, = 51 20' ; x
-0 = 20 48' ;

2
- = 33 3'; 6^-6 = 41 53.'

The lever arms are found by calculation to be :

Arm oiBA, = 19-4 feet.

CB
l
= 43-2

DC, = 68-96

, -DA 7x16 + 4x27 + 1-2x30
Stress in BA

l
=

Q
- = 13-2 tons.

j.y*4

frn 7x16 + 4x27 + 1-2x30 + 2-4x54
" CBl =

"43-2"
= -8-9 tons.

7x16 + 4x27 + 1-2x30+- 2-4x54 + 2-4x78

68-96'
= -8-32 tons.

The stresses could also be got by equating to zero the sum
of the vertical components of stress in the three inclined members
of panel ; thus, for the stress in CB we get

CB
l
cos d^ + CB cos + C 1

B
1
cos = 0.

Stress in CB, = -(C.B, cos + CB cos 0) sec 2

= -(29-22-4) 1-3566
= -8-9 tons.

When the wind acts from the other side the dotted diagonals
would be stressed, and the stresses would be

B^A = -13-2 tons ; C^B = -8-9 tons ; D,C = -8-32 tons.
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Overturning moment and moment of stability.

In order that there may be no tension at the foot of windward

column, the moment of the vertical loads must be greater than
the moment of the wind forces.

For train on :

04
Moment of stability = (100 + 24 + 16)

2

= 2380 foot tons.

Overturning moment about D
l

= 7x86 + 4x75 + 1-2x72 + 2-4x48 + 2-4x24
= 1161-2 foot tons,

so that this condition of stability is amply ensured with train on.

With the train off :

Moment of stability = 680 foot tons,

Overturning moment = 559 ,, ,,

and the condition of stability is still fulfilled.

The least distance apart of the columns at base can be obtained

as a preliminary calculation by dividing the overturning moment
of the wind by half the vertical load on trestle.

SUMMARY.

Table ofMaximum Stresses.

Impact is taken as equal to the live load stress.

Columns.

Member
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Transverse diagonals.
These diagonals are in tension due to the wind forces

; the

full line diagonals (Fig. 74) being in action when wind blows from
the left

; the dotted diagonals being stressed when wind blows
from the right.

Stress in BA lt
and B

{
A = 13-2 tons.

CB
l9
and C

}
B = - 8-9

DC,, and D C = - 8-32

There is no stress in these diagonals due to vertical loads, and
the minimum stress in each is zero.

Longitudinal diagonal braces.

Stress in each of the longitudinal diagonal braces due to

tractive force or sudden retardation of train by brakes is

-11-7 tons.

General design of members.

Columns may be built up of angles and plates, or formed of

channel irons or I beams, connected by flats or lattice bracing.
In the example the columns might consist of :

2 channels 15" x 4" x 41 -9 Ibs. per foot.

2 flats 18" x y.
Area 42*7 square inches.

The diagonals which are in tension require rigidity.

The longitudinal diagonals are 46*8 feet long, and the longest
transverse diagonal is 38 '4 feet.

In section all the diagonals should consist of some such section

as 4 angles 4J" x 3" x |", spaced 12" to 15" apart, forming a

latticed box girder with lattice bracing of bars 2|" x J" on the

4 sides.

The horizontal struts would be of similar design.
The unit stress should be determined from the column formula,

having first found the ratio of -.
K



CHAPTEE IX.

CONTINUOUS GIKDEES.

51. Uniform loads.

When a girder is supported at more than two points it is said

to be continuous. When loaded a portion of each span near the

supports is bent convex upwards, the upper fibres being in tension,
and the lower fibres in compression. The central portion of each

span is bent concave upwards, the upper fibres being in com-

pression, and the lower fibres in tension just as in a loaded girder

supported at two points. At the points of contrary flexure, or

points of inflection, the curvature changes sign, the bending
moment is zero, and consequently the flange stresses are zero.

52. To find the bending moment at any section of a
span of a continuous girder loaded with a uniform load.

Let Z
L
be the length of the span 1 2 (Fig. 75).

w
{
be weight of the uniform load per foot run.

,, x be the abscissa of any section K referred to support 1

as origin.M
l
and M

2
be the moments of the elastic forces at the

supports 1 and 2 respectively.

,. M be the bending moment at K.
, F be the shearing force at K.
F

l
be the shearing force on a section in span 1 2, infinitely
near to and on the right of support 1.

F
2

'
the shearing force on a section in the span 1 2,

infinitely near to and on the left of support 2.

Considering the separate equilibrium of the portion (l l x)
of the span, we get

or M = -M2 +2V(Zi-aO-- .......... (1).
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Again, considering the whole span, we have

or

Substituting in (1) for JP2

f

its value from (2),

137

(2)

(3)

where m is the bending moment at the section K for a span

similarly loaded, but merely supported at the ends.

The shearing force at K is

F = F2
'-io

i (l l
-

which for x = 0, gives by Equation (2)

(4),

z,

(5).

From these equations the bending moment and shearing force

at any section of the span can be found, when the moments at

each extremity of the span are known.
The maximum value ofM at any section intermediate between
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the points of inflection occurs where the shearing force F changes
sign, its position being got by solving for x in the equation

F=0,
or by Equations (2) and (4)

hence, x = l-- {M^M^ .............. (6).

The substitution in Equation (3) of the value of x obtained
from (6) will give the maximum bending moment occurring between

the points of inflection.

The positions of the points of infection are got by solving for

x in the equation M = 0;

or _M
1 -(M 2

-M
1 ) + (^-^)=0 .......... (7).

53. Graphic representation of the bending- moment at

any section of a given span.

Let 1 and 2 be the supports of span 1 2 (Fig. 76) of length Zr
Then by last article the bending moment at any section distant

x from the left support 1 is :

M = m-M
1 -(M.2

-M
1 )

where m is the bending moment at the section for a span l
{

similarly loaded, but merely supported at the ends.

In upper diagram of Fig. 76 let 1P2 be drawn to represent
the bending moment diagram supposing 1 2 a supported girder,

and on the same scale draw the verticals \A and 2jB to represent
the pier moments M\ and M2 respectively. Join AB. Then
ordinates to 1P2 correspond to values of m, and ordinates to

the line AB correspond to values of M\ 4- (M2
M

t)
in above

*i

equation.
The actual bending moment at any point in the span 1 2

as shown in lower diagram of Fig. 76, is represented by the

difference of the ordinates to the curve 1P2 and the straight line

AB at the same point.
In the lower diagram la and 2& drawn perpendicular to 1 2
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represent the pier moments M
{
and M

2
at 1 and 2 respectively.

The ordinate ,/$ at abscissa x represents

and dg represent m.
Thus the ordinate fg represents M, the bending moment at x.

B M DIAGRAM
Fig. 76.

The parabola can be drawrn independently by finding x = Ih

the section of maximum bending moment from Equation 6, Art. 52,

and substituting this value of x in equation

Draw hp vertical to represent the corresponding value of M ;

then p is the vertex of parabola.
The points of inflection are at r and s where M = 0.

The bending moment at any section is represented by the

ordinate of the shaded area.

54. Theorem of three moments.

To determine a relation between the bending moments at any
three consecutive supports of a uniform and uniformly loaded
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continuous girder resting on a number of supports, all of which
are on the same level.

Let 1, 2, 3 be three consecutive supports on the same level

for a continuous girder over any number of spans (Fig. 77).

Let l
l
= length of span 1 2.

Z
2
= length of span 2 3.

w
lt
w

2
= loads per unit of length on the spans 1 2, 2 3,

. respectively.

.R,, jR.
2 ,
R3 be the reactions at supports 1, 2, 3, respectively.M

lt
M

2 , M3
be the bending moments at 1, 2, 3, respec-

tively.

,, F l
be the shear on a section in span 1 2, very close to

support 1.

,, F2

' be the shear on a section in span 1 2, very close to

support 2.

,, F.
2
be the shear on a section in span 2 3, very close to

support 2.

F3

r be the shear on a section in span 2 3, very close to

support 3.

a be the angle which the tangent to the girder at 2 makes
with the horizontal.

Take at support 2 as origin, and 2 3 as the axis of x.

Consider the span 2 3. The bending moment at any point

at support 3
;
x = 1.

2
and M = M

3
.

Therefore M
3
=M

2 4-F212
-
^-

2

Integrating Equation (1),

.(1)

(2).

when x 0, -,^ = tan a
; hence C = El tan a.

dx
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Therefore

El (
dV - tan a)

= M,x +P>2 -
fl.\ax J D

Integrating again,

EI(y-x tan a)
=

There is no constant of integration, for when x =
; y = 0.

Again, when x = 1
2 ; y = 0, hence,

-.El tan a = JM2
Z

Substituting for .F2 its value from (2), we get

-EI tan a = + + ............ (3).

Similarly for the span 1 2, we get by substituting tan a
for tan a,

Hence by adding (3) and (4),

(Mi + 2M2)
Z
x + (M3 + 2M2)

Z
2 + i^^ 3 + wJ2 )

= ...... (5).

This relation is called the theorem of the three moments. If

there are n supports, we get n 2 equations connecting the

corresponding bending moments, and two other equations are

given by the conditions of support at the ends. Thus, if the

girder is merely supported at the ends, M l
= and Mn

=
;

if an end is fixed^= at that support. From the values of
ax

M
lf
M2 , . . ., Mn thus obtained we can determine the bending

moment at any section of a given span.
The section of maximum bending moment is got by making

-,
=

; and the points of inflection by solution of the equation
dOu

M = 0.

Thus considering span 2 3,

Therefore x = -2
,

10.,

F 2

and max. bending moment = M
2 + s

-^~
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For concentrated loads, the theorem of three moments becomes

(Mx +2M2) I, + (M3 4 2M2)
Z
2 +2?& (^ - x,

2

)

where T^ and W2
are the loads in the two spans l

{
and l>

2 respec-

tively, and x
[
and x.

2
the distances of those loads to the supports

at the extremities of the span under consideration. If there

are a number of loads in one span take the algebraic sum of the

moments, i.e.

55. Reactions.

The reaction at any support is the sum of the shearing forces

on each side of that support. This is evident if we consider the

separate equilibrium of the very small portion of the girder
between the sections on which F

2
and F

2

'

act ;
the reaction E2 ,

which is equal and opposite to the pressure on the support, must
for equilibrium be equal to the sum of the shearing forces, thus

R.
2
= F, +F2

'

.................. (6),

and at any support n R,, = FH +FU
' .................. (7).

At the two extreme ends, where the girder is merely supported,
the reaction is equal to the shearing force.

To find the reaction R
?
at support 2 (Fig. 77).

Consider the equilibrium of the span 2 3. Taking moments
about support 3, we get

*, = 'p. + ................ (8).
L
2

A

Again, considering the span 1 2,
7 2

M F '1 _!?Ci +M1^2 l
l
--

~o ^ 2J

F>- -V 2+
2

l

:

Therefore, by adding (8) and (9),

7? _ M }
M2 .

M3 M
2 wh w^

I,
1
2

""2 2
'

and generally at any intermediate support n separating the spans

/_! and la,

E n
=
^^-- ^

n + ttilc -'+ 2~ +
2

'
' ' ' '



ix.] CONTINUOUS GIRDERS 143

If there are r supports, 1, 2, 3, . . ., r, with spans Z19 L, . . .,

Zr ^j, and the girder is free over the supports 1 and r, then evidently

and E r
= F; = Sc2 + w^ r~ l

. (13).
*r-1 ^

Thus, having found the values of the moments at each support

by the equation of the theory of three moments, the reactions

can be at once obtained.

EXAMPLES.

1. Find the bending moment at the middle support of a con-

tinuous girder of tivo unequal spans, the left one of length 60 feet,
and the right one of length 40 feet . The dead load on each girder is

1 ton per foot run. The live load of 2 tons covers only the 60 feet

span. Find also the reactions at each support.

Adopting the notation of previous articles,

Z
L
= 60 feet, 1

2
= 40 feet,

10
1
= 3 tons per foot run, iv2

= 1 ton per foot run.

Equation of three moments is

(M 1 +2M2)Z 1 + (M. +2M2)Z 2
= -l(wd\ L 2/ L \ O if 4: \ 1

but as in this case M
t
= M

3
= 0, we get

800M2
= -3 x 216000-64000

M2
=-890 foot tons.

Taking moments about support 2, or from (12), Art. 55,

p -890,8x60^ = -
6(r

+-
2
-

= 75-17 tons.

By Equation (10), Art. 55, putting M l
= 0, M2

= -
890,

3
= 0,

w 890 890 3x60 1x40
E2 = TO

+Wf ~2^ +
~-2

= 147-08 tons.

Taking moments about support 2, or by Equation (13), Art. 55,

_ -890^1x40
~40~ ~2~

= -2-25 tons.

To verify the results. The total load on girder = 220 tons,
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and the sum of the reactions should be equal to this total load,
that is

R
{
+ .R2 + JR.

}

= loh +
w.}.,,

7517 -f 147-08-2-25 =180-40,"
or 220 = 220,

which shows that R
lt
E

2 , E3
are correct.

2. A continuous girder of three spans lias two equal end spans
q/*240 feet and a centre span of 150 feet ; the supports are level and
the girders are free over the abutment piers, and are assumed to be of

uniform section. The fixed load carried by each girder is J ton per

foot, and the moving load is 1 ton per foot. Calculate the bending
moments over the two central supports ivhen the left end span only
is covered by the moving load, and then determine the maximum
positive bending moment occurring on a section in that span. Find
also the reactions at each support.

Adopting the notation of previous articles, we have
Z
l
= 240 feet, Z.

2
= 150 feet, Z

3
= 240 feet,

^
1
= 1J ton per foot, w.

2
= w3

= % ton per foot,

M! =M4
= 0.

Equation of three moments for spans 1 2, 2 3, is

(M t
+2M^ + (M3 + 2MJ I,

= -&-& + w^\

Substituting the numerical values above, we get

8M
2(240 + 150) + 4M3

x 150 = -f x 2403 -
J x 1503

,

or 5-2M
a
+M

3
= -37372-5 ............ (A).

For spans 2 3, 3 4, similarly

5-2M
3 -fM2

= -14332-5 ............ (B).

Solving for M2
from Equations (A) and (B), we get

26-04M,= - 180004-5,

or M.
2
= -6912-6 foot tons,

and M3
= - 37372-5 - 5-2 x - 6912*6
= 1427 foot tons.

Maximum positive bending moment, span 1 2.

At any section distant x from support 1 the bendingjnoment
is

(C).

At support 2, where x = l
{ , M =M

2 ,
and

^ O!
or -^1= --
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Substituting in (C),

M =M
l + (M2

-M
l

)^
+ w

f(l l -x) ............ (E);

but since M! = 0, M =M2 + -^
(I,
-

x)
l
l A

= \x (240 -x)- x 6912-6;

this will have its maximum positive value when = 0, that is
ax

180 -fa? -28-8 = 0,

or # = 100-8 feet from support 1.

The maximum value of M required is

M = f x 100-8 x 139-2-100-8 x 28-8
= +7620-5 foot tons.

Eeactions. Using the notation of Art. 55, we have
M

1
=M

4
= 0.

Taking moments about support 2,

4

= 151-2 tons.

Taking moments about support 1,

Taking moments about support 3,

and E2
= ^2 + ^: = 74-1 + 208-8 = 282-9 tons.

Taking moments about support 2?

p . =
M^M,

+ WA = -5485
+

l

Taking moments about support 4,

s

and E
3
= F

3 +F; = 65-9 + 0-9 = 66-8 tons.

Taking moments about support 3,



146 THE THEORY OF STRUCTURES

To verify the accuracy,

[CHAP.

which must be equal to

Again, the sum of the shears at the supports in any one span
should be equal to the total load on that span. Thus for span
2 3 on which the total load is wj,2

= 75 tons, we have

F2 + F f

3
= 74-1+0-9 = 75 tons.

The shearing force diagram is shown in Fig. 78.

151-2

541

Fig. 78.

56. Concentrated loads.

Considering as before two consecutive spans of length Z, and

lv resting on three supports 1, 2, 3 all on the same level, the

theorem of three moments becomes

where W l
and W2

are the loads in the two spans l
l
and Z

2 respec-

tively, the load W l being distant x
v
from support 1, and W2

distant #2
from support 2.

For several loads on each span the above equation becomes

- -2* (Zf
-
xfi

- ^ y -
x.?) (2)

TWO EQUAL SPANS.

Case I. Load W
l
on first span 1 2, distant x

i from support 1.

Let I = length of span.

Mj, M2 , M3 be the moments at supports 1, 2, 3 respec-

tively.
Ev R.

2 , R3
be the reactions at supports 1, 2, 3 respectively.
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From Equation (1), since M
l
= M

3
= 0,

4M
2
Z = -W^MF-xfl.

it

Therefore, M, = -W^ (V-x?) .................... (3)

Taking moments about support 2,

B,Z=

.-. B,.= + (I-zJ -' (P-x,*) ................ (4)

Similarly, B, =^-
= -^ (?-*,) ................ (5)

Since E,+E2 +B3
=

TF,

From Equations (4), (5), (6) we see that for a load on the first span
E l

is always positive,
R

z
is always positive,

R
3
is always negative.

For a load W2
on second span 2 3, distant x

2from pier 3,

7? _ 22 /72 _ r 2\

r

Hence for a load on the second span 2 3, R l
is always negative.

POINTS OF INFLECTION.

For any section at distance x from support 1, between support 1

and the load W
19 M = Ep,

and since R
l

is always positive, this moment must be always
positive.

Fora section distant x from support 1, between the load W
l
and

support 2,

M = R
L
x-W

l (x-x l).

Substituting for R
}
its value in Equation 4

W W vM =(l- Xl)- - (P-a^ as-Tf, (*-,)

(7)

L2
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At the points of inflection M = 0,

xx

or x
-gp^i (8)-

In Equation (8), if x
l
= 0, x = I

;

o

if x
l
=

I, x = 1',

so that for a load in the first spanjthe inflection point must be

situated somewhere in the length -- measured from support 2
o

towards support 1.

57. Maximum shearing forces and maximum bending
moments in a continuous girder due to live load.

In order to determine the maximum and minimum stresses

in the web and chord members of a continuous girder, it is neces-

sary to know what distribution of the live load causes (a) the

greatest positive and negative shearing forces, and (b) the greatest

positive and negative bending moments.

MAXIMUM SHEARS.

By Art. 56 we have seen that for all loads on the left-hand

span 1 2 the reaction R\ is positive and R^ negative.
For all loads on the right-hand span 2 3, R {

is negative.

Let F = shearing force on a section K in span 1 2 (Fig. 79).

Then, if we take the shear on any section as being equal in

magnitude and opposite in sense to the resultant force at the

section

where ^W] represents all the loads on lejt of section.

From the above it can be seen at once that

The maximum negative shear on any section K in the left-

hand span 1 2 occurs when live load extends from the section

K to the middle support 2, the right-hand span 2 3 being un-

loaded (Fig. 79).

The maximum positive shear at the same section occurs when
the live load covers the portion of left-hand span between sec-

tion K and left support 1, and also covers the second span 2 3

(Fig. 79)

MAXIMUM MOMENTS.
The bending moment at any section distant x from left sup-

port 1 is
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In Art. 56 it was shown that for two equal spans R l
is always

positive for all loads on left-hand span 1 2, also that the inflec-

tion point, whereM is zero (and consequently the bending moment

passes from a positive to a negative value), is always situated in

the end ^th of the span 1 2 nearest support 2.

LOADING FOR
NEGATIVE SHEAR

LO.ADING FOR
POSITIVE SHEAR

Fig. 79.

Thus for any section on the portion 1 measured from 1, the

bending moment due to any load W is always positive, whereas

the bending moment on a section between -p and support 2

may be either positive or negative. There are thus two separate
cases to consider.

+M,

?
Fig. 80.

I. A section between left support 1 and point of inflection r.

Maximum positive moment. For all loads on left span 1 2,

E
1
is positive.
For all loads on right span 2 3, E l

is negative.
Thus all loads on left span produce a positive bending moment

on all sections to left of r.

And all loads on right span produce a negative bending
moment on all sections to left of r.

T *
,

Fig. 81.

Hence, maximum positive bending moment on any section to

left of r is produced when live load covers the left span 1 2, and
the maximum negative bending moment at any section to left of r

occurs when live load covers the right span 2 3 (Figs. 80 and 81).
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II. A section between x =
%l and support 2.

From Equation (8), Art. 56, the position of load for zero bending
moment is given by

*-y8 (9)

+M\
7,_ws//s/M//Ms////t///J/////mmm

^/ L > Ti \J TO |O
K%>i UJ..K/JX;

- -x -......~$\ \
[-.

------------- 1 ------------^------------- I ---------_

|

Fig. 82.

From Equation (7) it is seen that if x is greater than 1, which

is the case we are considering, that

Bending moment is positive if x
l
> I ^/ 5 1

x

Bending moment is negative if X
L
< I \ / 5V x

and we have seen that

Bending moment is negative for all loads on span 2 3, since

Bj is then negative.

Equation (9) gives the limiting value of x
} ,

call it xp
.

Hence, maximum positive moment on the section occurs

when live load covers the portion of span 1 2 between xp and

support 2, span 2 3 being unloaded (Fig. 82).

-Mi

Fig. 83.

Maximum negative moment on the section occurs when live

load covers only the portion xp of span 1 2, and the whole of the

span 23 (Fig. 83).

EXAMPLE.

A continuous girder 160 feet long of the form shown in Fig. 84

is built over two equal spans of SO feet. The length of each panel
is 16 feet and depth 9 feet. If the dead load per panel point is

7| tons and the panel live load is 15 tons, both carried on the top

chord, determine the stresses in the inclined web members, and in

the bays IJ of upper chord and CD of lower chord.

The half-loads at the end panel points G and G 1

only affect

the stresses in the end posts, so may be omitted. If the loads
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were carried on bottom chord, GH and GA would be superfluous.
As regards the centre load, we see from Equations (4) and (5),

Art. 56, if x
l
= 1 that R

}
and R

3
= 0, and from Equation (6) that

R
2
=W

}
=15 tons

; consequently this centre load can be neglected
in the calculation of stresses, as it affects only the central post.

G H I J K L K' J' I' H' G'

r
E C D E F̂

\

Fig. 84.

Inclined braces. The maximum and minimum stresses in

inclined braces are got from the maximum and minimum shears.

Stress = F cosec 6,

being the angle which the member makes with the horizontal,
To get the shears, the reactions must first be calculated from

Equations (4), (5), (6), Art. 56, for each separate load, then the

total reaction is the sum of the partial reactions due to any loads

on girder.
Table of Reactions.

Load at
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are half the live load shears when the girder is fully loaded with live

load.

Stress in inclined brace = F cosec 6,

cosec 6 = 2-04.

Table of Stresses in Inclined Braces.
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Maximum positive moment
= 25-5x48-16 (1+2) 15
= + 504 foot tons.

Maximum negative moment
= -4-5x48
= -216 foot tons.

.'. Live load covering whole girderM = 4 288 foot tons.

Hence, dead load moment M = + 144 foot tons.

Maximum moment = +144 + 504 = +648.
Minimum moment = +144 216= 72.

AQ
Maximum stress = ~ - = 72 tons tension.

y

72
Minimum stress = + - -- = +8 tons compression.

y

A positive moment causes tension in the lower chord.

A negative moment causes compression in the lower chord.

The positive sign + is used for compression ;
the negative

sign for tension.

In the same way the maximum and minimum stresses in the

other chord members can be got at once.

The greatest positive bending moment due to live load at the

point L over centre support is zero. The greatest negative

bending moment at L due to live load is when the whole girder
is covered.

In the case of a swing bridge the stresses are found very much
on the same lines as above, but the depth at centre is usually

greater than at the ends, giving a sloping top chord.

58. Supports not on the same level.

One of the drawbacks to the use of continuous girders is the

change in the value of the stress due to the settlement of one of

the masonry piers, or the expansion and contraction of iron piers.
The general equation for two consecutive spans of a continuous

girder with piers at different levels is

= wjj? _ wj,*_ QEI
/ V-fej + V-_

4t TI V VI Ln

where l
l
and 1

2
are the lengths of the spans 1 2, 2 3 respec

tively,

10! and w 2 the uniform load per unit of length on l
{
and Z

2 ,

H
19

Ji
2f

h3 the heights of the piers 1, 2, 3 respectively
above a fixed horizontal datum.
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If we omit the loading, we get the equation for two consecu-

tive spans,

MA + 2M2 (Z L
+ Z

2) +M3
Z
2
= -

from which we obtain the increase or diminution of the bending
moments at the piers due to an alteration of level of supports ;

and from these moments the consequent alteration is the value

of the pier reactions, and the stresses in members of girder.

Thus, if a continuous girder of two spans l
l
and Z

2
rests freely

on two end supports which are on the same level, and the central

support settles through a vertical height of h
0>

find the altera-

tion in the bending moment at this support.

By Equation (2), since M, = M
3
= 0,

and as in this case h
Q
is a settlement

Hence, 2M2(Z 1
+ Z

2)
=

-6El(- ^

a
Therefore, M

2
= + .................... (3).

Mi

This expression gives the diminution in the amount of the

negative bending moment at support 2 due to the sinking of the

centre support.
If the spans are of equal length Z,

EXAMPLES.

1. Two equal spans of 20 feet are spanned by a girder the cross-

section of which consists of a steel joist IS" x 1" weighing 75 Ibs.

per foot and two fats 10" x j* riveted to each flange. Area of cross-

section, 47*06 square inches ;
moment of inertia, 3128 inch units.

If the central support settles 0*10 inch, determine the bending
moment at this support. The girder carries a uniform load of
1 ton per foot run.

For two equal spans with level supports

,, _ wP 1 x 400
- 1* ~8~ "8~"

= 50 foot tons = 600 inch tons.
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Moment due to settlement from Equation (4), E = 13,000 tons

per square inch.

M 3x13000x3128x0-1
400x144

= + 212 inch tons.

Thus at central pier

M
2
= -600 + 212= -388 inch tons.

2. If a continuous girder crosses four equal spans of length I,

and the central pier settles through a height h
(] , find the increase

in the moment over the support 2 due to this settlement.

From Equation (2), sinceM
l
= M5

= 0,

M
2 being negative, is the increase of moment at support 2 due

to settlement ?

jR
:
is the negative reaction at pier 1 due to the settlement.

59. Advantages and disadvantages of continuous girders.
In the case of separate spans the bending moment is greatest

near the centre, whereas in the continuous girder the maximum
bending moments occur near the supports, also the average
value of the bending moment is less

; thus there is a saving in the

flange material, and the heavier sections are placed over the

supports, which means that a portion of the weight is removed
from the centre towards the supports.

The disadvantages of continuity are chiefly due to the effect

of rolling loads which alter the positions of the points of inflection,
and portions of the span are subjected to bending moments
which change in sign and amount, the members there being
exposed to stresses which are alternately tensile and compressive,
especially when the dead load on the bridge is light as compared
with the live load. Another disadvantage of continuous girders
is that settlement in the supports also causes the points of in-

flection to change, and may considerably alter the stresses

calculated on the assumption that all the supports are level.

The Moment of Inertia I is not constant ; it is subject to variation.



CHAPTEE X.

CANTILEVER GIRDERS SUSPENSION AND STIFFENING
GIRDERS.

60. The disadvantages of continuous girders are removed
if hinges are introduced at the points of contrary flexure. The

bridge is then composed of cantilevers and suspended girders ;

and there is no ambiguity regarding the stresses. The advantage
of the continuous girder is preserved, and its chief disadvantage
is avoided.

Fig. 85.

In Fig. 85 let 1, 2, 3, 4 be the points of support :

(a) The hinges may be introduced in the central span at

B and C, then these points become the points of contrary flexure
;

and the portion EC may be treated as an independent girder

supported at the ends by the cantilever arms 2 and 3(7. In

this case the side spans must be anchored down at 1 and 4, as the

Fig. 86.

reactions at these points may become negative that is, the

girders may exert a lifting force.

The line BC becomes the datum line for the bending moment

diagram.

(b) The hinges may be introduced in the side spans at A and
D (Fig. 86). In this case the reactions at 1 and 4 are always
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positive, as the girders cannot exert any lifting force at these

points.
NOTE. The hinges may be placed in the central span or in

the side spans, but not in both.

61. CASE A. Hinges in the central span (Fig. 87).

I. Uniform load of intensity w per foot run.

Let Bj, jR2 , B3 , R be the reactions at the points of support
1, 2, 3, 4 respectively.

Assume the spans symmetrical.
Let ^ be the length of each of the two .side spans.

a be the distance from support 2 to the first hinge B.
& be the distance between the hinges B and C.

Wi W* Wj

\ i/ i

f i

Fig. 87.

Now treat the portion EC as an independent girder supported
at the ends. The stresses in it are those due to its own loads

only. IB and 40 can also be treated as independent girders
loaded with their own loads, and the weights at the ends B and
G equal to the reactions at these points due to the load on the

girder BC.
The bending moments at piers 2 and 3 are

Ti/r Ti/r wa2 wb w i 2M
2
= M3

- - -

2
- --

2
a = --(a

2

To find E
2, take moments about pier 2,

w

To find E
15

take moments about pier 1,

!= E4
and R

2
= R.

3 from symmetry.
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II. Concentrated loads.

A load W l
on the side span 1 2 distant x

l
from pier 2.

A load W2
on the cantilever arm 2.B distant x.

2 from pier 2.

A load W3 on the suspended girder distant x
3
from hinge C.

A load W4
on the side span 3 4 distant x

4
from pier 3.

Load at B =
; Load at C = WJ ^

o \ o

Bending moment at pier 2,

M, =

Bending moment at pier 3,

To find RV take moments about 2,

To find E
4 , take moments about 3,

To find E
2 ,
take moments about 1,

E^ = WJh-^+WJh+
To find E3 ,

take moments about 4,

We see in both the cases considered, that

E
l
and E

4 may be negative,
E

2
and E

3
are always positive.

The pier moments are determined solely by the loads on the

span containing the hinges, i.e. the central span.

62. CASE B. Bridge hinged in the side spans.

Let B and G be the hinges in this case (Fig. 88).

The portions IB and 40 may be considered as independent

girders supported at the ends, and the part BC as an independent

girder supported at 2 and 3, carrying its own loads, and in addition

the weights at B and C equal to the reactions at these points due

to the loads on IB and 4(7.

Let IB = a, ;
B2 =b, ; 23 =

I, ; 3(7 = 6
2 ; C4 = o

2
.
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(1) A uniform load of intensity w per foot run.

Taking IB and 40 as independent girders,

E! and E
4
are always positive ; there can be no lifting force

at 1 or 4, consequently no anchorage will be needed at these

points.

W,f'k
I

WzY I W3*U~-x t -> k~*H

k---- a/;
--->f- -J,*)*

-------- l z
-------- -

Fig. 88.

Taking BC as an independent girder,

Load at B = wa.-R, = w^ ;

2

Load at C = wa
\

2t

Taking moments about pier 3,

i(a
1 + I

.) +^-^-^6 2
= o.

If a
:
= av and b

l
= b

2 ,

The bending moment at pier 2,

Bending moment at any section distant x from pier 2,

M. = Bf-> (6, +x) -*, *+*

(2) Concentrated loads.

A load TF
1
on IB distant

iCj from B.
A load TF

2
on the span 2 3 distant x2 from 3.

A load W3 on 4(7 distant ^ from (7.
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In this case we get the reactions

B -*>'
**I

~
>

o

a,

Load at J3 = T^-^ = T

Load at (7 = TF3-#4
=

Taking moments about pier 3,

jy a
= TF/1-?-1

) (b. + lj + W^-W, (!-*)&,.v MI' \ tt /

Taking moments about pier 2 5

-*'
6,.

These equations give E.
2
and B3

.

The bending moments at piers 2 and 3 are

M2
= -IF, 1-

Here, again, we see that the moments at the piers are determined

solely from the loads on the spans containing the hinges.

63. Suspension bridges.

In a suspension bridge the platform is suspended by steel

rods from link or wire rope cables, which pass over towers built

on piers, and are securely anchored down at the ends.

When a chain of uniform weight per foot of length is suspended
and hangs freely it takes the form of a catenary curve.

In practice, however, the loads are usually suspended from
the cables by rods placed at equal distances apart, and the load

is assumed to be uniform per horizontal foot run of span. The
curve of the cable or chain is then a parabola.

64. Chain uniformly loaded per foot run of span.

Let AOB, Fig. 89, be the chain suspended at A and B.

w = uniform load per foot run of span.
I = length of span.
d = dip or depth of lowest point of curve below hori-

zontal AB.
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Take the lowest point of chain as origin.
Let x, y be the co-ordinates of any point P of the chain.

The portion OP of the chain is kept in equilibrium by :

(1) The weight wx, acting at E, the middle point of OQ.
(2) The tension at P, acting tangentially to the chain.

(8) The horizontal tension H at 0.

These three forces must meet in the same point B, and PQR
is a triangle of forces.

Therefore y = ~,
x H

or (1),

which is the equation to a parabola with its vertex at 0.

From (1)

Let T = tension at P, then

Therefore T =

This equation gives the tension at any point of the chain.

At the ends A and B, where x =
^ ; y = d : we get from Equa-

tions (2) and (3)

The approximate length of cable is

iAh
8Z

M
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65. Pressure on the piers.

In Fig. 89 AOB is the main chain or cable, AC andBD are the
side chains or backstays which are anchored down at C and D.
There are two methods of carrying the chain over the piers.

(a) The main chain and backstays may be continuous, and

pass over smooth rounded saddles.

(b) The main chain and backstays may be separate, each
secured to a saddle free to move horizontally on the top of pier.

Let T
l
= tension on main chain at B.

T
2
= tension on backstay at B.

a
x
= inclination to the horizontal of main chain at B.

<7 2
= inclination to the horizontal of backstay at B.

,, E = vertical pressure on pier.

CASE A. The tensions T
l
and T2 are practically equal.

Then E = T^sin a
: + sin a

2),

and there is a horizontal force

= T^cos !
cos a

2) ;

if a
t
= a

2, then E = 2i\ sin a
lt

and there is no horizontal force.

CASE B. The resultant pressure on pier will always be vertical,

E = T
l
sin a

t + T2
sin ay

66. Stiffening- girder.

When a moving load passes over a suspension bridge the

shape of the cables becomes deformed. The object of the

stiffening girder is to distribute the load uniformly over the

cables, so that they may not be distorted.

Fig. 90 shows a stiffening girder. The booms or chords must
be designed to take tension and compression. It may be a single

girder extending from tower to tower, or it may consist of two

girders hinged at the centre ;
the latter is the better method as it

counteracts the stresses due to changes of temperature.

67. Single girder without central hing-e. Uniform live

load.

When the live load comes on to the bridge, the stiffening

girder distributes the load uniformly to the cable, and if the load

is light in comparison with the weight of the cable, the latter

will keep its parabolic shape, and thus the stresses in the

suspenders will be equal.
In Fig. 90 A and B are the supports, and suppose the bridge

loaded over the portion BG = x, with a live load of intensity
w per lineal foot.
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Let I = span.
P =

pull on each suspender.

p = uniform upward pull of the suspenders per lineal foot.

E! and E
2
be the reactions at B and A respectively, due to

the partial load.

Now on the assumption that the weight is transmitted through
the suspenders,

pi
= wx,

Applying the conditions of equilibrium,

wx 0.

Taking moments round B,

pl
2 wx2

"

a).

Therefore

and
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It can be similarly shown that the shearing force is zero at

the middle of the unloaded segment.

Again, from (3) we see when
__ '771 "E)

Thus, the magnitude of the shearing force at the head of the live

load is equal to that of either reaction, and the absolute maximum

shearing force equal to occurs when the live load covers half the
o

span.

Bending moment. The bending moment at any section of the

loaded segment distant x^ from the right support is

M -Ex +Px *-wxi

2

.iKt xl/ 1 a/ 1 T ^
2 2

\
^

/ //* 2\ fA\
rtT ^ww^ 1 / \ /

From (4) we see that

M = 0, when x
{
= and when x^

= x.

M is a max. when x^ = ~, that is, where F = 0,
2

Max.M = 1^^.
To find the absolute maximum as the load advances, equate

to zero, which gives x =
$1.

Therefore absolute maximum bending moment

_wP
"54'

and occurs when the live load covers two-thirds of the span.

Similarly by considering the unloaded segment, the maximum
bending moment occurs also at its middle section, its absolute

maximum value being
wP

'~5i'

and occurs when the live load covers one-third of the span.

68. Stiffening- girder hing-ed at the centre.

The hinge at centre provides for contraction and expansion,
and thus counteracts the stresses due to changes of temperature.

As in the last case the cable is assumed to remain parabolic in
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shape, with its vertex at the middle when the span is partially

loaded, and consequently all the suspenders are subject to an

equal stress. Again, owing to the hinge, there is no bending
moment at the middle.

Taking the same notation as in the last case, let E
t
and R

2

be the reactions at the right and left supports; w the intensity
of the live load ; and p the uniform upward pull of the suspenders.

A

Fig. 91.

Let the live load, as in Fig. 91, cover a portion x of the right
half span.

Then for equilibrium, we have

Ri + R^ + pl wx = 0,

and taking moments about the hinge,

From these^three equations we get

2WXE
2

B -W a?^ -
a*

R
1
is a maximum when x = -

;
and max.

o

JR
2
is a maximum when x = -; and max.

2

The shearing force at the front of load

F =

-.

o

-=-.
8

This is a maximum when x = -, and is equal to ^-.
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Maximum bending moments.
The maximum bending moment occurs at the section where

F = 0.

At any section of the loaded segment distant x
l
from the

right support
F = E^px^-wx^ ................ (1),

M = Bl*1+^
2

-^.. ............ (2).

If F = 0, then from (1)

fli

w-p

and
2 w p
w M-
8 Z

2 -2z2
*

For max. M, differentiating and equating to zero, we get

(I
2 -W) (I

-
3z) + x2

(2Z
-

3o;)
= 0,

or 3z3 -3Fz + Z
3 = 0;

x = 0-4Z

is an approximate solution.

Substituting in (3),
72

Max. positive M =
5̂3

Vi

For the left-hand half of the span, at a section distant x
2
from

the left support,

(4),

(5).

From (4) we see, when F = 0, x
2
= ~,

4

and M = ^ .

Therefore, max. negative bending moment = ^.
64

69. Maximum bending moments due to a single live load.

To find the positions of the load for maximum bending
moments in a stiffening girder jointed at the centre.

The pull in the hangers is uniform, and the bending moment
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diagram is a parabola AFLB with central ordinate 2^-, if p is the

uniform pull per unit of length.
The bending moment diagram for the load is a triangle.

The bending moment on stiffening girder at any section is the

difference of the lengths of the ordinates of triangle and parabola
at the section.

Maximum positive bending moment for a given position of

load = DC. Hence, we have to find for what position of load

DC is a maximum.

_ -, r s\
"^

j U

Fig. 92.

Let x be the distance of load W from A.

px(l x)Now EC = EAx =

and OF = EC ^

; ED =

2"

P!L _ E? _ w 4a;

O ^j
'

Hence, DC = EC-ED = Wx (
l ~ x^

i

and

(1),

= for max.
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x = 0-789Z or 0-211Z,

and from (1) Max. M = 0-096 Wl
Maximum negative bending moment is evidently when the

load W is at the centre of span, and the value of this maximum

negative bending moment is KL ; the vertical intercept at x = fI,

i.e. half way between central hinge and support B.

In this case, with load at centre,

pi
2 Wl

g-
< T,orp

Hence, KL = JL -JK =
fZ
-
i ^

Wl
''

16*

The bending moment diagram is shown in Fig. 92.



CHAPTEE XI.

DESIGN OF EIVETED JOINTS.

70. Definitions. Lap and butt joints.

In a lap joint one plate overlaps the other, and they are

connected by one or more rows of rivets.

In a butt joint the plates are kept in the same plane, and the

joint is covered on one or both sides by a cover plate, which is

riveted to the plates.
The lap joint is objectionable, owing to the straining forces

on the two plates not being in the same line, thus forming a couple,
which weakens the joint by bending (Fig. 95).

3d

H^
Fig. 93. Fig. 94.

The butt joint is the one generally used, and is the more
effective joint, owing to its symmetry and the absence of eccentric

stresses.

Single riveting is when there is
only

one line of rivets in a lap
joint, or one line on each side of the joint in a butt joint.
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Double riveting, when there are two lines of rivets in the lap,
or two lines on each side of the joint in a butt joint.

Fig. 93 shows a single-riveted lap joint; Fig. 94 a single-riveted
butt joint ; Figs. 96 to 99 show double-riveted lap and butt

joints.

T
Fig. 96.

In chain riveting the rivets in the several rows are opposite to
one another (Figs. 96 and 98).

In zig-zag riveting the rivets in one row alternate with the

spaces in next row (Figs. 97 and 99).

V
Fig. 98.

The pitch is the distance from centre to centre of the rivets in

one row.

The lap is the distance at right angles to the joint, between the
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edges of two overlapping plates; or, in the case of a butt joint, the

distance between the joint and the end of the cover plate.

A rivet is in single shear when shearing can take place only on
one cross section of the rivet, as in lap joints and in butt, joints
with one cover plate (Figs. 93 and 94).

A rivet is in double shear when shearing can take place on two
cross sections, as in butt joints with two cover plates.

71. Rules to be observed in designing* joints.

Diameter of rivets for given plates.

Let t = thickness of plate in inches.

,, d = diameter of rivet in inches.

The following rule is sometimes used : d = Zt for plates
under J" ; d =

\\t for plates of J" and over.

Professor Unwin gives the simple rule which should be adopted :

d = 1-2 Vt.

In girder work the rivets ought, if possible, to be of one size

throughout, or at most two sizes. In structural ironwork of this

class rivets f
" and f

"
are most generally used. Field rivets, which

have to be riveted up by hand when the girder is in position,
should never exceed f

"
diameter, on account of the difficulty of

driving tight rivets of larger size by hand.

Minimum pitch. The pitch of the rivets, as will be seen

presently, is found by equating the shearing strength of the rivets

to the tensile strength of the net area of the plate, but the distance

between the edges of the rivet holes should never be less than the

diameter of the rivet. This gives the minimum pitch = 2d.

In boiler-work the pitch of the rivets is necessarily close,

but in girder-work the pitch is practically never less than three

diameters.

A maximum pitch of 6" should not be exceeded, as it is

advisable to keep the plates close to prevent the entrance of

water.

The distance from the centre of rivet hole to the edge of a plate
should not be less than l|d. This leaves a clear diameter of rivet

between the edge of hole and edge of plate. This minimum
distance is, in practice, increased to 1\d + y

1

-^,
and in girder-work

is usually Zd. It should be noted that the diameter of the hole

is y
1

-^
of an inch larger than the diameter of the rivet, to allow the

latter to enter when hot.

The grip of a rivet that is, the distance between its heads
is the thickness of the plates to be joined by it, plus -^- of an inch

for each joint between the plates to allow for uneven surfaces,
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which prevents very close contact. The maximum grip of a

rivet should not exceed four times the diameter of the rivet.

72. Strength of riveted joints.

Take, for simplicity, the case of a single-riveted lap joint.

Consider a strip of such a joint of width equal to the pitch (Fig.

100). As each rivet supports such a strip, the results obtained

applied to the joint as a whole.

Let p = pitch of rivets.

d = diameter of rivet.

t = thickness of plates.
I = distance from centre of rivet to edge of plate.

fr
= tensile resistance of plates.

/= shearing resistance of rivets.

fc
= crushing resistance.

T = resistance of a strip of the joint of width p.

Such a joint, if in tension, may fail in four ways :

(1) The rivet may shear (Fig. 101). The area resisting shear

The resistance to shear is

T=/.5f .................. d).

(2) The plate may tear along the line of minimum section

(Fig. 102). The area of either plate on this line is (p d) t.

The resistance to tension is

T=ft (p-d)t ................ (2).

(3) The plate and rivet may be crushed (Fig. 103), and this will

render the joint loose. The area of plate or rivet sup-

porting the pressure = dt ; this area is called the bearing

area, and the pressure upon it the bearing pressure.
The resistance to crushing is

T =fcdt ..................... (3).

(4) The plate may break in front of the rivet (Fig. 104). The

portion of plate in front of the rivet may be considered

as a beam of length d, and depth = J(Z d). Suppose
T

the pull T to be replaced by two parts each acting
2i

half way between the centre and edge of the rivet.
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Td
This gives a bending moment of , and equating this

o

to the moment of resistance

f*(i
- y

or

Fig. 100.

8

--

.(4).

Fig. 101.<

Fig. 102.

Fig. 103.

Fig. 104.

P

\\m>
i

The resistances to shearing, tearing, crushing, or breaking
should be equal.

When the rivets are in double shear Equation (1) becomes

2
'
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73. Resistance of multiple riveted joints.

When there are more than two rows of rivets parallel to the

joint in each plate it is called multiple riveted.

Let T = total longitudinal force, transmitted through the joint.

n = number of rivets required in each plate joined that

is, the total number through the joint if a lap joint, or

the number on each side of the joint in a butt joint.

Then, assuming that T is uniformly distributed among the

n rivets, n must be such that

nf8

^ - for rivets in single shear
;

3*2

nfs
? - for rivets in double shear ;

2

and T = nfcdt ;
for crushing

also if b = breadth of plate,

m = number of rivets in one transverse row,
the tensile resistance of the net section of the plate is ft (b md) t,

and it is necessary that the number m, and the dimensions b, t,

should be such that T = ft (b md) t.

74. Tensile shearing" and crushing" strength of plates and
rivets in riveted joints.

Tensile strength of iron and steel plates (unperforated) ft
.

Wrought iron, 18 to 22 tons per sq. in.

Steel, 28 to 32

Shearing strength fg is approximately ^ft.

Crushing strength fc is approximately 2/8 .

Safe working stresses for steel.

ft
= 7 to 8 tons per sq. in.

f, = 5 to 6

/ = 10tol2,,

75. CASE I. SINGLE-RIVETED LAP JOINT. SINGLE-RIVETED
BUTT JOINT WITH ONE COVER (Figs. 93 and 94).

In both these cases the rivets are in single shear.

Diameter of rivet : d = 1*2 ^/tt

where t = thickness of plate.
Pitch. Equate the tearing resistance to the shearing resist-

ance:

(p
-Q */,

= !

f/.
= 0-785 (P/..

fjt f
p =0-785 ~ .-&+"*.

* ft

The lap must be at least 3 times the diameter of the rivet.
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CASE II. DOUBLE-RIVETED LAP JOINT (Figs. 96 and 97).
DOUBLE-RIVETED BUTT JOINT WITH SINGLE COVER.

Since there are two rivets to each strip of width equal to the

pitch,

m_ f
1T /S *

T = %fcdt.

Diameter: d = 1'2</L
Pitch, Equating tearing and shearing resistances :

p = 1-57 ~ + d.
* ft

In chain-riveted joints the distance between pitch lines (centre
lines of each row of rivets) should be 2| to 3 diameters, and the

lap should therefore be 5J to 6 diameters.

In zig-zag-riveted joints (Figs. 97 and 99) the distance between
the pitch lines is usually f pitch, so that lap should be

3 to 4 diameters + f pitch.

CASE III. SINGLE-RIVETED BUTT JOINT WITH TWO COVERS

(Kg. 94).
The rivets are in double shear, and the shearing resistance

Crushing resistance = fcdt.

Diameter : d = l'2\/t.

Pitch. To determine the pitch the tearing resistance must
be equated to the shearing resistance or crushing resistance

which ever is least in this case probably the crushing resistance :

(p-ff)tfc =/cdt.

CASE IV. DOUBLE-RIVETED BUTT JOINT WITH TWO COVERS

(Figs. 98 and 99).

With this joint there are two rows of rivets in double shear,

and

T =
__

Diameter: d = l'2\/t.

Pitch. The shearing and crushing resistances must first be

calculated, and the tearing resistance equated to the least of

these.
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Lap. In chain-riveted joints distance between pitch lines

2J to 3 diameters.

Lap = 6 diameters.

Zig-zag-riveted joints. Distance between pitch lines = | pitch.

Lap = 3 to 4 diameters + f pitch.

76. Thickness of cover plates.

The thickness of the cover plates must be such that the

strength of their net section is at least equal to that of the net

section of the plates to be joined.
If T is the stress, b the breadth of plate, m the number of

rivets in transverse row nearest joint,

t
l
= thickness of each cover plate,

fl>
2(6~^Mif

The usual proportions are :

With one cover plate, thickness = 1J of the plate thickness.

With two cover plates, thickness of each = f of the plate
thickness.

77. Efficiency of riveted joints.

The efficiency of a joint is the ratio of the strength of the

joint to the strength of an equal width of the solid plate.

Taking as before a strip of the joint of width equal to the

pitch p, we get the different efficiencies as follows :

Double-riveted lap joint. (See Case II., Art. 75).

For plate in tension. Efficiency =
Ptft p

*/,
For rivet in shear. Efficiency =-77-

JF/i

For rivet in compression. Efficiency = A^L=j^/^.
Pt pft

The efficiency is the smallest of these values.

Generally, the efficiency for rivet in shear = _
t where

Pvt
N is the number of rivets in a pitch length.
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Double-riveted butt joint with two covers. (See Case IV., Art. 75).
(nn /7\

For tension of the plate, Efficiency =

P

For shear of rivet. Efficiency = .

Ptft

For compression of rivet, Efficiency = -f~.
Pft

78. Group-riveted joints.

Joints are sometimes made by a group of rivets, so arranged
that as little as possible of the original resistance of the unper-
forated plate is lost at the joint. The arrangement of the rivets

is called group riveting.

In order to get the stress uniformly distributed over the plate
the centre of gravity of the group of rivets must lie on the axis

of the piece, the axis being the line joining the centres of gravity

lii
Fig. 105.

of the cross sections. When two plates not in line are to'be

riveted, as in the bracing and the flange of a girder, the centre

of gravity of the group ought to lie on the intersection of the

axes of the two plates.

79. Group-riveted joint of greatest economy.
In an ordinary group-riveted joint (Fig. 105) the net section

of the plate is its gross section diminished by all the rivet holes

in the transverse row nearest to the end of the cover plate. By
adopting the form shown in Fig. 106 the loss of section may be
reduced to that due to one rivet hole only.

Consider, for example, a joint for which calculation gives
n = 6 rivets required on each side of joint.

A single rivet is placed in the line aa on the axis of the plate,

diminishing the section by one rivet hole, and on the net section

N
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we have the whole stress T. Now, assuming that the stress T
is equally distributed between the 6 rivets in the group the

T
leading rivet transmits to the cover plates, so that the stress

on the net section at bb is -jj-T.
A second rivet may, therefore,

be placed at bb without diminishing the resistance of the joint.

At section cc the stress is |T, so that one more rivet may be

placed at that section.

At cc the stress in the cover plates will be equal to T.

The distances ab, be are usually f of the transverse pitch.

The strength of the joint is approximately equal at all the

sections and may be taken as

(b-d)ft .t.

The thickness of the cover plates must be such that the resistance

of their net section at the transverse row of rivets cc nearest to

the joint is at least equal to the stress T.

Let ^ = required thickness of each cover plate ;

m
l
= number of rivets in row cc

; then

The width of the cover plates is tapered uniformly as in

Fig. 106.

EXAMPLE.

Determine the dimensions of a zig-zag double-riveted butt joint

with one cover for jointing two boiler plates f inch thick (Fig. 105).

Take ft
8 tons per sq. in.

J K V ' fl ? J J J

fc = 12 ,,

There are two rivets in each strip of a width equal to the

pitch.



XI.] DESIGN OF KIVETED JOINTS 179

Diameter : d = l'%Vt = inch.

As the rivet holes are about y
1

^-
inch larger than the diameter

of rivet, the value of d is for calculation taken yg- inch greater
than diameter of rivet.

Hence d for calculation =
-f f inch.

Fig. 107.

PiM.

Shearing resistance = 2 /,
= 1-04x6

= 6-24.

Crushing resistance = 2fcdt =
2x12x13x3

16x8
= 7-3.

Equate the tearing resistance to the shearing resistance

which is least,

(p-d)tft
= 6-24

= 3 inches, say.

Lap, or distance from joint to edge of cover plate,

I = Ifd + fp + lfd
= If" + 2i" 4- If = 5J inches.

Cover plate.

Width = 2Z = 10J inches.

Thickness = 1J = T
7
-g-

inch.
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Efficiency.

For tension of the plate = ^ = 0-73, or 73 per cent.

P

For shear of rivets

,

2 62*4
77 = 5- = 0'7 or 70 per cent.

80. Joints for two or more plates.

When several .plates have to be riveted together their joints
are arranged in consecutive steps as in Fig. 108

;
so that one pair of

cover plates is sufficient for the whole series of joints. The

Fig-. 108.

number of rivets between any two consecutive joints must be deter-

mined from the stress. An example is worked out in Art. 81,

Fig. 113.

81. Example of various riveted joints in a girder design.

At a panel point in the upper chord of a Pratt truss (Fig. 109)
the following calculations and figures give the number of rivets

required and their distribution for :

(a) Connexion of inclined brace to gusset plate.

(b) Connexion of vertical post to gusset plate and upper
chord.

(c) Connexion of gusset plate to upper chord and vertical.

(d) Joint in top plate, side plates, and angles of upper chord.

The cross section of upper chord is shown in Fig. Ill, and the

section of vertical in Fig. 110. The elevation showing connexion

of brace and vertical to upper chord is shown in Fig. 109.

The gusset plates, to which the inclined braces are attached,
come inside the side plates of chord ; the vertical post fits in

between the gusset plates, and goes close up to the underside of

the top plate of chord.

In the case of
'

field rivets
'

that is, rivets put in on the work

during erection an addition of 10 per cent, is usually made to

the calculated number of rivets required, as they may not be

so securely driven as the shop rivets.

(a) CONNEXION OF INCLINED BRACE TO GUSSET PLATE (Fig.109).
The inclined brace consists of two plates 16" x J", one fastened

to each gusset plate.



XI.] DESIGN OF EIVETED JOINTS 181

Total tensile stress in inclined brace = 140 tons.

Therefore tensile stress in each- plate of brace = 70 tons.

Diameter of rivets f inch. Area = 0-6 sq. in.

Working stresses. Shear 6 tons per sq. in.

Bearing 12 tons per sq. in.

Let N = number of rivets required to connect tie plate to gusset

plate.
Two cover plates should be used at the joint.
First compare the bearing and shear strengths.

Braoe

Fig. 109.

Bearing strength of one f inch rivet in J inch plate

= |x|x!2 = 5-25 tons.

Shear strength of inch rivet in double shear

= 2x0-6x6 = 7-2 tons.

The bearing strength being least must be used.

Therefore number of rivets required :

70

5-25
= 13-4,

adding 10 per cent, for field rivets. Total number = 15.

Thus 15 rivets are required on each side of the joint between

gusset plate and brace plate, arranged as in Fig. 109, so that the

strength of the plate is weakened only by one rivet hole.

The width of brace is 16 inches, so that with 5 rivets in the
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row nearest joint, we get 2 inches between each of the outer rivets

and the edge of plate, and a 3-inch pitch.
The distance from joint to nearest row of rivets 2 inches, and

the distance between each row of rivets 2| inches.

Cover plates.
Each cover plate is weakened by 5 rivet holes.

The plate is weakened by one rivet hole.

The joint strength of the covers should be at least equal to

the strength of the plate.

Hence, if t = thickness of one cover plate

2*(16-5xJ) = (16-f)J,

= f inch (say).

(b) CONNEXION OF VERTICAL POST TO GUSSET PLATES AND
SIDE PLATES TOP CHORD (Fig. 109).

The cross section of vertical is shown in Fig. 110.

The total compressive stress in vertical = 90

tons.

The rivets are in single shear.

Shear strength of one f
"

rivet = 0*6 x 6 =
3-6 tons.

Therefore number of rivets required

. 90 _ 2r
Fig. no. as these are field rivets, add 10 per cent.

Total number required = 28.

As the vertical is riveted on 2 sides to the gusset plate and
side plate of chord, the number of rivets on each side of the

vertical

See Fig. 109.

(c) CONNEXION OF GUSSET PLATES TO UPPER CHORD AND
VERTICALS.

Considering the equilibrium of the gusset plates, there

ought to be as many rivet sections connecting it to the vertical

and chord as there are rivet sections joining the brace to the

gusset plate.

Thus, 2 x 15 = 30 rivets are required.
31 rivets are shown in Fig. 109.
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(d) DESIGN OF JOINTS IN TOP PLATE AND SIDE PLATES OF
CHOED (Figs. 112 and 113).

The total stress in chord member = 400 tons.

The cross section of chord is shown in Fig. 111.

Top plate. If we use a single cover plate for the joint in top

plate, the rivets are in single shear, and the shear strength of one
rivet

= 0-6x6 = 3-6 tons.

-Side Plates

i P^ Gussets^*

Fig. 111.

The sectional area of chord is

Top plate 36 x j = 13-5 sq. in.

4 side plates 24 xf = 36-0

4 angles 8J x 8J x \ = 13-Q

Total area = 62-5

Then, assuming the total stress to be distributed .'n each plate
in proportion to its area,

Stress transmitted by top plate is

13-5

62-5
400 = 86-4 tons.

Let N = number of rivets required on each side of the joint,
then

N = ^1 = 24 + 10 per cent. = 26 (Fig. 112.)
0*6

If two cover plates had been used, then, the rivets being in

double shear, we must first compare the bearing and shearing

strength.

Bearing strength of f
"
rivet in f

"
plate

= 12xf xf = 3-93.

Shear strength (double shear)
= 2x0-6x6 = 7-2 tons.
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Since bearing strength is least, number of rivets required

would have been

N = 8 =22 + 10 per cent. = 24.
3'9o

4*4-4 + 4
'

+ 4 4 +

4 4
f-
4 4 2 - 4

4 i 4 4 4 4 4 4- + / 4 4

TOP PLAN
Fig. 112.

'ide plates. Grouped joints with two covers (Fig. 113),

Stress transmitted by one side plate

36

=
675

40 =
6T5

' 40a

= 57*6 tons.

Cover

4 4/4 4 1^4 I 4- / 4 I + 4- I +J ^4-
4- \ + J4

7444-
^4-i

4
- Joint/ -

*i ^K Joint/ -

i ^ >

.

+ + + +
>J2t4^

+ +
! +f

+ + +

!\ O7vcrP^a^e ^
/,\444 44 + 1-^4 -I-/ I

\ \4Pttch, ^ I

|4\4 4 4"+
|

4 4"4 + 4
| 4^ 4 4 / 4

jj-

Fig. 113.

Let N = number of rivets required between each joint, and

between outside joints and end of cover plates.
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Then, since the rivets are in double shear, and the plates are

| inch thick, we have as before the bearing strength 3 -93 tons

less than the shear strength 7 -2 tons.

Therefore N = ~ = 14-6 + 10 per cent. = 16.
'

In Fig. 113, 18 rivets have been used between the joints for

symmetry, and in order not to alter the general pitch of 4 inches.

Angles. .

The angles should be spliced by means of an angle splice

about3"x3"xf".
Stress transmitted by one angle

13

4=WE
' 40 = 20 '8tons -

Number of rivets required on each side of joint of angles

20-8
= =6 nearly.

That is, 3 on the vertical limb and 3 on the horizontal limb of

angle.

Fig. 114.

82. Plate girder. Riveting- of web to flanges.

Fig. 114 gives cross section and elevation of plate girder,

showing flanges and web connected by angle irons riveted to

them.

To find the pitch of the rivets.

If two vertical sections of the girder are taken at a distance

x apart, the total shear on the length x must be equal to the
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difference of the normal stresses in the flange at these two sections,

=H
1 -fl2

=M1-^
! _.

;

and this increment of flange stress must be transmitted by the

rivets.

Let N = number of rivets in one foot of length,
E = least resistance of one rivet.

h = depth of girder.

Then NRx = Ml ~M* ..... ...... ... . .(1),

but the rate of increase of bending moment -=- = F
ax

where F is the shearing force.

=Hence, t

h

12
If p = pitch in inches, then N =

,

Hence, from (2)

1? = I
p

''

Wi
that is, Fp = l%Rh, where h is in feet

) ,Q\

or, Fp = Eh, where h is in inches 1

........ '
'"

If p comes out too small, that is, less than three times the

diameter of rivet the web plate must be thickened, or larger

angles must be used to take two rows of rivets.

The number of rivets in a short length of x feet can be found
if desired, from Equation (1), where M

l
and M

2
are foot tons,

h feet and R tons.

EXAMPLES.

1. A girder 30 feet long, 2 feet 3 inches deep, is loaded with a

uniform load of 2 tons per foot run. Thickness of web J inch.

If the rivets are f inch diameter, find the pitch of the rivets con-

necting angles to web near the supported ends.

Assume working stresses :

Shear 6 tons per sq. in.

Bearing 12 tons per sq. in.

30 x 2
Shearing force, F, at ends =

s
= 30 tons.
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As there are two angles, each rivet connecting web to angles is

in double shear, and it is first necessary to determine which is

least, the bearing strength or shearing strength.
Shear strength of one rivet (double shear) = 2 x 0*44 x 6

= 5-28 tons.

Bearing strength of rivet on web plate = f x J x 12 = 4-5 tons.

The bearing strength being least must be used in calculation

for E.

From (3)

= Ek = 4-5 x 27 = 4 .Q5

Pitch = 4 inches.

2. A cross girder for a bridge carrying two lines of rails is

27 feet long and 24 inches deep ; +

it carries four concentrated loads,
* r

each weighing 30 tons ; the two
;

loads on one side of the centre

of span being symmetrical with

the two on the other side. Deter- F]
-

g 115
mine the pitch of the angle
rivets if the diameter of rivet is J inch.

Thickness of web = J inch.

Assume same working stresses as in last example.
Kivets in double shear.

Shear strength of one rivet = 2x0-6x6 = 7 -2 tons.

Bearing strength of rivet on web plate = fx|x!2 = 5'25 tons.

Least E = 5'25 tons.

Shearing force at ends, F == 2 x 30 = 60 tons.

From (3)

p = - = 2'1 inches.
60

This pitch is too small for a single line of rivets.

Therefore we must use angles 4J" x 4J" x |" with two rows
of rivets placed zig-zag (Fig. 115).

Now, as there are two rivets in each pitch,

= 2M = 2x5-25x24 = 2 incheg _

F 60

Pitch = 4 inches.

A 4J inch angle is the least possible for two rows of rivets.



CHAPTER XII.

PLATE GIBDEES.

83. Plate girders.

A plate girder consists of horizontal flange plates connected

to a thin vertical web plate by angle irons at the top and bottom,
which are riveted to both web and flanges. The flanges are

assumed to bear the whole of the bending stress, and the web
is taken as resisting the shearing stress.

An example will best illustrate the method of determining the

stresses, and the design of the members.

Design a plate girder bridge, span 60 feet, for a single line of

railway. The two main girders to be 16 feet apart centre to centre,

the track being carried on cross girders. Material mild steel.

Working stresses :

Tension ...... 7| tons per sq. in.

Compression . . 6| .,

Shear ........ 6

Bearing ...... 12

The dead load means the total dead weight of the structure

complete.
The live load to consist of two type locomotives, followed

by a train of wagons taken as a uniform load of 1/2 ton per foot

run. The type locomotive consists of 4 axle loads, each of

14 tons, spaced 5 feet apart, giving a wheel base of 15 feet.

Depth of main girders. The depth is usually taken from -fa

to YY of the span. In this case the depth is taken as 5 feet 6 inches.

Weight of main girders. Total dead load.

For the approximate weight of girders
Professor Unwin's rule is :

where W
l
= the weight of main girder.

W = total distributed load in tons (excluding
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s = stress per square inch on flange at centre.

I = length in feet.

C = a coefficient 1400 for plate girders.

r = ratio of span to depth.
Professor Johnson gives the following rule for single track

railway bridges :

Plate girders w ____ = 9Z + 120,

Lattice girders w . . . .
= 71 + 200,

where I = span in feet, w = dead load per foot run in Ibs.

The weight of each main girder in this example may be taken
as approximately 18 tons.

The weight of the platform load, including cross girders, flooring,

permanent way, &c., is taken at 0'6 ton per foot run of bridge.
The total dead load carried by one main girder is therefore

18 + 0-3x60 = 36 tons.

Spacing of cross girders.
The cross girders are usually placed 6 to 9 feet apart. The

distance apart should be a multiple of the pitch of the riveting
of flanges of main girder that is, of 6 inches (see Eivet pitch in

flanges). They may be spaced as shown below (Fig. 116).

eg eg c.g c.a

'. 6'~4^'. 6"-J^~i 6--A
.___.=J^

Fig. 116.

The joint of web of main girder is at the centre, so that a
cross girder attachment does not come at the joint.

Main Girder.

MAXIMUM BENDING MOMENTS.
Dead load.

The maximum bending moment is at the centre,

Wl 36x60 or7A p 00/m ,=
-5-

= - - = 270 foot tons = 3240 inch tons,
o o

and the bending moment curve is a parabola with centre ordinate
Wl= -- . The bending moment at any section distant x from
o

support

-f (!-*)*

=
0-3(60-o;)a; ................ (1).
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Live load.

The maximum moments due to live load were found graphically
at sections 5 feet apart as explained in Art. 42, Chapter VII., and

outlined here in Fig. 117. As the total axle loads are each

14 tons, the axle load for each main girder is 7 tons.

The leading axle is placed at one end of the span, and the

polygonal line of moments (Am^m) for the loads is drawn. Join



XII.] PLATE GIRDERS 191

Am, then the bending moments for the leading axle at A are got

by measuring the vertical intercepts at every 5 feet of span
between the base Am and the polygonal line of moment. Next,

suppose the bridge to move forward 5 feet, the train remaining

stationary ;
then for the leading axle at B the intercepts are

measured from the base A^m^ and so on till the train has passed
off the bridge. The bending moments were all tabulated, and
the maximum moments for corresponding sections in each half

the girder were picked out. It is necessary to take the maximum
moments in corresponding sections on each side of centre, because

the train may travel in either direction over the span.
The following table gives the maximum bending moments :

Maximum bending moments for live load.

Sections
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to get the net section. The area of section is got from the formula

M = H.d=fAd.
' A- M&

.

Where A is the area required, M = bending moment, /= working
stress, d = depth.

The maximum bending moment from above table = 1143 foot

tons.

The greatest net sectional area required is

Use 4" x 4" x Y angle irons and f inch rivets.

Take only the area of the leg of angle iron which is attached

to the chord plates.

Area of two angle legs less 2 rivet holes

= 2x4x|-2xf x J = 3-25 sq. in.

Area of three plates 18" x y
less 6 rivet holes

= 3xl8xJ-6xfxJ = 24-75

Total area provided =
J28__ (Fig. 118).

Upper chord.

The greatest sectional area required is

This being the compression boom, no allowance is made for

rivet holes, the gross section of the angles and plates being taken.

-J
>r\

The width of the chord is taken as span =^r = 1J foot.

Use as for lower chord angles 4" x 4" x and plates 18 inches

wide.

Area of angle legs attached to chord

= 2 x 4 x | = 4 sq. in.

Area of two plates 18" x J"

= 2xl8xJ = is

Area of one plate 18" x T
9
-^-
= 10 ,,

Total area provided =
32^ (Fig. 118).

CURVE OF BENDING MOMENT.-LENGTH OP PLATES.
The curve of maximum bending moments due to both dead

and live loads (Fig. 119) is drawn by setting up ordinates at every
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5 feet of span equal to the maximum bending moments due to

dead and live loads including impact. The upper curve is for the

top chord ; it is repeated below for the lower chord.

L Irons 3 1/zx3%x 1
/2

SKETCH OF CONNECTIONS
OF CROSS GIRDER WITH

MAIN GIRDER

Scale
%'Indv-IFoob

2\Jouttfl(Ltes 3/efhick

eb#fade,

Fig. 118.

Lower chord.

The moment of resistance of the net section of the two angle
irons is

3-25 sq. in. x 66 x 7J = 1609 inch tons.

= 134 foot tons.

o
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To represent this on the bending moment diagram set down
a rectangle of height

.

The moment of resistance of the net section of each plate is

24-75
x 66 x 1\ = 4084 inch tons.

= 340-3 foot tons.

UPPER CHORD.

(i

\forN s
1 and 2.

LOWER CHORD

Scales.

Horizontal ^15^Inch =1'Foot.

Vertical 11nch=900It.Torts

Fig. 119.

Set down in succession 3 rectangles, each of height

The last rectangle reaches a little below the B . M curve,
as the net area of the chord section = 28 square inches is

slightly in excess of the area required.
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Upper chord.

The moment of resistance of the section of angle irons is

48q.inx66x6i =m foot tong .

12

On bending moment diagram set up a rectangle of height

The moment of resistance of each of the two plates 18 x J is

9 x 66 x 6i onn ,- -? = 322 foot tons.
12

Set up two rectangles, each of height

The moment of resistance of one plate 18 x T
9
^-

is

101*^x6*
= 360 foot tons.

Height of rectangle = = 0-4 in.
yoo

Length of plates.
The rectangles are closed by vertical lines representing the

ends of the plates. These must come outside the B .M curve,
and are usually taken about 9 inches beyond the curve, so as

to overlap two or three rivets outside the curve.

The angle irons 4" x 4" x J" will have to extend about 15 inches

beyond the centres of bearing, so that their total length is the full

length of the girder that is, 62 feet 6 inches. They will have
a joint at the centre of span. Number 1 plate of the upper and
lower chords must be of the same length as the angle irons.

Plates Nos. 1 and 2 are so long they will require to be jointed
near the centre. The position of the joints is got from Fig. 121,
where it is found that in order to suit the pitch and number of

rivets, 21 inches is required between the joints of .these two plates,
thus the joints come 10J inches on each side of centre of girder.
The lengths of the different plates and the various joints are

shown in Fig. 119
; and details of the joints for plates and

angle irons in Figs. 121 and 122.

Plates and angles as used can be had from 30 to 40 feet long.

Thickness of web.

The maximum live load shearing force at the end of span
occurs when the leading axle is just about to pass off the bridge.

o2
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The loads would then be as shown in Fig. 117, and maximum live

load shear

7{60+ 55 + 50 + 45 + 30 + 25 + 20 +15}+^^
60

2119-2

60

Maximum dead load shear

= ^ = 18 tons.

Total vertical shear = live load shear + impact + dead load

shear
= 35-3 + 35-3 + 18
= 88-6 tons. . . ...................... (1).

Therefore, if the working shear stress is 6 tons per square
inch, the net section of the web must be

^ = 14-8 sq. in.
6

If we assume a 3-inch pitch for the vertical riveting of

the web, the number of rivet holes will be 22, approximating
to 20 inches of depth. The net depth of web will then be
66 20 = 46 inches. If t = thickness of web,

46* = 14-8 sq. in.

t = U* = 0-32 in.
46

=
-fy inch (say).

The web will be made of this thickness for the full length of

the girder.
Rivet pitch in flanges.

From Equation (3), Art. 82,

................... (2).

To find E the least resistance of one rivet compare the bearing
and shearing resistances.

The bearing resistance of f-inch rivet in T
7 -inch plate is

f x T
7 x 12 = 3-9 tons.

The shearing resistance of a f-inch rivet, the rivets being in

double shear, is

x/s
= 2 x 0-44 x 6 = 5-28 tons.
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The bearing resistance being least must be taken.

F by Equation (1)
= 88-6 tons.

Substituting in Equation (2)

8-9 x 66

that is, 3-inch pitch for the riveting of angles to web.

For the riveting of angles to the flange plates, the pitch may
be 6 inches, giving 4 rivets per foot in two rows.

To find the distance from one support at which the pitch of
the rivets connecting angles to web may be doubled.

At a section 22 feet from either support, the maximum live

load shear occurs when the leading axle is over the section, the

longer segment of the span being loaded with the live load.

There will then be 6 axle loads on the span, and

r i V t,Max. live load shear =
^.
60

= 15*5 tons.

Max. dead load shear at same section

= 18-0-3x22
= 11 '4 tons.

.% Max. shear with impact
= 2x15-5 + 11-4 = 42-4 tons

By Equation (3), Art. 82,

p = pitch = ^
' '

= 5 =6 inches.

Therefore the pitch may be changed to 6 inches at a distance

of 22 feet from either support, but as there will be a large excess

of rivet strength in the neighbourhood of this point, the pitch

may be changed at a point rather nearer the support, say, at

x = 20 feet.

Vertical joint of web. Web splices.
Steel plates with sheared edges can be obtained -f$ inch

thick up to 6 feet wide in lengths of 35 feet. Hence only one
vertical joint at the centre will be required for this girder.

The joint is shown in Fig. 120, which shows the upper half of

joint only, the lower half being similar. The rivets going through
the angle irons are not available for the joint. The vertical pitch
is taken as 4 inches.
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In calculating the number of rivets in any one horizontal row
it is assumed that each row transmits the longitudinal stress due
to flexure on the section of that strip of web whose edges are

midway between the row in question and the row above and
below. The intensity of stress on the section of a strip varies

as its distance from the neutral surface, which in this case

practically coincides with the centre of depth.

First row.

Width of strip
= 7J inches.

Intensity of stress at centre of strip
=

f-- x 6J = 6.

Limiting resistance of strip
= 6 x 7J x T

7
^ = 19*7 tons.

The rivets are in double shear, and the bearing resistance

3-9 tons is least.

/. Number of rivets in first row will be

19*7
- = 5 on each side of the joint.

3*9

Second row.

Width of strip = 3| inches.

Intensity of stress = f| x 6| =
4J.

Limiting resistance of second strip
= 4J x 3| x -^ = 8*4.

Number of rivets required = - = 3 on each side of the joint.
o*y

4 rivets are used instead of 3 for convenience in size of joint
bar.

Third row.

Width of strip
= 4 inches.

Intensity of stress = -&
*

6J = 4.

Limiting resistance of third strip =4x4x-j^- = 7.

Y
Number of rivets required = -_ = 2 on each side.

o*y

As not less than 2 rivets on each side of the joint are advisable,
the remainder of the vertical riveting can be as in Fig. 120.

Thickness of joint plates and bars. The net sectional area of

the joint plates and bars along the vertical line containing most
rivet holes must be at least equal to the net section of the web
plate along the same line that is,

a condition amply fulfilled in this case.

Joints of the upper and lower chords.

Only one joint is required in each of the chords. These joints
are near the centre of span (see Fig. 119).

The length of the cover plates and the number of rivets

required on each side of a joint are to be determined thus :
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The shearing resistance of one rivet, it being in single shear, is

6 x^ = 6 x 0-44 = 2-64 tons,
4

and its bearing resistance in a ^-inch plate is

12 x | X | = 4-5 tons.

The shearing resistance being least is to be taken as the

working resistance of one rivet.

^Centre of dejtyh

HALF ELEVATION OF WEB JOINT.

Fig. 120.

The number of rivets required for the joint of one plate
(on each side of the joint) x the working resistance of one rivet

must be equal to the working resistance of the plate itself.

Therefore the number of rivets required for each joint of top
chord is

18 x 1 x 6| _ 2S
2-64

and for the bottom chord is

2-64
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Fig. 121 shows the arrangement of the joint, which is similar

both for the upper and lower chords. The cover plates are of

the same thickness and sectional area as the plates joined. The

joints are grouped, so that one cover plate covers the joints of

the two plates. The plates break joint so that the cross section

of the cover plate need only be equal to that of one of the plates

joined. To fulfil this condition it is necessary to have 24 rivets

through the lap between two successive joints, and also between
each end of the cover plate and the nearest joint.

Jointing of longitudinal angle irons.

These angle irons must have a joint at the centre of span,

making their length about 31 feet 3 inches.

Cross sectional area of one angle is

(4 + 3J) = 3-75 sq. in.

Net sectional area deducting 2 rivet holes |-inch in diameter is

i(7i-2x) = 3sq. in.

JOINT FOR PLATES 1 AND 2 AT CENTRE OF SPAN.

+ ++ 4- +
J4

+ 4-

r
4- + 4- 4- + + + -h 4

j* Cover Plate 16'x
1
z X 5'. 0'- >|

Fig. 121.

The rivets are in single shear, considering the joint of one

angle iron only. The shearing resistance, 2*64 tons, is less than

the bearing resistance. Therefore shearing resistance x number
of rivets on one side of the joint must be equal to the limiting

compressive resistance of the cross section, or the limiting tensile

resistance of the net section, whichever is greater, so as to make
the joints in upper and lower chords alike. Limiting compressive
resistance of cross section is

6j x 3-75 = 24-38 tons.

Limiting tensile resistance of net section is

7| x 3 = 22-5 tons.

Hence number of rivets required is

2*88 = s
"2-64

on each side of the joint 4 in each limb.
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The joint is made by riveting a bent cover plate or wrapper
inside the hollow of the angle iron (Fig. 122).

The net section of the wrapper must be at least 3 square inches,

that being the net section of the angle iron.

S V 1 ~*

i .*iv.y>> V:
K^-H ' \T *

JotnJb

Fig. 122.

Try a wrapper 3J" x 3J" x \%" and deduct two f
"
rivets

|i (8J + 2T
9
B
- 2 . f)

= 3 sq. in.

The length of wrapper must be such as to take 4 rivets on
each limb.

STIFFENERS.
The web of the main girder requires stiffening so as to resist

buckling. The stiffeners are usually angle or Tee irons, spaced
at a distance apart near the supports of half the depth of the

girder and near the centre of span, at distances of about three-

quarters the depth of girder. In no case should the distance

apart be greater than the depth of girder.
In the present example the vertical angle irons and wing

plates of each cross girder attachment (Fig. 118) serve to stiffen

the web effectively in the spaces adjoining them ; so that if two
stiffeners are placed in each of the first cross girder spaces from
the supports and one in the centre of each of the other cross

girder spaces it should suffice.

The stiffeners may be taken of Tee section 6 inches by 3 inches

by | inches.

Cross Girder.

Live load.

From the accompanying sketch (Fig. 123), which shows three

7 Cons 7totis 7tons

U-2'->L 5'. >
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come on one cross girder under one rail ; the axle load on each

wheel of the locomotive being taken as before 7 tons, with axles

5 feet apart. This maximum live load which is equal to the

reaction at centre cross girder

=7+ ;_
= 11 tons.

Fig. 124 shows the distribution of the live load on cross girder,

11 tons on each rail.

Dead load.

The dead load has been taken as 0-6 ton per foot run of main

girder. Therefore the total dead load on one cross girder is

0-6x7 = 4-2 tons.

Max. live load bending moment = 11 x 5J = 60| foot tons.

Max. dead load bending moment = 5
= 8*4 foot tons.

o

HTons<3\ 11Tons

T.------------.!.. ipt. o'.-L -------------TMAIN
L5.'*= JL_0jft_

*L_J GIRDER

-L~ CROSS IRDER ~~J-CROSS BIRDER

Fig. 124.

Total maximum bending moment with impact is

2 x 60J + 8-4 = 129-4 foot tons.

= 1552*8 inch tons.

Cross section. Take the depth equal to 2 feet and the diameter

of rivets f inch.

Upper chord. Compression.
. , M 1552-8

Eequired area = -- = ^ s ^
fh 6Jx2xl2

= 10 sq. in.

Use angle irons 8} x 8J x J.

The area of two legs of angles attached to chord

= 2 x 3| x J = 3-5 sq. in.

Area of 2 plates 9" x f = 2 x 9 x J
= 6-75 ,,

Area provided = 10*25 .
,

Lower chord. Tension.

XT 4. 4.' 1
* A 1552 '8

Net sectional area required = ^ tT~^
(^ X Z X 1

= 8-7 sq. in.
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Net area of legs of angles attached to chord

= 2{3J-f]i = 2-75sq. in.

Net area of 2 plates 9" x TV = 2{9-2xf} TV = (r50

Net area provided = 9-25

Thus, the maximum cross sections at centre are :

Upper chord, 2 angles, 3J" x 3J" x J" ; 2 plates 9" x f ".

Lower chord, 2 angles, 3J" x 3J" x I" ; 2 plates 9" x fc.

The length of the plates can be found by drawing the bending
moment diagram exactly as in Fig. 119.

Web.
Max. live load shear = 11 tons.

Max. dead load shear = 2-1 tons.

F = total shear including impact = 2x11 + 2-1

= 24-1 tons.

Net depth of web deducting 5 rivet holes (see Fig. 118)

= 24-5 . f = 20 inches,

,, . F 24-1
then ' =

Jfc

=
25F5T6

= 0-2 in. = J inch ;

but, as it is not advisable to use any plate less than f", take thick-

ness of web = f".

Pitch of rivets connecting angles to web.

As in Equation (2), Art. 82,HN= number of rivets per foot run,

R = least resistance of one rivet,

N- F
" m

Shearing resistance of one rivet in double shear

= 2 x 0-44 x 6 = 5-28 tons.

Bearing resistance of f-inch rivet in f-inch plate

= 12x|x| = 3-4 tons,

.-. N = -Ml- = 3-6
2x3-4

= 4 rivets per foot.

Therefore the pitch is 3 inches.

Attachment of cross girder to main girder.

Fig. 118 shows detail of this attachment. It is necessary to

determine the number of rivets on each side of the vertical joint
between the web of cross girder and the wing plate of the main
girder, which are equal thickness.
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Max. shearing force at end as above = 24-1 tons.

Least resistance of a f-inch rivet in -inch plate = 3*4 tons.

Therefore the number of rivets required, considering the

shearing force only, is

24-1
ft

3T
=

But, owing to the bending action which must exist at the

end ol cross girder, it is advisable to increase this number by,

say, 50 per cent.. As seen, 6 have been added, making 14 rivets,

which forms a convenient group. The same number of rivets

are required to fasten the wing plate to the vertical angle irons

of the main girder and to connect these angles to the web.

Rail bearers between cross girders may be small built-up

girders or rolled steel joists.



CHAPTEE XIII.

'COLUMNS AND STRUTS.

84. Short columns.

If a load P acts along the axis of a short column, the ratio

of whose length to diameter is small, usually not greater than
5 to 1, the column will fail by direct crushing. The relation

between the crushing load and the stress produced is

where P = the crushing load.

A = area of cross section.

/ =
intensity of compressive stress, or crushing strength

per unit of area.

Columns of medium length fail partly by crushing and partly

by bending.

Long columns fail wholly by bending.

85. Formulae for the strength of columns or struts.

Several formulae are in use for ascertaining the strength of

columns ; they are derived partly from theory and partly from the

results of experiments.
For the proof or method of obtaining these formulae refer to

'

Strength and Elasticity of Structural Members/ Chapter X.,

by the author.

Rankine's formula for columns of medium length. Column

hinged or pivoted at the ends.

Load axial.

where a is a constant depending on the material.

A is the area of cross section.

I is the length of the column or strut.
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k is the radius of gyration of cross section with respect
to the axis about which the resistance to bending is

least, namely, the axis about which I the Moment of

Inertia is least.

k*- Z

T
In applying this formula it is well to note that if / in above

formula is taken as the ultimate compressive stress, then P is

the breaking load, and the safe load is got by dividing P by a
suitable factor of safety. For a steady load, this factor of safety
should be 4 or 5 for wrought iron or steel ;

6 for cast iron
; and

10 for timber.

On the other hand if / is taken as the safe compressive stress

for a short length of the material, then P is the safe load ; and

p is the working stress per square inch ; where I, k, and A are in

inch units. The following table gives safe values for /, and the

values of the constant a for different materials :

Material
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Material
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one end of the column is fixed and the other end pivoted,

Fig. 125 (c), we must substitute fI for I.

Bankine's formulae for these three cases are :

Both ends of column pivoted.

Both ends fixed.

One end fixed, the other end pivoted.

The values of/ and a being as in previous table.

In all these cases the resultant load P should coincide with

the axis of the column.

87. Design of strut members.

From Eankine's formula

P f
P =

-j
=-w
1+4

we get
/ Z

2 \ max. load
Area required = 1 1 +

ajzj
--

j
- ........ (1).

Now the safe stress / is usually specified, and the maximum
load, length of strut, and constant 'a' are given. First assume an

approximate cross section, the area of which is somewhat greater

than
max

.

load
.

For this assumed cross section the value of k2
is calculated,

and the area required obtained from (1). If the area assumed
is slightly greater than the area required it will suit. If too

small or much too great a new cross section should be assumed
and the area again calculated till a satisfactory agreement is

obtained.

Another method. Having found fc
2
, calculate / and see if it

agrees with or is slightly less than the specified unit stress, and
if so, a section is designed.
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Example.
The compression chord of bridge is 20 feet long with fixed

ends, design a suitable cross section for a safe stress of 6 tons per

square inch. The axial compressive stress is 348 tons.

From Equation (1).

/ 1 Z
2\348

Area required =(1+ ^.
Since the factor in brackets is greater than 1, in order to get

an approximate section take

Area = = 63 sq. in.
52

Assume a cross section of box shape similar in form to Fig. Ill,

Art. 81, consisting of :

One top plate 24 inches by f inch.

Two side plates 21 inches by f inch.

Four angles 4J inches by 4 inches by f inch.

The area of which is 61 square inches.

For this section the least I = 3860, and least /c
2 = 63'3.

Therefore

*--*?-{'+! *?
_ Ix848 = 5M jn

D

Sixty-one square inches have been provided in the section

assumed, and this so closely approximates to the area required
that it can be taken. If there had been any marked difference in

the areas a new cross section should be assumed and recalculated.

Generally after the first trial it is easy to see how the cross section

should be altered so as to bring it correct.

EXAMPLES.

1. A mild steel column or strut is l-shaped in cross section,

12 inches deep, flanges 6 inches wide, and weighs 54 Ibs. per foot
run. The length is 14 feet. Find the safe load it will carry if the

ends are flat and well fixed.
Eankine's formula for pivoted ends is

f =
2
= ~~T'
1+v

where a =
; k = least radius of gyration.
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As the ends are fixed for I substitute s ,
then

For calculating the safe load / may be taken as 6 tons per

square inch, and from table of sections A = 15*88 square inches ;

least k = 1'33 inch units.

6x15-88
1 /14xl2

+
30000' V 1-33

= 62 tons.

2. The cross section of a mild steel column is composed of a
steel joist 14" deep, flanges 6" wide, weighing 57 Ibs. per foot run,
with a flat 12" x J" riveted to each flange. Length, 18 feet. One
end is fixed, the other end pivoted. Determine what safe load it will

carry. Fig. 126.

Fig. 126. Fig. 127.

Since one end of the column is fixed and the other end free,

for I in Kankine's general formula write f Z
;

fA
then P =

A = 28'75 square inches
; / = 6 tons per square inch ;

least

= 2*45 inch units.

D 6x28-75
. . JL .

1 +
18xl2\ 2

16875
= 118 tons.

x

V 2-45

3. The cross section of a mild steel column as in Fig. 127 consists

of two channel sections 12" x 3J", weighing 26'1 Ibs. per foot run,

and two flats each 14" x J" ; length, 24 feet. If both ends are taken

as pivoted, determine what load it will carry with safety. A = 29'35

square inches.
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In order that the flats should extend J inch at each end beyond
the edges of flanges the distance between channels should be

6J inches, and least k = 4'14 inch units.

6 x 29-35

1 J1 f24x!2\+
7500V 4-14 /

= 108 tons.

4. T/ie vertical post of a bridge consists of 4 angle irons

6" x 4" x |", Fig. 128, braced together with lattice bracing J iwc/i

flwcfc. The angles are well riveted to the top and bottom chords,

and the post may be taken as fixed at the ends. Determine the safe
load. Length, 16 feet.

Y

Fig. 128.

For fixed ends P

= 19 square inches ; least k = 2-91 inch units.

. 6x19

_
30000V 2-91

= 99-5 tons.

5. Design the cross section for a vertical post of a girder 18 feet

long, the total stress being 110 tons. The section to consist of
4 angles and 2 plates as in Fig. 129. The angles are connected by

diagonal bracing J inch thick, which may be neglected in calculation.

The post is strongly riveted to the side plates of chords, and may
be considered fixed at the ends.

It will be first necessary to assume a section, and see if it

fulfils the requirements ;
if not, it may have to be slightly altered.

p2
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Bankine's formula is

p = = sL_.-
; /= 6 tons per sq. in.

A
1 + ?""+

4fc*

j A-i <* Z
2Moad

.*. Area required = \ 1 + -
^J

.

a Z
2

Now 1+ . ^ will be somewhat greater than 1, hence, if we

divide the load by 5, we shall get an approximate area.

Approximate area = - = 22 sq. in.
5

Assume a section consisting of 4 angles 3J" x 3|" x f ", and two

plates 12" x J".
This area = 4x 2-485 + 2x12x1

= 21-94 sq. in.

Moment of Inertia of one angle 3J" x 3\" x f
= 2-80.

Distance of its centre of area from centreline YY = 1'25 in.

Hence the least Moment of Inertia of cross section which is

about YY
= 4 (2-8 + 2-485 x 1-25 2

) + 2 x fc^?
~\.2t

= 171-12 inch units.

.--Least ^=^=7-8.
P = 46656.

Therefore, safe working stress

/46656\

30000 V 7-8

= - = 5 tons per sq. in.
1 i C\*0.

.'. Area required = =22 sq. in.

which is almost exactly the area provided, i.e. 21-94 square inches.

The section chosen will therefore suit.

88. Euler's formula for long columns.

Ratio of
j greater than about 160. Euler's formula, which is

K

applicable only to columns where the ratio of length to diameter

is great, so that the column fails by buckling, is
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where P is the limiting load which the strut can support.
E Young's modulus of elasticity.

I the least Moment of Inertia of the cross section about
an axis through the centre of area of the section.

Z the length of pivoted strut or column.

This equation is for very long struts under ideal conditions

of initial straightness, perfectly axial load, and a perfectly homo-

geneous material, conditions difficult to fulfil in actual practice.
If p is the breaking stress,

A is the area of cross section,

p
then p =

, and I = AW ;A
277

1

p = -_ ........................ (7),

(L)

with a factor of safety of 5 for mild steel or wrought iron.

Working stress

89. Fixed ends.

If the strut is fixed at both ends, the load which it will stand
before yielding is the same as for a strut of half the length pivoted

at the ends
; so for I in (6) substitute -

If the ends are fixed

P =^ (8).

If one end fixed and the end pivoted, for I write jL

90. Modification of Euler's formula.

Kankine's formula is a modification of Euler's formula. For

very short columns, if / is the crushing strength of the material,
and A the area of cross section,

Breaking load =fA.
For very long columns, according to Euler,

Breaking load = -70.
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Then the formula

P = breaking load =-?A ...... (10)

may be taken as true for columns of all lengths in practice,
because in this formula I is small, the denominator is 1 (app.)
and

p=/f
When I is great we can neglect 1 in the denominator, and

And I = Ak2
,
where k is the least radius of gyration of the

section,

hence from (10)

P= fA

where a = %= ; but, if a is calculated from Euler's formula, we
7T hi

get values which make the strut too strong, as in practice ideal

straightness, symmetrical loading, and symmetry of elasticity

do not exist, hence the formula is treated as empirical and the

constants / and a are determined for experiment.

91. Johnson's parabolic formula.

Professor J. B. Johnson has deduced the formula

P =
-A
= J ~

When p is the buckling stress,

/is the
'

elastic limit
'

stress in compression of the material.

ft
~b a constant = j-^

If a curve is plotted (Fig. 130 (1)), representing Euler's formula
when applied to wrought iron columns, with ratios of I to k as

abscissae and buckling stresses as ordinates, then Professor

Johnson's formula

is the equation to a parabolic curve, tangential to Euler's curve,

where ,=-= 150, and with its apex at the elastic limit of the metal.

Fig. 130 (2).
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WROUGHT IRON COLUMNS.

/ fl\ 2

Pin ends ..........
^
< 170 ; p =

34000-0'67^J.

7

215

Flat or fixed ends .. . < 210 ; p
- 34000- 0'43 .

MlLD STEEL COLUMNS.

Pin ends
7 / Z

2

< 150 ; p = 42000 - 0'

Flat ends
^
< 190 ; p = 42000 -

0-62^).
.

I
Elastic
Limit,

1

re

cT

1"

I

50 100 150

Ratio of I to k.

Fig. 130.

CAST IRON COLUMNS.

7 25
Bound ends ~ < 70 ; p = 60000 r

K ^

Flat ends 1< 120
; p = 60000 -\($-

TIMBER FLAT OR FIXED ENDS.
7 / \ 2

Yellow pine ,-< 60 ; p = 3300-0-7KJ.

White oak
l

< 60 ; p = 3500-0-8
(3).

For timber d is the least lateral dimension.

200
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The working stress must not exceed s where n = 4 to 5 for
n

wrought iron or steel, 6 for cast iron, and 10 for timber.

92. Mr. T. H. Johnson's straight line formula.

This formula is of the form

P

where a and b are empirical constants. It is the equation to a

straight line tangential to Euler's curve. (Fig. 130 (3).)

The formula is simple, and easy of application. The objection
to it is that for short columns it gives too high a value of P.

WROUGHT IRON COLUMNS.

Hinged ends
f
< 178 ; p = 42000-157, .

Flat ends
^
< 218 ; p =

42000-128p

MlLD STEEL COLUMNS.

Hinged ends
^
< 159 ; p =

52500-220^.

Flat ends ~ < 195
; p =

52500-179^.

CAST IRON COLUMNS.

Hinged ends
|
< 09-6 ; p = 80000-

537^
.

Flat ends ,J < 121-6
; p =

80000-438^.

OAK.

Flat ends
|

=
128

; p =
5400-28^.

A suitable factor of safety must be applied to p to get the

safe working stress.

93. Columns with non-axial loads.

As stated before the line of action of the resultant load P
should coincide with the axis of the column. This condition

can be attained with pin joints, but when the column is fixed

at the ends by large flange joints it is difficult to secure this

condition of axial load.
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For non-axial loads the strength of the column must be

calculated by Art. 16, Chap. III.

For short struts we have, as in the case of a section subject to

bending and thrust (Art. 16, Chap. III.),

This gives the safe load P for a given safe compressive stress /x
.

Struts of medium length.
In this case we equate the maximum compressive stress due

to bending and thrust to the safe working stress got from column
formula.

Thus maximum compressive stress due to bending and
thrust (Art. 16, Chap. III.)

and, by equating this to p, the safe working stress from column

formula, we have

or, P= - . , ..(2).

This equation gives the safe load P, producing a given safe

intensity of stress p.
Where x is the distance of load P from centre of area

x
l

is the distance from centre of area of cross section

to edge of section nearest the load,
k is the radius of gyration about an axis through the

centre of area, perpendicular to the plane containing
the centre of the area and the centre of pressure (point

of application of load), as in Art. 16, Chap. III.

EXAMPLE.

A strut 12 feet long is of T-section 6" x 4" x |". Find the safe
load it will carry (a) if the load is axial, (b) if the load acts 1J inch

from the centre of area on opposite side to flange and on the central

axis YY. Fig. 131.



218 THE THEORY OF STRUCTURES [CHAP xm.

Take both ends as fixed.

kxx = 1-13; kyy
= 1-35.

A = 4'75 sq. in.

Distance of centre of area from upper edge of flange = 0-97 in.

CASE (a). Least k = 1-18.

P = L
AP =
'A
=

1 + JLf'V
80000U/

1 +
144

Hence safe load

30000

= 3'9 tons per sq. in.

P = 3-9 x 4-75 = 18i tons.

CASE (b). In this case the point of application of load is on
the axis YY. Hence we must use in our

calculation kxx , being the radius of gyration
about axis through centre of area, perpen-
dicular to the plane containing centre of

-X area and point of application of load.

Since kxx = 1*18, therefore, as before,

p = 3-9 tons per sq. in.

Also z = 1J in, x
l

= 4-0-97 = 3-03 in.

.'.

1+^f-
1 = 1 + Jf

fJ32-

- 4-5.

Therefore safe load from Equation (2)

= 4*1 tons.

NOTE. If the load had been non-axial, and on the axis XX,
then we should first have had to find p, using kYY as this is now
the radius of gyration about axis perpendicular to the plane

containing centre of area and load then using this new value of

p and kYY .

Safe load =



CHAPTEK XIV.

AKCHED EIBS AND BKACED AKCHES.

94. Steel arched ribs.

Steel arches are subdivided into two classes, i.e. (a) the

unbraced or rigid arch, consisting of two flanges with a solid

web like a plate girder ; and (b) the braced arch, consisting of

two chords or ribs braced together by lattice bracing.

95. Curve of pressures or linear arch.

Suspended and arcli systems. When a chain hangs under a

distributed load of uniform intensity per unit of span it assumes
the shape of a parabola, similar to that of the bending moment
curve for a beam or girder similarly loaded. There is a tension at

each point of the chain, the horizontal component of which is

constant. Further, if the load, instead of being uniformly dis-

tributed, consists of a series of loads hanging at intervals the

chain will take up a shape corresponding to the bending moment
diagram, and the bending moment at any point is proportional
to the depth of the chain below the line of supports.

If, now, we suppose the chain inverted and stiffened we get
an arch, and the same principles apply except that we have

compression or thrust at each point of the arch instead of tension.

The curve of pressure is the curve to which the resultant

pressure at each point is tangential. It is a funicular polygon
of the forces which act on the arch, and is the bending moment
curve drawn to a definite scale for a similarly loaded horizontal

beam of the same span.
If the curve of pressure or linear arch coincides with the

axis of the rib, the thrust on any normal cross section is axial,

and consequently of uniform intensity.
But the arch being incapable of adjusting itself to the bending

moment curve for variable loading, there is bending produced
where the curve of pressures does not coincide with the axis of
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arch, and at these sections we have a bending moment and

shearing stress, as well as a thrust.

An arched rib should be hinged at the springings and the

crown in order to provide for its expansion and contraction due
to changes of temperature. If the rib is not hinged it will undergo
bending stresses due to each change of temperature. In the

two hinged arch the hinges are placed at the supports only.

96. Bending moment and thrust in an arched rib.

Vertical loads. Consider an arched rib hinged at the crown
and the abutments. If the load be uniformly distributed, the

curve of equilibrium or funicular polygon will be a parabola
which must pass through the hinges at crown and springings.

If, in addition to this uniform load, the arch be subjected to the

action of a live load, the equilibrium curve or curve of pressures
will be altered. Let ADCB (Fig. 132) be the axis of rib ;

it should

Fig. 132.

be a parabolic curve as representing the equilibrium curve for

a uniform load. Let the rib be hinged at A, B, and C.

Under the uniform load the curve of pressures coincides with

the axis of rib, and the thrust on any cross section is axial and
of uniform intensity. Now, if the right half of arch is acted on

by a live load, the curve of pressures will assume some such

position AECB, and the only points at which the thrust is axial

are A, C, and B. At all other sections of the arch there is a

bending moment as well as a thrust.

Draw a vertical line JDE, cutting the axis of the rib at D
and the curve of pressure at E.

Draw EK a tangent at E to the curve of pressure, and call

T the thrust at E, its line of action being along the tangent EK.
Draw DF perpendicular to the tangent EK and FG perpendicular
toDE.

Then T at E is equivalent to a parallel force T at D and a

couple whose moment is

M = TxDF.
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The horizontal component of T is

H = T cos FDE =

Therefore M = TxDF = HxDE = H(JE- JD) .

Thus the bending moment at D is equal to the constant horizontal

component of thrust multiplied by the vertical intercept between the

axis of rib and the curve of pressure at that point.
This formula is perfectly general, and applies whether the

arched rib is hinged or not hinged.

Again, the force T at D (the centre of area of the cross section

of rib) may be resolved into components parallel and perpendicular
to the normal section at D

;
the parallel component is the shearing

stress ; the perpendicular component produces a uniform com-

pressive stress which has to be combined with the stress due to

bending moment. Thus the thrust, shear, and bending moment
at any section are easily found when the funicular has been drawn.

EXAMPLE.

A semi-circular arched rib, hinged at the crown and springing,
carries a uniform load of w Ibs. per foot of horizontal length. Find
the position and value of the maximum bending moment.

A

In Fig. 133 let AECB be the axis of the circular rib of radius r.

The load being uniform, the line of pressures will be the parabola
ADCB, passing through the hinges A, C, and B. It has been
shown that the bending moment at any point E of the rib is

M = H x DE
where H is the horizontal thrust.

In order to find the maximum bending moment it is first

necessary to determine the maximum value of DE.
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Take the centre of circle as origin, and let us find the value
of x (OJ) for which ED is a maximum.

Now, JE = Vr^^x*,

Therefore DE = Vr2 -x2 -*(r
2-x 2

).

Differentiating and equating to zero for a maximum,

-x 2x _~ + '-

-*.
Substituting in the equation for DE we get

Max. DE = r
-

4

The direction of the thrust T at A is a tangent to the parabola
at that point. This tangent can be at once got by producing OC
to a point K, making CK = CO, and then joining KA. Now as

OC= OA = r, the tangent at A makes an angle 6 with the

horizontal AO such that

tan 6 = - = 2,
T

2 1
and sin 9 = -

; cos 8 = -
7
-.

\/5 A/5

2
Kesolving vertically, -^ T = wr,

\/5

^ wr \/5
therefore T =

^

Horizontal thrust

77 T n, ~ a wr\/51 wr W
"5~V6 2

'

4'

where TF = total weight on the arch.

Therefore maximum bending moment
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97. Arch with three hinges. Loads vertical.

The hinges are placed at the ends and at the crown. At
these three points the bending moment is zero, therefore the

linear arch passes through the centre of each hinge.
In Fig. 134 let ACE be the rib, hinged at A, B, and C, and

suppose W the load acting at a distance x from A, the left support.

Then, since there is no load on BC, the pressure at C and the

reaction R
l
at B must be equal and opposite, their lines of action

being along BC. Join BC and produce it to meet the line of

action of W in D, join AD ;
this must be the line of action of the

other reaction R
2
at A. These reactions may be found graphically

by taking the vertical PQ to represent W, and drawing lines PO
and QO parallel respectively to R

l
and E

2
. If OS be drawn

horizontal, we get H the horizontal component, and V
lt F2 ,

Fig. 134.

the vertical components of E
l
and B

2
. The load being vertical

the horizontal components of the two reactions must be equal.
Let V

1
and F2 be the vertical components. Then if I = span

VJ-W(l-x) = 0,

-x = 0,

where H is the horizontal component and d the rise of arch at

the crown.

Prom these equations

T
Wx

The values of V
l
and F2 are the same as the vertical reactions

for a horizontal girder of the same span loaded in the same way.
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The reactions due to a number of loads can be found by adding
together the respective values of F,, F2 , and H found for each

load, or they may be found graphically. When the reactions have
been obtained, the stresses in the different members may be
found either analytically or graphically as in the case of an

ordinary truss.

98. Professor Ewing gives the following method for finding
the bending moments :

The linear arch must pass through the centre of each hinge.
Draw the axis of rib, then draw the bending moment diagram
for the given loads considered as acting on a beam of span AB.
If this diagram passes through the third hinge, it is the true linear

arch
;

if not, alter the scale of the bending moment diagram,
drawn on the base AB, so as to make it pass through C the third

hinge. This can be done by first drawing it to any scale, and
then reducing all the ordinates in the ratio of the central height
of axis of rib to the central ordinate of the bending moment
diagram.

The linear arch having been thus drawn, the vertical distance

between it and the axis of rib gives on the same scale the bending
moment. The thrust T is found from the known form of the

linear arch and the known values of the loads. Thus the stress

at any section of the rib is found. The loads may be symmetrical
or unsymmetrical.

This method may also be applied to the case of a chain with

hinged stiffening girder.

99. Braced arches.

The braced arch is usually one of two types (a) The trusses

are spandril braced with horizontal top chord which carries the

roadway, and a parabolic rib, as in Fig. 135 (a). This is the form
of steel arch bridge built at Clifton, Niagara. Span 840 feet, (b)

The upper chord is horizontal and carries the roadway, the lower

chord is curved (usually parabolic), and the chords are connected

by vertical and diagonal bracing, Fig. 135 (b). This is the form
of the Zambesi arched bridge built near the Victoria Falls.

Span 500 feet.

Usually braced arched bridges are built with 3 hinges, viz.

hinges at each abutment and at the crown. When hinged at the

crown, the hinge is placed in the lower chord.

Three hinges are used as the stresses are more easily and more

accurately obtained, and temperature stresses are eliminated ;

but in the two large arched bridges above mentioned, the Clifton

bridge and the Zambesi bridge, only two hinges were used, one at
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each abutment, probably to ensure more lateral stability and

rigidity.

With regard to the stresses, it has already been shown in the

chapter on parabolic girders that for a uniform dead load there

is no stress in the bracing, so that the bracing between the two
chords of the arch, as in the Clifton bridge type (a), or between
the parabolic chord and horizontal member, as in the Zambesi

bridge type (&), is only affected by the live load.

100. Stresses in a braced arch with three hinges.

In Art. 97 it was explained how to obtain the abutment
reactions for a single load W. It was there shown that if a

and b (Fig. 134) are the hinges at the abutments, and if a single

Fig. 135.

load W is placed at a panel point distant x from a, then the

vertical components of the reactions are

W(l-x) v Wx
a
~

I I

And the horizontal components are each equal to

H-|f
When these reactions are known we can find the stresses due to

W in each member. If we perform the same operation for each

weight, and tabulate the stresses, we can determine the maximum
stresses of each kind produced in every member of the arch,

or more simply we can find the reactions at the abutments and
determine the stresses graphically from the stress diagram.

Example. Let Fig. 136 represent a steel braced arch 160 feet

span, divided into 8 panels, each 20 feet long. It carries a dead

Q
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load of 12 tons at each panel point. The arch is hinged at the

crown and abutments. Find the stresses in each member of the

arch. The lower or curved chord is not parabolic. An example
of a similar braced arch with parabolic lower chord is given in

Art. 102.

12

C D

Fig. 136.

The half panel loads B
l
C

l
and BC may be omitted, and at the

end add a half panel load to the compression in each end vertical.

The total load omitting these is 84 tons. Draw a vertical line

(Fig. 137) and on it set off Cfi to represent 84 tons ;
then starting

mark off C-fl^D^, DC, each equal to 12 tons.

H
Fig. 137.

Now each half of the arch is loaded with 42 tons. Con-

sidering the left half of arch, the proportion of this vertical load

carried by the abutment at a is 18 tons, and at the crown c, 24

tons. Similarly for the right hand half of the arch we have the
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vertical reaction at b = 18 tons, and at the crown c, 24 tons.

Hence, from C
1
mark off C^ = 18 tons, X^ = 48 tons, and

XC = 18 tons.

From X 1
and X draw lines parallel to ~bc and ac (Fig. 137), then

A is the pole and AX
l represents the reaction of right half of

arch on left half, andXA that of the left half of arch on the right
half. Join C

}
A and CA, then C^A is the resultant reaction at

the right abutment b, and CA is the resultant reaction at the

left abutment a. The horizontal line AS is the horizontal com-

ponent H of the reactions at the abutments, and also the stress

on the hinge at crown of arch. Having found the abutment
reactions the stresses are got by the stress diagram (Fig. 137).

101. Stresses obtained by moments.

The stresses in the braced arch may be obtained by moments
when the abutment reactions have been found. As an example
let it be required to check the stresses in members EN and AM
(Fig. 136) as found from the stress diagram.

Through a (Fig. 136) draw ad parallel to CA (Fig. 137), then ad

represents the direction of the abutment reaction at a.

To find the stress in EN. Take moments about the inter-

section of MN and MA (Fig. 136). Consider the equilibrium of

the portion of arch to left of NO. The external forces acting on
it are the abutment reaction at a, equal to 108 tons, and the two
vertical loads CD and DE, each equal to 12 tons. (The half

panel load was omitted in stress diagram.)
The perpendicular arm from abutment reaction to centre of

moments is 8-2 feet, and NO equals 10 feet.

Hence,
S Ŷ xlO = 108x8-2-12(40 + 20).

SEy = 16-5 tons.

Stress in AM. The centre of moments is the intersection of

MN and EN.

Forces
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102. Live load stresses.

In order to determine the maximum tension and compression
in any particular member it is first necessary to ascertain which

panel points must be loaded in order to produce these maximum
stresses.

CHORD MEMBERS.

Upper chord. Member cd (Fig. 138).

Consider a single load W.
Take a section YYV cutting the three members cd, cD, CD.

Then the point about which to take moments in order to deter-

mine the stress in cd is D, the point of intersection of the other

two members.
Join AD and produce it to meet the direction of the hinge

reaction E
x (which acts in the direction MF) in o. If the vertical

>}< Tension ->i

cd
*R<

\<-Te7iSLcrv ->< Compression ->jCD CD
Fig. 138.

load W is placed so that its line of action passes through o, it can

produce no stress in cd. For if W acts through o, it must be

balanced by its reactions acting in directions Ao and Mo.
Thus, the portion of the arch YY

V
F is acted on by the forces

W and B
lf

which are equivalent to a single resultant R
2 acting

in the direction oA which passes through D the centre of moments ;

consequently there is no bending moment at D and no stress in cd.

If W is placed anywhere on the right of o
;
for all positions to

the right of F, its effect is along R2
in direction FA

;
and for all

positions between F and o along directions of E
2 lying between

oA and FA, and consequently below D. The moment of the

force is clockwise, tending to extend cd which is in tension.

For any position of W between YY
l
and o, the direction of
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R
2
is above D, and produces a moment round D which is counter

clockwise, and therefore cd is in compression. If W is placed
to the left of YY

19
R

L
is the resultant of W and R

2 , acting on

yy^F in direction FM, its moment round D is counter clockwise

and cd is in compression. Thus the member cd is in tension for

all positions of the load W to the right of o, and in compression
for all positions of W to the left of o.

For clearness the sense of the stress in cd for different positions
of the load W is shown in upper part of Fig. 138.

Lower chord. Member CD (Fig. 138).
Join A to c, the centre of moments for CD, and produce Ac

to meet E in p. Then, as before, if the line of action ofW passes

through p, there is no stress in CD, and that if W is placed in any
position to the right of p, then CD is in compression, and if W is

placed in any position to the left of p, then CD in tension. The
maximum tensile stress in CD will be when the portion of platform
from a to p is fully loaded, the portion pm being unloaded ; and
the maximum compressive stress in CD will be when mp is fully
loaded and ap is unloaded.

It should be noticed that the panel point e, which is the

centre of moments for the member EF lies on the opposite side

of E! to the other centres of moments a, b, c, d ; consequent!^
all loads to the left of EF will cause compressive stress in EF ;

therefore EF will be in compression for loads at all the joints,
and the maximum compression in EF will occur when the live

load covers the whole platform.
For clearness the sense of the stress in CD for different positions

of the load W is shown in lower part of Fig. 138.

DIAGONAL BRACES. These should be taken separately.
Consider aB and cD (Fig. 139).

Diagonal brace aB. Take a vertical section cutting the three

members ab, aB, AB ;
then the centre of moments for aB is 8

19

the intersection of ab and AB. Produce AS
19

to meet E
l
in P

} ;

if the line of action of W passes through JPlf there can be no
moment about S^ and no stress in aB.

If W is placed on the right of F, the resultant of W and E
l

will be in direction FA, and if placed between F and P
l
the

resultant will be in some direction between FA and P^, in

either case it passes below S
19 produces a clockwise moment,

and causes compression in aB.
If W is placed between P

l and the vertical section cutting ab,

the resultant E
2
must pass above S

19
its moment is counter clock-

wise, causing tension in aB. The sense of the stress in diagonal
aB for different positions of the load W is shown in upper part
of Fig. 139.
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Diagonal brace cD. The centre of moments is S.
3 ;
P

3
is the

intersection of S
3
A with Er If the load W is placed anywhere

to the right of P
3

it must as above cause compression in cD, and
if placed between P

3
and the section YY

1
will cause tension in cD.

When the load is placed to the left of YY\ the resultant force on

YY^F is R
lf
and as its direction passes below S

3
its moment is

clockwise and causes compression in cD.

There are thus two points where the stress changes, one at

P
3 ,

the other between c and d. The sense of the stress in cD
is shown in upper part of Fig. 139 for different positions of the

load W.
Thus, the maximum tension in diagonal cD occurs when the

portion of platform between section YY
l
and P

3
is loaded, the

H

1

I 171

*$* Compression, cuB

\fCcmpr!
1cD ^TensioncD -^ Compression cD

\fTenstoncC'-4* Compr^c C 4* Tension C C >j

L
'

!

r^Compression cuA. 4*" -Tension cuA. >!

Fig. 139.

remainder of the span being unloaded ; and the maximum com-

pression in cD occurs when the whole span is loaded with the

exception of the portion between YY
l
and P

3 , which should be
unloaded.

For some of the diagonals near centre the point P may
fall below the hinge F, in which case P is no longer a point
of division between loads which produce stresses of opposite
sense, and the section YY

l
alone marks the division.

VERTICALS. The section taken, XX lt
must be inclined so as

to cut the vertical. The centres of moments and the load limits

are the same for the vertical and the diagonal brace which meet
at the top chord, such as cC and cD. The loading that produces
compression in a diagonal brace produces tension in the vertical,

and vice versa.
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The sense of the stress in verticals aA and cC corresponding
to the position of load W is shown in lower part of Fig. 139.

EXAMPLE.

A oraced steel arch, as in Fig. 140, is hinged at the crown and
the two abutments. The span is 150 feet, and the rise 30 feet. The

top chord is horizontal, and is divided into 10 equal bay lengths oj
15 feet. The lower chord is parabolic, and is connected to the upper
horizontal chord by vertical and diagonal bracing. The depth of
central vertical is 6 feet, and that of the end verticals 36 feet.

If the dead load per panel is 35 tons, and the live load per panel
is 15 tons, determine the stresses in cd, CD, cD, and cC.

Tensile stresses are denoted by negative sign and compressive
stresses by positive sign. The half panel loads at a andm may be

omitted, as they are carried direct by the end verticals. Having
found the stresses in all the members, add a half panel load to the

compression in each end vertical.

Reactions. As in Art. 102 it was shown that the maximum
tension and compression in members is produced by different

loadings, it is convenient to first make a tabular statement of the

vertical and horizontal components of the reaction at the left

abutment due to live load at each panel point separately.

Vertical and Horizontal Reactions at A
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Therefore Va
= 1-5 + 3-0 + 4-5 + 6-0 + 7*5

= 22-5 tons,

and H = 3-75 + 7'50 + 11-25 -f 15-00 + 18-75
= 56-25 tons.

Considering the forces to the left of the section YY cutting

cd, cD, and CD, and taking moments about D, we have

Scd x 10-8 = 22-5 x 45-56-25 x 25-2

= -405-0.

/. Scd
= 37*5 tons tension (1).

Maximum compression. The maximum compression in cd

occurs when joints b to e are loaded with the live load, the other

joints being unloaded (Art. 102, Fig. 138).

For this loading

Va
= 9-0 -f- 10-5 -f 12-0 +13-5
= 45 tons.

H = 15-00 + 11-25 + 7-50 + 3-75
= 37'5 tons.

Taking moments about the lower joint D,

Scd x 10-8 = 45 x 45 - 37-5 x 25-2 - 15 (30 + 15)
= 2025-945-675
= +405.

/. Scd
= + 37-5 tons compression (2).

From (1) and (2) we see that the sum of the maximum tension

and maximum compression is zero, therefore when all the joints
are loaded with the live load the stress in cd is zero, and con-

sequently the dead load stress is also zero as all the joints are

loaded with the dead load.

DIAGONAL cD.

Maximum tension. By Art. 102 (Fig. 139) the maximum
tension in cD occurs when joints d and e are loaded.
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Hence Vn
= 9 + 10-5 = 19-5 tons,

and fl = 15-00 + 11*25 = 26-25 tons.

Moments must be taken about s, the intersection of cd and
CD (Fig. 140).

By proportion we find ds = 27 feet, therefore as 72 feet.

To find st the perpendicular from s to cD, the angle dcD is

1 Oft
tan -liJL?

= 0, say,
lo

then st = 42 sin = 24-5 feet.

Taking moments of the forces on left of the section YY
about s, we have

SCD x24-5 = 26-25x36-19-5x72
= -468.

/. ScD
= 19*1 tons tension (3).

Maximum compression. The maximum compression in

diagonal cD occurs when joints b, c, f, g, h, ~k, and I are loaded

(Fig. 139).
Hence V

l
= 13-5 + 12-0 + 7*5 + 6-0 + 4-5 + 3-0 + 1-5

= 48 tons,

and H = 3-75 + 7*50 + 18-75 + 15-00 + 11-25 + 7-50 + 3*75
= 67-5 tons.

Taking moments as before about s (Fig. 140),

SeD x 24-5 = 67-5 x 36 - 48 x 72 + 15 (57 + 42)
= 2430-3456 + 1485
= +459.

.-. ScD
= + 18-7 tons compression (4).

From (3) and (4) we see that when all the joints are loaded

with the live load there is no stress in the diagonal cD, and con-

sequently the dead load stress in diagonal cD is zero.

LOWER CHORD. MEMBER CD.
From Art. 102 (Fig. 138), the maximum compression in CD

occurs when joints d to I are loaded and from table of reactions

we have as before

Va
= 42 tons, and H = 82-5 tons.

The perpendicular arm from c on CD = 15-6 feet.

Taking moments of the forces on left of section YY about c,

the intersection of cd and cD, we get

#x!5-6 = 82-5x36-42x30
= +1710.

.-. SCD = + 109-6 tons compression (5).

The maximum tension in CD occurs when joints b and c are

loaded, in which case

Va
= 25-5 tons, and H = 11-25 tons.
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Taking moments as before about c,

flfOT x 15-6 = 11-25x36 -25-5x30 + 15x15
= 405-765 + 225
= -135.

/. SCD = 8-6 tons tension (6).

When all the joints are loaded with the live load, the maximum
stress in lower chord member CD is from 5 and 6,

+ 109-6 - 8-6 = + 101 tons compression (7).

Check. When all the joints are loaded with live load we have

seen that there is no stress in the diagonals ; consequently the

horizontal component of stress in any member of the parabolic
or lower chord is equal to H .

Therefore SCD = H sec ft

where ft
= angle that the member CD makes with the horizontal,

1 (Vft

but tan ft
= ==?, hence sec ft

= 1*076,
i

and H from table of reactions = 93*75 tons.

Therefore SOD = 93-75 x 1-076 = +101 tons compression,

which is the same value as in Equation (7).

Dead load stress. The dead load stress in lower member CD
can be found at once from above, since the ratio of dead load to

live loads is ff = .

Hence, dead load stress in CD = % x 101
= + 232 tons compression.

Therefore maximum stress in CD = 232 + 109-6
= 341*6 tons compression.

Minimum stress in CD = 232 8*6

= 223-4 tons compression.
VERTICAL cC.

Consider the inclined section Y
l
Y

l cutting be, cC, and CD.
As explained in Art. 102 (Fig. 139) the maximum compression in

vertical cC occurs when the joints c, d, and e are loaded.

From table of reactions we get for this loading,

Va
= 31-5, and fl= 33-75 tons.

Taking moments about s of the forces on left of section,

Scc x 42 = 31-5 x 72-33-75 x 36
= +1053.

.-. ScC
= + 25-07 tons compression (8).

The maximum tension in vertical cC occurs when the joints

&,/, g, h, fc, and I are loaded (Art. 102, Fig. 139).
From table of reactions

Va
= 36 tons, and H = 60 tons.
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Taking moments round s, we get
Scc x42 - 36x72-60x36-15x57

= 2592-2160-855
= -423.

.-. ScC
= 10-07 tons tension (9).

From (8) and (9) we see that when all the joints are loaded

with live load the stress in vertical cC is

+ 25-07-10-07
= +15 tons compression,

which is equal to the panel load.

Dead load stress.

It follows that the dead load stress in vertical must be equal
to the dead panel load that is, 35 tons compression.

Therefore maximum stress in vertical cC is

+ 35 + 25-07 = +60-07 tons compression,

and minimum stress in vertical cC is

+ 35 10-07 = +24-93 tons compression.

103. Parabolic arch rib, hinged at ends.

A steel arch rib is a girder in the form of an arch, with the

radial depth usually constant. The chords, consisting of plates
and angles, are connected either by a continuous plate web or by
vertical and diagonal bracing.

The Niagara and Clifton steel arch, already alluded to,

is an example of this class of structure. The span is 840 feet

and the rise 150 feet to centre of arch, depth 26 feet. The two

parallel chords are connected by vertical and diagonal bracing.
The following method is due to Professor Charles E. Greene,

and for fuller details the reader is referred to his book on
*

Trusses

and Arches Analysed and Discussed by Graphical Methods,' and
*

Higher Structures,' by Merriman and Jacoby.
In Fig. 141 A and B are the hinged ends. AHB the axis of rib.

Consider a single load W, distant OG from the centre of span.
Let c = the half span = OB.

~k = rise of arch.

b = OG = nc, a fraction of the half span.

IJo
= ordinate to the load polygon at point of application

of load W.
In the case of the three-hinged arch, the reactions pass through

the abutment hinges and the hinge at crown. But in the case

of the two-hinged arch the reactions pass through the abutment

hinges and the locus of the point C, the intersection of the direc-

tions of the reactions for a load placed at any point.
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The locus of the point C is found from the equation

_32
y

c
=-., and since b = nc

32
(1).

This formula is applicable to points on either side of the

centre 0. From (1) the locus curve of C can be plotted, and the

directions of the reactions found graphically for W at any point

l4-M

by connecting the abutment hinges with the point where the

line of action of W cuts the curve.

At the centre b o, y =
||/c.

At the ends b = c,

Horizontal thrust. The horizontal thrust at each hinge must
be the same, since the sum of the horizontal forces acting on the

arch must be zero. Taking moments about B and A,

T7 ._W(c-b) ml7 -W
(2),

but

Therefore

H c + b

V.

y>

or substituting for y its value in (1)

H = - 5
(
5 ~ n^

~~2~~' 32
(3).

H being the horizontal thrust at abutment due to any load

W placed at a distance, nc, from the centre of span.
The formula applies to a load placed on either side of the

centre.
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From Equations (2) and (3) the components of the reactions

due to each load can be found, and the results added for those
loads which acting together cause a maximum stress in any
given member. The stresses in the member can then be found

by taking moments of the forces on one side of the section

cutting it.

Bending moments.
It has been shown in Art. 96 that

M = H(y-z) .................. (4).

Where in this case

M = bending moment at any point of span, due to a load W
distant nc from centre of span.

y = ordinate DF to inclined line of load polygon at point of

bending moment M.
z = ordinate DE to axis of arch at point of bending moment

M, n^c from centre of span.

Having found y from Equation (1), the values of y can be
obtained by proportion. The ordinate z is proportional to the

product of the segments into which it divides the span.

z= (l+njcil-njc-
= (l-V)/c .................... (5).

Temperature stresses.

A change of temperature affects values of H, but not of

VA or VB . The arch is usually designed for some standard tem-

perature.
If e is the coefficient of expansion,

t is the rise of temperature above standard ;

then fl-T ..................^
For a fall of t in temperature, t is negative and H outward.

here Ic
= Moment of Inertia at crown.

104. Example of parabolic arched rib.

Fig. 142 represents a parabolic arched rib 150 feet span, 30 feet

rise, divided into 10 equal panel lengths of 15 feet each. The
dead load is 32 tons per panel, and the live load 16 tons per
panel.

Live load.

Determination of y and H.
To plot the reaction locus it is necessary to find the different

values of the ordinate y for different positions of panel load by
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Equation (1). Then get H from Equation (3). It is only necessary
to calculate y and H for half the span, as at corresponding points

equally distant from the centre they have the same values, since

n2
is positive whether n is positive or negative.

Live panel load W = 16 tons; 2-W (Equation (3))
= 40; /c = 30.

K

TaUe I.



XIV.] AKCHED BIBS AND BRACED ARCHES

To find y and z the panel load must be placed at each point of

division and for convenience of reference a table made.

y~ is got at once by proportion from
^~ ; thus, if the load

k n>

is at division 6, the load polygon being a triangle
*L will be
K

of f ; and from the rightsuccessively from the left J,
n/

J,f....of|.

From (5) ^
=

(1 n^
'
2
), where n^c is the distance of ordinate z

K

from the centre.

To exemplify the method of determining the bending moments
due to a single panel load at one division of the arch, let us find

the bending moments due to W = 16 tons placed at division 6.

From Table L,
|?

at 6 = 1'293,

H = 14-88,

and .'. feff = 446-4.

Table II.

Values ofM due to load W 16 tons at division 6.

Division
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Table III. Bending Moments.

1
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Table IV.

241

Load at
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The maximum negative moment at 5 or crown is due to loads

at 1, 2, 3, 7, 8, 9,

for which loading VA = 48 ; H = 53-8.

M5
= 48x75-53-8x30-16(2 + 3 + 4)15
= 174 foot tons,

which checks with Table No. III.

Temperature thrust.

If this arch was designed for a standard temperature of 60

and that the variation of temperature was likely to be 80, find

the maximum thrust if

Ic
= 180000 inch units.

e= -000007.

E = 13000 tons per sq. in.

k = 30 feet = 360 inches.

From (6) and (7)

77 = +15EIcte

l
~

8/c
2

^15 x 13000 x 180000 x 80 x 7

1000000 x 8 x 360 x 360

= 19 tons.

106. Shear parabolic rib.

In the case of a hinged rib, having a parabolic curve for

neutral axis, when loaded all over with a uniform load there is

no shear in the bracing, and the thrust is tangential to the

parabolic curve.

For a load W placed in any position on the rib (Fig. 143) we
have (a) a vertical reaction V

l
at the left abutment, and (b) a

horizontal thrust H. The vertical force that must be combined
with H to have a resultant reaction tangential to parabola at

2/c
abutment is evidently H tan = H .

c

Call this force F^ It corresponds to the vertical reaction at

abutment due to a uniform load on a beam.

Consequently, if

V = shear at left abutment due to a load W,
V

I
= vertical abutment reaction on the left due to load W,

F
1
= vertical reaction at either abutment necessary to

combine with horizontal thrust H, due to any load W, in order

to have the resultant reaction at the abutment tangential to the

parabolic rib axis,

V=V l
-F

1
= W-- - -

(8).
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Fig. 144 shows the shear diagram. The ordinates from AB
to CEFH represent the shear due to W. The ordinates to the

straight line DG represent the vertical force to be combined with
horizontal thrust for tangential thrust.

Example. To determine the shear at sections midway between
the points of division of the parabolic rib in Fig. 142 or 143.

Call W the load, so as to make the results generally applicable

(in example W = 1Q tons).

\A 6T^
u^. r >< 7i

Fig. 144.

From Equation (8)

Substituting for H from equation (3)

F=F
(

""^
1

c 1 2 32

The values of
1-" n2

are given in Table I.

The details of calculation forW at division 6 will be given. For
B2
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W at other points the calculation will be similar. Table V. gives
the final results for W at each point of division. It will be seen

that the calculations need only be made for half the span. The

figures for the other half being the same, but in reverse order with

opposite sign. Having found F
l
at the ends, F at any other

point can be got from the slope of the inclined uniform shear line

which passes through the centre of span.
For W at division 6,

From Table I. H = 0-372 ~W.
k

^ = 2x0-872^7
= 0-744 W.

F at middle of first division, A - 1 = 2- F
l
= 0-67.

Each succeeding ordinate at mid-division diminishes by

5 5

Values of V for W at division 6.

Mid. space



CHAPTEE XV.

EEINFOECED CONCRETE.

107. Reinforced concrete.

Concrete possesses a relatively high compressive strength,
but is weak in tensile strength. It is cheap, practically fireproof,
and protects steel embedded in it from corrosion.

Steel is capable in resisting great tensile and shearing stress,

but when exposed to the air it soon rusts
; and when exposed to

high temperatures is liable to expand and distort.

For all structural members, such as beams, subject to both
tension and compression, the two materials can be combined
with advantage. Steel rods are embedded in the concrete near

the tension edge of the beam, and the tensile stresses are carried

by them. The concrete takes the compression, and forms a

protection for the steel from the effects of heat and atmosphere.
Reinforced concrete is now used largely in modern designs for

beams, girders, columns, bridges, retaining walls, floors, tanks,

pile work, &c.

The concrete is usually composed of cement, sand, and broken
stone in the proportions 1:2:4 or 1 : 2J : 5. The cement
should be up to the British standard specification, the sand
should be clean and sharp, and the size of the stones from f inch

to 1J inch according to the description of work. The concrete

should be thoroughly mixed, first dry, then wet, and deposited
rather wet so as not to require much ramming.

108. Compressive strength of concrete. Working stresses
for concrete and steel.

The E.I.B.A. Keinforced Concrete Committee recommend the

following :

If concrete is of such a quality that its crushing strength is

from 2400 to 3000 Ibs. per square inch after 28 days, and if the
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steel has a breaking tensile strength of not less than 60,000 Ibs.

per square inch.

Concrete in compression in beams sub-

ject to bending . . . . . . 600 Ibs. per sq. in.

Concrete in columns under simple

compression .. .. .. 500

Concrete in shear in beams . . . . 60 ,,

Adhesion of concrete to steel . . . . 100 ,.

Steel in tension . . . . . . . . 15,000 ,. ,,

Adhesion. The force of adhesion between concrete and

plain steel may be taken as of a ton per square inch, or 250 Ibs.

per square inch. Assuming a factor of safety of 4, we get a

working stress of 60 Ibs. per square inch.

As regards the cross sectional area, it is better to use bars of

small area, as their perimeter is proportionately greater than a

lesser number of large bars giving the same total area of section.

They can also be bent into position more easily.

Bars are not usually used of more than 1" to 1|" diameter.

For increasing the adhesive force several special forms of bars

are in use, such as the twisted bar and the indented bar. With
these the working stress for adhesion may be taken at from 100
to 120 Ibs. per square inch.

Shearing Reinforcement of web.

Various methods have been adopted for reinforcing the web
with steel. In one method the horizontal bars are bent up near

the supports, or separate inclined rods are used attached to the

horizontal ones. The
' Kahn '

bar is a special form in which the

horizontal bar is cut into strips at the ends, and these are bent

upwards.
Another form of reinforcement consists of vertical

'

stirrups
'

or thin bars of steel looped round the horizontal bars having their

ends bent out at the top so as to grip the concrete. These stirrups
are also used in combination with inclined bars. The distance

apart of the stirrups varies from about J to f the depth of beam.
Other forms of reinforcement are by means of expanded

metal, or by rods formed into truss shape.
Without reinforcement in the concrete the working stress

for shear is about 25 to 30 Ibs. per square inch. With reinforce-

ment the working stress may be taken at 60 Ibs. per square inch.

The working shear stress for steel 12,000 Ibs. per square inch.

Distance apart of the steel bars.

There should be a clear distance of at least 1J diameters

between the bars
;
and the same between the outside bars and

the surface of the concrete.
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Modulus of elasticity.

The average value of the modulus of elasticity of good con-

crete is about 2,000,000 Ibs. per square inch
; that of mild steel

30,000,000 Ibs. per square inch. Hence the ratio of the modulus
of elasticity of the steel to that of the concrete may be taken
as 15 to 1.

This ratio may be assumed to be the same for both compression
and tension.

109. Reinforced concrete beams.

Notation.

Let Es be the modulus of elasticity of the steel.

Ec concrete.

,, r ratio of Es to Ec .

,, A s cross sectional area of the steel.

b breadth of beam.

,, d depth from compressive edge of beam to steel.

,, p ratio of area of steel to area of beam above the

^
sreei, 1.6.) T~~-J*

y l depth from compressive edge to neutral axis.

/8 the stress per square inch for steel.

f, concrete.

Assumptions.
As in the ordinary theory of bending, it is assumed (a) that

the section of beam which is plane before bending remains plane
after bending ; (b) the resultant compressive stress is equal to

the resultant tensile stress.

From (a) it follows that the strains or deformations of the

fibres at a section of beam are proportional to their distances

from the neutral axis.

110. Ordinary theory neglecting" the tensional resistance
of the concrete. Straig-ht line distribution of stress.

It is assumed that the whole of the tensile stress is taken by
the steel reinforcement, and that for the concrete

'

stress is

proportional to strain,' which means that the intensity of stress

on any fibre of a cross section of a beam is proportional to the

distance of the fibre from the neutral axis. The intensities of

stress in the concrete up to the working stresses vary as the

ordinates to a straight line.

The law of variation of the modulus of elasticity is uncertain,
and in assuming a straight line distribution of stress up to the



248 THE THEORY OF STRUCTURES [CHAP.

working stresses, i.e., Ec constant, the error involved must be

very small and is on the side of safety.
Position of neutral axis.

Since the deformations or strains vary as the distances from
the neutral axis, we see from Fig. 145 that :_Strain in steel_ _ d y1

Strain in outside fibre of concrete
"

y l

L

77
1

*

d (2).

This gives the position of neutral axis when fs and fc are

known.
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Therefore from Equation (3)

249

*
fs

Eliminating -by Equation (1),

or 2* = ml A / 1+^-1 ) (4).

From this equation the position of neutral axis can be found.

From (4) it is seen that ^ increases as v or r increases.
d

Table of values of ^, for r = -=? = 15.
d Ec

'-*
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bending moment of the external forces. For a given bending
moment, / and/, can be determined from Equations (5) and (6).

Thus, /, =

pbd (d
'

Having found/ and/, we have from Equation (1)

2/i
1

d
:=

r+7.

and from (3)
-

To determine the moment of resistance of a beam, when the

dimensions and area of reinforcement are given, the position of

neutral axis is first found from (4) ;
then the ratio of

y-
from (2).

Jc
If this ratio is less than the ratio of the working stress on the

steel to the working stress on the concrete, the reinforcement is

in excess and the moment of resistance must be determined from

/. the working stress on the concrete. If ^ is equal to or greater
J c,

than this ratio, the Equation (6) containing/ must be used.

Shear. If F is the vertical shearing force the vertical intensity

of shear stress =

EXAMPLES.

1. A reinforced concrete beam is 8 inches broad, and 12 inches

deep to the centre of the reinforcement. If the working stress for the
A

concrete is 600 Ibs. per square inch, determine p = ~, so that the

intensity of stress in the steel may be about 10,000 Ibs. per square
-p

inch, also the position of the neutral axis. Assume r = == = 15.
c

.

If the span of the beam is 16 feet, determine what uniformly
distributed load it will safely carry.
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From Equation (7)

P =
2x 10000 /-

JLOOOO \

600 V 15V600J

, al.. = 0-014.
1900

Let the tension reinforcement consist of three f-inch steel

rods. Then,
A 8

= 3 x 0-442 = 1-326.

6<Z = 8 x 12 = 96.

=0-0138.

Position of neutral axis.

From Equation (4)

*- 12x0.0138x15

= 5*64 inches.

Moment of resistance or safe bending moment considering the
concrete is from Equation (5).

MR = x 8 x 5-64 (12
-

1-88)

= 136984 inch Ibs.

= 11415-4 foot Ibs.

The stress in the steel from Equation (6) is

f ._ Ms 136984

A (a M * '326 x 16-12

*(
-

3-;
= 10-2 Ibs. per sq. in.

The span being 16 feet, let W = total uniformly distributed

load. Then Max. BM = = W x 16
.

8 8

...

JFxie = 11415 .4 foot lbs>

/. TF = 5707-7 Ibs.

2. Design a reinforced concrete beam 14 /ee span, to carry a

uniformly distributed load of 500 Ibs. per foot run ; if the working
strengths of the concrete and steel are 600 and 10,800 Ibs. per square
inch respectively.

Tyl

Assume r = --? = 15.
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By Equation (7)

[CHAP.

2 x 10800 10800

V 15 x 600,

= 0-0126.

From Equation (4)

:

^
= 0-0126 x

= 0-456

From Equation (6)

/. M = 10800 x 0-0126M d-

= 136-1 x 0.8486d2

= 115*4foZ2 inch Ibs. ; b and d being in inches.

Wl
The maximum bending moment = -5-

8

= 147000 inch Ibs.

Equating Max. BM to MB

115'4bd2 = 147000.

147000

Take b

115-4

8 inches.

Then d* =
8

= 1273-8.

= 159-2.
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edge. If the load on the floor is 320 Ibs. per square foot (including
the weight of the floor), determine the stresses in the steel reinforce-

ment and in the concrete. Find also the maximum intensity of
shear stress.

The length of span, I = 90 inches.

Depth of floor, d = 6 - 1J = 4J inches.

Take a breadth of slab, fc = 12 inches.

Reinforcement.
Since in every 12 inches breadth of slab there are 3 bars

each 0*196 square inch in sectional area,

A, _3x 0-196_ .0109p -

M'lalcTF'
Position of neutral axis.

From Equation 4, Art. 110,

d \v pr

.'. y l
= 4-5 x 0-0109 x 15

(A/1 +
^

-
l)

= 1-95 inch,

and d ^ = 4*5 0*65 = 3'85 inches;
o

,, wV- 320 8100
also max. M =

-^-
=

-^-
x

= 27000 inch Ibs. on each foot of breadth.

Hence, from Equation 5, Art. 110,

f _ 2M 2 x 27000
"

12x1-95x3-85

= 600 Ibs. per square inch.

From Equation 6, Art. 110,

M 27000

y\\ 3x0-196x3-85~
fs
=

11927 Ibs. per square inch.

. . 320 x7A
Max. sheanng force = F = -

= 1200 Ibs
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Max. intensity of shear stress

F 1200

12x3-85

= 26 Ibs. per square inch.

111. Theory assuming" a parabolic distribution of stress
for compression, and neglecting- the tensional resistance in

concrete.

The stress strain curve for concrete is practically a straight
line up to the safe working stress allowable ; consequently the

design of beams is in practice usually
worked out as in Art. 110, assuming
a straight line distribution of stress ;

but as the stress strain curve is some-
times assumed to be parabolic, the

following theory is given in which
failure is assumed to take place by
the crushing of the concrete, the

stress in the steel being within the

elastic limit. The stress curve is a

parabola with its vertex on the com-

pression edge.

Position of neutral axis.

Let
i/!

be the depth of neutral axis

below the compression edge. Then the stress diagram being a

parabola, its area is f fcy l
and the depth of its centre of area

below compression edge is f yr Now, on the assumption that

plane sections remain plane after bending,

Fig. 147.

J~f.^.~rf.'
E

.K-*(r7T)> rfr
>

And

.(1).

(2).

Since total compression is equal to the total tension

A,f, = fbdf.
= t/0,6.

tf.
=

! *&.
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Substituting from (1)

Substituting for - from (2)

+
2/1

2/i
2

ft)

or

which gives y 19
the position of the neutral axis.

Ultimate resisting moment for the concrete.

MB = C(d-^yl)

Having found MR for the concrete, it should be seen if the stress

in the steel reinforcement is within the elastic limit :

112. Professor Talbot has worked out the following formula
based on the parabolic distribution when the maximum compres-
sive stress in the concrete has not reached its ultimate value :

\ deformation per unit of length at outside com-

pressive edge of concrete.

\l = ultimate deformation per unit of length at crushing.

fe
= intensity of stress at outside compressive edge of

concrete.

/</
= ultimate intensity of stress at crushing.

V
x = distance from the compressive edge to the centre of

area of compressive stress.
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When fc the stress at the compressive surface is less than //
the ultimate stress, the locus of the vertex of the parabola is

_/ above the compressive surface,

~]
and ,= (1-43)23 (1).

Jc

Position of neutral axis.

</

-

</

(2) *

'
3 I

1
8/

1-
8

Centre of area of parabola of stress,

x 4

Fig. 148.

Average ordinate of parabola.

i-I

12 -4g
(3).

Hence moment of resistance for the concrete is

MB =

Moment of resistance for steel :

MR = T(d-x) =ftA.(d-x)=ftpbd(d-x).

And if the bending moment M is given, fc and /, can be found

by writing M for MR .

For ordinary working conditions q may be taken = J.

113. Reinforced concrete floors.

A floor of reinforced concrete consists of reinforced concrete

slabs formed in one monolithic mass with reinforced concrete

beams (Fig. 149).

rr

L_!L
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negative at the ends over the supports. Hence the reinforce-

ment, which at the centre is near the lower surface, should over

the supports be placed near the upper surface. This is usually
done by bending the reinforcing rods upward as in Fig. 149.

The maximum bending moment at the centre and supports
is usually taken as

Max. M = ^.
2i

The width of slab to be taken as forming the flange of T-beam
should not exceed of the distance between the centre lines of

beams.

114. T-beams. Assuming
1 a straight line variation of

compressive stress, and neglecting* the tensional resistance
of the concrete.

The width of the upper flange 6
: forming the floor (Fig. 150)

should for calculation not exceed of the distance between centre

to centre of beams.

A "1

f

K b

Fig. 150.

The thickness d l of the floor slab should first be got by con-

sidering the portion between the two beams or ribs as a slab, with
its reinforcing bars transverse to the beam (Fig. 149). (See

Example 3, Art. 110.)
The depth d of beam or rib is usually taken from TVth to -^th

of the span.
Let b

l
= width of flange of T.

d
1
= thickness of flange.

,, & = width of web.

depth from top of flange to centre of reinforcement,

depth of neutral axis from top of flange,

depth of centre of area of compressive stress from

top of flange.

s

d =

x =
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There are two cases to consider, according as d
x is greater

than or less than y lf the distance of neutral axis from upper com-

pressive edge of flange.

/

115. CASE I. The neutral axis in the flange.

I.e. y 1
less than dr

This case is the same as for rectangular beams, and the for-

mula of Art. 110 can be used, except that b
lt
the width of flange,

should be substituted for b.

116. CASE II. Neutral axis in the web.

I.e. y l greater than dr
It is sufficiently accurate to neglect the small compressive

resistance of the web of T-beams.

Let/c
= intensity of compressive stress at top of flange.

fc

L = at bottom of flange.

From stress-strain diagram, Fig. 150 :

Jc

_
/.

"
T.

Again, !k=l .................. (2).
Tt y\

. /.+/.' _ toli-d,) _ ft _d,"~~ ~'~ ~

This is the mean compressive stress on flange.

Hence, since C = T,

Eliminating y,
we get

J c

b,d? + %rdA sni ii 1 *

ie position of the neutral axis.

The distance # of the centre of area of trapezium of stress

from the top of flange is

~-
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Substituting from (1) we get

Moment of resistance.

For the concrete

MR = C(d-x) =
j

yi -Mi(*-a) ...... (7).

For the steel

MB = A,f,(d-x) .......................... (8).

For a given bending moment M, which must be equal to the

moment of resistance, we can determinefe and/s .

EXAMPLES.

1. T-beam, flange 40 inches wide and 4 inches thick ; depth to

reinforcement 18 inches ; width of web 9 inches. Determine the

reinforcement for beam or rib and the safe bending moment for

working stresses fc
= 500 Ibs. per square inch ; fa

= 12,000 Ibs.

per square inch. Assume r = 15.

From (1)

.-. d-y, =
Aft

= 11-25 inches.
-.15x500

"12000

Vl
= 18-11-25 = 6-75 inches.

From (4)

^5? (6-75
-

2) 40 x 4 = 12000,4,.
D*75

.-. A s
= 4-7 sq. in.

Take 4 bars 1J inch diameter.

From (6)

= *
From (8). Safe bending moment

M = 12000 x 4-7 x 16-3 = 919320 inch Ibs.

= 76610 foot Ibs.

2. A floor 4 inches thick is supported on reinforced concrete

beams 6 feet apart centre to centre, the span being 25 feet. The
s2
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floor slab with the beams form T'-beams. If the floor is to carry
a load of 180 Ibs. per square foot, determine the reinforcement.
Assume r = 15. Working stresses: concrete, compression 600 Ibs.

per square inch ; steel, tension 14,000 Ibs. per square inch.

The effective width of the slab should not exceed f of the

distance apart of the beams centre to centre.

Therefore, width of slab, b
v
= f x 6 = 4J feet = 54 inches.

Weight of one square foot of slab, taking the weight of

concrete at 150 Ibs. per cubic foot is 50 Ibs. Weight of beam,

say, 10 Ibs. per square foot.

Total weight per square foot

= 180 + 60 = 240 Ibs.

,, , , wP 240 x 6 x 252
. , ,,

Max. M = = -
TS

- foot Ibs.
12 12

= 900000 inch Ibs.

From (1)

14000

Take d = 15 inches.

Then, y l
= 15-9 = 6 inches.

From (6)

x = - 18-8_40

From (8)

900000 = A 8 x 14000 x 13-33.

900000
"
14000 x 13-33

= 4-8 sq. in.

Say, 6 rods 1 inch diameter.

3. A floor 28 feet span is constructed as in Fig. 149. The floor

slab is 5 inches thick and the beams are 7 feet apart centre to centre.

The reinforcement of each beam near the lower edge consists of six
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steel bars 1 inch diameter placed in two rows of 3 bars. If the load

on floor is 120 Ibs. per square foot, determine the maximum stresses

per square inch in the concrete and steel. Assume d = S^L

;

r = 15.

Loading. If the weight of floor and beams is assumed to be
70 Ibs. per square foot, then

Total load = 7 (70 + 120) = 1330 Ibs. per lineal foot.

Eeferring to Fig. 150, Art. 114,

Width of slab to be taken as acting with the beams

=
&!
= f-7 = 5-25 feet = 63 inches.

d
l
= 5 inches.

d = ?!? = 24 inches.
14

&
2
= 12 inches.

A s
= 6 x 0-785 = 4-71 sq. in.

NOTE. d is the depth from top edge of floor to the centre of

reinforcement that is, midway between the two rows of steel

bars. As the centre of the reinforcement may be taken to be
4 inches from the lower edge of beams, we get the depth of the

vertical leg of beam to be 28 5 = 23 inches.

wl2

Maximum bending moment =
o

x 784 x 144

= 1564080 inch Ibs.

Position of neutral axis.

From Equation (5), Art. 116,

2xl5x24x4-71

2(63x5 + 15x4-71)
= 6 '44 inches.

From Equation (6), Art. 116,

= 5 19-32-10

8* 12-88-5

= 1*97 inches,

and d-x = 24 1'97 = 22*03 inches.
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Stress on concrete.

From Equation (7), Art. 116,

1564080 x 6-44

3-94 x 63 x 5 x 22'03

= 368 Ibs. per sq. in.

Stress in steel.

From Equation (8), Art. 116,

/. _M-
Js A8 (a-x)

= _1564080
4-71 x 22-03

= 15093 Ibs. per sq. in.

Maximum shearing force at ends

1330x28
2

Maximum intensity of shear stress

F 18620
"

b9(d-x) 12x22-03
= 71 Ibs. per square inch.

In many books diagrams are given which facilitate the calcula-

tions, as in
*

Principles of Keinforced Concrete,' by Turneaure and

Maurier, which I have consulted.

117. Beams with reinforcement for compression and
tension, neglecting* the tensile resistance of the concrete.

This form of reinforcement is not economical, but where the

dimensions of the beam are limited, double reinforcement may be

necessary in order to get a beam of sufficient strength.
Let AS = area of the steel for compression reinforcement.

/8

l =
intensity of compressive stress in compressive re-

inforcement.

*'-*
d

l
= depth from upper compressive edge of concrete to

centre of the compressive reinforcement.

Cs
= resultant stress in steel compressive reinforcement.

C = resultant compressive stress in the concrete.

., x = depth from upper compressive edge of concrete to

the resultant of C and (7 S
.
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Position of neutral axis.

Assume the compressive stress in the concrete to vary as the

ordinates to a straight line.

From the stress strain diagram

(1),

where r = =?
;

Mi

also

and

.(2).

Fig. 151.

The total compression in concrete, C =

steel, C. =/M/ = /tt

t

p 1
bd

(3)

But, since total compression is equal to the total tension,

C + CS
= T;

or,

t/ 1
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= 0.

which gives the position of the neutral axis.

Taking moments about T,

The ratio of C8 to C is known from Equation (3), therefore

x is known.
Moment of resistance,

M = f8A s (d x) for tensile reinforcement,

or M = J/cfa/i M |-M +f8

l

pibd (d dj for compressive

reinforcement.

118. Columns in which the ratio of length to least width
does not exceed 15 to 18.

Let/8
s=s intensity of stress in the steel.

fc
= concrete.

,, A 8
= area of cross section of steel.

A c
=

,, concrete.

/.*
IT

X = compression per unit of length.

Then, as long as there is perfect adhesion between the concrete

and steel,

X = ; and X = f.

-.'

E, E;

or /. -
{|/c

= rfc .

Let P = total load carried by the reinforced column,
then P=f,A.+feA

(1),

or =f.(rA. + AJ ................ (2).
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EXAMPLE. Determine the safe load for a concrete column

rectangular in cross section 16" x 10", and reinforced with 4 steel

bars each V in diameter (Fig. 152). The working compressive
stress in the concrete fc being taken as 500 Ibs. per square

inch, r =
E:

15.

4 S
= 4 x 0-785 = 3-14 sq. in.

Ae
= 160-3-14 = 156-86 sq. in.

From Equation (2)

P = 500 (15x3-14 + 156-86)
= 101980 Ibs. = 50 tons.

From (1)

101980

3-14 +
156-86

r = 7500 Ibs. per sq. in.

The vertical steel bars are usually bound at intervals of

about one foot with thick wire or thin rods (Fig. 152).
> EXAMPLE II. The area of cross section of

a' column is 160 square inches, and the load

to be carried is 80,000 Ibs. If the working
stress in the concrete is 400 Ibs. per square
inch, find the area of steel. Assume r = 15.

From (2)

80000 = 400 {15.4. + (160-4)}
= 400(144, + 160).
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Thus, if A c is the area of the concrete,

A s steel;

then the equivalent area is

A c + rA8 (1).

If I is the Moment of Inertia of the equivalent area about an
axis through the centre of area parallel to the side b,

Ic the Moment of Inertia of concrete about same axis,

-L a ,, ,, ,, steel ,, ,,

then I = Ic + rls (2).

CASE I. COMPRESSION OVER THE WHOLE SECTION.
Let AB, Fig. 154, represent the trace of a surface on a plane

at right angles to it, being that of a line through its centre of

area.

!<- b ->{ k--& ->!
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Let A. = area of reinforcement nearest to the edge where
max. stress occurs.

fs
= intensity of stress on A e .

A8
} = area of reinforcement nearest the edge where min.

stress occurs.

f,
[ = intensity of stress on A, .

d = distance from edge of max. stress to centre of

reinforcement near edge of min. stress.

d
l
= distance from edge of max. stress to centre of re-

inforcement nearest that edge.
I = Moment of Inertia of the equivalent area about

an axis through at right angles to the plane of

the paper.

The stress represented by ABCD may be taken as made up
of two parts, viz. (a) a uni-

form stress AGHB due to F
at 0, the intensity of which

is , and (b) a uniformly

varying stress GDCH due to

a bending momentM = Fy
represented by the tri-

angular figures CJH (com-

pressive) and DGJ (tensile).

Compressive and tensile

stresses are regarded as

positive and negative re-

spectively.
The intensity of this

uniformly varying stress =

= on any fibre dis-

A^-*D
(c)

Fig. 154.

tant y from 0.

To determine y lt
the distance of the centre of area from B.

From (1)

hence by moments

Ay, = -4 rA 9

l

d,

or + rA 8

ld

(3).



268 THE THEOKY OF STBUCTUBES [CHAP.

Moment of Inertia.

From (2)

These formulae simplify considerably if the two reinforcements
are of equal area.

In this case y, == -
2

and I = b
-

Now, from Fig. 154,

OJ = PR = .

9 KS =
,
and M = F.y (> ,

A. T T

.-. fc
= EC = BH +HC =

_............. (6).

also =ja;-LS=*-*<^>'r ^41
(7)

~
I

Since J1 = resultant internal stress,

The stresses are compressive or tensile according as the value

obtained is positive or negative; thus, if/.
1
is negative there must

be some tension on the section, and if// is negative* this reinforce-

ment must be in tension.

EXAMPLES.

1. A reinforced concrete beam is 9 inches wide and 20 inches

deep. The reinforcement both above and below consists of 2 steel

rods 1 inch diameter imbedded at a depth of 2 inches. The normal

component of the resultant force on a section is 60,000 Ibs., acting
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at a distance of 2 inches from the centre of area. Determine the

maximum and minimum intensities of stress in the concrete and the

intensities of stress in the steel.

Data.F= 60,000 Ibs. ; y = 2 in.
; d

l

= 2 in.
;

t = 20 in. ;

d = 18 in.

A 8
= A,

1 = 1-57 sq. in.

Since the reinforcement is symmetrical in area and position
both above and below

= = n,

Q v on
1

*

and 1=

= 6200.

M= Fy = 60000 x 2 = 120000 inch Ibs.

A= bt + ZrA.
= 18042x16x1-57
= 227 sq. in.

From (5)

f-F My,
/c
~
2
+

I

60000 120000x10

"227" 6200

= 264-3 + 193-5 = +457 -8 Ibs. per sq. in. compression.
From (8)

fl_F M(t- yi)

~A~ ~T
= 264-3 193*5 = + 70-8 Ibs. per sq. in. compression.

From (6)

From (7)

-

6200

= 3964-5 + 2322-6

= + 6287*1 Ibs. per sq. in. compression.

= 3964*5-2322-6
= +1641-9 Ibs. per sq. in. compression.

2. If in last example the normal compound of resultant is

50,000 Ibs., distant 5 inches from the centre of area, determine the

intensities of stress in the concrete and steel.

M= 50000 x 5 = 250000 inch Ibs.
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From (5)

50000 250000x10
227 6200

= 220-3 + 403-3
= 623-6 Ibs. per sq. in. compression.

From (8),

fc

l = 220-3-403-3
= 183 Ibs. per sq. in. tension.

fg and /g
1 can be obtained from Equations (6) and (7), or from

the stress diagram (Fig. 155) as follows:

By Proportion, let BN = I
; EA = i.

I /, 623^
t-l fc

l
~

183
'

I 623;6
Y 806-6'

20 x 623-6

(f.\
\f) 13-46

=
15-46'

.
. 15 x 623-6 x 13-46

"15-46"
= 8140 Ibs. per sq. in. compression.

s

l

\

r ) 2-54

=4-54'

. -! _ 15x183x2-54
4-54

= 1536 Ibs. per sq. in. tension.

The area of concrete under compression = 9 x 15-46

139-14 sq. in.
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3. An arch is 22 inches deep and is reinforced with 3 rods 1 inch

diameter to each foot of width, both above and below. The rods are

imbedded to a depth of 2 inches. If for one foot width of arch the

normal component of resultant thrust on a section is 80,000 Ibs.,

acting at a distance of 4 inchesfrom the centre of area, determine the

maximum intensity of compressive stress on the section. Assume
r = 15.

= 12x22 + 2x15x2-36
= 335 sq. in.

I = 12 x 22S
+ 2 x 2-36 (11 2)

2

12

= 11030.

22
yl
= = 11 inches.

M = 80000 x 4 = 320000 inch Ibs.

From (5)

, _ 80,000 320000 x 11

~335~ 11030

= 238'8 + 319'4= +558'2 Ibs. per sq. in. compression.

120. Retaining" wall.

EXAMPLE.

A reinforced concrete retaining wall with counterforts, 18 feet

high, sustains an earth bank weighing 125 Ibs. per cubic foot. The

top of earth is horizontal, and the angle ofrepose is 30. Counterforts
10 feet apart centre to centre.

Design the wall. Working stresses for concrete and steel 600
and 12,000 Ibs. per square inch respectively.

Horizontal reinforcement.
The pressure at bottom of wall from Kankine's formula

= 750 Ibs. per square foot. The resultant pressure acting
at J of the height from base = 6750 Ibs.

The span for the centre slab will be taken 10 feet.

Taking a strip 1 foot high and 10 feet long, design a beam
to carry a load of 750 Ibs. per square foot.

The slab being partially fixed at the ends

M = 750xl
'

2x12 = 75000 inch Ibs. . . (1).
1.2
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From Equation (7), Art. 110,

1

p ~=
2x12000 /.

600
"

V

= 0-0107

12000 \

15x60(y

(2).
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From Equation (4), Art. 110,

^ =0-0107x15, .. ^
d VV ^15x0-0107
= 0-43,

.'.fc- 0-43^
(3).

Now, M =,

75000 = 12000 x 0-0107 x -
V 3

= 12000 x 0-0107 x 12 x -86d2 ............ (4).

d = 7J inches.

This is the effective depth. If the reinforcement is embedded
2 inches the total depth or thickness of wall is 9^ inches, say
10 inches.

Area of reinforcement per foot height = pbd
= 0-0107 x 71 x 12 = 0-96 sq. in.

Say, rods || diameter placed 6 inches apart.
This reinforcement may be used for a height of 3 feet.

At 6 feet from bottom of wall, i.e. 12 feet from top, the pressure
is 500 Ibs. per square foot.

M = 6?0xlxl2 = 5000()
.

nch lbg
12

As before, p = 0-0107,

y l
= 0-43d,

and M = 50000 = 12000 x 0-0107 x 12 x 0'86d3
.

Effective depth = d = 6 inches.

Area of reinforcement per foot of height
= 0-0107 x 6J x 12 - 0-81 sq. in.

Say, f-inch rods 6 inches apart.
This reinforcement may be placed for the 6 feet of wall between

9 feet and 15 feet from top.
If the rods are embedded for If inch, the total depth or

thickness of wall will be 6 + If = 8 inches.

At 6feetfrom top of wall the pressure is 250 Ibs. per square foot.

As before, p = 0-0107.

M _ wl* _ 250 x 10- x 12

~T2
=

~12~
- 25000 inch Ibs.

and 25000 = 12000 . 0-0107 x 12 x 0-86d2
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Effective depth d = 4f inches.

Total depth or thickness = 6J inches.

Area of reinforcement per foot of height
= 0-0107 x 4| x 12 = 0-56 sq. in.

Say, f-rods 6 inches centre to centre.

This reinforcement may be placed in the 6 feet of wall between
3 feet and 9 feet from top. Above this, for the top 3 feet use

J-inch rods 6 inches apart centre to centre.

Vertical reinforcement.
Vertical rods J-inch diameter and 12 inches centre to centre

should be placed behind the horizontal reinforcement, extending
from the top of wall into the base to take up any stress due to

settlement.

As the Avail between counterforts is taken as a slab fixed at

the ends, some additional reinforcement is necessary near back
of wall to provide for the negative bending moments at these

supports, as shown in Fig. 157.

>V
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Equating the moment of stability to the overturning moment
we get,

BD = 1= 6'9"(app.).

The total width of foundation slab is therefore 10 feet 3 inches.

Counterforts. Determination of the necessary reinforcements.
The counterforts are 10 feet apart centre to centre. They

may be considered as cantilevers.

The bending moment on counterfort where it joins the founda-

tion slab is :

6750 x 10 x 6 = 405000 foot Ibs.

= 4860000 inch Ibs.

The total thickness or depth = 6' 9" + 10" = 1' 1".

If the reinforcement is kept 3 inches from back of counterfort

the effective depth d = T 4" = 88 inches.

If p be taken 0-004,

then ?/,
= 0-3d

;
and if/,

= 14000 Ibs. per sq. in.,

From Equation (6), Art. 110,

M = 4860000 = fbA B (d
- y

^j
= 14000 A s (d-Q'ld)
= 14000 A, x 0-9 x 88,

/. A g
= 4'4 sq. in.

Say, 5 rods ly
1

^-
inch diameter.

These tension rods should be bent back transversely at the

bottom and anchored to the reinforcement of floor slab, so as to

get a good bond between the counterfort and the floor.

The counterforts will be 18 inches wide.

As shown in Fig. 156, some vertical rods |-inch diameter

should be placed in the counterforts to take shear and to ensure

a proper bond between the floor and wall. Horizontal bars J-inch
diameter should also be placed in the counterforts, so as to

bond them securely to the vertical wall.

Foundation slab.

The total width of base = 10' 3".

The weight W l
of the earth per lineal foot above the floor

= 125 x 18 x 6f = 15187 Ibs.

The weight W2
of the concrete = 6200 Ibs. (app.).

The resultant thrust on back of wall is 6750 Ibs.

The thrust on wall was combined graphically with the weight
W^ of the earth, and the resultant of these was combined with the

weight W2
of the concrete, and the final resultant was found to

cut the base exactly at the middle third nearest the outer toe

of slab.
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Consequently, the maximum pressure at C

2(15180 + 6200)

= 4172 Ibs.

Since the pressure at D is zero, the stress diagram is a triangle
and the maximum pressure at B can be found by Proportion,
thus maximum pressure at B

-- 4172 .

62 = 2746 Ibs.

Hence from C to B the upward pressure under cantilever

varies from 4172 Ibs. to 2746 Ibs. The upward pressure on
floor BD varies from 2746 Ibs. to zero. The total upward force

on CB is therefore

4172 + 2746

Moment about outer toe

M = 12106-5 x If = 21186-4 foot Ibs.

= 254237 inch Ibs.

Taking p = 0-01
; by Art. 110

|l
= 0-42.

Let/, = 12000 Ibs. per sq in.

Since we are considering 1 foot of width, b = 12 inches,

/. M = 254237 = f8pbd(d
-

f-
1

= 12000 x 0-01 x 12 xO-86d2
.

Effective depth d = 14*3 inches, say, 15 inches.

The total depth may be taken as 18 inches.

A.= pbd = 0-01 x 12x15 = 1-80 sq. in.

Use 3 bars f-inch diameter that is, f-inch bars 4 inches centre

to centre for the transverse reinforcement.

The longitudinal reinforcement may be f-inch rods 12 inches

centre to centre. _,_ m ^
OF THE

^
UNIVERSITY

OF

"""BY

6POTOSWOODE AND CO. LTD., LONDON

COLCHESTEK AND ETON





UNIVERSITY OF CALIFORNIA LIBRARY

THIS BOOK IS DUE ON THE LAST DATE
STAMPED BELOW

MAR 3 1916

'

APR 19 1916

CCT 14

30m-l,'15



O

195111

6




