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PREFACE.

IN preparing the following treatise the author has attempted no marked

originality, either of subject matter or method. Indeed, sufficient has hitherto

been written of Interpolation, Quadratures, etc., to firmly dissuade one from

such an endeavor. Yet of the numerous contributions to these allied subjects,

there has appeared thus far no distinct treatise covering the entire ground. As

a consequence the author has repeatedly felt the need of a work which would

give exclusive of other matter a simple, practical, yet comprehensive discus

sion of all that is useful concerning Differences, Interpolation, Tabular Differ

entiation and Mechanical Quadrature ;
a work, moreover, which would include

all tables appertaining to the text which are required by a practical computer.

To supply the want thus conceived, the author offers the present volume.

But while viewing the matter in this practical sense, the writer regards his

work as no mere compilation. Many of the processes and developments are

original, so far as he is concerned, and possibly altogether new ; while, the same

remark applies to a few of the minor results. In fact, if adverse criticism be

forthcoming, it will probably result largely from the somewhat unusual or indi

vidual methods which in many instances have been employed in preference to

the customary forms of analysis. On the other hand the author realizes fully

the extent of his indebtedness to previous writers for valuable ideas and sug

gestions ;
and he desires especially to mention the works of BOOLE, CHAUVENET,

ENCKE, LOOMIS, NEWCOMB, and SAWITSCH as most valuable sources of informa

tion, to which frequent reference has been made.

Concerning the bibliographical list at the close of this volume (which

includes the foregoing names), it is but proper to state that references to

several of the earliest writers such as BRIGGS, WALLTS, MOUTON, COTES,

STIRLING, MAYER, WALMESLEY, LALANDE have purposely been omitted because

of the general inaccessibility of their works. As regards the writings of the

present century, however, the author believes that all contributions of importance

have been included, and trusts that any omissions of consequence hereafter

detected will be regarded merely as oversights.

701317



IV PREFACE.

Special care has been given to the preparation and printing of the tables,

with the hope of securing absolute accuracy. At a considerable cost of labor,

and by wholly independent methods, the computations were all made in dupli

cate ;
and in every case the tabular values are true to the nearest unit of the

last place. Though a few of these tables have appeared before, several are here

published for the first time, and it is hoped they will prove useful to the

computer.

In conclusion, the author desires to express his cordial thanks and appre

ciation to Mr. E. C. RUEBSAM, of the Nautical Almanac Office, and to Mr. M. E.

POUTER, of the Naval Observatory, for much valuable service and many useful

suggestions received during the various phases of preparation of this treatise.

Feelings of gratitude further inspire simple justice even demands a special

word in commendation of the publishers, whose uniform courtesy, accuracy and

skill have done much to enhance the general value of the work.

H. L. R.

WASHINGTON, D.C., December, 1899.
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CHAPTER I.

OF DIFFERENCES.

1. In many applications of the exact sciences, and of Astronomy
in particular, it is often necessary to tabulate a series of numerical

values of some quantity or function, corresponding to certain assumed
values of the element or argument upon which the functional values

depend.

In the more purely mathematical tables, the function is analyti

cally known
;

the argument is then the independent variable of the

given expression. The common tables of logarithms, trigonometrical

functions, squares, cubes, and reciprocals, are examples of tabular

functions of this class.

A second and larger class includes those functions which are not

related analytically to the argument, but which are cither determined

directly by experiment, or based wholly or partly upon observation.

The final results are usually obtained from the fundamental obser

vations by suitable mathematical transformations or reductions, which

frequently include the process of adjustment known as the method of

least-squares. Empirical values are also occasionally introduced in the

development of functions of this class, to supply some theoretical

deficiency.

In the great majority of such cases, the time is the argument of the

tabulated function. This is particularly the case in astronomical tables.

Thus the Nautical Almanac gives the right-ascensions and declinations

of the sun and the planets for every Greenwich mean noon
;

in the

case of the moon, these coordinates are given for every hour, because

of the rapid motion of our satellite. The moon s horizontal parallax

is tabulated for every twelve hours
;

the sun s for every ten days.

In like manner, the readings of the barometer and thermometer
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are recorded for certain hours of the day, and therefore may be regarded
as functions of the time. The velocity of the wind, the height of tide

water, the correction and rate of a clock, are further instances of a

large number of. physical quantities which are tabulated as functions

of the time.

As examples of tabular functions of the physical or observational

kind, whose arguments are elements other than the time, we may
mention :

(a) The force of gravity (determined by pendulum experiments),

as a function of the latitude
;

(&) The atmospheric pressure (determined by the barometer), as

a function of the altitude
;

(c) The angle of refraction in a particular substance, as a function

of the angle of incidence.

Although differing thus fundamentally in the character of their

respective functions, all mathematical tables are alike in giving the

numerical values of the functions for certain assumed values of the

argument, so chosen that intermediate values of the function may
readily be derived by the process of interpolation. For this purpose
it is convenient, though not essential, to have the assumed argument
values proceed according to some law

;
and since as a rule the greatest

simplicity is attained where the argument varies uniformly, it is nearly

always so taken. The interval of the argument is decided in general

by the rapidity with which the given function varies.

We shall assume throughout these pages that the given values of

the argument are equidistant.

The present chapter will be devoted to the subject of differences,

as defined below. The student should become thoroughly and practi

cally familiar with this fundamental portion of the work before entering

upon the chapters that follow.

2. Definitions and Notation. If we have given a series of

quantities proceeding according to any law, and take the difference

of every two consecutive terms, we obtain a series of values called

the first order oj differences, or briefly, first differences.



If we difference the first differences in the same manner, we
form a new series called second differences. The process may be con

tinued, if necessary, so long as any differences remain.

We shall apply this process of differencing to the tabular values

of functions given for equidistant values of the argument.
Let T designate the argument; &amp;lt;u,

its interval; F(T), or simply

F, the function
; t, i -f- &amp;lt;u,

t+ 2&amp;lt;u,
t -\- 3&amp;lt;u, ,

the given values

of T; FQ ,
F19 F2 ,

Fz , ,
the corresponding values ofF(T);

4
, J&quot;,

J
&quot;,

z/
iv

,
. . . .

,
the successive orders of differences. The arrange

ment is then shown in the following schedule :

Argument
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T
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Then, from the definition of differences, we have

Hence, by addition, we find

-
A,

which is the algebraic statement of Theorem I. This theorem may
obviously be applied as an independent check upon the numerical

accuracy of the differencing.

4. THEOREM II. If the differences of N values of F(T)
are taken, Nn values of jw are derived

;
it being assumed

that N&amp;gt;n.

For, N functions evidently yield Nl values of //
,
JV 2 values

of
J&quot;,
N3 values of ^&quot;

,
etc.

;
hence N values of F(T) yield Nn

values of j&amp;lt;&amp;gt;.

5. Inversion of a Series of Functions. It is sometimes necessary
or convenient to invert a given column of functions, thus bringing the

last value into the position of the first, the next to the last into the

position of the second, etc. For example, let us invert the series

given in 2, and observe the effect of this inversion upon the differ

ences. Thus we find :

T
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To prove that such an effect is true generally, we consider the

two series below, the second series being an inversion of the first :

F(T)
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To prove generally, let F
,
F19 F2 , ,

and /,,/;,/2 ,

denote the two series of functions
;
then the sums of the two series

will be F+f , Fi+fi, Fz-\-fz ,
.... Also, let us designate the first

differences of these three series by j
,
8

,
and Z)

, respectively ;
their

values are hence as follows :

F
F F-1-

i
*- o

/o

/I

ft

We therefore have

8

/I /O

D&amp;lt;

f
a -/i) = -4 +V

These relations prove the theorem directly for n = 1
;

but since

the second differences are formed from the first differences in the same

manner that the latter are derived from the given functions, the theorem

is also true for n = 2. Similarly with the following differences, each

order being the first difference of the order just preceding. Hence
the theorem is true generally.

As an example we write :

F
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differences frequently exhibit a small degree of irregularity, owing to

the omission of decimals in the approximate values of the functions

employed. As an example, we take the following values of T4

,
true to

the nearest unit of the second decimal :

T
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T
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To investigate the principle that underlies the method, let

*0&amp;gt; F!&amp;gt;
F

Z&amp;gt; FZ&amp;gt; *\&amp;gt; ^55

denote the correct values of any function F (T) (tabulated for equi

distant values of T}, and let the differences be as shown in the

schedule below :

F(T)
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orders of differences, is easily seen to be that of the binomial coef

ficients, Avith alternate signs. Hence, in practice, we have only to

carry the differencing to that order at which the differences of the

correct functions would vanish, or sensibly so
;
the location and mag

nitude of the error will then be clearly shown by a succession of +
and terms, following the binomial law.

Thus, if the values of Jv vanish in the correct table above, the

fifth differences of the incorrect series will be 0, +e, 5e, +10e,

lOe, +5e, e, 0; the initial value, -|-e, is therefore the error sought,

both as to magnitude and sign. The required function is found by

tracing backwards and downwards along the line of heavy type from

ej+e to F6-\-e, which is the incorrect function
;
and since the cor

rection is the negative of the error, we have ( 6̂+ e
) e, or F6 , for

the true value of the function in question.

9. AVe shall now consider several examples, in order that the

process may be fully understood.

EXAMPLE I. Find the error in the following table of F(T) ~ TA
:

T
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Finally, the number 206 is too small by 10 units, since the sign

of the error is shown by the leading or initial value of the binomial

series in Jiv
, namely, 10. A correction of +10 is therefore to be

applied to the incorrect function, giving 216 for its true value.

In the column c, following z/
iv in the above table, are given

the corrections to z/
iv

,
due to the correction of -f-10 to the function.

The column Jlv + c therefore gives the 4th differences of the true or

corrected series. It is always well to re-difference the series after a

correction has been applied, to check the accuracy of the work.

EXAMPLE II. Find the error in the following table of logarithms :

T
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four values of //
v are available, these are here sufficient. A slight

inspection shows that a correction of 13&quot;. 0, as applied to the latitude

for May 11.0, will very nearly serve the purpose; 13&quot; .0 being a trifle

too great numerically, we soon find by trial that 12&quot; .8 produces the

best result. Hence, the moon s latitude for May 11.0 should read,

+1 10 10&quot;.6.

10. Correction of Errors when More than One Function is

Affected. Thus far we have considered examples of an error in one

function only. When two or more consecutive or neighboring values

are in error, the problem of correction becomes more complicated and

difficult. It may even become indeterminate in some cases, since only

accidental errors can be detected by the differences. Several succes

sive functions, and possibly all, may contain systematic errors which

do not affect the regularity of the differences.

In general, the correction of a group of errors by differences may
be considered practicable only when the law of the function is not

obscured or altered by the presence of those errors. More definitely,

the method may be regarded as available in the case of two or per

haps three neighboring functions, provided the errors be accidental in

character, and of sufficient magnitude to produce a distinct and defini

tive irregularity in the differences.

EXAMPLE I. Correct the errors in the following tabulation of

F(T) = 2T3 25T 40 :

T
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column c, ,
we place the correction of +5. This gives a corrected

series for //
&quot;,

shown under /l &quot;+ (^. The latter column clearly indicates

a correction of 8, as applied in c2 ;
this gives a final corrected column

of third differences, with the constant value of -|-12. Hence, the

value F(T) for T = +2, should read 74 instead of 79; for

T= -|-4, we should have 12 instead of 4.

EXAMPLE II. Correct the errors which occur in the following-o

ephemeris of the sun s declination :

Date
1898
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indicates a correction corresponding to the binomial coefficients of a

lower order than that of the difference in question. This means the

existence of an error in some earlier order of difference, rather than

an error in the column of functions. For example, if z/
v
requires a

correction of the order 1, 3, 3, 1, it follows that an error exists in

z/&quot;,
since z/

v is the third difference of /I&quot;. More generally, when z/ ( &quot;&amp;gt;

requires a correction according to the binomial coefficients of the mth

order, an error exists in ^ n~m\ These remarks imply the necessity of

some caution on the part of the beginner.

It will be observed that when either the first or last function of a series

is in error, only the first or the last term in each order of difference will

be affected, and only by an amount numerically equal to the error. Hence,
in such cases, the method above explained is of little value.

In general, it may be stated that when errors have been dis

covered by differencing, it is advisable to re-compute the values in

question, when the data for the calculation are available.

GENERAL PROPERTIES or DIFFERENCES.

11. Let F(t), F(t-\-u), F(t+2co), represent any series

of tabular functions, whose differences are taken as in the schedule

below :

Function,

F&amp;lt;T)

F(f)

4

A&quot;.

J(&quot;+D

J(+l)

//(&quot;+D
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We shall assume that F (T} is a finite and continuous function,

and that F(t-\-so)} is capable of expansion in a series of powers of

so), within the limits of the given table; then, denoting the successive

derivatives of F(T) by F (T), F&quot;(T}, etc., we have, by TAYLOR S

Theorem, the following expressions :

9 3 4
d) o) fa*

f (f) I W/Y

(f) T f () T Jb (t) I f U
(t) ~T~ . .

li L? n

7&amp;lt;XO
+ Su,/

1

(0 + 4 ^ F&quot; () + 8~ F&quot;
(t)
+ 16 ^ F lv

(t)
+ . .

F(t} + SuF*
(t)
+ 9 ^- F&quot;

(t) +27 F &quot;

(t)
+ 81 Fiv

(t)
+ . .

^(0 + 4W^ (0 + 16
^-^&quot; (t)

+ 64 ^! y&quot;()
-f 256 - 7^iv m + .

[3
14

Differencing these values of the functions in the usual manner,
we obtain successively the expressions for //

, j&quot;,
A &quot;

. . . ., as follows :

~
F&quot;(t)

7 ~
F&quot;&amp;gt;()+

15 F* (t)

19 ^ F&quot;&amp;gt;(t}+
65

-^ F*(t)

37 -* ^ &quot;&amp;lt; + 175 F*

-f

Z//&quot;
= ^F

&quot;(t}
+ f a,

4 ^iv

(0 + .... (3)

It will be observed that all terms of the expansions (0) are of
the general form, Ka&amp;gt;

rF(r

\t) where K denotes a numerical factor,
and r an integer which increases by unity as we proceed from any
term to the next term following. Hence, the differences will contain
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only terms of this form. We thus see, a priori, that any difference
of the w th order must be of the form

Let us now assume what appears from (1), (2), and (3) to be
the general law; that is

A = 1 r = n

leaving the coefficients B, C, D, . . . . undetermined for the present.
We therefore assume

D^+W^
(t)
+ .... (4)

Since the value of t is arbitrary, we may write -|- w for t; by
making this substitution in the right-hand member of (4), we evidently
get the expression for the ntt}

difference immediately following z/&amp;lt;&amp;gt;,

that is, the value of ^tft. Hence we have

Developing the functions of the right-hand member by TAYLOR S

Theorem, we find

(+
(t)

+ MF^+2)

(t) -{-

M
~F&quot;

l+S]

(

(n+8)
(t) +...

Collecting the coefficients of F(n
\t), .F (n

+&quot;(t),
. . . .

,
we obtain

&quot;J***(Q (5)

Subtracting (4) from (5), and observing that
./&amp;lt;ft_ .-/}&amp;gt;

=
//i&quot;

+1)
,

we

get

EL

D + - + + j
,

BL t
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If, therefore, we put

c = c++
C B 1

we have

Hence, if the general form of expression assumed in (4) is true

for the index n, it follows from (7) that it is also true for + l;

but we see by equations (1), (2), and (3), that the law obtains for

n = 1, 2, 3, respectively; hence it holds for n = 4; and so on

indefinitely. The expression (4) is therefore true for all positive inte

gral values of n.

12. We have now to determine the coefficients B, (7, Z), . . . .
,

of equation (4). These quantities are evidently functions of n and s,

and will be determined in the following manner :

First, we take s = 0, and determine the constants for
//&amp;lt;/&amp;gt;,

which
^

we shall denote for this purpose by Bn ,
Cn ,

Z)B ,
....

These values are found by induction, thus: the relations (6) give

7?n+1 ,
Cn+} , -/&amp;gt;+!,

. .-. in terms of J9B , Cn ,
Dn ,

.... Making
71 = 1, we take Bly CI? Z&amp;gt;, ,

. . . . directly from the first of the

equations (1) ;
a continued application of (6) therefore gives succes

sively the values of -Z?2 ,
Bz , B, . . . . Bn_^ Bn . Similarly, wre

derive Cn ,
J)n) .... Hence, the coefficients of (4) become known

for s = 0.

Second, the coefficients of ,1 {^ easily follow from those of J^ ;

for it is clear from the schedule of 11 that z/y is related to

F(t-\-sa)} in precisely the manner that
./&amp;lt;,&quot;

is related to F(t).

Hence, if for brevity we write

J^ = *()

we shall have, since the value of / is arbitrary,
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Then, expanding ^(^_sw)
i n a series of powers of

.s&amp;lt;u,
we arrive

at an expression of the form (4), in which the coefficients are fully
determined functions of n and #.

To perform the steps indicated, we take from the first of the

equations (1) the following values:

A = * C* - 4 A = ^ ..-.
(8)

To find Bn \ By repeated application of the first of (6), we have

B n
=

!?,_, + i

Hence, by the addition of these n 1 equations, we get

~
(9)

To find CB : Using the second of (6), we obtain

2
= C, + I 7*, + i

3
= G, + i JL + 1

whence, by addition, we find

C n
= ^ + ^(^+^3+ .... + #_,) + H&quot;-

Since C^ = i ,
this gives

But, from (9), we have Br = ~
;

hence we get

To find Z&amp;gt;w : Again, from (6), we derive

D, = D. + ^C. + ^B
D, = D + C + B
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whence

From (10), we have

24

or

In like manner, the process might be extended to the values of

En ,
Fn ,....; but the results already obtained are here sufficient.

Substituting in equation (4) the values of Bn ,
Cn ,

and Dn , given by

(9), (10), (11), (remembering that these values suppose s = Q), we

have
(12)

We now obtain from (12) the expression for /_/&amp;lt;&quot;&amp;gt;. As already

proposed, we write

Then, as shown above, we shall have

S
2W2

.S
3W8

* (0 + *&quot; (0 + -7-
* &quot;

y(+:5^ (^

L_

Upon arranging this expression according to ascending pow
rers of

j, we get
/ -v

2
\

I f I 7? a -L- \ n+2 JTHn-K!) //\ /I QN
i
c + A,-S + )

&amp;gt;

Tyri

H

IH.11

Hence, substituting the foregoing values of Bn ,
Cn ,

and DnJ we
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find that the values of B, (J, /&amp;gt;,
.... in equation (4) are as

follows:

(14)

These results are easily verified by substituting special values of

n and s, and comparing with the coefficients in equations (1), (2), (3);

thus, putting 6- = 1, and taking n = 1, 2, 3, successively, we ob
tain the numerical coefficients in the expansions of

//, ,
,/&quot; and

.//&quot;,

respectively.

13. Remarkable Formal Relation between the Exi^essions for ,/ &quot;&quot;

and J . The coefficients Bn ,
CH ,

Dn ,
. . . .

,
in the expression for

4,&quot;&quot;,

may also be determined by the following method, which not only is

shorter than the above, but also possesses the advantage of showing
a direct relation between the expressions for J &quot; and 4;, respectively.

Retaining the above notation, we write (12) in the form

We now let

be an auxiliary expression, such that the coefficient of y
n+r is the

coefficient of tf+F^ (t) in (15). Writing n+ I for n in (loa),
and using the relations (6), we have

(16)

Again, since the coefficients of ?, (y) are those of J
,

we ob

tain from (1),

&amp;gt;f !/

S
&amp;gt;/
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By re-arranging the terms of (16), we find

V
2

/
3

IT

y&quot;

+1
y + --+ +

11 E li

4-

L E li

Hence, by (15) and (17), we have

&amp;lt;jr,,+i

= (h 9

Taking = 1, 2, 3, . . . . n 1, successively, we find

&amp;lt;/2

=
Ti&amp;lt;jfi 9 =

ifi 9.-.

Multiplying these equations together member for member, and

cancelling the common factors, we obtain

Therefore, by (17), we have
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Comparing coefficients in (15) and (19), we find

Substituting these values in (15), the latter becomes

which agrees with (12).

These results may be conveniently expressed symbolically: thus,

let us represent the quantities J
9 &amp;gt;,

J
&amp;gt;&amp;gt;,

J
&quot;,

. . .
,/,.&amp;gt; by J

, 4,*, j* t
. . js

.

and for &amp;gt;F

r

(t), a?F&quot;(t), &amp;lt;JF

&quot;

(*), &amp;lt;*&amp;gt;

nF l

(t) let us write the

symbols /&amp;gt;,
7&amp;gt;

,
7J !

,
.... DH

, respectively; then we shall have

D- D* /&amp;gt;* f&amp;gt;

5

+--++
li l 11 15.

7 i
&quot;*&quot;

12
J)4 +

4

3 5 , 3

D 2 Ds D4

~ + +
11 li li

n

24

(21)

14. THEOREM Y. The nth

differences of any rational integral

expression of the nth

degree are constant. If the general form of the

function is F(T) = aTn+j3T-l+ 7T-2+ . . . .
,

the constant

value of J&quot; is w&quot;

\n
.

For, from the nature of the function, we have, evidently,

and ^n+1)
(^)

= 7^&quot;
+2)

() = .... =0

Hence, from (4), we have

Z/&amp;lt;

l) =
&amp;lt;o&quot;./&amp;lt;

T( &quot; )

(f)
=

w&quot;[n (22)

The theorem is therefore true, whatever the value of the constant

interval w. Several examples have already occurred: in 2 we have
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the differences of F (T)
= T4 10T2

20; here w= 4, a = 1, &amp;lt;u
= l.

Hence, by (22), we get
jiv =

|4_
= 04

the value already found by differencing.

In Example I of 9, F (T) = T\ a&amp;gt;
= 1; we there obtained

for the value of the third difference

J &quot; =

which agrees with the theorem.

Again, in Example I of 10, F (T) = 2T 3 25T 40, = !;

whence the theorem requires

Jin = |l = 21i = 12

which is the result already obtained.

15. THEOREM VI. If the n th

differences of a series of quantities

(tabulated for equidistant values of T ) are constant, the given quanti

ties are the tabular values of a rational integral function of the form

This proposition is the converse of THEOREM V, and is proved as

follows:

Let F(T) denote the function whose true mathematical values,

tabulated for the given values of T, form the given series of quantities.

From (4) and (5), we see that the expressions for
J^&amp;gt;

and
j&amp;lt;\ agree

only in their first term, a&amp;gt;

HF (n)

(t) ;
the remaining terms of like order

in at having unlike coefficients. Hence, the conditions necessary in

order that J (n) shall be constant throughout are as follows:

First, that unF(n)

(t) does not vanish;

Second, that &amp;lt;u

n+1J^B+1)
(0 = w&quot;+

2^ (n+ 2&amp;gt;

(0 = .... = 0;

But, since w cannot vanish, these conditions reduce to the form

f(n) (f\
&amp;gt; A }
&amp;lt;

[ (23)
jA- +l)

() = ^(H+2) ($)_...... }

If now we put
T = t. + T (24)

then, by TAYLOR S Theorem, we have
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F(T) = F(t+ r
)
= F(t) + TF (f)+ F&quot;(t)

II !i

By (23), this gives

J (T) = f (0+T*v ( *) + . . .

.+2F&amp;lt;-*&amp;gt;(t)+ fWtt\ (25)
[M

1
\n

in which, we observe, the coefficient of r&quot; cannot vanish. Substituting
in (25) the value of T given by (24), we obtain

F(T) = F(*) + (T-*)^ (*)
+ (r-*):^fi + , . . . + (T-

--^
( &quot; )^

li 12

Since has a fixed value, the right-hand member of this equation
is an expression of the ?i

th

degree in the variable T, and hence may
be written in the form

which establishes the theorem.

16. Convergence of the .Differences in Practice. In the discussion

of Theorems V and VI, we were concerned with the true mathematical

values of the quantities involved. In practice, however, the absolute

or true mathematical values of functions are seldom employed; fre

quently, as previously noted, a function is tabulated only to a certain

degree of approximation, enough decimals being retained to give the

desired accuracy. We observe that in such cases there is a tendency
of the differences to decrease numerically, and usually to vanish sensibly,

as the order of difference progresses. The explanation of this tendency
follows readily from equation (4), thus: for any given function, the

derivatives F(n)

(t), F(H

+(t), F(H

^(t), ..... have definite values;

hence, the value of a&amp;gt; may be chosen sufficiently small to render all

the terms in the second member of (4) insensible, except the first.

When this condition obtains, the value of //&amp;lt;&quot;&amp;gt; is sensibly constant,

and equal to a)
nF(n

\t). The differences of F (T) are thus practi

cally brought to a termination at the /*
th

order, whether the function

is algebraic or transcendental.

In many cases the values of the successive derivatives converge

rapidly; the chosen value of w may then be quite large, and yet allow

the differences to sensibly vanish at an, early order. This is equivalent
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to the obvious statement that, when a function is to be tabulated so

as to difference readily, the interval of the argument must be decided

by the manner in which the given function varies.

To exemplify these principles, we take the following table of

seven-figure logarithms:

T
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to be due to the small value of the interval w, which makes the term

&amp;lt;a

3F &quot;

(t) appreciable, but renders u*F lv

(t), af F v

(t), . . . . quite

insensible; accordingly, /&quot; is the last difference which we need take

into account, the remaining differences being practically zero.

We may add that if the values of T in the present table were

100, 101, etc., instead of the given values, the interval w would become

1 instead of 0.01, and hence w, or, w3

,
w4

,
.... would not converge

as above. We should then, however, have t = 100 instead of 1,

which would cause the successive derivatives to converge rapidly, as

is obvious from the general expression

Furthermore, the differences of F(T) contain only terms of the

form

F^
(t)

=
(
-

1)
-1KM [-i f

f

where K denotes a numerical factor; hence, since the values of M and

t are both increased one hundred-fold by the assumed change, it is

evident that the general term K&amp;lt;

HF n}

(i} is not altered thereby.
The differences are therefore unaltered by the proposed change; this

conclusion is confirmed by the consideration that the assumed altera

tion in T would merely change the logarithmic characteristic from

to 2, and thus would not affect the resulting differences. These ob

servations illustrate the case of a tabular function whose successive

derivatives converge rapidly, whereby a comparatively large argument
interval may be used, and yet allow the resulting series of differences

to converge as rapidly as may be required.

17. As a second example, we consider the following table of

cubes :

T
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We have already seen (Theorem V) that when the true mathe

matical values of T* are tabulated, the third differences are constant,

the fourth differences being the first order to vanish. In the present

table, however, only two decimals have been retained in T3
,
wrhereas

the true value involves six places. To this degree of approximation, the

third differences are entirely insensible; this follows from Theorem V,
which gives for the constant value of /

&quot;

In this example we have

to = 0.05 a = 1

and hence

J &quot; =
(0.05)

3 X = 0.00,075

which is insensible when only two decimals are concerned. Thus, in

the approximations so frequently used in practice, the differences

generally terminate (either absolutely or approximately) at some order

earlier than would occur if the true mathematical values of the function

were employed.

It may be added that the above example affords an illustration of

Theorem VI. For, since the second differences are here absolutely

constant, it follows from this theorem that the tabular quantities are

the true mathematical values (corresponding to the given values of T)
of some function of the form

F(T) E uT* + pT+y

Thus, in particular, if the student tabulates the function

F(T) E 16(T
2
-5.3325r+9.476975)

for T= 5.16, 5.21, .... 5.46, and retains all decimals involved,

he will find his tabular numbers identical with the above series.

18. To Express io
n.F (H)

(t) in Terms of z/r, ./!,&quot;

+1)
,

.J (

u
&quot;+~ ]

,
etc.

The problem consists in reversing the series (15), which expresses

.^&quot;&amp;gt;

in terms of to
n.F (n}

(t), &amp;lt;o

n+1F (n+l}
(t}, ....

Let us denote (o
rF^r

\t) by xr ; then, writing successively,

n, w+ 1, n+ 2, . . . . for n in (15), we have
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from which we obtain, by transposition,

r _ -/()/Jn

(29)

The second of the equations (29) gives a value of #+,, which,

substituted in the first equation, gives xn in terms of
//&amp;lt;,&quot; , z/;,&quot;

+1)
, *,H2 ,

xn+,,,
. . .

;

substituting in the latter expression the value of xn+2 given by the third

of (29), we find xn in .terms of 4V, ^&quot;

+1)
, ^o&quot;+% *V3 , x+ t ,

.... Con

tinuing this process of elimination indefinitely, we arrive at an expres

sion of the form

# E w&quot;/
00

(*)
= W +

l&amp;gt;&amp;lt;1^
+ &amp;lt;

-

n 1\r**
) + dH

d\&amp;gt;

H+
&quot;+

(30)

The coefficients JB ,
cn ,

dn) .... must now be determined. From

(15) we obtain the following group of equations :

(31)

Comparing (28) and (31), we observe that the latter group may
be obtained from the former by writing &amp;lt;j

r and y
r for /.^ and xr ,

respectively; the algebraic relations in both groups are otherwise identi

cal. Hence, if from (31) we seek to express y
n

in terms of

ffn ) (fn+i ) &amp;lt;fn+* ?
-

&amp;gt;

the process of reversion will be identical with

that which gives xn in terms of /1 (

&quot;\
/1 ( n+1

\ . . . .
;

hence we must find

M
+ B &amp;lt;r,,+i

+
&quot;,,T+2

+ ^,T+8+ (
32

)

the coefficients being those of
4 (30). Therefore, by (18), we have

//&amp;lt;&amp;lt;

=
(j

-I- ^r/l
+1 +c

M r
&amp;lt;

l

l+2 + d,,c,
+3 + . . . . (33)

Taking n = 1, in (30) and (33), we obtain

Xl = 4/ + ^/V+^/V&quot; + ^^,iv + .... (34)

y =
*i + *i&amp;lt;*

i+**1 +&amp;lt;*i*i

4+ .... (35)

and
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From (17), by adding unity to each member, we have

or

_//
= log, (1 + qr.,) (37)

. __ ] 2
-|_

1
ff

3 1 4
-|_ (38)

Comparing coefficients in (35) and (38), we find

6,
- -i &amp;lt;!

= +i ^ = -i .... (39)

Substituting these values in (34), we obtain

A &quot; /] &quot; z/
iv

Again, from (38), we derive

/Y)
*

/Ti /Ti

JPi , *fi Ti
i

Equating coefficients in (33) and (42), we find

-jf i 5.- +y4 (3&quot;
+

&quot;&amp;gt;)
, d. - -^(n+ 2)(n+ 3) ,

.... (43)

These values being substituted in (30), the latter becomes

7? 7? J)

^&amp;gt;+ . . (44)

Using the symbolic notation adopted in (21), we have the follow

ing expressions :

Z&amp;gt;

2 = (A z/
2+ ^//

8

iz/
4+ . . .

)
2 = /I* J 8

+|4z/
4

g

(45)

19. Effect of a Change in the Argument Interval w, upon the

Magnitude of the Several Orders of Differences. Let us now suppose
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that a second tabulation of F (T) has been made, differing from the

first only in the value of the interval, w. Let / = mto be the in

terval of the argument in the second table; denoting the differences

by 8
, 8&quot;,

8
&quot;,

. . . .
,

the new table will run as follows :

T
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Now let

be an auxiliary expression, such that the coefficient of
y&quot;

+r is the

coefficient of xn+r in (47).

From (33) we obtain, in succession,

(52)

Now, to eliminate y
n

, y&quot;

+l
,
.... from (51), by means of (52),

we must perform precisely the same algebraic steps as in the deriva

tion of equation (49) from (47) and (48); we shall therefore obtain

* =
&quot;&amp;lt;&quot;&amp;lt;rr +P,,&amp;lt;ti

+l +
y,,&amp;lt;rt

+2 + .... (53)

and, for n = 1, we have

*\
=

&amp;gt;l Vi + fr &amp;lt;Fi

2 + 7i g ;

i

8 + . . . . (54;

Xow the equation (51) may be written

zn
=

(mi/}&quot;
+ En (my)

&quot;+1 + Cn (mi/)&quot;+*+ ....

Whence, by (15a), we have

* =
&amp;lt;y(
wy) (55)

and hence, also,

*i

or, by (17),

... 1 + z
l
=

e&quot;

1
&quot;

(56)

Also, from (36), we have

1 +
ffl
= py

the combination of which with (56) gives

m(m 1) m(m 1) . . (m r+1)- 2 -A_ *

(57)

ll IT.

or

. (m 1) 2 m(m 1) . . . (m ? + !)

n in
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Comparing (54) and (57), we find

m(m V) m(m l)(m-2)
ftl

-

~^~ n -^ (58)

Substituting these values in (50), we obtain the following funda

mental relation:

= 4* + . . . . (59)

Again, using the relation
ffit
=

&amp;lt;#,
we obtain from (55),

*. = fuKv) =
\&amp;lt;ri(y)\

n =
? (GO)

Hence, from (57), we find

Expanding and factoring, we obtain

7? T? r~&quot; i= m
(jpj&quot; + -

w&quot; (m - 1) (jr

+1 +
24 (3 + 1)

-
(3i -f 5) m&quot; (m- 1) r/I

+2

w r ~i

+
4g w(n+ l)w

a

-2(7i
a+3w+ l)m+(w+ 2)(w+ 3) 7H&quot;(w-l)g7+

3+ (61)

Equating coefficients of like powers of rri in (53) and (61), we have

P* = ~mn
(m-l) , y,,

= ^ w (m-1) f(3n + l) Wi -(3 + 5)l , .... (62)

Substituting these values in (49), the latter becomes

1% 7) I

8.V
= m-

^&amp;gt; + ^ m&quot; (m- 1) J,
(

,&quot;

+1) + m&quot; (m- 1) (3w+ 1
)
m- (3n+ 5) z/(+2

&amp;gt;

(63)

Finally, we may symbolize these results by the following expres

sions : (64)

= TOJ
|

m
(
m- 1

)^2 |
.

m
(
m- 1)(m- 2

)j8
|

K^- 1
)&quot; C^- 3

)J 4
,

&quot;K
TO -l)- fo-4) Jfi .

2 2)

_ ~\\
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20. THEOREM VII. If the nth

differences of a given series of

functions are numerically large as compared ivith all the following

differences, then, if the series be re-tabulated ivith the argument interval

m times its original value, the nth

differences of the new series will

be approximately m 11 times the corresponding nth

differences of the

original series.

The theorem is a direct interpretation of equation (63). For, if

//&quot;
+1)

,
z/ n+2)

,
.... are all small in comparison with J&amp;lt;

n)
,
then the ap

proximate value of 8 (n) is mw
z/

(n)
.

COROLLARY. If the nth

differences of the given series are con

stant, then the nth

differences of the new series are also constant, and

equal to mn times the original nth

differences.

For, if J(n) is constant, J(&quot;+
1)

,
z/&amp;lt;

n+2)
,
.... are all zero, and

hence (63) gives, rigorously,

21. To illustrate the foregoing results, we take the following

table of cubes:

T
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in the latter m = i, and observing that the differences beyond j

vanish, we find

V - *4 -*4&quot; + A4 &quot;

, V = *4/ -A4/&quot; , V&quot;
=

From the first of the above tables, we take

4/ = +92727
4,&quot;

= +5562 z/ &quot; = +162

Whence, from (65), we derive

V = 30909-618 + 10 = 30301 S &quot; = 618 -12 = 606 &
&amp;gt; = 6

which agree exactly with the values found in the second table above.

It will be observed that 8 and S
&quot;

come within & part of equaling

$4/ and 4/ , respectively; while 8 &quot;&amp;gt; = ^J &quot;

9 exactly. These rela

tions are in accord with Theorem VII.

22. To Express the Differences of F(T) in Terms of the Given
Functions

&amp;lt;wfy.
Let the given series be FQ , F^ F2 ,

Fz ,
. . . .

;
then

the first differences are F
l
F

, F^F,, F3 F.2 ,
. . . .

;
the second

differences, F. 2F.+ F,, Fz 2F2+F,, . . . .
;

the third differ

ences, ^33^+3^^0, ^ 3^3+3^^, . . . .
;

and so on.

The coeflScients evidently follow the binomial law. Thus we have

generally

(66)

Ap = Fn
- nFn_l+ -^^ Fn_z

-.
.

;
+ (-iy nC,.Fn_r . . + (-!)-*; + (-1)^

in which, according to the usual notation, we put nCr for the co

efficient of xr
in the expansion of

(1-f-a;)&quot;.

To prove (66), let us assume it true for the index n\ then the

expression for the nth
difference immediately following /7&amp;lt;&quot;&amp;gt;

(i.e., z/&amp;lt;&quot; )

will be obtained by increasing the subscripts of FM Fn_ .... in

(66) by unity. We therefore have

W = Fn+l -nFn + n(n-^Fn^- . .+(-iy+\Cr+l Fn_,. . . + (-1)&quot;^ (67)

Subtracting (66) from (67), we find

, +(-!) F
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But, as proved in Algebra, we have

=
H+lcr+l

and hence the preceding equation becomes

(68)

It follows from (68) that if the law expressed in (66) holds for

n, it also holds for w+ 1. But we have seen above that the expres

sion is true for n = 1, 2 and 3. Hence it is true for ro = 4, and

so on indefinitely; the equation (66) is therefore true for all positive

integral values of n.

23. To Express Any Function of a Given Series in Terms of Some

Particular Function (F ), and of the Differences (a ,
b

,
c

,
. . . .)

which Follow that Function. As before, let F
,
F

{ ,
F2 ,

F3 ,
. . . .

denote the given series, the differences being taken as in the schedule

below :
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and so on. The coefficients again follow the binomial law, which sug
gests for the form of the general term

&quot;

12

&quot;

&amp;gt;0

13

c
o~^- (69)

To prove (69) by induction, we assume that it is true for the

index n. Moreover, we evidently have

+i
=

We may now find an in terms of a
,
b

,
c

,
d

,
. . . . from

(09), since the relation is here the same as the relation of Fn to

^oj o&amp;gt; &o? c
, j

thus we obtain

n(n 1)

Adding this value of an to that of Fn given by (69), we find*

Thus, having assumed the relation (69) to be true for the index

n, we find by (70) that it is also true when n-]-l is written for n;
but we have shown directly that (69) holds for n = 1, 2 and 3.

The formula (69) is therefore true for all positive integral values of n.

*We here omit the proof for the general term, since the process is the same as in 22.
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EXAMPLES.

1. Tabulate the five-place logarithms of 25, 30, 35, .... 65, 70,

and take the differences to the fifth order inclusive. Retain a copy

of the table for further use.

2. Tabulate F(T) = log cos T, to five decimals, for T= 50,

53, 56, .... 74, 77; difference to the fifth order, as in Example 1.

Retain a copy of the table.

3. Verify the accuracy of both the functions and their differences

in Examples 1 and 2, by noting the degree of regularity in //
v

,
accord

ing to the method of 8.

4. Also, rigorously check the differencing in the above examples,

by taking the algebraic sum of each separate order, as explained

in 3.

5. Add the two series of functions tabulated in Examples 1 and

2
;

difference the new series as before, and see that the resulting

values of z/
v are the sums of the fifth differences of the other series,

according to Theorem IV.

6. Correct the errors in the following tables by the method of

differences :

0) (*)

T
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(d)

T



CHAPTER 11.

OF INTERPOLATION.

24. Statement of the Problem. Given a series of numerical values

of a function, for equidistant values of the argument, it is required to

find the value of the function for any intermediate value of the argu

ment, independently of the analytical form of the function, which may
or may not be given.

Interpolation is the process or method by which the required

values are found.

Without certain restrictions or assumptions as to the character of

the function and the interval of its tabulation, the problem of inter

polation is an indeterminate one. Thus it is evident, a priori, that

from a series of temperatures recorded for every noon at a given

station, it would be impossible to obtain by interpolation the tempera
ture at 8.00 P.M., for a given day. If, per contra, the thermometric

readings were recorded for 7.00, 7.10, 7.20, 7.30, .... P.M., it is highly

probable that the temperature at 7.14 P.M. could be interpolated with

accuracy.

The Nautical Almanac gives the heliocentric longitude of Jupiter
for every 4th day; but, because of the slow, continuous, and syste
matic character of Jupiter s orbital motion, it is found sufficient to

compute the longitudes from the tables direct for every 40th day only.
The intermediate places are then readily interpolated with an accuracy
which equals, if indeed it does not exceed, that of direct computa
tion.

The moon s longitude is given in the Nautical Almanac for every
twelve hours; for the moon s orbital motion is so rapid and compli
cated that it would prove inexpedient to attempt the interpolation of

accurate values of the longitude from an ephemeris given for whole

day intervals.
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It therefore appears that, to render the problem of interpolation

determinate, the tabular interval (w) must be sufficiently small that

the nature or law of the function will be definitively shown by the

tabular values in question. The condition thus imposed will be satisfied

when, in a given table, the differences become either rigorously or

sensibly constant at some particular order.* This follows from the

fact, soon to be proved, that for all such cases a formula of interpo

lation can be established, either rigorously or sensibly true, according

to the foregoing distinction.

25. Extension of Formula (69) to Fractional and Negative Values

of n, Provided the Differences of Some Particular Order are Constant.

We have shown (Theorem V) that the differences of a rational inte

gral function vanish beyond a certain order. We proceed to prove

that, for any such function, the formula (69) is rigorously true for all

values of n.

Let F(T) denote any function whose differences become con

stant at the order i, and let z/ (l) = 1Q ; 1?(T) and its differences are

then shown in the schedule on following page.

*
Excepting, of course, any periodic function whose tabular interval (co) differs but little from

some multiple of its period, P. An example of such a series is the following :

Date, 1898
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T
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Hence, Fn and Q are equal to each other for more than i values of

n. But Fn and Q are both expressions of the degree * in n. Now,
when two expressions of the degree i in n are equal to each other for

more than i values of n, they are equal for all values of n. There

fore, for all values of n, fractional and negative, we have

*= *(*+) - J^+SezSl^ . . . .+?(-!). -(&quot;-+1),
o (73)

provided that //&amp;lt;-&amp;gt;
= Z = constant. This is the fundamental formula

of interpolation, and is known as NEWTON S Formula.

26. Second Proof of NEWTON S Formula, for Constant Values of
jw. Formula (73) is readily proved by means of equation (59), in

which m may have any value. The only condition necessary for the

validity of (59) is that the expansions (0) are themselves valid. But
since we assume that the differences beyond jw vanish, it follows (as

proved in the last section) that the expansions (0) are valid. Hence

(59) gives, rigorously,

V =

From the definition of 8 (see schedule, p. 31), we have

V = F(t+m^-F(t} = Fm -FQ

F E

which is the same as formula (73), except that m is written for n.

27. To Find n, the Interval of Interpolation. The binomial co

efficients of NEWTON S Formula are given in Table I, for every hun
dredth part of a unit in the argument n. The quantity n is called

the interval of interpolation, and in practice is always less than unity.
To obtain an expression for n, suppose that we are to interpolate the

value of the function corresponding to the argument T, whose value

lies between t and w then we shall have

Fn E F(t+ nw) = F(T} ,
or t + nu = T

and therefore

which determines the interval n.
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28. EXAMPLE. From the following table of T 4
, find the value

of (2.8)
4

by NEWTON S Formula:

T
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therefore, is to find F_n ]
for this purpose, let F ( T) be differenced as

in the schedule below the values of z/ (i &amp;gt; being supposed constant as

before :

T
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given in this case, the formula (75) must be used; n being the inter

val of the required function from FQ toward F_ t
.

EXAMPLE. From the table of T* given on page 44, find the value

of (13.26)
4

.

Taking t = 14, we find

14-13.26

which is the interval counted backwards from F = 38416. Hence,
from Table I, we obtain

A = +0.37 C = +0.06333
B = -0.11655 D = -0.04164

And for the differences required by (75), we have

a_! = +17680 c_z = +2112
b_z

= + 6944 d_t = + 384

Therefore, by (75), we derive

JP = +38416.00

-Aa_, = -- 6541.60

+ Bb_z
= - 809.32

-Cc_a = - 133.75

+ Dd_j = - 15.99

.-. Fn = (13.26)
4 = +30915.34

By direct calculation, we find

(13.26)
4 = 30915.34492+

30. Application of NEWTON S Formula, when the Differences Be
come only Approximately Constant. We have proved (25 and 26)
that (73) is true for all values of n, provided the differences of some

particular order are rigorously constant. We now propose to show

that, if the value of n lies between and -f-1, the formula is very

approximately true for the more frequent case in which the differences

of some order become approximately, but not absolutely constant. The

example given on page 8 is typical of this case; the numbers involved

are not the true mathematical values of the quantities represented, and

hence the irregularities, as already explained.

Let FQ ,
F19 F2 ,

F3 ,
.... Fr ,

. . . . denote a series of approxi
mate tabular values of any function F(T), given for equidistant
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values of T, and true to the nearest unit of their last figure; let

J^
, FI, Fz ,

Fz ,
.... Fr ,

. . . . denote the corresponding true mathe

matical values of the series, which we shall designate generally as F\
also, let Fr

== Fr -\-fr ; fr being the difference between the true and

approximate values, due to the omission of decimals in the tabular

quantities.

The differences of F, and those of the series f09 /j , fz , f3 ,
. . . .

,

are now defined by the two schedules below:

F(T)

t

t +
2o&amp;gt;

^
F!

A&amp;gt; A &quot;

fti

(A)

T
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irregularly. Moreover, the foregoing definition of F requires that the

terms in //(1+I) are sufficiently small to indicate that no errors exceed

ing half a unit in the last place exist in the functions F(T). The

values of //
&quot; are then approximately constant, and therefore Table (C)

represents the typical case in practice. We proceed to investigate the

accuracy of XEWTON S Formula as applied in this case; assuming that

n is always taken within the limits and -f-1, and that terms beyond

J ( &quot; are neglected.

Applying (73) to find Fn from Table (C), and omitting the terms

beyond //&amp;lt;

!)

,
we have

F
n
= (Fo+fJ)+A(a9+ad + B(b9+&) + C(c9+yd + + L(la+ \} (76)

in which A, B, C, .... L denote the binomial coefficients of the

nth order. Let us now examine the approximate formula (T6), to dis

cover its maximum error when all conditions conspire to that end.

The formula (76) may be written

Fu
= (F + Aa +M + .... + L/

)
+ (tf +Act +Bp + .... +L\J (77)

For brevity, let us put

Q = F + A&amp;lt;i + Zb + .... +L1
R E / + Aaa + Bp+ ...

... FH
= Q + R

It will be observed that Q is the value obtained for Fn when

(73) is applied to Table (A), terms beyond A(i}

being neglected. We
leave the discussion of Q for the present, to consider the quantity R,
which evidently expresses the error of interpolation due to the un

avoidable errors, /, contained in the tabular functions F.

Applying the formulae of 22 to the differences of Table (B),
we have

o
= /i /o

3/i /
6/2 - (78)
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Hence, from (77 a), we obtain

= f + Aa + B0 + C7o + D8 + fit + . . .

= /o + ^ (/,-/) + B(f2-2f1+fo)
+ C (/,-3/i+3/1-/ )

.-. R =
. .

(79)

Now the binomial coefficients A, B, C, . . . . are connected by
the following relations:

A- B.- C.-.!=*\B

Hence, since we have assumed that n lies between and -|-1, it

follows that A, B, C, . . . . are alternately positive and negative,
thus: ABODE ....

+ + -+....
We therefore draw the following conclusions respecting (79) :

The coefficient of fv
is +

;

&amp;lt; (( f (I
/2 -

&amp;gt;

&quot; &quot; &quot;

fa
&quot; +

5/ O

(( (I U f (I
Ji J

,
since the values of F are supposed true to the nearest unit

of the last decimal figure, the quantities f may have any value between

0.5 and +0.5, in terms of the same unit; hence, it follows from the

foregoing conclusions that if we take

/t
= +0.5 /2

= -0.5 / = +0.5 /4
= -0.5 .... (80)

the sum of all the terms after the first in the right-hand member of

(79) will be numerically a maximum, with the -|- sign.

We shall now show that the coefficient of fQ in (79) is a positive
number. For this pupose, let us consider the identity

(i-x)-
i

(i-xy
n =

(i-z)&quot;-
1

which, for all values of x numerically less than unity, may be expanded
into the form



50 THE THEORY ANT&amp;gt; PRACTICE OF INTERPOLATION.

Upon equating the coefficients of x* in the two members of this

identity, we find

- C+ . . . L= (-1). .

Now, the first member of this equation is the coefficient of/ in

(79) ;
and since the final member contains only positive factors, it

follows that the coefficient of / in (79) is a positive quantity. Ac

cordingly, if we take f = +0.5, in conjunction with the values of

/i,/2,/3 ,
..... designated in (80), the value of R given by (79)

will then be the greatest possible under the assigned conditions.

We now append a table of the quantities f*,f\if*&amp;gt;ft*
.....

as above determined, with their differences :

T
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To evaluate (81) for different values of n between and +1,
we make use of the following abridged table:

n = A
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Whence it is seen that the greatest possible values of R, under

the assumed conditions, are

0.6 0.8 1.1 1.6 2.3 3.4 .... j

While it is obvious that the combination of accidental errors /,

shown in Table (B ), is very improbable, yet approximations to such

combination will occur occasionally in practice. In such cases the

errors (JK) in functions interpolated by NEWTON S Formula may be a

considerable part of the values given by (83). These values show

that when the differences beyond zT are neglected, the error R cannot

be greater than 1.6, in units of the last place in F. In all probability

this error will not exceed one unit
;
and when it is considered that

the results of an average logarithmic computation are uncertain with

in this amount, we are justified in neglecting the error R, provided

that fifth differences are practically constant.

Beyond 7?5 ,
the limiting values of R increase rapidly. We there

fore conclude that, aside from the inconvenience involved, it is im

practicable to interpolate by NEWTON S Formula when the differences

beyond Jv are too large to be neglected.*

We now consider the expression Q of (77a), that is

Now, because the differences of F in Table (C) become approxi

mately constant at z/
(!)

, notwithstanding the irregularities they contain;

so, a fortiori, must the differences of F in Table (A) become sensibly

constant at J(0
,
the quantities of this table being mathematically exact.

Hence the differences z/(!+1) in Table (A), namely,

will form a series of continuous, but very small terms, whose values

are nearly equal to each other. Per contra, we have assumed that the

differences

*
Excepting the case where F(T) is a rational integral function of T, whose tabular values are

mathematically exact.
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of Table (C) either are alternately -j- and
,
or that -(- and terms

succeed each other irregularly. It follows that the quantities m must

be numerically less than the maximum value of p in the series

For, otherwise, if the quantities m exceeded the greatest of the

quantities ^, the former would mask the effect of the latter in the com

bined series m-\-^ 7
hence there would be no general alternation of

signs in the series

But this is contrary to our assumption that the differencing in

Table (C) has been carried to an order J(i+1) which does exhibit a

general alternation of signs. We therefore conclude that w is numeri

cally less than the maximum value of
JJL.

Now, from Table (B ), we observe that under the conditions

assumed,
The maximum value of (=z/ )

is 1 = (2);
&quot; &quot; &quot; &quot;

/3 (= z/&quot;)

&quot; 2 =
(2)

1

;

&quot; &quot; &quot; &quot; y(= z/&quot; )
&quot; 4 = (2)

2

n(= JC+1

))
=

(2) .

Hence, m is numerically less than 2*.

We have observed above that, as a consequence of the conditions

herein assumed, the differences of F in Table (A) are converging, being

practically insensible beyond jwj hence the fundamental expansions (0),

and all relations deduced from these, are valid in this case. The formula

(59) is therefore applicable to the series F(T):&amp;gt; hence, writing n for m
in (59), we have

Nn + ....

in which as many terms should be retained as accuracy requires.

But we also have*

V = F(t+n) -
F(t) = Fn -F,

and therefore

Fn
= F + Aa + Bb

Q
+ Cc + . . . . +L1 + Mm + NnQ+

* See 26, where the same relations were similarly employed.
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Now, by (84), this equation may be written

Fn
= Q + Mm. + Nn + . . . .

or

Fn
- Q = Mm + Nn.+ . . . . (85)

The series MmQ -\- NnQ -\- . . . . therefore expresses the differ

ence between the true mathematical value of the interpolated function

and its approximate value Q. But since, as above observed, the differ

ences m are nearly constant, it follows that the differences n are small

in comparison. Hence, N~nQ is small as compared with Mm
;

in

brief, Mm represents, very nearly, the value of the rapidly converging

series Mm -|- Nn -}-.... in the right-hand member of (85) . The

latter equation may therefore be written, without sensible error,

Fn -Q = Mm, (86)

From (82) we derive

3 -E2
= + 3(7 = (2

2

-l)(+&amp;lt;7)

4 -Es
= -- ID = (2

3

-l) (-D)

(87)

Bi+l
- B

t
- (2 -l) (-l) Jf

From the last of these, we obtain

2&amp;lt;M = E
i+1
-

t
M (88)

We have shown above that m is numerically less than 2*; this

condition may be expressed in the form

m = 2 sin 9

where 6 may have any value between and 2-rr. From this relation

we obtain

or, by (88),
Mm = (St+l

S
t M) sine (89)

Substituting this value of Mm in (86), we get

Fn
- Q = (R^-Bt M) sin^ (90)
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From (77a), we have*

Fn
- Q = R

t (91)

which, subtracted from (90), gives

FH Fn
= E

i+1 sin (1 + sin 0} R{
M sin

From Table (D) above we see that beyond 4&quot; the coefficient M
cannot exceed 0.04, which is an inappreciable quantity in the present

discussion; we therefore write the last equation

Fn
- Fn

= E
i+l

sin -
(1 + sin

ff)
S

t (92)

The quantity _Z?
J+1

is numerically greater than 7^, and both are

alike in sign; this condition may be expressed by the relation

R. = R .

+l

in which
i/;

has a definite value depending upon the value of i. Sub

stituting this expression for J?4
in (92), the latter becomes

Fn Fn
= R

i+l [sin0 sin 2

^(1+ sin 0)]

or

Fn -Fn
= 72.+1 (sin cos 2

1/
-sin 2

./,) (93;

Since cos2

i//
is necessarily positive, and sin

2

i// negative, it fol

lows that the coefficient of R
i+l

in (93) will be numerically a maximum

when sin# attains its greatest negative value; that is, when 6 = f IT.

Taking 6 = \ TT in (93), we have

Fn -Fn
= ^(-cosV-sinV) = -Ri+l (94)

which is the maximum numerical value possible to Fn Fn ,
all con

ditions favoring.

Fn is the true mathematical value of the required function. Fn is

the approximate value of this quantity which is obtained by applying

NEWTON S Formula to Table (C), neglecting differences beyond jw:

it being assumed, (1) that the given functions FQ ,
F19 Fz ,

F3 ,
. . . .

are true to the nearest unit of their last digit; (2) that n is positive

* The quantity E defined in (77a) is not distinguished by a subscript in the earlier part of this

discussion. Considered as a particular term of the series Ez ,
J?8 , Bt ,

. . . .
, however, it is evi

dent that B should be designated as Bi .
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and less than unity; (3) that the differences z/(0 are approximately

constant; and (4) that the differences ,//
(i+1

&amp;gt; are quite small, with -|-

and signs following irregularly. Under these conditions, it follows

from (94) that the computed value Fn can never differ from the true

value Fn by more than the quantity 7?l+1 .

One point further, however, must be considered. In computing
Fn by (76), we should, in practice, obtain the values of the several

terms to one or two decimals further than are given in F, to avoid

accumulation of errors in the final addition. But in writing the sum,

Fn ,
the extra decimals are dropped, the result being taken to the

nearest unit, as in F. Thus we actually use, not the quantity Fn ob

tained rigorously by (76), but a close approximation to that value,

which we may denote by (Fn). Accordingly, the relation

Fn -(Fn}
= 0.5

expresses the maximum discrepancy between Fn and (Fn). Combining
this expression with (94), we finally obtain

Fn
- (Fn) = -S

i+1
0.5 (95)

The quantity -Ri+i
+ 0.5 therefore represents the final limit of error

in the value of an interpolated function, in units of the last decimal

of F. From the value of R& given in (83), we find that when

z/
v is nearly constant, the limiting error is 2.8 units. Since it is

highly improbable that all the necessary conditions will conspire to

produce this maximum error, we may add that when the differences

practically terminate at the fifth order, interpolated functions will

occasionally be in error by one unit, only rarely in error by two units,

and never by three.

With sixth, seventh, or higher differences employed, the results

become subject to errors which in most cases would be intolerable,

and which would probably be obviated by a direct calculation of the

function.

From the foregoing investigation it therefore appears that, for

purposes of interpolation, tabular functions should always be given

with an interval sufficiently small that differences beyond z/v may be
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neglected. This condition is generally fulfilled in practice. As already
stated in 24, the longitude and latitude of the moon are given in the

Nautical Almanac for every twelve hours; from the values thus given,
intermediate positions can always be safely interpolated by using differ

ences no higher than the fourth or fifth order. On the other hand, a

table of the moon s longitude for every 24 hours would yield differ

ences of the eighth or even ninth order; the use of which in NEWTON S

Formula might produce an error of several units in an interpolated

position.

In all that follows, we shall assume that differences beyond the

fifth order may be neglected. This assumption made, it follows from

the preceding investigation that the fundamental formulae, (73) and

(75), may be applied in all cases without sensible error, provided that

n is taken less than unity.

31. We shall now solve an example which illustrates the main

points of the foregoing discussion. If we tabulate the function

606607.920 - 199841.772 T + 50804.968 T 2

+ 5645.715 T 3 - 2169.395 T 4 + 116.817 T 5 + 1.507 1 1
(96)

for T = 0, 1, 2, 3, .... 9, we find that the true mathematical

values terminate in the fifth decimal. These values of F(T) are

given in the table below, with their differences:

T
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last three decimals of each differ only slightly from the quantity

0.00500, or half a unit in the second decimal place; and, moreover,

that the actual difference is, excepting the first function, alternately in

excess and defect. This condition will rarely obtain, and is here selected

only to illustrate the limiting case.

If now we drop the last three decimals of F, we obtain a series

of approximate values, denoted by F. The following table gives F,

true to the nearest unit of the second decimal, together with its

differences :

T
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T
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where the numerical term is now expressed in the same unit as R5 .

With the above determined value of R~ (= -{-1.526), the last equation

becomes

Fn
= Fn + 1.56

Finally, since we were obliged to write (Fn ) greater than Fn by
0.23 units, it follows that the actual error of interpolation in this

instance is 1.56-)- 0.23, or approximately 1.8 units in the second deci

mal place; which agrees with the result previously obtained.

32. As a more practical application of NEWTON S Formula, we

take the following

EXAMPLE. From the appended table, find the sun s right-ascension

for April 20d Oh
.

-

Date
1898
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April 21, by means of (75). Thus, from Table I (forw= 0.20), and

the tabular differences, we find
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To derive STIRLING S Formula: Applying NEWTON S Formula to

the above schedule, we find for the value of Fn ,

Fn
= F + na, + Bb^ + Cc2 + Dd

2
+ Ee3

+ . . . . (100)

where, as before, B, C, D, E, .... represent the binomial coefficients

of
j&quot;,

4
&quot;,

Jiv
,
Jv

,
. . . .

, respectively. Let us now put

(101)

from which, with the relations

i
a = b

,
c
l

c = d
,

e
l
= e + . . .

we obtain

!
= a + $b ,

e = c-%dQ , GI
= c + ^dQ ,

e
l
= e + . . . (102)

Using the equations (102), together with the relations given in 23,

we find

a = a

c
2
= c + 2d + e

l
= c+%dQ

+ e

d
z
= d + 2e, + . . . = d + 2e

es
= e

1
~\~ . . . = e 4- . . .

(103)

Upon substituting these values of an 61? c2 ,
.... in (100), the

latter becomes

Substituting in the last equation the values of B, (7, Z&amp;gt;, E, namely,

__ (-!) n(ro-l) . . (_3)-- . J^/ ^^r-.

11 |i

C = rcfo-l)(rc-2) ^ = ro(n-l) . . (n-4)
11 II

we finally obtain

w .. i-i - -, __^ -. F + na+-b +--c+--2dQ i.- - -- + . . (104)

which is known as STIRLING S Formula. The even differences em

ployed in this formula are those falling on the horizontal line through
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FQ] the odd differences are the means of those which fall immediately

above and below this line, as defined by (101).

Table II gives the values of STIRLING S coefficients for the argu

ment n. A glance at this table shows how much more rapidly these

coefficients converge than those of XEWTON S Formula.

EXAMPLE. From the table below, find the K.A. of the sun for

April 20d Oh
.

Date
1898
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35. Bad-ward Interpolation by STIRLING S Formula. When the

forward interval approaches unity, it will be more convenient to pro

ceed backwards from the following function by the formula

24
dn -

120 (105)

the coefficients of which are taken from Table II with the argument

n, as before. It will be observed that (105) is derived from (104) by

merely writing n for n in the latter; or, by supposing the given

series to be inverted, and hence (Theorem III) changing the signs of

a, c, and e.

EXAMPLE. Solve the preceding example by (105); that is, find

the sun s R.A. for April 20d Oh
by backward interpolation.

Taking t = April 21, we have

n = *=H9 = 0.20

The differences are formed for the date April 21 in the same manner

as found above for April 20; thence, taking the coefficients from

Table II, with n = 0.20, we find

A =
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and we therefore obtain

F. = 9.19433
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38. BESSEL S Formula. We now pass from STIRLING S Formula
to another, somewhat similar, wherein we employ the odd differences

1? cly &amp;lt;?j,
which fall on the horizontal line between F and F17 and

the means of the even differences falling immediately above and below
this line. Using the schedule on page 62, let us put

b =
i(*o+*i) &amp;gt;

d = iK+^i) (106)

Then, since \ b =clt and ^ d = e^ these equations give

l&amp;gt;
= b -$ Cl ,

d = d - $ e, (107)

Let us write the formula (104), for brevity,

Fn
= F -\-na-{-n

i

b + Cc+ Dd+ Ee+ .... (108)
where

C = -

^6~ D = !

^4T E = n(n
*~i2o&quot;*-

(109)

Now, by means of (102) and (107), we derive

a = (h-g = &amp;lt;*!--

b = b % Cj

c = C -d = C
(110)

Upon substituting these values of
.,

J
, c, . . . . in (108), we have

Finally, substituting in the last equation the values of O, D,
from (109), we obtain

-- ---
24 120 1+ *

which is BESSEL S Formula of interpolation, commonly regarded as

the most convenient and accurate of the several forms in use. The
odd differences here employed are those which fall on the horizontal

line between F and F^ as shown in the schedule on page 62; the

even differences are the means of those falling immediately above and
below this line, as defined by (106).
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Table III gives BESSEL S coefficients for the argument n.

EXAMPLE. Use BESSEL S Formula to compute log sin 9 22 from

the table below:

T
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Taking t = 7, we have
n = =? = 0.60

Therefore we find

F = + 2401
A =
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It will be observed that the coefficients are here numerically the same

for the arguments n and l n] having like signs for the even orders,

and opposite signs for the odd orders of differences.

More generally, let us denote the values of BESSEL S coefficients

for j, /I
&quot;,

Jiv
,
Jv

,
.... taken with the argument n, by B, C, D, E, ----

,

respectively; and the corresponding values taken with the argument

l n by B19 C19 D
shows that we have

An inspection of Table III then

B
1
= +B

C, = -C
D

l
= +D

E
l
= -E

(112)

To establish these relations generally, we write (111) in the form

pn
= FQ + nai + BI + Cc, + Dd + Ee, + . . . . (113)

Now, the value of Fn may also be obtained by interpolating lack-

ivards from Fv
with the interval 1 n; the differences thus involved

will be exactly the same as in (113). Hence, after the manner of

formula (111), we have

Fn
= F

l
- (l-n) a, + BJ&amp;gt;

- C& + D,d - E&+ . . . . (114)

But we have, also,

Whence, (114) becomes

Fn
= F + na, + BJ&amp;gt;

- C& + D,d - E,e, + . . . . (115)

which, subtracted from (113), gives

= (B-B^)b+ (C+CJ Cl
+ (D-D^d+ .... (116)

The equation (116) is true in all cases to which the formulae of

interpolation are applicable; it is therefore true when F(T) is a

rational integral function of the second degree. But, in the latter

case, the second differences being constant, we have

Cj
= d = e

t
= . . .

The equation (116) then becomes

= (B-B,}b
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Hence, since b cannot vanish, we have

B
l
= +B

.This result reduces (116) to the form

= (C+C1)c1
+ (D-Dl)d+ (E+E,} ei + .... (117)

Again, we may suppose z/&quot; constant
;

that is, we. may put

d = e
l
= . . . . =

The equation (117) then becomes

=
or

By repeated application of this reasoning, we prove that the rela

tions (112) are true generally.

It follows that the numerical process involved in finding Fn by
BESSEL S Formula is identical whether we interpolate forward from FQ

or backward from F1} except for the terms in F and J . Hence little

or no check is afforded by performing the interpolation by both methods.

When such a check is deemed necessary, BESSEL S and STIRLING S

Formulae should both be used.

42. Relative Advantages of NEWTON S, STIRLING S, and BESSEL S

Formulae. In practice, the only important application of NEWTON S

Formula consists in interpolating functional values near the beginning
or end of a given series. The selection of this formula is then a

matter of necessity rather than of preference.

In all other cases, either of the more rapidly converging formulae

of STIRLING or BESSEL should be employed. Regarding a choice

between these two, when Tables II and III are available there would

appear to be very little advantage one way or the other. The form

given by BESSEL is more commonly used, and is perhaps a trifle more

accurate in practice than STIRLING S form, particularly for values of

n in the neighborhood of one-half. When n is quite small, however,
STIRLING S Formula will probably be found more convenient.
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Suppose we have given a limited table of functions, as follows

F(T)
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are .insensible, we observe from BESSEL S Formula that the error of

the approximate value of Fn will be

IF, =
SjHj, (120)

The maximum value of
g which obtains for n = i ,

is f- ;

whence we have the following result :

When second differences are sensibly constant, the maximum error

of functions obtained by simple interpolation is i A&quot; .

Thus, in Tables I, II, and III, the values of the coefficients for

A&quot; (designated above as B\ can never be in error by more than | of

10 units, or 1.2 units in the fifth decimal, when found by simple

interpolation.

44. Interpolation Involving Second Differences, by Means of a

Corrected First Difference. When the second differences are con

stant, or nearly so, but too large to neglect, their effect may be

included (and hence an accurate value of Fn obtained) by the follow

ing simple method :

Since third differences are supposed insensible, BESSEL S Formula

becomes

n (n 1) ,Fn
= F^ + na, +

-^&amp;gt;-b

which may be written in the form

(121)

Now, because third differences are negligible, we may write b for b in

(121) ; then, putting

(4
= 0,

we have

F F -f-1 n J
o

(122)

The value of J n̂ is thus obtained almost as readily as in simple

interpolation. In forming the quantity ^ (which is simply one-half

the complement of n with respect to unity), only an approximate
value of n is ordinarily required. The value of c^ ,

the corrected first
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difference, is thus found by an easy mental process amounting almost

to mere inspection.

EXAMPLE. Find (8.2)
2 from the following values of T2

:

T



THE THEORY AND PRACTICE OF INTERPOLATION. 75

Taking t = 30720, we have

= 11.8315 n = 72 ~ 682 38 = 0.03919 (backward from

T = 30682.38 a = -3683

co = 960 & = + 68

Using 0.04 as a sufficiently accurate value of n in determining a
,

we find by (124),

i_ .04

2
= -3683 + (0.48 X 68)

= -3650

.-. F_n
= 11.8315 - [0.03919 X (-3650)] = 11.8458

In the present example the algebraic signs of the several quanti

ties of (124) have each been considered. Now it is important to

remark that in the majority of cases no attention need be given to

these signs; for in this fact lies the chief practical advantage of the

method. Thus, in the present example, we are interpolating from the

third function toward the second; the value of z/ to be corrected is

the difference of these two functions, or 3683; the sign we disregard.

The correction to be applied to this number is 0.48 X 68, or 33. Again

neglecting signs, we simply apply this quantity to 3683 in such a

manner as to obtain a result falling somewhere between the numbers

3683 and 3615 of the column J . Hence, we decrease 3683 by 33,

thus obtaining 3650 for our corrected first difference, a. Finally,

na = 143, by which amount we increase the function 11.8315 (giving

11.8458), since we observe that the functions are increasing in the

direction of the interpolation.

A partial exception to this, mechanical method of procedure is to

be observed when a and a have opposite signs ;
that is, when A

changes sign in passing the function FQ . In this case the sign of a

must be noted; we then have, as in (122) and (124),

F = F + na &amp;gt;
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For example, given the values below :

r
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only the values for each midnight. Thus we obtain the following

abridged series :

Date
1898
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method at once serves for the determination of the several values in

question. Thus, in the series

F F F F F-t
O&amp;gt;-

t !5 jt 2)- 35-t
4&amp;gt;

*

let us suppose that Fly 7 3̂ ,
and F7 are in error. Then, if we tabulate

and difference the series

the required values are easily found by interpolation.

Again, when two adjacent functions, say F and F$, require cor

rection, we may proceed by tabulating every third function of the

given series; thus we obtain the abridged series

F
,
F

z ,
F

6 , Fg, . . . .

from which the values of F and F$ are found by interpolating with

n = i and f , respectively. Otherwise, if the differences of the latter

series are too large for accurate interpolation, we may omit from the

original table every alternate function only, as in 46. The resulting

series,

F F F F F-f
O&amp;gt;-

t
2&amp;gt;-

f
4&amp;gt;-*6&amp;gt;-

/
8&amp;gt;

will therefore contain but one incorrect value, namely F. The cor

rection to FI may then be found by the method of differences, whereas

this method might be impracticable if applied to F and F5 simulta

neously. Similarly, we may correct F^ by the differences of

or, by interpolation from the corrected series

T71 T71 T7T TTt TVT

^0&amp;gt; ^2&amp;gt; A&amp;gt; *l A&amp;gt;
....

SYSTEMATIC INTERPOLATION SUBDIVISION OF TABLES.

48. Thus far we have considered interpolation as a process for

computing the values of functions for occasional or special values of

the argument, simply. We shall now consider the subject in a broader
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sense, and find that interpolation is of great importance as applied

in a more extended and systematic manner.

When a complicated function is to be computed and tabulated for

a large number of equidistant values of the argument, or when the

tabular quantities result from a long and laborious calculation, it will

be much shorter and easier to make the direct computation for a less

frequent interval than is finally required, and thence to obtain the

intermediate values by systematic interpolation. For example, suppose

the function

F(T) = 700&quot;.43 sin2T-l&quot;.19 sin4T

is to be tabulated for every 10 from 30 to 60
5
we should begin by

computing F(T) for every 4th degree of T. Thus we should obtain

the values of F(T) for T=

22, 26, 30, 34, . . . . 70
;

the calculation being extended somewhat beyond the assigned limits

in order to facilitate the interpolation which follows. These quantities

having been differenced, and corrected for accidental errors if neces

sary, the middle terms are then found by interpolation to halves. We
thus obtain the series F(T) corresponding to T=

26, 28, 30, 32, .... 64

Interpolating again to halves, we have a table of F\T} for every

degree of T. A third interpolation to halves gives the function for

every 30 . Finally, interpolating the latter series to thirds, we obtain

the required table, giving F(T) for every 10 of the argument T.

It is obvious that the labor of computation decreases rapidly with

each successive interpolation.

All of the extended tables in common use, such as tables of loga

rithms, sines, tangents, etc., have been subdivided in this manner, at a

saving of labor almost beyond estimation. In fact, interpolation has

undoubtedly done more for ^namimaticaH Bcience\ than any other dis

covery, excepting that of logarithms.

The following sections will be devoted to the derivation of formulae

and precepts which will simplify the process of systematic interpolation
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just described. Instead of performing a separate and distinct calcu

lation for each interpolated function, we shall develop a method by

which the required values are obtained by successive additions of the

computed differences of those values.

The most convenient interpolation to perform, either in an isolated

case, or as applied to the subdivision of an extended series, is interpo

lation to halves, which gives the function corresponding to the mean

of two consecutive tabular values of the argument. This case will

now be considered.

49. Interpolation to Halves. If, in BESSEL S Formula (111), we

put n = i, the coefficients of z/ &quot; and z/
v
vanish, and we get

Since J?
l
F = a

l ,
we have

F +FW + i a o *

^o
~

^&quot;i
~

2

Also, by (106), we have

d -

Hence, (125) may be written in the form

+*_.... (126)

which is the formula for interpolation to halves, true to fifth differences

inclusive. The differences are to be taken according to the schedule

on page 62.

Supposing that fourth differences are so small as to produce no

sensible effect, we obtain from (126) the very simple formula

-

. (12T)

true to third differences inclusive. Hence, to interpolate a function

midivay between two consecutive tabular values, we have the following
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RULE : From the mean of the two given functions, subtract one-

eighth the mean of the second differences which stand opposite. The
result is true to third differences inclusive. To obtain the value true
to fifth differences inclusive, add to the above result Tf? of the mean
of the corresponding fourth differences.

50. Precepts for Systematic Interpolation to Halves. The fore

going rule applies either to the interpolation of a single function into

the middle, or to that of an entire series of values. For the latter

purpose,^
however, the work may be arranged in a more expeditious

manner, as follows:

For convenience, we assume for the present that 4th differences

may be neglected; accordingly, if we put

I -*!-*. &amp;gt;

^
l
= F

l -F. ,
82 = F,-Fl ,

SS
&amp;gt; = F

2 -F,, . . . (128)

we obtain from (125),

X/ _ ! 1 A)+M* t 1 8 I o
j

\ * /

(129)

The quantities 8 defined by (128) are evidently the first differ
ences of the interpolated series

;
the alternate terms, 8 ,-82 ,

S4 , . . . .
,

are

computed by (129) from the first and second differences of the given
series of functions

;
the values of S/, /, 86 , are not computed.

The method and arrangement of the work are shown in the schedule
below :

t

T j O)

F(T)

P*

F,

Fs

8

So

V
s/

8&quot;

So&quot;

V

3

V

_ \

2 J

2

J
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The differences of the given series are placed in the last three

columns, under 4
, /I&quot;,

and j &quot;. The column a is then filled in by

writing opposite each of the quantities j&amp;gt; one-half its value. The

column (3 is also computed, each term being minus one-eighth the mean

of the two values of j&quot; which stand opposite. The alternate quantities

of column 8 are then found, as in (129), by taking the sums of the

corresponding terms in a and /3 ;
the results are written immediately

above the line of the latter terms, so as to fall between FQ and F , F^

and F,, etc., respectively.

Finally, since by (128) we have

F
t
= F, + v , J1 - 4+ V J| - * + V .... (iso)

it is only necessary to add each computed value of 8 to the function

immediately preceding, to obtain the required middle functions. Hav

ing thus completed the interpolation, the remaining or alternate values

of 8 are filled in by direct differencing. The second differences are

then written in the column
8&quot;,

their regularity proving the accuracy

of the work.

The given functions, also the computed first differences, etc., are

distinguished in the above schedule by heavy type.

When it is necessary to take account of 4th and 5th differences,

we have only to form an extra column y, to follow ft in the schedule

above. Under y we write the terms

3 /d +dA 3 /d
1
+rf

1\

I28\~2~) 128 V 2 )

the values of 8 are then formed by adding the three corresponding

terms in a, /3,
and y.

EXAMPLE. Given the values of log sin T for T 30, 32, 34,

.... 42
;

find the value for every degree of T from 32 to 40,

inclusive.

In accordance with the method above outlined, we arrange the

given functions, with their differences, as follows :
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T
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in which the argument interval is raw, or ~. Now, the two adjacent

functions of this interpolated series, which, as a pair, fall midway be

tween FQ and F
l ,

are

F/k-l\ anC* -FSM\

that is

F/l-m\
an(1 *\l+m\

Hence, if we put
8 = F - F (131)

i /l+m\ /I m\
\~2~7 \ 2 )

it follows that S/ is the value of the first difference of the interpo

lated series which falls on the line midway between F and F^ we

shall designate this quantity a middle first difference of the required

series. If we now let

1+m
/1QO\

2~
= n

(
132

)

we have 1m

and (131) becomes
J I 771 771 /-( 00\
Oi = -T -Ti (J- J&amp;lt;J)

J 71 1 W \ /

Hence, to express S/ in terms of the differences of the given series,

we have only to express the values of Fn and F_n by BESSEL S

Formula; thus, abbreviating coefficients, we have, as in (113),

Fn = FO + nai + Bb + Cc, + Dd + Ee, + . . . . (134)

Also, by virtue of the property of these coefficients established in 41,

we have

F,_n
= F + (1 rcX + Bb - C^ + Dd - Ee

l
+ . , . . (135)

The difference of these equations gives

8/ = Fn F
l_n

=
(
2n V)al

Jr
&amp;lt;2Cc

l
+ 2Ee

l
+ .... (136)

Now, by (132), we have
ra

hence, from (111), we find

-*)(*-*) = i^ 2- 1
)

fYfl

(m
2

-l)(m
2

-9)
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Substituting these values of n, C, and E in (136), we obtain the

formula

8, =
(137)

by which the middle first differences may be computed in any case,

provided is a positive odd integer.

Let us now consider the schedule below :

T
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interpolating the given series F(T) is thus virtually reduced to that

of interpolating the computed values of 8 in precisely the same manner.

Now, let
SQ&quot;

denote the second difference of the interpolated series

F, which stands opposite F ; S/ ,
the second difference opposite F^

etc. It follows that S
&quot;

is the middle first difference of the interpolated

series 8
,
which falls between S _ 4

and 8
, ; S/ ,

that falling between

S/ and S/; and so on. Hence, we may find 8
&quot;, S/ ,

82&quot;,

.... from
5 2

the computed series S _i? S/, S/, . . . .
,

in precisely the manner

that the latter quantities are derived from F_19 F ,
jp

7

, ,
. . . .; that

is, by application of the general formula (137), mutatis mutandis. For

this purpose, we must form the differences of the computed series

SLj, V, V, ....

Accordingly, let us put, for brevity,

M =

and (137) becomes

M =
1920 (138)

(139)

provided differences beyond Jv are disregarded. We now form a table

of the quantities 8 _1? S/, S/, . . . ., and their differences, as follows:

Function, = 8 1st Diff.

ml + Md
mb + Md

Q

mb^ + Md-^

2d Diff.

me 1 -h 3/e

r/tCj + ^/(?j

??ic + Me

3d

md

4th

Whence, applying the general formula (139) to the quantities of this

table, we obtain

or, by (138),

8 &quot; = (140)

by which the quantities 8&quot;_,, S,,&quot;, 8,&quot;,
.... of the former schedule

are computed from the differences z/&quot; and z/
iv which stand opposite.

Again, we may suppose that the intermediate values of S&quot; have

been interpolated between the computed values S&quot;^, So&quot;, S/ ,
. . . .

;

this completed series S&quot; constitutes the consecutive second differences
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of the interpolated series F(T). Finally, we shall denote by 8&quot; the

third difference of the interpolated series F, which stands opposite

8/ in the given schedule. The quantity 8&quot; is therefore the middle,

first difference of the completed series
8&quot;,

which falls between S
&quot;

and

S/ ;
it bears the same relation to So&quot; and S/ ,

that 8/ bears to F and

FI . Hence, to find 8&quot;
,

let us put

M&quot; = ^V-l)
and (140) becomes

V = m\ + M&quot;d (141)

The differences of
8&quot;_, ,

8
&quot;

, S/ ,
.... are therefore as follows:

Function, = 8&quot;
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which serve to reduce the tabular interval to m times its original

value, m being the reciprocal of a positive odd integer. It will be

observed that the differences required in computing each of the quantities

8 are always found on the same line with that quantity.

52. Interpolation to Thirds. For this purpose, we take m =
7̂

in the formulae (143), and find

j ?7 c
i
~

So&quot;

=
V -

(144)

These formulae are more conveniently computed in the form

V =
-

(145)

EXAMPLE. Given the value of log tan T for every third degree

of T from 27 to 48, inclusive : find the function for every degree

between 33 and 42.

According to the precepts of the last section, we arrange the

work as follows :

T



THE THEORY AND PRACTICE OF INTERPOLATION. 89

necessary to compute five values of S
&quot;,

four values of
S&quot;,

and only

three of 8 . These quantities are computed to one more than the

number of decimals given in F(T), to avoid accumulation of any

appreciable error in the final additions. Having obtained for 8
&quot;

the

series
+ 3.1 2.6 2.2 1.9 +1.9

the intermediate terms are readily inserted, as shown above; it is

necessary, however, to see that the completed series S
&quot;

is consistent

with the computed values of S&quot;. Thus we must have

2.8 + 2.6 + 2.5 = -(18.0-25.9) = +7.9

2.3 + 2.2 + 2.0 = -(11.5-18.0) = +6.5
2.0 + 1.9 + 1.9 = -(5.7-11.5) = +5.8

If these relations are not satisfied exactly on first trial, the interpo

lated values of 8
&quot;

must be adjusted to fulfill the necessary conditions.

The column S&quot; is now completed by successive additions of the

quantities 8 &quot;. Again, it is necessary to see that the completed series

8&quot; agrees with the computed values of S . For we must have

-(20.5 + 18.0+ 15.7)
= 1569.6-1623.8 = -54.2, etc.

Since these relations are seldom exact in the beginning, the pro
visional values of 8&quot; will usually require slight alterations.

From the final series
8&quot;,

we obtain 8 by successive additions. As

before, an agreement must subsist between the values of 8 and the

given set of functions
;

that is, between 8 and z/ . Thus we should

have
^8 = 1646.9+1623.8 + 1603.3 = +4874.0 = J

,
etc.

In the latter case, however, a discrepancy not exceeding four or five

units in the added decimal may be tolerated. Our final series 8 is

therefore satisfactory ;
whence we obtain by successive additions the

required values of log tan T.

53. Interpolation to Fifths. Taking m =
\

in the formulae

(143), we obtain

V = (146)

In practice it will suffice to put ^el for both ^el and yV^^; the

formulae (146) then become, very approximately,
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So&quot;

=
S, =

(147)

EXAMPLE. The following ephemeris gives the moon s R.A. for

every ten hours. Obtain the value for every second hour, from

Sept. 23d
20&quot; to Sept. 25&quot; 12h

,
inclusive.

The details of the computation are as follows :

Date, 1898
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Here we extend the computation of 8
&quot;

and 8&quot; two places of deci

mals
;

one of which is dropped in computing 8
,
and the other in

forming the required functions. The principle and method being the

same as in the last example, further explanation is unnecessary.

54. Order of Interpolation to Follow, when a Series Requires

Successive Interpolation to Halves, Thirds, etc. When a table of

functions is to be interpolated, successively, one or more times to

halves, and also to thirds and fifths, the easiest method is to proceed
in the order named. Thus, if the interval of the original series is w,

and that of the final table is
o&amp;gt;,

we may suppose the relation of these

quantities to be

co = 2*.3 .5M .&amp;lt;o

where A; I, and m are integers. It will then be found most expedient,

first, to interpolate to halves, k times
;

then to thirds, I times
;

and

finally to fifths, m times.

For example, F being given for every degree, and required for

every minute of arc, we should first interpolate to 30
,
then to 15

,

then to 5
,
and finally to every minute of arc.

55. To Interpolate ivith a Constant Interval n, an Entire Series

of Functions. Let the given series, with its differences, be as

follows :

T
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T
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EXAMPLES.

1. Tabulate the five-place log cosines of 15, 18,.21, 24, 27, 30
;

from these values interpolate log cos T for T = 17 43
,
23 8

,
and

28 15
, respectively.

2. Given the following table :

T
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Interpolate the series twice to halves; the first result to include the

values from July 1 &amp;lt;1

.5 to 4d
.O, and the final three-hour ephemeris to

extend from July 2d Oh
to July 3d

12&quot;,
inclusive.

7. The ephemeris below gives the sun s true longitude for every
third day :

1898
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logarithms of 47, 54, 61, .... 06, by computing the logarithms of

the consecutive numbers between 61 and 75.

11. Show that if the formulae (143) were extended to include

the middle differences of order i, we should have (using the symbolic

form of notation employed in the analogous formulae (64))

= (SO -

in which i may be either odd or even
;

and where J
,

z/l+2
,

symbolize the tabular differences which fall upon the same horizontal

line with 8*.



CHAPTER III.

DERIVATIVES OF TABULAR FUNCTIONS.

56. It is often required to find certain numerical values of the

differential coefficients of functions either analytically unknown, or

complicated in expression. In the majority of such cases the function

has been previously tabulated for particular (equidistant) values of

the argument. The required derivatives are then readily computed
from the differences of the tabular functions.

We have already seen that with certain limitations particular

values of a function, with their differences, practically determine the

character and law of that function, thus enabling us to determine

intermediate values by interpolation. The trend or law of variation

of the function being thus defined by its differences, it is but natural

to suppose that the successive derivatives are quantities closely related

to these differences ;
since the derivatives are themselves direct in

dices of the character of variation of the function.

57. Practical Applications. The most useful application is in

finding the change or variation in F(T} corresponding to an increase

of one unit in T, supposing the rate of change in F to remain con

stant from T to T-\-1, and equal to the actual rate at the instant T\
for this quantity is simply the first differential coefficient of F(T)
with respect to T, which we shall denote by F (T).

For example, having observed that a freely falling body describes

sixteen feet during the first second of its descent, forty-eight feet the

second second, and eighty feet the third, its velocity at the end of

two seconds is easily found to be sixty-four feet per second. This

velocity of sixty-four feet is nothing more than the first differentia]

coefficient of the space with respect to the time, computed for the in

stant 28
.0 : it is the space which would be described during the third
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second, supposing the action of gravity to have ceased at the end of

the second second.

The most frequent and important applications occur in Astronomy.

An astronomical ephemeris contains a great variety of tables giving the

positions and motions of various heavenly bodies, and of certain points

of reference. From the given positions, tabulated for every hour or from

day to day, are derived the motions per minute, per hour, or per day,

according to circumstances. For instance, the Nautical Almanac gives

the sun s declination for every Greenwich noon. The hourly motion

in declination (also given for every noon) is computed from the dif

ferences of the tabular declinations : its value is the differential coef

ficient of the tabular function at the date in question.

In the following sections the various formulae employed in com

puting the derivatives of tabular functions will be derived.

58. Development of the Required Formulae in General Terms.

The variables T and n are connected by the fundamental relation

T = t + nu (150)

in which t and a&amp;gt; are constants for a given series. Accordingly, we

have hitherto written, under varying circumstances,

F(T} , F(t+ nw) ,
Fn

as equivalent expressions of the same quantity. In like manner, we

shall hereafter denote the successive derivatives of F(T} by the fol

lowing equivalent forms :

-^ \ F(T) \ = F&amp;gt; (T) = F&amp;gt;

(t
+ nu) = F n

(151)

= F &quot;

dT s

d*

F(T) =

When it is convenient to proceed backwards from the argument
t with the interval n, we shall use the expressions

F_n
= F (t-n^ , F^ =

F&quot;(t-n&amp;lt;^ ,
Fln

= F
&quot;(t-n&amp;lt;J) , (152)
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Now, by means of any one of the fundamental formulae of inter

polation, we may express Fn in the form

Fn = F + na + Bb + Cc + Dd + Ee + .

(153)

where, in any given case, , &,&amp;lt;?,.... are known differences;
and where B, C, D, . . . . are definite functions of n. Let the
successive derivatives of B, C, D, ...... taken with respect to n,
be denoted by

B
,

B&quot;
,

B&quot;&amp;lt;
, . . . .

C
,

C&quot;
,
C &quot; ......

D
,

D&quot;
,

D&quot;&amp;gt;

, . . . .

E1

,
EH

,
E n

, .

Then, observing that the coefficient of jw [s always of the

in n, we have
degree i

&quot;-
dn

B&quot;



100 THE THEORY AND PRACTICE OF INTERPOLATION.

In like manner we obtain

dF n
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Introducing these changes, and operating as before, we obtain the

required formulae, namely,

F = i(- C y- D 8 + E f.
-

(161)

It now remains to apply (159) and (161) specifically to each of
the several formulae of interpolation, of which (153) is the general
type. It is obvious that a particular set of coefficients B B&quot;

Of /~Y ff

, O ,...., etc., will result in each case.

59. To Compute Derivatives of F(T] at or near the Beginning
of a Series. The formulae adapted to this purpose are derived from

S Formula of interpolation (73), which is

F = na
(162)

where

B _ n(n L)



102 THE THEORY AND PRACTICE OF INTERPOLATION.

F&amp;gt;

(164)

These formulae determine the derivatives of F (T) for any or all

values of T between t and
-{-&amp;lt;o, according

1 as we assign different

values to n. As in preceding applications, n is always a positive

proper fraction.

When, as is frequently the case, derivatives are required for some

tabular value of the argument, say t, we have only to make n =
in (164) ;

we thus derive the following simple expressions :

F
(t)

= -(a _

(165)

The differences employed in (164) and (165) must be taken

according to the schedule on page 3, as in direct applications of

NEWTON S Formula.

The formulae (165) have already been established in 18; for it

will be observed that (45) and (165) are identical, since in the former

D, D 2

, D\ . ... are used symbolically to denote &amp;gt;F (t), &amp;lt;JF&quot; (t),
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Owing to the special practical importance of the first derivative,
the coefficients of F

(t-\-na)), namely,

B&amp;lt; = n-i
C&amp;gt;
= -

D&amp;gt; = _
(166)

have been tabulated in Table IV for every hundredth of a unit in

the argument n. By means of these quantities, we readily compute
Ff

(t-\-nu&amp;gt;)
from the formula

1

(1)
^

The formulae (164), (165), and (167) are especially adapted to

the computation of derivatives at or near the beginning of a tabular

series. &quot;We shall now solve a few examples to illustrate their use.

EXAMPLE L From the following table of F(T) = 0.3T4 2T2

-\-4,

compute F&quot;(T) for T= 2.8.

T
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This result is easily verified from the known analytical form of

the function; thus, since

F(T) = 0.3T 4 -2T 2 + 4

we derive

F (T) = 1.2T 3 -4T
, F&quot;(T}

= 3.6T 2 -4

Substituting T 2.8 in the last equation, we obtain

F&quot;(T)
= +24.224

as found above.

EXAMPLE II. From the table of the last example, compute

F (T) for T=0.
Here we employ the first of (165). Making * = 0, we have

a - -3.2 b = +51.2 c = +172.8 d
Q
= +115.2

We therefore obtain

F
(t)

= i(-3.2-^+^-^) =

The result is obviously correct
;

for we have

F (T) = 1.2T 8 4T

which vanishes for T= 0.

EXAMPLE III. Given the following table of F (T) = sm*T :

compute F (T) for T=836 .

T
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Taking the coefficients B
, C&quot;,

U and E from Table IY with

n 0.15, and the differences a
,
b

,
c

,
.... from the given table,

we find, in accordance with (167),

= +0.023858

B&amp;gt; =
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Comparing (168) with the general formula (160), we have

Therefore, substituting the previously determined values of

B
, B&quot;,

. . . .
,

(7
, C&quot;,

. . . .
, etc., in the general formulae (161),

we obtain

1

1

73

(169)
to

3

1

Making n = in (169) ,
we have

F (0 = ~ (a_i+i&_,+ i&amp;lt;U+*-i

00 = -
4 (^-4

O)

(0 = 4(e-5

(170)

As above, we emphasize the relative importance of the first deriv

ative in practice : thus, for brevity, we write the first of equations

(169) in the form

F (t n^) = -(a_l
B lb_2+C c_3 D d_i+E e_5 . . . .) (171)

a)

the coefficients B
,
C

,
D

,
E being taken from Table IY with the

argument n.

Formulae (169), (170), and (171) are particularly useful in the

computation of derivatives at or near the end of a series of functions.
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Moreover, when the interval n approaches unity, formulae (169) and

(171) are convenient for computing derivatives corresponding to the

argument t -f- nca, since they enable us to proceed backwards from the

argument t -\- to with the interval 1 n. We shall now solve several

examples to illustrate these applications.

EXAMPLE I. From the following ephemeris of the moon s right-

ascension (a), compute the hourly change in a at the instant Feb. 3d

20h 24m .

Date
1898
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EXAMPLE II. From the preceding table of moon s R.A., compute

the hourly variation in j^ for Feb. 3 l 12h
; where, as above, Jlrt denotes

the change per minute in R.A.

Regarding one hour as the unit of time, it is clear that the value

of
F&quot;(t) given by (170) is sixty times the quantity sought : the ex

pression for the required variation i& therefore
g
1

^ F&quot;(f},
where =

3 &amp;lt;l 12h
. Accordingly, using the second of (170), we find

Hr. Var. in 4, Feb. 3d 12 h
,

(~ 12 -62 - 5 -37 + tt X0.62 + X 0.54) = -0-.00196= X

EXAMPLE III. Given the following values of J?(T) log e
T :

find F (T) for T=75.

T
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The true value of this quantity is

= -0.00022.27. . .

61. Derivatives from STIRLING S Formula. When differences

both preceding and following the function F(f) are available, formulae

more convenient and accurate than the foregoing may be employed.

The most useful and important of these are derived from STIRLING S

Formula of interpolation (104), which is

F = F + na + + Cc + Dd + Ee + . . (172)

where the differences are taken according to the schedule on page 62,

a, c, and e being the mean differences defined by (101) ;
and where

.Z?, (7, .... have the values

*-T
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Making = in (174), the latter become

F (0 = (a-lc+^e- . . . . )
0)

F&quot;
(t)

= (b-^dt+ . . . . )
to)

1

T
(0 -

-1 (-

Again, writing n for % in (174), we obtain

(175)

^ (t

F&quot; t-

1
-B l

(176)

The coefficients for the computation of F (tna)), namely

B = n D =
(177)

are given in Table Y with the argument n. The quantity F (T) is

thus readily computed (for any value of T) by either one or both of

the formulae

(179)F (t-nw} = (a-nb^+C c-D d^+E

in which the odd differences are algebraic means of the tabular differ

ences, taken as indicated below :
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T
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which may be written in the form

F &amp;gt;

(t + W) =
^ LF (0 + n*F (0 + ^

&amp;lt;*F&amp;lt; (0 4- . . .

)

F

Substituting in these equations the expressions for a&amp;gt;F
(0&amp;gt;

2

F&quot;(t),
. . . .

,
as given by (181), we get

F&amp;lt; (t+nu} = -[(a-$c+Jse- . . } + n(l&amp;gt;

- d + . .)
(i&amp;gt;

n , N ,

+ (e- . ) +

^(e-..) + ..l
li

} (182)

= -5 (rf
-

/

These expressions, upon being arranged according to the succes

sive orders of differences, will be found identical with the formulae

(174). For some purposes, however, the present form is more con

venient.

It is quite common, particularly in an astronomical ephemeris, to

tabulate the values of F (T) corresponding to the tabular values of

. Such a table would run as follows :*

T
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The first of the formulae (175) is almost invariably used for this

purpose, because of its simplicity and rapid convergence; this formula

is, in fact, the most important and useful of those which pertain to

the computation of derivatives. For this reason we formulate the

following

EULE for computing the first derivative of a tabular function

corresponding to one of the given functional values : From the mean

of the two first differences which immediately precede and folloiu the

function in question, subtract one-sixth Q) the mean of the correspond

ing third differences, and divide the result by the tabular interval.

This rule neglects only 5th and higher differences. To include 5th

and 6th differences, add to the above terms (before dividing by &&amp;gt;)

one-

thirtieth (3^) the mean of the corresponding fifth differences, and divide

by at as before.

It will evidently suffice, in most cases, to apply only the first part
of the above rule.

Several examples will now be solved as an exercise in the use of

the preceding formulae.

EXAMPLE I. Given the following ephemeris of the sun s decli

nation (8) : compute the hourly difference in 8 for the dates Jan. 7,

10, 13, and 16.

Date
1898
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sixth of the corresponding mean third differences. Finally, since

o) = 72 hours, we write in the last column y
1

^ of the quantities formed

by summing the corresponding terms of the two preceding columns.

We thus obtain the hourly differences required.

EXAMPLE II. Compute, from the ephemeris of the last example,

the daily motion in declination for the date Jan. 6d 13h 30m .

We proceed backwards from Jan. 7, using the formula (179), and

taking the coefficients from Table Y with the argument

7d Oh Om -6d 13h 30m 10 h.5
n = -

^-
- =

h
- = 0.14o83

Thus we find

w = 0.14583

C&amp;gt;
= -0.1560

D&amp;gt; = -0.012

fl
o
= +236.9

c = - 5.85

& = - 1.1

a = +23 24.55

nb = 34.55

4 C c = + 0.91

-D d = - 0.01

.-. u&amp;gt;F _n
= +22 50.90

Whence, for the daily motion in 8, Jan. 6d 13h 30m
,
we obtain

F _n
= 22 50&quot;.90-^3 = +7 36&quot;.97

EXAMPLE III. The following table gives F (T) = e
T

,
where e

denotes the base of natural logarithms: compute F (T) for T=0.30.

T
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EXAMPLE IV. From the table of Example III, compute F&quot; (T)
for T= 0.462.

Taking t = 0.4 and n = 0.62, we obtain, by means of the second

of (174),

J = +0.014930

n =
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(t
+ nw) = -

T\ + 3-f

(185)

Putting w = in (185) ,
we get

F () = - K-
(0

(186)

Again, putting n =
-|-

in (185), we obtain the following simple

formulae :

(187)

which determine the derivatives of F(T) at points midway between

the tabular values of the function. It is important to observe that,

*The coefficient of gj vanishes.
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unless third differences are considerable, a close approximation to

F (t-\-\ w) is given by the simple expression

^
(* + &amp;lt;o)

= ^ = ^^
(187a)

which differs from the exact formula only by the omission of the small

quantity

;&amp;lt;-*&amp;gt;.+
---- )

The formulae for the derivatives of F (t nto) are deduced from

(111). Let us put, for brevity,

b =
(& + & ) ,

d = \(d,+d } (188)

and (lllrt) becomes

F_n
= F - mi -f Bb -

Cc&amp;gt; + Dd - Ee + . . . . (189)

Comparing this expression with the general formula (160), we find

that a, /3, y, 8, e, . . . .
,

in the latter, are replaced by a
, b, c, d, e, ....

in (189) ; hence, observing these changes, and substituting the above

determined values of Bf

, B&quot;,
. . . .

, C&quot;, C&quot;,
. . . .

, etc., in the

formulae (161), we obtain

.
5

(190)

The values of B
,
C

,
D

,
and E

,
as computed from the expres

sions

* *- I - f - ft + TV )

-|i-ft+ft-Tfc )
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are given in Table VI with the argument n. By means of these co-

efficiente, values of F (T) are readily computed from either one of

the formulae
1 .

) (192)

f&quot; (t-na) = ^-(a -B l+C c -D d+E e
}

(193)

CO

in which the even differences are means, taken as indicated below :

r
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EXAMPLE II. From the preceding table, compute the value of

F&quot;(T) for T=4448/

.

We take t = 44
;
hence n 0.40. Accordingly, from the second

of (185), we obtain

I = -0.0008(514

C&quot; = *i = -0.10 e
t
= -300 C&quot; c

t
= + 30

D&quot; = |* f - ,V = -0.203 d = + 11 /&amp;gt;&quot;&amp;lt;/
= - 2

^&amp;gt;
= -0.0008586

FJ = -0.70465

The actual value is

F&quot;(T)
= -sinT = -sin 44 48 = -0.70463

EXAMPLE III. The table below gives the Washington mean time

of moon s upper transit at the meridian of Washington :

WASHINGTON MOON CULMINATIONS.

Date
1898
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retardation to remain constant between the two transits, and equal to

what it is at the moment of the first. Thus, if I&amp;gt; is the value of D
for the instant of transit at Washington on Mar. 24, the local time of

moon s transit at a station 20 minutes west of Washington is given

with sufficient precision by the formula

r = Mar. 24&quot; l
h 47m.29 + Z&amp;gt;

Now, by the first of equations (186), we find for the value of Z&amp;gt;
,

D, = F
(t)

= ^ (47.59 -^+ T?-i?) = lm-954

Hence the preceding equation gives

T = Mar. 24a l h 47m.94

In this manner the local time of transit is simply and accurately

determined for any number of stations within half an hour of the

Washington meridian.

To find the local time of moon s transit over a meridian 3 hours

west of Washington, on the 24th day of March, we have only to in

terpolate the Washington time of transit between the tabular values

for Mar. 24 and Mar. 25, as given above, the interval from the former

being
Qh

n =
gjH

= 0.125

Finally, if it were required to compute the local time of transit

for several stations whose longitudes range from 2} to 3| hours west

of Washington, we should find the time for the 3 hour meridian by

direct interpolation, as explained above. We should also compute

D = F (T) for the same meridian
;

that is, for n = 0.125. Then

the local time of transit at any adjacent meridian, whose longitude

from Washington is 3hr
-j- X

min
,

is given by the simple formula

T
-&quot;+85

D

where T
I

is the time of transit at the 3 hour meridian.

EXAMPLE IV From the preceding ephemeris, compute the differ

ence in time of transit for 1 hour of longitude (D) at the instant of
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moon s transit over the meridian of San Francisco, Mar. 25, 1898; the

longitude from Washington being taken as 3h
lm 30 s = 3&quot;.025.

Here we use the formula (102) : thus, taking the coefficients from
Table VI (with the argument n = 3.025 ^ 24 = 0.12604), and the differ

ences from the given ephemeris, we obtain



122 THE THEORY AND PRACTICE OF INTERPOLATION.

We shall assume that the differences of F (T) beyond 4* may be

disregarded; hence the differences of F (T) beyond y may be neg

lected in the above schedule. Now, Ly TAYLOR S Theorem, we have

Again, since

we obtain, by means of the formulae (175),

j-.-i&amp;lt; ) - .
&quot; =

in which we have put, for brevity,

Substituting these expressions for F
&quot;, F&quot;,

and F* in (194), the

latter becomes ,

A71
2
0) *.- W3

0) W4W
+T (

&quot;

~f
l

~ +
-

IT
y

&quot;

S
;

j .

^
which may be written

(
19T

)

By means of this formula we compute Fn in terms of the differences

of F (T), instead of the differences of F (T) direct, as in the usual

formulae of interpolation.

Substituting n for n in (107), we have

*_,, = F.-
(^o

-f + f A- -^ a
2- 1

)
r)

(
198)

The values of
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are given in Table VIII with the argument n. By means of these

coefficients we readily compute

Bfl, + Ty)

B/3 -ry)

(200)

(201)

The coefficients in Table VIII are not extended beyond /i= 0.60,
since by this method it is invariably more convenient to proceed from
the nearest function F

Q .

EXAMPLE. From the American Epliemeris for 1898 we take the

heliocentric longitude of Mercury, together with the daily motion in

longitude, for a portion of the month of October. The differences of

the daily motion are then taken, as shown below :

l)ate

1898
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Differencing the given series of longitudes and applying BESSEL S

Formula of interpolation, we find

Fn
= 194 15 18&quot;.2

64. Application of the Preceding Method of Interpolation when

the Second Differences of the Series F(T) are Ifearly Constant.

When the 3d and 4th differences of F (T) are small enough to be

neglected, we may omit the terms containing /3 and y in the formulae

(197) and (198) : we therefore obtain

FH
= j;+W + 3) (202)

F_ = *;-n.(lV-f) (203)

It will be interesting to determine the error of these approximate

formulae as applied when the 3d differences of F (T) are appreciable.

For this purpose we write (197) in the form

Hence, if we disregard 4th differences of F(T}, and thus neglect

y, it follows that the error in question is

e = 8

ov3 (204)

Now, from (175), we have

-m c
-
^ &quot;

a? &amp;lt;o

3

also, from (195),

F
&quot;(t)

=
ŵ2

w/?
= c = J &quot;

(205)

c = ?-

3

J&quot;i (206)o \ /

Since in practice the maximum value of n is 0.50, it follows that

the maximum error resulting from an application of the formulae (202)

and (203), when 3d differences of F(T) are sensible, is ^V^ &quot; Hence,

even when third differences are considerable, these formulae are suf

ficiently accurate for many purposes.
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That the formulae (202) and (203) are rigorously true when the

3d differences of F (T) are zero may be clearly shown from geo
metrical considerations, as follows :

The 2d differences of F (T) being supposed constant, it follows

from Theorem VI that the function is necessarily of the form

F(T} =
(207)

Now, if in the accompanying figure we draw the rectangular co

ordinate axes OT and OF, and plot the curve defined analytically by

(207) (regarding y = F(T) as the ordinate corresponding to the

abscissa T), it is evident that we obtain a parabola whose axis is

parallel to OY.

Let us now take

OM = t

OS = t + w

ON = t + nw

Whence

MN =
n&amp;lt;a

MP = F(t) = F
NQ = F(t+ nv) = Fn

M K N

Draw the tangents PA, QL ; also, draw PD
\\ QL and PB

\\
MN.

&amp;lt;]F
Then, denoting ^ by Fn ,

we have

F =
F = tan DPB

Hence we find

NA = MP + PB twn.APB = F +
ND = MP + PB tan DPB = F -f-

It is therefore evident that to find NQ = FH ,
which lies between

NA and ND, we must employ a value of F somewhere between the

values F and Fn . Now, let KE be the ordinate erected at the mid
dle point of MN, and EII the tangent at E. Then, by an elementary
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theorem of the parabola, the chord PQ is parallel to EII, and we

have, therefore,

Fn
= NQ = MP + PB tan QPB = F +W

? (208)

which agrees with the formula (202).

We have shown above that the maximum error produced by apply

ing this formula when the second differences of JF(T) are not constant,

is -f?J &quot;- Hence, unless the 2d differences of F (T) are considerable,

we may compute Fn by the following

RULE : Find by simple interpolation the value of the tabular

derivative which belongs midway between the required function and the

nearest tabular function (F^) ; multiply this quantity (jF$) by the units

contained in the entire interval (T ), and apply the product to F
Q

.

EXAMPLE I. Given the following ephemeris of the moon s decli

nation (8) : compute the value for the date July 9 1 5 h 18m .O.

Date
1898
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Whence
8 = 7 24 37&quot; .4 - 102 x 13&quot;.G26 = 7 1 27&quot;.55

which substantially agrees with the above result.

EXAMPLE II. From the following table of the moon s horizontal

parallax (TT), interpolate the value for July 10 1 16h 24m.O.

Date
1898
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EXAMPLES.

1. Given the following table of &quot;Latitude Reduction&quot;

9
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Date
1898



CHAPTER IV.

OP MECHANICAL QUADRATURE.

66. We have shown in the preceding chapter that when a series

of equidistant values of any function are known, it is possible to com

pute special values of the first and higher derivatives of that function,

without regard to its analytical form. We shall now consider the in

verse problem, namely : From a series of tabular values of J?(T), to

find
X = C(T)dT -

*/ if

where the limits T and T&quot; are numerically assigned.

The solution of this important problem is effected by integrating

the expression for F(t-\-na)), as given by any one of the several

formulae of interpolation, and then giving to n the limiting values

which correspond to T and T.&quot; The method is wholly independent

of the analytical form of the function F(T}. It is therefore of

especial advantage and importance in the following cases :

(a) When the function is analytically unknown. This is the case

with graphical records of continuous observations, so frequently made

in physical experiments and tests. As a common example we mention

the indicator diagrams of a steam engine. It is usually required to

find the area comprised between the
&quot;pressure&quot; curve, a fixed base

line, and - two extreme ordinates. This area may be found, in the

generality of cases, by the method proposed.

(5) When the function is analytically known, hut is non-inte-

grable. Under this head are included the most important applications

. of the method in question. For example, let it be required to find

Vl-e2 sin 2 T

where e is numerically given. We cannot express the indefinite inte-
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gral in finite form. If e is sufficiently small (say e = 0.1), we may
expand (1 e

2
sin2

T)-* in a series of ascending powers of e
2
sin

2
T,

and integrate each term of this expansion separately : a very few

terms will then suffice to compute X as accurately as may be required.

If, however, the quantity e is nearly equal to unity (say e = 0.9), this

series does not converge with sufficient rapidity for practical use, and

hence the method of expansion fails.

On the other hand, given any value of e not exceeding unity, we
can readily tabulate F(T) = (1 e

2 sin2 17

)-* for a series of values

such as T= 20, 24, 28, .... 52. Having differenced these values

of F, it is then a simple matter to compute X from the numerical

data thus furnished. In the nature of the case, however, the process

must, in general, be an approximative one; depending, as does the

method of interpolation, upon a limited number of (usually approxi

mate) values of the function in question.

The process by which the definite integral of a function is com

puted from a series of numerical values of that function, is called

mechanical quadrature, or numerical integration. We proceed to de

velop the formulae which are commonly employed for this purpose.
67. Quadrature as Based upon NEWTON S Formula of Interpo

lation. Suppose that i-\-l values of F(T) have been tabulated and

differenced as shown in the schedule below :

r

t -f w
* + 2t

t -f-
( 1)

F(T)

7^

/ill^i-
z/&quot;

Z//

M̂

Jv

Let it be required to find from this table the value of

J&amp;lt;-HU
F(T}dT (209)
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Since

(21Q)we have dT =

and therefore

x = f
(

F(T}dT = wCF(t+ nu)dn (211)

Now, by NEWTON S Formula, we have

where B, C, D, . . - denote the binomial coefficients of the nth

order. Multiplying by dn, and integrating, we obtain

or

where M is the constant of integration. If, for brevity, we put

B = Csdn y = Ccdn ,
8 = \D** ,

- (213)
/o

+} o **

then, from the preceding equation, we derive

-t- yJ
&quot; + 8J iv + ....

Whence we obtain, in succession,

a /&quot;! i//_i_

Jl ^
.. I x-. -VTVll^fln/tf// I

y&amp;lt; /// I

(215)

Summing the integrals expressed in (214) and (215), we find

CF r
&quot;+ (216)

=0 r=0 r=0 r=0

The numerical values of 0, y, S, . . . . (sometimes called the

coefficients of quadrature) must now be determined. These may be
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found directly by integrating the expressions for B, (7, Z&amp;gt;,
. . . .

,

as expanded in (163), and then taking the limits of n according to

(213). But the following indirect method seems preferable, since it

adds a significance to the result. Let us put

(217)

where y is supposed constant. Then, if we also put

we shall have

Q = 1 + *y +W + yZ/
3 + Sy

4 + cy
5 + & + . . . . (218)

the coefficients being those defined in (213).

Again, put
= z

(219)
that is

n log(l + y)
= logz

and we find

log (! + ?/)
. dn =

or

dz
zdn = =- (220)

We therefore obtain

Q = \ (\ + y)
n dn = I zdn = I

~ =
(- const. = ^ ^ 1- const.

Whence

&quot;Jo
*

[_log(l+?/)J,! = o lg(l + 2/)

=
2/-i

2

+r-i
4

+. . . .

=
v
1-^ -+-

)

Expanding the last expression by the Binomial Theorem, or by
direct division, we obtain

Q = l + iy- TV2/
2 +-21^8 -T1^y4

+iia2/
5 -TrH^6+ .... (221)

Whence, comparing (218) and (221), we find

(222)

- - A
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which are the numerical values of the coefficients of formula (216).

It therefore appears that the fundamental coefficients of quadrature are

those in the expansion of [log (1+y) ]
-1

.

Let us now regard the functions F09 F19 F29 . . . . Ff as first

differences of an auxiliary functional series which we shall designate

F. A schedule containing the new series may be conveniently arranged

as follows :

T
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This formula possesses the disadvantage of involving differences

4 , 4&quot;,
4&quot;

,
.... which are not furnished by the foregoing schedule.

To obviate this difficulty, we proceed as follows :

Put

q = 8

and (224) may then be written

Upon giving to ra, in formula (75), the values +1, 0,

3, 4, . . . .
, successively, we obtain

(226)

1, 2,

-f-

(227)

If these expressions be substituted in (225), we shall have q in

terms of the known tabular differences, and hence obtain the required

integral from (22(5). To avoid the labor of numerical reduction inci

dent to this substitution, we derive the result in the following indirect

manner : Put

=
i

-
TTH-^

log(l+z)

Also, take

and we have

X =
l-u

(228)

(229)

X~L =
x =
X =
X 2 =
X s =
X4 =

tt-1

(1
J

u = u~ u

(230)
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If now we substitute these expressions for or1

, x, x, a?, . . . .

in the second member of (228), we obtain in terms of u~\ u, u, if, . . . .

But it will be observed that this operation is identical in algebraic

form with the substitution above proposed with respect to (227) and

(225) ;
for the operation involves the. quantities

l

, x, x, x 2
,
x z

,
. . . .

;
w u

, u, u 2
,

while the q operation involves, in precisely the same algebraic relations,

the quantities

Hence the result for q will immediately follow when the result for

has been derived. But we may obtain as a function of w, in the

form required, more simply than by direct substitution of the expres

sions (230) in (228). For, by (229), we have

1 + x =
1 u

whence
log(l+a;) = -log (l-w) (231)

Therefore, by (228), we find

e = = -
\
-- = M-i_M +/8tt-ytt+8M-cM

4+C 8- .... (232)
log(l+z) log(l-w)

Accordingly, writing q for 0, f1

i+l
for u~l

,
F

t
for u, z/Vi for u, etc.,

as justified by the preceding reasoning, we obtain

-
cJlL, + ^_5

_
. . . . (233)

Substituting this value of q in (226), and grouping like terms,

we get

Whence, restoring the values of /3, y, S, . . . .
,

as given in

(222), and applying (211), we have

J+i(I)
F(T}dT =
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When the tabulation of the function extends beyond the value

Ft ,
it is sometimes more convenient to employ the following formula,

easily obtained from (224) :

\F(T)dT = co fF(t+ nw)dn
Jt Jo

= (a\( Fi

lF)-{-^(Fi F~) TV (z/. Z/ ) 4-
(/J.&quot; Z/

&quot;)

- 7Vo(4
///

-^o
///

)+T5(j(4-
iv

-^o
iv
) -.rilfo (4

V-4V
)+ - . -I (236)

We here emphasize the fact that the value of F is wholly arbi

trary.

68. As an example in the use of formula (235), let it be required

to find 45
&quot;

/&quot;* 44

X = I cos TdT
/20

using six places of decimals.

The first consideration concerns the tabular interval to be em

ployed. It is desirable to tabulate as few values of the function as

are consistent with a convenient schedule of differences. In all cases

the differences should sensibly vanish beyond the third or fourth order.

Adopting a) = 4 as a suitable interval in the present instance, we
obtain the following table of F(T) POS T :

T
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(,-
= 6)

F
7
- F = +5.878635

F +F = +1.659033 - I (F&amp;lt;

+ F
9 )

= -0.829516.5

- = - 20556

8180 ,
l W +

4,&quot; )
= + 340.8

= + 65 -A9
cT(4/&quot;-4/&quot;)

= ~ !-7

48 -
TibW +

4&amp;gt;

iv
)
= 0.9

log 2 = 0.703392 sum, 2 = +5.051170

logo, = 8.843937 = 4 = ^
logA = 9.547329 .% A = 0.352638

Since fcos TdT= sin T, we find for the true value of the defi

nite integral,

A = sin 44 - sin 20

= 0.694658 - 0.342020 = 0.352638

If it be required to compute

A =
fcoe TdT

*/20

from the foregoing table, formula (236) at once serves the purpose.

Thus we obtain

(i
=

2) t\ -&amp;gt;F = +1.853238

F2
- F = -56745 + % (F2

- F
Q )

= - 28372.5

4/ -z/ = -- 8752 -
TVW -^

)
= + 729 -3

J2
&quot; _ jo

&quot; + 318 + ^ (z/2
&quot; z/ &quot;

)
= + 13.3

2 = +1.825607

.-. A = 0.127451

Here the true value evidently is

A = sin 28 - sin 20 = 0.127451

69. Precepts for Computing the Definite Integral when One or

lloth Limits Fail to Coincide with some Tabular Value of the Argu
ment T. Thus far we have considered the limits of the integral

A = fF(T)dT
*JT

to be of the form

T = t + i o) T 11 = t + i&quot;&amp;lt;a

where i and i&quot; are integers, and hence T and T&quot; are two particular



THE THEORY AND PRACTICE OF INTERPOLATION. 139

values of T for which F (T) has been tabulated. We shall now con

sider the more general problem of finding X when the limits have

the form

T = t + n u
,

T&quot; = t + n&quot;u

where ri and n&quot; are non-integers that is, either proper fractions or

mixed numbers.

To illustrate the significance of the problem in question, suppose
it were required to find by mechanical quadrature the value of

r42
46 54&quot;

cos TdT
X42

46 54&quot;

cos Td .

1 13 37&quot;

Obviously, it would be impracticable to tabulate the function

for a series of equidistant values of T, of which T = 21 13 37&quot;

and T&quot; 42 46 54&quot; are two particular terms. We may, however,

employ the same table as was used in the preceding examples, con

structed for T= 20, 24, 28, .... 44, and obtain the required

result by interpolation. Thus, in the examples just mentioned, we
have computed the values of X from the lower limit T = 20 to

the upper limits T&quot; = 44 and 28, respectively. In like manner,

keeping the lower limit always = 20, we may find the integral cor

responding to each of the following values of the upper limit, viz. :

T&quot; = 20, 24, 28, .... 44, respectively ;

that is, for each of the tabular values of T. Then, having differenced

the resulting values of the integral, we may readily find ~by inter

polation the values which correspond to the upper limits 21 13 37&quot;

and 42 46 54&quot;. Denoting these interpolated values by X and X&quot;

respectively, we have

/ 21 13 37&quot; /42 46 54&quot;

X = I cos TdT X&quot; = I cos TdT
/20 /20

and therefore

/42 46 54 &quot;

X = I cos TdT = X&quot;- X
*/21 13 87

We leave the detailed solution of this example to the student as

a valuable exercise, exhibiting the spirit of the method employed in

problems of this type. The process actually used differs somewhat in
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form from the method here explained; but the principle remains the

same. We proceed to develop the general formulae.

70. Let us put
L = \ F(t+

n&amp;lt;a)dn (237)
Jo

and
_ F.+ BJ + z/&quot; + Sz/

&quot; + eJ iv + (
938)

where i denotes an integer. Then (224) becomes

/. = # (f)
_ * (0) (239)

Let us now suppose that (239) has been computed for i = 0, 1,

2, 3, 4, . . . .
,

in succession. Then, from the series of values

Hi NX ^ ,

,
..

. t&quot;*S-*S ^ (240)

thus determined, it is evident that any intermediate value, say /, can

be found by interpolation. To derive a general formula for this pur

pose, we must express the differences of the series (240). Now, by

(238), we have

*(0) =
.

^ fl&quot;)
= F, + lr F, + B/J, + v//,&quot; + 8z/,&quot; + cz/,

lv + .

(&quot;24n
* (2)

= f\ + \ Fz
+ /3z/2 + y//2

&quot;

~t~ Sz/g
&quot; + ez/2

lv +

whence, observing the general relation

we derive the following schedule of differences :

Function 1st Differences 2d Differences . 3d Differences

*(0)_*(0)

Therefore, applying NEWTON S Formula of interpolation, we have

= 7 + n(lstDiff.) +^(2dDifE.) + C (3dDiff.)+ ....
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By transposing the term (0) to the first member, and substi

tuting for ^(0) in the second member the expression given by (241),
we find

Upon arranging the last expression according to the coefficients

1, 2, , 7, 8, . . . .
,

it becomes

+ 8(4, &quot;+ . . . .
)

+ . . . .

Now, it will be observed that the first polynomial in the second

member of this equation is simply the expression for Fn ,
the quantity

derived from the series F
Q ,
Ft, !*.... by interpolation. Simi

larly, the remaining parentheses contain the expressions for Fn ,
j n ,

z/n&quot;,

. . . .
,

likewise derived by interpolation from their respective series.

We therefore have

yJn + Mn + . . . . = *(w) (242)

Whence

jF(t+nw)dn
= In = ^(?i)-&amp;gt;^(0) (243)

71. In like manner, if we put

&amp;lt;5P0
= F

i+1 -iFt
+Wi- l -yJlLl

+ M
l!!,- . . . . (244)

then, by (234), we have

/, = iF(t+n)d* = g;(f)_*(0)
C/O

Therefore, by interpolation (reasoning precisely as above), we
obtain

\F(t+ n&amp;lt;a)dn
=

&amp;lt;p (w) * (0) (245)
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Again, writing ri for the upper limit n in (243), and n&quot; for n

in (245), we get

*(0) ,

the difference of which gives

f+)* =
&amp;lt;j&amp;gt;(w&quot;)

- *( ) (246)

Upon substituting in equations (243) and (245) the expressions

for and qp as given by (238) and (244), and restoring the numeri

cal values of /3, y, S, . . . . from (222), we obtain

CF(T
= K *;- ) + H^-^o)-iV(^n-^o)+ A w-4,&quot;)

-ToW / -^o / /

) + T-loK
v-^v)-^ik(^-^0 + - . -I (247)

J+a)
/

F(T)dT =
(oj^(^

+ ww)^
= -K ^^-^-i^+^-j, (j^-^)-A KU-^^o&quot;)

-TyoK^-^ O-TfoK^+^-^llo^^-^)- - - - .
} (248)

In like manner, we derive from (246),

/ &amp;lt;-t-n&quot;0&amp;gt; / n&quot;

JF(T)dT
=

MJ.J
&quot;

-,~^C)--. - -I (249)

In these formulae the quantities n, n and n&quot; are either proper
fractions or mixed numbers; while the value of F

Q
is wholly arbi

trary.

It frequently happens that we have to compute

X = (

for several different values of T\ the lower limit remaining fixed and

equal to t. In such cases it is convenient to determine the arbitrary

quantity ^ ,
in (247) and (248), such that the sum of the terms

having the subscript zero will vanish. Accordingly, we may arrange
these formulae as follows :
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~ ~ !

Take

Then

(a) When the upper limit falls near the beginning or

middle of the tabular series, find

fl\T}dT = w
f&amp;gt;(

\Jt c/O

find

&amp;gt;

(250)

When /?e upper limit falls near the end of the series,

(F
n

(T

EXAMPLE I. Let it be required to find

V __

Here we adopt the interval w = 0.02, and proceed to form a table

for T=0.42, 0.44, 0.46, .... 0.54. Instead* of tabulating the given

function, it is more expedient to tabulate w times this quantity. All

differences are thus multiplied by the same factor, and hence the final

multiplication by w is avoided. We therefore compute

F(T)
= 0.02 X

10 0.2

\/T(lT)

for the values of T given above. The result is as follows :

T
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The computation is now readily effected by formula (249). Taking

t = 0.42, we make F
Q
= 0, and complete the auxiliary series F.

For the values of ri and
n&quot;,

we have

0.42737-0.42

0.02

0.53054-0.42

0.02

= 0.3685

= 5.5270 = 6 - 0.4730

Whence, interpolating by NEWTON S Formula, we obtain

&amp;gt;Fn,
= +0.149636.4

Fn, = +0.404288

J a, = - 2054

Jii, = + 673

/ = - 19

Fn,,+1
= +2.621373.8

Fn,, = +0.400748

// _! = + 659

z/^_2
= + 642

*.. =

Accordingly, by (249), we find

Fn,, +Fn,
= +0.805036

= + 2713

= + 1315

=+ 19

- (Fn,, + Fn,)
=

+2.471737.4

-0.402518.0
- 226.1

_ 54.8

- 0-5

.-. X = +2.068938

To verify this result, we observe that

f .

dT = 2sin-
J ^T(\-T)

and therefore

X = 20 (sin-
1 V 0.53054 - sin&quot;

1

V0.42737)
=

20(168303&quot;.25-146965&quot;.80)sinl&quot;
= 2.068938

EXAMPLE II. Let it be required to evaluate, by mechanical

quadratures, the integrals

X
l
= /11.

;
and A&quot;8

=
|
(M

Ji

Here we tabulate &&amp;gt; times the given function for T= 2, 4, 6, 8,

10, 12; thus we obtain the following table of F (T) =
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T
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(2) To find X2 : We use the same formula as before, the value

of n in this case being

4.8-2
n = j- - 1.40

or an interval of 040 counted forward from the quantities F^ Fl9

j/, /// ,
and j&quot;

f

. Accordingly we find

FH
= +2461.504

Fn
= +13271.04 + i Fn

= +6635.520

J n
= +24460.8 TV 4 n

= 2038.400

z/;
; = +19584.0 + & JJ = + 816.000

j;&quot;
= + 5760.0 jfoJX = -- 152.000

... Xz
= +7722.624

This result is also mathematically exact, as may be easily verified.

(3) To find X3 : Since here the upper limit falls near the end

of the given series, we employ formula (&) of (250). In this instance

the value of n is

n = n - 6 ~ 2 = 4.8o = 5-0.20

which corresponds to an interval of 0.20 counted backwards from the

quantities having the subscript Jive. We therefore obtain

n + 1
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the schedule of functions (including
r

F) and differences be taken as

below :

T
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In like manner, we derive

(254)

Whence, by summation, we obtain

r= t r = t r = i r=t
/H-J ^-i ^1 ... ^^ _

iv ^^ ^vl /9&amp;lt;^\

I F(t -\~ndi) dn = ^ r̂ 4&quot; ^ / ,

^* r 5?g? / ;
^r &quot;l~ ?g? TTSTT / &amp;gt;

r
.... (-00^

Upon substituting the relations

. . . +F
t
=

At Al

(256)

in formula (255), the latter becomes

/*

I

Finally, therefore, we obtain

/v-Hoj-t-jo) /i+

|^(T)^T = I ^
*/ }(!) / J

+ WWW (^7+i-^j)- (257)

}U&amp;gt;

-4^)-....} (258)

When several values of an integral are to be computed from a

given series, each having the lower limit t |w, it will be more

convenient and expeditious to determine the arbitrary quantity F_
such that the sum of the terms with subscript \ is equal to zero.

The formula (258) may therefore be written as below :

X+i(0+J(j)
F(T)dT =
|0)

(259)
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As an application of (258), let it be required to find

X =

Taking o = 3, t = 31 30
,

and F.k = 0, we tabulate

F(T)= sec2 T as follows :

T



150 THE THEORY AND PEACTICE OF INTERPOLATION.

where I denotes the value of any coordinate at the instant T, and 1

its value at the epoch T . In particular, let us put

I = the heliocentric longitude of Mars for any date T;

= the daily motion in longitude ;

dl
T

Q
= 1898 June 13, Greenwich mean noon

;

l
o
= 1 47 14&quot;.3 = the heliocentric longitude for the date T

Q ;

and let it be required to compute the longitude (I) for Greenwich

mean noon of the dates

(1898) June 21, June 29, July 7, July 15, and July 23
;

the values of the daily motion being taken from the American Ephemeris

for 1898.

The complete solution is conveniently arranged in tabular form as

follows :

Date
1898
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the factor w having been previously applied. Whence the expression

for I becomes

=
o

Thus, the value of I for any date T being found by adding the

constant 1 to the integral taken from T
Q
to T, it is clear that we

have merely to increase the above value of F_^ by the quantity

1 = 1 47 14&quot;.3 in order to avoid the subsequent addition of this

constant to each computed value of the integral. Accordingly, under

the heading l
Q -{- F, on the line t

|
w (= June 13), we write the

quantity 1 47 19&quot;.5 ; the remaining numbers of this column are then

formed in the usual manner by successive additions of the functions

F. Each term of the series thus formed is evidently greater by Z

than if the latter constant had been excluded from the initial term.

Under -\- ^j* are written the values derived from the corres

ponding terms in j . The sum ? ~h^H~2T^ ig then tabulated in

the final column, I, which therefore gives the heliocentric longitude of

Mars for the dates indicated in column T.

73. Applications in which the Limits Fall Otherwise than Midway
Between Tabular Values of the Argument and Function. If we put

- .... (260)

the formula (257) becomes

u)dn =
0(i+ |) 0( |) (261)

Whence, if as before n denotes a fractional or mixed number,

we derive, by the general method of interpolation employed in 70,

dn = 0(n)-0(-$) (262)

Upon substituting n and n&quot; successively for n in (262), and

taking the difference of the resulting expressions, we get

d* =
0(n&quot;)-6(n ) (263)
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Finally, replacing the functions 0, in (262) and (2(53), according

to the expression (260) ,
we obtain the following formulae :

s

/H-nU&amp;gt; /*

\F(T)dT = o) \F(t+n)dn
Jt

5u&amp;gt;

* I

= \(!Fn -&amp;gt;F_J + ^(J&amp;gt;n-Ji^-^W -^+^^W-^- - *! (264)

/t-Hi&quot;o&amp;gt;
/*&quot;&quot;,

) F(T) dT = co I F(t+n&amp;lt;*)
dn

Jt+n (j)

= coj^- ^+^C^,-^^ ! (
265

)

where the quantity F- is wholly arbitrary; and where Fn ,
J n , X , J,T,

(and the similar terms with subscripts ri and
n&quot;)

are to be

found by interpolation.

When several values of an integral are to be computed from a

given series by (264), the latter may be modified to the more ex

pedient form given below :

(266)
/+nW /n

\F(T)dT = *lF(t+**)d*
X(_J(1)

/ 1

EXAMPLE. Find the value of

/*X = I 6
!

c/0.15

0.48

dT

e being the base of the natural system of logarithms.

Taking u = 0.1, t = 0.2, and F (T)
= e

T
,

we prepare the fol

lowing table :

T
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whence the column F is completed as shown above. Denoting the

assigned lower and upper limits by T and
T&quot;, respectively, we have

T = 0.15 = 0.20-0.05 wm.t. l*
T&quot; = 0.48 = 0.20 + 0.28 = t + 2.8 o&amp;gt;

Hence, at the upper limit, the value of n is

n = 2.8 = 2.5 + 0.30

Accordingly, we find Fn ,
J n ,

and
z/;t

&quot;

by interpolating forward from

the quantities F^ ,
z/

2-5 ,
and /l^ with the interval 0.30. From the table

above, we take

IF^ = +4.058247 zT
2-5
= +0.15G896 z/^ = +0.001572

Hence, making the required interpolations by means of BESSEL S

Formula, and proceeding according to (266), we find

&amp;gt;Fn
= +4.535670.3

J n
= +0.161674 + ^ z/ n

= + 6736.4

z/:&quot;= + 1619 -4.&quot; = - 4.8

2 = +4.542402

.-. X = +0.4542402

The true mathematical value of X is easily found : thus, since

CeTdT = e
T

we have
X = e Aa - e- 15 = 0.454240159 ....

74. Quadrature as Based upon BESSEL S Formula of Interpo

lation. Another set of formulae for mechanical quadrature, similar

to those already developed, may be derived in the same manner from

BESSEL S expression for F(t-\-nu). However, since these formulae

may be obtained more conveniently by a direct transformation of those

developed in the preceding section, we choose the latter course.

Putting n&quot; = i, and n = 0, in formula (263), we have

fF(t+ nu)dn = (T)
-

(0) (267)
Jo

We also have, by (260),

--* . - (268)
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Referring now to the general schedule on page 147, it will be

observed that the quantities

are not explicitly given, but must be found by interpolating to halves

between F^ and F^, J ,-* and z/ i+i , etc., respectively. For this

purpose, let us denote the algebraic means of the latter pairs of

quantities by (Ft), (4&amp;lt;)&amp;gt; W )&amp;gt; 5
that is

&amp;gt;

let us Put

(269)

Applying formula (126), we have, therefore,

&quot; - + -

Upon substituting these values of Fiy ^, Ji&quot;

and reducing, we get

00 = TO - AW + TO (4 &quot;)

- eU-io (40 +

Putting i = 0, this becomes

Whence, from (267), we derive

CF(t+ nw)dn = 0(t)-0(0)
= [(^)-(^o)]

+ AV [(4 &quot;)

- W)] -

(270)

in (268),

(271)

(272)

+ (
273

&amp;gt;

*It is evident from (111) that the coefficient for the sixth difference in BESSEL S Formula is

(n+2)(n+l) n (n l)(n 2)(n 8)

li

which, for )i = i, yields the value given in the text.
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Again, putting n = i in (262), we have

Ij + .... (274)

In like manner, making n
&quot; =

i-\-i, and w = 0, in (263), we
obtain

XmF(&amp;lt;+ wo))rfw
=

(/ + )_ 0(0)

. (275)

Finally, substituting w&quot; = n and rc = 0, in (263), the latter

becomes

fj^+ wco) dn =
(n)

- 6 (0)

= fn+^^n-Mv^
-

yVo W) + rMio K) - .... (276)

The equations (273), (274), (275) and (276) give, respectively,

the following formulae of quadrature :

J&amp;lt;+iO)

/ i

F(T)dT =
wj F(t+ n&amp;lt;a)

dn

=
|[( ^)-(^a)] - TV [W-WD + TVo[(^ &quot;)- )]

-^I^[(4V

)-(4
V

)]+ . . .
j (277)

/
J

= - K-) - A C^ i) + TO W)
-i + . . .

| (278)

JM-iU)+lG&amp;gt;
F(T)dT =

-
- TO + TVW -

7VV W) + THia (^J)
- ....

| (279)

f#(
t/t

= a,
^

&amp;lt;Fn+ ^ J n

-
c^o) + ^w - TVV w) + *m* K) - ....

i (280)
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in which i denotes an integer and n a non-integer; where F^ is

wholly arbitrary; and where
(F&amp;lt;), (j O, ---- and (F ), (z/ ), ....

are means of corresponding tabular quantities, as defined by (269).

If, in the formulae (277), (279), and (280), we take

( ô)
=

Tv (J )
-

7Vo K&quot;) + irMU (O -
- -

then the sum of the terms with subscript zero will vanish. But, since

the preceding condition is evidently satisfied if we take

-
(
281

&amp;gt;

The formulae (277), (278), (279) and (280) may therefore be

computed as follows :

(282)= (u CF
Jo

/*+;u)

(F(T)dT = (283)

J^+iW-HW

/

F(T) rfT = co I

/

t+nw

F(T)dT =

dn

- yVV K&quot;)

(284)

(285)

Several examples will now be solved as an exercise in the use of

the preceding formulae.

EXAMPLE I. Let it be required to find

/!= I Tsi
Jo

X =
\ TsinTdT
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Here we take w = 20 = ~
,

t = 10 = ^ ,
and tabulate

F(T) = atT Bin T, as follows :

18

T
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Here we take = 0.1, *= 0.9, and tabulate F ( T)=(1+0
as below :

T
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We now take &&amp;gt;
= 2 = ~

,
t 45, and tabulate the follow

ing values of F (T) = wsec4 T :

T
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.

DOUBLE INTEGRATION BY QUADRATURES.

75. Having derived various formulae for the mechanical quadra

ture of single integrals, the corresponding formulae for double integra

tion are now readily deduced. These will serve to compute integrals

of the form

Y = C CF(T}dT
2

(286)

independently of the analytical nature of the function F(T), provided

T and T&quot; are numerically assigned. To define the quantity T more

explicitly, let us put

dT = f(T} + M

where M is the constant of integration. We then have

Y = ff(T}dT +M(T&quot;-T ) (287)
*Jr

It is therefore evident that unless the constant M has a definite

value in any given case, the value of Y will be indeterminate. In

practical applications, however, the quantity M is generally known

from the fact that the first integral has an assigned value (usually

zero) corresponding to the lower limit of integration.

If we now put

T = t + n&amp;lt;a
,

T = t + n w
,

T&quot; = t + n&quot;u

we have
dT 2 = Mi2

(288)

and hence (286) becomes

Y = C CF(T)dT
2 =

&amp;lt;o

2 C CF(t+ nu)dn
2

(289)
/ Jf //

upon which relation the subsequent formulae are based.

76. Double Integration as Based upon NEWTON S Formula of

Interpolation. If we substitute, successively, n and n&quot; for n in (243),

and take the difference of the two results, we obtain

fF(t+ )
dn = *

(n&quot;)

- * (n } (290)
*/n
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From the form of (290) it follows that the expression for the

indefinite integral is

CF(t+*}dn = *()

or, by (238),

) dn =
(291)

the constant of integration being contained in Fn ,
which depends

upon the arbitrary quantity F
Q

. Multiplying this equation by dn, and

integrating, we get

. . . (292)

Let us now consider a new series, namely

u u u

the term &quot;F
Q being arbitrary, and the subsequent terms so determined

that the quantities

F F F F*OJ f\t r
i&amp;gt;

-T
i+ i

are the successive first differences of the proposed series. The man
ner of arranging the series

&quot;F, F, and F, together with the differences

of F, is shown in the schedule below :

T
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Now, since the differences zP&amp;gt; may be regarded as a series of

functions whose 1st, 2d, .... differences are A, jw
it is clear that formula (291) may be applied successively to each of

the integrals in the second member of (292). Accordingly, we have

+ ej +

dn =

y I dn dn =

8 f/C dn =

f dn, =

(293)

Summing these expressions, we find, in accordance with (292),

f ( dn9 = &quot;F+ F + +23 F
JJ

j;t
&quot;+ . . . . (294)

Upon substituting the numerical values of /3, 7, 8, . . . . from

(222), formula (294) becomes

J&quot;J
(294a)

the coefficient of J B reducing to zero. We proceed to determine the

expansion to which the coefficients of this formula belong. For

brevity, let us write (294) in the form

rfw
a = &quot;F+ Fn +aFn +bJ H + cJX+dJX + .... (295)

(296)

(297)

Now, from (228), we have

Also, let us put

w = x
~2 + ar1 + ax + bx + ex 2 + dx s + . . . .
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in which the coefficients are taken as in (295). Whence, since the

second member of (295) is the combined sum of the second members
in (293), it is evident that (297) may be resolved, conversely, as

follows :

y(x+

which may be written

W = X-1

(X-
1
-f X + fix + yX

2 + & 8+ . . . .
)

+ i3 (*-Hia+/fc;+ya;
2 +&c 8

4- . . . .)
+ PX (x-

1 + | x + px + yx
2 + &e*f . . . .

)

+ yx
2

(x-
1 + cc + /3x + ya;

2 + S.x
3
-f . . . .

= (x-
l + $x+/3x +y 2 +3x 3 + . . . .

)
2

Therefore, by (296), we have

(298)

Comparing (297) and (298), it follows that the coefficients of the

former, and hence, also, those of (295), are the coefficients in the

expansion of [log (1 -f x)]~
2

,
as developed in (298). Whence, in

troducing these values of a, b, c, d, . . , . in (295), we obtain

+^ W-M\V ^r+ ^^ 4-. . . (299)

as was found directly in part in (294) .

Let us now put

A( = aFn + &amp;gt;Fn -f aFn + M n + c^ + d/J^
1 + e^ + . . . .

= //^+ /^+TV^ + 0^ i -^Uz/; + ^^: --TTno-^v + .... (300)

and (299) becomes

*
J = \(n) (301)
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Whence, if the integral be taken between the two fractional

limits, ri and n&quot;,
we shall have

[

C C$(t + i&amp;lt;o)

dn* = X
(n&quot;)

- X (n ) (302)

And if we make the upper limit an integer, say n&quot; = i, we have

nF(t +n^ dn&amp;gt;
= X (f)

- X
(n&amp;gt;)

(303)

The last formula involves the disadvantage of employing differ

ences J/, Ji&quot;, Ji&quot;,
.... which are not given when the tabulation of

F(T) ends with the quantity Ft
. To remedy this defect, we pro

ceed as follows : Put

v = X (i)
= &quot;F

i
+ F

t
+

aF&amp;lt;
+ bJ

t
+ cJ

,
+

dJi&quot;
+ ez/l

v + .... (304)

and substitute for &quot;Ft , F&amp;lt;,
Fi9 J/, J t&quot;,

.... the expressions

&amp;gt;F
t
= Fi+l

- F
t

Fi = Fi

j/ = j^ + j;i2
+ z/^ + 4-4 +

A* = +

(305)

Whence the integral (303) may at once be expressed in terms of the

available differences, J ,_15 /C2 , X--3 ,
- - However, to avoid direct

substitution, let us put, as in (229),

X =
l-U

(306)

and we shall have

x-* =
x- 1 =
x&quot;

=
.T =
Of =

-U) - M -&amp;gt; - U

A-1 = u + u* + u 3 + u 4 + .

.r
a =

(307)
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Again, from (297), we have

w = x~2 + x~ l + ax + bx + ex2 + dx 3 + ex4+ .... (308)

Now, it is evident that if the expressions (307) be substituted

in the second member of (308), the algebraic process will be identi

cal in form with that of substituting the expressions (305) in (304).
The w operation involves the quantities

w
;
x~2

, x~\ x, x, x*, Xs
,

. . . .
;

u~2
, u~\ u, u, u 2

,
u 8

,
....

5

while the v operation involves, in exactly the same manner, the quan
tities

11 &quot;F F F A A&quot; /I &quot; u F IT? W /It /I&quot; /I&quot;V
1 ^il *i) r

i )
tl

{ , Zlj ,
Zf

f ,
. . . .

, A +2&amp;gt; -F&amp;lt;+1 J *lM ^ i-1) ^-2? *- J

Hence, if we perform the w operation, the result for v is at once

known. But the expression which results from substituting (307) in

(308) is obtained with greater expedition by the following process :

From (298), we have

w = \\og(l+x)\-
2

Whence, by (306), we find

the expansion of which is immediately obtained by writing u for x

in the second member of (297). Thus we find

ic = u~&quot; u&quot;
1 + au lu + cu2 dn s + eu 4 .... (309)

Therefore, according to the preceding reasoning, the expression for

v is

v = &quot;Fw - F
i+l
+ aF

f

- &/* ,_! + c/J,^
- dJ^ + ez/j^

- ....

Denoting this expression by 7r(i), and restoring the numerical

values of a, 5, c
f

. . . . from (300), we have

v = v (i)
=

&quot;F^
- Fi+l + aF

t

- bJ ^ + cJtL*
- dA 1^ + e/J^ - ....

= &quot;F
i+2
-

&amp;gt;Fi+l + A F
t

-^ AU ~ ^ 4-s - **H*^ - .... (310)
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Whence, by (304) and (310),

X({)
= v =

ir(i)

and the formula (303) becomes, therefore,

f CF(t+ u&amp;gt;)

rfrc
2 = TT (i)

- X (n } (311)
^ */* .

In the formula just proved the quantity * denotes an integer.

Now, by the general method of interpolation employed in 70, it is

easily shown that (311) is true for non-integral values of i. Thus,

writing n&quot; for /, this formula becomes

f fj
x /n

(312)

We now bring together equations (300), (310), (302), (312)

and (289), in the order named
; observing that in the first two of

these we may write &quot;Fn+l
for &quot;Fn+ Fn and for &quot;F +2 Fn+,, respec

tively. Thus we obtain the following group :

F -

f fF
* x ?l

(313)

=
(&quot;)- A (nO

r /n&quot;

= w2
I I F(t+m
J Jn

From this group are immediately derived all of the formulae given

in the following section.

77. We have already remarked that in the process of single in

tegration the value of the definite integral is wholly independent of

the absolute value of F
Q ,

which may therefore be assigned arbitrarily.

Similarly, in double integration, the quantity &quot;FQ may be taken at

pleasure, the integral being independent of its absolute value. Per

contra, the double integral will evidently vary with the value assigned

to F
Q

. Hence, unless F
Q

is fixed by some special consideration, the

value of the double integral is indeterminate a conclusion already

derived from (287).
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Now, as was previously remarked, the value of the first integral

corresponding to the lower limit is usually known in practical appli

cations. We shall therefore denote by // the value of fF(T}dT/ u i \ j

which results when t is substituted for T. Then, by (291), we have

-[/

from (222),

ff

or, upon restoring the numerical values of
/3, y, 8,

and transposing,

which determines F^ and hence, also, the double integral Y, provided

II is known. In practice the value of // is frequently zero.

Using (314) in conjunction with the relations (313), we obtain

the several groups of quadrature formulae given below :

*\H

/&amp;gt; /

J
\

rr

l// 1 //&quot;_L 19 //
&quot; 3 //iv_l 863

1 -I
^ 0~ 24 ^0 + 7 2(T -^0 TGtf ^0 T

(317)

f p(?) cZ2 2 = o,
2 f (T/ i/+n a) J Jn (318)
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The foregoing formulae are applicable when the upper limit falls

near the beginning of the tabular series. When the upper limits falls

at or near the end of the given series, the following formulae like

wise derived from (313) may be employed :

(320)

TT

(322)

_2-^

In applications of all the preceding formulae, the value of
&quot;F^

(or of &quot;F
Q when employed) is wholly arbitrary, and therefore may be

assigned at pleasure in every case. But when (315), (316), (319)
and (320) are applicable, it is frequently convenient to determine

&quot;F,

such that

The formulae in question then take the form as follows :
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C (F(T)4T* = a/
2 C CF

*. \Jt y ../(i

(323)

(324)

^0+1l^ z/ _^j;.

(325)

F
1
= +i^

r r?(r) ^r
2 = o)

2 r r^

a if TT g^ff to

(326)

The differences which appear in the foregoing formulae, together

with the auxiliary functions F and
&quot;F,

are to be taken according to

the schedule on page 161. The symbol * denotes a positive integer,

while n designates a fractional or mixed number : so that all functions

and differences whose subscripts involve n must be derived from

their respective series by interpolation. Finally, the quantity II de

notes as previously defined the value of jJ?(T)dT when t is

substituted for T : so that we have

(327)

It may happen occasionally that the value of // is unknown,

while the value of \F(T)dT corresponding to T=
t-{-na&amp;gt;

is

known for a particular value of n. Denoting this quantity by J/n ,
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we may, by any one of the foregoing methods, compute the definite

integral

Jt+n&amp;lt;a
F(T}dT = Hn

-
II,

and hence find

fL = Hn -X
(327.)

with which value we proceed as before.

Several examples will now be solved as an exercise to illustrate

the formulae given above.

EXAMPLE I. Let it be required to find

7T

Y = C ( cosTdT 2

on the supposition that j*cosTdT=2 when T = 0.

&quot;We tabulate and difference the following values of .F(T)
= cos T :

T
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The column F is now completed by successive additions
; hence,

also, the column
&quot;

F, having first assumed
&quot;F = 0. Whence, by

(319), the remainder of the computation is as follows :

HFL
10
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We have, therefore,

t = 2.0 co = 0.1 # =

whence, proceeding by (326), the computation of F
l
and

&quot;Jf\
is as

follows :

+ $ F = +0.12500 ...........
+ /, J

9
_ - 193.7 -

TV F = -0.02083.3

-&quot; = - 12.9 + &amp;lt;

= + 1-3

.

/^ = +0.12292 .-.
&quot;*;

= -0.02082

From the completed table we now find

n = (2.468- 2.0) -^ 0.1

= 4.68 = 5-0.32 &quot;Fn+1
= +2.36025.6

Fn
= +0.16418 + TV Fn

= + 1368.2

J^= + 191 -2^^1-2 = - 0.8

= - 36

2- = +2.37393

T = +0.0237393

This result is easily verified, for we have

[
-

log e
T+ CT = - loge

1.234 + 0.468 C

also

Hence

Y = -log.l.234 + 0.234 = -0.2102609+0.234 = +0.0237391

with which the above result substantially agrees.

EXAMPLE III. From the table of the preceding example, find

the value of
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Here we employ formula (324), in which we take

2.15-2.0
0.1

= 1.50 =

We therefore obtain

,i_-| __ O I 1 \
} + J- &quot; + 15V

Fn
= +0.21633

z/;;
= + 235

z/:&quot;
= - 38

= +0.24992.0

= + 1802.8

= - 1.0

= - 0.2

2 = +0.26794

... Y = +0.0026794

The true mathematical value of Y is

Y = 0.075 - log, 1.075 = +0.0026793

78. Double Integration as Based upon STIRLING S and BESSEL S

Formulae of Interpolation. Let the schedule of functions (including

F and
&quot;F)

and differences to be used in the subsequent formulae of

quadrature be as follows :

T
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Now, by (260), we have

0(n) = Fn+JtJn-Mv^ +vWinJ*-

and hence the preceding equation becomes

fF(t+n*)dn
= Fn+JtJn-Tth^ +vJNnJZr-* . . . (328a)

For brevity, let us put

= +*V * = -sUcr c = + WWW .... (329)

and (328) may be written

JF(t
+

n&amp;lt;)dn
= Fn dn = Fn + a4 n + bJJ + cJ r

n + . . . . (330)

the constant of integration being contained in Fn . Multiplying this

equation by dn, and integrating, we get

dn + c fadn + . . . . (331)

Applying formula (330) successively to each of the integrals
expressed in the second member of (331), we obtain

Whence, restoring the values of a, b, c, . . . . from (329), and

reducing, we obtain

If .

J J (332)

If, as in (327), we denote by HQ the value of ^F(T) dT which
obtains for T= t, then, by (328), we have

\

= wf CF (
t+

)
f
i~\

=
&quot;-o (0)

_\T=t !_/ Jn =

and hence, by (272),

H
o
= -K^o)-iV(^ ) + 7Vo )-aii(TKv

)+ .

I (333)
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Upon substituting i = in the first of equations (269), we get

which, together with (333), gives

5&amp;gt;xi*= -- + t*o (334)

where the differences enclosed within parentheses are means of the

corresponding tabular quantities, as defined by (269).

By employing simultaneously the relations (332) and (334), and

assigning various limits to the integral, we obtain the following group
of formulae :

(335)C CF(T )
dT 2 = to

2 C CF
(t
+

n&amp;lt;^)
dn 2

(336)

/ / !

= w2

|
1

/ /
(337)

f f$
n

(T) ^T
2 = co

2 f f^
/ c/r+n u) v *J n

(338)

In the preceding group the value of &quot;F
Q

is wholly arbitrary. We
may, however, determine the quantity &quot;F

Q
such that the sum of the

terms in (335) and (336) having the subscript zero will vanish : these

formulae may therefore be written
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= -^
&quot;J~

&quot;

(339)

(340)

Let us now denote the second member of (332) by y (n) ;
that

is, let us put

Making n = i-\-\, this becomes

(341)

J^H+A^H-w^lH
ftllftw-^fc-.

... (342)

It will be observed from the foregoing schedule that &quot;Fi+^ F^,S n+t .... are not explicitly given, but must be derived from their

respective series by interpolation to halves. For this purpose, let us

put, in analogy with (269),

(343)w) - K
then, after the manner of (270), we shall have

(344)

Upon substituting these expressions in the second member of

(342), and reducing, we find

.... (345)
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Again, by means of (332) and (341), we derive

&amp;lt;i
=

y&amp;lt;V )- y (W) (346)

Finally, denoting by H^ the value of ^F(T)dT when
t

-*-o&amp;gt;,
we shall have, by (328),

_^
= f C

Ly

which gives

H
A (347)

By assigning various values to the limits n and n&quot; in (346), and

employing either (341) or (345) as required in each particular case
;

and finally, by using either (334) or (347) to determine the series

F, according as the assigned lower limit is not or is equal to J,

we derive the group of formulae given below :

/*
/&quot;

+(+&)

JJF(T) dT 2 = (348)

&quot;F
Q
= arc?/ convenient value; arbitrarily assigned.

f /*&amp;lt;+(+&) CO / fi+\
(F(T)dT

2 = W 2

| \F(t+no&amp;gt;)dn*v c/+n(J ^ /
(349)

--^-
- i +

(350)
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TT

TJI/VVso Z -i

/ /+nd) / /n
I F(T)dT* = to

2
1 I F(t+n*)dn*J /&amp;lt; JU) / /

}

rr

*- = &quot;

(351)

-5 + yylir &quot;-
~~

= any convenient value; arbitrarily assigned.
/^ /t

= W 2

|
I

y / j
(352)

The last formula may also be written in the following form :

. *-*

(353)

It may be well to again point out the fact that the functions and
differences enclosed within parentheses denote the means of corre

sponding tabular quantities, as defined by (269) and (343). Further,
that // and H^ denote the values of the first integral of F( T) when
for T we substitute t and t^-u, respectively. Finally, we may add
that if in any case Hp is given and H

q required, it is only necessary
to compute

ft+p&amp;lt;a

X=(F(T)dT = H
p
-H

qAf?CO

and thence find (354)

H
q
= H

P -X

In the process of double integration by mechanical quadrature it

is sometimes convenient to tabulate, not the given function, but w2

times that quantity. By this means all differences are multiplied by
w2

,
and thus the final multiplication by that factor is avoided. How

ever, in order that the quantities F and &quot;F shall be multiplied by the

same factor, it is evident that the independent term -
(which has the
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same fixed value whether we tabulate F(T} or a?F(T)) must like

wise be multiplied by o&amp;gt;

2
: so that, proceeding by this method, it

TT

becomes necessary to take w// in place of the term which occurs

in all the preceding formulae. The computer is cautioned against

neglecting this precept in case he tabulates a?F(T) instead of the

given function F(T}.
We close the chapter with several examples which illustrate the

formulae given above.

EXAMPLE I. Find the value of

Y = -
2.6

2TdT 2

772

)
2

on the supposition that the first integral vanishes for

We tabulate the given function as below :

T
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P4 = -0.907502
&quot;F^

= 0.000000
(&quot;Fi

-&quot;F
)
= -0.907502

P4 = -0.086353 F = -0.129011 + ^(Ft-Fu) = + 3554.8

1
t
= 994 dJ = - 1746 ^(J; //; )

= 3.1

2 = -0.903950

.-. Y = -0.00903950

Verification : Integrating directly, we have

r2TdT 1

i 2 -6

= tan- T+tfT

r 2

)
2 1+272

whence

-*-r T=2.2

.-. (7 = -0.17123288

Finally, using the relation

tan&quot;
1 a tan&quot;

1 b = tan&quot;
1

(

the preceding expression for Y becomes

which gives

Y = -0.00903949

EXAMPLE II. From the table of the preceding example, compute

2.55

Y= - I I
2TdT *

// (i + r 2
)
2

^J m^/ ^ *
^&quot;^ ^&quot;^

2 23

Here we employ (349), taking

= 2.2 i = 3 H = w = (2.23 2.2) -i-O.l = 0.30

Thus we find

( %) = -0.717599.5

)
= -0.090739 ^ (JF81 )

= + 3780.8

^)
= - 1068 + TMo(^D = - 9-5

^ = 0.713828.2
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Also

(n =
0.30)

Fn
= -0.125016

J&quot;= - 1673

- rV Fn
=

+ 0.006077.9

+ 0.010418.0

- 7.0

+ 0.016488.9

-0.697339

whence

Y = -0.00697339

Verifying this result as in the preceding example, we find

/ A
C&amp;gt;9

\

Y = tan~M G68g5 )
+0.32(7 = -0.00697338

EXAMPLE III. Let it be required to find

x-50

Mcos TdT*
s-&amp;gt;

^-o(T

T = I/Mcc
1 1 si

-^ wo
sin2 T

assuming that the first integral = 2M when T= 30
;
M being the

modulus of the common system of logarithms.

Here we tabulate F(T} = &amp;lt;JM cos Tcsc*T for T= 20, 24,
28, .... 60

;
thus avoiding the final multiplication by w2

. Since

&amp;lt;o
= 4 = TT -r- 45, we find

log^M = 7.325659 - 10

Our table is therefore as follows :

T
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We proceed by formula (353), taking as our data

t = 32 o&amp;gt;
= 4 = 7T-+45

i = 4 7/_ = 2Jf = 0.868589

Whence, observing that we must now take &&amp;gt;//_ instead of the term

-i-a) in (353), the computation of F-\ is as follows :

log a)//_j
= 8.782752

aitfLj
= +0.060639.0

J_
t
= +2088 3^1| = - 87.0

z = + 468

= +0.060553.4

And for &quot;F
Q
we find

......... $ F_i = +0.030276.7

(F_J = -0.007436 +^(^-1) = ~ 309.8

(/r,) = - 887 -T^^^-J) - + 7.9

(//jy)
= - 367 +T^W^(^) = - 0.7

... &quot;F = +0.029974 y

Upon completing the table as shown above, and continuing the

computation by (353), we obtain

(*
= 4

) (&quot;FJ
= +0.240524.0

(F4})
= -0.002332 -A(^) = + 97.2

M) = - 106 + T*frr(4b - ~ 0.9

.-. F = +0.240620

We easily verify this result analytically as follows :

McosTdT Mf
ff

sin2 !7
&quot;

sin

McosTdT 2

+ C&quot;

C&quot;

r
= l

L -
&amp;lt;&amp;gt;U

V = ?r

But

.-. C =

(Kf)0\
~) -
* /
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log tan 25 = 9.668672.5 - 10

log tan 15 = 9.428052.5 - 10

.-. Y = 0.240620

which agrees exactly with the former result.

EXAMPLE IV. From the table and data of Example III, compute
the integral

/~/McosTa
I I sin2 T

^/X&amp;gt;no

Here we employ (351), taking t = 32 as before
;
we then have

for the value of n at the upper limit,

n = (45-32 )-^4 = 3.25 = 3 + 0.25

We therefore obtain

........ &quot;Fn
= +0.189420.3

Fn
= -0.002993 +j*Fn = - 249.4

= - 163 - = + 0.7

.-. Y = +0.189172

Verifying this result as in the last example, we find

Y = Iog10
tan 22 30 - Iog10

tan 15 = +0.189172

EXAMPLE V. As a final exercise, combining both single and

double integration, and illustrating, moreover, the use of formula (339)

when several values are assigned in succession to the integer i, we

shall conclude these examples with a complete and detailed solution

of the following problem :

A particle P of unit mass is impelled along a straight line AB
by a varying force whose expression is 20000T~z

;
where T is the

time in seconds after a definite epoch, and the implied unit of length

is one foot. It is required to find by quadratures the velocity, v, and

the distance, AP = x, for the times

T = 102, 104, 106, 108 and 110 seconds, respectively;

assuming that V
Q
= 0.6 feet per second and o? = 8 feet when T = 100

seconds.
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Since the mass of P is unity, we have, simply,

d*x 20000

dT 2 T 8

whence by a single integration

dx

and by double integration

20000d T*
08)

We shall first compute the required values of x as given by equa
tion (), effecting the double integration by means of (339). The
details of the computation are shown in the following table :

TABLE (A).

T
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rr

by the same factor : so that, writing v (== 7/
) for in the first

equation of (339), and omitting
1 insensible terms, we have

&amp;gt;F

h
= .+**;+AW (y)

Hence, substituting v, = 0.6, F
Q
= 0.04000, (j )

=
-\- (/f_&amp;gt; -f^|) =

0.00240, we find F = +0.61980, and thus complete the series

F as given above.

The second equation of (339) gives simply, &quot;F^
= -$FQ ,

the

term in j&quot; being insensible. But since, by equation (/3), we should

afterwards have to add the constant x to each computed value of the

double integral taken from T to T, it is expedient to tabulate in

place of &quot;FQ the quantity

.0 = 4.0 -0.00333 = +3.99667
(O

and thence complete the series as given under
&quot;F-\- XQ = a. The

reason for this procedure is easily made apparent : for the final equa
tion of (339) gives (since w2 must now be replaced by w)

ff-

and substituting this expression in equation (/3), we obtain

V (M TP _J_ 1 Tv
7
^ _l- y (M 7^ -L. _L 1 7P \ /5l\

/. ^

Therefore, upon forming the column -{--f^F^ b^ as given above,

we have from (S)

whence the required values of x are derived and tabulated in the final

column of Table (A).
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For the computation of the velocity v we employ formula (282),

the first equation of which gives

or, by adding FQ to both members,

But we shall avoid subsequent additions of the constant i?
, required

by equation (a), if we increase this value of F by the term v = 0.6
;

that is, if we take

which is the same as the expression (y), used for determining the

series F in Table (A). The latter series is therefore to be employed
in finding v, the computation of which is as follows :

TABLE (B).

T
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This completes the solution of the problem. An interesting check

is derived, however, by observing that equation (a) gives

whence x may be obtained from the series v by single integration.

For this purpose we make f(T) = a&amp;gt;v
=. 2v, and thus form the

table below :

TABLE (C).

T
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79. It is worth while to inquire what change takes place in the

value of the double integral

T = H F(T}dT*

when, in a particular problem, the quantity // is changed from an

assigned value // to a new value //&quot;. This is easily answered. For,
if we change // to

H&quot;, the value of the first integral corresponding
to any particular value of T is thereby increased by the quantity
II&quot; II or, what amounts to the same thing, the constant of the

first integration, M in (286), is thus increased by II&quot; H . There

fore, by (287), it is evident that Y is increased by the quantity

(H&quot;
II

) (T&quot;
T ).
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EXAMPLES.

1. Given the semi-major axis of an ellipse, a = 1, and the

semi-minor axis, 1) = 0.8, to find the length of the elliptic quadrant.

Ans. 1.41808.

[NOTE : Take the eccentric angle E as independent variable, and hence find

7T

X?Vl - e* cos 2^ dE
.

where e is the eccentricity, and s the required length.]

2. Given the equation of a cardioid, r = 1 -f- cos 6 : to find, by
mechanical quadrature, the length of that part of the curve comprised

between the initial line and a line through the pole at right-angles to

the initial line. Ans. 2.82843.

3. The equation of a curve being y = #2 V2 sin x
,

find the

area included between the curve, the axis of a?, and -the two ordinates,

x = f and x = f TT. Ans. 0.180518.

4. Compute the value of

Y
Vl - 0.82 sin 2T

assuming that the first integral vanishes at the lower limit.

Ans. 0.139727.

5. Given a curve in a vertical plane whose points satisfy the

relation

tf 4Z2 - 3
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the axis of y being vertical. Find the difference of level between

two points whose abscissae are 1.000 and 1.473, respectively ; assum

ing the direction of the curve to be horizontal at the first point.

Ans. 0.044228.

6. By what amount would the preceding result be changed by

supposing the tangent to the curve at the first point to be inclined

45 to the horizontal ?

[NOTE : This question should be answered mentally.]



CHAPTER V.

MISCELLANEOUS PROBLEMS AND APPLICATIONS.

80. The present short chapter will be devoted to the solution of

a number of problems and examples involving certain principles and

precepts hitherto established.

81. PROBLEM L To find S = l
k+ 2*+ 3*+ . . . .-\-r\ where

Jc, and r are integers.

The method of solution is best illustrated by assigning a particu
lar value to k. Thus, let it be required to find

S = I 4
-h 2 4 + 3 4 + . . . . +y

We tabulate below and difference the values of T* which corre

spond to T=l, 2, 3, 4, 5 and 6. Thus we find :

r
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consider the auxiliary series F defined as in Chapter TV we shall

have, by the fundamental formula (73),

(15)

r(r-l)(r-2)(r-3)
(60)

(50)

(r 1) (?* 4)

OT~~ )

Therefore, by Theorem I, we have

S = &amp;gt;F- = ^ (/
+ !) (2r+l)(3r

2

+3r--l) (355)

which is the required expression for the sum of the fourth powers of

the first r integers.

82. PROBLEM II. Given a series offunctions, F_z , F_z , F_19 FQ ,

Fly F2 ,
. . . .

,
and an assigned intermediate value, Fn : To find

the corresponding interval n.

first Solution : The simplest method is to determine by inspec

tion an approximate value of n, and then find by direct interpolation

the values of the function corresponding to three or four closely equi

distant values of n that shall embrace the required interval. The latter

is then readily found by a simple interpolation.

EXAMPLE. From the following ephemeris find the time when the

logarithm of Mercury s distance from the Earth = 9.7968280 : that is,

given Fn 9.7968280, to find n. The tabular quantities are here

given for every second Greenwich mean noon.

Date
1898
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(from the former date) is somewhat greater than 0.4. Hence we take

F
Q
= 9.7905482, and interpolate by BESSEL S Formula the functions

corresponding to n 0.38, 0.41, and 0.44. Thus, computing and dif

ferencing these values, we find

n
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To find z from this equation, we first neglect the small term in

z*, and thus obtain an approximate value which we shall call x. In

this manner we find

x = ^^ (358)
(O-f m

This approximate value of z will now suffice for substitution in the

last term of (357). Accordingly, we obtain

whence, putting

(359)

(360)

we have

and equation (356) becomes

z = x y

n = m -f- x y (361)

Finally, to express Fm ,
uFm ,

and o&amp;gt;

2FJ in terms of the differences

of the given series F, it will be expedient to employ STIRLING S

Formula of interpolation, together with the expressions for Fm and

F as developed in 61. The above solution may then be expressed

as follows :

Determine m = an approximate value of n, true to the nearest tenth

of a unit.

Thence find F = Fn + ma + Bbn + Cc + Dd. + . . . .

D
l

= = a+mb + C c+

= ft + me + . . .

x = F.-JL

and

A
y = \x*K

n = m + x y

(362)

Here the differences are to be taken according to the schedule on

page 62
;

the coefficients B, C, D, . . . . being taken from Table II,

and C
,
D

,
. . . . from Table Y. Finally, Table YII gives the value

of y for top argument K and side argument x
; observing that y has

the same sign as K.
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EXAMPLE. Same as in 82.

Here we find m = 0.40
;

and hence take from the given table,

and from Tables II and Y, the quantities

m = 0.40 a = +144461.5 ........
B = +0.080 b = + 15725 ... .....
C = -0.056 c = - 4137.5 C = -0.08667
D = -0.0056 d = + 457 D&amp;gt; = -0.02267
E = +0.01075 e = + 105 E = +0.01440

The computation of Fm ,
D

l
and D2 by (362) is therefore as fol

lows :

Fn = 9.7905482

ma = +
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EXAMPLE. Solve the transcendental equation

T - 20 sin T = 45

where T is expressed in degrees of arc.

This equation may be written

F(T}
= T - 20 sin T - 45 =

which by trial we find to be satisfied by a value of T not far from

63
;

hence we tabulate F (T) for T =. 62, 63, and 64, as follows :

T
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Therefore, since the condition of maximum or minimum requires
that F (T) = 0, we have, by neglecting 5th differences,

(a $c) + (ft T
L rf

)
w + en2 + rf w8 =

(363)

which determines the value of n, and hence, also, the value of T, at

the point of maximum or minimum of F(T). This equation may be

readily solved by successive approximations, by first neglecting the

terms containing w8 and n3

,
and afterwards substituting therein the

approximate value of n thus found, and so on
; or, we may consider

the solution of (363) from the standpoint of Problem III, which

may be regarded as the more direct of the two methods.

EXAMPLE. The following ephemeris gives the log radius vector

of Mars with respect to the Sun (log r) . Find the time of perihelion

passage of the planet.

Date
1898
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Neglecting the last two terms of this equation, we have, for an

approximate value of n,

n = 135-^2914 = 0.046, nearly;

and since for this value of n the small terms sensibly vanish, we obtain

as our final value

n = 135-^2914 = 0.04633

The date of perihelion passage is, therefore,

T = April 30 d + 0.04633 X 8 X 24h = April 30d 8 h.895

86. PROBLEM V. Given a series of numerical values (F_3 , F_z ,

F_lt F , FD F2 ,
. . .

.) of any function F(T) ivhich is analytically

unknown: To find an approximate algebraic expression for F (jT) in

terms of the variable argument.

Let us put
T = Tt (364)

and TAYLOR S Theorem gives

F(T) = F(t+ r)
= F(t) + TF ()+

1

^ F&quot;
(f) + ?=- F&quot; (t)+ . . . . (365)

Upon substituting in (365) the expressions for F (f), F&quot;(f),

F
&quot;(f),

. . . .
,

as given by (175), we obtain

F(T) = F(0 + i(a-ic+,fo-. . .

.)
r + -~ (b -jf d + . . .

.)
r
2

+ (^-i+. .)r-f-(rf.- ---- ) T +-
g-(,-

----
) T5+ ---- (366)

which expresses F (T} as a rational integral function of r, with known
numerical coefficients

;
T being the value of the variable argument

counted from the fixed epoch ,
as defined by (364).

EXAMPLE. From NEWCOMB S Astronomical Constants we take

the following table of the mean obliquity of the ecliptic (e) for every
fifth century :



THE THEORY AND PRACTICE OF INTERPOLATION. 199

Year
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Therefore, if we put

T
l
= t + ww

}
we shall have + p , jrf r| (366)

*
\ /

~ -1
ro 1

-1
wt r i 2

J m
~

13
-1 m \

where TI (= jT T.,) is the value of the variable argument counted

from the assigned epoch T
l

. Accordingly, if we compute by the

usual methods the values of Fm ,
Fm ,

Fm ,
F^, . . . .

,
and substi

tute these in (366a), we shall obtain the expression required.

As an example, let us express the obliquity (e) as a function of

the time (TI) counted from the epoch 1600.0 in terms of a century as

the unit.

Reverting to the above table, we take

t = 1500* 7\ = 1600* m = 0.20

Whence we find

Fn = 23 29 28&quot;.69 Fm = _46&quot;.761 F = -0 //.0443 F^ = +0&quot;.01088

Substituting these values in the formula (366a), we obtain the

required expression, namely,

e = 23 29 28&quot;.69 -46 //.761r
1 -0&quot;.0222 T2

+0&quot;.0018lT?

87. GEOMETRICAL PROBLEM. A circular well four feet in diameter

is centrally intersected by a horizontal cylindrical shaft whose diameter

is one foot. Find the volume of the portion of the shaft within the

well.

Solution : Consider a vertical section or lamina of the shaft

parallel to its axis, at a horizontal distance x from the latter, and

having the differential thickness dx. Then, if we denote the radii of

well and shaft by R and r, respectively, we shall have for the length
of this rectangular section

and for its breadth, or height,
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Therefore, the volume of the differential section is

dV = Ihdx =

whence

V = -x2

) (r
2 -a; 2

)
dx

Upon substituting .the given values of R and r in this formula, it

becomes

=
8jo *J(4:-x*)(-x*) dx

This expression belongs to the class of functions known as ellip

tic integrals, and therefore cannot be integrated directly. Accordingly,
we proceed to evaluate V by mechanical quadrature. For this purpose
it will be convenient to put

whence

x = sin

dx = % cos OdO

and the preceding expression for V becomes

7T

V = fcos
20Vl6-sinW0

Jo

We now tabulate F (6)
= wcos2

/? ^16 sin2

= TT -7- 18) as follows :

(where

(367)

= 10

$
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Accordingly, we take

t = 5 i = 8 t + iw = 85

and proceed by formula (259) : thus, observing that zT_
5 , //^, . . . .

and z/
t+J , J^j,

.... are all zero, and remembering that the factor CD

has already been introduced, we find

&amp;lt;F_,

= o

and
V =

J&amp;gt;\+k
= 3.1168 cubic feet

88. Various other problems and applications of a similar nature

might be added
; indeed, Astronomy itself presents a large variety of

such. But the leading principles of our subject have already been

developed, explained, and exemplified. We therefore feel confident in

leaving the student who has thoroughly mastered these principles,

believing him fully capable of solving any further questions or prob
lems that may arise in his practice.



THE THEORY AND PRACTICE OF INTERPOLATION. 203

EXAMPLES.

1. Derive the expression for the sum of the cubes of the first r

integers. Ans. |r
2

(r-|-l)
2

.

2. Find from the following ephemeris the instant when Autumn
commences

;
that is, the instant when the Sun s right-ascension (a)

equals twelve hours.

Date
1898
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Year
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89. While many of the formulae and results in the foregoing
text have been derived by somewhat indirect methods, yet the pro
cesses employed in every case have involved nothing but purely alge
braic operations and principles.

For the benefit of such students as may be interested, we shall
now devote a brief space to the more direct and potent form of
development known as the symbolic method. In this our only purpose
is to exhibit the simple manner in which the fundamental formulae of
the text may be deduced

; leaving the student to enter for himself

upon the broader field thus opened by suggestion.

90. Let us define the symbol of operation A by the relation

*F(T) = F(T+*)*-F(T) (368)

from which we formulate the following

DEFINITION: The operation of A upon any function of T pro
duces the increment in the function which corresponds to the finite
increment o&amp;gt; in the variable T.

The relation (368) may be more briefly expressed in the form

A B̂
= F

n+1
- Fn

= Jn (369)

where n can have any value. Thus, taking n = 0, and referring to
the schedule on page 15, we have

,- =
(370)

Similarly

i
= F, - F

l
= J[

,
= F, -F^ = A

(371)
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Thus it is evident that the effect of operating with A upon any tabu

lar function is simply to form the first difference of that function and

the succeeding tabular value. Whence it is evident that we have

AAF =

AA.F; = A(Z/O =
(372)

It follows that the operation of AA upon any tabular function

produces the second difference bearing the same subscript. But this

double operation of A may be conveniently characterized by A2

;

hence we write

4 (373)

In like manner, i denoting any integer, we have

(374)

and, more generally, n being a non-integer,

n
= (AA A . . . . -i times) Fn

= jw (375)

91. Let us now consider the operation of differentiating
with respect to T and multiplying the derivative by w. Denoting the

operator in this process by D, we then have

&quot; d

also

= DDFn
= ^ (^F^ = W2

n̂
&quot;

(377)
Ct A.

D (Fn
= (ODD . . . . i times) Fn

= ]Fn = dF (378)

92. The fundamental lawrs or principles governing the combination

of symbols of quantity in algebraic operations are the following :
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I. The Distributive Law, by virtue of which

= ap + aq + ar

II. The Commutative Law, expressed by the equation

ab = la

III. The Index Law, which asserts the relation

ar X as = ar+s

We proceed to show that the symbols of operation, A and D, when
combined each with itself or with symbols of quantity in the manner
indicated below, also obey these fundamental laws

;
and hence that,

wherever found in similar combinations, A and D may be treated alge
braically precisely as if they ivere themselves mere symbols of quantity.
AVe shall first consider the symbol A.

(1). By definition, we have

A (Fn+fn+ ...,.)- (Fn+1+fn+1+ ....)- (FH+fn+ . . . .
)= (Fn+1-Fn)

+ C/UI-/0 + ....
= A Fn + A/n + . . . .

which proves the Distributive Law for the symbol A.

(2) The factor a being a constant, we have

A a*; = aFn+1 -aFn
= a(Fn+l-Fn)

= aAFn

thus showing that A combines with constant quantities in accordance
with the Commutative Law.

(3) r and s denoting positive integers, the relation (375) gives

or

Therefore, so far as positive integral indices are concerned, the symbolA obeys the Index Laiv.

93. Retaining the limitations and the notation used above, similar
results are easily obtained for the operator D, as follows :
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(1) D (*+/.+ ....)- Jf(
F +f*+

dFn ,
dfH

-

&quot;Jr
+ (1)

dT +

= DFn+Dfn+ ..

(2) DaFn
= L-aFn

= aco ? = aDFn

= D + F,

These relations prove that within the limitations imposed the sym
bol D obeys the fundamental laws of algebraic combination.

94. To a limited extent it is necessary to consider negative powers

of A and D. Now the meaning and use of A&quot;
1

,
A&quot;

2

,
. . . .

,
and

of D&quot;

1

,
D~2

,
.... are easily understood : thus, from the foregoing

definitions, we have

A( -Fn) = Fn

where Fn is defined as in the schedule on page 134.^ Then, in analogy

with the usual mode of expressing inverse functions, we may write

F = /~ 1Fn n

Whence we have
Fn

= ATO = Fn (379)

which shows (1) that the operation of AA~J

(= A) leaves the sub

ject function unaltered, and (2) that negative powers of A also obey

the Index Law.

The relation
A-1^ = &amp;lt;Fn (380)

may be taken as the definition of the operator A&quot;
1

. Similarly, we

have
A-2

n̂
= &quot;Fn ,

A-3
n̂
= &quot;Fn ,

..... (381)

Again, consider the relation

DFn
=
cog

= v (382)

which, from the point of view above taken, may be written

Fn
= D-1

*; (383)
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Then we have
DD-l v = DFn

= v (384)

whence we see that negative powers of D likewise follow the Index
Law.

Moreover, from equation (382), we obtain

dF = a-t

and therefore

Fn
= trl

which, with (383), gives

(385)

It follows that the operation of D&quot;
1

is equivalent to an integration.
More specifically : Operating upon any function with D&quot;

1

integrates

that function with respect to T and divides the resulting integral by o&amp;gt;.

In like manner we have

(386)

and so on.

95. Having thus defined and explained the use of the symbols
of operation, A~2

, A~\ A, A, A2

,
. . . .

,
and D~2

,
D&quot;

1

, D, D, D2

,
. . . .

;

and having shown that these symbols may in general be combined

algebraically as if they were merely symbols of quantity, we now pro
ceed to derive the fundamental relations of the text, as originally

proposed.

96. The theorem of the change in sign of the odd orders of

differences caused by inverting a given series of functions is easily

proved. To this end, let us suppose that
z/,&amp;lt;

r)

,
of the direct or given

series, becomes
[z/f

r)

] when that series has been inverted. Then, since

= Fw -Ft
= J

t

we have

Whence, regarding A as operator, it follows that

(-A)
2

^. = [//; ], (-A) 3
^, =

[4&quot; ], . . . ., (-A)^ =
[Jj&quot;&amp;gt;]

and therefore

[JW] = (-A) ^,.
= (-l) -A^. = (-l)

r^ r)

(387)

which establishes Theorem III.



210 APPENDIX.

97. By definition, we have

A/+; = Fn+l
-

hence
= Fn+1

D 2 D 3

F 4- DF -\
____ F H-- n̂ +- * n T ** ~

|2
&quot;

~
13

n T^

where e is the base of the natural system of logarithms. &quot;We have,

therefore,
1+ A = e (388)

which is the fundamental relation between A and D.

98. From (388), we get

D 2 D3 D4

A=e-l= D+ 2-
+ -3- + -5-+ . (389)

and hence, by involution,

+ D 3 + 1
7oD4 +iD 5 + ....

i Q P\4 t &amp;lt;=; P\5 t H Pv6 i

(390)

A 2 = D2 + D 3 + 1^D 4
-fiD

5 + . . . .

A 3 = Q3 + I [)4 + 5 D5 + f D 6 + . - . .

A* = D ;

These expressions are equivalent to the formulae (21)

Again, from the last of (390), we derive

that is

. . . . (391)

where for brevity we have written alt 2 ,
. . . . to denote the co

efficients of Di+1
,
Di+2

,
.... in (390). Whence, if F(T) = aT l

2

-\- . . . .
,

we have

which is the algebraic statement of Theorem V.



APPENDIX. 211

99. Expressing the relation (388) in logarithmic form, we get

A-^-
2

+|!_ + .... (392)

whence
D 2 = A 2 - ....

(393)
. A 3 -|A

From these relations the formulae (45) or the equivalent group (165)
immediately follow.

100. We next consider the question of reducing the tabular in
terval from a* to ma, as discussed in 19. Since in the preceding
definitions of A and D the magnitude of the interval is arbitrary, we
have here only to denote by d and d the corresponding symbols in
the reduced series

; evidently the same relations will then exist be
tween d and d as were found above for A and D. Thus we obtain

d f d\
, mu =--

*\jf)
= mD

(394)

and since, by (388), we have

1 + A = e

1 + d = ed = e&quot;

^ : 1 -f W A H ! i. A &quot;2 +

and therefore

(395)

a A= m3A

which are equivalent to the relations expressed in (64).

101. The equation

AF
O
= JPX._J;

may be written in the form

(397)
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Hence the binomial 1 + A may be defined as an operator whose effect

is to raise by unity the subscript of the subject function. Whence

we have
I\ &amp;gt;

(39g)

and generally
(l + A)

n ^ = Fn (399)

We therefore obtain

Fn
=

or

77! T? \ V) /I I
^ L //&quot; J_ /J ,, -4- . (4UU)f .. = -f -I- il/J n -r- T?i

- n T IQ &quot;l&amp;gt; i \ /

which is the fundamental formula of interpolation due to

102. We now find it convenient to introduce a new symbol of

operation, which, from its similarity and relation to A, we shall desig

nate V: this operator is defined by the equation

_x
= /iu (

401
)

From this relation we at once derive

(402)

whence it appears that the operation of Vr
upon any tabular function

produces the difference of order r which falls upon the upward in

clined diagonal through that function
;
whereas the successive opera

tions of A produce, as already shown, those differences falling upon

the downward diagonal line. Moreover, from the complete similarity

of character of these two operators, it is obvious that V likewise

follows the fundamental laws of algebraic combination.

The relation between V and A is easily found : thus, from (401),

we obtain

(1-V)*; = F^ (403)

also, from (397), we have

= F
t (

404)
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Whence we find

and therefore

1- V =
(l + A)-

1

(405)

which gives

log(l-V) = -log (l + A) (406)

Again, combining (388) and (405), we obtain

1 - V = e~ (407)

103. As an immediate application of the preceding relations, let

us derive the formula (75). By means of (388), equation (399)
becomes

Fn
=

whence, changing the sign of n, we find

Therefore

JL, = P,
- n^ +^11 4- _ Ifr- 1

^
- 2

)

43.+ ____ (408)

which is NEAVTON S Formula for backward interpolation, as given by
(75).

104. Formula (66) of the text is easily deduced by means of

the identity

A =

Thus we find

whence, by (399), we obtain

jco - F -iF .

-

(i-lJj. *(*-l)(*-2)j.^0 *&amp;lt;..* i-1 T~
12 2

J3

~
3

which is the same as equation (66).
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105. We now pass to the derivation of the fundamental form

ulae of mechanical quadrature. Since D = log (1 -J- A) ,
we have

5 + . . -.

-.)Fn

Whence, interpreting the first member according to (385), and the

term A~lFn as in (380), we find

This is the fundamental relation of quadrature, from which the

formula (a) of (250) is at once derived. To obtain (&) of (250) in

volving the differences ^/, _i, X/-2&amp;gt; ^n-z-&amp;gt;
.

,
we have only to

employ the relation (406), and the above development becomes

- -7- V-7 V7 _ VVV ~ 7 ~ T2 V IT V T?0

the interpretation of which gives

dT^ F^^^Fn^^^^^^^^^^^^^^M^^^\ , . (411)

agreeing with formula (&) of (250).

106. Similarly, we obtain for the second integration

the first pair of terms in the right-hand member may be

written

(A-
2 + A&quot;

1

)
Fn

= A-2

(1 + A)^,, = A-2

n̂+1
= &quot;Fn+l

and therefore the preceding expression becomes

^&quot; w^t+-AA-i4wJT+iH^--.Hb4r+w-4I--- (
412

)

from which (324) immediately follows.
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Again, we find

= (v^-V^+T^-^oV -^oV -cHloV -^gV 5-
- . )*; (413)

Transforming the first two terms of the last expression, we ob

tain

Now, because the operation of 1 -\-
A raises by unity the subscript

of the subject function (101), it follows that the operation of

(1 -\- A)&quot;

1 diminishes that subscript by one unit. Accordingly, we
have

and hence the relation (413) gives

which is equivalent to the formula (326). These expressions complete
the fundamental relations of mechanical quadrature.
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